

CodeWarrior

Programming
Practice:
Pascal

M
et

ro
w

er
ks

 C
od

eW
ar

rio
r

TM
 C

D

Because of last-minute changes to CodeWarrior, some information in this
manual may be out of date. Please read all the Release Notes files that come
with CodeWarrior for the latest information.

Metrowerks CodeWarrior Copyright ©1993-1995 by Metrowerks Inc. and its Licensors. All
rights reserved.

Documentation stored on the compact disc may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in
any form by any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from Metrowerks Inc.

Metrowerks, the Metrowerks logo and Software at Work are registered trademarks of
Metrowerks Inc. CodeWarrior, PowerPlant, and PowerPlant Constructor are trademarks of
Metrowerks Inc.

All other trademarks or registered trademarks are the property of their respective owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT
TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

Canada and International
Metrowerks Inc.
1500 du College, suite 300
St. Laurent, QC
H4L 5G6 Canada

voice: (514) 747-5999
fax: (514) 747-2822

U.S.A.
Metrowerks Corporation
Suite 310
The MCC Building
3925 West Braker Lane
Austin, TX 78759-5321

voice: 512-305-0400
fax: 512-305-0440

Metrowerks Mail Order
voice: (800) 377-5416 or (419) 281-1802
fax: (419) 281-6883

World Wide Web site (Internet): http://www.metrowerks.com

Registration information (Internet): register@metrowerks.com

Technical support (Internet): support@metrowerks.com

Sales, marketing, & licensing (Internet): sales@metrowerks.com

AppleLink: METROWERKS

America OnLine: goto: METROWERKS

Compuserve: goto: METROWERKS

eWorld: goto: METROWERKS

Table of Contents iii

Table of Contents

Chapter 1 An Overview
1.1 Preview..14
1.2 Introduction to Programming Practice: Pascal...........15

A Global View...15
The Road Ahead...15
Signs Along the Road...16

1.3 Hardware: Computers and Peripherals.....................17
The CPU...18
Other Components and Packaging............................19

1.4 The World of Programming......................................20
What is Programming?...20
“Real world” and “Abstract World”..........................20

1.5 Pascal...21
An example Pascal program......................................22
Running Programs: Compiling, Linking, Executing.23

1.6 Communicating to Computers..................................24
Typing..24

1.7 Chapter 1 Review...27

Chapter 2 Computing: A Short Survey of Some
Applications

2.1 Preview..30
2.2 Software and Applications..30
2.3 Application Software..33

Editor Application..34
Typing Applications...35
Calculator Applications...36
Retrieve Application: A Tiny Database.....................38
Planner-Calendar Application...................................39
Bar Plot Application..41
Drill Application...42
SSS: Small and Simple Spreadsheet...........................43

2.4 Chapter 2 Review...47

Chapter 3 Programming Language: Pascal
3.1 Preview..50

iv Table of Contents

3.2 Languages..50
Syntax and Semantics..50
Syntax Diagrams...53

3.3 Pascal Programs..56
Program Format...56
Program Presentation..59
More Pascal Programming: Data and Actions..........60
Data Items..61
Actions: Arithmetic Operations................................63

3.4 More Example Programs...66
3.5 Chapter 3 Review...69
3.6 Chapter 3 Problems...70
3.7 Chapter 3 Programming Project................................74

Getting Acquainted...74

Chapter 4 Data and Actions
4.1 Preview..76
4.2 Programming: Data and Actions...............................76

Declarations: Syntax Diagrams from the Bottom........76
Simple Input and Output in Pascal............................80

4.3 More Programs: A Top View of Pascal....................83
4.4 Programming Style...85
4.5 Layout of Programs..86
4.6 More Programs: Continued.......................................89

Actions: Pre-Defined Standard Functions in Pascal....89
Libraries: Using Units in Pascal.................................92

4.7 A Foretaste of Procedures...94
4.8 Chapter 4 Review...96
4.9 Chapter 4 Problems...96
4.10 Chapter 4 Programming Projects...............................97

Generate Conversion Tables......................................97
Observing Errors..97
Demilitarize Time...98
TipTable...99
STT: Sales Tax Table..100
SSP: Simple Side Plot..101

Chapter 5 The Four Fundamental Forms
in Pascal

5.1 Preview..105

Table of Contents v

5.2 The Sequence Form in Pascal....................................105
5.3 Conditions in Pascal..107
5.4 Repetition Form: The WHILE statement....................108

Tracing Loops...110
5.5 WHILES, REALS, and Errors.....................................114
5.6 Selection Forms in Pascal..117
5.7 More Selections: Combinations of Selection Forms....119

Confusion in Choices..120
More Nesting of Choices..120
Alternative Ways to Code Selections.........................121

5.8 Select Form: Handling Many Branches....................124
5.9 Awkward Nests: General Nesting............................127

Mixed Nests: Repetition and Selections.....................128
5.10 Subprograms: Using Subprograms as Black Boxes....130

The ShortSort Library..134
Notation for Defined Procedures...............................137
Procedures vs. Functions..140

5.11 Binary Logic Library: BitLib.....................................145
5.12 Chapter 5 Review...149
5.13 Chapter 5 Problems...150
5.14 Chapter 5 Programming Problems............................152

Sequence Problems...153
Selection Problems..153
Loop Problems...153
Subprogram Problems..153
Debugging Problems..154
Selection Programs...156
Procedures and Repetitions.......................................157
Josephus’ Problem..158

5.15 Chapter 5 Programming Projects...............................159
Project A: Change Change.......................................159
Project B: Payroll...160
Project C: Quadratic Roots.......................................160
Project D: Digital Circuits...160
Project E: Roll Your Own...161
CRN: Convert Roman Numbers..............................161
GPR: Growing Pay Roll...161
MWM: Many Ways to Mid......................................162
DFP: Data Flow Programming.................................163

Chapter 6 Pascal with Bigger Blocks
6.1 Preview..169

vi Table of Contents

6.2 Conglomerations..169
Mixed and Nested Forms..169

6.3 More Data..171
External..171
CASE Form...173

6.4 More Repetition Forms...175
6.5 The For Loop..177
6.6 Character Type...182

in Pascal...182
Representation of Characters.....................................185

6.7 Boolean Type in Pascal...190
6.8 More Types..193

Big Types in Pascal...193
Even Bigger Types..193
Smaller Types...194

6.9 Programmer Defined Types......................................195
Enumerated Types..195
Subrange Types In Pascal..198

6.10 Strings in Pascal..198
6.11 Simple Files in Pascal..201

More Files: Input and Output....................................205
6.12 Modification of Programs...207
6.13 Programming Style...209

Documentation...209
Further Guidelines for Identifiers..............................212
A Bad Style Horror Story..213
Criticism of the MeanMean Program.........................215

6.14 Errors in Programming...216
Syntactic Errors...216
Execution Errors...217
Logical Errors...217
Other Errors..217

6.15 Debugging, Testing, Proving....................................217
6.16 Chapter 6 Review...219
6.17 Chapter 6 Problems...219
6.18 Chapter 6 Programming Problems............................221
6.19 Chapter 6 Programming Projects...............................224

Plotting Programs...224
Modify Calculator...226
Statistics (Rainfall)...227
Project Plotup...227
BSD: Big Statistics Data...228

Table of Contents vii

BTD: Big Text Data...229
SMC: Small Monthly Calendar.................................230

Chapter 7 Better Blocks: Procedures and
Libraries

7.1 Preview..233
7.2 Procedures in Pascal...233

Use and Definition..233
7.3 Syntax of Subprogram Forms....................................235

Procedures in Pascal...235
More Examples of Pascal Procedures.........................239
Power Procedure..242

7.4 Passing Parameters..242
In, Out, In and Out, and Neither...............................242
BigChange..242
BigPay..245
A Miscellany of procedures......................................248
A Second Miscellany of procedures..........................250

7.5 Procedures with Char, Boolean and Other Types.......252
Generalized Item Types..255

7.6 Procedures with User-Defined types..........................256
7.7 More on Passing Parameters.....................................259
7.8 Nested Procedures..261
7.9 Functions in Pascal...264

Many Functions..266
7.10 SubPrograms: Variations on a theme.........................269
7.11 Recursion in Pascal...272
7.12 Libraries in Pascal...275

Units...275
UtilityLib: a custom-made utilities Library.................278
Other Libraries: DateLib, BitLib, CharLib..................281
The Interaction of Many Libraries.............................288

7.13 Function and Procedure Types..................................291
7.14 Top-Down Development..296

Pay Again...296
7.15 Chapter 7 Review...299
7.16 Chapter 7 Problems...300
7.17 Chapter 7 Programming Problems............................302

Random Projects...302
DateLib...305
Create Libraries...306

viii Table of Contents

FinanceLib..307
Change Again: Done Properly with Procedures.......308
MeanLib...308

7.18 Chapter 7 Programming Projects...............................310
DMT: DeMilitarizeTime Lab with Procedures..........310
SLL: Small Library Project..311

Chapter 8 Pascal Data Structures
8.1 Preview..314
8.2 Arrays in Pascal..314

ChangeMaker and Variance......................................317
Parallel Arrays: Part Inventory.................................319
A Tiny Data Base: Retrieving Strings from Arrays....321
Arrays as Parameters...323
IntArrayLib: Integer Array Library..........................325

8.3 Two Dimensional Arrays in Pascal............................328
Arrays of Arrays—Two Dimensional Arrays.............328

8.4 N-Dimensional Arrays..331
More Dimensions...331

8.5 Records in Pascal..333
ComplexLib: A Library for Complex Numbers.........337
Records of Records: Nested Records........................339
Arrays of Records in Pascal.......................................342
Records of Arrays...345
Matrix Library..347

8.6 Sets in Pascal...352
More Sets (Optional)...355

8.7 Dynamic Variables and Pointers in Pascal.................359
8.8 Chapter 8 Review...361
8.9 Chapter 8 Problems...361
8.10 Chapter 8 Programming Projects...............................363

Gas Project..363
Library Projects...364
BSL: Big Stat Lab..364

Chapter 9 Algorithms to Run With
9.1 Preview..368
9.2 Sorting Algorithms...369

A Context for Sorting..369
Count Sort..373
Bubble Sort...375

Table of Contents ix

Select Sort...376
9.3 Improving sorts (Optional)..377

Recursive Sort: Merge Sort.......................................378
Another Merge Sort: the Von Neumann Sort...........380

9.4 Searching..387
Binary Search..387

9.5 Implementing Stacks and Queues..............................391
StackLib: Stack as an Abstract Data Type..................391
Dynamic Stacks..395
QueueLib..397
Big Cardinals..400
SetLib: Stack of Strings...404

9.6 Trees...407
9.7 Chapter 9 Review...412
9.8 Chapter 9 Problems...412
9.9 Chapter 9 Programming Projects...............................415

Queue Abstract Data Type..415
PES: Performance Evaluation of Sorts.......................416
VS: Visual Sorts...418

Chapter 10 The Seven Step Method
10.1 Method: Part II..425

The Seven Step Method...425
10.2 Design Stage: Acme Payroll System..........................426

1. Problem Definition...426
Problem Definition Application.........................426

2. Solution Design..427
Solution Design Application..............................427

3. Solution Refinement...428
Solution Refinement Application.......................428

4. Testing Strategy Development..............................429
Testing Strategy Development Application........429

10.3 Implementation Stage: Acme Payroll System.............431
5. Program Coding and Testing................................431

Case Study: The Acme Payroll System..............432
6. Documentation Completion.................................444

Documentation Completion Application............444
7. Program Maintenance..445

Program Maintenance Application....................445
10.4 An Advanced Case Study: Building a Text Index.......445

Design Stage...446
1. Problem Definition.......................................446
2. Solution Design..446
3. Solution Refinement......................................447

x Table of Contents

Binary Search Tree Unit.....................................449
Queues Unit..451

Implementation Stage...452
4. Testing Strategy Development.......................452
5. Program Coding and Testing........................453
6. Documentation...463
7. Program Maintenance...................................463

10.5 Chapter 10 Review..464
10.6 Chapter 10 Programming Problems...........................464

1. Editor Application..464
2. Typing...470
3. Calculator Applications..472

10.7 Chapter 10 Programming Projects.............................473
10.8 Level 1 — Getting Started..473

1–1. General...474
A Guessing Game..474

1–2. Business..474
Computing a Customer's Change.......................474

1–3. Scientific...475
A Bouncing Ball..475

10.9 Level 2 — Getting Organized with Procedures..........477
2–1. General...477

Your Age in Days..477
2–2 Business..477

What’s the Cost of My Mortgage?......................477
2–3 Scientific...478

Solving the Quadratic Equation.........................478
10.10 Level 3 — Getting Fancier with Parameters..............479

3–1. General...479
Count the Word Occurrences in a Text...............479
Processing Personnel Data.................................480

3–3. Scientific...481
Plotting a Function..481

10.11 Level 4 — Getting Your Wings with Units................483
4–1 General...483

The Kwic Index...483
4–2 Business..484

Information Retrieval..484
4–3 Scientific...486

Complex Algebra..486

Preface
The purpose behind Programming Practice: Pascal is to teach you how to
apply the theories, tools, and concepts mentioned in the Principles book to
problem-solving using the Pascal programming language. We suggest that
you either read the Principles book before beginning this book, or read the
two books concurrently.

While using this book to learn Pascal, you may find that there are too many
examples and that some topics have been over-explained. You are
encouraged to select only the topics and examples that best suit your needs
and work habits.

Chapter Outline 13

Chapter 1 An Overview
This chapter provides an introduction to the Programming Practice: Pascal, an
overview of current computing devices and systems, and a brief introduction of
Pascal and programming. Being an overview, this chapter covers a wide range of
subjects, and details. Do not be overwhelmed! Many of the topics will be
discussed in more detail in other chapters. This chapter can be read quickly.

Chapter Overview
1.1 Preview..14
1.2 Introduction to Programming Practice: Pascal.............15

A Global View..15
The Road Ahead...15
Signs Along the Road..16

1.3 Hardware: Computers and Peripherals.....................17
The CPU...18
Other Components and Packaging..............................19

1.4 The World of Programming..20
What is Programming?..20
“Real world” and “Abstract World”..........................20

1.5 Pascal...21
An example Pascal program.......................................22
Running Programs: Compiling, Linking, Executing......23

1.6 Communicating to Computers.....................................24
Typing..24

1.7 Chapter 1 Review...27

14 Chapter 1 An Overview

1.1 Preview
This book intends to teach you how to program a computer using the Pascal
programming language, using the concepts and topics discussed in the Principles
of Programming.

Although the journey through the Principles of Programming is echoed
throughout this book, their are some additional obstacles and terrain that must
be dealt with when learning the Pascal programming language. This chapter
provides you with a guide to these obstacles and outlines the new terrain by
introducing the Programming Practice: Pascal in three subsections:

• A Global View describes the layout of the text book’s material in very
general detail. This sub-section also offers an idea of the way in which
the Programming Practice: Pascal should be used with its companion
book: the Principles of Programming.

• The Road Ahead gives a very brief synopsis of each chapter so that you
can visualize how all the chapters fit together. This provides a route
that will take you from an introduction to computers, programs, and the
compiling process (the last section in this chapter) to being able to write
large useful programs in Pascal.

• Road Signs describes the common pattern on which each of the chapters
are based, tells you how to read the road signs, and gives a brief
explanation of some of the visual aids that will be used throughout this
book.

Apart from introducing the Programming Practice: Pascal, this chapter also
introduces the physical devices from which the computer system is constituted.
The hardware— as its commonly referred to— is the part of the computer system
that changes most rapidly. As new technology is developed, becoming faster,
cheaper and smaller, it replaces the old. For this reason, we will concentrate on
the smaller micro-computers and mini-computers, which are more powerful than
the “monster” computers of just a few years ago.

Programming is the creative process of designing and realizing software.
Programs are written using programming languages of which there are many. In
this book, we emphasize the high-level programming language called Pascal,
but most of the concepts we'll introduce also apply to other languages.

Communication between people and computers at a detailed level is often done
using a keyboard. This chapter includes a brief discussion of the practical skill
of touch typing, which is useful for anyone wishing to communicate with
computers. A sample program which teaches typing is shown in Chapter 2.

In summary, this chapter provides an introduction to the many practical aspects
of computing today, and it does so by concentrating on some typical aspects. It
emphasizes micro-computers over larger computers, but most of the material
described applies equally to all computers. It aims to introduce you to the
practice of programming.

Section 1.2 Introduction to Programming Practice: Pascal 15

1.2 Introduction to Programming Practice: Pascal

A Global View

The goal of this book is to teach you how to program computers using the Pascal
programming language. However, learning to write computer programs is very
much like learning any skill, you must first understand the underlying principles
upon which the craft is based and then practice, practice, practice.

For example, you can read all the books ever published about riding a bicycle but,
until you actually get on one and start pedaling on your own, you will not know
how to ride a bicycle. The same applies to computer programming! Here, we
provide the second book, the Programming Practice: Pascal, which assumes that
you have already familiarized yourself with the Principles of Programming
(referred to as Principles): the first book which describes the method behind
problem solving using a computer.

As in the Principles book, Programming Practice: Pascal emphasizes the adage,
“it’s best to learn through examples.” Each chapter uses example programs,
many taken from the Principles book, to teach the same point. For this reason,
you may find the number of examples overwhelming and you should feel free to
pay attention to only the examples which you feel best describe the point that is
being illustrated.

The Road Ahead

In this section, we give a brief summary of what is in each chapter of the
Programming Practice: Pascal. A synopsis of each chapter is presented so that
you can visualize the road ahead.

• Chapter 2, Computing: A short survey of some applications, this chapter
introduces software by giving some examples of packaged programs,
applications, which perform specific tasks.

• Chapter 3, Programming Language: Pascal, in this chapter we further
introduce the Pascal programming language by comparing it to natural
languages and by using syntax diagrams to help our understanding. Some
extremely simple Pascal program examples are given as illustrations of
the syntax presented. Although it will take a few more chapters to
introduce all of the Pascal syntax, some other examples of complete
Pascal programs are also given in this chapter.

• Chapter 4, Data and Actions, this chapter continues with the
introduction to the Pascal programming language that was started in the
last two chapters. Its main concerns are the basic components of the
language with some emphasis on the way in which the language is

16 Chapter 1 An Overview

written (i.e. the syntax or grammar) but also on the precise meaning (i.e.
the semantics) of what is written.

• Chapter 5, The Four Fundamental Forms in Pascal, the goal of this
chapter is to introduce the four fundamental forms: Sequence, Selection,
Repetition, and Invocation, that are necessary and sufficient to create
any algorithm. At the end of the chapter you will have the necessary
tools to develop your own programs.

• Chapter 6, Pascal with Bigger Blocks, this chapter continues the
presentation of the programming language Pascal by introducing other
forms, deeper nests, different data types and more details. These
complements are not as fundamental or important as the topics of the
previous chapter, but are useful and convenient in the development of
clear and correct programs. Remember, bigger is not always better.

• Chapter 7, Better Blocks: Procedures and Libraries, this chapter presents
the creation and use of Pascal subprograms, i.e. the Pascal procedures
and functions. Subprograms are often part of libraries, and the chapter
introduces the Pascal units that are used to implement libraries.

• Chapter 8, Pascal Data Structures, in this chapter we consider the three
structured data types: arrays, records, and sets, and how they are used in
Pascal. The main concepts introduced in Chapter 8 of the Principles book
and “Abstract Data Type” (or ADT), will be developed further. ADTs
will also be used to create three libraries: IntArrayLib, ComplexLib, and
a Matrix Library

• Chapter 9, Algorithms to Run With, the primary purpose of this chapter
is to provide more extensive examples of the data structures introduced in
chapter 8. Algorithms to sort and search data structures will be
discussed, along with the various ways of implementing stacks, queues,
and trees. Also, this chapter will further develop the concept of an
“Abstract Data Type” (or ADT) and create the StackLib, QueueLib, and
SetLib libraries.

• Chapter 10, The Seven Step Method, this chapter implementations
solutions as computer programs, and then demonstrates how to verify the
correctness of solutions through testing. To reach this solution, the seven
step problem-solving method– introduced in the Principles book– will be
reviewed and discussed. Although we’ll concentrate on the
implementation in Pascal of an already designed program, we cannot
ignore the design.

Signs Along the Road

Although each chapter constitutes a stage in our learning journey, introducing
new topics and conventions while expanding on others, the same basic pattern is
followed:

Section 1.2 Introduction to Programming Practice: Pascal 17

1. Each chapter begins with a Preview that gives a summary of the
material that will be presented in the chapter. This will give you an
idea of what to expect and introduce you to the major concepts in the
chapter.

2. Next, the actual material of the chapter is provided, where topics
concerning the Pascal language is divided into sections. Since the
emphasis through each chapter is that we learn best by example, each
section has many sample programs illustrating the Pascal statements
being discussed. Most of these examples are taken from the Principles
book and references are made when appropriate.

3. Following this, a Review of the material contained in the chapter is
presented. This will serve to remind you of what you have learned and
nudge you to go back and reread anything that you have forgotten.

4. Finally, each chapter ends with a set of Problems and Programming
Projects to solve. These are the most important parts of each chapter.
Some chapters contain Programming Problems as well. In any case,
programming is an intensely practical skill that can only be acquired by
practice. Remember: “Practice makes perfect!”

The Principles of Programming, because it is a book which explains a great many
theories and concepts, includes signs to visually illustrate important points and
concepts. However, because the Principles of Programming: Pascal teaches a
programming language, it does not include these signs as frequently. If you are not
familiar with these signs they are as follows:

Note: This is a tip or note box. Inside this box, important information and
tips can be found.

This is a note in
margin which
directs you to
useful
information.

In addition to tip boxes, when a paragraph briefly touches upon a subject which
is covered in more detail in another chapter, a reference is provided in the left
margin.

1.3 Hardware: Computers and Peripherals

Computers, which range in size from monster to micro, are all constructed from
the same kind of components. Here, we will illustrate these components by
describing micro-computers, realizing that today’s “micro” is capable of much
more than the “monster” of just a few dozen years ago. Actually micro-computers
are, nowadays, much more interesting than the larger computers; they are more
convenient to use, more flexible and more commonly available.

All micro-computers are built from only a few basic components, some of which
are shown in Figure 1.1. The main component (shown in the center of the figure) is
an electronic “black box” unit that contains the Central Processing Unit, some
control circuitry, some internal memory, a power supply, and connectors of various
sorts to allow other units to plug in.

18 Chapter 1 An Overview

Figure 1.1 A computer’s basic components

speaker

disk drive

printer

keyboardmouse

monitor

hard drive

main
 processor

The CPU

At the heart of a computer system (inside the black box in Figure 1.1) is the
central processing unit, or CPU, which controls the behavior of the system’s other
components, and performs the operations on the data. Connected to the CPU are
“peripherals”, which perform a wide variety of functions. These pieces of
hardware include printers, memory devices and communication units that can
link one computer to another over standard telephone lines. In this chapter, we
will briefly describe some of the many computers and peripherals, concentrating
only on the most common ones.

The inner building blocks of the CPU are registers consisting of 8, 16 or 32 bits
(binary digits), the larger ones usually corresponding to faster machines. When
the computer is being used, the registers are mainly used to store the data being
manipulated. The programs being executed are stored in the internal memory, as
well as the data they manipulate. The amount of data and programs that can be
stored in memory is measured in units of Kbytes, where a Kbyte, or kilobyte or
simply K, is about one thousand bytes (actually 210 or 1024), and where a byte is
8 bits and is the equivalent of a single character, for example a letter, on a
written page. Very roughly, one Kbyte is sufficient to store a page of text. A
Megabyte, or Meg, is one million bytes (actually 1,049,376 or 220). The internal
memory ranges from 640K, to 16 Megs and larger.

Section 1.3 Hardware: Computers and Peripherals 19

Other Components and Packaging

Input/Output or “I/O” is usually done through a keyboard and a TV-like display
or monitor. One commonly used display screen shows 24 lines (rows) each with 80
characters. Each character consists of a matrix of dots or pixels, usually 8 pixels
high by 8 wide, making the screen 640 pixels wide by 200 high. Larger
configurations, found in higher quality screens, are 1,000 pixels square.

Programs and data may be stored externally in auxiliary memory, which often
takes the form of one or several disk drives. In the disk drives, the storage is on
thin portable “floppy” magnetic disks, 51

2 inches or 31
2 inches in diameter.

The disks are able to store from 720K to beyond a Meg. That’s sufficient space to
store the text of an entire book. Examples of programs will be provided in
Chapter 2.

The packaging of these basic components to form a complete computer system
takes many forms. The organization ranges from all components being integrated
into one box, to the other extreme where all are separate components that have
to be plugged together.

The peripheral devices are connected to the main processor and perform many
different functions, usually involving inputs and outputs. They often take the
form of “cards”, plastic boards of electronic components. These cards plug into
slots on the main processor unit.

The family of input peripheral devices include in particular a rectangular
keypad for entering digits, a regular typewriter-like keyboard, function keys for
specifying special operations and a “wand” for reading bar-codes.

For output, the range of peripheral devices includes mainly screens to display
the output, and printers to provide “hard copy” on paper. A marker (cursor) on
the display screen, which shows the current working point, can be moved by a
mouse, pen, trackball or joystick. A mouse can be used to point, click, or drag
objects on the screen. Printers produce text and graphics of varying quality,
ranging from dot-matrix impact-type (where the image is produced by a type-
head striking the paper as in a typewriter), to ink-jets, to higher quality laser
printers and even typesetting machines. Plotters, which manipulate pens of
varying colors are often also used to output high quality drawings.

Where there is a requirement for a large amount of auxiliary memory, this is
available on “hard disk” drives, which may provide from 40 Megs to hundreds of
Megs, and even Gigabytes (one billion bytes).

Communication between computers over telephone lines is possible with a device
known as a modem (modulator-demodulator). Modems communicate usually at
speeds ranging normally from 2400 bauds (bits per second) to 9600 bauds, and
beyond. Computers can also be interconnected in networks, be they local area
networks (LANs) or wide area networks (WANs), through simple twisted pair
wires or coaxial cables.

20 Chapter 1 An Overview

Many new types of peripheral have recently become available. These include
for instance speech recognition input devices, speech output devices, visual input
scanners.

1.4 The World of Programming

What is Programming?

The subject of this book is programming, and as you progress, you will discover
that programming is the art of instructing the computer to perform specific
actions. In other words, to get the CPU and its components to work together and
achieve a goal, such as, for example, solving a problem. This is done by
providing the computer with a set of instructions written in a program language.

Why do the instructions have to be written in a programming language? The
reason is simple. The English language was invented for humans to communicate
with each other, and since the computer cannot understand human languages, the
computer cannot understand English instructions. To bridge this gap,
programming languages were invented so that humans could use computers to
solve problems.

As the Principles book points out, programming languages are notations used for
communicating algorithms between people and computers. There are hundreds of
programming languages and, to give you a taste of these, Figures 2.20 to 2.25 of
the Principles book show an example of the same program expressed in six
different programming languages.

“Real world” and “Abstract World”

One view of programming, which was mentioned in Chapter 8 of the Principles
book, is as a way of dealing with the “real” world by using a computer to build an
abstract analogy of it. It is said to be “abstract” because it has been abstracted—
taking only the parts that are essential to solve the problem at hand—from the
real world original.

The real world is said to be “modeled” by the abstract world. The real world
contains items of data such as time, money, grades, etc. whereas the abstract
world treats these data as “black” boxes containing numbers and other symbols.
The real world allows actions on these objects, including counting, measuring,
sharing and sorting, which may also be modeled in the abstract world. A person
is not a number. A map is not reality; much is left out—this is the process of
abstraction, illustrated by Figure 1.2.

Section 1.4 The World of Programming 21

Figure 1.2 Reality vs. Abstraction

Grade 'A'

Birth 69/7/20

Male True

Name Ben Down

Count

'Real' World

Temp

Cost

Time

Home Gym

Work School

1010

20
30

40

50

60

25

5
Shops

98.6

3.00

1500

377

Abstract World Map (minutes)

Communication in the real world is between people, and is possible even if there
are some errors of spelling, punctuation, grammar or some imprecision. This is
possible because we all have enough knowledge about the real world to correct
the errors as we go. Generally, this error correction happens so naturally and fast
that we don’t even notice it.

Communication of a program in the abstract world, between users and computers,
is impossible if there is any error of spelling, punctuation, etc. Computers and
programming languages, are at present, rather intolerant of errors and have very
little automatic error correcting ability; however, they can often pinpoint the
errors for the users to correct. The stages involved in successfully programming an
abstract model of the real world is shown in the next section.

1.5 Pascal

Pascal is a programming language developed by Niklaus Wirth around 1970. It
is a rather simple language of moderate size and complexity, but powerful,
compact, reliable, and efficient. Its clarity, simplicity, and structure make it
most suitable as the first language to be learned. In fact, one of Wirth’s major
design goals was to produce a language that would be suitable for the teaching of
programming.

It is not a good idea to skip the fundamental concepts that were introduced in the
Principles book, and begin by learning the language, for, as good as Pascal is, it is
unnecessarily restrictive to think in terms of any one programming language.

An example Pascal program

In Chapter 2 of the Principles book you’ve seen a number of simple pay
algorithms. Although we don’t want to anticipate on the presentation of the

22 Chapter 1 An Overview

various features of the Pascal programming languages, we’ll show you now the
Pascal program corresponding to the Pay algorithm found at the left of Figure
2.18 of the Principles book. The spreadsheet Pascal program we’ve just seen was
mostly based on invocations, which made it extremely simple. This simple pay
program is a better example of what Pascal statements look like. We’ll
reproduce here in Figure 1.3 the original pay algorithm.

Figure 1.3 A simple pay algorithm

The corresponding Pascal program is given in Figure 1.4. Try and match the
various parts of the flowchart with the various parts of the program. This
should not be too difficult as we have been careful to use indentation to show
more clearly the various parts of the program (and help you match the IFs with
the ELSEs). Here again we don’t expect you to grasp all the details, but this
should help you become familiar with the form of Pascal programs, a skill you’ll
acquire in the following chapters.

Figure 1.4 The Simple Pay Pascal program

Section 1.5 Pascal 23

Running Programs: Compiling, Linking, Executing

As illustrated in the Principles book, the complete creation of a program takes a
number of steps. In fact, our problem solving method has seven steps, But even
the Program Coding and Testing step is itself made of a number of smaller steps or
stages. The diagram in Figure 1.5 shows the sequence of stages (Editing,
Compiling, Linking, and Executing), and what is involved at each stage. These
stages must be followed in order to get a computer to run a program properly.

Figure 1.5 Stages of the Program Coding step

Create an
Algorithm

Write a
Program Edit Compile Link Run

Import from
Libraries

Editing: this might be the hard part of the Program Coding step. The
algorithm is coded in some programming language, in this case Pascal.
Through the use of an editor application program (see Chapter 2), the
program is put into some computer readable form. This form of the
program is the source code.

Compiling: this is the process of translating a source program into a
lower-level machine language program, the object program. This
translation process is performed by another application program, a
compiler. There is a different compiler for each programming language
and for each machine on which the program is to run. Part of the
compiling process involves checking the source code for syntax errors.

Linking: this is the process of connecting a program to other separately
compiled programs such as modules from various Libraries. If all the
parts that comprise the complete program are available, the result of
linking will be an executable program. If some parts are missing, error
messages will be produced to explain why the link did not complete
properly.

Executing: this is the process of running the executable program on the
computer. An executable program can be executed any number of times
without additional compiling or linking.

Any errors detected during these stages must be corrected, and the stages tried
again in the sequence shown. If there are no errors or other changes, then to rerun
the program requires only executing the executable program at the last stage.

24 Chapter 1 An Overview

1.6 Communicating to Computers

Typing

Typewriting is a skill that is very useful for communicating to computers, to
bosses, to colleagues, to professors, etc. Without this skill, the computer user is
likely to be quite handicapped. It is possible to “hunt and peck” with two
fingers, but that method is very tedious, slow, tiring, and inefficient. If you
intend to use computers a lot, it would be a good investment to spend some time
and effort on attaining proper skills, and possibly overcoming some bad habits
which may be deeply ingrained.

Touch typing is actually very easy to learn, especially with computers. It just
takes practice which can be done while writing necessary material such as:
programs, term papers, letters, etc. In the past, with mechanical typewriters, it
was difficult to correct typing errors, so speed had to be sacrificed for accuracy.
With computers it is very easy to correct errors, either instantly when they are
made or at a later time.

Figure 1.6 QWERTY keyboard layout

1 2 3 4 5 6 7 8 9 0

Q W E R T Y U I O P

A S D F G H J K L ;

Z X C V B N M , .shift

Return

space bar

The most common keyboard is called QWERTY, named after the first row of
keys, as shown in Figure 1.6. Another layout of keys, called Dvorak, is more
efficient but not common. It is shown in Figure 1.7.

The normal “home row” position on the QWERTY layout has fingers on the keys
“asdf” and “jkl;”. Often the keys D and K have slight bumps for the middle
fingers to find, without looking. On other computers F and J have bumps. You
may wish to stick tape on the “home position” of two keys.

Section 1.6 Communicating to Computers 25

Figure 1.7 Dvorak keyboard layout

1 2 3 4 5 6 7 8 9 0

, . P Y F G C R L

A O E U I D H T N S

; Q J K X B M W V Z

The traditional approach to teaching typing begins by emphasizing the proper
posture: back slightly forward, feet on the floor, and hands curved over the
home-row. The secret to learning touch typing is not to look at the keys! Each
letter or key is to be hit by the specific finger assigned to it, as shown in Figure
1.8.

Figure 1.8 Finger assignments

1 2 3 4 5 6 7 8 9 0

Q W E R T Y U I O P

A S D F G H J K L ;

Z X C V B N M , .shift

Return

index mid ring tinyindexmidringtiny

Right handLeft hand

Train yourself so that the sight of any letter automatically causes movement in
the corresponding finger. Keep your eye on the paper you are copying from or on
the screen that you are copying to; do not look at the keyboard. You may wish to
correct errors immediately, or wait until you finish; try both ways.

A good way to start is by doing some small finger drills for exercise, to improve
speed and gain confidence. Some sequences you could try are:

asdfg hjkl; staying with the home keys
frdesw jukilo straying from the key positions
frvt juym further from key positions
jw9x# S(b;0 random selections
aeiou rst common letters

26 Chapter 1 An Overview

ea, ed, es, ing common combinations
a the it to in common short words
aAsSdDfF upper and lower case
It is in it, is it not? sentences
abcdefghijklmlnpqrstuvwyxz alphabet
123 456 789 0 1492 1984 2001 numbers
The quick brown fox jumps over the lazy dog

alphabet
WHILE IF THEN ELSE FOR END words in Pascal
1 2 Buckle My Shoe. 3, 4 Shut The Door.

mixed words, numbers, caps
Roses are red, Violets are blue ... poems?
Once upon a time there lived three bulls, a
mommy bull .. stories

You could also create your own sequences that have whatever structure you like.
You might choose, for example, your name, address, phone number and other
things that you have to write often. However, the best practice is always to
type everything properly, without looking at the keys. You will be surprised
how quickly you can improve.

Evaluation of your progress is helpful because it reinforces good performance. You
should keep track of your improvement in speed (words per minute) and accuracy
(errors per 100 characters) but remember that there is a tradeoff here—the faster
you go, the more errors you are likely to make. Your learning curve is likely to
have plateaus, where there will be no progress for days, followed by large jumps
of considerable improvement.

Software programs for teaching typing are available. They often include speed
tests, accuracy reports, and games. We have created two simple typing
applications, but you might wish to extend them later, in order to add to their
functions and statistics reporting. There is an example of such an application, a
typing application, in the next chapter.

Section 1.7 Chapter 1 Review 27

1.7 Chapter 1 Review

This chapter has provided a very quick overview of many computing concepts
and applications.

Hardware evolves particularly quickly and specific components become obsolete
soon. Many of the numbers mentioned here will change enormously in a short
time. The speeds will get faster, the sizes will get smaller, the capabilities will
get larger and the prices will get smaller. Computer memory, for example,
double in capacity and halve in speed every few years.

Programming is the art of instructing the computer to perform specific actions
which solve a problem. One view of programming is to see it as a way of dealing
with the “real” world by using a computer to build an abstract analogy of it. In
any case, in order to get a computer to run a program properly, a sequence of stages
must be followed (Editing, Compiling, Linking, and Executing). These stages
comprise the Program Coding and Testing step of our seven step problem-solving
method which was introduced in the Principles book.

To communication between people and computers at a detailed level, one must use
a keyboard. To efficiently communicate using a keyboard, one should at least be
familiar with the practical skill of touch typing.

Chapter Outline 29

Chapter 2 Computing: A Short Survey of
Some Applications

Software is the stuff that makes computers go. Without software— the
collection of programs that is needed to operate the computer system—
computers are just a collection of lifeless hardware. This chapter introduces
software by giving some examples of packaged programs, applications, which
perform specific tasks.

Chapter Overview
2.1 Preview..30
2.2 Software and Applications..30
2.3 Application Software...33

Editor Application..34
Typing Applications...35
Calculator Applications..36
Retrieve Application: A Tiny Database....................38
Planner-Calendar Application..................................39
Bar Plot Application...41
Drill Application...42
SSS: Small and Simple Spreadsheet.........................43

2.4 Chapter 2 Review...47

30 Chapter 2 Computing: A Short Survey of Some Applications

2.1 Preview

The collection of programs that is needed to operate the computer system, the
software , consists of programs and libraries of programs. Generally, a library of
programs is a group of utility programs that are related by the kind of
operations they perform. Although software, like hardware, has evolved
considerably in its few dozen years of existence, it generally has a longer life
than the hardware on which it runs. One program, over its lifetime, may run on
a range of different hardware.

In this chapter, the software that we describe mainly consists of applications ,
which are packaged programs intended for use by people who may not have
programming backgrounds but wish to use computers to perform specific tasks.
The uses of these packages are many and diverse, touching virtually all fields.
They are used for learning, organizing, communicating, drawing, writing and
playing. In this chapter we will briefly describe some common application
packages through simple examples.

In later chapters, we will create and modify the Pascal source code for some of
these applications. The purpose of this chapter is to introduce you to some
common applications which can be programmed for a computer using Pascal, not
the Pascal programming language itself.

2.2 Software and Applications

Software is the stuff that makes computers go. Computers are nothing without
software! Software breathes life into computers like tape recordings bring
sound to recorders. This sounds like “hype”, but it is really true, because if you
were given a piece of sophisticated hardware (an advanced micro-computer for
example) with no software, you could not use it. Some software is developed for
a special purpose, related strictly to one area of application, but many software
packages are more general and can be used in many different areas. For
example, most word processing software can be used wherever writing is
required, irrespective of the subject matter. The current word processing
packages are more general because they also include functions to do graphics,
and even some of the functions of spreadsheet software packages. In this
chapter, we intend to give you an overview of general purpose software. Some
typical software packages are represented in Figure 2.1.

Section 2.2 Software and Applications 31

Figure 2.1 Some typical software packages

Bull Story

 Once upon a time there lived three
 bulls, a daddy bull, a mommy bull,
 and a baby bull.

 And they lived happily ever after.

 GetFile, Search, Cut, Paste, Format,
 SpellCheck, Print, Save, Help, Quit.

Write (with a Word Processor) Organize (with a Data Base)

Name: Dan Druff

Street: 300 Main Ave

City: Northridge, CA

ZipCode: 9 1 3 3 0

PhoneNo: (818) 885-3398

Occupation: Professor

Appointment: Back Injury

Date & Time: 91 / 2 / 29 1530

Who

Where

How

What

Why

When

MENU

Write
Organize
Calculate
Spread
Draw
Play

TIME

DBASE (Phonos)

WHO Dan Druff

Call

TO DO

Call Jan
See Ray
Send Rent
Give Dues
Buy Milk
Meet Dean

CALCULATE:

1234.56

SPREAD (Grades)

Name exam1 exam2 final
Able, I 88 78 80
Baker, J 95 90 75

WRITE (Bull Story)

Once upon a time there lived
three bulls, a daddy bull,
a mommy bull, and a baby bull.

Combined (Concurrent) Applications

A

Get, Insert, Delete, Sort, Save, Print

Trip Expenses (rounded)

Mon Tue Wed Thu Fri Sum Why

70 36 28 66 0 200 Room
15 20 32 17 27 111 Food
10 15 12 13 16 66 Gas
10 11 33 0 5 59 Misc

105 82 105 96 48 436 Total

Compute (with Spreadsheet) Draw (in 3 dimensions)

#

The use of computers for writing, or word processing, is very common. Writing on
a screen provides extreme flexibility, allowing opportunity for many revisions.
Text can be checked for spelling, formatted in various ways (aligned,
proportionately spaced, etc.) A feature called outlining encourages creation in a
top-down manner. After using a word processor it is most painful to go back to
using a typewriter.

32 Chapter 2 Computing: A Short Survey of Some Applications

The organization and the saving of data in a database , so that the data can be
selected and retrieved, is very convenient and fast with a computer. There is
much software available, ranging from small phone book managers to monstrous
database management systems. These database application programs allow us
to structure our data. This is absolutely necessary to manage the complexity of
the constantly increasing amount of information we have to deal with.

Many software packages provide the ability to calculate and analyze data.
Spreadsheets are particularly useful for analyzing data that can be put in a
table, with rows and columns. They are particularly suited to “what if”
queries, for values can easily be changed, and new results almost instantly
obtained. Statistical packages take data and perform various statistical tests
to find relationships within the data. Calculators are often “simulated” on
computers and can be made to “pop-up” onto the screen at any point where a
quick computation needs to be made. Other computing software of this kind
includes packages for accounting and tax preparation.

A more recent application for computers is drawing. The range of applications
is from business graphic charts to CAD (computer aided design), to graphic art
or even to doodling. Drawing can be done from a keyboard, using keys that
control the cursor position, but usually, it requires input devices such as mice,
light pens, or digitizers.

The ability to exchange texts, pictures or data between computers over a
network or through telephone lines, is very a very convenient, powerful and
flexible tool. There are many communication software packages, designed for a
number of systems and computers. They make on-line information services
available to access databases, get news, airline flight information, exchange
mail, get software, or participate in a conference. Some banks allow access from
home computers to check balances, transfer funds, and pay bills. Electronic
bulletin boards run by individuals or organizations to share common interests
are numerous and growing.

The use of computers for teaching is still at an early stage. Some repetitive
drill-type exercises are useful but usually at low levels and for specific subject
areas. In some specific areas, simulations of natural phenomena or experiments
are very meaningful to students, and an invaluable help to teaching.

A very common activity on computers is playing games. There exist many kinds
of computer games, some involving strategy, others involving manual skills,
and some others even involving social skills. Many games make much use of
sound and color

Computers can be applied in virtually all areas, and obviously we cannot
establish an exhaustive list of all computer applications. These will include
all the applications we have already mentioned and a large number of other
applications going from genealogy to cookbooks and to farm management, etc.

Section 2.3 Application Software 33

2.3 Application Software

Application software includes programs to perform useful functions in different
areas. This chapter is devoted to eight small but useful applications:

Edit a simple editor to help enter lists into files

Type a typing tutor to help improve keyboard skills

Calculate a calculator to manipulate both real and complex numbers

Retrieve a tiny database to retrieve data from files

Plan to create a calendar planner for organizing

Plot to create histograms or bar plots

Drill to provide exercises in arithmetic

Spread to manipulate data in the form of tables

It is recommended that you become familiar with some of these applications,
not necessarily all of them. The Retrieve application is a tiny database
manager that could be especially convenient for organizing some of your
personal data (address book, schedule, To Do lists, etc.) The data files can be
created with the tiny Edit application given here, or they could be created in
any larger editor like the one that came with your Pascal system. This tiny
editor has the advantage of working on all versions of Pascal.

The programs for these applications are written in Pascal, and most of the
details are shown later in this book. Each program is short and should fit on a
page so that you can see it all at once. This small size is made possible by the
use of “reusable” components from Libraries.

A library is a collection of utility programs that are related to a common area.
For example, the Edit program uses two operations on strings (Read and Search)
that are obtained from library StringLib. The Plan program uses operations on
dates (WriteMonth, DaysInMonth, etc.) that are obtained from library
DateLib. The use of programs from libraries reduces a programmer’s work
considerably because these common operations do not have to be written anew
every time a program is written. When a library has been created, it is kept in
the system. Any programmer can then "import" the operations she needs from
this library, and use them as if she had programmed them herself. So, if a
number of general purpose libraries have been developed, the work of the
programmers is reduced, as they can use the available operations directly in
their programs. The creation and use of such Libraries is an important part of
this book.

Modular programming is based on the concept of creating programs by using
large building-blocks. To help in the modularization of a program, it is useful
to create large building-blocks that can be “encapsulated” into Libraries. For
example, we have presented in Chapter 8 of the Principles book, the concept of
an ADT (Abstract Data Type). The types, data structures and operations of an

34 Chapter 2 Computing: A Short Survey of Some Applications

ADT are usually encapsulated in a library, from which necessary items may be
obtained for use in other programs (or other Libraries).

In order to use an application, users need not know its internal details.
Nowadays, application packages are sufficiently convenient to allow use
without any need to know about programming. The applications we discuss
here are quite small and not entirely complete, but all of them can be extended
easily. After you have used an application, you may already have some ideas
about additional features that could be useful. Later, after learning more about
programming and Pascal, you may examine the actual Pascal program for an
application and modify it to extend the application the way you want it. This
is exactly what program “maintenance” is, already presented as the seventh
step of our problem solving method.

Editor Application

TED is a Tiny Editor used to create and modify files of text. Most Pascal
systems include a rather complex editor, but all are different and not
transportable to other systems. This small editor runs on all Pascal systems; it
is small but it is portable. It is also fast and easy to learn. Later when you
have gained more experience, you will want to use the added features of a
comprehensive editor, and move to the larger editor that your Pascal system
provides.

This editor acts on a line at a time. It requests operations by displaying a
question mark “?” and the following commands may be given (by the first letter
of the command: A, B, D, etc. in upper or lower case):

B to go to the Beginning of the file
D to Delete the line at the current position
T to Type out the entire file
P to move the current pointer to the Previous line
N to move the current pointer to the Next line
I to Insert one line after current line
F to Find a given string, starting at the current line
M to Modify the current line
H to provide Help, by listing all commands
R to replace the current line by another
S to Save a file
L to Load a previous file which was created and saved
E to End or exit the edit session

Here is an example of a typical file editing session, with comments at the right
in a different font. The part typed by the user is in bold. Note that commands
may be typed either in upper or in lower case.

?i insert a line
Roses are red
?I insert a line
Violets are blue
?i insert a line

Section 2.3 Application Software 35

So are you
?t Type the whole thing
Roses are red
Violets are blue
So are you
?p Go to the previous line
Violets are blue
?i Insert following that line
Sugar is sweet
?T Type out the file
Roses are red
Violets are blue
Sugar is sweet
So are you
?S Save the file
Enter name of file
out>RosesFile Give name of saved file
?e Exit, end the edit session
End of edit

TED is a program written in Pascal that uses pointers and doubly linked lists. It
is rather short because it makes use of data structures and operations from a
library called StringLib. You may later wish to extend it in some of the
following ways:

• Add more commands, such as append, to insert more than one line

• Output with line numbers for reference

• Provide more detailed help or instructions.

Typing Applications

There are two aspects to the skill of typing, speed and accuracy. Here, we show
two application programs that provide practice in these areas.

TypeTimer is an application program that presents a line of text to be typed in,
and then indicates how quickly this line was typed. Accuracy is not measured
because it is assumed that errors can easily be corrected. A typical run of this
program is shown below; the part of the dialog that the user typed is shown in
bold.

Typing Speed Test
You are to type the following line
Type Return when you are ready, and
type Return when you are finished
A quick brown fox jumps over the lazy dog
A quick brown fox jumps overf the laxy dog
The time taken is 50 units.

Time is measured by units, which are not seconds, but some arbitrary units that
are consistent and serve to compare times to measure progress. Such a typing

36 Chapter 2 Computing: A Short Survey of Some Applications

exercise is recommended as a “warm-up” before other computing activities.
Keeping track of improvement is useful.

TypeWell is another application program that presents a number of lines of
various kinds of text and indicates whether the typed line is correct or has
errors.

Text of two kinds can be selected. One kind is a set of “silly” sentences, each
consisting of all the 26 letters of the alphabet. Beyond the common “a quick
brown fox jumps over the lazy dog” it includes many more such sentences. The
other kind of text includes various common words, Pascal reserved words,
numbers, and other useful pieces of text. A typical run of this program is shown
below, the part typed by the user is in bold type.

Typing Accuracy Test
What do you wish to try:

Silly sentences or serious statements?
Enter “silly” or “serious”

silly
Type the following
a quick brown fox jumps over the lazy dog
a quick brown fox jumps over the lazy dog
CORRECT!
Type the following
exquisite farm wench gives body jolt to prize stinker
exquisite farm wench gives body jolt to prize
stinkler
ERROR!!!
.. etc. .. etc.
Try again soon.

These two application programs are both written in Pascal, and they make use
of strings, and files (covered in Chapters 5 and 6). Soon, after learning to use an
editor, you could modify the kinds of text in the two files named “silly” and
“serious”. Later you may wish to modify the program in various ways:

• to combine both speed and accuracy tests into one,

• to keep track of your progress after each exercise.

• to enter yet a third kind of file, “semi-serious”,

• to count the number of errors.

Calculator Applications

RealCalc is a program that simulates a hand held calculator. It provides the
typical four arithmetic functions (addition, subtraction, multiplication, and
division). Entering the letter “q” or “Q” (for "Quit") causes the calculation to
stop. An example calculation is shown below. It converts 100° Celsius to the
equivalent Fahrenheit unit (212°). The part typed by the user is shown in bold
type.

Section 2.3 Application Software 37

Enter a value
9.0
Enter an action
/
Enter a value
5.0
The result is 1.80
Enter an action
*
Enter a value
100
The result is 180.0
Enter an action
+
Enter a value
32
The result is 212.00
Enter an action
q
End of calculation

The behavior of this calculator is similar to that of the common four-function
calculator. However, it differs from most hand-held calculators in that each
value and each action are on separate lines. This general form of calculator is
easily extended to the manipulation of other data such as very long numbers or
complex numbers.

For example one such extension, ComplexCalc, operates on complex numbers, i.e.
numbers having a real part and an imaginary part. The following shows a
typical calculation where, as usual, the user’s responses are shown in bold.

Enter a value:
Input Real part
1.0
Input Imag part
2.0

Enter an action
+
Enter a value

Input Real part
3.0
Input Imag part
4.0

The result is
Real part = 4.00
Imag part = 6.00

Enter an action
Q
End of calculation

The application program RealCalc is written in Pascal, and can be extended in
many ways:

• to compute squares and powers,

38 Chapter 2 Computing: A Short Survey of Some Applications

• to include trigonometric functions,

• to output in different forms (such as scientific notation).

ComplexCalc is also written in Pascal, and makes use of operations on complex
numbers from a library, ComplexLib. The program could also be modified in
many ways:

• to compute the conjugate of a complex number,

• to compute magnitudes and angles,

• to output in different forms (such as polar notation).

Other calculators based on this program could keep the same form and accept
other types of data like the following.

• Large integers (much larger than the standard computer maximum sizes
of 16 to 32 bits) ,

• Vectors (of coordinates in 3 dimensions),

• Matrices (or arrays of two dimensions).

Retrieve Application: A Tiny Database

Retriever, or Tiny Database, is a program that searches a file to find a given
key word or phrase and retrieves the information associated with that phrase.
One database file, for example, might involve a listing of various names, phone
numbers, addresses, and other information such as the following.
Cetera, Ed (818) 885-3398 1234 First Street, Northridge, CA 91324
DeLion, Dan (405) 349-6400 5678 Shady Lane San Francisco, CA 90000
Druff, Dan (818) 123-4567 2468 Shady Alley Los Angeles, CA 90123
Funt, Ella (818) 349-1234 1500 Louis Lane, Northridge, CA 91330
Gone, Polly (818) 548-5948 300A Shady St, Chatsworth, CA 91350
Ho, Gung (818) 543-7654 248 Main St # 7 Northridge, CA 91324
Ono, Kim (818) 987-6543 123 Easy St, Chatsworth, CA, 91444
Stein, F.N. (405) 666-6666 “Frankie” 13 Lucky Lane, SF, 94114
Wood, Holly (213) 349-6417 X1200 *** Don't call after 9pm
fire: 111-2222
paramedics 111-3333
police 111-4444
time: 222-1212
weather 333-1212

Each piece or line of information forms a data record. The parts within a record
(name, phone number, zip code, etc.) are called data fields. Notice that here
the records contain very differing fields and the fields have differing details,
lengths, etc. This is a “free-form” database, as opposed to other more complex
and highly structured ones.

Searching such a database called “Phonos” for the key “Funt” is done as follows
(the people's part is in bold type).

Enter search pattern Funt
Enter the File Name Phonos

Section 2.3 Application Software 39

Funt, Ella (818)-349-1234 1500 Louis Lane,
Northridge, CA 91330
End of Search

Files such as this one may be searched in many different ways. We could search
for a first name such as “Dan” and it would retrieve the records associated with
“Dan DeLion” and “Dan Druff”. Similarly, we could search for states, e.g.,
“CA” or cities, say “Northridge”, or area codes, such as “818”. We could also
search that database using special marks like, for example, “***” or “!!”, or
even parts of words, such as “Comput” to get anything dealing with Computers,
Computation, Computing, etc. Note that searching for a blank space “ “ would
retrieve the entire data base! On the other hand, searching for a zip code such
as “93333” would retrieve nothing.

An application program like this one could be applied to other files containing
different types of information, such as part inventories, time schedules, tasks to
be done, programs on a disc, collections of stamps, cars on a sales lot, people in
an organization, etc.

The Retrieve program is written in Pascal. It is less than a page long mainly
because it uses the operations on character strings from a library called
StringLib. Using operations from a library means that we don’t have to write
those parts of the program, and instead we can use someone else’s work, which
we know is already tested and working. The Retrieve program stores the files
as one long sequence of characters. The data file must be created separately by
an editor or a word processor. You may wish to create a file of interest to you,
and use the tiny database program to retrieve various details from such a file.
Later you can modify this program in a number of ways, including the following.

• to enter and delete items from the tiny database instead of with an
editor

• to search for fields within the records (i.e. phone numbers only)

• to sort the retrieved items in order

• to print labels for a mailing list

• to format the items

• to count the number of items of various kinds.

Planner-Calendar Application

Planner is a simple application that creates a calendar for any number of
months of any year after 1900, and provides the calendar on a file so that it
may be modified and “customized”. A typical run of this program follows. The
trace is shown first, followed by the resulting file. As usual, the user's part of
this dialog is in bold type.

Enter the calendar year 1994
Enter the first month, 1..12 1
Enter the number of months 2

40 Chapter 2 Computing: A Short Survey of Some Applications

Enter the gap between months 2
Enter the gap between weeks 1
Enter the destination file name
Out> JanFeb94
Completed the calendar file

Year 1994
January
 Sun Mon Tue Wed Thu Fri Sat
 --- --- --- --- --- --- ---
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26 27 28 29
 30 31
February
 Sun Mon Tue Wed Thu Fri Sat
 --- --- --- --- --- --- ---
 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28

The file “JanFeb94” produced by this program can be modified in a text editor as
shown below. Most of the changes consist of comments added at the right of the
calendar. Changes can also be made to the calendar part; some dates can be
marked (by an asterisk, underlining, or bolding, depending on the editor).

Year 1994
January
 Sun Mon Tue Wed Thu Fri Sat
 --- --- --- --- --- --- ---
 1
 2 3 4 5 6 7 8 03: Holiday!!
 9 10 11 12 13 14 15 14: Phil's Birthday
 16 17 18 19 20 21 22 17: Martin Luther King Day
 23 24 25 26 27 28 29 24: Registration, Car Repair
 30 31 31: Classes begin
February
 Sun Mon Tue Wed Thu Fri Sat
 --- --- --- --- --- --- ---
 1 2 3 4 5
 6 7 8 9 10 11 12 11: CS assignment due
 13 14 15 16 17 18 19 14: Valentine’s day
 20 21 22 23 24 25 26 26: Skiing!!!
 27 28

Section 2.3 Application Software 41

Bar Plot Application

BarPlot is an application that creates a simple bar plot, or histogram,
consisting of a number of bars corresponding to input values. A typical run is
shown below. First, some information is requested regarding the number of bars,
and the values for each bar. As usual, the user’s response is shown in bold type.
Further information is requested about the format of the bars. Finally, the
name of a file is requested and the given plot is saved in this file.

Enter the number of bars 12
Enter the bar values
7 8 7 6 5 8
9 8 7 5 7 9
Enter width of bars 3
Enter gap between bars 2
Enter Output file name
Powerplot
Plot is finished

The plot corresponding to this dialog is produced in the Powerplot file, and is
as shown below.
 *** ***
 *** *** *** *** ***
 *** *** *** *** *** *** *** *** ***
 *** *** *** *** *** *** *** *** *** ***
 *** *** *** *** *** *** *** *** *** *** *** ***
 *** *** *** *** *** *** *** *** *** *** *** ***
 *** *** *** *** *** *** *** *** *** *** *** ***
 *** *** *** *** *** *** *** *** *** *** *** ***
 *** *** *** *** *** *** *** *** *** *** *** ***

Again, a text editor could be used to add some information to the histogram just
produced, as shown below.
+ - +
| |
| Percent Power Produced: 1993 |
| 9 9 |
| 9 8 8 *** 8 *** |
| 8 7 *** 7 *** *** *** 7 7 *** |
| 7 *** *** *** 6 *** *** *** *** *** *** |
| 6 *** *** *** *** 5 *** *** *** *** 5 *** *** |
| 5 *** *** *** *** *** *** *** *** *** *** *** *** |
| 4 *** *** *** *** *** *** *** *** *** *** *** *** |
| 3 *** *** *** *** *** *** *** *** *** *** *** *** |
| 2 *** *** *** *** *** *** *** *** *** *** *** *** |
| 1 *** *** *** *** *** *** *** *** *** *** *** *** |
| |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |
+ - +

The BarPlot program is also written in Pascal. You may wish to modify it later
in various ways like the following.

• to produce various labels as shown on the edited version above,

• to produce an axis and border around the plot,

42 Chapter 2 Computing: A Short Survey of Some Applications

• to plot on both the screen and a file,

• to scale a plot to fit onto a page.

Drill Application

The application program Drill provides practice in simple multiplication. It
presents a series of multiplications chosen at random, and after each
multiplication waits for an answer. If the answer is correct, it displays
“Correct”, otherwise, it provides the correct answer. It also keeps track of the
number of correct responses, and shows this score at the end of the series. A
typical run of this application follows, where, as usual, the user’s response is
shown in bold. Notice that a starting value, the “seed”, is required at first;
any integer value will do. The Drill program makes use of another program
called a Random Number Generator to produce the actual values that are used
to make up the questions. The random number generator produces a sequence of
numbers that appear to be chosen by chance, just as if they were produced by
rolling dice. The seed is used to start the random sequence. If the same seed is
used on two runs of the Drill program, then the same questions will be asked.

Enter a seed (starting value) 1
Type an answer to the following
and then press the Return key
 8 * 3 = 24
 Correct
 0 * 3 = 5
The answer is 0
 6 * 5 = 30
 Correct
 9 * 7 = 63
 Correct
 6 * 8 = 48
 Correct
 5 * 2 = 10
 Correct
 5 * 5 = 55
The answer is 25
Your score is 5 out of 7

Drill is a program written in Pascal and later, after learning more about Pascal,
you may wish to modify it in some of the following ways.

• to allow three incorrect tries before providing the solution

• to select larger numbers more often

• to allow input of a level of difficulty

• to extend the drill to additions and subtractions

• to extend to combinations of additions, multiplications, etc.

• to select the problems that you have most difficulty with

Section 2.3 Application Software 43

• to convert between various bases

SSS: Small and Simple Spreadsheet

Spreadsheets are very useful applications, especially in Business. Essentially,
they consist of a rectangular grid of cells, as shown in Figure 2.2. Numbers can
be placed in these cells and the spreadsheet program provides a repertoire of
operations for manipulating these values.

Figure 2.2 Spreadsheet Grid of Cells

Header goes along the top

Sider at right

A B C D E ... Z

1

2

3

4

5
...

50

Cell D5 Column D Row 5

As an example of the typical use of a spreadsheet, Figure 2.3 shows a list of
prices and quantities of chair parts. One useful action on this table would be to
multiply the Price column by the Quantity column to create a third column
called Total. A second action, SumAColumn, could sum this third column and
put this sum at the bottom of the column. The Quantity column can be similarly
summed.

Figure 2.3 Example Spreadsheet for Parts

2 Columns
5 Rows
Price Quantity Total

10 20
30 40
50 60
70 80
 0 0

Part
Backs
Legs
Rungs
Seats
TOTAL

“Real” spreadsheets usually have a highly graphic and convenient user
interface with a mouse allowing quick positioning of the cursor onto a cell.
However every different computer requires a very different program. Each is

44 Chapter 2 Computing: A Short Survey of Some Applications

used in a different way. Here, we present a simple spreadsheet application
program written in Pascal that can be run on all computers in the same way.

Since it is simple, it has its limitations. There can only be 26 columns (labeled
alphabetically from A to Z), and 50 rows, so that a normal spreadsheet will fit
onto one page. Also, all the values must be positive integers. The set of possible
operations that this application can perform on a spreadsheet is simple and
shown below. Again, you will be able to add to this set once you have
experience in Pascal programming. Text appears only on the top line (called a
Header) and on the right side (called a Sider).

Data for the program, will be kept in a file, as shown in Figure 2.4, and this file
can be created using any text editor. The first values indicate the number of
columns and the number of rows. Then there is a single header to briefly
describe the columns. This is followed by the table of data values with brief
descriptions at the right of the table. Note that Total in the header does not
correspond to a column in the table (only 2 columns). This format is rather fixed
and rigid to make the program simpler. Later, you will be able to modify the
program to make it easier for you to use.

2 Columns
5 Rows
Price Quant Total Part

10 20 Backs
30 40 Legs
50 60 Rungs
70 80 Seats
0 0 TOTAL

Figure 2.4 Parts Inventory File

A B C

1

2

3

4

5

Price Quantity Total Parts

After SumAColumn (B, 1, 4, B, 5)

10

30

50

70

0

20

40

60

80

200

Backs

Legs

Rungs

Seats

TOTAL

0

0

0

0

0

A B C

1

2

3

4

5

Price Quantity Total Parts

Before: Original data

10

30

50

70

0

20

40

60

80

0

Backs

Legs

Rungs

Seats

TOTAL

A B C

1

2

3

4

5

Price Quantity Total Parts

After MulColumns (A, B, 1, 4, C)

10

30

50

70

0

20

40

60

80

200

Backs

Legs

Rungs

Seats

TOTAL

200

1200

3000

5600

0

Inventory: Chairs

Price Quantity Total Parts

"Final" File (after Editing)

$10
$30
$50
$70

20
40
60
80

200

Backs
Legs
Rungs
Seats

TOTAL

$200
$1200
$3000
$5600

$10000

Section 2.3 Application Software 45

The actions required for this spreadsheet program are few initially, but may
grow to many. We will consider a basic set of simple operations on columns and
rows. They take the form of subprograms which are imported from a Library
called SpreadLib and are as follows.

• Initialize is a subprogram that sets up the spreadsheet. It requests the
width of columns. All columns have the same width.

• LoadSpread is an operation to take the values from a given file and put
them into the cells of the spreadsheet. The number of columns and rows
must be specified first in this input file.

• SumAColumn(C1, R1, R2, C2, R3) is an operation to sum the values in
column C1 (from row R1 to row R2) and put the resulting value into
column C2, row R3. Usually columns C1 and C2 are the same, but they
need not be. For example, in the given example of an inventory of chair
parts, SumAColumn(C, 1, 4, C, 5) sums the first four values in the
column C and puts this sum into the fifth row of this same column C.
MaxAColumn, MinAColumn and MeanColumn are similar.

• AddColumns(C1, C2, R1, R2, C3) adds all the values in column C1 and
column C2 (from row R1 to row R2) and puts the resulting value into
column C3. MulColumns similarly multiplies columns. For example, in
the inventory problem, MulColumns(A, B, 1, 4, C) multiplies the first
column A of Prices (from rows 1 to 4) by the second column B of
Quantities yielding a third column C of Total cost.

• SubColumns(C1, C2, R1, R2, C3) subtracts from C1 the values of C2, in
the same manner as AddColumns above. Similarly, DivColumns
divides the first column by the second column.

• ShowSpread(C1, C2, R1, R2) displays the spreadsheet on the screen
from the column labeled C1 to that labeled C2, between rows R1 and R2.
This makes it possible either to show the entire spreadsheet or to show
only a given section of the spreadsheet. This operation can be used
many times within a program to trace the effects of various actions.

• SaveSpread(C1, C2, R1, R2) saves a spreadsheet, or part of a
spreadsheet, in a file where it can be edited later, or loaded in again
for further manipulations.

• MultColConst(C1, R1, R2, K, C2) multiplies a column C1 (from row R1 to
row R2) by a constant value K and puts the result into column C2, which
could be the same as the first column C1. If this is the case, the result is
that the first column was multiplied by K.

• MinOfARow(R1, C1, C2, C3, R2) finds the minimum value in row R1
between columns C1 and C2, and puts this value into column C3, row R2.
Usually the two rows R1 and R2 are the same.

• AddTwoRows(R1, R2, C1, C2, R3) adds the values in the two rows R1
and R2, between the two columns C1 and C2, and puts the results into a

46 Chapter 2 Computing: A Short Survey of Some Applications

given row R3. SubTwoRows is similar; it subtracts the second row R2
from the first one R1.

Obviously, a number of other actions are possible, and could be added later.
Now we can work with these basic operations to design a simple spreadsheet
application. To do that, we write a small Pascal program shown on Figure 2.5.

Figure 2.5 An example Spreadsheet program

PROGRAM SpreadProg;
(* Small spreadsheet system *)

USES SpreadLib;

BEGIN
 (* Inventory spreadsheet *)
 Initialize;
 LoadSpread;
 SumAColumn(B, 1, 4, B, 5);
 ShowSpread(A, C, 1, 5);
 MulColumns(A, B, 1, 4, C);
 ShowSpread(A, C, 1, 5);
 SumAColumn(C, 1, 4, C, 5);
 ShowSpread(A, C, 1, 5);
 SaveSpread(A, C, 1, 5);
END.

Although this is not the first Pascal program you have seen (think back about
the six program examples of Chapter 2 of the Principles book), we show it here
as an example. We don't expect you to understand all the details of the
program, but it should help you become familiar with the format of an actual
Pascal program. Note the PROGRAM, USES, BEGIN and END statements,
they are necessary to have a well defined Pascal program. The rest of this
program is made of subprogram invocations that have the form we described
above, and thus should not be difficult to understand. We'll introduce in the
next chapters of this book all the details necessary to produce such a program.

Figure 2.6 Trace of the execution of the Spreadsheet program

Enter Column Width 6
Enter Source File Stock.in
 Price Quant Total Part
 10 20 0 Backs
 30 40 0 Legs
 50 60 0 Rungs
 70 80 0 Seats
 0 200 0 TOTAL

Press Return to continue

 Price Quant Total Part
 10 20 200 Backs

Section 2.3 Application Software 47

 30 40 1200 Legs
 50 60 3000 Rungs
 70 80 5600 Seats
 0 200 0 TOTAL

Press Return to continue

 Price Quant Total Part
 10 20 200 Backs
 30 40 1200 Legs
 50 60 3000 Rungs
 70 80 5600 Seats
 0 200 10000 TOTAL

Press Return to continue

Enter Target File Stock.out

File is saved

Figure 2.6 shows a trace of the execution of this program: the first line is caused
by the call to Initialize, the second line is caused by the invocation of
LoadSpread. Then the three tables are displayed by the calls to ShowSpread,
showing the table after each of the following operation, first SumAColumn,
then MulColumns, and finally SumAColumn again. The last two lines of the
trace correspond to the call to SaveSpread that saves the spreadsheet in file
Stock.out. Note that the saved table has now three columns. Later, you may
wish to extend the program or the subprogram Library to do other actions such
as to Move one column to another, to Sort on a column showing the rank of each
cell, or to Compare column values.

2.4 Chapter 2 Review

There are many applications of computers and they are used in a number of
diverse fields. Here, we have shown some very simple applications (a tiny
editor, a small data base, a simple spreadsheet, etc.) These complete
applications are shown later in this book, but they can be used at this point.
You need not know the details within them in order to use them. The average
user certainly doesn’t want to know the internal details, it would only
complicate life!

The use of computer applications is significant in a number of ways. They show
the “external” behavior or interface of a program, which could be “friendly” or
“hostile”. Use also shows limitations of the applications and suggests
improvements. Then when you later achieve the appropriate facility with
programming in Pascal, you may wish to return to these applications to modify
and extend them in various ways. Modifying or maintaining programs is a
challenging activity.

48 Programming Practice: Pascal

Software evolves just as quickly as hardware. Software is much easier to
change than hardware and this is both a strength and a weakness. The
temptation and potential for change is enormous, but if not done properly, the
changes could be disastrous. Proper programs should be created in a way to
facilitate changes. This is done using subprograms and Libraries and proper
software engineering principles.

Libraries are the basic building blocks of applications. The Libraries consist of
collections of smaller building blocks called subprograms (or procedures). In
using these applications you will also learn some concepts involving the use of
libraries, although only at an external black-box level. But soon you will be
able to peek into these Libraries and make changes to them.

Chapter Outline 49

Chapter 3 Programming Language: Pascal
In this chapter we further introduce the Pascal programming language by
comparing it to natural languages and by using syntax diagrams to help our
understanding. Some extremely simple Pascal program examples are given as
illustrations of the syntax presented. Although it will take a few more
chapters to introduce all of the Pascal syntax, some other examples of complete
Pascal programs are also given in this chapter.

Chapter Overview
3.1 Preview..50
3.2 Languages...50

Syntax and Semantics..50
Syntax Diagrams..53

3.3 Pascal Programs..56
Program Format..56
Program Presentation..59
More Pascal Programming: Data and Actions.............60
Data Items..61
Actions: Arithmetic Operations................................63

3.4 More Example Programs..66
3.5 Chapter 3 Review...69
3.6 Chapter 3 Problems...70
3.7 Chapter 3 Programming Project..................................74

Getting Acquainted...74

50 Chapter 3 Programming Language: Pascal

3.1 Preview

Natural language, whether spoken or written, is an example of a highly linear
representation. When spoken, it is a sequence of words. In its written form, it is
a sequence or stream of characters. Written text is organized into sentences,
paragraphs, sections and chapters using mechanisms of spacing, punctuation,
section headers, etc. With computer programs expressed in an artificial
language, a programming language, the text is further organized by levels of
indentation, and more spacing conventions that are used to show the
organization into statements, forms, subprograms, modules, programs, etc.

All languages, natural or artificial, have rules that define what is meaningful
and what is gibberish. These rules constitute a language’s grammar or syntax.
One way in which this grammar can be represented is through two-dimensional
diagrams, called syntax diagrams. This representation is introduced in this
chapter.

People find that two dimensional diagrams are quite easy to grasp. Many of
the constructs of computer science are of this graphic type, such as trees,
breakout diagrams, flowblock diagrams, dataflow diagrams, etc. However,
computers at present are limited to manipulating long linear sequences of
symbols, which include the characters of programming languages, text, data
and, ultimately, bits.

The mismatch between the two-dimensional view of people and the one-
dimensional view of computers is not as severe as it may seem. In fact, there are
ways of representing two-dimensional structures as linear lists through the use
of various methods, such as indentation, numbering schemes, and breakouts.

3.2 Languages

Syntax and Semantics

The term “languages” encompasses both natural languages, such as English,
French or Latin, and artificial languages, such as programming languages. Both
consist of linear sequences of symbols. Natural languages involve symbols,
called words, that follow one another to form sequences called sentences. These
sequences are constructed according to certain rules, the language’s grammar or
syntax. The syntax of English defines the sequence of words
You gave the ball to me

to be grammatical whereas the sequence
You gave the ball to I

is not. Because a language is intended to communicate, there is a meaning
associated with syntactically correct sequences; this is its semantics.

Section 3.2 Languages 51

Syntax is the study of the form, representation, grammar, and structure of a
language. Semantics is the study of meaning, actions, function, and behavior of
a language. Briefly, syntax describes how a language looks and semantics
describes what a language does. For example, consider the following two
sentences:
a dog bit the man

a man bit the dog

These two statements have the same sentence structure (syntax) with only the
two nouns (dog and man) interchanged. These two statements have, however,
very different meanings (semantics), for the first would seldom appear in a
newspaper, whereas the second is sufficiently unusual to become a headline.

Figure 3.1 Two sentence diagrams

The girl ate quickly

article noun verb adverb

A dog bit the man

article article

noun noun

verb

noun phrase

noun phrase

verb phrase

sentencesentence

noun phrase verb phrase

A sentence in English can be analyzed into its parts of speech, this process is
known as “diagramming” or “parsing” a sentence. Figure 3.1 shows sentence
diagrams for two different sentences:

THE GIRL ATE QUICKLY

and

A DOG BIT THE MAN

In computer science, such diagrams are known as syntax trees. The actual words
(the symbols) of the sentences are at the top of the tree. They are called the
terminal symbols of the syntax tree because they form the terminals of the
tree’s branches.

The branches join at boxes labeled with the name of the part of speech formed
by the upper branches sprouting from the box. In the diagrams in Figure 3.1,
ATE is a verb and QUICKLY is an adverb. A verb followed by a noun is a verb
phrase. Such parts of speech are also known as syntactic categories. Syntactic
categories are used as terms to describe a language, and form what might be
called a “language to describe a language”, which is more conveniently termed
a meta-language.

52 Chapter 3 Programming Language: Pascal

We must distinguish between these two languages, the language being described
and the descriptive language. To do so, we will use capital letters within round
boxes for the ordinary language, and we will use small letters within square
boxes for the meta-language.

Notice that, at right of Figure 3.1, a verb phrase can consist of a verb followed
by a noun phrase whereas at left, a verb phrase is shown as a verb followed by
an adverb. This means that a verb phrase may be constructed in more than one
way. Such a situation is very common in natural languages and also occurs
frequently in programming languages.

Figure 3.2 Examples of syntax diagrams

verb phrase

verb phrase

noun phrase verb phrase

sentence

article noun

noun phrase

article
A

The

verb phrase

verb

Syntax diagrams are one of the methods used for describing the form of
languages. Figure 3.2 shows some examples of this method. The lines joining
the boxes in the diagrams of the figure show the proper sequences of symbols.
Valid sequences are those that can be obtained by tracing a path through the
diagram. Any path that leads completely through a box, following the arrows
on the lines, is syntactically correct. Any path that stops within a box is not
correct. The syntax diagrams then describe all possible paths that are correct.
In syntax diagrams:

• arrows indicate the possible flow of the definition

• rounded boxes indicate terminal symbols that are used as they appear
in the boxes

• square boxes refer to other diagrams.

For example, if we use the syntax diagrams of Figure 3.2 to show that the
sentence THE MAN ATE A BANANA is a well formed sentence, we do the
following.

1. Start with diagram a, which defines a sentence. To get through this
box, we must go through the noun phrase box of diagram b followed by
the verb phrase box of diagram d.

Section 3.2 Languages 53

2. To get through diagram b, we must pass through the article box of
diagram c and then through the noun box in diagram b, which defines
all the nouns of English and is thus too big to be shown here.

3. To get through diagram c, there are two possible paths, one passes
through the terminal symbol A and the other through the terminal
symbol THE. We take the second path.

4. The noun box, if it were shown, would show that MAN is a noun.

5. To get through diagram d, the verb phrase box, we must pass through a
verb box, from which we would find that ATE is a verb. Note that the
verb box is not defined here for the same reason as for the noun box: it’s
too big. We then have the choice of passing through the adverb box or
the noun phrase box. We choose the second alternative path. This
time, when we pass through the article box, we choose the first path
and pick the terminal symbol A. When we pass through the noun box
for the second time we pick up BANANA.

Since there is no path through the diagrams that allows us to pass through the
sequence of terminal symbols DOG, ATE and QUICKLY in that order, the
sentence DOG ATE QUICKLY is not a syntactically correct sentence in the
language defined by these syntax diagrams.

We have defined languages as sequences of symbols. Since a symbol is not
necessarily a word, this definition implies that any sequence of objects can be
thought of as a language. The methods of this chapter apply to all linear
sequences such as the following “Un-Natural” languages: sequences of dice
throws, stops of an elevator, or floats in a parade.

Syntax Diagrams

As we have just seen, syntax diagrams describe the proper form of any sequences
in a graphic way. Any path that goes all the way through the diagram from
the entry point at the left to emerge at the exit point on the right, following
the diagram’s lines in the direction of the arrows, corresponds to a proper
sequence, while all other paths are improper sequences. Syntax diagrams are
sometimes called “railroad layouts”. The major use of syntax diagrams in this
book will be to describe the Pascal programming language. Since you will need
to be able to read syntax diagrams easily, start by studying the simple
examples of syntax diagrams showing “mini-languages” involving money,
names, and time that follow.

54 Chapter 3 Programming Language: Pascal

Figure 3.3 Syntax diagram for a dollar amount

Dollar syntax

integer

0 1 2 3 4 5 6 7 8 9digit

digit (decimal)

$ integer . digit digit

centspointdollarssign

Figure 3.3 shows the syntax diagram for dollar amounts. A valid sequence
definition shows that the sequence must start with a dollar sign. This sign is
followed by an integer, a decimal point and two digits. An integer is shown to
consist of any number of digits, but a minimum of one digit. Notice how the
integer syntax diagram loops back so that valid sequences can be formed by
passing through the digit box any number of times. The dollar syntax diagram
also contains some words such as “Dollars” and “Cents” that are not in the
boxes. These describe semantics or meaning of the various parts of the sequence.
Sequences having the proper dollar syntactic form include the following.

