
Modern Perl

Modern Perl

chromatic

Modern Perl

Copyright ©2010 chromatic

Editor: Shane Warden
Logo design:Devin Muldoon
Cover design:Allison Randal and chromatic

ISBN-10: 0-9779201-5-1
ISBN-13: 978-0-9779201-5-0

Published by Onyx Neon Press,http://www.onyxneon.om/. The Onyx Neon logo is a trademark of Onyx Neon, Inc.

This book was typeset on Ubuntu GNU/Linux using Perl 5,Pod::PseudoPod::LaTeX, and LaTeX. Many thanks to the free
software contributors who make these and other projects possible.

Please report any errors athttp://github.om/hromati/modern_perl_book/.

First Edition October 2010

Please share this book!
We give this book away in the hope that it is useful. We encourage you to share this unmodified PDF with others,
for free. If you do find this book useful, please seehttp://onyxneon.om/books/modern_perl/#why_free/

to help us produce more such books in the future.
Thanks for reading!

http://www.onyxneon.com/
http://github.com/chromatic/modern_perl_book/
http://onyxneon.com/books/modern_perl/#why_free/

Contents

Preface i

Running Modern Perl ii

Perl 5 and Perl 6 iii

Credits iii

The Perl Philosophy 1

Perldoc 1

Expressivity 2

Context 3

Implicit Ideas 6

Perl and Its Community 9

Community Sites 9

Development Sites 9

Events 10

IRC 10

The CPAN 10

The Perl Language 13

Names 13

Variables 14

Values 15

Control Flow 23

Scalars 35

Arrays 36

Hashes 40

Coercion 47

Nested Data Structures 55

3

Modern Perl

Operators 59

Operator Characteristics .. 59

Operator Types 60

Functions 63

Declaring Functions 63

Invoking Functions 63

Function Parameters 64

Functions and Namespaces 66

Reporting Errors 67

Advanced Functions 68

Pitfalls and Misfeatures .. 71

Scope 72

Anonymous Functions 75

Closures 79

State versus Closures 82

State versus Psuedo-State .. 83

Attributes 83

AUTOLOAD 85

Regular Expressions and Matching 89

Literals 89

The qr// Operator and Regex Combinations 89

Quantifiers 90

Greediness 91

Regex Anchors 92

Metacharacters 92

Character Classes 93

Capturing 93

Grouping and Alternation .. 95

Other Escape Sequences 96

Assertions 96

Regex Modifiers 97

Smart Matching 98

Objects 100

Moose 100

Blessed References 110

4

Preface

Reflection 113

Advanced OO Perl 115

Style and Efficacy 117

Writing Maintainable Perl .. 117

Writing Idiomatic Perl 118

Writing Effective Perl 118

Exceptions 119

Pragmas 121

Managing Real Programs 123

Testing 123

Handling Warnings 126

Files 129

Modules 134

Distributions 137

The UNIVERSAL Package 139

Code Generation 141

Overloading 145

Taint 146

Perl Beyond Syntax 148

Idioms 148

Global Variables 153

What to Avoid 156

Barewords 156

Indirect Objects 158

Prototypes 159

Method-Function Equivalence .. 162

Tie 163

What’s Missing 166

Missing Defaults 166

i

Preface

Perl turns 23 years old later this year. The language has gonefrom a simple tool for system administration somewhere between
shell scripting and C programming (Perl 1) to a powerful, general-purpose language steeped in a rich heritage (Perl 5) and a
consistent, coherent, rethinking of programming in general intended to last for another 25 years (Perl 6).

Even so, most Perl 5 programs in the world take far too little advantage of the language. Youcanwrite Perl 5 programs as if
they were Perl 4 programs (or Perl 3 or 2 or 1), but programs written to take advantage of everything amazing the worldwide
Perl 5 community has invented, polished, and discovered areshorter, faster, more powerful, and easier to maintain thantheir
alternatives.

Modern Perlis a loose description of how experienced and effective Perl5 programmers work. They use language idioms. They
take advantage of the CPAN. They’re recognizably Perlish, and they show good taste and craftsmanship and a full understanding
of Perl.

You can learn this too.

Running Modern Perl

The Modern::Perl module is available from the CPAN. Installit yourself or replace it with:
use 5.010;
use strict;
use warnings;

With these lines in every example program, Perl will warn youof dubious constructs and typos and will enable
new features of Perl 5.10 through thefeature pragma (see Pragmas, page 121). For now, assume these lines are
always present. You will understand them soon.

Unless otherwise mentioned, code snippets always assume the basic skeleton of a program:

#!/usr/bin/perl

use Modern::Perl;

example code here
...

Other code snippets use testing functions such asok(), like(), andis() (see Testing, page 123). That skeleton program is:

#!/usr/bin/perl

use Modern::Perl;
use Test::More;

example code here
...
done_testing();

ii

Preface

The examples in this book work best with Perl 5.10.0 or newer;ideally at least Perl 5.10.1. Many examples will work on older
versions of Perl 5 with modest changes, but you will have moredifficulty with anything older than 5.10.0. This book also
describes (but does notrequirethe use of) features found in Perl 5.12.

You can often install a new version of Perl yourself. Windowsusers, download Strawberry Perl fromhttp://www.strawberryperl.
om/. Users of other operating systems with Perl 5 already installed (and a C compiler and the other development tools), start
by installing the CPAN moduleApp::perlbrew1.

perlbrew allows you to install and to manage multiple versions of Perl5. By default, it installs them to your own home
directory. Not only can you have multiple versions of Perl 5 installed without affecting the system Perl but you can also install
any module you like into these directories without asking your system administrator for specific permission.

Perl 5 and Perl 6
Should you learn Perl 5 or Perl 6? They share philosophy and syntax and libraries and community; they fill different niches.
Learn Perl 5 if:

• You have existing Perl 5 code to maintain

• You need to take advantage of CPAN modules

• Your deployment strategy requires rigorous stability

Learn Perl 6 if:

• You’re comfortable managing frequent upgrades

• You can afford to experiment with new syntax and features

• You need new features only available in Perl 6

• You can contribute to its development (whether patches, bug reports, documentation, sponsorship, or other resources)

In general, Perl 5 development is conservative with regard to the core language. For good or for ill, change occurs slowly.
Perl 6 is more experimental, as it considers finding the bestpossible design more important than keeping old code working.
Fortunately, you can learn and use both languages (and they interoperate to an ever-improving degree).

This book discusses Perl 5. To learn more about Perl 6, seehttp://perl6.org/, try Rakudo (http://www.rakudo.org/),
and refer to the bookUsing Perl 6, also published by Onyx Neon Press.

Credits
This book would not have been possible in its current form without questions, comments, suggestions, advice, wisdom, and
encouragement from many, many people. In particular, the author and editor would like to thank:

John SJ Anderson, Peter Aronoff, Lee Aylward, Alex Balhatchet, Ævar Arnfjörð Bjarmason, Matthias Bloch, John Bokma,
Vasily Chekalkin, Dmitry Chestnykh, E. Choroba, Paulo Custodio, Felipe, Shlomi Fish, Jeremiah Foster, Mark Fowler, John
Gabriele, Andrew Grangaard, Bruce Gray, Ask Bjørn Hansen, Tim Heaney, Robert Hicks, Michael Hind, Mark Hindess,
Yary Hluchan, Mike Huffman, Curtis Jewell, Mohammed ArafatKamaal, James E Keenan, Yuval Kogman, Jan Krynicky,
Jeff Lavallee, Moritz Lenz, Jean-Baptiste Mazon, Josh McAdams, Gareth McCaughan, John McNamara, Shawn M Moore,
Alex Muntada, Carl Mäsak, Chris Niswander, Nelo Onyiah, Chas. Owens, ww from PerlMonks, Jess Robinson, Dave Rolsky,
Gabrielle Roth, Andrew Savige, Lorne Schachter, Dan Scott,Alexander Scott-Johns, Phillip Smith, Christopher E. Stith, Mark
A. Stratman, Bryan Summersett, Audrey Tang, Scott Thomson,Ben Tilly, Sam Vilain, Larry Wall, Colin Wetherbee, Frank
Wiegand, Doug Wilson, Sawyer X, David Yingling, Marko Zagozen, harleypig, hbm, and sunnavy.

Any errors are the fault of the author’s own stubbornness.

1Seehttp://searh.pan.org/perldo?App::perlbrew for installation instructions.

iii

http://www.strawberryperl.com/
http://www.strawberryperl.com/
http://perl6.org/
http://www.rakudo.org/
http://search.cpan.org/perldoc?App::perlbrew

The Perl Philosophy
Perl is a language for getting things done. It’s flexible, forgiving, and malleable. In the hands of a capable programmer, it
can accomplish almost any task, from one-liner calculations and automations to multi-programmer, multi-year projects and
everything in between.

Perl is powerful, and modern Perl—Perl which takes advantageof the best knowledge, deepest experience, and reusable idioms
of the global Perl community—is maintainable, fast, and easyto use. Perhaps most importantly, it can help you do what you
need to do with little frustration and no ceremony.

Perl is a pragmatic language. You, the programmer, are in charge. Rather than manipulating your mind and your problems tofit
how the language designer thinks you should write programs,Perl allows you to solve your problems as you see fit.

Perl is a language which can grow with you. You can write useful programs with the knowledge that you can learn in an hour
of reading this book. Yet if you take the time to understand the philosophies behind the syntax, semantics, and design of the
language, you can be far more productive.

First, you need to know how to learn more.

Perldoc
One of Perl’s most useful and least appreciated features is theperldo utility. This program is part of every complete Perl 5 in-
stallation2. It displays the documentation of every Perl module installed on the system—whether a core module or one installed
from the Comprehensive Perl Archive Network (CPAN)—as well as thousands of pages of Perl’s copious core documentation.

If you prefer an online version,http://perldo.perl.org/ hosts recent versions of the Perl documentation.
http://searh.pan.org/ displays the documentation of every module on the CPAN. Windows users, both
ActivePerl and Strawberry Perl provide a link in your Start menu to the documentation.

The default behavior ofperldo is to display the documentation for a named module or a specific section of the core docu-
mentation:

$ perldoc List::Util
$ perldoc perltoc
$ perldoc Moose::Manual

The first example extracts documentation written for theList::Util module and displays it in a form appropriate for your
screen. Community standards for CPAN modules (see The CPAN,page 10) suggest that additional libraries use the same
documentation format and form as core modules, so there’s nodistinction between reading the documentation for a core library
such asData::Dumper or one installed from the CPAN. The standard documentation template includes a description of the
module, demonstrates sample uses, and then contains a detailed explanation of the module and its interface. While the amount
of documentation varies by author, the form of the documentation is remarkably consistent.

The second example displays a pure documentation file, in this case the table of contents of the core documentation itself. This
file describes each individual piece of the core documentation; browse it for a good understanding of Perl’s breadth.

2You may have to install an additional package on a free GNU/Linux distribution or another Unix-like system; on Debian and Ubuntu this isperl-do.

1

http://perldoc.perl.org/
http://search.cpan.org/

Modern Perl

The third example resembles the second;Moose::Manual is part of the Moose CPAN distribution (see Moose, page 100).It is
also purely documentation; it contains no code.

Similarly, perldo perlfaq will display the table of contents for Frequently Asked Questions about Perl 5.
Skimming these questions is invaluable.

Theperldo utility has many more abilities (seeperldo perldo). Two of the most useful are the-q and the-f flags. The
-q flag takes a keyword or keywords and searches only the Perl FAQ, displaying all results. Thusperldo -q sort returns
three questions:How do I sort an array by (anything)?, How do I sort a hash (optionally by value instead of key)?, andHow
can I always keep my hash sorted?.

The-f flag displays the core documentation for a builtin Perl function. perldo -f sort explains the behavior of thesort
operator. If you don’t know the name of the function you want,useperldo perlfun to see a list of functions.

perldo perlop andperldo perlsyn document Perl’s symbolic operators and syntactic constructs;perldo
perldiag explains the meanings of Perl’s warning messages.

Perl 5’s documentation system isPOD, or Plain Old Documentation. perldo perlpod describes how POD works. The
perldo utility will display the POD in any Perl module you create andinstall for your project, and other POD tools such as
podheker, which validates the form of your POD, andPod::Webserver, which displays local POD as HTML through a
minimal web server, will handle valid POD correctly.

perldo has other uses. With the-l command-line flag, it displays thepathto the documentation file rather than the contents
of the documentation3. With the-m flag, it displays the entirecontentsof the module, code and all, without processing any POD
instructions.

Expressivity
Before Larry Wall created Perl, he studied linguistics and human languages. His experiences continue to influence Perl’s design.
There are many ways to write a Perl program depending on your project’s style, the available time to create the program, the
expected maintenance burden, or even your own personal sense of expression. You may write in a straightforward, top-to-
bottom style. You may write many small and independent functions. You may model your problem with classes and objects.
You may eschew or embrace advanced features.

Perl hackers have a slogan for this:TIMTOWTDI, pronounced “Tim Toady”, or “There’s more than one way to do it!”

Where this expressivity can provide a large palette with which master craftsman can create amazing and powerful edifices,
unwise conglomerations of various techniques can impede maintainability and comprehensibility. You can write good code or
you can make a mess. The choice is yours4.

Where other languages might suggest that one enforced way to write any operation is the right solution, Perl allows you
to optimize for your most important criteria. Within the realm of your own problems, you can choose from several good
approaches—but be mindful of readability and future maintainability.

As a novice to Perl, you may find certain constructs difficultto understand. The greater Perl community has discovered and
promoted several idioms (see Idioms, page 148) which offer great power. Don’t expect to understand them immediately. Some
of Perl’s features interact in subtle ways.

Another design goal of Perl is to surprise experienced (Perl) programmers very little. For example, adding two scalars together
with a numeric operator ($first_num + $seond_num) is obviously a numeric operation; the operator must treat both scalars

3Be aware that a module may have a separate.podfile in addition to its.pmfile.

4. . . but be kind to other people, if you must make a mess.

2

The Perl Philosophy

Learning Perl is like learning a second or third spoken language. You’ll learn a few words, then string together
some sentences, and eventually will be able to have small, simple conversations. Mastery comes with practice, both
reading and writing. You don’t have to understand all of the details of this chapter immediately to be productive
with Perl. Keep these principles in mind as you read the rest of this book.

as numeric values to produce a numeric result. No matter whatthe contents of$first_num and$seond_num, Perl will coerce
them to numeric values (see Numeric Coercion, page 47) without requiring the user or programmer to specify this conversion
manually. You’ve expressed your intent to treat them as numbers by choosing a numeric operator (see Numeric Operators, page
60), so Perl happily handles the rest.

In general, Perl programmers can expect Perl to do what you mean; this is the notion ofDWIM—do what I mean. You may
also see this mentioned as theprinciple of least astonishment. Given a cursory understanding of Perl (especially context; see
Context, page 3), it should be possible to read a single unfamiliar Perl expression and understand its intent.

If you’re new to Perl, you will develop this skill over time. The flip side of Perl’s expressivity is that Perl novices can write useful
programs before they learn all of Perl’s powerful features.The Perl community often refers to this asbaby Perl. Though it may
sound dismissive, please don’t take offense; everyone is a novice once. Take the opportunity to learn from more experienced
programmers and ask for explanations of idioms and constructs you don’t yet understand.

A Perl novice might multiply a list of numbers by three by writing:
my @tripled;
my $count = @numbers;

for (my $i = 0; $i < $count; $i++)
{

$tripled[$i] = $numbers[$i] * 3;
}

A Perl adept might write:

my @tripled;

for my $num (@numbers)
{

push @tripled, $num * 3;
}

An experienced Perl hacker might write:

my @tripled = map { $_ * 3 } @numbers;

Experience writing Perl will help you to focus on what you want to do rather than how to do it.

Perl is a language intended to grow with your understanding of programming. It won’t punish you for writing simple pro-
grams. It allows you to refine and expand programs for clarity, expressivity, reuse, and maintainability. Take advantage of this
philosophy. It’s more important to accomplish your task well than to write a conceptually pure and beautiful program.

The rest of this book demonstrates how to use Perl to your advantage.

Context
Spoken languages have a notion ofcontextwhere the correct usage or meaning of a word or phrase dependson its surroundings.
You may understand this in a spoken language, where the inappropriate pluralization of “Please give me one hamburgers!”5

5The pluralization of the noun differs from the amount.

3

Modern Perl

sounds wrong or the incorrect gender of “la gato”6 makes native speakers chuckle. Consider also the pronoun “you” or the noun
“sheep” which can be singular or plural depending on the remainder of the sentence.

Context in Perl is similar; the language understands expectations of the amount of data to provide as well as what kind of data
to provide. Perl will happily attempt to provide exactly what you ask for—and you ask by choosing one operator over another.

One type of context in Perl means that certain operators havedifferent behavior if you want zero, one, or many results. It’s
possible that a specific construct in Perl will do somethingdifferent if you say “Fetch me zero results; I don’t care about any”
than if you say “Fetch me one result” or “Fetch me many results.”

Likewise, certain contexts make it clear that you expect a numeric value, a string value, or a value that’s either true or false.

Context can be tricky if you try to write or read Perl code as a series of single expressions which stand apart from their
environments. You may find yourself slapping your foreheadafter a long debugging session when you discover that your
assumptions about context were incorrect. However, if you’re cognizant of contexts, they can make your code clearer, more
concise, and more flexible.

Void, Scalar, and List Context
One of the aspects of context governshow manyitems you expect. This isamount context. Compare this context to subject-verb
number agreement in English. Even if you haven’t learned theformal description of the rule, you probably understand theerror
in the sentence “Perl are a fun language”. The rule in Perl is that the number of items you request determines how many you
get.

Suppose you have a function (see Declaring Functions, page 63) calledfind_hores() which sorts all of your chores in order
of their priority. The means by which you call this function determines what it will produce. You may have no time to do chores,
in which case calling the function is an attempt to look industrious. You may have enough time to do one task, or you could
have a burst of energy and a free weekend and the desire to do asmuch of the list as possible.

If you call the function on its own and never use its return value, you’ve called the function invoid context:

find_chores();

Assigning the function’s return value to a single element evaluates the function inscalar context:

my $single_result = find_chores();

Assigning the results of calling the function to an array (see Arrays, page 36) or a list, or using it in a list, evaluates the function
in list context:

my @all_results = find_chores();
my ($single_element) = find_chores();
process_list_of_results(find_chores());

The second line of the previous example may look confusing; the parentheses there give a hint to the compiler that although
there’s only a scalar, this assignment should occur in list context. It’s semantically equivalent to assigning the first item in
the list to a scalar and assigning the rest of the list to a temporary array, and then throwing away the array—except that no
assignment to the array actually occurs:

my ($single_element, @rest) = find_chores();

Evaluating a function or expression—except for assignment—in list context can produce confusion. Lists propagate list context
to the expressions they contain. Both calls tofind_hores() occur in list context:

6The article is feminine, but the noun is masculine.

4

The Perl Philosophy

process_list_of_results(find_chores());

my %results =
(

cheap_operation => $cheap_operation_results,
expensive_operation => find_chores(), # OOPS!

);

The latter example often surprises novice programmers who expect scalar context for the call.expensive_operation occurs
is in list context, because its results are assigned to a hash. Hash assignments take a list of key/value pairs, which causes any
the evaluation of any expressions in that list to occur in list context.

Use thesalar operator to impose scalar context:

my %results =
(

cheap_operation => $cheap_operation_results,
expensive_operation => scalar find_chores(),

);

Why does context matter? The function can examine its callingcontext and decide how much work it needs to do before
returning its results. In void context,find_hores() can do nothing. In scalar context, it can find only the most important
task. In list context, it has to sort and return the entire list.

Numeric, String, and Boolean Context
Another type of context determines how Perl understands a piece of data—nothow manypieces of data you want, but what
the data means. You’ve probably already noticed that Perl’sflexible about figuring out if you have a number or a string and
converting between the two as you want them. Thisvalue contexthelps to explain how it does so. In exchange for not having
to declare (or at least track) explicitly whattypeof data a variable contains or a function produces, Perl offers specific type
contexts that tell the compiler how to treat a given value during an operation.

Suppose you want to compare the contents of two strings. Theeq operator tells you if the strings contain the same information:

say "Catastrophic crypto fail!" if $alice eq $bob;

You may have had a baffling experience where youknowthat the strings are different, but they still compare the same:

my $alice = 'alice';
say "Catastrophic crypto fail!" if $alice == 'Bob'; # OOPS

Theeq operator treats its operands as strings by enforcingstring contexton them. The== operator imposesnumeric context.
The example code fails because the value of both strings whentreated as numbers is0 (see Numeric Coercion, page 47).

Boolean contextoccurs when you use a value in a conditional statement. In theprevious examples, theif statement evaluated
the results of theeq and== operators in boolean context.

Perl will do its best to coerce values to the proper type (see Coercion, page 47), depending on the operators you use. Be sure to
use the proper operator for the type of context you want.

In rare circumstances, you may need to force an explicit context where no appropriately typed operator exists. To force a
numeric context, add zero to a variable. To force a string context, concatenate a variable with the empty string. To forcea
boolean context, double the negation operator:

my $numeric_x = 0 + $x; # forces numeric context
my $stringy_x = '' . $x; # forces string context
my $boolean_x = !!$x; # forces boolean context

In general, type contexts are less difficult to understand and see than the amount contexts. Once you understand that theyexist
and know which operators provide which contexts (see Operator Types, page 60), you’ll rarely make mistakes with them.

5

Modern Perl

Implicit Ideas
Like many spoken languages, Perl provides linguistic shortcuts. Context is one such feature: both the compiler and a program-
mer reading the code can understand the expected number of results or the type of an operation from existing information
without requiring additional information to disambiguate.

Other linguistic features include default variables—essentially pronouns.

The Default Scalar Variable
The default scalar variable(also called thetopic variable), $_, is the best example of a linguistic shortcut in Perl. It’s most
notable in itsabsence: many of Perl’s builtin operations work on the contents of$_ in the absence of an explicit variable. You
can still use$_ as the variable, but it’s often unnecessary.

For example, thehomp operator removes any trailing newline sequence from the given string:

my $uncle = "Bob\n";
say "'$uncle'";
chomp $uncle;
say "'$uncle'";

Without an explicit variable,homp removes the trailing newline sequence from$_. These two lines of code are equivalent:

chomp $_;
chomp;

$_ has the same function in Perl as the pronounit in English. Read the first line as “homp it” and the second as “homp”. Perl
understands what you mean when you don’t explain what to chomp; Perl will always chompit.

Similarly, thesay andprint builtins operate on$_ in the absence of other arguments:

print; # prints $_ to the currently selected filehandle
say; # prints $_ to the currently selected filehandle

with a trailing newline

Perl’s regular expression facilities (see Regular Expressions and Matching, page 89) can also operate on$_ to match, substitute,
and transliterate:

$_ = 'My name is Paquito';
say if /My name is/;

s/Paquito/Paquita/;

tr/A-Z/a-z/;
say;

Many of Perl’s scalar operators (includinghr, ord, l, length, reverse, andu) work on the default scalar variable if you
do not provide an alternative.

Perl’s looping directives (see Looping Directives, page 27) also set$_, such asfor iterating over a list:

say "# $_" for 1 .. 10;

for (1 .. 10)
{

say "# $_";
}

. . . orwhile:

6

The Perl Philosophy

while (<STDIN>)
{

chomp;
say scalar reverse;

}

. . . ormap transforming a list:

my @squares = map { $_ * $_ } 1 .. 10;
say for @squares;

. . . orgrep filtering a list:

say 'Brunch time!' if grep { /pancake mix/ } @pantry;

If you call functions within code that uses$_ whether implicitly or explicitly, they may overwrite the value of$_. Similarly, if
you write a function which uses$_, you may clobber a caller function’s use of$_. Perl 5.10 allows you to usemy to declare
$_ as a lexical variable, which prevents this clobbering behavior. Be wise.

while (<STDIN>)
{

chomp;

BAD EXAMPLE
my $munged = calculate_value($_);
say "Original: $_";
say "Munged : $munged";

}

In this example, ifalulate_value() or any other function it happened to call changed$_, it would remain changed
throughout thewhile loop. Adding amy declaration prevents that behavior:

while (my $_ = <STDIN>)
{

...
}

Of course, using a named lexical can be just as clear:

while (my $line = <STDIN>)
{

...
}

Use$_ as you would the word “it” in formal writing: sparingly, in small and well-defined scopes.

The Default Array Variables
While Perl has a single implicit scalar variable, it has two implicit array variables. Perl passes arguments to functionsin an
array named�_. Array manipulation operations (see Arrays, page 36) inside functions affect this array by default. Thus, these
two snippets of code are equivalent:

sub foo
{

my $arg = shift;
...

}

sub foo_explicit
{

my $arg = shift @_;
...

}

7

Modern Perl

Just as$_ corresponds to the pronounit, �_ corresponds to the pronountheyor them. Unlike $_, Perl automatically localizes
�_ for you when you call other functions. The array operatorsshift andpop operate on�_ with no other operands provided.

Outside of all functions, the default array variable�ARGV contains the command-line arguments to the program. The same array
operators which use�_ implicitly within functions use�ARGV implicitly outside of functions. You cannot use�_ when you
mean�ARGV.

ARGV has one special case. If you read from the null filehandle<>, Perl will treat every element in�ARGV as thenameof a file
to open for reading. (If�ARGV is empty, Perl will read from standard input.) This implicit�ARGV behavior is useful for writing
short programs, such as this command-line filter which reverses its input:

while (<>)
{

chomp;
say scalar reverse;

}

Why salar? say imposes list context on its operands.reverse passes its context on to its operands, treating
them as a list in list context and a concatenated string in scalar context. This sounds confusing, because it is. Perl
5 arguably should have had different operators for these different operations.

If you run it with a list of files:

$ perl reverse_lines.pl encrypted/ * .txt

. . . the result will be one long stream of output. Without any arguments, you can provide your own standard input by piping in
from another program or typing directly.

8

Perl and Its Community
One of Larry’s main goals for Perl 5 was to encourage Perl development and evolution outside the core distribution. Perl 4had
several forks, because there was no easy way to connect it to arelational database, for example. Larry wanted people to create
and maintain their own extensions without fragmenting Perlinto thousands of incompatible pidgins.

You can add technical mechanisms for extensions, but you must also consider community aspects as well. Extensions and
enhancements that no one shares are extensions and enhancements that everyone has to build and test and debug and maintain
themselves. Yet shared extensions and libraries are worthless if you can’t find them, or you can’t enhance them, or you don’t
have permission to use them.

Fortunately, the Perl community exists. It’s strong and healthy. It welcomes willing participants at all levels—and notjust
for people who produce and share code. Consider taking advantage of the knowledge and experience of countless other Perl
programmers, and sharing your abilities as well.

Community Sites
Perl’s homepage athttp://www.perl.org/ hosts documentation, source code, tutorials, mailing lists, and several important
community projects. If you’re new to Perl, the Perl beginners mailing list is a friendly place to ask novice questions andget
accurate and helpful answers. Seehttp://beginners.perl.org/.

An important domain of note ishttp://dev.perl.org/, a central site for core development of Perl 5, Perl 67, and even Perl
1.

Perl.com publishes several articles and tutorials about Perl programming every month. Its archives reach back into the20th
century. Seehttp://www.perl.om/.

The CPAN’s (see The CPAN, page 10) central location ishttp://www.pan.org/, though experienced users spend more time
on http://searh.pan.org/. This central software distribution hub of reusable, free Perl code is an essential part of the
Perl community.

PerlMonks, athttp://perlmonks.org/, is a venerable community site devoted to questions and answers and other discus-
sions about Perl programming. It celebrated its tenth anniversary in December 2009, making it one of the longest- lasting web
communities dedicated to any programming language.

Several community sites offer news and commentary.http://blogs.perl.org/ is a community site where many well known
developers post.

Other sites aggregate the musings of Perl hackers, including http://perlsphere.net/, http://planet.perl.org/, and
http://ironman.enlightenedperl.org/. The latter is part of an initiative from the Enlightened Perl Organization (http://
enlightenedperl.org/) to increase the amount and improve the quality of Perl publishing on the web.

Perl Buzz (http://perlbuzz.om/) collects and republishes some of the most interesting and useful Perl news on a regular
basis.

Development Sites
Best Practical Solutions (http://bestpratial.om/) maintains an installation of their popular request tracking system,
RT, for CPAN authors as well as Perl 5 and Perl 6 development. Every CPAN distribution has its own RT queue, linked from

7The main Perl 6 site ishttp://www.perl6.org/

9

http://www.perl.org/
http://beginners.perl.org/
http://dev.perl.org/
http://www.perl.com/
http://www.cpan.org/
http://search.cpan.org/
http://perlmonks.org/
http://blogs.perl.org/
http://perlsphere.net/
http://planet.perl.org/
http://ironman.enlightenedperl.org/
http://enlightenedperl.org/
http://enlightenedperl.org/
http://perlbuzz.com/
http://bestpractical.com/
http://www.perl6.org/

Modern Perl

searh.pan.org and available onhttp://rt.pan.org/. Perl 5 and Perl 6 have separate RT queues available onhttp://

rt.perl.org/.

The Perl 5 Porters (orp5p) mailing list is the focal point of the development of Perl 5 itself. Seehttp://lists.pan.org/
showlist.gi?name=perl5-porters.

The Perl Foundation (http://www.perlfoundation.org/) hosts a wiki for all things Perl 5. Seehttp://www.perlfoundation.
org/perl5.

Many Perl hackers use Github (http://github.om/) to host their projects8. See especially Gitpan (http://github.om/
gitpan/), which hosts Git repositories chronicling the complete history of every distribution on the CPAN.

Events
There are plenty of events in the physical world as well. The Perl community holds a lot of conferences, workshops, and
seminars. In particular, the community-run YAPC—Yet Another Perl Conference—is a successful, local, low-cost conference
model held on multiple continents. Seehttp://yap.org/.

The Perl Foundation wiki lists other events athttp://www.perlfoundation.org/perl5/index.gi?perl_events.

There are also hundreds of local Perl Mongers groups which get together frequently for technical talks and social interaction.
Seehttp://www.pm.org/.

IRC
When Perl mongers aren’t at local meetings or conferences or workshops, many collaborate and chat online through IRC, a
textual group chat system from the early days of the Internet. Many of the most popular and useful Perl projects have theirown
IRC channels, such as#mooseor #catalyst.

The main server for Perl community isir://ir.perl.org/. Other notable channels include#perl-help, for general assis-
tance on Perl programming, and#perl-qa, devoted to testing and other quality issues. Be aware that the channel#perl is not for
general help—instead, it’s a general purpose room for discussing whatever its participants want to discuss9.

The CPAN
Perl 5 is a pragmatic language. It’ll help you get your work done. Yet the ever-pragmatic Perl community has extended that
language and made their work available to the world. If you have a problem to solve, chances are someone’s already uploaded
code to the CPAN for it.

The line between a modern language and its libraries is fuzzy. Is a language only syntax? Is it the core libraries? Is it the
availability of external libraries and the ease at which youcan use them within your own projects?

Regardless of how you answer those questions for any other language, modern Perl programming makes heavy use of the CPAN
(http://www.pan.org/). The CPAN, or Comprehensive Perl Archive Network, is an uploading and mirroring system for
redistributable, reusable Perl code. It’s one of—if notthe—largest archives of libraries of code in the world.

CPAN mirrorsdistributions, which tend to be collections of reusable Perl code. A singledistribution can contain one or more
modules, or self-contained libraries of Perl code. Each distribution lives in its own namespace on the CPAN and contains its
own metadata. You can build, install, test, and update each distribution. Distributions may depend on other distributions. For
this reason, installing distributions through a CPAN client is often simpler than doing so manually.

The CPAN itself is merely a mirroring service. Authors upload distributions containing modules, and the CPAN sends them
to mirror sites, from which users and CPAN clients download,configure, build, test, and install distributions. Yet theCPAN
has succeeded because of this simplicity, and because of thecontributions of thousands of volunteers who’ve built on this

8. . . including the sources of this book athttp://github.om/hromati/modern_perl_book/

9. . . and it’s not often friendly to people who ask basic programming questions.

10

http://rt.cpan.org/
http://rt.perl.org/
http://rt.perl.org/
http://lists.cpan.org/showlist.cgi?name=perl5-porters
http://lists.cpan.org/showlist.cgi?name=perl5-porters
http://www.perlfoundation.org/
http://www.perlfoundation.org/perl5
http://www.perlfoundation.org/perl5
http://github.com/
http://github.com/gitpan/
http://github.com/gitpan/
http://yapc.org/
http://www.perlfoundation.org/perl5/index.cgi?perl_events
http://www.pm.org/
irc://irc.perl.org/
http://www.cpan.org/
http://github.com/chromatic/modern_perl_book/

Perl and Its Community

The CPANaddshundreds of registered contributors and thousands of indexed modules in hundreds of distributions
every month. Those numbers do not take into account updates.At printing time in October 2010, search.cpan.org
reported 8465 uploaders, 86470 modules, and 21116 distributions.

distribution system to produce something greater. In particular, community standards have evolved to identify the attributes and
characteristics of well-formed CPAN distributions. Theseinclude:

Standards for installation to work with automated CPAN installers.

Standards for metadata to describe what each distribution includes and any dependencies of the distribution.

Standards for documentation and licensing to describe whatthe distribution does and how you may use it.

Additional CPAN services provide comprehensive automatedtesting and reporting of every CPAN distribution for adherence
to packaging and distribution guidelines and correctness of behavior on various platforms and versions of Perl. Every CPAN
distribution has its own ticket queue onhttp://rt.pan.org/ for reporting bugs and working with authors. Distributions
also have historical versions available on the CPAN, ratings, annotations for the documentation, and other useful information.
All of this is available fromhttp://searh.pan.org/.

Modern Perl installations include two clients to connect to, search, download, build, test, and install CPAN distributions,
CPAN.pm and CPANPLUS. They behave equivalently; their use is a matter of taste. This book recommends the use of CPAN.pm
solely due to its ubiquity.

If you use a recent version of CPAN.pm (as of this writing, 1.9402 is the latest stable release), CPAN.pm configuration islargely
decision-free. For any complete installation of Perl, you may start the client with:

$ cpan

To install a distribution:

$ cpan Modern::Perl

Eric Wilhelm’s tutorial on configuring CPAN.pm10 includes a great troubleshooting section.

Even though the CPAN client is a core module for the Perl 5 distribution, you may also have to install standard
development tools such as amake utility and possibly a C compiler to install all of the distributions you want.
Windows users, see Strawberry Perl (http://strawberryperl.om/) and Strawberry Perl Professional. Mac
OS X users need their developer tools installed. Unix and Unix-like users, consult your local system administrator.

For your work setting up a CPAN client and an environment to build and install distributions, you get access to libraries for
everything from database access to profiling tools to protocols for almost every network device ever created to sound and
graphics libraries and wrappers for shared libraries on your system.

Modern Perl without the CPAN is just another language. Modern Perl with the CPAN is amazing.

CPAN Management Tools
Serious Perl developers often manage their own Perl librarypaths or even full installations. Several projects help to make this
possible.

App::panminus is a new CPAN client with goals of speed, simplicity, and zeroconfiguration. Installation is as easy as:

10http://learnperl.srathomputing.om/tutorials/onfiguration/

11

http://rt.cpan.org/
http://search.cpan.org/
http://strawberryperl.com/
http://learnperl.scratchcomputing.com/tutorials/configuration/

Modern Perl

$ curl -LO http://xrl.us/cpanm
$ chmod +x cpanm

App::perlbrew is a system to manage and to switch between your own installations of multiple versions and configurations
of Perl. Installation is as easy as:

$ curl -LO http://xrl.us/perlbrew
$ chmod +x perlbrew
$./perlbrew install
$ perldoc App::perlbrew

Theloal::lib CPAN distribution allows you to install and to manage distributions in your own user directory, rather than
for the system as a whole. This is an effective way to maintainCPAN distributions without affecting other users. Installation
is somewhat more involved than the previous two distributions. Seehttp://searh.pan.org/perldo?loal::lib for
more details.

All three distributions projects tend to assume a Unix-likeenvironment (such as a GNU/Linux distribution or even Mac OSX).
Windows users, see the Padre all-in-one download (http://padre.perlide.org/download.html).

12

http://search.cpan.org/perldoc?local::lib
http://padre.perlide.org/download.html

The Perl Language
The Perl language has several smaller parts which combine toform its syntax. Unlike spoken language, where nuance and tone
of voice and intuition allow people to communicate despite slight misunderstandings and fuzzy concepts, computers andsource
code require precision. You can write effective Perl code without knowing every detail of every language feature, but you must
understand how they work together to write Perl code well.

Names
Names(or identifiers) are everywhere in Perl programs: variables, functions, packages, classes, and even filehandles have
names. These names all start with a letter or an underscore. They may optionally include any combination of letters, num-
bers, and underscores. When theutf8 pragma (see Unicode and Strings, page 17) is in effect, you may use any valid UTF-8
characters in identifiers. These are all valid Perl identifiers:

my $name;
my @_private_names;
my %Names_to_Addresses;

sub anAwkwardName3;

with use utf8; enabled
package Ingy::Döt::Net;

These are invalid Perl identifiers:

my $invalid name;
my @3;
my %~flags;

package a-lisp-style-name;

These rules only apply to names which appear in literal form in source code; that is, if you’ve typed it directly likesub
feth_pie or my $waffleiron.

Perl’s dynamic nature makes it possible to refer to entitieswith names generated at runtime or provided as input to a program.
These aresymbolic lookups. You get more flexibility this way at the expense of some safety. In particular, invoking functions
or methods indirectly or looking up symbols in a namespace lets you bypass Perl’s parser, which is the only part of Perl that
enforces these grammatical rules. Be aware that doing so canproduce confusing code; a hash (see Hashes, page 40) or nested
data structure (see Nested Data Structures, page 55) is often clearer.

Variable Names and Sigils
Variable namesalways have a leading sigil which indicates the type of the variable’s value.Scalar variables(see Scalars, page
35) have a leading dollar sign ($) character.Array variables(see Arrays, page 36) have a leading at sign (�) character.Hash
variables(see Hashes, page 40) have a leading percent sign (%) character:

my $scalar;
my @array;
my %hash;

In one sense, these sigils offer namespaces of the variables, where it’s possible (though often confusing) to have variables of
the same name but different types:

13

Modern Perl

my ($bad_name, @bad_name, %bad_name);

Perl won’t get confused, but people reading the code might.

Perl 5 usesvariant sigils, where the sigil on a variable may change depending on what you do with it. For example, to access
an element of an array or a hash, the sigil changes to the scalar sigil ($):

my $hash_element = $hash{ $key };
my $array_element = $array[$index]

$hash{ $key } = 'value';
$array[$index] = 'item';

In the latter two lines, using a scalar element of an aggregate as anlvalue(the target of an assignment, on the left side of the=

character) imposes scalar context (see Context, page 3) on thervalue(the value assigned, on the right side of the= character).

Similarly, accessing multiple elements of a hash or an array—an operation known asslicing—uses the at symbol (�) as the
leading sigil and imposes list context:

my @hash_elements = @hash{ @keys };
my @array_elements = @array[@indexes];

my %hash;
@hash{ @keys } = @values;

The most reliable way to determine the type of a variable—scalar, array, or hash—is to look at the operations performed on it.
Scalars support all basic operations, such as string, numeric, and boolean manipulations. Arrays support indexed access through
square brackets. Hashes support keyed access through curlybrackets.

Package-Qualified Names
Occasionally you may need to refer to functions or variablesin a separate namespace. Often you will need to refer to a class by
its fully-qualified name. These names are collections of package names joined by double colons (::). That is,My::Fine::-
Pakage refers to a logical collection of variables and functions.

While the standard naming rules apply to package names, by convention user-defined packages all start with uppercase letters.
The Perl core reserves lowercase package names for core pragmas (see Pragmas, page 121), such asstrit andwarnings.
This is a policy enforced by community guidelines instead ofPerl itself.

Namespaces do not nest in Perl 5. The relationship betweenSome::Pakage andSome::Pakage::Refinement is only
a storage mechanism, with no further implications on the relationships between parent and child or sibling packages. When
Perl looks up a symbol inSome::Pakage::Refinement, it looks in themain:: symbol table for a symbol representing
theSome:: namespace, then in there for thePakage:: namespace, and so on. It’s your responsibility to make anylogical
relationships between entities obvious when you choose names and organize your code.

Variables
A variable in Perl is a storage location for a value (see Values, page 15). You can work with values directly, but all but the most
trivial code works with variables. A variable is a level of indirection; it’s easier to explain the Pythagorean theorem in terms of
the variablesa, b, and than with the side lengths of every right triangle you can imagine. This may seem basic and obvious, but
to write robust, well-designed, testable, and composable programs, you must identify and exploit points of genericitywherever
possible.

Variable Scopes
Variables also have visibility, depending on their scope (see Scope, page 72). Most of the variables you will encounter have
lexical scope (see Lexical Scope, page 72). Remember that files themselves have their own lexical scopes, such that thepakage

declaration on its own does not create a new scope:

14

The Perl Language

package Store::Toy;

our $discount = 0.10;

package Store::Music;

$Store::Toy::discount still visible as $discount
say "Our current discount is $discount!";

Variable Sigils
In Perl 5, the sigil of the variable in a declaration determines the type of the variable, whether scalar, array, or hash. The sigil of
the variable used to access the variable determines the typeof access to its value. Sigils on variables vary depending onwhat
you do to the variable. For example, declare an array as�values. Access the first element—a single value—of the array with
$values[0℄. Access a list of values from the array with�values[�indies ℄.

Anonymous Variables
Perl 5 variables do notneednames; Perl manages variables just fine without caring about how you refer to them. Variables
created without literal names in your source code (such as$apple, �boys, %heeseburgers) areanonymousvariables. The
only way to access anonymous variables is by reference (see References, page 50).

Variables, Types, and Coercion
A variable in Perl 5 represents two things: the value (a dollar value, a list of pizza toppings, a group of guitar shops and their
phone numbers) and the container which stores that value. Perl 5’s type system deals withvalue typesandcontainer types. A
variable’s value type—whether a value is a string or a number,for example—can change. You may store a string in a variable
in one line, append to that variable a number on the next, and reassign a reference to a function (see Function References,page
53) on the third. A variable’scontainer type—whether it’s a scalar, an array, or a hash—cannot change.

Assigning to a variable may cause coercion (see Coercion, page 47). The documented way to determine the number of entries
in an array is to evaluate that array in scalar context (see Context, page 3). Because a scalar variable can only ever contain a
scalar, assigning an array to a scalar imposes scalar context on the operation and produces the number of elements in the array:

my $count = @items;

The relationship between variable types, sigils, and context is vital to a proper understanding of Perl.

Values
Effective Perl programs depend on the accurate representation and manipulation of values.

Computer programs containvariables: containers which holdvalues. Values are the actual data the programs manipulate. While
it’s easy to explain what that data might be—your aunt’s name and address, the distance between your office and a golf course
on the moon, or the weight of all cookies you’ve eaten in the past year—the rules regarding the format of that data are often
strict. Writing an effective program often means understanding the best (simplest, fastest, most compact, or easiest) way of
representing that data.

While the structure of a program depends heavily on the means by which you model your data with appropriate variables, these
variables would be meaningless if they couldn’t accuratelycontain the data itself—the values.

Strings
A string is a piece of textual or binary data with no particular formatting, no particular contents, and no other meaning to the
program. It could be your name. It could be the contents of an image file read from your hard drive. It could be the Perl program
itself. A string has no meaning to the program until you give it meaning.

To represent a string in your program, you must surround it with a pair of quoting characters. The most commonstring delimiters
are single and double quotes:

15

Modern Perl

my $name = 'Donner Odinson, Bringer of Despair' ;
my $address = "Room 539, Bilskirnir, Valhalla" ;

Perl strings do not have a fixed length after you declare them. Perl allows you to manipulate and modify strings as
necessary and will handle all relevant memory management for you.

Characters in asingle-quoted stringrepresent themselves literally, with two exceptions. You may embed a single quote inside a
single-quoted string by escaping the quote with a leading backlash:

my $reminder = 'Don \' t forget to escape the single quote!';

You must also escape any backslash at the end of the string to avoid escaping the closing delimiter and producing a syntax error:

my $exception = 'This string ends with a backslash, not a quot e: \\ ';

Any other backslash appears literally in the string, but given two adjacent backslashes, the first will escape the
second:
is('Modern \ Perl', 'Modern \\ Perl',

'single quotes backslash escaping');

A double-quoted stringhas more complex (and often, more useful) behavior. For example, you may encode non-printable
characters in the string:

my $tab = " \t ";
my $newline = " \n ";
my $carriage = " \r ";
my $formfeed = " \f ";
my $backspace = " \b ";

This demonstrates a useful principle: the syntax used to declare a string may vary. You can represent a tab within a stringwith
the\t escape or by typing a tab directly. As Perl runs, both stringsbehave the same way, even though the specific representation
of the string may differ in the source code.

A string declaration may cross logical newlines, such that these two strings are equivalent:

my $escaped = "two\nlines";
my $literal = "two
lines";
is($escaped, $literal, '\n and newline are equivalent');

You canenter these characters directly in the strings, but it’s often difficult to see the visual distinction between one tab character
and four (or two or eight) spaces.

You may alsointerpolatethe value of a scalar variable or the values of an array withina double-quoted string, such that the
contents of the variable become part of the string as if you’dwritten a concatenation operation directly:

my $factoid = "Did you know that $name lives at $address ?";

equivalent to

my $factoid = 'Did you know that ' . $name . ' lives at ' . $addres s . '?';

You may include a literal double-quote inside a double-quoted string byescapingit (that is, preceding it with a leading back-
slash):

16

The Perl Language

my $quote = "\"Ouch,\", he cried. \"That hurt!\"";

If you find that hideously ugly, you may use an alternatequoting operator. Theq operator indicates single quoting, while the
qq operator provides double quoting behavior. In each case, you may choose your own delimiter for the string. The character
immediately following the operator determines the beginning and end of the string. If the character is the opening character of
a balanced pair—such as opening and closing braces—the closing character will be the final delimiter. Otherwise, the character
itself will be both the starting and ending delimiter.

my $quote = qq{ "Ouch", he said. "That hurt!" } ;
my $reminder = q^ Didn't need to escape the single quote! ^ ;
my $complaint = q{ It's too early to be awake. } ;

Even though you can declare a complex string with a series of embedded escape characters, sometimes it’s easier to declare a
multi-line string on multiple lines. Theheredocsyntax lets you assign one or more lines of a string with a different syntax:

my $blurb =<<'END_BLURB';

He looked up. "Time is never on our side, my child. Do you see th e irony?
All they know is change. Change is the constant on which they a ll can
agree. Whereas we, born out of time to remain perfect and perf ectly
self-aware, can only suffer change if we pursue it. It is agai nst our
nature. We rebel against that change. Shall we consider them greater
for it?"
END_BLURB

The<<'END_BLURB' syntax has three parts. The double angle-brackets introduce the heredoc. The quotes determine whether
the heredoc obeys single-quoted or double-quoted behaviorwith regard to variable and escape character interpolation. They’re
optional; the default behavior is double-quoted interpolation. TheEND_BLURB itself is an arbitrary identifier which the Perl 5
parser uses as the ending delimiter.

Be careful; regardless of the indentation of the heredoc declaration itself, the ending delimitermuststart at the beginning of the
line:

sub some_function {
my $ingredients =<<'END_INGREDIENTS';
Two eggs
One cup flour
Two ounces butter
One-quarter teaspoon salt
One cup milk
One drop vanilla
Season to taste

END_INGREDIENTS
}

If the identifier begins with whitespace, that same whitespace must be present exactly in the ending delimiter.
Even if you do indent the identifier, Perl 5 willnot remove equivalent whitespace from the start of each line of the
heredoc.

You may use a string in other contexts, such as boolean or numeric; its contents will determine the resulting value (see Coercion,
page 47).

