
By Stas Bekman
If you like this article, please make a donation to the Perl development grant fund.

Table of Contents
.......... 1Variables Globally, Lexically Scoped And Fully Qualified
........... 4use(), require(), do(), %INC and @INC Explained
.................... 12References

Printed from DevShed.com

i

Variables Globally, Lexically Scoped And Fully Qualified
You will hear a lot about namespaces, symbol tables and lexical scoping in Perl discussions, but little of it
will make any sense without a few key facts:

Symbols, Symbol Tables and Packages; Typeglobs

There are two important types of symbol: package global and lexical. We will talk about lexical symbols
later, for now we will talk only about package global symbols, which we will refer to simply as global
symbols.

The names of pieces of your code (subroutine names) and the names of your global variables are symbols.
Global symbols reside in one symbol table or another. The code itself and the data do not; the symbols are
the names of pointers which point (indirectly) to the memory areas which contain the code and data. (Note
for C/C++ programmers: we use the term ‘pointer’ in a general sense of one piece of data referring to
another piece of data not in a specific sense as used in C or C++.)

There is one symbol table for each package, (which is why global symbols are really package global
symbols).

You are always working in one package or another.

Like in C, where the first function you write must be called main(), the first statement of your first Perl
script is in package main:: which is the default package. Unless you say otherwise by using the
package statement, your symbols are all in package main:: . You should be aware straight away that
files and packages are not related. You can have any number of packages in a single file; and a single
package can be in one file or spread over many files. However it is very common to have a single package
in a single file. To declare a package you write:

 package mypackagename;

From the following line you are in package mypackagename and any symbols you declare reside in that
package. When you create a symbol (variable, subroutine etc.) Perl uses the name of the package in which
you are currently working as a prefix to create the fully qualified name of the symbol.

When you create a symbol, Perl creates a symbol table entry for that symbol in the current package’s
symbol table (by default main::). Each symbol table entry is called a typeglob. Each typeglob can hold
information on a scalar, an array, a hash, a subroutine (code), a filehandle, a directory handle and a format,
each of which all have the same name. So you see now that there are two indirections for a global variable:
the symbol, (the thing’s name), points to its typeglob and the typeglob for the thing’s type (scalar, array,
etc.) points to the data. If we had a scalar and an array with the same name their name would point to the
same typeglob, but for each type of data the typeglob points to somewhere different and so the scalar’s
data and the array’s data are completely separate and independent, they just happen to have the same
name.

Most of the time, only one part of a typeglob is used (yes, it’s a bit wasteful). You will by now know that
you distinguish between them by using what the authors of the Camel book call a funny character. So if
we have a scalar called ‘ line ’ we would refer to it in code as $line , and if we had an array of the same

Printed from DevShed.com

1

name, that would be written, @line . Both would point to the same typeglob (which would be called
*line), but because of the funny character (also known as decoration) perl won’t confuse the two. Of
course we might confuse ourselves, so some programmers don’t ever use the same name for more than
one type of variable.

Every global symbol is in some package’s symbol table. To refer to a global symbol we could write the
fully qualified name, e.g. $main::line . If we are in the same package as the symbol we can omit the
package name, e.g. $line (unless you use the <strict> pragma and then you will have to predeclare the
variable using the vars pragma). We can also omit the package name if we have imported the symbol
into our current package’s namespace. If we want to refer to a symbol that is in another package and
which we haven’t imported we must use the fully qualified name, e.g. $otherpkg::box .

Most of the time you do not need to use the fully qualified symbol name because most of the time you will
refer to package variables from within the package. This is very like C++ class variables. You can work
entirely within package main:: and never even know you are using a package, nor that the symbols have
package names. In a way, this is a pity because you may fail to learn about packages and they are
extremely useful.

The exception is when you import the variable from another package. This creates an alias for the variable
in the current package, so that you can access it without using the fully qualified name.

Whilst global variables are useful for sharing data and are necessary in some contexts it is usually wisest
to minimise their use and use lexical variables, discussed next, instead.

Note that when you create a variable, the low-level business of allocating memory to store the information
is handled automatically by Perl. The intepreter keeps track of the chunks of memory to which the pointers
are pointing and takes care of undefining variables. When all references to a variable have ceased to exist
then the perl garbage collector is free to take back the memory used ready for recycling. However perl
almost never returns back memory it has already used to the operating system during the lifetime of the
process.

Lexical Variables and Symbols

The symbols for lexical variables (i.e. those declared using the keyword my) are the only symbols which
do not live in a symbol table. Because of this, they are not available from outside the block in which they
are declared. There is no typeglob associated with a lexical variable and a lexical variable can refer only to
a scalar, an array or a hash.