$1.00 $2.34 $5678.99 $0.12 $003.45

Check the following sequences to convince yourself that they are all improper:

$1 2.34 $.56 $7.890 $1,234.56 $1500

$1.2 $ 7.89 $1. 2 12$ 13¢ $1 234 567.89

Figure 3.4 Syntax for a full name

Full Name
.

letters

Title First Name

letter
Initial

Last Name

suffix

letters

letters

A syntax for a full name is shown in Figure 3.4. Assuming that the letters
syntax diagram is similar to the integer syntax diagram of Figure 3.3, the
prefix or title could be further defined (on another syntax diagram) as being
MR., MRS., MS, or some other title like DR., PROF., SIR, etc. Similarly, the
suffix could be defined as a degree (BS, MS, Ph.D., MD) or other (JR., II, III,
ESQ., etc.) or nothing at all. In this case, blanks are assumed as separators, so
are not shown on the syntax diagrams. Notice that a name, according to this
definition, need have neither a first name nor an initial. Following the
straight path through the center of the diagram avoids both of these. This
syntax diagram describes names of the form

MRS. J. JONES or

Section 3.2 Languages 55

DR. HARRY J. JONES MD or

MR. JONES JR.

Figure 3.5 Syntax for clock time

Clock

After

Before

hours

mins

Half Past

O'Clock

hours

hours

1 2 12

hours 0

1

2

1

non-zero digit

hours

=

The syntax for Clock shown in Figure 3.5, describes a common way of indicating
time. With this syntax, some properly formed times are:

6 O'CLOCK 22 AFTER 2 HALF PAST 12 44 BEFORE 4

and some improperly formed times are:

49 O'CLOCK 22 BEFORE 13 HALF PAST 0 2 HALF PAST

Notice that the form of the hours (from 1 to 12) is represented in two ways. One
method (at the left), is a complete listing of all 12 hours. Another method (at
the right, involving non zero digits) is less exhaustive. Also note that the
syntax diagram for minutes has not been shown, can you draw it?

In the rest of the chapter we’ll look at the first syntax diagrams for Pascal.
Syntax diagrams will help us define the Pascal programming language.
However, there is one thing you should always keep in mind:
having a syntactically correct program in a programming language is no guarantee that the algorithm
specified is correct.

After all, there are plenty of grammatical sentences in English that are not
true. Many of them don’t even have a meaning that is connected to any reality
that we know, for example:
the spherical wall gargled with the purple bus.

56 Chapter 3 Programming Language: Pascal

3.3 Pascal Programs

Program Format

In the seven-step problem solving method that was introduced in the Principles
book, step 5 was called Program Coding and Testing. Program Coding can be
viewed as the process of converting an algorithm into a programming language.
This conversion process from flowchart, flowblock or pseudocode into a
programming language is simple compared to the process of creating the
algorithm. The actual coding however, becomes very detailed and consequently
error prone.

Programs in Pascal usually consist of four parts:

1. Header:

this provides a name that is indicative of the algorithm’s purpose

2. Uses Clause:

this specifies the external libraries that will be used by the program

3. Declarations Part:

this describes the various items that are to be used

4. Body:

this specifies the actions to be performed

As we have seen in the preceding chapter, the syntax of the Pascal
programming language can be described by syntax diagrams, made of rounded
boxes, rectangular boxes and arrows. The rounded boxes contain reserved words
of the language, which we shall write in upper-case letters. The rectangular
boxes refer to other syntax diagrams. The lines with arrows show all possible
proper paths through the diagrams.

Any sequence of symbols that is encountered while following a continuous
sequence of arrows through a syntax diagram from entry to exit corresponds to a
proper form, while all others are improper. Arrows between the boxes indicate
points at which separators, usually one or more blank spaces, are required.
Comments or new lines (carriage returns) may also serve as separators. In order
to simplify our introduction of the syntax of Pascal, some of our syntax diagrams
will differ to a minor degree from those in the reference section, however, their
general structure will be consistent.

Section 3.3 Pascal Programs 57

Figure 3.6 Syntax diagram for a Pascal program

Program

PROGRAM Ident IdentList ;

UsesClause Block .

()

If we approach the description of the program syntax top-down, at the highest
level we have programs, or program modules. These are defined by the syntax
diagram of figure 3.7 which consists of a sequence of four boxes: a header
followed by a Users clause, which may be bypassed, then a Block, and finally a
period. Parts 3 and 4 of our previous informal description of a program are
actually comprised in the Block. The Header includes the reserved word
PROGRAM followed by an identifier for the program name, like:

PROGRAM Conversion;

Figure 3.7 Syntax diagram for the Uses clause

USES IdentList

UsesClause

;

The syntax diagram of the Uses clause, is shown in Figure 3.8. It consists of the
reserved word USES followed by Id-List (a list of identifiers or names of
Libraries to be used) and ending with a semi-colon. Here is a possible example
of that clause:

USES SortLibrary, GraphLib, MyLibrary, IntLib, MoneyLib;

Figure 3.8 Syntax diagram for a Block

BEGIN Statement

Declaration

Block

;

END

The syntax for a Block is shown in Figure 3.9. A Block consists of two main
parts. The first of these two parts contains any declarations required by the
program, and its syntax will be given later. There may be no declaration part,
as in the First program in Figure 3.10, but usually there are several
declarations. The second part consists of the reserved word BEGIN, followed
by a sequence of statements separated by a semicolon and terminated by the
reserved word END. We will define the syntax of statements in the following
chapters.

58 Chapter 3 Programming Language: Pascal

A short but simple and complete Pascal program appears at the left of Figure
3.10, along with its run (or execution) to the right of it. That program is so
simple that it has neither a Uses clause nor a Declarations part.

Figure 3.9 The First Pascal Program

The results of executing the program
PROGRAM First;
BEGIN

Write('Hi ');
WriteLn;
Write('Bye');

END.

Hi
Bye

The name of this simple program is First, and this name appears on the
Header line which happens to be the first line.

The Body of this program, is that part that is sandwiched between the BEGIN
and END. In this example, the body has three statements which are
invocations of Pascal standard procedures (or subprograms):

• the first statement invokes Write to write out the three characters
“Hi “. Note that the space after the two letters “Hi” is a character.

• the second statement calls WriteLn (pronounced “Write-Line”) to
terminate the current line, which means that the point at which the
next character output will appear is at the beginning of the next output
line.

• the third statement calls Write again to write out the string of three
characters “Bye”.

As shown at the right of Figure 3.10, this program simply writes out (displays)
the two words “Hi “ and “Bye” on two separate lines. This is not a big
computing accomplishment but it does show some details about Pascal.

If there were no WriteLn sandwiched between the two Write statements then
the two words would be output on one line as the six characters,

Hi Bye

However this one line could also have been written by the single statement:

Write('Hi Bye');

A Pascal program consists of a sequence of characters separated by blanks to
form “words” and the words form groups separated by semicolons to form
statements. The program ends with a period. At this point, we encourage you to
go back to Chapter 1, and to try and apply the syntax diagrams to the program
Simple Pay of Figure 1.4 (the program has no Uses clause but has two
declarations).

Section 3.3 Pascal Programs 59

Program Presentation

In Pascal there are no restrictive rules about spacing, which might not be the
case with other programming languages. A blank space must separate each
word, but anywhere a blank occurs, it could be replaced by more blank spaces or
by a carriage return (to begin a new line). The spacing is important for human
readability. This first program could be written as one long line such as the
following :

PROGRAM First;BEGIN Write('Hi ');WriteLn;Write('Bye');END.

The Pascal programming language is case insensitive, i.e. there is no distinction
made between upper-case and lower-case letters. In Pascal, the word BEGIN
has the same meaning as begin, and the same as Begin. Hence, this First
program could also be written as:

Program First;Begin write('Hi ');writeln;WRITE('Bye');end.

or as:

PROGRAM FIRST;BEGIN WRITE('Hi ');WRITELN;WRITE('Bye');END.

However in the Write statements, the case of the letters that appear within
the quotes is important because the letters are printed exactly as they appear.

As extremes we could write everything in lower-case, or everything in upper-
case, but to make programs more readable we use both upper and lower case
letters, as in natural languages. Names of variables (like names of people) will
usually begin with an uppercase letter. Some special words (like PROGRAM,
BEGIN, END, REAL, ROUND) will be entirely in upper case. Furthermore, in
this book when we use words that are part of the Pascal language, we will use a
typewriter-like font, as INTEGER and REAL.

A program is a form of expository writing. In the more usual forms of expository
writing, technical reports, equipment manuals, etc. a great deal of the
readability depends on the style of writing. Style is the personality and
character of writing, the mode of expressing thought in language. Its chief
elements are the sequence and organization of paragraphs, sentence structure
and choice of words. The same is true of programming; there, style is the
quality of a program in which good choices have been made in spacing, in
naming, in structure, and other ways. These aspects will be considered later in
this chapter and in the remaining chapters.

Reserved words are those words that have special meaning in the language
(such as BEGIN and END) and cannot be used in any other way. In this book, we
shall show them in upper case. Pascal does not require them to be written in
upper case but that is part of the style of programming that we shall adopt.
There are 35 reserved words in Pascal; they are listed on the cover of this book
for quick reference. The most common ones used in the next few chapters are the
following:

PROGRAM, BEGIN, END, CONST, VAR, IF, THEN, ELSE,
WHILE, DO, AND, OR, NOT, DIV, MOD, FOR, DOWNTO.

60 Chapter 3 Programming Language: Pascal

In Pascal, standard identifiers are names that have been pre-defined (such as
INTEGER, REAL, WriteLn); here they will often be written entirely in upper-
case, but that is not necessary. The standard identifiers are also listed on the
cover of this book; some of the common ones follow:

SIN, COS, TRUE, FALSE, ROUND, TRUNC, Read, Write,
PRED, SUCC, ABS, ODD, CHAR, BOOLEAN, INPUT, OUTPUT.

The reserved words and standard identifiers should not be used by programmers
as names for anything else; there are plenty of other names.

More Pascal Programming: Data and Actions

A single program example, such as First, could be misleading because it
cannot show different ways of doing things. Also, the first example must of
necessity be simple. Let’s now look at another example program called Second
and shown in Figure 3.11, to review some of the previous concepts and introduce
some new ones.

As we showed earlier, programs have a form consisting of a header,
declarations, and a body. The First program had no declarations, this Second
one declares a constant called Year (with value 2000) and a variable called
Age.

Figure 3.10 The Second Pascal Program

PROGRAM Second;
(* Determines the birth year *)
CONST
 Year = 2000;
VAR
 Age: INTEGER;
BEGIN
 Write('How old are you? ');
 Read(Age);
 Write('You were born around ');
 Write((Year - Age): 4);
END.

A description of the program’s purpose should follow the header, or first line.
Here, the description is a single line that states the function of the program.
Other lines here could indicate the programmer name, the date, the inputs, the
outputs and other information. Such additional information will be considered
later.

Comments are textual information intended for reading by programmers. They
are enclosed within special brackets { and } or(* and *), and are ignored by
the computer. Examples are:

{ This is a comment }

and

Section 3.3 Pascal Programs 61

(* This also is a comment *)

When the second type of bracket is used, there must be no spaces between the
asterisk and the parenthesis. The program description on the second line of
Figure 3.11 is a comment, but comments are not limited to entire lines; they can
stretch over many lines or they can be only part of a line. Comments can be
inserted into the program anywhere there is a space. In Pascal, comments
cannot be nested within one another.

Declarations are specifications of the data items (and, as we shall see later,
procedures and functions) to be used in the program. Items declared in Second
include a constant

CONST
Year = 2000;

whose value in this program does not change. If the value of Year must change,
the program must be modified. Another item that is declared in Second is a
variable

VAR
Age: INTEGER;

which is declared to be of type INTEGER.

The execution of this program follows. The user's part of the dialog consists of
entering the value of 20 in answer to the question, as shown in bold type.

How old are you? 20
You were born around 1980

First, the Write statement displays the prompt How old are you?. Then
the Read(Age) statement waits for an integer value to be input, followed by
the user pressing the return key. Another Write statement displays the
message You were born around , and the final Write statement

Write((Year - Age): 4);

displays the resulting number (which is the year 2000 minus the age of 20,
which is 1980). The number 4 in this last Write statement specifies that 4
spaces should be allotted to display the resulting year (of 1980).

This Second program may not be very useful but it does show important aspects
of most programs; it has a prompt, an input, some (trivial) computation, and an
output.

Data Items

The objects of the real world include things such as days, sheep, and money. In
the abstract world as modeled by a program in a computer, the analogs of these
objects are the data that are manipulated by the program. These data can be
represented as boxes of a certain size and shape (called the data type). The
boxes are given names or labels (called identifiers) so they can be referred to,
and have contents (called values). The boxes are called variables or constants
depending on whether or not the program can change their values.

62 Chapter 3 Programming Language: Pascal

The type of an item of data is its description, specifying the range or set of
values that the item may have, and also the operations that can be performed
on it. Every item of data in Pascal has a type that must specified or declared
by the programmer. This requirement, known as strong typing is considered to be
very important because it allows Pascal to check for errors made by the
programmer. Type checking prevents programmers from adding “apples to
oranges”.

Some of the most common items of data are numbers. They are used in different
ways, usually to count or to measure. Measurements often involve values that
are not a whole number of units and they are usually represented by numbers
that have a decimal point. Counting involves whole integral numbers.
Numbers in Pascal are one of two types: INTEGER or REAL.

The values of data items of type INTEGER are whole integral numbers, either
positive or negative, such as 7, +11, –40, 365, 2001, 5280, etc. Figure 3.12 gives
the Pascal syntax of such integer numbers. An integer is made of an optional
sign followed by a digit followed by any number of digits, i.e. there is always
at least one digit. A decimal digit is one of the ten values 0 to 9. Examples of
incorrectly formed integers are –3.4 and 5,280. Other improper integers are O
(capital letter o), and l (lower case letter L); these can be easily confused.

Figure 3.11 Syntax for INTEGER values

Digit

Integer

HexDigit$

In the “abstract” world, integers correspond to discrete whole numbers on a
“number line” that includes negative values. In the “real” world these numbers
correspond to entities, such as financial worth, which can be positive or go
negative. In the abstract world, counting can continue to any integer value;
there is no upper limit. In the “computer” world there is always both an upper
and a lower limit. The size of this limit depends on the computer. On the
Macintosh for instance, this upper limit is 32,767 (or 215–1) and the lower limit
is –32,768 (or –215). On all computers the largest possible integer is named
MAXINT.

Data items of type REAL have values that are numbers with decimal points.
Figure 3.13 shows the syntax for real numbers in Pascal.

Figure 3.12 Syntax for REAL values

Digit

Real

ScaleFactor. Digit

Section 3.3 Pascal Programs 63

Real numbers always contain a decimal point. Examples of syntactically
correct real numbers include 0.0, 0.5, 7.0, 3.14159, +98.6, –459.99. Notice
that the sequence 5. and .5 are not valid REAL numbers because there is no
path through this syntax diagram that can lead to these sequences. They
should be written as 5.0 and 0.5; the decimal point needs digits on its left and
right side.

As an alternative notation for real numbers, the exponential or scientific
notation can be used for REAL numbers. This form is useful for very large or
small values. A number such as 12300.0 can be expressed as 1.23E4.
Similarly, the number 0.000123 is equivalent to 1.23E–4, which is the
Pascal equivalent of the scientific notation form 1.23×10–4. The number after
the E (the exponent) indicates how many places the decimal point is to be
moved. Its sign indicates whether it moves left (if negative) or moves right
otherwise. The exponent is usually limited to a standard range.

Items such as diameters, weights and rainfall are usually measured precisely
and the value given includes a decimal point. The constant PI (3.14159..) is a
commonly used real value. However, you should know that numbers of type
REAL cannot always be represented precisely on computers. For example, the
decimal 0.20 when converted to binary is a repeating number
(0.001100110011...0011...) which must ultimately be chopped to some finite
length, resulting in some error.

Actions: Arithmetic Operations

Pascal has a wide range of operations that can be performed on data. We’ll
consider here some of the simpler actions as an application of the formulas used
to define algorithms in Chapter 3 of the Principles book. The actions are
mainly arithmetic operations on numbers of the REAL and INTEGER type.

An assignment is the action of copying a value into a variable of the same type,
corresponding to the pseudocode operation Set as in:

Set Pay to Hours Rate

In Pascal, the assignment operator is a combination of two symbols: a colon
immediately followed by an equal sign—neither a blank nor a comment is
permitted between the colon and the equal sign. An assignment statement has
the form given by the syntax diagram of Figure 3.14.

Figure 3.13 Assignment statement

Designator := Expression

In that syntax diagram, the designator stands in particular for any variable
name, and the expression may be a constant, a variable or a proper combination
of these. Some simple assignment statements follow.

Count := 0;
Rate := MaxRate;

64 Chapter 3 Programming Language: Pascal

cost := Price + Tax;
FORCE := Mass * Acceleration;
Area := Pi * Radius * Radius;
Charge := 3 * Adults + 2 * Babies;

The arithmetic operations of addition, subtraction and multiplication are very
similar for INTEGER and REAL values. However, the division operation differs
between REALs and INTEGERs. Let’s take some of the formula algorithms from
Chapter 3 of the Principles book and change them into assignment statements.

Celsius := (5 / 9) * (Fahrenheit - 32);
Fahrenheit := (9 / 5) * Celsius + 32;

The division of two REAL values X and Y is indicated by X/Y, and yields a
resulting REAL value. The division of two integers I and J is indicated by I
DIV J, and it yields another INTEGER by truncating the result to the next lower
INTEGER value. For example,

5/9 yields 0.55555, but 5 DIV 9 yields 0.

The MOD operator is a useful complement to the DIV operator on INTEGERs. The
division of an INTEGER Numerator by Divisor yielding Quotient and
Remainder can be viewed as a combination of DIV and MOD as follows:

Quotient := Numerator DIV Divisor;
Remainder := Numerator MOD Divisor;

For example, 5 MOD 3 is 2 and 3 MOD 5 is 3. Some interesting and useful facts
about MOD are:

X MOD Y yields 0 when X divides Y evenly, for example, 8 MOD 4 is 0,
and 1984 MOD 4 is 0

X MOD 2 is 0 if X is even and 1 if X is odd, for example, 12 MOD 2 is 0,
and 19683 MOD 2 is 1

X MOD 10 is the rightmost digit of X, for example, 13 MOD 10 is 3,
and 12345 MOD 10 is 5

Expressions involving a mixture of types, REAL and INTEGER, may appear in
assignment statements. In such cases whenever one of the operands is REAL then
the result is REAL. For example, in the above temperature conversion formula,
the REAL division results in the entire expression evaluating to a REAL result.

In Pascal, arithmetic expressions are never ambiguous, that is to say there is
only one way of evaluating an expression. For instance, to anybody the
expression A+B*C could mean either (A+ (B*C)) or ((A+B) * C). Not so in
Pascal where it can only be interpreted as (A+ (B*C)). To achieve this, the
order of evaluation of expressions is specified by an operator precedence
(priority) table, like the following:

Operation Precedence
+ - low
* / DIV MOD middle
unary - high

Section 3.3 Pascal Programs 65

The highest priority operations are done first, while the lowest one are done
last. If operators have the same priority, then the convention is that the
leftmost operator is applied first. So the expression (10 - 1 +2) will give 11 and
not 7. Parentheses are evaluated first, so when in doubt use parentheses!

In a Pascal assignment statement, the identifier at the left and the expression
at the right must be of the same type. There is one notable exception to this
rule: if the variable is of type REAL and the expression is of type INTEGER, the
value of the expression is converted to the type REAL before the assignment
takes place. For example, if Celsius were declared to be INTEGER then the
assignment statement above would not be correct. In that case, the REAL value
of the expression on the right would have to be converted by truncation to an
INTEGER value, by a call to the ROUND function, for instance.

IntegerCelsius := ROUND((5 / 9) * (Fahrenheit - 32));

Thus, the value of Celsius obtained from a Fahrenheit value of 65 would
be

(5/9)*(65–32) = (0.5555555)*33 = 18.333333 = 18

Pascal does not have an exponentiation operator for taking a number to some
power. One alternative is to create a subprogram to do this; another is to avoid
the need for exponentiation by factoring, as in the following formula algorithm:

Time := Seconds + 60*Minutes + 60*60*Hours + 24*60*60*Days
Time := Seconds + 60*(Minutes + 60*(Hours + 24*Days))

Notice that both expressions require no exponentiation, and that the second
expression also requires half as many multiplications and so is more efficient.
Similarly, the following formula from Chapter 3 of the Principles book:

SIN(X) = X – X3/3! + X5/5! – X7/7! +. . .

must be written in Pascal in the following manner.

Sin := X - X*X*X/(3*2) + X*X*X*X*X/(5*4*3*2) - ...

but the computation can be done in a more efficient manner, provided we know
more about loops.

3.4 More Example Programs
As an advance view of what is coming, we’ll give here three program example
written from algorithms presented in Chapter 3 of the Principles book. Again,
we have to anticipate somewhat on a number of details that will be presented
in the coming chapters, but as you are familiar with the algorithms, the
programs should not be too difficult to understand. They will give you more to
think about, and help you apply what has been presented in this book so far.

The first program example is a temperature conversion program that was
written from the algorithm drawn from Figure 3.20 of the Principles book. The
complete program is shown in Figure 3.15.

66 Chapter 3 Programming Language: Pascal

Figure 3.14 A Temperature conversion Program

PROGRAM Convert;
(* Convert Celsius temperature to Fahrenheit *)
VAR
 Celsius, Fahrenheit: REAL;
BEGIN
 Write('Enter Degrees C: ');
 Read(Celsius);
 Fahrenheit := (9.0 / 5.0) * Celsius + 32.0;
 Write('Fahrenheit is ');
 Write(ROUND(Fahrenheit));
END.

The program is very simple, has no Uses clause, declares two Real variables,
asks for a Celsius temperature, inputs it, applies the conversion formula, and
displays the resulting Fahrenheit temperature. Note that the input of the
Celsius temperature is done by calling standard procedure Read. Also note that
the conversion formula was written with Real variables and Real constants, as
we want to be sure the computation is done with Real numbers. The second line
of the program is a comment giving the program’s objectives. The display of the
resulting temperature is done through a call to Write, as usual, but the value is
first transformed into an integer value by a call to standard function ROUND.

A typical run of this program is shown below.

Enter Degrees C: 100.0
Fahrenheit is 212

The second program example is a little longer, and is the coding of the
algorithm shown in Figure 3.32 of the Principles book. The complete
ChangeMaker program is shown in Figure 3.16.

Figure 3.15 The ChangeMaker Pascal Program

PROGRAM ChangeMaker;
(* Make change for a dollar *)
VAR
 Cost: INTEGER;
 Remainder: INTEGER;
 Quarters: INTEGER;
 Nickels: INTEGER;
 Pennies: INTEGER;
 Dimes: INTEGER;
BEGIN
 (* Input the Cost *)
 Write('Enter the cost in cents: ');
 Read(Cost);

 (* Make the Change *)
 Remainder := 100 - Cost;

Section 3.4 More Example Programs 67

 Quarters := Remainder DIV 25;
 Remainder := Remainder MOD 25;
 Dimes := Remainder DIV 10;
 Remainder := Remainder MOD 10;
 Nickels := Remainder DIV 5;
 Remainder := Remainder MOD 5;
 Pennies := Remainder;

 (* Output the coin count *)
 Writeln('The change is ');
 WriteLn(Quarters: 2, ' quarters');
 WriteLn(Dimes: 2, ' dimes');
 WriteLn(Nickels: 2, ' nickels');
 WriteLn(Pennies: 2, ' pennies');
END. (* ChangeMaker *)

The line following the program header is a comment stating the program’s
purpose. In this program there are more variables declared as the computations
produce more results. All the variables are declared to be integers. The body of
the program (between BEGIN and END) asks for a Cost less than a dollar, and
computes the change, i.e. the number of quarters, dimes, nickels and pennies. It
then displays the results. The computations are done by using the MOD and
DIV arithmetic operations. We give below an example run of this program.

Enter the cost in cents: 32
The change is
 2 quarters
 1 dimes
 1 nickels
 3 pennies

The third and last program example is somewhat similar to the last example
we saw in Chapter 2. We obtained it by coding the algorithm found in Figure
3.46 of the Principles book. The complete program is shown in Figure 3.17.

Figure 3.16 A Payroll Pascal Program

PROGRAM Payroll;
{ Repetitive pay algorithm }

CONST WeekHours = 7 * 24; (* Hours in a week *)

VAR Hours, Rate, Pay: INTEGER;

BEGIN
 Write('Give number of hours and rate ');
 Read(Hours, Rate);
 WHILE Hours >= 0 DO BEGIN
 IF (Hours < 0) OR (Hours > WeekHours) THEN
 Writeln('Error in hours')

68 Chapter 3 Programming Language: Pascal

 ELSE BEGIN
 IF Hours <= 60 THEN
 IF Hours <= 40 THEN
 Pay := Hours * Rate
 ELSE
 Pay := ROUND(40*Rate +
1.5*Rate*(Hours-40))
 ELSE
 Pay := 70 * Rate + 2 * Rate * (Hours -
60);
 Writeln('The pay is ', Pay);
 END; {IF}
 Write('Give number of hours and rate ');
 Read(Hours, Rate);
 END;{WHILE}
END.

This program is longer than the preceding examples, as the algorithm has more
different cases to deal with. The line following the program header is a
comment explaining what the program does. The program declares a constant
and three integer variables. Note that the constant declaration is followed by
a comment. The program body (between BEGIN and END) has been written with
indentations to help understand the structure of the algorithm. The program
statements between the line: “WHILE Hours >= 0 DO BEGIN” and the line
“END;{WHILE}” will be repeatedly executed, as long as the number of hours
read is positive. The indentations are such that these two lines bracket the
statements to be repeated. The rest of the program involves nested selections
whose details will be covered soon. The pay computations assign their result to
variable Pay, which is then displayed. Note that the second assignment
statement to Pay:

Pay := ROUND(40*Rate + 1.5*Rate*(Hours-40))

is slightly different from the two others. This is because of the Real constant
1.5 which causes the expression to be evaluated as a Real value. To store this
Real value in an integer variable it is necessary to convert it using the ROUND
standard function, which we just saw in the Convert program above.

Here is an example run of this program.

Give number of hours and rate 40 10
The pay is 400
Give number of hours and rate 0 15
The pay is 0
Give number of hours and rate 60 15
The pay is 1050
Give number of hours and rate 70 15
The pay is 1350
Give number of hours and rate -1 0

Section 3.5 Chapter 3 Review 69

3.5 Chapter 3 Review

This chapter introduced natural and programming languages, their syntax and
their semantics. The verification of the syntax of a sentence was done based on
two very different forms of representation. A "stream" of text is usually linear
and one-dimensional, while syntax trees used for parsing a sentence are two
dimensional. Two dimensional representations are convenient for humans,
while computers can deal with one dimension.

Languages, whether natural or for programming, involve sequences of symbols,
and have a grammar or syntax that can be described in two dimensions. This
syntax can be described by means of syntax diagrams. Syntax diagrams are used
to define the Pascal programming language syntax. The semantics of the
language require that explanations be given to accompany the syntax diagrams.

Some complete Pascal programs were presented even if some of the statements
anticipated their presentation in the next chapters. These examples are useful
to enter slowly and painlessly the world of Pascal.

3.6 Chapter 3 Problems

1. Simple Syntax
Create syntax diagrams describing the following forms:

a. Phone Numbers (with area codes, prefix, suffix)

b. License Plates (with three letters followed by three digits, and
vice versa)

c. Dates (such as 84/2/28 or II-28-84 or Feb. 28 1984)

d. Military time (such as 0800 or 1547)

e. Dewey Decimal number system (as used in public libraries)

2. Identifier
An identifier, or name, in the standard Fortran Language consists of one
to six symbols, the first being a letter and the others being either letters
or digits. Create a syntax diagram describing such identifiers, showing
explicitly all possible paths.

3. Elevator
Create syntax diagrams describing the behavior of an elevator which
travels between four floors. Typical sequences of travels (from the first
to the fourth floor) are:

70 Chapter 3 Programming Language: Pascal

1,2,3,4 1,2,3,2,3,4 1,2,1,2,3,2,1,2,3,2,3,4 1,2,1,2,1,2,1,2,3,2,1,2,3,4

4. Roll Your Own Syntax
Find an example from everyday life which would have a structure that
could be described by syntax diagrams. Examples could involve:
addresses, ZIP codes, part numbers, card games, sports, trains, parades,
dice, Roman numbers, combination locks, or Robert's Rules of Order.

5. Unreal
Using the following syntax diagram that defines REAL number constants
for Pascal:

ScaleFactor

. ScaleFactorDigit Digit

E

-

+

Digit

Real

determine which of the following are in that proper form. Express
those in proper form in the alternative REAL notation, with a decimal
point only and without a ScaleFactor. This illustrates the great number
of wrong ways that numbers may be represented, and the simplicity of
syntax diagrams to define the right form.

a. 5.28E3 b. 1.6E-05 c. 1.35e5

d. E5 e. 1E2 f. .5E

g. 2E3.4 h. -.5E3 i. 10E10

j. 2.55EE23 k. 3.4.1 l. 4.E5

m. 5.95E0 n. .5 o. 0E-3

p. 2.-3E4 q. -.1E1 r. 3.0E4

s. 3.oE4 t. 5,280 u. 5280

v. -3.4E-6 w. 13.4E.4 x. 5.5E5.0

y. AE3 z. 5.5E-1E2

Section 3.6 Chapter 3 Problems 71

6. Integers
Create syntax diagrams to define integers in Pascal if they consist of
either any number of digits or any number of hexadecimal digits
preceded by the symbol "$"

7. Top Syntax
Using the syntax diagrams at the top levels of Pascal programs:

BEGIN Statement

Declaration

Block

;

END

USES IdentList

UsesClause

;

IdentList

Ident

,

Digit

Letter

-

Ident

Letter

-

Program

PROGRAM Ident IdentList ;

UsesClause Block .

()

Answer whether the following are syntactically correct (without being
concerned as to why anyone would want to do this).

a. Is it possible for a program to have no declarations?

b. Is it possible for a program to have no UsesClause?

72 Chapter 3 Programming Language: Pascal

c. Is it possible for a program to have no statements in the body?

d. Is it possible for a program to have no word BEGIN in it?

e. Is it possible for a program to have no semicolons?

f. Is it possible for a program to consist of only semicolons?

8. Exterminate
The following program is loaded with syntactic errors (bugs), as well as
others. Every line has at least one error. Count the number of syntactic
errors, and rewrite the program properly. Actually, computers
(compilers) are good at finding such errors, but they don't rewrite the
programs. (Hint: one easy way of doing this is to enter this program in
your system and have the compiler do the job! But be careful! There are
some errors that might confuse your compiler!)

PASCAL Sales;
(* Infested with bugs. Find them. *)

CONSTANT TaxRate := 06.5%
VAR Cost, total: real;

BEGEN
WriteLN("Inputt cost');
ReadRealcost);
tax := TaxRate x cost;
total = Cost + TaxRate
(* 'Outputt the total' *)
Write(total);

END

9. Least
What is the shortest possible program that can be written in Pascal? It
doesn't need to do anything useful; it just needs to run without error.

10. Evaluate
Compute the following, according to the operator precedence table
given in this chapter.

a. 9 - 8 - 7 b. 10/2/5

c. (1 + 2)/3*4 d. 7 MOD (11 MOD 7)

e. 7 MOD (11 DIV 7) f. (1 MOD 2) DIV
(3 MOD 4)

Section 3.6 Chapter 3 Problems 73

11. Represent
Write the following real numbers in exponential notation:

a. Speed of light in a vacuum (in meters per second)

300000000.0

b. Charge on an electron (Coulombs)

0.00000000000000000016

c. Mass of an electron (kilograms)

0.000000000000000000000000000000911

12. Express
Write the following formulas as assignments in Pascal:

a. E = mc2

b. F =
6.67∗10−11m1m2

r 2

c. x =
−b + b2 − 4ac

2a

3.7 Chapter 3 Programming Project

Getting Acquainted

Your first programming project is to become familiar with your version of
Pascal; all implementations differ somewhat. To concentrate on these details,
you can start with the following simple program. It is one of the smallest that
does something (displays "Hi!").

PROGRAM Hi;

BEGIN
WriteLn('Hi!');

END.

1. Study your editor and then enter the above program. Make some errors
and correct them, both immediately after you made them, and also
much later.

2. Run the above program, a process usually involving compiling and
linking followed by executing.

74 Chapter 3 Programming Language: Pascal

3. Create a number of errors in the program (misspell words, delete
semicolons or words, insert words) and observe the error messages.

4. Extend the program to write several more lines. Insert comments in
various places. Insert gaps between lines in the output.

5. Save the program, not because it's good, but just to know how to save
programs. Then retrieve the program and modify it again.

Chapter Overview 75

Chapter 4 Data and Actions
This chapter continues with the introduction to the Pascal programming
language that was started in the last two chapters. Its main concerns are the
basic components of the language with some emphasis on the way in which the
language is written (i.e. the syntax or grammar) but also on the precise meaning
(i.e. the semantics) of what is written.

Chapter Overview
4.1 Preview..76
4.2 Programming: Data and Actions.................................76

Declarations: Syntax Diagrams from the Bottom........76
Simple Input and Output in Pascal.............................80

4.3 More Programs: A Top View of Pascal........................83
4.4 Programming Style..85
4.5 Layout of Programs..86
4.6 More Programs: Continued...89

Actions: Pre-Defined Standard Functions in Pascal.....89
Libraries: Using Units in Pascal.................................92

4.7 A Foretaste of Procedures...94
4.8 Chapter 4 Review...96
4.9 Chapter 4 Problems...96
4.10 Chapter 4 Programming Projects.................................97

Generate Conversion Tables.......................................97
Observing Errors..97
Demilitarize Time..98
TipTable...99
STT: Sales Tax Table...100
SSP: Simple Side Plot...101

76 Chapter 4 Data and Actions

4.1 Preview

The main topics of this chapter are the data and the actions of Pascal
programs. We'll start with the declarations of the data elements, and at first
will only use the simplest kind of data, numbers. The two main types for
numbers, Integer and Real, were defined in Chapter 3. Declarations will be
defined using syntax diagrams which were introduced in Chapter 3.

Complete programs, involving actions on data, are also presented here. The
readability of programs—very important for understandability—depends on
their layout. This topic, as well as some aspects of programming style, are
introduced at this early stage, mainly to instill good habits from the beginning,
by showing well designed program examples.

Like most chapters in this book, the goal of this chapter is to introduce some
basic concepts of the Pascal programming language with many examples. You
should gain familiarity with the form of programs written in the language, and
a great many details concerning the language. In the course of this chapter, you
will be reading many short programs, and segments of programs. After
completing the chapter, you should be able to recognize the proper form
(syntax) of many parts of the language. You should also be able to write some
very simple programs. Most of these programs will involve only a series of
actions, but some of them will also involve simple forms such as loops, decisions
or sub-programs. The following chapters will present more formally what has
been introduced here.

4.2 Programming: Data and Actions

Declarations: Syntax Diagrams from the Bottom

A Pascal program is written using the characters of your computer keyboard,
including the 26 upper case letters, the 26 lower case letters, the ten decimal
digits, and a number of other symbols (punctuation marks, brackets, etc.) These
characters are combined to form numerical values, identifiers, keywords,
operations, and ultimately programs. We can use syntax diagrams to describe
all of these and we will now show the syntax diagrams for some of the lower
level components of a Pascal program.

In Pascal, the symbolic names of variables, constants, programs, subprograms,
etc., are called identifiers. The syntax diagram for identifiers is shown in
Figure 4.1.

Section 4.2 Programming: Data and Actions 77

Figure 4.1 Syntax diagram for an identifier

letter

Identifier(id)

letter

digit

You can see that an identifier consists of a letter followed by any number of
letters or digits. However, you should note that some Pascal system keep only
the first 8 (or 16 or 32) characters of the identifier. In that case Employee1 and
Employee2 would appear to be different to you, but would be the same for the
system. Reserved words, found within rounded boxes on syntax diagrams (such
as BEGIN, END, FROM, IF) must not be used as identifiers. A list of reserved
words is given on the Reference page at the end of this book. Examples of
identifiers are shown in Figure 4.2.

Figure 4.2 Proper and improper Pascal identifiers

Examples of Identifiers
Proper Improper

A 7
Age 2*Pi
R2D2 Pi*2
Over21 0ver 21
MaxAge Max Age
temporary WHILE
BalanceOfPayments

In Pascal, declarations define the meaning of an identifier. For example, a
declaration defines the name of data items, indicating their type or set of
possible values. Figure 4.3 shows a simplified form of the syntax diagram for
declarations where a declaration consists of a choice between four different
kinds of declaration. Usually in a program, the declarations are grouped in the
order shown, first the constants, then the types, followed by variables and
procedures. Some examples of declarations for constants and variables are
shown in Figure 4.4.

Figure 4.3 Simplified syntax diagram for a declaration

TYPE Declaration

CONST Declaration

VAR Declaration

PROC Declaration

Declaration

78 Chapter 4 Data and Actions

Figure 4.4 Examples of declarations of constants and variables

Examples of Declarations

CONST
 Pi = 3.141592653589;
 Year = 2001;
 Period = '.';
 T = TRUE;
 Prompt = 'Enter a value';
 TwoPi = 2.0*Pi;

(* Physical constants*)

 Avogadro = 6.023E23;
 Planck = 6.63E-34;

 Coulomb = 8.99E9;
VAR
 Age : INTEGER;
 Radius : REAL;

 Male : BOOLEAN;
 Grade : CHAR;

 ZipCode: INTEGER;
 count : INTEGER;
 ISBN : INTEGER;

There is often a need in programs for values that remain constant during the
program execution. Such constants can be used directly (as 2000) within
programs, or they can be given a symbolic name through a declaration, and
referred to by that name. Named constants are preferable because they make it
easier to modify programs. For example, if we use a symbolic constant for the
year, each time the year must be changed, only one line of the program needs to
be changed. On the other hand if we use the constant directly, it is just too
boring and thus error prone to change many occurrences of 2000 to 2001, and
sometimes the wrong 2000 (a street address perhaps, or a salary) could get
changed also. Using named constants also improves the readability of the
program—it is easier to understand Avogadro than 6.023E23.

The syntax diagram for the declaration of a named constant is shown in Figure
4.5. The declaration consists of the word CONST followed by any number of
instances of the sequence: an identifier, an equal sign, a constant expression and
a semicolon. We've seen the syntax diagram for the declaration of identifiers
in Figure 4.1, and the diagram for constant expression is in Appendix X. The
constant expression following the equal sign may involve constants and a single
simple arithmetic operation such as:

HoursInAWeek = 7*24;
TwoPi = 2.0*Pi;

Section 4.2 Programming: Data and Actions 79

Figure 4.5 Syntax diagram for a declaration of a named constant

ConstantSection

CONST Ident = ConstExpression ;

Of course we humans could compute these constants, but that is tedious, and
could be error prone. Besides, the number 168 hides the two parts (7 days and
24 hours) from which it is constructed. Notice that Pi must be declared before
TwoPi.

Figure 4.6 Syntax diagram for the declaration of variables

Variable Declaration

;VAR Ident : Type

The variables used in a program must be declared as shown in the syntax
diagram of figure 4.6. The declaration of variables begins with the word VAR
followed by a list of identifiers separated by commas (which could contain only
one identifier), followed by a colon followed by a type (INTEGER, REAL, etc.)
There could be any number of these list of identifiers-colon-type combinations,
each terminated by a semicolon. Notice the similarity between the
declarations of Constants and Variables. To improve readability identifiers
could be described briefly by a comment, as follows.

CONST
MaxAge = 150; (* max age of humans, assumed to be 150
years *)
VAR
Angle: REAL; (* angle of shaft to horizontal, given in
degrees *)

The choice of types, names and values for data items is an important
responsibility of programmers, and that choice may not always be obvious. For
example, money may be viewed as an integer (20 cents) or as a real value (0.20
dollars). If it is used in a change-making program or an accounting program it
must be chosen to be an INTEGER, because integer operations give exact results.
If it is used in a loan program (involving large sums and complicated formulas)
then it could be chosen to be a REAL number. The counting of sheep or of a human
population should be done with the INTEGER type, although the upper limit
for INTEGER might be an inconvenience (there are five billion people on earth!)

Data items are referred to by names, which are identifiers, created by the
programmer. The data names should be chosen so that they clearly describe
the reality that is being modeled. The names should neither be too long nor too

80 Chapter 4 Data and Actions

short. For example, to count the number of months paid on a bank loan we could
use the symbolic name M or Mn or MonthsPaidOnLoan, but some intermediate
length name such as Months may be preferable. If this is the case, it will be
useful to insert a comment with the declaration, indicating that Months is the
number of months paid toward the loan. As we already mentioned, comments
are pieces of text included in a program to help the reader understand it; they
do not change the way in which the program works. The data type for the
variable Months should also be INTEGER, because its value comes from
counting.

Proper selection of names and types will pay off ultimately in the ease of
reading and modifying of programs. More details involving Pascal declarations
will be considered shortly. Other data types will be introduced later.

Simple Input and Output in Pascal

As you've already seen in the program examples of the two preceding chapters,
the input and output of values using Read and Write can be done easily. The
input is usually always done in a simple manner. The output can also be done as
simply as you wish, but can also be formatted as elaborately as you wish. Here
we will introduce and review the basic concepts of input/output in Pascal, using
mostly numerical values.

The input of values is done by a Read statement (actually a call to the Read
standard Pascal procedure) which has the simple form:

Read(InputList);

where InputList consists of a number of variable names (not constants or
expressions) that are separated by commas. Some examples are:

Read(Size);
Read(Rate, Hours);
Read(First, Second, Third);
Read(A, B, C, D, E, F, G, H);

Execution of such a Read statement causes data values to be accepted from the
keyboard and assigned to the variables of the InputList. The input values
should be separated by blank spaces, not commas. The variables can be of
various types, but the input values should appear in the same order as the
variables in the InputList, as the values are matched with the variables in
order.

The simplest kind of output involving numbers and strings of characters enclosed
in quotes is done by Write statements having either of the following forms:

Write(OutputList); or WriteLn(OutputList);

where OutputList consists of a number of expressions or quotations separated
by commas. The expressions may be constants, variables, or formulas. The
quotations are strings of characters enclosed between single quotes, not double
quotes. Here are a few examples:

Write(Size);
Write('Hello ');

Section 4.2 Programming: Data and Actions 81

Write('X = ', X);
WriteLn(A, B, C, D);
WriteLn((9/5)*C + 32);
WriteLn('You are about ', Age, ' years old.');

The execution of a Write statement produces a display on the screen.
Quotations are displayed exactly as shown; expressions are first evaluated and
then their values are displayed. The execution of WriteLn has the same effect
as Write but after displaying the information on the screen, the cursor
advances to the next line. Also, WriteLn can be used with no OutputList and
no parentheses to produce a blank line, as

WriteLn;

In the above example with simple Write statements, the format of the output
is very simple and somewhat crude. For instance, the field width, that is, the
space provided for writing a value, is fixed and is often much larger than
required, with the result that ugly gaps appear in the displayed output. Also,
REAL values are written in scientific notation with exponents, which is not
natural for business and other applications. Such simple output is quick and
convenient but it can be refined if we use format descriptors as follows.

It is possible to obtain some control over the layout of the output by associating
format descriptors with each item in the OutputList. The format descriptors
have two forms:

E:W or
E:W:D

where E is any expression in the OutputList, W is the width of the field, and,
for a REAL value, D indicates the number of digits after the decimal point. W
and D can be specified by expressions having INTEGER values. Some formatted
examples follow.

Write('The age is ', Age:2);

will display:

The age is 7
Write('Pay the amount of $', Pay:7:2)

will display:

Pay the amount of $1234.56
Pay the amount of $ 78.90

depending on the value of Pay.

Notice the two spaces in the first example between "is" and "7", as "7" does not
fill the width of its field. Also note in the second example that the decimal
point is counted as one of the seven symbols in the field. In a numerical field
the numbers fill the field from the right, this is called right justification, with
spaces added to the left to make up the field width to the value of W. In the
last example, the spaces between the dollar sign and the dollar amount is
especially dangerous because digits could be put into the spaces dishonestly.
This gap could be prevented by computing the exact width as will be shown
shortly.

82 Chapter 4 Data and Actions

Figure 4.7 The InOutDemo Pascal program

PROGRAM InOutDemo;
(* Shows simple input/output *)
CONST
 YearNow = 2000;
VAR
 Age, YearBirth, Width: INTEGER;
BEGIN
 (* Prompt for Input *)
 WriteLn('Enter birth year: ');
 (* Enter & Echo an input value *)
 Read(YearBirth);
 Write('Year = ');
 WriteLn(YearBirth:4);
 WriteLn;
 (* Test for appropriate input *)
 (* Compute the approximate age *)
 Age := YearNow - YearBirth;
 (* Format & display the Output *)
 Width := 2;
 Write('Your age is around ');
 Write(Age: Width);
END. (* InOutDemo *)

The program InOutDemo, shown in Figure 4.7, is a program that illustrates not
only the input-output actions just discussed, but also their proper use for
obtaining a user-friendly program. This program is a variation of the Second
program we saw in Figure 3.12 in the last chapter. It simply inputs a birth
year, subtracts it from the present year, and outputs the resulting Age. In its
original version in Chapter 3 it was much shorter, but here the new version
illustrates a number of concepts mainly about “user-friendly” communication
between users and computers. The program first prompts the user for a value,
then echoes the value just input back to the user to serve as a check. A comment
(* Test for appropriate input *) at this point in the program
indicates that code should be added at some future time to check that the value
input is reasonable, for example, that it is non-negative, or not greater than the
YearNow constant. The output shows some helpful comments and Age is written
in a field width set to have value 2, as the following execution shows.

Enter birth year:
1975
Year = 1975

Your age is around 25

There are a number of possible improvements to this program. First, it could
test the input to see whether the entered value is proper. For example, if
YearBirth is later than YearNow, then the following piece of program could
detect that improper input and serve as an obstacle while the input values are
improper.

(* Test for an appropriate input *)

Section 4.2 Programming: Data and Actions 83

WHILE BirthYear > BirthNow DO BEGIN
WriteLn('The year is improper ');
WriteLn('Enter another value ');
Read(BirthYear);

END;

Another improvement would be to compute the value of Width. The following
fragment of program sets Width to 1, 2 or 3 depending on the age. This could
replace the previous assignment of the value 2 to Width

(* Compute the Field Width of Age *)
IF Age >= 100 THEN

Width := 3;
IF Age < 100 THEN

Width := 2;
IF Age < 10 THEN

Width := 1;
Write('Your age is ', Age:Width);

4.3 More Programs: A Top View of Pascal

In the remainder of this chapter, we'll provide some more examples of simple
but complete programs to show some how algorithms are expressed in Pascal, as
well as differences and similarities among programs. Our examples will also
illustrate the main forms (Sequence, Selection, Repetition) and the two numeric
types (INTEGER and REAL). The emphasis will be on introducing the syntax
that is common to all Pascal programs. In some cases some details will be
informally introduced only briefly, and the formal definition of the syntactic
features will be left for the next chapter.

Our first program example is ChallengeGuess, which was written from the
algorithm description found in Figure 4.40 of Chapter 4 in the Principles book.
The program follows closely the pseudocode, and is reproduced in Figure 4.8.

Figure 4.8 Pascal program ChallengeGuess

PROGRAM ChallengeGuess;
{ Challenge a user to guess a number }

VAR Number, Guess, Count: INTEGER;

BEGIN
 Number := 1 + TRUNC(1000 * Random);
 { 0 < Number <= 1000 }
 Count := 0;
 Write('Make a guess: ');
 Readln(Guess);
 WHILE Guess <> Number DO BEGIN
 IF Guess > Number THEN
 Write('High; ')
 ELSE
 Write('Low; ');

84 Chapter 4 Data and Actions

 Count := Count + 1;
 Write('Make a guess: ');
 Readln(Guess);
 END; {WHILE}
 Writeln;
 Writeln('Congratulations! ', Guess:1, ' is
right.');
 Writeln('It took you ', Count:2, ' tries');
END.

The program ChallengeGuess declares three integer variables, Guess,
Number and Count, which will be used respectively to hold the value guessed
by the challenger, the value originally chosen by the program, and the number
of guesses necessary to find the number. The program statements are included
between the BEGIN, END pair. The first statement chooses a random number
between zero and 1000, by calling standard function Random which returns a
Real value between 0 and 1. The next statement sets Count to zero, and the next
two statements ask for and read the first Guess.

Then we start a WHILE loop whose body includes seven lines. The Guess is
compared to the chosen Number, and a message is displayed indicating
whether the guess was too high or too low. The Count is incremented and the
next guess is asked for and read. The loop will terminate when the Guess and
the Number will have identical values.

The last three statements display a message of congratulations with the
number of guesses that were necessary to find the Number. Note the width of 1
that is given for Count: this will avoid having unnecessary spaces in the
displayed line like:

Congratulations! 1 is right.

as the width is enlarged if the value is too big for the given width. The
following is an example of the execution of this program.

Make a guess: 500
Low; Make a guess: 750
Low; Make a guess: 875
High; Make a guess: 812
Low; Make a guess: 844
High; Make a guess: 828
High; Make a guess: 820
High; Make a guess: 816
High; Make a guess: 814
Low; Make a guess: 815

Congratulations! 815 is right.
It took you 9 tries

Before introducing other program examples, we’ll pause and discuss
programming style and program layout. These two aspects are of no importance
to the computers that will run your programs, but are extremely important for
the humans who will have to read, understand, modify, in other words,
maintain your programs.

Section 4.4 Programming Style 85

4.4 Programming Style

Remember that your program is first a communication: communication of the
algorithm to the computer, and communication of the solution to a given
problem to the programmers that will use and maintain it. To achieve good
communications, it is important to develop a good style for writing programs
early. The main goal of this style is to make programs readable to other
programmers, and also to yourself. When you return to modify a program you
did a year ago, you will be surprised at how difficult it is to understand what
you did! It is much like trying to understand a shopping list that you wrote a
year ago! A good programming style will make a program more readable,
understandable, modifiable, and "debuggable". The program examples we
have shown all have a common style.

You might be astonished to learn that poetry is closer to programming than is
prose. Poetry has greater structure, words are selected very carefully, each line
is spaced properly and indentation is important. On the other hand, prose is
viewed as one long stream; it is broken anywhere (including the middle of a
word) to begin another line.

Like poetry, programming style is an art. Your ability will improve with
experience, but when you are just beginning some guidelines and rules of thumb
are especially useful. The following guidelines are not "sacred" rules that
should never be broken but can serve to help you develop judgment toward an
individual style. Remember, it takes practice to know when to break rules.

The identifiers you choose should be as meaningful as possible. This could take
some time and a little effort but it is worthwhile, for it is the most important
way to improve program readability. Names in general should not be too short
(I, J, K, or XX, OT have no meaning, but in a mathematical context X, Y and Z
may have) nor should they be too long (these are error-prone and can hide the
structure of the program). As a rule of thumb, a length of "8 plus or minus 3" is
ideal. The names of variables are proper nouns so the first letter could be
capitalized (as in Sum, Balance). If the names consist of compounded words
then the first letter of each word should also be capitalized (as in OverTime,
CountOfSheep, etc.)

The judicious use of comments is also very important to a good programming
style. Comments should describe what is done and why it is done, but not how it
is done—the code tells how it is done. Oftentimes, comments are assertions that
explain how values are related at that point in the program. Comments should
not occur too often (hiding the program), nor too seldom (hiding the main
ideas). You’ll reach a good balance with experience. In many ways, comments
are like footnotes in text. Here are two examples of Pascal comments whose
advice should be followed:

(* UNIFORM UPPER CASE IS HARDER TO READ THAN LOWER CASE
*)

{ Comments should be meaningful, and be written in a
readable way }

86 Chapter 4 Data and Actions

Looking at our example programs, you might have noted that the spacing used
in a program is very important for readability. Horizontal spacing involving
indentation serves to show levels and code structure. The indentation should
not be too little (one space is hard to see) nor too much (more than 5 spaces takes
time); here we indent by 2 or 3 spaces. Lining up identifiers (or colons) in
declarations often looks good and provides a checklist—the eye finds it easy to
run down columns. Inserting blank spaces can also aid readability; for example:

Write('Age =', Age: 5);

is preferable to the squeezed

Write('Age=',Age:5)

Vertical spacing is also extremely important; blank lines provide gaps so the
human eye can view clusters of lines as a unit separated from other units. A gap
between the uses part of a program and the declaration part is obvious; other
gaps may take some judgment. Sometimes a gap between each form (Selection or
Repetition) clarifies a program, sometimes it just doesn't help. Often a
comment preceding a cluster of lines ties the lines together as a unit.

Many of the above guidelines are not important by themselves, but when all
taken together can make a big difference. Consistency in a single style is often
sufficiently important by itself. Also, ignoring some of these guidelines may not
appear serious, but when a program of many pages must be read, it can be very
bothersome to deal with such “unfriendliness”.

Other aspects of style will be considered later. They include naming of
procedures (as verbs), conditions (as adjectives), avoiding global variables, the
indentation of forms, modularity, etc.

4.5 Layout of Programs

Let’s look now at one more slightly larger Pascal program, to see its layout or
arrangement. It is a program to make change for a tendered amount when
purchasing something, given a Cost. This program corresponds to the Make
Change algorithm of Figure 4.25 in Chapter 4 of the Principles book.

Figure 4.9 The MakeChange program

PROGRAM MakeChange;
(* Make change for a tendered amount *)

VAR
 Cost,
 Remainder,
 Tendered: INTEGER;

BEGIN
 { Input the Cost }
 Write('Enter the cost in cents: ');
 Read(Cost);
 Write('Enter the amount tendered in cents: ');
 Read(Tendered);

Section 4.5 Layout of Programs 87

 { Make the Change }
 Remainder := Tendered - Cost;
 WHILE Remainder >= 25 DO BEGIN
 Write('Quarter ');
 Remainder := Remainder - 25;
 END; {WHILE} {Remainder < 25}
 WHILE Remainder >= 10 DO BEGIN
 Write('Dime ');
 Remainder := Remainder - 10;
 END; {WHILE} {Remainder < 10}
 IF Remainder >= 5 THEN BEGIN
 Write('Nickel ');
 Remainder := Remainder - 5;
 END; {IF} {Remainder < 5}
 WHILE Remainder >= 1 DO BEGIN
 Write('Penny ');
 Remainder := Remainder - 1;
 END; {WHILE} {Remainder < 1}
 Writeln;
END. { MakeChange }

The Pascal program MakeChange, shows one layout of the program. It begins
with the minimum of documentation—a brief statement of the program’s
purpose. To be complete, this documentation should also include the name of
the author and the date the program was written. This date (or some kind of
number, like “Version 1.5”) is important because programs get modified and
there may be a number of versions available, so the date makes it convenient to
find the latest one. The documentation at the head of the program should also
include a brief listing and a possible description of the program’s inputs and
outputs, and any limitations it might have, or other information that could be
useful. For example, the following comment could be inserted at the beginning
of the program.

(* Program to make change (all amounts in cents)
 * by Ann Onymous 94/2/30. Version 1.1
 *
 * INPUT:
 * Cost : cost of items, in integer, not real!
 * Tendered : integer amount in cents
 *
 * OUTPUT:
 * a message indicating the number of quarters
 * (25 cents), the number of dimes (10 cents), the
 * number of nickels (5 cents), and the number of
 * pennies (1 cent), like:
 * “Quarter Quarter Dime Penny Penny”
 *
 * TO DO:
 * Change to output the number of coins
 *)

88 Chapter 4 Data and Actions

Notice that this comment extends over a number of lines. The intermediate
asterisks at the left are not necessary, but do serve to group these lines. The
colons are also lined up; this is not necessary, but it looks good (some other
applications of vertical alignment can be seen in the complete program). Some
of this documentation may seem obvious, but it should still be done as a service
to others who may wish to read the program. Notice how this documentation
mentions the work that remains to be done. Gaps—empty lines—between lines
also serve to group parts of the program, separating one part from another for
greater readability. Indentation is also very helpful for humans, and is used
mostly to show what is included in the various loops. Notice also the other
comments in the body of the program:

{ Input the cost }
{ Make the change }

Taken alone, these comments are a higher level algorithm. Some comments are
assertions like:

{Remainder < 25}

which indicate the state of the program variables at various points. A typical
execution of the program follows.

Enter the cost in cents: 33
Enter the amount tendered in cents: 100
Quarter Quarter Dime Nickel Penny Penny

Figure 4.10 shows the same program in a different layout. Look at it and see
what layout you prefer.

Figure 4.10 Other layout for program MakeChange

PROGRAM MakeChange2;
(* Make change for a tendered amount *)
VAR Cost, Remainder, Tendered: INTEGER;
BEGIN
{ Input the Cost }
Write('Enter the cost in cents: '); Read(Cost);
Write('Enter the amount tendered in cents: ');
Read(Tendered);
{ Make the Change }
Remainder := Tendered - Cost;
WHILE Remainder >= 25 DO BEGIN
Write('Quarter '); Remainder := Remainder - 25;
END; {WHILE} {Remainder < 25}
WHILE Remainder >= 10 DO BEGIN
Write('Dime '); Remainder := Remainder - 10;
END; {WHILE} {Remainder < 10}
IF Remainder >= 5 THEN BEGIN
Write('Nickel '); Remainder := Remainder - 5;
END; {IF} {Remainder < 5}
WHILE Remainder >= 1 DO BEGIN
Write('Penny '); Remainder := Remainder - 1;
END; {WHILE} {Remainder < 1}

Section 4.5 Layout of Programs 89

Writeln;
END. { MakeChange2 }

The alternative layout of program MakeChange2 shows a very different
arrangement. It is a short and fat layout compared to the long and thin layout
of MakeChange shown in Figure 4.9. However, the two versions of the program
behave exactly the same and produce the same results. As you might have
already guessed, the second layout of MakeChange2 is not preferred. It
appears to be less readable, because the “vertical squashing” hides the
program’s structure. It is also harder to modify, because, to insert a segment of
code may require much moving of the text, that may also result in errors.

Modifications and improvements to programs are always possible. For instance,
this MakeChange program could be modified to test for proper input values,
rejecting negative values for Cost, Tendered and Remainder. The input
Cost and Tendered could also be echoed, and the total amount of the change
could be output. The output could be modified as already mentioned and also,
for example, to print numbers as “one penny” or with plural denominations such
as “three pennies”. Many other modifications to this program are suggested in
the projects at the end of this chapter.

In general, a Pascal program can be seen as having a top part (declarations)
indicating WHAT (data, names, types, tools imported), and a bottom part
(actions) indicating HOW the data are to be manipulated. Documentation, in
the form of comments, indicates WHY something is done and supports the
WHAT and HOW.

4.6 More Programs: Continued

We’ll present two more examples of complete programs before the end of this
chapter. However, you should be aware that Pascal offers you a number of tools
that make it possible for you to write program without having to “re-invent the
wheel” every time. On the one hand, Pascal includes a number of pre-defined
subprograms that are always available. On the other hand Pascal allows you
to define your own subprograms, and to use subprograms from program libraries.

Actions: Pre-Defined Standard Functions in Pascal

As a convenience to the programmer, commonly used actions are often made
available in a programming language. Pascal has a number of pre-defined
actions, as shown in Figure 4.11. These actions are all functions, analogous to
trigonometric functions like sine, cosine, etc., that accept a single value and
yield a single value of a given type. Functions can be used anywhere a variable
of that type may be used.

Figure 4.11 Pascal pre-defined functions

Pre-defined Functions
ABS(N) yields the absolute value of any numeric type N
ODD(I) is true if integer I is odd

90 Chapter 4 Data and Actions

SQRT(N) yields the positive square root of any numeric type N
SQR(N) yields the square of any numeric type N
ROUND(R) converts a REAL value R into its nearest INTEGER value
TRUNC(R) converts a REAL value R into an INTEGER by truncation
Others including SIN, COS, LN, EXP, ORD, CHR, SUCC, PRED

ABS(N) is a function that operates on a numerical value of any type
(REAL or INTEGER), and returns its absolute value (i.e. its positive
value) of the same type. For example:

ABS(-1) is 1, ABS(-2.3) is 2.3, ABS(4.5) is 4.5.

ODD(I) is a function that operates on an INTEGER value I and indicates
whether this value is an odd number. It can be used within
conditions both in Repetition and Selection forms. For example:

IF ODD(YEAR) THEN
Write('Cannot be a leap year');

SQRT(N) is a function that computes the positive square root of any
REAL or INTEGER value N and returns a value of the same type.

SQRT(4) is 2, SQRT(4.0) is 2.0, SQRT(8) is 2

SQR(N) computes the square of any REAL or INTEGER value and returns
a value of the same type. For example:

Hypotenuse := SQRT(SQR(Base) + SQR(Height));

ROUND(R) is a type conversion function that converts a REAL number R
into an INTEGER value by returning the nearest INTEGER to R.

ROUND(3.14) is 3, ROUND(2.7) is 3 and
ROUND(-1.9) is -2

TRUNC(R) is a type conversion function that converts a REAL number R
into an INTEGER value by chopping off the decimal part of the
number. For example,

TRUNC(3.14) yields 3, TRUNC(2.7) yields 2.

The trigonometric functions SIN(R) and COS(R) return the sine and
cosine of a REAL angle R represented in radians. Angles in degrees
can be converted to radians by multiplying by Pi and dividing by
180.

The exponential functions LN(R) and EXP(R) involve the base e (where
e = 2.71828). These functions can be used to compute the Nth power
of X by:

XtoPowerN := EXP(N*LN(X));

The logarithm of X to any base B can be determined from:

LogXtoBaseB := LN(X)/LN(B);

There are other pre-defined actions, including ORD and CHR, which we will
consider later when needed.

Let’s now look at another simple Pascal program, shown in Figure 4.12, to
produce a table of temperatures expressed in Celsius and Fahrenheit units.

Section 4.6 More Programs: Continued 91

Figure 4.12 Pascal program TempTable

PROGRAM TempTable;
(* Creates a table of temperature *)
(* Fahrenheit values approximate *)
VAR
 Celsius: INTEGER;
 Fahrenheit: REAL;
BEGIN
 WriteLn('TEMPERATURE');
 Writeln(' Celsius Fahrenheit ');
 Celsius := 0;
 WHILE Celsius <= 100 DO BEGIN
 Fahrenheit := (9/5)*Celsius + 32;
 Write(Celsius: 5);
 WriteLn(ROUND(Fahrenheit): 10);
 Celsius := Celsius + 10;
 END; (* WHILE *)
END. (* TempTable *)

Program TempTable outputs a table of Celsius temperatures and the
corresponding Fahrenheit values. The Celsius temperature starts at 0°C.
Within the loop, the Fahrenheit value is computed, both the Celsius and
Fahrenheit values are written as integers, and the Celsius value is increased by
10 to get the next temperature. The looping continues while the Celsius value is
less than or equal to 100, and it stops when Celsius exceeds 100.

Notice that the temperature conversion formula is similar to the one in the
Convert example of Figure 3.16 in the last chapter. Note however that in
TempTable, the decimal points are not shown in order to make TempTable
more readable. This does not change the computation which is done with REAL
values because of the “/” operation. Usually it is better to write the constants
as REAL and show the decimal points in order to make the program less error
prone. The program produces the following output.

Temperature

Celsius Fahrenheit

0 32

10 50

20 68

30 86

40 104

50 122

60 140

70 158

80 176

90 194

92 Chapter 4 Data and Actions

100 212

Libraries: Using Units in Pascal

Libraries of programs are extremely important in software development as they
enable software to grow in a disciplined and controlled manner. Libraries make
it possible to achieve modularization, one of the goals of software engineering.
Software engineering is a field of Computer Science that establishes methods
for the development of good software. Libraries are basically collections of
subprograms and data types that can be viewed as useful extensions to a
programming language.

The Pascal libraries are called units . In this chapter, we will not create units,
that will only come later, but we will use them. The details of the units are
hidden, but the subprograms within the units are available to be shared.

We have defined library IntLib as a collection of various operations on
INTEGERs that are not provided in Pascal. All these operations are
subprograms, but most of them are Pascal procedures, rather than Pascal
functions. Procedures calls are independent statements, analogous to the
invocation of subalgorithms in pseudocode, while function calls are only used in
expressions, and are therefore only parts of statements. The following
operations are available in library IntLib.

Incr(I, S) is a procedure that increments an INTEGER I by a step size
of S, where S is also an INTEGER. For example:

Incr(A, 1); increases variable A by 1.
Incr(B, -2); decreases variable B by 2
Incr(C, C); doubles variable C

Decr(I, S) is a procedure that decrements an INTEGER I by an
INTEGER step size of S. It is very similar to the above increment
operation.

Maximize2(A, B, C) is a procedure that finds the maximum of any
two INTEGERs A and B and sets C to that value. For example:

Maximize2(7, 11, M);

results in M having 11 as its value.

Minimize2(A, B, C) is a procedure that finds the minimum value C
of any two INTEGERs A and B. It is similar to Maximize2.

Order2(A, B) is a procedure that sorts the two input variables A, B in
increasing order. For example, if the value of X is 11 and the value
of Y is 7:

Order2(X, Y);

results in X having value 7 and Y having value 11.

Order3(A, B, C) is a procedure that sorts the three input variables
A, B, and C in increasing order. For example, if the value of X is
11, the value of Y is 7, and the value of Z is 9:

Section 4.6 More Programs: Continued 93

Order3(X, Y, Z);

results in X having value 7, Y having value 9 and Z having value
11.

Divide(N, D, Q, R) is a procedure that divides numerator N by
denominator D and produces a quotient Q and a remainder of R. For
example:

Divide(Sum, Num, Mean, Rem);

divides Sum by Num yielding a quotient Mean and a remainder Rem.

IntToReal(I, R) is a procedure that converts a given INTEGER I into
its corresponding REAL value R. For example:

IntToReal(7, X);

results in X having the REAL value of 7.0.

The fact that a program requires the use of one or more operations from a
Library is indicated by naming the Library in the Uses clause, which follows
the program header (recall the syntax diagram of Figure 3.7 in the last
chapter). To use any of the above procedures from IntLib requires only to add:

USES IntLib;

at the beginning of your program. We’ll now look at such a program, shown in
Figure 4.13, that implements the algorithm taken from Figure 4.17 in Chapter 4
of the Principles book.

Figure 4.13 The Triangle program

PROGRAM Triangle;
(* Determines if a 3-sided figure is a triangle
*)
USES IntLib;

VAR SideA, SideB, SideC: INTEGER;

BEGIN
 Write('Give the three sides ');
 Read(SideA, SideB, SideC);
 Order3(SideA, SideB, SideC);
 IF SideA + SideB < SideC THEN
 Write('not a triangle ')
 ELSE
 IF SideA = SideC THEN
 Write('equilateral triangle')
 ELSE BEGIN
 IF (SideA = SideB) OR (SideB = SideC) THEN
 Write('isosceles ');
 IF SideA*SideA + SideB*SideB = SideC*SideC
THEN
 Write('right triangle')
 ELSE
 Write('triangle ');

94 Chapter 4 Data and Actions

 END;
END.

The Triangle program is simple but involves nested selections. It uses
procedure Order3 from library IntLib to put the side lengths in order. To do
this, it has only to invoke it, because the “Uses IntLib;” statement has
made all the contents of the IntLib library available to program Triangle.

The program declares three integer variables for the triangle sides. It reads
the three values and orders them by invoking Order3. Then, it checks to see if
it is not a triangle and if so displays a message. If it is a real triangle the
program checks to see if it is an equilateral triangle, and if not checks the
isosceles condition. It then checks to see if the triangle is a right triangle. The
indentation of the program is very important as it shows the structure of the
program. In particular, it shows what statements are nested in others. For
instance, the first ELSE includes the rest of the program so that, if the figure is
not a triangle, none of the following statements are executed. On the other
hand, the last ELSE includes two IF statements. Nested IF statements must be
written with care, and more will be said about them in the next chapter. In the
meantime you may note that ELSEs cannot be preceded by semicolons.

A typical execution of the Triangle program follows.

Give the three sides 5 4 4
isosceles triangle

Note that the last line message was displayed by executing two Write
statements.

4.7 A Foretaste of Procedures

In the last program example, Triangle, we have invoked a procedure from
library IntLib. To be able to do that the IntLib library must have been
defined by another programmer, and the procedure must have been completely
defined. Defining procedures in Pascal is not very different from writing
programs. Remember that procedures are subprograms corresponding to
subalgorithms. Subprograms have a form similar to programs as they have a
header, a declarations part and a body. Let’s implement the algorithm
developed for the game of Fifty in Chapter 4 of the Principles book. That
solution used a subalgorithm Turn Of Player (found on Figure 4.29 of that book)
which must be translated into a Pascal procedure. We’ve done so in Figure 4.14,
which shows the corresponding program with numbered lines to facilitate
references.

Figure 4.14 The program of Fifty

(1) PROGRAM Fifty;
(2) { Play the dice game of Fifty }
(3)
(4) VAR Score1, Score2: INTEGER;
(5)
(6) PROCEDURE TurnOfPlayer(VAR Score: INTEGER);

Section 4.7 A Foretase of Procedures 95

(7) { Play a turn }
(8) VAR DiceA, DiceB: INTEGER;
(9) BEGIN
(10) DiceA := 1 + TRUNC(6 * Random); { 0 < Dice <= 6 }
(11) DiceB := 1 + TRUNC(6 * Random); { 0 < Dice <= 6 }
(12) IF DiceA = DiceB THEN
(13) IF DiceA = 3 THEN
(14) Score := 0
(15) ELSE
(16) IF DiceA = 6 THEN
(17) Score := Score + 25
(18) ELSE
(19) Score := Score + 5;
(20) END; {TurnOfPlayer}
(21)
(22) BEGIN
(23) Score1 := 0;
(24) Score2 := 0;
(25) WHILE (Score1 < 50) AND (Score2 < 50) DO BEGIN
(26) TurnOfPlayer(Score1);
(27) TurnOfPlayer(Score2);
(28) END;
(29) IF Score1 = Score2 THEN
(30) Write('The game is a tie ')
(31) ELSE
(32) IF Score1 > Score2 THEN
(33) Write('Player1 wins ')
(34) ELSE
(35) Write('Player2 wins ');
(36) END. { Fifty }

The main program is found in lines 22 to 36. It initializes the scores (lines 23-
24), repeatedly invokes TurnOfPlayer (lines 25-28) until one of the scores is
greater than or equal to 50. Finally a message is displayed indicating the
winner (lines 29-35).

The subalgorithm TurnOfPlayer has been packaged into a procedure (lines 6-
20) which includes a header giving the name of the procedure and its
parameter, the declaration of two integer variables representing the two dice,
and the actions of the subalgorithm. The procedure appears before the main
program as it is a declaration: in order to use a procedure we must declare it
beforehand or import it from a library as we did in the triangle program. The
procedure simulates two throws of each die by using standard function Random,
as we have already done in the ChallengeGuess example. If the throws
bring up a double, the score is modified accordingly.

The statements of a procedure are similar to the statements of a program, they
are ended with an END statement which is followed by a semicolon and not a
period. We’ll present formally procedures and functions in the next chapters, so
do not become anxious if things are still a little murky, this example is only

96 Chapter 4 Data and Actions

intended to show you that there are neither mysteries nor magic in
programming.

4.8 Chapter 4 Review

This chapter introduced more of the basic concepts of the Pascal language,
starting with identifiers and declarations of variables and constants, whose
syntax diagrams were given. The chapter also introduced simple input and
output operations in Pascal, mainly for numerical values.

The chapter also expanded its presentation of actions on data. These actions
that included arithmetic operations built-into the language, were expanded to
include both standard actions pre-defined in the language (ABS, SQRT, FLOAT,
ROUND, etc.) and actions imported from various Libraries (Incr, Max2,
Order3, etc.) One small Library, IntLib, was introduced to show how such
Pascal units could be used.

A few Pascal programs that manipulate data were also introduced in this
chapter. The programs were short and simple, but they illustrated
nevertheless many aspects of Pascal. They were given as complete examples
with the goal to familiarize you with the syntax of Pascal, even though the
formal definition of some parts weren’t covered in this chapter. Programming
style and program layouts, important to produce readable and usable programs,
were introduced, as well as a number of simple rules that were applied to the
example programs of the chapter, and will be applied in the remainder of the
book.

4.9 Chapter 4 Problems

1. Pieces of Program
Write (but do no run) a short piece of a Pascal program to do the
following:

a. Round off an integer to the nearest hundred, for example, 1234
rounds to 1200 and 5678 rounds to 5700.

b. Extend the MakeChange program to return half dollars, dollars,
and two dollar bills.

c. Tear apart a four digit integer D, into its digits D1, D2, D3, D4. For
example, 1984 breaks into D1=1, D2=9, D3=8, D4=4.

d. Perform the MOD operation using other arithmetic operations such
as DIV, multiplication and subtraction.

Section 4.10 Chapter 4 Programming Projects 97

4.10 Chapter 4 Programming Projects

Generate Conversion Tables

Modify the temperature conversion TempTable program to create some other
table of conversions. Some examples are:

1. Angle Table

Convert angles from degrees to radians for degrees ranging from 0 to 360
in steps of 10 degrees.

2. Metric Conversion Table

Create a table of metric amounts, say kilograms from 0 to 25, and the
corresponding amounts of pounds and ounces (rounded off).

3. Sales Tax Table

Create a sales tax table that lists prices up to a dollar in steps of 5
cents, and for each price, gives the rounded off tax (for a given tax rate
of say 6.5 percent). Then it continues in steps of a dollar up to 15 dollars.

4. Compound Growth Table

Create a table showing the growth (of inflation, bank balance,
population, etc.) of some initial amount (say 100) when the rate of
growth is a fixed percent of the present amount for each time period
(month, year, etc.). Create one table for two rates (5 percent and 10
percent) for 20 time periods.

5. Other Tables

Create a table for any other formula that interests you (from business,
science, mathematics, etc.).

Observing Errors

Become acquainted with your computing system by entering and running one of
the following short programs. Then make some errors to see what happens.
Finally make some modifications.

PROGRAM Circle;
(* Computes the circumference and area *)

CONST
Pi = 3.14159;

VAR
Radius, Area, Circumference: REAL;

BEGIN
WriteLn('Enter radius of circle ');
Write('Enter negative to quit ');

98 Chapter 4 Data and Actions

Read(Radius);
WHILE Radius >= 0.0 DO BEGIN

Circumference := 2.0 * Pi * Radius;
Write('Circumference is ', Circumference: 7: 3);
WriteLn;
Area := Pi * Radius * Radius;
Write('The area is ', Area: 7: 3);
WriteLn; WriteLn;
Write('Enter next radius ');
Read(Radius);

END (* WHILE *);
END.

PROGRAM Compound;
(* Shows compounding growth *)
(* Indicates time to double *)

VAR
Amount, Rate: REAL;
Year : INTEGER;

BEGIN
Write('Enter a growth rate ');
Read(Rate);
Write('Year Amount ');
WriteLn;
Year := 1;
Amount := 1.0;
WHILE Amount < 2.0 DO

BEGIN
Amount := Amount * (1.0 + Rate);
Year := Year + 1;
Write(Year: 4, Amount: 7: 3);
WriteLn;

END (* WHILE *);
END.

Demilitarize Time

Create a program to input two values representing the time in military (24
hour) units (such as 0250 and 1430) and to output the number of minutes between
these times.

Hint: Use MOD and DIV to break up the input times into Hours and Minutes.

Section 4.10 Chapter 4 Programming Projects 99

TipTable

Create a table that shows the tip corresponding to various amounts ranging
from one dollar to thirty dollars, in steps of one dollar. The tip is 15 percent of
the bill, rounded off.

a. Easy Tip

Create the table using INTEGERs for the dollar amounts, and for the
number of cents. For example, the amount of 20 dollars has a tip of 300
cents.

b. Clearer Tipper

Modify the table by writing the tip in terms of dollars and cents, with
the decimal point. For example, the amount 7 dollars has a tip of 1.05.
In order to print the tip with the decimal point and two digits for the
cents, you will have to use:

Write(Tip: 5: 2);

c. Clearest Tipper

Modify the above table by writing both the amount and the tip with a
decimal point and making the amount change in smaller steps of half
dollar.

d. Bigger Tipper

Modify again the above table by creating a third column in the table to
show a larger tip of 20 percent.

e. Round Tipper

Modify the table so that the tip is rounded to the nearest nickel (i.e. is
a multiple of 5). For example, an amount of 13.50 would correspond to a
tip of $2.025 which becomes $2.05 in this table.

f. Fancy Tipper

Modify any of the above tables by adding a border (of asterisks, or
dashes for horizontal borders and exclamation points for vertical
borders) around the entire table.

g. Nicer Tipper

Modify any of the above tables by printing the dollar signs
immediately to the left of each dollar amount.

h. Nicest Tipper

Modify some of the above tables so that there is not a single column, but
two columns side by side.

i. More Tips

Make up your own additional modification to this table.

100 Chapter 4 Data and Actions

STT: Sales Tax Table

You are to write a program that creates a table such as the following to
determine the amount of sales tax for various sales amounts. The sales tax is
given as a percentage (here 6.75%) of the Sales amount.

Sale
Amount

Tax
6.75%

1.00 0.067

2.00 0.135

3.00 0.202

4.00 0.270

5.00 0.337

6.00 0.405

7.00 0.472

8.00 0.540

9.00 0.607

10.00 0.675

As you “grow” the program by adding the following parts, do not make a
“hard” paper copy of any tables until your very last one. This saves paper (and
therefore trees).

a. Begin by writing a program for a simple table as above.

b. Modify this so that the taxes are rounded off to the next nearest cent.

c. Enlarge the table for larger sales (up to $20).

d. Include an extra column for other countries with other tax rates (say
8.25%).

e. Add extra tax ranges, before and after your range,

going from $0.10 to $1.00 in steps of 0.10,

going from $20.00 to $200 in steps of 10 dollars.

f. Put two big columns together in parallel, for a fatter and shorter table.

g. Beautify the table, with a header, good spacing, a box around the
table, etc.

h. Incorporate any other changes that you have time to do.

Be prepared to turn in the last table that you created. We may wish to compete
for the best tax table. To print the dollar and cents amounts with the decimal
point, you will want to use a field width as described for the printing of Clearer
Tipper above.