Unicode and Strings
Unicodeis a system for representing characters in the world’s written languages. While most English text uses a character set
of only 127 characters (which requires seven bits of storageand fits nicely into eight-bit bytes), it’s naïve to believethat you
won’t someday need an umlaut, for example.

Perl 5 strings can represent either of two related but different data types:

17

Modern Perl

Sequences of Unicode characters

The Unicode character set contains characters from the scripts of most languages, and various other symbols. Each
character has acodepoint, a unique number which identifies it in the Unicode character set.

Sequences of octets

Binary data is a sequence ofoctets—8 bit numbers, each of which can represent a number between 0 and 255.

Why octetand notbyte? Think of Unicode as characters without thinking of any particular size of the representation
of those characters in memory. Assuming that one character fits in one byte will cause you no end of Unicode grief.

Unicode strings and binary strings look very similar. They each have alength(), and they support standard string operations
such as concatenation, splicing, and regular expression processing. Any string which is not purely binary data is textual data,
and should be a sequence of Unicode characters.

However, because of how your operating system represents data on disk or from users or over the network—as sequences of
octets—Perl can’t know if the data you read is an image file or atext document or anything else. By default, Perl treats all
incoming data as sequences of octets. Any additional meaning of the string’s contents are your responsibility.

Character Encodings

A Unicode string is a sequence of octets which represent a sequence of characters. AUnicode encodingmaps octet sequences
to characters. Some encodings, such as UTF-8, can encode allof the characters in the Unicode character set. Others represent
a subset of Unicode characters. For example, ASCII encodes plain English text with no accented characters and Latin-1 can
represent text in most languages which use the Latin alphabet.

If you always decode to and from the appropriate encoding at the inputs and outputs of your program, you will avoid many
problems.

Unicode in Your Filehandles

One source of Unicode input is filehandles (see Files, page 129). If you tell Perl that a specific filehandle works with encoded
text, Perl can convert the data to Unicode strings automatically. To do this, add a IO layer to the mode of theopen builtin. An
IO layer wraps around input or output and converts the data. In this case, the:utf8 layer decodes UTF-8 data:

use autodie;

open my $fh, '<:utf8', $textfile;

my $unicode_string = <$fh>;

You may also modify an existing filehandle withbinmode, whether for input or output:

binmode $fh, ':utf8';
my $unicode_string = <$fh>;

binmode STDOUT, ':utf8';
say $unicode_string;

Without theutf8 mode, printing Unicode strings to a filehandle will result in a warning (Wide harater in %s), because
files contain octets, not Unicode characters.

Unicode in Your Data

The core moduleEnode provides a function nameddeode() to convert a scalar containing data in a known format to a
Unicode string. For example, if you have UTF-8 data:

my $string = decode('utf8', $data);

18

The Perl Language

The correspondingenode() function converts from Perl’s internal encoding to the desired output encoding:

my $latin1 = encode('iso-8859-1', $string);

Unicode in Your Programs

You may include Unicode characters in your programs in threeways. The easiest is to use theutf8 pragma (see Pragmas, page
121), which tells the Perl parser to interpret the rest of thesource code file with the UTF-8 encoding This allows you to use
Unicode characters in strings as well in identifiers:

use utf8;

sub £_to_¥ { ... }

my $pounds = £_to_¥('1000£');

To write this code, your text editor must understand UTF-8 and you must save the file with the appropriate encoding.

Within double-quoted strings you may also use the Unicode escape sequence to represent character encodings. The syntax\x{}
represents a single character; place the hex form of the character’s Unicode number within the curly brackets:

my $escaped_thorn = "\x{00FE}";

Some Unicode characters have names. Though these are more verbose, they can be clearer to read than Unicode numbers. You
must use theharnames pragma to enable them. Use the\N{} escape to refer to them:

use charnames ':full';
use Test::More tests => 1;

my $escaped_thorn = "\x{00FE}";
my $named_thorn = "\N{LATIN SMALL LETTER THORN}";

is($escaped_thorn, $named_thorn, 'Thorn equivalence che ck');

You may use the\x{} and\N{} forms within regular expressions as well as anywhere else you may legitimately use a string
or a character.

Implicit Conversion

Most Unicode problems in Perl arise from the fact that a string could be either a sequence of octets or a sequence of characters.
Perl allows you to combine these types through the use of implicit conversions. When these conversions are wrong, they’re
rarelyobviouslywrong.

When Perl concatenates a sequences of octets with a sequence of Unicode characters, it implicitly decodes the octet sequence
using the Latin-1 encoding. The resulting string contains Unicode characters. When you print Unicode characters, Perl encodes
the string using UTF-8, because Latin-1 cannot represent the entire set of Unicode characters.

This asymmetry can lead to Unicode strings encoded as UTF-8 for output and decoded as Latin-1 when input.

Worse yet, when the text contains only English characters with no accents, the bug hides—because both encodings have the
same representation for every such character.

my $hello = "Hello, ";
my $greeting = $hello . $name;

If $name contains an English name such asAlice you will never notice any problem, because the Latin-1 representation is the
same as the UTF-8 representation.

If, on the other hand,$name contains a name likeJosé, $name can contain several possible values:

• $name contains four Unicode characters.

19

Modern Perl

• $name contains four Latin-1 octets representing four Unicode characters.

• $name contains five UTF-8 octets representing four Unicode characters.

The string literal has several possible scenarios:

• It is an ASCII string literal and contains octets.

my $hello = "Hello, ";

• It is a Latin-1 string literal with no explicit encoding andcontains octets.

my $hello = "¡Hola, ";

The string literal contains octets.

• It is a non-ASCII string literal with theutf8 or enoding pragma in effect and contains Unicode characters.

use utf8;
my $hello = "Kuirabá, ";

If both $hello and$name are Unicode strings, the concatenation will produce another Unicode string.

If both strings are octet streams, Perl will concatenate them into a new octet string. If both values are octets of the same
encoding—both Latin-1, for example, the concatenation willwork correctly. If the octets do not share an encoding, the concate-
nation append UTF-8 data to Latin-1 data, producing a sequence of octets which makes sense inneitherencoding. This could
happen if the user entered a name as UTF-8 data and the greeting were a Latin-1 string literal, but the program decoded neither.

If only one of the values is a Unicode string, Perl will decodethe other as Latin-1 data. If this is not the correct encoding,
the resulting Unicode characters will be wrong. For example, if the user input were UTF-8 data and the string literal werea
Unicode string, the name will be incorrectly decoded into five Unicode characters to formJosÃ©(sic) instead ofJosébecause
the UTF-8 data means something else when decoded as Latin-1 data.

Seeperldo perluniintro for a far more detailed explanation of Unicode, encodings, and how to manage incoming and
outgoing data in a Unicode world.

Numbers
Perl also supports numbers, both integers and floating-point values. You may write them in scientific notation as well as binary,
octal, and hexadecimal representations:

my $integer = 42;
my $float = 0.007;
my $sci_float = 1.02e14;
my $binary = 0b101010;
my $octal = 052;
my $hex = 0x 20;

The emboldened characters are the numeric prefixes for binary, octal, and hex notation respectively. Be aware that the leading
zero always indicates octal mode; this can occasionally produce unanticipated confusion.

Even though you can write floating-point values explicitlyin Perl 5 with perfect accuracy, Perl 5 stores them
internally in a binary format. Comparing floating-point values is sometimes imprecise in specific ways; consult
perldo perlnumber for more details.

You may not use commas to separate thousands in numeric literals because the parser will interpret the commas as comma
operators. Youcanuse underscores within the number, however. The parser willtreat them as invisible characters; your readers
may not. These are equivalent:

20

The Perl Language

my $billion = 1000000000;
my $billion = 1_000_000_000;
my $billion = 10_0_00_00_0_0_0;

Consider the most readable alternative, however.

Because of coercion (see Coercion, page 47), Perl programmers rarely have to worry about converting text read from outside
the program to numbers. Perl will treat anything which lookslike a number as a number in numeric contexts. Even though it
almost always does so correctly, occasionally it’s useful to know if something really does look like a number. The core module
Salar::Util contains a function namedlooks_like_number which returns a true value if Perl will consider the given
argument numeric.

The Regexp::Common module from the CPAN also provides several well-tested regular expressions to identify validtypes
(whole number, integer, floating-point value) of numeric values.

Undef
Perl 5 has a value which represents an unassigned, undefined, and unknown value:undef. Declared but undefined scalar
variables containundef:

my $name = undef; # unnecessary assignment
my $rank; # also contains undef

undef evaluates to false in boolean context. Interpolatingundef into a string—or evaluating it in a string context—produces
anuninitialized value warning:

my $undefined;
my $defined = $undefined . '... and so forth';

. . . produces:

Use of uninitialized value $undefined in concatenation (.) or string...

Thedefined builtin returns a true value if its operand is a defined value(anything other thanundef):

my $status = 'suffering from a cold';

say defined $status;
say defined undef;

The Empty List
When used on the right-hand side of an assignment, the() construct represents an empty list. When evaluated in scalarcontext,
this evaluates toundef. In list context, it is effectively an empty list.

When used on the left-hand side of an assignment, the() construct imposes list context. To count the number of elements
returned from an expression in list context without using a temporary variable, you use the idiom (see Idioms, page 148):

my $count = () = get_all_clown_hats();

Because of the right associativity (see Associativity, page 59) of the assignment operator, Perl first evaluates the second assign-
ment by callingget_all_lown_hats() in list context. This produces a list.

Assignment to the empty list throws away all of the values of the list, but that assignment takes place in scalar context, which
evaluates to the number of items on the right hand side of the assignment. As a result,$ount contains the number of elements
in the list returned fromget_all_lown_hats().

You don’t have to understand all of the implications of this code right now, but it does demonstrate how a few of Perl’s
fundamental design features can combine to produce interesting and useful behavior.

21

Modern Perl

Lists
A list is a comma-separated group of one or more expressions.

Lists may occur verbatim in source code as values:

my @first_fibs = (1, 1, 2, 3, 5, 8, 13, 21);

. . . as targets of assignments:

my ($package, $filename, $line) = caller();

. . . or as lists of expressions:

say name(), ' => ', age();

You do not need parentheses tocreatelists; the comma operator creates lists. Where present, the parentheses in these examples
group expressions to change theprecedenceof those expressions (see Precedence, page 59).

You may use the range operator to create lists of literals in acompact form:

my @chars = 'a' .. 'z';
my @count = 13 .. 27;

. . . and you may use theqw() operator to split a literal string on whitespace to produce alist of strings:

my @stooges = qw(Larry Curly Moe Shemp Joey Kenny);

Perl will produce a warning if aqw() contains a comma or the comment character (#), because not only are such
characters rarely included in aqw(), their presence usually indicates an oversight.

Lists can (and often do) occur as the results of expressions,but these lists do not appear literally in source code.

Lists and arrays are not interchangeable in Perl. Lists are values and arrays are containers. You may store a list in an array and
you may coerce an array to a list, but they are separate entities. For example, indexing into a list always occurs in list context.
Indexing into an array can occur in scalar context (for a single element) or list context (for a slice):

enable say and other features (see preface)
use Modern::Perl;

you do not need to understand this
sub context
{

my $context = wantarray();

say defined $context
? $context

? 'list'
: 'scalar'

: 'void';
return 0;

}

my @list_slice = (1, 2, 3)[context()];
my @array_slice = @list_slice[context()];
my $array_index = $array_slice[context()];

say imposes list context
say context();

void context is obvious
context()

22

The Perl Language

Control Flow
Perl’s basiccontrol flow is straightforward. Program execution starts at the beginning (the first line of the file executed) and
continues to the end:

say 'At start';
say 'In middle';
say 'At end';

Most programs need more complex control flow. Perl’scontrol flow directiveschange the order of execution—what happens
next in the program—depending on the values of arbitrarily complex expressions.

Branching Directives
Theif directive evaluates a conditional expression and performsthe associated action only when the conditional expression
evaluates to atruevalue:

say 'Hello, Bob!' if $name eq 'Bob';

This postfix form is useful for simple expressions. A block form groups multiple expressions into a single unit:

if ($name eq 'Bob')
{

say 'Hello, Bob!';
found_bob();

}

While the block form requires parentheses around its condition, the postfix form does not. The conditional expression may also
be complex:

if ($name eq 'Bob' && not greeted_bob())
{

say 'Hello, Bob!';
found_bob();

}

. . . though in this case, adding parentheses to the postfix conditional expression may add clarity, though theneedto add paren-
theses may argue against using the postfix form.

greet_bob() if ($name eq 'Bob' && not greeted_bob());

The unless directive is a negated form ofif. Perl will evaluate the following statement when the conditional expression
evaluates tofalse:

say "You're no Bob!" unless $name eq 'Bob';

Like if, unless also has a block form. Unlikeif, the block form ofunless is much rarer than its postfix form:

unless (is_leap_year() and is_full_moon())
{

frolic();
gambol();

}

unless works very well for postfix conditionals, especially parameter validation in functions (see Postfix Parameter Validation,
page 152):

23

Modern Perl

sub frolic
{

return unless @_;

for my $chant (@_)
{

...
}

}

unless can be difficult to read with multiple conditions; this is onereason it appears rarely in its block form.

The block forms ofif andunless both work with theelse directive, which provides code to run when the conditional
expression does not evaluate to true (forif) or false (forunless):

if ($name eq 'Bob')
{

say 'Hi, Bob!';
greet_user();

}
else
{

say "I don't know you.";
shun_user();

}

else blocks allow you to rewriteif andunless conditionals in terms of each other:

unless ($name eq 'Bob')
{

say "I don't know you.";
shun_user();

}
else
{

say 'Hi, Bob!';
greet_user();

}

If you read the previous example out loud, you may notice the awkward pseudocode phrasing: “Unless this name is Bob, do
this. Otherwise, do something else.” The implied double negative can be confusing. Perl provides bothif andunless to allow
you to phrase your conditionals in the most natural and readable way. Likewise, you can choose between positive and negative
assertions with regard to the comparison operators you use:

if ($name ne 'Bob')
{

say "I don't know you.";
shun_user();

}
else
{

say 'Hi, Bob!';
greet_user();

}

The double negative implied by the presence of theelse block argues against this particular phrasing.

One or moreelsif directives may follow anif block form and may precede any singleelse. You may use as manyelsif
blocks as you like, but you may not change the order in which the block types appear:

if ($name eq 'Bob')
{

say 'Hi, Bob!';
greet_user();

}
elsif ($name eq 'Jim')
{

24

The Perl Language

say 'Hi, Jim!';
greet_user();

}
else
{

say "You're not my uncle.";
shun_user();

}

You may also use theelsif block with anunless chain, but the resulting code may be unclear. There is noelseunless.

There is noelse if construct11, so this code contains a syntax error:

if ($name eq 'Rick')
{

say 'Hi, cousin!';
}

warning; syntax error
else if ($name eq 'Kristen')
{

say 'Hi, cousin-in-law!';
}

The Ternary Conditional Operator
Theternary conditionaloperator offers an alternate approach to control flow. It evaluates a conditional expression and evaluates
to one of two different results:

my $time_suffix = after_noon($time) ? 'morning' : 'afterno on';

The conditional expression precedes the question mark character (?) and the colon character (:) separates the alternatives. The
alternatives are literals or (parenthesized) expressionsof arbitrary complexity, including other ternary conditional expressions,
though readability may suffer.

An interesting, though obscure, idiom is to use the ternary conditional to select between alternativevariables, not
only values:
push @{ rand() > 0.5 ? \@red_team : \@blue_team },

Player->new();

Again, weigh the benefits of clarity versus the benefits of conciseness.

Short Circuiting

Perl exhibitsshort-circuitingbehavior when it encounters complex expressions—expressions composed of multiple evaluated
expressions. If Perl can determine that a complex expression would succeed or fail as a whole without evaluating every subex-
pression, it will not evaluate subsequent subexpressions.This is most obvious with an example:

see preface
use Test::More 'no_plan';

say "Both true!" if ok(1, 'first subexpression')
&& ok(1, 'second subexpression');

done_testing();

This example prints:

11Larry preferselsif for aesthetic reasons, as well the prior art of the Ada programming language.

25

Modern Perl

The return value ofok() (see Testing, page 123) is the boolean value obtained by evaluating the first argument.

ok 1 - first subexpression
ok 2 - second subexpression
Both true!

When the first subexpression—the first call took—evaluates to true, Perl must evaluate the second subexpression. When
the first subexpression evaluates to false, the entire expression cannot succeed, and there is no need to check subsequent
subexpressions:

say "Both true!" if ok(0, 'first subexpression')
&& ok(1, 'second subexpression');

This example prints:

not ok 1 - first subexpression

Even though the second subexpression would obviously succeed, Perl never evaluates it. The logic is similar for a complex
conditional expression where either subexpression must betrue for the conditional as a whole to succeed:

say "Either true!" if ok(1, 'first subexpression')
|| ok(1, 'second subexpression');

This example prints:

ok 1 - first subexpression
Either true!

Again, with the success of the first subexpression, Perl canavoid evaluating the second subexpression. If the first subexpression
were false, the result of evaluating the second subexpression would dictate the result of evaluating the entire expression.

Besides allowing you to avoid potentially expensive computations, short circuiting can help you to avoid errors and warnings:

if (defined $barbeque and $barbeque eq 'pork shoulder') { .. . }

Context for Conditional Directives
The conditional directives—if, unless, and the ternary conditional operator—all evaluate an expression in boolean context
(see Context, page 3). As comparison operators such aseq, ==, ne, and!= all produce boolean results when evaluated, Perl
coerces the results of other expressions—including variables and values—into boolean forms. Empty hashes and arrays evaluate
to false.

Perl 5 has no single true value, nor a single false value. Any number that evaluates to 0 is false. This includes0, 0.0, 0e0, 0x0,
and so on. The empty string ('') and'0' evaluate to false, but the strings'0.0', '0e0', and so on do not. The idiom'0 but

true' evaluates to 0 in numeric context but evaluates to true in boolean context, thanks to its string contents. Both the empty
list andundef evaluate to false. Empty arrays and hashes return the number0 in scalar context, so they evaluate to false in
boolean context.

An array which contains a single element—evenundef—evaluates to true in boolean context. A hash which contains any
elements—even a key and a value ofundef—evaluates to true in boolean context.

26

The Perl Language

TheWant module available from the CPAN allows you to detect boolean context within your own functions. The
coreoverloading pragma (see Overloading, page 145) allows you to specify what your own data types produce
when evaluated in a boolean context.

Looping Directives
Perl also provides several directives for looping and iteration.

The foreach-style loop evaluates an expression which produces a list and executes a statement or block until it has consumed
that list:

foreach (1 .. 10)
{

say "$_ * $_ = ", $_ * $_;
}

This example uses the range operator to produce a list of integers from one to ten inclusive. Theforeah directive loops over
them, setting the topic variable$_ (see The Default Scalar Variable, page 6) to each in turn. Perl executes the block for each
integer and prints the squares of the integers.

Perl treats the builtinsforeah andfor interchangeably. The remainder of the syntax of the loop determines the
behavior of the loop. Though experienced Perl programmers tend to refer to the loop with automatic iteration as a
foreah loop, you can usefor safely and clearly any place you might want to useforeah.

Like if andunless, thefor loop has a postfix form:

say "$_ * $_ = ", $_ * $_ for 1 .. 10;

Similar suggestions apply for clarity and complexity.

A for loop may use a named variable instead of the topic:

for my $i (1 .. 10)
{

say "$i * $i = ", $i * $i;
}

In this case, Perl will not set the topic variable ($_) to the iterated values. As well, the scope of the variable$i is only valid
within the loop. If you have declared a lexical$i in an outer scope, its value will persist outside the loop:

my $i = 'cow';

for my $i (1 .. 10)
{

say "$i * $i = ", $i * $i;
}

is($i, 'cow', 'Lexical variable not overwritten in outer sc ope');

This localization occurs even if you do not redeclare the iteration variable as a lexical12:

12. . . butdodeclare your iteration variables as lexicals to reduce their scope.

27

Modern Perl

my $i = 'horse';

for $i (1 .. 10)
{

say "$i * $i = ", $i * $i;
}

is($i, 'horse', 'Lexical variable still not overwritten in outer scope');

Iteration and Aliasing
Thefor loop aliasesthe iterator variable to the values in the iteration such that any modifications to the value of the iterator
modifies the iterated value in place:

my @nums = 1 .. 10;

$_ ** = 2 for @nums;

is($nums[0], 1, '1 * 1 is 1');
is($nums[1], 4, '2 * 2 is 4');

...

is($nums[9], 100, '10 * 10 is 100');

This aliasing also works with the block styleforeah loop:

for my $num (@nums)
{

$num ** = 2;
}

. . . as well as iteration with the topic variable:

for (@nums)
{

$_ ** = 2;
}

You cannot use aliasing to modifyconstantvalues, however:

for (qw(Huex Dewex Louie))
{

$_++;
say;

}

. . . as this will throw an exception about modification of read-only values. There’s little point in doing so anyhow.

You may occasionally see the use offor with a single scalar variable to alias$_ to the variable:

for ($user_input)
{

s/(\w)/\\$1/g; # escape non-word characters
s/^\s * |\s$/g; # trim whitespace

}

Iteration and Scoping
Iterator scoping with the topic variable provides one common source of confusion. In this case,some_funtion() modifies
$_ on purpose. Ifsome_funtion() called other code which modified$_ without explicitly localizing$_, the iterated value
in �values would change. Debugging this can be troublesome:

28

The Perl Language

for (@values)
{

some_function();
}

sub some_function
{

s/foo/bar/;
}

If you mustuse$_ rather than a named variable, make the topic variable lexical with my $_:

sub some_function_called_later
{

was $_ = shift;
my $_ = shift;

s/foo/bar/;
s/baz/quux/;

return $_;
}

Using a named iteration variable also prevents undesired aliasing behavior through$_.

The C-Style For Loop
The C-stylefor loopallows the programmer to manage iteration manually:

for (my $i = 0; $i <= 10; $i += 2)
{

say "$i * $i = ", $i * $i;
}

You must assign to an iteration variable manually, as there is no default assignment to the topic variable. Consequentlythere is
no aliasing behavior either. Though the scope of any declared lexical variable is to the body of the block, a variablenotdeclared
explicitly in the iteration control section of this construct will overwrite its contents:

my $i = 'pig';

for ($i = 0; $i <= 10; $i += 2)
{

say "$i * $i = ", $i * $i;
}

isnt($i, 'pig', '$i overwritten with a number');

This loop has three subexpressions in its looping construct. The first subexpression is an initialization section. It executes
once, before the first execution of the loop body. The secondsubexpression is the conditional comparison subexpression. Perl
evaluates this subexpression before each iteration of the loop body. When the subexpression evaluates to a true value, the loop
iteration proceeds. When the subexpression evaluates to a false value, the loop iteration stops. The final subexpression executes
after each iteration of the loop body.

This may be more obvious with an example:

declared outside to avoid declaration in conditional
my $i;

for (
loop initialization subexpression
say 'Initializing' and $i = 0;

conditional comparison subexpression
say "Iteration: $i" and $i < 10;

iteration ending subexpression

29

Modern Perl

say 'Incrementing $i' and $i++
)
{

say "$i * $i = ", $i * $i;
}

Note the lack of a trailing semicolon at the iteration endingsubexpression as well as the use of the low-precedenceand; this
syntax is surprisingly finicky. When possible, prefer theforeah style loop to thefor loop.

All three subexpressions are optional. You may write an infinite loop with:

for (;;) { ... }

While and Until
A while loop continues until the loop conditional expression evaluates to a boolean false value. An infinite loop is much clearer
when written:

while (1) { ... }

The means of evaluating the end of iteration condition in awhile loop differs from aforeah loop in that the evaluation of
the expression itself does not produce any side effects. If�values has one or more elements, this code is also an infinite loop:

while (@values)
{

say $values[0];
}

To prevent such an infinitewhile loop, use adestructive updateof the�values array by modifying the array with each loop
iteration:

while (my $value = shift @values)
{

say $value;
}

The until loop reverses the sense of the test of thewhile loop. Iteration continues while the loop conditional expression
evaluates to false:

until ($finished_running)
{

...
}

The canonical use of thewhile loop is to iterate over input from a filehandle:

use autodie;

open my $fh, '<', $file;

while (<$fh>)
{

...
}

Perl 5 interprets thiswhile loop as if you had written:

while (defined($_ = <$fh>))
{

...
}

30

The Perl Language

One common mistake is to forget to remove the line-ending characters from each line; use thehomp builtin to do
so.

Without the implicitdefined, any line read from the filehandle which evaluated to false in a scalar context—a blank line or a
line which contained only the character0—would end the loop. Thereadline (<>) operator returns an undefined value only
when it has finished reading lines from the file.

Bothwhile anduntil have postfix forms. The simplest infinite loop in Perl 5 is:

1 while 1;

Any single expression is suitable for a postfixwhile or until, such as the classic “Hello, world!” example from 8-bit comput-
ers of the early 1980s:

print "Hello, world! " while 1;

Infinite loops may seem silly, but they’re actually quite useful. A simple event loop for a GUI program or network server may
be:

$server->dispatch_results() until $should_shutdown;

For more complex expressions, use ado block:

do
{

say 'What is your name?';
my $name = <>;
chomp $name;
say "Hello, $name!" if $name;

} until (eof);

For the purposes of parsing, ado block is itself a single expression, though it can contain several expressions. Unlike thewhile
loop’s block form, thedo block with a postfixwhile oruntil will execute its body at least once. This construct is less common
than the other loop forms, but no less powerful.

Loops within Loops
You may nest loops within other loops:

for my $suit (@suits)
{

for my $values (@card_values)
{

...
}

}

In this case, explicitly declaring named variables is essential to maintainability. The potential for confusion as to the scoping of
iterator variables is too great when using the topic variable.

A common mistake with nestingforeah andwhile loops is that it is easy to exhaust a filehandle with awhile loop:

use autodie;

open my $fh, '<', $some_file;

for my $prefix (@prefixes)

31

Modern Perl

{
DO NOT USE; likely buggy code
while (<$fh>)
{

say $prefix, $_;
}

}

Opening the filehandle outside of thefor loop leaves the file position unchanged between each iteration of thefor loop. On
its second iteration, thewhile loop will have nothing to read and will not execute. To solve this problem, you may re-open the
file inside thefor loop (simple to understand, but not always a good use of system resources), slurp the entire file into memory
(which may not work if the file is large), orseek the filehandle back to the beginning of the file for each iteration (an often
overlooked option):

use autodie;

open my $fh, '<', $some_file;

for my $prefix (@prefixes)
{

while (<$fh>)
{

say $prefix, $_;
}

seek $fh, 0, 0;
}

Loop Control
Sometimes you need to break out of a loop before you have exhausted the iteration conditions. Perl 5’s standard control
mechanisms—exceptions andreturn—work, but you may also useloop controlstatements.

The nextstatement restarts the loop at its next iteration. Use it when you’ve done all you need to in the current iteration. To
loop over lines in a file but skip everything that looks like acomment, one which starts with the character#, you might write:

while (<$fh>)
{

next if /\A#/;
...

}

The last statement ends the loop immediately. To finish processing afile once you’ve seen the ending delimiter, you might
write:

while (<$fh>)
{

next if /\A#/;
last if /\A__END__/
...

}

Theredostatement restarts the current iteration without evaluating the conditional again. This can be useful in those few cases
where you want to modify the line you’ve read in place, then start processing over from the beginning without clobbering it
with another line. For example, you could implement a silly file parser that joins lines which end with a backslash with:

while (my $line = <$fh>)
{

chomp $line;

match backslash at the end of a line
if ($line =~ s{\\$}{})
{

$line .= <$fh>;
redo;

32

The Perl Language

}

...
}

. . . though that’s a contrived example.

Nested loops can make the use of these loop control statements ambiguous. In those cases, aloop labelcan disambiguate:

OUTER:
while (<$fh>)
{

chomp;

INNER:
for my $prefix (@prefixes)
{

next OUTER unless $prefix;
say "$prefix: $_";

}
}

If you find yourself nesting loops such that you need labels to manage control flow, consider simplifying your code: perhaps
extracting inner loops into functions for clarity.

Continue
Theontinue construct behaves like the third subexpression of afor loop; Perl executes its block for each iteration of the loop,
even when you exit an iteration withnext13. You may use it with awhile, until, with, or for loop. Examples ofontinue
are rare, but it’s useful any time you want to guarantee that something occurs for every iteration of the loop regardless of how
that iteration ends:

while ($i < 10)
{

next unless $i % 2;
say $i;

}
continue
{

say 'Continuing...';
$i++;

}

Given/When
Thegiven construct is a feature new to Perl 5.10. It assigns the value of an expression to the topic variable and introduces a
block:

given ($name)
{

...
}

Unlike for, it does not iterate over an aggregate. It evaluates its value in scalar context, and always assigns to the topic variable:

given (my $username = find_user())
{

is($username, $_, 'topic assignment happens automaticall y');
}

given also makes the topic variable lexical to prevent accidentalmodification:

13The Perl equivalent to C’sontinue is next.

33

Modern Perl

given ('mouse')
{

say;
mouse_to_man($_);
say;

}

sub mouse_to_man
{

$_ = shift;
s/mouse/man/;

}

given is most useful when combined withwhen. given topicalizesa value within a block so that multiplewhen statements can
match the topic against expressions usingsmart-matchsemantics. To write the Rock, Paper, Scissors game:

my @options = (\&rock, \&paper, \&scissors);

do
{

say "Rock, Paper, Scissors! Pick one: ";
chomp(my $user = <STDIN>);
my $computer_match = $options[rand @options];
$computer_match->(lc($user));

} until (eof);

sub rock
{

print "I chose rock. ";

given (shift)
{

when (/paper/) { say 'You win!' };
when (/rock/) { say 'We tie!' };
when (/scissors/) { say 'I win!' };
default { say "I don't understand your move" };

}
}

sub paper
{

print "I chose paper. ";

given (shift)
{

when (/paper/) { say 'We tie!' };
when (/rock/) { say 'I win!' };
when (/scissors/) { say 'You win!' };
default { say "I don't understand your move" };

}
}

sub scissors
{

print "I chose scissors. ";

given (shift)
{

when (/paper/) { say 'I win!' };
when (/rock/) { say 'You win!' };
when (/scissors/) { say 'We tie!' };
default { say "I don't understand your move" };

}
}

Perl executes thedefault rule when none of the other conditions match.

The CPAN moduleMooseX::MultiMethods allows another technique to reduce this code further.

Thewhen construct is even more powerful; it can match (see Smart Matching, page 98) against many other types of expressions
including scalars, aggregates, references, arbitrary comparison expressions, and even code references.

34

The Perl Language

Tailcalls
A tailcall occurs when the last expression within a function is a call toanother function—the return value of the outer function
is the return value of the inner function:

sub log_and_greet_person
{

my $name = shift;
log("Greeting $name");

return greet_person($name);
}

In this circumstance, returning fromgreet_person() directly to the caller oflog_and_greet_person() is more efficient
than returning tolog_and_greet_person() and immediately returningfromlog_and_greet_person(). Returning directly
from greet_person() to the caller oflog_and_greet_person() is an optimization known astailcall optimization.

Perl 5 will not detect cases where it could apply this optimization automatically.

Heavily recursive code (see Recursion, page 69), especially mutually recursive code, can consume a lot of memory.
Tailcalls reduce the memory needed for internal bookkeeping of control flow, which can make otherwise expensive
algorithms tractable.

Scalars
Perl 5’s fundamental data type is thescalar, which represents a single, discrete value. That value may be a string, an integer, a
floating point value, a filehandle, or a reference—but it is always a single value. Scalar values and scalar context have adeep
connection; assigning to a scalar provides scalar context.

Scalars may be lexical, package, or global (see Global Variables, page 153) variables. You may only declare lexical or package
variables. The names of scalar variables must conform to standard variable naming guidelines (see Names, page 13). Scalar
variables always use the leading dollar-sign ($) sigil (see Variable Sigils, page 15).

The converse is notuniversallytrue; the scalar sigil applied to an operation on an aggregate variable—an array or
a hash—determines the amount type accessed through that operation.

Scalars and Types
Perl 5 scalars do not have static typing. A scalar variable can contain any type of scalar value without special conversions or
casts, and the type of value in a variable can change. This code is legal:

my $value;
$value = 123.456;
$value = 77;
$value = "I am Chuck's big toe.";
$value = Store::IceCream->new();

Yet even though this islegal, it can be confusing. Choose descriptive and unique names for your variables to avoid this confu-
sion.

The type context of evaluation of a scalar may cause Perl to coerce the value of that scalar (see Coercion, page 47). For example,
you may treat the contents of a scalar as a string, even if you didn’t explicitly assign it a string:

my $zip_code = 97006;
my $city_state_zip = 'Beaverton, Oregon' . ' ' . $zip_code;

35

Modern Perl

You may also use mathematical operations on strings:

my $call_sign = 'KBMIU';
my $next_sign = $call_sign++;

also fine as
$next_sign = ++$call_sign;

but does not work as:
$next_sign = $call_sign + 1;

This magical string increment behavior does not have a corresponding magical decrement behavior. You can’t get
the previous string value by writing$all_sign--.

This string increment operation turnsa into b andz into aa, respecting character set and case. WhileZZ9 becomesAA0, ZZ09
becomesZZ10—numbers wrap around while there are more significant placesto increment, as on a vehicle odometer.

Evaluating a reference (see References, page 50) in string context produces a string. Evaluating a reference in numericcontext
produces a number. Neither operation modifies the reference in place, but you cannot recreate the reference from eitherthe
string or numeric result:

my $authors = [qw(Pratchett Vinge Conway)];
my $stringy_ref = '' . $authors;
my $numeric_ref = 0 + $authors;

$authors is still useful as a reference, but$stringy_ref is a string with no connection to the reference and$numeri_ref

is a number with no connection to the reference.

All of these coercions and operations are possible because Perl 5 scalars can contain numeric parts as well as string parts.
The internal data structure which represents a scalar in Perl 5 has a numeric slot and a string slot. Accessing a string in a
numeric context eventually produces a scalar with both string and numeric values. Thedualvar() function within the core
Salar::Util module allows you to manipulate both values directly withina single scalar. Similarly, the module’slooks_-
like_number() function returns true if the scalar value provided is something Perl 5 would interpret as a number.

Scalars do not have a separate slot for boolean values. In boolean context, the empty string ('') and'0' are false. All other
strings are true. In boolean context, numbers which evaluate to zero (0, 0.0, and0e0) are false. All other numbers are true.

Be careful that thestrings'0.0' and'0e0' are true; this is one place where Perl 5 makes a distinction between what looks
like a number and what really is a number.

One other value is always false:undef. This is the value of uninitialized variables as well as a value in its own right.

Arrays
Perl 5arraysare data structures which store zero or more scalars. They’re first-classdata structures, which means that Perl 5
provides a separate data type at the language level. Arrays support indexed access; that is, you can access individual members
of the array by integer indexes.

The� sigil denotes an array. To declare an array:

my @items;

Array Elements
Accessingan individual element of an array in Perl 5 requires the scalar sigil. Perl 5 (and you) can recognize that$ats[0℄

refers to the�ats array even despite the change of sigil because the square brackets ([℄) always identify indexed access to an
aggregate variable. In simpler terms, that means “look up one thing in a group of things by an integer”.

The first element of an array is at index zero:

36

The Perl Language

@cats contains a list of Cat objects
my $first_cat = $cats[0];

The last index of an array depends on the number of elements inthe array. An array in scalar context (due to scalar assignment,
string concatenation, addition, or boolean context) evaluates to the number of elements contained in the array:

scalar assignment
my $num_cats = @cats;

string concatenation
say 'I have ' . @cats . ' cats!';

addition
my $num_animals = @cats + @dogs + @fish;

boolean context
say 'Yep, a cat owner!' if @cats;

If you need the specific index of the final element of an array, subtract one from the number of elements of the array (because
array indexes start at 0):

my $first_index = 0;
my $last_index = @cats - 1;

say 'My first cat has an index of $first_index, '
. 'and my last cat has an index of $last_index.'

You can also use the special variable form of the array to findthe last index; replace the� array sigil with the slightly more
unwieldy$#:

my $first_index = 0;
my $last_index = $#cats;

say 'My first cat has an index of $first_index, '
. 'and my last cat has an index of $last_index.'

That may not read as nicely, however. Most of the time you don’t need that syntax, as you can use negative offsets to access an
array from the end instead of the start. The last element of anarray is available at the index-1. The second to last element of
the array is available at index-2, and so on. For example:

my $last_cat = $cats[-1];
my $second_to_last_cat = $cats[-2];

You can resize an array by assigning to$#. If you shrink an array, Perl will discard values which do notfit in the resized array.
If you expand an array, Perl will fill in the expanded values with undef.

Array Assignment
You can assign to individual positions in an array directly by index:

my @cats;
$cats[0] = 'Daisy';
$cats[1] = 'Petunia';
$cats[2] = 'Tuxedo';
$cats[3] = 'Jack';
$cats[4] = 'Brad';

Perl 5 arrays are mutable. They do not have a static size; theyexpand or contract as necessary.

Assignment in multiple lines can be tedious. You can initialize an array from a list in one step:

my @cats = ('Daisy', 'Petunia', 'Tuxedo', 'Jack', 'Brad');

37

Modern Perl

You don’t have to assign in order, either. If you assign to an index beyond where you’ve assigned before, Perl will
extend the array to account for the new size and will fill in all intermediary slots withundef.

Remember that the parenthesesdo notcreate a list. Without parentheses, this would assignDaisy as the first and
only element of the array, due to operator precedence (see Precedence, page 59).

Any expression which produces a list in list context can assign to an array:

my @cats = get_cat_list();
my @timeinfo = localtime();
my @nums = 1 .. 10;

Assigning to a scalar element of an array imposes scalar context, while assigning to the array as a whole imposes list context.

To clear an array, assign an empty list:

my @dates = (1969, 2001, 2010, 2051, 1787);
...
@dates = ();

As freshly-declared arrays start out empty,my �items = (); is a longer version ofmy �items. Prefer the latter.

Array Slices
You can also access elements of an array in list context with aconstruct known as anarray slice. Unlike scalar access of an
array element, this indexing operation takes a list of indices and uses the array sigil (�):

my @youngest_cats = @cats[-1, -2];
my @oldest_cats = @cats[0 .. 2];
my @selected_cats = @cats[@indexes];

You can assign to an array slice as well:

@users[@replace_indices] = @replace_users;

A slice can contain zero or more elements—including one:

single-element array slice; function call in list context
@cats[-1] = get_more_cats();

single-element array access; function call in scalar context
$cats[-1] = get_more_cats();

The only syntactic difference between an array slice of one element and the scalar access of an array element is the leading
sigil. Thesemanticdifference is greater: an array slice always imposes list context. Any array slice evaluated in scalar context
will produce a warning:

Scalar value @cats[1] better written as $cats[1] at...

An array slice imposes list context (see Context, page 3) on the expression used as its index:

function called in list context
my @cats = @cats[get_cat_indices()];

38

The Perl Language

Array Operations
Managing array indices can be a hassle. Because Perl 5 can expand or contract arrays as necessary, the language also provides
several operations to treat arrays as stacks, queues, and the like.

Thepush andpop operators add and remove elements from the tail of the array,respectively:

my @meals;

what is there to eat?
push @meals, qw(hamburgers pizza lasagna turnip);

... but the nephew hates vegetables
pop @meals;

You maypush as many elements as you like onto an array. Its second argument is a list of values. You may onlypop one
argument at a time.push returns the updated number of elements in the array.pop returns the removed element.

Similarly, unshift andshift add elements to and remove an element from the start of an array:

expand our culinary horizons
unshift @meals, qw(tofu curry spanakopita taquitos);

rethink that whole soy idea
shift @meals;

unshift prepends a list of zero or more elements to the start of the array and returns the new number of elements in the array.
shift removes and returns the first element of the array.

Few programs use the return values ofpush andunshift. Writing this chapter led to a patch to Perl 5 to optimize
the use ofpush in void context.

splie is another important—if less frequently used—array operator. It removes and replaces elements from an array given an
offset, a length of a list slice, and replacements. Both replacing and removing are optional; you may omit either behavior. The
perlfun description ofsplie demonstrates its equivalences withpush, pop, shift, andunshift.

Arrays often contain elements to process in a loop (see Looping Directives, page 27).

As of Perl 5.12, you can useeah to iterate over an array by index and value:

while (my ($index, $value) = each @bookshelf)
{

say "#$index: $value";
...

}

Arrays and Context
In list context, arrays flatten into lists. If you pass multiple arrays to a normal Perl 5 function, they will flatten intoa single list:

my @cats = qw(Daisy Petunia Tuxedo Brad Jack);
my @dogs = qw(Rodney Lucky);

take_pets_to_vet(@cats, @dogs);

sub take_pets_to_vet
{

do not use!
my (@cats, @dogs) = @_;
...

}

39

Modern Perl

Within the function,�_ will contain seven elements, not two. Similarly, list assignment to arrays isgreedy. An array will
consume as many elements from the list as possible. After theassignment,�ats will contain everyargument passed to the
function.�dogs will be empty.

This flattening behavior sometimes confuses novices who attempt to create nested arrays in Perl 5:

creates a single array, not an array of arrays
my @array_of_arrays = (1 .. 10, (11 .. 20, (21 .. 30)));

While some people may initially expect this code to produce anarray where the first ten elements are the numbers one through
ten and the eleventh element is an array containing the numbers eleven through 20 and an array containing the numbers twenty-
one through thirty, this code instead produces an array containing the numbers one through 30, inclusive. Remember that
parentheses do notcreatelists in these circumstances—they only group expressions.

The solution to this flattening behavior is the same for passing arrays to functions and for creating nested arrays (see Array
References, page 51).

Array Interpolation
Arrays interpolate in double quoted strings as a list of the stringification of each item separated by the current value of the
magic global$". The default value of this variable is a single space. ItsEnglish.pmmnemonic is$LIST_SEPARATOR. Thus:

my @alphabet = 'a' .. 'z';
say "[@alphabet]";
[a b c d e f g h i j k l m n o p q r s t u v w x y z]

Temporarily localizing and assigning another value to$� for debugging purposes is very handy14:

what's in this array again?
{

local $" = ')(';
say "(@sweet_treats)";

}

. . . which produces the result:

(pie)(cake)(doughnuts)(cookies)(raisin bread)

Hashes
A hashis a first-class Perl data structure which associates string keys with scalar values. You might have encountered them as
tables, associative arrays, dictionaries, or mapsin other programming languages. In the same way that the nameof a variable
corresponds to a storage location, a key in a hash refers to a value.

A well-respected, if hoary, analogy is to think of a hash likeyou would a telephone book: use your friend’s name to look up her
number.

Hashes have two important properties. First, they store onescalar per unique key. Second, they do not provide any specific
ordering of keys. A hash is a big container full of key/value pairs.

Declaring Hashes
A hash has the% sigil. Declare a lexical hash with:

my %favorite_flavors;

14Due credit goes to Mark-Jason Dominus for demonstrating this example several years ago.

40

The Perl Language

A hash starts out empty, with no keys or values. In boolean context, a hash returns false if it contains no keys. Otherwise,it
returns a string which evaluates to true.

You can assign and access individual elements of a hash:

my %favorite_flavors;
$favorite_flavors{Gabi} = 'Raspberry chocolate';
$favorite_flavors{Annette} = 'French vanilla';

Hashes use the scalar sigil$ when accessing individual elements and curly braces{ } for string indexing.

You may assign a list of keys and values to a hash in a single expression:

my %favorite_flavors = (
'Gabi', 'Raspberry chocolate',
'Annette', 'French vanilla',

);

If you assign an odd number of elements to the hash, you will receive a warning that the results are not what you anticipated.
It’s often more obvious to use thefat commaoperator (=>) to associate values with keys, as it makes the pairing more visible.
Compare:

my %favorite_flavors = (
Gabi => 'Mint chocolate chip',
Annette => 'French vanilla',

);

. . . to:

my %favorite_flavors = (
'Jacob', 'anything',
'Floyd', 'Pistachio',

);

The fat comma operator acts like the regular comma, but it also causes the Perl parser to treat the previous bareword (see
Barewords, page 156) as if it were a quoted word. Thestrit pragma will not warn about the bareword, and if you have a
function with the same name as a hash key, the fat comma willnot call the function:

sub name { 'Leonardo' }

my %address =
(

name => '1123 Fib Place',
);

The key of the hash will bename and notLeonardo. If you intend to call the function to get the key, make the function call
explicit:

my %address =
(

name() => '1123 Fib Place',
);

To empty a hash, assign to it an empty list15:

%favorite_flavors = ();

15Unaryundef also works, but it’s somewhat more rare.

41

Modern Perl

Hash Indexing

Because a hash is an aggregate, you can access individual values with an indexing operation. Use a key as an index (akeyed
accessoperation) to retrieve a value from a hash:

my $address = $addresses{$name};

In this example,$name contains a string which is also a key of the hash. As with accessing an individual element of an array,
the hash’s sigil has changed from% to $ to indicate keyed access to a scalar value.

You may also use string literals as hash keys. Perl quotes barewords automatically according to the same rules as fat commas:

auto-quoted
my $address = $addresses{Victor};

needs quoting; not a valid bareword
my $address = $addresses{ ' Sue-Linn ' };

function call needs disambiguation
my $address = $addresses{get_name () };

You might find it clearer always to quote string literal hashkeys, but the autoquoting behavior is so well established inPerl 5
culture that it’s better to reserve the quotes for extraordinary circumstances, where they broadcast your intention todo something
different.

Even Perl 5 builtins get the autoquoting treatment:

my %addresses =
(

Leonardo => '1123 Fib Place',
Utako => 'Cantor Hotel, Room 1',

);

sub get_address_from_name
{

return $addresses{ +shift};
}

The unary plus (see Unary Coercions, page 153) turns what would be a bareword (shift) subject to autoquoting rules into an
expression. As this implies, you can use an arbitrary expression—not only a function call—as the key of a hash:

don't actually do this though
my $address = $addresses{reverse 'odranoeL'};

interpolation is fine
my $address = $addresses{"$first_name $last_name"};

so are method calls
my $address = $addresses{ $user->name() };

Anything that evaluates to a string is an acceptable hash key. Of course, hash keys can only be strings. If you use an objectas a
hash key, you’ll get the stringified version of that object instead of the object itself:

for my $isbn (@isbns)
{

my $book = Book->fetch_by_isbn($isbn);

unlikely to do what you want
$books{$book} = $book->price;

}

42

The Perl Language

Hash Key Existence
Theexists operator returns a boolean value to indicate whether a hash contains the given key:

my %addresses =
(

Leonardo => '1123 Fib Place',
Utako => 'Cantor Hotel, Room 1',

);

say "Have Leonardo's address" if exists $addresses{Leonar do};
say "Have Warnie's address" if exists $addresses{Warnie};

Usingexists instead of accessing the hash key directly avoids two problems. First, it does not check the boolean nature of the
hashvalue; a hash key may exist with a value even if that value evaluatesto a boolean false (includingundef):

my %false_key_value = (0 => '');
ok(%false_key_value,

'hash containing false key & value should evaluate to a true v alue');

Second,exists avoids autovivification (see Autovivification, page 57) within with nested data structures.

The corresponding operator for hash values isdefined. If a hash key exists, its value may beundef. Check that withdefined:

$addresses{Leibniz} = undef;

say "Gottfried lives at $addresses{Leibniz}"
if exists $addresses{Leibniz}
&& defined $addresses{Leibniz};

Accessing Hash Keys and Values
Hashes are aggregate variables, but they behave slightly differently from arrays. In particular, you can iterate over the keys of a
hash, the values of a hash, or pairs of keys and values. Thekeys operator returns a list of keys of the hash:

for my $addressee (keys %addresses)
{

say "Found an address for $addressee!";
}

Thevalues operator returns a list of values of the hash:

for my $address (values %addresses)
{

say "Someone lives at $address";
}

Theeah operator returns a list of two-element lists of the key and the value:

while (my ($addressee, $address) = each %addresses)
{

say "$addressee lives at $address";
}

Unlike arrays, there is no obvious ordering to the list of keys or values. The ordering depends on the internal implementation of
the hash, which can depend both on the particular version of Perl you are using, the size of the hash, and a random factor. With
that caveat in mind, the order of items in a hash is the same forkeys, values, andeah. Modifying the hash may change the
order, but you can rely on that order if the hash remains the same.