If you need access to the data from outside the package then you can return it from a subroutine, or you
can create a global variable (i.e. one which has a package prefix) which points or refers to it and return
that. The pointer or reference must be global so that you can refer to it by a fully qualified name. But just
like in C try to avoid having global variables. Using OO methods generally solves this problem, by
providing methods to get and set the desired value within the object that can be lexically scoped inside the
package and passed by reference.

The phrase ‘‘lexical variable’’ is a bit of a misnomer, we are really talking about ‘‘lexical symbols’’. The
data can be referenced by a global symbol too, and in such cases when the lexical symbol goes out of
scope the data will still be accessible through the global symbol. This is perfectly legitimate and cannot be

Printed from DevShed.com

2

compared to the terrible mistake of taking a pointer to an automatic C variable and returning it from a
function--when the pointer is dereferenced there will be a segmentation fault. (Note for C/C++
programmers: having a function return a pointer to an auto variable is a disaster in C or C++; the perl
equivalent, returning a reference to a lexical variable created in a function is normal and useful.)

my() vs. use vars :

With use vars(), you are making an entry in the symbol table, and you are telling the compiler that
you are going to be referencing that entry without an explicit package name.

With my(), NO ENTRY IS PUT IN THE SYMBOL TABLE. The compiler figures out at
compile time which my() variables (i.e. lexical variables) are the same as each other, and once
you hit execute time you cannot go looking those variables up in the symbol table.

my() vs. local() :

local() creates a temporal-limited package-based scalar, array, hash, or glob -- when the scope of
definition is exited at runtime, the previous value (if any) is restored. References to such a variable
are *also* global... only the value changes. (Aside: that is what causes variable suicide. :)

my() creates a lexically-limited non-package-based scalar, array, or hash -- when the scope of
definition is exited at compile-time, the variable ceases to be accessible. Any references to such a
variable at runtime turn into unique anonymous variables on each scope exit.

Printed from DevShed.com

3

use(), require(), do(), %INC and @INC Explained
The @INC array

@INC is a special Perl variable which is the equivalent of the shell’s PATH variable. Whereas PATH
contains a list of directories to search for executables, @INC contains a list of directories from which Perl
modules and libraries can be loaded.

When you use(), require() or do() a filename or a module, Perl gets a list of directories from the
@INC variable and searches them for the file it was requested to load. If the file that you want to load is
not located in one of the listed directories, you have to tell Perl where to find the file. You can either
provide a path relative to one of the directories in @INC, or you can provide the full path to the file.

The %INC hash

%INC is another special Perl variable that is used to cache the names of the files and the modules that were
successfully loaded and compiled by use(), require() or do() statements. Before attempting to load a
file or a module with use() or require(), Perl checks whether it’s already in the %INC hash. If it’s there,
the loading and therefore the compilation are not performed at all. Otherwise the file is loaded into
memory and an attempt is made to compile it. do() does unconditional loading--no lookup in the %INC
hash is made.

If the file is successfully loaded and compiled, a new key-value pair is added to %INC. The key is the
name of the file or module as it was passed to the one of the three functions we have just mentioned, and if
it was found in any of the @INC directories except "." the value is the full path to it in the file system.

The following examples will make it easier to understand the logic.

First, let’s see what are the contents of @INC on my system:

 % perl -e ’print join "\n", @INC’
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

Notice the . (current directory) is the last directory in the list.

Now let’s load the module strict.pm and see the contents of %INC:

 % perl -e ’use strict; print map {"$_ => $INC{$_}\n"} keys %INC’

 strict.pm => /usr/lib/perl5/5.00503/strict.pm

Since strict.pm was found in /usr/lib/perl5/5.00503/ directory and /usr/lib/perl5/5.00503/ is a part of
@INC, %INC includes the full path as the value for the key strict.pm .

Printed from DevShed.com

4

Now let’s create the simplest module in /tmp/test.pm :

 test.pm

 1;

It does nothing, but returns a true value when loaded. Now let’s load it in different ways:

 % cd /tmp
 % perl -e ’use test; print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Since the file was found relative to . (the current directory), the relative path is inserted as the value. If we
alter @INC, by adding /tmp to the end:

 % cd /tmp
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Here we still get the relative path, since the module was found first relative to "." . The directory /tmp
was placed after . in the list. If we execute the same code from a different directory, the "." directory
won’t match,

 % cd /
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

so we get the full path. We can also prepend the path with unshift(), so it will be used for matching before
"." and therefore we will get the full path as well:

 % cd /tmp
 % perl -e ’BEGIN{unshift @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

The code:

 BEGIN{unshift @INC, "/tmp"}

can be replaced with the more elegant:

 use lib "/tmp";

Which is almost equivalent to our BEGIN block and is the recommended approach.