Section 4.10 Chapter 4 Programming Projects 101

SSP: Simple Side Plot

The given program creates a table of values of a function and also plots this
function on its side. In this case the function is the square, Y = X * X, but
other functions may be substituted for this square.

PROGRAM SidePlot1;
(* Plots Y vs. X sideways *)

VAR
X, Y : REAL;
RY : INTEGER;

BEGIN
X := -6.0;
WHILE X <= 6.0 DO

BEGIN
(* Table part *)
Y := X * X;
Write(X: 5: 2);
Write(Y: 7: 2);

(* Plot part *)
Write(' ');
RY := TRUNC(Y) + 1;
Write(0: RY);
WriteLn;

(* Next part *)
X := X + 1.0;

END (* WHILE *);
END.

OUTPUT

-6.00 36.00 0
-5.00 25.00 0
-4.00 16.00 0
-3.00 9.00 0
-2.00 4.00 0
-1.00 1.00 0
 0.00 0.00 0
 1.00 1.00 0
 2.00 4.00 0
 3.00 9.00 0
 4.00 16.00 0
 5.00 25.00 0
 6.00 36.00 0

The goal is to extend this program in many ways to be more general, more user-
friendly, and more useful. Rename each extended version as SidePlot2,
SidePlot3, etc.

102 Chapter 4 Data and Actions

1. Enter this program, run it, and get to understand it.

2. Re-range

Extend the range, by prompting for and entering the first and last
values of X. Rename this SidePlot2.

3. Take step

Modify this program to enter the value of the step size.

4. Scale it

Modify it further to enter a scale factor, which multiplies Y by some constant
value. If the scale factor is 0.5, then it halves each value of Y; if the scale
factor is 2.0, then it doubles each value.

5. Make axis

Beautify the output by making and labeling the axes, both X and Y.

6. Foolproof it

Check that the step size is not negative; and does not print off a page,
and any other possible unpleasant results.

7. Test and show it

Try your program with various plots of different sizes, such as:

a. the Square function

b. a trigonometric function

c. any other function of your own, from Physics, etc.

Chapter Outline 103

Chapter 5 The Four Fundamental Forms in
Pascal

The goal of this chapter is to introduce the four fundamental forms: Sequence,
Selection, Repetition, and Invocation, that are necessary and sufficient to
create any algorithm. At the end of the chapter you will have the necessary
tools to develop your own programs.

Chapter Overview
5.1 Preview..105
5.2 The Sequence Form in Pascal......................................105
5.3 Conditions in Pascal..107
5.4 Repetition Form: The WHILE statement....................108

Tracing Loops..110
5.5 WHILES, REALS, and Errors.....................................114
5.6 Selection Forms in Pascal...117
5.7 More Selections: Combinations of Selection Forms.......119

Confusion in Choices..120
More Nesting of Choices..120
Alternative Ways to Code Selections.........................121

5.8 Select Form: Handling Many Branches......................124
5.9 Awkward Nests: General Nesting.............................127

Mixed Nests: Repetition and Selections.....................128
5.10 Subprograms: Using Subprograms as Black Boxes.......130

The ShortSort Library...134
Notation for Defined Procedures................................137
Procedures vs. Functions...140

5.11 Binary Logic Library: BitLib.....................................145
5.12 Chapter 5 Review...149
5.13 Chapter 5 Problems...150
5.14 Chapter 5 Programming Problems..............................152

Sequence Problems...152
Selection Problems..153
Loop Problems...153
Subprogram Problems..153
Debugging Problems...153
Selection Programs..156
Procedures and Repetitions..156
Josephus’ Problem..158

5.15 Chapter 5 Programming Projects.................................159
Project A: Change Change...159
Project B: Payroll..160
Project C: Quadratic Roots...160
Project D: Digital Circuits...160
Project E: Roll Your Own..161

104 Chapter 5 The Four Fundamental Forms in Pascal

CRN: Convert Roman Numbers..................................161
GPR: Growing Pay Roll...161
MWM: Many Ways to Mid..162
DFP: Data Flow Programming...................................164

Section 5.1 Preview 105

5.1 Preview

As a continuation of the introduction of the various Pascal constructs, this
chapter concentrates on the Pascal equivalents of the four fundamental forms:
Sequence, Selection, Repetition, and Invocation. Most of these have already
been illustrated by examples in the preceding chapters, but the forms will be
presented here more formally.

The simplest form is the Sequence, a series of statements, that is considered
very briefly. Logical expressions, which are based on relational operations, are
considered in detail for they are used in both the Repetition and Selection
forms.

The simplest expression of the Repetition form, a While statement, is
introduced next. This introduction is accompanied by the tracing of the
execution of such a statement, with some aspects of loop invariants.

The Selection form is introduced with the Pascal IF-THEN-ELSE statement.
This statement is presented in detail, as well as nested IF statements.

The Pascal equivalents of the Invocation Form, PROCEDURE and FUNCTION
calls, are considered from the point of view of using PROCEDUREs and
FUNCTIONs that are available from Libraries. This presentation is mainly
based on the use of dataflow diagrams. The complete creation of subprograms
will be covered in a later chapter.

5.2 The Sequence Form in Pascal

The Sequence is the simplest of the four fundamental Forms introduced in the
Principles book. The Pascal version of this Form consists simply of series of
statements separated by semicolons, and sandwiched between a BEGIN and an
END. This is also known as the Pascal compound statement. The statements
should be indented from the BEGIN-END pair for improved readability. Also
semicolons must separate statements, but they may also terminate statements as
shown in Figure 5.1.

Figure 5.1 A Pascal Sequence

BEGIN BEGIN (* Swap *)
T := R; Temp :=
R := S; First;
S := T First :=
END Second;

 Second := Temp;
END (* Swap *)

Shown in this figure are two versions of a program fragment to swap the values
of two variables. The first version, on the left, is very minimal. It has no
indentation, no meaningful names, and no semicolon after the third

106 Chapter 5 The Four Fundamental Forms in Pascal

assignment—no semicolon is needed there because semicolons separate
statements. The second version, on the right, is more verbose. It has more
meaningful names and indentation to show the program’s structure. It is also
more consistent since it has semicolons terminating every statement including
the last (where it is not strictly necessary). This extra semicolon, just before the
END, allows the insertion of other statements at the end of this sequence form
(between the last statement and the END), without having to go back to the
previous statement to add the extra semicolon. In addition, it is easier to
remember the rule “Always put a semicolon after a statement” than a rule with
an exception to cover the last statement in a sequence.

Other examples of the Sequence form follow. They can be viewed as short but
complete programs, or they can be used as parts of other programs, or they can
also be “encapsulated” into subprograms (FUNCTIONs or PROCEDUREs, as seen in
the last example of Chapter 4).

Figure 5.2 A second Pascal Sequence

BEGIN (* To De-Militarize Time *)
 Read(MilTime);
 Hours := MilTime DIV 100;
 Minutes := MilTime MOD 100;
 Write(Hours, Minutes);
END (* of De-Militarizing Time *)

The program fragment DeMilitarize Time, shown in Figure 5.2, is a piece of
a program showing how a military time (given as an INTEGER such as 2345) can
be split into Hours and Minutes (such as 23 hours and 45 minutes). The INTEGER
divide operation DIV yields the hours directly (2345 DIV 100 = 23). The
MOD operation produces the remainder of the integer division which is stored in
Minutes (2345 MOD 100 = 45).

We can obtain the number of minutes without using the MOD operation, if we use
a slightly more complex expression:

Minutes := MilTime - 100*(MilTime DIV 100)

Figure 5.3 shows another program fragment that computes the value of a
variable X raised to the Nth power.:

Figure 5.3 A third Pascal Sequence

BEGIN (* Power *)
 Read(X, N);
 P := Exp(N*Ln(X));
 WriteLn(P);
END (* of Power *)

It uses both the standard exponential and logarithmic functions, introduced in
the Chapter 4. Since Pascal does not have an exponentiation operator, this
method could be particularly useful.

Section 5.2 The Sequence Form in Pascal 107

The trigonometric function Tangent is sometimes useful for some applications,
but is not directly available in Pascal. The program fragment of Figure 5.4 first
converts degrees into radians in Rads, and then divides the sine of this angle
by the cosine to yield the tangent.

Figure 5.4 A fourth Pascal Sequence

BEGIN (* Tangent of Degrees *)
 Write('Enter Degrees:');
 Rads := (Pi/180) * Degrees;
 Tang := SIN(Rads) / COS(Rads);
END (* of Tangent *);

5.3 Conditions in Pascal

Selection and Repetition forms are controlled by a logical expression, or
condition. For this reason, we will consider conditions first, before considering
these two forms.

Simple conditions, involving one relation, are shown in bold within the
following (partial) forms:

IF X = 5 THEN ...
IF Hours > 7*24 THEN (* Error *)...
WHILE X <= Y DO
IF ODD(Year) THEN
WHILE (X - Y) < 0.1 DO ...

Conditions may involve arithmetic expressions (variables, operations) as well
as arithmetic relations (<, =, etc.) The relations used for comparing two
quantities are summarized below, in pairs which are opposites:

 < less than
 > greater than
 = equal to

 >= greater than or equal to
 <= less than or equal to
 <> not equal to

Each of these simple relations can be used in a single logical expression (as X
<= Y). If the variables in the logical expression have a value, then each of
these relations evaluates to true or false.

We can create compound conditions by joining simple conditions with one of the
logical operations (AND, OR, and NOT). Here are a few examples of compound
conditions:

(A < B) AND (B < C) (* values A,B,C are increasing *)
(T = 7) OR (T = 11) (* a winning first dice throw *)
(0 <= P) AND (P <= 1) (* P in the range [0, 1] *)
NOT(ODD(Year)) (* Year is even *)

108 Chapter 5 The Four Fundamental Forms in Pascal

Although the precedence of the three logical operations is defined with OR
lowest, and NOT highest, we should use parentheses to avoid any possible
confusion, either when first writing the program or later when reading it.

It is often useful to negate compound conditions. To negate a logical expression
(using DeMorgan's Rule, described in Chapter 5 of the Principles book)
consisting of two conditions joined by an AND we simply complement each of
the conditions and change the AND to an OR. For example, consider the
following expression:

(A < B) AND (B < C) (* values A,B,C increasing *)

Its negation or complement is:

(A >= B) OR (B >= C) (* A,B,C are non-increasing*)

Notice that this negation differs from a similar condition:

(A > B) AND (B > C) (* values A,B,C decreasing *)

We will consider such conditions in more detail when we discuss the Boolean
type and Boolean expressions in Chapter 6. The informal presentation we have
given here should suffice for most needs, provided that you use parentheses to
avoid problems.

5.4 Repetition Form: The WHILE statement

The syntax of the Pascal WHILE loop is shown in the syntax diagram at the left
of Figure 5.5. At the right of the same figure is a template that shows how the
statement should be written in a Pascal program, when the body of the loop
includes more than one statement.

Figure 5.5 Syntax diagram and template for Pascal WHILE
statement

WHILE Expression Statement

Syntax (or form)

DO

condition

BEGIN

WHILE DO

Template (or skeleton)

action

action

END

Section 5.4 Repetition Form: The WHILE Statement 109

The Pascal WHILE statement consists of a single sequence: the word WHILE,
followed by a logical expression, then the word DO, and finally a simple
statement that serves as the body of the loop. Usually, the body involves more
than one statement, and in that case the single statement is replaced by a
compound statement. Remember that a compound statement is a group of
statements enclosed within a BEGIN-END pair. The template shown at the
right of Figure 5.5 covers this specific case. The semantics for the While
statement match those of the Repetition form and are defined by the flowchart
in Figure 5.6.

Figure 5.6 Flowchart showing semantics of While statement

condition

body

True False

Figure 5.7 shows a typical example of a Pascal WHILE loop that computes the
factorial of N.

Figure 5.7 Loop to compute the factorial

Fact := 1;
Count := N;
WHILE Count > 0 DO BEGIN
 Fact := Fact * Count;
 Count := Count - 1;
END (* of while loop *) ;

Notice how we use the indentation to show the extent of the body of the loop.
With this format, the WHILE is aligned with the corresponding END and the
body of the loop is clearly visible.

Figure 5.8 Loop to compute the square

Square := 0;
OddNum := 1;
WHILE OddNum < (N + N) DO BEGIN
 Square := Square + OddNum;
 OddNum := OddNum + 2;
END (* of while loop *) ;

The segment of Pascal program shown in Figure 5.8 shows how the square of
variable N can be computed by summing the first N odd integers.

110 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.9 Loop to enter valid data

Write('Enter age: ');
Read(Age);
WHILE Age < 0 DO BEGIN
 Write('Re-enter: ');
 Read(Age);
END;
Write('The age is ');
Write(Age:2);

Figure 5.9 illustrates a very useful method for entering valid data. First, the
user is prompted to enter the Age. Then, while the Age is negative (not a
reasonable value for an age), the user is asked to re-enter the value. When a
proper value has been entered, it is echoed to confirm that the intended value
was actually received.

Figure 5.10 Loop to force user to order data

WriteLn('Enter three values: ');
WriteLn('In increasing order ');
Read(A, B, C);
WHILE (A > B) OR (B > C) DO BEGIN
 WriteLn('Order them ');
 Read(A, B, C);
END (* WHILE *);
WriteLn('Ordered values are: ');
Write(A:3, B:3, C:3);

The segment of Pascal program shown in Figure 5.10 is a similar example: the
user is prompted to enter three values that are in increasing order. The program
does not continue further unless the values are in order. This example
illustrates a program that is not very user-friendly. The user should not have
to enter data in order, for that could be done easily by the computer (remember
we have done it in the Triangle example of Chapter 4)!

Tracing Loops

The tracing of the execution of loops by hand was considered in the Principles
book. Tracing loops in this way often provides insight, suggests modifications
and is a very effective way to detect errors. It is also a useful way to show
relations between variables, and to find loop invariants. However, such tracing
by hand is frequently tedious and error-prone. Because it is so labor intensive, it
is usually limited to only a few loops. Using the computer to help in the tracing
can be equally useful and is much more convenient.

We’ll do it on an example algorithm seen in Chapter 5 of the Principles book.
We reproduce here the algorithm pseudocode taken from Figure 5.36.

Input Amount, Duration, Payment, Rate

Section 5.4 Repetition Form: The WHILE Statement 111

Set Balance to Amount
Set Time to 0
While Time < Duration

Set Interest to Rate Balance chopped
Set Balance to Balance + Interest – Payment
Set Time to Time + 1

Output Balance

This algorithm computes the Balloon Payment of a loan, and Figure 5.11 shows
a Pascal version for it. However, an error was introduced during the translation
into Pascal, and we have left it here!.

Figure 5.11 Pascal program for Balloon Payment of a loan

PROGRAM Loan;
(* Problem of Interest on a loan *)
(* Computes: the Balloon Payment total interest *)

VAR
Amount, Duration, Payment, Interest,
Balance, Time, IntSum: INTEGER;
Rate: REAL;

BEGIN
(* Input necessary information *)
Write(‘Enter amount of loan: ‘);
Read(Amount);
Write(‘Enter payment amount: ‘);
Read(Payment);
Write(‘Enter the duration in months: ‘);
Read(Duration);
WriteLn(‘Enter annual interest rate ‘);
Write(‘as a decimal percent: ‘););
Read(Rate);
Rate := Rate/1200; (* Convert to monthly *)

(* Compute the Ballon Payment *)
Balance := Amount;
IntSum := 0;
Time := 1;
WHILE Time < Duration DO BEGIN

Interest := TRUNC(Balance * Rate);
Balance := Balance + Interest;
Balance := Balance - Payment;
IntSum := IntSum + Interest;
Time := Time + 1;

(* Begin trace ************************)
Write(Time: 2);
Write(‘ Balance = ‘);
WriteLn(Balance: 4);

112 Chapter 5 The Four Fundamental Forms in Pascal

(* End trace **************************)

END (* WHILE *)

(* Output all required Results *)
Write(‘Balloon Balance is: ‘);
WriteLn(Balance:5);
Write(‘Total interest is : ‘);
WriteLn(IntSum:5);

END (* Loan *).

Notice that, in the Pascal version of Figure 5.11, the input of the data and the
output of the results is now a much larger proportion of the whole algorithm.
This is typical of programs that have interaction with the user. Notice also
that some statements to output tracing information that appear in the Pascal
program were not part of the original algorithm. These extra statements have
been sandwiched between comments with many asterisks.

If we run that program with the data we used in the trace of the original
algorithm, we obtain the following:

Enter amount of loan: 600
Enter payment amount: 100
Enter the duration in months: 6
Enter annual interest rate
as a decimal percent: 12
 2 Balance = 506
 3 Balance = 411
 4 Balance = 315
 5 Balance = 218
 6 Balance = 120
Balloon Balance is: 120
Total interest is : 20

This output contains information produced by the trace statements that have
been added to the program. Notice that this trace “grows” downward, as
opposed to the hand-trace, shown in Chapter 5 of the Principles book, which
grew towards the right. The final resulting Balloon payment seems reasonable
but there are problems!

The trace information shows us that the program executes the loop 5 times only,
rather than the required 6 times; furthermore, the count values in the trace
start at 2, whereas we expected them to start at 1. The trace output has
allowed us to detected an error, an “off-by-one” error, which is very common. A
remedy is to initialize the Time to zero before entering the loop—as was done
in the pseudocode! After this correction, the program produces:

Enter amount of loan: 600
Enter payment amount: 100
Enter the duration in months: 6
Enter annual interest rate
as a decimal percent: 12

Section 5.4 Repetition Form: The WHILE Statement 113

 1 Balance = 506
 2 Balance = 411
 3 Balance = 315
 4 Balance = 218
 5 Balance = 120
 6 Balance = 21
Balloon Balance is: 21
Total interest is : 21

This time, the loop is executed the correct number of times and the values in the
Time field start at the more reasonable value of 1. Notice that the final
Balance equals the total interest, which is a nice check.

This program, with its trace, can be run for other values of input like the
following which checks the interest-only loan mentioned in Chapter 5 of the
Principles book.

Enter amount of loan: 600
Enter payment amount: 6
Enter the duration in months: 6
Enter annual interest rate
as a decimal percent: 12
 1 Balance = 600
 2 Balance = 600
 3 Balance = 600
 4 Balance = 600
 5 Balance = 600
 6 Balance = 600
Balloon Balance is: 600
Total interest is : 36

A more realistic set of values would involve larger amounts, monthly payments
over 5 years, and the resulting trace would have 5×12 or 60 lines. Such large
amounts of output in a trace are likely to be overwhelming, so the trace could be
modified to output only every fifth value. We could also output some
additional information, the values of Interest and IntSum, as a table by
inserting the following Selection form:

114 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.12 New set of trace statements

(* Detailed Trace of program ******)
IF Time = 1 THEN (* Header *)
 WriteLn('Num Bal Int Sum');
IF (Time MOD 5 = 0) THEN BEGIN
 Write(Time:2);
 Write(Balance:6);
 Write(Interest:4);
 Write(IntSum:5);
 WriteLn;
END (* IF *);
(* End of detailed trace **********)

After replacing the previous trace statements of the Loan program by the more
detailed trace statements of Figure 5.12, the following output was obtained
from a run:

Enter amount of loan: 12000
Enter payment amount: 200
Enter the duration in months: 60
Enter annual interest rate
as a decimal percent: 12
Num Bal Int Sum
 5 11590 116 590
10 11159 112 1159
15 10704 107 1704
20 10229 103 2229
25 9729 98 2729
30 9204 93 3204
35 8650 87 3650
40 8069 81 4069
45 7458 75 4458
50 6816 69 4816
55 6141 62 5141
60 5432 55 5432
Balloon Balance is: 5432
Total interest is : 5432

The debugging of programs is often done by judiciously placing such Write
statements within programs. The statements need not just write values, but
could also write messages as in:

WriteLn('Entering the Input part');
WriteLn('Leaving the While Loop ');

Other outputs could also involve the loop invariants or the use of a tool called a
debugger, which will be introduced later.

Section 5.5 WHILES, REALS, and Errors 115

5.5 WHILES, REALS, and Errors

The WHILE loop is a very convenient form for repeating actions. Some actions
however may be approximations, especially when dealing with REAL values,
and, when repeated often, may result in significant errors. The following
example shows one such problem involving REAL values.

The Pascal program BadChanger in Figure 5.13 is a very crude change making
program whose method was considered briefly in Chapter 4 of the Principles
book (Figure 4.30).

Figure 5.13 A bad change program

PROGRAM BadChanger;
(* A bad way to make change *)

VAR Pennies: INTEGER;
 Tendered, Cost, Remainder: REAL;
BEGIN
 (* Input necessary information *)
 Write('Enter cost of item: ');
 Read(Cost);
 Write('Enter amount tendered: ');
 Read(Tendered);

 (* Compute the change in pennies *)
 Remainder := Tendered - Cost;
 Pennies := 0;
 WHILE Remainder > 0 DO BEGIN
 Remainder := Remainder - 0.01;
 Pennies := Pennies + 1;
 END (* WHILE *);

 (* Output all required Results *)
 Write('Cost is: ');
 Write(Cost: 4:2);
 Write(' Amount tendered is: ');
 Write(Tendered: 4:2);
 Write(' Change is: ');
 WriteLn(Pennies: 3);
END (* BadChanger *).

In this program, a certain amount is Tendered for an item with a given Cost,
and the difference is the Remainder. Its (unfortunate) way of making change
is to repeatedly increment a Pennies counter and decrease the Remainder by
0.01 as long as the Remainder is greater than zero. The intent is that, when
the loop is completed, the number of pennies should equal the original
Remainder, because a penny was added to Pennies for each penny—$0.01—

116 Chapter 5 The Four Fundamental Forms in Pascal

that is subtracted from Remainder. However this is not always true as can be
seen from the following sample runs. Many of these runs are off by a penny!

Enter cost of item: 0.72
Enter amount tendered: 1.00
Cost is: 0.72 Amount tendered is: 1.00 Change is: 28

Enter cost of item: 0.61
Enter amount tendered: 0.75
Cost is: 0.61 Amount tendered is: 0.75 Change is: 14

Enter cost of item: 0.43
Enter amount tendered: 1.00
Cost is: 0.43 Amount tendered is: 1.00 Change is: 58

Enter cost of item: 0.75
Enter amount tendered: 2.00
Cost is: 0.75 Amount tendered is: 2.00 Change is: 126

Enter cost of item: 0.25
Enter amount tendered: 1.00
Cost is: 0.25 Amount tendered is: 1.00 Change is: 76

The reason for this error is related to a common problem of REAL values. REAL
values such as 0.01 can only be approximated within a computer, so some very
slight error may result. In fact, when 0.01 is converted to binary, the equivalent
binary value is a repeating number (0.000ll00ll00ll...00ll...), which eventually
must be approximated. This leads to an error, which could be very small, but it
is nevertheless an error. Then, when the subtraction of the 0.01 is repeated,
this error accumulates and results in a larger error. In this case the final error is
rather small, only a penny; but the error is inconsistent, occurring only some of
the time. In other algorithms, the error could “grow” and become very serious.

Not all computers represent REAL values to the same degree of approximation
so that the effects of this error are likely to differ from one Pascal system to
another. Such errors and inconsistencies cannot be tolerated. There are
solutions to this problem.

It is possible to avoid this error in various ways. One way is to simply avoid
REAL values and declare Cost, Tendered, and Remainder to be INTEGER. The
values would be considered as cents, rather than hundredths of a dollar. The
user of the program would need to be prompted to enter values as “whole”
numbers, or cents.

Another way would be to allow the input of REAL values, but to convert them
into INTEGER values in the program. This could be done by multiplying the
REAL values by 100 and then rounding the result as follows:

(* Enter Real money and convert it into Integer *)
Write('Enter the cost with a decimal point: ');
Read(RealCost);
IntCost := ROUND(100 * RealCost);

Section 5.5 WHILES, REALS, and Errors 117

The use of REAL values also poses other problems that can be avoided if they
are anticipated. For example, two REAL values should not be compared for
equality because the value of 0.1 * 10 may not exactly equal 1.0. Instead,
the difference between the two values could be compared to determine how
small it is, i.e., how close is the approximation. For example, to determine if a
triangle is a right triangle the condition:

(A*A + B*B) = C*C

should be replaced by the following comparison with a small value Err:

(A*A + B*B - C*C) <= Err

or alternatively, if the magnitude of error is more important, the comparison
can be replaced by:

ABS(A*A + B*B - C*C) <= Err

5.6 Selection Forms in Pascal

The Selection Form is illustrated by the flowchart of Figure 5.14.

Figure 5.14 Flowchart for the Selection Form

C

D E

True False

This Form is interpreted in the following manner: if condition C is true then
action D is performed, otherwise action E is performed.

118 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.15 The Selection Form in Pascal

Act or B Acts E

condition

Act or B Acts E

IF THEN

Template

ELSE

If expression Statement

else Statement

Syntax Diagram

THEN

Figure 5.15 shows at left the syntax diagram, and at right the template for the
Pascal version of the Selection Form. Notice that, in the syntax diagram, the
ELSE-part is optional. This is also shown in the template where the optional
ELSE-part is shaded.

These actually define two forms of the Selection called IF-THEN-ELSE and
IF-THEN, which are:

IF expression THEN
 Statement
ELSE
 Statement

IF expression THEN
 Statement

It is important to realize that, just as it was the case with the WHILE
statement, the Statement in both the THEN-part and the ELSE-part could be
any statement, that is to say:

1. A simple statement, e.g. an assignment or input-output statement.

2. A compound statement, e.g. a sequence of statements enclosed in a
BEGIN-END pair,

3. Another Selection Form

4. A Repetition Form

and that each of these could, in turn, include other forms.

It is also very important to realize that there cannot be a semicolon just before
an ELSE! If this was the case, this semicolon would mark the end of the

Section 5.6 Selection Forms in Pascal 119

preceding simple IF-THEN form. Such an extra semicolon in the middle of an IF
statement is the source of many errors!

The following three sample segments of Pascal code show some simple Selection
forms.

IF Age < 18 THEN
Minors := Minors + 1;

This is a simple Selection having no ELSE part; it increments Minors each time
the Age is less than 18.

IF Age < 0 THEN
WriteLn(‘Error’)

ELSE BEGIN
Count := Count + 1;
Sum := Sum + Age;

END;

This second code segment is an example of the second kind of Pascal Selection; it
has an ELSE part that consists of more than one statement thus requiring the
BEGIN-END pair. Note the absence of semicolon before the ELSE.

IF This > That THEN BEGIN
Max := This;
Min := That;
END

ELSE BEGIN
Max := That;
Min := This;

END;

In this third example, both the THEN and the ELSE parts have compound
statements and thus, two BEGIN-ELSE pairs are required. Note the chosen
indentation that shows clearly what statements belong to each part.

This last example determined the maximum and the minimum of two values.
There are alternative ways of performing the same operation as shown below.
Both manners can be proven equivalent by the methods seen in Chapter 5 of the
Principles book.

Max := This;
Min := That;
IF Max < Min THEN BEGIN
 (* Swap *)
 Temp := Max;
 Max := Min;
 Min := Temp;
END;

Max := This;
Min := That;
IF Max < Min THEN BEGIN
 Max := That;
 Min := This;
END;

120 Chapter 5 The Four Fundamental Forms in Pascal

5.7 More Selections: Combinations of Selection Forms

It is possible to combine Selection Forms in various arbitrary manners. We will
consider here some nests of Selections, both simple and complex.

Figure 5.16 Max3 algorithm and code

If First < Second
 If Second < Third
 Set Big to Third
 Else
 Set Big to Second
Else
 If First < Third
 Set Big to Third
 Else
 Set Big to First

IF First < Second THEN
 IF Second < Third THEN
 Big := Third
 ELSE
 Big := Second
ELSE
 IF First < Third THEN
 Big := Third
 ELSE
 Big := First;

Figure 5.16 shows algorithm Max3 that finds the maximum of three values. It
consists of three Selections, two nested within one larger Selection. On the left
of the figure is shown the pseudocode representation of the algorithm and, on
the right, is the corresponding Pascal code. Notice how closely the two
versions match; this is an indication of how easy it can be to convert pseudocode
into Pascal.

Confusion in Choices

Notice that, in the Pascal program for Max3, there is only one semicolon, at the
very end, which marks the end of the outer Selection. In Pascal, it often seems
as though some programs could also be written using extra semicolons, but Pascal
is not very “forgiving” of such excesses. When in doubt, don't! It is especially
important not to put a semicolon just before an ELSE.

Confusion could possibly arise in the case where an IF is nested inside an IF
without an intervening ELSE, as in the following:

IF A THEN IF B THEN C ELSE D;

Humans could unfortunately read and interpret this in to different ways as
follows:

Proper form Improper form
IF A THEN
 IF B THEN
 C
 ELSE
 D;

IF A THEN
 IF B THEN
 C
ELSE
 D;

Section 5.7 More Selections: Combinations of Selection Forms 121

Pascal associates the lonely ELSE with the nearest preceding IF, as shown on
the left, that is, D is performed if A is true and B is false. If the
interpretation on the right is intended, that is, D is performed if A is false,
irrespective of the value of B, then a BEGIN and END must be inserted around
the inner IF and the code fragment must be written in the following manner:

IF A THEN BEGIN
IF B THEN

C
END

ELSE
D;

More Nesting of Choices

Figure 5.17 shows four algorithms for an Age Tally System that increments two
counters, High and Low depending on the Age. The four algorithms are
equivalent in behavior; the proofs of equivalence are similar to those found in
Chapter 5 of the Principles book. The algorithms differ somewhat in structure,
and lead to different programs. Notice especially the indentation. Algorithms
1 and 2 show the second Selection nested in two ways. In Algorithm 1, this
Selection is nested in the “true” of the main Selection whereas in Algorithm 2 it
is in the “false” leg.

Figure 5.17 Four different ways to nest choices

Algorithm 1 Algorithm 2

If Age ≥ 12
If Age > 21

Increment High
Else

Increment Low

If Age < 12
Increment Low

Else
If Age > 21

Increment High

IF Age >= 12 THEN BEGIN
 IF Age > 21 THEN
 High := High + 1;
 END
ELSE
 Low := Low + 1;

IF Age < 12 THEN
 Low := Low + 1
ELSE
 IF Age > 21 THEN
 High := High + 1;

Algorithm 3 Algorithm 4

If Age < 12
Increment Low

Else
If Age > 21

Increment High

If Age < 12
Increment Low

If Age > 21
Increment High

122 Chapter 5 The Four Fundamental Forms in Pascal

IF Age < 12 THEN
 Low := Low + 1
ELSE
 IF Age > 21 THEN
 High := High + 1
 ELSE
 ; (* do nothing *)

IF Age < 12 THEN
 Low := Low + 1;
IF Age > 21 THEN
 High := High + 1;

Nesting in the false branch, as in Algorithm 2, is usually preferred because it is
“top-down” and easier to read. It is also easier to extend. For example, to
increment a Mid age counter the additional cases grow downwards, and this
avoids the above mentioned confusion about matching the IFs and the ELSEs.
Algorithm 3 shows yet another more detailed way of doing the nesting in the
false branch; the Pascal code explicitly includes the case where no action is
taken. Notice that the Pascal “no action” statement, generally known as the
null statement, is just a semicolon.

Alternative Ways to Code Selections

There are many different ways to code Selections, and some ways are better
than others. These possibilities will be illustrated by coding the extended
payroll algorithm of Chapter 2 of the Principles book. This algorithm is
shown in Figure 5.18 in both flowchart and pseudocode forms. Notice that the
inner Selection is nested within the left or true “leg” of the outer Selection form.

Section 5.7 More Selections: Combinations of Selection Forms 123

Figure 5.18 Flowchart and pseudocode for extended pay
algorithm

 Set PAY to
RATE×40 + 1.5×RATE×20 +
 2×(HOURS - 60)

begin

Input HOURS, RATE

HOURS ≤ 60
FalseTrue

HOURS ≤ 40

 Set PAY to
RATE×HOURS

 Set PAY to
 RATE×40 +
1.5×RATE×(HOURS - 40)

FalseTrue

Output PAY

end

The Pascal code corresponding to the Selection part of this extended pay
algorithm is

IF Hours <= 60 THEN BEGIN
IF Hours <= 40 THEN

Pay := Rate * Hours
ELSE

Pay := Rate * 40 + 1.5 * Rate * (Hours - 40);
END

ELSE
Pay := Rate*40 + 1.5*Rate*20 + 2*Rate*(Hours-60);

In this fragment of Pascal code the nested Selection is indented, and this careful
use of indentation helps make the structure of the algorithm easily visible, and
is of great help to readers. Since, at any point in a Pascal program where we
can have one blank, we can also have an arbitrary number of blanks or new
lines, such indentation does not change the program.

The way in which the Selections of this algorithm have been nested requires
the Pascal equivalent to have an extra BEGIN-END pair. This solution is not
extremely good, but can be improved as follows.

124 Chapter 5 The Four Fundamental Forms in Pascal

If the condition of the outermost Selection form is reversed, the nested Selection
is moved to the false branch. The pseudocode for this modified algorithm is
the following:

If Hours > 60
Set Pay to Rate 40 + 1.5 Rate 20 +

2 Rate (Hours - 60)
Else

If Hours ≤ 40
Set Pay to Rate Hours

Else
Set Pay to Rate 40 +

1.5 Rate (Hours - 40)

Here, the condition Hours ≤ 60 has been reversed to the complement condition
Hours > 60 and the actions on the two “legs” of the Selection have also been
changed. The smaller Selection is now nested in the Else leg. This structure
translates into Pascal as the following:

IF Hours > 60 THEN
Pay := Rate*40 + 1.5*Rate*20 + 2*Rate*(Hours-60)

ELSE
IF Hours <= 40 THEN

Pay := Rate * Hours
ELSE

Pay := Rate * 40 + 1.5 * Rate * (Hours - 40);

Notice that the omission of the BEGIN-END pair makes the logic easier to
understand. The major barrier to comprehension here is all the explicit
numbers, whose meaning needs to be kept in mind. This can be alleviated in a
complete program through the use of named constants, declared in a CONST
section at the beginning of the program. The ExtendedPay Pascal program,
given in Figure 5.19, shows how this might be done.

Figure 5.19 The Extended Pay program

PROGRAM ExtendedPay;
{ An Extended Payroll program
}
{ Selection nested in Else branch of outer
Selection }

CONST RegularRate = 10;
 ExtraRate = 15;
 DoubleRate = 20;
 BaseHours = 40;
 ExtraHours = 20;
 DoubleTimeStart = BaseHours + ExtraHours;
 BasePay = RegularRate * BaseHours;
 ExtraPay = ExtraRate * ExtraHours;

VAR Hours, Pay: INTEGER;

Section 5.7 More Selections: Combinations of Selection Forms 125

BEGIN
 Write('Enter hours');
 Read(Hours);
 WriteLn;

 IF Hours > DoubleTimeStart THEN
 Pay := BasePay + ExtraPay +
 DoubleRate * (Hours -
DoubleTimeStart)
 ELSE
 IF Hours <= BaseHours THEN
 Pay := RegularRate * Hours
 ELSE
 Pay := BasePay +
 ExtraRate * (Hours -
BaseHours);

 Write('The gross pay is ');
 Write(Pay: 5);
 WriteLn;

END. { ExtendedPay }

5.8 Select Form: Handling Many Branches

The real subject of the discussion in the last section was how to present many
different flow paths as clearly as possible. Although the ExtendedPay
algorithm had only three possible paths through it: over 60 hours, between 40
and 60 hours, and up to 40 hours, the solution was not obvious. This problem is
actually complicated by some restrictions on structure imposed by the syntax of
Pascal. The conclusion that we reached was that it was better to nest the inner
Selection in the Else branch of the outer Selection. To see that this applies
generally, we’ll expand the ExtendedPay algorithm by verifying that the
number of hours input is reasonable—not more than the number of hours in a
week! The pseudocode for this new version is:

If Hours > Hours in Week
Error

Else
If Hours > 60

Double pay
Else

If Hours > 40
Time and Half

Else
Regular

126 Chapter 5 The Four Fundamental Forms in Pascal

Notice that this structure has a uniform pattern that can easily be extended to
cover more branches. In this structure, the conditions are tested in the order
given and whenever one is true, the corresponding action is done and any
following conditions and actions are ignored; so the next action begins after the
very end of this form.

If we take the Selection structure of the pseudocode and translate it to Pascal,
we obtain the following:

IF Hours > HoursInWeek THEN
(* Error message *)

ELSE
IF Hours > DoubleTimeStart THEN

(* Compute pay including double time hours *)
ELSE

IF Hours > ExtraTimeStart THEN
(* Compute pay including extra time hours *)

ELSE
(* Compute pay for regular time hours only *)

One thing is clear, although this structure is consistent and can be readily be
extended, it has its limitations. Because of our indentation rules, the more
branches we have, the more we indent and the space for the statements gets
shorter and shorter. If we had 20 possible branches, we would be indenting 60
spaces and have almost no room left on a line. We therefore recognize the
regularity of the structure and modify the indentation rules to obtain the
following:

IF Hours > HoursInWeek THEN
(* Error message *)

ELSE IF Hours > DoubleTimeStart THEN
(* Compute pay including double time hours *)

ELSE IF Hours > ExtraTimeStart THEN
(* Compute pay including extra time hours *)

ELSE
(* Compute pay for regular time hours only *)

This structure can be extended to arbitrarily many branches. It is common to
refer to the conditions in the Selections as selectors, there is one selector for
each branch. When we use this select structure, it is crucial to remember that
the selectors are tested in the order shown and that the branch is selected by
the first selector to be true. The action that follows the last ELSE is the one
that is performed when none of the selectors is true. Figure 5.20 shows two
Pascal versions of the same algorithm. The purpose of that figure is to show
that there is more than one possible ordering for the branches, as long as the
selectors are specified properly.

Figure 5.20 Two versions of a Grade program

Write(‘Enter percentage’); Write(‘Enter percentage’);
Read(Percent); Read(Percent);
WriteLn; WriteLn;
Write(‘The grade is ‘); Write(‘The grade is ‘);

Section 5.8 Select Form: Handling Many Branches 127

IF Percent<DLimit THEN IF Percent >= ALimit THEN
 Write(‘F’); Write(‘A’);
ELSE IF Percent<CLimit THEN ELSE IF Percent>=BLimit THEN
 Write(‘D’); Write(‘B’);
ELSE IF Percent<BLimit THEN ELSE IF Percent>=CLimit THEN
 Write(‘C’); Write(‘C’);
ELSE IF Percent<ALimit THEN ELSE IF Percent>=DLimit THEN
 Write(‘B’); Write(‘D’);
ELSE ELSE
 Write(‘A’); Write(‘F’);

The values for the named constants, ALimit, BLimit, etc. would be defined
elsewhere in the CONST declarations.

Finally, yet another version of the ExtendedPay program shows a very
different structure and formulas compared with the previous examples. This
new version is shown in Figure 5.21.

Figure 5.21 A new version of Extended Pay

PROGRAM NewExtendedPay;
{ An Extended Payroll program }
{ Decision nested in Else branch of outer Decision }
{ Normal indentation }

CONST RegularRate = 10;
 ExtraIncrease = 5;
 DoubleIncrease = 5;
 BaseHours = 40;
 ExtraHours = 20;
 HoursInWeek = 7 * 24;
 DoubleTimeStart = BaseHours + ExtraHours;

VAR Hours, Pay: INTEGER;

BEGIN
 Write('Enter hours: ');
 Read(Hours);
 WriteLn;

 IF Hours >= 0 THEN { regular pay}
 Pay := RegularRate * Hours;

 IF Hours > BaseHours THEN { add extra pay }
 Pay := Pay + ExtraIncrease * (Hours - BaseHours);

 IF Hours > DoubleTimeStart THEN { add double pay }
 Pay := Pay + DoubleIncrease *
 (Hours - DoubleTimeStart);

128 Chapter 5 The Four Fundamental Forms in Pascal

 IF (Hours < 0) OR (Hours > HoursInWeek) THEN
 Pay := 0;

 WriteLn('The gross pay is ', Pay: 5);

END. { NewExtendedPay }

In this new version, the pay computation is done in an entirely different
manner. First the regular rate is applied, then the overtime rate is added if
necessary, then the double time rate is added if necessary, and finally the pay
is reset to zero if the number of hours is invalid. In this version the Selections
are not nested, which means that all the conditions are checked all the time,
which is not the case with nested selections.

5.9 Awkward Nests: General Nesting

Not all Selections nest as neatly as the examples we have shown in the
previous section. Sometimes it is very awkward to nest the Selections so that
the algorithm is easy to understand. As an example of this situation consider
the triangle classification algorithm that was discussed in Chapter 4 of the
Principles book, and shown in the last chapter. Figure 5.22 shows the original
algorithm and a new Pascal version.

Figure 5.22 The Triangle algorithm and program

Input Sides A, B, C IF (A+B)<=C THEN
Sort sides so A <= B <= C Write('Not a triangle')

ELSE
If A + B < C then IF ABS(A-C)<Err
 Output "Not a triangle " THEN
else
 if A = C then Write('Equilateral')
 Output "Equilateral" ELSE BEGIN
 else IF
 if (A=B) or (B=C) then (ABS(A-B)<Err) OR
 Output "Isosceles "
 if A A + B B = C C (ABS(A-C)<Err) THEN
then
 Output "Right triangle" Write('Isosceles');
 else IF
 Output "Triangle"

ABS(A*A+B*B-C*C)<Err
THEN
 Write('Right triangle')
 ELSE

Write('triangle')
 END

Section 5.9 Awkward Nests: General Nesting 129

The structure of the heart of this algorithm consists of a sequence of two
Selections nested within a Selection form, that is itself nested within yet
another Selection. The corresponding piece of Pascal program is given to the
right of the pseudocode in the figure. Notice especially the indentation: there
are three levels. Notice also that only one semicolon is needed, that is to
separate the two Selections in sequence. Two other semicolons could be added,
can you guess where?.

As we saw earlier, REAL numbers should never be compared for equality. This is
why in that version of the Triangle program, we test for approximate
equality by comparing the absolute value of the difference with an acceptable
error, Err. When the difference is less that Err, we say that the two values
are sufficiently close to be taken as equal. The admissible error must be
specified by the programmer as some small quantity such as:

CONSTANT Err = 0.0001;

Mixed Nests: Repetition and Selections

Programs that involve combinations of Repetitions and Selections nested in one
another are very common. The actual creation of algorithms that make use of
such nested combinations is considered in detail in Chapter 6 of the Principles
book, but the coding of such nests is straightforward, as is shown in the example
of Figure 5.23.

130 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.23 A Change Maker program
Input Cost
Input Tendered

Set Change to Tendered – Cost
Set Quarters to 0
Set Nickels to 0
Set Pennies to 0
While Change > 0
 {Loop invariant:
 Tendered = Pennies +
 5 x Nickels +
 25 x Quarters +
 Change}
 If Change ≥ 25 then
 Set Quarters to Quarters + 1
 Set Change to Change – 25
 Else
 If Change ≥ 5 then
 Set Nickels to Nickels + 1
 Set Change to Change – 5
 Else
 Set Pennies to Pennies + 1
 Set Change to Change – 1
Output Quarters
Output Nickels
Output Pennies

Write('Enter cost: ');
Read(Cost);
Write('Enter amount tendered: ');
Read(Tendered);
Change := Tendered - Cost;
Quarters := 0;
Nickels := 0;
Pennies := 0;

WHILE Change > 0 DO

(** Loop invariant: **)
(** Tendered = Pennies + **)
(** 5*Nickels + 25*Quarters + **)
(** Change **)

 IF Change >= 25 THEN BEGIN
 Quarters := Quarters + 1;
 Change := Change - 25;
 END
 ELSE
 IF Change >= 5 THEN BEGIN
 Nickels := Nickels + 1;
 Change := Change - 5;
 END
 ELSE BEGIN
 Pennies := Pennies + 1;
 Change := Change - 1;
 END; { nested IF and WHILE}

WriteLn('Quarters = ', Quarters);
WriteLn('Nickels = ', Nickels);
WriteLn('Pennies = ', Pennies);

The example of Figure 5.23 is a change making algorithm corresponding to the
fourth version of Change Maker developed in Chapter 5 of the Principles book.
On the left of the figure is the algorithm in pseudocode. This “Change by
Selections” consists of a Loop with double-nested Selections within it. Notice
that the loop invariant is shown in the pseudocode. The body of the
equivalent Pascal program is shown at the right of the pseudocode. Notice the
indentation of the IF statements within the WHILE statement.

In such mixed, nested program constructs, it is often convenient and helpful to
comment the ENDs of each of the compound statements as, for example

END (* of IF *)

or

END (* of WHILE *).

Section 5.9 Awkward Nests: General Nesting 131

Notice also the spacing of the statements: we’ve left a gap around the entire IF
form.

Assertions, such as the loop invariant, are shown as comments with two
asterisks beginning with (** and ending with **) to mark a difference from
other comments.

Style matters, such as the above comments, space gaps, and indentation are not
required in Pascal, but are most useful to readers of the program. Remember,
programs are read more often than they are written!

5.10 Subprograms: Using Subprograms as Black Boxes

Up to now we have considered subprograms to be black boxes, that is, single
actions, that transform inputs into outputs. This view has allowed us to use
such large actions very early in learning the practice of programming. In
particular the input/output actions of Pascal are enclosed in subprograms Read,
ReadLn, Write, and WriteLn. In Chapter 4, we’ve also used a subprogram
from a Library (Order3), and we also have had a peek at what a Pascal
subprogram looked like (TurnOfPlayer). Later, we will look inside the boxes
in detail to “see how they work”, and, eventually, we will create our own.
Until then, we will mainly use subprograms that are available from Libraries.
The black boxes or subprograms were constructed as procedures and functions in
Pascal that were grouped to form libraries. A library in Pascal is called a unit .
Here, we will use the unit IntLib that comprises operations on Integers.

To make use of black boxes requires knowledge of only a few rules. The main
concept is the distinction between inputs and outputs, which is obvious once a
dataflow diagram has been drawn. Inputs have arrows going into a dataflow
box, and outputs have arrows coming out of the box. For example, in the Divide
box of Figure 5.24, there are two inputs labeled Num and Den (short for
Numerator and Denominator) and two outputs labeled Quot and Rem (for
Quotient and Remainder). A subprogram can have any number, including none,
of inputs and outputs or parameters , depending upon what it needs to perform its
function. In addition to Divide, which has two inputs and two outputs, we
shall see subprograms with inputs but not outputs, others with outputs but no
inputs and even some with neither inputs nor outputs. Usually, to avoid
complexity, the numbers of inputs and outputs is kept small.

132 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.24 Dataflow diagram for the Divide subprogram

Divide
Num Den

Quot Rem

1 2

3 4

Cents 25

Quarters Remainder

When we use a subprogram as an action, we say that we are “invoking” or
“calling” the subprogram. When this happens, certain data in the program
that is using the subprogram, usually referred to as the “caller” are connected
with the inputs and outputs of the subprogram. Inputs may be connected to a
variable or a constant, but outputs cannot be connected to a constant (because the
output value needs to be put somewhere and the value of a constant can’t be
changed). Inputs of various boxes may be connected together; the same variable
may connect to different inputs. Outputs may not be connected together because
one output may have a different value than another, but no variable can have
two different values at the same time.

Figure 5.25 Definition of Divide subprogram

Divide (integer divide)

imported from IntLib Library has 4 parameters all of type
INTEGER. Called by:
Divide(Num, Den, Quot, Rem);
where the Input parameters are:
 1. Num, for Numerator
 2. Den, for Denominator
 and the Output parameters are:
 3. Quot, for Quotient
 4. Rem, for Remainder.

Figure 5.25 defines the Divide subprogram, a very commonly used operation. It
is defined by the way in which it is invoked:

Divide(Num, Den, Quot, Rem);

The four parameters which define such an action are called formal parameters.
They could have been defined in some other order but, once defined, the order of
definition is important. We’ve also shown this parameter numbering on each of
the arrows on the dataflow diagram of Figure 5.24 to avoid confusion. In the
case of Divide the first two parameters are inputs and the last two are outputs.

Section 5.10 Subprograms: Using Subprograms as Black Boxes 133

Calling or invoking such an action simply involves replacing the formal
parameters by some actual parameters. For example, to convert a given number
of cents into the equivalent number of quarters and pennies we need simply
write:

Divide(Cents, 25, Quarters, Pennies);

Similarly, a given number of ounces can be converted into the equivalent number
of pounds and ounces (remember: 16 ounces equal one pound) by:

Divide(Ounces, 16, Pounds, Ounces);

Notice especially that Ounces here is both an input and an output. This is
natural in Pascal, but may be a problem in other programming languages.

Figure 5.26 Dataflow diagram for Subtract subprogram

Subtract
First Second

Result

1 2

3

-4

7 11

Figure 5.26 shows the dataflow diagram for subprogram Subtract. It is defined
with the following form:

Subtract(First, Second, Result);

and subtracts the value of the Second parameter—the subtrahend—from the
First parameter—the minuend—to yield the difference as the Result.

Subprograms Add and Multiply have the same form as Subtract, that is,
they have two inputs and one output. They are all available from Library
IntLib.

The square of any integer value Val can be created by connecting the two inputs
to Multiply together as:

Multiply(Val, Val, Square);

Figure 5.27 shows a complete program in Pascal demonstrating the use of the
subprograms Divide and Subtract, which are imported from the Library
called IntLib. We will actually create this Library, and its contents later, but
now we’ll merely use it. The dataflow diagram on the left of the figure shows
the dataflow through the computation part of the program, which corresponds
to the boxed part of the Pascal program on the right. The dataflow diagram

134 Chapter 5 The Four Fundamental Forms in Pascal

corresponds to the diagram that was presented in Figure 3.32 of Chapter 3 of
the Principles book.

Figure 5.27 Dataflow diagram and Pascal program for the
SubChange algorithm

Subtract

Divide

Num Den

Quot Rem

Divide

Num Den

Quot Rem

Divide

Num Den

Quot Rem

T C

Tendered Cost

Rem
25

Q

Quarters

10Rem

D

Dimes

5Rem

N

Nickels

Rem
P

Pennies

PROGRAM SubChange;
{ ChangeMaker using procedures }
{ imported from the library IntLib }

USES
IntLib; { For Divide and Subtract }

VAR
Cost, Tendered, Remainder,
Pennies, Nickels, Dimes,
Quarters: INTEGER;

BEGIN
{ Input Cost and Tendered amounts }
WriteLn('Enter both the cost ');
WriteLn('and the amount tendered ');
WriteLn('as cents: ');

Section 5.10 Subprograms: Using Subprograms as Black Boxes 135

Read(Cost, Tendered);

{ Make the change using subprograms }
Subtract(Tendered, Cost, Remainder);
Divide(Remainder, 25, Quarters, Remainder);
Divide(Remainder, 10, Dimes, Remainder);
Divide(Remainder, 5, Nickels, Pennies);

{ Output the resulting coin counts }
WriteLn('The change is ');
WriteLn(Quarters: 2, ' quarters');
WriteLn(Dimes: 2, ' dimes');
WriteLn(Nickels: 2, ' nickels');
WriteLn(Pennies: 2, ' pennies');

END.

The program SubChange finds the change from a given amount for an item of a
certain cost. Notice that the main part of the program consists of the four calls
to the imported actions Subtract and Divide. This program can be written in
other ways using Repetitions, etc. If you recall we already defined a Change
Maker program in Chapter 4 (Figure 4.9), and also in this chapter (Figure 5,24).
If you compare SubChange to these, you’ll note that it is shorter and simpler.

The ShortSort Library

It would be useful to have subprograms in a Library that sorted two and three
variables. For example, the procedure Sort2(P, Q, L, S) could act on any
two integers P, Q and produce outputs that are ordered: L the larger and S the
smaller. Similarly procedure Sort3(A, B, C, L, M, S) would output the
three integer values of A, B, and C ordered in L (large), M (middle) and S
(small). Subprograms that sorted four or five variables could be created using
these smaller sort subprograms as building blocks. These sort subprograms are
known as "short sorts” for they involve only a few variables. Later,
subprograms that can sort any number of values will be done using arrays.

In Pascal, libraries are built as units. A Pascal unit is made of two parts: the
Interface and the Implementation. Interfaces are specifications of groups of
data items and actions that are available from units. These interface
specifications describe w h a t is available, not how it is constructed. They show
the names of subprograms, the parameters that are passed in and passed out,
and a brief statement of the behavior of the subprograms. Along with each
Interface part there is an Implementation part that actually defines in detail
what the interface part describes generally, i.e. how the data structures and
the operations are implemented.

Definition of ShortSortLib (informal)

Defines sort subprograms of 2 and 3 variables and a subprogram for generating
test data for these subprograms.

136 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.28 Informal interface specifications for Sort2, Sort3 and
Create3 subprograms

Sort2
first second

large small

Sort3
first third

maxi mini

Create3

second

midi

first thirdsecond

Sort2(First, Second, Large, Small)
Sorts two integer values.
Input: First, Second
Output: Large, Small

Sort3(First, Second, Third,
 Maxi, Midi, Mini)
Sorts three integer values
Input: First, Second, Third
Output: Maxi, Midi, Mini

Create3(First, Second, Third)

Generates three values (from 0, 1, 2) each time it is called. It repeats after 27
calls.

Input: none
Output: First, Second, Third

Figure 5.28 shows an informal interface for ShortSortLib in the form of text
and diagrams. In the corresponding Pascal code, the first procedure, Sort2
would be described in the interface by:

PROCEDURE Sort2(P, Q: INTEGER; { pass-in }
VAR L, S: INTEGER); { pass-out }

In the procedure heading, the word VAR precedes the parameters that are
passed out. In the data flow diagrams this means that whenever the diagrams

Section 5.10 Subprograms: Using Subprograms as Black Boxes 137

have arrows leaving them, a corresponding VAR appears in the procedure
heading of the interface definition. This graphic view makes it clearer;
parameters that are passed in have no VAR preceding them, parameters that
are passed out are preceded by VAR. We need not be further concerned about
these VARs now, for we are not creating units, we are using already created ones.
Later we will create our own.

Figure 5.29 Program to test ShortSortLib and its output

PROGRAM ShortSortTest;
{ Test ShortSortLib }

USES ShortSortLib;

VAR A, B, C, D, E, F,
I, J, K, L, M, S: INTEGER;

BEGIN
WriteLn(' Data Sort3 Check');
WriteLn(' A B C L M S L M S');
I := 27;

WHILE I <> 0 DO BEGIN
Create3(A, B, C);
Write(A: 2, B: 2, C: 2);
Sort3(A, B, C, L, M, S);
Write(' ');
Write(L: 2, M: 2, S: 2);

Sort2(A, B, D, E);
Sort2(E, C, F, S);
Sort2(D, F, L, M);
Write(' ');
Write(L: 2, M: 2, S: 2);

WriteLn;
I := I - 1;

END;
END.

 Data Sort3 Check
 A B C L M S L M S
 0 0 0 0 0 0 0 0 0
 0 0 1 1 0 0 1 0 0
 0 0 2 2 0 0 2 0 0
 0 1 0 1 0 0 1 0 0
 0 1 1 1 1 0 1 1 0
 0 1 2 2 1 0 2 1 0
 0 2 0 2 0 0 2 0 0
 0 2 1 2 1 0 2 1 0
 0 2 2 2 2 0 2 2 0
 1 0 0 1 0 0 1 0 0
 1 0 1 1 1 0 1 1 0
 1 0 2 2 1 0 2 1 0
 1 1 0 1 1 0 1 1 0
 1 1 1 1 1 1 1 1 1
 1 1 2 2 1 1 2 1 1
 1 2 0 2 1 0 2 1 0
 1 2 1 2 1 1 2 1 1
 1 2 2 2 2 1 2 2 1
 2 0 0 2 0 0 2 0 0
 2 0 1 2 1 0 2 1 0
 2 0 2 2 2 0 2 2 0
 2 1 0 2 1 0 2 1 0
 2 1 1 2 1 1 2 1 1
 2 1 2 2 2 1 2 2 1
 2 2 0 2 2 0 2 2 0
 2 2 1 2 2 1 2 2 1
 2 2 2 2 2 2 2 2 2

Figure 5.29 shows a Pascal program to test our ShortSortLib library, and the
results obtained by executing it. Note the USES ShortSortLib; at the
beginning of the program, that makes it possible for it to use procedures from
ShortSortLib. This program performs the test by using Create3 to
generate all possible combinations of the data values 0, 1 and 2. Each time, the
program prints the combination of values. For each of these combinations it
calls Sort3 to put the values into order into three variables L, M and S, whose
values are then printed under the column labeled Sort3. As a comparison, the
test program then uses Sort2 and the original values to simulate the action of
Sort3, again putting the results into L, M and S, and printing their values under

138 Chapter 5 The Four Fundamental Forms in Pascal

the column labeled Check. The correctness of Sort2 and Sort3 are then
verified by comparing the values of L, M and S in the Sort3 and Check columns.

Another Pascal program, Grader, shown in Figure 5.30, is a “friendly”
forgiving average program. It simply uses the ShortSortLib subprograms to
average the best and mid grades and forget the worst.

Figure 5.30 Program Grader

PROGRAM Grader;
(* Forgiving Grading program *)
USES
 ShortSortLib; { for Sort3 }
VAR
 Midterm, Final, Projects,
 Best, Mid, Worst, Grade: INTEGER;
BEGIN
 WriteLn('Enter three percentages: ');
 Read(Midterm, Projects, Final); WriteLn;
 Sort3(Midterm, Projects, Final, Best, Mid,
Worst);
 Grade := (Best + Mid) DIV 2;
 Write('The "forgiven" mean is ', Grade:3);
END. { Grader }

Notice particularly that we were able to create a program, such as Grader,
that uses these subprograms, even though we only knew the Interface part,
and had no knowledge of the inner details from the Implementation part. Of
course we must first specify in a USES clause that we wish to use the
operations from this Library before we can use them. Using these short sorts,
we could similarly create program segments to sort 4 variables (in two different
ways) and 5 variables (more than 4 ways). Try it.

Notation for Defined Procedures

Procedures may be defined very conveniently by using dataflow diagrams.
Arrows into the diagrams show input parameters, and arrows coming out of the
diagram show output parameters. The names of the procedures and their
parameters are given next to the arrows as shown at the left of Figure 5.31.
Such diagrams however cannot yet be understood by computers, so they must be
transformed into a “linear” notation that defines procedures in terms of text,
shown at the right of the figure.

Section 5.10 Subprograms: Using Subprograms as Black Boxes 139

Figure 5.31 General form of Pascal procedure definition

Name
A C

Y Z

B

P Q R

S T

Informal Definition
(as a diagram)

Formal (Pascal) Definition
(as program text)

PROCEDURE Name
 (A: Atype;
 B: Btype;
 C: Ctype;
VAR Y: Ytype;
VAR Z: Ztype);

(* input *)
(* input *)
(* input *)
(* input *)
(* input *)

Procedure invoked with statement:

Name(P, Q, R, S, T);

In Pascal, procedures are defined strictly as a sequence of symbols with
considerable structure. Before we show how a procedure such as Divide is
completely defined in a programming language, it is useful to list what must be
communicated. The simple invocation of the procedure in a program statement
such as :

Divide(A + B + C, 3, Mean3, Rem);

assumes many things that must be specified in the procedure definition

Divide(Num, Den, Quot, Rem).

Parts of this definition are as follows:

1. The name of the procedure is descriptive.

Divide is an obvious name; it is not DIVIDE nor divide.

2. The number of parameters is fixed.

Divide has exactly 4 parameters, no more no less.

3. Order of the parameters is important, once it is established it is fixed.

The Numerator is first followed by Denominator, then the Quotient and
Remainder.

4. The names of the parameters should be meaningful.

The formal names in the definition need not be the same as the actual
names in the program given in the IMPLEMENTATION part.

5. The types of the parameters (INTEGER, REAL, etc.) must be respected.

Divide has all parameters of the same type, INTEGER.

6. The direction of passage of the parameters, input or output, must be
indicated.

Here the first two parameters are input and the last two are output.

7. Assertions may be indicated; when they are, must be respected.

For example, the denominator should never be zero.

8. The parameters in a procedure call are separated by commas, not spaces
or colons.

140 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.32 Specification of Divide subprogram

Divide
Num Den

Quot

Sum Num

Rem

Mean Rem

 PROCEDURE Divide
 (Numerator : INTEGER; { input }
 Denominator: INTEGER; { input }
 VAR Quotient : INTEGER; { output
}
 VAR Remainder : INTEGER); { output
}

(** The Denominator must not be zero **)

Examples of the use of the Divide subprogram:

Divide(A, B, C, D);

Divide(A + B, C * D, E, F);

Divide(Sum, Num, Mean, Rem);

Divide procedure defined as:

Figure 5.32 specifies Divide both as a dataflow diagram and as a linear form
in Pascal. The linear form begins with the keyword PROCEDURE, followed by
the name Divide. This is followed by parentheses that enclose all the
parameter specifications. The parameters are given in a fixed order. Each
parameter has three parts:

1. passage is indicated by preceding the name by VAR in the case of output
parameters; there is no VAR preceding the input parameters.

2. the name of the parameter is given, followed by a colon.

3. the type of the parameter is given after the colon.

Following the parameter list some explanations, conditions, limitations, or
other comments may appear.

It is also possible to describe Divide in a slightly different way by grouping
some of the similar parameters. For example, the first two parameters are
input parameters and so could be grouped together. Similarly the last two
parameters are output parameters and can be combined following a VAR. We
can also shorten the parameter names, just to illustrate an alternative
definition that fits on a couple of lines.

PROCEDURE Divide(Num, Den: INTEGER; VAR Quot, Rem:
INTEGER)
(** Divides Num by Den to yield Quot and Rem; Den
cannot be 0 **)

Libraries, or units in Pascal, are collections of procedures. The Interface part
consists of definitions as shown above, which are sufficient for using the
procedures. The Implementation part of a unit will provide the details, but
these can be hidden from the users of Libraries.

The Power procedure, defined in Figure 5.33, shows parameters of different
types.

Section 5.10 Subprograms: Using Subprograms as Black Boxes 141

Figure 5.33 Specification of the Power subprogram

Power
X N

P

2.0 10

1024.0

PROCEDURE Power
 (X: REAL; { input }
 N: INTEGER; { input }
VAR P: REAL); { output }

(* Raises X to an integer Power N *)

Examples of the use of the Power subprogram:

Power(2.0, 10, P);

Power(A + B, C, D);

Power(A + B, I * J, R);

Power procedure defined as:

Procedures vs. Functions

We have already seen the use of dataflow diagrams to describe subprograms as
black boxes. Subprograms defined in this way can always be implemented as
procedures. Sometimes they can also be implemented as functions.

Functions can be thought of as subprograms that return a value, and this value is
associated with the name of the subprogram. This name can thus represent a
value, and therefore must have a type associated with it. In mathematics,
particularly in trigonometry, we are familiar with the idea of a function. The
function sin(x) has a single value, the trigonometric sine of the angle x.

Figure 5.34 Dataflow diagram for Max4

Max2

A B

Max2

C D

Max2

E F

G

Procedure Max4, illustrated in Figure 5.34, is created out of three applications
of Max2. Max2 may be implemented as either a function or a procedure. If we
implement it as a procedure, we think of it as an action and therefore label it
with a verb, e.g., Maximize. If we implement it as a function, we think of it as
a value and therefore label it with a noun, e.g. Maximum.

142 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.35 Two forms for the subprogram Max2

Maximize
X Y

M

P Q

R

Max2 as a
 True Procedure

 (Action or Verb)

Maximize (P, Q, R);

Maximize

X Y

P Q

R

Max2 as a
 Function Procedure

 (Object or Noun)

R := Maximum (P, Q);

As another example, Figure 5.35 shows the subprogram Max2 represented in two
ways. On the left side of the figure, it is represented as a procedure
Maximize(A, B, C), whose action is to put the maximum value of A and B
into C. On the right side of the figure, it is represented as a function
Maximum(A, B), whose value is the maximum of the two values A and B. The
procedure call is a statement, whereas the function call is an expression that
could be part of a statement. These two must obviously be used in two different
manners. Let’s compare the Pascal statements needed to compute the maximum
of four variables A, B, C and D. If we are using procedure Maximize, we would
write:

Maximize(A, B, E);
Maximize(C, D, F);
Maximize(E, F, G);

With function Maximum, we would write:

E := Maximum(A, B);
F := Maximum(C, D);
G := Maximum(F, G);

In fact, with function Maximum, we could rewrite the last three statements as
only one statement:

G := Maximum(Maximum(A, B), Maximum(C, D));

This one line of nested function calls is equivalent to the sequence of three
invocations of Maximize. The nested function calls also avoid the use of
temporary objects E and F, which are necessary for the procedure version.

In this particular case, either procedure or function forms can be used. In
general, however, the procedure form is more powerful because it allows for the
possibility of more than one output. Thus, although the function forms may be
shorter and more convenient, they are not as general as procedures. For
example, our previous Sort2 procedure cannot be implemented as a function
since it produces two results.

Section 5.10 Subprograms: Using Subprograms as Black Boxes 143

In the interface section of a unit, the two forms Maximize and Maximum would
be defined differently as:

Definition of a procedure:

PROCEDURE Maximize(X, Y: INTEGER;

 VAR M: INTEGER);

Definition of a function:

FUNCTION Maximum(X, Y: INTEGER)

 : INTEGER;

Earlier in this chapter and also in Chapter 4, we referred to IntLib, a library
of useful operations that can be applied to INTEGERs. Figure 5.36 shows the
Interface part of the IntLib unit.

144 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.36 IntLib interface part

UNIT IntLib;

INTERFACE

 PROCEDURE Add(First, Second: INTEGER; VAR Result:
 INTEGER);
 { Result := First + Second }

 PROCEDURE Subtract(First, Second: INTEGER; VAR Result:
 INTEGER);
 { Result := First - Second }

 PROCEDURE Multiply(First, Second: INTEGER; VAR Result:
 INTEGER);
 { Result := First * Second }

 PROCEDURE Divide(Num, Den: INTEGER; VAR Quot, Rem:
 INTEGER);
 { Quot := First DIV Second
 Rem := First MOD Second }

 PROCEDURE Incr(VAR I: INTEGER; J: INTEGER);
 { I := I + J }

 PROCEDURE Decr(VAR I: INTEGER; J: INTEGER);
 { I := I - J }

 PROCEDURE Order2(VAR X, Y: INTEGER);
 { Sorts A and B in increasing order }

 PROCEDURE Order3(VAR A, B, C: INTEGER);
 { Sorts A, B and C in increasing order }

 PROCEDURE Maximize2(A, B: INTEGER; VAR C: INTEGER);
 { Returns the maximum of A and B in C }

 PROCEDURE Minimize2(A, B: INTEGER; VAR C: INTEGER);
 { Return the minimum of A and B in C }

 PROCEDURE IntToReal(I: INTEGER; VAR R: REAL);
 { Convert integer value of I into real R }

The action of the first four procedures specified in this figure is obvious from
their names, and the associated comment. Also included are other useful
actions already introduced in Chapter 4.

The arithmetic actions just defined as procedures have, as might be expected,
verbs as names: Add, Subtract and Multiply. These operations could have

Section 5.10 Subprograms: Using Subprograms as Black Boxes 145

been written as functions, and in that case the names should have been Sum,
Difference and Product. These names are nouns representing the values of
the functions. Sum represents the value of the sum of its two arguments. This
duality of values and actions, nouns and verbs, procedures and functions,
provides a beautiful complementarity of views.

Procedure Divide cannot be represented as a function because it has two
results—Quotient and Remainder. On the other hand, since the division of
REAL values returns only one value, it can be represented as a function, say
RealQuotient. This enables us to express our previous temperature conversion
formula as the following nest of REAL functions (Product and Difference
have been redefined to work on REAL values):

C := Product(RealQuotient(5, 9), Difference(F, 32));

In the Pascal definition of a function, the type of value returned is given at the
end of the header following a colon, for example, function Sum we just mentioned
would have the following definition:

FUNCTION Sum(First, Second: INTEGER): INTEGER;

You can compare this with the equivalent procedure definition where output
parameters are specified in the parameter list with a preceding VAR, as we
have seen above in the following definition:

PROCEDURE Add(First, Second: INTEGER; VAR Result:
INTEGER);

The complete definition of such library procedures and functions is done in the
implementation part of the library, and will be considered in detail in a later
chapter.

To emphasize the difference between procedures and functions, Figure 5.37
shows the interface specification for a collection of procedures that make up
the MaxMinLib library. This unit gives an example of both functions and
procedures that act on INTEGER values.

Figure 5.37 MaxMinLib unit

UNIT MaxMinLib;

INTERFACE

PROCEDURE Maximize2(A, B: INTEGER; VAR C: INTEGER);
{ Sets C to be the maximum value of A and B }

PROCEDURE Minimize2(A, B: INTEGER; VAR C: INTEGER);
{ Sets C to be the minimum value of A and B }

FUNCTION Maximum2(A, B: INTEGER): INTEGER;
{ Returns the maximum value of A and B }

FUNCTION Minimum2(A, B: INTEGER): INTEGER;
{ Returns the minimum value of A and B }

146 Chapter 5 The Four Fundamental Forms in Pascal

Notice that Maximize is a verb and is implemented as a procedure, while
Maximum is a noun and is implemented as a function.

5.11 Binary Logic Library: BitLib

BitLib is a Pascal unit that deal with binary digits, or bits. In fact, BitLib
implements the abstract data type BIT (see Chapter 8 of the Principles book).
This means that the unit defines the type BIT as well as a number of operations
for values of this type. These operations are similar to the logical operations
that were discussed in Chapter 5 of the Principles book. They bring us to the
very low logic level of digital computer components. The actions will be
denoted as And2, Or2, Not1, And3, etc. with the integer indicating the number
of inputs to the data flow diagram.

The type BIT defined by the unit is a type having only two values: 0 and 1.
Input and output of a single bit value is done using procedures ReadBit(X) and
WriteBit(Y).

Type BIT has values 0 and 1 only.

Input and Output:

ReadBit(X): reads in a value of type BIT into X. Only the
values 0 and 1 are accepted.

WriteBit(X): writes out the value of Y

In addition the BitLib unit comprises eight actions illustrated in Figure 5.38.
The following three actions correspond to the diagrams of that figure.

And2(X, Y, Z): is a binary action having two inputs and one output
as shown at the left of Figure 5.38. The output Z has a value of 1 only
when both inputs have value 1; otherwise the output value is 0.

Or2(X, Y, Z), shown in the middle of Figure 5.38, has an output
value Z of 1 when either one or the other (or both) of the inputs X and Y
have the value 1; otherwise the value is 0.

Not1(X, Y), shown at the right of Figure 5.38, is a unary action with
one input X and one output Y; the output is the opposite value (or
complement) of the input value. When X is 1 then Y is 0 and vice versa.

Section 5.11 Binary Logic Library: BitLib 147

Figure 5.38 The actions of BitLib

And2 (X, Y, Z)

Input Output

0
0
1
1

0
1
0
1

X Y Z
0
0
0
1

Or2 (X, Y, Z)

Input Output

0
0
1
1

0
1
0
1

X Y Z
0
1
1
1

Not1 (X, Y)

In Out

0
1

1
0

X Y

0
0
1
1

0
1
0
1

X Y Xor2 Nor2 Nand2 Imp2 Eq2

0
1
1
0

1
0
0
0

1
1
1
0

1
1
0
1

1
0
0
1

Not1
X

Y
Or2

X Y

Z
And2

X Y

Z

The five other binary actions (with two inputs and one output) are also shown
at the bottom of Figure 5.38. Notice that the exclusive-or, denoted Xor2, has
an output of 1 only when exactly one of the inputs has value 1. This differs
from the basic Or2 action (that is also called the inclusive-or), which has an
output of 1 when both inputs have value 1.

Nor2 and Nand2 are two other binary actions that are often used as components
in electronic logic circuits such as are used in computers. The action Eq2
indicates when its input values are equal. The implication Imp2 is not used
much in computing, but is more important in the logic of Philosophy.

Finally, Create2(P, Q) is an action (not shown) that produces a different
combination of the two parameters each time it is called; it repeats
combinations after 4 calls. Create2 is very similar to procedure Create3 of
ShortSortLib, but has two parameters instead of three.

We’ll build a binary “half-adder” from the bit actions of BitLib that has two
inputs X and Y and two outputs, Sum and Carry. The relations between its input
and outputs is shown in Figure 5.39.

Figure 5.39 Definition of Half-adder

X Y Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The figure describes binary addition in the four cases: 0 + 0 = 0, 0 + 1 = 1,
1 + 0 = 1, and 1 + 1 = 2 (i.e. 10 in binary, which is 0 with a carry of 1). The
carry in the first three cases is 0. It is called a half-adder because it performs

148 Chapter 5 The Four Fundamental Forms in Pascal

half the operation required to perform binary addition; the other half is to add
in the carry from the previous stage.

We’ll use the operations of BitLib to build a half adder whose dataflow
diagram is shown on Figure 5.40. This dataflow diagram shows the actual
interconnection of the digital logic components. The method of creating and
optimizing such systems is the topic of other courses. Here we simply use this
diagram to trace through it.

Figure 5.40 Dataflow diagram for binary half adder

A B

Or2 And2

S C

Not1

And2

Carry

D E

Sum

The Pascal program corresponding to this dataflow diagram is fairly easy to
construct, using the actions of BitLib. The TestHalfAdder Pascal program
of Figure 5.41 tests the actions of BitLib, using Create2 to produce all four
possible inputs to the half adder.

Section 5.11 Binary Logic Library: BitLib 149

Figure 5.41 The TestHalfAdder program

PROGRAM TestHalfAdder;

USES BitLib;

VAR A, B, Carry, D, E, Sum: BIT;
 Count: INTEGER;

BEGIN
 Count := 4;
 WriteLn('A B Sum Carry');
 WHILE Count > 0 DO BEGIN
 Create2(A, B);

 (* Binary half-adder *)
 And2(A, B, Carry);
 Or2(A, B, D);
 Not1(Carry, E);
 And2(D, E, Sum);

 WriteBit(A);
 Write(' ');
 WriteBit(B);
 Write(' ');
 WriteBit(Sum);
 Write(' ');
 WriteBit(Carry);
 WriteLn;
 Count := Count - 1;
 END;
END.

Output from execution
TestHalfAdder:

A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Notice that the three actions And2, Or2 and Not1 of BitLib are not
independent. For example, Or2(P, Q, R) can be created from the other two,
using DeMorgan’s first law, as:

Not1(P, S);
Not1(Q, T);
And2(S, T, U);
Not1(U, R);

We can also write a short Pascal program, TestOr2 of Figure 5.42, to test this,
using Create2 again to create all possible inputs.

150 Chapter 5 The Four Fundamental Forms in Pascal

Figure 5.42 The TestOr2 program

PROGRAM TestOr2;

USES BitLib;

VAR P, Q, R, S, T, U: BIT;
 Count: INTEGER;

BEGIN
 Count := 4;
 WriteLn('P Q R Or2');
 WHILE Count > 0 DO BEGIN
 Create2(P, Q);

 (* Or2 from And2 and Not1 *)
 Not1(P, S);
 Not1(Q, T);
 And2(S, T, U);
 Not1(U, R);

 WriteBit(P);
 Write(' ');
 WriteBit(Q);
 Write(' ');
 WriteBit(R);
 Write(' ');
 (* Create comparison result *)
 Or2(P, Q, R);
 WriteBit(R);
 WriteLn;
 Count := Count - 1;
 END;
END.

Output from
TestOr2

P Q R Or2
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

The equivalence of operation Or2 and the sequence of four actions above, is
shown by comparing the two columns R and Or2 in the output at the right of
Figure 5.42.

5.12 Chapter 5 Review

This chapter introduced more formally the four fundamental forms in Pascal:
Sequence, Selection, Repetition and Invocation.

The simplest form is the Sequence form which consists of a series of statements.
The statements are separated by semicolons. The only unusual problem is
whether to put a semicolon following the last statement of the series. Strictly
speaking, it is not necessary, but for consistency, we will often put one there.

Section 5.12 Chapter 5 Review 151

The Repetition form was covered before the Selection form, because the Pascal
syntax for the Repetition is simpler. However we did not consider the nesting
of repetitions here; that will be considered later.

The Selection form was covered in detail, along with arbitrary nests of
Selections, and the many ways to do things. Some simpler nests coded with the
IF-THEN forms and the IF-THEN-ELSE-IF form were also considered in this
chapter.

The Invocation form was described and used, but the creation of subprograms
was not discussed at this time. Libraries of subprograms were considered,
mainly from the view of data-flow diagrams. Procedures and functions were
compared and contrasted.

This chapter did not cover the creation of very complex programs consisting of
these four fundamental forms. It emphasized the creation of rather small
programs. In the next chapters, we can begin to consider creating more complex
programs.

5.13 Chapter 5 Problems

1. Is It Possible
a. Can there be a semicolon before an ELSE?

b. Can there be an END before and ELSE?

c. Can there be a semicolon before the END that terminates WHILE?

d. Can there be a DO immediately before an END?

e. Can there be a semicolon just after a DO?

f. Can there be an ELSE just before an END?

g. Can there be two ENDs in sequence separated by a semicolon?

2. Check Syntax
The following statements contain errors of syntax; you are to find them.
The ability to find such errors is not important because compilers detect
them easily. These problems are given here to help you learn the
proper syntax. Do not be concerned with the meaning of the program
fragments.

a. IF X < Y OR Z THEN X := MIN;

b. WHILE I < 5 DO

WriteLn(I);

Inc(I);

END;

c. IF First < Second THEN

152 Chapter 5 The Four Fundamental Forms in Pascal

Write(First);

ELSE

Write(Second);

d. WHILE A <= B DO

BEGAN

 Inc(A);

 Dec(B);

END;

e. IF this = that THEN

that = this;

f. WHILE 5 = 5 D0

Write(‘help’);

3. Coding Problems
Translate the following fragments of pseudocode involving conditions
Ci and statements Sj into pieces of programs in Pascal.