Each hash has only asingleiterator for theeah operator. You cannot reliably iterate over a hash witheah more than once; if
you begin a new iteration while another is in progress, the former will end prematurely and the latter will begin partway through
the hash.

Reset a hash’s iterator with the use ofkeys or values in void context:

43

Modern Perl

reset hash iterator
keys %addresses;

while (my ($addressee, $address) = each %addresses)
{

...
}

You should also ensure that you do not call any function whichmay itself try to iterate over the hash witheah.

The single hash iterator is a well-known caveat, but it doesn’t come up as often as you might expect. Be cautious,
but useeah when you need it.

Hash Slices
As with arrays, you may access a list of elements of a hash in one operation. Ahash sliceis a list of keys or values of a hash.
The simplest explanation is initialization of multiple elements of a hash used as an unordered set:

my %cats;
@cats{qw(Jack Brad Mars Grumpy)} = (1) x 4;

This is equivalent to the initialization:

my %cats = map { $_ => 1 } qw(Jack Brad Mars Grumpy);

. . . except that the hash slice initialization does notreplacethe existing contents of the hash.

You may retrieve multiple values from a hash with a slice:

my @buyer_addresses = @addresses{ @buyers };

As with array slices, the sigil of the hash changes to indicate list context. You can still tell that%addresses is a hash by the
use of the curly braces to indicate keyed access.

Hash slices make it easy to merge two hashes:

my %addresses = (...);
my %canada_addresses = (...);

@addresses{ keys %canada_addresses } = values %canada_add resses;

This is equivalent to looping over the contents of%anada_addresses manually, but is much shorter.

The choice between the two approaches depends on your merge strategy. What if the same key occurs in both
hashes? The hash slice approach always overwrites existingkey/value pairs in%addresses.

The Empty Hash
An empty hash contains no keys or values. It evaluates to false in a boolean context. A hash which contains at least one key/value
pair evaluates to true in a boolean context even if all of the keys or all of the values or both would themselves evaluate to false
in a boolean context.

44

The Perl Language

use Test::More;

my %empty;
ok(! %empty, 'empty hash should evaluate to false');

my %false_key = (0 => 'true value');
ok(%false_key, 'hash containing false key should evaluate to true');

my %false_value = ('true key' => 0);
ok(%false_value, 'hash containing false value should eval uate to true');

...

done_testing();

In scalar context, a hash evaluates to a string which represents the number of hash buckets used out of the number of hash
buckets allocated. This is rarely useful, as it represents internal details about hashes that are almost always meaningless to Perl
programs. You can safely ignore it.

In list context, a hash evaluates to a list of key/value pairssimilar to what you receive from theeah operator. However, you
cannotiterate over this list the same way you can iterate over the list produced byeah, as the loop will loop forever, unless
the hash is empty.

Hash Idioms
Hashes have several uses, such as finding unique elements oflists or arrays. Because each key exists only once in a hash,
assigning the same key to a hash multiple times stores only the most recent key:

my %uniq;
undef @uniq{ @items };
my @uniques = keys %uniq;

The use of theundef operator with the hash slice sets the values of the hash toundef. This is the cheapest way to determine if
an item exists in a set.

Hashes are also useful for counting elements, such as a list of IP addresses in a log file:

my %ip_addresses;

while (my $line = <$logfile>)
{

my ($ip, $resource) = analyze_line($line);
$ip_addresses{$ip}++;
...

}

The initial value of a hash value isundef. The postincrement operator (++) treats that as zero. This in-place modification of
the value increments an existing value for that key. If no value exists for that key, it creates a value (undef) and immediately
increments it to one, as the numification ofundef produces the value 0.

A variant of this strategy works very well for caching, whereyou might want to store the result of an expensive calculation with
little overhead to store or fetch:

{
my %user_cache;

sub fetch_user
{

my $id = shift;
$user_cache{$id} ||= create_user($id);
return $user_cache{$id};

}
}

45

Modern Perl

Thisorcish maneuver16 returns the value from the hash, if it exists. Otherwise, it calculates the value, caches it, and then returns
it. Beware that the boolean-or assignment operator (||=) operates on boolean values; if your cached value evaluatesto false in
a boolean context, use the defined-or assignment operator (//=) instead:

sub fetch_user
{

my $id = shift;
$user_cache{$id} //= create_user($id);
return $user_cache{$id};

}

This lazy orcish maneuver tests for the definedness of the cached value, not its boolean truth. The defined-or assignment
operator is new in Perl 5.10.

Hashes can also collect named parameters passed to functions. If your function takes several arguments, you can use a slurpy
hash (see Slurping, page 66) to gather key/value pairs into asingle hash:

sub make_sundae
{

my %parameters = @_;
...

}

make_sundae(flavor => 'Lemon Burst', topping => 'cookie bi ts');

You can even set default parameters with this approach:

sub make_sundae
{

my %parameters = @_;
$parameters{flavor} //= 'Vanilla';
$parameters{topping} //= 'fudge';
$parameters{sprinkles} //= 100;
...

}

. . . or include them in the initial declaration and assignment itself:

sub make_sundae
{

my %parameters =
(

flavor => 'Vanilla',
topping => 'fudge',
sprinkles => 100,
@_,

);
...

}

. . . as subsequent declarations of the same key with a different value will overwrite the previous values.

Locking Hashes
One drawback of hashes is that their keys are barewords whichoffer little typo protection (especially compared to the function
and variable name protection offered by thestrit pragma). The core moduleHash::Util provides mechanisms to restrict
the modification of a hash or the keys allowed in the hash.

To prevent someone from accidentally adding a hash key you did not intend (presumably with a typo or with data from untrusted
input), use thelok_keys() function to restrict the hash to its current set of keys. Any attempt to add a key/value pair to the
hash where the key is not in the allowed set of keys will raise an exception.

16Or-cache, if you like puns.

46

The Perl Language

Of course, anyone who needs to do so can always use theunlok_keys() function to remove the protection, so do not rely on
this as a security measure against misuse from other programmers.

Similarly you can lock or unlock the existing value for a given key in the hash (lok_value() andunlok_value()) and
make or unmake the entire hash read-only withlok_hash() andunlok_hash().

Coercion
Unlike other languages, where a variable can hold only a particular type of value (a string, a floating-point number, an object),
Perl relies on the context of operators to determine how to interpret values (see Numeric, String, and Boolean Context, page
5). If you treat a number as a string, Perl will do its best to convert that number into a string (and vice versa). This process is
coercion.

By design, Perl attempts to do what you mean17, though you must be specific about your intentions.

Boolean Coercion

Boolean coercion occurs when you test thetruthinessof a value18, such as in aif or while condition. Numeric 0 is false. The
undefined value is false. The empty string is false, and so isthe string'0'. Strings which may benumericallyequal to zero
(such as'0.0', '0e', and'0 but true') but which arenot'0' aretrue.

All other values are true, including the idiomatic string'0 but true'. In the case of a scalar with both string and numeric
portions (see Dualvars, page 48), Perl 5 prefers to check thestring component for boolean truth.'0 but true' does evaluate
to zero numerically, but is not the empty string, so it evaluates to true in boolean context.

String Coercion
String coercion occurs when using string operators such as comparisons (eq andmp, for example), concatenation,split,
substr, and regular expressions. It also occurs when using a value as a hash key. The undefined value stringifies to an empty
string, but it produces a “use of uninitialized value” warning. Numbersstringify to strings containing their values. That is, the
value10 stringifies to the string10, such that you cansplit a number into individual digits:

my @digits = split '', 1234567890;

Numeric Coercion
Numeric coercion occurs when using numeric comparison operators (such as== and<=>), when performing mathematic op-
erations, and when using a value as an array or list index. Theundefined valuenumifiesto zero, though it produces a “Use
of uninitialized value” warning. Strings which do not beginwith numeric portions also numify to zero, and they produce an
“Argument isn’t numeric” warning. Strings which begin withcharacters allowed in numeric literals numify to those values; that
is, 10 leptons leaping numifies to10 the same way that6.022e23 moles marauding numifies to6.022e23.

The core moduleSalar::Util contains alooks_like_number() function which uses the same parsing rules as the Perl 5
grammar to extract a number from a string.

The stringsInf andInfinity represent the infinite value and behave as numbers, in the sense that numifying them
does not produce the “Argument isn’t numeric” warning. The string NaN represents the concept “not a number”.
Unless you’re a mathematician, you may not care.

17CalledDWIM for do what I meanor dwimmery.

18Truthiness is like truthfulness if you squint and say “Yeah,that’s true, but. . . .”

47

Modern Perl

Reference Coercion
In certain circumstances, treating a value as a reference turns that valueinto a reference. This process of autovivification (see
Autovivification, page 57) can be useful for nested data structures. It occurs when you use a dereferencing operation ona
non-reference:

my %users;

$users{Bradley}{id} = 228;
$users{Jack}{id} = 229;

Although the hash never contained values forBradley andJak, Perl 5 helpfully created hash references for those values,then
assigned them each a key/value pair keyed onid.

Cached Coercions

Perl 5’s internal representation of values stores both a string value and a numeric value19. Stringifying a numeric value does not
replace the numeric value with a string. Instead, itattachesa stringified value to the value in addition to the numeric value. The
same sort of operation happens when numifying a string value.

You almost never need to know that this happens—perhaps once or twice a decade, if anecdotal evidence is admissible.

Perl 5 may prefer one form over another. If a value has a cachedrepresentation in a form you do not expect, relying on an
implicit conversion may produce surprising results. You almost never need to be explicit about what you expect, but knowthat
caching does occur and you may be able to diagnose an odd situation when it occurs.

Dualvars
The caching of string and numeric values allows for the use ofa rare-but-useful feature known as adualvar, or a value that
has divergent numeric and string values. The core moduleSalar::Util provides a functiondualvar() which allows you to
create a value which has specified and divergent numeric andstring values:

use Scalar::Util 'dualvar';
my $false_name = dualvar 0, 'Sparkles & Blue';

say 'Boolean true!' if !! $false_name;
say 'Numeric false!' unless 0 + $false_name;
say 'String true!' if '' . $false_name;

Packages
A namespacein Perl is a mechanism which associates and encapsulates various named entities within a named category. It’s
like your family name or a brand name, except that it implies no relationship between entities other than categorizationwith
that name. (Such a relationship often exists, but it does nothave to exist.)

A packagein Perl 5 is a collection of code in a single namespace. In a sense, a package and a namespace are equivalent; the
package represents the source code and the namespace represents the entity created when Perl parses that code20.

Thepakage builtin declares a package and a namespace:

package MyCode;

our @boxes;

sub add_box { ... }

19This is a simplification, but the gory details are truly gory.

20This distinction may be subtle.

48

The Perl Language

All global variables and functions declared or referred to after the package declaration refer to symbols within theMyCode

namespace. With this code as written, you can refer to the�boxes variable from themain namespace only by itsfully qualified
name,�MyCode::boxes. Similarly, you can call theadd_box() function only byMyCode::add_box(). A fully qualified
name includes its complete package name.

The default package is themain package. If you do not declare a package explicitly, whetherin a one-liner on a command-line
or in a standalone Perl program or even in a.pmfile on disk, the current package will be themain package.

Besides a package name (main orMyCode or any other allowable identifier), a package has a version and three implicit methods,
VERSION(), import() (see Importing, page 67), andunimport(). VERSION() returns the package’s version number.

The package’s version is a series of numbers contained in a package global named$VERSION. By convention, versions tend
to be a series of integers separated by dots, as in1.23 or 1.1.10, where each segment is an integer, but there’s little beyond
convention.

Perl 5.12 introduced a new syntax intended to simplify version numbers. If you can write code that does not need to run on
earlier versions of Perl 5, you can avoid a lot of unnecessarycomplexity:

package MyCode 1.2.1;

In 5.10 and earlier, the simplest way to declare the version of a package is:

package MyCode;

our $VERSION = 1.21;

TheVERSION() method is available to every package; they inherit it from the UNIVERSAL base class. It returns the value of
$VERSION. You may override it if you wish, though there are few reasonsto do so. Obtaining the version number of a package
is easiest through the use of theVERSION() method:

my $version = Some::Plugin->VERSION();

die "Your plugin $version is too old"
unless $version > 2;

Packages and Namespaces

Everypakage declaration creates a new namespace if that namespace does not already exist and causes the parser to put all
subsequent package global symbols (global variables and functions) into that namespace.

Perl hasopen namespaces. You can add functions or variables to a namespace at any point, either with a new package declara-
tion:

package Pack;

sub first_sub { ... }

package main;

Pack::first_sub();

package Pack;

sub second_sub { ... }

package main;

Pack::second_sub();

. . . or by fully qualifying function names at the point of declaration:

implicit
package main;

sub Pack::third_sub { ... }

49

Modern Perl

Perl 5 packages are so open that you can add to them at any time during compilation or run time, or from separate files. Of
course, that can be confusing, so avoid it when possible.

Namespaces can have as many levels as you like for organizational purposes. These are not hierarchical; there’s no technical
relationship between packages—only a semantic relationship to readersof the code.

It’s common to create a top-level namespace for a business ora project. This makes a convenient organizational tool not only
for reading code and discovering the relationships betweencomponents but also to organizing code and packages on disk.Thus:

• StrangeMonkey is the project name

• StrangeMonkey::UI contains the top-level user interface code

• StrangeMonkey::Persistene contains the top-level data management code

• StrangeMonkey::Test contains the top-level testing code for the project

. . . and so on.

References
Perl usually does what you expect, even if what you expect is subtle. Consider what happens when you pass values to functions:

sub reverse_greeting
{

my $name = reverse shift;
return "Hello, $name!";

}

my $name = 'Chuck';
say reverse_greeting($name);
say $name;

You probably expect that, outside of the function,$name containsChuk, even though the value passed into the function gets
reversed intokuhC—and that’s what happens. The$name outside the function is a separate scalar from the$name inside the
function, and each one has a distinct copy of the string. Modifying one has no effect on the other.

This is useful and desirable default behavior. If you had to make explicit copies of every value before you did anything tothem
which could possibly cause changes, you’d write lots of extra, unnecessary code to defend against well-meaning but incorrect
modifications.

Other times it’s useful to modify a value in place sometimes as well. If you have a hash full of data that you want to pass to a
function to update or to delete a key/value pair, creating and returning a new hash for each change could be troublesome (to say
nothing of inefficient).

Perl 5 provides a mechanism by which you can refer to a value without making a copy of that value. Any changes made to that
referencewill update the value in place, such thatall references to that value will see the new value. A reference is a first-class
scalar data type in Perl 5. It’s not a string, an array, or a hash. It’s a scalar which refers to another first-class data type.

Scalar References

The reference operator is the backslash (\). In scalar context, it creates a single reference which refers to another value. In list
context, it creates a list of references. Thus you can take a reference to$name from the previous example:

my $name = 'Larry';
my $name_ref = \ $name;

To access the value to which a reference refers, you mustdereferenceit. Dereferencing requires you to add an extra sigil for
each level of dereferencing:

50

The Perl Language

sub reverse_in_place
{

my $name_ref = shift;
$$name_ref = reverse $$name_ref ;

}

my $name = 'Blabby';
reverse_in_place(\ $name);
say $name;

The double scalar sigil dereferences a scalar reference.

This example isn’t useful in the obvious case; why not have the function return the modified value directly? Scalar
references are useful when processinglargescalars; copying the contents of those scalars can use a lot of time and
memory.

Complex references may require a curly-brace block to disambiguate portions of the expression. This is optional for simple
dereferences, though it can be messy:

sub reverse_in_place
{

my $name_ref = shift;
${ $name_ref } = reverse ${ $name_ref } ;

}

If you forget to dereference a scalar reference, it will stringify or numify. The string value will be of the formSCALAR(0x93339e8),
and the numeric value will be the0x93339e8 portion. This value encodes the type of reference (in this case,SCALAR) and the
location in memory of the reference.

Perl does not offer native access to memory locations. The address of the reference is a value used as a mostly-
unique identifier, as a reference does not necessarily havea name. Unlike pointers in a language such as C, you
cannot modify the address or treat it as an address into memory.
These addresses are onlymostlyunique because Perl may reuse storage locations if its garbage collector has
reclaimed an unreferenced reference.

Array References

You can also create references to arrays, orarray references. This is useful for several reasons:

• To pass and return arrays from functions without flattening

• To create multi-dimensional data structures

• To avoid unnecessary array copying

• To hold anonymous data structures

To take a reference to a declared array, use the reference operator:

my @cards = qw(K Q J 10 9 8 7 6 5 4 3 2 A);
my $cards_ref = \ @cards;

Now $ards_ref contains a reference to the array. Any modifications made through$ards_ref will modify �ards and
vice versa.

You may access the entire array as a whole with the� sigil, whether to flatten the array into a list or count the number of
elements it contains:

51

Modern Perl

my $card_count = @$cards_ref ;
my @card_copy = @$cards_ref ;

You may also access individual elements by using the dereferencing arrow (->):

my $first_card = $cards_ref->[0] ;
my $last_card = $cards_ref->[-1] ;

The arrow is necessary to distinguish between a scalar named$ards_ref and an array named�ards_ref from which you
wish to access a single element.

An alternate syntax is available, where you prepend anotherscalar sigil to the array reference. It’s shorter, if less
readable, to writemy $first_ard = $$ards_ref[0℄;.

Slice an array through its reference with the curly-brace dereference grouping syntax:

my @high_cards = @{ $cards_ref } [0 .. 2, -1];

In this case, youmayomit the curly braces, but the visual grouping they (and the whitespace) provide only helps readability in
this case.

You may also create anonymous arrays in place without using named arrays. Surround a list of values or expressions with
square brackets:

my $suits_ref = [qw(Monkeys Robots Dinosaurs Cheese)];

This array reference behaves the same as named array references, except that the anonymous array bracketsalwayscreate a
new reference, while taking a reference to a named array always refers to thesamearray with regard to scoping. That is to say:

my @meals = qw(waffles sandwiches pizza);
my $sunday_ref = \@meals;
my $monday_ref = \@meals;

push @meals, 'ice cream sundae';

. . . both$sunday_ref and$monday_ref now contain a dessert, while:

my @meals = qw(waffles sandwiches pizza);
my $sunday_ref = [@meals];
my $monday_ref = [@meals];

push @meals, 'berry pie';

. . . neither$sunday_ref nor $monday_ref contains a dessert. Within the square braces used to create the anonymous array,
list context flattens the�meals array.

Hash References

To create ahash reference, use the reference operator on a named hash:

my %colors = (
black => 'negro',
blue => 'azul',
gold => 'dorado',
red => 'rojo',
yellow => 'amarillo',
purple => 'morado',

);

my $colors_ref = \%colors;

52

The Perl Language

Access the keys or values of the hash by prepending the reference with the hash sigil%:

my @english_colors = keys %$colors_ref ;
my @spanish_colors = values %$colors_ref ;

You may access individual values of the hash (to store, delete, check the existence of, or retrieve) by using the dereferencing
arrow:

sub translate_to_spanish
{

my $color = shift;
return $colors_ref->{$color} ;

}

As with array references, you may eschew the dereferencing arrow for a prepended scalar sigil:$$olors_-
ref{$olor}, though the arrow is often much clearer.

You may also use hash slices by reference:

my @colors = qw(red blue green);
my @colores = @{ $colors_ref }{@colors} ;

Note the use of curly brackets to denote a hash indexing operation and the use of the array sigil to denote a list operation on the
reference.

You may create anonymous hashes in place with curly braces:

my $food_ref = {
'birthday cake' => 'la torta de cumpleaños',
candy => 'dulces',
cupcake => 'bizcochito',
'ice cream' => 'helado',

} ;

As with anonymous arrays, anonymous hashes create a new anonymous hash on every execution.

A common novice typo is to assign an anonymous hash to a standard hash. This produces a warning about an odd
number of elements in the hash. Use parentheses for a named hash and curly brackets for an anonymous hash.

Function References

Perl 5 supportsfirst-class functions. A function is a data type just as is an array or hash, at least when you usefunction
references. This feature enables many advanced features (see Closures, page 79). As with other data types, you may create a
function reference by using the reference operator on the name of a function:

sub bake_cake { say 'Baking a wonderful cake!' };

my $cake_ref = \& bake_cake;

Without thefunction sigil(&), you will take a reference to the function’s return value orvalues.

You may also create anonymous functions:

my $pie_ref = sub { say 'Making a delicious pie!' } ;

53

Modern Perl

The use of thesub builtin withouta name compiles the function as normal, but does not install it in the current namespace. The
only way to access this function is through the reference.

You may invoke the function reference with the dereferencing arrow:

$cake_ref->();
$pie_ref->();

Think of the empty parentheses as denoting an invocation dereferencing operation in the same way that square brackets indicate
an indexed lookup and curly brackets cause a hash lookup. Youmay pass arguments to the function within the parentheses:

$bake_something_ref->('cupcakes');

You may also use function references as methods with objects(see Moose, page 100); this is most useful when you’ve already
looked up the method:

my $clean = $robot_maid->can('cleanup');
$robot_maid->$clean($kitchen);

You may see an alternate invocation syntax for function references which uses the function sigil (&) instead of the
dereferencing arrow. Avoid this syntax; it has implications for implicit argument passing.

Filehandle References

Filehandles can be references as well. When you useopen’s (andopendir’s) lexical filehandle form, you deal with filehandle
references. Stringifying this filehandle produces something of the formGLOB(0x8bda880).

Internally, these filehandles are objects of the classIO::Handle. When you load that module, you can call methods on
filehandles:

use IO::Handle;
use autodie;

open my $out_fh, '>', 'output_file.txt';
$out_fh->say('Have some text!');

You may see old code which takes references to typeglobs, such as:

my $fh = do {
local * FH;
open FH, "> $file" or die "Can't write to '$file': $!\n";
\ * FH;

};

This idiom predates lexical filehandles, introduced as part of Perl 5.6.0 in March 200021. You may still use the reference
operator on typeglobs to take references to package-globalfilehandles such asSTDIN, STDOUT, STDERR, or DATA—but these
represent global data anyhow. For all other filehandles, prefer lexical filehandles.

Besides the benefit of using lexical scope instead of package or global scope, lexical filehandles allow you to manage the
lifespan of filehandles. This is a nice feature of how Perl 5 manages memory and scopes.

21. . . so you know how old that code is.

54

The Perl Language

Reference Counts

How does Perl know when it can safely release the memory for a variable and when it needs to keep it around? How does Perl
know when it’s safe to close the file opened in this inner scope:

use autodie;
use IO::Handle;

sub show_off_scope
{

say 'file not open';

{
open my $fh, '>', 'inner_scope.txt';
$fh->say('file open here');

}

say 'file closed here';
}

Perl 5 uses a memory management technique known asreference counting. Every value in the program has an attached counter.
Perl increases this counter every time something takes a reference to the value, whether implicitly or explicitly. Perldecreases
that counter every time a reference goes away. When the counter reaches zero, Perl can safely recycle that value.

Within the inner block in the example, there’s one$fh. (Multiple lines in the source code refer to it, but there’s only one
referenceto it; $fh itself.)$fh is only in scope in the block and does not get assigned to anything outside of the block, so when
the block ends, its reference count reaches zero. The recycling of $fh calls an implicitlose() method on the filehandle,
which closes the file.

You don’t have to understand the details of how all of this works. You only need to understand that your actions in taking
references and passing them around affect how Perl manages memory—with one caveat (see Circular References, page 58).

References and Functions

When you use references as arguments to functions, document your intent carefully. Modifying the values of a reference from
within a function may surprise calling code, which expects no modifications.

If you need to modify the contents of a reference without affecting the reference itself, copy its values to a new variable:

my @new_array = @{ $array_ref };
my %new_hash = %{ $hash_ref };

This is only necessary in a few cases, but explicit cloning helps avoid nasty surprises for the calling code. If your references
are more complex—if you use nested data structures—consider the use of the core moduleStorable and itsdlone (deep
cloning) function.

Nested Data Structures
Perl’s aggregate data types—arrays and hashes—allow you to store scalars indexed by integers or string keys. Perl 5’s references
(see References, page 50) allow you to access aggregate datatypes indirectly, through special scalars. Nested data structures in
Perl, such as an array of arrays or a hash of hashes, are possible through the use of references.

Declaring Nested Data Structures
A simple declaration of an array of arrays might be:

my @famous_triplets = (
[qw(eenie miney moe)],
[qw(huey dewey louie)],
[qw(duck duck goose)],

);

55

Modern Perl

. . . and a simple declaration of a hash of hashes might be:

my %meals = (
breakfast => { entree => 'eggs', side => 'hash browns' },
lunch => { entree => 'panini', side => 'apple' },
dinner => { entree => 'steak', side => 'avocado salad' },

);

Perl allows but does not require the trailing comma so as to ease adding new elements to the list.

Accessing Nested Data Structures

Accessing elements in nested data structures uses Perl’s reference syntax. The sigil denotes the amount of data to retrieve, and
the dereferencing arrow indicates that the value of one portion of the data structure is a reference:

my $last_nephew = $famous_triplets[1]->[2];
my $breaky_side = $meals{breakfast}->{side};

In the case of a nested data structure, the only way to nest a data structure is through references, thus the arrow is superfluous.
This code is equivalent and clearer:

my $last_nephew = $famous_triplets[1][2];
my $breaky_side = $meals{breakfast}{side};

You can avoid the arrow in every case except invoking a function reference stored in a nested data structure, where
the arrow invocation syntax is the clearest mechanism of invocation.

Accessing components of nested data structures as if they were first-class arrays or hashes requires disambiguation blocks:

my $nephew_count = @{ $famous_triplets[1] };
my $dinner_courses = keys %{ $meals{dinner} };

Similarly, slicing a nested data structure requires additional punctuation:

my ($entree, $side) = @{ $meals{breakfast} }{qw(entree sid e)};

The use of whitespace helps, but it does not entirely eliminate the noise of this construct. Sometimes using temporary variables
can clarify:

my $breakfast_ref = $meals{breakfast};
my ($entree, $side) = @$breakfast_ref{qw(entree side)};

perldo perlds, the data structures cookbook, gives copious examples of how to use the various types of data structures
available in Perl.

56

The Perl Language

Autovivification
Perl’s expressivity extends to nested data structures. Whenyou attempt to write to a component of a nested data structure, Perl
will create the path through the data structure to that pieceif it does not exist:

my @aoaoaoa;
$aoaoaoa[0][0][0][0] = 'nested deeply';

After the second line of code, this array of arrays of arrays of arrays contains an array reference in an array reference inan array
reference in an array reference. Each array reference contains one element. Similarly, treating an undefined value as if it were
a hash reference in a nested data structure will create intermediary hashes, keyed appropriately:

my %hohoh;
$hohoh{Robot}{Santa}{Claus} = 'mostly harmful';

This behavior isautovivification, and it’s more often useful than it isn’t. Its benefit is in reducing the initialization code of nested
data structures. Its drawback is in its inability to distinguish between the honest intent to create missing elements innested data
structures and typos.

Theautovivifiation pragma on the CPAN (see Pragmas, page 121) lets you disable autovivification in a lexical scope for
specific types of operations; it’s worth your time to consider this in large projects, or projects with multiple developers.

You can also check for the existence of specific hash keys andthe number of elements in arrays before dereferenc-
ing each level of a complex data structure, but that can produce tedious, lengthy code which many programmers
prefer to avoid.

You may wonder at the contradiction between taking advantage of autovivification while enablingstritures. The question
is one of balance. is it more convenient to catch errors whichchange the behavior of your program at the expense of disabling
those error checks for a few well-encapsulated symbolic references? Is it more convenient to allow data structures to grow
rather than specifying their size and allowed keys?

The answer to the latter question depends on your specific project. When initially developing, you can allow yourself the
freedom to experiment. When testing and deploying, you may want to increase strictness to prevent unwanted side effects.
Thanks to the lexical scoping of thestrit andautovivifiation pragmas, you can enable and disable these behaviors as
necessary.

Debugging Nested Data Structures
The complexity of Perl 5’s dereferencing syntax combined with the potential for confusion with multiple levels of references
can make debugging nested data structures difficult. Two good options exist for visualizing them.

The core moduleData::Dumper can stringify values of arbitrary complexity into Perl 5 code:

use Data::Dumper;

print Dumper($my_complex_structure);

This is useful for identifying what a data structure contains, what you should access, and what you accessed instead.Data::-

Dumper can dump objects as well as function references (if you set$Data::Dumper::Deparse to a true value).

While Data::Dumper is a core module and prints Perl 5 code, it also produces verbose output. Some developers prefer the use
of theYAML::XS or JSON modules for debugging. You have to learn a different format to understand their outputs, but their
outputs can be much clearer to read and to understand.

57

Modern Perl

Circular References
Perl 5’s memory management system of reference counting (see Reference Counts, page 55) has one drawback apparent to
user code. Two references which end up pointing to each otherform acircular referencethat Perl cannot destroy on its own.
Consider a biological model, where each entity has two parents and can have children:

my $alice = { mother => '', father => '', children => [] };
my $robert = { mother => '', father => '', children => [] };
my $cianne = { mother => $alice, father => $robert, children = > [] };

push @{ $alice->{children} }, $cianne;
push @{ $robert->{children} }, $cianne;

Because both$alie and $robert contain an array reference which contains$ianne, and because$ianne is a hash
reference which contains$alie and$robert, Perl can never decrease the reference count of any of these three people to
zero. It doesn’t recognize that these circular references exist, and it can’t manage the lifespan of these entities.

You must either break the reference count manually yourself(by clearing the children of$alie and$robert or the parents
of $ianne), or take advantage of a feature calledweak references. A weak reference is a reference which does not increase the
reference count of its referent. Weak references are available through the core moduleSalar::Util. Export theweaken()
function and use it on a reference to prevent the reference count from increasing:

use Scalar::Util 'weaken';

my $alice = { mother => '', father => '', children => [] };
my $robert = { mother => '', father => '', children => [] };
my $cianne = { mother => $alice, father => $robert, children = > [] };

push @{ $alice->{children} }, $cianne;
push @{ $robert->{children} }, $cianne;

weaken($cianne->{mother});
weaken($cianne->{father});

With this accomplished,$ianne will retain references to$alie and$robert, but those references will not by themselves
prevent Perl’s garbage collector from destroying those data structures. You rarely have to use weak references if you design
your data structures correctly, but they’re useful in a few situations.

Alternatives to Nested Data Structures
While Perl is content to process data structures nested as deeply as you can imagine, the human cost of understanding these
data structures as well as the relationship of various pieces, not to mention the syntax required to access various portions, can
be high. Beyond two or three levels of nesting, consider whether modeling various components of your system with classesand
objects (see Moose, page 100) will allow for a clearer representation of your data.

Sometimes bundling data with behaviors appropriate to thatdata can clarify code.

58

Operators
An accurate, if irreverent, description of Perl is an “operator-oriented language”. The interaction of operators withtheir operands
gives Perl its expressivity and power. Understanding Perl requires understanding its operators and how they behave. For the
sake of this discussion, a working definition of a Perloperatoris a series of one or more symbols used as part of the syntax of
a language. Each operator operates on zero or moreoperands; this definition is circular, as an operand is a value on which an
operator operates.

The most accurate definition of operators is “What’s inperlop”, but even that leaves out some operators in
perlsyn and includes builtins. Don’t get too attached to a single definition.

Operator Characteristics
Bothperldo perlop andperldo perlsyn provide voluminous information about the behavior of Perl’s operators. Even
so, what theydon’t explain is more important to their understanding. The documentation assumes you have a familiarity with
several concepts in language design. These concepts may sound imposing at first, but they’re straightforward to understand.

Every operator possesses several important characteristics which govern its behavior: the number of operands on whichit
operates, its relationship to other operators, and its syntactic possibilities.

Precedence
Theprecedenceof an operator helps determine when Perl should evaluate it in an expression. Evaluation order proceeds from
highest to lowest precedence. For example, because the precedence of multiplication is higher than the precedence of addition,
7 + 7 * 10 evaluates to77, not140. You may force the evaluation of some operators before others by grouping their subex-
pressions in parentheses;(7 + 7) * 10 doesevaluate to140, as the addition operation becomes a single unit which must
evaluate fully before multiplication can occur.

In case of a tie—where two operators have the same precedence—other factors such as fixity (see Fixity, page 60) and associa-
tivity (see Associativity, page 59) break the tie.

perldo perlop contains a table of precedence. Almost no one has this table memorized. The best way to manage precedence
is to keep your expressions simple. The second best way is to use parentheses to clarify precedence in complex expressions. If
you find yourself drowning in a sea of parentheses, see the first rule again.

Associativity
Theassociativityof an operator governs whether it evaluates from left to right or right to left. Addition is left associative, such
that2 + 3 + 4 evaluates2 + 3 first, then adds4 to the result. Exponentiation is right associative, such that 2 ** 3 ** 4

evaluates3 ** 4 first, then raises2 to the 81st power.

Simplifying complex expressions and using parentheses to demonstrate your intent is more important than memorizing asso-
ciativity tables. Even so, memorizing the associativity ofthe mathematic operators is worthwhile.

Arity
Thearity of an operator is the number of operands on which it operates.A nullary operator operates on zero operands. Aunary
operator operates on one operand. Abinary operator operates on two operands. Atrinary operator operates on three operands.

59

Modern Perl

The coreB::Deparse module can rewrite snippets of code to demonstrate exactly how Perl handles operator
precedence and associativity; runperl -MO=Deparse,-p on a snippet of code. (The-p flag adds extra group-
ing parentheses which often clarify evaluation order.) Beware that Perl’s optimizer will simplify mathematical
operations as given as examples earlier in this section; usevariables instead, as in$x ** $y ** $z.

A listary operator operates on a list of operands.

There’s no single good rule for determining the arity of an operator, other than the fact that most operate on two, many, orone
operands. The operator’s documentation should make this clear.

For example, the arithmetic operators are binary operators, and are usually left associative.2 + 3 - 4 evaluates2 + 3 first;
addition and subtraction have the same precedence, but they’re left associative and binary, so the proper evaluation order applies
the leftmost operator (+) to the leftmost two operands (2 and3) with the leftmost operator (+), then applies the rightmost operator
(-) to the result of the first operation and the rightmost operand (4).

One common source of confusion for Perl novices is the interaction of listary operators (especially function calls) with nested
expressions. Using grouping parentheses to clarify your intent, yet watch out for confusion in code such as:

probably buggy code
say (1 + 2 + 3) * 4;

. . . as Perl 5 happily interprets the parentheses as postcircumfix (see Fixity, page 60) operators denoting the arguments to
say, not circumfix parentheses grouping an expression to change precedence. In other words, the code prints the value6 and
evaluates to the return value ofsay multiplied by4.

Fixity
An operator’sfixity is its position relative to its operands:

Infix operators appear between their operands. Most mathematical operators are infix operators, such as the multiplication
operator in$length * $width.

Prefix operators appear before their operators andpostfixoperators appear after. These operators tend to be unary, such as
mathematic negation (-$x), boolean negation (!$y), and postfix increment ($z++).

Circumfixoperators surround their operands. Examples include the anonymous hash constructor ({ ... }) and quoting op-
erators (qq[... ℄).

Postcircumfixoperators follow certain operands and surround others, as with hash or array element access ($hash{ ... }

and$array[... ℄).

Operator Types
Perl’s pervasive contexts—especially value contexts (see Numeric, String, and Boolean Context, page 5)—extend to the behav-
ior of its operators. Perl operators provide value contextsto their operands. Choosing the most appropriate operator for a given
situation requires you to understand what type of value you expect to receive as well as the type of values on which you wish
to operate.

Numeric Operators
The numeric operators impose numeric contexts on their operands. They consist of the standard arithmetic operators such as
addition (+), subtraction (-), multiplication (*), division (/), exponentiation (**), modulo (%), their in-place variants (+=, -=,
*=, /=, **=, and%=), and auto-decrement (--), whether postfix or prefix.

While the auto-increment operator may seem like a numeric operator, it has special string behavior (see Special Operators, page
61).

60

Operators

Several comparison operators impose numeric contexts upontheir operands. These are numeric equality (==), numeric inequal-
ity (!=), greater than (>), less than (<), greater than or equal to (>=), less than or equal to (<=), and the sort comparison operator
(<=>).

String Operators
The string operators impose string contexts on their operands. They consist of the positive and negative regular expression
binding operators (=~ and!~, respectively), and the concatenation operator (.).

Several comparison operators impose string contexts upon their operands. These are string equality (eq), string inequality (ne),
greater than (gt), less than (lt), greater than or equal to (ge), less than or equal to (le), and the string sort comparison operator
(mp).

Logical Operators
The logical operators treat their operands in a boolean context. The&& andand operators test that both expressions are logically
true, while the|| andor operators test that either expression is true. All four are infix operators. All four exhibitshort-circuiting
behavior (see Short Circuiting, page 25).

The defined-or operator,//, tests thedefinednessof its operand. Unlike|| which tests the truth value of its operand,//

evaluates to a true value if its operand evaluates to a numeric zero or the empty string. This is especially useful for setting
default parameter values:

sub name_pet
{

my $name = shift // 'Fluffy';
...

}

The ternary conditional operator (?:) takes three operands. It evaluates the first in boolean context and evaluates to the second
if the first is true and the third otherwise:

my $truthiness = $value ? 'true' : 'false';

The! andnot operators return the logical opposite of the boolean value of their operands.not has a lower precedence than!.
These are prefix operators.

Thexor operator is an infix operator which evaluates to the exclusive-or of its operands.

Bitwise Operators
The bitwise operators treat their operands numerically at the bit level. These are uncommon in most Perl 5 programs. They
consist of left shift (<<), right shift (>>), bitwise and (&), bitwise or (|), and bitwise xor (̂), as well as their in-place variants
(<<=, >>=, &=, |=, and^=).

Special Operators
The auto-increment operator has a special case. If anythinghas ever used a variable in a numeric context (see Cached Coercions,
page 48), it increments the numeric value of that variable. If the variable is obviously a string (and has never been evaluated in
a numeric context), the string value increments with a carry, such thata increments tob, zz to aaa, anda9 to b0.

my $num = 1;
my $str = 'a';

$num++;
$str++;
is($num, 2, 'numeric autoincrement should stay numeric');
is($str, 'b', 'string autoincrement should stay string');

no warnings 'numeric';

61

Modern Perl

$num += $str;
$str++;

is($num, 2, 'adding $str to $num should add numeric value of $ str');
is($str, 1, '... but $str should now autoincrement its numer ic part');

The repetition operator (x) is an infix operator. In list context, its behavior changesbased on its first operand. When given a list,
it evaluates to that list repeated the number of times specified by its second operand. When given a scalar, it produces a string
consisting of the string value of its first operand concatenated to itself the number of times specified by its second operand. In
scalar context, the operator always produces a concatenated string repeated appropriately.

For example:

my @scheherazade = ('nights') x 1001;
my $calendar = 'nights' x 1001;

is(@scheherazade, 1001, 'list repeated');
is(length $calendar, 1001 * length 'nights', 'word repeated');

my @schenolist = 'nights' x 1001;
my $calscalar = ('nights') x 1001;

is(@schenolist, 1, 'no lvalue list');
is(length $calscalar, 1001 * length 'nights', 'word still repeated');

Therangeoperator (..) is an infix operator which produces a list of items in list context:

my @cards = (2 .. 10, 'J', 'Q', 'K', 'A');

It can produce simple, incrementing ranges (whether integers or autoincrementing strings), but it cannot intuit patterns or more
complex ranges.

In boolean context, the range operator becomes theflip-flop operator. This operator returns a false value if its left operand is
false, then it returns a true value while its right operand istrue. Thus you could quote the body of a pedantically formatted email
with:

while (/Hello, $user/ .. /Sincerely,/)
{

say "> $_";
}

Thecommaoperator (,) is an infix operator. In scalar context it evaluates its left operand then returns the value produced by
evaluating its right operand. In list context, it evaluatesboth operands in left-to-right order.

The fat comma operator (=>) behaves the same way, except that it automatically quotes any bareword used as its left operand
(see Hashes, page 40).

62

Functions
A function(or subroutine) in Perl is a discrete, encapsulated unit of behavior. It mayor may not have a name. It may or may not
consume incoming information. It may or may not produce outgoing information. It represents a type of control flow, where
the execution of the program proceeds to another point in thesource code.

Functions are a prime mechanism for abstraction, encapsulation, and re-use in Perl 5; many other mechanisms build on theidea
of the function.

Declaring Functions
Use thesub builtin to declare a function:

sub greet_me { ... }

Now greet_me() is available for invocation anywhere else within the program, provided that the symbol—the function’s
name—is visible.

You do not have todefinea function at the point you declare it. You may use aforward declarationto tell Perl that you intend
for the function to exist, then delay its definition:

sub greet_sun;

You do not have to declare Perl 5 functions before you use them, except in the special case where they modifyhow
the parser parses them (see Attributes, page 83).

Invoking Functions
To invoke a function, mention its name and pass an optional list of arguments:

greet_me('Jack', 'Brad');
greet_me('Snowy');
greet_me();

You canoftenomit parameter-grouping parentheses if your program runs correctly with thestrit pragma en-
abled, but they provide clarity to the parser and, more importantly, human readers.

You can, of course, pass multipletypesof arguments to a function:

greet_me($name);
greet_me(@authors);
greet_me(%editors);

. . . though Perl 5’s default parameter handling sometimes surprises novices.

63

Modern Perl

Function Parameters
Inside the function, all parameters exist in a single array,�_. If $_ corresponds to the English wordit, �_ corresponds to the
word them. Perl flattensall incoming parameters into a single list. The function itself either must unpack all parameters into
any variables it wishes to use or operate on�_ directly:

sub greet_one
{

my ($name) = @_;
say "Hello, $name!";

}

sub greet_all
{

say "Hello, $_!" for @_ ;
}

�_ behaves as does any other array in Perl. You may refer to individual elements by index:

sub greet_one_indexed
{

my $name = $_[0] ;
say "Hello, $name!";

or, less clear
say "Hello, $_[0]!";

}

You may alsoshift, unshift, push, pop, splie, and slice�_. Inside a function, theshift andpop operators operate on
�_ implicitly in the same way that they operate on�ARGV outside of any function:

sub greet_one_shift
{

my $name = shift ;
say "Hello, $name!";

}

While writingshift �_ may seem clearer initially, taking advantage of the implicit operand toshift is idiomatic
in Perl 5.

Take care that assigning a scalar parameter from�_ requiresshift, indexed access to�_, or lvalue list context parentheses.
Otherwise, Perl 5 will happily evaluate�_ in scalar context for you and assign the number of parameterspassed:

sub bad_greet_one
{

my $name = @_; # buggy
say "Hello, $name; you're looking quite numeric today!"

}

List assignment of multiple parameters is often clearer than multiple lines ofshift. Compare:

sub calculate_value
{

multiple shifts
my $left_value = shift;
my $operation = shift;
my $right_value = shift;
...

}

. . . to:

64

Functions

sub calculate_value
{

my ($left_value, $operation, $right_value) = @_;
...

}

Occasionally it’s necessary to extract a few parameters from �_ and pass the rest to another function:

sub delegated_method
{

my $self = shift ;
say 'Calling delegated_method()'

$self->delegate->delegated_method(@_);
}

The dominant practice seems to be to useshift only when your function must access a single parameter and list assignment
when accessing multiple parameters.

See thesignatures, Method::Signatures, andMooseX::Method::Signatures modules on the CPAN for
declarative parameter handling.

Flattening
The flattening of parameters into�_ happens on the caller side. Passing a hash as an argument produces a list of key/value pairs:

sub show_pets
{

my %pets = @_;
while (my ($name, $type) = each %pets)
{

say "$name is a $type";
}

}

my %pet_names_and_types = (
Lucky => 'dog',
Rodney => 'dog',
Tuxedo => 'cat',
Petunia => 'cat',

);

show_pets(%pet_names_and_types);

Theshow_pets() function works because the%pet_names_and_types hash flattens into a list. The order of the pairs within
that flattened list will vary, but pairs will always appear in that list with the key first immediately followed by the value. The hash
assignment inside the functionshow_pets() works essentially as the more explicit assignment to%pet_names_and_types

does.

This is often useful, but you must be clear about your intentions if you pass some arguments as scalars and others as flattened
lists. If you wish to make ashow_pets_of_type() function, where one parameter is the type of pet to display, you must pass
that type as thefirst parameter (or usepop to remove it from the end of�_):

sub show_pets_by_type
{

my ($type, %pets) = @_ ;

while (my ($name, $species) = each %pets)
{

next unless $species eq $type;
say "$name is a $species";

}
}

65

Modern Perl

my %pet_names_and_types = (
Lucky => 'dog',
Rodney => 'dog',
Tuxedo => 'cat',
Petunia => 'cat',

);

show_pets_by_type('dog', %pet_names_and_types);
show_pets_by_type('cat', %pet_names_and_types);
show_pets_by_type('moose', %pet_names_and_types);

Slurping
As with any lvalue assignment to an aggregate, assigning to%pets within the functionslurpsall of the remaining values from
�_. If the $type parameter came at the end of�_, Perl would attempt to assign an odd number of elements to thehash and
would produce a warning. Youcouldwork around that:

sub show_pets_by_type
{

my $type = pop;
my %pets = @_;

...
}

. . . at the expense of some clarity. The same principle applies when assigning to an array as a parameter, of course. Use references
(see References, page 50) to avoid flattening and slurping when passing aggregate parameters.

Aliasing
One useful feature of�_ can surprise the unwary: it contains aliases to the passed-in parameters, until you unpack�_ into its
own variables. This behavior is easiest to demonstrate withan example:

sub modify_name
{

$_[0] = reverse $_[0];
}

my $name = 'Orange';
modify_name($name);
say $name;

prints egnarO
If you modify an element of�_ directly, you will modify the original parameter directly.Be cautious.

Functions and Namespaces
Every function lives in a namespace. Functions in an undeclared namespace—that is, functions not declared after an explicit
pakage ... statement—live in themain namespace. You may specify a function’s namespace outside of the current package
at the point of declaration:

sub Extensions::Math:: add {
...

}

Any prefix on the function’s name which follows the package naming format creates the function and inserts the function into
the appropriate namespace, but not the current namespace. Because Perl 5 packages are open for modification at any point, you
may do this even if the namespace does not yet exist, or if you have already declared functions in that namespace.

You may only declare one function of the same name per namespace. Otherwise Perl 5 will warn you about subroutine
redefinition. If you’re certain you want toreplacean existing function, disable this warning withno warnings 'redefine'.

You may call functions in other namespaces by using their fully-qualified names:

66

Functions

package main;

Extensions::Math::add($scalar, $vector);

Functions in namespaces arevisibleoutside of those namespaces in the sense that you can refer tothem directly, but they are
only callable by their short names from within the namespace in which they are declared—unless you have somehow made
them available to the current namespace through the processes of importing and exporting (see Exporting, page 136).

Importing
When loading a module with theuse builtin (see Modules, page 134), Perl automatically calls amethod namedimport()
on the provided package name. Modules with procedural interfaces can provide their ownimport() which makes some or
all defined symbols available in the calling package’s namespace. Any arguments after the name of the module in theuse

statement get passed to the module’simport() method. Thus:

use strict;

. . . loads thestrict.pmmodule and callsstrit->import() with no arguments, while:

use strict 'refs';
use strict qw(subs vars);

. . . loads thestrict.pmmodule, callsstrit->import('refs'), then callsstrit->import('subs', vars').