Printed from DevShed.com

5

These approaches to modifying @INC can be labor intensive, since if you want to move the script around
in the file-system you have to modify the path. This can be painful, for example, when you move your
scripts from development to a production server.

There is a module called FindBin which solves this problem in the plain Perl world, but unfortunately it
won’t work under mod_perl, since it’s a module and as any module it’s loaded only once. So the first
script using it will have all the settings correct, but the rest of the scripts will not if located in a different
directory from the first.

For the sake of completeness, I’ll present this module anyway.

If you use this module, you don’t need to write a hard coded path. The following snippet does all the work
for you (the file is /tmp/load.pl):

 load.pl

 #!/usr/bin/perl

 use FindBin ();
 use lib "$FindBin::Bin";
 use test;
 print "test.pm => $INC{’test.pm’}\n";

In the above example $FindBin::Bin is equal to /tmp. If we move the script somewhere else... e.g.
/tmp/x in the code above $FindBin::Bin equals /home/x.

 % /tmp/load.pl

 test.pm => /tmp/test.pm

This is just like use lib except that no hard coded path is required.

You can use this workaround to make it work under mod_perl.

 do ’FindBin.pm’;
 unshift @INC, "$FindBin::Bin";
 require test;
 #maybe test::import(...) here if need to import stuff

This has a slight overhead because it will load from disk and recompile the FindBin module on each
request. So it may not be worth it.

Modules, Libraries and Program Files

Before we proceed, let’s define what we mean by module, library and program file.

Libraries
These are files which contain Perl subroutines and other code.

Printed from DevShed.com

6

When these are used to break up a large program into manageable chunks they don’t generally
include a package declaration; when they are used as subroutine libraries they often do have a package
declaration.

Their last statement returns true, a simple 1; statement ensures that.

They can be named in any way desired, but generally their extension is .pl.

Examples:

 config.pl

 # No package so defaults to main::
 $dir = "/home/httpd/cgi-bin";
 $cgi = "/cgi-bin";
 1;

 mysubs.pl

 # No package so defaults to main::
 sub print_header{
 print "Content-type: text/plain\r\n\r\n";
 }
 1;

 web.pl

 package web ;
 # Call like this: web::print_with_class(’loud’,"Don’t shout!");
 sub print_with_class{
 my($class, $text) = @_ ;
 print qq{$text};
 }
 1;

Modules
A file which contains perl subroutines and other code.

It generally declares a package name at the beginning of it.

Modules are generally used either as function libraries (which .pl files are still but less commonly
used for), or as object libraries where a module is used to define a class and its methods.

Its last statement returns true.

The naming convention requires it to have a .pm extension.

Example:

 MyModule.pm

 package My::Module;
 $My::Module::VERSION = 0.01;

Printed from DevShed.com

7

 sub new{ return bless {}, shift;}
 END { print "Quitting\n"}
 1;

Program Files
Many Perl programs exist as a single file. Under Linux and other Unix-like operating systems the file
often has no suffix since the operating system can determine that it is a perl script from the first line
(shebang line) or if it’s Apache that executes the code, there is a variety of ways to tell how and when
the file should be executed. Under Windows a suffix is normally used, for example .pl or .plx .

The program file will normally require() any libraries and use() any modules it requires for
execution.

It will contain Perl code but won’t usually have any package names.

Its last statement may return anything or nothing.

require()

require() reads a file containing Perl code and compiles it. Before attempting to load the file it looks
up the argument in %INC to see whether it has already been loaded. If it has, require() just returns
without doing a thing. Otherwise an attempt will be made to load and compile the file.

require() has to find the file it has to load. If the argument is a full path to the file, it just tries to read
it. For example:

 require "/home/httpd/perl/mylibs.pl";

If the path is relative, require() will attempt to search for the file in all the directories listed in @INC.
For example:

 require "mylibs.pl";

If there is more than one occurrence of the file with the same name in the directories listed in @INC the
first occurrence will be used.

The file must return TRUE as the last statement to indicate successful execution of any initialization code.
Since you never know what changes the file will go through in the future, you cannot be sure that the last
statement will always return TRUE. That’s why the suggestion is to put ‘‘ 1; ’’ at the end of file.