1. While C1
S1
While C2

S2
S3

S4

2. If C1
If C2

S1
Else

S2
S3

Else
S4
If C3

S5

3. While C1
S1
If C2

S2
While C3

S3

Section 5.13 Chapter 5 Problems 153

4. If C1
While C2

While C3
S4
S5
S6

Else
If C4

S7
Else

S8
While C5

S9

5. While C1
While C2

While C3
If C4

S1
Else

If C5
S2

Else
If C6

S3
Else

If C7
S4

Else
While C8

S5
S6

5.14 Chapter 5 Programming Problems

Write Pascal programs for some of the following algorithms which are given in
the Principles book. After a few examples, this coding process may seem very
trivial, but concentrate on choosing proper types, reasonable identifier names
(for constants as well as variables), “friendly” prompts, meaningful output, and
good indentation, layout and comments. You need not run these programs yet;
later they may be used as parts of larger programs. The last 2 or 3 problems in
each group are more challenging.

154 Chapter 5 The Four Fundamental Forms in Pascal

Sequence Problems
1. CHARGE algorithm of Figure 3.1.

2. IDEAL algorithm of Figure 3.4.

3. ISBN Remainder of Figure 3.5

4. TIME algorithm of Figure 3.7.

5. TEMPERATURE algorithms of Figure 3.8

6. MEAN and VARIANCE algorithms of Figure 3.10 for the number of
hours worked on five days.

7. SINE algorithm (for first 3 terms) of Figure 3.12.

8. BASE algorithm of Figure 3.13.

Selection Problems
1. PAY algorithms of Figures 2.15 and 2.16.

2. MORE-CHARGE algorithm of Figure 3.39

3. DAYS and LEAP algorithm of Figure 3.40

4. COMPARE algorithm of Figure 4.5.

5. PEOPLE CLASSIFICATION algorithms of Figure 5.17.

6. MAJORITY algorithm of Figure 3.16

7. GRADES algorithms of Chapter 5 Section Nested Selections, Methods 3
and 4.

8. MAJORITY algorithms of Chapter 5 Section Larger Selection Forms,
Methods 1, 2, 3, 4 and 5.

Loop Problems
1. DIVIDE algorithm of Figure 5.34.

2. FACTORIAL algorithms of Figures 5.14 and 5.15.

3. BETTER PRODUCT algorithm of Figure 5.35.

4. DICE GAME of Figure 3.3.

Subprogram Problems
(assume that the given sub-programs are available)

1. SECONDS algorithms of Figure 5.42.

2. MINIMUM TIME DIFFERENCE algorithm Figure 5.45

3. TIME-DIFFERENCE algorithms of Figure 5.43.

Section 5.14 Chapter 5 Programming Problems 155

Debugging Problems

1.

PROGRAM BadSwap;
(* Swaps two values without a third *)
(* contains one bug for you to find *)
(* Find the error by either looking *)
(* at the code, or by running tests *)

VAR first, second: REAL;

BEGIN
WriteLn('Enter two real values ');
Read(first);
Read(second);

first := first * second;
second := first / second;
first := first / second;

Write('Swapped values are ');
Write(first: 9);
WriteLn(second: 9);

END.

2.
PROGRAM BadFactorial;

(* This program almost computes *)
(* the factorial of any input *)
(* You find the problem here *)

VAR index, fact, num: INTEGER;

BEGIN
Write('enter a value ');
Read(num);

fact := 1;
index := num;
WHILE index >= 0 DO BEGIN

fact := fact * index;
Dec(index);

END;

Write('Factorial is ');
WriteLn(fact: 5);

END.

3.
PROGRAM BadMin3;

156 Chapter 5 The Four Fundamental Forms in Pascal

(* Finds the minimum of 3 values *)
(* but it contains one error *)
(* Find it by looking at the code *)
(* which is called "opaque box" *)

VAR A, B, C, mini: INTEGER;

BEGIN
Write('Enter three values ');
Write('use integers only ');
Read(A);
Read(B);
Read(C);

IF (A < B) AND (A < C) THEN
mini := A

ELSE IF (B < A) AND (B < C) THEN
mini := B

ELSE
mini := C;

Write('The minimum value is ');
WriteLn(mini: 4);

END.

4.
PROGRAM BadMid3;

(* Finds the mid value of 3 values *)
(* in most cases, but not all cases *)
(* You are to find the problem here *)

VAR A, B, C, mid: INTEGER;

BEGIN
WriteLn('Enter three values ');
Read(A);
Read(B);
Read(C);

IF (B < A) AND (A < C) OR
 (C < B) AND (A < B) THEN
mid := A

ELSE
IF (A < B) AND (B < C) OR

(C < B) AND (B < A) THEN
mid := B

ELSE
mid := C;

Write('The mid value is ');

Section 5.14 Chapter 5 Programming Problems 157

WriteLn(mid: 2);
END.

Selection Programs

Create Pascal programs to solve the following problems. Pay particular concern
to checking the input values, and displaying the output. Provide sufficient runs
to test the program. Plan first.

1. Classify Quadrilaterals

Four-sided figures may be classified according to their inner angles as:
quadrilaterals, trapezoids, parallelograms, or rectangles. Write a
program that takes the four angles of a quadrilateral, in degrees,
starting with the smallest and continuing clockwise with adjacent
angles in order and identifies these figures. Modify this program to
include kites (where at least one pair of the non consecutive angles is
equal).

2. Dice Poker

The game of dice poker (or Indian Dice) involves the throwing of five
dice, their spot values constitute the “hand”, and the evaluation of the
hand is as described below . Write a program to input the five spot
values, evaluate the hand, and display the kind of hand (“five of a
kind”, etc.). The algorithm can be simplified if the values are sorted.

a. Five of a kind, means that all dice have the same value,

b. Four of a kind, means that 4 dice have the same value,

c. Full house, means that 3 are of one value and 2 of another value,

d. A Straight, means that the 5 values are in consecutive order,

e. Three of a kind, means that three dice are of one value,

f. Two pairs, means 2 dice of one value and 2 of another,

g. One pair, means that only two dice have the same value,

h. No pairs, means none of the above.

3. Human Time Out

Write a program that inputs time in 24-hour military form and outputs
one of the following four forms, whichever is most appropriate:

"H O'clock"
"M minutes after H"
"Half past H"
"M minutes before H"

where M and H are the required minutes and hours.

158 Chapter 5 The Four Fundamental Forms in Pascal

Procedures and Repetitions

Libraries of various kinds were described in this chapter, for instance
ShortSortLib that has a number of procedures like Sort2 and Sort3. Use
these, and any others you are familiar with, to write the following programs.

1. Many Sorts of Sorts

Create two programs to sort 4 INTEGERs, using the Sort2 procedures,
but interconnected in two different ways.

Create a program to sort 7 INTEGERs using Sort3.

2. Sorts and Sports

Create a segment of a program to sort 5 INTEGER values, then use it in
the following program.

Five judges of a sporting event each provide an INTEGER input score
from 1 to 10 that describes their evaluation of the sports performance.
The overall score of the event is determined by dropping the highest
and lowest scores, and averaging the remaining three scores. This
scoring continues for any number of evaluations until a negative value is
input, signifying the end of the competition.

Redo this program (or parts of it) by using different subprograms.

3. Forgiving Grader

A student’s percentage score is determined by averaging the highest
four percentage scores out of five (exam1, midterm, final, projects, quick-
quizzes), thus “forgiving” the lowest score. This grading is to continue
for any number of students until a negative value is input, signifying the
last of the students.

Do this in two different ways, using different sub-programs.

4. Demilitarize Time

Time can be expressed in “military” or 24-hour form where 20:30 means
8:30pm. Create an algorithm to convert such a military time into “non-
military” time. A sequence of times is to be converted until a negative
time is input.

Create another program to determine the time elapsed between any two
given military times on the same day.

Create another program which determines the elapsed time between
any two given times on two successive days.

Create another program to determine the shorter elapsed time between
three given times on the same day.

5. Date of Easter

The algorithm to determine the date of Easter for any given year could
involve a number of Div and Mod actions. Create a program to
continuously determine the date of Easter according to the following
algorithm for each input year Y until a negative year is input:

Section 5.14 Chapter 5 Programming Problems 159

1. The “golden number”, G is (Y Mod 19) + 1.

2. The century number C is (Y Div 100) + 1.

3. The number of years X in which a leap year was dropped, e. g.,
1900, so as to keep in step with the sun is (3C Div 4) – 12.

4. A correction Z to synchronize Easter with the moon’s orbit is (8C
+ 5) Div 25

5. If D = (5Y Div 4) – X – 10 then March ((–D) Mod 7) is a
Sunday—if (–D) Mod 7 = 0 then March 7 is a Sunday.

6. The “Epact” E specifies when a full moon occurs. E = (11G + 20 +
Z – X) Mod 30. If E = 25 and G is greater than 11, or if E = 24 then
E is increased by 1.

7. Easter is on the “first Sunday following the first full moon that
occurs on or after March 21”. The “calendar moon” used for
finding Easter is defined as the Nth of March where N = 44 – E.
If N < 21 then set N to N + 30.

8 To advance N to a Sunday, set N = N + 7 – ((D + N) Mod 7.

9. If N > 31 then the date of Easter is the (N – 31) April;
otherwise the date is N March.

Josephus’ Problem

It is said that, after the Romans had captured Jotapat, Josephus and forty other
Jews took refuge in a cave. Josephus, much to his disgust, found that all except
himself and one other man were resolved to kill themselves rather than fall
into the hands of their conquerors. Fearing to show his opposition too openly,
he consented, but declared that the operation must be carried out in an orderly
way, and suggested that they should arrange themselves round a circle and
that every third person should be killed until only one man was left, who must
then commit suicide. It is alleged that he placed himself and the other man in
the 31st and 16th places. You are to write a Pascal program that prints out the
execution order in the generalized case where, instead of every third person
every nth person is killed. The program should input two INTEGERs, M, the
number of people in the circle, and N, the execution ordinal With M = 8 and N =
4, the deaths occur in the order shown:

Position in circle Execution order

1 5

2 4

3 6

4 1

5 3

6 8

160 Chapter 5 The Four Fundamental Forms in Pascal

7 7

8 2

5.15 Chapter 5 Programming Projects

Project A: Change Change

You are to modify the program SubChange of this chapter in any five of the
following ways. Do this in stages ending with one larger program (not five
smaller ones).

1. Make the program more general, by allowing the output of half-dollars
and dollar bills.

2. Make the program more robust, by having it reject any improper values
(such as negative costs).

3. Make the program more informative, by writing out the amount of
change as:

“The change is 28 cents” or

“The change is 2 dollars and 13 cents”.

4. Make the program more convenient, by putting it into a loop and having
it continue making change until a negative value is input.

5. Make the program grammatically correct, by writing singular and
plural counts such as

“1 quarter 0 dimes 0 nickels 3 pennies”.

6. Make the program output shorter , by not writing out the zero count as:

“1 quarter 3 pennies”.

7. Make the program output more verbose by writing out the numbers in
English as:

“one quarter three pennies”.

8. Make the program output more complete by writing out the connectives
also as:

“The change is one quarter and three pennies”.

9. Make the program more user friendly, by allowing input as real numbers
with decimal points such as 0.75, 1.25

10. Make the program more productive, by having it keep track of the
numbers of coins of each type (not attempting to put out any quarters if it
has none).

11. Make some improvements of your own.

Section 5.15 Chapter 5 Programming Projects 161

Project B: Payroll

Create a program describing the payroll system of the Principles book Chapter
2, Section 2.4. Do this in stages: first, create the generalized version, then
modify it to include the extended version, which pays double time for hours
worked over 60. Next modify these two with the changes in the foolproof
version, which checks that the input number of hours worked is both greater
than or equal to zero and less than the number of hours in a week and, finally,
embed all of this in a loop that repeats the pay process for many people.

Project C: Quadratic Roots

The solutions to (roots of) the quadratic equation

Ax 2 + Bx + C = 0
are given by the quadratic formula:

x =
−B ± B2 − 4AC

2A
Create a program to determine these solutions and test it for the following
values:

A B C

0 0 0 (Many roots)

0 0 1 (No roots)

0 1 2 (One root)

0 5 0 (Special root)

1 2 2 (Complex roots)

4 0 –16 (Similar roots)

1 1 –6 (Real roots)

Study also the cases where B2 is much larger than 4×A×C.

Project D: Digital Circuits

If you have some knowledge of switching theory (or would like to gain some),
use the BitLib procedures to create the following (and show some input-output
traces).

1. Maj3(A, B, C, M), a majority of three binary inputs.

2. FullAdd(A, B, C1, S, C2), a full adder of 3 inputs and 2 outputs
(input A, B and carry C1 from previous stage; output sum S and carry C2
to the next stage).

162 Chapter 5 The Four Fundamental Forms in Pascal

3. HalfSub (X, Y, D, B), a half subtractor, with 2 inputs and 2
outputs.

4. FullSub (X, Y, Z, D, B), a full subtractor.

5. Anything else of interest.

Project E: Roll Your Own

It is much harder to create a project than it is to investigate or solve an already
created one. Create a project.

CRN: Convert Roman Numbers

You are to create a program to convert a given integer from the normal or Arabic
form into the Roman form. The Arabic number will be, at first, in the range 1 to
300, but will grow later. The Roman number will first be a simple kind that
allows 4 repetitions of symbols, but will also grow later.

You may need to review the concept of Roman numbers; the following may
refresh your memory.

I is 1, V is 5, X is 10, L is 50

C is 100, D is 500, M is 1000

The Arabic 1984 in the simple Roman form is:

MDCCCLXXXIIII

and in the standard Roman form is:

MCMLXXXIV

First do the simpler Roman numbers. Limit the Arabic input value to a
maximum of 300. Call this program Roman1. Use the ChangeMaker program
as a guide. Do sufficient tests to convince yourself that it works.

Secondly, extend the above program to larger Roman numbers. Call this
program Roman2.

Finally, modify Roman2 to accept and convert to the standard Roman form.
Call this program Roman3. Test it thoroughly.

GPR: Growing Pay Roll

This assignment is to gain experience in coding and “growing” programs, using
the PayRoll algorithms of the Principles book Chapter 2, Section 2.4. Assume
all the variables to have REAL values. Write these programs in Pascal exactly
in the structure shown; do not change the structure of the algorithms—yet! Use
reasonable names (not R, H, P) and readable style with indentation.

1. Write a program consisting of the Generalized version of Figure 2.14
embedded in a loop that continues until a negative number of hours

Section 5.15 Chapter 5 Programming Projects 163

worked has been entered. Name this program Pay1, run it and test it.
Print the program and make a record of some test runs.

2. FoolProof the above version as shown in Figure 2.16, and save it as
Pay2. Make the resulting program readable with good indentation.
Test it for all possible cases. Print this version and record your test runs.

3. Extend the above program as a Cascaded equivalent as on the right of
Figure 2.18 and save it as Pay3. Print out your program, and show some
test runs.

Time permitting:

4. Modify the structure of any of the above programs to use the nested
ELSE IF Selections whenever possible. Test it.

5. Extend the PayRoll program further by computing the NetPay, which
is the GrossPay less the Deductions. The deductions include some
Misc amounts that are input, and also include Taxes at a fixed rate,
say 20%, of the GrossPay.

6. Print out the pay in the form of a pay check, with a date and the
amount. Leave space for the name and the written amount to be filled
in by hand.

7. Further modify the program to sum all the money paid out to the
employees and to the government in the form of taxes, and to output
these sums at the end.

8. Make any other changes, modifications, improvements that you have
time for.

MWM: Many Ways to Mid

This lab project involves many very different ways to do the same thing. Study
the problem of finding the middle value Mid of any three variables, say A, B, C,
having different INTEGER values as described in the Principles book Chapter 5,
Problems. You will also need the definition of MaxMinLib from this chapter.

Method 1: Using bigger building blocks, Procedures

Use the procedures Maximize2, Minimize2 from MaxMinLib, and connect
these together to get the Mid value of three variables as given in one of the
following diagrams. Test it for all possible cases; but do not print out these
tests, just print out the program.

Method 2: Using other bigger building blocks, Functions

Copy the above program and modify it to use the functions Maximum2,
Minimum2 from MaxMinLib, and connect these together to get the Mid value by

164 Chapter 5 The Four Fundamental Forms in Pascal

using the other diagram that follows. Write the expression for the value of
Mid as one line. Embed the computation of Mid within a loop to make it easy to
test this program for all possible cases (save a tree). Print out the test results.
A B B C C A

min min min

max

M1

A B B C C A

max max max

min

M2

Method 3: Using Complex Nests

Create a program corresponding to the following general nest of Selection forms.
Use only the simple conditions shown (do not use ANDs, ORs etc. in the
conditions). Test this program. You may wish to document this program with
assertions at various points.

A < B

Set M to A

Set M to C

Set M to B

Set M to B

Set M to C

Set M to A

C < B

C < A

C < A

C < B

True

False

True

True

True

TrueFalse

False

False

False

B < A

(A < B) and (A < C)

(B < A) and (B < C)

(C < A) and (A < B)

(C < B) and (B < A)

(B < A) and (A < C)

(A < B) and (B < C)

(A < C) and (C < B)

Method 4: Another way (Time Permitting)

Create yet another different program to find the Mid value of three variables
having different values.

DFP: Data Flow Programming

This lab project will involve programming at a high level, using subprograms
from Libraries. The programs involve data flows rather than control flows!
You will be creating programs using procedures which will be tested within the
Pascal test program shown at the end of this problem. You do not need to be
concerned with the details of the Pascal test program, TestProg; just use it as
given. Your main task is to make various modifications to the data flow part in
the middle of the given program TestProg.

Section 5.15 Chapter 5 Programming Projects 165

1. Enter the program TestProg below.

PROGRAM TestProg;
(* Tests of programs in Integer Library *)

PROCEDURE Sort2(First, Second: INTEGER;
 VAR Large, Small : INTEGER);

VAR Temp: INTEGER;

BEGIN
Large := First;
Small := Second;
IF Large < Small THEN BEGIN (* Swap *)

Temp := Large;
Large := Small;
Small := Temp ;

END (* SWAP *)
END;

PROCEDURE Sort3(First, Second, Third: INTEGER;
 VAR Maxi, Midi, Mini : INTEGER);

VAR Temp1, Temp2, Temp3: INTEGER;

BEGIN
Sort2(First, Second, Temp1, Temp2);
Sort2(Temp2, Third, Temp3, Mini);
Sort2(Temp1, Temp3, Maxi, Midi);

END;

VAR A, B, C, D, E, F, G, H, I, J, K, L, M,
 N, O, P, Q, R, S, T, U, V, W, X, Y, Z: INTEGER;
 Count: INTEGER;

BEGIN
WriteLn('Enter number of tests ');
Read(Count);
WriteLn('Enter the test values ');
WHILE Count > 0 DO BEGIN

Read(A);
Read(B);
Read(C);

(* Enter Subs here *)
Sort2(A, B, D, E);
Sort2(E, C, F, S);
Sort2(D, F, L, M);
(* End of the Subs *)

Write(' ');
Write(L: 4, M: 4, S: 4);
WriteLn;

166 Chapter 5 The Four Fundamental Forms in Pascal

DEC(Count);
END;

END.

2. Run TestProg to check that it does sort any 3 different values. Output
the result of this test. Draw the data flow diagram next to the
program.

3. Run TestProg to check that it does sort any 3 values (some which may be
the same). Can you do this in less than 27 test values? Output the test
results.

4. Modify TestProg to create a Sort4 using only Sort3. Output the test
results when all values are different. Draw the data flow diagram on
this output page.

5. Replace the lines that input the test values with a call to a procedure
Test4(A, B, C, D), which assigns a different set of test values each time
it is called, which you must write and insert in TestProg. Output the
test results again.

6. Modify TestProg to create a Sort4 using only Sort2, and output the test
results when all values are different; use the Test4 procedure. Draw
the data flow diagram again.

7. Find yet another different way to create a Sort4 using Sort2 and use the
above Test4 procedure to test this program. Draw the data flow
diagram again.

8. Modify the program to create a Sort5 using Sort3 in different ways.

Chapter Outline 167

Chapter 6 Pascal with Bigger Blocks
This chapter continues the presentation of the programming language Pascal by
introducing other forms, deeper nests, different data types and more details.
These complements are not as fundamental or important as the topics of the
previous chapter, but are useful and convenient in the development of clear and
correct programs. Remember, bigger is not always better.

Chapter Overview
6.1 Preview..169
6.2 Conglomerations...169

Mixed and Nested Forms...169
6.3 More Data..171

External..171
CASE Form...173

6.4 More Repetition Forms..175
6.5 The For Loop...177
6.6 Character Type...182

in Pascal...182
Representation of Characters....................................185

6.7 Boolean Type in Pascal..190
6.8 More Types...193

Big Types in Pascal...193
Even Bigger Types...193
Smaller Types...194

6.9 Programmer Defined Types..195
Enumerated Types...195
Subrange Types In Pascal...198

6.10 Strings in Pascal..198
6.11 Simple Files in Pascal...201

More Files: Input and Output.....................................205
6.12 Modification of Programs..207
6.13 Programming Style..209

Documentation..209
Further Guidelines for Identifiers..............................212
A Bad Style Horror Story..213
Criticism of the MeanMean Program..........................215

6.14 Errors in Programming...216
Syntactic Errors...216
Execution Errors...217
Logical Errors..217
Other Errors..217

6.15 Debugging, Testing, Proving.......................................217
6.16 Chapter 6 Review...219
6.17 Chapter 6 Problems...219

168 Chapter 6 Pascal with Bigger Blocks

6.18 Chapter 6 Programming Problems..............................221
6.19 Chapter 6 Programming Projects.................................224

Plotting Programs..224
Modify Calculator..226
Statistics (Rainfall)...227
Project Plotup..227
BSD: Big Statistics Data..228
BTD: Big Text Data..229
SMC: Small Monthly Calendar.................................230

Section 6.1 Preview 169

6.1 Preview

The more important part of this Chapter is the material on programming style,
documentation, errors, testing and debugging, since a knowledge of these areas is
essential to serious programming. Without it, you will waste much time
floundering around making blunders, then searching for and correcting them.

First, we consider larger programs that are created from complex nests of the
four fundamental forms. The coding of these algorithms into readable programs
is straightforward. Indentation is important for clarity. Next, we consider
briefly the processing of larger amounts of data, in particular, arbitrary
amounts of external data. We also introduce some other Pascal statements,
especially the extensions of the Selection and Repetition forms (CASE, FOR
and REPEAT). Many examples are shown of deeper nests, especially of the
Repetition form.

Some additional data types, especially the Character and Boolean types, are
introduced along with some example programs illustrating these types.

A particular goal of this chapter is to expose you to additional tools, concepts
and skills. Many of these are alternatives to tools you have previously seen,
but this will allow you to better choose the appropriate tools, best suited for
your purposes. For example, the FOR loop is concise and convenient, but it is also
limited in some ways over the more general WHILE loop. You should be capable
of knowing when to use either of these loops.

Another important goal of this chapter is to provide an appreciation for
programming style, documentation, modification, testing, and debugging. This
is done through examples. There are really three ways of learning to become a
good programmer: practice, practice and practice with, in each case, a great
deal of self criticism. This chapter will put you on the right track.

6.2 Conglomerations

Mixed and Nested Forms

In almost all non trivial programs, you will find mixed combinations of forms.
In Pascal, such combinations, whether they be sequences or nests, should be
considered as a structure of forms rather than as a conglomeration of individual
statements. We will give a number of examples that illustrate mixed forms and
their nesting.

As we have already mentioned, a program is essentially a one-dimensional
sequence of words and symbols that represents a two-dimensional structure. In
order to understand the program, you must appreciate this two-dimensional
structure. Thus, the careful use of statement indentation in the program is an
important way of helping the reader see the two-dimensional nature of the
program. Strictly speaking, indentation is not necessary, but it is very

170 Chapter 6 Pascal with Bigger Blocks

convenient and certainly helps in explaining, understanding and extending
programs.

The precise details of the style of indentation are not as important as the fact
that the indentation exists and follows rules that are consistently applied. In
this book, we use an indentation of 3 or 4 spaces per nesting level; in other books
it may vary from 2 spaces to 6 spaces. You will eventually decide on the rules
that you will adopt for yourself, but in the meantime you could imitate the
style shown here. You shouldn’t be in a rush to develop your own style yet; it
will come naturally in time.

Figure 6.1 Pseudocode and Pascal program for Signed Product
algorithm
Input X
Input Y
Set Count to X
Set Prod to 0
If Count > 0

While Count > 0
Set Prod to

Prod + Y
Set Count to

Count - 1
Else

While Count < 0
Set Prod to

Prod – Y
Set Count to

Count + 1
Output Prod

PROGRAM SignedProduct;
{ Shows Loops nested in a Choice }

VAR Count, Product, X, Y: INTEGER;

BEGIN
 Write('Enter two values: ');
 Read(X, Y);
 Count := X;
 Product := 0;

 IF Count > 0 THEN
 WHILE Count > 0 DO BEGIN
 Product := Product + Y;
 Count := Count - 1;
 END { WHILE }
 ELSE
 WHILE Count < 0 DO BEGIN
 Product := Product - Y;
 Count := Count + 1;
 END { WHILE };

 Write('The product is ',
 Product: 7);
END. { Signed Product }

The program Signed Product from the Principles book Chapter 5 (Fig. 5.48) is
shown in Figure 6.1, both as pseudocode and as a Pascal program. In this
program there are two While loops nested within a Selection form. Notice the
three levels of indentation corresponding to the three levels of detail: the
program level, the branches of the IF statement, and the bodies of the loops.
Also notice that the identifier names in the program have been chosen to be
meaningful.

Section 6.2 Conglomerations 171

As you can see in Figure 6.1, spacing between lines is also very useful to separate
the various parts of a program. Here, the initial part of the program body is
separated from the nested Selection, which is separated from the output part.
Some may also wish to insert space between the WHILE forms within the IF
form. But spacing, like indentation, can easily be overdone. Experiment.

The alignment of symbols, such as the colon-equals symbols within sequences of
assignments, is sometimes viewed as helping readability; however, if followed
slavishly, it can also mask a program’s structure. The most beneficial aspect of
the writing style in programs is consistency. For instance, if the indentation
step varied from 1 to 6 spaces in our program in Figure 6.1, it would be a
hindrance to the reader. Having a fixed indentation step lets the reader see
the various "blocks" of our program at first glance. Remember, the goal in using
a writing style is the understandability of programs, not the mindless
adherence to rules.

6.3 More Data

External

One of the abilities that makes computers such a powerful tool is their ability
to process large amounts of data, one item at a time. For example, the daily
quantity of rainfall over many months may need to be analyzed to compute
various averages, accumulations, extremes, trends, and other statistics. Other
such large quantities of data could include prices, sales figures, efficiencies and
grades. One common method of processing such external data is considered in
Chapter 6 of the Principles book. With this method, the end of the data is
marked by a special value, the terminator or end of file marker, that is
different from all possible data values. This value is usually specified by
including it as the first value in the external data.

Figure 6.2 shows the pseudocode for the BigMax algorithm from the Principles
book Chapter 6 (Fig. 6.6), and the corresponding Pascal program. In this
program, the terminating value for the data is entered first. This value (for
example, -999) differs from the other typical values by being negative, large
and unusual. Thus, it is not only unique, it is easily remembered by the user.
Following this value, other values are entered and processed, that is, they are
compared to the current value of Max, which is updated if necessary, until the
terminating value is reached; this marks the end of the data. Finally the
maximum value is output. A sample output produced by the execution of this
program is shown in Figure 6.3.

Possible modifications to this program include the computation of other
statistics, means, minimum value, second-largest value, etc. For some types of
data it may be necessary to use REAL values instead of INTEGERs. Reading the
input from a file would also be natural for this type of problem.

172 Chapter 6 Pascal with Bigger Blocks

Figure 6.2 Pseudocode and Pascal program for BigMax

Input Terminator
Input Val
Set Max to Val
Input Val
While Val ≠ Terminator

If Max < Val
Set Max to Val

Input Val

Output Max

PROGRAM BigMax;
(* Shows a Choice nested in a Loop*)
(* The data is sandwiched between *)
(* occurrences of a unique marker *)
(* value. This program assumes *)
(* at least one value is input *)

VAR Terminator, Value, Max :
INTEGER;

BEGIN
 Write('Enter terminal value: ');
 Read(Terminator);
 Write('Enter first value: ');
 Read(Value);
 Max := Value;

 Write('Next value: ');
 Read (Value);
 WHILE Value <> Terminator DO
BEGIN
 IF Max < Value THEN
 Max := Value;
 Write('Next value: ');
 Read(Value);
 END { WHILE };

 Write('The maximum value is ',
 Max:7);

END { BigMax }.

Figure 6.3 Execution of the BigMax program

Enter terminal value: -999
Enter first value: 34
Next value: 56
Next value: 67
Next value: 76
Next value: 65
Next value: 54
Next value: 43
Next value: 35
Next value: -12
Next value: 89
Next value: 98
Next value: 22
Next value: 12
Next value: -999

Section 6.3 More Data 173

The maximum value is 98

CASE Form

Pascal’s CASE statement is a convenient way of expressing a selection from a
number of choices, that would otherwise be expressed as a series of deeply
nested IF-THEN-ELSE-IF… constructs. This alternative form can be used where
each of the conditions involves the comparison of a specific value with several
different constant values. This is illustrated in Figure 6.4 where the
pseudocode and corresponding Pascal program are shown for the Price
algorithm from the Principles book Chapter 6 (Fig. 6.8). This program selects a
price depending on the quantity of items sold.

Figure 6.4 Pseudocode and Pascal program for Price algorithm

Input Quantity
Select Quantity

1:
Price 99

2, 3:
Price 98

4, 5, 6:
Price 95

7, 8, 9:
Price 90

Otherwise:
Price 85

Output Price

PROGRAM Price;
(* Select price depending *)
(* on quantity sold *)

VAR Quantity, Price: INTEGER;

BEGIN
 Write('Specify quantity: ');
 Read(Quantity);

 CASE Quantity OF
 1:
 Price := 99;
 2, 3:
 Price := 98;
 4, 5, 6:
 Price := 95;
 7, 8, 9:
 Price := 90;
 OTHERWISE
 Price := 85;
 END;

 WriteLn('Price is ', Price: 3);

END. { Price }

Figure 6.5 shows the syntax diagram for the Pascal CASE statement. A
CaseLabelList consists of any number of constants separated by commas. For
example, one list representing the non working days of some month might be:

1, 2, 8, 9, 15, 16, 21..24, 29, 30

174 Chapter 6 Pascal with Bigger Blocks

In this example, the sequence 21..24 is a Pascal notation called a “subrange”
and denotes the values 21, 22, 23, 24. The OTHERWISE part is optional; the word
ELSE may be used instead of OTHERWISE.

Figure 6.5 Syntax diagram for Pascal CASE statement

ExpressionCASE OF Case

;

ELSE Statement

OTHERWISE

END

Expression ; Statement

CaseStatement

Case

The number of days in a month depends on the month and could be written as a
CASE statement as follows:

(* Days in a month of a leap year *)
CASE month OF

1:
Days := 31;

2:
Days := 29;

3:
Days := 31;

4:
Days := 30;

5:
Days := 31;

6:
Days := 30;

7:
Days := 31;

8:
Days := 31;

9:
Days := 30;

10:
Days := 31;

11:
Days := 30;

Section 6.3 More Data 175

12:
Days := 31;

OTHERWISE
Write('error');

END;

Alternatively, the above example could be shortened by combining the days
into longer label lists as:

(* Days in a Month of a Leap year *)
CASE Month OF

9, 4, 6, 11 :
Days := 30;

1, 3, 5, 7, 8, 10, 12:
Days := 31;

2:
Days := 29;

OTHERWISE
Write('error');

END;

Notice that not all the deeply nested Selection forms that are expressed in
pseudocode with a Select form can be written with the Pascal CASE statement.
The reason is simple: the CASE statement requires that the conditions always
involve constants that are not REAL numbers.

6.4 More Repetition Forms

The REPEAT-UNTIL form was first introduced in Chapter 5 of the Principles
book. It is a Repetition form where the associated condition is evaluated after
the body of the loop has been executed, rather than before as in the WHILE loop.
Consequently, the body of the loop is executed at least once. The syntax of the
Pascal REPEAT-UNTIL statement is defined in the syntax diagram in Figure 6.6.

Figure 6.6 Syntax diagram for Pascal REPEAT statement

StatementREPEAT UNTIL

;

RepeatStatement

Expression

When written, the REPEAT and UNTIL reserved words sandwich the indented
statements forming the body of the loop, as in the following:

REPEAT
Statements

UNTIL condition

Figure 6.7 shows two almost equivalent Pascal versions of algorithm
OddSquare discussed in Chapter 6 of the Principles book. Both calculate the

176 Chapter 6 Pascal with Bigger Blocks

square of an INTEGER, Num, by summing the first Num odd integers. In the
version on the left of the figure, OddSquareWhile, a WHILE statement is used,
and in the version on the right of the figure, OddSquareUntil, a REPEAT-
UNTIL statement is used. Notice that the loop conditions in the two versions
are the negations of each other—if you think about the meanings or “while”
and “until”, you will see why this is so. Notice also that, in OddSquareWhile,
a BEGIN-END must be used to delimitate the body of the loop, whereas in
OddSquareUntil the REPEAT-UNTIL pair encloses the body of the loop.
These two versions are only almost equivalent because of another important
difference between the semantics of the two statements. In the REPEAT-UNTIL
loop, the body is always executed at least once, whereas, in the WHILE loop,
if the loop condition is initially false, the body is not executed at all.
Consequently, if the value entered is zero, OddSquareUntil gives the wrong
result 1, whereas OddSquareWhile gives the correct result of zero.

Figure 6.7 Two versions of the program OddSquare

PROGRAM OddSquareWhile;
(* Calculate the square of*)
(* N by summing the first *)
(* N odd numbers *)

VAR Square, OddNum, Num:
 INTEGER;

BEGIN
 Write('Specify number to
be squared ');
 Read(Num);

 Square := 0;
 OddNum := 1;
 WHILE OddNum <= ABS(Num +
 Num) DO BEGIN
 Square := Square +
 OddNum;
 OddNum := OddNum + 2;
 END;

 WriteLn('Square is ',
 Square: 4);
END. { OddSquareWhile }

PROGRAM OddSquareUntil;
(* Calculate the square of*)
(* N by summing the first *)
(* N odd numbers *)

VAR Square, OddNum, Num:
 INTEGER;

BEGIN
 Write('Specify number to
be squared ');
 Read(Num);

 Square := 0;
 OddNum := 1;
 REPEAT
 Square := Square +
 OddNum;
 OddNum := OddNum + 2;
 UNTIL OddNum > ABS(Num +
 Num);

 WriteLn('Square is ',
 Square: 4);
END. { OddSquareUntil }

Here is an example of the execution of both programs.

Specify number to be squared: 15
Square is 225

The program Mean, shown in Figure 6.8, is another example of the use of the
REPEAT-UNTIL statement. This program calculates the mean of a sequence of
input values terminated by the value -999. Notice that it requires that at least

Section 6.4 More Repetition Forms 177

one value other than -999 be input. If the first value is the end of data marker,
–999, then, as a consequence of the way the REPEAT-UNTIL loop operates, the
program assumes that the –999 is a genuine data value and waits for another
–999 to terminate the program. Study the program carefully so that you
understand why this is so.

Figure 6.8 A Mean program

PROGRAM Mean;
(* Calculate mean of list of values *)
(* terminated by EndOfData value *)

CONST EndOfData = -999;

VAR Sum, Num, Value: INTEGER;
 Mean: REAL;

BEGIN
Sum := 0;
Num := 0;
Write('Enter list of values terminated by ',

 EndOfData, ' : ');

Read(Value);
REPEAT

Sum := Sum + Value;
Num := Num + 1;
Read(Value);

UNTIL Value = EndOfData;
Mean := Sum / Num;

WriteLn('Mean of ', Num, ' values is ', Mean:6:2);
END. { Mean }

6.5 The For Loop

In Chapter 6 of the Principles book, we introduced the For loop for use in our
pseudocode to provide a Repetition Form that made it convenient to specify the
number of iterations to be performed. The Pascal equivalent of this loop is the
FOR statement, whose syntax is defined in the syntax diagram of Figure 6.9

178 Chapter 6 Pascal with Bigger Blocks

Figure 6.9 Syntax diagram for Pascal FOR statement

IdentFOR := TO

DOWNTO

DO Statement

ForStatement

Expression Expression

This syntax diagram shows that the statement has two forms:

FOR var := expr1 TO expr2 DO
statement

and

FOR var := expr1 DOWNTO expr2 DO
statement

In both forms, var is the counter variable for the loop, called the loop control
variable , and statement is the body of the loop. In execution of the first of
these forms, var is initialized to the value of expr1, and the body of the loop
is executed repeatedly with the value of var being increased by 1 between each
iteration until its value is greater than the value of expr2. The execution of
the second form is similar, the difference being that the value of var is
decreased by 1 between each iteration, and looping continues until the value of
var is less than the value of expr2. The body of the loop is not executed at all
if, in the case of the TO, the value of expr1 exceeds the value of expr2 or, in
the case of the DOWNTO, the value of expr1 is less than the value of expr2
The following are three sample fragments of Pascal code illustrating the use of
the FOR statement:

1. Fact := 1;
FOR Count := 1 TO Num DO

Fact := Fact * Count;

Here, the factorial of Num is calculated with the Count increasing by 1
at each iteration.

2. Fact := 1;
FOR Count := Num DOWNTO 1 DO

Fact := Fact * Count;

This code is essentially the same as in example 1 above, except that
Count is decreased by 1 at each iteration.

3. Square := 0;
OddNum := 1;
FOR Count := 1 TO Num DO BEGIN

Square := Square + OddNum;
OddNum := OddNum + 2;

END;

Section 6.5 More Repetition Forms 179

This is yet another example of finding the square of Num by summing
the first Num odd integers.

There are a number of restrictions on the use of the FOR statement, and it is
necessary to know what they are.

1. The expressions describing the initial and final values of the loop
control variable are evaluated only once, on entry to the loop before the
body of the loop is executed for the first time.

2. The statements in the loop body must not change the value of the loop
control variable.

3. The loop control variable is usually, but not always, of type INTEGER,
but cannot be of type REAL.

4. The step, the amount by which the value of the loop control variable is
increased or decreased at each iteration, is fixed at 1, and cannot be
changed.

5. The loop control variable may not retain its value after the loop is
done.

In addition, there are some other restrictions on the loop control variable of the
FOR statement. At this time, you might not understand them, but you may come
back to this page later, so you should be aware of these additional restrictions.
The loop control variable cannot be:

• a formal parameter of a procedure

• imported from another unit

• a component of an array, of a record, or a variable designated by a
pointer

In short, there are many things it cannot be!

If you find that these restrictions are too severe for your needs, then you can use
a WHILE statement instead. The WHILE statement is always more general, but
the FOR statement is often more convenient.

Figure 6.10 shows side-by-side a FOR statement and its equivalent WHILE
statement.

Figure 6.10 Equivalent FOR and WHILE statements

FOR C := M TO N DO BEGIN
 statements
END;

C := M;
WHILE C <= N DO BEGIN
 statements
 C := C + 1;
END;

The FOR statement is shorter, but the equivalent WHILE statement is more
general, since it may also be used for loop control variables of the REAL type.
Actually, if there were only one statement in the loop body, then the FOR
statement would not need the BEGIN-END pair, and so would be much shorter
than the equivalent WHILE statement.

180 Chapter 6 Pascal with Bigger Blocks

Figure 6.11 shows a Pascal program that is a refinement of the graph plotting
algorithm discussed in Chapter 6 of the Principles book. It has been refined to
plot two functions on the same graph, both sideways with the X axis vertical
and the Y axis horizontal. This program can serve as a summary of the previous
discussion of nesting and of the different forms of loops.

Figure 6.11 The Pascal program SidePlotXY

PROGRAM SidePlotXY;
(* Plot of two functions vs. X *)
(* Both sideways, Y horizontal *)

CONST MaxY = 40;

VAR X, Y1, Y2, First, Last, Incr, Factor: REAL;
 Q1, Q2, Step: INTEGER;

BEGIN
{ Input plot parameters }
Write('Enter first value: ');
Read(First);
Write('Enter last value: ');
Read(Last);
Write('Enter scale factor: ');
Read(Factor);
Write('Enter an increment: ');
Read(Incr);
WriteLn;

{ Draw horizontal Y axis }
FOR Step := 0 TO MaxY DO

IF (Step MOD 5 = 0) THEN
Write('+')

ELSE
Write('-');

Write(' Y ');
WriteLn;

{ Do the Plot on its side }
X := First;
WHILE X <= Last DO BEGIN

Y1 := SIN(3.14159 * X / 180.0);
Y1 := Factor * Y1;
Q1 := ROUND(Y1);
Y2 := 0.005 * X;
Y2 := Factor * Y2;
Q2 := ROUND(Y2);
FOR Step := 0 TO MaxY DO

IF Step = 0 THEN

Section 6.5 More Repetition Forms 181

Write('|')
ELSE

IF Step = Q1 THEN
Write('*')

ELSE
IF Step = Q2 THEN

Write('+')
ELSE

Write(' ');
WriteLn;
X := X + Incr;

END { WHILE };
Write('X');

END { SidePlotXY }.

The output from a typical run of the Pascal program SidePlotXY of Figure
6.11, is shown in Figure 6.12.

Figure 6.12 Output from typical execution of Pascal program
SidePlotXY

Enter first value 0.0
Enter last value 180.0
Enter scale factor 40.0
Enter an increment 5.0
+----+----+----+----+----+----+----+----+ Y
|
|+ *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *
| + *

182 Chapter 6 Pascal with Bigger Blocks

| + *
| + *
| + *
| + *
| +*
| * +
| * +
| * +
| * +
| * +
| * +
| * +
| * +
| +
X

6.6 Character Type

in Pascal

A character is a single keyboard symbol. It is not a sequence of symbols like a
string, but an individual “lonely” symbol. Characters can be placed in various
categories:

the ten decimal digits: 0, 1, 2, 3,..., 9

the 26 lower-case letters: a, b, c,..., z

the 26 upper-case letters: A, B, C,..., Z

punctuation and miscellaneous characters, such as !, @, #, [,], :, ", >, =,
etc.

There also exist non printing characters that do not correspond to a keyboard
symbol. These characters are also called control characters and are useful for
text formatting, telecommunications, or user interface. They include for instance
Ring Bell, Carriage Return, Form Feed, Line Feed, Escape.

Variables whose values are characters, are of type CHAR. They can be
declared, assigned, compared, input and output much like INTEGER or REAL
variables, but there are important differences.

A Character value must be distinguished from the name of a variable, so single
quotes surround characters within programs (but not characters input at the
keyboard).

The following declarations show the distinction between character constants
and variables.

CONST
PERIOD = '.';

Section 6.6 Character Type 183

FAIL = 'f';
NO = 'N';
BLANK = ' ';
MALE = 'M';
F = 'F';

VAR
C, Ch, Grade, Reply, Sex,
Initial, Return, Numeral: CHAR;

Assignment of a character value to any variable of type CHAR is easily done:

Reply := 'y';
Sex := 'F';
Grade := FAIL;

Character values can be compared for equality. When they are compared using
the greater-than or less-than relation, the ordering is given by the standard
sequence of their character code (called ASCII, as seen in the next section). The
26 letters can be compared by their alphabetic order, with 'A'<'B'<'C' etc.
Some examples involving comparisons are:

IF Grade <= 'C' THEN
Write('Good ');

WHILE ('C' < Grade) AND (Grade <= 'F') DO
(* Something!! *)

IF (Sex = 'M') OR (Sex = 'm') THEN
Write('Male ');

Numeric character values are also in the usual order: '0' < '1' < '2', etc.
These character numerals should not be confused with INTEGER values. CHAR
and INTEGER are two entirely different types. The ordering of characters other
than the alphabetic and numeric follows the standard character codes, which
will be considered in the next section. Because of this, the numeric characters
are all considered less than the alphabetic letters, and the upper-case letters
are considered less than the lower case letters!

There are only a few operations that involve character values. Arithmetic
operations on characters are meaningless. However, the function call
Succ(Ch) returns the CHAR value that succeeds the current value of the CHAR
variable Ch in the standard sequence. Similarly, the call Pred(Ch) returns
the preceding character value.

If the value of CHAR variable L is a lower case letter, the value returned by
UpCase(L) is the corresponding upper case character—the value of other
characters is unchanged. It can be used to simplify statements such as:

IF (Reply = 'Y') OR (Reply ='y') THEN
Write('Yes ');

which becomes:

IF (UpCase(Reply) = 'Y') THEN
Write('Yes ');

184 Chapter 6 Pascal with Bigger Blocks

The input and output of characters is done as usual with the Read and Write
statements. When Read(C) is executed, whatever character is entered
(without quotes) gets stored into CHAR variable C. The following is a code
fragment that increments a counter on receiving the required $ character:

Read(Reply);
IF Reply = '$' THEN

Count := Count + 1;

However, since characters are read one by one, all the characters in the input
stream are considered. When we read integers, we did not have to worry about
extra blanks or end of line characters, as the system would skip them. When we
read characters we have to be aware of all characters, as the system does not
skip any! For instance, the following segment of program is intended to input
the sex, denoted by 'M' or 'F' “safely”. It requests the input of one character
(either M or m for male, or F or f for female), and reads in one character. While
the input character is not one of these four acceptable values it keeps looping.

(* Input Sex *)
Write('Enter Sex: M or F ');
Read(Sex);
WHILE (UpCase(Sex) <> 'M') AND (UpCase(Sex) <> 'F') DO
BEGIN

Write('Enter M or F only ');
Read(Sex);

END;

Unfortunately, this piece of program does not quite work in the case where the
user does not enter an acceptable response. The output obtained if, for example,
the user entered the improper response x is:

Enter Sex: M or F x
Enter M or F only Enter M or F only

which seems somewhat mystifying. The problem is that the computer requires
a Return after an input. This pressing of the Return key generates a second input
character, a Carriage Return. The sequence of events is thus:

1. The initial “Enter Sex: M or F “ is displayed.

2. The user enters two characters, an x and a Carriage Return.

3. The program reads the x, rejects it as improper and displays the first
“Enter M or F “.

4. The program reads the Carriage Return, rejects it as improper and
displays the second “Enter M or F “.

This problem is easily solved by inserting another Read after each Read(Sex),
to “eat-up” this Return character. Nothing is done with this Return character
which was read in; it simply prevents this wrong character from being read in
by the next Read statement. A comment in the program should document this
situation as shown in the modified version:

(* Input Sex *)
Write('Enter Sex: M or F ');

Section 6.6 Character Type 185

Read(Sex);
Read(Return); { to "eat" Carriage Return character }
WHILE (UpCase(Sex) <> 'M') AND (UpCase(Sex) <> 'F') DO
BEGIN

Write('Enter M or F only ');
Read(Sex);
Read(Return); { "eat" Carriage Return }

END;

This kind of problem is easy to see when the program is tested after it is
written. The modifications are minor and easy to make.

When dealing with character variables, each Read takes a single character
from the input line of characters. Thus, successive characters can be read by a
sequence of Read statements. For example, the following piece of program reads
all the characters of a sentence and counts the blanks in it. The number of
blanks could correspond to the number of words if multiple blanks between
words are not used.

(* Counts Words (blanks) in a Sentence *)
WriteLn('Enter sentence to be analyzed');
BlankCount := 0;
Read(Ch);
WHILE CH <> Period DO BEGIN

IF CH = Blank THEN
BlankCount := BlankCount + 1;

Read(Ch);
END (* WHILE *);
Write('Blank count = ', BlankCount: 2);

Note that identifiers Blank and Period refer to character constants previously
declared.

Representation of Characters

In the computer, each character is represented by a numerical code in the range
0–255, which, in binary, uses eight bits. The most common character code is
known as ASCII (American Standard Code for Information Interchange). Figure
6.13 shows the portion of the ASCII table for the decimal values ranging from
32 to 126. The code values below 32 correspond to control characters that do not
print. The values above 126 correspond to special characters.

Figure 6.13 Portion of ASCII codes table for values 32–127

Dec
Value

Char Dec
Value

Char Dec
Value

Char Dec
Value

Char Dec
Value

Char

32 SP 48 0 64 @ 80 P 96 `

112 p 33 ! 49 1 65 A 81 Q

97 a 113 q 34 " 50 2 66 B

186 Chapter 6 Pascal with Bigger Blocks

82 R 98 b 114 r 35 # 51 3

67 C 83 S 99 c 115 s 36 $

52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e

117 u 38 & 54 6 70 F 86 V

102 f 118 v 39 ' 55 7 71 G

87 W 103 g 119 w 40 (56 8

72 H 88 X 104 h 120 x 41)

57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j

122 z 43 + 59 ; 75 K 91 [

107 k 123 { 44 ´ 60 < 76 L

92 \ 108 l 124 | 45 - 61 =

77 M 93] 109 m 125 } 46 .

62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o

127 DEL

We see in Figure 6.13 that the ten digits 0 to 9 have ASCII decimal values
ranging from 48 to 57. Notice also that the capital letters begin at an ASCII
decimal value of 65, and the lower-case letters begin at 97. Thus, there is a
difference of 32 between any upper-case letter and its lower case equivalent.
The space character, denoted by SP in the figure, has an ASCII value of 32. The
character with value 127, DEL, is the keyboard delete character. The table
does not show the first 32 ASCII characters because they do not print.
However, you might want to use some of them in a program, for instance Bell,
Backspace, Horizontal Tab, Line Feed, Vertival Tab, Form Feed, Carriage,
Return. It is possible to do that by using their ASCII code preceded by ‘#’, as in
the following example.

CONST BELL = #7;
CR = #13;

The function ORD(C) is a function that gives the ordinal number of the
character C in the standard ASCII sequence. For example, ORD('A') is 65,
ORD('B') is 66 and ORD('Z') is 90. The values of the ORD function for the
lower case letters range consecutively from 97 through 122.

It is important to realize that a character numeral such as '2' is not equal to
the INTEGER value of 2. The two items are of very different types and should
not even be compared. However, there are a number of ways to convert between
the two types.

Section 6.6 Character Type 187

The conversion of a decimal digit, Numeral, of CHAR type into its corresponding
INTEGER type, Digit, is useful in a number of applications. It could be done as
shown in Figure 6.14.

Figure 6.14 Conversion of a character digit to an integer

(* Convert CHAR Numeral to INTEGER Digit *)
IF Numeral = '0' THEN

Digit := 0
ELSE IF Numeral = '1' THEN

Digit := 1
ELSE IF Numeral = '2' THEN

Digit := 2
ELSE IF Numeral = '3' THEN

Digit := 3
ELSE IF Numeral = '4' THEN

Digit := 4
ELSE IF Numeral = '5' THEN

Digit := 5
ELSE IF Numeral = '6' THEN

Digit := 6
ELSE IF Numeral = '7' THEN

Digit := 7
ELSE IF Numeral = '8' THEN

Digit := 8
ELSE IF Numeral = '9' THEN

Digit := 9
ELSE

WriteLn('Error ');

Alternatively, this conversion can be done in a one line statement by using the
fact that the ORD of character 0 is 48, and the other digits follow. So the
character value '2' with an ORD value of 50, is simply 2 away from the value
of ORD('0'), which is 48. Assuming that character variable Numeral contains
a numeric character, we find the corresponding INTEGER value by simply
subtracting 48 from ORD(Numeral):

Digit := ORD(Numeral) - ORD('0');

Notice that, rather than subtracting explicit value 48 (which by itself has no
meaning), we subtracted ORD('0'), which relates to character ‘0’. This is
self-documenting code.

For conversion from an INTEGER code to the corresponding ASCII character,
standard function CHR is used. For example, CHR(65) is 'A' and CHR(48) is
the character zero. Conversion of an INTEGER digit to its corresponding CHAR
digit can be done by:

Numeral := CHR(ORD('0') + Digit);

To test whether a character actually corresponds to a decimal digit we only
need to use the simple condition:

188 Chapter 6 Pascal with Bigger Blocks

IF ('0' <= Ch) AND (Ch <= '9') THEN
...

Our next example program, AsciiTable, shown in Figure 6.15 is a program
that generates the same ASCII table as in Figure 6.13, but arranged in three
columns. This program makes considerable use of the CHR function. Notice
that in the table the first character (with decimal value 32) corresponds to a
blank space, and the last character (with value 127) corresponds to Delete.

Figure 6.15 Pascal program to generate a partial ASCII table and
its output
PROGRAM AsciiTable;
(* Print a table of ASCII values *)

CONST Gap = ' ';

VAR I, J: INTEGER;

BEGIN
 { Write a Table Header }
 Write('ASCII Table');
 WriteLn;
 WriteLn;
 Write(' Dec Ch Dec');
 Write(' Ch Dec Ch ');
 WriteLn;

 { Fill in table of 3 columns }
 FOR I := 32 TO 63 DO BEGIN
 J := I;
 Write(Gap, J: 3, Gap, Gap);
 Write(CHR(J));
 Write(Gap, Gap);
 J := I + 32;
 Write(Gap, J: 3, Gap, Gap);
 Write(CHR(J));
 Write(Gap, Gap);
 J := I + 64;
 Write(Gap, J: 3, Gap, Gap);
 Write(CHR(J));
 WriteLn;
 END { FOR };
END { AsciiTable }.

ASCII Table

 Dec Ch Dec Ch Dec Ch

 32 64 @ 96 `

 33 ! 65 A 97 a

 34 " 66 B 98 b

 35 # 67 C 99 c

 36 $ 68 D 100 d

 37 % 69 E 101 e

 38 & 70 F 102 f

 39 ' 71 G 103 g

 40 (72 H 104 h

 41) 73 I 105 i

 42 * 74 J 106 j

 43 + 75 K 107 k

 44 , 76 L 108 l

 45 - 77 M 109 m

 46 . 78 N 110 n

 47 / 79 O 111 o

 48 0 80 P 112 p

 49 1 81 Q 113 q

 50 2 82 R 114 r

 51 3 83 S 115 s

 52 4 84 T 116 t

 53 5 85 U 117 u

 54 6 86 V 118 v

 55 7 87 W 119 w

 56 8 88 X 120 x

 57 9 89 Y 121 y

 58 : 90 Z 122 z

 59 ; 91 [123 {

 60 < 92 \ 124 |

 61 = 93] 125 }

 62 > 94 ^ 126 ~

 63 ? 95 _ 127 �

Section 6.6 Character Type 189

The Four Function Calculator example described in Chapter 6 of the Principles
book (Fig. 6.25) used character variables. The corresponding Pascal program,
Calculate, is shown in Figure 6.16.

Figure 6.16 The Pascal program for a Four Function Calculator
with REAL values

PROGRAM Calculate;
(* Four Function Calculator of Real Values *)

VAR Value, Result: REAL;
 Ch, Action, Return: CHAR;

BEGIN
Write('Calculate Real Numbers ');
WriteLn;
Write('End with ''Q'' for quit ');
WriteLn;
Write(' Enter a value: ');
WriteLn;
Read(Result);
Read(Return); { to "eat" Carriage Return }
Write(' Enter an action: ');
WriteLn;
Read(Action);
Read(Return); { to "eat" Carriage Return }

Action := UpCase(Action);
WHILE (Action <> 'Q') DO BEGIN

Write(' Enter a value ');
WriteLn;
Read (Value);
Read(Return); { to "eat" CarriageReturn }
IF (Action = '+') OR (Action = 'A') THEN

Result := Result + Value
ELSE IF (Action = '-') OR (Action = 'S') THEN

Result := Result - Value
ELSE IF (Action = '*') OR (Action = 'M') THEN

Result := Result * Value
ELSE IF (Action = '/') OR (Action = 'D') THEN

Result := Result / Value
ELSE

Write('Error ')
{ END IF };
Write(' The Result is ');
Write(Result: 10:3); WriteLn;
Write(' Enter an action ');
WriteLn;
Read(Action);

190 Chapter 6 Pascal with Bigger Blocks

Read(Return); { to "eat" Carriage Return }
Action := UpCase(Action);

END { WHILE };

WriteLn('End of Calculation ');

END { Calculate }.

The following is an example output from a typical run of program Calculate of
Figure 6.12.

Calculate Real Numbers
End with 'Q' for quit
 Enter a value
9.0
 Enter an action
/
 Enter a value
5.0
 The Result is 1.800
 Enter an action
*
 Enter a value
100
 The Result is 180.000
 Enter an action
+
 Enter a value
32
 The Result is 212.000
 Enter an action
q
End of Calculation

6.7 Boolean Type in Pascal

As we saw in the Principles book, the Logical type is useful in a number of
applications. In Pascal, that Logical type is actually called BOOLEAN type.
Data items or variables of type BOOLEAN can only have one of two values: TRUE
or FALSE. The following fragment of Pascal code illustrates declarations
involving the BOOLEAN type.

CONST T = TRUE;
F = FALSE;
YES = TRUE;
NO = FALSE;

VAR Male, Done, Over18, Increasing, Win: BOOLEAN;
Tall, Aged, Female, Triangle, Error: BOOLEAN;

Section 6.7 Boolean Type in Pascal 191

Based on these declarations, the following code fragment shows examples of
assignments involving BOOLEAN variables and values.

Male := TRUE;
Done := F;
Over18 := (Age > 18);
Aged := Over18;
Tall := (Height > 72);
Triangle := (Small + Mid > Large);

Notice that in three of the samples above, the value being assigned to a
BOOLEAN variable is the result of an arithmetic comparison. Operators on
BOOLEAN variables are the three logical operators AND, OR and NOT, as
illustrated below:

Equilateral := (A = B) AND (A = C);
Win := (S = 7) OR (S = 11);
Female := NOT Male;

The direct input and output of Boolean values is not possible in Pascal. Input
can be done indirectly by entering the characters 'T' and 'F' as follows:

(* ReadBool *)
Write('Enter truth value. ');
Write('Give T or F only ');
Read(Reply);
Read(Return);
Write(Reply);
Reply := UpCase(Reply);
WHILE (Reply <> 'T') AND (Reply <> 'F') DO BEGIN

WriteLn('T or F only ');
Read(Reply); Write(Reply);

END;
IF Reply = 'T' THEN

Truth := TRUE
ELSE

Truth := FALSE;

This ReadBool algorithm can easily be put in the form of a useful Pascal
procedure. Similarly, the output of the BOOLEAN value of variable Val can
also be done indirectly by the following statements.

(* WriteBool *)
IF Val THEN

Write('TRUE ')
ELSE

Write('FALSE ');

These statements will be used to define a Pascal procedure WriteBool(Val).

Boolean expressions, consisting of complex combinations of variables and
operations, are commonly used in both WHILE and IF statements. For clarity,
parentheses should be used, especially when BOOLEAN and arithmetic
expressions are mixed. For example:

192 Chapter 6 Pascal with Bigger Blocks

((Inning <= 9) OR (Score1 = Score2)) AND NOT Rain

Truth tables for any given Boolean expressions can be created by nesting loops as
in the program TruthTable, shown in Figure 6.17, which proves DeMorgan's
Theorem:

(NOT P) AND (NOT Q) = NOT(P OR Q)

Notice in that TruthTable program the BOOLEAN Loop control variables,
First and Second. The nested loops provide all four possible combinations of
these two BOOLEAN values. An expression having three such variables would
require a further nest and would produce eight combinations. Four variables
would produce sixteen rows, and in general n variables produce 2n rows.

Figure 6.17 The Pascal program TruthTable

PROGRAM TruthTable;
(* Shows Boolean data and operations *)

VAR First, Second, Left, Right: BOOLEAN;

PROCEDURE WriteBool(Val: BOOLEAN);

BEGIN
IF Val THEN

Write('TRUE ')
ELSE

Write('FALSE ');
END; { WriteBool }

BEGIN
{ Write Header }
WriteLn('Proof of DeMorgan theorem ');
WriteLn;
WriteLn('First Second Left Right ');
WriteLn('----- ------ ----- ----- ');

{ Loop through all truth value combinations }
FOR First := FALSE TO TRUE DO

FOR Second := FALSE TO TRUE DO BEGIN
{ Write out Input values of First, Second }
WriteBool(First);
WriteBool(Second);

{ Separate Input values from the output }
Write('| ');

{ DeMorgan’s Result }
Left := (NOT First) AND (NOT Second);
Right := NOT(First OR Second);

Section 6.7 Boolean Type in Pascal 193

{ Write out the new values of Left, Right }
WriteBool(Left);
WriteBool(Right);
WriteLn;

END { Inner FOR };
END { TruthTable }.

Notice the use of procedure WriteBool whose statements were defined earlier.
These statements were used to declare a procedure by enclosing them in a
BEGIN-END pair, and preceding this with a procedure header. The following is
the output obtained after executing the TruthTable program.

Proof of DeMorgan theorem

First Second Left Right
----- ------ ----- -----
FALSE FALSE | TRUE TRUE
FALSE TRUE | FALSE FALSE
TRUE FALSE | FALSE FALSE
TRUE TRUE | FALSE FALSE

6.8 More Types

Big Types in Pascal

So far, the only numeric types that we have discussed have been INTEGER, and
REAL. These types describe numbers of a very common range. For example,
values of type INTEGER include all whole numbers between –32,768 and 32,767
(represented in 16 bits). Variables of this INTEGER type are however
insufficient for many purposes, such as counting the population in even a small
town!

In order to be able to represent larger integer values in Pascal, another type,
LONGINT, is available. This type uses 32 bits and covers the range going from
–2,147,483,648 to 2,147,483,647. The usual Integer operations (Read, Write, +,
-, *, DIV, MOD, etc.) apply to these long integers as well. Similarly, for
numbers beyond the range of REAL numbers, –3.38×1038 to 3.38×1038, there is a
DOUBLE data type that covers the range –1.79×10308 to 1.79×10308.

Even Bigger Types

If the extended type LONGINT is still insufficient for our needs, then it is
possible to create even larger types. As an example, we will create a new type
called ELINTEGER (Extra Long Integer), which will express integers of one
hundred or even more digits. Later, we will create an entire Library, called
ELintegerLib, with various arithmetic operations on these very long

194 Chapter 6 Pascal with Bigger Blocks

integers. The operations will not be in their usual form (+, -, *, /), but rather in
the form of procedures such as:

ELintegerAdd(I, J, K);

which adds the ELINTEGER I to ELINTEGER J, and produces another
ELINTEGER K. The symbols for comparison (<, =, <=, etc.) of ELINTEGERs
would also be in the form of procedures such as:

Equals(I, J), or IsLessThan(K, 2)

Smaller Types

Often, some variables need only take only a few values. For example, there are
only two sexes (male, female), four directions (North, East, South and West),
seven days of the week (Sunday, Monday, etc.) and twelve months of the year
(January, February, etc.) In the older programming languages, these were often
coded as small INTEGER values. For example, Sunday was assigned a value of
0, Monday was 1, Tuesday was 2, etc. and Saturday was assigned a 6. This led
to more readable statements. For example, instead of writing

IF Date = 5 THEN ...,

it is clearer to write

IF Date = Friday THEN ...".

Pascal programs could still use such a mechanism, but it has problems. For
example, we could define the following constants:

CONST
Male = 0; Female = 1;
North = 0; East = 1;
South = 2; West = 3;
Sun = 0; Mon = 1;
Tue = 2; Wed = 3;
Thur = 4; Fri = 5;
Sat = 6;

All of these are of the same numeric type, and so if an error is made by
comparing two different types, for example:

IF Date = Male...

it cannot be detected by the system. This particular error of comparing Date
with Male is also very difficult for humans to detect. The English language
and its two meanings for “Date” could cause considerable confusion. Pascal,
with its emphasis on type-checking, has an alternative mechanism that
allows a programmer to create different types for each different kind of data
being worked with. The next section shows how to create types for working
with the above kinds of data, including SexType, DirectionType, and
WeekDayType.

Section 6.9 Programmer Defined Types 195

6.9 Programmer Defined Types

Enumerated Types

It is often convenient for a programmer to define a new data type. It allows the
“real-world” to be reflected in its model represented by a program, through
data types that match more closely the real world data than the INTEGER,
REAL, CHAR data types that are part of Pascal. Oftentimes, the programmer
defined data types have only a few values and can thus be defined by listing, or
enumerating their possible values. An enumerated type is defined by giving
names, using distinct identifiers, to each possible value of the data type. The
syntax of such a definition is shown in the syntax diagram shown in Figure 6.18.

Figure 6.18 Syntax diagram for declaration of an Enumerated
Type

) ;IdentIdentTYPE =

,EnumeratedType

(

We could, for example, define the seven weekdays by the following type:

TYPE WeekDay = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

The values of this WeekDay type (Sun, Mon, etc.) need not all consist of three
characters. Here, we have used a uniform size for consistency only, and in fact
we could have used the complete names.

We give below some examples of declarations of some other common enumerated
types. Notice that the word TYPE must precede the declarations. For
documentation purposes, the name of the type often includes the word Type.
Sometimes the name of the type is written entirely in capitals.

TYPE
SexType = (MALE, FEMALE);
GradeType = (F, D, C, B, A);
DirectionType = (North, East, South, West);
DeviceKind = (keyboard, printer, console);
SEASON = (Spring, Summer, Fall, Winter);
StateType = (increasing, decreasing, still);
ProfType = (Lecturer, Assistant,

Associate, Full);
CoinType = (penny, nickel, dime,

quarter, halfDollar);
StudentType = (Freshman, Sophomore, Junior,

Senior, Graduate);
MonthType = (January, February, March, April,

196 Chapter 6 Pascal with Bigger Blocks

May, June, July, August,
September,

October, November, December);

Values of the type are defined by unique identifiers. The order in which the
identifiers are given is by definition an increasing order. This ordering makes it
possible to compare the values of an enumerated type. For example, with the
above declarations, January is less than February, and a grade of F is less
than a grade of D. Order may not always be important, for example, although
MALE was listed before FEMALE and therefore would compare as less than, this
is really an accidental effect of having to list something first. Also the same
identifier cannot appear in two types. For example, if Sun is a value of type
WeekDay, then it cannot also be enumerated in some other type, for example, in
a SolarSystemType.

Once the enumerated types have been defined, they can be used to declare
variables, in the same manner that built-in types, like INTEGER, etc. can be
used.

VAR Day, Date, today, tomorrow: WeekDay;
 Grade, G, MaxGrade, Final, average: GradeType;
 Month: MonthType;
 State: StateType;

There are only a few possible actions on values of enumerated types, including
assignment and comparison as shown in the following fragments of code. Notice
how readable they are.

Day := Mon;
IF Day = Fri THEN

...
IF Grade <= D THEN

...
IF (May < Month) AND (Month < July) THEN

...
WHILE State = increasing DO

...

There are also a few standard functions that operate on enumerated types:

SUCC(X)

This function returns the successor value, i.e. the next value in the
enumeration list. For example, if Day has the value Tue then
SUCC(Day) has the value Wed. If Day has the value Sat then
SUCC(Day) is an error since Sat has no successor in the enumeration
list.

Pred(X)

This function is the converse of SUCC and returns the predecessor
value in the enumeration list. For example, the value of
PRED(Wed) is Tue, while PRED(Sun) is an error.

Section 6.9 Programmer Defined Types 197

Using this for example, the following program fragment loops through all the
working days of the week.

Day := Mon;
WHILE Day <= Fri DO BEGIN

(* body *)
Day := SUCC(Day);

END;

In the real world, some data types are really cyclic and contrary to the way in
which the SUCC function works, the successor of Sat is Sun. The next value of
such a cyclic type can easily be determined by adding a test, as in the following
piece of program.

(* Determine The Next Day *)
IF Today = Sat THEN

Tomorrow := Sun
ELSE

Tomorrow := SUCC(Today);

Standard function ORD that we have seen applied to character values, also
operates on enumerated types.

ORD(X)

is a function that indicates the order or position of X (with the first
value being 0). Thus, the value of ORD(January) is 0 and
ORD(December) yields 11.

There are no standard input and output operations for enumerated types, but
they can easily be created. For example, the following fragment of program can
output the weekday value of the variable Day.

(* Output of weekday for given Day of WeekDay type *)
IF Day = Sun THEN

Write('Sunday ')
ELSE IF Day = Mon THEN

Write('Monday ')
ELSE IF Day = Tue THEN

Write('Tuesday ')
ELSE IF Day = Wed THEN

Write('Wednesday ')
ELSE IF Day = Thu THEN

Write('Thursday ')
ELSE IF Day = Fri THEN

Write('Friday ')
ELSE IF Day = Sat THEN

Write('Saturday ')
ELSE (* none of the above *)

Write('Error ');

198 Chapter 6 Pascal with Bigger Blocks

Subrange Types In Pascal

Another programmer defined type, the subrange type is a type whose values
are restricted to a contiguous subrange of values of another type—the base type.
The values must be consecutive, one following the other in order. For example,
the digits 0 to 9 form a subrange of the INTEGER type. Similarly, the days Mon
to Fri are a subrange of the WeekDay type. Subrange types are declared in the
following manner:

TYPE typename = Minvalue .. Maxvalue;

where Minvalue is less than Maxvalue, and both are constants of the base
type.

Examples of declarations of subrange types are:

TYPE DayOfMonth = 1..31;
 MidWeekType = Mon..Fri;
 YearType = 1900..2000;
 BitType = 0..1;
 DiceThrow = 1..6;
 DecimalDigit = 0..9;
 VHFChannels = 2..13;
 WorkHours = 0..168;
 CountDownTyp = -10..0 ;
 GradeType = 'A' ..'F';
 PercentType = 0..100; (* INTEGER not REAL *)

VAR Year, BirthYear: YearType;
 MidTerm, Project: PercentType;

The set of operations that are applicable to a subrange type is “inherited” from
its base type, the type of the original range. Subranges cannot involve REAL
values.

It is also possible to use characters as the base type of a subrange type. The
GradeType shown above includes the five characters from A to F (including E).

Error checking is another important feature of the Pascal subrange types. If a
value outside of the range is assigned to a variable of a subrange type, this
causes an error message, warning the programmer of an unintended situation.
For example, if the variable HoursWorked were of type WorkHours, then it
would be limited to the number of hours in a week (7 × 24 = 168). If a value
higher than this were assigned to it, an error would occur.

6.10 Strings in Pascal

Strings are sequences of characters. In Pascal, they are described by the built-in
type STRING, which is limited to a maximum of 255 characters. Shorter strings
than this may be declared by specifying an explicit maximum length. For
example, if 25 characters were sufficient to represent a person’s name, a
variable Name could be declared of type STRING[25]. Variables to hold

Section 6.10 Strings in Pascal 199

sentences could be declared of type STRING[80], etc. As we have already seen,
constant string values are sandwiched between single quotes. String constants
and variables are declared in a manner similar to the following examples.

CONST SPACE = ' ';
PERIOD = '.';
GREETING = 'Hello there ';
PROMPT = 'Enter first name, then last ';

VAR LastName, FirstName, FullName,
Initial, Street: STRING[25];
Address, Sentence, Saying, Poem: STRING;

Simple actions on strings include input and output through Read and Write,
as well as assignment. Concatenation is the operation of joining together
two strings, and is denoted by a plus (+) sign between the two strings. For
example, the body of a very short program that uses the above declarations,
and reads two input strings (separated by a Return) is:

BEGIN
Write(PROMPT);
Read(FirstName, LastName);
FullName := FirstName + SPACE + LastName;
Write(GREETING, FullName, PERIOD);

END.

Besides Read and Write there are a number of standard functions and
procedures that operate on strings. Among these, the following three functions
are used often.

LENGTH(Str)

is a function that counts the number of characters in string Str. For
example, Length(Greeting) has the value 12.

POS(Pat, Str)

is a function that searches for the occurrence of a sequence of
characters, the pattern Pat, in the string Str, and returns the
position of the first occurrence of that pattern if there is one,
otherwise it returns the value of zero (0). For example:
POS(SPACE, 'John Motil') returns the value of 5.
POS('Mo' , 'John Motil') returns the value of 6.
POS('mo' , 'John Motil') returns the value of 0.

COPY(Str, Position, Num)

is a function that returns a substring of Num characters from string
Str beginning at Position; this copy action does not modify string
Str. For example:
Copy('Mississippi', 4, 3) returns the value 'sis'.

As an example of a standard procedure operating on Strings, we’ll look at
Delete.

Delete(Str, Position, Num)

200 Chapter 6 Pascal with Bigger Blocks

is a procedure (not a function) that deletes from string Str a number
of characters Num beginning at Position. For example, after the two
actions:

Str := 'Pascal';
Delete(Str, 3, 3);

the value of Str will be 'Pal' .

Comparisons of Strings use the alphabetic order (called lexicographic
ordering). One string is less than another if it comes before it alphabetically
(according to the ASCII order). Equality requires exactly the same characters,
including blanks. For example:

'Age' < 'Beauty' because Age comes before Beauty
'able' > 'Able' because capital letters come
earlier

in the ASCII order
'Rose' <> 'Rose ' because the second Rose has a space
'love' < 'lovely' because love is shorter

Figure 6.19 shows a Pascal program NameParse that demonstrates some of the
operations that can be performed on strings.

Figure 6.19 Pascal program demonstrating string actions

PROGRAM NameParse;
(* Demonstrates some String actions *)
(* that involve names of people *)

TYPE ShortString = STRING[25];

CONST Space = ' ';
Hyphen = '-';
Greeting = 'Hello there ';

VAR FirstName, LastName, FullName: ShortString;
 Count, NameCount, Gap: INTEGER;

BEGIN
Write('Enter the number of names: ');
ReadLn(NameCount);
WriteLn;
WHILE NameCount >0 DO BEGIN

Write('Enter a name, last name first: ');
Read(FullName);
Gap := POS(Space, FullName); { NOTE }
IF Gap > 0 THEN BEGIN

LastName := Copy(FullName, 1, Gap);
Delete(FullName, 1, Gap); { NOTE }
FirstName := FullName;
IF Length(LastName) <= 4 THEN

Section 6.10 Strings in Pascal 201

WriteLn('That is a short last name');
IF Pos(Hyphen, LastName) <> 0 THEN

WriteLn('That is a hyphenated name');
IF FirstName = 'Bill' THEN { etc., etc. }

WriteLn('Bill is a good name ');
FullName := FirstName + Space + LastName;
WriteLn(Greeting, FullName);
WriteLn;

END { IF };
NameCount := NameCount - 1;

END { WHILE };
END { NameParse }.

Program NameParse asks for the number of input names, and repeatedly
applies the same processing to all the input names. It reads a full name made of
two parts separated by a space. It locates the space, and copies the first part of
the string into the last name, and the last part of the string into the first name.
It then checks the last name and the first name and outputs a number of
messages, before displaying a greeting with the recomposed full name.

The output from a typical run of program NameParse follows.

Enter the number of names 3

Enter a name, last name first Motil John
Hello there John Motil

Enter a name, last name first Gates Bill
Bill is a good name
Hello there Bill Gates

Enter a name, last name first Do-Dah Bill
That is a hyphenated name
Bill is a good name
Hello there Bill Do-Dah

6.11 Simple Files in Pascal

A file is an ordered collection of data, such as the characters of a text, the item
counts in an inventory, or the records of a patient. Files are often used to store
large amounts of data on secondary storage devices (such as tapes or disks). The
data in files may be accessed and manipulated by programs.

The simplest kind of files are sequential files where the data may be read
exactly in the order in which they were written. Files that are organized so
that their data can be accessed in any order are known as random access files
and are much more complex. Random access files are not treated in this book.

Sequential files can be viewed as long linear tapes similar to audio or video
tapes. At present, all files will be of type TEXT, which means that they are a

202 Chapter 6 Pascal with Bigger Blocks

sequence of ASCII characters, where INTEGER and REAL values are represented
in the form that they appear in Pascal programs (as a sequence of characters).

Actions on files involve reading and writing, opening and closing, and assigning.
Apart from the standard input and output files, which correspond to the
keyboard and the screen Text Window, files are accessed through f i l e
variables of type TEXT. Thus, an actual file on a disk might be referred to
through a variable, like DataFile. To do this, we need a declaration like:

VAR DataFile: TEXT;

This file variable must be associated to the actual data file through a call to
the procedure Assign. For example:

Assign(DataFile, 'Rain.Data');

associates the file whose name on disk is Rain.Data to the file variable
DataFile.

Before data values can be read from a file, the file must be prepared by
executing a Reset statement referencing the file variable, in this case:

Reset(DataFile);

Following this, each Read statement aimed at the data in the file, must
include the name of the file variable as its first argument. Thus, the statement

Read(DataFile, Value);

will read the next data item from the file associated with DataFile, the disk
file Rain.Data, into the variable Value. Finally when all the data has been
read (often towards the end of a program), the file associated with DataFile
is closed with a statement of the form:

Close(DataFile);

When reading a file, it is possible to detect the end of the file, by using a call to
the Boolean function EOF:

EOF(DataFile)

and this condition should be tested before reading a value.

Figure 6.20 compares two versions of the program Mean that we saw earlier in
this chapter. Mean1, on the left, takes data from the keyboard, whereas
Mean2 reads the data from the file Rain.Data, and echoes the values read to
the screen. Note the differences between the two programs carefully, extra
blank lines have been inserted into Mean1 so corresponding statements are
always side-by-side.

Section 6.11 Simple Files in Pascal 203

Figure 6.20 Comparison of two versions of the Mean program
PROGRAM Mean1;
(* Finds the Mean of many values
*)
(* Uses a terminating sandwich *)

VAR Terminator, Sum,
 Value, Count: INTEGER;
 Mean: REAL;

BEGIN
 { Setup for entering many
values }

 Write('Enter a terminal value:
');
 Read(Terminator);
 WriteLn('Enter all the values:
');

 { Do the Mean computation }
 Sum := 0;
 Count := 0;
 Read(Value);
 WHILE Value <> Terminator DO
BEGIN

 Sum := Sum + Value;
 Count := Count + 1;
 Read(Value);
 END { WHILE };
 Mean := Sum / Count;

 { Output the Resulting Mean }
 Write('The mean value is ');
 Write(Mean: 7:2);

END { Mean1 }.