You may call a module’simport() method directly. The previous code example is equivalent to:

BEGIN
{

require strict;
strict->import('refs');
strict->import(qw(subs vars));

}

Be aware that theuse builtin adds an implicitBEGIN block around these statements so that theimport() call happensimme-
diatelyafter the parser has compiled the entire statement. This ensures that any imported symbols are visible when compiling
the rest of the program. Otherwise, any functions imported from other modules but not declared in the current file would look
like undeclared barewords andstrit would complain.

Reporting Errors
Within a function, you can get information about the contextof the call with thealler operator. If passed no arguments, it
returns a three element list containing the name of the calling package, the name of the file containing the call, and the line
number of the package on which the call occurred:

package main;

main();

sub main
{

show_call_information();
}

sub show_call_information
{

my ($package, $file, $line) = caller();
say "Called from $package in $file at $line";

}

67

Modern Perl

You may pass a single, optional integer argument toaller(). If provided, Perl will look back through the caller of the caller
of the caller that many times and provide information about that particular call. In other words, ifshow_all_information()
usedaller(0), it would receive information about the call frommain(). If it usedaller(1), it would receive information
about the call from the start of the program.

While providing this optional parameter lets you inspect thecallers of callers, it also provides more return values, including the
name of the function and the context of the call:

sub show_call_information
{

my ($package, $file, $line , $func) = caller(0);
say "Called $func from $package in $file at $line";

}

The standardCarp module uses this technique to great effect for reporting errors and throwing warnings in functions; its
roak() throws an exception reported from the file and line number ofits caller. When used in place ofdie in library code,
roak() can throw an exception due to incorrect usage from the point of use.Carp’s arp() function reports a warning from
the file and line number of its caller (see Producing Warnings, page 127).

This behavior is most useful when validating parameters or preconditions of a function, when you want to indicate that the
calling code is wrong somehow:

use Carp 'croak';

sub add_two_numbers
{

croak 'add_two_numbers() takes two and only two arguments'
unless @_ == 2;

...
}

Validating Arguments
Defensive programming often benefits from checking types and values of arguments for appropriateness before further execu-
tion. By default, Perl 5 provides few built-in mechanisms for doing so. To check that thenumberof parameters passed to a
function is correct, evaluate�_ in scalar context:

sub add_numbers
{

croak "Expected two numbers, but received: " . @_
unless @_ == 2;

...
}

Type checking is more difficult, because of Perl’s operator-oriented type conversions (see Context, page 3). In cases where you
need more strictness, consider the CPAN moduleParams::Validate.

Advanced Functions
Functions may seem simple, but you can do much, much more withthem.

Context Awareness
Perl 5’s builtins know whether you’ve invoked them in void, scalar, or list context. So too can your functions know their calling
contexts. The misnamed22 wantarray builtin returnsundef to signify void context, a false value to signify scalar context, and
a true value to signify list context.

22Seeperldo -f wantarray to verify.

68

Functions

sub context_sensitive
{

my $context = wantarray();
return qw(Called in list context) if $context;
say 'Called in void context' unless defined $context;
return 'Called in scalar context' unless $context;

}

context_sensitive();
say my $scalar = context_sensitive();
say context_sensitive();

This can be useful for functions which might produce expensive return values to avoid doing so in void context. Some idiomatic
functions return a list in list context and an array reference in scalar context (or the first element of the list). Even so, there’s no
single best recommendation for the use or avoidance ofwantarray; sometimes it’s clearer to write separate functions which
clearly indicate their expected uses and return values.

With that said, Robin Houston’sWant and Damian Conway’sContextual::Return distributions from the CPAN
offer many possibilities for writing powerful and usable interfaces.

Recursion
Every call to a function in Perl creates a newcall frame. This is an internal data structure which represents the data for the call
itself: incoming parameters, the point to which to return, and all of the other call frames up to the current point. It alsocaptures
the lexical environment of the specific and current invocation of the function. This means that a function canrecur; it can call
itself.

Recursion is a deceptively simple concept, but it can seem daunting if you haven’t encountered it before. Suppose you want to
find an element in a sorted array. Youcould iterate through every element of the array individually, looking for the target, but
on average, you’ll have to examine half of the elements of thearray.

Another approach is to halve the array, pick the element at the midpoint, compare, then repeated with either the lower or upper
half. You can write this in a loop yourself or you could let Perl manage all of the state and tracking necessary with a recursive
function something like:

use Test::More tests => 8;

my @elements = (1, 5, 6, 19, 48, 77, 997, 1025, 7777, 8192, 9999);

ok elem_exists(1, @elements), 'found first element in arra y';
ok elem_exists(9999, @elements), 'found last element in ar ray';
ok ! elem_exists(998, @elements), 'did not find element not in array';
ok ! elem_exists(-1, @elements), 'did not find element not i n array';
ok ! elem_exists(10000, @elements), 'did not find element n ot in array';

ok elem_exists(77, @elements), 'found midpoint element';
ok elem_exists(48, @elements), 'found end of lower half ele ment';
ok elem_exists(997, @elements), 'found start of upper half element';

sub elem_exists
{

my ($item, @array) = @_;

break recursion if there are no elements to search
return unless @array;

bias down, if there are an odd number of elements
my $midpoint = int((@array / 2) - 0.5);
my $miditem = $array[$midpoint];

return true if the current element is the target
return 1 if $item == $miditem;

return false if the current element is the only element
return if @array == 1;

69

Modern Perl

split the array down and recurse
return elem_exists ($item, @array[0 .. $midpoint])

if $item < $miditem;

split the array up and recurse
return elem_exists ($item, @array[$midpoint + 1 .. $#array]);

}

This isn’t necessarily the best algorithm for searching a sorted list, but it demonstrates recursion. Again, youcanwrite this code
in a procedural way, but some algorithms are much clearer when written recursively.

Lexicals
Every new invocation of a function creates its owninstanceof a lexical scope. In the case of the recursive example, eventhough
the declaration ofelem_exists() creates a single scope for the lexicals$item, �array, $midpoint, and$miditem, every
call to elem_exists(), even recursively, has separate storage for the values of those lexical variables. You can demonstrate
that by adding debugging code to the function:

use Carp 'cluck';

sub elem_exists
{

my ($item, @array) = @_;

cluck "[$item] (@array)";

other code follows
...

}

The output demonstrates that not only canelem_exists() call itself safely, but the lexical variables do not interfere with each
other.

Tail Calls
Onedrawbackof recursion is that you must get your return conditions correct, or else your function will call itself an infinite
number of times. This is why theelem_exists() function has severalreturn statements.

Perl offers a helpful warning when it detects what might be runaway recursion:Deep reursion on subroutine. The limit
is 100 recursive calls, which can be too few in certain circumstances but too many in others. Disable this warning withno

warnings 'reursion' in the scope of the recursive call.

Because each call to a function requires a new call frame, as well as space for the call to store its own lexical values, highly-
recursive code can use more memory than iterative code. A feature calledtail call eliminationcan help.

Tail call elimination may be most obvious when writing recursive code, but it can be useful in any case of a tail
call. Many programming language implementations support automatic tail call elimination.

A tail call is a call to a function which directly returns that function’s results. The lines:

split the array down and recurse
return elem_exists($item, @array[0 .. $midpoint])

if $item < $miditem;

split the array up and recurse
return elem_exists($item, @array[$midpoint + 1 .. $#array]);

. . . which return the results of the recursiveelem_exists() calls directly, are candidates for tail call elimination. This elimi-
nation avoids returning to the current call and then returning to the parent call. Instead, it returns to the parent call directly.

70

Functions

Perl 5 supports manual tail call elimination, but Yuval Kogman’sSub::Call::Tail is worth exploring if you find yourself
with highly recursive code or code that could benefit from tail call elimination.Sub::Call::Tail is appropriate for tail calls
of non-recursive code:

use Sub::Call::Tail;

sub log_and_dispatch
{

my ($dispatcher, $request) = @_;
warn "Dispatching with $dispatcher\n";

return dispatch($dispatcher, $request);
}

In this example, you can replace thereturn with the newtail keyword with no functional changes (yet more clarity and
improved performance):

tail dispatch($dispatcher, $request);

If you really musteliminate tail calls, use a special form of thegoto builtin. Unlike the form which can often lead to spaghetti
code, thegoto function form replaces the current function call with a callto another function. You may use a function by name
or by reference. You must always set�_ yourself manually, if you want to pass different arguments:

split the array down and recurse
if ($item < $miditem)
{

@_ = ($item, @array[0 .. $midpoint]);
goto &elem_exists;

}

split the array up and recurse
else
{

@_ = ($item, @array[$midpoint + 1 .. $#array]);
goto &elem_exists;

}

The comparative cleanliness of the CPAN versions is obvious.

Pitfalls and Misfeatures
Not all features of Perl 5 functions are always helpful. In particular, prototypes (see Prototypes, page 159) rarely do what you
mean. They have their uses, but you can avoid them outside of afew cases.

Perl 5 still supports old-style invocations of functions, carried over from older versions of Perl. While you may now invoke
Perl functions by name, previous versions of Perl required you to invoke them with a leading ampersand (&) character. Perl 1
required you to use thedo builtin:

outdated style; avoid
my $result = &calculate_result(52);

Perl 1 style
my $result = do calculate_result(42);

crazy mishmash; really truly avoid
my $result = do &calculate_result(42);

While the vestigial syntax is visual clutter, the leading ampersand form has other surprising behaviors. First, it disables prototype
checking (as if that often mattered). Second, if you do not pass arguments explicitly, itimplicitly passes the contents of�_-
unmodified. Both can lead to surprising behavior.

A final pitfall comes from leaving the parentheses off of function calls. The Perl 5 parser uses several heuristics to resolve
ambiguity of barewords and the number of parameters passed to a function, but occasionally those heuristics guess wrong.
While it’s often wise to remove extraneous parentheses, compare the readability of these two lines of code:

71

Modern Perl

ok(elem_exists(1, @elements), 'found first element in arr ay');

warning; contains a subtle bug
ok elem_exists 1, @elements, 'found first element in array' ;

The subtle bug in the second form is that the call toelem_exists() will gobble up the test description intended as the
second argument took(). Becauseelem_exists() uses a slurpy second parameter, this may go unnoticed until Perl produces
warnings about comparing a non-number (the test description, which it cannot convert into a number) with the element in the
array.

This is admittedly an extreme case, but it is a case where proper use of parentheses can clarify code and make subtle bugs
obvious to the reader.

Scope
Scopein Perl refers to the lifespan and visibility of symbols. Everything with a name in Perl (a variable, a function) has a scope.
Scoping helps to enforceencapsulation—keeping related concepts together and preventing them fromleaking out.

Lexical Scope
The most common form of scoping in modern Perl is lexical scoping. The Perl compiler resolves this scope during compilation.
This scope is visible as youreada program. A block delimited by curly braces creates a new scope, whether a bare block, the
block of a loop construct, the block of asub declaration, aneval block, or any other non-quoting block:

outer lexical scope
{

package My::Class;

inner lexical scope
sub awesome_method
{

further inner lexical scope
do {

...
} while (@_);

sibling inner lexical scope
for (@_)
{

...
}

}
}

Lexical scope governs the visibility of variables declaredwith my; these arelexicalvariables. A lexical variable declared in one
scope is visible in that scope and any scopes nested within it, but is invisible to sibling or outer scopes. Thus, in the code:

outer lexical scope
{

package My::Class;

my $outer;

sub awesome_method
{

my $inner;

do {
my $do_scope;
...

} while (@_);

sibling inner lexical scope
for (@_)
{

my $for_scope;
...

72

Functions

}
}

}

. . .$outer is visible in all four scopes.$inner is visible in the method, thedo block, and thefor loop.$do_sope is visible
only in thedo block and$for_sope within thefor loop.

Declaring a lexical in an inner scope with the same name as a lexical in an outer scope hides, orshadows, the outer lexical:

{
my $name = 'Jacob';

{
my $name = 'Edward';
say $name;

}

say $name;
}

This program printsEdward and thenJaob23. Even though redeclaring a lexical variable with the same name and type in a
single lexical scope produces a warning message, shadowinga lexical in a nested scope does not; this is a feature of lexical
shadowing.

Lexical shadowing can happen by accident, but if you limit the scope of variables and limit the nesting of scopes—
as is good design anyhow—you lessen your risk.

Lexical declaration has its subtleties. For example, a lexical variable used as the iterator variable of afor loop has a scope
within the loop block. It is not visible outside the block:

my $cat = 'Bradley';

for my $cat (qw(Jack Daisy Petunia Tuxedo))
{

say "Iterator cat is $cat";
}

say "Static cat is $cat";

Similarly, thegiven construct creates alexical topic(akin tomy $_) within its block:

$_ = 'outside';

given ('inner')
{

say;
$_ = 'whomped inner';

}

say;

. . . despite assignment to$_ inside the block. You may explicitly lexicalize the topic yourself, though this is more useful when
considering dynamic scope.

Finally, lexical scoping facilitates closures (see Closures, page 79). Beware creating closures accidentally.

23Family members and not vampires, if you must know.

73

Modern Perl

Our Scope

Within a given scope, you may declare an alias to a package variable with theour builtin. Like my, our enforces lexical
scoping—of the alias. The fully-qualified name is availableeverywhere, but the lexical alias is visible only within itsscope.

The best use ofour is for variables you absolutelymusthave, such as$VERSION.

Dynamic Scope
Dynamic scope resembles lexical scope in its visibility rules, but instead of looking outward in compile-time scopes, lookup
happens along the current calling context. Consider the example:

{
our $scope;

sub inner
{

say $scope;
}

sub main
{

say $scope;
local $scope = 'main() scope';
middle();

}

sub middle
{

say $scope;
inner();

}

$scope = 'outer scope';
main();
say $scope;

}

The program begins by declaring anour variable,$sope, as well as three functions. It ends by assigning to$sope and
callingmain().

Within main(), the program prints$sope’s current value,outer sope, thenloalizes the variable. This changes the
visibility of the symbol within the current lexical scopeas well asin any functions called from the current lexical scope. Thus,
$sope containsmain() sope within the body of bothmiddle() andinner(). After main() returns—at the point of
exiting the block containing theloalization of$sope, Perl restores the original value of the variable. The finalsay prints
outer sope once again.

While the variable isvisiblewithin all scopes, thevalueof the variable changes depending onloalization and assignment.
This feature can be tricky and subtle, but it is especially useful for changing the values of magic variables.

This difference in visibility between package variables and lexical variables is apparent in the different storage mechanisms of
these variables within Perl 5 itself. Every scope which contains lexical variables has a special data structure called alexical pad
or lexpadwhich can store the values for its enclosed lexical variables. Every time control flow enters one of these scopes, Perl
creates another lexpad for the values of those lexical variables for that particular call. (This is how a function can call itself and
not clobber the values of existing variables.)

Package variables have a storage mechanism called symbol tables. Each package has a single symbol table, and every package
variable has an entry in this table. You can inspect and modify this symbol table from Perl; this is how importing works (see
Importing, page 67). This is also why you may onlyloalize global and package global variables and never lexical variables.

It’s common toloalize several magic variables. For example,$/, the input record separator, governs how much data a
readline operation will read from a filehandle.$!, the system error variable, contains the error number of themost recent
system call.$�, the Perleval error variable, contains any error from the most recenteval operation.$|, the autoflush variable,
governs whether Perl will flush the currentlyseleted filehandle after every write operation.

74

Functions

These are all special global variables;loalizing them in the narrowest possible scope will avoid the action at a distance
problem of modifying global variables used other places in your code.

State Scope
A final type of scope is new as of Perl 5.10. This is the scope ofthestate builtin. State scope resembles lexical scope in that
it declares a lexical variable, but the value of that variable gets initializedonce, and then persists:

sub counter
{

state $count = 1;
return $count++;

}

say counter();
say counter();
say counter();

On the first call to state,$ount has never been initialized, so Perl executes the assignment. The program prints1, 2, and3. If
you changestate to my, the program will print1, 1, and1.

You may also use an incoming parameter to set the initial value of thestate variable:

sub counter
{

state $count = shift;
return $count++;

}

say counter(2);
say counter(4);
say counter(6);

Even though a simple reading of the code may suggest that the output should be2, 4, and6, the output is actually2, 3, and
4. The first call to the subounter sets the$ount variable. Subsequent calls will not change its value. This behavior is as
intended and documented, though its implementation can lead to surprising results:

sub counter
{

state $count = shift;
say 'Second arg is: ', shift;
return $count++;

}

say counter(2, 'two');
say counter(4, 'four');
say counter(6, 'six');

The counter for this program prints2, 3, and4 as expected, but the values of the intended second argumentsto theounter()
calls aretwo, 4, and6—not because the integers are the second arguments passed, but because theshift of the first argument
only happens in the first call toounter().

state can be useful for establishing a default value or preparing acache, but be sure to understand its initialization behavior if
you use it.

Anonymous Functions
An anonymous functionis a function without a name. It behaves like a named function—you can invoke it, pass arguments to it,
return values from it, copy references to it—it can do anything a named function can do. The difference is that it has no name.
You always deal with anonymous functions by reference (see Function References, page 53).

75

Modern Perl

Declaring Anonymous Functions
You may never declare an anonymous function on its own; you must construct it and assign it to a variable, invoke it imme-
diately, or pass it as an argument to a function, either explicitly or implicitly. Explicit creation uses thesub builtin with no
name:

my $anon_sub = sub { ... };

A common Perl 5 idiom known as adispatch tableuses hashes to associate input with behavior:

my %dispatch =
(

plus => sub { $_[0] + $_[1] },
minus => sub { $_[0] - $_[1] },
times => sub { $_[0] * $_[1] },
goesinto => sub { $_[0] / $_[1] },
raisedto => sub { $_[0] ** $_[1] },

);

sub dispatch
{

my ($left, $op, $right) = @_;

die "Unknown operation!"
unless exists $dispatch{ $op };

return $dispatch{ $op }->($left, $right);
}

Thedispath() function takes arguments of the form(2, 'times', 2) and returns the result of evaluating the operation.

You may use anonymous functions in place of function references. To Perl, they’re equivalent. Nothingnecessitatesthe use of
anonymous functions, but for functions this short, there’slittle drawback to writing them this way.

You may rewrite%dispath as:

my %dispatch =
(

plus => \&add_two_numbers,
minus => \&subtract_two_numbers,
... and so on

);

sub add_two_numbers { $_[0] + $_[1] }

sub subtract_two_numbers { $_[0] - $_[1] }

. . . but the decision to do so depends more on maintainabilityconcerns, safety, and your team’s coding style than any language
feature.

A benefit of indirection through the dispatch table is that it provides some protection against calling functions with-
out verifying that it’s safe to call those functions. If yourdispatch function blindly assumed that the string given as
the name of the operator corresponded directly to the name ofa function to call, a malicious user could conceivably
call any function in any other namespace by crafting an operator name of'Internal::Funtions::some_-
maliious_funtion'.

You may also create anonymous functions on the spot when passing them as function parameters:

sub invoke_anon_function
{

my $func = shift;
return $func->(@_);

}

76

Functions

sub named_func
{

say 'I am a named function!';
}

invoke_anon_function(\&named_func);
invoke_anon_function(sub { say 'I am an anonymous function ' });

Anonymous Function Names
There is one instance in which you can identify the difference between a reference to a named function and an anonymous
function—anonymous functions do not (normally) have names.This may sound subtle and silly and obvious, but introspection
shows the difference:

package ShowCaller;

use Modern::Perl;

sub show_caller
{

my ($package, $filename, $line, $sub) = caller(1);
say "Called from $sub in $package at $filename : $line";

}

sub main
{

my $anon_sub = sub { show_caller() };
show_caller();
$anon_sub->();

}

main();

The result may be surprising:

Called from ShowCaller:: main in ShowCaller at anoncaller.pl : 20
Called from ShowCaller:: __ANON__ in ShowCaller at anoncaller.pl : 17

The__ANON__ in the second line of output demonstrates that the anonymousfunction has no name that Perl can identify. Even
though this can be difficult to debug, there are ways around this anonymity.

The CPAN moduleSub::Identify provides a handful of functions useful to inspect the names of functions, given references
to them.sub_name() is the most immediately obvious:

use Sub::Identify 'sub_name';

sub main
{

say sub_name(\&main);
say sub_name(sub {});

}

main();

As you might imagine, the lack of identifying information complicates debugging anonymous functions. The CPAN module
Sub::Name can help. Itssubname() function allows you to attach names to anonymous functions:

use Sub::Name;
use Sub::Identify 'sub_name';

my $anon = sub {};
say sub_name($anon);

my $named = subname('pseudo-anonymous', $anon);
say sub_name($named);
say sub_name($anon);

say sub_name(sub {});

77

Modern Perl

This program produces:

__ANON__
pseudo-anonymous
pseudo-anonymous
__ANON__

Be aware that both references refer to the same underlying anonymous function. Callingsubname() on $anon and returning
into $named modifies that function, so any other reference to this function will see the same namepseudo-anonymous.

Implicit Anonymous Functions
All of these anonymous function declarations have been explicit. Perl 5 allows implicit anonymous functions through the use
of prototypes (see Prototypes, page 159). Though this feature exists nominally to enable programmers to write their ownsyntax
such as that formap andeval, an interesting example is the use ofdelayedfunctions that don’t look like functions. Consider
the CPAN moduleTest::Exeption:

use Test::More tests => 2;
use Test::Exception;

throws_ok { die "I croak!" }
qr/I croak/, 'die() should throw an exception';

lives_ok { 1 + 1 }
'simple addition should not';

Bothlives_ok() andthrows_ok() take an anonymous function as their first arguments. This code is equivalent to:

throws_ok(sub { die "I croak!" },
qr/I croak/, 'die() should throw an exception');

lives_ok(sub { 1 + 1 },
'simple addition should not');

. . . but is slightly easier to read.

Note thelackof a comma following the final curly brace of the implicit anonymous function in the implicit version.
This is occasionally a confusing wart on otherwise helpful syntax, courtesy of a quirk of the Perl 5 parser.

The implementation of both functions does not care which mechanism you use to pass function references. You can pass named
functions by reference as well:

sub croak { die 'I croak!' }

sub add { 1 + 1 }

throws_ok \&croak ,
qr/I croak/, 'die() should throw an exception';

lives_ok \&add ,
'simple addition should not';

. . . but you maynot pass them as scalar references:

sub croak { die 'I croak!' }

sub add { 1 + 1 }

my $croak = \&croak;
my $add = \&add;

78

Functions

throws_ok $croak ,
qr/I croak/, 'die() should throw an exception';

lives_ok $add ,
'simple addition should not';

. . . because the prototype changes the way the Perl 5 parser interprets this code. It cannot determine with 100% claritywhat
$roak and$add will contain when it evaluates thethrows_ok() or lives_ok() calls, so it produces an error:

Type of arg 1 to Test::Exception::throws_ok must be block or sub {}
(not private variable) at testex.pl line 13,
near "'die() should throw an exception';"

This feature is occasionally useful despite its drawbacks.The syntactic clarity available by promoting bare blocks toanonymous
functions can be helpful, but use it sparingly and document the API with care.

Closures
You’ve seen how functions work (see Declaring Functions, page 63). You understand how scope works (see Scope, page 72).
You know that every time control flow enters a function, thatfunction gets a new environment representing that invocation’s
lexical scope. You can work with function references (see References, page 50) and anonymous functions (see Anonymous
Functions, page 75).

You know everything you need to know to understand closures.

Mark Jason Dominus’sHigher Order Perl is the canonical reference on first-class functions, closures, and the
amazing things you can do with them. You can read it online athttp://hop.perl.plover.om/.

Creating Closures
A closureis a function that closes over an outer lexical environment.You’ve probably already created and used closures without
realizing it:

{
package Invisible::Closure;

my $filename = shift @ARGV;

sub get_filename
{

return $filename;
}

}

The behavior of this code is unsurprising. You may not have noticed anything special.Of coursetheget_filename() function
can see the$filename lexical. That’s how scope works! Yet closures can also closeover transientlexical environments.

Suppose you want to iterate over a list of items without managing the iterator yourself. You can create a function which returns
a function that, when invoked, will return the next item in the iteration:

sub make_iterator
{

my @items = @_;
my $count = 0;

return sub
{

return if $count == @items;
return $items[$count++];

}

79

http://hop.perl.plover.com/

Modern Perl

}

my $cousins = make_iterator(qw(Rick Alex Kaycee Eric Corey));

say $cousins->() for 1 .. 5;

Even thoughmake_iterator() has returned, the anonymous function still refers to the lexical variables�items and$ount.
Their values persist (see Reference Counts, page 55). The anonymous function, stored in$ousins, has closed over these
values in the specific lexical environment of the specific invocation ofmake_iterator().

It’s easy to demonstrate that the lexical environment is independent between calls tomake_iterator():

my $cousins = make_iterator(qw(Rick Alex Kaycee Eric Corey));
my $aunts = make_iterator(qw(Carole Phyllis Wendy));

say $cousins->();
say $aunts->();
say $cousins->();
say $aunts->();

Because every invocation ofmake_iterator() creates a separate lexical environment for its lexicals, the anonymous sub it
creates and returns closes over a unique lexical environment.

Becausemake_iterator() does not return these lexicals by value or by reference, no other Perl code besides the closure can
access them. They’re encapsulated as effectively as any other lexical encapsulation.

Multiple closures can close over the same lexical variables; this is an idiom used occasionally to provide better encapsulation
of what would otherwise be a file global variable:

{
my $private_variable;

sub set_private { $private_variable = shift }
sub get_private { $private_variable }

}

. . . but be aware that you cannotnestnamed functions. Named functions have package global scope. Any lexical variables
shared between nested functions will go unshared when the outer function destroys its first lexical environment24.

The CPAN modulePadWalker lets you violate lexical encapsulation, but anyone who usesit and breaks your code
earns the right to fix any concomitant bugs without your help.

Uses of Closures
Closures can make effective iterators over fixed-size lists, but they demonstrate greater advantages when iterating over a list of
items too expensive to refer to directly, either because it represents data which costs a lot to compute all at once or it’stoo large
to fit into memory directly.

Consider a function to create the Fibonacci series as you need its elements. Instead of recalculating the series recursively, use a
cache and lazily create the elements you need:

sub gen_fib
{

my @fibs = (0, 1, 1);

return sub
{

24If that’s confusing to you, imagine the implementation.

80

Functions

my $item = shift;

if ($item >= @fibs)
{

for my $calc ((@fibs - 1) .. $item)
{

$fibs[$calc] = $fibs[$calc - 2] + $fibs[$calc - 1];
}

}

return $fibs[$item];
}

}

Every call to the function returned bygen_fib() takes one argument, thenth element of the Fibonacci series. The function gen-
erates all preceding values in the series as necessary, caching them, and returning the requested element. It delays computation
until absolutely necessary.

If all you ever need to do is to calculate Fibonacci numbers, this approach may seem overly complex. Consider, however,
that the functiongen_fib() can become amazingly generic: it initializes an array as a cache, executes some custom code to
populate arbitrary elements of the cache, and returns the calculated or cached value. If you extract the behavior which calculates
Fibonacci values, you can use this code to provide other codewith a lazily-iterated cache.

Extract the functiongenerate_ahing_losure(), and rewritegen_fib() in terms of that function:

sub gen_caching_closure
{

my ($calc_element, @cache) = @_;

return sub
{

my $item = shift;

$calc_element->($item, \@cache) unless $item < @cache;

return $cache[$item];
};

}

sub gen_fib
{

my @fibs = (0, 1, 1);

return gen_caching_closure(
sub
{

my ($item, $fibs) = @_;

for my $calc ((@$fibs - 1) .. $item)
{

$fibs->[$calc] = $fibs->[$calc - 2] + $fibs->[$calc - 1];
}

},
@fibs

);
}

The program behaves the same way as it did before, but the use of higher order functions and closures allows the separationof
the cache initialization behavior from the calculation of the next number in the Fibonacci series in an effective way. Customizing
the behavior of code—in this case,gen_ahing_losure()—by passing in a higher order function allows tremendous
flexibility and abstraction.

In one sense, you can consider the builtinsmap, grep, andsort higher-order functions, especially if you compare
them togen_ahing_losure().

81

Modern Perl

Closures and Partial Application
Closures can do more than abstract away structural details.They can allow you to customize specific behaviors. In one sense,
they can alsoremoveunnecessary genericity. Consider the case of a function which takes several parameters:

sub make_sundae
{

my %args = @_;

my $ice_cream = get_ice_cream($args{ice_cream});
my $banana = get_banana($args{banana});
my $syrup = get_syrup($args{syrup});
...

}

All of the customization possibilities might work very wellin your full-sized anchor store in a shopping complex, but ifyou have
a little drive-through ice cream cart near the overpass where you only serve French vanilla ice cream on Cavendish bananas,
every time you callmake_sundae() you have to pass arguments that never change.

A technique calledpartial applicationbinds some arguments to a function such that you can fill in the rest at the point of call.
This is easy enough to emulate with closures:

my $make_cart_sundae = sub
{

return make_sundae(@_,
ice_cream => 'French Vanilla',
banana => 'Cavendish',

);
};

Instead of callingmake_sundae() directly, you can invoke the function reference in$make_art_sundae and pass only the
interesting arguments, without worrying about forgettingthe invariants or passing them incorrectly25.

State versus Closures
Closures (see Closures, page 79) are an easy, effective, andsafe way to make data persist between function invocations without
using global variables. If you need to share variables between named functions, you can introduce a new scope (see Scope,page
72) for only those function declarations:

{
my $safety = 0;

sub enable_safety { $safety = 1 }
sub disable_safety { $safety = 0 }

sub do_something_awesome
{

return if $safety;
...

}
}

The encapsulation of functions to toggle the safety allows all three functions to share state without exposing the lexical variable
directly to external code. This idiom works well for cases where external code should be able to change internal state, but it’s
clunkier when only one function needs to manage that state.

Suppose that you want to count the number of customers at yourice cream parlor. Every hundredth person gets free sprinkles:

{
my $cust_count = 0;

25You can even useSub::Install from the CPAN to import this function into another namespace directly.

82

Functions

sub serve_customer
{

$cust_count++;

my $order = shift;

add_sprinkles($order) if $cust_count % 100 == 0)

...
}

}

This approachworks, but creating a new lexical scope for a single function introduces more accidental complexity than is
necessary. Thestate builtin allows you to declare a lexically scoped variable with a value that persists between invocations:

sub serve_customer
{

state $cust_count = 0;
$cust_count++;

my $order = shift;
add_sprinkles($order) if $cust_count % 100 == 0)

...
}

You must enable this feature explicitly by using a module such asModern::Perl, thefeature pragma, or requiring a specific
version of Perl of 5.10 or newer (withuse 5.010; or use 5.012;, for example).

You may also usestate within anonymous functions, such as the canonical counter example:

sub make_counter
{

return sub
{

state $count = 0;
return $count++;

}
}

. . . though there are few obvious benefits to this approach.

State versus Psuedo-State
Perl 5.10 deprecated a technique from previous versions of Perl by which you could effectively emulatestate. Using a postfix
conditional which evaluates to false with amy declaration avoidsreinitializing a lexical variable toundef or its initialized value.
In effect, a named function can close over its previous lexical scope by abusing a quirk of implementation.

Any use of a postfix conditional expression modifying a lexical variable declaration now produces a deprecation warning. It’s
too easy to write inadvertently buggy code with this technique; usestate instead where available, or a true closure otherwise.
Avoid this idiom, but understand it if you encounter it:

sub inadvertent_state
{

DEPRECATED; do not use
my $counter = 1 if 0;

...
}

Attributes
Named entities in Perl—variables and functions—can have additional metadata attached to them in the form ofattributes.
Attributes are names (and, often, values) which allow certain types of metaprogramming (see Code Generation, page 141).

83

Modern Perl

Declaring attributes can be awkward, and using them effectively is more art than science. They’re relatively rare in
most programs for good reason, though theycanoffer compelling benefits of maintenance and clarity.

Using Attributes
In its simplest form, an attribute is a colon-preceded identifier attached to a variable or function declaration:

my $fortress :hidden ;

sub erupt_volcano :ScienceProject { ... }

These declarations will cause the invocation of attribute handlers namedhidden andSieneProjet, if they exist for the
appropriate type (scalars and functions, respectively). If the appropriate handlers do not exist, Perl will throw a compile-time
exception. These handlers could doanything.

Attributes may include a list of parameters; Perl treats them as a list of constant strings, even if they may resemble other values,
such as numbers or variables. TheTest::Class module from the CPAN uses such parametric arguments to good effect:

sub setup_tests :Test(setup) { ... }

sub test_monkey_creation :Test(10) { ... }

sub shutdown_tests :Test(teardown) { ... }

The Test attribute identifies methods which include test assertions, and optionally identifies the number of assertions the
method intends to run. While introspection (see Reflection,page 113) of these classes could discover the appropriate test
methods, given well-designed solid heuristics, the:Test attribute makes the code and its intent unambiguous.

The setup andteardown parameters allow test classes to define their own support methods without worrying about name
clashes or other conflicts due to inheritance or other classdesign concerns. Youcould enforce a design where all test classes
must override methods namedsetup() and teardown() themselves, but the attribute approach gives more flexibility of
implementation.

The Catalyst web framework also uses attributes to determine the visibility and behavior of methods within web
applications.

Drawbacks of Attributes
Attributes do have their drawbacks:

• The canonical pragma for working with attributes (theattributes pragma) has listed its interface as experimental
for many years. Damian Conway’s core moduleAttribute::Handlers simplifies their implementation. Prefer it to
attributes whenever possible.

• Modules which declare attribute handlers mustinherit from Attribute::Handlers to make the handlers visible to all
packages which use them26. This is due to the implementation of attributes in Perl 5 itself.

• Attribute handlers take effect duringCHECK blocks, making them inopportune for projects which themselves manipulate
the order of parsing and compilation, such as mod_perl.

• Arguments provided to attributes are only strings.Attribute::Handlers performs some data conversion, but you may
have to disable it occasionally.

26You couldalso store them inUNIVERSAL, but that is global pollution and worse design.

84

Functions

The worst feature of attributes is their propensity to produce weird syntactic action at a distance. Given a snippet of code
with attributes, can you predict their effect? Good and accurate documentation helps, but if an innocent-looking declaration
on a lexical variable stores a reference to that variable somewhere, your expectations of the destruction of its contents may be
wrong, unless you read the documentation very carefully. Likewise, a handler may wrap a function in another function and
replace it in the symbol table without your knowledge—consider a:memoize attribute which automatically invokes the core
Memoize module.

Complex features can produce compact and idiomatic code. Perl allows developers to experiment with multiple designs tofind
the best representation for their ideas. Attributes and other advanced Perl features can help you solve complex problems, but
they can also obfuscate the intent of code that could otherwise be simple.

Most programs never need this feature.

AUTOLOAD
You do not have to defineeveryfunction and method anyone will ever call. Perl provides a mechanism by which you can
intercept calls to functions and methods which do not yet exist. You can use this to define only those functions you need, or to
provide interesting error messages and warnings.

Consider the program:

#! perl

use Modern::Perl;

bake_pie(filling => 'apple');

When you run it, Perl will throw an exception due to the call to the undefined functionbake_pie(). Now add a function called
AUTOLOAD():

sub AUTOLOAD {}

Nothing obvious will happen, except that there is no error. The presence of a function namedAUTOLOAD() in a package tells
Perl to call that function whenever normal dispatch for thatfunction or method fails. Change theAUTOLOAD() to emit a message
to demonstrate this:

sub AUTOLOAD { say 'In AUTOLOAD()!' }

Basic Features of AUTOLOAD
TheAUTOLOAD() function receives the arguments passed to the undefined function in �_ directly. You may manipulate these
arguments as you like:

sub AUTOLOAD
{

pretty-print the arguments
local $" = ', ';
say "In AUTOLOAD(@_)!"

}

Thenameof the undefined function is available in the pseudo-globalvariable$AUTOLOAD:

sub AUTOLOAD
{

our $AUTOLOAD;

pretty-print the arguments
local $" = ', ';
say "In AUTOLOAD(@_) for $AUTOLOAD!"

}

85

Modern Perl

Theour declaration (see Our Scope, page 74) scopes this variable tothe body ofAUTOLOAD(). The variable contains the fully-
qualified name of the undefined function. In this case, the function ismain::bake_pie. A common idiom is to remove the
package name:

sub AUTOLOAD
{

my ($name) = our $AUTOLOAD =~ /::(\w+)$/;

pretty-print the arguments
local $" = ', ';
say "In AUTOLOAD(@_) for $name !"

}

Finally, whateverAUTOLOAD() returns, the original call receives:

say secret_tangent(-1);

sub AUTOLOAD { return 'mu' }

So far, these examples have merely intercepted calls to undefined functions. You have other options.

Redispatching Methods in AUTOLOAD()
A common pattern in OO programming is todelegateor proxycertain methods in one object to another, often contained inor
otherwise accessible from the former. This is an interesting and effective approach to logging:

package Proxy::Log;

sub new
{

my ($class, $proxied) = @_;
bless \$class, $proxied;

}

sub AUTOLOAD
{

my ($name) = our $AUTOLOAD =~ /::(\w+)$/;
Log::method_call($name, @_);

my $self = shift;
return $$self->$name(@_);

}

ThisAUTOLOAD() logs the method call. Its real magic is a simple pattern; it dereferences the proxied object from a blessed scalar
reference, extracts the name of the undefined method, then invokes the method of that name on the proxied object, passingthe
given arguments.

Generating Code in AUTOLOAD()
That double-dispatch trick is useful, but it is slower than necessary. Every method call on the proxy must fail normal dispatch to
end up inAUTOLOAD(). Pay that penalty only once by installing new methods into the proxy class as the program needs them:

sub AUTOLOAD
{

my ($name) = our $AUTOLOAD =~ /::(\w+)$/;

my $method = sub
{

Log::method_call($name, @_);

my $self = shift;
return $self->$name(@_);

}

no strict 'refs';
* { $AUTOLOAD } = $method;
return $method->(@_);

}

86

Functions

The body of the previousAUTOLOAD() has become an anonymous function—in fact, a closure (see Closures, page 79) bound
over thenameof the undefined method. Installing that closure in the appropriate symbol table allows all subsequent dispatch
to that method to find the created closure (and avoidAUTOLOAD()). This code finally invokes the method directly and returns
the result.

Though this approach is cleaner and almost always more transparent than handling the behavior directly inAUTOLOAD(), the
codecalled by AUTOLOAD() may detect that dispatch has gone throughAUTOLOAD(). In short,aller() will reflect the
double-dispatch of both techniques shown so far. This may bean issue; certainly you can argue that it’s an encapsulation
violation to care, but it’s also an encapsulation violationto let the details ofhowan object provides a method to leak out into
the wider world.

Another idiom is to use a tailcall (see Tailcalls, page 35) toreplacethe current invocation ofAUTOLOAD() from aller()’s
memory with a call to the destination method:

sub AUTOLOAD
{

my ($name) = our $AUTOLOAD =~ /::(\w+)$/;

my $method = sub { ... }

no strict 'refs';
* { $AUTOLOAD } = $method;
goto &$method;

}

This has the same effect as invoking$method directly, except thatAUTOLOAD() will no longer appear in the list of calls
available fromaller(), so it looks like the generated method was simply called directly.

Drawbacks of AUTOLOAD
AUTOLOAD() can be a useful tool in certain circumstances, but it can be difficult to use properly. The naïve approach to
generating methods at runtime means that thean() method will not report the right information about the capabilities of
objects and classes. You can solve this in several ways; one of the easiest is to predeclare all functions you plan toAUTOLOAD()

with thesubs pragma:

use subs qw(red green blue ochre teal);

That technique has the advantage of documenting your intentbut the disadvantage that you have to maintain a static list of
functions or methods.

You can also provide your ownan() to generate the appropriate functions:

sub can
{

my ($self, $method) = @_;

use results of parent can()
my $meth_ref = $self->SUPER::can($method);
return $meth_ref if $meth_ref;

add some filter here
return unless $self->should_generate($method);

$meth_ref = sub { ... };
no strict 'refs';
return * { $method } = $meth_ref;

}

sub AUTOLOAD
{

my ($self) = @_;
my ($name) = our $AUTOLOAD =~ /::(\w+)$/;>

return unless my $meth_ref = $self->can($name);
goto &$meth_ref;

}

87

Modern Perl

Depending on the complexity of your needs, you may find it easier to maintain a data structure such as a package-scoped hash
which contains acceptable names of methods to generate.

Be aware that certain methods you do not intend to provide maygo throughAUTOLOAD(). A common culprit isDESTROY(),
the destructor of objects. The simplest approach is to provide aDESTROY() method with no implementation; Perl will happily
dispatch to this and ignoreAUTOLOAD() altogether:

skip AUTOLOAD()
sub DESTROY {}

The special methodsimport(), unimport(), andVERSION() never go throughAUTOLOAD().

If you mix functions and methods in a single namespace which inherits from another package which provides its ownAUTOLOAD(),
you may get a strange error message:

e of inherited AUTOLOAD for non-method slam_door() is deprecated

This occurs when you try to call a function which does not exist in a package which inherits from a class which contains its own
AUTOLOAD(). This is almost never what you intend. The problem compoundsin several ways: mixing functions and methods
in a single namespace is often a design flaw, inheritance andAUTOLOAD() get complex very quickly, and reasoning about code
when you don’t know what methods objects provide is difficult.

88

Regular Expressions and Matching
Perl’s powerful ability to manipulate text comes in part from its inclusion of a computing concept known asregular expressions.
A regular expression (often shortened toregexor regexp) is apatternwhich describes characteristics of a string of text. Aregular
expression engineinterprets a pattern and applies it to strings of text to identify those which match.

Perl’s core documentation describes Perl regular expressions in copious detail; seeperldo perlretut, perldo perlre,
and perldo perlreref for a tutorial, the full documentation, and a reference guide, respectively. Jeffrey Friedl’s book
Mastering Regular Expressionsexplains the theory and the mechanics of how regular expressions work. Even though those
references may seem daunting, regular expressions are likePerl—you can do many things with only a little knowledge.

Literals
The simplest regexes are simple substring patterns:

my $name = 'Chatfield';
say "Found a hat!" if $name =~ /hat/ ;

The match operator (// or, more formally,m//) contains a regular expression—in this example,hat. Even though that reads
like a word, it means “theh character, followed by thea character, followed by thet character, appearing anywhere in the
string.” Each character inhat is anatomin the regex: an indivisible unit of the pattern. The regex binding operator (=~) is an
infix operator (see Fixity, page 60) which applies the regular expression on its right to the string produced by the expression on
its left. When evaluated in scalar context, a match evaluatesto a true value if it succeeds.

The negated form of the binding operator (!~) evaluates to a false value if the match succeeds.

The qr// Operator and Regex Combinations
Regexes are first-class entities in modern Perl when created with theqr// operator:

my $hat = qr/hat/ ;
say 'Found a hat!' if $name =~ /$hat/;

The like() function from Test::More works much likeis(), except that its second argument is a regular
expression object produced byqr//.

You may interpolate and combine them into larger and more complex patterns:

my $hat = qr/hat/;
my $field = qr/field/;

say 'Found a hat in a field!' if $name =~ / hatfield /;

or

like($name, qr/ hatfield /, 'Found a hat in a field!');

89

Modern Perl

Quantifiers
Regular expressions are far more powerful than previous examples have demonstrated; you can search for a literal substring
within a string with theindex builtin. Using the regex engine for that is like flying your autonomous combat helicopter to the
corner store to buy spare cheese.

Regular expressions get more powerful through the use ofregex quantifiers, which allow you to specify how often a regex
component may appear in a matching string. The simplest quantifier is thezero or one quantifier, or ?:

my $cat_or_ct = qr/ca ?t/;

like('cat', $cat_or_ct, "'cat' matches /ca?t/");
like('ct', $cat_or_ct, "'ct' matches /ca?t/");

Any atom in a regular expression followed by the? character means “match zero or one of this atom.” This regular expression
matches if there are zero or onea characters immediately following a character and immediately preceding at characterand
alsomatches if there is one and only onea character between the andt characters.

Theone or more quantifier, or+, matches only if there is at least one of the preceding atom inthe appropriate place in the string
to match:

my $one_or_more_a = qr/ca +t/;

like('cat', $one_or_more_a, "'cat' matches /ca+t/");
like('caat', $one_or_more_a, "'caat' matches /ca+t/");
like('caaat', $one_or_more_a, "'caaat' matches /ca+t/") ;
like('caaaat', $one_or_more_a, "'caaaat' matches /ca+t/ ");

unlike('ct', $one_or_more_a, "'ct' does not match /ca+t/");

There is no theoretical limit to the number of quantified atoms which can match.

Thezero or more quantifieris *; it matches if there are zero or more instances of the quantified atom in the string to match:

my $zero_or_more_a = qr/ca * t/;

like('cat', $zero_or_more_a, "'cat' matches /ca * t/");
like('caat', $zero_or_more_a, "'caat' matches /ca * t/");
like('caaat', $zero_or_more_a, "'caaat' matches /ca * t/");
like('caaaat', $zero_or_more_a, "'caaaat' matches /ca * t/");
like('ct', $zero_or_more_a, "'ct' matches /ca * t/");

This may seem useless, but it combines nicely with other regex features to indicate that you don’t care about what may or
may not be in that particular position in the string to match.Even so,mostregular expressions benefit from using the? and+
quantifiers far more than the* quantifier, as they avoid expensive backtracking and express your intent more clearly.

Finally, you can specify the number of times an atom may matchwith numeric quantifiers. {n} means that a match must occur
exactlyn times.

equivalent to qr/cat/;
my $only_one_a = qr/ca {1} t/;

like('cat', $only_one_a, "'cat' matches /ca{1}t/");

{n,} means that a match must occur at leastn times, but may occur more times:

equivalent to qr/ca+t/;
my $at_least_one_a = qr/ca {1,} t/;

like('cat', $at_least_one_a, "'cat' matches /ca{1,}t/") ;
like('caat', $at_least_one_a, "'caat' matches /ca{1,}t/ ");
like('caaat', $at_least_one_a, "'caaat' matches /ca{1,} t/");
like('caaaat', $at_least_one_a, "'caaaat' matches /ca{1 ,}t/");

90

Regular Expressions and Matching

{n,m} means that a match must occur at leastn times and cannot occur more thanm times:

my $one_to_three_a = qr/ca {1,3} t/;

like('cat', $one_to_three_a, "'cat' matches /ca{1,3}t/");
like('caat', $one_to_three_a, "'caat' matches /ca{1,3}t /");
like('caaat', $one_to_three_a, "'caaat' matches /ca{1,3 }t/");
unlike('caaaat', $one_to_three_a, "'caaaat' does not mat ch /ca{1,3}t/");

Greediness
The + and* quantifiers by themselves aregreedy quantifiers; they match as much of the input string as possible. This is
particularly pernicious when matching the “zero or more non-newline characters” pattern of.*:

a poor regex
my $hot_meal = qr/hot. * meal/;

say 'Found a hot meal!' if 'I have a hot meal' =~ $hot_meal;
say 'Found a hot meal!'

if 'I did some one-shot, piecemeal work!' =~ $hot_meal;

Greedy quantifiers always try to match as much of the input string as possiblefirst, backing off only when it’s obvious that the
match will not succeed. You may not be able to fit all of the results into the four boxes in 7 Down if look for “loam” with27:

my $seven_down = qr/l$letters_only * m/;

This will matchAlabama, Belgium, andBethlehem before it reachesloam. The soil might be nice there, but those words are
all too long—and the matches start in the middle of the words.

Turn a greedy quantifier into a non-greedy quantifier by appending the? quantifier:

my $minimal_greedy_match = qr/hot. * ?meal/;

When given a non-greedy quantifier, the regular expression engine will prefer theshortestpossible potential match, and will
increase the number of characters identified by the.*? token combination only if the current number fails to match.Because*
matches zero or more times, the minimal potential match for this token combination is zero characters:

say 'Found a hot meal' if 'ilikeahotmeal' =~ /$minimal_gree dy_match/;

Use+? to match one or more items non-greedily:

my $minimal_greedy_at_least_one = qr/hot.+?meal/;

unlike('ilikeahotmeal', $minimal_greedy_at_least_one);

like('i like a hot meal', $minimal_greedy_at_least_one);

The? quantifier modifier also applies to the? (zero or one matches) quantifier as well as the range quantifiers. In every case,
it causes the regex to match as little of the input as possible.