Although you should use the real filename for most files, if the file is a module, you may use the following
convention instead:

 require My::Module;

This is equal to:

 require "My/Module.pm";

Printed from DevShed.com

8

If require() fails to load the file, either because it couldn’t find the file in question or the code failed to
compile, or it didn’t return TRUE, then the program would die(). To prevent this the require()
statement can be enclosed into an eval() exception-handling block, as in this example:

 require.pl

 #!/usr/bin/perl -w

 eval { require "/file/that/does/not/exists"};
 if ($@) {
 print "Failed to load, because : $@"
 }
 print "\nHello\n";

When we execute the program:

 % ./require.pl

 Failed to load, because : Can’t locate /file/that/does/not/exists in
 @INC (@INC contains: /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

 Hello

We see that the program didn’t die(), because Hello was printed. This trick is useful when you want to
check whether a user has some module installed, but if she hasn’t it’s not critical, perhaps the program can
run without this module with reduced functionality.

If we remove the eval() part and try again:

 require.pl

 #!/usr/bin/perl -w

 require "/file/that/does/not/exists";
 print "\nHello\n";

 % ./require1.pl

 Can’t locate /file/that/does/not/exists in @INC (@INC contains:
 /usr/lib/perl5/5.00503/i386-linux /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require1.pl line 3.

The program just die()s in the last example, which is what you want in most cases.

For more information refer to the perlfunc manpage.

use()

Printed from DevShed.com

9

use(), just like require(), loads and compiles files containing Perl code, but it works with modules only.
The only way to pass a module to load is by its module name and not its filename. If the module is located
in MyCode.pm, the correct way to use() it is:

 use MyCode

and not:

 use "MyCode.pm"

use() translates the passed argument into a file name replacing :: with the operating system’s path
separator (normally /) and appending .pm at the end. So My::Module becomes My/Module.pm.

use() is exactly equivalent to:

 BEGIN { require Module; Module->import(LIST); }

Internally it calls require() to do the loading and compilation chores. When require() finishes its
job, import() is called unless () is the second argument. The following pairs are equivalent:

 use MyModule;
 BEGIN {require MyModule; MyModule->import; }

 use MyModule qw(foo bar);
 BEGIN {require MyModule; MyModule->import("foo","bar"); }

 use MyModule ();
 BEGIN {require MyModule; }

The first pair exports the default tags. This happens if the module sets @EXPORT to a list of tags to be
exported by default. The module’s manpage normally describes what tags are exported by default.

The second pair exports only the tags passed as arguments.

The third pair describes the case where the caller does not want any symbols to be imported.

import() is not a builtin function, it’s just an ordinary static method call into the ‘‘ MyModule ’’
package to tell the module to import the list of features back into the current package. See the Exporter
manpage for more information.

When you write your own modules, always remember that it’s better to use @EXPORT_OK instead of
@EXPORT, since the former doesn’t export symbols unless it was asked to. Exports pollute the namespace
of the module user. Also avoid short or common symbol names to reduce the risk of name clashes.

When functions and variables aren’t exported you can still access them using their full names, like
$My::Module::bar or $My::Module::foo() . By convention you can use a leading underscore
on names to informally indicate that they are internal and not for public use.

There’s a corresponding ‘‘ no ’’ command that un-imports symbols imported by use , i.e., it calls
Module->unimport(LIST) instead of import() .

Printed from DevShed.com

10

do()

While do() behaves almost identically to require(), it reloads the file unconditionally. It doesn’t check
%INC to see whether the file was already loaded.

If do() cannot read the file, it returns undef and sets $! to report the error. If do() can read the file
but cannot compile it, it returns undef and puts an error message in $@. If the file is successfully
compiled, do() returns the value of the last expression evaluated.

Printed from DevShed.com

11

References
An article by Mark-Jason Dominus about how Perl handles variables and namespaces, and the
difference between use vars() and my() -
http://www.plover.com/~mjd/perl/FAQs/Namespaces.html .

For an indepth explanation of Perl data types see the Chapters 3 and 6 in the book ‘‘Advanced Perl
Programming’’ by Sriram Srinivasan.

And of course the ‘‘ Programming Perl’’ by L.Wall, T. Christiansen and J.Orwant (also known as the
‘‘ Camel’’ book, named after the camel picture on the cover of the book). Look at the Chapters 10, 11
and 21.

The Exporter, perlvar, perlmod and perlmodlib man pages.

Printed from DevShed.com

12

http://www.plover.com/~mjd/perl/FAQs/Namespaces.html

	Variables Globally, Lexically Scoped And Fully Qualified
	use†‡, require†‡, do†‡, %INC and @INC Explained
	References