PROGRAM Mean2;
(* Finds the Mean of many values
*)
(* Uses simple text files *)

VAR Terminator, Sum,
 Value, Count: INTEGER;
 Mean: REAL;
 DataFile: TEXT;
BEGIN
 { Setup for entering many
values }
 Assign(DataFile, 'Rain.Data');
 Reset(DataFile);
 Read(DataFile, Terminator);
 WriteLn('The values are: ');

 { Do the Mean computation }
 Sum := 0;
 Count := 0;
 Read(DataFile, Value);
 WHILE Value <> Terminator DO
BEGIN
 WriteLn(Value:4); { ECHO }
 Sum := Sum + Value;
 Count := Count + 1;
 Read(DataFile, Value);
 END { WHILE };
 Mean := Sum / Count;

 { Output the resulting Mean }
 Write('The mean value is ');
 Write(Mean: 7:2);
 Close(DataFile);
END { Mean2 }.

Figure 6.21 shows a comparison of the outputs of Mean1 and Mean2.

204 Chapter 6 Pascal with Bigger Blocks

Figure 6.21 Comparison of results from Mean1 and Mean2

Output obtained from Mean1

Enter a terminal value: -1
Enter all the values
11
22
33
44
55
66
77
88
99
-1

The mean value is 55.00

Contents of file Rain.Data
-1
11
22
33
44
55
66
77
88
99
-1

Output obtained from Mean2

The values are:
 11
 22
 33
 44
 55
 66
 77
 88
 99
The mean value is 55.00

Writing values into a file is similar to the reading process just shown. As with
reading, we need a file variable, which is declared in the same manner:

VAR OutputFile: TEXT;

The actual file name is then assigned to the file variable, through a call to the
procedure Assign:

Assign(OutputFile, 'Results.Data');

In this case, the output from the program will be written to a file called
Results.Data. The file is then opened or prepared for use by the statement:

Rewrite(OutputFile);

which sets or rewinds the file to its beginning, so that the data written by the
program will overwrite any values that already existed in the file. Each
Write statement to this file must include the file variable as its first argument,
as in:

Write(OutputFile, Value);

Each execution of such a Write statement appends a value to the end of the
file.

Section 6.11 Simple Files in Pascal 205

Finally, when all the writing is completed, i.e. the end of the program is
reached, the file is closed with a statement identical to what we saw above for
input files.

Close(OutputFile);

More Files: Input and Output

A very common situation in computing involves reading from one file, doing
some actions, and then writing to another file. As an example, suppose we wish
to take a text file of mixed upper and lower case letters and convert it to
entirely upper case letters. This might be useful for counting occurrences of
words, or checking spelling. We can then search for the one capitalized word
(such as “THE”) rather than the many variations of the word (such as “The” or
“the” or “THE”).

Figure 6.22 Program Capper

PROGRAM Capper;
(* Capitalizes all lowercase letters *)
VAR Ch: CHAR;

 InFile, OutFile: TEXT;
BEGIN

Assign(InFile, 'Source.Data');
Reset(InFile);
Assign(OutFile, 'Target.Data');
Rewrite(OutFile);
WriteLn(OutFile, 'Header');
WHILE NOT EOF(InFile) DO BEGIN

Read(InFile, Ch);
Ch := UpCase(Ch);
Write(Ch); { to the Screen }
Write(OutFile, Ch);

END { WHILE };
Close(InFile);
Close(OutFile);

END { Capper }.

The program Capper, shown in Figure 6.22, converts all the characters of some
input file, Source.Data, into upper case characters and puts these into an
output file called Target.Data. Again, file variables InFile and OutFile
are used to refer to the actual files 'Source.Data' and 'Target.Data',
external to the program. The first two calls to the Assign procedure establish
this correspondence.

The main body of the program is a simple loop which reads a character from
the input file, capitalizes it, echoes it to the screen, and writes it to the output
file. This process is repeated as long as the end of the input file is not read

WHILE NOT EOF(InFile) DO

206 Chapter 6 Pascal with Bigger Blocks

Finally, once this loop is finished, the two files are closed.

Figure 6.23 Program Flasher

PROGRAM Flasher;
(* Flash-card Questions & Answers *)
(* Shows the input of a file name *)

VAR Question, Answer, Reply, FileName: STRING;
 QAfile: TEXT;

BEGIN
{ Enter file name from keyboard }
Write('Enter name of QA file: ');
ReadLn(FileName);
Assign(QAfile, FileName);
Reset(QAfile);
WriteLn;

{ Do question and answer }
ReadLn(QAfile, Question);
WHILE Question <> 'END' DO BEGIN

WriteLn(Question);
ReadLn(Reply);
ReadLn(QAfile, Answer);
IF Reply = Answer THEN

WriteLn('Correct ')
ELSE

WriteLn('It is ', Answer);
ReadLn(QAfile, Question);
WriteLn;

 END { WHILE };
END { Flasher }.

Program Flasher, shown in Figure 6.23, is a program that asks people questions
and analyzes their answers. The questions are read from a file, while the
answers are read from the keyboard. The program compares this response to
the answer stored in the file, and indicates whether it is correct (and if not, it
provides the correct answer). The Questions and Answers file alternates
questions and answers lines, as in the following example.

What is 1 + 1?
2
Who is buried in Grant's tomb?
Grant and his wife
What is the chemical symbol for gold?
Au
END

Questions and answers here are simply strings that are read one at a time by
ReadLn(QAFile, Question), which stops reading at the End-of-line or

Section 6.11 Simple Files in Pascal 207

Return character. A typical run of this program follows with the user's
response in bold.

Enter name of QA file: MiscQA
1 + 1 =
2
Correct
Who is buried in Grant's tomb?
Grant
It is Grant and his wife
What is the chemical symbol for gold?
AG
It is Au

A important feature of this program is that it can access different files which
could correspond to different categories or levels of questions. The name of the
actual file to be accessed is input by the user in the first few lines of the
program body. It is read into string variable FileName, and file variable
QAFile is assigned this name. This mechanism is important because the
program need not be recompiled for each different input file.

6.12 Modification of Programs

As we have mentioned when we introduced the seven-step problem solving
method in the Principles book, it is very common to modify programs. For
example, the Bisection algorithm, discussed in Chapter 6 of the Principles
book, could be modified in two very different ways. One version, SquareRoot,
finds the square root of any real number. Another version, Guesser, plays a
guessing game involving only integers. Both versions shown in Figure 6.24, are
based on the same general Bisection algorithm. These two algorithms are so
similar, and yet so different.

Figure 6.24 Two versions of the Bisection algorithm

Input X
Set High to X
Set Low to 0
Set SqRoot to

(High + Low) / 2
While (SqRoot SqRoot) ≠ X

If (SqRoot SqRoot) > X
Set High to SqRoot

Else
Set Low to SqRoot

Set SqRoot to
(High + Low) / 2

Output SqRoot

Input X
Set High limit
Set Low limit
Set Guess to

(High + Low) / 2
While Guess is not correct

If Guess is too high
Lower High limit

Else
Raise Low Limit

Set Guess to
(High + Low) / 2

Output Guess

208 Chapter 6 Pascal with Bigger Blocks

The bisection algorithm basically operates by taking two limiting values (Low
and High) and adjusting them successively to bracket the required result with
ever closer bounds. The adjustment is made by finding the mid-point between
the Low and High, and assigning that to one or the other of these extreme
points. This effectively halves the “search space” at each adjustment, and the
process converges very quickly to a solution. The two corresponding Pascal
programs and their output from typical runs are shown in Figure 6.25.

Figure 6.25 The Pascal programs SquareRoot and Guessor
PROGRAM SquareRoot;
(* Find Square Root by Bisection
*)

CONST Err = 0.001;

VAR High, Low, Mid, X: REAL;

BEGIN
 Write('Enter a value: ');
 Read(X);
 WriteLn;
 Low := 0.0;
 High := X;
 Mid := (Low + High) / 2.;

 WHILE ABS(Mid*Mid - X) > Err DO
BEGIN

 IF (Mid * Mid) > X THEN
 High := Mid
 ELSE
 Low := Mid;
 WriteLn(Mid: 7: 3);
 Mid := (Low + High) / 2.;
 END (* WHILE *);
 Write('The square root is ');
 Write(Mid: 7: 3);
END { Square Root }.

PROGRAM Guesser;
(* Guessing using Bisection *)

CONST Max = 1024;

VAR High, Low, Mid,
 Trial, NumTrials: INTEGER;
 Reply, Return: CHAR;
BEGIN
 WriteLn('Pick an integer ');
 WriteLn('from 0 to 1023. ');
 WriteLn;
 Low := 0;
 High := Max;
 Mid := (Low + High) DIV 2;
 Trial := 1;
 WHILE Trial <= 10 DO BEGIN
 Write('Is it less than ');
 Write(Mid:4, ' ');
 Read(Reply);
 Read(Return);
 Reply := UpCase(Reply);
 IF Reply = 'Y' THEN
 High := Mid
 ELSE
 Low := Mid;
 Mid := (Low + High) DIV 2;
 Trial := Trial + 1;
 END { WHILE };
 WriteLn;
 Write('Your number was ', Mid:
4);
END { Guesser }.

Section 6.12 Modification of Programs 209

Enter a value 2.0

 1.000
 1.500
 1.250
 1.375
 1.437
 1.406
 1.422

The square root is 1.414

Pick an integer
from 0 to 1023

Is it less than 512 y
Is it less than 256 n
Is it less than 384 n
Is it less than 448 y
Is it less than 416 n
Is it less than 432 y
Is it less than 424 y
Is it less than 420 n
Is it less than 422 n
Is it less than 423 y

Your number was 422

The SquareRoot program involves REAL numbers, and finds that value of the
midpoint whose square is near the input value within a given error amount. In
this case the error amount was fixed as a constant at 0.001. For the given input
value of 2 it required 7 iterations before finally arriving at the square root. For
larger values and smaller errors it would also require more iterations before
halting. The intermediate values shown in the given trace were produced by
the Write statement inside the loop.

The Guesser program is very similar, but it involves INTEGER values and
differs in details. The easiest detail to miss is the divide operation, which
must be changed from / to DIV. Two new variables, Reply (a CHAR) and Trial
(another INTEGER) also need to be introduced. This program does a fixed
number of trials (log2 Max or 10 in this case), so the WHILE loop could have been
replaced by a FOR loop.

We have used extra blank lines to keep the programs main structure in parallel.
A comparison of these two programs shows that Guesser is very interactive, or
input-output intensive, whereas SquareRoot is much less interactive, with a
single input and a single output (the trace given with all the intermediate
values is not necessary).

As usual, it is possible to extend these programs. For example, Guesser could
be generalized to guess within any number of trials (not just the 10 trials of the
range 0 to 1023). The number of trials could be defined as a constant, or could be
entered by the user. The program could also be made robust by providing more
detailed instructions (if requested), and by testing the input responses. This
will be done in the next section.

6.13 Programming Style

Documentation

Style in programming may seem unnecessary, but it is actually very important.
Documentation and comments may seem obvious at the time they are written,

210 Chapter 6 Pascal with Bigger Blocks

but at a later time, when we have forgotten the details, any information is very
valuable. As we progressed in this book, we have already incorporated many
of the concepts of style into our programs. For example, we have often used
comments, and we have carefully selected suitable variable names. We have
also used indentation constantly and consistently. Remember, consistency of
form is often better than the details of the particular way in which the
statements are arranged.

We’ll illustrate the principles of internal documentation with a program
example. Internal documentation is the element of documentation that is part
of the program text. Our example, program Guesser2, is shown in Figure 6.26
together with the output obtained from a typical run. At the beginning of the
program (in a starred box) is a brief statement of the goal of the program, the
author and date of creation. Other relevant information could also be put
there, including a list of inputs and outputs, special limitations, assumptions
and warnings. The starred boxes should not be overused, but there should be one
at the beginning of each program, and also at the beginning of each procedure
and function.

Figure 6.26 Documented version of Guesser
PROGRAM Guesser2;
(***)
(* Simple Guessing Game using Bisection *)
(* Shows fancy layout and documentation *)
(* by A. Nonymous on February 28, 1994 *)
(***)

CONST YES = 'Y';
 NO = 'N';
 NUM = 10; { Number of tries }
 MAX = 1024; { Highest value }
 { MAX is 2 to the power NUM }

VAR High, Low, Mid,
 Trial, NumTrials: INTEGER;
 Reply, Return: CHAR;

BEGIN
 { Offer instructions to user }
 WriteLn('Do you want instructions? ');
 Write('If so enter Y (for yes): ');
 ReadLn(Reply);

 WriteLn;

Do you want
instructions?
If so enter Y (for
yes): y

This is a guessing game
You may pick any
integer
From 0 to 1023
It will be guessed in
10 tries

Pick a number
Trial 1
Is it less than 512? y

Trial 2
Is it less than 256? n

Trial 3
Is it less than 384? m

Enter Y or N only: b

Enter Y or N only: n

Section 6.13 Programming Style 211

 { Provide instructions if requested }
 Reply := UpCase(Reply);
 IF Reply = YES THEN BEGIN
 WriteLn('This is a guessing game ');
 WriteLn('You may pick any integer');
 WriteLn('From 0 to ', MAX-1: 4);
 WriteLn('It will be guessed in ');
 WriteLn(NUM: 2, ' tries ');
 WriteLn;
 END { instructions };

 { Initialize }
 WriteLn('Pick a number ');
 Low := 0;
 High := MAX;
 Mid := (Low + High) DIV 2;
 Trial := 1;

 { Loop a number of times }
 WHILE Trial <= NUM DO BEGIN
 { Prompt for an input }
 WriteLn('Trial ', Trial: 2);

 Write('Is it less than ');

Trial 4
Is it less than 448? y

Trial 5
Is it less than 416? n

Trial 6
Is it less than 432? y

Trial 7
Is it less than 424? y

Trial 8
Is it less than 420? n

Trial 9
Is it less than 422? n

Trial 10
Is it less than 423? y

Your number was 422

 Write(Mid: 4, '? ');
 ReadLn(Reply);
 Reply := UpCase(Reply);

 { Test for correct input }
 WHILE (Reply <> YES) AND
 (Reply <> NO) DO BEGIN
 Write('Enter Y or N only: ');
 ReadLn(Reply);
 Reply := UpCase(Reply);
 END { WHILE wrong input };
 WriteLn;

 { Adjust the middle value }
 IF Reply = YES THEN
 High := Mid
 ELSE
 Low := Mid;
 Mid := (Low + High) DIV 2;
 Trial := Trial + 1;
 END { WHILE };

 { Output the final guess }
 Write('Your number was ');
 Write(Mid: 4);

END { Guesser2 }.

The two constants YES and NO (better than Y and N) are used for the
convenience of reading. The number of trials, NUM, and the highest value, MAX,
are also declared as constants for the flexibility they offer: with them, it is
easy to change the game to work with other ranges. This method of allowing

212 Chapter 6 Pascal with Bigger Blocks

easy change of “constants” is called parameterization, and is very important in
large production programs, where there may be many occurrences of a constant.
The relationship between the parameters NUM and MAX is also given as a
comment for convenience of modification. Note that we have used capital
letters to write the constants names. This is part of our style, and makes it
possible to differentiate between variables and constants rather easily.

The main program has gaps which break it up into “chunks”, which are easier
to comprehend when reading. Each chunk is preceded by a comment describing
what is done in the chunk (not how it is done). These comments alone form a
high-level algorithm:

{ Offer instructions to user }
{ Provide instructions if requested }
{ Initialize }
{ Loop a number of times }
{ Prompt for an input }
{ Test for correct input }
{ Adjust the middle value }
{ Output the final guess }

Notice also the “friendly” nature of the dialogue as shown to the right of the
program:

it offers to help with instructions,

it reports the trial number,

it prompts the user,

it separates the trials,

it forgives bad inputs.

Moderation is as important with documentation as it is with everything in life.
Too much documentation may be overwhelming, and too little may be useless.

Further Guidelines for Identifiers

We already know that identifiers chosen for naming variables, constants,
procedures, functions and programs cannot be Pascal keywords. The compiler
will prevent us from making that mistake. However, to avoid confusion it is
also wise not to choose identifiers that are names of standard procedures or
functions. If you do, the system will accept it but you won’t be able to use the
standard item anymore as it is hidden by your new declaration.

We have seen that capitalizing the names of constants is useful because it
allows us not to confuse variables and constants when reading the program. We
encourage you to capitalize the first letter of variables, and to keep your
identifiers reasonably short. Long identifiers like

Textwithnogapsisalsoveryhardtoread,

are a pain. When an identifier is made of several words, the first letter of each
word should be capitalized as

Section 6.13 Programming Style 213

InterestRate, OverTime, CountOfSheep

Identifiers should only comprise letters and digits. Apart from rare exceptions,
very short names should not be used at all

A, B, C, I, J, X1, X2

Instead, meaningful short names should be used:

Sum, Index, Top, Difference, Root1, Root2

Procedure names should have the first letter capitalized and be commands
(verbs):

Sort, ComputeCost, Search

Function names should be nouns, as they represent a value:

Tangent, Volume, CompoundInterest

Type names should contain the word Type or its root, or end with T

BitType, WeekdayTyp, AccountT, EmployeeT

In all the programs, spaces should be used inside lines to make the text more
readable. In particular, assignment signs and arithmetic operators should be
preceded and followed by a single space:

Y1 := SIN(3.14159 * X / 180.0);

In procedure and function calls, parameters should be spaced as in the example:

Divide(First, Second, Quotient, Remainder);

A Bad Style Horror Story

The program shown in Figure 6.27 actually runs as it stands, and was designed in
earnest by a person with very little style. We have made only very minor
changes to it. It is severely unfriendly. We’re sure that by looking at it, you can
indicate a number of things that are not done well, and that you can suggest
improvements as well. Do not try to fix it up—it is not worth repairing. It’s the
kind of program that must be redone completely.

Figure 6.27 The mean Mean program

PROGRAM MeanMean;
(* Mean Unfriendly program *)
(* Try it; You'll hate it *)
CONST ZERO=0; ONE=1;
VAR I, C, N, X, S, true: INTEGER;
LABEL OUT;
BEGIN
Write ('HI. I''M YOUR FRIEND');
Write ('TO HELP YOU AVERAGE'); WriteLN;
Write ('HOW MANY INPUTS DO YOU HAVE');
Read (N);
S := 0;

214 Chapter 6 Pascal with Bigger Blocks

REPEAT WriteLn;
Write ('IMPUT COUNT '); WriteLn;
Read (C);
Write ('INPUT X '); Read(X);
Write ('ECHO VALUE'); Write (X: 5);
S := S + X DIV N;
IF (C = N)
THEN BEGIN
Write (S, 10);
goto out;
END;
IF (X = -99) THEN BEGIN
S := S - X DIV N;
Write (S: 10);
goto out; END;
Write ('DO YOU WANT ANOTHER VALUE?'); WriteLn;
Write ('TYPE 1 IF TRUE 0 IF FALSE.'); WriteLn;
Read (true);
UNTIL true = 0;
out: ;
END.

A typical output produced by an execution of this program follows.

HI. I'M YOUR FRIENDTO HELP YOU AVERAGE
HOW MANY INPUTS DO YOU HAVE3

IMPUT COUNT
1
INPUT X 1
ECHO VALUE 1DO YOU WANT ANOTHER VALUE?
TYPE 1 IF TRUE 0 IF FALSE.
1

IMPUT COUNT
2
INPUT X 3
ECHO VALUE 3DO YOU WANT ANOTHER VALUE?
TYPE 1 IF TRUE 0 IF FALSE.
1

IMPUT COUNT
3
INPUT X 5
ECHO VALUE 5 2

Section 6.13 Programming Style 215

Criticism of the MeanMean Program

This is a severely unfriendly program both for the computer user, and also for
any programmer who must maintain it. Unfortunately, it’s bad programs like
this one that need the most maintenance. It supposedly computes the mean
value (but doesn't say so). It is actually a mean program, hostile, treacherous
and awful!

The writer of this computerized trash probably has an attitude problem that
leads to the program being even unfriendly when intending to be friendly. The
chatty, condescending prompts “I'm your friend to help you average” are not
necessary. The user could not care less. The text prompts in complete uppercase
letters are less readable than if they were done in lower case, or even better, in
mixed upper and lowercase letters. Even with all these prompts there is no
indication to the user that the program expects integers only and provides an
approximate answer.

The user is first prompted to input the number of input values, this is awkward.
As you know, the program could have used a special end of data marker value
to help the user. In fact there is a similar provision for terminating the
program with a preset terminating value of –99. Unfortunately, that value
cannot be changed without modifying the program, and the user is never told
about it! Furthermore, after entering each value the user is asked if another
value is to be entered. This repetition—taking two lines yet—is bothersome
after a very short while. The response to this question would more naturally be
Yes or No, or even Y or N, instead of typing 1 or 0.

The prompt “IMPUT COUNT” is not at all clear. The prompt to enter a value is
“INPUT X”, but the user has no knowledge or interest in X. Also the spelling
error becomes bothersome after it has been repeated several times.

You’ll note that every value is echoed, which is good practice, but each echo is
preceded by the message ECHO VALUE which is unnecessary. The final average
however has no message indicating that it is the output.

So much from the user's point of view. Sometimes a program is user unfriendly
because the programmer wishes to make the program simpler or shorter.
However, here, the inside program view is equally horrible. The program is
very difficult to read, as it has no indentation and no gaps to separate its
various parts. The variable names are very primitive and not meaningful. The
one attempt at a longer name, true, is confusing because this name describes one
of the standard constants of type BOOLEAN (but here true is of type INTEGER!)
There is very little useful documentation, and the little documentation given is
useless and confusing.

Finally, even though this program runs, it suffers from some errors and will give
bad results at times. The method of finding the average proceeds by INTEGER
division (which truncates the result) of each value before accumulating that
value. Every value that is input after the “INPUT X” prompt is divided by the
stated number of inputs and added to the sum, which gives a very poor
approximation of the mean. To save time and improve accuracy, the values
should all be summed first and then divided once. The resulting output should

216 Chapter 6 Pascal with Bigger Blocks

have been either a REAL value, or an INTEGER value with an indication of
whether it is exact or approximate.

As a final bad point, take the case when the program is terminated by the input
of –99. By the time this is detected, the value has already been added to the
average, so it must now be subtracted. Definitely not a nice feature.

The only good thing that we may say is that there are many prompts.
However, these are often very cryptic, badly phrased, or misleading...

6.14 Errors in Programming

In every complex creative activity, errors are possible, and programming is no
exception. In programming, the errors are often called “bugs” and the process of
finding and removing them is called “debugging.” Unfortunately, even the
smallest program bug can cause a serious failure.

There are a number of different sources of errors, often classified as:

• Syntactic (compile-time errors)

• Semantic (execution or run-time errors)

• Logical (performance errors)

Syntactic Errors

arise from improper forms in a language involving:

Spelling INTERGER vs. INTEGER

Punctuation Misplaced semicolons

Typography letter O instead of digit 0

Sequence declaration part before uses part

Spacing space between the : and the = in
the assignment :=

Type mismatch assigning a REAL to a CHAR

Omission of declarations or ENDs

Misuse using IF, END etc. as names for
variables

Incompleteness not closing quotes or parentheses

Most of the syntactic errors are detected by the Pascal compiler, and so are
fairly easy to find.

Execution Errors

are not found by the compiler, but do appear during a run.

Section 6.14 Errors in Programming 217

Some examples of these “run-time” errors involve:

Undefined variables (not initialized)

Unexpected value (value out of range)

Invalid operations (divide by zero)

Infinite loop (non-halting program)

Logical Errors

are those which may not prevent a program from running, but do produce wrong
results and may go undetected. Some such errors include:

Off by one (looping one too many or too few times)

Wrong comparison (less than instead of greater than)

Wrong operation (increasing instead of decreasing)

Reversed operation (equal vs. not equal)

Side effect (inadvertent change of variable)

Other Errors

may also be encountered, these include:

• Misunderstanding of functions,

• Misuse of operating system, and

• Misbehavior of the computer.

6.15 Debugging, Testing, Proving

Debugging is the process of finding and “exterminating” program bugs. Keep in
mind that this process can be very time-consuming. One method of debugging is
to trace the program, by hand, using some simple values. However, for
anything other than the simplest of programs, this can be very tedious and
error-prone. Another useful technique is to add output instructions to the
running program at strategic points. In this manner, a Write statement can be
inserted at various points to output some information. When looking for a bug,
the Bisection method may be used to place the Write statements (first, in the
middle of the program, then in the middle of one of the program halves, etc.),
in order to successively narrow down the possibilities.

As a first step to debugging, it is essential to find out where the action flows.
This can be indicated by writing tracing comments to form a trail, such as:

INITIALIZING
ENTERING FIRST LOOP
LEAVING SWAP SUB

218 Chapter 6 Pascal with Bigger Blocks

Once the flow of actions has been determined, we can output w h a t values
variables have at intermediate points. This is also done through the use of
Write statements, yielding a computer-generated trace like:

A = 2

or

X IS 5 AND Y IS 7

It is also possible to use Write statements to generate a trace of how variables
are related, for example, in a loop invariant. This can done with code sequences
such as:

IF (S + B) = (I * I) THEN
WriteLn('S + B = I * I');

Similar statement sequences can also be used to trace when a particular
condition occurs:

IF (X MOD 2) = 0 THEN
WriteLn('X IS NOW EVEN');

IF Y >= 0 THEN
WriteLn('Y IS POSITIVE');

Such conditional output statements can also be very useful in reducing the
amount of output generated inside a loop to an amount that can easily be
examined, as:

IF I = 3 THEN
WriteLn('I = ', I: 1, ' J = ', J: 9);

After the debugging Write statements have served their purpose, they can be
removed (or commented out, or embedded in a Selection form for further use).

TESTING is the process of checking, or verifying to determine proper
performance. It is a means for gaining confidence in a program’s results. The
fact that a program works for one set of input data, does not necessarily mean
that it will work for another set. One path through a program is not
necessarily typical of all other paths.

One method of testing a program is to try all possible sets of data (checking all
paths), but this is often impractical because too many combinations are
necessary. For example, if there are 20 logical conditions in a program (either
in Selections or Loops), then there may be over a million different paths!

Another method is to test using random values, but such values may be too
typical, and may not include critical values. The best and most reliable way to
test is to use carefully selected values based both on the particular problem
being solved by the program, and the way in which the algorithm is structured.
The selection of such test data is independent of the programming language and
is discussed in the Principles book. Some data should be simple and easy to
verify by hand computation. Some data should test for extreme or boundary
values (such as zero, very large and very small values). Some data should be
faulty or wrong, to check whether the program is robust and fails “softly.” It is

Section 6.15 Debugging, Testing, Proving 219

also helpful if the test values are unique, each value testing and isolating one
program part at a time.

Unfortunately, as the old saying goes, testing can reveal the presence of bugs,
but only in the simplest cases can it reveal their absence.

In theory, the only really sure way is to prove the correctness of programs much
as one proves mathematically the correctness of a geometrical theorem.
Unfortunately, such techniques are very complex and are beyond the scope of
this book. However, informal use of assertions (including loop invariants) is a
step in the proper direction.

6.16 Chapter 6 Review

This Chapter mainly presented alternative ways of constructing more complex
programs. At the same time, new features of the Pascal programming language
were introduced.

These newly introduced forms included the CASE statement as an alternative to
the IF-THEN statement in special cases. However, the Selection form,
represented by the IF statement, remains more general. The WHILE statement
was shown to have two alternatives: the REPEAT statement and the FOR
statement. Again these extra repetition statements are not necessary, but may
be convenient.

Two new data types, CHAR and BOOLEAN, were also introduced through
examples. Deeper nests, especially of the Repetition form, were considered
with examples related to plotting functions.

Programming style, program layout and program documentation were
considered. Examples were given to show how to produce good readable
programs. A badly styled program was also discussed to show how difficult
things can be when programming style goes lacking. Program modification,
program testing, and program debugging were also discussed.

6.17 Chapter 6 Problems

1. For to While
Write the following FOR statement in an equivalent WHILE form:

FOR C := FIRST TO LAST DO S1;

2. Repeat to While
Write the following REPEAT statement in an equivalent WHILE form:

REPEAT S1; UNTIL C1.

220 Chapter 6 Pascal with Bigger Blocks

3. While to Repeat
Write the following WHILE statement in an equivalent REPEAT form:

WHILE C1 DO S1;

4. Case to Ifs
Write the following CASE in terms of the IF statement:

CASE E1 OF K1: S1; K2, K3: S2; K4: S3; S4; END

5. Char
Four successive character A, B, C and D are input to a program. Write
short pieces of program to compare these characters and to output
whether or not the following are true.

a. All the characters are digits.

b. None of the characters is a digit.

c. Some of the characters are vowels.

d. The characters are in increasing order.

e. There is no repetition within the sequence of characters.

6. Numeric Characters
Four successive characters E, F, G, H are input to a program. One of the
characters F, G or H could be a period; all the others are digits. Thus,
the sequence of characters can be interpreted as representing an amount
of money. Write a piece of program to compare the characters and to
output the value of the amount in cents. For example 1.25 is output as
125.

7. Logical evaluation
Given 5 logical variables P, Q, R, S and T, where P and Q both have the
value TRUE, and R and S both have the value FALSE, and the value of
T is undefined, evaluate the truth values of each of the following.

a. P OR (R AND T)

b. Q OR (R OR T)

c. R AND (S OR T)

d. P AND (T OR R)

e. Q AND NOT (S OR T)

Section 6.17 Chapter 6 Problems 221

8. More
Create Pascal programs for the following problem statements:

6.18 Chapter 6 Programming Problems

1 Gas

Create an algorithm that inputs sequences of two values Miles and Gals
representing the mileage and gallons of gasoline at a succession of
refills. The algorithm is to compute and output the immediate average
miles-per-gallon (labeled Short for short range), and also the overall
average mpg (since the beginning of the data), which is labeled Long
for long range. A typical input-output sequence follows (and should end
with negative mileage).

INPUTS OUTPUTS

Miles Gals Short Long

1000 20

1200 10 20 20

1500 20 15 16.67

...

2 GPA

The grade point average of a student is computed from all the course
grades G and units U. Corresponding to each grade is a numeric point P
(where A has 4 points, B has 3 points, etc.). The products of each grade
point and its number of units are then summed. This sum is divided by
the total number of units, to yield the grade point average. Create an
algorithm to compute the grade point average for a sequence of pairs of
values G, U (ending with negative values).

3 Speed

Create an algorithm to analyze the speed during a trip of N stops. At
each stop, the distance D and time T from the previous stop are
recorded. These pairs of values are then input to a program which
computes each velocity (V = D/T) and outputs it. It also ultimately
indicates the maximum speed on the trip, and the overall average
(total distance divided by total time).

SAMPLE RUN (N = 5)

222 Chapter 6 Pascal with Bigger Blocks

D T V

45 1 45

100 2 50

55 1 55

120 2 60 Avg = 380/8 = 47.5

60 2 30 Max = 60

4 Unbiased Mean

In some sports, a number of judges each ranks performance on a scale from
1 to 10. To adjust for biases, both the highest and lowest values are
eliminated before computing the average. Create an algorithm to
compute such an average for M judges on N performances.

5 More Plots
Modify the program SidePlotXY of this Chapter as follows:

a. Mark points on the axes.

b. Plot a third function.

c. Input the size of the grid.

6 Upright Plots
Create an “upright” plot program, similar to the SidePlotXY program
in this Chapter. Modify it as shown above.

7 Calendar
Create a program to print out a calendar for a month, given the number
of days in the month and the starting day of the week. Create a grid of
horizontal lines and vertical lines.

8 Encrypt-Decrypt
Create a program to input a file of characters, to encrypt it for security
purposes in such a way that it is not easily understandable and to
output it to another file. Then create another program that reconverts
the encrypted file and returns the original file. Your algorithm could a
simple arithmetic function on the ASCII values or use a random number
generator.

Section 6.18 Chapter 6 Programming Problems 223

9 Flasher2
Modify the Flasher program of this chapter to keep track of the number
of correct answers.

10 Binconvert

Create an algorithm to convert a sequence of binary input characters
(not integers) into their corresponding decimal values. For example,
1101 is the decimal 13

a) Write the algorithm, if the input is read from left to right (ending
with a period).

b) Write the algorithm, if the input is read from right to left (ending
with a blank).

11 When in Rome...

One method for converting an Arabic number into a Roman number is to
separately convert each digit (the units, tens, hundreds, and thousands
positions) as shown.

1 9 8 4

M CM LXXX IV

Write an algorithm that accepts as inputs any values up to 3999, and
outputs the corresponding Roman numbers.

a) Do this, if the number is entered digit by digit (least significant
digits first, like 4 8 9 1).

b) Do this, if the number is entered digit by digit (most significant
digits first, like 1 9 8 4).

c) Do this, if the number is entered as an integer, like 1984.

224 Chapter 6 Pascal with Bigger Blocks

6.19 Chapter 6 Programming Projects

Plotting Programs

Many interesting programming problems involving nests of loops can be
encountered in creating plots using a printer. The following plots should be
created in a general manner with the sizes entered at the beginning of execution.
Arrays are not necessary for any of these; later, some may be done more easily
using arrays.

1. Starbox

* * * * * * * * * *
* *
* *
* *
* *
* *
* * * * * * * * * *

2. Tic-Tac Grid

#
#
#

#
#
#

#
#
#
#

3. Diamond

 *
 * * *
 * * * * *
 * * * * * * *
 * * * * *
 * * *
 *

4. Pine Tree

 [
 [[[
 [[[[[
 [[[[[[[
 [[[[[[[[[

Section 6.19 Chapter 6 Programming Projects 225

 [[[
 [[[

5. Triangle1

1
12
123
1234
12345
123456
1234567
12345678

6. Triangle2

1
22
333
4444
55555
666666
7777777
88888888

7. Calendar

(given beginning weekday & month)

 S M T W T F S
 1 2 3 4

 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

8. Greeting (input 9)

(gap every 5 years)

Happy Anniversary
Happy Anniversary
Happy Anniversary
Happy Anniversary
Happy Anniversary

Happy Anniversary
Happy Anniversary
Happy Anniversary
Happy Anniversary

9. More Greetings

(given input age of 21)

Happy Birthday Happy Birthday

226 Chapter 6 Pascal with Bigger Blocks

Happy Birthday Happy Birthday
Happy Birthday Happy Birthday
Happy Birthday Happy Birthday
Happy Birthday Happy Birthday

Happy Birthday Happy Birthday
Happy Birthday Happy Birthday
Happy Birthday Happy Birthday
Happy Birthday Happy Birthday
Happy Birthday Happy Birthday

Happy Birthday

10. Checkered Grid

 * * * * * * * * * * * *
 * * * * * * * * * * * *
 * * * * * * * * * * * *
 * * * * * * * * *
 * * * * * * * * *
 * * * * * * * * *
 * * * * * * * * * * * *
 * * * * * * * * * * * *
 * * * * * * * * * * * *
 * * * * * * * * *
 * * * * * * * * *
 * * * * * * * * *
 * * * * * * * * * * * *
 * * * * * * * * * * * *
 * * * * * * * * * * * *

Modify Calculator

Modify the program Calculate given in this chapter in the following ways:

a. To include a call for Help (by entering action H) that just lists the
possible actions.

b. To accept the action = or t (for “type”) to output the result instead of
showing it after each action.

c. To allow actions to be also given by upper case characters.

d. To format the output in a better way.

e. To extend to other actions to include square root, trigonometric functions,
etc.

f. To have a “memory” similar to other hand-held calculators.

g. To have an “undo” command that “forgets” the previous action.

h. To do anything else you could find convenient in a calculator.

Section 6.19 Chapter 6 Programming Projects 227

Statistics (Rainfall)

Create an algorithm and the corresponding program to analyze the rainfall
over a period of any number of days. The rainfall figures (real numbers, giving
the daily amount of rain) are input in order, and end with a negative number.
The following group of “statistics” is computed as the numbers are read in (they
are not stored in arrays!).

1. MEAN is the average rainfall per day, computed by summing all the
amounts and dividing by the number of days.

2. MAX is the maximum amount of rain that fell in any day.

3. MAXDAY is a day on which the maximum rain fell.

4. MIN is the minimum amount of rain that fell in any day, not including
zero.

5. RANGE is the amount of variation in rainfall.

6. DRYDAYS is the number of days of no rainfall.

7. MAXCHANGE is the largest change in amount of rainfall between two
consecutive days.

8. MAXDROP is the largest drop in amount of rainfall between two
consecutive days.

9. MEANCHANGE is the average of the absolute amount of change between
two consecutive days.

10. VARIANCE is the difference between the mean of the square of the
values and the square of the mean of the values.

11. DEVIATION is the square root of the variance.

12. SECONDMAX is the second largest value of rainfall.

13. DRYRUN is the length of the largest period of days without rain.

14. WETRUN is the length of the largest period of days with rain.

15. MAXWEEK is the week which had the most accumulated rainfall.

16. WETRIPLE is the largest accumulated rainfall over three consecutive
days.

Project Plotup

Create a program to plot a function in the proper orientation, with the Y axis
vertical and the X axis horizontal (which is just the opposite of the
SidePlotXY of this chapter). Then modify it in some of the following ways.

a. Draw the X and Y axes, using the plus "+" symbol.

b. Label the above axes.

c. Extend the plot to two coordinates (allowing negative X values).

d. Extend the plot to four coordinates.

228 Chapter 6 Pascal with Bigger Blocks

e. Allow for a second function to be plotted.

f. Enclose the entire plot within a box.

g. Add your own modifications.

A possible plot format follows:
 Y
 +

* + * 10
* + *
* + * 8
* + *
* + * 6
* + *
* + * 4
* + *
* + * 2
* + *
* ++++++++++++++++++++0+++++++++++++++++++*+ X
* + *
* + *
* + *
* + *
* + *
* + *
* + *
* + *
* + *
* + *

 0 2 4 6 8 10

BSD: Big Statistics Data

This project will involve files of data values and statistical actions on these
values. You will be given a file of rainfall amounts (in millimeters) for any
number of days, and you will compute the following, in order, with the program
growing in complexity as the project continues!

Reference:

Chapter 6 of the Principles book and this chapter.

1. ECHO.

First create a simple Pascal program that reads INTEGER values from a
file called Rain.DATA until it reaches a negative value, which is the
terminating value. This program simply reads the values and then
writes them out to the screen.

Section 6.19 Chapter 6 Programming Projects 229

2. COUNT.

Modify (or grow) the above program so that while it reads and writes
the input values, it counts them.

3. MEAN.

Modify the above program to find the mean value of all the data
values, and to output this value.

4. MAX.

Modify again the above program to find the maximum value of all the
data values, and indicate also on what day this fell.

5. MIN.

Modify the above program to find the minimum non-zero amount of rain
that fell in one day, and also show on what day this fell.

6. WETDAYS.

Modify the program again to count the number of days of rainfall.

7. WETRUN.

Modify it again to find the length of the largest period of days with
rain.

8. Time Permitting: See other possible modifications in the STATISTICS
programming project above.

BTD: Big Text Data

This project will involve files of data values and statistical actions on these
values. You will be given a file of text (such as the Gettysburg Address) and you
will compute the following, in order, with the program growing!

Reference:

Chapter 6 of the Principles book and this chapter.

1. ECHO.

First create a simple Pascal program which reads Character values
from a file called Gettysburg.Text until it reaches a dollar sign,
which is the terminating value. This program simply reads the values
and then writes them out to the screen.

2. COUNT.

Modify (or grow) the above program so that while it reads and writes
the characters, it counts them. Modify it also to count the number of
words, lines and sentences.

3. MEAN.

Modify the above program to find the mean or average word length and
to output this value. Find also the average number of words per line.

230 Chapter 6 Pascal with Bigger Blocks

4. MAX.

Modify again the above program to find the length of the longest word.

5. MIN.

Modify the above program to find the length of the shortest sentence.

6. VOWELS.

Modify the program again to count the number of vowels in a file.

7. MORE.

Indicate other actions of the above kinds that could be computed for a
text file. Do one or two of these.

SMC: Small Monthly Calendar

You are to plan a program and code it to output a calendar of a single month
(similar to the Calendar Planner Application). You will input the number of
days N in the month and the day of the week F (where F = 1 on Sunday, F = 2 on
Monday, etc.) on which the first of the month falls. For example, the following
calendar is for a month with N = 30 days, with the first day occurring on a
Saturday, so F = 7. You may use the Pascal FOR statement now; arrays
(whatever they are) are not necessary yet, but may be used at a later time.

Sun Mon Tue Wed Thu Fri Sat
--- --- --- --- --- --- ---
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26 27 28 29
 30

Modify this program in the following ways,:

a. Putting a border around the outside,

b. Putting each day into a box (of plusses)

c. Making the size of each box or cell variable

d. Putting more months

Chapter Outline 231

Chapter 7 Better Blocks: Procedures and
Libraries

This chapter presents the creation and use of Pascal subprograms, i.e. the
Pascal procedures and functions. Subprograms are often part of libraries, and
the chapter introduces the Pascal units that are used to implement libraries.

Chapter Overview
7.1 Preview..233
7.2 Procedures in Pascal..233

Use and Definition..233
7.3 Syntax of Subprogram Forms......................................235

Procedures in Pascal..235
More Examples of Pascal Procedures...........................239
Power Procedure..242

7.4 Passing Parameters...242
In, Out, In and Out, and Neither................................242
BigChange..242
BigPay...245
A Miscellany of procedures..248
A Second Miscellany of procedures.............................250

7.5 Procedures with Char, Boolean and Other Types........252
Generalized Item Types...255

7.6 Procedures with User-Defined types..........................256
7.7 More on Passing Parameters.......................................259
7.8 Nested Procedures...261
7.9 Functions in Pascal..264

Many Functions...266
7.10 SubPrograms: Variations on a theme..........................269
7.11 Recursion in Pascal..272
7.12 Libraries in Pascal..275

Units..275
UtilityLib: a custom-made utilities Library...............278
Other Libraries: DateLib, BitLib, CharLib................281
The Interaction of Many Libraries..............................288

7.13 Function and Procedure Types.....................................291
7.14 Top-Down Development..296

Pay Again...296
7.15 Chapter 7 Review...299
7.16 Chapter 7 Problems...300
7.17 Chapter 7 Programming Problems..............................302

Random Projects..302
DateLib..305
Create Libraries..306
FinanceLib..307

232 Chapter 7 Better Blocks: Procedures and Libraries

Change Again: Done Properly with Procedures..........308
MeanLib...308

7.18 Chapter 7 Programming Projects.................................310
DMT: DeMilitarizeTime Lab with Procedures...........310
SLL: Small Library Project..311

Section 7.1 Preview 233

7.1 Preview

The encapsulation of both actions and data types into subprograms is a very
important part of computing, and is treated in great detail in this chapter,
which makes it one of the most important chapters.

First, procedures and their syntax are considered, and numerous examples are
given. Nested procedures are also treated, with more examples. The concept of
functions as limited procedures is considered next, along with many examples.

In Pascal, libraries, which are collections of related subprograms, are created
through the units mechanism. Units consist of an Interface part, which is a
specification of w h a t the procedures in the unit do, and an Implementation
part, which indicates how the procedures do what they do. The creation of
libraries through Pascal units is described, again with many complete
examples.

In this chapter, you will learn how to create the kinds of procedures, functions
and libraries that you have been using and re-using in previous chapters.

7.2 Procedures in Pascal

Use and Definition

A procedure is a very useful “black box” that encapsulates (comprises all the
elements of) a subalgorithm. Once a procedure is declared, it may be used
whenever the subalgorithm is required. First, consider the procedure Max,
which operates on two data values, X and Y and produces a value M, which is
the maximum of the two values X and Y. Max can then be used, for example, to
find the maximum of three values A, B and C as in the body of the program Max3
from Chapter 7 of the Principles book (Fig. 7.7):

Read(A, B, C);
Max(A, B, E);
Max(E, C, L);
WriteLn(L);

Here, Max is first used to set E to the maximum of the values A and B. Then Max
is used again to set L to the maximum of the values E and C. In other words, we
have used the actions encapsulated in Max twice to build the larger operation of
finding the maximum of three values.

We will use the procedure Divide, which is a little more complex than Max, to
illustrate how procedures are defined in Pascal. Divide operates on a
numerator Num and denominator Den, and produces a quotient Quot and
remainder Rem. A call to Divide is denoted as Divide(Num, Den, Quot,
Rem). We can use Divide in many different ways as shown in the following
examples.

Conversion of many units is done conveniently by Divide as:

234 Chapter 7 Better Blocks: Procedures and Libraries

Divide(Footage, 5280, Miles, Feet);
Divide(TotalOz, 16, Pounds, Ounces);

Two INTEGER values can be averaged simply by:

(* Mean of Two INTEGER Values *)
Divide(A + B, 2, Mean2, Rem);
Write(Mean2: 3);
IF Rem = 0 THEN

Write(' exactly')
ELSE

Write(' approximately');

It is simple to determine whether Year is a leap year with:

(* Simple Leap: Fails for 1900 *)
Divide(Year, 4, Q, Remainder);
IF Remainder = 0 THEN

WriteLn(Year: 4, ' is a leap year')
ELSE

WriteLn(Year: 4, ' is not a leap year');

The algorithm for computing the check digit in the ISBN, the International
Book Number, is described in Chapter 3 of the Principles book. The check digit
is computed from the weighted sum WtSum of the first nine digits of the number,
D1, D2, D3, D4, D5, D6, D7, D8, D9, as follows.

(* ISBN Check Digit Computation *)
WtSum := D1 + 2*D2 + 3*D3 + 4*D4 + 5*D5 +

 6*D6 + 7*D7 + 8*D8 + 9*D9;
Divide(WtSum, 11, Q, Check);
IF Check = 10 THEN

Write('Check digit is X')
ELSE

Write('Check digit is ', Check:1);

In Figure 7.1, Divide is described in four different ways. The top two
representations are taken from Chapter 7 of the Principles book. The dataflow
diagram shows the four parameters of which two are passed in and two are
passed out. The data space diagram shows the actual space occupied by the
variables associated with the procedure Divide. Also shown is the
pseudocode of the procedure, from which is seen that it makes use of a
temporary variable C, and that this variable is private to the procedure and
cannot be accessed by any of the programs that use Divide.

Section 7.2 Procedures in Pascal 235

Figure 7.1 Procedure descriptions

PROCEDURE Divide(Num, Den: INTEGER;
 VAR Quot, Rem: INTEGER);
 VAR
 Count: INTEGER;
BEGIN
 Rem := Num;
 Count := 0;
 WHILE Rem >= Den DO
 BEGIN
 Inc(Count);
 Dec(Rem, Den);
 END;
 Quot := Count;
END;

Pascal definition

Quotient Remainder

Numerator Divisor

N D

Q R
Divide

Dataflow diagram

PROCEDURE Name

 (Parameter list);

 Local Objects

BEGIN

 Actions

END;

Template

Divide(N, D, Q, R):
 Set R to N
 Set C to 0
 While R ≥ D loop
 Set C to C + 1
 Set R to R - D
 Set Q to C

CN
D

Q
R

Dataspace diagram

The template for the Pascal definition of a procedure is shown at the bottom
left of Figure 7.1. From the template, we see that the first part of the procedure
consists of its name, which should be descriptive of the procedure’s purpose.
This is followed by a parameter list, which must specify all the parameters,
their names, data type, and whether they are being passed in or passed out.
Then comes a declaration part for the local variables, which are hidden
within the procedure. Finally, there is a series of statements that describe the
actions performed in the body of the procedure. Finally, in the bottom right
quadrant of Figure 7.1, the complete Pascal definition of the Divide procedure,
with more descriptive names for all the variables, is shown so that its
correspondence with the template can be seen.

7.3 Syntax of Subprogram Forms

Procedures in Pascal

As we saw in the preceding section, procedures are a very convenient and
powerful form of abstraction. We can use them without burdening our minds
with the details of how they carry out their purpose. Viewed from the user’s
standpoint, a procedure has a name and a list of parameters. There are three
kinds of parameters:

236 Chapter 7 Better Blocks: Procedures and Libraries

• Input parameters—data values are passed into the procedure; in
Divide, Num and Den were input parameters.

• Output parameters—data values are passed out of the procedure; in
Divide, Quot and Rem are output parameters.

• Input-output parameters—data values are passed in and out of the
procedure.

Pascal implements only two parameter passing mechanisms: pass by value,
used for input parameters and pass by reference, used for both output and input-
output parameters. Consequently, there is no distinction made in Pascal
between output and input-output parameters. Comments could be used to
indicate the difference. It is often convenient to list the input parameters first
but this is not necessary.

Figure 7.2 Syntax diagrams for a ProcedureCall statement

ProcedureCall

ActualParameters

ActualParametersDesignator

ExpList)(

Figure 7.3 Syntax diagrams for a ProcedureDeclaration

ProcedureDeclaration
Declaration

BEGIN Statement END

;

;;ProcedureHeading

FormalParametersIdentPROCEDURE

ProcedureHeading

FPSection

;

)(

FormalParameters

FPSection

IdentListVAR Type:

Section 7.3 Syntax of Subprogram Forms 237

A procedure is invoked by a ProcedureCall statement, whose syntax is
defined by the diagrams in Figure 7.2. From these diagrams we see that a
ProcedureCall consists of the name of the procedure followed possibly by the
ActualParameters, which is a list of expressions separated by commas and
enclosed in parentheses. The procedure itself is specified by a
ProcedureDeclaration whose syntax is defined by the diagrams in Figure
7.3.

These diagrams show that a ProcedureDeclaration consists of a
ProcedureHeading, a semicolon, a Block and another semicolon. In turn, the
ProcedureHeading consists of the name of the procedure followed possibly by
the FormalParameters, which is essentially a list of identifiers and types
separated by semicolons and enclosed in parentheses. The close correspondence
between a ProcedureCall and a ProcedureHeading emphasizes the fact
the ProcedureCall is the point at which data communication between the
user of the procedure and the procedure itself takes place.

The distinction between input parameters, and output or input-output
parameters is made by prefixing the output or input-output parameters with
the word VAR. Thus the ProcedureHeading for the Divide procedure is as
shown in Figure 7.4.

Figure 7.4 The procedure heading for Divide

PROCEDURE Divide(Num, Den: INTEGER; VAR Quot, Rem: INTEGER);

Input parameters Output parameters

The correspondence between the ActualParameters of the ProcedureCall,
and the FormalParameters of the ProcedureHeading is on a strict left-to-
right one-by-one match. It is required that each actual parameter that
corresponds to an output or input-output parameter be a variable—it must not be
an expression. On the other hand, an actual parameter that corresponds to an
input parameter can be an expression or a constant. An example of such a
correspondence is given in Figure 7.5.

Figure 7.5 Correspondence of actual and formal parameters

Divide(A + B + C, 3, Mean3, Reminder);

PROCEDURE Divide(Num, Den: INTEGER; VAR Quot, Rem: INTEGER);

Procedure call

Procedure heading

When a procedure call is executed, the following Steps take place:

238 Chapter 7 Better Blocks: Procedures and Libraries

1. The caller’s point of return is recorded. This is the point at which
execution will continue after the procedure being called has completed
its actions, i.e. the next statement after the procedure call.

2. Space is allocated for all input parameters and local variables. Using
Divide as an example, space is allocated for the input parameters Num
and Den as well as for the internal variable Count.

3. The output and input-output formal parameters are linked to their
corresponding actual parameters in the procedure call. Quot is linked
to Mean3 and Rem is linked to Remainder.

4. The actions specified in the body of the procedure are performed.

5. The space allocated in Step 2 is deallocated.

6. Execution is resumed from the point of return recorded in Step 1.

This sequence of steps is discussed in greater detail in Chapter 7 of the
Principles book.

To summarize the material covered in this section, let’s look at a complete
program example. The complete Pascal program in Figure 7.6 is based on the
AverageExample algorithm found in Chapter 7 of the Principles book.

Figure 7.6 The AverageExample program

PROGRAM AverageExample;
(* Mean of two INTEGER Values *)

VAR First, Second, Average, Remainder: INTEGER;

 PROCEDURE Divide(Num, Den: INTEGER;
 VAR Quot, Rem: INTEGER);
 (* Integer division of Num by Den giving a
quotient
 Quot and a remainder Rem *)
 VAR Count: INTEGER;
 BEGIN
 Rem := Num;
 Count := 0;
 WHILE Rem >= Den DO BEGIN
 Inc(Count);
 Dec(Rem, Den);
 END;
 Quot := Count;
 END;

BEGIN
 Write('Give two integers: ');
 Read(First, Second);
 Divide(First + Second, 2, Average, Remainder);
 Write(Average: 3);
 IF Remainder = 0 THEN
 Write(' exactly ')

Section 7.3 Syntax of Subprogram Forms 239

 ELSE
 Write(' approximately');
END. { AverageExample }

This program starts by asking for and reading in two values, First and
Second. It then calls procedure Divide, which is declared earlier in the
program—a procedure must be declared in the program or in an external unit
before it can be used. The expression First + Second is evaluated, and the
resulting value is passed in to become the value of Num in Divide. Similarly,
the value 2 is passed into Den. In the procedure, the value in Num (the sum of
First and Second) is divided by Den (2) and the resulting quotient and
remainder are assigned to Quot and Rem. Since these are output parameters
that were linked to Average and Remainder in the procedure call, these two
variables are set to the quotient and remainder obtained in the division.
Execution then continues with the Write statement and the value of Average
is output. Then, either the word “exactly” is output, if the value of Remainder
is zero, otherwise the word “approximately” is output.

Notice that, in the declaration of procedure Divide, the word VAR has two
different meanings according to its context—depending on whether it occurs in a
procedure header or a declaration. Also note the use of standard procedures Inc
and Dec to increment and decrement a variable:

"Dec(Rem, Den)" is equivalent to "Rem := Rem - Den."

More Examples of Pascal Procedures

Figure 7.7 shows the program Change, which is based on the Change algorithm
of Chapter 7 of the Principles book, and contains a Divide subprogram. The
main program makes change, using a series of calls to the procedure Divide.
This program illustrates a number of concepts.

Procedure Divide is essentially the same as the one defined in the Average
example of Figure 7.6. Here, it has longer and more meaningful parameter and
variable names (Numerator instead of Num, and Remainder instead of Rem).
In the procedure header, each parameter is set on a separate line, with its type
and indication of method of passing. This header could also have been written
as one long line or as the following:

PROCEDURE Divide
(Numerator, Denominator: INTEGER; { pass-in }
VAR Quotient, Remainder: INTEGER); { pass-out}

The form shown in Figure 7.7 is more redundant than this one because it repeats
the INTEGER type and the VAR indicator. The form of Figure 7.7 is more
verbose but also less prone to error. In particular, one common programming error
occurs when a VAR precedes lists of output parameters of different types. The
VAR actually applies only to the parameters of the first list; it does not apply
to the other lists. For example, consider the header:

PROCEDURE SubProg(A, B, C: INTEGER;
VAR X, Y: INTEGER; Z: REAL)

240 Chapter 7 Better Blocks: Procedures and Libraries

Here the VAR indicator applies to parameters X and Y only; they are passed by
reference, but Z is passed by value. If it is intended for Z to be also passed by
reference, then it needs to be prefaced by another VAR, as in:

PROCEDURE SubProg(A, B, C: INTEGER;
VAR X, Y: INTEGER;
VAR Z: REAL)

Figure 7.7 The Pascal program Change

PROGRAM Change;
(* Calculate change to be given *)

VAR Tendered, Cost, Remainder,
 Quarters, Dimes, Nickels, Pennies: INTEGER;

 PROCEDURE Divide(Numerator: INTEGER; { input
parameter }
 Denominator: INTEGER; { input parameter }
 VAR Quotient: INTEGER; { output parameter
}
 VAR Remainder: INTEGER);{ output parameter
}
 VAR Count: INTEGER; { Local variable }
 BEGIN
 Remainder := Numerator;
 Count := 0;
 WHILE Remainder >= Denominator DO BEGIN
 Inc(Count);
 Dec(Remainder, Denominator);
 END;
 Quotient := Count;
 END; { Divide }

BEGIN
 { Input the transaction data }
 Write('Enter the amount tendered in cents ');
 Read(Tendered);
 Write('Enter the cost in cents ');
 Read(Cost);

 { Carry out the computation of change }
 Remainder := Tendered - Cost;
 Divide(Remainder, 25, Quarters, Remainder);
 Divide(Remainder, 10, Dimes, Remainder);
 Divide(Remainder, 5, Nickels, Pennies);

 { Output the results }
 WriteLn('The change is:');
 WriteLn(' ', Quarters: 2, ' quarters');
 WriteLn(' ', Dimes: 2, ' dimes');

Section 7.3 Syntax of Subprogram Forms 241

 WriteLn(' ', Nickels: 2, ' nickels');
 WriteLn(' ', Pennies: 2, ' pennies');
END. { Change }

As a good programming practice, it is very useful to include assertions of various
kinds in procedures. To make them more visible, it is common to write assertions
as comments with two asterisks. Examples of such useful assertions in
procedures are preconditions, postconditions and loop invariants.

Preconditions are assertions that describe the values of variables before
the procedure executes. For example, in the Divide procedure the
Denominator should not be zero, and also the Numerator should
exist, as:

(** PRE-COND: Numerator exists, **)
(** Denominator is not zero **)

Postconditions are assertions that describe the values of variables after
a procedure ends. For example, in Divide, after execution, the
Remainder will be non-negative and less than Denominator:

(** POST-COND: **)
(** 0 <= Remainder < Denominator **)

Loop Invariants are assertions that describe the behavior of a loop.
The loop in Divide has the invariant:

(** INVAR:
**)

(** Numerator = Denominator*Quotient + Remainder **)

Sometimes a postcondition is put near the end of the procedure. But a better
practice is to put it at the beginning of the procedure with the precondition, as
part of the procedure documentation. Also, when the assertions are obvious
they are often not shown.

Power Procedure

As another procedure example consider the useful exponentiation operation
that is not part of Pascal. This operation raises a number to some power. If the
power is a positive INTEGER then procedure PPower in Figure 7.8 multiplies
the number by itself the required number of times.

Figure 7.8 The PPower procedure

PROCEDURE PPower(Base: REAL; { input }
 Exponent: INTEGER; { input }
 VAR Result: REAL); { output }
(* Compute Base raised to the power Exponent
*)
(** PRE-COND: Exponent >= 0 **)
(** POST-COND: Result = Base to the power
Exponent **)

242 Chapter 7 Better Blocks: Procedures and Libraries

VAR Count: INTEGER;
BEGIN
 Result := 1.0;
 FOR Count := 1 TO Exponent DO
 Result := Result * Base;
END (* PPower *);

7.4 Passing Parameters

In, Out, In and Out, and Neither

Procedures are representations of independent algorithms and, as such, they
present a great many different aspects that cannot be conveyed by the study of
only a few examples. In this section, we will show many examples of small
procedures, to illustrate the great diversity of details.

In Pascal, data are passed from the actual parameters of a call statement to the
formal parameters of the called procedure, either by value or by reference.
Input parameters are passed by value, while output and input-output
parameters are passed by reference. It is very important that this distinction
be absolutely clear in your mind for two reasons:

• Expressions may only be passed to input parameters, while the actual
parameters corresponding to output and input-output parameters must
be variables.

• Variables passed to input parameters cannot have their values
changed by the procedure, whereas variables passed to output and
input-output parameters can, and generally do, have their values
changed by the procedure.

To make this distinction clear, appropriate comments can be put in the
procedure headers. The comments { input }, { output } and { through
} can be put at the right of the corresponding parameters, as we have done in
our previous examples and will do in this section. You are likely to find that
some of the procedures shown in the following programs can be used in your
programming. You can copy their definitions directly into your program, or you
can use them as models on which to base procedures tailored to your particular
needs. They could also be put into a Library and be available to all program.

BigChange
The first example, program BigChange in Figure 7.9, is an enlarged version of
the program Change shown earlier in Figure 7.7.

Figure 7.9 Program BigChange

PROGRAM BigChange;
(* Change maker with procedures *)

Section 7.4 Passing Parameters 243

 PROCEDURE Spellout(Number: INTEGER); { input }
 (* Write digits in English *)
 BEGIN
 CASE Number OF
 0: Write('zero'); 1: Write('one');
 2: Write('two'); 3: Write('three');
 4: Write('four'); 5: Write('five');
 6: Write('six'); 7: Write('seven');
 8: Write('eight'); 9: Write('nine')
 ELSE
 Write(Number: 3);
 END;
 END; { Spellout }

 PROCEDURE EnterPos(VAR PositiveNumber:
INTEGER);{ output }
 (* Ask for and return a positive integer *)
 VAR InputValue: INTEGER;
 BEGIN
 Write(' Enter a positive number ');
 Read(InputValue);
 WHILE InputValue < 0 DO BEGIN
 Write('Error in value; enter it again ');
 Read(InputValue);
 END;
 PositiveNumber := InputValue;
 END; { EnterPos }

PROCEDURE Divide(Numerator: INTEGER; { input }
 Denominator: INTEGER; { input }
 VAR Quotient: INTEGER; { output }
 VAR Remainder: INTEGER);{ output }
 (* Divide Numerator by Denominator and return
Quotient
 and Remainder *)
 VAR Count: INTEGER; { Local variable }
 BEGIN
 Remainder := Numerator;
 Count := 0;
 WHILE Remainder >= Denominator DO BEGIN
 Inc(Count);
 Dec(Remainder, Denominator);
 END;
 Quotient := Count;
 END; { Divide }
VAR Tendered, Cost, Remainder,
 Quarters, Dimes, Nickels, Pennies: INTEGER;
BEGIN
{ Input the transaction data }

244 Chapter 7 Better Blocks: Procedures and Libraries

 WriteLn('Enter the cost in cents:');
 EnterPos(Cost);
 WriteLn('Enter the amount tendered in cents:');
 EnterPos(Tendered);
{ Carry out the computation of change }
 Remainder := Tendered - Cost;
 Divide(Remainder, 25, Quarters, Remainder);
 Divide(Remainder, 10, Dimes, Remainder);
 Divide(Remainder, 5, Nickels, Pennies);
{ Output the results }
 WriteLn('The change is:');
 Write(' the number of quarters is ');
 SpellOut(Quarters);
 WriteLn;
 Write(' the number of dimes is ');
 SpellOut(Dimes);
 WriteLn;
 Write(' the number of nickels is ');
 SpellOut(Nickels);
 WriteLn;
 Write(' the number of pennies is ');
 SpellOut(Pennies);
 WriteLn;
END. { BigChange }

The BigChange program makes use of a number of different procedures:

Spellout(Number)—Number is an input parameter.
This procedure outputs small integer values, passed in Number, in
words instead of digits. Since Number is an input parameter, it is
passed by value. Only the numbers zero through nine are output as
words; outside that range, numerical characters are used.

Enterpos(PositiveNumber)—PositiveNumber is an output
parameter.
This procedure reads in an INTEGER called InputValue, tests whether
it is positive, and if not keeps prompting and reading in numbers. When
the input value is positive then it is assigned to whatever variable
PositiveNumber corresponds to in the calling program. The procedure
can be used to enter positive values for variables such as Age, Height,
IdNumber, etc. The VAR preceding the variable PositiveNumber
indicates passing by reference, as does the comment { output } at its
right. A second VAR precedes the declaration of the local variable
InputValue.

Divide(Numerator, Denominator, Quotient, Remainder)—
Numerator and Denominator are input parameters; Quotient and
Remainder are output parameters.
This procedure receives two values (Numerator and Denominator)
and passes out two values (Quotient and Remainder). It has been
discussed in detail and needs no further explanation.

Section 7.4 Passing Parameters 245

Following the declarations of these three procedures are the declarations of
the variables that are used in the program’s body. They are listed close to the
BEGIN because that is where they are used. Things that go together should be
together. There are seven variables all of type INTEGER.

Running this program for some typical data yields the following output:

Enter the cost:
Enter a positive number 13

Enter the amount tendered:
Enter a positive number 100

The change is:
the number of quarters is three
the number of dimes is one
the number of nickels is zero
the number of pennies is two

BigPay

Figure 7.10 Program BigPay

PROGRAM BigPay;
(* Compute the net pay and the deductions for a
number
 of employees, whose data is kept in input file
 Employee.Data. The results are given in a table
 and the total net pay is displayed *)
VAR Total: REAL;
 EmployeeNum, EmployeeCount: INTEGER;
 InputFile: TEXT;

 PROCEDURE GrossPay(VAR Pay: REAL);
 (* Compute the gross pay corresponding to the
data
 read from an open InputFile *)
 CONST Break = 40;

 VAR Hours, Rate: REAL;
 BEGIN
 ReadLn(InputFile, Hours);
 ReadLn(InputFile, Rate);
 Write(Hours:7:2, Rate:6:2);
 IF Hours < Break THEN
 Pay := Hours * Rate
 ELSE
 Pay := Break * Rate + 1.5 * (Hours - Break);
 END; { GrossPay }

 PROCEDURE GetMiscDeductions(VAR MiscDeductions:
REAL);
 (* Compute miscellaneous pay deductions *)

246 Chapter 7 Better Blocks: Procedures and Libraries

 CONST ConstMiscDeductions = 10.75;
 BEGIN
 MiscDeductions := ConstMiscDeductions;
 END; { GetMiscDeductions }

 PROCEDURE Deductions(Gross: REAL; VAR Total:
REAL);
 (* Compute the total pay deductions from a gross
pay *)
 CONST Rate = 0.27;

 VAR Tax, Misc: REAL;
 BEGIN
 Tax := Rate * Gross;
 GetMiscDeductions(Misc);
 Total := Tax + Misc;
 Write(Tax: 7: 2, Misc: 6: 2);
 END; { Deductions }

 PROCEDURE NetPay(VAR Amount: REAL);
 (* *)
 VAR Gross, Deduct, ActualPay: REAL;

 BEGIN
 GrossPay(Gross);
 Write(Gross: 7: 2);
 Deductions(Gross, Deduct);
 ActualPay := Gross - Deduct;
 WriteLn(ActualPay: 7: 2);
 Amount := Amount + ActualPay;
 END; { NetPay }

BEGIN
 Assign(InputFile, 'Employee.Data');
 Reset(InputFile);
 ReadLn(InputFile, EmployeeCount);

 Total := 0;
 WriteLn('Emp Hours Rate Gross Tax Misc
Actual');
 WriteLn('Num Pay Pay');
 FOR EmployeeNum := 1 TO EmployeeCount DO BEGIN
 Write(EmployeeNum: 3);
 NetPay(Total);
 END;

 Write('The total net pay is ');
 WriteLn(Total:7:2);

Section 7.4 Passing Parameters 247

 Close(InputFile);
END. { BigPay }

Our second example is a Pascal version of the BigPay algorithm we have seen
in Chapter 7 of the Principles book. This version is shown in Figure 7.10, and
has been written so that it obtains its data from a file whose layout is:

Number of employees
One data record showing hours worked and rate of pay
for each employee.

The actual contents of the file used with this example are the following.
10
45.5 11.25
40.0 6.50
37.5 10.25
43.0 11.50
40.0 4.50
42.4 14.50
40.0 6.75
40.0 8.50
52.0 4.50
28.5 4.50

These data correspond to ten employees with hours and rates of pay as shown.
The body of the program, between the last BEGIN-END pair, first sets up the
InputFile for reading, and reads the number of employees to be processed and
sets that in EmployeeCount. It then initializes the variable to accumulate
the total pay to zero, and outputs the header for the pay ledger that will be
produced. It then executes a loop once for each employee. In the body of the
loop, it prints the employee number, calls the procedure NetPay to calculate
the employee's net pay and add it to the total. The program includes the
following procedures:

GrossPay(Pay)
This procedure has a single output parameter, Pay, in which the
calculated gross pay is set. Hours worked and Rate of pay for the
employee are read from the InputFile and the Pay computed. Note
that since InputFile is a global name—it is not passed as a
parameter—it must be declared before the procedure is defined.

GetMiscDeductions(MiscDeductions)
This procedure has a single output parameter, MiscDeductions. In
fact, this procedure is a stub—a temporary version of the procedure used
during the development of the program. The details of the computation
of the miscellaneous deductions have not been elaborated; it just returns
a constant value of 10.75 for each employee, which is specified as a
constant.

Deductions(Gross, Total)
This procedure has one input parameter, Gross, and one output
parameter, Total. Note that the parameter Total is quite separate

248 Chapter 7 Better Blocks: Procedures and Libraries

from the variable Total declared at the top of the program. There are
two local variables, Tax and Misc.

NetPay(Amount)
This procedure has a single input-output parameter Amount to which
the ActualPay is added.

The result of running BigPay with the sample data in the input file is given in
Figure 7.11. You may note that the net pay total is not exact (it is one cent too
much); this is proof of the disadvantage of using REAL variables.

Figure 7.11 Results produced by BigPay

Emp Hours Rate Gross Tax Misc Actual
Num Pay Pay
 1 45.50 11.25 458.25 123.73 10.75 323.77
 2 40.00 6.50 260.00 70.20 10.75 179.05
 3 37.50 10.25 384.37 103.78 10.75 269.84
 4 43.00 11.50 464.50 125.42 10.75 328.33
 5 40.00 4.50 180.00 48.60 10.75 120.65
 6 42.40 14.50 583.60 157.57 10.75 415.28
 7 40.00 6.75 270.00 72.90 10.75 186.35
 8 40.00 8.50 340.00 91.80 10.75 237.45
 9 52.00 4.50 198.00 53.46 10.75 133.79
 10 28.50 4.50 128.25 34.63 10.75 82.87
The total net pay is 2277.39

A Miscellany of procedures

Figure 7.12 Program MiscProcs1

PROGRAM MiscProcs1;
(* Illustrates many procedures *)

 PROCEDURE Instructions;
 (* Prints brief instructions *)
 BEGIN
 WriteLn(' Enter percentages ');
 WriteLn(' as whole numbers. ');
 WriteLn(' End on a negative ');
 END { Instructions };

 PROCEDURE WriteStar15;
 (* Prints a line of 15 stars *)
 VAR Count: INTEGER;
 BEGIN
 FOR Count := 1 TO 15 DO
 Write('*');
 WriteLn;
 END { WriteStar15 };

Section 7.4 Passing Parameters 249

 PROCEDURE Decr(VAR Value: INTEGER); (*
input-output *)
 BEGIN
 Value := Value - 1;
 END; { Decr }

 PROCEDURE WriteStar(Number: INTEGER); (* input
*)
 (* Prints a line of Number stars*)
 BEGIN
 WHILE Number > 0 DO BEGIN
 Write('*');
 Decr(Number);
 END;
 WriteLn;
 END { WriteStar };

 PROCEDURE WriteChar(Symbol: CHAR; Number:
INTEGER);
 (* Prints line of N Chars *)
 VAR Count: INTEGER; (* local *)
 BEGIN
 FOR Count := 1 TO Number DO
 Write(Symbol);
 WriteLn;
 END { WriteChar };

BEGIN { Main Program }
 WriteStar(24);
 Instructions;
 WriteChar('-', 24);
END. { MiscProcs1 }

Our next example is program MiscProcs1, shown in Figure 7.12, that embodies
a mixed collection of procedures that serves to further illustrate some more
forms of procedures.

Instructions()
This first procedure, simply displays some instructions to the user of
the program. It involves no passing of parameters and has no local
variables.

WriteStar15()
This procedure outputs a line of 15 asterisks and terminates the current
output line. It also has no parameters, but has a local variable Count
used to count the asterisks.

WriteStar(Number)
This is a more general version of WriteStar15 that has one input
parameter Number, which specifies the number of asterisks to be
output. It does not need to use a local variable since the value of the

250 Chapter 7 Better Blocks: Procedures and Libraries

input parameter Number serves as a counter. Since input parameters are
passed by copying their value, when the value of Number is changed in
the procedure, it does not change the value of the corresponding actual
parameter in the main program.

Decr(Value)
This procedure has a single input-output parameter Value, which it
decrements by 1, i.e. it is similar to standard procedure Dec. It serves to
illustrate the use of an input-output parameter, one whose value is
passed in, modified and then passed out to the same variable in the
calling program.

WriteChar(Symbol, Number)
outputs a line consisting of the Symbol character repeated Number
times. It is a further generalization of WriteStar.

The body of MiscProcs1 illustrates the calling of the above procedures in
trivial ways. Notice especially that each call is a statement. The output
obtained from running the program is:

 Enter percentages
 as whole numbers.
 End on a negative

A Second Miscellany of procedures

Figure 7.13 Program MiscProcs2

PROGRAM MiscProcs2;
(* Illustrates many procedures *)
VAR A, B, C: CHAR;
 R, S, T: REAL;
 I, J, K: INTEGER;

 PROCEDURE SnapTrace;
 (* Show snapshot of 3 values *)
 BEGIN
 WriteLn('First = ', C);
 WriteLn('Second = ', I: 4);
 WriteLn('Third = ', R: 7: 2);
 END { SnapTrace };

 PROCEDURE TemperatureFtoC(Fahrenheit: REAL; { input }
 VAR Celsius: REAL); { output }
 (* Converts the temperature from Fahrenheit to Celsius *)
 BEGIN
 Celsius := (5.0 / 9.0) * (Fahrenheit - 32.0);
 END { TemperatureFtoC };

 PROCEDURE AreaCircle(Radius: REAL; VAR Area: REAL);

Section 7.4 Passing Parameters 251

 (* Computes area of circle *)
 BEGIN
 Area := Pi * Radius * Radius;
 END { AreaCircle };

 PROCEDURE Maxi2(X, Y: INTEGER; { input }
 VAR Max: INTEGER); { output }
 (* Finds Maximum of two integers *)
 BEGIN
 IF X > Y THEN
 Max := X
 ELSE
 Max := Y;
 END { Maxi2 };

 PROCEDURE Maxi3(A, B, C: INTEGER; { input }
 VAR Largest: INTEGER); { output }
 BEGIN
 Maxi2(A, B, Largest);
 Maxi2(Largest, C, Largest);
 END { Maxi3 };

BEGIN { Main Program }
 TemperatureFtoC(212.0, R);
 WriteLn('212F is ', R: 7: 2, 'C');
 Write('Max of 3, 6, 5 = ');
 Maxi3(3, 6, 5, I);
 WriteLn(I: 2);
 FOR J := 1 TO 5 DO BEGIN
 Write('Area of Circle of radius ', J: 1, ' is');
 AreaCircle(J, S);
 WriteLn(S: 6: 2);
 END;
 C := '#';
 SnapTrace;
END. { MiscProcs2 }

A second miscellany of procedures, program MiscProcs2 shown in Figure 7.13,
contains some procedures that are generally useful, either as such or as the basis
from which particular procedures can be crafted.

SnapTrace()
Like Instructions seen above, this procedure also has no parameters and
no local variables. It outputs the values of three global variables C, I
and R. Note that these variables must be declared before this
procedure is defined. Calls of this procedure could be inserted at
various points in a program to test or debug it.

TemperatureFtoC(Fahrenheit, Celsius)
is a simple temperature conversion procedure that has one input,
Fahrenheit, and one output, Celsius, and no local variables.

252 Chapter 7 Better Blocks: Procedures and Libraries

AreaCircle(Radius, Area)
is another simple algebraic formula packaged as a procedure. Notice
that Pi does not need to be declared since it is a standard function.

Maxi2(X, Y, Max)
has two inputs X and Y and an output Max. It applies only to integers.

Maxi3(A, B, C, Largest)
has three inputs A, B, C and one output Largest. It calls the previous
Maxi2 procedure twice.

Again, the body of this program illustrates the calling of these procedures in
simple ways. The output obtained from running MiscProcs2 is given in Figure
7.14.

Figure 7.14 Results of program MiscProcs2 execution

212F is 100.00C
Max of 3, 6, 5 = 6
Area of Circle of radius 1 is 3.14
Area of Circle of radius 2 is 12.57
Area of Circle of radius 3 is 28.27
Area of Circle of radius 4 is 50.27
Area of Circle of radius 5 is 78.54
First = #
Second = 6
Third = 100.00

7.5 Procedures with Char, Boolean and Other Types

Figure 7.15 Program MoreProcs

PROGRAM MoreProcs;
(* Illustrates use of CHAR and BOOLEAN in
procedures *)

 PROCEDURE CharToDigit(Ch: CHAR; VAR Digit:
INTEGER);
 (* Converts numeric character to INTEGER *)
 (** Pre-cond: ORD(Ch) must be in the range 48 to
57 **)
 BEGIN
 Digit := ORD(Ch) - ORD('0');
 END { CharToDigit };

 PROCEDURE ReadDigit(VAR Digit: INTEGER);
 (* Reads character digits *)
 VAR Ch: CHAR;
 BEGIN
 Read(Ch);
 WHILE (Ch < '0') OR (Ch > '9') DO BEGIN

Section 7.5 Procedures with Char, Boolean and Other Types 253

 Write('?');
 Read(Ch);
 END;
 CharToDigit(Ch, Digit);
 END { ReadDigit };

 PROCEDURE ReadBool(VAR Truth: BOOLEAN);
 (* Reads char T or F as truth value *)
 VAR Ch: CHAR;
 BEGIN
 Read(Ch);
 Ch := UpCase(Ch);
 WHILE (Ch <> 'T') AND (Ch <> 'F') DO BEGIN
 Write('Try again ');
 Read(Ch);
 Ch := UpCase(Ch);
 END;
 IF Ch = 'T' THEN
 Truth := TRUE
 ELSE
 Truth := FALSE;
 END { ReadBool };

 PROCEDURE WriteBool(Truth: BOOLEAN);
 (* Writes truth value *)
 BEGIN
 IF Truth THEN
 Write('TRUE ')
 ELSE
 Write('FALSE');
 END { WriteBool };

VAR A, B, C, D, E, F, G, H, I, Sum: INTEGER;
 BoolValue: BOOLEAN;
 Return: CHAR;
BEGIN
 WriteLn('Enter ISBN ');
 ReadDigit(A); ReadDigit(B);
 ReadDigit(C); ReadDigit(D);
 ReadDigit(E); ReadDigit(F);
 ReadDigit(G); ReadDigit(H);
 ReadDigit(I);
 Sum := A + 2*B + 3*C + 4*D + 5*E + 6*F +
 7*G + 8*H + 9*I ;
 Write('Check is ');
 IF (Sum MOD 11) = 10 THEN
 WriteLn('X')
 ELSE
 WriteLn(Sum MOD 11: 1);
 Read(Return);

254 Chapter 7 Better Blocks: Procedures and Libraries

 Write('Enter T or F ');
 ReadBool(BoolValue);
 Write('The Boolean value entered was ');
 WriteBool(BoolValue);
 WriteLn;
END. { MoreProcs }

Procedures that involve CHAR and BOOLEAN types are similar to those
involving INTEGER types. However, these non-numeric types offer some
differences, as illustrated in program MoreProcs of Figure 7.15.