The greedy patterns.+ and.* are tempting but dangerous. If you write regular expressionwith greedy matches, test them
thoroughly with a comprehensive and automated test suite with representative data to lessen the possibility of unpleasant
surprises.

27Assume that$letters_only is a regular expression which matches only letter characters(see Character Classes, page 93).

91

Modern Perl

Regex Anchors
Regex anchorsforce a match at a specific position in a string. Thestart of string anchor(\A) ensures that any match will start
at the beginning of the string:

also matches "lammed", "lawmaker", and "layman"
my $seven_down = qr/\Al${letters_only}{2}m/;

Theend of line string anchor(\Z) ensures that any match willendat the end of the string.

also matches "loom", which is close enough
my $seven_down = qr/\Al${letters_only}{2}m\Z/;

Theword boundary metacharacter(\b) matches only at the boundary between a word character (\w) and a non-word character
(\W). Thus to findloam but notBelgium, use the anchored regex:

my $seven_down = qr/\bl${letters_only}{2}m\b/;

Like Perl, there’s more than one way to write a regular expression. Consider choosing the most expressive and
maintainable one.

Metacharacters
Regular expressions get more powerful as atoms get more general. For example, the. character in a regular expression means
“match any character except a newline”. If you wanted to search a list of dictionary words for every word which might match
7 Down ("Rich soil”) in a crossword puzzle, you might write:

for my $word (@words)
{

next unless length($word) == 4;
next unless $word =~ /l .. m/;
say "Possibility: $word";

}

Of course, if your list of potential matches were anything other than a list of words, this metacharacter could cause false
positives, as it also matches punctuation characters, whitespace, numbers, and many other characters besides word characters.
The\w metacharacter represents all alphanumeric characters (ina Unicode sense—see Unicode and Strings, page 17) and the
underscore:

next unless $word =~ /l \w\w m/;

The\d metacharacter matches digits—not just 0-9 as you expect, butany Unicode digit:

not a robust phone number matcher
next unless $potential_phone_number =~ / \d {3}- \d {3}- \d {4}/;
say "I have your number: $potential_phone_number";

Use the\s metacharacter to match whitespace, whether a literal space, a tab character, a carriage return, a form-feed, or a
newline:

my $two_three_letter_words = qr/\w{3} \s \w{3}/;

These metacharacters have negated forms. To match any character excepta word character, use\W. To match a non-digit
character, use\D. To match anything but whitespace, use\S. To match a non-word boundary, use\B.

The regex engine treats all metacharacters as atoms.

92

Regular Expressions and Matching

Character Classes
If the range of allowed characters in these four groups isn’tspecific enough, you can specify your owncharacter classesby
enclosing them in square brackets:

my $vowels = qr/ [aeiou] /;
my $maybe_cat = qr/c${vowels}t/;

The curly braces around the name of the scalar variable$vowels helps disambiguate the variable name. Without
that, the parser would interpret the variable name as$vowelst, which either causes a compile-time error about an
unknown variable or interpolates the contents of an existing $vowelst into the regex.

If the characters in your character set form a contiguous range, you can use the hyphen character (-) as a shortcut to express
that range. Now it’s possible to define the$letters_only regex:

my $letters_only = qr/[a-zA-Z]/;

Move the hyphen character to the start or end of the class to include it in the class:

my $interesting_punctuation = qr/[-!?]/;

. . . or escape it:

my $line_characters = qr/[|=\-_]/;

Just as the word and digit class metacharacters (\w and\d) have negations, so too you can negate a character class. Usethe
caret (̂) as the first element of the character class to mean “anything exceptthese characters”:

my $not_a_vowel = qr/[^aeiou]/;

Use a caret anywhere but this position to make it a member of the character class. To include a hyphen in a negated
character class, place it after the caret or at the end of the class, or escape it.

Capturing
It’s often useful to match part of a string and use it later; perhaps you want to extract an address or an American telephone
number from a string:

my $area_code = qr/\(\d{3}\)/;
my $local_number = qr/\d{3}-?\d{4}/;
my $phone_number = qr/$area_code\s?$local_number/;

Note the escaping of the parentheses within$area_ode; this will become obvious in a moment.

93

Modern Perl

Named Captures
Given a string,$ontat_info, which contains contact information, you can apply the$phone_number regular expression
andcaptureany matches into a variable withnamed captures:

if ($contact_info =~ /(?<phone>$phone_number)/)
{

say "Found a number $+{phone}";
}

The capturing construct can look like a big wad of punctuation, but it’s fairly simple when you can recognize it as a single
chunk:

(?<capture name> ...)

The parentheses enclose the entire capture. The?< name > construct provides a name for the capture buffer and must follow
the left parenthesis. The rest of the construct within the parentheses is a regular expression. If and when the regex matches this
fragment, Perl stores the captured portion of the string in the magic variable%+: a hash where the key is the name of the capture
buffer and the value is the portion of the string which matched the buffer’s regex.

Parentheses are special to Perl 5 regular expressions; by default they exhibit the same grouping behavior as parentheses do in
regular Perl code. They also enclose one or more atoms to capture whatever portion of the matched string they match. To use
literal parentheses in a regular expression, you must preface them with a backslash, just as in the$area_ode variable.

Numbered Captures
Named captures are new in Perl 5.10, but captures have existed in Perl for many years. You may encounternumbered captures
as well:

if ($contact_info =~ /($phone_number)/)
{

say "Found a number $1";
}

regex; $1 regex; $2 The parentheses enclose the fragment to capture, but there is no regex metacharacter giving thename
of the capture. Instead, Perl stores the captured substringin a series of magic variables starting with$1 and continuing for as
many capture groups are present in the regex. Thefirst matching capture that Perl finds goes into$1, the second into$2, and
so on. Capture counts start at theopeningparenthesis of the capture; thus the first left parenthesisbegins the capture into$1,
the second into$2, and so on.

While the syntax for named captures is longer than for numbered captures, it provides additional clarity. You do not have
to count the number of opening parentheses to figure out whether a particular capture is$4 or $5, and composing regexes
from smaller regexes is much easier, as they’re less sensitive to changes in position or the presence or absence of capturing in
individual atoms.

Name collisions are still possible with named captures, though that’s less frequent than number collisions with
numbered captures. Consider avoiding the use of captures inregex fragments; save it for top-level regexes.

Numbered captures are less frustrating when you evaluate a match in list context:

if (my ($number) = $contact_info =~ /($phone_number)/)
{

say "Found a number $number";
}

Perl will assign to the lvalues in order of the captures.

94

Regular Expressions and Matching

Grouping and Alternation
Previous examples have all applied quantifiers to simple atoms. They can also apply to more complex subpatterns as a whole:

my $pork = qr/pork/;
my $beans = qr/beans/;

like('pork and beans', qr/\A$pork?. * ?$beans/,
'maybe pork, definitely beans');

If you expand the regex manually, the results may surprise you:

like('pork and beans', qr/\Apork?. * ?beans/,
'maybe pork, definitely beans');

This still matches, but consider a more specific pattern:

my $pork = qr/pork/;
my $and = qr/and/;
my $beans = qr/beans/;

like('pork and beans', qr/\A$pork? $and? $beans/,
'maybe pork, maybe and, definitely beans');

Some regexes need to match one thing or another. Use thealternationmetacharacter (|) to do so:

my $rice = qr/rice/;
my $beans = qr/beans/;

like('rice', qr/$rice|$beans/, 'Found some rice');
like('beans', qr/$rice|$beans/, 'Found some beans');

The alternation metacharacter indicates that either preceding fragment may match. Be careful about what you interpretas a
regex fragment, however:

like('rice', qr/rice|beans/, 'Found some rice');
like('beans', qr/rice|beans/, 'Found some beans');
unlike('ricb', qr/rice|beans/, 'Found some weird hybrid');

It’s possible to interpret the patternrie|beans as meaningri, followed by eithere orb, followed byeans—but alternations
always include theentirefragment to the nearest regex delimiter, whether the start or end of the pattern, an enclosing parenthesis,
another alternation character, or a square bracket.

To reduce confusion, use named fragments in variables ($rie|$beans) or grouping alternation candidates innon-capturing
groups:

my $starches = qr/(?:pasta|potatoes|rice)/;

The(?:) sequence groups a series of atoms but suppresses capturing behavior. In this case, it groups three alternatives.

If you print a compiled regular expression, you’ll see that its stringification includes an enclosing non-capturing
group;qr/rie|beans/ stringifies as(?-xism:rie|beans).

95

Modern Perl

Other Escape Sequences
Perl interprets several characters in regular expressionsasmetacharacters, which represent something different than their literal
characters. Square brackets always denote a character class and parentheses group and optionally capture pattern fragments.

To match aliteral instance of a metacharacter,escapeit with a backslash (\). Thus\(refers to a single left parenthesis and
\℄ refers to a single right square bracket.\. refers to a literal period character instead of the "match anything but an explicit
newline character" atom. Other useful metacharacters thatoften need escaping are the pipe character (|) and the dollar sign ($).
Don’t forget about the quantifiers either:*, +, and? also qualify.

To avoid escaping everything (and worrying about forgetting to escape interpolated values), use themetacharacter disabling
characters. The\Q metacharacter disables metacharacter processing until itreaches the\E sequence. This is especially useful
when taking match text from a source you don’t control when writing the program:

my ($text, $literal_text) = @_;

return $text =~ /\Q$literal_text\E/;

The$literal_text argument can contain anything—the string** ALERT **, for example. With\Q and\E, Perl will not
interpret the zero-or-more quantifier as a quantifier. Instead, it will parse the regex as** ALERT ** and attempt to match
literal asterisk characters.

Assertions
The regex anchors (\A and\Z) are a form ofregex assertion, which requires that a condition is present but doesn’t actually match
a character in the string. That is, the regexqr/\A/ will alwaysmatch, no matter what the string contains. The metacharacters
\b and\B are also assertions.

Zero-width assertionsmatch apattern, not just a condition in the string. Most importantly, they do not consume the portion of
the pattern that they match. For example, to find a cat on its own, you might use a word boundary assertion:

my $just_a_cat = qr/cat\b/;

. . . but if you want to find a non-disastrous feline, you mightuse azero-width negative look-ahead assertion:

my $safe_feline = qr/cat(?!astrophe)/;

The construct(?!...) matches the phraseat only if the phraseastrophe does not immediately follow.

Thezero-width positive look-ahead assertion:

my $disastrous_feline = qr/cat(?=astrophe)/;

. . . matches the phraseat only if the phraseastrophe immediately follows. This may seem useless, as a normal regular
expression can accomplish the same thing, but consider if you want to find all non-catastrophic words in the dictionary which
start withat. One possibility is:

my $disastrous_feline = qr/cat(?!astrophe)/;

while (<$words>)
{

chomp;
next unless /\A(?<some_cat>$disastrous_feline. *)\Z/;
say "Found a non-catastrophe '$+{some_cat}'";

}

96

Regular Expressions and Matching

Because the assertion is zero-width, it consumes none of thesource string. Thus the anchored.*\Z pattern fragment must be
present; otherwise the capture would only capture theat portion of the source string.

Zero-width look-behind assertions also exist. Unlike the look-ahead assertions, the patterns of these assertions must have fixed
widths; you may not use quantifiers in these patterns.

To assert that your feline never occurs at the start of a line,you might use thezero-width negative look-behind assertion:

my $middle_cat = qr/(?<!^)cat/;

. . . where the construct(?<!...) contains the fixed-width pattern. Otherwise you could express that theat must always occur
immediately after a space character with thezero-width positive look-behind assertion:

my $space_cat = qr/(?<=\s)cat/;

. . . where the construct(?<=...) contains the fixed-width pattern. This approach can be useful when combining a global regex
match with the\G modifier, but it’s an advanced feature you likely won’t use often.

Regex Modifiers
The regular expression operators allow several modifiers to change the behavior of matches. These modifiers appear at the end
of the match, substitution, andqr// operators. For example, to enable case-insensitive matching:

my $pet = 'CaMeLiA';

like($pet, qr/Camelia/, 'You have a nice butterfly there') ;
like($pet, qr/Camelia/i, 'Your butterfly has a broken shif t key');

The firstlike() will fail, because the strings contain different letters. The secondlike() will pass, because the/i modifier
causes the regex to ignore case distinctions.M andm are equivalent in the second regex due to the modifier.

You may also embed regex modifiers within a pattern:

my $find_a_cat = qr/(?<feline>(?i)cat)/;

The(?i) syntax enables case-insensitive matching only for its enclosing group: in this case, the entirefeline capture group.
You may use multiple modifiers with this form (provided theymake sense for a portion of a pattern). You may also disable
specific modifiers by preceding them with the minus character (-):

my $find_a_rational = qr/(?<number>(?-i)Rat)/;

The multiline operator,/m, allows thê and$ anchors to match at any start of line or end of line within the string.

The/s modifier treats the source string as a single line such that the. metacharacter matches the newline character. Damian
Conway suggests the mnemonic that/m modifies the behavior ofmultipleregex metacharacters, while/s modifies the behavior
of asingleregex metacharacter.

The/x modifier allows you to embed additional whitespace and comments within patterns without changing their meaning.
With this modifier in effect, the regex engine treats whitespace and the comment character (#) and everything following as
comments; it ignores them. This allows you to write much morereadable regular expressions:

my $attr_re = qr{
^ # start of line

miscellany
(?:

[;\n\s] * # blank spaces and spurious semicolons
(?:/\ * . * ?\ * /)? # C comments

) *

97

Modern Perl

attribute marker
ATTR

type
\s+
(U?INTVAL

| FLOATVAL
| STRING\s+\ *
| PMC\s+\ *
| \w *

)
}x;

This regex isn’tsimple, but comments and whitespace improve its readability. Evenif you compose regexes together from
compiled fragments, the/x modifier can still improve your code.

The/g modifier matches a regex globally throughout a string. Thismakes sense when used with a substitution:

appease the Mitchell estate
my $contents = slurp($file);
$contents =~ s/Scarlett O'Hara/Mauve Midway/g;

When used with a match—not a substitution—the\G metacharacter allows you to process a string within a loop one chunk
at a time.\G matches at the position where the most recent match ended. Toprocess a poorly-encoded file full of American
telephone numbers in logical chunks, you might write:

while ($contents =~ /\G(\w{3})(\w{3})(\w{4})/g)
{

push @numbers, "($1) $2-$3";
}

Be aware that the\G anchor will take up at the last point in the string where the previous iteration of the match occurred. If
the previous match ended with a greedy match such as.*, the next match will have less available string to match. Theuse of
lookahead assertions can become very important here, as they do not consume the available string to match.

The/e modifier allows you to write arbitrary Perl 5 code on the right side of a substitution operation. If the match succeeds,
the regex engine will run the code, using its return value as the substitution value. The earlier global substitution example could
be more robust about replacing some or all of an unfortunate protagonist’s name with:

appease the Mitchell estate
my $contents = slurp($file);
$contents =~ s{Scarlett(O'Hara)?}

{ 'Mauve' . defined $1 ? ' Midway' : '' }ge;

You may add as many/e modifiers as you like to a substitution. Each additional occurrence of this modifier will cause another
evaluation of the result of the expression, though only Perlgolfers tend to use/ee or anything more complex.

Smart Matching
The smart match operator,~~, compares two operands and returns a true value if they matcheach other. The fuzziness of the
definition demonstrates the smartness of the operator: thetype of comparison depends on the type of both operands. You’ve
seen this behavior before, asgiven (see Given/When, page 33) performs an implicit smart match.

See the “Smart matching in detail” section ofperldo perlsyn for far more detail. Some of the semantics of
smart match have changed between Perl 5.10.0 and Perl 5.10.1, so when possible, use smart matching only after
5.10.1.

The smart match operator is an infix operator:

98

Regular Expressions and Matching

say 'They match (somehow)' if $loperand ~~ $roperand;

The type of comparison generally depends first on the type ofthe right operand and then on the left operand. For example,
if the right operand is a scalar with a numeric component, thecomparison will use numeric equality. If the right operand is a
regex, the comparison will use a grep or a pattern match. If the right operand is an array, the comparison will perform a grep or
a recursive smart match. If the right operand is a hash, the comparison will check the existence of one or more keys.

For example:

scalar numeric comparison
my $x = 10;
my $y = 20;
say 'Not equal numerically' unless $x ~~ $y;

scalar numeric-ish comparison
my $x = 10;
my $y = '10 little endians';
say 'Equal numeric-ishally' if $x ~~ $y;

. . . or:

my $needlepat = qr/needle/;

say 'Pattern match' if $needle ~~ $needlepat;
say 'Grep through array' if @haystack ~~ $needlepat;
say 'Grep through hash keys' if %hayhash ~~ $needlepat;

. . . or:

say 'Grep through array' if $needlepat ~~ @haystack;
say 'Array elements exist as hash keys' if %hayhash ~~ @hayst ack;
say 'Array elements smart match' if @strawstack ~~ @haystac k;

. . . . or:

say 'Grep through hash keys' if $needlepat ~~ %hayhash;
say 'Array elements exist as hash keys' if @haystack ~~ %hayh ach;
say 'Hash keys identical' if %hayhash ~~ %haymap;

These comparisons work correctly if one operand is areferenceto the given data type. For example:

say 'Hash keys identical' if %hayhash ~~ \%hayhash;

You may overload (see Overloading, page 145) the smart matchoperator on objects. If you do not do so, the smart match
operator will throw an exception if you try to use an object asan operand.

You may also use other data types such asundef and function references as smart match operands. See the chart in perldo

perlsyn for more details.

99

Objects
Writing large programs requires more discipline than writing small programs, due to the difficulty of managing all of the
details of your program simultaneously. Abstraction (finding and exploiting similarities and near-similarities) and encapsulation
(grouping specific details together and accessing them where they belong) are essential to managing this complexity.

Functions help, but functions by themselves aren’t sufficient for the largest programs. Object orientation is a populartechnique
for grouping functions together into classes of related behaviors.

Perl 5’s default object system is minimal. It’s very flexible—you can build almost any other object system you want on top of
it—but it provides little assistance for the most common tasks.

Moose
Moose is a powerful and complete object system for Perl 5. It builds on the existing Perl 5 system to provide simpler defaults,
better integration, and advanced features from languages such as Smalltalk, Common Lisp, and Perl 6. It’s still worth learning
the default Perl 5 object system—especially when you have existing code to maintain—but Moose is the best way to write
object oriented code in modern Perl 5.

Object orientation(OO), orobject oriented programming(OOP), is a way of managing programs by categorizing their compo-
nents into discrete, unique entities. These areobjects. In Moose terms, each object is an instance of aclass, which serves as a
template to describe any data the object contains as well as its specific behaviors.

Classes
A class in Perl 5 stores class data. By default, Perl 5 classesuse packages to provide namespaces:

{
package Cat;

use Moose;
}

ThisCat class appears to do nothing, but Moose does a lot of work to define the class and register it with Perl. With that done,
you can create objects (orinstances) of theCat class:

my $brad = Cat->new();
my $jack = Cat->new();

The arrow syntax should look familiar. Just as an arrow dereferences a reference, an arrow calls a method on an object or class.

Methods
A methodis a function associated with a class. It resembles a fully-qualified function call in a superficial sense, but it differs in
two important ways. First, a method call always has aninvocanton which the method operates. When you create an object, the
nameof the class is the invocant. When you call a method on an instance, that instance is the invocant:

my $fuzzy = Cat ->new();
$fuzzy ->sleep_on_keyboard();

100

Objects

Second, a method call always involves adispatchstrategy. The dispatch strategy describes how the object system decideswhich
method to call. This may seem obvious when there’s only aCat, but method dispatch is fundamental to the design of object
systems.

The invocant of a method in Perl 5 is its first argument. For example, theCat class could have ameow() method:

{
package Cat;

use Moose;

sub meow
{

my $self = shift;
say 'Meow!';

}
}

Now all Cat instances can wake you up in the morning because they haven’teaten yet:

my $alarm = Cat->new();
$alarm->meow();
$alarm->meow();
$alarm->meow();

By pervasive convention, methods store their invocants in lexical variables named$self. Methods which access invocant data
are instance methods, because they depend on the presence of an appropriate invocant to work correctly. Methods (such as
meow()) which do not access instance data areclass methods, as you can use the name of the class as an invocant. Constructors
are also class methods. For example:

Cat->meow() for 1 .. 3;

Class methods can help you organize your code into namespaces without requiring you to import (see Importing, page 67)
functions, but a design which relies heavily on class methods for anything other than constructors may be the sign of muddled
thinking.

Attributes
Every object in Perl 5 is unique. Objects can containattributes, or private data associated with each object. You may also hear
this described asinstance dataor state.

To define object attributes, describe them as part of the class:

{
package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str';
}

In English, that line of code means “Cat objects have aname attribute. It’s readable but not writable, and it’s a string.”

In Perl and Moose terms,has() is a function which declares an attribute. The first argument is the name of the attribute, in this
case'name'. Theis => 'ro' pair of arguments declares that this attribute isreadonly, so you cannot modify it after you’ve
set it. Finally, theisa => 'Str' pair declares that the value of this attribute can only be astring. This will all become clear
soon.

That single line of code creates an accessor method (name()) and allows you to pass aname parameter to the constructor:

101

Modern Perl

use Cat;

for my $name (qw(Tuxie Petunia Daisy))
{

my $cat = Cat->new(name => $name);
say "Created a cat for ", $cat->name();

}

Attributes do notneedto have types, in which case Moose will skip all of the verification and validation for you:

{
package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'age', is => 'ro';

}

my $invalid = Cat->new(name => 'bizarre', age => 'purple');

This can be more flexible, but it can also lead to strange errors if someone tries to provide invalid data for an attribute.The
balance between flexibility and correctness depends on your local coding standards and the type of errors you want to catch.

The Moose documentation uses parentheses to separate an attribute name from its characteristics:
has 'name' => (is => 'ro', isa => 'Str');

Perl parses both that form and the form used in this book the same way. Youcould achieve the same effect by
writing either:

has('name', 'is', 'ro', 'isa', 'Str');
has(qw(name is ro isa Str));

. . . but in this case, extra punctuation adds clarity. The approach of the Moose documentation is most useful when
dealing with multiple characteristics:

has 'name' => (
is => 'ro',
isa => 'Str',

advanced Moose options; perldoc Moose
init_arg => undef,
lazy_build => 1,

);

. . . but for the sake of simplicity of introduction, this bookprefers to use less punctuation. Perl gives you the
flexibility to choose whichever approach makes the intent of your code most clear.

If you mark an attribute as readableand writable (withis => rw), Moose will create amutatormethod—a method you can
use to change the value of an attribute:

{
package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'age', is => 'ro', isa => 'Int';
has 'diet', is => 'rw';

}

my $fat = Cat->new(name => 'Fatty', age => 8, diet => 'Sea Trea ts');
say $fat->name(), ' eats ', $fat->diet();

$fat->diet('Low Sodium Kitty Lo Mein');
say $fat->name(), ' now eats ', $fat->diet();

102

Objects

Trying to use aro accessor as a mutator will throw the exceptionCannot assign a value to a read-only aessor

at

Usingro or rw is a matter of design, convenience, and purity. Moose does not enforce any particular philosophy in this area.
One school of thought suggests making all instance dataro and passing all relevant data into the constructor (see Immutability,
page 116). In theCat example,age() might still be an accessor, but the constructor could take the yearof the cat’s birth and
calculate the age itself based on the current year, rather than relying on someone to update the age of all cats manually. This
approach helps to consolidate all validation code and helpsto ensure that all created objects have valid data.

Now that individual objects can have their own instance data, the value of object orientation may be more obvious. An object
is a group of related data as well as behaviors appropriate for that data. A class is the description of the data and behaviors that
instances of that class possess.

Encapsulation
Moose allows you to declarewhichattributes class instances possess (a cat has a name) as wellas the attributes of those attributes
(you cannot change a cat’s name). By default, Moose does not permit you to describe how an objectstoresits attributes; Moose
decides that for you. This information is available if you really need it, but the declarative approach can actually improve your
programs. In this way, Moose encouragesencapsulation: hiding the internal details of an object from external users of that
object.

Consider how you might change the wayCat handles ages. Instead of requiring a static value for an age passed to the construc-
tor, pass in the year of the cat’s birth and calculate the age as needed:

package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';
has 'birth_year', is => 'ro', isa => 'Int';

sub age
{

my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year();
}

While the syntax forcreatingCat objects has changed, the syntax forusingCat objects has not. Theage() method does the
same thing it has always done, at least as far as all code outside of theCat class understands.How it does that has changed, but
that is a detail internal to theCat class and encapsulated within that class itself.

Retain the old syntax forcreatingCat objects by customizing the generatedCat constructor to allow passing an
age parameter. Calculatebirth_year from that. Seeperldo Moose::Manual::Attributes.

This new approach to calculatingCat ages has another advantage; you can usedefault attribute valuesto reduce the code
necessary to create aCat object:

package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw', isa => 'Str';
has 'birth_year', is => 'ro', isa => 'Int',

default => sub { (localtime)[5] + 1900 };

Thedefault keyword on an attribute takes a function reference which returns the default value for that attribute when con-
structing a new object. If the constructor does not receive an appropriate value for that attribute, the object gets thatdefault
value instead. Now you can create a kitten:

103

Modern Perl

my $kitten = Cat->new(name => 'Bitey');

. . . and that kitten will have an age of0 until next year. You can also use a simple value, such as a number or string, as a
default value. Use a function reference when you need to calculate something unique for each object, including a hash or array
reference.

Polymorphism

A program which deals with one type of data and one type of behavior on that data receives few benefits from the use of object.
Encapsulation is useful, to be sure—but the real power of object orientation is not solely in encapsulation. A well designed OO
program can manage many types of data. When well designed classes encapsulate specific details of objects into the appropriate
places, something curious happens to the rest of the program: it has the opportunity to becomelessspecific.

In other words, moving the specifics of the details of what the program knows about individualCats (the attributes) and what
the program knows thatCats can do (the methods) into theCat class means that code that deals withCat instances can happily
ignorehowCat does what it does.

This is clearer with an example. Consider a function which describes an object:

sub show_vital_stats
{

my $object = shift;

say 'My name is ', $object->name();
say 'I am ', $object->age();
say 'I eat ', $object->diet();

}

It’s obvious (in context) that you can pass aCat object to this function and get sane results. You can do the same with other
types of objects. This is an important object orientation property calledpolymorphism, where you can substitute an object of
one class for an object of another class if they provide the same external interface.

Any object of any class which provides thename(), age(), anddiet() accessors will work with this function. The function
is sufficiently generic that any object which respects this interface is a valid parameter.

Some languages and environments require a formal relationship between two classes before allowing a program to
substitute instances of one class for another. Perl 5 provides ways to enforce these checks, but it does not require
them. Its default ad-hoc system lets you treat any two instances with methods of the same name as equivalent
enough. Some people call thisduck typing, arguing that any object which canquak() is sufficiently duck-like
that you can treat it as a duck.

The benefit of the genericity inshow_vital_stats() is that neither the specific type nor the implementation of the object
provided matters. Any invocant is valid if it supports threemethods,name(), age(), anddiet() which take no arguments and
each return something which can concatenate in a string context. You may have a hundred different classes in your code, none
of which have any obvious relationships, but they will work with this method if they conform to this expected behavior.

This is an improvement over writing specific functions to extract and display this information for even a fraction of those hun-
dred classes. This genericity requires less code, and usinga well-defined interface as the mechanism to access this information
means that any of those hundred classes can calculate that information in any way possible. The details of those calculations is
where it matters most: in the bodies of the methods in the classes themselves.

Of course, the mere existence of a method calledname() or age() does not by itself imply the behavior of that object. ADog
object may have anage() which is an accessor such that you can discover$rodney is 8 but$luky is 3. A Cheese object
may have anage() method that lets you control how long to stow$heddar to sharpen it. In other words,age() may be an
accessor in one class but not in another:

104

Objects

how old is the cat?
my $years = $zeppie->age();

store the cheese in the warehouse for six months
$cheese->age();

Sometimes it’s useful to knowwhatan object does. You need to understand its type.

Roles

A role is a named collection of behavior and state28. A class is like a role, with the vital difference that you caninstantiate a
class, but not a role. While a class is primarily a mechanism for organizing behaviors and state into a template for objects, a
role is primarily a mechanism for organizing behaviors and state into a named collection.

A role is something a class does.

The difference between some sort ofAnimal—with a name(), anage(), and a preferreddiet()—andCheese—which can
age() in storage—may be that theAnimal does theLivingBeing role, while theCheese does theStorable role.

While youcouldcheck that every object passed intoshow_vital_stats() is an instance ofAnimal, you lose some genericity
that way. Instead, check that the objectdoestheLivingBeing role:

{
package LivingBeing;

use Moose::Role;

requires qw(name age diet);
}

Anything which does this role must supply thename(), age(), anddiet() methods. This does not happen automatically; the
Cat class must explicitly mark that it does the role:

package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw', isa => 'Str';
has 'birth_year', is => 'ro', isa => 'Int',

default => (localtime)[5] + 1900;

with 'LivingBeing';

sub age { ... }

That single line has two functions. First, it tells Moose that the class does the named role. Second, itcomposesthe role into the
class. This process checks that the classsomehowprovides all of the required methods and all of the required attributes without
potential collisions.

TheCat class providesname() anddiet() methods as accessors to named attributes. It also declares its ownage() method.

The with keyword used to apply roles to a class must occurafter attribute declaration so that composition can
identify any generated accessor methods.

Now all Cat instances will return a true value when queried if they provide theLivingBeing role andCheese objects should
not:

28See the Perl 6 design documents on roles athttp://feather.perl6.nl/syn/S14.html and research on traits in Smalltalk athttp://sg.unibe.
h/researh/traits for copious details.

105

http://feather.perl6.nl/syn/S14.html
http://scg.unibe.ch/research/traits
http://scg.unibe.ch/research/traits

Modern Perl

say 'Alive!' if $fluffy->DOES('LivingBeing');
say 'Moldy!' if $cheese->DOES('LivingBeing');

This design approach may seem like extra bookkeeping, but itseparates thecapabilitiesof classes and objects from theimple-
mentationof those classes and objects. The special behavior of theCat class, where it stores the birth year of the animal and
calculates the age directly, could itself be a role:

{
package CalculateAge::From::BirthYear;

use Moose::Role;

has 'birth_year', is => 'ro', isa => 'Int',
default => sub { (localtime)[5] + 1900 };

sub age
{

my $self = shift;
my $year = (localtime)[5] + 1900;

return $year - $self->birth_year();
}

}

Moving this code out of theCat class into a separate role makes it available to other classes. NowCat can compose both roles:

package Cat;

use Moose;

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';

with 'LivingBeing', 'CalculateAge::From::BirthYear';

The implementation of theage() method supplied by theCalulateAge::From::BirthYear satisfies the requirement of
the LivingBeing role, and the composition succeeds. Checking that objects do theLivingBeing role remains unchanged,
regardless ofhowobjects do this role. A class could choose to provide its ownage() method or obtain it from another role;
that doesn’t matter. All that matters is that it contains one. This isallomorphism.

Pervasive use of allomorphism in your designs can reduce thesize of your classes and allow you to share more code between
classes. It also allows more flexibility in your design by naming specific collections of behaviors so that you can test the
capabilities of objects and classes and not their implementations.

For a lengthy comparison of roles and other design techniques such as mixins, multiple inheritance, and monkeypatching, see
http://www.modernperlbooks.om/mt/2009/04/the-why-of-perl-roles.html.

Roles and DOES()

Applying a role to a class means that the class and its instances will return true when you call theDOES() method on them:

say 'This Cat is alive!' if $kitten->DOES('LivingBeing');

Inheritance
Another feature of Perl 5’s object system isinheritance, where one class specializes another. This establishes a relationship
between the two classes, where the child inherits attributes and behavior of the parent. As with two classes which provide the
same role, you may substitute a child class for its parent. Inone sense, a subclass provides the role implied by the existence of
its parent class.

Consider aLightSoure class which provides two public attributes (andle_power andenabled) and two methods (light
andextinguish):

106

http://www.modernperlbooks.com/mt/2009/04/the-why-of-perl-roles.html

Objects

Recent experiments in role-based systems in Perl 5 demonstrate that you can replace almost every use of inheritance
in a system with roles. The decision to use either one is largely a matter of familiarity. Roles provide composition-
time safety, better type checking, better-factored and less coupled code, and finer-grained control over names and
behaviors, but inheritance is more familiar to users of other languages. The design question is whether one class
truly extendsanother or whether it provides additional (or, at least,different) behavior.

{
package LightSource;

use Moose;

has 'candle_power', is => 'ro', isa => 'Int',
default => 1;

has 'enabled', is => 'ro', isa => 'Bool',
default => 0, writer => '_set_enabled';

sub light
{

my $self = shift;
$self->_set_enabled(1);

}

sub extinguish
{

my $self = shift;
$self->_set_enabled(0);

}
}

Thewriter option to theenabled attribute creates a private accessor usable within the class to set the value.

Inheritance and Attributes

SubclassingLightSoure makes it possible to define a super candle which behaves the same way asLightSoure but
provides a hundred times the amount of light:

{
package LightSource::SuperCandle;

use Moose;

extends 'LightSource' ;

has ' +candle_power', default => 100;
}

The extends function takes a list of class names to use as parents of the current class. The+ at the start of theandle_-
power attribute name indicates that the current class extends or overrides the declaration of the attribute. In this case, thesuper
candle overrides the default value of the light source, so any newSuperCandle created has a light value of 100 candles. The
other attribute and both methods are available onSuperCandle instances; when you invokelight or extinguish on such an
instance, Perl will look inLightSoure::SuperCandle for the method, then in the list of parents of the class. Ultimately it
finds them inLightSoure.

Attribute inheritance works in a similar way (seeperldo Class::MOP for details).

Method dispatch order(sometimes writtenmethod resolution orderor MRO) is easy to understand in the case of single-parent
inheritance. When a class has multiple parents (multiple inheritance), dispatch is less obvious. By default, Perl 5 provides a
depth-first strategy of method resolution. It searches theclass of thefirst named parent and all of its parents recursively before
searching the classes of the subsequent named parents. Thisbehavior is often confusing; avoid using multiple inheritance until

107

Modern Perl

you understand it and have exhausted all other alternatives. Seeperldo mro for more details about method resolution and
dispatch strategies.

Inheritance and Methods

You may override methods in subclasses. Imagine a light thatyou cannot extinguish:

{
package LightSource::Glowstick;

use Moose;

extends 'LightSource';

sub extinguish {}
}

All calls to theextinguish method for objects of this class will do nothing. Perl’s method dispatch system will find this
method and will not look for any methods of this name in any of the parent classes.

Sometimes an overridden method needs behavior from its parent as well. Theoverride command tells Moose (and everyone
else reading the code) that the subclass deliberately overrides the named method. Thesuper() function is available to dispatch
from the overriding method to the overridden method:

{
package LightSource::Cranky;

use Carp;
use Moose;

extends 'LightSource';

override light => sub
{

my $self = shift;

Carp::carp("Can't light a lit light source!")
if $self->enabled;

super() ;
};

override extinguish => sub
{

my $self = shift;

Carp::carp("Can't extinguish an unlit light source!")
unless $self->enabled;

super() ;
};

}

This subclass adds a warning when trying to light or extinguish a light source that already has the current state. Thesuper()

function dispatches to the nearest parent’s implementation of the current method, per the normal Perl 5 method resolution order.

You can achieve the same behavior by using Moose method modifiers. Seeperldo Moose::Manual::-

MethodModifiers.

Inheritance and isa()

Inheriting from a parent class means that the child class andall of its instances will return a true value when you call theisa()

method on them:

say 'Looks like a LightSource' if $sconce->isa('LightSour ce');
say 'Monkeys do not glow' unless $chimpy->isa('LightSourc e');

108

Objects

Moose and Perl 5 OO
Moose provides many features you’d otherwise have to build for yourself with the default object orientation of Perl 5. While
youcanbuild everything you get with Moose yourself (see Blessed References, page 110), or cobble it together with a series of
CPAN distributions, Moose is a coherent package which just works, includes good documentation, is part of many successful
projects, and is under active development by an attentive and talented community.

By default, with Moose objects you do not have to worry about constructors and destructors, accessors, and encapsulation.
Moose objects can extend and work with objects from the vanilla Perl 5 system. You also getmetaprogramming—a way
of accessing the implementation of the system through the system itself—and the concomitant extensibility. If you’ve ever
wondered which methods are available on a class or an object or which attributes an object supports, this metaprogramming
information is available with Moose:

my $metaclass = Monkey::Pants->meta();

say 'Monkey::Pants instances have the attributes:';

say $_->name for $metaclass->get_all_attributes;

say 'Monkey::Pants instances support the methods:';

say $_->fully_qualified_name for $metaclass->get_all_m ethods;

You can even see which classes extend a given class:

my $metaclass = Monkey->meta();

say 'Monkey is the superclass of:';

say $_ for $metaclass->subclasses;

Seeperldo Class::MOP::Class for more information about metaclass operations andperldo Class::MOP for Moose
metaprogramming information.

Moose and itsmeta-object protocol(or MOP) offers the possibility of a better syntax for declaring and working with classes
and objects in Perl 5. This is valid Perl 5 code:

use MooseX::Declare;

role LivingBeing { requires qw(name age diet) }

role CalculateAge::From::BirthYear
{

has 'birth_year', is => 'ro', isa => 'Int',
default => sub { (localtime)[5] + 1900 };

method age
{

return (localtime)[5] + 1900 - $self->birth_year();
}

}

class Cat with LivingBeing with CalculateAge::From::Birt hYear
{

has 'name', is => 'ro', isa => 'Str';
has 'diet', is => 'rw';

}

TheMooseX::Delare extension from the CPAN uses a clever module calledDevel::Delare to add new syntax to Perl
5, specifically for Moose. Thelass, role, andmethod keywords reduce the amount of boilerplate necessary to write good
object oriented code in Perl 5. Note specifically the declarative nature of this example, as well as the now unnecessarymy

$self = shift; line at the start of theage method.

One drawback of this approach is that you must be able to install CPAN modules (or a custom Perl 5 distribution such as
Strawberry Perl or Strawberry Perl Professional which may include them for you), but in comparison to Perl 5’s core object
orientation, the advantage in cleanliness and simplicity of Moose should be obvious.

Seeperldo Moose::Manual for more information on using Moose.

109

Modern Perl

As of Perl 5.12, the Perl 5 core explicitly supportsDevel::Delare, but the module is not a core module and it
works with earlier versions of Perl 5.

Blessed References
Perl 5’s default object system is deliberately minimal. Three simple rules combine to form the simple—though effective—basic
object system:

• A class is a package.

• A method is a function.

• A (blessed) reference is an object.

You’ve already seen the first two rules (see Moose, page 100). The third rule is new. Thebless builtin associates the name of
a class with a reference, such that any method invocation performed on that reference uses the associated class for resolution.
That sounds more complicated than it is.

The result is a minimal but working system, though its minimalism can be impractical for larger projects. In particular,the
default object system offers only partial and akward facilities for metaprogramming (see Code Generation, page 141). Moose is
a better choice for serious, modern Perl programs larger than a couple of hundred lines, but you will likely encounter bare-bones
Perl 5 OO in existing code.

The default Perl 5 object constructor is a method which creates and blesses a reference. By convention, constructors have the
namenew(), but this is not a requirement. Constructors are also almostalwaysclass methods:

sub new
{

my $class = shift;
bless {}, $class;

}

bless takes two arguments, the reference to associate with a classand the name of a class. You may usebless outside of a
constructor or a class—though abstraction recommends the use of the method. The class name does not have to exist yet.

By design, this constructor receives the class name as the method’s invocant. It’s possible, but inadvisable, to hard-code the
name of a class directly. The parametric constructor allowsreuse of the method through inheritance, delegation, or exporting.

The type of reference makes no difference when invoking methods on the object. It only governs how the object storesinstance
data—the object’s own information. Hash references are most common, but you can bless any type of reference:

my $array_obj = bless [], $class;
my $scalar_obj = bless \$scalar, $class;
my $sub_obj = bless \&some_sub, $class;

Whereas classes built with Moose define their own object attributes declaratively, Perl 5’s default OO is lax. A class representing
basketball players which stores jersey number and positionmight use a constructor like:

package Player;

sub new
{

my ($class, %attrs) = @_;

bless \%attrs, $class;
}

. . . and create players with:

110

Objects

my $joel = Player->new(
number => 10,
position => 'center',

);

my $jerryd = Player->new(
number => 4,
position => 'guard',

);

Within the body of the class, methods can access hash elements directly:

sub format
{

my $self = shift;
return '#' . $self->{number} . ' plays ' . $self->{position} ;

}

Yet so can any code outside of the class. This violates encapsulation—in particular, it means that you can never change the
object’s internal representation without breaking external code or perpetuating ugly hacks—so it’s safer to provide accessor
methods:

sub number { return shift->{number} }
sub position { return shift->{position} }

Even with two attributes, Moose is much more appealing in terms of code you don’t have to write.

Moose’s default behavior of accessor generation encourages you to do the right thing with regard to encapsulation
as well as genericity.

Method Lookup and Inheritance
Besides instance data, the other part of objects is method dispatch. Given an object (a blessed reference), a method callof the
form:

my $number = $joel->number();

. . . looks up the name of the class associated with the blessedreference$joel. In this case, the class isPlayer. Next, Perl
looks for a function namednumber in thePlayer package. If thePlayer class inherits from another class, Perl looks in the
parent class (and so on and so on) until it finds anumber method. If one exists, Perl calls it with$joel as an invocant.

Moose classes store their inheritance information in a metamodel which provides additional abilities on top of Perl 5’sdefault
OO system.

In the default system, every class stores information aboutits parents in a package global variable named�ISA. The method
dispatcher looks in a class’s�ISA to find the names of parent classes in which to search for the appropriate method. Thus, an
InjuredPlayer class might containPlayer in its �ISA. You could write this relationship as:

package InjuredPlayer;

@InjuredPlayer::ISA = 'Player';

Many existing Perl 5 projects do this, but it’s easier and simpler to use theparent pragma instead:

package InjuredPlayer;

use parent 'Player';

111

Modern Perl

Perl 5.10 addedparent to supersede thebase pragma. If you can’t use Moose, useparent.

You may inherit from multiple parent classes:

package InjuredPlayer;

use parent qw(Player Hospital::Patient);

Perl 5 has traditionally preferred a depth-first search of parents when resolving method dispatch. That is to say, ifInjuredPlayer

inherits from bothPlayer andHospital::Patient, a method call on anInjuredPlayer instance will dispatch first to
InjuredPlayer, thenPlayer, then any ofPlayer’s parents before dispatching inHospital::Patient.

Perl 5.10 also added a pragma calledmro which allows you to use a different method resolution schemecalled C3. While the
specific details can get complex in the case of complex multiple inheritance hierarchies, the important difference is that method
resolution will visit all children of a parent before visiting the parent.

While other techniques such as roles (see Roles, page 105) andMoose method modifiers allow you to avoid multiple inheritance,
themro pragma can help avoid surprising behavior with method dispatch. Enable it in your class with:

package InjuredPlayer;

use mro 'c3';

Unless you’re writing a complex framework with multiple interoperable plugins, you likely never need to use this.

AUTOLOAD

If there is no applicable method in the invocant’s class or any of its superclasses, Perl 5 will next look for anAUTOLOAD function
in every class according to the selected method resolution order. Perl will invoke anyAUTOLOAD (see AUTOLOAD, page 85) it
finds to provide or decline the desired method.

As you might expect, this can get quite complex in the face of multiple inheritance and multiple potentialAUTOLOAD targets.

Method Overriding and SUPER

You may override methods in the default Perl 5 OO system as well as in Moose. Unfortunately, core Perl 5 provides no
mechanism for indicating yourintent to override a parent’s method. Worse yet, any function you predeclare, declare, or import
into the child class may override a method in the parent classsimply by existing and having the same name. While you may
forget to use theoverride system of Moose, you have no such protection (even optional)in the default Perl 5 OO system.

To override a method in a child class, declare a method of the same name as the method in the parent. Within an overridden
method, call the parent method with theSUPER:: dispatch hint:

sub overridden
{

my $self = shift;
warn "Called overridden() in child!";
return $self->SUPER::overridden(@_);

}

TheSUPER:: prefix to the method name tells the method dispatcher to dispatch to the named method in aparentimplementa-
tion. You may pass any arguments to it you like, but it’s safest to reuse�_.

112

Objects

Beware that this dispatcher relies on the package into whichthe overridden method was originally compiled when
redispatching to a parent method. This is a long-standing misfeature retained for the sake of backwards compati-
bility. If you export methods into other classes or compose roles into classes manually, you may run afoul of this
feature. TheSUPER module on the CPAN can work around this for you. Moose handlesit nicely as well.

Strategies for Coping with Blessed References
Avoid AUTOLOAD where possible. If youmustuse it, use forward declarations of your functions (see Declaring Functions, page
63) to help Perl know whichAUTOLOAD will provide the method implementation.

Use accessor methods rather than accessing instance data directly through the reference. This applies even within the bodies of
methods within the class itself. Generating these yourselfcan be tedious; if you can’t use Moose, consider using a module such
asClass::Aessor to avoid repetitive boilerplate.

Expect that someone, somewhere will eventually need to subclass (or delegate to or reimplement the interface of) your classes.
Make it easier for them by not assuming details of the internals of your code, by using the two-argument form ofbless, and
by breaking your classes into the smallest responsible units of code.

Do not mix functions and methods in the same class.

Use a single.pmfile for each class, unless the class is a small, self-contained helper used from a single place.

Consider using Moose andAny::Moose instead of bare-bones Perl 5 OO; they can interact with vanilla classes and objects
with ease, alleviate almost of the tedium of declaring classes, and provide more and better features.

Reflection
Reflection(or introspection) is the process of asking a program about itself as it runs. Even though you can write many useful
programs without ever having to use reflection, techniquessuch as metaprogramming (see Code Generation, page 141) benefit
from a deeper understanding of which entities are in the system.

Class::MOP (see Class::MOP, page 144) simplifies many reflection tasks for object systems, but many useful programs do not
use objects pervasively, and many useful programs do not useClass::MOP. Several idioms exist for using reflection effectively
in the absence of such a formal system. These are the most common.

Checking that a Package Exists
To check that a package exists somewhere in the system—that is, if some code somewhere has executed apakage directive
with a given name—check that the package inherits fromUNIVERSAL by testing that the package somehow provides thean()

method:

say "$pkg exists" if eval { $pkg->can('can') };

Although youmayuse packages with the names0 and''29, thean() method will throw a method invocation exception if you
use them as invocants. Theeval block catches such an exception.

You couldalso grovel through the symbol table, but this approach is quicker and easier to understand.

Checking that a Class Exists
Because Perl 5 makes no strong distinction between packagesand classes, the same technique for checking the existence of a
package works for checking that a class exists. There is no generic way for determining if a package is a class. Youcancheck
that the packagean() providenew(), but there is no guarantee that anynew() found is a method, nor a constructor.

29. . . only if you define them symbolically, as these arenot identifiers forbidden by the Perl 5 parser.