CharToDigit, is a small procedure to convert the ten characters '0' to '9'
into the corresponding ten INTEGER values. The procedure simply
subtracts the ORD of '0', which is 48, from the ORD of the input
character. The pre-condition written into the procedure states that the
ORD of the input character must be within the range 48 to 57 ('0' to '9').

Problems may arise when an input character to this procedure is not in
the proper range, '0' to '9'. In fact, the procedure makes no test and
converts any character into an INTEGER—it must be remembered that a
pre-condition is only a comment, it takes no part in the execution of the
procedure. CharToDigit should be modified to test whether the
character read is within the proper range, and only then convert the
input. It could also be modified to display an error, but that still leaves
the problem of what value to assign to the output parameter. Another
possibility is to return a BOOLEAN value, called Done, which is usually
TRUE but which can be set to FALSE in the case of any error condition.
Then after each procedure call this Done condition should be tested to
see if the program can continue on. This stresses the significance of
indicating pre-conditions for procedures. It is important to make sure
that the pre-conditions are respected, for the alternatives are messy.

ReadDigit is a procedure that reads a character which is to
represent a digit. If the character is a digit it is converted to the
corresponding INTEGER. If the input is not a digit then a question mark
is output, another character is read in, and this process repeated until
the input is a digit. Notice that ReadDigit calls the first
CharToDigit procedure.

ReadBool , is similar in structure to ReadDigit above. It can be used
to input Boolean values. It accepts only the two Character values T and
F (either upper or lower case), and assigns to its output parameter,
Truth, one of the corresponding logical values TRUE or FALSE.

WriteBool , is a procedure that writes out the string 'TRUE ' or
'FALSE' depending on the value of its input BOOLEAN parameter,
Truth. We have already seen it in Chapter 6 (Fig. 6.17).

The MoreProcs main program uses ReadDigit (and indirectly CharToDigit)
to compute the check digit of the International Standard Book Number. It also
calls ReadBool and WriteBool to illustrate the use of these procedures. The
output obtained from a typical run is:

Section 7.5 Procedures with Char, Boolean and Other Types 255

Enter ISBN
354091248
Check is 7
Enter T or F t
The Boolean value entered was TRUE

Generalized Item Types

Figure 7.16 Program GeneralProcs

PROGRAM GeneralProc;
(* Shows more general item type *)

TYPE ItemType = CHAR;

 PROCEDURE Maj3(First, Second, Third: ItemType;
 VAR Majority: ItemType);
 (* Majority of three values *)
 BEGIN
 IF First = Second THEN
 Majority := First
 ELSE
 Majority := Third;
 END { Maj3 };

VAR A, B, C, M: ItemType;

BEGIN
 Write('Enter 3 values ');
 Read(A, B, C);
 Maj3(A, B, C, M);
 WriteLn('The majority is ', M);
END { GeneralProc }.

GeneralProc, in Figure 7.16, demonstrates one way of generalizing a procedure
so that it can be readily adapted to a variety of needs. Throughout this
program, the data being manipulated is declared as being of type ItemType.
Notice that ItemType appears within the majority procedure Maj3 and also in
the declaration part. In the instance of GeneralProc shown, ItemType is
defined as being the CHAR type.

TYPE ItemType = CHAR;

By changing this one line, other types could be used including BOOLEAN, user-
defined, and subrange types. For example, adapting to the two INTEGER values
0 and 1 can be done simply by modifying this declaration to:

TYPE ItemType = 0..1;

It is important to realize that the Maj3 procedure applies only when there are
only two different values; 0 and 1, or TRUE and FALSE or 'M' and 'F', etc. If
three different values are used the resulting majority would be meaningless.

256 Chapter 7 Better Blocks: Procedures and Libraries

For example if the three input values are 2, 5, 1 then the output would be 1, and
if the input values were the same but in another order, 2, 1, 5, the output would
be 5. Majority has meaning only for binary values.

7.6 Procedures with User-Defined types

As we have seen in the preceding example, procedures are not restricted to
Pascal's standard built-in types. They can be used equally well with user-
defined types, enumeration types and subrange types. In fact, since such types
have no ready-made input nor output, procedures are the most convenient means
for creating input and output actions for these types.

The program WeekPay, in Figure 7.17, does a simple payroll calculation for a
week and illustrates the use of user-defined data types in procedures.

Figure 7.17 Program WeekPay

PROGRAM WeekPay;
(* Compute the weekly pay *)
TYPE WeekDayTyp = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 MonthType = 1..12;
VAR Day: WeekDayTyp;
 Month: MonthType;
 PayRate, Hours, SumHours, D: INTEGER;

 PROCEDURE ReadMonth(VAR Month: MonthType);
 (* Read and validate month value *)
 VAR Temp: INTEGER;
 BEGIN
 Write('Enter Month as number (1 to 12): ');
 Read(Temp);
 WHILE (Temp < 1) OR (Temp > 12) DO BEGIN
 Write('Try again ');
 Read(Temp);
 END { WHILE };
 Month := Temp;
 END { ReadMonth };

 PROCEDURE ReadDay(VAR Day: WeekDayTyp);
 (* Read and validate Day value *)
 VAR DayStr: STRING;
 BEGIN
 Write('Enter the week day and spell it all out: ');
 ReadLn(DayStr);
 IF DayStr = 'Sunday' THEN Day := Sun
 ELSE IF DayStr = 'Monday' THEN Day := Mon
 ELSE IF DayStr = 'Tuesday' THEN Day := Tue
 ELSE IF DayStr = 'Wednesday' THEN Day := Wed
 ELSE IF DayStr = 'Thursday' THEN Day := Thu
 ELSE IF DayStr = 'Friday' THEN Day := Fri

Section 7.6 Procedures with User-Defined types 257

 ELSE IF DayStr = 'Saturday' THEN Day := Sat
 ELSE WriteLn('Error in day ');
 END { ReadDay };

 PROCEDURE WriteDay(Day: WeekDayTyp);
 (* Output name of Day *)
 BEGIN
 CASE Day OF
 Sun: Write('Sunday '); Mon: Write('Monday ');
 Tue: Write('Tuesday '); Wed: Write('Wednesday ');
 Thu: Write('Thursday '); Fri: Write('Friday ');
 Sat: Write('Saturday ');
 ELSE
 Write('Error');
 END { CASE };
 END { WriteDay };

 PROCEDURE NextDay(VAR Day: WeekDayTyp);
 (* Find next day *)
 BEGIN
 IF Day <> Sat THEN
 Inc(Day)
 ELSE
 Day := Sun;
 END { NextDay };

BEGIN
 ReadMonth(Month);
 Write('Enter the pay rate: ');
 ReadLn(PayRate);
 WriteLn('Input the first day ');
 ReadDay(Day);
 WriteLn;
 SumHours := 0;
 FOR D := 1 TO 7 DO BEGIN
 Write('Enter hours for ');
 WriteDay(Day); Write(': ');
 Read(Hours);
 SumHours := SumHours + Hours;
 NextDay(Day);
 END { FOR };
 WriteLn('The total pay is ', PayRate * SumHours:5);
END { WeekPay }.

In this program, WeekdayTyp is an enumerated type defined for the seven days
of the week:

TYPE WeekDayTyp = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

All the days are represented by three characters, simply for consistency. A
second type, MonthType, is defined as a subrange:

258 Chapter 7 Better Blocks: Procedures and Libraries

TYPE MonthType = 1..12;

It could equally well have been defined as an enumerated type with months
Jan, Feb, etc.

The program comprises the following procedures.

ReadMonth , a procedure that asks for a value, and when the value
received is in the appropriate range (1 to 12), that value is assigned to
the output parameter Month.

ReadDay , a procedure that requests a string depicting a day of the
week. Depending on the string input, it assigns to parameter Day the
appropriate value from the type WeekDayTyp.

WriteDay, a procedure which displays the day of the week
corresponding to the input value.

NextDay makes the week cyclic, so that the next day of 'Sat' is
'Sun'.

The main program computes the “simple” pay (without overtime) of one
individual for a week beginning at any day of the week and continuing for seven
days. Figure 7.18 shows a typical execution of the program.

Figure 7.18 Execution of the WeekPay program

Enter Month as number (1 to 12): 3
Enter the pay rate: 10
Input the first day
Enter the week day and spell it all out: Thursday

Enter hours for Thursday : 15
Enter hours for Friday : 12
Enter hours for Saturday : 3
Enter hours for Sunday : 0
Enter hours for Monday : 10
Enter hours for Tuesday : 12
Enter hours for Wednesday : 5
The total pay is 570

7.7 More on Passing Parameters

As there are always several ways of solving a problem, there are also several
ways of implementing a subprogram as a Pascal procedure. For example, let us
consider subprogram Sort3, discussed in Chapter 7 of the Principles book. Figure
7.19 shows two dataflow diagrams for Sort3 that differ only in labeling.

Section 7.7 More on Passing Parameters 259

Figure 7.19 Dataflow diagrams for two versions of Sort3

A

P Q
OldSort2

L S

B

P Q
OldSort2

L S

C

P Q
OldSort2

L S

X Y Z

I J K

D E

F

L M S

A

U V
NewSort2

U V

B

U V
NewSort2

U V

C

U V
NewSort2

U V

X Y Z

A B

B

X Y Z

A B C

OldSort3 NewSort3

On the left of the figure is OldSort3, which separates the input parameters I, J,
K, from the output parameters, L, M, S (for Large, Medium, and Small).
Similarly in that diagram, OldSort2 has two input parameters P and Q, which
are separate from its two output parameters L and S (for Larger and Smaller).

Instead of OldSort3's six parameters, NewSort3 has just three input-output
parameters, X, Y and Z. Upon completion of NewSort3’s actions, X contains the
largest of the three values and Z has the smallest. Similarly, NewSort2 has
two input-output parameters, U and V and after execution, U has the larger of
the two values and V the smaller.

A comparison of the old and new methods shows that the old forms have more
variables, but the caller’s original input values remain unchanged. The new
methods use fewer variables but probably change the caller’s original values.
Sometimes the destruction of the old values is not important, so the new method
would be preferred. At some other times the original values are important and
must be protected, so the old method would then be preferred. New is not
always better than old!

260 Chapter 7 Better Blocks: Procedures and Libraries

Figure 7.20 Comparison of two Pascal versions of Sort3

PROGRAM OldSortProg;

(* Sorts three integer values *)

PROCEDURE OldSort2

 (First, Second: INTEGER;

VAR Large, Small : INTEGER);

VAR Temp: INTEGER;

BEGIN

Large := First;

Small := Second;

IF Large < Small THEN BEGIN

{ Swap }

Temp := Large;

Large := Small;

Small := Temp ;

END { Swap }

END; { OldSort2 }

PROCEDURE OldSort3

 (First, Second, Third:

INTEGER;

VAR Maxi, Midi, Mini :

INTEGER);

VAR Temp1, Temp2, Temp3:

INTEGER;

BEGIN

OldSort2(First, Second, Temp1,

Temp2);

OldSort2(Temp2, Third, Temp3,

Mini);

OldSort2(Temp1, Temp3, Maxi,

Midi);

END; { OldSort3 }

VAR A, B, C, X, Y, Z: INTEGER;

BEGIN

Write('Enter three integers ');

Read(A, B, C);

OldSort3(A, B, C, X, Y, Z);

Write('The sorted values are ');

Write(X:4, Y:4, Z:4);

END. { OldSortProg }

PROGRAM NewSortProg;

(* Sorts three integer values *)

PROCEDURE NewSort2

(VAR ToBeLarge: INTEGER;

 VAR ToBeSmall: INTEGER);

VAR Temp: INTEGER;

BEGIN

IF ToBeLarge < ToBeSmall THEN

BEGIN

{ Swap }

Temp :=

ToBeLarge;

ToBeLarge := ToBeSmall;

ToBeSmall := Temp;

END { Swap }

END; { NewSort2 }

PROCEDURE NewSort3

(VAR ToBeMaxi: INTEGER;

 VAR ToBeMidi: INTEGER;

 VAR ToBeMini: INTEGER);

VAR Temp1, Temp2, Temp3:

INTEGER;

BEGIN

NewSort2(ToBeMaxi, ToBeMidi);

NewSort2(ToBeMidi, ToBeMini);

NewSort2(ToBeMaxi, ToBeMidi);

END; { NewSort3 }

VAR A, B, C: INTEGER;

BEGIN

Write('Enter three integers ');

Read(A, B, C);

NewSort3(A, B, C);

Write('The sorted values are ');

Write(A:4, B:4, C:4);

END. { NewSortProg }

Figure 7.20 shows the Pascal versions of OldSort3 and NewSort3 placed next
to each other for comparison. The two algorithms are very similar. Notice
that OldSort3 involves many more parameters and local variables. In fact,

Section 7.7 More on Passing Parameters 261

NewSort3 has no local variables. OldSortProg also uses more variables than
NewSortProg.

7.8 Nested Procedures

In Chapter 7 of the Principles book, you have seen through structure charts or
contour diagrams that there were many ways of arranging or nesting procedures
in a program. As an example, consider a modification to NewSortProg of
Figure 7.20, where the swapping of two values, that is done in NewSort2, is
extracted and made into a separate procedure. This new procedure, Swap, has
two input-output parameters.

PROCEDURE Swap
(VAR this: INTEGER;
 VAR that: INTEGER);

VAR temp: INTEGER;
BEGIN

temp := this;
this := that;
that := temp;

END; { Swap }

Figure 7.21 is a structure chart corresponding to this new version of the
NewSortProg.

Figure 7.21 Structure chart for NewSortProg

NewSortProg

Swap NewSort2 NewSort3

If we look at the program NewSortProg in Figure 7.20, we can see that it
actually calls only NewSort3, and does not call Swap or NewSort2, as the
structure chart suggests. Is our structure chart wrong? In fact, it is not. The way
things are, the program could call all three procedures, which are available
and on the same level. If we want to show the actual functional relationships
between program components that a structure chart is supposed to show, we must
draw another chart. Figure 7.22 represents the actual functional dependence of
the NewSortProg program. It shows that the program calls NewSort3 which
in turn calls NewSort2 which calls Swap.

262 Chapter 7 Better Blocks: Procedures and Libraries

Figure 7.22 Functional structure chart for NewSortProg

NewSortProg

NewSort3

NewSort2

Swap

Figure 7.23 shows, side by side, two different versions of NewSortProg, based
on these structure charts. On the left is Sequence, corresponding to the
structure chart of Figure 7.21, where all the procedures are arranged in sequence.
First comes Swap, which is used in the following procedure NewSort2, which is
itself used in NewSort3, which is called in the main program.

Section 7.8 Nested Procedures 263

Figure 7.23 A comparison of sequential and nested procedures

PROGRAM Sequence;

(* Sorts three integer values *)

PROCEDURE Swap

 (VAR this: INTEGER;

 VAR that: INTEGER);

VAR temp: INTEGER;

BEGIN

temp := this;

this := that;

that := temp;

END; { Swap }

PROCEDURE NewSort2

(VAR ToBeLarge: INTEGER;

 VAR ToBeSmall: INTEGER);

BEGIN

IF ToBeLarge < ToBeSmall THEN

Swap(ToBeLarge, ToBeSmall);

END; { NewSort2 }

PROCEDURE NewSort3

(VAR ToBeMaxi: INTEGER;

 VAR ToBeMidi: INTEGER;

 VAR ToBeMini: INTEGER);

BEGIN

NewSort2(ToBeMaxi, ToBeMidi);

NewSort2(ToBeMidi, ToBeMini);

NewSort2(ToBeMaxi, ToBeMidi);

END; { NewSort3 }

VAR A, B, C: INTEGER;

BEGIN

Write('Enter three integers ');

Read(A, B, C);

NewSort3(A, B, C);

Write('The sorted values are

');

Write(A:4, B:4, C:4);

END. { Sequence }

PROGRAM Nest;

(* Sorts three integer values *)

PROCEDURE NewSort3

(VAR ToBeMaxi: INTEGER;

 VAR ToBeMidi: INTEGER;

 VAR ToBeMini: INTEGER);

PROCEDURE NewSort2

(VAR ToBeLarge: INTEGER;

 VAR ToBeSmall: INTEGER);

PROCEDURE Swap

(VAR this: INTEGER;

 VAR that: INTEGER);

 VAR temp: INTEGER;

 BEGIN

 temp := this;

 this := that;

 that := temp;

 END; { Swap }

BEGIN

IF ToBeLarge < ToBeSmall

THEN

Swap(ToBeLarge,

ToBeSmall);

END; { NewSort2 }

BEGIN

NewSort2(ToBeMaxi, ToBeMidi);

NewSort2(ToBeMidi, ToBeMini);

NewSort2(ToBeMaxi, ToBeMidi);

END; { NewSort3 }

VAR A, B, C: INTEGER;

BEGIN

Write('Enter three integers ');

Read(A, B, C);

NewSort3(A, B, C);

Write('The sorted values are

');

Write(A:4, B:4, C:4);

END. { Nest }

The right half of Figure 7.23 shows another version of the same program, Nest,
corresponding to the structure chart of Figure 7.22, and where the procedures are

264 Chapter 7 Better Blocks: Procedures and Libraries

nested one inside the other. NewSort3 calls NewSort2 nested within it,
which, in turn, calls Swap, which is nested within it.

The behavior of these two programs is identical. However, the difference lies
in accessibility. The procedures of Sequence are all accessible by the main
program, whereas the procedures of Nest are accessible and may be called only
by the procedures within which they are nested. These nested procedures are
hidden, like local variables can be hidden. More of this hiding is considered
later and in the Principles book.

7.9 Functions in Pascal

Although functions and procedures are very much alike, they differ from each
other in several important ways. The major difference is that functions always
return a single value. In contrast, the results of executing a procedure are either
contained in one or more output parameters, or consist of some other effect such
as displaying something on the screen, or writing some data to a file. This
leads to another difference which is that function calls are used as parts of
expressions, whereas procedure calls are complete statements. Consequently, it
is usually better to name functions by nouns like Sum, Size, Maximum, etc. On
the other hand, procedures are best described by verbs, e.g., Accumulate,
FindSize, Sort, etc.

Figure 7.24 Syntax diagrams for Pascal functions

FunctionDeclaration

ProcedureBody ;;FunctionHeading

FormalParametersIdentFUNCTION

FunctionHeading

Ident ;:

Functions in Pascal are defined by the syntax diagrams shown in Figure 7.24. As
can be seen from these, they differ from ProcedureDeclarations only in the
heading. Figure 7.25 shows a template for the declaration of a function,
together with an example defining the trigonometric sine of an angle given in
degrees. This function SinD, is useful because most versions of Pascal expect the
argument to be in radians.

Section 7.9 Functions in Pascal 265

Figure 7.25 Template and example of function declaration

FUNCTION FunctName
 (list-of-parameters)
 : Return-type;

Declarations;
BEGIN
body with
FunctName := result;

END; { FunctName }

FUNCTION SinD
(Degrees: REAL)
: REAL;

VAR Radians: REAL;
BEGIN
Radians := Degrees / 57.3;
SinD := SIN(Radians);

END; { SinD }

Besides the obvious use of FUNCTION instead of PROCEDURE, note that the list
of parameters is now followed by a colon and the data type of the function
result. The returned value can have any of the types studied so far, including
enumeration and sub-range types. The value of a function in Pascal may only be
a single value, a scalar; that is to say, it may not be an array or a record. As a
function is supposed to return a single result, it is strongly recommended that all
the function parameters be input parameters.

Figure 7.26 Procedure vs. Function forms of finding maximum
value

PROGRAM MaxProcedure;

VAR A, B, C, D, E, F, G:

INTEGER;

PROCEDURE Maximize(X, Y:

INTEGER;

 VAR M: INTEGER);

BEGIN

IF X > Y THEN

M := X

ELSE

M := Y;

END; { Maximize }

BEGIN

WriteLn('Enter four values');

ReadLn(A, B, C, D);

Maximize(A, B, E);

Maximize(C, D, F);

Maximize(E, F, G);

WriteLn('The maximum is ', G:3);

END. { MaxProcedure }

PROGRAM MaxFunction;

VAR A, B, C, D, G: INTEGER;

FUNCTION Maximum(X, Y: INTEGER)

 : INTEGER;

BEGIN

IF X > Y THEN

Maximum := X

ELSE

Maximum := Y;

END; { Maximum }

BEGIN

WriteLn('Enter four values');

ReadLn(A, B, C, D);

G := Maximum(Maximum(A, B),

 Maximum(C, D));

WriteLn('The maximum is ', G:3);

END. { MaxFunction }

266 Chapter 7 Better Blocks: Procedures and Libraries

Figure 7.26 shows a comparison of two programs that find the maximum of four
values, using a subprogram that can find the maximum of two values. On the
left of the figure, the operation is implemented as a procedure, Maximize,
while, on the right, it is implemented as a function, Maximum. Notice the
great similarities, but also the differences between the two forms. The boxed
areas in the figure highlight the significant differences. Procedure Maximize
has a third parameter for the result, whereas function Maximum has only two
parameters.

Use, or invocation, of the subprogram is also very different between procedure
form and function form, as can be seen in the main parts of these two programs.

Program MaxProcedure requires two temporary variables E and F and three
separate statements:

Maximize(A, B, E);
Maximize(C, D, F);
Maximize(E, F, G);

Program MaxFunction requires no temporary variables, but the result is a
rather long statement:

G := Maximum(Maximum(A, B), Maximum(C, D));

In this case, the function form seems to be the most convenient, but in general,
procedures are more powerful. Procedures can always be used, whereas functions
only apply when one single value is to be returned.

Many Functions

Program ManyFunctions, in Figure 7.27, shows a number of examples of
functions. These illustrate the structure of function declarations, and also
demonstrate the use of these functions. Most of these functions are quite general,
and you can use them directly by copying them into your programs. They could
also be made into a Library, say MiscFuncs, and used in any program. We will
show how this is done later in this chapter.

Figure 7.27 Program Many Functions

PROGRAM ManyFunctions;
TYPE DIGIT = 0 .. 9; { Sub range }
 ItemType = CHAR;

VAR Year : INTEGER;

 FUNCTION Fahrenheit(C: REAL): REAL;
 BEGIN
 Fahrenheit := (9.0 / 5.0) * C + 32.0;
 END; { Fahrenheit }

 FUNCTION TanD(Degrees: REAL): REAL;
 CONST RadiansPerDegree = 2.0 * Pi / 360.0;
 VAR Radians: REAL;

Section 7.9 Functions in Pascal 267

 BEGIN
 Radians := RadiansPerDegree * Degrees;
 TanD := SIN(Radians) / COS(Radians);
 END; { TanD }

 FUNCTION Maxi2(First, Second: INTEGER): INTEGER;
 BEGIN
 IF First < Second THEN
 Maxi2 := Second
 ELSE
 Maxi2 := First;
 END; { Maxi2 }

 FUNCTION Maj3(First, Second, Third: ItemType):
ItemType;
 BEGIN
 IF First = Second THEN
 Maj3 := First
 ELSE
 Maj3 := Third;
 END; { Maj3 }

 FUNCTION IsLeap(Year: INTEGER): BOOLEAN;
 BEGIN
 IF Year MOD 4 = 0 THEN
 IsLeap := TRUE
 ELSE
 IsLeap := FALSE;
 END; { IsLeap }

 FUNCTION CharDec(Ch: CHAR): DIGIT;
 BEGIN
 CharDec := ORD(CH) - ORD('0');
 END; { CharDec }

 FUNCTION Size(It: INTEGER): INTEGER;
 VAR Count: INTEGER;
 BEGIN
 Count := 0;
 WHILE It > 0 DO BEGIN
 It := It DIV 10;
 Inc(Count);
 END { WHILE };
 Size := Count;
 END; { Size }

 FUNCTION PowerP(X: REAL; N: INTEGER): REAL;
 VAR I: INTEGER;
 P: REAL;
 BEGIN

268 Chapter 7 Better Blocks: Procedures and Libraries

 P:= 1.0;
 FOR I := 1 TO N DO BEGIN
 P := P * X;
 N := N - 1;
 END { FOR };
 PowerP := P;
 END; { PowerP }

BEGIN
 WriteLn('-40 degrees C is ',
Fahrenheit(-40.0):10:2);
 WriteLn('Tangent of 45 degrees is ',
TanD(45.0):10:2);
 WriteLn('The max of 3, 6, 5 is ', Maxi2(3,
Maxi2(6, 5)):3);
 WriteLn('The majority of Y N Y is ', Maj3('Y',
'N', 'Y'));
 Write('Enter the year ');
 Read(Year);
 IF IsLeap(Year) THEN
 WriteLn(Year: 4, ' is a leap year')
 ELSE
 WriteLn(Year: 4, ' is not a leap year');
 WriteLn('The year is ', year:Size(Year));
 WriteLn('1 plus 1 is ', CharDec('1') +
CharDec('1'):1);
 WriteLn('2 to the power 20 is ', PowerP(2.0,
20):10:0);
END. { ManyFunctions }

The simple functions shown in ManyFunctions involve various data types,
including CHAR, BOOLEAN, and enumeration types. You might have noticed that
the majority of the function calls shown in the body of the program involve
constant arguments. This is done for brevity, because actual parameters of
functions can also be variables or expressions. Another thing worth of notice is
that the functions do not test the values passed in. For example, the tangent
function, TanD, does not test before dividing by the cosine of the angle. Thus, if
the angle is 0° or 180°, there will be a division by zero error. Although the users
of such functions should ensure that bad parameters are not passed, the
functions should always check their pre-conditions.

Figure 7.28 shows the output corresponding to the execution of the given main
program.

Figure 7.28 Execution results for ManyFunctions

-40 degrees C is -40.00
Tangent of 45 degrees is 1.00
The max of 3, 6, 5 is 6
The majority of Y N Y is Y
Enter the year 1992

Section 7.9 Functions in Pascal 269

1992 is a leap year
The year is 1992
1 plus 1 is 2
2 to the power 20 is 1048576

Fahrenheit and TanD are functions that return a REAL value. Notice that
TanD uses a constant declaration involving an expression.

Function Maxi2 operates on integers only. The main
program shows the nesting of applications of Maxi2 in
an expression to compute the maximum of three
integers.

Function Maj3 returns the majority of any two values that are declared as
ItemType. In this case ItemType has been declared as CHAR.

BOOLEAN function IsLeap makes a simplistic determination of whether or not a
given year is a leap year. The algorithm does not provide the correct result for
the year 1900 or 2100 (and similar non leap centuries).

Function CharDec converts a given character digit into its corresponding
numeric digit. It does not check that the given value is in the proper range to be
a digit.

Finally, function Size determines the number of digits in an integer. Such a
function can be very useful within Write or WriteLn statements to determine
the output width of numbers. This is how it is used in the body of the program,
to output the year.

7.10 SubPrograms: Variations on a theme

You know that there is always more than one way of solving a problem; you
have seen it repeatedly in the Principles book. Similarly, a subprogram may be
packaged, or made available to the user, in several different manners. We will
illustrate this by the UnCapitalize subprogram that converts an upper case
letter (between A and Z) into its corresponding lower case form, and does not
change any lower case letters. The method used for this is simple when it is
realized that the ORD of an upper case letter differs from the corresponding
lower case letter by 32 (look back to the ASCII table seen in Chapter 6).

The main part of the UnCapitalize action is as follows:

(* Convert Char Ch to lowercase LowerCh *)
IF ('A' <= Ch) AND (Ch <= 'Z') THEN BEGIN

Code := ORD(Ch);
NewCode := Code + 32;
LowerCh := CHR(NewCode);

END;
(* LowerCh is the corresponding lower case char *)

This can also be written in various equivalent shorter forms without using the
temporary integer variables Code and NewCode, for example:

IF ('A' <= Ch) OR (Ch <= 'Z') THEN

270 Chapter 7 Better Blocks: Procedures and Libraries

LowerCh := CHR(ORD(Ch) + 32);

We can package this simple action in four different manners, by using either
procedures or functions, and by using different kinds of parameters. Program
UnCapping of Figure 7.29 shows the four versions, together with code that
demonstrates their use.

Figure 7.29 Program UnCapping

PROGRAM UnCapping;
CONST UPPERLowerDIFF = 32;

 PROCEDURE UnCapOf(Ch: CHAR; VAR LowerCh: CHAR);
 VAR Code, NewCode: INTEGER;
 BEGIN
 IF ('A' <= Ch) AND (Ch <= 'Z') THEN BEGIN
 Code := ORD(Ch);
 NewCode := Code + UpperLowerDiff;
 LowerCh := CHR(NewCode);
 END
 ELSE
 LowerCh := Ch;
 END; { UnCapOf }

 PROCEDURE UnCap(VAR Ch: CHAR);
 BEGIN
 IF ('A' <= Ch) AND (Ch <= 'Z') THEN
 Ch := CHR(ORD(Ch) + UpperLowerDiff);
 END; { UnCap }

 FUNCTION UnCapped(Ch: CHAR): CHAR;
 BEGIN
 IF ('A' <= Ch) AND (Ch <= 'Z') THEN
 UnCapped := CHR(ORD(Ch) + UpperLowerDiff)
 ELSE
 UnCapped := Ch;
 END; { UnCapped }

 FUNCTION IsUnCapped(Ch: CHAR): BOOLEAN;
 BEGIN
 IF ('A' <= Ch) AND (Ch <= 'Z') THEN
 IsUnCapped := FALSE
 ELSE
 IsUnCapped := TRUE;
 END; { IsUnCapped }

VAR Ch, NewCh, Extra: CHAR;
BEGIN { Main }
 { Testing UnCapOf }
 Write('Enter a character followed by Return: ');
 Read(Ch);

Section 7.10 SubPrograms: Variations on a theme 271

 Read(Extra); { eat Return }
 UnCapOf(Ch, NewCh);
 WriteLn('The lower case is ', NewCh);

 { Testing UnCap }
 Write('Enter a character followed by Return: ');
 Read(Ch);
 Read(Extra); { eat Return }
 UnCap(Ch);
 WriteLn('The lower case is ', Ch);

 { Testing UnCapped }
 Write('Enter a character followed by Return: ');
 Read(Ch);
 Read(Extra); { eat Return }
 WriteLn('The lower case is ', UnCapped(Ch));

 { Testing IsUnCapped }
 Write('Enter a character followed by Return: ');
 Read(Ch);
 Read(Extra); { eat Return }
 IF IsUnCapped(Ch) THEN
 WriteLn('It is lower case ')
 ELSE
 WriteLn('It is capitalized');
END. { UnCapping }

UnCapOf(Ch, LowerCh) is a procedure where Ch is an input
parameter, and LowerCh is an output parameter. Its name was chosen
for easy reading as the statement “Uncap value of Ch is LowerCh”.

UnCap(Ch) is another procedure where Ch is an input-output
parameter. Its name is a simple verb, “Uncap it”.

UnCapped(Ch) is a function that returns the uncapped value of the
character Ch. It is used as a part of an expression as in the example:

IF UnCapped(Ch) = 'y' THEN ...

IsUnCapped(Ch) is yet another way of viewing this Uncapping
process, but it differs from the others. It returns a BOOLEAN value (TRUE
or FALSE) depending on whether the argument Ch is capped or not.

Which one of these four versions should be chosen? It all depends on how you
intend to use this subprogram. All these forms are correct, but none is more
useful, convenient or natural for all purposes. The proper one to select depends
on how it will be used. If this action is part of another action then it should be
a function. On the other hand, if the action should stand alone then it should
be a procedure.

272 Chapter 7 Better Blocks: Procedures and Libraries

7.11 Recursion in Pascal

The process of recursion, introduced in Chapter 7 of the Principles book,
involves a subprogram that calls itself. In Pascal, both procedures and functions
can be recursive without having to declare it in any special manner. Thus, it is
very easy to implement a recursive solution to a problem.

In the introduction to recursion, a comparison was made between the pseudocode
for an iterative and a recursive algorithm for calculating the square of a number
Num by summing the first Num odd numbers. Figure 7.30 repeats this
comparison and also shows the Pascal implementation of these two algorithms
both as procedures and functions. Study the four implementations carefully,
comparing both horizontally and vertically.

Figure 7.30 Iterative vs. recursive implementations of the
OddSquare algorithm
IterativeSquare(Num, Square):

Set Square to 0
For Count = 1 to Num by 1

Set Square to Square +
2 Count – 1

RecursiveSquare(Num, Square):
If Num = 1

Set Square to 1
Else

RecursiveSquare(Num–1,
 Square)

Set Square to Square +
2 Num – 1

PROCEDURE
IterSquareProc(Num: INTEGER;

VAR Square:
INTEGER);
VAR Count: INTEGER;
BEGIN
Square := 0;
FOR Count := 1 TO Num DO
Square := 2 * Count - 1 +

Square;
END; { IterSquareProc }

PROCEDURE
RecurSquareProc(Num:
INTEGER;

 VAR Square:
INTEGER);
BEGIN
IF Num = 1 THEN
Square := 1

ELSE BEGIN
RecurSquareProc(Num - 1,

Square);
Square := 2 * Num - 1 +

Square;
END;

END; { RecurSquareProc }

Section 7.11 Recursion in Pascal 273

FUNCTION IterSquareFunc(Num:
INTEGER)

 : INTEGER;
VAR Square, Count: INTEGER;
BEGIN
Square := 0;
FOR Count := 1 TO Num DO
Square := 2 * Count - 1 +

Square;
IterSquareFunc := Square;

END; { IterSquareFunc }

FUNCTION
RecurSquareFunc(Num:
INTEGER)

: INTEGER;
VAR Square: INTEGER;
BEGIN
IF Num = 1 THEN
RecurSquareFunc := 1

ELSE
RecurSquareFunc := 2 *

Num - 1 +
RecurSquareFunc(Num

- 1);
END; { RecurSquareFunc }

These examples of recursion have all consisted of procedures or functions that
called themselves directly; this is known as direct recursion. However, not all
recursion is direct, as illustrated in the program ZigZagSquare, shown in
Figure 7.31, which consists of two procedures Zig and Zag that call each
other—this is known as indirect recursion:

Figure 7.31 Indirect recursion

PROGRAM ZigZagSquare;
(* Square by recursive procedure uses two, mutually
 recursive procedures. *)

 PROCEDURE Zag(Num: INTEGER; VAR Square: INTEGER);
 FORWARD;

 PROCEDURE Zig(Num: INTEGER; VAR Square: INTEGER);
 BEGIN
 WriteLn('In Zig: Num = ', Num: 2); { Trace }
 Zag(Num - 1, Square);
 Square := Num + Square;
 END; { Zig }

 PROCEDURE Zag(Num: INTEGER; VAR Square: INTEGER);
 BEGIN
 WriteLn('In Zag: Num = ', Num: 2); { Trace }
 IF Num = 0 THEN
 Square := 0
 ELSE
 Zig(Num - 1, Square);
 END; { Zag }

VAR TrialNum, TopOddNum, Sq: INTEGER;

BEGIN

274 Chapter 7 Better Blocks: Procedures and Libraries

 Write('Enter a value ');
 Read(TrialNum);
 TopOddNum := 2 * TrialNum - 1;
 Zig(TopOddNum, Sq);
 WriteLn('The square is ', Sq:2);
END. { ZigZagSquare }

Since recursion in general, and indirect recursion in particular, are often
difficult to understand, a WriteLn statement that prints out a debugging trace
has been added to each of the mutually recursive procedures. The output
obtained from a typical run is:

Enter a value 4
In Zig: Num = 7
In Zag: Num = 6
In Zig: Num = 5
In Zag: Num = 4
In Zig: Num = 3
In Zag: Num = 2
In Zig: Num = 1
In Zag: Num = 0
The square is 16

In this example, the algorithm computes the square of 4 by summing the first
four odd numbers, 1, 3, 5 and 7. The main body of the program, after having
obtained the number, 4, computes the value of the fourth odd number, 2×4 – 1. It
then calls Zig. Zig does not call itself directly, but does call Zag, which then
calls Zig; so indirectly Zig calls itself. In the above trace, no computation is
done before the base case (Num = 0) has been found since the computation
(Square := Num + Square;) is only done in Zig after returning from the
recursive calls.

This mutual referencing of the two procedures poses a slight problem in their
declaration. The syntax rules of Pascal require that a procedure be defined
before it can be referenced. Since Zig and Zag reference each other, it is
impossible to meet this requirement directly. To handle this, the header of
Zag is specified first with the directive FORWARD indicating that its full
definition will appear later. This allows a procedure like Zag to be referenced
within Zig before it is fully declared.

The program GlobalLocal, given in Figure 7.32, is a program that emphasizes
the difference between local and global declarations.

Figure 7.32 Global-Local example

PROGRAM GlobalLocal;
(* Shows Global vs. Local Variables *)
VAR Ch: CHAR; (* Global declaration *)

 PROCEDURE GloLo;
 (* Uses local declaration of Ch *)
 VAR Ch: CHAR; (* Local declaration *)
 BEGIN

Section 7.11 Recursion in Pascal 275

 Read(Ch);
 IF Ch <> '.' THEN BEGIN
 GloLo;
 Write(Ch);
 END;
 END; { GloLo }

 PROCEDURE GloGlo;
 (* Uses global declaration of Ch *)
 BEGIN
 Read(Ch);
 IF Ch <> '.' THEN BEGIN
 GloGlo;
 Write(Ch);
 END;
 END; { GloGlo }

BEGIN
 WriteLn('Enter a sentence ending with a period');
 GloLo;
 WriteLn;
 WriteLn('Enter a sentence ending with a period');
 GloGlo;
 WriteLn;
END. { GlobalLocal }

When the variable Ch is declared locally, as shown in GloLo, a given input
string is reversed. Thus, the sequence "EVIL DID I LIVE.” is output as “EVIL I
DID LIVE” (with no period) by GloLo. But when the globally declared Ch is
used as in GloGlo, then the same input sequence yields an output of 15 periods!

You are challenged to trace this program to understand this behavior. As a
hint, note that each invocation of a procedure (recursive or not) has its own
private space for parameters and local variables. So, the 16 recursive calls to
GloLo generate 16 different Ch variables, each loaded with a different
character from the input string. However, there is only one global variable ...

7.12 Libraries in Pascal

Units

Procedures and functions that are related in the actions they perform, or the
type of data that they manipulate, are frequently gathered together to form a
library . In Pascal, libraries can be created using units . These units are
collections of procedures, functions and other resources (constants, types, etc.)
that are made available for use by other programs. The units can be compiled
separately, and then referenced by the program that wants to use them through
the USES clause. This keeps the details of the units hidden, while sharing. It

276 Chapter 7 Better Blocks: Procedures and Libraries

results in programs that are smaller and better structured, because of their use of
units.

Figure 7.33 Syntax diagrams for Units

ImplementationBlock

Declaration

BEGIN Statement END

;

ImplementationPart

UsesClauseIMPLEMENTATION ImplementationBlock .

UsesClauseINTERFACE

InterfacePart

ConstantSection

TypeSection

VariableSection

ProcedureHeading

FunctionHeading

;

Unit

IdentUNIT ;

InterfacePart ImplementationPart .

The syntax of a unit is defined by the syntax diagrams in Figure 7.33. Units
have two main parts: a public part, the Interface Part, that is available to
users, and a private part, the Implementation Part, which can be hidden from
users. The public part describes w h a t is available to users; the private part
hides how this is implemented.

The Interface Part is the public part, which indicates what is available to any
users; it specifies what can be used by other programs or units. This part can

Section 7.12 Libraries in Pascal 277

contain declarations of named constants, of variables, of types, and only the
headers of procedures and functions. These do not need to be in any definite
order. This part can also contain a USES clause that refers to other units that it
uses, but this clause should be at the beginning of the Interface Part.

The Implementation Part is the private part of a unit. It contains the entire
declarations of the procedures and functions that were defined by headers only
in the Interface Part. The Implementation Part could also contain declarations
and definitions for resources that are available only within the unit. The order
of listing these is not important. It could also contain a USES clause that refers
to other units, and that should be at the beginning of the Implementation Part.
Variables declared in this part are called private or owned variables, and are
available to all the subprograms within the unit but not outside of it. The
values in these variables are retained after the procedures and functions have
been executed.

In the Implementation Part, there is also an optional section that starts with
BEGIN and contains a set of statements that can initialize variables, open files,
etc. This section is always executed before any of the programs which use this
unit.

A template for a unit is shown in Figure 7.34.

Figure 7.34 Unit template

UNIT Name-of-Unit;
 INTERFACE (***** Public *****)
 USES UseList;
 CONSTs
 TYPEs
 VARs
 PROCEDURE Headers
 FUNCTION Headers
 IMPLEMENTATION (***Private***)
 CONSTs
 TYPEs
 VARs
 PROCEDUREs
 FUNCTIONs
BEGIN (*** Initialization ***)
 Statements;
END. (* Name-of-Unit *)

Figure 7.35 shows two versions of the program ShortSort, which we discussed
in Chapter 5 (Fig. 5.29).

Figure 7.35 ShortSort program and Unit

PROGRAM ShortSort;

(* Sorts three integer values *)

PROCEDURE Sort2(First, Second:

INTEGER;

VAR Large, Small :

INTEGER);

VAR Temp: INTEGER;

BEGIN

Large := First;

Small := Second;

IF Large < Small THEN BEGIN

Temp := Large; (* Swap *)

Large := Small;

Small := Temp ;

UNIT ShortSortLib;

INTERFACE

PROCEDURE Sort2(First, Second:

INTEGER;

VAR Large, Small :

INTEGER);

PROCEDURE Sort3(First, Second,

Third: INTEGER;

VAR Maxi, Midi, Mini

: INTEGER);

IMPLEMENTATION

PROCEDURE Sort2(First, Second:

INTEGER;

278 Chapter 7 Better Blocks: Procedures and Libraries

On the left of the figure is a complete program, ShortSort, that asks for,
inputs, sorts and displays three integer values. That program is a single
monolithic entity. On the right of Figure 7.35, the ShortSort procedures have
been built into a library, ShortSortLib, that is used by a small program,
ShortSortProg. Both programs ShortSort and ShortSortProg have the
same behavior, and produce the same results from the same inputs. However,
they have a different structure, and ShortSortProg is much simpler than
ShortSort. The ShortSortLib unit is an example of a very minimal and
simple unit (you might note we haven’t included all the procedures that were
planned in Chapter 5).

UtilityLib: a custom-made utilities Library
Normally, libraries are collections of declarations that are related in some
way. We’ll introduce here a library example, UtilityLib in Figure 7.36,
that shows some of the main characteristics of libraries. The major reasons for
using libraries involve in particular convenience, consistency, speed,
readability, and reliability.

Figure 7.36 The UtilityLib library

UNIT UtilityLib;

INTERFACE (******* public **********)

CONST GRAMSInPOUND = 454; (* INTEGER *)
 TWOPI = 2.0 * Pi; (* REAL *)
 BELL = #7; (* CHAR *)
 USER = 'John Motil';(* STRING *)

TYPE DigitTyp = 0..9;
 ItemType = CHAR;

FUNCTION Int(R: REAL): INTEGER;
(* Chops R to nearest whole *)
FUNCTION Float(I: INTEGER): REAL;
(* Converts Integer to Real *)
PROCEDURE Incr(VAR R: REAL; S: REAL);
(* Increments Real R by amount S *)
PROCEDURE WrLn;
(* Writes a new line *)

IMPLEMENTATION (****** private ******)
 FUNCTION Int(R: REAL): INTEGER;
 (* Chops R to nearest whole *)
 BEGIN
 Int := TRUNC(R);
 END;

 FUNCTION Float(I: INTEGER): REAL;

Section 7.12 Libraries in Pascal 279

 (* Converts Integer to Real *)
 BEGIN
 Float := I;
 END;

 PROCEDURE Incr(VAR R: REAL; S: REAL);
 (* Increments Real R by amount S *)
 BEGIN
 R := R + S;
 END;

 PROCEDURE WrLn;
 (*Rename of WriteLn *)
 BEGIN
 WriteLn
 END;
END. { UtilityLib }

Convenience is a principal reason for using libraries. For example,
UtilityLib contains a set of useful constants such as GRAMSInPOUND,
TWOPI or BELL (the character that causes the terminal to make a
sound—remember that a character can be represented by its ASCII code
preceded by a #). It is easier to use these than to memorize the numeric
constants.

Generality is another reason for using libraries. Some of the constants
in a library may have values that change only
occasionally, such as USER in UtilityLib. These constants can
serve to “parameterize” programs; when changes are necessary they are
made in this one place and imported elsewhere; this is better than
trying to find many places to make the change.

Structure is a reason for using libraries that is closely related to the
previous one. Types such as the subrange DigitTyp, for example, can
be defined once in a single library and used whenever necessary. Also,
types, such as ItemType, can be defined as required to be CHAR,
INTEGER, DigitTyp, etc. and then used in a more general procedure
such as Max2 as shown in the program UtilityProg. This is better
than having many versions of Maxes, (MaxInt, MaxChar, MaxReal,
etc.) one for each different type. This is another form of
parameterization.

Language extension is a very important reason for creating libraries.
For example, an increment procedure Incr can be created to apply to
REAL values. A Decr procedure can be similarly created.

Consistency is yet another reason for using libraries. For example
Pascal has a function TRUNC to convert from REALs to INTEGERs, but
there is no function to convert the other way. A function Float could be
created as shown, to convert INTEGER values to REAL values.

280 Chapter 7 Better Blocks: Procedures and Libraries

The function TRUNC is available in other languages under the name
Int. An Int function could be created in Pascal simply by re-naming
TRUNC as shown.

Brevity, is a further reason for using a library. For example, if you do
not wish to use WriteLn you could abbreviate it to WrLn. Similarly,
Write could be abbreviated to Wr, or Print or anything else. This is
done simply by renaming Write as shown.

Readability could also be enhanced by using Libraries. Naming a
constant GRAMSInPOUND indicates its purpose; renaming the conversion
function TRUNC to RealToInt may also be more easily remembered, if
not more readable.

Program UtilityProg, shown in Figure 7.37, is a program which simply tests
the above library, UtilityLib.

Section 7.12 Libraries in Pascal 281

Figure 7.37 Program UtilityProg

PROGRAM UtilityProg;
(* Tests parts of UtilityLib *)

USES UtilityLib;

 PROCEDURE Max2(A, B: ItemType;
 VAR C: ItemType);
 BEGIN
 IF A > B THEN
 C := A
 ELSE
 C := B;
 END; { Max2 }

VAR Ch1, Ch2, Ch: CHAR;
 X: REAL;
BEGIN
 Write('Done by ', USER);
 WrLn;
 Write(BELL);
 Write('Enter 2 characters ');
 Read(Ch1, Ch2);
 Max2(Ch1, Ch2, Ch);
 WriteLn('The maximum value is ', Ch);
 X := Pi;
 Incr(X, TWOPI);
 WriteLn('Three Pi = ', X:8:4);
 Write('Two Pi chops to ');
 WriteLn(Int(TWOPI):2);
 Write('Int of Pi is ');
 Write(Float(Int(Pi)):4:2);
END. { UtilityProg }

In that program, note that procedure Max2 is based on ItemType from
UtilityLib. Also note the use of various constants, procedures and functions
from that library.

Other Libraries: DateLib, BitLib, CharLib

Our next library example is a library that is concerned with dates, DateLib. A
UNIT defining DateLib is shown in Figure 7.38. To simplify the example, only
three functions have been declared: IsLeap, DaysInMonth and DayOfYear.
These are sufficient, however, to allow a programmer to use this library to
create various programs. For example, let us create a program to find the
number of days to Christmas, from any given date in the year.

282 Chapter 7 Better Blocks: Procedures and Libraries

Figure 7.38 The DateLib library

UNIT DateLib;

INTERFACE
 FUNCTION IsLeap(Year: INTEGER): BOOLEAN;
 FUNCTION DaysInMonth(Year, Month: INTEGER)
 : INTEGER;
 FUNCTION DayOfYear(Year: INTEGER;
 Month:INTEGER; Day: INTEGER)
 : INTEGER;

IMPLEMENTATION

 FUNCTION IsLeap(Year: INTEGER): BOOLEAN;
 BEGIN
 IF Year MOD 400 = 0 THEN
 IsLeap := TRUE
 ELSE IF Year MOD 100 = 0 THEN
 IsLeap := FALSE
 ELSE IF Year MOD 4 = 0 THEN
 IsLeap := TRUE
 ELSE (* not divisible *)
 IsLeap := FALSE;
 END; { IsLeap }

 FUNCTION DaysInMonth(Year, Month: INTEGER)
 : INTEGER;
 VAR Days: INTEGER;
 BEGIN
 CASE Month OF
 9, 4, 6, 11:
 Days := 30;
 1, 3, 5, 7, 8, 10, 12:
 Days := 31;
 2:
 IF IsLeap(Year) THEN
 Days := 29
 ELSE
 Days := 28;
 END;
 DaysInMonth := Days;
 END; { DaysInMonth }

 FUNCTION DayOfYear(Year: INTEGER;
 Month: INTEGER; Day: INTEGER)
 : INTEGER;
 VAR Julian, Mon: INTEGER;
 BEGIN
 Julian := 0;

Section 7.12 Libraries in Pascal 283

 FOR Mon := 1 TO Month DO
 Julian := Julian + DaysInMonth(Year, Mon);
 Inc(Julian, Day);
 DayOfYear := Julian;
 END; { DayOfYear }
END. { DateLib }

At the level of the functions supplied by DateLib, the program DaysToXmas is
very easy to write. It consists simply of reading a date, converting it to the
DayOfYear, which gives the ordinal number of any date in the year, and
subtracting that from the DayOfYear of Christmas (which is a little less than
365 or 366). It is assumed that both dates are in the same year and that the
present date is before Christmas. The DayOfYear function calls the procedure
DaysInMonth, which in turn calls IsLeap. In a more complete version of
DateLib, there would be more procedures and functions, such as:

ReadDate(Year, Month, Day); { date input }
WriteDate(Year, Month, Day); { date output }
GoodDate(Year, Month, Day):BOOLEAN;{ date validation }
UpDate(Year, Month, Day); { next day’s date }
WeekDate(Year, Month, Day); { day of week }
Calendar(Year, Month); { output month calendar }

Our reduced set of functions is sufficient to write DaysToXmas, shown in Figure
7.39.

Figure 7.39 Program DaysToChristmas

PROGRAM DaysToXmas;
(* Finds Days to Christmas with DateLib *)

USES DateLib;

VAR Year, Month, Day: INTEGER;
 DayOfYearNow, DayOfYearXmas, Elapsed: INTEGER;
BEGIN
 WriteLn('Enter Year, Month, Day ');
 Read(Year, Month, Day);
 DayOfYearNow := DayOfYear(Year, Month, Day);
 DayOfYearXmas := DayOfYear(Year, 12, 25);
 Write('Days to Christmas = ');
 Elapsed := DayOfYearXmas - DayOfYearNow;
 WriteLn(Elapsed:3);
END. { DaysToXmas }

Three examples of executions of this program follow.

Enter Year, Month, Day
1996 12 24
Days to Christmas = 1

Enter Year, Month, Day

284 Chapter 7 Better Blocks: Procedures and Libraries

1996 1 1
Days to Christmas = 359

Enter Year, Month, Day
1996 4 1
Days to Christmas = 269

The library BitLib, in Figure 7.40, defines binary digits of a type BitType,
and three operations, And, Or and Not, that manipulate these binary digits.

Figure 7.40 The BitLib library

UNIT BitLib;
(* A Library of Bits *)

INTERFACE
 TYPE BIT = 0..1;

 PROCEDURE ReadBit(VAR B: BIT);
 PROCEDURE WriteBit(B: BIT);
 PROCEDURE And2(X, Y: BIT; VAR Z: BIT);
 PROCEDURE Or2(X, Y: BIT; VAR Z: BIT);
 PROCEDURE Not1(X: BIT; VAR Z: BIT);
 PROCEDURE And3(A, B, C: BIT; VAR D: BIT);
 PROCEDURE Or3(A, B, C: BIT; VAR D: BIT);

IMPLEMENTATION
 PROCEDURE ReadBit(VAR B: BIT);
 BEGIN
 Write('Give a bit '); Read(B);
 WHILE (B<>0) AND (B<>1) DO BEGIN
 Write('Enter 0 or 1 ');
 Read(B);
 END;
 END; { ReadBit }

 PROCEDURE WriteBit(B: BIT);
 BEGIN
 Write(B:2);
 END; { WriteBit }

 PROCEDURE And2(X, Y: BIT; VAR Z: BIT);
 BEGIN
 Z := X * Y;
 END; { And2 }

 PROCEDURE Or2(X, Y: BIT; VAR Z: BIT);
 BEGIN
 Z := X + Y - X * Y;
 END; { Or2 }

Section 7.12 Libraries in Pascal 285

 PROCEDURE Not1(X: BIT; VAR Z: BIT);
 BEGIN
 Z := 1 - X;
 END; { Not1 }

 PROCEDURE And3(A, B, C: BIT; VAR D: BIT);
 BEGIN
 D := A * B * C;
 END; { And3 }

 PROCEDURE Or3(A, B, C: BIT; VAR D: BIT);
 BEGIN
 Or2(A, B, D);
 Or2(C, D, D);
 END; { Or3 }
END. { BitLib }

Program BitProg, in Figure 7.41, uses the procedures of this BitLib library,
and shows how all four combinations of values can be generated to verify
DeMorgan's theorem, in a manner similar to what you saw in Chapter 6,
extended to three variables.

286 Chapter 7 Better Blocks: Procedures and Libraries

Figure 7.41 Program BitProg and its output

PROGRAM BitProg(Input, Output);

(* Tests BitLib with DeMorgan's

 theorem *)

USES BitLib;

VAR A, B, C, D, E, F, G, H, I: BIT;

BEGIN

WriteLn(' A B C ~(A | B | C) ~A & ~B &

~C');

FOR A := 0 TO 1 DO

FOR B := 0 TO 1 DO

FOR C := 0 TO 1 DO BEGIN

WriteBit(A);

WriteBit(B);

WriteBit(C);

Or3(A, B, C, D);

Not1(D, E);

Not1(A, F);

Not1(B, G);

Not1(C, H);

And3(F, G, H, I);

Write(' ');

WriteBit(E);

Write(' ');

WriteBit(I);

WriteLn;

END;

END. { BitProg }

A B C ~(A|B|C)~A&~B&~C

0 0 0 1

1

0 0 1 0

0

0 1 0 0

0

0 1 1 0

0

1 0 0 0

0

1 0 1 0

0

1 1 0 0

0

1 1 1 0

0

The program produces a small table for all the values of A, B and C, showing
the corresponding values of the two expressions NOT(A OR B OR C) and NOT
A AND NOT B AND NOT C.

Another example library given in Figure 7.42, CharLib, provides a useful set of
constants, functions and procedures for manipulating characters.

Figure 7.42 The CharLib library

UNIT CharLib;
(* A library involving Characters *)

INTERFACE
 CONST (* Names for characters *)
 BELL = #7; BACKSPACE = #8;
 HYPHEN = #45; UNDERSCORE = #95;
 DOLLAR = #36; AMPERSAND = #64;
 POUND = #35; PERCENT = #37;
 SPACE = #32; ASTERISK = #42;
 COMMA = #44; SEMICOLON = #59;

Section 7.12 Libraries in Pascal 287

 PERIOD = #46; LINEFEED = #10;
 RETURN = #13; ESCAPE = #27;

 FUNCTION CharToInt(Ch: CHAR): INTEGER;
 (* Convert a numeric character to decimal digit *)
 FUNCTION IntToChar(Digit: INTEGER): CHAR;
 (* Convert a decimal digit to a character *)
 FUNCTION IsDigit(Ch: CHAR): BOOLEAN;
 (* Indicate if character is a digit*)

IMPLEMENTATION
 CONST UPPERLowerDIFF = 32;

 FUNCTION CharToInt(Ch: CHAR): INTEGER;
 (* Convert a Character to Decimal Digit *)
 BEGIN
 IF ('0' <= Ch) AND (Ch <= '9') THEN
 CharToInt := ORD(Ch) - ORD('0')
 ELSE
 CharToInt := -1;
 END; { CharToInt }

 FUNCTION IntToChar(Digit: INTEGER): CHAR;
 (* Convert a Decimal Digit to a Character *)
 BEGIN
 IF (0 <= Digit) AND (Digit <= 9) THEN
 IntToChar := CHR(ORD('0') + Digit)
 ELSE
 IntToChar := SPACE;
 END; { IntToChar }

 FUNCTION IsDigit(Ch: CHAR): BOOLEAN;
 (* Test if Ch is a Digit *)
 BEGIN
 IF ('0' <= Ch) AND (Ch <= '9') THEN
 IsDigit := TRUE
 ELSE
 IsDigit := FALSE;
 END; { IsDigit }
END. { CharLib }

Notice that, because the constant UPPERLowerDIFF is defined in the
IMPLEMENTATION part of the UNIT, it is private to the library and is not
available to its users. Some other functions and procedures should be added to
the library, like:

FUNCTION IsVowel(Ch: CHAR):BOOLEAN;
FUNCTION IsLetter(Ch: CHAR): BOOLEAN;
FUNCTION IsCapital(Ch: CHAR):BOOLEAN;
FUNCTION Uncapped(Ch: CHAR):CHAR;{ check lower case }
PROCEDURE EnterDigit(VAR D: INTEGER); { input digit }

288 Chapter 7 Better Blocks: Procedures and Libraries

The Interaction of Many Libraries

A large program will probably make use of many libraries, and these could
interact. A good organization of libraries makes programs easy to build and to
maintain, whereas a unstructured organization is likely to cause problems. To
illustrate this, we will consider here a “large” system comprising three
libraries and two separately compiled programs. Each library will be rather
small, and the procedures will be familiar, but the whole system will help us
make many significant points.

Lib2 , in Figure 7.43, is a library that consists of two procedures, Max2
and Sort2 acting on items of ItemType. The ItemType is declared to
be a CHAR, but it could be readily changed to another type such as
INTEGER or REAL. However, once such a change is made then Lib2
must be recompiled. Also, all modules that use Lib2 must be
recompiled. The order of compilation is important.

Figure 7.43 Library Lib2

UNIT Lib2;

INTERFACE
 TYPE ItemType = CHAR;

 PROCEDURE Sort2(A, B : ItemType; VAR L, S: ItemType);
 PROCEDURE Max2(A, B : ItemType; VAR C: ItemType);

IMPLEMENTATION

 PROCEDURE Sort2(A, B : ItemType; VAR L, S: ItemType);
 BEGIN
 L := A;
 S := B;
 IF L < S THEN BEGIN
 L := B;
 S := A;
 END;
 END; { Sort2 }

 PROCEDURE Max2(A, B : ItemType; VAR C: ItemType);
 VAR D: ItemType ;
 BEGIN
 Sort2(A, B, C, D);
 END; { Max2 }
END. { Lib2 }

Lib3 , in Figure 7.44, is another library that contains a single procedure to sort
three items of ItemType. Notice that it uses the ItemType and Sort2 both
from Lib2.

Section 7.12 Libraries in Pascal 289

Figure 7.44 Library Lib3

UNIT Lib3;

INTERFACE
USES Lib2;

 PROCEDURE Sort3(X, Y, Z : ItemType;
 VAR L, M, S: ItemType);

IMPLEMENTATION
 PROCEDURE Sort3(X, Y, Z : ItemType;
 VAR L, M, S: ItemType);
 VAR E, F, G: ItemType;
 BEGIN
 Sort2(X, Y, E, F);
 Sort2(F, Z, G, S);
 Sort2(E, G, L, M);
 END; { Sort3 }
END. { Lib3 }

Lib4 , in Figure 7.45, is yet another library that comprises two
procedures: Max4, which computes the maximum of four values and
Sort4, which sorts four values. Lib4 uses ItemType and Max2 from
Lib2, and Sort3 from Lib3.

Figure 7.45 Library Lib4

UNIT Lib4;

INTERFACE
USES Lib2, Lib3;

 PROCEDURE Max4(A, B, C, D: ItemType; VAR E : ItemType);
 PROCEDURE Sort4(A, B, C, D: Itemtype; VAR W, X, Y, Z:
 ItemType);

IMPLEMENTATION

 PROCEDURE Max4(A, B, C, D: ItemType; VAR E : ItemType);
 BEGIN
 Max2(A, B, E);
 Max2(E, C, E);
 Max2(E, D, E);
 END; { Max4 }

 PROCEDURE Sort4(A, B, C, D: Itemtype; VAR W, X, Y, Z:
 ItemType);
 VAR P, Q, R, S, T: ItemType;
 BEGIN
 Sort3(A, B, C, P, Q, R);

290 Chapter 7 Better Blocks: Procedures and Libraries

 Sort3(Q, R, D, S, T, Z);
 Sort3(P, S, T, W, X, Y);
 END;{ Sort4 }
END. { Lib4 }

Prog5 , whose skeleton is shown in Figure 7.46, is a program that sorts
any 5 values of ItemType. It uses ItemType from Lib2 and Sort3
from Lib3. The details of creating a Sort5 using Sort3s are not
shown, and left as an exercise.

Figure 7.46 Program Prog5

PROGRAM Prog5;
(* Uses Sort3s for a Sort5 *)

USES Lib2, Lib3;

VAR A, B, C, D, E, F, G, H: ItemType;

BEGIN
 WriteLn('Enter 5 values ');
 { }
END. { Prog5 }

Prog7 , whose skeleton is shown in Figure 7.47, is a program which
computes the maximum of 7 values of ItemType using 2 Max4s. It uses
ItemType from Lib2 and Max4 from Lib4. The details are also not
shown here. You do it.

Figure 7.47 Program Prog7

PROGRAM Prog7;
(* Uses 2 Max4s for a Max7 *)

USES Lib2, Lib4;

VAR A, B, C, D, E, F, G, H: ItemType;

BEGIN
 WriteLn('Enter 7 values ');
 { }
END. { Prog7 }

The interaction amongst these 5 parts (three Libraries and two programs) can be
best seen from Figure 7.48, where an arrow from a library to another program or
unit indicates that the library is being used. For instance, we can see in the
figure that Prog7 uses Lib2 and Lib4, and also that Lib4 uses Lib2 and Lib3.

Section 7.12 Libraries in Pascal 291

Figure 7.48 The interaction between libraries

Lib2 Lib3
ItemType
Sort2

Lib4

Prog7

Prog5ItemType

Sort3

Sort3

Max4
ItemType
Max2

ItemType

The structure of these interactions determines the order in which the units
and programs should be compiled. When a change is made to some unit, it must
be recompiled as well as every other unit or program that uses it. For example,
if we change the declaration of ItemType in Lib2, then all the units and
programs must be recompiled, starting with Lib2 in the order indicated
by the arrows. After Lib2 is recompiled, Lib3 must be recompiled. Then
either Lib4 or Prog5 could be recompiled, but Prog7 must necessarily be
recompiled after Lib4 has been recompiled.

As another example, if Lib4 were modified, for example to add a Min4
procedure, then only Prog7 would need recompilation (once Lib4 had been
recompiled). Similarly, if Lib3 were modified to add a Majority3 procedure,
then recompilation would be necessary for Lib3, Lib4, Prog5 and Prog7.

The Pascal programming system attaches a time stamp to any unit at the
moment of compilation. During the compilation process, whenever use is made
of a unit, a check is made on the time stamps to see if that unit must be
recompiled. This would be the case if some other unit that it uses had been
recompiled since the unit itself was compiled. If so, an incompatibility exists
and is indicated. In this way, the Pascal programming system helps you to
maintain consistency. It makes sure that you create your programs based on only
the latest versions of units that you use! This error prevention is very
important especially when creating very large systems!

7.13 Function and Procedure Types

A FUNCTION type (or a PROCEDURE type) is a template for a function (or a
procedure). Such a type is used as any other Pascal type, in particular to
declare variables or parameters. For example, the SIN function and the SQR
function both have the form of a function with one REAL input parameter and a
REAL result. The corresponding template or FUNCTION type could be declared
as:

TYPE RealFunc = FUNCTION(X: REAL): REAL;

Similarly, the Maximum function we have seen earlier in this chapter, is a
binary operator that has the form of a function, with two INTEGER input
parameters and a single INTEGER result. A similar Minimum function would
have the same form. Their FUNCTION type could be declared as:

292 Chapter 7 Better Blocks: Procedures and Libraries

TYPE BinOpType = FUNCTION(X, Y: INTEGER): INTEGER;

Suppose that Maximum and Minimum have been defined as functions with the
headers:

FUNCTION Maximum(I, J: INTEGER): INTEGER;
FUNCTION Minimum(I, J: INTEGER): INTEGER;

Suppose also that a binary operator Bop is declared as:

VAR Bop: BinOpType;

then we can treat Bop just like any other variable and assign values to it; for
example:

Bop := Maximum;

Following this assignment, the execution of a statement like

M3 := Bop(Bop(R, S), T);

is the equivalent of executing

M3 := Maximum(Maximum(R, S), T);

However, if the assignment to Bop had been

Bop := Minimum;

executing the same statement

M3 := Bop(Bop(R, S), T);

would have been the equivalent of executing

M3 := Minimum(Minimum(R, S), T);

This enables the function Bop to be selected as either of the two operators
(Maximum or Minimum). The selection decision could be done during the
execution of a program and could be dependent on some input value. This is
shown in the given example FunType in Figure 7.49.

Figure 7.49 Program FunType

PROGRAM FunType;
(* Shows the use of FUNCTION Types *)

TYPE BopType = FUNCTION(X, Y: INTEGER): INTEGER;

 FUNCTION Maximum(A, B: INTEGER): INTEGER;
 BEGIN
 IF A > B THEN
 Maximum := A
 ELSE
 Maximum := B;
 END; { Maximum }

 FUNCTION Minimum(A, B: INTEGER): INTEGER;
 BEGIN
 IF A < B THEN
 Minimum := A

Section 7.13 Function and Procedure Types 293

 ELSE
 Minimum := B;
 END; { Minimum }

VAR P, Q, R: INTEGER;
 Bop: BopType;
 Reply: CHAR;

BEGIN
 WriteLn('Enter 3 values');
 ReadLn(P, Q, R);
 Write('Enter M for Max or m for min ');
 Read(Reply);
 IF Reply = 'M' THEN
 Bop := Maximum
 ELSE
 Bop := Minimum;
 R := Bop(Bop(P, Q), R);
 IF Bop = Maximum THEN
 WriteLn('The maximum of the 3 values is ', R:4)
 ELSE
 WriteLn('The minimum of the 3 values is ', R:4);
END. { FunType }

A PROCEDURE type is similar to a FUNCTION type; it is a template for a
procedure value. A procedure with two input INTEGER parameters and two
output INTEGER parameters, like Sort2, Swap2, or Divide, could have a type
called Proc2x2Type and would have the form:

TYPE Proc2x2Type = PROCEDURE(A, B: INTEGER;
 VAR X, Y: INTEGER);

Although the power of FUNCTION and PROCEDURE types may not be evident
yet, the mechanism should be clear. The most powerful use of such types lies in
passing functions and procedures as parameters to other functions or procedures.
This will be illustrated in the Solver program shown in Figure 7.50.

Solver, is a general equation solver that was described in Chapter 6 of the
Principles book. Given any two equations of a single variable X, such as F1(X)
and F2(X), Solver finds values of X that satisfy both equations. Solve, is the
main procedure which does the solving by using random numbers generated by
standard function Random.

Figure 7.50 The Solver program

PROGRAM Solver;
(* Solves algebraic equations *)
(* by Random trial and error *)

TYPE FunType = FUNCTION(X: REAL): REAL;

 FUNCTION F1(X: REAL): REAL;

294 Chapter 7 Better Blocks: Procedures and Libraries

 BEGIN
 F1 := X * X - 1.0;
 END; { F1 }

 FUNCTION F2(X: REAL): REAL;
 BEGIN
 F2 := -2.0 * X + 3.0;
 END; { F2 }

 PROCEDURE Solve(Left : FunType; Right: FunType; Low :
 REAL; High : REAL);
 CONST Many = 100; { Number of points }
 VAR I: INTEGER;
 X, Guess, BestVal, MinErr, Err: REAL;

 BEGIN { Solve procedure }
 MinErr := 30000.0;
 FOR I := 1 TO Many DO BEGIN
 Guess := Low + Random * (High - Low);
 X := Guess;
 Err := ABS(Left(X) - Right(X));
 IF MinErr > Err THEN BEGIN
 MinErr := Err;
 BestVal := Guess;
 END;
 END;
 Write(' A value for X is ');
 Write(BestVal:7:4);
 Write(' with an error of ');
 Write(MinErr:7:4);
 END; { Solve }

VAR Hi, Lo: REAL;
 I: INTEGER;
BEGIN { Main }
 WriteLn('Enter 2 boundary values ');
 WriteLn('input the smaller first ');
 Read(Lo, Hi);
 FOR I := 1 to 5 DO BEGIN
 Solve(F1, F2, Lo, Hi);
 WriteLn;
 END;
END. { Solver }

FunType is declared to be a FUNCTION type with one REAL input parameter
and a REAL result. Procedure Solve is declared with four input parameters:
two functions of type FunType, and two boundary values of type REAL. In the
main body of Solver, the user is prompted for the two boundary values, Lo and
Hi. Solve is then called by the statement

Section 7.13 Function and Procedure Types 295

Solve(F1, F2, Lo, Hi);

which passes the two functions F1 and F2 to Left and Right, and the boundary
values to Low and High. Solve then tries Many points to determine the
value of X for which the difference of the two functions is minimum. In doing
this, it calls standard function Random that generates a sequence of pseudo
random numbers for use as trial values for the points. Solve is run 5 times over
the given range of values and produce the results shown at the top of Figure
7.51. The results can then be used to reduce the range and run the program again
to decrease the error, as shown at the bottom of the figure.

Figure 7.51 Typical execution of Solver

Enter 2 boundary values
input the smaller first
-10 10
 A value for X is -3.0502 with an error of 0.7968
 A value for X is 1.2297 with an error of 0.0285
 A value for X is -3.2298 with an error of 0.0280
 A value for X is -3.2383 with an error of 0.0100
 A value for X is 1.2183 with an error of 0.0792

Enter 2 boundary values
input the smaller first
-3.5 -3
 A value for X is -3.2350 with an error of 0.0047
 A value for X is -3.2387 with an error of 0.0119
 A value for X is -3.2360 with an error of 0.0003
 A value for X is -3.2351 with an error of 0.0043
 A value for X is -3.2354 with an error of 0.0031

Since procedure Solve is general enough, we could encapsulate it into a library,
say SolveLib. The two functions F1 and F2 would still need to be external to
this library and passed to Solve.

Note that we could have avoided to declare a function type in Solver, as the
Solve procedure heading could have been written as:

PROCEDURE Solve(FUNCTION Left(X: REAL): REAL;
 FUNCTION Right(X: REAL): REAL;
 Low : REAL; High : REAL);

This is possible only in the case where functions or procedures are passed as
arguments to other functions or procedures. In particular, function types are
necessary to write programs like FunType.

296 Chapter 7 Better Blocks: Procedures and Libraries

7.14 Top-Down Development

Pay Again

In the Principles book a seven-step problem solving method was introduced,
that encouraged the top-down design and development of a computer solution.
In the coding and testing step of this method, a top-down approach should be
used as well. Such an approach involves first coding the main body of the
program as a skeleton with procedures and functions represented by stubs. A
stub is a reduced procedure whose declaration comprises only its heading and an
almost empty BEGIN-END pair. At first the stub might have no parameters, no
local variables, and its actions might only be the simple output of a message.
The stubs simply display the fact that control has reached them and they do
nothing more. The trace that is produced by the execution of a program with
stubs is a verification of the control flow of the program. The program
MainPay1 is our familiar Main Pay algorithm from Chapter 7 of the
Principles book (Fig. 7.28) in an early stage of development with all procedures
replaced by stubs.

Figure 7.52 Skeleton of program MainPay

PROGRAM MainPay1;

VAR TotalCount: INTEGER;
 TotalAmount: REAL;
 IdNumber: INTEGER;

 PROCEDURE NetPay();
 PROCEDURE GrossPay();
 BEGIN
 WriteLn('STUB: GrossPay ');
 END; { GrossPay }

 PROCEDURE Deduct();
 BEGIN
 WriteLn('STUB: Deduct ');
 END; { Deduct }

 BEGIN
 WriteLn('STUB: NetPay ');
 GrossPay();
 Deduct();
 END; { NetPay }

BEGIN
 TotalAmount := 0.00;
 Write('Enter number of employees ');

Section 7.14 Top-Down Development 297

 Read(TotalCount);
 FOR IdNumber := 1 TO TotalCount DO BEGIN
 NetPay();
 WriteLn;
 END;
 WriteLn('The total paid out is ',
TotalAmount:7:2);
END. { MainPay1 }

Figure 7.53 shows the trace produced by a typical run of MainPay1.

Figure 7.53 Output of MainPay1

Enter number of employees 4
STUB: NetPay
STUB: GrossPay
STUB: Deduct

STUB: NetPay
STUB: GrossPay
STUB: Deduct

STUB: NetPay
STUB: GrossPay
STUB: Deduct

STUB: NetPay
STUB: GrossPay
STUB: Deduct

The total paid out is 0.00

The program’s control flow is verified by examination of the trace produced by
the program version with stub procedures. Once this is done, the stubs can be
refined by filling in the details: first the parameter lists are added. The
output remains the same, but the various procedure interfaces are checked.
Then the stubs are filled one by one, and after each addition the program is
tested. The program MainPay2 shows the final result of this
process.

Figure 7.54 Program MainPay2

PROGRAM MainPay2;
(* The Payroll program *)

 PROCEDURE NetPay(VAR Accumulated: REAL);
 VAR Gross, Net, Deductions: REAL;

 PROCEDURE GrossPay(VAR Gross: REAL);
 CONST Break = 40;
 OTimeRate = 1.5;

298 Chapter 7 Better Blocks: Procedures and Libraries

 VAR Hours, Rate: REAL;
 BEGIN
 Write('Enter hours worked ');
 Read(Hours);
 Write('Enter rate of pay ');
 Read(Rate);
 IF Hours < Break THEN
 Gross := Hours * Rate
 ELSE
 Gross := Break * Rate +
 OTimeRate * Rate * (Hours - Break);
 END; { GrossPay }

 PROCEDURE Deduct(Gross: REAL; VAR Deductions: REAL);
 CONST TaxRate = 0.20;
 VAR Taxes, Misc: REAL;
 BEGIN
 Taxes := Gross * TaxRate;
 Write('Enter misc deductions ');
 Read(Misc);
 Deductions := Taxes + Misc;
 END; { Deduct }

 BEGIN { NetPay }
 GrossPay(Gross);
 Deduct(Gross, Deductions);
 Net := Gross - Deductions;
 WriteLn('Pay the amount of ', Net:7:2);
 Accumulated := Accumulated + Gross;
 END; { NetPay }

VAR TotalCount: INTEGER;
 TotalAmount: REAL;
 IdNumber: INTEGER;
BEGIN
 TotalAmount := 0.00;
 Write('Enter number of employees ');
 Read(TotalCount);
 FOR IdNumber := 1 TO TotalCount DO BEGIN
 NetPay(TotalAmount);
 WriteLn;
 END;
 Write('The total paid out is ');
 Write(TotalAmount:7:2);
END. { MainPay2 }

Figure 7.55 shows the output produced by a typical run of MainPay2.

Section 7.14 Top-Down Development 299

Figure 7.55 Execution of MainPay2

Enter number of employees 4
Enter hours worked 38
Enter rate of pay 12.5
Enter misc deductions 10.25
Pay the amount of 369.75

Enter hours worked 42
Enter rate of pay 10.25
Enter misc deductions 17.4
Pay the amount of 335.20

Enter hours worked 10
Enter rate of pay 10.25
Enter misc deductions 8.63
Pay the amount of 73.37

Enter hours worked 51
Enter rate of pay 25
Enter misc deductions 99.21
Pay the amount of 1030.79

The total paid out is 2430.75

7.15 Chapter 7 Review

This chapter considered how the Subprogram Form is realized in Pascal as
either a PROCEDURE or a FUNCTION. It also discussed how these may be
grouped together with declarations of constants and types to form libraries.
The syntax and use of these forms were illustrated with diverse examples. The
main consideration of the chapter essentially involved packaging both actions
and data into bigger and better building blocks.

Procedures and functions were first considered in their most general form. Many
examples were presented to demonstrate various concepts. The three kinds of
parameters, input, output and input-output, and the nesting of procedures were
treated in detail. Recursion was also treated briefly.

The Pascal UNIT form with public INTERFACE and private IMPLEMENTATION
parts was studied. Units were used as libraries of constants, types, procedures
and functions. Many examples of libraries were introduced: ShortSortLib,
DateLib, BitLib and CharLib.

The chapter also considered the way in which libraries can interact, when
several of them are being used in the construction of a large program. The
importance of the order of compilation of libraries was also stressed.

The concept of FUNCTION and PROCEDURE types was considered, especially the
power of generalization through their use in parameters.

300 Chapter 7 Better Blocks: Procedures and Libraries

Top-down design and development was revisited, and its approach was
applied to coding and testing. The use of stubs for procedures and functions was
also briefly illustrated.

7.16 Chapter 7 Problems

1. ReadDate
Create a procedure, ReadDate(Year, Month, Day), that reads in
and validates a date value.

2. WriteDate
Create a procedure, WriteDate(Year, Month, Date) that outputs a
date in a standard form.

3. IsVowel
Create a function, IsVowel(Ch), that returns True if character Ch is
an upper or lower case vowel, and False otherwise.

4. Decimal
Create a function, Decimal(Binary): INTEGER, that converts any
given positive binary number (expressed as a INTEGER) into its
corresponding decimal form (base 10).

5. Quadrant
Create a procedure, Quadrant(X, Y, Quad), that takes the REAL
coordinates X and Y of any point and indicates which quadrant, 1, 2, 3 or
4, the point falls into. If the point falls on any axis the returned value
is 0.

6. Resistor
Electrical resistors have a resistance that is specified by three bands of
colors on the body of the resistor. The numeric digit corresponding to
each color is given below. If the numeric digits for the three colors are
X, Y, and Z (in that order) then the value R of the resistor (in ohms) is
given by

R = (10×X + Y) × 10Z

For example, if the bands are Red, Yellow and Orange, the
corresponding numeric digits are 2, 4 and 3, so the resistance is:

Section 7.16 Chapter 7 Problems 301

R = (10×2 + 4) × 103 = 24×103 = 24,000 ohms.

Create a procedure Resistor(Code) that requests a color (input as a
three character sequence, RED, BLU etc.) and returns the corresponding
Value as an INTEGER decimal digit. This procedure could be used to
determine the resistance.

Resistor

Color Code

Black 0

Brown 1

Red 2

Orange 3

Yellow 4

Green 5

Blue 6

Violet 7

Gray 8

White 9

7. Next Month
Create a procedure NextMonth(Month) to convert any given Month
into its following month. Do this for both subrange and enumerated
definitions of MonthType.

8. Round Off
Create both a function Rounded(RealNum) and a procedure
Roundoff(RealNum) that round off any REAL to its closest integer
value. If the fraction part is 0.5, then the value is rounded to an even
number. For example, 12.5 is rounded down to 12 and 13.5 is rounded up
to 14. Why?

9. Cubes
Create a function Cubed(R), and two procedures Cube(R) and
CubeOf(R, S) for finding the cube of any REAL value R.

10. Binary Conversion
Create a procedure Bin(Dec) that accepts an INTEGER Dec, and
outputs the binary equivalent as a sequence of 0 and 1 character digits.

302 Chapter 7 Better Blocks: Procedures and Libraries

11. Romanum
Create a procedure Roman(Num) to accept any positive INTEGER Num
(less than 300), and output the corresponding Roman number. Assume
that four consecutive occurrences of a symbol are proper.

12. Cashin
Suppose that the input to a program (such as CHANGE) must have
exactly the form

$D.DD

where each D is one of the ten decimal digits.

For example, valid sequences are

$5.00, $1.75 and $0.25

and invalid sequences are

$.25, $0.255, $3, and $12.34.

Create a procedure Cashin(Cents) that inputs a sequence of
characters (assumed to be in the valid form), and converts it to the
corresponding INTEGER number of Cents.

13. Tell Time
Create a procedure Time(MilTime) to accept the Military time
MilTime as an INTEGER, and output the time in the appropriate one of
the four formats (H O'clock, Half past H, M minutes after H, and M
minutes before H) where H and M are the Hours and Minutes.

14. Break
Create a procedure Break(N, LSD, MSD, R) that takes a given
INTEGER N and “breaks off” its least significant digit LSD, its most
significant digit MSD, and returns also the remaining integer R (or a
negative 1 if nothing remains).

7.17 Chapter 7 Programming Problems

Random Projects;

The following projects require random numbers which may be created in many
ways: using the function Random as we did in the program Solve in this
chapter.

1. Simulate
Simulate the dice game called Dice:1

Section 7.17 Chapter 7 Programming Problems 303

First, two dice are thrown.
If their sum is 7 or 11, you win,
and if the sum is 2, 3 or 12, you lose,
otherwise remember the sum, the “point count”,
and keep throwing until either:

the point count comes up and you win or
a 7 comes up and you lose.

For example: consider the sequences
7 you win
6, 7 you lose
4, 2, 11, 3, 4 you win
9, 3, 4, 12, 2, 8, 3, 7 you lose

2. Evaluate
Modify the above program to play any number of games, say 100, and
find the probability of winning (the ratio of wins to number of times
played).

3. Observe
The game of dice poker involves the throwing of five dice, their values
forming a “hand”, and the evaluation of the hands in the following
order:

a. Five of a kind, means all five dice have the same value,

b. Four of a kind, means four dice have the same value,

c. Full house, means that three dice have one value in common and
the other two have another value in common, in other words: three
of a kind and a pair.

d. A Straight , means the five values are in consecutive order,

e. Three of a kind, means that three dice have one value in common,

f. Two pairs, means two dice have one value in common and two other
dice have another value in common,

g. One pair, means that only two dice have the same value,

h. No pairs, means none of the above.

Create a program to evaluate the hands in Dice Poker, as described
above. Then generate many such hands randomly and evaluate them,
ultimately printing out the number of each type of hand.

4. Analyze
There are many algorithms for computing grades. Grades are allocated
according to the following schedule:

Grades:

A score of 90 to 100 gets a grade of 'A'

A score of 80 to 89 gets a grade of 'B'

A score of 60 to 79 gets a grade of 'C'

A score of 50 to 59 gets a grade of 'D'

304 Chapter 7 Better Blocks: Procedures and Libraries

A score of less than 50 gets a grade 'F'

The following four algorithms2 for solving this problem are examples of
the several possibilities.

Method l:
Input Percent
If Percent ≥ 90

Output ‘A’
Else

If Percent ≥ 80
Output ‘B’

Else
If Percent ≥ 60

Output ‘C’
Else

If Percent ≥ 50
Output ‘D’

Else
Output ‘F’

This method first tests the largest percentage range and keeps
testing the ranges in decreasing order, until the proper range is
found and the corresponding grade is output.

Method 2:
Input Percent
If Percent < 50

Output ‘F’
Else

If Percent < 60
Output ‘D’

Else
If Percent < 80

Output ‘C’
Else

If Percent < 90
Output ‘B’

Else
Output ‘A’

This one similar to Method 1 but starts from the smallest
percentage range.

Method 3:
Input Percent
Set TestValue to Percent – 50
If TestValue < 0

Output ‘F’
Else

Set TestValue to TestValue – 10
If TestValue < 0

Output ‘D’

Section 7.17 Chapter 7 Programming Problems 305

Else
Set TestValue to TestValue – 20
If TestValue < 0

Output ‘C’
Else

Set TestValue to TestValue – 30
If TestValue < 0

Output ‘B’
Else

Output ‘A’

This method makes the same test (TestValue < 0) at each stage.
This is useful for machine level programming since machines can
compare values to zero very easily.

Method 4:
Input Percent
Set Grade to ‘A’
If Percent < 90

Set Grade to ‘B’
If Percent < 80

Set Grade to ‘C’
If Percent < 60

Set Grade to ‘D’
If Percent < 50

Set Grade to ‘F’
Output Grade

involves a series of choices, unlike all the above methods which
involve nested choices. This method is often simpler to program in
older languages which have a limited IF structure. Notice that
this method requires the assignment of characters; none of the other
methods uses assignment of characters.

Each grade traces a path through the algorithm and involves a number
of comparisons. A given grade distribution encounters a fixed average
number of comparisons. Compare this average for the various
algorithms if the grade distribution is assumed to be: 15% A's, 20% B's,
40% C's, 15% D's and 10% F's.

DateLib

A miniature version of DateLib, a library that manipulates dates (year,
month, day) was given in this chapter. Its interface part showed that it had
three actions:

INTERFACE
FUNCTION IsLeap(Year: INTEGER): BOOLEAN;
FUNCTION DaysInMonth(Year, Month: INTEGER)

 : INTEGER;
FUNCTION DayOfYear(Year, Month, Day: INTEGER)

: INTEGER;

306 Chapter 7 Better Blocks: Procedures and Libraries

Build your own copy of this UNIT and test it with the program DaysToXmas.
Then extend this UNIT with some of the following actions. Create also a
program that tests those that you implement.

1. Elapsed calculates the number of days between any two given dates.

2. Age determines the integer age of a person, given the birth date.

3. FirstDate determines the weekday of January 1 of any year, knowing
that January 1 of 1901 was a Tuesday.

4. WeekDay finds the weekday that a given date, including the year,
falls on. It makes use of FirstDate.

5. WeekDayBorn finds the weekday a person was born, given the birth
date.

6. ThanksDate finds the date of Thanksgiving in the USA, for any year,
knowing that it occurs on the fourth Thursday of November.

7. MidWay determines the date (or dates) half way between two given
dates of the same year.

8. UnLucky determines, for a given year, the months on which Friday
falls on the 13th day.

9. Calendar creates a calendar for any month of any year.

10. BioRhythm plots out a sine curve supposedly indicating the rise and
fall of a certain ability, such as physical strength, endurance. The sine
wave has a given period of repetition (say 23 days) starting with 0 at
birth. Create such a plot starting at any given day, and continuing for
one whole cycle.

11. BigBio plots a number of biorhythms, each having a different period,
on one graph. For example, the intellectual cycle has a period of 33
days, and the sensitivity cycle has a period of 28 days.

Create Libraries

There are a number of smaller libraries that could be useful. Create some of
these and use them.

1. ConstLib
If there are a number of physical constants that you often use, e.g., Pi, e,
the mass of an electron, and many others, put them into a Library.

2. ConverLib
Conversion of quantities from one measurement system to another could
be conveniently done with a Library. The names of the actions should
be easy to remember, e.g. PoundsToKilograms, FeetToInches, etc.
Would you do this with functions or procedures?

3. InOutLib
The standard procedures of Pascal do not satisfy all input/output needs.
Create your own input/output Library with procedures such as:

Section 7.17 Chapter 7 Programming Problems 307

WriteIntLen(I), which computes the width of I and prints that
width.

ReadBool(B) which reads BOOLEAN values TRUE and FALSE.

ReadDay(D) which inputs the day of the week.

WriteDollars(D) which prints dollar amounts such as $1,234.56.

4. MiscLib
If you are familiar with other languages you may wish to incorporate
some of these features into Pascal. You may also wish to use other
names for some of the functions of Pascal (such as RealToInt for entier).

5. ArithLib
Create a library of arithmetic “black boxes”, DivInt, SubInt,
MulInt, Square, etc.

6. CharLib
Complete the CharLib library that was given in this chapter.

7. BitFunctionLib
Redo BitLib using functions instead of procedures for the logical gate
operations. For example: DeMorgan's result would have the form:

Not (And(A, B)) = Or(Not(A), Not(B))

8. FileLib
Create a Library involving Files with actions of:

OpenSourceFile, which prompts, checks and opens

EncryptFile, which encodes a file for privacy

DecryptFile, which reconverts an encrypted file to its original state

FinanceLib

Create a library of the following five financial functions. They may be used to
solve either savings problems or loan problems. For savings problems the
payment Payt is positive; for loan problems it is a negative value. This
Library could be used with a program where any four values are given and the
fifth value is to be determined.

Fvalue(Rate, Durn, Payt, Pval)
is the future value at a compounded interest Rate, of Durn payment
periods, of constant amount Payt, and present value Pval.

Pvalue(Rate, Durn, Payt, Fval)
is the present value needed to reach a given future value Fval with a
given interest Rate in Durn periods of amount Payt.

Duration(Rate, Payt, Pval, Fval)
is the number of payments necessary to reach a given future value Fval
given the present value Pval with periodic amount of Payt at a
compounded Rate per period.

308 Chapter 7 Better Blocks: Procedures and Libraries

Payment(Rate, Durn, Pval, Fval)
is the periodic payment amount needed to reach the future value Fval
from the present value Pval in Durn payments at a given interest Rate.

IntRate(Durn, Payt, Pval, Fval)
is the interest rate per period that is required to reach the future value
Fval from the present value Pval in Durn payments of amount Pay.
Another parameter Init could be used as an initial guess for the rate.

Change Again: Done Properly with Procedures

ChangeMaker is to be done properly using subprograms (functions or procedures)
with proper passing of parameters and maximum hiding of procedures. Some
procedure names follow; you are to specify the parameters and their passing
methods. Show the structure of this program by data flow diagrams and
contour diagrams.

Instruct
asks if you wish instructions or help, and if so, it provides a brief
statement.

InCost
a friendly procedure, prompts for the Cost and checks for proper input.

InTend
like InCost, is a procedure to input the amount tendered; it uses
InReal.

InReal
enters a value in decimal form (dollars and cents) and converts it to
INTEGER number of cents.

EnterInput
contains the previous procedures (and possibly a Proper Value check).

Changer
makes the change, and uses a Divide procedure.

SpellOut
Spells the count corresponding to its input value.

Plural
appends the character S to any written plural denomination

Size is a function, useful for formatting the output, which determines
the number of digits of a Cardinal.

MeanLib

Create the IMPLEMENTATION part of a library corresponding to the following
INTERFACE part. This UNIT consists of a number of procedures that compute
various mean values of a sequence of real values. The first and last items of the
sequence are terminators and are not to be included in the mean values.

UNIT MeanLib;

Section 7.17 Chapter 7 Programming Problems 309

(* Provides various mean values *)

INTERFACE

PROCEDURE ArithMean(VAR Count: INTEGER;
 VAR AMean: REAL);

(* Computes arithmetic mean by summing values *)
(* and dividing by the number of values *)

PROCEDURE GeoMean(VAR Count: INTEGER;
VAR GMean :REAL);

(* Computes the geometric mean by multiplying *)
(* the N values and then taking the Nth root *)

PROCEDURE HarmMean(VAR Count: INTEGER;
 VAR HMean : REAL);

(* Computes the harmonic mean by summing the *)
(* reciprocals of all the values and then *)
(* taking the reciprocal of the result *)

END.

310 Chapter 7 Better Blocks: Procedures and Libraries

7.18 Chapter 7 Programming Projects

DMT: DeMilitarizeTime Lab with Procedures

The goal of this project is to create various procedures that can be used to
manipulate Military time. A program MinDiff uses these procedures to find
the minimum time difference between any three given times in one day.

DATA
Time can be expressed in Military form (or 24-hour form) as an INTEGER
such as 730 or 1604. Time can also be represented in a Normal form as
7:30 am or 4:04 pm. Improper Military times are 2604 and 1670.

ACTIONS
Create all of the following procedures using exactly the parameter
names given, with parameters passed properly.

Divide(Num, Den, Quot, Rem)
divides Num by Den to yield Quot and Rem.
Use DIV and MOD to implement Divide, just to be different this time.

ReadMilTime(MilTime)
prompts for a single military time MilTime and checks that it is in the
proper form. If it is not in the proper form it outputs an error message
and requests another time to be entered; this continues until the time
entered is in the proper form.
At first just check for the proper range of time (0...2400); later return to
refine this. Use the above procedure Divide.

ReadMilTime3(First, Second, Third)
calls the ReadMilTime three times to enter the three values.

WriteNormalTime(MilTime)
writes out a given military time in the normal mode. For example, 0730
is written as “7:30 am” and 1604 is written as “4:04 pm”.

Convert(MilTime, Minutes)
converts a given military time to the corresponding minutes since
midnight. For example, the time 1240 is 760 minutes past midnight.
Used Divide again.

TimeDiff(T1, T2, Diff)
Computes the minutes elapsed between the two given times T1 and T2
of one day. For example, the difference between 0250 and 2030 is 1060
minutes.

Minimize3(A, B, C, M)
computes the minimum value M of three values A, B, C.

Section 7.18 Chapter 7 Programming Projects 311

The program MinDiff

This program uses these procedures to find the minimum time difference of
three times. For example, when the input values are 1200, 1300 and 1800, the
minimum time between them is 60 minutes. Use the following program (grown
in stages).

WriteLn('Input three values ');
ReadMilTime3(X, Y, Z);
TimeDiff(X, Y, P);
TimeDiff(X, Z, Q);
TimeDiff(Y, Z, R);
Write('The minimum time difference between ');
WriteNormalTime(X);
WriteNormalTime(Y);
WriteNormalTime(Z);
Write(' is');
Minimize3(P, Q, R, S);
WriteLn(S: 3);

Time Permitting:

Indicate which two times have this minimum difference (the above 60 minute
difference is between the first two values, 1200 and 1300).

Finally: Put these procedures in a UNIT MilTimeLib and USE them for the
MinDiff program.

SLL: Small Library Project

In this project we will be creating Libraries in Pascal and we will be using these
Libraries in some programs.

1. Create a small Library, called CharLib, to work with the CHAR type.
This Library should contain some:

Constants such as
Hyphen, Space, Bell, Buzz, Escape,

Procedures, with verb names such as
Capitalize(CH), EnterDigit(D)

Functions, with noun names such as
MaximumC3(A, B, C), Uncap(C), CharToCard(C),

Boolean Functions, with adjective names such as
Capitalized(C) or equivalently IsCap(C)

Earlier in this chapter, we described the beginnings of this library
together with a small example.

2. Create a small program, called CharTest, which uses and tests the
new CharLib that you have just constructed. This program need not be
useful in any other way.

312 Chapter 7 Better Blocks: Procedures and Libraries

3. Run CharTest and show some runs of this test program.

Time Permitting:

4. Create your own small Library of things of interest to you, and a
program to use it. For example, you may wish to “encapsulate” the
previous project involving 24-hour Time conversion.

5. ReUse: Show and Tell
Share your Library with some other students in the class. Have them
test yours and you test theirs.

1 This is figure 3.3 from Principles.
2 These algorithms come from Principles Chapter 5 around page 26

Chapter Outline 313

Chapter 8 Pascal Data Structures
In this chapter we consider the three structured data types: arrays, records,
and sets, and how they are used in Pascal. The main concepts introduced in
Chapter 8 of the Principles book and “Abstract Data Type” (or ADT), will be
further developed. ADTs will also be used to create three libraries:
IntArrayLib, ComplexLib, and a Matrix Library

Chapter Overview
8.1 Preview..314
8.2 Arrays in Pascal..314

ChangeMaker and Variance......................................317
Parallel Arrays: Part Inventory................................319
A Tiny Data Base: Retrieving Strings from Arrays.....321
Arrays as Parameters..323
IntArrayLib: Integer Array Library...........................325

8.3 Two Dimensional Arrays in Pascal.............................328
Arrays of Arrays—Two Dimensional Arrays..............328

8.4 N-Dimensional Arrays..331
More Dimensions...331

8.5 Records in Pascal...333
ComplexLib: A Library for Complex Numbers............337
Records of Records: Nested Records...........................339
Arrays of Records in Pascal..342
Records of Arrays..345
Matrix Library..347

8.6 Sets in Pascal..352
More Sets (Optional)...355

8.7 Dynamic Variables and Pointers in Pascal.................359
8.8 Chapter 8 Review...361
8.9 Chapter 8 Problems...361
8.10 Chapter 8 Programming Projects.................................363

Gas Project..363
Library Projects...364
BSL: Big Stat Lab...364

314 Chapter 8 Pascal Data Structures

8.1 Preview

The main concepts developed in Chapter 8 of the Principles book will be
discussed here in the context of Pascal and used to create programs. Arrays will
be considered in detail, and their method of use will be illustrated through a
variety of examples.

The concept of an “Abstract Data Type” will be developed further and applied
through the use of libraries. Libraries created in this chapter include a Integer
Array Library, a Complex Number Library, and a Matrix Library.

The main capabilities developed in this chapter involve the use of data
structures, arrays, records and sets, to create larger data items from smaller
ones. Arrays and records came into programming languages from different areas
of application; arrays from scientific applications and records from commercial
applications. Here we shall see that the two techniques can be combined with
powerful results. Sets are still not as widely used as the other structures.

Finally, by this time, you should be able to read programs with some ease, so
less of the text is devoted to describing the programs given. If you encounter
problems, go back to the algorithm development in Chapter 8 of the Principles
book.

8.2 Arrays in Pascal

An array is an ordered collection of values, all of the same data type. The
simplest kind of array is an ordered sequence of INTEGERs, such as the number of
hours worked on each of the seven days of a week. More complex arrays, of two
and more dimensions, will be considered later in this chapter.

The declaration of an array type in Pascal has the general form:

TYPE array-name = ARRAY index-type OF item-type;

such as

TYPE WeekArray = ARRAY [1..7] OF REAL;

where item-type represents the type of the elements stored in the array, and
can be any valid Pascal data type, either built-in or programmer defined. The
second type, index-type, represents the type used to index the individual
elements in the array, and is usually an enumeration or subrange type, but may
be a Boolean or Character type. The index-type cannot be REAL.

Once an array type has been declared, it may be used in the declaration of
variables in the usual way, as for example:

VAR Hours, OverTime, TotalHours: WeekArray;

Such an array TYPE declaration describes a general template for a typical
array of that type, showing the number of values and their type. On the other
hand the VAR declaration specifies a particular instance of that type. It would

Section 8.2 Arrays in Pascal 315

be valid but less general, and therefore not preferred, to combine the two
declarations in one as in:

VAR Hours: ARRAY [1..7] OF REAL;

This should be avoided, as it might create type incompatibilities later on, and
prevent you to use the array as a procedure or function argument.

In fact it would be even better to be more general and declare yet another type

TYPE WeekRange = 1..7;

and use that as the index-type in the declaration of the array type
WeekArray:

TYPE WeekArray = ARRAY [WeekRange] OF REAL;

for this new type WeekRange could also be used to declare an index variable
used in the program to access values in the array. Consistent changes to the
program can then be made in a single place by changing the declaration of
WeekRange. A further generalization can be obtained by declaring the upper
and lower values of the index-type as named constants.

The following examples of array declarations show something of the diversity
available in Pascal for the definition of arrays.

CONST
MOST = 100;

TYPE
Range = 0..MOST;
IntArray = ARRAY [Range] OF INTEGER;

VAR
Age, Grade: IntArray;

CONST
LOW = 100;
HIGH = 200;

TYPE
IdRange = LOW..HIGH;
RealList = ARRAY [IdRange] OF REAL;

VAR
Price, Quantity: RealList;

TYPE
WeekDay = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
WeekType = ARRAY [WeekDay] of REAL;

VAR
Hours, OverTime: WeekType;

TYPE
CountDown = ARRAY [-10..10] OF REAL;
NameString = ARRAY [0..20] OF CHAR;
BitSequence = ARRAY [0..15] OF 0..1;

316 Chapter 8 Pascal Data Structures

The individual elements of an array are accessed by using the array name
followed by an index value enclosed in square brackets, such as

Grade[95]
Price[Part]
Hours[Day]
Name[IdNumber]

The index value inside the brackets may be a constant, a variable, or an
expression, which is evaluated at the time of access. This index value
represents the position of the element in the array. Each of the above
references to an individual element in an array is treated as a variable that can
be assigned, compared, input, output, and used in expressions. It is sometimes
called a subscripted variable.

The short program in Figure 8.1 illustrates the use of an array to store a sequence
of INTEGERs representing temperatures. The list of input values is sandwiched
between sentinel values as we have done in the past. However, to keep things
simple, the program does not prompt the user: you can easily add these to
improve the program.

Figure 8.1 Program FindMaximumTemperature

PROGRAM FindMaximumTemperature;
(* Find the maximum of a sequence of temperatures *)

CONST MaxSeqSize = 10;

TYPE Sequence = ARRAY [1..MaxSeqSize] OF INTEGER;

VAR Vector: Sequence;
 Maximum, Sentinel, Value, Count,
 Position, Index: INTEGER;

BEGIN
 Read(Sentinel);
 Count := 0;
 Read(Value);
 WHILE Value <> Sentinel DO BEGIN
 Inc(Count);
 Vector[Count] := Value;
 Read(Value);
 END;
 Maximum := Vector[1];
 Position := 1;
 FOR Index := 2 TO Count DO BEGIN
 Value := Vector[Index];
 IF Maximum < Value THEN BEGIN
 Maximum := Value;
 Position := Index;
 END;
 END;

Section 8.2 Arrays in Pascal 317

 Write('Maximum temperature was ', Maximum:3);
 WriteLn(' in position ', Position:2);
END. { FindMaximumTemperature }

Notice that, even though the actual number of values that will be read in is
determined by the sentinel that marks the end of the data, this number may not
exceed the value of MaxSeqSize, in this case 10. If an attempt is made to input
more than 10 numbers, the Pascal programming system will stop the program
with an “index/range error” message indicating that an attempt has been made
to read or write a value outside the bounds of the array. In other words, the
size of an array is fixed when the program is compiled and cannot be changed
dynamically. In order to change the size, the program must be modified and
recompiled; this emphasizes the advantages of using named constants for
bounds as it reduces the number of places where changes have to be made to a
program.

ChangeMaker and Variance

In Chapter 8 of the Principles book, we developed yet another version of the
Change Maker algorithm, one that used an array to loop through
denominations in the order 25, 10, 5, and 1. For each denomination, the
algorithm decreases the change due and outputs the denomination value, until
the change due is down to zero.

Figure 8.2 Program ChangeWithArrays

PROGRAM ChangeWithArrays;
(* Making change using arrays *)

CONST NumOfDenominations = 5;

TYPE Range = 1..NumOfDenominations;
 IntSeq = ARRAY[Range] OF INTEGER;

VAR Cost, Tendered, Remainder, Denomination,
Index: INTEGER;
 Den: IntSeq;
BEGIN
 { Set up Denominations array }
 Den[1] := 1; { Pennies }
 Den[2] := 5; { Nickels }
 Den[3] := 10; { Dimes }
 Den[4] := 25; { Quarters }
 Den[5] := 50; { Half-dollars }

 { Get input values and compute the change }
 WriteLn('Enter the cost in cents ');
 Read(Cost);
 WriteLn('Enter the amount tendered in cents ');

318 Chapter 8 Pascal Data Structures

 Read(Tendered);
 Remainder := Tendered - Cost;
 WriteLn;
 WriteLn('Your change is ');

 { Compute the change }
 FOR Index := NumOfDenominations DOWNTO 1 DO
BEGIN
 Denomination := Den[Index];
 WHILE Remainder >= Denomination DO BEGIN
 WriteLn(Denomination:4);
 Dec(Remainder, Denomination);
 END;
 END;
END. { ChangeWithArrays }

The program ChangeWithArrays, in Figure 8.2, is based on this algorithm.
Notice the choice of names in the program. Also notice that the values in the
array were in decreasing order in the original algorithm, and are in increasing
order in the program. This enables the program to grow more easily to higher
denominations such as 100, 200, 500, etc.

In Chapter 8 of the Principles book, two methods of calculating variance were
shown. The second method computed the sum of all the values, as well as the
sum of their squares, before applying a simple formula.

Figure 8.3 shows a Pascal program that is based on this algorithm.

Figure 8.3 Program Variance

PROGRAM Variance;
(* Compute the mean and variance of a sequence of values *)

CONST MaxListSize = 10;

TYPE IntSeq = ARRAY[1..MaxListSize] OF INTEGER;

VAR Vector: IntSeq;
 Sum, SumSquares, Sentinel,
 Value, Count, Index: INTEGER;
 Mean, Variance: REAL;

BEGIN
 Read(Sentinel);
 Count := 0;
 Read(Value);
 WHILE Value <> Sentinel DO BEGIN
 Inc(Count);
 Vector[Count] := Value;
 Read(Value);
 END;

Section 8.2 Arrays in Pascal 319

Sum := 0;
 SumSquares := 0;
 FOR Index := 1 TO Count DO BEGIN
 Sum := Sum + Vector[Index];
 SumSquares := SumSquares +
 Vector[Index] *
Vector[Index];
 END;
 Mean := Sum / Count;
 Variance := SumSquares / Count - Mean * Mean;
 Write('Mean = ', Mean:5:2);
 WriteLn(' Variance = ', Variance:5:2);
END. { Variance }

Notice the way that references to elements of Vector, such as
Vector[Index], form part of expressions in just the same way as variables do.

Parallel Arrays: Part Inventory

The term parallel arrays refers to a number of arrays that are of the same size
but may contain different types of value. For example, the inventory of chair
parts, that was mentioned in the Principles book, could be represented by the
following four parallel arrays, as each attribute (Price, Quantity, etc.) is of a
different type. The first element of each array corresponds to the same part, a
Leg, the second element of each of the parallel arrays corresponds to a Seat, etc.
as shown in Figure 8.4.

Figure 8.4 Parallel arrays

Price[I]

1.12

2.50

0.75

3.00

Quant[I]

200

100

400

300

ReOrder[I]

FALSE

TRUE

FALSE

FALSE

Status[I]

A

C

B

A

Leg

Seat

Rung

Back

I

1

2

3

4

The program PartArray, shown in Figure 8.5, illustrates how the parts
inventory of a chair could be represented using parallel arrays. Each of the
arrays has a range that extends over the list of parts forming the chairs; this
listing of parts is declared as an enumerated type, which is then used as the
range in the declaration of the arrays. Four types of array are declared, one for
each type of item (IntArray for INTEGERs, RealArray for REALs, etc.) As
usual, these types are templates.

Figure 8.5 Program PartArray

PROGRAM PartArray;
(* An inventory of parts with parallel arrays *)

TYPE PartsType = (Leg, Seat, Rung, Back);

320 Chapter 8 Pascal Data Structures

 IntArray = ARRAY [PartsType] OF INTEGER;
 RealArray = ARRAY [PartsType] OF REAL;
 BoolArray = ARRAY [PartsType] OF BOOLEAN ;
 CharArray = ARRAY [PartsType] OF CHAR;
VAR Price: RealArray;
 Quantity: IntArray;
 Reorder: BoolArray;
 Status: CharArray;
 Worth: REAL;
 Part : PartsType;

BEGIN
 WriteLn('Enter price and quantity ');
 WriteLn('for leg, seat, rung, back');
 Read(Price[Leg]); Read(Quantity[Leg]);
 Read(Price[Seat]); Read(Quantity[Seat]);
 Read(Price[Rung]); Read(Quantity[Rung]);
 Read(Price[Back]); Read(Quantity[Back]);
 Worth := 0;
 FOR Part := Leg TO Back DO
 Worth := Worth +
 Price[Part] * Quantity[Part];
 Write('The total worth is ');
 Write(Worth:8:2);
END. { PartArray }

The Price, Quantity, Reorder and Status arrays are all declared of
different types. Actually, Reorder and Status are not used in the program
for simplicity reasons, and can thus be ignored.

First, the Price and Quantity of the four parts are input, and then the total
Worth of the parts is computed. This is done by multiplying the Price of each
item by its Quantity, and summing these products. For example, if there are
200 legs with a price of $1.12 each then the worth of legs is 20×1.12 = $22.40.
For 100 seats at a price of $2.50 the worth is $250.00. If we use the values shown
in the diagram of Figure 8.4, we get a total Worth of $1,674.

The output from a typical run of the PartArray program is:

Enter price and quantity
for leg, seat, rung, back
1.12 200
2.5 100
0.75 400
3.0 300
The total worth is 1674.00

This program could be extended to use the other arrays, Reorder and
Status. There are many ways to use these arrays, for example, to decide
whether to reorder Legs:

IF (Quantity[Leg] < Critical) AND
 (NOT ReOrder[Leg]) THEN

Section 8.2 Arrays in Pascal 321

 { Order Legs }

The same Chair inventory problem will be solved another way with records
later in this chapter.

A Tiny Data Base: Retrieving Strings from Arrays

Recall the tiny data base you have used in Chapter 2, as we’ll look here into
the way one of its operations can be implemented. Data of type STRING are
particularly useful for the storage of text information so it should not be
surprising that arrays of STRINGs would be a common way for storing lists of
information. For example, the following is a list of people and their phone
numbers.

Cetera, Ed, (818) 885-3398
DeLion, Dan (405) 349-6400
Dover, Ben (213) 987-6543
Druff, Dan (818) 213-4567
Funt, Ella (818) 349-2134 X5678
Gone, Polly (818) 548-5948 AM
Gone, Polly (818) 439-4393 PM
Ho, Gung (818) 543-7652
Stein, Frank N. (213) 456-7890
Wood, Holly (818) 349-6417 by 9am

If this list were stored in an array, it could be searched to find the entry
containing the pattern Funt and it would retrieve:

Funt, Ella (818) 349-2134 X5678

Similarly, it can be searched for all occurrences of the pattern (213) to find all
those having the area code (213). This search would yield the two entries:

Dover, Ben (213) 987-6543
Stein, Frank N. (213) 456-7890

Notice that searching for the pattern 213 would have yielded two more
strings:

Druff, Dan (818) 213-4567
Funt, Ella (818) 349-2134 X5678

The program Retrieve shown in Figure 8.6, was created to make such searches.
The strings that form the information list, Info, in this case, the phone list,
are read from a file that is referred to in the program as DataFile but whose
actual name is entered by the user before making the search. The list Info is
declared to be of type InfoList, which was defined to be a string array of
some fixed maximum size, MaxSize.

Figure 8.6 Program Retrieve

PROGRAM Retrieve;
(* Retrieve a pattern from an array of strings *)

CONST MaxSize = 25;

322 Chapter 8 Pascal Data Structures

TYPE ListRange = 1..MaxSize;
 InfoList = ARRAY [ListRange] OF STRING;

VAR Pattern, FileName: STRING;
 DataFile: TEXT;
 Info: InfoList;
 Index, Size: ListRange;
BEGIN
 { Get File of strings & Put in array }
 Write('Enter the file name ');
 ReadLn(FileName);
 Assign(DataFile, FileName);
 Reset(DataFile);
 Index := 1;
 ReadLn(DataFile, Info[Index]);
 WHILE Info[Index] <> 'END' DO BEGIN
 Inc(Index);
 ReadLn(DataFile, Info[Index]);
 END;
 Size := Index - 1;

 { Find occurrences of a pattern }
 Write('Enter Search pattern: ');
 Read(Pattern);
 FOR Index := 1 TO Size DO
 IF Pos(Pattern, Info[Index]) <> 0 THEN
 WriteLn(Info[Index]);
 WriteLn('That''s all ', #7);
 Close(DataFile);
END. { Retrieve }

During the early development of the program, once the strings have been put
into the array, they can be output to verify that the input worked properly.
The program then continues by requesting a Pattern to search for in Info. The
search process consists of applying the standard function Pos to each item of
the Info array to see whether that Pattern is in that item and, if so, the item
is output.

When the search is completed, there is a final line of output:

WriteLn('That''s all', #7);

to tell the user that the search is over. There are two points to notice about this
statement. First, the doubled quote mark in 'That''s all' shows how a
single quote mark can be included in a character string; when output it appears
as That's all. The #7 specifies that a character with ASCII value 7 is to be
output; this character, called “BELL” causes the terminal to make a sound—in
the early days of teletypes, it was an actual bell that sounded, nowadays it’s
some kind of electronic sound. It is useful to the user, who is perhaps waiting for

Section 8.2 Arrays in Pascal 323

a long file to be searched, to be possibly woken up and told that the search is
over. The Close statement is required to close the input file.

There are other possible applications for this simple data retrieval program,
such as getting times from a Schedule file, tasks from a TO-DO file, or items
from an Inventory file, etc.

This program could also be modified in many different manners. It could be
made to search for fields (separated by commas) within each record, to output
only the phone number field, or only the address field. It could be changed to
print names and addresses, but not the phone numbers, of certain zip codes in the
form of labels for a mailing list. It could be used to count the numbers of items
having various properties, an address in California for example, and then
analyze these statistics.

Arrays as Parameters

In principle, the use of an array as a parameter to a procedure should not be
different from the use of other variables. There are two main methods of
passing parameters: pass by value, used for passing input parameters and pass
by reference, used for output and input-output parameters, and these methods
are both used for arrays. However, the choice of which one to use is sometimes
influenced by efficiency considerations in the case of arrays.

When a parameter is passed by value, the value of the actual parameter is
copied into the formal parameter, which is a local variable. Thus, passing an
array parameter by value results in making a copy of the entire array, which
takes both time (to make the copy) and space (to store the copy). If the array is
large, or the computer memory space is small, then the array should be passed
by reference, even if it is a passed-in parameter. In this case, the programmer
must make certain that the called procedure does not modify the array, because
it is not protected as it would have been if passed by value.

The program Extrema, shown in Figure 8.7, contains two general procedures,
InSeq and Extremes, both of which may be useful in other programs. The
main body of the program calls InSeq to read a list of ages into an array and to
count the number of ages. The other procedure, Extremes is then invoked to
find the oldest and youngest. Finally, the values of Count, Oldest and
Youngest are output. The array Age, in which the ages are stored, is of type
Sequence, which is defined as having at most 100 INTEGERs.

Figure 8.7 Program Extrema

PROGRAM Extrema;
(* Find the extreme values in an array *)

CONST Most = 100;

TYPE Sequence = ARRAY [1..Most] OF INTEGER;

VAR Age: Sequence;
 Oldest, Youngest, Count: INTEGER;

324 Chapter 8 Pascal Data Structures

 PROCEDURE InSeq(VAR Info: Sequence; (* output *)
 VAR Size: INTEGER); (* output *)
 VAR Index, value, term: INTEGER;
 BEGIN
 Write('Enter terminal value ');
 Read(term);
 WriteLn('Now enter the values ');
 Read(value);
 Index := 0;
 WHILE value <> term DO BEGIN
 Index := Index + 1;
 Info[Index] := value;
 Read(value);
 END;
 Size := Index;
 END; { InSeq }

 PROCEDURE Extremes(Data: Sequence; (* input *)
 Number: INTEGER; (* input *)
 VAR Max, Min: INTEGER); (* output *)
 VAR Index: INTEGER;
 BEGIN
 Max := Data[1];
 Min := Data[1];
 FOR Index := 2 TO Number DO BEGIN
 IF Max < Data[Index] THEN
 Max := Data[Index];
 IF Min > Data[Index] THEN
 Min := Data[Index];
 END;
 END; { Extremes }

BEGIN { Extrema }
 InSeq(Age, Count);
 Extremes(Age, Count, Oldest, Youngest);
 WriteLn('The Number of people is ', Count:3);
 WriteLn('The Oldest is ', Oldest:2);
 WriteLn('The Youngest is ', Youngest:2);
END. { Extrema }

The procedure InSeq reads a sequence of values sandwiched by a terminating
value as we have done in the programs FindMaximumTemperature and
Variance earlier in this chapter. InSeq has two parameters: Info, which is
the array that is to be assigned the values read in, and Size, which is used to
return the number of values read. Both of these are output parameters and
therefore must be passed by reference. For this reason, VAR precedes each of the
names Info and Size in the formal parameter list. Were they both of the
same type, a single VAR would have sufficed.

Section 8.2 Arrays in Pascal 325

The procedure Extremes accepts a sequence, Data and an INTEGER Number,
and returns the extreme values Max and Min. In this case, Number is an input
parameter and is passed by value, and Max and Min are output parameters and
must be passed by reference. The array Data could be passed by value, which
would protect its values, or it could be passed by reference to save execution time
and memory space. Here we chose protection, but a VAR could have preceded
Data in the formal parameter list.

The identifiers used in the main body of the program differ considerably from
those in the procedures. The procedures are general, and apply to any values, so
the variables have general names, such as Data, Max and Min. The main
program deals with a specific problem and has names associated with that
problem such as Age, Oldest, and Youngest. The proper choice of names can
make programs very readable.

IntArrayLib: Integer Array Library

As our various examples have shown, arrays have wide application in
computing, so it would be useful to “encapsulate” some basic declarations and
actions into a library. Use of this library spares the programmer from having
to recreate the various common operations on arrays, including input-output and
sorting, from scratch each time they are needed. This library illustrates all of
the aspects of libraries, including the initialization of variables.

Figure 8.8 Library IntArrayLib

UNIT IntArrayLib;
(* Library of Arrays of Integers *)

INTERFACE
 CONST MaxSize = 100;

 TYPE Range = 0..MaxSize;
 IntArray = ARRAY [Range] OF INTEGER;

 VAR Term: INTEGER; { input and array
terminating value }

 PROCEDURE ReadIntArray(VAR Info: IntArray);
 (* Read input values into Info *)
 PROCEDURE WriteIntArray(Info: IntArray; Width: INTEGER);
 (* Display values from Info in Width field *)
 FUNCTION SizeArray(Info: IntArray): INTEGER;
 (* Return size of Info *)
 PROCEDURE SortIntArray(VAR A: IntArray);
 (* Sort Info array *)

IMPLEMENTATION

 PROCEDURE ReadIntArray(VAR Info: IntArray);

326 Chapter 8 Pascal Data Structures

 VAR Ind: Range;
 Value: INTEGER;
 BEGIN
 WriteLn('Enter values ending with terminal value ');
 Ind := 0;
 Read(Value);
 WHILE Value <> Term DO BEGIN
 Inc(Ind);
 Info[Ind] := Value;
 Read(Value);
 END;
 Info[Ind+1] := Term;
 END; { ReadIntArray }

 PROCEDURE WriteIntArray(Info: IntArray; Width: INTEGER);
 VAR Ind: Range;
 BEGIN
 FOR Ind := 1 TO SizeArray(Info) DO
 WriteLn(Info[Ind]:Width);
 END; { WriteIntArray }

 PROCEDURE SizeArray(List: IntArray):INTEGER;
 VAR Ind: Range;
 BEGIN
 Ind := 0;
 WHILE List[Ind+1] <> Term DO
 Inc(Ind);
 SizeArray := Ind;
 END; { SizeArray }

 PROCEDURE SortIntArray(VAR A: IntArray);
 VAR Ind, J, N: Range;
 Temp: INTEGER;
 BEGIN
 N := SizeArray(A);
 FOR Ind := 1 TO N-1 DO
 FOR J := 1 TO N-1 DO
 IF A[J] < A[J+1] THEN BEGIN
 Temp := A[J];
 A[J] := A[J+1];
 A[J+1] := Temp;
 END;
 END; { SortIntArray }

BEGIN
 Write('Enter Terminal value ');
 Read(Term);
END. { IntArrayLib }

Section 8.2 Arrays in Pascal 327

The library IntArrayLib, shown in Figure 8.8, is a library that defines a
constant, a data type, a variable, a number of procedures and a function. These
are all described in the publicly available INTERFACE part. In particular, the
library defines the data type IntArray as an array of INTEGERs having a
MaxSize, which is currently specified as constant 100 but could be modified
easily. There is also a variable called Term, which represents the
terminating value that marks the end of the values during input, and also in
the arrays. Also included are the procedures ReadIntArray, WriteIntArray
and SortIntArray, and the function SizeArray. Other procedures such as
SearchIntArray could be added later. Notice that the size of arrays is not
passed to these procedures because the terminator, which is recorded in the
arrays, determines that size. Function SizeArray returns the actual size of an
array, which is less than or equal to MaxSize.

The program IntArrayProg, shown in Figure 8.9, represents a very simple use
of this Library. A typical run of the program is given at the right of the figure
with the user’s responses in bold.

Figure 8.9 Program IntArrayProg and output

PROGRAM IntArrayProg;
USES IntArrayLib;

VAR A: IntArray;
BEGIN
ReadIntArray(A);
SortIntArray(A);
WriteIntArray(A, 4);

END. { IntArrayProg }

Output from typical run
Enter Terminal value 0
Enter values End with term
123 456 789 987 654 321 0
987
789
654
456
321
123

The implementation of the various procedures for reading and writing an array
has been demonstrated previously as pieces of programs, and we’ll cover sorting
in the next chapter (a little anticipation will do you good). Here, these pieces
are collected and packaged in the implementation part of this library UNIT.
Notice that, at its very bottom this UNIT has a body, or block, that requests the
terminating value and stores it into the publicly available variable Term.
This initialization is performed as the very first action in the use of this
Library, even before the actions of the programs that use it.

This library could be modified and certainly extended, for instance to search for
a given value, or to find the maximum value of an array, etc. A similar library
could be created for REAL values, or for CHAR values.

328 Chapter 8 Pascal Data Structures

8.3 Two Dimensional Arrays in Pascal

Arrays of Arrays—Two Dimensional Arrays

Thus far, we have only considered arrays of one dimension, i.e. with one index.
Arrays of more dimensions, especially two dimensions, are also very common in
computing.

A two-dimensional array can be viewed as a rectangular grid with two indices,
one specifying a row and the other a column.

Figure 8.10 A calendar

Sun Mon Tue Wed Thu Fri Sat

2 3 4 5 6 7 8

9 10 11 12 13 14 15
16 17 18 19 20 21 22

23 24 25 26 27 28 29
30 31

1

1993 May

For example, a calendar like the one in Figure 8.10 can be seen as a two-
dimensional table having rows, known as weeks, and columns known as days.
However, a calendar can also be viewed as an array of arrays; a month is an
array of weeks, and a week is an array of days. In Pascal this declaration is
written as:

TYPE DayType = INTEGER;
 DayNames = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 WeekType = ARRAY [DayNames] OF DayType;
 MonthType = ARRAY [1..6] OF WeekType;

Note that type MonthType could also have been declared as:

TYPE MonthType = ARRAY [1..6] OF
ARRAY [DayNames] OF DayType;

which shows that it is an array whose elements are themselves arrays. It
could even have been declared using a shortcut as:

Type MonthType = ARRAY [1..6, DayNames] OF DayType;

Variables, such as the number of hours worked in any day of the month may be
declared as in the following:

VAR Hours, Pay: MonthType;
 DayIndex: DayNames;
 WeekIndex: 1..6;
 Sum: INTEGER;
 Average: REAL;

Section 8.3 Two Dimensional Arrays in Pascal 329

There are two different ways to access the element values of variables of type
MonthType:

Hours[2, Mon] := 8;

or equivalently

Hours[2][Mon] := 8;

as Hours[2] represents an array that can be indexed.

The choice of which way to declare a two dimensional array will depend upon
how the array is viewed in the context of the application. In our example here,
it is natural to think of a month as being a sequence of weeks and therefore it is
better to make the declaration in two stages, first the WeekType and then the
MonthType as a sequence of elements of WeekType. In contrast, if the rows and
columns of the array were of equal importance, for example, as in a chess board,
then a declaration of the form:

TYPE
ChessMen = (King, Queen, Bishop, Knight, Rook, Pawn,

Empty);
BoardType = ARRAY [1..8, 1..8] OF ChessMen;

would be the more natural. This can be extended to more dimensions as will be
shown on the following pages.

The program TableProg, in Figure 8.11, shows a program involving a table,
which is an array of arrays. This program reads in values that are entered on a
grid similar to the calendar of Figure 8.10, and outputs the hours corresponding
to a given week.

Figure 8.11 Program TableProg

PROGRAM TableProg;
{ Build a table of hours worked for a calendar month }

TYPE DayType = INTEGER;
 DaysOfWeek = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 WeekType = ARRAY[DaysOfWeek] OF DayType;
 MonthType = ARRAY[1..6] of WeekType;

VAR Hours: MonthType;
 Day: DaysOfWeek;
 Week: 1..6;
 Sum: INTEGER;
 Average: REAL;
BEGIN
 { Input of data for a month }
 WriteLn('Enter hours, week by week ');
 WriteLn('If day doesn''t exist, enter -1');
 WriteLn(' Sun Mon Tue Wed Thu Fri Sat');
 FOR Week := 1 TO 6 DO BEGIN
 Write('Week ' , Week:2 , ' ');
 FOR Day := Sun To Sat DO

330 Chapter 8 Pascal Data Structures

 Read(Hours[Week][Day]); { NOTE access }
 END;
 WriteLn;

 { Find data for any given week }
 Write('Enter the week ');
 Read(Week);
 WriteLn('The hours worked are: ');
 FOR Day := Sun TO Sat DO
 IF Hours[Week, Day] < 0 THEN
 Write(' - ')
 ELSE
 Write(Hours[Week, Day]:3);{ NOTE access }
END. { TableProg }

The first part of the program enters the hours worked week by week. As can be
seen from the calendar sample shown earlier, six weeks have to be allowed and
not all days exist in the first and last week. The input part of TableProg
takes that into account by having the user enter value -1 for those days. The
second part of the program first requests the week number and then provides the
number of hours worked in each day of that week.

Notice that the two dimensions of the array Hours have a different type:
range 1..6 and enumeration DaysOfWeek. Also, the first part accesses a
day by Hours[Week][Day] whereas the second part accesses it by
Hours[Week, Day]; both access methods are equivalent.

The output of a typical run for the month shown in the calendar of Figure 8.10 is
the following.

Enter hours, week by week
If day doesn't exist, enter -1
 Sun Mon Tue Wed Thu Fri Sat
Week 1 -1 -1 -1 -1 -1 -1 4
Week 2 0 8 8 8 9 8 0
Week 3 0 8 0 0 9 8 4
Week 4 4 8 8 8 8 10 0
Week 5 0 8 8 8 8 8 0
Week 6 0 8 -1 -1 -1 -1 -1

Enter the week 1
The hours worked are:
- - - - - - 4

Section 8.4 N-Dimensional Arrays 331

8.4 N-Dimensional Arrays

More Dimensions

The definition of arrays in Pascal lends itself conveniently to extension of three
or more dimensions. Three-dimensional arrays are defined and used in a manner
similar to the one and two-dimensional arrays seen previously. They can be
viewed as extensions of two dimensional arrays, which are, in turn, extensions
of one dimensional arrays. They are conveniently viewed as a new entity
declared as the type

TYPE name = ARRAY[range1, range2, range3] OF item-type;

with items selected by

array-name[index1, index2, index3]

For example, a three-dimensional array of the Hours worked during a
particular Month, Week and Day can be described by the declaration:

TYPE Calendar = ARRAY[1..12, 1..6, 0..6] OF REAL;

and the hours worked on the first Saturday of March selected by

Hours[3, 1, 6];

The program PayArray3D, shown in Figure 8.12, presents another declaration
of such a Calendar data structure. This program shows how the hours worked
can be stored in a calendar, which has three dimensions, first a month, then a
week and then a day. As we have seen, there could be six weeks in a month, but
here we have just assumed four. Notice that this program contains a stub
procedure EnterMonth, which always returns the value Feb. This is another
example of a stub procedure used in the top-down development of a program.
Later in the development process, this stub will be replaced by an actual
procedure that obtains the month from the user. In the meantime, this stub
allows the rest of the program to be tested.

Figure 8.12 Program PayArray3D

PROGRAM PayArray3D;

TYPE MonthRange = (Jan, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec);
 WeekRange = 1 .. 6;
 DayRange = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
 Calendar = ARRAY[MonthRange, WeekRange,
DayRange] OF REAL;
VAR Hours: Calendar;
 Gross, Rate: REAL;
 Month: MonthRange;
 Week : INTEGER;
 Day : DayRange;

332 Chapter 8 Pascal Data Structures

 PROCEDURE ReadMonth(VAR Month: MonthRange); (* Output *)
 (* This is a stub procedure *)
 BEGIN
 Month := Feb;
 END; { ReadMonth }

 PROCEDURE EnterWorkWeek(Month: MonthRange; (* Input *)
 Week: WeekRange; (* Input *)
 VAR Hours: Calendar); (* Output *)
 VAR Day: DayRange;
 BEGIN
 WriteLn('Enter hours for 7 days ');
 FOR Day := Sun TO Sat DO
 Read(Hours[Month, Week, Day]);
 END; { EnterWorkWeek }

 PROCEDURE Pay(Month: MonthRange; (* Input *)
 Week : WeekRange; (* Input *)
 Hours: Calendar; (* Input *)
 Rate : REAL; (* Input *)
 VAR Gross: REAL); (* Output *)
 VAR Day: DayRange;
 Sum: REAL;
 BEGIN
 Sum := 0.0;
 FOR Day := Sun TO Sat DO
 Sum := Sum + Hours[Month, Week, Day];
 IF Sum < 40.0 THEN
 Gross := Rate * Sum
 ELSE
 Gross := Rate * 40.0 +
 1.5 * Rate * (Sum - 40.0);
 END; { Pay }

BEGIN
 ReadMonth(Month);
 Write('Enter the pay rate ');
 Read(Rate);
 Write('Enter the hours for the ');
 WriteLn('four weeks of the month ');
 FOR Week := 1 TO 4 DO BEGIN
 EnterWorkWeek(Month, Week, Hours);
 Pay(Month, Week, Hours, Rate, Gross);
 WriteLn('The gross pay is ', Gross:7:2);
 END;

END. { PayArray3D }

Section 8.4 N-Dimensional Arrays 333

The procedure EnterWorkWeek obtains from the user the hours worked in a
week of a given month. Notice that the Month and Week are passed in, and the
Hours are passed out.

The gross pay for a given week of a given month at a given rate is computed by
the procedure Pay. Notice here that the three-dimensional array Hours is
passed by value; it could have been passed by reference for efficiency purposes
in order not to make a copy, and thus save time and memory space.

It should be obvious that the program should be improved, so as to be able to
deal with months having more than four weeks (not all months have 28 days!)

8.5 Records in Pascal

Records are groupings of components that may be of different types. Simple
RECORDS are declared as types in the form shown at the left of Figure 8.13. An
example of a declaration of a part in an inventory stock application is shown at
the right of the figure.

Figure 8.13 Record pattern and example

TYPE

name = RECORD

 field: type;

 field: type;

 ...

 END;

TYPE
PartType = RECORD

 Price: REAL;
 Quantity: INTEGER;
 Reorder: BOOLEAN;
 Status: CHAR;

 END;

Following such a type declaration, variables representing values of this type,
e.g. chair parts, can be declared as:

VAR Leg, Seat, Rung, Back: PartType;

To access the fields of a given record we use a dot notation like, for example:

Leg.Price := 3.14;
Read(Seat.Quantity);

As another example of a RECORD, consider DateType below, a very useful
record describing a date as having three components: Year, Month and Day.

DateType = RECORD
 Year: 1900..2100;
 Month: 1..12;
 Day : 1..31

 END;

An alternative to DateType, without subranges but with INTEGERs, could be
specified as:

IntDateType = RECORD
 Year: INTEGER;
 Month: INTEGER;

334 Chapter 8 Pascal Data Structures

 Day: INTEGER;
 END;

The Pascal WITH statement has been designed only for use with records. It
makes it possible to avoid the repetition of a record name, and has the form:

WITH RecordName DO BEGIN
StatementList

END;

where the statements in StatementList, separated by semicolons, involve
the field names of the given record. These field names can then be used by
themselves (without the dot notation) and appear to be only simple variables.
The WITH statement attaches the record name to the fields that need it. For
example, the following two groups of statements are equivalent.

MoonDate.Year := 1969;
MoonDate.Month := 7;
MoonDate.Day := 20;

WITH MoonDate DO BEGIN
Year := 1969;
Month := 7;
Day := 20;

END;

We’ll see an example of this statement in a later example.

The program PartRecord, in Figure 8.14, is a program that computes the total
Worth of the four components in an inventory of chairs. In a previous example,
the Worth was computed using parallel arrays; here, it is done with records.

Figure 8.14 Program PartRecord

PROGRAM PartRecord;
(* Compute inventory worth *)
TYPE PartType = RECORD
 Price: REAL;
 Quantity: INTEGER;
 Reorder: BOOLEAN;
 Status: CHAR;
 END;
VAR Leg, Seat, Rung, Back: PartType;
 Worth: REAL;
BEGIN
 { Enter the Values }
 WriteLn('Enter price and quantity ');
 WriteLn('for leg, seat, rung, back');
 Read(Leg.Price); Read(Leg.Quantity);
 Read(Seat.Price); Read(Seat.Quantity);
 Read(Rung.Price); Read(Rung.Quantity);
 Read(Back.Price); Read(Back.Quantity);

 { Compute the Worth }
 Worth := Leg.Price * Leg.Quantity +
 Seat.Price * Seat.Quantity +
 Rung.Price * Rung.Quantity +
 Back.Price * Back.Quantity;

Section 8.5 Records in Pascal 335

 { Output the Total Worth }
 WriteLn('The total worth is ', Worth:8:2);
END. { PartRecord }

First the PartType is defined as a record, and four variables, Leg, Seat, Rung,
Back, of that type are declared. Then the values for the Price and Quantity
fields of each of the parts are input. The total Worth is computed, and the
final value is output. A typical run of this program is:

Enter price and quantity
for leg, seat, rung, back
1.12 200
2.50 100
0.75 400
3.00 300
The total worth is 1674.00

The program shown in Figure 8.15, DateRecordProg, makes use of a version of
the DateType record that is a slightly modified version of what we’ve seen
above. The program contains two procedures, ReadDate and WriteDate that
illustrate how records such as DateType can be used as parameters. The main
block of the program calls these procedures to read in a BirthDate and
determine one’s approximate age by subtracting that year from the present
year, given as a constant, YearNow, which must be updated each year.

Figure 8.15 Program DateRecordProg

PROGRAM DateRecordProg;

CONST YearNow = 1993;

TYPE DateType = RECORD
 Year : INTEGER;
 Month: INTEGER;
 Day : INTEGER;
 END;

 PROCEDURE ReadDate(VAR Date: DateType);
 BEGIN
 Write('Enter a date in the order YYYY MM DD ');
 Read(Date.Year);
 Read(Date.Month);
 Read(Date.Day);
 END; { ReadDate }

 PROCEDURE WriteDate(Date: DateType);
 BEGIN
 WriteLn;
 WriteLn(Date.Year:4, Date.Month:3, Date.Day: 3);
 END; { WriteDate }

336 Chapter 8 Pascal Data Structures

VAR BirthDate: DateType;
 Age: INTEGER;

BEGIN
 WriteLn('What is Your Birthdate?');
 ReadDate(BirthDate);
 WriteDate(BirthDate);
 Age := YearNow - BirthDate.Year;
 WriteLn('Your age is around ', Age:2);
END. { DateRecordProg }

Notice especially that only one single data item, BirthDate, is passed to the
procedures, that is to say, the three parts, Year, Month, Day, do not have to be
passed separately. These two procedures could be included in a date library.

When creating a data item that is a RECORD, it is convenient to use a special
procedure that we could call a Record Constructor, to initialize all the
fields in the RECORD. For example, MoonDate could be initialized using a Date
Constructor:

DateConstruct(MoonDate, 1969, 7, 20);

Similarly a Chair part, such as Leg, can be initialized by:

ConstructChair(Leg, 10, 20, FALSE, 'A');

Constructors of this kind can be implemented as procedures like ConstructChair
in Figure 8.16.

Figure 8.16 Record constructor example

 PROCEDURE ConstructChair(VAR Part: PartType;
 P: REAL;
 Q: INTEGER;
 R: BOOLEAN;
 S: CHAR);
 BEGIN
 Part.Price := P;
 Part.Quantity := Q;
 Part.ReOrder := R;
 Part.Status := S;
 END; { ConstructChair }

This procedure can then be used as an alternative to input the values.

ConstructChair(Leg, 1.12, 200, FALSE, 'A');
ConstructChair(Seat, 2.50, 100, TRUE, 'C');
ConstructChair(Rung, 0.75, 400, FALSE, 'B');
ConstructChair(Back, 3.00, 300, FALSE, 'A');

Section 8.5 Records in Pascal 337

ComplexLib: A Library for Complex Numbers

A major objective of including data structures such as arrays and records in a
programming language like Pascal is to allow the simple manipulation of more
complex data items. These complex data items can usually be treated in the
same way as the basic ones, such as integers or characters. This is usually done
by defining abstract data types, that will be implemented through libraries,
just as was done previously for simpler types. Such libraries comprise the type
definition as well as the operations that apply to items of that type. This is
illustrated by the ComplexLib library that defines the complex number
abstract data type. Such complex numbers are very useful in electrical
engineering, especially for analyzing alternating current circuits.

A complex number Z is usually denoted as X + iY, where i is the imaginary
square root of –1 (i2 = -1). In such a complex number X is called the Real part
and Y is called the Imaginary part. A complex number data type can thus be
implemented as a record composed of two parts.

TYPE COMPLEX = RECORD
RealPart: REAL;
ImagPart: REAL;

END;

Operations on complex numbers are numerous and will include arithmetic
operations as well as input-output operations. The input of a complex number C
is done with ReadComplex(C), and its output is done with a call to
WriteComplex(C). The arithmetic operations include addition, subtraction,
multiplication and division. Other operations include finding the conjugate of
a complex number, compute its magnitude and the related angle, etc. The
ComplexLib library of Figure 8.17 implements some of these and should be
completed.

Figure 8.17 The Complex abstract data type

UNIT ComplexLib;
(* The Abstract Data Type Complex Number *)

INTERFACE
TYPE Complex = RECORD
 RealPart: REAL;
 ImagPart: REAL;
 END;
 PROCEDURE ReadComplex(VAR C: Complex);
 PROCEDURE WriteComplex(C: Complex);
 PROCEDURE AddComplex(A, B: Complex; VAR C: Complex);
 PROCEDURE MultComplex(A, B: Complex; VAR C: Complex);

IMPLEMENTATION
 PROCEDURE ReadComplex(VAR C: Complex);
 BEGIN
 Write('Enter Real Part ');
 Read (C.RealPart);

338 Chapter 8 Pascal Data Structures

 Write('Enter Imag Part ');
 Read (C.ImagPart);
 END;

 PROCEDURE WriteComplex(C: Complex);
 BEGIN
 Write(C.RealPart: 6: 2);
 Write(' , ');
 Write(C.ImagPart: 6: 2);
 END;

 PROCEDURE AddComplex(A, B: Complex; VAR C: Complex);
 BEGIN
 C.RealPart := A.RealPart + B.RealPart;
 C.ImagPart := A.ImagPart + B.ImagPart;
 END;

 PROCEDURE MultComplex(A, B: Complex; VAR C: Complex);
 BEGIN
 C.RealPart := A.RealPart * B.RealPart -
 A.ImagPart * B.ImagPart;
 C.ImagPart := A.ImagPart * B.RealPart +
 A.RealPart * B.ImagPart;
 END;

END. { ComplexLib }

The procedure AddComplex(A, B, C) adds the two complex numbers A and B
to yield a third complex number C, by adding the corresponding real and
imaginary parts. The multiplication of two complex numbers is more ...er...
complex. If complex number A is represented as AR + iAI (which is short for
A.Real + i × A.Imag) and B is BR + iBI then the product is:

A*B = (AR + iAI)*(BR + iBI)
 = AR*(BR + iBI) + iAI*(BR + iBI)

 = AR*BR + iAR*BI + iAI*BR + i2AI*BI (i2 = -1)
 = AR*BR + i(AR*BI + AI*BR) - AI*BI
 = (AR*BR - AI*BI) + i(AR*BI + AI*BR)

The procedure MultComplex(A, B, C) implements this multiplication
operation.

The program ComplexProg, in Figure 8.18, shows the use of this small
ComplexLib library. It reads two complex numbers X, Y, computes their sum
and product, and outputs the two results.

Figure 8.18 Program ComplexProg

PROGRAM ComplexProg;
USES ComplexLib;

VAR X, Y, Z: Complex;

Section 8.5 Records in Pascal 339

BEGIN
 WriteLn('Enter a complex number ');
 ReadComplex(X);
 WriteComplex(X);
 WriteLn;

 WriteLn('Enter a complex number ');
 ReadComplex(Y);
 WriteComplex(Y);
 WriteLn;

 Write('The sum of these is ');
 AddComplex(X, Y, Z);
 WriteComplex(Z);
 WriteLn;

 Write('The product of these is ');
 MultComplex(X, Y, Z);
 WriteComplex(Z);
 WriteLn;

END. { ComplexProg }

A typical output of ComplexProg is:

Enter a complex number
Enter Real Part 3.0
Enter Imag Part 4.0
3.00 , 4.00
Enter a complex number
Enter Real Part 5.0
Enter Imag Part 6.0
5.00 , 6.00
The sum of these is 8.00 , 10.00
The product of these is -9.00 , 38.00

As we’ve indicated, ComplexLib should be extended further to include the
subtraction and division of complex numbers, to determine the conjugate of a
complex number, its magnitude and angle. It could even draw complex numbers.

Records of Records: Nested Records

In some applications, it is very useful to nest one RECORD within another. This
is quite possible as a record field can be of any type, in particular another
record. As an example, let’s look at a “tiny” tree that consists of two smaller
sub-trees as shown in Figure 8.19.

340 Chapter 8 Pascal Data Structures

Figure 8.19 Tree and sub-trees

1.0

0.2

0.8

0.08

0.12

0.32

0.48

0.8

0.2

0.6

0.4

0.6

0.4

That tiny tree describes a situation involving two stages of decisions, with the
possibility of success or failure, “pass” or “fail”, at each decision. This leads to
four possible outcomes, each corresponding to a path from the root of the tree at
the left to a l e a f at the right. The top path corresponds to both trials
succeeding, the bottom path corresponds to both trials failing, and the middle
paths correspond to one or the other trial succeeding. Suppose that the
probability of success on the first trial is 0.8, and on the second trial is 0.6
(lower because of exhaustion perhaps). The right part of the figure is another
way of representing the tree, using records as we explain in more detail below.

When trials are independent then the probability of each path is determined
by the product of the individual probabilities along the path. For example,
the probability of both trials being successful is 0.8 × 0.6 = 0.48. When the
probability of success is P then the probability of failure is (1 – P), so the
probability of both trials failing is:

(1 - 0.8) × (1 - 0.6) = 0.2 × 0.4 = 0.08
The program NestedRecords, shown in Figure 8.20, is an implementation of
this tiny tree structure. It consists of a record Trial, having itself two records,
Pass and Fail, nested within it. The top record, Pass, has a probability
field, and also a Pass record and a Fail record within it. Similarly, the
bottom record Fail has a probability field and another Pass and Fail within
it. Many field names are repeated (Pass, Fail and Prob) but the nesting puts
them at different levels, which removes all ambiguity.

Figure 8.20 Program NestedRecords

PROGRAM NestedRecords;
(* Illustrate tree represented by nested records *)
TYPE Trial = RECORD
 Pass: RECORD
 Prob: REAL;
 Pass: RECORD
 Prob: REAL;
 END;
 Fail: RECORD
 Prob: REAL;
 END;
 END;
 Fail: RECORD
 Prob: REAL;

Section 8.5 Records in Pascal 341

 Pass: RECORD
 Prob: REAL;
 END;
 Fail: RECORD
 Prob: REAL;
 END;
 END;
 END;
VAR Tree: Trial;
 P1, P2: REAL;
BEGIN
 Write('Enter probability of first pass ');
 Read(P1);
 Tree.Pass.Prob := P1;
 Tree.Fail.Prob := 1.0 - P1;
 Write('Enter probability of second pass ');
 Read(P2);
 WriteLn;

 (* Compute all the path probabilities*)
 Tree.Pass.Pass.Prob := P1 * P2;
 Tree.Pass.Fail.Prob := P1 * (1.0 - P2);
 Tree.Fail.Pass.Prob := (1.0 - P1) * P2;
 Tree.Fail.Fail.Prob := (1.0-P1) * (1.0-P2);

 (* Draw the tree *)
 WriteLn(Tree.Pass.Pass.Prob:30:2);
 WriteLn(Tree.Pass.Prob:20:2);
 WriteLn(Tree.Pass.Fail.Prob:30:2);
 WriteLn(1.00:10:2);
 WriteLn(Tree.Fail.Pass.Prob:30:2);
 WriteLn(Tree.Fail.Prob:20:2);
 WriteLn(Tree.Fail.Fail.Prob:30:2);
END. { NestedRecords }

The body of this program references the various paths using the dot notation.
For example, the lowest path involving two failures, has a probability (given
on the last line of the program) denoted by:

Tree.Fail.Fail.Prob

The program computes the four probabilities of each path. Then it outputs the
tree in a semi-graphical representation. To do that, the output values are
spaced both vertically and horizontally in the form of a tree, in a manner
similar to Figure 8.19. The first value, 0.48, is placed first far to the right, as
are all the leaf values. The tree root is at the left. This is a typical output.

Enter prob of first pass 0.8
Enter prob of second pass 0.6

 0.48

342 Chapter 8 Pascal Data Structures

 0.80
 0.32

1.00
 0.12

 0.20
 0.08

Larger trees, that have more than three levels could be represented in a similar
way. However, when the number of levels increases very much, there are other
more convenient ways to represent trees. These involve pointers which are
discussed later in this chapter.

Arrays of Records in Pascal

When we first introduced arrays in this chapter, we treated them as groupings
of simple types, INTEGERs, REALs, etc. We then expanded this consideration to
arrays of arrays, i.e. multi-dimensional arrays. Now, we expand the scope of
arrays to include arrays of records, which are particularly useful data
structures.

For example, consider an array Employees[1..20] where each of the 20
Employees is described by two values: the number of Hours worked and the
Rate of pay. The Hours and Rate could be grouped into a Worker record as
follows:

TYPE Worker = RECORD
 Hours: REAL;
 Rate : REAL

 END;
 WorkForce = ARRAY [1..20] OF Worker;

VAR Employees: WorkForce;

The time worked by the third employee is then accessed by

Employees[3].Hours

The program PayRecords, given in Figure 8.21, shows a further refinement of
the type Worker that includes IdNum, the employee number, Birth of type
DATE, another record that gives the Worker’s date of birth and is a component
of the Worker record, and Division, another complementary field.

Figure 8.21 Program PayRecords

PROGRAM PayRecords;
(* Computes payroll information *)
(* using arrays of records *)

CONST NumberOfEmployees = 5;
TYPE DATE = RECORD
 Year: INTEGER;
 Month: 1..12;
 Day: 1..31;
 END;

Section 8.5 Records in Pascal 343

 Worker = RECORD
 IdNum: INTEGER;
 Hours: REAL;
 Rate: REAL;
 Birth: DATE;
 Division: CHAR;
 END;
 Range = 1..NumberOfEmployees;
 WorkForce = ARRAY[Range] OF Worker;
 VAR I: Range;
 Employees: WorkForce;
 MaxHours: REAL;

BEGIN
 { Enter worker information }
 Write('Enter ID, hours, rate ');
 WriteLn('and the year of birth ');
 FOR I := 1 TO NumberOfEmployees DO
 WITH Employees[I] DO BEGIN
 Write('Next ');
 Read(Idnum);
 Read(Hours);
 Read(Rate);
 Read(Birth.Year);
 END; { WITH }

 { Find maximum hours }
 MaxHours := 0.0;
 FOR I := 1 TO NumberOfEmployees DO
 WITH Employees[I] DO
 IF MaxHours < Hours THEN
 MaxHours := Hours;
 WriteLn('Maximum hours = ', MaxHours:3:1);

 { PROJECT: }
 { Finish this by adding: }
 { Find the minimum wage }
 { Find the maximum age }
 { Accumulate all hours }
 { Count persons over 30 }
 { Compute the net pay }
 { Make into procedures }

END. { PayRecords }

This program also shows how information about the employees could be
entered. Notice that all the information is not supplied; for instance, only the
year of birth is input. Notice also the convenience of using the WITH statement.

344 Chapter 8 Pascal Data Structures

Also included in the program is a part that computes the maximum hours
worked by an employee. The program could be extended, as listed in the
comment, to compute a number of things like maximum age, minimum wage, etc.

It is also possible to nest records directly in the declaration rather than making
the nested record a separate type. Thus, instead of declaring the type DATE,
the Worker record could be declared as:

Worker = RECORD
IdNum: INTEGER;
Hours: REAL;
Rate: REAL;
Birth: RECORD

 Year: INTEGER;
 Month: 1..12;
 Day: 1..31;

 END;
Stage: CHAR;

END;

This form of declaration is not as general as the previous form because it does
not create a separate template of the DATE record which can be used elsewhere.

If the list of Employees were to include both hourly and salaried employees,
there would be slightly different requirements for the two different kinds of
employees: for an hourly worker, the Hours worked and Rate of pay both
have to be recorded while, for salaried workers, only the Salary is needed.
Thus, it would be convenient if the actual layout of the record could be different
for the two kinds of employees, and at the same time all the records were still
grouped into a single array. This can be achieved in Pascal by using variant
records. These records include a special field, the tag field , which specifies
which layout is used for a particular record. In the declaration of a variant
record, the discrimination between the various records is defined through a
CASE form as illustrated by the following type declaration:

Worker = RECORD
IdNum: INTEGER;
Birth: Date;
Stage: CHAR;
CASE Hourly: BOOLEAN OF

TRUE:
 (Hours: REAL;

Rate: REAL;)
FALSE:
 (Salary: REAL;)

END;

The tag field is Hourly which determines whether to use the two fields Hours
and Rate, or the single field Salary.

The exact syntax of the declaration of variant records is rather complicated so
the following should be noted:

1. A record declaration can have only one variant part and it must follow
the fixed part of the record.

Section 8.5 Records in Pascal 345

2. All the field definitions comprising a particular variant are enclosed in
parentheses.

3. All field names must be distinct—even if they occur in different
variants.

4. The structure of the CASE form in the definition of variant records
differs from the CASE statement in that there is no ELSE or OTHERWISE
clause and there is no END—since the variant part is at the end of the
RECORD definition, the record END serves the purpose.

5. Every value of the type of the tag field—Hourly in our example—
should be explicitly listed even if such a value would never be used; for
such values an empty pair of parentheses must be shown.

6. A variant may itself be a record that contains a variant part.

Records of Arrays

In a previous section, we have discussed how RECORDs can be nested within a
RECORD. It should probably come as no surprise that ARRAYs can be nested
within a RECORD. For example, a grocery store could be described for some
purposes by the name of the manager, stored as an array of characters, and an
array of Amounts of money, daily sales perhaps, for each day of the week.

The diagram of Figure 8.22 shows the structure of StoreType as a RECORD of
ARRAYs; notice that one of the arrays, Manager is shown horizontally and the
other, Amount, is shown vertically. The type at the left of the figure is the
template of a store; three of these stores, Main, West and East, are shown at
the right.

Figure 8.22 Record of arrays

B r o w n

Day Amount

Sun 1 2 3

Mon 4 5 6 7

Tue 8 9 0 1

Wed 2 3 4 5

Thu 6 7 8 9

Fri 1 2 3 4

Sat 5 6 7 8

Manager

Sales

StoreType Main

West

East

There could be many instances of such representations of stores; there are three,
named Main, West, East, shown in the figure. These stores could be defined by
the declaration:

VAR Main, West, East: StoreType;

346 Chapter 8 Pascal Data Structures

The program RecordsOfArrays, shown in Figure 8.23, illustrates how the
record StoreType is declared in Pascal. It is simply a RECORD that has two
arrays: a Manager array of characters, and an Amount array of integers.

Figure 8.23 Program RecordsOfArrays

PROGRAM RecordsOfArrays;

CONST NameSize = 20;
TYPE WeekDayType = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);
 StoreType = RECORD
 Manager: ARRAY[0..NameSize] OF CHAR;
 Amount: ARRAY[WeekDayType] OF INTEGER;
 END;

 PROCEDURE EnterAmount(VAR Store: StoreType);
 VAR Day: WeekDayType;
 BEGIN
 WriteLn('Enter amounts for 7 days.');
 WriteLn('Begin with Sunday.');
 WITH Store DO
 FOR Day := Sun TO Sat DO
 Read(Amount[Day]);
 END; { EnterAmount }

 PROCEDURE SumAmount(Store: StoreType; VAR Amount:
INTEGER);
 VAR D: WeekDayType;
 BEGIN
 Amount := 0;
 FOR D := Sun TO Sat DO
 Inc(Amount, Store.Amount[D]);
 END; { SumAmount }

VAR Main, West, East: StoreType;
 Total: INTEGER;
BEGIN
 EnterAmount(East);
 SumAmount(East, Total);
 Write('The total amount is ', Total:4);
END. { RecordsOfArrays }

The procedure EnterAmount is used to enter the Amount for a specified Store
for each of the seven days of the week.

The procedure SumAmount sums the amounts for the specified Store and returns
this through the second parameter. Notice the increment statement; it uses
Amount in two ways, once as a variable and then elsewhere, with the dot
notation, to refer to the array field within the record. There is no ambiguity as
the names inside a record are totally independent of the rest of the program.

Section 8.5 Records in Pascal 347

The body of the program calls EnterAmount to enter the amounts for the East
Store and SumAmount to obtain a Total, which is then output, as shown in the
following test run of the program.

Enter amounts for 7 days.
Begin with Sunday.
1 2 3 4 5 6 7
The total amount is 28

Matrix Library

Computations in science and engineering frequently use matrices, rectangular
arrays of numbers on which a number of operations are defined. Because they
are so common it is convenient to create a matrix library, that defines the
abstract data type Matrix. The library MatrixLib, shown in Figure 8.24,
consists of the type definition for Matrix and five operations: CreateMatrix,
ReadMatrix, WriteMatrix, AddMatrix and MultMatrix.

Figure 8.24 The MatrixLib library

UNIT MatrixLib;
(* Abstract Data Type Matrix *)

INTERFACE

CONST MaxRow = 10;
 MaxCol = 10;

TYPE RowRange = 1..MaxRow;
 ColRange = 1..MaxCol;
 GridType = ARRAY [RowRange, ColRange] OF REAL;
 Matrix = RECORD
 Grid : GridType;
 HiRow: RowRange;
 HiCol: ColRange;
 END;

 PROCEDURE CreateMatrix(VAR Mat: Matrix;
 Rows: RowRange;
 Cols: ColRange);
 PROCEDURE ReadMatrix(VAR Mat: Matrix);
 PROCEDURE WriteMatrix(VAR Mat: Matrix);
 PROCEDURE AddMatrix(Mat1, Mat2: Matrix;
 VAR Mat3: Matrix);
 PROCEDURE MultMatrix(Mat1, Mat2: Matrix;
 VAR Mat3: Matrix);

IMPLEMENTATION

 PROCEDURE CreateMatrix(VAR Mat: Matrix;

348 Chapter 8 Pascal Data Structures

 Rows: RowRange;
 Cols: ColRange);
 BEGIN
 Mat.HiRow := Rows;
 Mat.HiCol := Cols;
 END; { CreateMatrix }

 PROCEDURE ReadMatrix(VAR Mat: Matrix);
 VAR R: RowRange;
 C: ColRange;
 BEGIN
 WriteLn('Enter by rows ');
 FOR R := 1 TO Mat.HiRow DO BEGIN
 FOR C := 1 TO Mat.HiCol DO BEGIN
 Write('Enter a value ');
 Read(Mat.Grid[R, C]);
 END;
 WriteLn;
 END;
 END; { ReadMatrix }

 PROCEDURE WriteMatrix(VAR Mat: Matrix);
 VAR R: RowRange;
 C: ColRange;
 BEGIN
 FOR R := 1 TO Mat.HiRow DO BEGIN
 FOR C := 1 TO Mat.HiCol DO
 Write(Mat.Grid[R, C]: 9: 2);
 WriteLn;
 END;
 END; { WriteMatrix }

 PROCEDURE AddMatrix(Mat1, Mat2: Matrix;
 VAR Mat3: Matrix);
 VAR R: RowRange;
 C: ColRange;
 BEGIN
 FOR R := 1 TO Mat1.HiRow DO
 FOR C := 1 TO Mat1.HiCol DO
 Mat3.Grid[R, C] :=
 Mat1.Grid[R, C] + Mat2.Grid[R, C];
 END; { AddMatrix }

 PROCEDURE MultMatrix(Mat1, Mat2: Matrix;
 VAR Mat3: Matrix);
 VAR I, K: ColRange;
 J: RowRange;
 Sum: REAL;
 BEGIN
 FOR I := 1 TO Mat1.HiRow DO

Section 8.5 Records in Pascal 349

 FOR J := 1 TO Mat2.HiCol DO BEGIN
 Sum := 0.0;
 FOR K := 1 TO Mat2.HiRow DO BEGIN
 Sum := Sum +
 Mat1.Grid[I, K] * Mat2.Grid[K, J];
 END;
 Mat3.Grid[I, J] := Sum;
 END;
 END; { MultMatrix }

END. { MatrixLib }

The type definitions for Matrix:

TYPE RowRange = 1..MaxRow;
 ColRange = 1..MaxCol;
 GridType = ARRAY[RowRange, ColRange] OF REAL;
 Matrix = RECORD

Grid : GridType;
HiRow: RowRange;
HiCol: ColRange;

END;

show that a Matrix is represented by a RECORD that contains an array of
REALs having a maximum number of rows and columns defined by the two
constants MaxRow and MaxCol both of which are set at the value 10, but that
can easily be changed. When a particular Matrix is created, the
CreateMatrix procedure specifies the actual number of rows and columns by
assigning values to the fields HiRow and HiCol. A better version of
CreateMatrix could also interactively ask for the sizes of matrices, and could
specify the actual number of rows and columns from the response. It should also
check whether the values given exceed the maximum values MaxRow and
MaxColumn.