113

Modern Perl

Checking that a Module Has Loaded
If you know the name of a module, you can check that Perl believes it has loaded that module from disk by looking in the%INC

hash. This hash corresponds to�INC; when Perl 5 loads code withuse or require, it stores an entry in%INC where the key is
the file path of the module to load and the value is the full path on disk to that module. In other words, loadingModern::Perl
effectively does:

$INC{'Modern/Perl.pm'} =
'/path/to/perl/lib/site_perl/5.12.1/Modern/Perl.pm' ;

The details of the path will vary depending on your installation, but for the purpose of testing that Perl has successfully loaded
a module, you can convert the name of the module into the canonical file form and test for existence within%INC:

sub module_loaded
{

(my $modname = shift) =~ s!::!/!g;
return exists $INC{ $modname . '.pm' };

}

Nothing prevents other code from manipulating%INC itself. Depending on your paranoia level, you may check the path and the
expected contents of the package yourself. Some modules (such asTest::MokObjet or Test::MokModule) manipulate
%INC for good reasons. Code which manipulates%INC for poor reasons deserves replacing.

Checking the Version of a Module
There is no guarantee that a given module provides a version.Even so, all modules inherit fromUNIVERSAL (see The UNI-
VERSAL Package, page 139), so they all have aVERSION() method available:

my $mod_ver = $module->VERSION();

If the given module does not overrideVERSION() or contain a package variable$VERSION, the method will return an undefined
value. Likewise, if the module does not exist, the method call will fail.

Checking that a Function Exists
The simplest mechanism by which to determine if a function exists is to use thean() method on the package name:

say "$func() exists" if $pkg->can($func);

Perl will throw an exception unless$pkg is a valid invocant; wrap the method call in aneval block if you have any doubts
about its validity. Beware that a function implemented in terms ofAUTOLOAD() (see AUTOLOAD, page 85) may report the
wrong answer if the function’s package does not also overridean() correctly. This is a bug in the other package.

You may use this technique to determine if a module’simport() has imported a function into the current namespace:

say "$func() imported!" if __PACKAGE__->can($func);

You may also root around in the symbol table and typeglobs to determine if a function exists, but this mechanism is simplerand
easier to explain.

Checking that a Method Exists
There is no generic way to determine whether a given functionis a function or a method. Some functions behave as both
functions and methods; though this is overly complex and usually a mistake, it is an allowed feature.

114

Objects

Rooting Around in Symbol Tables
A Perl 5 symbol table is a special type of hash, where the keys are the names of package global symbols and the values are
typeglobs. Atypeglobis a core data structure which can contain any or all of a scalar, an array, a hash, a filehandle, and a
function. Perl 5 uses typeglobs internally when it looks up these variables.

You can access a symbol table as a hash by appending double-colons to the name of the package. For example, the symbol table
for theMonkeyGrinder package is available as%MonkeyGrinder::.

You cantest the existence of specific symbol names within a symbol table with theexists operator (or manipulate the symbol
table toaddor removesymbols, if you like). Yet be aware that certain changes to the Perl 5 core have modified what exists by
default in each typeglob entry. In particular, earlier versions of Perl 5 have always provided a default scalar variablefor every
typeglob created, while modern versions of Perl 5 do not.

See the “Symbol Tables” section inperldo perlmod for more details, then prefer the other techniques in this section for
reflection.

Advanced OO Perl
Creating and using objects in Perl 5 with Moose (see Moose, page 100) is easy.Designinggood object systems is not. Additional
capabilities for abstraction also offer possibilities forobfuscation. Only practical experience can help you understand the most
important design techniques. . . but several principles canguide you.

Favor Composition Over Inheritance
Novice OO designs often overuse inheritance for two reasons: to reuse as much code as possible and to exploit as much
polymorphism as possible. It’s common to see class hierarchies which try to model all of the behavior for entities withinthe
system in a single class. This adds a conceptual overhead to understanding the system, because you have to understand the
hierarchy. It adds technical weight to every class, becauseconflicting responsibilities and methods may obstruct necessary
behaviors or future modifications.

The encapsulation provided by classes offers better ways toorganize code. You don’t have to inherit from superclasses to pro-
vide behavior to users of objects. ACar object does not have to inherit from aVehile::Wheeled object (anis-a relationship);
it can contain severalWheel objects as instance attributes (ahas-a relationship).

Decomposing complex classes into smaller, focused entities (whether classes or roles) improves encapsulation and reduces the
possibility that any one class or role will grow to do too much. Smaller, simpler, and better encapsulated entities are easier to
understand, test, and maintain.

Single Responsibility Principle
When you design your object system, model the problem in termsof responsibilities, or reasons why each specific entity may
need to change. For example, anEmployee object may represent specific information about a person’sname, contact informa-
tion, and other personal data, while aJob object may represent business responsibilities. A simple design might conflate the
two into a single entity, but separating them allows theEmployee class to consider only the problem of managing information
specific to who the person is and theJob class to represent what the person does. (TwoEmployees may have aJob-sharing
arrangement, for example.)

When each class has a single responsibility, you can improve the encapsulation of class-specific data and behaviors and reduce
coupling between classes.

Don’t Repeat Yourself
Complexity and duplication complicate development and maintenance activities. The DRY principle (Don’t Repeat Yourself)
is a reminder to seek out and to eliminate duplication withinthe system. Duplication exists in many forms, in data as wellas in
code. Instead of repeating configuration information, user data, and other artifacts within your system, find a single, canonical
representation of that information from which you can generate all of the other artifacts.

115

Modern Perl

This principle helps to reduce the possibility that important parts of your system can get unsynchronized, and helps youto find
the optimal representation of the system and its data.

Liskov Substitution Principle
The Liskov substitution principle suggests that subtypes of a given type (specializations of a class or role or subclasses of a
class) should be substitutable for the parent type without narrowing the types of data they receive or expanding the types of
data they produce. In other words, they should be as general as or more general at what they expect and as specific as or more
specific about what they produce.

Imagine two classes,Dessert andPeanPie. The latter subclasses the former. If the classes follow theLiskov substitution
principle, you can replace every use ofDessert objects withPeanPie objects in the test suite, and everything should pass30.

Subtypes and Coercions
Moose allows you to declare and use types and extend them through subtypes to form ever more specialized descriptions of
what your data represents and how it behaves. You can use these type annotations to verify that the data on which you want to
work in specific functions or methods is appropriate and even to specify mechanisms by which to coerce data of one type to
data of another type.

SeeMoose::Util::TypeConstraints andMooseX::Types for more information.

Immutability
A common pattern among programmers new to object orientation is to treat objects as if they were bundles of records which use
methods to get and set internal values. While this is simple toimplement and easy to understand, it can lead to the unfortunate
temptation to spread the behavioral responsibilities among individual classes throughout the system.

The most useful technique to working with objects effectively is to tell them what to do, not how to do it. If you find yourself
accessing the instance data of objects (even through accessor methods), you may have too much access to the responsibilities
of the class.

One approach to preventing this behavior is to consider objects as immutable. Pass in all of the relevant configuration data to
their constructors, then disallow any modifications of this information from outside the class. Do not expose any methods to
mutate instance data.

Some designs go as far as to prohibit the modification of instance datawithin the class itself, though this is much more difficult
to achieve.

30See Reg Braithwaite’s "IS-STRICTLY-EQUIVALENT-TO-A" for more details, http://weblog.raganwald.om/2008/04/
is-stritly-equivalent-to.html.

116

http://weblog.raganwald.com/2008/04/is-strictly-equivalent-to.html
http://weblog.raganwald.com/2008/04/is-strictly-equivalent-to.html

Style and Efficacy
Programming and programmingwell are related, but distinct skills. If we only wrote programs once and never had to modify
or maintain them, if our programs never had bugs, if we never had to choose between using more memory or taking more time,
and if we never had to work with other people, we wouldn’t haveto worry about how well we program. To program well, you
must understand the differences between potential solutions based on specific priorities of time, resources, and future plans.

Writing Perl well means understanding how Perl works. It alsomeans developing a sense of good taste. To develop that skill,
you must practice writing and maintaining code and reading good code. There are no shortcuts—but you can improve the
effectiveness of your practice by following a few guidelines.

Writing Maintainable Perl
The easier your program is to understand and to modify, the better. This ismaintainability. Set aside your current program
for six months, then try to fix a bug or add a feature. The more maintainable the code, the less artificial complexity you will
encounter making changes.

To write maintainable Perl you must:

• Remove duplication.Perl offers many opportunities to use abstraction to reduceand remove duplication. Functions,
objects, roles, and modules, for example, allow you to define models of the problem and your solution.

The more duplication in your system, the more work it is to make a necessary change, and the more likely you will forget
to make a change in every place necessary. The less duplication in your system, the more likely you’ve found an effective
design for your problem. The best designs allow you to add features while removing code overall.

• Name entities well.Everything you can name in your system—functions, classes, methods, variables, modules—can aid
or hinder clarity. The ease with which you can name these entities reveals your understanding of the problem and the
cohesion of your design. Your design tells a story, and everyword you use effectively can help you remember that story
when you must later maintain the code.

• Avoid unnecessary cleverness.Novices sometimes mistake cleverness for concision. Concise code avoids unnecessary
complexity. Clever code sometimes prefers its own cleverness to simplicity. Perl offers many approaches to solve similar
problems. One form may be more readable to your team. Anothermay be faster. A third may be simpler. Where possible,
optimize for obviousness first.

You can’t always avoid the dark corners of Perl, and some problems require cleverness to solve effectively. Only good
taste and experience will help you evaluate the appropriatelevel of cleverness. As a rule of thumb, if you’re prouder
of explaining your solution to your coworkers than you are ofsolving a problem, your code may have unnecessary
complexity.

If you doneed clever code, encapsulate it behind a simple interface and document your cleverness very well.

• Embrace simplicity.Given two programs which solve the same problem, the simplest is almost always easier to maintain.
Simplicity doesn’t require you to eschew advanced Perl knowledge, or to avoid using libraries, or to pound out hundreds
of lines of procedural code.

Simplicity means that you’ve solved the problem at hand effectively without adding anything you don’t need. This is no
excuse to avoid error checking or verification or validation or security. Instead it’s a reminder to think about what’s really
important. Sometimes you don’t need frameworks, or objects, or complex data structures. Sometimes you do. Simplicity
means knowing the difference.

117

Modern Perl

Writing Idiomatic Perl
Perl steals ideas from other languages as well as from the wild world outside of programming. Perl tends to claim these ideas
by making them Perlish. To write Perl well, you must know how experienced Perl programmers write it.

• Understand community wisdom.The Perl community often debates techniques, sometimes fiercely. Yet even these dis-
agreements offer enlightenment on specific design tradeoffs and styles. You know your specific needs, but CPAN authors,
CPAN developers, your local Perl Mongers group, and other programmers have experience solving similar problems. Talk
to them. Read their public code. Ask questions. Learn from them and let them learn from you.

• Follow community norms.The Perl community isn’t always right, especially if your needs are very specific or unique,
but it works continually to solve problems as broadly as possible. Perl’s testing and packaging tools work best when you
organize your code as if you were to distribute it on the CPAN.Adopt the standard approaches to writing, documenting,
packaging, testing, and distributing your code, to take advantage of these tools.

Similarly, CPAN distributions such asPerl::Criti andPerl::Tidy andCPAN::Mini can make your work simpler
and easier.

• Read code.Join in a mailing list such as the Perl Beginners list (http://learn.perl.org/faq/beginners.html),
browse PerlMonks (http://perlmonks.org/), and otherwise immerse yourself in the Perl Community31. You’ll have
plenty of opportunities to see how other people solve their problems, good and bad. Learn from the good (it’s often
obvious) and the bad (to see what to avoid).

Writing a few lines of code to solve a problem someone else posted is a great way to learn.

Writing Effective Perl
Knowing Perl’s syntax and semantics is only the beginning. You can only achieve good design if you follow habits toencourage
good design.

• Write testable code.Perhaps the best way to ensure that you can maintain code is towrite an effective test suite. Writing
test code well exercises the same design skills as designingprograms well; never forget that test code is still code. Even
so, a good test suite will give you confidence that you can modify a program and not break existing behaviors you care
about.

• Modularize.Break your code into individual modules to enforce encapsulation and abstraction boundaries. Make a habit
of this and you’ll recognize individual units of code which do too many things. You’ll identify multiple units that work
too tightly together.

Modularity also forces you to manage different levels of abstraction; you must consider how the entities of your sys-
tem work together. There’s no better way to learn the value ofabstraction than having to revise systems into effective
abstractions.

• Take advantage of the CPAN.The single best force multiplier for any Perl 5 program is theamazing library of reusable
code available for anyone to use. Thousands of developers have written tens of thousands of modules to solve more
problems than you can imagine, and the CPAN only continues togrow. Community standards for documentation, for
packaging, for installation, and for testing contribute tothe quality of the code, and the CPAN’s centrality in modern Perl
has helped the Perl community grow in knowledge, in wisdom, and in efficacy.

Whenever possible, search the CPAN first—and ask your fellow community members—for advice on solving your prob-
lems. You may even report a bug, or submit a patch, or produce your own distribution on the CPAN. Nothing demonstrates
you’re an effective Perl programmer more than helping otherpeople solve their problems.

• Establish sensible coding standards.Effective guidelines establish policies for error handling, security, encapsulation,
API design, project layout, and other maintainability concerns. Excellent guidelines evolve as you and your team under-
stand each other and your projects better. The goal of programming is to solve problems, and the goal of coding standards
is to help you communicate your intentions clearly.

31Seehttp://www.perl.org/ommunity.html for more links.

118

http://learn.perl.org/faq/beginners.html
http://perlmonks.org/
http://www.perl.org/community.html

Style and Efficacy

Exceptions
Programming would be simpler if everything always worked asintended. Unfortunately, files you expect to exist don’t. Some-
times you run out of disk space. Your network connection vanishes. The database stops accepting new data.

Exceptional cases happen, and robust software must handle those exceptional conditions. If you can recover, great! If you can’t,
sometimes the best you can do is retry or at least log all of therelevant information for further debugging. Perl 5 handles
exceptional conditions through the use ofexceptions: a dynamically-scoped form of control flow that lets you handle errors in
the most appropriate place.

Throwing Exceptions
Consider the case where you need to open a file for logging. Ifyou cannot open the file, something has gone wrong. Usedie

to throw an exception:

sub open_log_file
{

my $name = shift;
open my $fh, '>>', $name

or die "Can't open logging file '$name': $!";
return $fh;

}

die() sets the global variable$� to its argument and immediately exits the current functionwithout returning anything. If the
calling function does not explicitly handle this exception, the exception will propagate upwards to every caller untilsomething
handles the exception or the program exits with an error message.

This dynamic scoping of exception throwing and handling is the same as the dynamic scoping ofloal symbols
(see Dynamic Scope, page 74).

Catching Exceptions
Uncaught exceptions eventually terminate the program. Sometimes this is useful; a system administration program run from
cron (a Unix jobs scheduler) might throw an exception when the error logs have filled; this could page an administrator that
something has gone wrong. Yet many other exceptions should not be fatal; good programs can recover from them, or at least
save their state and exit more cleanly.

To catch an exception, use the block form of theeval operator:

log file may not open
my $fh = eval { open_log_file('monkeytown.log') };

As with all blocks, the block argument toeval introduces a new scope. If the file open succeeds,$fh will contain the filehandle.
If it fails, $fh will remain undefined, and Perl will move on to the next statement in the program.

If open_log_file() called other functions which called other functions, and ifone of those functions threw its own exception,
this eval could catch it, if nothing else did. There is no requirement that your exception handlers catch only those exceptions
you expect.

To check which exception you’ve caught (or if you’ve caught an exception at all), check the value of$�:

log file may not open
my $fh = eval { open_log_file('monkeytown.log') };

caught exception
if ($@) { ... }

Of course,$� is aglobal variable. For optimal safety,loalize its value before you attempt to catch an exception:

119

Modern Perl

local $@;

log file may not open
my $fh = eval { open_log_file('monkeytown.log') };

caught exception
if ($@) { ... }

You may check the string value of$� against expected exceptions to see if you can handle the exception or if you should throw
it again:

if (my $exception = $@)
{

die $exception unless $exception =~ /^Can't open logging fi le/;
$fh = log_to_syslog();

}

Copy$� to $exeption to avoid the possibility of subsequent code clobbering the global variable$�. You never
know what else has used aneval block elsewhere and reset$�.

Rethrow an exception by callingdie() again, passing$�.

You may find the idea of using regular expressions against the value of$� distasteful; you can also use anobjectwith die.
Admittedly, this is rare.$� cancontain any arbitrary reference, but in practice it seems tobe 95% strings and 5% objects.

As an alternative to writing your own exception system, see the CPAN distributionExeption::Class.

Exception Caveats
Using$� correctly can be tricky; the global nature of the variable leaves it open to several subtle flaws:

• Unloalized uses further down the dynamic scope may reset its value

• The destruction of any objects at scope exit from exceptionthrowing may calleval and change its value

• It may contain an object which overrides its boolean value to return false

• A signal handler (especially theDIE signal handler) may change its value when you do not expect it

Writing a perfectly safe and sane exception handler is difficult. TheTry::Tiny distribution from the CPAN is short, easy to
install, easy to understand, and very easy to use:

use Try::Tiny;

my $fh = try { open_log_file('monkeytown.log') }
catch { ... };

Not only is the syntax somewhat nicer than the Perl 5 default,but the module handles all of those edge cases for you without
your knowledge.

Built-in Exceptions
Perl 5 has several exceptional conditions you can catch withaneval block.perldo perldiag lists them as “trappable fatal
errors”. Most are syntax errors thrown during compilation.Others are runtime errors. Some of these may be worth catching;
syntax errors rarely are. The most interesting or likely exceptions occur for:

• Using a disallowed key in a locked hash (see Locking Hashes,page 46)

• Blessing a non-reference (see Blessed References, page 110)

• Calling a method on an invalid invocant (see Moose, page 100)

120

Style and Efficacy

• Failing to find a method of the given name on the invocant

• Using a tainted value in an unsafe fashion (see Taint, page 146)

• Modifying a read-only value

• Performing an invalid operation on a reference (see References, page 50)

If you have enabled fatal lexical warnings (see RegisteringYour Own Warnings, page 128), you can catch the exceptions they
throw. The same goes for exceptions fromautodie (see The autodie Pragma, page 167).

Pragmas
Perl 5’s extension mechanism is modules (see Modules, page 134). Most modules provide functions to call or they define
classes (see Moose, page 100), but some modules instead influence the behavior of the language itself.

A module which influences the behavior of the compiler is apragma. By convention, pragmas have lower-case names to
differentiate them from other modules. You’ve heard of somebefore:strit andwarnings, for example.

Pragmas and Scope
A pragma works by exporting specific behavior or information into the enclosing static scope. The scope of a pragma is the
same as the scope of a lexical variable. In a way, you can thinkof lexical variable declaration as a sort of pragma with funny
syntax. Pragma scope is clearer with an example:

{
$lexical is not visible; strict is not in effect
{

use strict;
my $lexical = 'available here';
$lexical is visible; strict is in effect
...

}
$lexical is again not visible; strict is not in effect

}

A sufficiently motivated Perl guru could implement a poorly-behaved pragma which ignores scoping, but that
would be unneighborly.

Just as lexical declarations affect inner scopes, so do pragmas maintain their effects on inner scopes:

file scope
use strict;

{
inner scope, but strict still in effect
my $inner = 'another lexical';
...

}

Using Pragmas
Pragmas have the same usage mechanism as modules. As with modules, you may specify the desired version number of the
pragma and you may pass a list of arguments to the pragma to control its behavior at a finer level:

require variable declarations; prohibit bareword functi on names
use strict qw(subs vars);

Within a scope you may disable all or part of a pragma with theno builtin:

121

Modern Perl

use strict;

{
get ready to manipulate the symbol table
no strict 'refs';
...

}

Useful Core Pragmas
Perl 5 includes several useful core pragmas:

• the strit pragma enables compiler checking of symbolic references, the use of barewords, and the declaration of
variables

• thewarnings pragma enables optional warnings for deprecated, unintended, and awkward behaviors that are notneces-
sarily errors but may produce unwanted behaviors

• theutf8 pragma enables the use of the UTF-8 encoding of source code

• theautodie pragma (new in 5.10.1) enables automatic error checking of system calls and builtins, reducing the need for
manual error checking

• theonstant pragma allows you to create compile-time constant values (though seeReadonly from the CPAN for an
alternative)

• thevars pragma allows you to declare package global variables, suchas$VERSION or those for exporting (see Exporting,
page 136) and manual OO (see Blessed References, page 110)

Several useful pragmas exist on the CPAN as well. Two worth exploring in detail areautobox, which enables object-like
behavior for Perl 5’s core types (scalars, references, arrays, and hashes) andperl5i, which combines and enables many
experimental language extensions into a coherent whole. These two pragmas may not belong yet in your production code
without extensive testing and thoughtful consideration, but they demonstrate the power and utility of pragmas.

Perl 5.10.0 added the ability to write your own lexical pragmas in pure Perl code.perldo perlpragma explains how to do
so, while the explanation of$^H in perldo perlvar explains how the feature works.

122

Managing Real Programs
Writing simple example programs to solve example problems ina book helps you learn a language in the small. Yet writing real
programs requires more than learning the syntax of a language, or its design principles, or even how to find and use its libraries.

Practical programming requires you to manage code: to organize it, to know that it works, to make it robust in the face of errors
of logic or intent, and to do all of this in a concise, clear, and maintainable fashion. Fortunately, modern Perl providesmany
tools and techniques to write real programs—from testing to the organization of your source code.

Testing
Testingis the process of writing and running automated verifications that your software behaves as intended, in whole or in
part. At its heart, this is an automation of a process you’ve performed countless times already: write a bit of code, run it, and see
if it works. The difference is in theautomation. Rather than relying on humans to perform each manual check perfectly every
time, let the computer handle the repetition.

Perl 5 provides great tools to help you write good and useful automated tests.

Test::More

Perl testing begins with the core moduleTest::More and itsok() function.ok() takes two parameters, a boolean value and
a string describing the purpose of the test:

ok(1, 'the number one should be true');
ok(0, '... and the number zero should not');
ok('', 'the empty string should be false');
ok('!', '... and a non-empty string should not');

Ultimately, any condition you can test for in your program should become a binary value. Does the code work as I intended?
A complex program may have thousands of these individual conditions. In general, the smaller the granularity the better. The
purpose of writing individual assertions is to isolate individual features to understand what doesn’t work as you intended and
what ceases to work after you make changes in the future.

This snippet isn’t a complete test script, however.Test::More and related modules require the use of atest plan, which
represents the number of individual tests you plan to run:

use Test::More tests => 4;

ok(1, 'the number one should be true');
ok(0, '... and the number zero should not');
ok('', 'the empty string should be false');
ok('!', '... and a non-empty string should not');

Thetests argument toTest::More sets the test plan for the program. This gives the test an additional assertion. If fewer than
four tests ran, something went wrong. If more than four testsran, something went wrong. That assertion is unlikely to be useful
in this simple scenario, but itcancatch bugs in code that seems too simple to have errors32.

32As a rule, any code you brag about being too simple to contain errors will contain errors at the least opportune moment.

123

Modern Perl

You don’t have to providetests => ... as animport() argument. At the end of your test program, call the
functiondone_testing(). While a plan at the start with a fixed number of tests can verify that you ran only the
expected number of tests, sometimes it’s difficult or painful to verify that number. In those cases,done_testing()

verifies that the test program completed successfully—otherwise, how would youknow?

Running Tests

The resulting program is now a full-fledged Perl 5 program which produces the output:

1..4

ok 1 - the number one should be true
not ok 2 - ... and the number zero should not
Failed test '... and the number zero should not'
at truth_values.t line 4.
not ok 3 - the empty string should be false
Failed test 'the empty string should be false'
at truth_values.t line 5.
ok 4 - ... and a non-empty string should not
Looks like you failed 2 tests of 4.

This format adheres to a standard of test output calledTAP, theTest Anything Protocol(http://testanything.org/). As
part of this protocol, failed tests produce diagnostic messages. This is a tremendous aid to debugging.

The output of a test file containing multiple assertions (especially multiplefailed assertions) can be verbose. In most cases,
you want to know either that everything passed or that x, y, and z failed. The core moduleTest::Harness interprets TAP and
displays only the most pertinent information. It also provides a program calledprove which takes the hard work out of the
process:

$ prove truth_values.t
truth_values.t .. 1/4
Failed test '... and the number zero should not'
at truth_values.t line 4.

Failed test 'the empty string should be false'
at truth_values.t line 5.
Looks like you failed 2 tests of 4.
truth_values.t .. Dubious, test returned 2 (wstat 512, 0x20 0)
Failed 2/4 subtests

Test Summary Report

truth_values.t (Wstat: 512 Tests: 4 Failed: 2)

Failed tests: 2-3

That’s a lot of output to display what is already obvious: thesecond and third tests fail because zero and the empty string
evaluate to false. It’s easy to fix that failure by invertingthe sense of the condition with the use of boolean coercion (see
Boolean Coercion, page 47):

ok(! 0, '... and the number zero should not');
ok(! '', 'the empty string should be false');

With those two changes,prove now displays:

$ prove truth_values.t
truth_values.t .. ok
All tests successful.

124

http://testanything.org/

Managing Real Programs

Better Comparisons
Even though the heart of all automated testing is the booleancondition “is this true or false?”, reducing everything to that
boolean condition is tedious and offers few diagnostic possibilities. Test::More provides several other convenient functions
to ensure that your code behaves as you intend.

Theis() function compares two values using theeq operator. If the values are equal, the test passes. Otherwise, the test fails
and provides a relevant diagnostic message:

is(4, 2 + 2, 'addition should hold steady across the universe ');
is('pancake', 100, 'pancakes should have a delicious numer ic value');

As you might expect, the first test passes and the second fails:

t/is_tests.t .. 1/2
Failed test 'pancakes should have a delicious numeric valu e'
at t/is_tests.t line 8.
got: 'pancake'
expected: '100'
Looks like you failed 1 test of 2.

Whereok() only provides the line number of the failing test,is() displays the mismatched values.

is() applies implicit scalar context to its values. This means, for example, that you can check the number of elements in an
array without explicitly evaluating the array in scalar context:

my @cousins = qw(Rick Kristen Alex Kaycee Eric Corey);
is(@cousins, 6, 'I should have only six cousins');

. . . though some people prefer to writesalar �ousins for the sake of clarity.

Test::More provides a correspondingisnt() function which passes if the provided values are not equal (according to thene
operator). Otherwise, it behaves the same way asis() with respect to scalar context and comparison types.

Bothis() andisnt() applystring comparisonswith the Perl 5 operatorseq andne. This almost always does the right thing,
but for complex values such as objects with overloading (seeOverloading, page 145) or dual vars (see Dualvars, page 48),you
may prefer explicit comparison testing. Themp_ok() function allows you to specify your own comparison operator:

cmp_ok(100, $cur_balance, '<=', 'I should have at least $10 0');
cmp_ok($monkey, $ape, '==', 'Simian numifications should agree');

Classes and objects provide their own interesting ways to interact with tests. Test that a class or object extends another class
(see Inheritance, page 106) withisa_ok():

my $chimpzilla = RobotMonkey->new();
isa_ok($chimpzilla, 'Robot');
isa_ok($chimpzilla, 'Monkey');

isa_ok() provides its own diagnostic message on failure.

an_ok() verifies that a class or object can do the requested method (or methods):

can_ok($chimpzilla, 'eat_banana');
can_ok($chimpzilla, 'transform', 'destroy_tokyo');

Theis_deeply() function compares two references to ensure that their contents are equal:

use Clone;

my $numbers = [4, 8, 15, 16, 23, 42];
my $clonenums = Clone::clone($numbers);

is_deeply($numbers, $clonenums,
'Clone::clone() should produce identical structures');

125

Modern Perl

If the comparison fails,Test::More will do its best to provide a reasonable diagnostic indicating the position of the first
inequality between the structures. See the CPAN modulesTest::Differenes andTest::Deep for more configurable tests.

Test::More has several more test functions, but these are the most useful.

Organizing Tests
testing; testing; CPAN’s infrastructure and ecosystem expects distributions to include at/ containing one or more test files
named with the.t suffix. By default, when you build a distribution withModule::Build or ExtUtils::MakeMaker, the
testing step runs all of thet/*.t files, summarizes their output, and succeeds or fails on theresults of the test suite as a whole.
There are no concrete guidelines on how to manage the contents of individual.t files, though two strategies are popular:

• Each.t file should correspond to a.pmfile

• Each.t file should correspond to a feature

The important considerations are maintainability of the test files, as larger files are more difficult to maintain than smaller files,
and the granularity of the test suite. A hybrid approach is the most flexible; one test can verify that all of your modules compile,
while other tests verify that each module behaves as intended.

It’s often useful to run tests only for a specific feature under development. If you’re adding the ability to breathe fireto your
RobotMonkey, you may want only to run thet/breathe_fire.ttest file. When you have the feature working to your satisfaction,
run the entire test suite to verify that local changes have nounintended global effects.

Other Testing Modules
Test::More relies on a testing backend known asTest::Builder. The latter module manages the test plan and coordinates
the test output into TAP. This design allows multiple test modules to share the sameTest::Builder backend. Consequently,
the CPAN has hundreds of test modules available—and they can all work together in the same program.

• Test::Exeption provides functions to ensure that your code throws (and doesnot throw) exceptions appropriately.

• Test::MokObjet andTest::MokModule allow you to test difficult interfaces bymocking(emulating but producing
different results).

• Test::WWW::Mehanize allows you to test live web applications.

• Test::Database provides functions to test the use and abuse of databases.

• Test::Class offers an alternate mechanism for organizing test suites. It allows you to create classes in which specific
methods group tests. You can inherit from test classes just as your code classes inherit from each other. This is an
excellent way to reduce duplication in test suites. See theTest::Class series written by Curtis Poe athttp://www.
modernperlbooks.om/mt/2009/03/organizing-test-suites-with-testlass.html.

• Test::Differenes tests strings and data structures for equality and displaysany differences in its diagnostics.

• Test::Deep tests the equivalence of nested data structures (see NestedData Structures, page 55).

• Devel::Cover analyzes the execution of your test suite to report on the amount of your code your tests actually exercises.
In general, the more coverage the better—though 100% coverage is not always possible, 95% is far better than 80%.

The Perl QA project (http://qa.perl.org/) is a primary source of test modules as well as wisdom and practical experience
making testing in Perl easy and effective.

Handling Warnings
Perl 5 produces optional warnings for many confusing, unclear, and ambiguous situations. Even though you should almostal-
ways enable warnings unconditionally, certain circumstances dictate prudence in disabling certain warnings—and Perlsupports
this.

126

http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html
http://www.modernperlbooks.com/mt/2009/03/organizing-test-suites-with-testclass.html
http://qa.perl.org/

Managing Real Programs

Producing Warnings
Use thewarn builtin to emit a warning:

warn 'Something went wrong!';

warn prints a list of values to the STDERR filehandle (see Input and Output, page 129). Perl will append the filename and line
number on which thewarn call occurred unless the last element of the list ends in a newline.

The coreCarp module offers other mechanisms to produce warnings. Itsarp() function reports a warning from the perspec-
tive of the calling code. That is, you could check the arity ofa function (see Arity, page 59) with:

use Carp;

sub only_two_arguments
{

my ($lop, $rop) = @_;
Carp::carp('Too many arguments provided') if @_ > 2;
...

}

. . . and anyone who reads the error message will receive the filename and line number of thecalling code, notonly_two_-
arguments(). Similarly,Carp’s luk() produces an entire backtrace of all function calls up to the current function.

To track down weird warnings or exceptions throughout your system, enableCarp’s verbose mode throughout the entire pro-
gram:

$ perl -MCarp=verbose my_prog.pl

This changes allarp() (androak()—see Reporting Errors, page 67) calls to include a backtrace.When you organize your
code into modules (see Modules, page 134), use Carp instead of warn or die to save debugging time.

Enabling and Disabling Warnings
Lexical encapsulation of warnings is as important as lexical encapsulation of variables. Older code may use the-w command-
line argument to enable warnings throughout the program, even if other code has not specifically attempted to suppress warn-
ings. It’s all or nothing. If you have the wherewithal to eliminate warnings and potential warnings throughout the entire code-
base, this can be useful.

The modern approach is to use thewarnings pragma33, which indicates the intent of the author of the code that normal
operation should not produce warnings.

The -W flag enables warnings throughout the program unilaterally, regardless of lexical enabling or disabling
through thewarnings pragma. The-X flag disableswarnings throughout the program unilaterally. Neither is
common.

All of -w, -W, and-X affect the value of the global variable$^W. Code written before thewarnings pragma (Perl 5.6.0 in spring
2000) mayloalize$^W to suppress certain warnings within a given scope. New code should use the pragma instead.

Disabling Warning Categories
To disable selective warnings within a scope, useno warnings; with an argument list. Omitting the argument list disables all
warnings within that scope.

33. . . or an equivalent such asuse Modern::Perl;.

127

Modern Perl

perldo perllexwarn lists all of the warnings categories your version of Perl 5 understands with thewarnings pragma.
Most of them represent truly interesting conditions which Perl may find in your program. A few may be unhelpful in specific
conditions. For example, thereursion warning will occur if Perl detects that a function has calleditself more than a hundred
times. If you are confident in your ability to write recursion-ending conditions, you may disable this warning within the scope
of the recursion (though tail calls may be better; see Tail Calls, page 70).

If you’re generating code (see Code Generation, page 141) orlocally redefining symbols, you may wish to disable theredefine

warnings.

Some experienced Perl hackers disable theuninitialized value warnings in string-processing code which concatenates
values from many sources. Careful initialization of variables can avoid the need to disable the warning, but local styleand
concision may render this warning moot.

Making Warnings Fatal
If your project considers warnings as onerous as errors, youcan make them lexically fatal. To promoteall warnings into
exceptions:

use warnings FATAL => 'all';

You may also make specific categories of warnings fatal, such as the use of deprecated constructs:

use warnings FATAL => 'deprecated';

Catching Warnings

Just as you can catch exceptions, so you can catch warnings. The%SIG variable34 holds handlers for all sorts of signals Perl or
your operating system might throw. It also includes two slots for signal handlers for Perl 5 exceptions and warnings. To catch a
warning, install an anonymous function into$SIG{__WARN__}:

{
my $warning;
local $SIG{__WARN__} = sub { $warning .= shift };

do something risky
...

say "Caught warning:\n$warning" if $warning;
}

Within the warning handler, the first argument is the warning’s message. Admittedly, this technique is less useful thandisabling
warnings lexically—but it can come to good use in test modulessuch asTest::Warnings from the CPAN, where the actual
text of the warning is important.

Registering Your Own Warnings
With the use of thewarnings::register pragma you can even create your own lexical warnings so that users of your code can
enable and disable lexical warnings as appropriate. This iseasy to accomplish; from a module,use thewarnings::register
pragma:

package Scary::Monkey;

use warnings::register;

1;

34Seeperldo perlvar.

128

Managing Real Programs

This will create a new warnings category named after the packageSary::Monkey. Enable these warnings withuse warnings

'Sary::Monkey' and disable them withno warnings 'Sary::Monkey'.

Usewarnings::enabled() to test if the calling lexical scope has the given warning category enabled. Usewarnings::-
warnif() to produce a warning only if warnings are in effect. For example, to produce a warning in thedepreated category:

package Scary::Monkey;

use warnings::register;

sub import
{

warnings::warnif('deprecated',
'empty imports from ' . __PACKAGE__ . ' are now deprecated')
unless @_;

}

1;

Seeperldo perllexwarn for more details.

Files
Most programs deal with the outside world in some fashion, and much of that interaction takes place with files: reading them,
writing them, manipulating them in some other fashion. Perl’s early history as a language for system administration andtext
processing has produced a language very well suited for filemanipulation.

Input and Output
The primary mechanism of interacting with the world outsideof a program is through afilehandle. Filehandles represent the
state of some channel of input or output, such as the standardinput or output of a program, a file from or to which to read or
write, and the position in a given file. Every Perl 5 program has three standard filehandles available,STDIN (the input to the
program),STDOUT (the output from the program), andSTDERR (the error output from the program).

By default, everything youprint or say goes toSTDOUT, while errors and warnings and everything youwarn() goes to
STDERR. This separation of output allows you to redirect useful output and errors to two different places—an output file and
error logs, for example.

The specialDATA filehandle represents the current file. When Perl finishes compiling the file, it leaves the package
globalDATA available and open at the end of the compilation unit. If you store string data after__DATA__ or _-
_END__, you can read that from theDATA filehandle. This is useful for short, self-contained programs.perldo
perldata describes this feature in more detail.

Besides the standard filehandles, you can open your own filehandles with theopen builtin. To open a file for reading:

open my $fh, '<', 'filename'
or die "Cannot read '$filename': $!\n";

The first operand is a lexical which will hold the opened filehandle. The second operand is thefile mode, which determines
the type of the filehandle operation. The final operand is the name of the file. If theopen fails, thedie clause will throw an
exception, with the contents of$! giving the reason why the open failed.

Besides files, you can open filehandles to scalars:

use autodie; # see The autodie Pragma, page 167

my $captured_output;
open my $fh, '>', \$captured_output;

do_something_awesome($fh);

129

Modern Perl

Table 1: File Modes

Symbols Explanation
< Open for reading
> Open for writing, clobbering existing contents if

the file exists and creating a new file otherwise.
>> Open for writing, appending to any existing con-

tents and creating a new file otherwise.
+< Open for readingandwriting.

Such filehandles support all of the existing file modes.

You may encounter older code which uses the two-argument form of open():

open my $fh, "> $some_file"
or die "Cannot write to '$some_file': $!\n";

The lack of clean separation between the intended file mode and the name of the file allows the possibility of unintentional
behaviors35 when interpolating untrusted input into the second operand. You can safely replace the two-argument form of open
with the three-argument form in every case without any loss of feature.

perldo perlopentut offers far more details about more exotic uses ofopen, including its ability to launch and control other
processes, as well as the use ofsysopen for finer-grained control over input and output.perldo perlfaq5 includes working
code for many common IO tasks.

Reading from Files

Given a filehandle opened for input, read from it with thereadline operator, also written as<>. The most common idiom is
to read a line at a time in awhile() loop:

use autodie;

open my $fh, '<', 'some_file';

while (<$fh>)
{

chomp;
say "Read a line '$_'";

}

In scalar context,readline iterates through the lines of the file until it reaches the end of the file (eof()). Each iteration
returns the next line. After reaching the end of the file, each iteration returnsundef. This while idiom explicitly checks the
definedness of the variable used for iteration, such that only the end of file condition ends the loop.

Every line read fromreadline includes the character or characters which mark the end of a line. In most cases, this is a
platform-specific sequence consisting of a newline (\n), a carriage return (\r), or a combination of the two (\r\n). Usehomp
to remove your platform’s specific newline sequence.

With everything all together, the cleanest way to read from files in Perl 5 is:

use autodie;

open my $fh, '<', $filename;

while (my $line = <$fh>)

35When you read that phrase, train yourself to think “I wonder ifthat might produce security problems?”

130

Managing Real Programs

{
chomp $line;
...

}

If you’re not readingtextualdata—instead readingbinarydata—usebinmode on the filehandle before reading from or writing
to it. This builtin tells Perl to treat all of the filehandle’s data as pure data. Perl will not modify it in any fashion, as it might for
platform portability. Although Unix-like platforms may not to needbinmode in this case, portable programs use it anyway (see
Unicode and Strings, page 17).

Writing to Files

Given a filehandle open for output, you mayprint or say to it:

use autodie;

open my $out_fh, '>', 'output_file.txt';

print $out_fh "Here's a line of text\n";
say $out_fh "... and here's another";

Note the lack of comma between the filehandle and the subsequent operand.

Damian Conway’sPerl Best Practicesrecommends enclosing the filehandle in curly braces as a habit. This is
necessary to disambiguate parsing of a filehandle contained in an aggregate variable, and it won’t hurt anything in
the simpler cases.

You may write an entire list of values toprint or say, in which case Perl 5 uses the magic global$, as the separator between
list values. Perl also uses any value of$\ as the final argument toprint or say.

Closing Files

When you’ve finished working with a file, you maylose it explicitly or allow its filehandle to go out of scope, in which case
Perl will close it for you. The benefit of callinglose explicitly is that you can check for—and recover from—specific errors,
such as running out of space on a storage device or a broken network connection.

As usual,autodie handles these checks for you:

use autodie;

open my $fh, '>', $file;

...

close $fh;

Special File Handling Variables

For every line read, Perl 5 increments the value of the variable $., which serves as a line counter.

readline uses the current contents of$/ as the line-ending sequence. The value of this variable defaults to the most appropriate
line-ending character sequence for text files on your current platform. In truth, the wordline is a misnomer. You can set$/ to
contain any sequence of characters36. This is useful for highly-structured data in which you wantto read arecordat a time.

By default, Perl usesbuffered output, where it performs IO only when it has enough data to exceed a threshold. This allows
Perl to batch up expensive IO operations instead of always writing very small amounts of data. Yet sometimes you want to send

36. . . but never a regular expression, because Perl 5 does not support that.

131

Modern Perl

data as soon as you have it without waiting for that buffering—especially if you’re writing a command-line filter connected to
other programs or a line-oriented network service.

The$| variable controls buffering on the currently active outputfilehandle. When set to a non-zero value, Perl will flush the
output after each write to the filehandle. When set to a zero value, Perl will use its default buffering strategy.

In lieu of the global variable, use theautoflush() method on a lexical filehandle. Be sure to loadFileHandle first, as you
cannot call methods on lexical filehandles otherwise:

use autodie;
use FileHandle;

open my $fh, '>', 'pecan.log';
$fh->autoflush(1);

...

Once you have loadedFileHandle, you may also use itsinput_line_number() andinput_reord_separator() meth-
ods instead of$. and$/ respectively. Seeperldo FileHandle andperldo IO::Handle for more information.

IO::File has supersededFileHandle in Perl 5.12.

Directories and Paths
You may also manipulate directories and file paths with Perl5. Working with directories is similar to working with files, except
that you cannotwrite to directories37. Open a directory handle withopendir:

use autodie;

opendir my $dirh, '/home/monkeytamer/tasks/';

Thereaddir builtin reads from a directory. As withreadline, you may iterate over the contents of directories one at a time
or you may assign them to a list in one swoop:

iteration
while (my $file = readdir $dirh)
{

...
}

flattening into a list
my @files = readdir $otherdirh;

As a new feature available in 5.12,readdir in awhile will set $_, just as doesreadline in while:

use 5.012;
use autodie;

opendir my $dirh, 'tasks/circus/';

while (readdir $dirh)
{

next if /^\./;
say "Found a task $_!";

}

37Instead, you save and move and rename and remove files.

132

Managing Real Programs

The curious regular expression in this example skips so-called hidden fileson Unix and Unix-like systems, where a leading
dot prevents them from appearing in directory listings by default. It also skips two special files returned from everyreaddir

invocation, specifically. and.., which represent the current directory and the parent directory, respectively.

The names returned fromreaddir are relative to the directory itself. In other words, if thetasks/directory contains three
files namedeat, drink, andbe_monkey, readdir will return eat, drink, andbe_monkey andnot tasks/eat, tasks/drink, and
task/be_monkey. In contrast, anabsolutepath is a path fully qualified to its filesystem.

Close a directory handle by letting it go out of scope or with thelosedir builtin.

Manipulating Paths

Perl 5 offers a Unixy view of the world, or at least your filesystem. Even if you aren’t using a Unix-like platform, Perl
will interpret Unix-style paths appropriately for your operating system and filesystem. In other words, if you’re using Mi-
crosoft Windows, you can use the pathC:/My Documents/Robots/Bender/just as easily as you can use the pathC:\My
Documents\Robots\Caprica Six\.

Even so, manipulating file paths in a safe and cross-platform manner suggests that you avoid string interpolation and concate-
nation. The coreFile::Spe module family provides abstractions to allow you to manipulate file paths in safe and portable
fashions. Even so, it’s not always easy to understand or to use correctly.

ThePath::Class distribution on the CPAN provides a nicer interface aroundFile::Spe. Use thedir() function to create
an object representing a directory and thefile() function to create an object representing a file:

use Path::Class;

my $meals = dir('tasks', 'cooking');
my $file = file('tasks', 'health', 'exoskeleton_research .txt');

. . . and you can get file objects from directories:

my $lunch = $meals->file('veggie_calzone.txt');

. . . and vice versa:

my $robots_dir = $robot_list->dir();

You can even open filehandles to directories and files:

my $dir_fh = $dir->open();
my $robots_fh = $robot_list->open('r') or die "Open failed : $!";

BothPath::Class::Dir andPath::Class::File offer further useful behaviors.

File Manipulation
Besides reading and writing files, you can also manipulate them as you would directly from a command line or a file manager.
The-X file test operators can give you information about the attributes of files and directories on your system. For example, to
test that a file exists:

say 'Present!' if -e $filename;

The -e operator has a single operand, the name of a file or a file or directory handle. If the file exists, the expression will
evaluate to a true value.perldo -f -X lists all other file tests; the most popular are:

-f, which returns a true value if its operand is a plain file

-d, which returns a true value if its operand is a directory

133

Modern Perl

-r, which returns a true value if the file permissions of its operand permit reading by the current user

-z, which returns a true value if its operand is a non-empty file

As of Perl 5.10.1, you may look up the documentation for any ofthese operators withperldo -f -r, for example.

Therename builtin can rename a file or move it between directories. It takes two operands, the old name of the file and the new
name:

use autodie;

rename 'death_star.txt', 'carbon_sink.txt';

or if you're stylish:
rename 'death_star.txt' => 'carbon_sink.txt';

There’s no core builtin to copy a file, but the coreFile::Copy module provides bothopy() andmove() functions. Use
unlink to remove one or more files. These functions and builtins allreturn true values on success and set$! on error.

Path::Class provides convenience methods to check certain file attributes as well as to remove files completely,
in a cross-platform fashion.

Finally, Perl allows you to change its notion of the current directory. By default, this is the active directory from where you
launched the program. The coreCwd module allows you to determine this. The builtinhdir attempts to change the current
working directory. This can be useful for manipulating files with relative—not absolute—paths.

Modules
A moduleis a package contained in its own file and loadable withuse or require. A module must be valid Perl 5 code. It must
end with an expression which evaluates to a true value so thatthe Perl 5 parser knows it has loaded and compiled the module
successfully.

There are no other requirements, only strong conventions.

Packages correspond to files on disk in that when you load a module withuse or require’s bareword form, Perl splits the
package name on double-colons (::) and turns the components of the package name into a file path. Thus:

use StrangeMonkey;

. . . causes Perl to search for a file namedStrangeMonkey.pmin every directory in�INC, in order, until it finds one or exhausts
the list. As well:

use StrangeMonkey::Persistence;

. . . causes Perl to search for a file namedPersistene.pm in every directory namedStrangeMonkey/present in every directory
in �INC, and so on. Finally:

use StrangeMonkey::UI::Mobile;

. . . causes Perl to search for a relative file path ofStrangeMonkey/UI/Mobile.pmin every directory in�INC. There is no
technical requirement that the file at that location contain anypakage declaration, let alone apakage declaration of
StrangeMonkey::UI::Mobile. Maintenance concerns highly recommend that convention, however.

134

Managing Real Programs

perldo -l Module::Name will print the full path to the relevant.pmfile, provided that thedocumentationfor
that module exists in the.pmfile.

Using and Importing
When you load a module with theuse builtin, Perl loads it from disk, then calls itsimport() method, passing any arguments
you provided. This occurs at compilation time:

use strict; # calls strict->import()
use CGI ':standard'; # calls CGI->import(':standard')
use feature qw(say switch) # calls feature->import(qw(say switch))

You do not have to provide animport() method, and you may use it to do anything you wish, but the standard API expectation
is that it takes a list of arguments of symbols (usually functions) to make available in the calling namespace. This is nota strong
requirement; pragmas (see Pragmas, page 121) such asstrit use arguments to change their behavior instead of exporting
symbols.

Theno builtin calls a module’sunimport() method, if it exists, passing any arguments. While it’s possible to remove exported
symbols, it’s more common to disable specific features of pragmas and other modules which introduce new behaviors through
import():

use strict;

no symbolic references, variable declaration required, n o barewords
...

{
no strict 'refs';

symbolic references allowed
variable declaration still required; barewords prohibit ed

}

Like use andimport(), no callsunimport() during compilation time. Effectively:

use Module::Name qw(list of arguments);

. . . is the same as:

BEGIN
{

require 'Module/Name.pm';
Module::Name->import(qw(list of arguments));

}

Similarly:

no Module::Name qw(list of arguments);

. . . is the same as:

BEGIN
{

require 'Module/Name.pm';
Module::Name->unimport(qw(list of arguments));

}

135

Modern Perl

If import() or unimport() does not exist in the module, Perl will not give an error message. They are truly
optional.

. . . including therequire of the module.

You may callimport() andunimport() directly, though it makes little sense to unimport a pragma outside of aBEGIN block,
as they often have compilation-time effects.

Perl 5’suse andrequire are case-sensitive, even if the underlying filesystem is not. While Perl knows the difference between
strit andStrit, your combination of operating system and file system may not. If you were to writeuse Strit;, Perl
would not findstrict.pmon a case-sensitive filesystem. With a case-insensitive filesystem, Perl will happily loadStrict.pm, but
will try to call Strit->import(). Nothing will happen, becausestrict.pmdeclares a package namedstrit.

Portable programs are strict about case even if they don’t have to be.

Exporting
A module can make certain global symbols available to other packages through a process known asexporting. This is the flip
side of passing arguments toimport() through ause statement.

The standard way of exporting functions or variables to other modules is through the core moduleExporter. Exporter relies
on the presence of package global variables—�EXPORT_OK and�EXPORT in particular—which contain a list of symbols to
export when requested.

Consider aStrangeMonkey::Utilities module which provides several standalone functions usablethroughout the system:

package StrangeMonkey::Utilities;

use Exporter 'import';

our @EXPORT_OK = qw(round_number translate screech);

...

1;

Any other code now can use this module and, optionally, import any or all of the three exported functions38. You may also
export variables:

push @EXPORT_OK, qw($spider $saki $squirrel);

The CPAN moduleSub::Exporter provides a nicer interface to export functions without using package globals. It
also offers more powerful options. However,Exporter can export variables, whileSub::Exporter only exports
functions.

You canexport symbols by default by listing them in�EXPORT instead of�EXPORT_OK:

our @EXPORT = qw(monkey_dance monkey_sleep);

. . . so that anyuse StrangeMonkey::Utilities; will import both functions. Be aware that specifying symbols to import
will not import default symbols. You can also load a module without importing any symbols by providing an explicit empty
list:

38. . . thoughusingthe module in any code is sufficient to allow any other code to invoke its functions by their fully-qualified names.

136

Managing Real Programs

make the module available, but import() nothing
use StrangeMonkey::Utilities ();

Regardless of any import lists, you can always call functions in another package with their fully-qualified names:

StrangeMonkey::Utilities::screech();

Organizing Code with Modules
Perl 5 does not require you to use modules, nor packages, nor namespaces. You may put all of your code in a single.pl file,
or in multiple .pl files yourequire as necessary. You have the flexibility to manage your code inthe most appropriate way,
given your development style, the formality and risk and reward of the project, your experience, and your comfort with Perl 5
deployment.

Even so, a project with more than a couple of hundred lines of code receives multiple benefits from module organization:

• Modules help to enforce a logical separation between distinct entities in the system.

• Modules provide an API boundary, whether procedural or OO.

• Modules suggest a natural organization of source code.

• The Perl 5 ecosystem has many tools devoted to creating, maintaining, organizing, and deploying modules and distribu-
tions.

• Modules provide a mechanism of code reuse.

Even if you do not use an object-oriented approach, modelingevery distinct entity or responsibility in your system withits own
module keeps related code together and separate code separate.

Distributions
A distribution is a collection of one or more modules (see Modules, page 134)which forms a single redistributable, testable,
and installable unit. Effectively it’s a collection of module and metadata.

The easiest way to manage software configuration, building, distribution, testing, and installation even within yourorganization
is to create distributions compatible with the CPAN. The conventions of the CPAN—how to package a distribution, how to
resolve its dependencies, where to install software, how toverify that it works, how to display documentation, how to manage
a repository—have all arisen from the rough consensus of thousands of contributors working on tens of thousands of projects.

In particular, the copious amount of testing and reporting and dependency checking achieved by CPAN developers exceedsthe
available information and quality of work in any other language community. A distribution built to CPAN standards can be
tested on several versions of Perl 5 on several different hardware platforms within a few hours of its uploading—all without
human intervention.

You may choose never to release any of your code as public CPANdistributions, but you can reuse existing CPAN tools and
designs as possible. The combination of intelligent defaults and customizability are likely to meet your specific needs.

Attributes of a Distribution
A distribution obviously includes one or more modules. It also includes several other files and directories:

• Build.PLor Makefile.PL, the program used to configure, build, test, bundle, and install the distribution.

• MANIFEST, a list of all files contained in the distribution. This helps packaging tools produce an entire tarball and helps
to verify that recipients of the tarball have all of the necessary files.

• META.ymland/orMETA.json, a file containing metadata about the distribution and its dependencies.

• README, a description of the distribution, its intent, and its copyright and licensing information.

• lib/, the directory containing Perl modules.

137

Modern Perl

• t/, a directory containing test files.

• Changes, a log of every change to the distribution.

Additionally, a well-formed distribution must contain a unique name and single version number (often taken from its primary
module). Any well-formed distribution you download from the public CPAN should conform to these standards—and the
CPANTS service evaluates the kwalitee39 of all CPAN distributions and recommends packaging improvements.

CPAN Tools for Managing Distributions
The Perl 5 core includes several tools to manage distributions—not just installing them from the CPAN, but developing and
managing your own:

• CPAN.pm is the official CPAN client. While by default it installs distributions from the public CPAN, you can point it to
your own repository instead of or in addition to the public repository.

• CPANPLUS is an alternate CPAN client with a different design approach. It does some things better thanCPAN.pm, but
they are largely equivalent at this point. Use whichever youprefer.

• Module::Build is a pure-Perl tool suite for configuring, building, installing, and testing distributions. It works with the
Build.PL file mentioned earlier.

• ExtUtils::MakeMaker is an older, legacy tool whichModule::Build intends to replace. It is still in wide use, though
it is in maintenance mode and receives only the most criticalbug fixes. It works with theMakefile.PLfile mentioned
earlier.

• Test::More (see Testing, page 123) is the basic and most widely used testing module used to write automated tests for
Perl software.

• Test::Harness andprove (see Running Tests, page 124) are the tools used to run tests and to interpret and report their
results.

In addition, several non-core CPAN modules make your life easier as a developer:

• App::panminus is a new utility which provides almost configuration-free use of the public CPAN. It fulfills 90% of
your needs to find and install modules.

• App::perlbrew helps you to manage multiple installations of Perl 5. This isvery useful to use a newer version than
the system version or to isolate distributions you’ve installed for one application from distributions you’ve installed for
another.

• CPAN::Mini and thepanmini command allow you to create your own (private) mirror of the public CPAN. You can
inject your own distributions into this repository and manage which versions of the public modules are available in your
organization.

• Dist::Zilla is a toolkit for managing distributions by automating away common tasks. While it can use eitherModule::-

Build or ExtUtils::MakeMaker, it can replaceyour use of them directly.

• Test::Reporter allows you to report the results of running the automated test suites of distributions you install, giving
their authors more data on any failures.

Designing Distributions
The process of designing a distribution could fill a book (see Sam Tregar’sWriting Perl Modules for CPAN), but a few design
principles will help you. Start with a utility such asModule::Starter or Dist::Zilla from the CPAN. The initial cost of
learning the configuration and rules may seem like a steep investment, but the benefit of having everything set up the right way
(and in the case ofDist::Zilla, nevergoing out of date) relieves you of much tedious bookkeeping.

Then consider several rules.

39Quality is difficult to measure with heuristics. Kwalitee is the machine measurable relative of quality.

138

Managing Real Programs

• Each distribution should have a single, well-defined purpose.That purpose may be to process a particular type of data
file or to gather together several related distributions into a single installable bundle. Decomposing your software into
individual bundles allows you to manage their dependenciesappropriately and to respect their encapsulation.

• Each distribution needs a single version number.Version numbers must always increase. The semantic versionpolicy
(http://semver.org/) is sane and compatible with the Perl 5 approach.

• Each distribution should have a well-defined API.A comprehensive automated test suite can verify that you maintain
this API across versions. If you use a local CPAN mirror to install your own distributions, you can re-use the CPAN
infrastructure for testing distributions and their dependencies. You get easy access to integration testing across reusable
components.

• Automate your distribution tests and make them repeatable and valuable.Managing software effectively requires you to
know when it works and how it fails if it fails.

• Present an effective and simple interface.Avoid the use of global symbols and default exports; allow people to use only
what they need and do not pollute their namespaces.

The UNIVERSAL Package
Perl 5 provides a special package which is the ancestor of allother packages in a very object-oriented way. TheUNIVERSAL

package provides a few methods available for all other classes and objects.

The isa() Method
Theisa() method takes a string containing the name of a class or the name of a built-in type. You can call it as a class method
or an instance method on an object. It returns true if the class or object is or derives from the named class, or if the objectitself
is a blessed reference to the given type.

Given an object$pepper, a hash reference blessed into theMonkey class (which inherits from theMammal class):

say $pepper->isa('Monkey'); # prints 1
say $pepper->isa('Mammal'); # prints 1
say $pepper->isa('HASH'); # prints 1
say Monkey->isa('Mammal'); # prints 1

say $pepper->isa('Dolphin'); # prints 0
say $pepper->isa('ARRAY'); # prints 0
say Monkey->isa('HASH'); # prints 0

Perl 5’s core types areSCALAR, ARRAY, HASH, Regexp, IO, andCODE.

You can overrideisa() in your own classes. This can be useful when working with mockobjects (seeTest::MokObjet
andTest::MokModule on the CPAN, for example) or with code that does not use roles (see Roles, page 105).

The can() Method
Thean() method takes a string containing the name of a method. It returns a reference to the function which implements that
method, if it exists. Otherwise, it returns false. You may call this on a class, an object, or the name of a package. In the latter
case, it returns a reference to a function, not a method.

Given a class namedSpiderMonkey with a method namedsreeh, you can get a reference to the method with:

if (my $meth = SpiderMonkey->can('screech')) { ... }

if (my $meth = $sm->can('screech')
{

$sm->$meth();
}

Given a plugin-style architecture, you can test to see if a package implements a specific function in a similar way. The
UNIVERSAL::require module adds arequire() method to theUNIVERSAL namespace to invert the sense of therequire

builtin:

139

http://semver.org/

Modern Perl

a useful CPAN module
use UNIVERSAL::require;

die $@ unless $module->require();

if (my $register = $module->can('register')
{

$register->();
}

. . . though in larger programs, useModule::Pluggable to handle this busy work for you.

You can (and should) overridean() in your own code if you useAUTOLOAD() (see Drawbacks of AUTOLOAD, page 87).

There isoneknown case where callingUNIVERSAL::an() as a function and not a method is not incorrect: to
determine whether a class exists in Perl 5. IfUNIVERSAL::an($lassname, 'an') returns true, someone
somewhere has defined a class of the name$lassname—though consider using instead Moose’s introspection.

The VERSION() Method
TheVERSION() method is available to all packages, classes, and objects. It returns the value of the$VERSION variable for the
appropriate package or class. It takes a version number as anoptional parameter. If you provide this version number, themethod
will throw an exception if the queried$VERSION is not equal to or greater than the parameter.

Given aHowlerMonkey module of version1.23:

say HowlerMonkey->VERSION(); # prints 1.23
say $hm->VERSION(); # prints 1.23
say $hm->VERSION(0.0); # prints 1.23
say $hm->VERSION(1.23); # prints 1.23
say $hm->VERSION(2.0); # throws exception

You can overrideVERSION() in your own code, but there’s little reason to do so.

The DOES() Method
TheDOES() method is new in Perl 5.10.0. It exists to support the use of roles (see Roles, page 105) in programs. Pass it an
invocant and the name of a role, and the method will return true if the appropriate class somehow does that role—whether
through inheritance, delegation, composition, role application, or any other mechanism.

The default implementation ofDOES() falls back toisa(), because inheritance is one mechanism by which a class may doa
role. Given aCappuhin:

say Cappuchin->DOES('Monkey'); # prints 1
say $cappy->DOES('Monkey'); # prints 1
say Cappuchin->DOES('Invertebrate'); # prints 0

You can (and should) overrideDOES() in your own code if you manually provide a role or other allomorphic behavior.

Extending UNIVERSAL
It’s tempting to store other methods inUNIVERSAL to make it available to all other classes and objects in Perl 5. Avoid this
temptation; this global behavior can have subtle side effects because it is unconstrained.

With that said, occasional abuse ofUNIVERSAL for debuggingpurposes and to fix improper default behavior may be excus-
able. For example, Joshua ben Jore’sUNIVERSAL::ref distribution makes the nearly-uselessref() operator usable. The

140

Managing Real Programs

UNIVERSAL::an and UNIVERSAL::isa distributions can help you debug anti-polymorphism bugs (see Method-Function
Equivalence, page 162), whilePerl::Criti can detect those40 problems.

Outside of very carefully controlled code and very specific, very pragmatic situations, there’s no reason to put code inUNIVERSAL

directly. There are almost always much better design alternatives.

Code Generation
Improving as a programmer requires you to search for better abstractions. The less code you have to write, the better. Themore
general your solutions, the better. When you can delete code and add features, you’ve achieved something great.

Novice programmers write more code than they need to write, partly from unfamiliarity with their languages, libraries,and
idioms, but also due to inexperience creating and maintaining good abstractions. They start by writing long lists of procedural
code, then discover functions, then parameters, then objects, and—perhaps—higher-order functions and closures.

Writing programs to write programs for you—metaprogrammingor code generation)—offers greater possibilities for abstrac-
tion. This can be as clear as exploiting higher-order programming capabilities or a rat hole down which you find yourself
confused and frightened. The techniques are powerful and useful. For example, they form the basis of Moose (see Moose, page
100).

The AUTOLOAD technique (see AUTOLOAD, page 85) for missing functions andmethods demonstrates this technique in a
constrained form; Perl 5’s function and method dispatch system allows you to customize what happens when normal lookup
fails.

eval
The simplest code generation technique is to build a string containing a snippet of valid Perl and compile it with the stringeval
operator. Unlike the exception-catching blockeval operator, stringeval compiles the contents of the string within the current
scope, including the current package and lexical bindings.

A common use for this technique is providing a fallback if youcan’t (or don’t want to) load an optional dependency:

eval { require Monkey::Tracer }
or eval 'sub Monkey::Tracer::log {}';

If Monkey::Traer is not available, itslog() function will exist, but will do nothing.

This isn’t necessarily thebestway to handle this feature, as the Null Object pattern offersmore encapsulation, but
it is a way to do things.

This simple example is deceptive. You must handle quoting issues to include variables within yourevald code. Add more
complexity to interpolate some but not others:

sub generate_accessors
{

my ($methname, $attrname) = @_;

eval <<"END_ACCESSOR";
sub get_$methname
{

my \$self = shift;

return \$self->{$attrname};
}

sub set_$methname

40. . . and many, many other.

141

Modern Perl

{
my (\$self, \$value) = \@_;

\$self->{$attrname} = \$value;
}

END_ACCESSOR
}

Woe to those who forget a backslash! Good luck convincing your syntax highlighter what’s happening! Worse yet, each invo-
cation of stringeval builds a new data structure representing the entire code. Compiling code isn’t free, either—cheaper than
performing IO, perhaps, but not free.

Even so, this technique is simple and reasonably easy to understand.

Parametric Closures
While building accessors and mutators witheval is straightforward, closures (see Closures, page 79) allowyou to add param-
eters to generated code at compilation time without requiring additional evaluation:

sub generate_accessors
{

my $attrname = shift;

my $getter = sub
{

my $self = shift;
return $self->{$attrname};

};

my $setter = sub
{

my ($self, $value) = @_;

$self->{$attrname} = $value;
};

return $getter, $setter;
}

This code avoids unpleasant quoting issues and runs more quickly, as there’s only one compilation stage, no matter how many
accessors you create. It even uses less memory by sharing thecompiled code between all instances of the closure. All that
differs is the binding to the$attrname lexical. In a long-running process, or with a lot of accessors, this technique can be very
useful.

Installing into symbol tables is reasonably easy, if ugly:

{
my ($getter, $setter) = generate_accessors('homecourt') ;

no strict 'refs';

* { 'get_homecourt' } = $getter;
* { 'set_homecourt' } = $setter;

}

The odd syntax of an asterisk41 deferencing a hash refers to a symbol in the currentsymbol table, which is the place in the
current namespace which contains globally-accessible symbols such as package globals, functions, and methods. Assigning a
reference to a symbol table entry installs or replaces the appropriate entry. To promote an anonymous function to a method,
assign that function reference to the appropriate entry in the symbol table.

This operation refers to a symbol with a string, not a literalvariable name, so it’s a symbolic reference and it’s necessary to
disablestrit reference checking for the operation. Many programs have a subtle bug in similar code, as they assign and
generate in a single line:

41Think of it as atypeglob sigil, where atypeglobis Perl jargon for “symbol table”.

142

Managing Real Programs

{
no strict 'refs';

* { $methname } = sub {
subtle bug: strict refs
are disabled in here too

};
}

This example disables strictures for the outer block as wellas the inner block, the body of the function itself. Only the assign-
ment violates strict reference checking, so disable strictures for that operation alone.

If the name of the method is a string literal in your source code, rather than the contents of a variable, you can assign to the
relevant symbol directly rather than through a symbolic reference:

{
no warnings 'once';
(* get_homecourt, * set_homecourt) = generate_accessors('homecourt');

}

Assigning directly to the glob does not violate strictures,but mentioning each glob only oncedoesproduce a “used only once”
warning unless you explicitly suppress it within the scope.

Compile-time Manipulation
Unlike code written explicitly as code, code generated through stringeval gets compiled at runtime. Where you might expect
a normal function to be available throughout the lifetime ofyour program, a generated function might not be available when
you expect it.

Force Perl to run code—to generate other code—during the compilation stage by wrapping it in aBEGIN block. When the Perl
5 parser encounters a block labeledBEGIN, it parses the entire block. Provided it contains no syntax errors, the block will run
immediately. When it finishes, parsing will continue as if there were no interruption.

In practical terms, the difference between writing:

sub get_age { ... }
sub set_age { ... }

sub get_name { ... }
sub set_name { ... }

sub get_weight { ... }
sub set_weight { ... }

. . . and:

sub make_accessors { ... }

BEGIN
{

for my $accessor (qw(age name weight))
{

my ($get, $set) = make_accessors($accessor);

no strict 'refs';
* { 'get_' . $accessor } = $get;

* { 'set_' . $accessor } = $set;
}

}

. . . is primarily one of maintainability.

Within a module, any code outside of functions executes whenyouuse it, because of the implicitBEGIN Perl adds around the
require andimport (see Importing, page 67). Any code outside of a function but inside the module will executebeforethe

143

Modern Perl

import() call occurs. If yourequire the module, there is no implicitBEGIN block. The execution of code outside of functions
will happen at theendof parsing.

Also beware of the interaction between lexicaldeclaration(the association of a name with a scope) and lexicalassignment. The
former happens during compilation, while the latter occursat the point of execution. This code has a subtle bug:

use UNIVERSAL::require;

buggy; do not use
my $wanted_package = 'Monkey::Jetpack';

BEGIN
{

$wanted_package->require();
$wanted_package->import();

}

. . . because theBEGIN block will executebeforethe assignment of the string value to$wanted_pakage occurs. The result will
be an exception from attempting to invoke therequire() method on the undefined value.

Class::MOP
Unlike installing function references to populate namespaces and to create methods, there’s no simple default way to create
classes in Perl 5. Fortunately, a mature and powerful distribution is available from the CPAN to do just this.Class::MOP is the
library which makes Moose (see Moose, page 100) possible. Itprovides ameta object protocol—a mechanism for creating and
manipulating an object system in terms of itself.

Rather than writing your own fragile stringeval code or trying to poke into symbol tables manually, you can manipulate the
entities and abstractions of your program with objects and methods.

To create a class:

use Class::MOP;

my $class = Class::MOP::Class->create('Monkey::Wrench');

You can add attributes and methods to this class when you create it:

use Class::MOP;

my $class = Class::MOP::Class->create(
'Monkey::Wrench' =>
(

attributes =>
[

Class::MOP::Attribute->new('$material'),
Class::MOP::Attribute->new('$color'),

]
methods =>
{

tighten => sub { ... },
loosen => sub { ... },

}
),

);

. . . or add them to themetaclass(the object which represents that class) after you’ve created it:

$class->add_attribute(experience => Class::MOP::Attri bute->new('$xp'));
$class->add_method(bash_zombie => sub { ... });

. . . and you can inspect the metaclass:

my @attrs = $class->get_all_attributes();
my @meths = $class->get_all_methods();

You can similarly create and manipulate and introspect attributes and methods withClass::MOP::Attribute andClass::-
MOP::Method.

144

Managing Real Programs

Overloading
Perl 5 is not a pervasively object oriented language. Its core data types (scalars, arrays, and hashes) are not objects with methods
you can overload. Even so, youcancontrol the behavior of your own classes and objects, especially when they undergo coercion
or evaluation in various contexts. This isoverloading.

Overloading can be subtle but powerful. An interesting example is overloading how an object behaves in boolean context,
especially if you use something like the Null Object pattern(http://www.2.om/gi/wiki?NullObjet). In boolean
context, an object will be true. . . but not if you overload boolification.

You can overload what the object does for almost every operation: stringification, numification, boolification, iteration, in-
vocation, array access, hash access, arithmetic operations, comparison operations, smart match, bitwise operations, and even
assignment.

Overloading Common Operations

The most useful are often the most common: stringification,numification, and boolification. Theoverload pragma allows you
to associate a function with an operation you can overload. Here’s a class which overloads boolean evaluation:

package Null;

use overload 'bool' => sub { 0 };

In all boolean contexts, every instance of this class will evaluate to false.

The arguments to theoverload pragma are pairs where the key describes the type of overloadand the value is a function
reference to call in place of Perl’s default behavior for that object.

It’s easy to add a stringification:

package Null;

use overload
'bool' => sub { 0 },
'""' => sub { '(null)' };

Overriding numification is more complex, because arithmetic operators tend to be binary ops (see Arity, page 59). Giventwo
operands both with overloaded methods for addition, which takes precedence? The answer needs to be consistent, easy to
explain, and understandable by people who haven’t read the source code of the implementation.

perldo overload attempts to explain this in the sections labeledCalling Conventions for Binary OperationsandMAGIC
AUTOGENERATION, but the easiest solution is to overload numification and tell overload to use the provided overloads as
fallbacks where possible:

package Null;

use overload
'bool' => sub { 0 },
'""' => sub { '(null)' },
'0+' => sub { 0 },
fallback => 1;

Settingfallbak to a true value lets Perl use any other defined overloads to compose the requested operation, if possible. If
that’s not possible, Perl will act as if there were no overloads in effect. This is often what you want.

Without fallbak, Perl will only use the specific overloadings you have provided. If someone tries to perform an operation
you have not overloaded, Perl will throw an exception.

145

http://www.c2.com/cgi/wiki?NullObject

Modern Perl

Overload and Inheritance
Subclasses inherit overloadings from their ancestors. They may override this behavior in one of two ways. If the parent class
uses overloading as shown, with function references provided directly, a child classmustoverride the parent’s overloaded
behavior by usingoverload directly.

Parent classes can allow their descendants more flexibility by specifying thenameof a method to call to implement the over-
loading, rather than hard-coding a function reference:

package Null;

use overload
'bool' => 'get_bool',
'""' => 'get_string',
'0+' => 'get_num',
fallback => 1;

Child classes do not have to useoverload themselves; they can merely override the appropriateget_* methods. This is often
more flexible.

Uses of Overloading
Overloading may seem like a tempting tool to use to produce symbolic shortcuts for new operations. TheIO::All CPAN
distribution pushes this idea to its limit to produce cleverideas for concise and composable code. Yet for every brilliant API
refined through the appropriate use of overloading, a dozenmore messes congeal. Sometimes the best code eschews cleverness
in favor of simple and straightforward design.

Overriding addition, multiplication, and even concatenation on aMatrix class makes sense, only because the existing notation
for those operations is pervasive. A new problem domain without that established notation is a poor candidate for overloading,
as is a problem domain where you have to squint to make Perl’s existing operators match a different notation.

Damian Conway’sPerl Best Practicessuggests that the other useful use of overloading is to prevent the accidental abuse of
objects. For example, overloading numification toroak() for objects which have no reasonable single numeric representation
can help you find real bugs in real programs. Overloading in Perl 5 is relatively rare, but this suggestion can improve the
reliability and safety of programs.

Taint
Perl gives you tools with which to write programs securely. These tools are no substitute for careful thought and planning, but
theyrewardcaution and understanding and can help you avoid subtle mistakes.

Using Taint Mode
A feature calledtaint modeor taint adds a small amount of metadata to all data which comes from sources outside of your
program. Any data derived from tainted data is also tainted.You may use tainted data within your program, but if you use itto
affect the outside world—if you use it insecurely—Perl will throw a fatal exception.

perldo perlse explains taint mode in copious detail among other security guidelines.

To enable taint mode, launch your program with the-T flag. You can use this flag on the#! line of a program only if you
make the program executable and do not launch it withperl; if you run it asperl mytaintedappl.pl and neglect the-T
flag, Perl will exit with an exception. By the time Perl encounters the flag on the#! line, it’s missed its opportunity to taint the
environment data which makes up%ENV, for example.

Sources of Taint
Taint can come from two places: file input and the program’s operating environment. The former is anything you read from a
file or collect from users in the case of web or network programming. The latter is more subtle. This includes any command-line
arguments, environment variables, and data from system calls. Even operations such as reading from a directory handle (opened
with opendir()) produces tainted data.

146

Managing Real Programs

Thetainted() function from the core moduleSalar::Util returns true if its argument is tainted:

die "Oh no!" if Scalar::Util::tainted($some_suspicious_ value);

Removing Taint from Data
To remove taint, you must extract known-good portions of thedata with a regular expression capture. The captured data will be
untainted. If your user input consists of a US telephone number, you can untaint it with:

die "Number still tainted!"
unless $tainted_number =~ /(\(/d{3}\) \d{3}-\d{4})/;

my $safe_number = $1;

The more specific your pattern is about what you allow, the more secure your program can be. The opposite approach ofdenying
specific items or forms runs the risk of overlooking something harmful. In the case of security, Perl prefers that you disallow
something that’s safe but unexpected than that you allow something harmful which appears safe. Even so, nothing prevents you
from writing a capture for the entire contents of a variable—but in that case, why use taint?

Removing Taint from the Environment
One source of taint is the superglobal%ENV, which represents environment variables for the system. This data is tainted because
forces outside of the program’s control can manipulate values there. Any environment variable which modifies how Perl or
the shell finds files and directories is an attack vector. A taint-sensitive program should delete several keys from%ENV and set
$ENV{PATH} to a specific and well-secured path:

delete @ENV{ qw(IFS CDPATH ENV BASH_ENV) };
$ENV{PATH} = '/path/to/app/binaries/';

If you do not set$ENV{PATH} appropriately, you will receive messages about its insecurity.

If this environment variable contained the current workingdirectory, or if it contained relative directories, or if
the directories specified had world-writable permissions, a clever attacker could hijack system calls to perpetrate
insecure operations.

For similar reasons,�INC does not contain the current working directory under taint mode. Perl will also ignore thePERL5LIB
andPERLLIB environment variables. Use thelib pragma or the-I flag to perl if you need to add library directories to the
program.

Taint Gotchas
Taint mode is all or nothing. It’s either on or off. This sometimes leads people to use permissive patterns to untaint data, and
gives the illusion of security. Review untainting carefully.

Unfortunately, not all modules handle tainted data appropriately. This is a bug which CPAN authors should take seriously. If
you have to make legacy code taint-safe, consider the use of the-t flag, which enables taint mode but reduces taint violations
from exceptions to warnings. This is not a substitute for full taint mode, but it allows you to secure existing programs without
the all or nothing approach of-T.

147

Perl Beyond Syntax
Perl 5 is a large language, like any language intended to solve problems in the real world. Effective Perl programs require more
than mere understanding of syntax; you must also begin to understand how Perl’s features interact and common ways of solving
well-understood problems in Perl.

Prepare for the second learning curve of Perl: Perlish thinking. The effective use of common patterns of behavior and builtin
shortcuts allow you to write concise and powerful code.

Idioms
Any language—programming or natural—developsidioms, or common patterns of expression. The earth revolves, but we speak
of the sun rising or setting. We talk of clever hacks and nastyhacks and slinging code.

As you learn Perl 5 more clearly, you will begin to see and understand common idioms. They’re not quite language features—
you don’t haveto use them—and they’re not quite large enough that you can encapsulate them away behind functions and
methods. Instead, they’re mannerisms. They’re ways of writing Perl with a Perlish accent.

The Object as $self

Perl 5’s object system (see Moose, page 100) treats the invocant of a method as a mundane parameter. The invocant of a class
method—a string containing the name of the class—is that method’s first parameter. The invocant of an object or instance
method—the object itself—is that method’s first parameter. You are free to use or ignore it as you see fit.

Idiomatic Perl 5 uses$lass as the name of the class method and$self for the name of the object invocant. This is a
convention not enforced by the language itself, but it is a convention strong enough that useful extensions such asMooseX::-

Method::Signatures assume you will use$self as the name of the invocant by default.

Named Parameters
Without a module such assignatures or MooseX::MultiMethods, Perl 5’s argument passing mechanism is simple: all argu-
ments flatten into a single list accessible through�_ (see Function Parameters, page 64). While this simplicity isoccasionally
too simple—named parameters can be very useful at times—it does not preclude the use of idioms to provide named parameters.

The list context evaluation and assignment of�_ allows you to unpack named parameters as pairs in a natural and Perlish
fashion. Even though this function call is equivalent to passing a comma-separated orqw//-created list, arranging the arguments
as if they were true pairs of keys and values makes the caller-side of the function appear to support named parameters:

make_ice_cream_sundae(
whipped_cream => 1,
sprinkles => 1,
banana => 0,
ice_cream => 'mint chocolate chip',

);

The callee side can unpack these parameters into a hash and treat the hash as if it were the single argument:

sub make_ice_cream_sundae
{

my %args = @_;

my $ice_cream = get_ice_cream($args{ice_cream}));
...

}

148

Perl Beyond Syntax

Perl Best Practicessuggests passing a hash reference instead. This allows Perlto check that you’ve constructed a
valid hash on the caller side. It also uses slightly less memory than the other approach.

This technique works well withimport() (see Importing, page 67); you can process as many parametersas you like before
slurping the remainder into a hash:

sub import
{

my ($class, %args) = @_;
my $calling_package = caller();

...
}

The Schwartzian Transform
People new to Perl sometimes overlook the importance of lists and list processing as a fundamental component of expression
evaluation. Put more simply, the ability for Perl programmers to chain expressions which evaluate to variable-length lists
provides countless opportunities to manipulate data effectively.

TheSchwartzian transformis an elegant demonstration of that principle as an idiom handily borrowed from the Lisp family of
languages.

Suppose you have a Perl hash which associates the names of your co-workers with their phone extensions:

my %extensions =
(

4 => 'Jerryd',
5 => 'Rudy',
6 => 'Juwan',
7 => 'Brandon',

10 => 'Joel',
21 => 'Marcus',
24 => 'Andre',
23 => 'Martell',
52 => 'Greg',
88 => 'Nic',

);

Suppose you want to print a list of extensions and co-workerssorted by their names, not their extensions. In other words,you
need to sort this hash by its values. Sorting the values of thehash in string order is easy:

my @sorted_names = sort values %extensions;

. . . but that loses the association of names with extensions.The Schwartzian transform can perform the sorting while preserving
the necessary information. First, convert the hash into a list of data structures which contain the vital information insortable
fashion. In this case, convert the hash pairs into two-element anonymous arrays:

my @pairs = map { [$_, $extensions{$_}] } keys %extensions;

Reversing the hashin placewould work if no one had the same name. This particular data set presents no such
problem, but code defensively.

sort takes the list of anonymous arrays and compares their secondelements (the names) as strings:

my @sorted_pairs = sort { $a->[1] cmp $b->[1] } @pairs;

149

Modern Perl

The block provided tosort takes its arguments in two package-scoped (see Scope, page 72) variables$a and$b42. You do not
have to declare these variables; they are always available in your current package. Thesort block takes its arguments two at
a time; the first becomes the contents of$a and the second the contents of$b. If $a should come before$b in the results, the
block must return -1. If both values are sufficiently equal inthe sorting terms, the block must return 0. Finally, if$a should
come after$b in the results, the block should return 1. Any other return values are errors.

Themp operator performs string comparisons and the<=> performs numeric comparisons.

Given�sorted_pairs, a secondmap operation converts the data structure to a more usable form:

my @formatted_exts = map { "$_->[1], ext. $_->[0]" } @sorted _pairs;

. . . and now you can print the whole thing:

say for @formatted_exts;

Of course, this uses several temporary variables (with admittedly bad names). It’s a worthwhile technique and good to under-
stand, but the real magic is in the combination:

say for
map { " $_->[1], ext. $_->[0]" }
sort { $a->[1] cmp $b->[1] }
map { [$_ => $extensions{$_}] }

keys %extensions;

Read the expression from right to left, in the order of evaluation. For each key in the extensions hash, make a two-item anony-
mous array containing the key and the value from the hash. Sort that list of anonymous arrays by their second elements, the
values from the hash. Format a string of output from those sorted arrays.

The Schwartzian transform is this pipeline ofmap-sort-map where you transform a data structure into another form easier for
sorting and then transform it back into your preferred form for modification.

This transformation is simple. Consider the case where calculating the right value to sort is expensive in time or memory, such
as calculating a cryptographic hash for a large file. In thatcase, the Schwartzian transform is also useful because you can
execute those expensive operations once (in the rightmostmap), compare them repeatedly from a de facto cache in thesort,
and then remove them in the leftmostmap.

Easy File Slurping
Perl 5’s magic global variables are truly global in many cases. It’s all too easy to clobber their values elsewhere, unless you use
loal everywhere. Yet this requirement has allowed the creation of several interesting idioms. For example, you can slurp files
into a scalar in a single expression:

my $file = do { local $/ = <$fh> };

or

my $file = do { local $/; <$fh> };

$/ is the input record separator.loalizing it sets its value toundef, pending assignment. Thatloalization takes placebefore
the assignment. As the value of the separator is undefined, Perl happily reads the entire contents of the filehandle in one swoop
and assigns that value to$/. Because ado block evaluates to the value of the last expression evaluated within the block, this
evaluates to the value of the assignment, or the contents of the file. Even though$/ immediately reverts to its previous state at
the end of the block,$file now contains the contents of the file.

42Seeperldo -f sort for an extensive discussion of the implications of this scoping.

150

Perl Beyond Syntax

The second example contains no assignment and merely returns the single line read from the filehandle. You may see either
example; they both work the same way in this case.

This can be useful (and, admittedly, maddening for people unfamiliar with this particular combination of Perl 5 features) if you
don’t haveFile::Slurp installed from the CPAN.

Controlled Execution

The effective difference between a program and a module is inits intended use. Users invoke programs directly, while programs
load modules after execution has already begun. The technical difference between a program and a module is whether it’s
meaningful to invoke the entity directly.

You may encounter this when you wish to use Perl’s testing tools (see Testing, page 123) to test functions in a standalone
program or when you wish to make a module users can run directly. All you need to do is to discoverhowPerl began to execute
a piece of code. For this, usealler.

aller’s single optional argument is the number of call frames which to report. (Acall frameis the bookkeeping information
which represents a function call.) You can get information about the current call frame withaller(0). To allow a module to
run correctly as a programor a module, write an appropriatemain() function and add a single line to the start of the module:

main() unless caller(0);

If there’snocaller for the module, someone invoked it directly as a program (withperl path/to/Module.pm instead ofuse
Module;).

Checking the eighth element of the list returned fromaller in list context may be more accurate in most cases,
but it’s rare. This value is true if the call frame representsuse or require andundef otherwise.

Handling Main

Perl requires no special syntax for creating closures (see Closures, page 79); you can close over a lexical variable inadvertently.
This israrely a problem in practice, apart from specific concerns in mod_perl situations. . . andmain() functions.

Many programs commonly set up several file-scoped lexical variables before handing off processing to other functions.It’s
tempting to use these variables directly, rather than passing values to and returning values from functions, especially as programs
grow to provide more features. Worse yet, these programs maycome to rely on subtleties of what happens when during Perl 5’s
compilation process; a variable youthoughtwould be initialized to a specific value may not get initialized until much later.

There is a simple solution. Wrap the main code of your program in a simple function,main(). Encapsulate all of the variables
you don’t need as true globals. Then add a single line to the beginning of your program, after you’ve used all of the modules
and pragmas you need:

#!/usr/bin/perl

use Modern::Perl;
use autodie;

...

main(@ARGS);

Calling main() beforeanything else in the program forces you to be explicit about initialization and order of compilation. It
also helps to remind you to encapsulate the behavior of your program into functions and modules. (It works nicely with files
which can be programs and libraries—see Controlled Execution, page 151.)

151

Modern Perl

Postfix Parameter Validation
Even if you don’t use a CPAN module such asParams::Validate or MooseX::Params::Validate to verify that the param-
eters your functions receive are correct, you can still benefit from occasional checks for correctness. Theunless control flow
modifier is an easy and readable way to assert your expectations at the beginning of a function.

Suppose your function takes two arguments, no more and no less. Youcouldwrite:

use Carp;

sub groom_monkeys
{

if (@_ != 2)
{

croak 'Monkey grooming requires two monkeys!';
}

}

. . . but from a linguistic perspective, the consequences aremore important than the check and deserve to be at thestart of the
expression:

croak 'Monkey grooming requires two monkeys!' if @_ != 2;

. . . which, depending on your preference for reading postfixconditions, you can simplify to:

croak 'Monkey grooming requires two monkeys!' unless @_ == 2 ;

This is easier to read if you focus on the text of the message ("You need to pass two parameters!”) and the test (�_ should
contain two items). It’s almost a single row in a truth table.

Regex En Passant
Many Perl 5 idioms rely on the language design where expressions evaluate to values, as in:

say my $ext_num = my $extension = 42;

It’s bad form to write code like that, but it demonstrates thepoint: you can use the value of one expression in another expression.
This isn’t a new idea; you’ve likely used the return value of afunction in a list or as an argument to another function before.
You may not have realized its implications.

Suppose you have a whole name and you want to extract the firstname. This is easy to do with a regular expression:

my ($first_name) = $name =~ /($first_name_rx)/;

. . . where$first_name_rx is a precompiled regular expression. In list context, a successful regex match returns a list of all
captures, and Perl assigns the first one to$first_name.

Now imagine if you want to modify the name, perhaps removing all non-word characters to create a useful user name for a
system account. You can write:

(my $normalized_name = $name) =~ tr/A-Za-z//dc;

Unlike the previous example, this one reads right to left. First, assign the value of$name to $normalized_name. Then, translit-
erate$normalized_name43. The assignment expression evaluates to thevariable$normalized_name. This technique works
on all sorts of in-place modification operators:

my $age = 14;
(my $next_age = $age)++;

say "Next year I will be $next_age";

43The parentheses here affect the precedence so that the assignment happens first.

152

Perl Beyond Syntax

Unary Coercions
Perl 5’s type system often does the right thing, at least if you choose the correct operators. To concatenate strings, usethe string
concatenation operator, and Perl will treat both scalars asstrings. To add two numbers, use the addition operator and Perl will
treat both scalars as numeric.

Sometimes you have to give Perl a hint about what you mean. Several unary coercionsexist, by which you can use Perl 5
operators to force the evaluation of a value a specific way.

To ensure that Perl treats a value as numeric, add zero:

my $numeric_value = 0 + $value;

To ensure that Perl treats a value as boolean, double negate it:

my $boolean_value = !! $value;

To ensure that Perl treats a value as a string, concatenate itwith the empty string:

my $string_value = '' . $value;

Though the need for these coercions is vanishingly rare, youshould understand these idioms if you encounter them.

Global Variables
Perl 5 provides severalsuper global variablesthat are truly global, not restricted to any specific package. These super globals
have two drawbacks. First, they’re global; any direct or indirect modifications may have effects on other parts of the program.
Second, they’re terse. Experienced Perl 5 programmers havememorized some of them. Few people have memorized all of
them. Only a handful are ever useful.perldo perlvar contains the exhaustive list of such variables.

Managing Super Globals
The best approach to managing the global behavior of these super globals is to avoid using them. When you must use them,
useloal in the smallest possible scope to constrain any modifications. You are still susceptible to any changes code youcall
makes to those globals, but you reduce the likelihood of surprising codeoutsideof your scope.

Workarounds exist for some of this global behavior, but manyof these variables have existed since Perl 1 and will continue as
part of Perl 5 throughout its lifetime. As the easy file slurping idiom (see Easy File Slurping, page 150) demonstrates, this is
often possible:

my $file = do { local $/ = <$fh> };

The effect ofloalizing $/ lasts only through the end of the block. There is a low chance that any Perl code will run as a result
of reading lines from the filehandle44 and change the value of$/ within thedo block.

Not all cases of using super globals are this easy to guard, but this often works.

Other times you need toread the value of a super global and hope that no other code has modified it. Catching exceptions with
aneval block can be susceptible to race conditions45, in thatDESTROY() methods invoked on lexicals that have gone out of
scope may reset$�:

44A tied filehandle is one of the few possibilities.

45UseTry::Tiny instead!

153

Modern Perl

local $@;

eval { ... };

if (my $exception = $@) { ... }

Copy$� immediatelyto preserve its contents.

English Names
The coreEnglish module provides verbose names for the punctuation-heavy super globals. Import them into a namespace
with:

use English '-no_match_vars';

Subsequently you can use the verbose names documented inperldo perlvar within the scope of this namespace.

Three regex-related super globals ($&, $`, and$') impose a global performance penalty forall regular expressions within a
program. If you neglect to provide that import flag, your program will suffer the penalty even if you don’t explicitly read from
those variables. This is not the default behavior for backwards-compatibility concerns.

Modern Perl programs should use the�- variable as a replacement for the terrible three.

Useful Super Globals
Most modern Perl 5 programs can get by with using only a coupleof the super globals. Several exist for special circumstances
you’re unlikely to encounter. Whileperldo perlvar is the canonical documentation for most of these variables,some
deserve special mention.

• $/ (or $INPUT_RECORD_SEPARATOR from theEnglish pragma) is a string of zero or more characters which denotes
the end of a record when reading input a line at a time46. By default, this is your platform-specific newline character
sequence. If you undefine this value, Perl will attempt to read the entire file into memory. If you set this value to a
referenceto an integer, Perl will try to read that manybytesper record (so beware of Unicode concerns).

• $. ($INPUT_LINE_NUMBER) contains the number of current record read from the most recently-accessed filehandle. You
can read from this variable, but writing to it has no effect. Localizing this variable will localize the filehandle to which it
refers.

• $| ($OUTPUT_AUTOFLUSH) is the boolean value of this variable governs whether Perl will flush everything written to the
currently selected filehandle immediately or only when Perl’s buffer is full. Unbuffered output is useful when writingto
a pipe or socket or terminal which should not block waiting for input.

• �ARGV contains the command-line arguments passed to the program.

• $! ($ERRNO) is a dualvar (see Dualvars, page 48) which contains the result of the most recentsystem call. In numeric
context, this corresponds to C’serrno value, where anything other than zero indicates some kind oferror. In string
context, returns the appropriate system error string. Localize this variable before making a system call (implicitly or
explicitly) to avoid overwriting the appropriate value forother code elsewhere. Many places within Perl 5 itself make
system calls without your knowledge. The value of this variable can change out from under you, so copy itimmediately
after making such a call yourself.

• $" ($LIST_SEPARATOR) is a string used to separate array and list elements interpolated into a string.

• %+ contains named captures from successful regular expression matches (see Named Captures, page 94).

• $� ($EVAL_ERROR) contains the value thrown from the most recent exception (see Catching Exceptions, page 119).

• $0 ($PROGRAM_NAME) contains the name of the program currently executing. You may modify this value on some Unix-
like platforms to change the name of the program as it appearsto other programs on the system, such asps or top.

46Yes,readline() should more accurately bereadreord(), but the name has stuck by now.

154

Perl Beyond Syntax

• $$ ($PID) contains the process id of the currently running instance of the program, as the operating system understands
it. This will vary betweenfork()ed programs and may vary between threads in the same program.

• �INC holds a list of filesystem paths in which Perl will look for files to load withuse or require. Seeperldo -f

require for other items this array can contain.

• %SIG maps OS and low-level Perl signals to function references used to handle those signals. Trap the standard Ctrl-
C interrupt by catching theINT signal, for example. Seeperldo perlip for more information about signals and
especially safe signals.

Alternatives to Super Globals
The worst culprits for action at a distance relate to IO and exceptional conditions. UsingTry::Tiny (see Exception Caveats,
page 120) will help insulate you from the tricky semantics ofproper exception handling.loalizing and copying the value of
$! can help you avoid strange behaviors when Perl makes implicit system calls.

IO::Handle allows you to call methods on filehandles (see Filehandle References, page 54) to replace the manipulation of
IO-related super globals. Call theautoflush() method on a lexical filehandle instead ofseleting the filehandle, then
manipulating$|. Use theinput_line_number() method to get the equivalent of$. for that specific filehandle. See the
IO::Handle documentation for other appropriate methods.

155

What to Avoid
Perl 5 isn’t perfect. Some features seemed like good ideas atthe time, but they’re difficult to use correctly. Others don’t work
as anyone might expect. A few more are simply bad ideas. Thesefeatures will likely persist—removing a feature from Perl isa
serious process reserved for only the most egregious offenses—but you can and should avoid them in almost every case.

Barewords
Perl uses sigils and other punctuation pervasively to help both the parser and the programmer identify the categories ofnamed
entities. Even so, Perl is a malleable language. You can write programs in the most creative, maintainable, obfuscated,or
bizarre fashion as you prefer. Maintainability is a concernof good programmers, but the developers of Perl itself don’tpresume
to dictate whatyoufind most maintainable.

Perl’s parser understands the builtin Perl builtins and operators; it knows thatbless() means you’re making objects (see
Blessed References, page 110). These are rarely ambiguous.. . but Perl programmers can add complexity to parsing by using
barewords. A bareword is an identifier without a sigil or other attached disambiguation as to its intended syntactical function.
Because there’s no Perl 5 builtinurse, the literal wordurse appearing in source code is ambiguous. Did you intend to use
a variable$urse or to call a functionurse()? Thestrit pragma warns about use of such ambiguous barewords for good
reason.

Even so, barewords are permissible in several places in Perl5 for good reason.

Good Uses of Barewords
Hash keys in Perl 5 are barewords. These are usually not ambiguous because their use as keys is sufficient for the parser to
identify them as the equivalent of single-quoted strings. Yet be aware that attempting to evaluate a function call or a builtin
operator (such asshift) to producea hash key may not do what you expect, unless you disambiguateby providing arguments,
using function argument parentheses, or prepending unary plus to force the evaluation of the builtin rather than its interpretation
as a string:

the literal 'shift' is the key
my $value = $items{ shift };

the value produced by shift is the key
my $value = $items{ shift @_ }

unary plus uses the builtin shift
my $value = $items{ +shift};

Package names in Perl 5 are barewords in a sense. Good naming conventions for packages (initial caps) help prevent unwanted
surprises, but the parser uses a complex heuristic based on the code it’s already compiled within the current namespace to
determine whetherPakage->method() means to call a function namedPakage() and then call themethod() method on
its results or whether to treatPakage as the name of a package. You can disambiguate this with the postfix package separator
(::), but that’s rare and admittedly ugly:

probably a class method
Package->method();

definitely a class method
Package::->method();

156

What to Avoid

The special named code blocks provide their own types of barewords.AUTOLOAD, BEGIN, CHECK, DESTROY, END, INIT, and
UNITCHECK declarefunctions, but they do not need thesub builtin to do so. You may be familiar with the idiom of writing
BEGIN withoutsub:

package Monkey::Butler;

BEGIN { initialize_simians(__PACKAGE__) }

You can leave off thesub onAUTOLOAD() declarations, but that’s uncommon.

Constants declared with theonstant pragma are usable as barewords:

don't use this for real authentication
use constant NAME => 'Bucky';
use constant PASSWORD => '|38fish!head74|';

...

return unless $name eq NAME && $pass eq PASSWORD;

Be aware that these constants donot interpolate in interpolation contexts such as double-quoted strings.

Constants are a special case of prototyped functions (see Prototypes, page 159). If you’ve predeclared a prototype for afunction,
you may use that function as a bareword; Perl 5 knows everything it needs to know to parse all occurrences of that function
appropriately. The other drawbacks of prototypes still apply.

Ill-Advised Uses of Barewords
Barewords should be rare in modern Perl code; their ambiguity produces fragile code. You can avoid them in almost every case,
but you may encounter several poor uses of barewords in legacy code.

Prior to lexical filehandles (see Filehandle References, page 54), all file and directory handles used barewords. You can almost
always safely rewrite this code to use lexical filehandles;the exceptions areSTDIN, STDOUT, andSTDERR.

Code written withoutstrit 'subs' in effect may use bareword function names. You may safely parenthesize the argument
lists to these functions without changing the intent of the code47.

Along similar lines, old code may not take pains to quote thevaluesof hash pairs appropriately:

poor style; do not use
my %parents =
(

mother => Annette,
father => Floyd,

);

Because neither theFloyd() nor Annette() functions exist, Perl parses these hash values as strings. Thestrit 'subs'

pragma makes the parser give an error in this situation.

Finally, thesort builtin can take as its second argument thenameof a function to use for sorting. Instead provide areference
to the function to use for sorting to avoid the use of barewords:

poor style; do not use
my @sorted = sort compare_lengths @unsorted;

better style
my $comparison = \&compare_lengths;
my @sorted = sort $comparison @unsorted;

47Useperl -MO=Deparse,-p to discover how Perl parses them, then parenthesize accordingly.

157

Modern Perl

The result is one line longer, but it avoids the use of a bareword. Unlike other bareword examples, Perl’s parser needs no
disambiguation for this syntax. There is only one way for it to interpretompare_lengths. However, the clarity of an explicit
reference can help human readers.

Perl 5’s parserdoes notunderstand the single-line version:

does not work
my @sorted = sort \&compare_lengths @unsorted;

This is due to the special parsing ofsort; you cannot use an arbitrary expression (such as taking a reference to a named
function) where a block or a scalar might otherwise go.

Indirect Objects
A constructor in Perl 5 is anything which returns an object;new is not a builtin operator. By convention, constructors are class
methods namednew(), but you have the flexibility to choose a different approachto meet your needs. Several old Perl 5 object
tutorials promote the use of C++ and Java-style constructorcalls:

my $q = new CGI; # DO NOT USE

. . . instead of the unambiguous:

my $q = CGI->new();

These syntaxes are equivalent in behavior, except when they’re not.

The first form is the indirect object form (more precisely, thedativecase), where the verb (the method) precedes the noun to
which it refers (the object). This is fine in spoken languages, but it introduces parsing ambiguities in Perl 5.

Bareword Indirect Invocations
One problem is that the name of the method is a bareword (see Barewords, page 156). The parser must apply several heuristics
to determine the proper interpretation. While these heuristics are well-tested andalmostalways correct, their failure modes are
confusing. Worse, they’re fragile in the face of theorder of compilation and module loading.

Parsing is more difficult for humansand the computer when the constructor takes arguments. The indirect style may resemble:

DO NOT USE
my $obj = new Class(arg => $value);

. . . thus making the class nameClass look like a function call. Perl 5candisambiguate many of these cases, but its heuristics
depend on which package names the parser has seen at the current point in the parse, which barewords it has already resolved
(and how it resolved them), and thenamesof functions already declared in the current package.

Imagine running afoul of a prototyped function (see Prototypes, page 159) with a name which just happens to conflict somehow
with the name of a class or a method called indirectly. This isinfrequent, but so difficult to debug that avoiding this syntax is
always worthwhile.

Indirect Notation Scalar Limitations
Another danger of the syntax is that the parser expects a single scalar expression as the object. Printing to a filehandlestored in
an aggregate variableseemsobvious, but it is not:

DOES NOT WORK AS WRITTEN
say $config->{output} "This is a diagnostic message!";

158

What to Avoid

print, lose, andsay—all builtins which operate on filehandles—operate in an indirect fashion. This was fine when filehandles
were package globals, but lexical filehandles (see Filehandle References, page 54) make the indirect object syntax problems
obvious. In the previous example, Perl will try to call thesay method on the$onfig object. The solution is to disambiguate
the expression which produces the intended invocant:

say { $config->{output} } "This is a diagnostic message!";

Alternatives to Indirect Notation
Direct invocation notation does not suffer this ambiguity problem. To construct an object, call the constructor methodon the
class name directly:

my $q = CGI->new();
my $obj = Class->new(arg => $value);

For the limited case of filehandle operations, the dative use is so prevalent that you can use the indirect invocation approach if
you surround your intended invocant with curly brackets. Another option is to use the coreIO::Handle module which adds
IO methods to lexical filehandles.

For supreme paranoia, disambiguate class method calls further by appending:: to the end of class names, such as
CGI::->new(). Very little code does this in practice, however.

The CPAN modulePerl::Criti::Poliy::Dynami::NoIndiret (a plugin forPerl::Criti) can identify indirect
invocations during code reviews. The CPAN moduleindiret can identify and prohibit their use in running programs:

warn on indirect use
no indirect;

throw exceptions on their use
no indirect ':fatal';

Prototypes
A prototypeis a piece of optional metadata attached to a function declaration. Novices commonly assume that these prototypes
serve as function signatures; they do not. Instead they serve two separate purposes: they offer hints to the parser to change the
way it parses functions and their arguments, and they modifythe way Perl 5 handles arguments to those functions.

To declare a function prototype, add it after the name:

sub foo (&@);
sub bar ($$) { ... }
my $baz = sub (&&) { ... };

You may add prototypes to function forward declarations. You may also omit them from forward declarations. If you use a
forward declaration with a prototype, that prototype must be present in the full function declaration; Perl will give a prototype
mismatch warning if not. The converse is not true: you may omit the prototype from a forward declaration and include it for
the full declaration.

There’s little reason to omit the prototype from a forward declaration except for the desire to write too-clever code.

The original intent of prototypes was to allow users to define their own functions which behaved like (certain) builtin operators.
Consider the behavior of thepush operator, which takes an array and a list. While Perl 5 would normally flatten the array and

159

Modern Perl

list into a single list at the call site, the Perl 5 parser knows that a call topush must effectively pass the array as a single unit so
thatpush can operate on the array in place.

The builtinprototype takes the name of a function and returns a string representing its prototype. To see the prototype of a
builtin, use theCORE:: form:

$ perl -E "say prototype 'CORE::push';"
\@@
$ perl -E "say prototype 'CORE::keys';"
\%
$ perl -E "say prototype 'CORE::open';"

* ;$@

Some builtins have prototypes you cannot emulate. In these cases,prototype will return undef:

$ perl -E "say prototype 'CORE::system' // 'undef' "
undef
You can't emulate builtin function system's calling convention.

$ perl -E "say prototype 'CORE::prototype' // 'undef' "
undef
Builtin function prototype has no prototype.

Look atpush again:

$ perl -E "say prototype 'CORE::push';"
\@@

The� character represents a list. The backslash forces the use ofa referenceto the corresponding argument. Thus this function
takes a reference to an array (because you can’t take a reference to a list) and a list of values.mypush might be:

sub mypush (\@@)
{

my ($array, @rest) = @_;
push @$array, @rest;

}

Valid prototype characters include$ to force a scalar argument,% to mark a hash (most often used as a reference), and& which
marks a code block. Seeperldo perlsub for full documentation.

The Problem with Prototypes
Prototypes can change the parsing of subsequent code and they can coerce the types of arguments. They don’t serve as docu-
mentation to the number or types of arguments functions expect, nor do they map arguments to named parameters.

Prototype coercions work in subtle ways, such as enforcing scalar context on incoming arguments:

sub numeric_equality($$)
{

my ($left, $right) = @_;
return $left == $right;

}

my @nums = 1 .. 10;

say "They're equal, whatever that means!" if numeric_equal ity @nums, 10;

. . . but donot work on anything more complex than a simple expression:

sub mypush(\@@);

compilation error: prototype mismatch
(expected array, got scalar assignment)
mypush(my $elems = [], 1 .. 20);

Those aren’t even thesubtlerkinds of confusion you can get from prototypes.

160

What to Avoid

Good Uses of Prototypes
As long as code maintainers do not confuse them for full function signatures, prototypes have a few valid uses.

First, they are often necessary to emulate and override builtins with user-defined functions. You must first check thatyou can
override the builtin by checking thatprototype does not returnundef. Once you know the prototype of the builtin, use a
forward declaration of a function with the same name as the core builtin:

use subs 'push';

sub push (\@@) { ... }

Beware that thesubs pragma is in effect for the remainder of thefile, regardless of any lexical scoping.

The second reason to use prototypes is to define compile-time constants. A function declared with an empty prototype (as
opposed tonoprototype) which evaluates to a single expression becomes aconstant rather than a function call:

sub PI () { 4 * atan2(1, 1) }

After it processed that prototype declaration, the Perl 5 optimizer knows it should substitute the calculated value of pi whenever
it encounters a bareword or parenthesized call toPI in the rest of the source code (with respect to scoping and visibility).

Rather than defining constants directly, the coreonstant pragma handles the details for you and may be clearer to read.If
you want to interpolate constants into strings, theReadonly module from the CPAN may be more useful.

The final reason to use a prototype is to extend Perl’s syntaxto operate on anonymous functions as blocks. The CPAN module
Test::Exeption uses this to good effect to provide a nice API with delayed computation. Itsthrows_ok() function takes
three arguments: a block of code to run, a regular expressionto match against the string of the exception, and an optional
description of the test. Suppose that you want to test Perl 5’s exception message when attempting to invoke a method on an
undefined value:

use Test::More tests => 1;
use Test::Exception;

throws_ok
{ my $not_an_object; $not_an_object->some_method() }
qr/Can't call method "some_method" on an undefined value/,
'Calling a method on an undefined invocant should throw exce ption';

The exportedthrows_ok() function has a prototype of&$;$. Its first argument is a block, which Perl upgrades to a full-fledged
anonymous function. The second requirement is a scalar. Thethird argument is optional.

The most careful readers may have spotted a syntax oddity notable in its absence: there is no trailing comma after the end of
the anonymous function passed as the first argument tothrows_ok(). This is a quirk of the Perl 5 parser. Adding the comma
causes a syntax error. The parser expects whitespace, not the comma operator.

The “no commas here” rule is a drawback of the prototype syntax.

You can use this API without the prototype. It’s slightly less attractive:

use Test::More tests => 1;
use Test::Exception;

throws_ok (
sub { my $not_an_object; $not_an_object->some_method() } ,
qr/Can't call method "some_method" on an undefined value/,
'Calling a method on an undefined invocant should throw exce ption') ;

161

Modern Perl

A sparing use of function prototypes to remove the need for the sub builtin is reasonable. Another is when defining a custom
function to use withsort48. Declare this function with a prototype of($$) and Perl will pass its arguments in�_ rather than
the package globals$a and$b. This is a rare case, but it can save you time debugging.

Few other uses of prototypes are compelling enough to overcome their drawbacks.

Method-Function Equivalence
Perl 5’s object system is deliberately minimal (see BlessedReferences, page 110). Because a class is a package, Perl itself
makes no strong distinction between a function stored in a package and a method stored in a package. The same builtin,sub,
expresses both. Documentation and the convention of treating the first parameter as$self can imply intent to readers of the
code, but Perl itself will treat any function of the appropriate name it can find in an appropriate package as a method if you try
to call it as a method.

Likewise, you can invoke a method as if it were a function—fully-qualified, exported, or as a reference—if you pass in your
own invocant manually.

Both approaches have their problems; avoid them.

Caller-side
Suppose you have a class which contains several methods:

package Order;

use List::Util 'sum';

...

sub calculate_price
{

my $self = shift;
return sum(0, $self->get_items());

}

If you have anOrder object$o, the following invocations of this methodmayseem equivalent:

my $price = $o->calculate_price();

broken; do not use
my $price = Order::calculate_price($o);

Though in this simple case, they produce the same output, thelatter violates the encapsulation of objects in subtle ways. It
avoids method lookup altogether.

If $o were instead a subclass or allomorph (see Roles, page 105) ofOrder which overrodealulate_prie(), calling the
method as a function would produce the wrong behavior. Any change to the implementation ofalulate_prie(), such as
a modification of inheritance or delegation throughAUTOLOAD()—might break calling code.

Perl has one circumstance where this behavior may seem necessary. If you force method resolution without dispatch, how do
you invoke the resulting method reference?

my $meth_ref = $o->can('apply_discount');

There are two possibilities. The first is to discard the return value of thean() method:

$o->apply_discount() if $o->can('apply_discount');

48Ben Tilly suggested this example.

162

What to Avoid

The second is to use the reference itself with method invocation syntax:

if (my $meth_ref = $o->can('apply_discount'))
{

$o->$meth_ref();
}

When$meth_ref contains a function reference, Perl will invoke that reference with$o as the invocant. This works even under
strictures, as it does when invoking a method with a scalar containing its name:

my $name = 'apply_discount';
$o->$name();

There is one small drawback in invoking a method by reference; if the structure of the program has changed between storingthe
reference and invoking the reference, the reference may no longer refer to the current, most appropriate method. If theOrder

class has changed such thatOrder::apply_disount is no longer the right method to call, the reference in$meth_ref will
not have updated.

If you use this form of invocation, limit the scope of the references.

Callee-side
Because Perl 5 makes no distinction between functions and methods at the point of declaration and because it’spossible
(however inadvisable) to invoke a given function as a function or a method, it’s possible to write a function callable as either.

The coreCGI module is a prime offender. Its functions manually inspect�_ to determine whether the first argument is a likely
invocant. If so, they ensure that any object state the function needs to access is available. If the first argument is not alikely
invocant, the function must consult global data elsewhere.

As with all heuristics, there are corner cases. It’s difficult to predict exactly which invocants are potentially valid for a given
method, especially when considering that users can create their own subclasses. The documentation burden is also greater, given
the need to explain the dichotomy of the code and the desire toavoid misuse. What happens when one part of the project uses
the procedural interface and another uses the object interface?

Providing separate procedural and object interfaces to a library may be justifiable. Some designs make some techniquesmore
useful than others. Conflating the two into a single API willcreate a maintenance burden. Avoid it.

Tie
Overloading (see Overloading, page 145) lets you give classes custom behavior for specific types of coercions and accesses.
A similar mechanism exists for making classes act like built-in types (scalars, arrays, and hashes), but with more specific
behaviors. This mechanism uses thetie builtin; it is tying.

The original use oftie was to produce a hash stored on disk, rather than in memory. This allowed the use of DBM files from
Perl, as well as the ability to access files larger than couldfit in memory. The core moduleTie::File provides a similar system
by which to handle data files too large to fit in memory.

The class to which youtie a variable must conform to a defined interface for the specific data type.perldo perltie is
the primary source of information about these interfaces, though the core modulesTie::StdSalar, Tie::StdArray, and
Tie::StdHash are more useful in practice. Inherit from them to start, and override only those specific methods you need to
modify.

Tie::Salar, Tie::Array, andTie::Hash define the necessary interfaces to tie scalars, arrays, andhashes, but
Tie::StdSalar, Tie::StdArray, andTie::StdHash provide the default implementations. Iftie() hasn’t
confused you, the organization of this code might.

163

Modern Perl

Tying Variables

Given a variable to tie, tie it with the syntax:

use Tie::File;
tie my @file, 'Tie::File', @args;

. . . where the first argument is the variable to tie, the second is the name of the class into which to tie it, and�args is an optional
list of arguments required for the tying function. In the case ofTie::File, this is the name of the file to which to tie the array.

Tying functions resemble constructors:TIESCALAR, TIEARRAY(), TIEHASH(), or TIEHANDLE() for scalars, arrays, hashes,
and filehandles respectively. Each function returns a new object which represents the tied variable. Both thetie andtied
builtins return this object, but most people ignore it in favor of checking its boolification to determine whether a given variable
is tied.

Implementing Tied Variables

To implement the class of a tied variable, inherit from a coremodule such asTie::StdSalar, then override the specific
methods for the operations you want to change. In the case of atied scalar, you probably need to overrideFETCH andSTORE,
may need to overrideTIESCALAR(), and can often ignoreDESTROY().

You can create a class which logs all reads from and writes to ascalar with very little code:

package Tie::Scalar::Logged;

use Modern::Perl;

use Tie::Scalar;
use parent -norequire => 'Tie::StdScalar';

sub STORE
{

my ($self, $value) = @_;
Logger->log("Storing <$value> (was [$$self])", 1);
$$self = $value;

}

sub FETCH
{

my $self = shift;
Logger->log("Retrieving <$$self>", 1);
return $$self;

}

1;

Assume that theLogger class methodlog() takes a string and the number of frames up the call stack of which to report the
location. Be aware thatTie::StdSalar does not have its own.pmfile, so you must useTie::Salar to make it available.

Within theSTORE() andFETCH() methods,$self works as a blessed scalar. Assigning to that scalar reference changes the
value of the scalar and reading from it returns its value.

Similarly, the methods ofTie::StdArray andTie::StdHash act on blessed array and hash references, respectively. The
perldo perltie documentation explains the copious methods they support, as you can read or write multiple values from
them, among other operations.

The-norequire option prevents theparent pragma from attempting to load a file forTie::StdSalar, as that
module is part of the fileTie/Scalar.pm.

164

What to Avoid

When to use Tied Variables
Tied variables seem like fun opportunities for cleverness,but they make for confusing interfaces in almost all cases, due mostly
to their rarity. Unless you have a very good reason for makingobjects behave as if they were built-in data types, avoid creating
your own ties.

Good reasons include to ease debugging (use the logged scalar to help you understand where a value changes) and to make
certain impossible operations possible (accessing large files in a memory-efficient way). Tied variables are less useful as the
primary interfaces to objects; it’s often too difficult and constraining to try to fit your whole interface to that supported by
tie().

The final word of warning is both sad and convincing; far too much code does not expect to work with tied variables. Code
which violates encapsulation may prohibit good and valid uses of cleverness. This is unfortunate, but violating the expectations
of library code tends to reveal bugs that are often out of yourpower to fix.

165

What’s Missing
Perl 5 isn’t perfect, at least as it behaves by default. Some options are available in the core. More are available from the
CPAN. Experienced Perl developers have their own idea of howan ideal Perl 5 should behave, and they often use their own
configurations very effectively.

Novices may not know how Perl can help them write programs better. A handful of core modules will make you much more
productive.

Missing Defaults
Perl 5’s design process in 1993 and 1994 tried to anticipate new directions for the language, but it’s impossible to predict the
future. Perl 5 added many great new features, but it also keptcompatibility with the previous seven years of Perl 1 through Perl
4. Sixteen years later, the best way to write clean, maintainable, powerful, and succinct Perl 5 code is very different from Perl
5.000. The default behaviors sometimes get in the way; fortunately, better behaviors are available.

The CPAN (see The CPAN, page 10) contains many modules and pragmas designed to make your work simpler, more correct,
and more enjoyable49. As you improve as a Perl programmer, you will have many opportunities to use (and even to create) such
code in the right circumstances. For now, use these pragmas and modules regularly in your own code.

The strict Pragma
Thestrit pragma (see Pragmas, page 121) allows you to forbid (or re-enable) various language constructs which offer power
but also the potential for accidental abuse.

strit provides three features: forbidding symbolic references,requiring variable declarations, and forbidding the use of
undeclared barewords (see Barewords, page 156). While the occasional use of symbolic references is necessary to manipulate
symbol tables (barring the use of helper modules, such asMoose), the use of a variable as a variable name offers the possibility
of subtle errors of action at a distance—or, worse, the possibility of poorly-validated user input manipulating internal-only data
for malicious purposes.

Requiring variable declarations helps to prevent typos in variable names and encourages proper scoping of lexical variables. It’s
much easier to see the intended scope of a lexical variable ifall variables havemy or our declarations in the appropriate scope.

strit has a lexical effect, based on the compile-time scope of its use. You may disable certain features ofstrit (within the
smallest possible scope, of course) withno strit. Seeperldo strit for more details.

The warnings Pragma
The warnings pragma (see Handling Warnings, page 126) controls the reporting of various classes of warnings in Perl 5,
such as attempting to stringify theundef value or using the wrong type of operator on values. It also warns about the use of
deprecated features.

The most useful warnings explain that Perl had trouble understanding what you meant and had to guess at the proper interpre-
tation. Even though Perl often guesses correctly, disambiguation on your part will ensure that your programs run correctly.

Thewarnings pragma has a lexical effect on the compile-time scope of its use. You may disable some or all warnings with
no warnings (within the smallest possible scope, of course). Seeperldo perllexwarn andperldo warnings for more
details.

49SeeTask::Kensho to start.

166

What’s Missing

Combineuse warnings with use diagnostis, and Perl 5 will display expanded diagnostic messages for each
warning present in your programs. These expanded diagnostics come fromperldo perldiag. This behavior is
useful when learning Perl, but it’s less useful in code deployed to production, because it can produce verbose error
output.

IO::Handle
Perl 5.6.0 added lexical filehandles. Previously, filehandles were all package globals. This was occasionally messy and often
confusing. Now that you can write:

open my $fh, '>', $file or die "Can't write to '$file': $!\n";

. . . the lexical filehandle in$fh is easier to use. The implementation of lexical filehandlescreates objects;$fh is an instance
of IO::Handle. Unfortunately, even though$fh is an object, you can’t call methods on it because nothing hasloaded the
IO::Handle class.

This is occasionally painful when you want to flush the buffer of the associated filehandle, for example. It could be as easy as:

$fh->flush();

. . . but only if your program somewhere containsuse IO::Handle. The solution is to add this line to your programs so that
lexical filehandles—the objects as they are—behave as objects should behave.

The autodie Pragma
Perl 5’s default error checking is parsimonious. If you’re not careful to check the return value of everyopen() call, for example,
you could try to read from a closed filehandle—or worse, lose data as you try to write to one. Theautodie pragma changes
the default behavior. If you write:

use autodie;

open my $fh, '>', $file;

. . . an unsuccessfulopen() call will throw an exception via Perl 5’s normal exception mechanism. Given that the most appro-
priate approach to a failed system call is throwing an exception, this pragma can remove a lot of boilerplate code and allow you
the peace of mind of knowing that you haven’t forgotten to check a return value.

This pragma entered the Perl 5 core as of Perl 5.10.1. Seeperldo autodie for more information.

167

Index

"
circumfix operator, 60

\
prefix operator, 60
regex escaping metacharacter, 96

\A
start of string regex metacharacter, 92

\B
non-word boundary regex metacharacter, 92

\D
non-digit regex metacharacter, 92

\E
reenable metacharacters regex metacharacter, 96

\G
global match anchor regex metacharacter, 98

\N{}
escape sequence for named character encodings, 19

\Q
disable metacharacters regex metacharacter, 96

\S
non-whitespace regex metacharacter, 92

\W
non-alphanumeric regex metacharacter, 92

\Z
end of string regex metacharacter, 92

\b
word boundary regex metacharacter, 92

\d
digit regex metacharacter, 92

\s
whitespace regex metacharacter, 92

\w
alphanumeric regex metacharacter, 92

\x{}
escape sequence for character encodings, 19()
capturing regex metacharacters, 95
circumfix operator, 60
empty list, 21
postcircumfix operator, 60(?:)
non-capturing regex group, 95(?=...)
zero-width positive look-ahead regex assertion, 96(?<=...)
zero-width positive look-behind regex assertion, 97(?<>)
regex named capture, 94*
numeric operator, 60
sigil, 142
zero or more regex quantifier, 90**
numeric operator, 60**=
numeric operator, 60*=
numeric operator, 60*?
non-greedy zero or one regex quantifier, 91+
numeric operator, 60
one or more regex quantifier, 90
prefix operator, 60
unary operator, 156

++
auto-increment operator, 61
prefix operator, 60+=
numeric operator, 60+?
non-greedy one or more regex quantifier, 91,
operator, 62-
character class range regex metacharacter, 93
numeric operator, 60
prefix operator, 60-=
numeric operator, 60-T
taint command-line argument, 146-W
enable warnings command-line argument, 127-X
disable warnings command-line argument, 127
file test operators, 133--
numeric operator, 60
prefix operator, 60->
dereferencing arrow, 52-d
directory test operator, 133-e
file exists operator, 133-f
file test operator, 133-r
readable file test operator, 133-t
enable baby taint command-line argument, 147-w
enable warnings command-line argument, 127-z
non-empty file test operator, 133.
anything but newline regex metacharacter, 92
infix operator, 60
string operator, 61..
flip-flop operator, 62
infix operator, 60
range operator, 22, 62...
infix operator, 60.=
infix operator, 60/
numeric operator, 60//
circumfix operator, 60
infix operator, 46, 60
logical operator, 61//=
infix operator, 60/=
numeric operator, 60/e
substitution evaluation regex modifier, 98

168

Index/g
global match regex modifier, 98/i
case-insensitive regex modifier, 97/m
multiline regex modifier, 97/s
single line regex modifier, 97/x
extended readability regex modifier, 97::
package name separator, 134==
numeric comparison operator, 60=~
infix operator, 60
regex bind, 89
string operator, 61=>
fat comma operator, 41, 62?
zero or one regex quantifier, 90, 91?:
logical operator, 61
ternary conditional operator, 61??
non-greedy zero or one regex quantifier, 91[℄
character class regex metacharacters, 93
circumfix operator, 60
postcircumfix operator, 60$
end of line regex metacharacter, 97
sigil, 35, 36, 41$\, 131$,, 131$., 131, 154$/, 74, 131, 150, 154$0, 154$1
regex metacharacter, 94$2
regex metacharacter, 94$AUTOLOAD, 85$ERRNO, 154$EVAL_ERROR, 154$INPUT_LINE_NUMBER, 154$INPUT_RECORD_SEPARATOR, 154$LIST_SEPARATOR, 40, 154$OUTPUT_AUTOFLUSH, 154$PID, 154$PROGRAM_NAME, 154$SIG{__WARN__}, 128$VERSION, 49$#
sigil, 37$$, 154$&, 154$_
default scalar variable, 6
lexical, 28$^W, 127$' , 154$`, 154$a, 150$b, 150$self, 148%
numeric operator, 60
sigil, 40%+, 154%=
numeric operator, 60%ENV, 146%INC, 114%SIG, 155&
bitwise operator, 61

sigil, 53, 71&=
bitwise operator, 61&&
logical operator, 61__DATA__, 129__END__, 129^
bitwise operator, 61
negation of character class regex metacharacter, 93
start of line regex metacharacter, 97^=
bitwise operator, 61

.t files, 126
Higher Order Perl, 79
t/ directory, 126~

prefix operator, 60~~
smart match operator, 98>
numeric comparison operator, 60>=
numeric comparison operator, 60>>
bitwise operator, 61>>=
bitwise operator, 61<
numeric comparison operator, 60<=
numeric comparison operator, 60<=>
numeric comparison operator, 60<>
circumfix readline operator, 130<<
bitwise operator, 61<<=
bitwise operator, 61

' '
circumfix operator, 60{}
circumfix operator, 60
postcircumfix operator, 60
regex numeric quantifier, 90�
circumfix operator, 60

aliasing, 28
iteration, 28

allomorphism, 106
amount context, 4
anchors

end of string, 92
start of string, 92and
logical operator, 61

anonymous functions
implicit, 78
names, 77

anonymous variables, 15Any::Moose, 113App::panminus, 138App::perlbrew, 138
arguments

named, 148
arity, 59ARRAY, 139
arrays, 13, 36

anonymous, 52eah, 39
interpolation, 40pop, 39push, 39
references, 51shift, 39
slices, 38

169

Modern Perlsplie, 39unshift, 39
ASCII, 18
associativity, 59

disambiguation, 60
left, 59
right, 59

atom, 89Attribute::Handlers, 84
attributes

default values, 103
objects, 101ro (read only), 101rw (read-write), 102
typed, 101
untyped, 102attributes pragma, 84

auto-increment, 61autobox, 122autodie pragma, 167AUTOLOAD, 112, 156
code installation, 86
delegation, 86
drawbacks, 87
redispatch, 86

autovivification, 48, 57autovivifiation pragma, 57B::Deparse, 60
baby Perl, 3
barewords, 156

cons, 157
filehandles, 157
function calls, 157
hash values, 157
pros, 156
sort functions, 157base pragma, 112BEGIN, 143, 156
implicit, 143

Best Practical, 9
binary, 59binmode, 18
blogs.perl.org, 9
boolean, 36

false, 36
true, 26, 36

boolean context, 5
buffering, 131
builtinsbinmode, 18, 131bless, 110aller, 67, 151hdir, 134homp, 31, 130hr, 6lose, 131, 159losedir, 133defined, 21, 43die, 119do, 71eah, 39, 43eof, 130eval, 119, 141, 143exists, 43for, 27foreah, 27given, 33goto, 35, 71grep, 7index, 90keys, 43l, 6length, 6loal, 74, 150, 153map, 7, 149no, 121, 135open, 18, 129

opendir, 132ord, 6our, 74
overriding, 161pakage, 48, 100pop, 39print, 131, 159prototype, 160push, 39readdir, 132readline, 130rename, 134require, 139reverse, 6say, 131, 159salar, 5shift, 39sort, 149, 150, 157, 162splie, 39state, 75, 83sub, 54, 63, 76, 162sysopen, 130tie, 163, 164tied, 164u, 6unlink, 134unshift, 39use, 67, 135values, 43wantarray, 68warn, 127when, 34

call frame, 69an(), 87, 139, 162Carp, 68, 127arp(), 68, 127luk(), 127onfess(), 127roak(), 68, 127
verbose, 127

case-sensitivity, 136
Catalyst, 84CGI, 135
character classes, 93harnames pragma, 19CHECK, 156
circular references, 58
circumfix, 60
class method, 101Class::MOP, 109, 144Class::MOP::Class, 109
classes, 100
closures, 79

installing into symbol table, 142
parametric, 142mp
string comparison operator, 61mp_ok(), 125CODE, 139

code generation, 141
codepoint, 17
coercion, 47, 116, 153

boolean, 47
cached, 48
dualvars, 48
numeric, 47
reference, 48
string, 47

command-line arguments-T, 146-W, 127-X, 127-t, 147-w, 127onstant pragma, 161
constants, 161

barewords, 157

170

Index

context, 3, 68
amount, 4
boolean, 5
conditional, 26
list, 4
numeric, 5
scalar, 4
string, 5
value, 5
void, 4Contextual::Return, 69

control flow, 23
control flow directives, 23else, 24elsif, 24if, 23

ternary conditional, 25unless, 23
CPAN, 10CPAN.pm, 11CPAN::Mini, 138panmini, 138CPANPLUS, 11

CPANTS, 138Test::Reporter, 138CPAN, 138
cpan.org, 9CPAN::Mini, 118CPANPLUS, 138Cwd, 134DATA, 129
data structures, 55Data::Dumper, 57
dative notation, 158dlone(), 55deode(), 18
defined-or, 46

logical operator, 61
default variables$_, 6

array, 7
scalar, 6

delegation, 86
dereferencing, 50DESTROY, 156
destructive update, 30Devel::Cover, 126Devel::Delare, 109
dispatch, 101
dispatch table, 76Dist::Zilla, 138
distribution, 10, 137DOES(), 106, 140
DRY, 115dualvar(), 36, 48
dualvars, 36, 48
duck typing, 104
DWIM, 3, 47
dwimmery, 47
dynamic scope, 74

efficacy, 118
empty list, 21
encapsulation, 72, 103Enode, 18enode(), 18
encoding, 18, 19END, 156English, 154
Enlightened Perl Organization, 9eq

string comparison operator, 61
escaping, 16, 96eval, 153

block, 119
string, 141Exeption::Class, 120

exceptions, 119
catching, 119, 153
caveats, 120
core, 120Exeption::Class, 120die, 119Try::Tiny, 120
rethrowing, 120
throwing, 119
throwing objects, 120
throwing strings, 119

exporting, 136ExtUtils::MakeMaker, 126, 138

filehandles, 129
references, 54STDERR, 129STDIN, 129STDOUT, 129

files
absolute paths, 133
copying, 134
deleting, 134
hidden, 133
moving, 134
relative paths, 133
removing, 134
slurping, 150

fixity, 60
circumfix, 60
infix, 60
postcircumfix, 60
postfix, 60
prefix, 60

flip-flop, 62
floating-point values, 20
false, 26feature, ii, 83state, 83feature pragma, 135File::Copy, 134File::Slurp, 151File::Spe, 133FileHandle, 132autoflush(), 132input_line_number(), 132input_reord_separator(), 132
fully-qualified name, 14
function, 63
functions

aliasing parameters, 66
anonymous, 75
avoid calling as methods, 163
call frame, 69
closures, 79
declaration, 63
first-class, 53
forward declaration, 63goto, 71
importing, 67
invoking, 63
misfeatures, 71
parameters, 64
Perl 1, 71
Perl 4, 71
predeclaration, 87
references, 53
sigil, 53
tailcall, 70

garbage collection, 58ge
string comparison operator, 61

genericity, 104
Github, 10
gitpan, 10
global variables$\, 131

171

Modern Perl$,, 131$., 131, 154$/, 131, 150, 154$0, 154$ERRNO, 154$EVAL_ERROR, 154$INPUT_LINE_NUMBER, 154$INPUT_RECORD_SEPARATOR, 154$LIST_SEPARATOR, 154$OUTPUT_AUTOFLUSH, 154$PID, 154$PROGRAM_NAME, 154$$, 154$&, 154$^W, 127$' , 154$`, 154%+, 154%SIG, 155goto, 71
tailcall, 87

greedy quantifiers, 91gt
string comparison operator, 61HASH, 139

hashes, 13, 40
bareword keys, 156
caching, 45
counting items, 45
declaring, 40eah, 43exists, 43
finding uniques, 45keys, 43
locked, 46
named parameters, 46
references, 52
slicing, 44
values, 42values, 43

heredocs, 17

identifiers, 13
idioms, 118import(), 135
increment

string, 36indiret, 159
indirect object notation, 158
infix, 60
inheritance, 106INIT, 156
instance method, 101
integers, 20
interpolation, 16

arrays, 40
introspection, 113IO, 139
IO layers, 18IO::All, 146IO::File, 132IO::Handle, 132, 155, 159
IRC, 10

#catalyst, 10
#moose, 10
#perl, 10
#perl-help, 10is(), 125isa(), 108, 139isa_ok(), 125isnt(), 125

iteration
aliasing, 28
scoping, 28

Larry Wall, 2
Latin-1, 18

le
string comparison operator, 61

left associativity, 59
lexical scope, 72
lexical shadowing, 73
lexical topic, 73
lexical warnings, 128
lexicals

lifecycle, 55
pads, 74

lexpads, 74
list context, 4

arrays, 39
listary, 59
lists, 22looks_like_number(), 21, 36
looping directivesfor, 27foreah, 27
loops ontinue, 33

control, 32do, 31for, 29
labels, 33last, 32
nested, 31next, 32redo, 32until, 30while, 30lt
string comparison operator, 61

lvalue, 14m//
match operator, 6

magic variables$/, 74
maintainability, 117map

Schwartzian transform, 149Memoize, 85
memory management

circular references, 58
meta object protocol, 144
metacharacters

regex, 96
metaclass, 144
metaprogramming, 109, 141
method dispatch, 101, 111
method resolution order, 107
methodsAUTOLOAD, 112

avoid calling as functions, 162, 163
calling with references, 162
class, 101, 110
dispatch order, 107
instance, 101
invocant, 148
mutator, 102
resolution, 107Module::Build, 126, 138

modules, 10, 134
case-sensitivity, 136BEGIN, 143
pragmas, 121

Moose, 144
attribute inheritance, 107
compared to default Perl 5 OO, 109DOES(), 106extends, 107
inheritance, 106isa(), 108
metaprogramming, 109
MOP, 109override, 108
overriding methods, 108

172

Index

moose, 100Moose::Util::TypeConstraints, 116MooseX::Delare, 109MooseX::MultiMethods, 148MooseX::Params::Validate, 152MooseX::Types, 116
MRO, 107mro pragma, 112
multiple inheritance, 107, 112my $_, 28

names, 13
namespaces, 48, 49

fully qualified, 49
multi-level, 50
open, 49ne
string comparison operator, 61

nested data structures, 55not
logical operator, 61

null filehandle, 8
nullary, 59
numbers, 20

false, 36
true, 36
underscore separator, 20

numeric context, 5
numeric quantifiers, 90
numification, 36, 47

objects, 100
inheritance, 107
invocant, 148
meta object protocol, 144
multiple inheritance, 107

octet, 18ok(), 123
OO, 100

attributes, 101AUTOLOAD, 112bless, 110
class methods, 101, 110
classes, 100
constructors, 110
delegation, 86
dispatch, 101
duck typing, 104
encapsulation, 103
genericity, 104
has-a, 115
immutability, 116
inheritance, 106, 112, 115
instance data, 110
instance methods, 101
instances, 100
invocants, 100
is-a, 115
Liskov Substitution Principle, 116
metaclass, 144
method dispatch, 101
methods, 100, 111
mixins, 106
monkeypatching, 106
multiple inheritance, 106
mutator methods, 102
polymorphism, 104
proxying, 86
single responsibility principle, 115
state, 101

OO: composition, 115open, 18
operands, 59
operators, 59, 61

\, 50*, 60**, 60**=, 60

*=, 60+, 60++, 61+=, 60,, 62-, 60-=, 60-X, 133--, 60->, 52-d, 133-e, 133-f, 133-r, 133-z, 133., 61.., 22, 62/, 60//, 46, 61, 89/=, 60==, 60=~, 61, 89=>, 41, 62?:, 61%, 60%=, 60&, 61&=, 61&&, 61^, 61^=, 61~~, 98>, 60>=, 60>>, 61>>=, 61<, 60<=, 60<=>, 60, 150<>, 130<<, 61<<=, 61and, 61
arithmetic, 60
arity, 59
auto-increment, 61
bitwise, 61
characteristics, 59mp, 61, 150
comma, 62
defined-or, 46, 61eq, 61, 125
fixity, 60
flip-flop, 62ge, 61gt, 61le, 61
logical, 61lt, 61m//, 89
match, 89ne, 61, 125not, 61
numeric, 60or, 61q, 17qq, 17qr//, 89
quoting, 17qw(), 22
range, 22, 62
repetition, 62
smart match, 98
string, 61x, 62xor, 61or
logical operator, 61

173

Modern Perl

orcish maneuver, 45overload pragma, 145
overloading, 145

boolean, 145
inheritance, 146
numeric, 145
string, 145

p5p, 10
packages, 48

bareword names, 156
namespaces, 49
scope, 74
versions, 49PadWalker, 80

parameters, 64
aliasing, 66
flattening, 64
named, 148
slurping, 66Params::Validate, 152parent pragma, 111

partial application, 82Path::Class, 133Path::Class::Dir, 133Path::Class::File, 133
Perl 5 Porters, 10
Perl Buzz, 9
Perl Mongers, 10
perl.com, 9
perl.org, 9perl5i, 122Perl::Criti, 118, 140, 159Perl::Criti::Poliy::Dynami::NoIndiret, 159Perl::Tidy, 118
perldoc-f (search perlfunc), 2-l (list path to POD), 2-m (show raw POD), 2-q (search perlfaq), 2
PerlMonks, 9plan(), 123
Planet Perl, 9
Planet Perl Iron Man, 9
POD, 2
polymorphism, 104
postcircumfix, 60
postfix, 60
pragmas, 121attributes, 84autodie, 122, 167autovivifiation, 57base, 112harnames, 19onstant, 122, 161

disabling, 121
enabling, 121feature, 135mro, 112overload, 145parent, 111
scope, 121strit, 122, 142, 156, 166subs, 87, 161
useful core pragmas, 122utf8, 19, 122vars, 122warnings, 122, 127

precedence, 59
disambiguation, 60

prefix, 60
principle of least astonishment, 3
prototypes, 159

barewords, 157prove, 124, 138
proxying, 86q

single quoting operator, 17qq
double quoting operator, 17qr//
compile regex operator, 89

quantifiers
greedy, 91
zero or more, 90qw()
quote words operator, 22

range, 62readline, 154Readonly, 161
recursion, 69

guard conditions, 70
reflection, 113
references, 50

\ operator, 50
anonymous arrays, 52
arrays, 51
dereferencing, 50
filehandles, 54
functions, 53
hashes, 52
reference counting, 55
scalar, 50
weak, 58

regex, 89
\B, 92
\D, 92
\G, 98
\S, 92
\W, 92
\d, 92
\s, 92
\w, 92(), 95., 92/e modifier, 98/g modifier, 98/i modifier, 97/m modifier, 97/s modifier, 97/x modifier, 97
alternation, 95
anchors, 92
assertions, 96
atom, 89
capture, 152
captures, 94
case-insensitive, 97
disabling metacharacters, 96
engine, 89
escaping metacharacters, 96
extended readability, 97
first-class, 89
global match, 98
global match anchor, 98
metacharacters, 92, 96
modification, 152
modifiers, 97
multiline, 97
named captures, 94
numbered captures, 94
one or more quantifier, 90qr//, 89
quantifiers, 90
single line, 97
substitution, 152
substitution evaluation, 98
zero or one quantifier, 90
zero-width assertion, 96
zero-width negative look-ahead assertion, 96
zero-width negative look-behind assertion, 97
zero-width positive look-ahead assertion, 96
zero-width positive look-behind assertion, 97Regexp, 139

174

IndexRegexp::Common, 21
regular expressions, 89
right associativity, 59
roles, 105

allomorphism, 106
composition, 105

RT, 9
rvalue, 14s///

subsitution operator, 6SCALAR, 139
scalar context, 4
scalar variables, 13
Scalar::Util, 47

looks_like_number, 47Salar::Util, 21, 36, 48, 58, 146
scalars, 13, 35

boolean values, 36
references, 50

Schwartzian transform, 149
scope, 14, 72

dynamic, 74
iterator, 28
lexical, 72
lexical shadowing, 73
packages, 74
state, 75

search.cpan.org, 10
short-circuiting, 25, 61
sigils, 15*, 142$, 35, 36, 41$#, 37%, 40&, 53, 71

variant, 36signatures, 148
slices, 14

array, 38
hash, 44

smart match, 98sort, 157
Schwartzian transform, 149

state, 83state, 75STDERR, 129STDIN, 129STDOUT, 129Storable, 55strit, 166strit pragma, 142, 156
string context, 5
stringification, 36, 47
strings, 15

\N{}, 19
\x{}, 19
delimiters, 15
double-quoted, 16
false, 36
heredocs, 17
interpolation, 16
operators, 61
single-quoted, 16
true, 36Sub::Call::Tail, 70Sub::Exporter, 136Sub::Identify, 77Sub::Install, 82Sub::Name, 77

subroutine, 63subs pragma, 87, 161
subtypes, 116SUPER, 113
super globals, 153

alternatives, 155
managing, 153
useful, 154

symbol tables, 74, 115, 142
symbolic lookups, 13

tailcalls, 35, 70, 87
taint, 146

checking, 146
removing sources of, 147
untainting, 147tainted(), 146

TAP (Test Anything Protocol), 124Task::Kensho, 166
ternary conditional, 25Test::Builder, 126Test::Class, 84, 126Test::Database, 126Test::Deep, 126Test::Differenes, 126Test::Exeption, 78, 126, 161Test::Harness, 124, 138Test::MokModule, 126Test::MokObjet, 126Test::More, 123, 138Test::WWW::Mehanize, 126
testing, 123mp_ok(), 125is(), 125isa_ok(), 125isnt(), 125ok(), 123

plan, 123prove, 124
running tests, 124
TAP, 124Test::Builder, 126

The Perl Foundation, 10
Tim Toady, 2
TIMTOWTDI, 2
topic

lexical, 73
topicalization, 34
TPF, 10

wiki, 10tr//
transliteration operator, 6

trinary, 59
true, 26
truthiness, 47Try::Tiny, 120, 155
typeglobs, 115, 142
types, 116, 153

unary, 59
unary conversions

boolean, 153
numeric, 153
string, 153undef, 21, 36
coercions, 21

underscore, 20
Unicode, 17

encoding, 18
unimporting, 135UNITCHECK, 156UNIVERSAL, 49, 139an(), 162UNIVERSAL::an, 87, 139, 140UNIVERSAL::DOES, 140UNIVERSAL::isa, 139, 140UNIVERSAL::ref, 140UNIVERSAL::VERSION, 140
Unix, 133
untainting, 147
UTF-8, 18utf8 pragma, 19

value context, 5
variable, 14
variables, 15

175

Modern Perl$_, 6$self, 148
anonymous, 15
arrays, 13
container type, 15
hashes, 13
lexical, 72
names, 13
scalars, 13
scope, 14
sigils, 15
super global, 153
types, 15
value type, 15

variant sigils, 14VERSION(), 49, 140
void context, 4

Wall, Larry, 2Want, 69wantarray, 68
warnings

catching, 128
fatal, 128
registering, 128warnings, 127

weak references, 58
websites

blogs.perl.org, 9
cpan.org, 9
gitpan, 10
Perl Buzz, 9
perl.com, 9
perl.org, 9
PerlMonks, 9
Planet Perl, 9
Planet Perl Iron Man, 9
TPF wiki, 10

word boundary metacharacter, 92x
repetition operator, 62xor
logical operator, 61

YAPC, 10

176

	Preface
	Running Modern Perl
	Perl 5 and Perl 6
	Credits

	The Perl Philosophy
	Perldoc
	Expressivity
	Context
	Implicit Ideas

	Perl and Its Community
	Community Sites
	Development Sites
	Events
	IRC
	The CPAN

	The Perl Language
	Names
	Variables
	Values
	Control Flow
	Scalars
	Arrays
	Hashes
	Coercion
	Nested Data Structures

	Operators
	Operator Characteristics
	Operator Types

	Functions
	Declaring Functions
	Invoking Functions
	Function Parameters
	Functions and Namespaces
	Reporting Errors
	Advanced Functions
	Pitfalls and Misfeatures
	Scope
	Anonymous Functions
	Closures
	State versus Closures
	State versus Psuedo-State
	Attributes
	AUTOLOAD

	Regular Expressions and Matching
	Literals
	The qr// Operator and Regex Combinations
	Quantifiers
	Greediness
	Regex Anchors
	Metacharacters
	Character Classes
	Capturing
	Grouping and Alternation
	Other Escape Sequences
	Assertions
	Regex Modifiers
	Smart Matching

	Objects
	Moose
	Blessed References
	Reflection
	Advanced OO Perl

	Style and Efficacy
	Writing Maintainable Perl
	Writing Idiomatic Perl
	Writing Effective Perl
	Exceptions
	Pragmas

	Managing Real Programs
	Testing
	Handling Warnings
	Files
	Modules
	Distributions
	The UNIVERSAL Package
	Code Generation
	Overloading
	Taint

	Perl Beyond Syntax
	Idioms
	Global Variables

	What to Avoid
	Barewords
	Indirect Objects
	Prototypes
	Method-Function Equivalence
	Tie

	What's Missing
	Missing Defaults