The input of matrices is carried out by the procedure ReadMatrix, one row at
a time. The input could also have been done a column at a time. ReadMatrix
provides a prompt reminding the user to enter a row at a time.

The algorithm for two-dimensional array addition was described in Chapter 8
of the Principles book. It is very simple as it adds the corresponding elements of
the two matrices to produce the elements of the new matrix.

The procedure AddMatrix(X, Y, Z) in MatrixLib implements this
algorithm, adding matrix X to matrix Y to produce resulting matrix Z. Figure
6.24 illustrates this process.

Figure 8.25 Matrix addition

1 2

3 4

5 6

7 8

8 11

50 62

+ =

350 Chapter 8 Pascal Data Structures

A needed improvement to AddMatrix is a check that the two matrices X and Y
are the same size.

The multiplication of two matrices is performed by the algorithm described in
Chapter 8 of the Principles book. The first matrix is taken row by row while
the second matrix is taken column by column. A sum is computed from the
products of the elements of the first matrix row by the second matrix column.
This sum is stored in the resulting matrix.

The procedure MultMatrix(X, Y, Z) given in MatrixLib implements this
algorithm in Pascal. It computes the product of matrices X and Y to produce the
result matrix Z, which will have the same number of rows as X and the same
number of columns as Y. The number of columns of X must equal the number of
rows of Y, and a better version of MultMatrix should check this. An example
of this matrix multiplication is given in Figure 8.26.

Figure 8.26 Matrix multiplication

0 1 2

8 9

0 1

8 11

50 62

× =
3 4 5

6 7

Other operations, including transposing and inverting matrices, should also be
implemented in order to have a complete Abstract Data Type, but are not shown
here.

The program MatrixProg shown in Figure 8.27, illustrates the use of
MatrixLib. The output obtained from a typical run, corresponding to the
examples of Figures 8.24 and 8.25, is shown at the right of the figure.

Figure 8.27 Program MatrixProg

PROGRAM MatrixProg; Enter by rows
USES MatrixLib; Enter a value 1

Enter a value 2
VAR A, B, C, D, E: Matrix;
BEGIN Enter a value 3

Enter a value 4
CreateMatrix(A, 2, 2);

Matrix A
CreateMatrix(B, 2, 2);

 1.00
CreateMatrix(C, 2, 2); 2.00

ReadMatrix(A); 3.00
 4.00

WriteLn('Matrix A');
Enter by rows

WriteMatrix(A); Enter a value 5
Enter a value 6

Section 8.5 Records in Pascal 351

WriteLn;
Enter a value 7

ReadMatrix(B); Enter a value 8

WriteLn('Matrix B'); Matrix B

WriteMatrix(B); 5.00
 6.00

WriteLn;
 7.00

AddMatrix(A, B, C); 8.00

WriteLn('Matrix C'); Matrix C

WriteMatrix(C); 6.00
 8.00

WriteLn;
 10.00

CreateMatrix(D, 2, 3); 12.00

CreateMatrix(E, 3, 2); Enter by rows
Enter a value 0

ReadMatrix(D); Enter a value 1
Enter a value 2

WriteLn('Matrix D');
Enter a value 3

WriteMatrix(D); Enter a value 4
Enter a value 5

WriteLn;
Matrix D

ReadMatrix(E);
 0.00

WriteLn('Matrix E'); 1.00
 2.00

WriteMatrix(E);
 3.00

WriteLn; 4.00
 5.00

MultMatrix(D, E, C);
Enter by rows

WriteLn('Matrix C'); Enter a value 6
Enter a value 7

WriteMatrix(C);
Enter a value 8

WriteLn; Enter a value 9
END. { MatrixProg }

Enter a value 0
Enter a value 1

Matrix E

352 Chapter 8 Pascal Data Structures

 6.00
 7.00

 8.00
 9.00

 0.00
 1.00

Matrix C

 8.00
 11.00

 50.00
 62.00

8.6 Sets in Pascal

A set is a collection of distinct items, all of the same type, with no duplication
or significance in ordering. Pascal provides sets, along with arrays and records,
as another way of structuring data. In Pascal, the members of a SET are chosen
from some base-type which must be a subrange or an enumerated type. The
maximum number of elements in a set is 256.

The declaration of sets takes the form:

TYPE set-name = SET OF base-type;

For example

TYPE CharSet = SET OF CHAR; { a set of characters }
 DigitSet = SET OF 0..9; { a set of digits }

or in stages as

TYPE
WeekDayType = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
WeekDaySet = SET OF WeekDayType;
UpperChar = 'A'..'Z';
UpCharSet = SET OF UpperChar;

A SET constant is simply specified by enclosing constant values in square
brackets as in [1, 3, 5, 7]. Assignment of such a set constant to a SET
variable of the appropriate type follows the normal format of an assignment
statement. For example, WorkDays, declared to be of type WeekDaySet could
be assigned a value by:

WorkDays := [Mon, Tue, Wed, Thur, Fri];

Membership in a set is tested by the IN operator, which returns a BOOLEAN
value. The combination e IN S is TRUE when element e is a member of set S.
For example, if the set of vowel characters is assigned:

Section 8.6 Sets in Pascal 353

VowelSet := ['A', 'E', 'I', 'O', 'U'];

then a test for occurrence of a vowel could use this as named set as:

IF Ch IN VowelSet THEN
Inc(VowelCount);

There are three operations on sets:

Intersection: S1 * S2
contains elements that are both in S1 and in S2.

Union: S1 + S2
contains elements that are either in S1 or in S2.

Difference: S1 - S2
contains elements that are in S1 but not in S2.

The following relational operators apply to sets:

Equality: S1 = S2
true if set S1 equals set S2

Inequality: S1 <> S2
true if set S1 is not equal to set S2

Subset: S1 <= S2
true if set S1 is a subset of set S2

Superset: S1 >= S2
true if set S1 is a superset of set S2

Note that the relational operators < and > do not apply to sets.

The operations of inclusion and exclusion of an element are performed using the
above operations:

Inclusion: S1 := S1 + [e]

Exclusion: S1 := S1 - [e]

The program SetsOfPeople, shown in Figure 8.28, concerns a set of people,
designated by two-letter names. It counts the number of elements in various sets,
illustrating many of the above operations.

Figure 8.28 Program SetsOfPeople

PROGRAM SetsOfPeople;

TYPE PersonType = (AB, BO, RA, JO, MO, DE, ED, FA, KA, MA);
 PersonSet = SET OF PersonType;
VAR Tall, Old, Male, Female, Married,
 Rich, BlueEyed : PersonSet;
CONST Universe = [AB, BO, RA, JO, MO, DE, ED, FA, KA, MA];
 First = AB;
 Last = MA;

 FUNCTION Size(group: PersonSet): INTEGER;
 (* Counts the number of elements in group *)
 VAR item: PersonType;

354 Chapter 8 Pascal Data Structures

 count: INTEGER;
 BEGIN
 count := 0;
 FOR item := First TO Last DO
 IF item IN group THEN
 Inc(count);
 Size := count;
 END; { Size }

BEGIN
 Male := [AB,JO,ED,MO];
 Tall := [AB,BO,JO,MO,MA,RA]; (* over 6 feet *)
 Old := [AB,JO,KA,ED,FA,MA,RA]; (* over age 21 *)
 Rich := [BO,KA,RA,JO,AB,MO]; (* millionaire *)
 Married := [AB,KA,ED,MA];
 Female := Universe - Male;
 Write('The total number of people is ');
 WriteLn(Size(Universe):2);
 Write('The number of tall males is ');
 WriteLn(Size(Tall * Male):2);
 Write('The number of tall females is ');
 WriteLn(Size(Tall * Female):2);
 Write('The number of tall or rich is ');
 WriteLn(Size(Tall + Rich):2);
 Rich := Rich + [RA];
 Write('The number of rich people is ');
 WriteLn(Size(Rich):2);
 IF Married <= Old THEN
 Write('All the married people are old');
END. { SetsOfPeople }

The program is straightforward and easy to follow. Note how function Size
operates. It checks all possible persons and increments the count for those who
are in the set. Also note the use of an enumerated type loop control variable,
item. The output from this program is the following.

The total number of people is 10
The number of tall males is 3
The number of tall females is 3
The number of tall or rich is 7
The number of rich people is 6
All the married people are old

More Sets (Optional)

In Chapter 8 of the Principles book, a simplified school timetable construction
problem involving sets was discussed in considerable detail, and the pseudocode
algorithms were developed. The following program shows the implementation
of those algorithms in Pascal. It incorporates many of the techniques that were

Section 8.6 Sets in Pascal 355

discussed in the previous sections. As we mentioned before, it is a difficult
problem, but a good deal can be learned by studying it carefully and
understanding how it works.

During school registration, each student makes a selection of courses. The
problem is to construct a timetable where certain courses are scheduled
concurrently but subject to the constraint that every student’s desired selection of
courses can be taken without requiring a student to be in more than one class at a
time. Program TimeTable, in Figure 8.29, accomplishes just that.

Figure 8.29 Program TimeTable

PROGRAM TimeTable;
(* Construct a time table so that students can take all the
 courses they chose without having to be in two courses
 at the same time *)
CONST NumberOfStudents = 5;
 NumberOfCourses = 6;
 MaxScheduleSize = 10;
TYPE CourseType = 1..NumberOfCourses;
 StudentType = 1..NumberOfStudents;
 ScheduleType = 1..MaxScheduleSize;
 CourseSet = SET OF CourseType;
 StudentArray = ARRAY [StudentType] OF CourseSet;
 CourseArray = ARRAY [CourseType] OF CourseSet;
 SessionArray = RECORD
 NumberOfSessions: 0..MaxScheduleSize;
 SessionList: ARRAY [ScheduleType] OF CourseSet;
 END;
 PROCEDURE ListCourseSet(GivenSet: CourseSet);
 (* Output a given set of courses *)
 VAR CourseIndex: CourseType;
 MemberOutput: BOOLEAN;
 BEGIN
 Write('[');
 MemberOutput := FALSE;
 FOR CourseIndex := 1 TO NumberOfCourses DO
 IF CourseIndex IN GivenSet THEN BEGIN
 IF MemberOutput THEN
 Write(', ');
 Write(CourseIndex: 1);
 MemberOutput := TRUE;
 END;
 Write(']');
 END; { ListCourseSet }

 PROCEDURE BuildConflicts(Registration: StudentArray;
 VAR ConflictList: CourseArray);
 (* Build conflict sets showing for each course what
 courses cannot be run concurrently with the course *)
 VAR StudentID: StudentType;

356 Chapter 8 Pascal Data Structures

 CourseNum: CourseType;
 BEGIN
 FOR CourseNum := 1 TO NumberOfCourses DO
 ConflictList[CourseNum] := [];
 FOR StudentID := 1 TO NumberOfStudents DO
 FOR CourseNum := 1 TO NumberOfCourses DO
 IF CourseNum IN Registration[StudentID]
 THEN ConflictList[CourseNum] :=
 ConflictList[CourseNum] +
 Registration[StudentID];
 END; { BuildConflicts }

 PROCEDURE NextPossibleSession(Remaining: CourseSet;
 ConflictList: CourseArray;
 VAR Session: CourseSet);
 (* Find the next possible session that contains as
 many classes as possible that do not conflict *)
 VAR CourseNum, TestCourse: CourseType;
 TrialSet: CourseSet;
 BEGIN
 CourseNum := 1;
 WHILE NOT(CourseNum IN Remaining) DO
 Inc(CourseNum);
 Session := [CourseNum];
 TrialSet := Remaining - ConflictList[CourseNum];
 FOR TestCourse := 1 TO NumberOfCourses DO
 IF TestCourse IN TrialSet THEN
 IF (ConflictList[TestCourse] * Session) = []
 THEN Session := Session + [TestCourse];
 END; { NextPossibleSession }
 PROCEDURE BuildSchedule(ConflictList: CourseArray;
 VAR Schedule: SessionArray);
 (* Build the time table from the conflicts sets *)
 VAR Remaining: CourseSet;
 Session: CourseSet;
 BEGIN
 WITH Schedule DO BEGIN
 NumberOfSessions := 0;
 Remaining := [1..NumberOfCourses];
 WHILE Remaining <> [] DO BEGIN
 NextPossibleSession(Remaining,
 ConflictList, Session);
 Remaining := Remaining - Session;
 Inc(NumberOfSessions);
 SessionList[NumberOfSessions] := Session;
 END;
 END;
 END; { BuildSchedule }

VAR Students: StudentArray;

Section 8.6 Sets in Pascal 357

 CourseNum: CourseType;
 Conflicts: CourseArray;
 Timetable: SessionArray;
 SessionNum: 1..MaxScheduleSize;
BEGIN
 { Set Registration data }
 Students[1] := [1, 2];
 Students[2] := [2, 3];
 Students[3] := [2, 3, 4];
 Students[4] := [1, 5, 6];
 Students[5] := [3, 6];

 { Build and output Conflict list }
 BuildConflicts(Students, Conflicts);
 FOR CourseNum := 1 TO NumberOfCourses DO BEGIN
 Write('Conflicts[', CourseNum: 1, '] = ');
 ListCourseSet(Conflicts[CourseNum]);
 WriteLn;
 END;
 WriteLn;

 { Build and output Timetable }
 BuildSchedule(Conflicts, TimeTable);
 WITH TimeTable DO
 FOR SessionNum := 1 TO NumberOfSessions DO BEGIN
 Write('Session[', SessionNum: 2, '] = ');
 ListCourseSet(SessionList[SessionNum]);
 WriteLn;
 END;
END. { TimeTable }

The data obtained from registration can be represented as an array of sets of
courses, Students. Here, we’ve simplified the problem by restricting the
number of students to 5, and the number of possible courses to 6. The first part of
the body of the program sets up the “registration data”, which corresponds to
the choices of Figure 8.30.

Figure 8.30 Registration data for the TimeTable program

Student Set of chosen courses

1 {1, 2}

2 {2, 3}

3 {2, 3, 4}

4 {1, 5, 6}

5 {3, 6}

358 Chapter 8 Pascal Data Structures

The next step is to build a conflict list, which shows for each course the set of
courses that cannot be run concurrently with that course, because there is at least
one student that wants to take both. The conflict list is built by the procedure
BuildConflicts, in which the element ConflictList[i] is the set of
courses with which course i conflicts. Courses conflict with course i because
one or more students have also selected those courses, and ConflictList[i] is
thus the set of courses that cannot be scheduled concurrently with course i.
Thus, for example, courses 1, 2, 5 and 6 all conflict and cannot be run
concurrently—because Student 1 has chosen courses 1 and 2, and Student 4 has
chosen courses 1, 5 and 6. The procedure first sets all conflict sets to empty.
Then for each student it examines all the courses, and add those chosen by the
student to the conflict list.

The conflict list is then output so that it can be checked. The time table consists
of a number of “sessions”, sets of courses that can be given simultaneously
because no two students want to attend both. Since the number of sessions is
unknown at first, the time table is implemented as an array of sets of courses
that constitute the sessions, whose size is specified by constant
MaxScheduleSize, together with a count of the number of sessions required,
and grouped in a RECORD. The time table is built by procedure BuildSchedule
which starts by putting all the courses in Remaining, and repeatedly getting a
session by calling NextPossibleSession and decreasing Remaining until it
is empty.

NextPossibleSession finds the next session containing as many classes that
do not conflict as possible. For the first course in Remaining we create a
TrialSet by removing its conflict set from Remaining. Then, other courses
from Remaining that do not conflict with any of the courses already in
TrialSet are added to TrialSet, until no more courses can be added.

After the timetable has been constructed, it is output. The output obtained from
running this program is the following.

Conflicts[1] = [1, 2, 5, 6]
Conflicts[2] = [1, 2, 3, 4]
Conflicts[3] = [2, 3, 4, 6]
Conflicts[4] = [2, 3, 4]
Conflicts[5] = [1, 5, 6]
Conflicts[6] = [1, 3, 5, 6]

Session[1] = [1, 3]
Session[2] = [2, 5]
Session[3] = [4, 6]

8.7 Dynamic Variables and Pointers in Pascal

The concepts of pointers and dynamic variables were introduced in Chapter 8 of
the Principles book. The idea of a dynamic variable is that it is created during
execution, and it is referenced through a pointer variable, which stores the
location of the dynamic variable.

Section 8.7 Dynamic Variables and Pointers in Pascal 359

A list whose length is not known before execution can be built by creating each of
the elements of the list during execution, and linking them together through
pointers. The algorithm developed in Chapter 8 of the Principles book for the
creation of a list repeatedly allocates a dynamic variable, connects it to the
last one in the list, inputs information and stores it in that variable.

In Pascal, a pointer type is defined by the pointer symbol ^ followed by the
type of the dynamic variables that can be referenced by pointer variables of
this type. Suppose we want to construct a linked list of the sort created by the
algorithm mentioned above, where each element would consist of a single
INTEGER variable, which contains the element’s value, and a pointer to the
next element in the list. The last pointer in the chain would have the special
value NIL, which points to nothing, and can be tested for. The following type
declarations will give us the types that we need to create such a list.

TYPE ListPointer = ^ListElement;
 ListElement = RECORD

 Value: INTEGER;
 Next: ListPointer;

 END;

We also define pointer variables through which we can reference elements of
the list with the following declarations.

VAR List1, Current: ListPointer;

Before it makes any sense to use either of these variables, we must give them a
value by creating a ListElement. This is done through a call to the standard
Pascal procedure New. The procedure has one parameter, which must be a
pointer to dynamic variables of the type we want to create. Thus a new
ListElement can be created by

New(List1);

which has the effect of allocating sufficient storage for a ListElement, and
setting the value of List1 to point to it. Once this is done, we can use List1 to
reference the fields of the newly created dynamic variable. List1 is a pointer
to the dynamic variable that was just created, while List1^ is the dynamic
variable, i.e. the element pointed to by List1. Since List1^ is a record, the
references to its two fields are written:

List1^.Value

and
List1^.Next

Thus, the Value field in that dynamic variable can be assigned the value 3 by

List1^.Value := 3;

The only operations that are permitted on pointer values are assignment, and
the comparisons based on the two relational operators = and <>.

The first part of the program CreateList, shown in Figure 8.31, is an
implementation of the pseudocode algorithm found in Chapter 8 of the
Principles book.

360 Chapter 8 Pascal Data Structures

Figure 8.31 Program CreateList

PROGRAM CreateList;
(* Create a dynamic list *)
CONST NumberOfElements = 5;

TYPE ListPointer = ^ListElement;
 ListElement = RECORD
 Value: INTEGER;
 Next: ListPointer;
 END;
VAR List1, Current: ListPointer;
 Index: INTEGER;

BEGIN
 New(List1);
 Current := List1;
 Write('Enter an integer ');
 Read(Current^.Value);
 FOR Index := 2 TO NumberOfElements DO BEGIN
 New(Current^.Next);
 Write('Enter an integer ');
 Read(Current^.Next^.Value);
 Current := Current^.Next;
 Current^.Next := NIL;
 END;

 Write('List of elements: ');
 Current := List1;
 WHILE Current <> NIL DO BEGIN
 Write(Current^.Value:3);
 Current := Current^.Next;
 END;
 WriteLn;
END. { CreateList }

After creating the first element by the call New(List1), other elements are
added and connected to the previous element by the call
New(Current^.Next), and the list is created as shown in Figure 8.40 of the
Principles book. The second part of the CreateList program outputs the
values stored in the list, as seen in this output from a typical run:

Enter an integer 12
Enter an integer 23
Enter an integer 34
Enter an integer 45
Enter an integer 56
List of elements: 12 23 34 45 56

Section 8.8 Chapter 8 Review 361

8.8 Chapter 8 Review

The data structures discussed in this chapter are the three structures: arrays,
records, and sets. These structures are used to define new types that are
illustrated by many Pascal examples.

Arrays, especially those of one dimension, are covered in detail. Arrays of two
or more dimensions are treated in less detail, but with sufficient examples to
show how they can be used.

Records, nested records, arrays of records and records containing arrays are also
covered with many examples. Variant records are also considered briefly.

Sets and operations on sets are illustrated in two example programs, involving
counting the elements in various sub-sets, and the not so simple construction of
simple school time tables.

The chapter also introduced a number of libraries including a general library for
integer arrays, IntArrayLib, and implementations of abstract data types like
ComplexLib and MatrixLib.

The use of dynamic variables and the way in which they are referenced
through pointer variables is described and illustrated with the example of the
creation of a dynamic list. Later, in following courses on data structures, more
details on such objects and others will be considered.

8.9 Chapter 8 Problems

1. Normalize
Create part of a program to convert a list of event occurrence counts,
NumEvents, into a list of probabilities, by summing the values and
then dividing each count by this sum.

For example, when two dice are thrown, the results range from 2 to 12
dots. The frequencies of each of these results can be observed and
tabulated to compare the particular dice throws to ideal dice (whose
probabilities should be: 1

36 , 2 36 , ... 6
36 , ... 2

36 , 1
36).

2. Horizontal Histogram
Create part of a program to enter any number of values (say
percentages) and to plot these out horizontally as bars that have a
length proportional to the values input. The size of the bars may need
to “grow” by some Factor. For example, the above frequencies of dice
throws could be used as follows.

Enter the number of bars 11
Enter the growth factor 3

362 Chapter 8 Pascal Data Structures

Enter values of the bars
1 2 3 4 5 6 5 4 3 2 1

3. Intersection
Given two INTEGER arrays A, and B, create a third array C, having the
values that are common to both of the arrays A and B.

4. KBIG
Create a program to find the Kth largest value of an array A, of N
different values.

Hint: the fifth largest value has 4 items larger than itself.

Section 8.10 Chapter 8 Programming Projects 363

8.10 Chapter 8 Programming Projects

Gas Project

The fuel consumption of a vehicle is to be analyzed. Each time fuel is obtained,
the tank is filled and a record is made of the date, present mileage, gallons
used, total cost and brand name as shown:

Date Miles Gallons Cost Brand

93/11/7 50123 10.2 $10.00 X

93/11/8 50432 15.3 $15.00 TURBO

93/11/11 50732 13.0 $14.50 TEXAN

93/11/11 51001 12.5 $16.24 GULP

etc.

This data is to be analyzed in the following ways.

1. Compute the overall miles per gallon (MPG).

2. Compute the MPG at each refill.

3. Determine the cumulative MPG at each fill up by dividing the mileage
to fill up, by the accumulated gallons.

4. Compute the running average over the 3 previous refills.

5. Compute the maximum MPG and the minimum MPG.

6. Determine which brand produces the maximum MPG between fill ups.

7. Compute the MPG for each brand.

8. Determine which brand produces the minimum cost per mile.

9. Determine which brand has the minimum cost per gallon.

10. Compute the average fuel cost per day traveled.

11. Determine the days of minimum mileage.

12. For each brand, compute the total number of gallons used, and the
overall average MPG, cost per gallon.

13. Convert some of the above to other units (kilometers per liter, marks
per kilometer, liters per 100 kilometers).

14. Produce plots of some of the above results.

Library Projects

1. IntArrayLib2
Create another IntArrayLib where a terminating value is stored in
the first position of the array and also in the last position.

364 Chapter 8 Pascal Data Structures

2. Complete ComplexLib
Complete the Complex Library by providing procedures for Division,
Subtraction, Conjugation, and functions to provide the Magnitude
and Angle of the complex numbers.

3. New DateLib
Re implement the DateLib of Chapter 7 using a Date-type that is a
record.

4. AccountLib
Create a library of Accounts (in a bank, organization, etc.) where each
account is a record consisting of an IdNumber, a Balance, and various
transactions of Withdrawal and Deposit.

BSL: Big Stat Lab

In this lab we will reuse library IntArrayLib, which operates on a list of
INTEGER values as shown in this chapter. You will create some of the
following additional procedures involving arrays, and use them and reuse them
to do some of the statistical operations.

1. MaxIntSeq(S, M, P) is a procedure that computes the maximum
value M of a sequence S of Integers and also returns the position P of this
maximum value.

2. SelectSort(S) is a procedure that sorts the values of S into
decreasing order. Use MaxIntSeq to create SelectSort.

3. MidIntSeq(S) is a function that returns the middle value of a sequence
L; if the sequence has an even number of items then the middle returned
is the average of the two middle values.

4. CountIntSeq(S, V, C) is a procedure that counts the number of
occurrences C of the value V in the sequence S. For example, it could
count the number of values of zero rainfall, or the number of days that
had the maximum rainfall.

5. MeanIntSeq(S) is a function procedure that returns the average value
of any sequence S.

6. Variance(S) is a function that returns the amount of deviation from
the mean value of a sequence . The algorithm for this is shown earlier
in this chapter; make use of MeanIntSeq.

Write a program that uses all these procedures. It first prompts a user to enter a
sequence and then presents a menu that requests an action in the form:

Enter an action:
A: to determine the Average value of a sequence
C: to Count the occurrences in a sequence
L: to find the Largest value of a sequence
M: to find the Middle value of a sequence
S: to Sort the sequence into decreasing order
V: to compute the Variance
E: to Exit this menu

Section 8.10 Chapter 8 Programming Projects 365

Enter a character

Time Permitting:

Put these procedures (including a Menu) into a Library, called StatLib
and use this Library and IntArrayLib in a program called StatProg.
Also the data involved should be stored in files.

366 Chapter 8 Pascal Data Structures

Chapter Outline 367

Chapter 9 Algorithms to Run With
The primary purpose of this chapter is to provide more extensive examples of
the data structures introduced in the preceding chapter. Algorithms to sort and
search data structures will be discussed, along with the various ways of
implementing stacks, queues, and trees. Also, this chapter will further develop
the concept of an “Abstract Data Type” (or ADT) and create the StackLib,
QueueLib, and SetLib libraries.

Chapter Overview
9.1 Preview..368
9.2 Sorting Algorithms...369

A Context for Sorting...369
Count Sort...373
Bubble Sort...375
Select Sort..376

9.3 Improving sorts (Optional)..377
Recursive Sort: Merge Sort..378
Another Merge Sort: the Von Neumann Sort...............380

9.4 Searching...387
Binary Search...387

9.5 Implementing Stacks and Queues...............................391
StackLib: Stack as an Abstract Data Type.................391
Dynamic Stacks..395
QueueLib..397
Big Cardinals...400
SetLib: Stack of Strings...404

9.6 Trees...407
9.7 Chapter 9 Review...412
9.8 Chapter 9 Problems...412
9.9 Chapter 9 Programming Projects.................................415

Queue Abstract Data Type...415
PES: Performance Evaluation of Sorts........................416
VS: Visual Sorts...418

368 Chapter 9 Algorithms to Run With

9.1 Preview

The primary purpose of this chapter is to provide more extensive examples of
the use of the data structures introduced in the preceding chapter. Essentially,
no new features of Pascal are introduced, and most of the algorithms shown here
are discussed in detail in Chapter 9 of the Principles book. For this reason,
many of the examples are presented with only minimal commentary. The
Pascal implementations of the algorithms have been written to make them as
readable as possible and hence much of the text of this chapter appears in the
form of Pascal programs.

The first two tasks studied: sorting—rearranging the data into a specific
sequence, e.g. alphabetic order—and searching—information retrieval—are
concerned with arrays. However, before any of the sorting or searching
algorithms are presented, we need some tools to help us. The first section is
devoted to the development of an environment that contains procedures that
create data to work with and to test that they are correctly sorted.

As is common with many tasks, there are several ways to perform sorting and
searching. For example, although there are only four basic ways to sort an
array, there are dozens of variations of each of these ways. Only a few of the
variations will be considered here, however, their individual advantages and
disadvantages are discussed.

As another example of the use of data structures, various ways of implementing
stacks, queues and trees are also introduced. Some of these techniques are based
on arrays, possibly of records, as the underlying data structure, while others are
based on dynamic variables and pointers. Many of the examples are based on
arrays, which are not only used to hold the data for the sorting algorithms but
are also used to create other structures, such as stacks. The structures in turn
will be “encapsulated” in a library and used as basic building blocks to make
even more complex systems.

The concept of an “Abstract Data Type” (or ADT) will be developed further and
used to create libraries. Libraries created in this chapter include a Stack
Library, a Queue Library and a Set Library.

Probably the most important capability demonstrated in this chapter is the
idea of creating larger data items from smaller ones. For example, once we
have developed an integer array library, we are able to develop a library of
routines for the manipulation of stacks based on the routines available in the
array library. These libraries demonstrate the utility of creating an Abstract
Data Type through the library mechanism introduced in the previous chapters.

Section 9.2 Sorting Algorithms 369

9.2 Sorting Algorithms

A Context for Sorting

Before we can experiment with the many different algorithms for sorting, we
need some data to work with. If each time we run the program, we have to
enter all the test data through the keyboard, algorithm development will be
very slow and tedious and the sizes of the sets of test data will be small. If we
are to be able to get any idea of relative efficiency of algorithms, we need large
sets of data. The trouble with large sets of test data is that we can no longer
check by eye that they have been correctly processed. Therefore, we also need
procedures that will check that the data have been correctly sorted. The
library in Figure 9.1, SortEnvLib, is not only useful for our present discussion of
sorting algorithms but it also provides a model of the kinds of libraries that are
needed whenever a programming project of any size is undertaken.

Figure 9.1 The SortEnvLib library

UNIT SortEnvLib;
(* Sorting environment tools *)
INTERFACE

CONST MaxData = 100;

TYPE DataArrayType = ARRAY [1..MaxData] OF INTEGER;
 SequenceOrder = (Up, Down);

FUNCTION RandInt(): INTEGER;
(* Generate random integer < 1013 *)
PROCEDURE SetSeed(NewSeed: INTEGER);
(* Set seed of random number generator *)
PROCEDURE RandomData(VAR DataList: DataArrayType);
(* Fill DataList with random integers *)
PROCEDURE ListData(DataList: DataArrayType);
(* List data from DataList 10 values per line *)
FUNCTION IsMonotonic(Data: DataArrayType;

 Direction: SequenceOrder)
: BOOLEAN;

(* Check if data in DataList is ordered *)

IMPLEMENTATION
CONST InitialSeed = 777;
VAR Seed: INTEGER;

PROCEDURE SetSeed(NewSeed: INTEGER);
BEGIN

Seed := NewSeed;

370 Chapter 9 Algorithms to Run With

END; { SetSeed }

FUNCTION RandInt(): INTEGER;
CONST Modu = 1013;

Coef = 28;
BEGIN

Seed := (Seed * Coef) MOD Modu;
RandInt := Seed;

END; { RandInt }

PROCEDURE RandomData(VAR DataList: DataArrayType);
VAR Index: INTEGER;
BEGIN

FOR Index := 1 TO MaxData DO
DataList[Index] := RandInt;

END; { RandomData }

PROCEDURE ListData(DataList: DataArrayType);
CONST ElementsPerRow = 10;
VAR Index, ElemCount: INTEGER;
BEGIN

ElemCount := 0;
FOR Index := 1 TO MaxData DO BEGIN

Write(DataList[Index]: 5);
Inc(ElemCount);
IF ElemCount >= ElementsPerRow THEN BEGIN

WriteLn;
ElemCount := 0;

END;
END;
IF ElemCount <> 0 THEN

WriteLn;
END; { ListData }

FUNCTION IsMonotonic(Data: DataArrayType;
 Direction:SequenceOrder)
: BOOLEAN;

VAR Index: INTEGER;
 InOrder: BOOLEAN;

BEGIN
InOrder := TRUE;
Index := 2;
WHILE (Index <= MaxData) AND InOrder DO

IF Direction = Up THEN
IF Data[Index - 1] > Data[Index] THEN

InOrder := FALSE
ELSE

Inc(Index)
ELSE

Section 9.2 Sorting Algorithms 371

IF Data[Index - 1] < Data[Index] THEN
InOrder := FALSE

ELSE
Inc(Index);

IsMonotonic := InOrder;
END; { IsMonotonic }

BEGIN
Seed := InitialSeed;

END. { SortEnvLib }

The Pascal UNIT SortEnvLib, shown in Figure 9.1, defines an array type,
DataArrayType, that is used to store INTEGER data to be used for testing
sorting algorithms. The size of the array is set by the value of constant
MaxData, which is currently set to 100, but could easily be changed. The
library also provides five functions and procedures that are useful in creating
test data and checking the results of the sorting algorithms.

RandInt
An INTEGER function that returns a sequence of apparently random
numbers; it is defined here to give an example of random number
generation. Remember, Pascal offers the standard function Random.

SetSeed(NewSeed)
This procedure sets a new starting point for the random number sequence
produced by RandInt.

RandomData(DataList)
Fills the given DataList with a set of random numbers produced by
RandInt.

ListData(DataList)
Lists the values contained in DataList, ten values per line.

IsMonotonic(DataList, Direction)
A BOOLEAN function that checks that the data in the DataList is
monotonic, either all increasing or decreasing, the direction specified
by the parameter Direction to be either Up or Down. This function is
used to check that the data have been sorted correctly—much more
reliably than visually scanning the output produced by ListData.

Figure 9.2 Program TestSortEnv

PROGRAM TestSortEnv;
USES SortEnvLib;
VAR Data: DataArrayType;

 Count: INTEGER;
BEGIN

RandomData(Data);
WriteLn('With default seed');
ListData(Data);
WriteLn;
SetSeed(527);

372 Chapter 9 Algorithms to Run With

RandomData(Data);
WriteLn('With new seed');
ListData(Data);
FOR Count := 1 TO MaxData DO

Data[Count] := Count;
WriteLn;
IF IsMonotonic(Data, Up) THEN

WriteLn('IsMonotonic passed test 1')
ELSE

WriteLn('IsMonotonic failed test 1');
Data[27] := 67;
IF IsMonotonic(Data, Up) THEN

WriteLn('IsMonotonic failed test 2')
ELSE

WriteLn('IsMonotonic passed test 2');
END. { TestSortEnv }

Program TestSortEnv, in Figure 9.2, tests the operation of the procedures and
functions of SortEnvLib. The output obtained from running it is the following.

With default seed
 483 355 823 758 964 654 78 158 372 286
 917 351 711 661 274 581 60 667 442 220
 82 270 469 976 990 369 202 591 340 403
 141 909 127 517 294 128 545 65 807 310
 576 933 799 86 382 566 653 50 387 706
 521 406 225 222 138 825 814 506 999 621
 167 624 251 950 262 245 782 623 223 166
 596 480 271 497 747 656 134 713 717 829
 926 603 676 694 185 115 181 3 84 326
 11 308 520 378 454 556 373 314 688 17

With new seed
 574 877 244 754 852 557 401 85 354 795
 987 285 889 580 32 896 776 455 584 144
 993 453 528 602 648 923 519 350 683 890
 608 816 562 541 966 710 633 503 915 295
 156 316 744 572 821 702 409 309 548 149
 120 321 884 440 164 540 938 939 967 738
 404 169 680 806 282 805 254 21 588 256
 77 130 601 620 139 853 585 172 764 119
 293 100 774 399 29 812 450 444 276 637
 615 1012 985 229 334 235 502 887 524 490

IsMonotonic passed test 1
IsMonotonic passed test 2

Section 9.2 Sorting Algorithms 373

Count Sort

The simplest sort algorithm is Count Sort, which finds the rank of all N
values in an array; if all values are different the largest value has a rank of 1,
the smallest has a rank of N. If some of the data values are the same, they
will have the same rank and there will be some ranks missing. The algorithm
is simple: for each value it counts the number of values that are greater than or
equal to it, and stores that in the corresponding rank array. Figure 9.3 shows
the implementation of this sorting algorithm as procedure CountSort in
testing program TestCountSort.

Figure 9.3 Program TestCountSort

PROGRAM TestCountSort;
USES SortEnvLib;

CONST ElementsPerRow = 10;

VAR Data, Rank: DataArrayType;
 Index, IndRank, ElemCount: INTEGER;

PROCEDURE CountSort(Data: DataArrayType;
 VAR Rank: DataArrayType);

VAR Count, Pass, Index, CurrentValue: INTEGER;
BEGIN

FOR Pass := 1 TO MaxData DO BEGIN
CurrentValue := Data[Pass];
Count := 0;
FOR Index := 1 TO MaxData DO

IF Data[Index] >= CurrentValue THEN
Inc(Count);

Rank[Pass] := Count;
END;

END; { CountSort }

BEGIN
RandomData(Data);
WriteLn('Original data');
ListData(Data);
WriteLn;
CountSort(Data, Rank);
WriteLn('Ranking data');
ListData(Rank);
WriteLn;
WriteLn('Sorted data');
ElemCount := 0;
FOR Index := 1 TO MaxData DO BEGIN

IndRank := 1;
WHILE Index <> Rank[IndRank] DO
{ find element whose rank is Index }

Inc(IndRank);

374 Chapter 9 Algorithms to Run With

Write(Data[IndRank]:5);
Inc(ElemCount);
IF ElemCount >= ElementsPerRow THEN BEGIN

WriteLn;
ElemCount := 0;

END;
END;
IF ElemCount <> 0 THEN

WriteLn;

END. { TestCountSort }

The body of the program makes use of the procedures of SortEnvLib to produce
test data and list the rankings. However, for that kind of sort, a list of the
rankings is not very useful to check that the values are in order. For that
reason, we have had to develop and add a small algorithm to display the
array values in the order given by the rankings. We look for the index value in
the Rank array and, when found, output the corresponding Data array value.
With this addition, the output from running this program is as shown in Figure
9.4.

Figure 9.4 Output from program TestCountSort

Original data
 483 355 823 758 964 654 78 158 372 286
 917 351 711 661 274 581 60 667 442 220
 82 270 469 976 990 369 202 591 340 403
 141 909 127 517 294 128 545 65 807 310
 576 933 799 86 382 566 653 50 387 706
 521 406 225 222 138 825 814 506 999 621
 167 624 251 950 262 245 782 623 223 166
 596 480 271 497 747 656 134 713 717 829
 926 603 676 694 185 115 181 3 84 326
 11 308 520 378 454 556 373 314 688 17

Ranking data
 47 60 12 17 4 29 94 84 58 68
 8 61 21 27 69 37 96 26 51 78
 93 71 49 3 2 59 79 36 62 53
 85 9 89 44 67 88 41 95 14 65
 38 6 15 91 55 39 30 97 54 22
 42 52 75 77 86 11 13 45 1 33
 82 31 73 5 72 74 16 32 76 83
 35 48 70 46 18 28 87 20 19 10
 7 34 25 23 80 90 81 100 92 63
 99 66 43 56 50 40 57 64 24 98

Sorted data
 999 990 976 964 950 933 926 917 909 829
 825 823 814 807 799 782 758 747 717 713

Section 9.2 Sorting Algorithms 375

 711 706 694 688 676 667 661 656 654 653
 624 623 621 603 596 591 581 576 566 556
 545 521 520 517 506 497 483 480 469 454
 442 406 403 387 382 378 373 372 369 355
 351 340 326 314 310 308 294 286 274 271
 270 262 251 245 225 223 222 220 202 185
 181 167 166 158 141 138 134 128 127 115
 86 84 82 78 65 60 50 17 11 3

Bubble Sort

Bubble Sort is probably the simplest of the actual sort routines where the data
are rearranged. Its simplest version should become so well known to you, that
you can write the program for doing it without having to refer to any notes. Its
Pascal implementation is shown in Figure 9.5: all adjacent values are compared
and swapped if not in the right order.

Figure 9.5 Procedure BubbleSort

PROCEDURE BubbleSort(VAR Data: DataArrayType);
VAR Pass, Index, Temp: INTEGER;
BEGIN
 FOR Pass := 1 TO (MaxData - 1) DO

 FOR Index := 1 TO (MaxData - 1) DO
 IF Data[Index] < Data[Index + 1] THEN BEGIN

 Temp := Data[Index];
 Data[Index] := Data[Index + 1];
 Data[Index + 1] := Temp;

 END;
END; { BubbleSort }

In this form, the algorithm is quite adequate for sorting small amounts of data,
up to about 100 items, without enough loss of efficiency to merit the effort of
either finding, or writing one of the more complicated algorithms. One of the
exercises given at the end of this chapter investigates this point.

A slightly more complicated version of this simple BubbleSort algorithm is
contained in the program TestBubbleSort, which is in Figure 9.6.

Figure 9.6 Program TestBubbleSort

PROGRAM TestBubbleSort;
USES SortEnvLib;

VAR Data: DataArrayType;

PROCEDURE BubbleSort(VAR Data: DataArrayType);
VAR Posn, Temp: INTEGER;

 Done: BOOLEAN;
BEGIN

376 Chapter 9 Algorithms to Run With

Done := FALSE;
WHILE NOT Done DO BEGIN

Done := TRUE;
FOR Posn := 1 TO MaxData - 1 DO

IF Data[Posn] < Data[Posn + 1] THEN BEGIN
Temp := Data[Posn];
Data[Posn] := Data[Posn+1];
Data[Posn + 1] := Temp;
Done := FALSE;

END;
END;

END; { BubbleSort }

BEGIN
RandomData(Data);
WriteLn('Original data');
ListData(Data);
WriteLn;
BubbleSort(Data);
WriteLn('Sorted data');
ListData(Data);
WriteLn;
IF IsMonotonic(Data, Down) THEN
 WriteLn('Data are correctly sorted')
ELSE
 WriteLn('Data are NOT correctly sorted');

END. { TestBubbleSort }

In this version of the algorithm, the idea is to detect when a complete pass is
made through the data without finding anything out of order. When this
occurs, Done has the value TRUE and the algorithm terminates early.

Select Sort

The group of select sort algorithms have the general principle that, at each
pass, an extreme value of the data still to be sorted is selected and moved to its
proper place in the target array. In this version of the algorithm, the
assumption is made that all the data values are greater than zero. At each
pass, the maximum value in the data array is selected, copied to the target
area and replaced by zero in the data array so that it will no longer be
considered.

A Pascal procedure that performs this algorithm is given in Figure 9.7. It is
based on the same assumption, because it replaces the chosen value by a zero.

Figure 9.7 Procedure SelectSort

PROCEDURE SelectSort(Data: DataArrayType;
VAR Result: DataArrayType);

VAR Pass, Index, Maximum, Position: INTEGER;

Section 9.2 Sorting Algorithms 377

BEGIN
 FOR Pass := 1 TO MaxData DO BEGIN

 Maximum := 0;
 FOR Index := 1 TO MaxData DO

IF Maximum < Data[Index] THEN BEGIN
 Maximum := Data[Index];
 Position := Index;
END;

 Result[Pass] := Maximum;
 Data[Position] := 0;

 END;
END; { SelectSort }

Note that this procedure has two parameters, the original array as input
parameter, and the sorted array as output parameter.

9.3 Improving sorts (Optional)

The DistantBubbleSort algorithm that was introduced in Chapter 9 of the
Principles book is a major improvement on BubbleSort. Instead of comparing
adjacent values, values that are situated at a given distance apart are
compared. The idea is that when two distant values are swapped, this
possibly saves doing the same thing by several individual swaps. The
algorithm for doing this is not very different from the BubbleSort algorithm.

If this DistantBubbleSort algorithm is applied repeatedly with ever
decreasing values for the distance apart, the whole data array will eventually
be sorted. This method of using DistantBubbleSort in this way was first
proposed by David Shell and is generally known as “Shell Sort”. A Pascal
implementation of this algorithm is contained in the procedure ShellSort
shown in Figure 9.8.

Figure 9.8 Procedure ShellSort

 PROCEDURE ShellSort(VAR Data: DataArrayType);
 VAR Distance: INTEGER;

 PROCEDURE DistantBubbleSort(Distance: INTEGER;
 VAR Data: DataArrayType);

 VAR Index, Pass, Start, Temp: INTEGER;
 Finished: BOOLEAN;

 BEGIN
Finished := FALSE;
Pass := 1;
WHILE (Pass < MaxData) AND NOT Finished DO BEGIN
 Finished := TRUE;
 FOR Start := 1 TO Distance DO BEGIN

 Index := Start;
 WHILE Index <= MaxData - Distance DO BEGIN

IF Data[Index] < Data[Index + Distance] THEN

378 Chapter 9 Algorithms to Run With

BEGIN
 Finished := FALSE;
 Temp := Data[Index];
 Data[Index] := Data[Index + Distance];
 Data[Index + Distance] := Temp;
END;
Inc(Index, Distance);

 END; { WHILE }
 END; { FOR }
 Inc(Pass);
END; { WHILE }

 END; { DistantBubbleSort }

 BEGIN { ShellSort }
 Distance := MaxData DIV 2;
 WHILE Distance >= 1 DO BEGIN

DistantBubbleSort(Distance, Data);
Distance := Distance DIV 2;

 END;
 END; { ShellSort }

In this procedure, the initial value for Distance is half the number of data
items in the list, and this is halved at every iteration. A thorough analysis of
the improvement obtained by this technique is well beyond the scope of this
book. Look at the DistantBubbleSort procedure and compare it with the
BubbleSort procedure of Figure 9.6. There are differences, and the amount of
detail is larger in DistantBubbleSort, but on the whole the algorithms are
also very similar.

Recursive Sort: Merge Sort

As an example of a recursive procedure, Merge Sort was introduced in
Chapter 9 of the Principles book. Here, sorting is achieved by splitting the
array into two halves, sorting each half, and then merging the two sorted
halves. Of course, each of the two halves is sorted using the same process, and
this is repeated until each half has only a single element (base case).

The merging of the two subarrays is done simply with an index “sliding down”
each subarray. For each value of the index the two indexed values are
compared, and their maximum is copied into the array Result. The index of
the copied value is incremented and the process is continued until one of the two
subarrays has been entirely copied. The remaining elements in the other
subarray are then copied in the resulting array.

The detailed working of this algorithm is a little difficult to understand at
first and is fully explained in Chapter 9 of the Principles book.

Figure 9.9 Procedure MergeSort

PROCEDURE MergeSort(First, Last: INTEGER;
 VAR Table: DataArrayType);

Section 9.3 Improving sorts (Optional) 379

PROCEDURE Merge(First, Last: INTEGER;
 VAR Table: DataArrayType);

VAR Index, Middle, Bottom, Top: INTEGER;
 Result: DataArrayType;

BEGIN
Index := First;
Middle := (First + Last) DIV 2;
Top := First;
Bottom := Middle + 1;
WHILE (Top <= Middle) AND (Bottom <= Last) DO BEGIN

IF Table[Top] > Table[Bottom] THEN BEGIN
Result[Index] := Table[Top];
Inc(Top);
END

ELSE BEGIN
Result[Index] := Table[Bottom];
Inc(Bottom);

END;
Inc(Index);

END;
WHILE Top <= Middle DO BEGIN

Result[Index] := Table[Top];
Inc(Top);
Inc(Index);

END;
WHILE Bottom <= Last DO BEGIN

Result[Index] := Table[Bottom];
Inc(Bottom);
Inc(Index);

END;
Index := 1;
FOR Index := First TO Last DO

Data[Index] := Result[Index];
END; { Merge }

VAR Middle: INTEGER;
BEGIN { MergeSort }

IF First <> Last THEN BEGIN
Middle := (First + Last) DIV 2;
MergeSort(First, Middle, Table);
MergeSort(Middle + 1, Last, Table);
Merge(First, Last, Table);

END;
END; { MergeSort }

The Pascal implementation of this algorithm is shown in Figure 9.9 which
shows procedure MergeSort, which contains Merge as an internal procedure.
The fact that it is a recursive procedure requires no special indication in the
Pascal program.

380 Chapter 9 Algorithms to Run With

Another Merge Sort: the Von Neumann Sort

Let’s now look at another sorting algorithm based upon the idea of merging but,
this time, without recursion. This will allow us to introduce a couple of new
features of Pascal. This algorithm was originally developed on some ideas by
John von Neumann, the inventor of the stored program concept, and so we will
name it Von Neumann Sort.

The Von Neumann Sort makes use of an auxiliary storage array of the same
size as the original data array. During each major iteration, the data are
copied from one data area, the “source”, to the other, the “target”, the
direction of copy reversing between iterations. Thus, during the first iteration,
the data are copied from the original data area, the “source”, to the auxiliary
area, which is the “target”. During the second iteration, the roles of the two
areas are reversed and the auxiliary area is the source, and the original data
area is the target.

We can imagine each data array to be laid out as a row of cells from left to
right with element 1 at the left and element n at the right. In the source area,
the data are treated as two ascending sequences one starting at the left and
going to the right and the other starting at the right and going to the left. The
diagram of Figure 9.10 represents the state at the beginning of an example sort
of ten digits.

Figure 9.10 Start of a Von Neumann sort

Source

6 4 9 8 1 2 5 7 3 0

Target

The two arrows in the source area mark the beginnings of the data sequences to
be merged, and the arrow in the target area marks the cell into which the first
element will be copied. Merging continues until the two next available data
elements in the source are both less than the last copied element in the target.
The four diagrams of Figure 9.11 show successive steps in the merging process up
to the end of the first sequence.

Section 9.3 Improving sorts (Optional) 381

Figure 9.11 The Von Neumann sort

Source

6 4 9 8 1 2 5 7 3

Target

0

6 4 9 8 1 2 5 7 0 3

4 9 8 1 2 5 7 0 3 6

4 9 8 1 2 5 0 3 6 7

The building of the first sequence stops because the next two available items in
the source area, 4 and 5, are both less than the last item of the sequence that
has been built in the target area, 7. Although the data is really copied, for
clarity, the diagrams show it as being moved. At this point, the next available
elements are treated as the beginnings of new sequences and merging continues,
forming a sequence that is built at the opposite end of the target area. In the
last diagram of Figure 9.11, the arrow in the target area has been moved to
show where the next sequence will be put.

This merging continues until the end of the next sequence is reached, as shown in
the three diagrams of Figure 9.12. As with the first sequence, when no more
merging is possible, a new sequence is started at the other end of the target area
as shown by the arrow.

Figure 9.12 Von Neumann sort

Source

9 8 1 2 5

Target

9 8 1 2

8 1 2

0 3 6 7 4

0 3 6 7 5 4

0 3 6 7 9 5 4

Sequences are formed in the target area in this way until all the data have
been copied, at which point the source and target designations are
interchanged. This is shown in the three diagrams of Figure 9.13.

382 Chapter 9 Algorithms to Run With

Figure 9.13 End of Von Neumann sort

Source

8 1

Target

1

0 3 6 7 4

0 3 6 7 5 4

2 9

2 8 9

5

In the example, four sequences, (0, 3, 9, 7), (4, 5, 9), (2, 8), and (1) were
constructed in the target area. The process continues by merging these four
sequences to form two sequences in the newly designated target area. The
situation at the end of the second iteration is as shown in Figure 9.14 with two
sequences (0, 3, 4, 5, 6, 7, 9), and (1, 2, 8).

Figure 9.14 Result of first merge

Target Source

0 3 6 7 42 9 58 1

These remaining two sequences are merged in the third iteration to produce the
last sequence of Figure 9.15.

Figure 9.15 End of Von Neumann sort

Source

0 3 4 5 6 7 9 8 2 1

Target

Since there is only one sequence, the sort is complete. However, since the sorted
data are in the auxiliary data array, they must be copied back into the original
data array.

The sorting process will thus repeatedly copy sequences of data from the source
area to the target area until only one sequence was formed in the target, and
therefore the data is sorted. Finally, the data are copied back into the
original data area if necessary. Thus, we can sketch the algorithm in
pseudocode as:

Von Neumann Sort
Repeat

Merge Sequences
Until only one sequence copied
If sorted data is in auxiliary store

Copy data into original data array
End Von Neumann Sort

In the merging of data to form sequences, each iteration constructs a single
sequence in the target area, and looping continues until the end of the source
data is reached.

Section 9.3 Improving sorts (Optional) 383

Merge Sequences
Repeat

Merge One Sequence
Until data all copied from source to target
Count sequences

End Merge Sequences

In the process to generate one sequence, each iteration copies a data element and
the loop terminates when the source data elements cannot be part of the current
sequence.

Merge One Sequence
While data being copied forms a sequence

Copy element from source to target
End Merge One Sequence

When we implement this in Pascal, we’ll naturally make three separate
procedures: VonNeumannSort, MergeSequences, and MergeOneSequence,
as shown in the complete program of Figure 9.16.

Figure 9.16 Program Von Neumann Sort

PROGRAM TestVonNeumannSort;
(* Test von Neumann sort *)
USES SortEnvLib;

TYPE DataArrayPointer = ^DataArrayType;
 IncDecProc = PROCEDURE(VAR X: INTEGER);

VAR Data: DataArrayType;

PROCEDURE Incr(VAR X: INTEGER);
(* Increment X *)
BEGIN

X := X + 1;
END; { Incr }

PROCEDURE Decr(VAR X: INTEGER);
(* Decrement X *)
BEGIN

X := X - 1;
END; { Decr }

PROCEDURE MergeOneSequence(Source:
DataArrayPointer;

 Target:
DataArrayPointer;

VAR LeftSource: INTEGER;
VAR RightSource: INTEGER;
VAR TargetIndex: INTEGER;

 IncDec: IncDecProc);
(* Merge one ordered increasing sequence in Target from

384 Chapter 9 Algorithms to Run With

Source left and right *)
VAR PrevValue: INTEGER;

 Done: BOOLEAN;
BEGIN
 Done := FALSE;
 IF Source^[LeftSource] <= Source^[RightSource] THEN

BEGIN
 Target^[TargetIndex] := Source^[LeftSource];
 INC(LeftSource);
 END

 ELSE BEGIN
 Target^[TargetIndex] := Source^[RightSource];
 DEC(RightSource);

 END;
 PrevValue := Target^[TargetIndex];
 IncDec(TargetIndex);
 WHILE (LeftSource <= RightSource) AND NOT Done DO BEGIN

 IF (Source^[LeftSource] < PrevValue) AND
(Source^[RightSource] < PrevValue) THEN

Done := TRUE { end of current sequence }
 ELSE BEGIN

IF (Source^[LeftSource] >= PrevValue) AND
(Source^[RightSource] >= PrevValue) THEN

 IF Source^[LeftSource] <= Source^[RightSource]
THEN BEGIN

 Target^[TargetIndex] := Source^[LeftSource];
 INC(LeftSource);
 END

 ELSE BEGIN
 Target^[TargetIndex] := Source^[RightSource];
 DEC(RightSource);
 END

ELSE IF Source^[LeftSource] >= PrevValue THEN BEGIN
 Target^[TargetIndex] := Source^[LeftSource];
 INC(LeftSource);
 END
ELSE BEGIN
 Target^[TargetIndex] := Source^[RightSource];
 DEC(RightSource);
END;
PrevValue := Target^[TargetIndex];
IncDec(TargetIndex);

 END; { IF }
 END; { WHILE }
END; { MergeOneSequence }

PROCEDURE MergeSequences(Source: DataArrayPointer;
 Target: DataArrayPointer;
 VAR Count: INTEGER);

(* Repeatedly create ordered sequences from Source

Section 9.3 Improving sorts (Optional) 385

into Target alternatively left and right *)
VAR LeftSource, RightSource: INTEGER;

 LeftTarget, RightTarget: INTEGER;
BEGIN
 Count := 0;
 LeftSource := 1;
 RightSource := MaxData;
 LeftTarget := 1;
 RightTarget := MaxData;
 WHILE LeftSource < RightSource DO BEGIN

 IF (Count MOD 2) = 0 THEN { left in Target }
MergeOneSequence(Source, Target, LeftSource,

 RightSource, LeftTarget, Incr)
 ELSE { right in Target }

MergeOneSequence(Source, Target, LeftSource,
 RightSource, RightTarget, Decr);

 Inc(Count);
 END;
END; { MergeSequences }

PROCEDURE VonNeumannSort(VAR Data: DataArrayType);
(* Sort Data in increasing order by merging sequences.

At each pass Source and Target exchange roles *)
VAR WorkingStore: DataArrayType;

 Source, Target, Temp: DataArrayPointer;
 SequenceCount, Index: INTEGER;

BEGIN
 Source := Addr(Data);
 Target := Addr(WorkingStore);
 MergeSequences(Source, Target, SequenceCount);
 WHILE SequenceCount > 1 DO BEGIN

 Temp := Source;
 Source := Target; { exchange Source and Target }
 Target := Temp;
 MergeSequences(Source, Target, SequenceCount);

 END;
 IF Target <> Addr(Data) THEN

Source^ := Target^; { result must be in Data }
END; { VonNeumannSort }

BEGIN { TestVonNeumannSort }
RandomData(Data);
WriteLn('Original data');
ListData(Data);
WriteLn;
VonNeumannSort(Data);
WriteLn('Sorted data');
ListData(Data);
WriteLn;
IF IsMonotonic(Data, Up) THEN

386 Chapter 9 Algorithms to Run With

WriteLn('Data is correctly sorted')
ELSE

WriteLn('Data is NOT correctly sorted');
END. { TestVonNeumannSort }

In order to make it easy to interchange source and target designations, pointers
are used, even though the two data areas are not dynamic variables created
with the procedure New. We define a data type:

TYPE DataArrayPointer = ^DataArrayType;

and then declare two pointers:

VAR Source, Target: DataArrayPointer;

We now need to make these two pointers reference the source data array and
the auxiliary data array. There is a standard Pascal function Addr, which
takes an ordinary variable as a parameter and returns its memory location
(address), which can then be assigned to a pointer.

Source := Addr(Data);
Target := Addr(WorkingStore);

Once this has been done, Source and Target can be used to address the two
storage areas. At the end of each major iteration, the direction of transfer can
be reversed by simply interchanging the values of Source and Target. Note
the way in which an element of an array is referenced:

Source^[LeftIndex]

because Source is a pointer, but Source^ is an array. Another point to note in
this sort procedure is that the index in the target is either incremented or
decremented after each value is copied depending whether we are working at
the left or right end of the target area. This is achieved by passing either
procedures Incr or Decr to the procedure type parameter IncDec, another
example of the usefulness of the procedure type.

The complete procedures are given in program TestVonNeumannSort.
Procedure VonNeumannSort follows the pseudocode given above. Procedure
MergeSequences also follows the pseudocode, albeit with much more detail.
Procedure MergeOneSequence is the only really complicated procedure in the
program. Although it corresponds to the pseudocode, the logic to decide what
to copy and when to finish is difficult to follow. To understand it, just make sure
you identify the various cases. The first IF just chooses the first value of the
sequence. In the WHILE, the first IF tests for the end of the sequence, and if it is
not, determines what value to copy in the target.

The result from a run of this program is shown in Figure 9.17.

Figure 9.17 Output of program TestVonNeumannSort

Original data
 483 355 823 758 964 654 78 158 372 286
 917 351 711 661 274 581 60 667 442 220
 82 270 469 976 990 369 202 591 340 403
 141 909 127 517 294 128 545 65 807 310

Section 9.3 Improving sorts (Optional) 387

 576 933 799 86 382 566 653 50 387 706
 521 406 225 222 138 825 814 506 999 621
 167 624 251 950 262 245 782 623 223 166
 596 480 271 497 747 656 134 713 717 829
 926 603 676 694 185 115 181 3 84 326
 11 308 520 378 454 556 373 314 688 17

Sorted data
 3 11 17 60 65 78 82 84 86 115
 127 128 134 138 141 158 166 167 181 185
 202 220 222 223 225 245 251 262 270 271
 274 286 294 294 308 310 314 326 340 351
 355 369 372 373 378 382 387 403 406 442
 454 469 480 483 497 506 517 520 521 545
 556 566 576 581 591 596 603 621 623 624
 653 654 656 661 667 676 688 694 706 711
 713 717 747 758 782 799 807 814 823 825
 829 909 917 926 933 950 964 976 990 999

Data is correctly sorted

9.4 Searching

Binary Search

In Chapter 8, we showed a tiny data-base program, Retrieve, that searched
an array to find a key or pattern. It did this search in a linear way, beginning
at the first item of the array, and ending at the last item. If, however, data in
the array had already been sorted, then the binary search method could have
been used, as described in Chapter 9 of the Principles volume. This binary
search, or bisection method, first tests the value at the midpoint of the array to
determine in which half of the array to carry on the search. It continues this
way until the key is found, and its position is returned in the parameter Mid, or
until it is known that the key cannot be matched in the array and 0 is returned
in Mid.

The program TestBinarySearch in Figure 9.18, contains a procedure
BinSearch, which performs a binary search on an array of sorted data. In
order to obtain some test data, the procedure RandomData from SortEnvLib is
first used to produce the data and then the procedure BubbleSort, seen earlier
in this chapter, is used to sort the data.

Figure 9.18 Program TestBinarySearch

PROGRAM TestBinarySearch;
(* Test binary search procedure *)
USES SortEnvLib;

TYPE Range = 0..MaxData;

388 Chapter 9 Algorithms to Run With

PROCEDURE BubbleSort(VAR Data: DataArrayType);
(* Sort array Data in decreasing order *)
VAR Posn, Temp: INTEGER;

 Done: BOOLEAN;
BEGIN

Done := FALSE;
WHILE NOT Done DO BEGIN

Done := TRUE;
FOR Posn := 1 TO MaxData - 1 DO

IF Data[Posn] < Data[Posn + 1] THEN BEGIN
Temp := Data[Posn];
Data[Posn] := Data[Posn+1];
Data[Posn + 1] := Temp;
Done := FALSE;

END;
END;

END; { BubbleSort }

PROCEDURE BinSearch(A: DataArrayType; Low, High: INTEGER;
 Key: INTEGER; VAR Mid: INTEGER);

(* Search decreasingly ordered array A for Key *)
BEGIN

Mid := (Low + High) DIV 2;
WHILE Low < High DO BEGIN

IF A[Mid] < Key THEN { first half }
High := Mid - 1

ELSE
IF A[Mid] > Key THEN { second half }

Low := Mid + 1
ELSE BEGIN { found }

Low := Mid;
High := Mid;

END;
Mid := (Low + High) DIV 2;

END;
IF A[Mid] <> Key THEN { item not found }

Mid := 0;
END; { BinSearch }

VAR Data: DataArrayType;
 SearchKey, Index: INTEGER;

BEGIN
RandomData(Data);
BubbleSort(Data);
WriteLn('Sorted data');
ListData(Data);
WriteLn;

Write('Enter the search key: ');

Section 9.4 Searching 389

Read(SearchKey);
BinSearch(Data, 1, MaxData, SearchKey, Index);
If Index = 0 THEN

Write('It does not occur ')
ELSE

Write('It is at position ', Index:3);
END. { TestBinarySearch }

The binary search algorithm is considerably faster than the linear search; it
takes an average time of Log2 N compared to N

2 . So when the size N is 1,000, a
binary search takes a time of 10 compared to 500 for a linear search. When N is
a million, a binary search takes a time of 20 compared to a linear search with a
time of 500,000. However, a binary search requires a sorted array to begin with.
So, if the array must be sorted each time a search is made, then a binary search
may not be the best.

In Chapter 9 of the Principles book, algorithm Find First Match, which
finds the first occurrence of a character string pattern in another character
string, was introduced and discussed. The algorithm is simple as it compares
repeatedly the characters of the string to the characters of the pattern.
However, it only compares the characters of the pattern to the characters of
the string until it finds a mismatch. Once a mismatch is found, the pattern is
moved forward in the string for another try. In order for the algorithm to stop
when finding the first match, we use a Boolean flag to indicate this condition
as soon as it happens.

This algorithm has the same effect as the standard Pascal function Pos. A
Pascal implementation of this algorithm is contained in program
TestFirstMatch in Figure 9.19.

Figure 9.19 Program TestFirstMatch

PROGRAM TestFirstMatch;

FUNCTION FindFirstMatch(Source, Pattern: STRING):
INTEGER;

VAR Found, Equal: BOOLEAN;
 S_Index, P_Index: INTEGER;

BEGIN
Found := FALSE;
S_Index := 1;
WHILE (S_Index <= (Length(Source) - Length(Pattern)))

 AND NOT Found DO BEGIN
Equal := TRUE;
P_Index := 1;
WHILE (P_Index <= Length(Pattern)) AND Equal DO

BEGIN
IF Pattern[P_Index] <>

Source[S_Index + P_Index - 1] THEN
Equal := FALSE;

Inc(P_Index);

390 Chapter 9 Algorithms to Run With

END;
Found := Equal;
Inc(S_Index);

END;
IF Found THEN

FindFirstMatch := S_Index - 1
ELSE

FindFirstMatch := 0;
END; { FindFirstMatch }

VAR Text, Key: STRING;
 Position: INTEGER;

BEGIN
WriteLn('Enter string to be searched');
ReadLn(Text);
WriteLn('Enter string to search for');
ReadLn(Key);
Position := FindFirstMatch(Text, Key);
IF Position = 0 THEN

WriteLn('Pattern not in text')
ELSE BEGIN

WriteLn('Pattern starts at position ', Position: 3);
WriteLn('Contained pattern = |',

Copy(Text, Position, Length(Key)), '|');
END;
WriteLn('Enter second string to search for');
ReadLn(Key);
Position := FindFirstMatch(Text, Key);
IF Position = 0 THEN

WriteLn('Pattern not in text')
ELSE BEGIN

WriteLn('Pattern starts at position ', Position: 3);
WriteLn('Contained pattern = |',

Copy(Text, Position, Length(Key)), '|');
END;

END. { TestFirstMatch }

Program TestFirstMatch asks for a string, and then for a couple of patterns to
search for in that string. When a pattern is found, it is output from the string
using standard function Copy. Note that when outputting the value of a
substring for checking during program development, it is a good idea to bound it
with some marker, for example |, so that the presence of a blank can be easily
seen.

In procedure FindFirstMatch note that we use two Boolean variables, Equal to
signal a mismatch when checking for the pattern, and Found to signal the end
of the process. We use another standard function, Length, to compute the
limits of the loops. Note that a Pascal STRING is really an array of characters
and therefore that its individual characters can be accessed using normal
subscripting techniques as in:

Section 9.4 Searching 391

IF Pattern[P_Index] <>
Source[S_Index + P_Index - 1] THEN

The output from a typical run of program TestFirstMatch is the following.

Enter string to be searched
Now is the time for all good people to come to the aid
of the party—it's party time!
Enter string to search for
good
Pattern starts at position 25
Contained pattern = |good|
Enter second string to search for
aiid
Pattern not in text

9.5 Implementing Stacks and Queues

StackLib: Stack as an Abstract Data Type

Stacks are used so often in computing that a Stack Abstract Data Type is
usually defined and implemented as a Pascal UNIT. This Abstract Data Type,
defined in Chapter 8 of the Principles book, is implemented here as UNIT
StackLib, shown in Figure 9.20. This UNIT essentially extends the Pascal
language by providing the StackType and actions Create, Push, Pop, Empty
and Full.

Figure 9.20 The StackLib unit

UNIT StackLib;

INTERFACE
CONST Height = 30; { maximum size }
TYPE RANGE = 1..Height;

ItemType = CHAR;
StackType = RECORD

 Top : RANGE;
 Item: ARRAY[RANGE] OF ItemType;
END;

PROCEDURE Create(VAR Stack: StackType);
(* Sets up stack, initially *)

PROCEDURE Push(VAR Stack: StackType;
 X: ItemType);

(* Puts object X onto Stack *)

PROCEDURE Pop(VAR Stack: StackType;
 VAR Y: ItemType);

(* Takes object Y off Stack *)

392 Chapter 9 Algorithms to Run With

FUNCTION Empty(Stack: StackType): BOOLEAN;
(* Shows if Stack is empty *)

FUNCTION Full(Stack: StackType): BOOLEAN;
(* Shows if Stack is full *)

IMPLEMENTATION
PROCEDURE Create(VAR Stack: StackType);
BEGIN

Stack.Top := Height;
END; { Create }

PROCEDURE Empty(Stack: StackType): BOOLEAN;
BEGIN

IF Stack.Top = Height THEN
Empty := TRUE

ELSE
Empty := FALSE;

END; { Empty }

PROCEDURE Full(Stack: StackType): BOOLEAN;
BEGIN

IF Stack.Top = 1 THEN
Full := TRUE

ELSE
Full := FALSE;

END; { Full }

PROCEDURE Push(VAR Stack: StackType;
 X: ItemType);

BEGIN
IF Full(Stack) THEN

WriteLn('FULL ')
ELSE BEGIN

DEC(Stack.Top);
Stack.Item[Stack.Top] := X;

END;
END; { Push }

PROCEDURE Pop(VAR Stack: StackType;
 VAR Y: ItemType);

BEGIN
IF Empty(Stack) THEN

WriteLn('EMPTY ')
ELSE BEGIN

Y := Stack.Item[Stack.Top];
Inc(Stack.Top);

END;
END; { Pop }

Section 9.5 Implementing Stacks and Queues 393

END. { StackLib }

The INTERFACE part of StackLib describes the stack concisely. A stack
consists of two parts: an index indicating the top element position, and an array
of elements. Notice that the ItemType is declared to be a character by:

ItemType = CHAR;

If, at some later time, the items in a stack are to be INTEGERs, REALs or other
types, this stack definition could still be used with a minor modification of this
one declaration. Of course after such a modification this UNIT and all other
units using StackLib would need to be re-compiled.

The IMPLEMENTATION part of StackLib contains the procedures describing the
actions on Stacks. These procedures are all self explanatory. Figure 9.21
presents program StackProg, that uses the Stack Abstract Data Type.

Figure 9 21 Program StackProg

PROGRAM StackProg;

USES StackLib;
VAR InStack, OutStack: StackType;

 Ch: CHAR;
BEGIN

Create(InStack);
Create(OutStack);

(* Input characters onto stack *)
Write('Enter letters end with $ ');
Read(Ch);
WHILE Ch <> '$' DO BEGIN

Push(InStack, Ch);
Read(Ch);

END;

(* Pour characters into another stack *)
WHILE NOT Empty(InStack) DO BEGIN

Pop(InStack, Ch);
Push(OutStack, Ch);
Write(Ch);

END;
END. { StackProg }

Program StackProg reads characters and stores them in InStack. Then the
characters are transferred from InStack to OutStack, and also output. The
characters are output in reverse order of their input.

Other operations on stacks are possible. One rather useful action is Pour, a
procedure to move the contents from one Stack into another, which is shown in
Figure 9.22.

394 Chapter 9 Algorithms to Run With

Figure 9.22 Operation Pour

PROCEDURE Pour(S1: StackType;
VAR S2: StackType);

VAR E: ItemType;
BEGIN

WHILE NOT Empty(S1) DO BEGIN
Pop(S1, E);
{ Actions could go here }
Push(S2, E);

END;
END; { Pour }

Notice that the contents of the second stack are in reverse order from what they
were in the first stack. A second operation of Pour is required if the order is to
be maintained. Notice also that the contents of the first stack are destroyed in
this pouring process: pouring is not copying.

Dynamic Stacks

One of the problems with implementing a stack with an array is that the
maximum size of the stack has to be fixed when the program is compiled. We
can escape from this problem by using dynamic variables and pointers to
implement our stack abstract data type. In this case, a stack will be
represented as shown in Figure 9.23.

Figure 9.23 A dynamic stack

Item 4

Stack

Item 3 Item 2 Item 1

The pointer variable Stack will always point to the top element of the stack.
All our operations will be redefined, as they were in Chapter 9 of the
Principles book. The Pascal unit DynamicStackLib implements the redefined
operations, and is shown in Figure 9.24.

Figure 9.24 Dynamic implementation of stacks

UNIT DynamicStackLib;

INTERFACE
TYPE ItemType = CHAR;

 StackType = ^StackElement;
 StackElement = RECORD

 Value: ItemType;
 Prev: StackType;

 END;

Section 9.5 Implementing Stacks and Queues 395

PROCEDURE Create(VAR Stack: StackType);
(* Sets up stack, initially *)

PROCEDURE Push(VAR Stack: StackType;
 X: ItemType);

(* Puts object X onto Stack *)

PROCEDURE Pop(VAR Stack: StackType;
 VAR Y: ItemType);

(* Takes object Y off Stack *)

FUNCTION Empty(Stack: StackType): BOOLEAN;
(* Shows if Stack is empty *)

IMPLEMENTATION
PROCEDURE Create(VAR Stack: StackType);
BEGIN

Stack := NIL;
END; { Create }

PROCEDURE Empty(Stack: StackType): BOOLEAN;
BEGIN

IF Stack = NIL THEN
Empty := TRUE

ELSE
Empty := FALSE;

END; { Empty }

PROCEDURE Push(VAR Stack: StackType;
 X: ItemType);

VAR Next: StackType;
BEGIN

New(Next);
Next^.Prev := Stack;
Next^.Value := X;
Stack := Next;

END; { Push }

PROCEDURE Pop(VAR Stack: StackType;
 VAR Y: ItemType);

VAR PrevTop: StackType;
BEGIN

IF Empty(Stack) THEN
WriteLn('EMPTY ')

ELSE BEGIN
Y := Stack^.Value;
PrevTop := Stack^.Prev;
Dispose(Stack);
Stack := PrevTop;

396 Chapter 9 Algorithms to Run With

END;
END; { Pop }

END. { DynamicStackLib }

The changes to Create and Empty are obvious. Note that operation Full has
been eliminated, as the static limit on the size of the stack has disappeared.
Procedure Push is now extremely simple, adding an element in front of the
others. Operation Pop is as simple.

QueueLib

An abstract data type library for Queues can be constructed from arrays in much
the same way as the library for Stacks was constructed in the previous section.
However, it could also be constructed in another manner.

Since Queues are very similar to Stacks, it may be worth “inheriting” from
stacks some of the basic implementation for queues. This is done by using stacks
as the foundation on which to build an implementation of Queues. The main
difference between stacks and queues is in the way in which items are
“inserted” and “deleted”. If a queue is represented as a stack with the most
recently inserted item on the top, then the item to be removed by the ExitQ
operation is at the bottom of the stack. In order to remove this item, the stack
must be “poured” into a temporary stack. The item to be removed is now at the
top of the stack and is popped. Finally, the temporary stack is poured back into
the original stack, to restore its original order. The procedure ExitQ in library
QueueLib, shown in Figure 9.25, works in this way.

Figure 9.25 The abstract data type Queue

UNIT QueueLib;

INTERFACE

USES StackLib;

TYPE QueueType = StackType;

PROCEDURE CreateQ(VAR Queue: QueueType);
(* Create a queue initially *)
PROCEDURE EnterQ(VAR Q: QueueType; X: ItemType);
(* Add element X to queue Q *)
PROCEDURE ExitQ(VAR Q: QueueType; VAR Y: ItemType);
(* Eliminate first element in queue Q and save in Y *)
FUNCTION EmptyQ(Queue: QueueType): BOOLEAN;
(* Indicate if queue is empty *)
FUNCTION FullQ(Queue: QueueType): BOOLEAN;
(* Indicate if queue is full *)

IMPLEMENTATION

Section 9.5 Implementing Stacks and Queues 397

PROCEDURE CreateQ(VAR Queue: QueueType);
BEGIN

Create(Queue);
END; { CreateQ }

PROCEDURE EnterQ(VAR Q: QueueType; X: ItemType);
BEGIN

Push(Q, X);
END; { EnterQ }

FUNCTION EmptyQ(Queue: QueueType): BOOLEAN;
BEGIN

EmptyQ := Empty(Queue);
END; { EmptyQ }

FUNCTION FullQ(Queue: QueueType): BOOLEAN;
BEGIN

FullQ := Full(Queue);
END; { FullQ }

PROCEDURE ExitQ(VAR Q: QueueType; VAR Y: ItemType);
VAR Temp: QueueType;

 I: ItemType;
BEGIN

Create(Temp);
WHILE NOT Empty(Q) DO BEGIN

Pop(Q, I);
Push(Temp, I);

END;
Pop(Temp, Y);
WHILE NOT Empty(Temp) DO BEGIN

Pop(Temp, I);
Push(Q, I);

END;
END; { ExitQ }

END. { QueueLib }

All of the other actions are virtually unchanged from their Stack counterpart:
CreateQ is really stack Create, and EnterQ is actually Push. In the same
manner, the two functions EmptyQ and FullQ are implemented by their stack
counterparts, Empty and Full. Only procedure ExitQ is built differently, but
uses Create, Push and Pop from StackLib.

The use of QueueLib is illustrated by program QueueProg in Figure 9.26.

Figure 9.26 Program 9.26

PROGRAM QueueProg;

USES QueueLib;

398 Chapter 9 Algorithms to Run With

VAR InQueue, OutQueue: QueueType;
 Ch: CHAR;

BEGIN
CreateQ(InQueue);
CreateQ(OutQueue);

(* Input characters onto queue *)
Write('Enter letters ');
Write(' end with $ ');
WriteLn;
Read(Ch);
WHILE CH <> '$' DO BEGIN

EnterQ(InQueue, Ch);
Read(Ch);

END;

(* Pour characters into another queue *)
WHILE NOT EmptyQ(InQueue) DO BEGIN

ExitQ(InQueue, Ch);
EnterQ(OutQueue, Ch);
Write(Ch);

END;
END. { QueueProg }

Queues can also be implemented with dynamic variables and pointers in much
the same way as was done for Stacks in the previous section. Procedure ExitQ
will be different as before, but this time instead of pouring the stack to get at
the item to be removed from the queue, the chain of pointers could be followed.
This new algorithm is shown in Figure 9.27.

Figure 9.27 Dynamic implementation of ExitQ

PROCEDURE ExitQ(VAR Q: QueueType; VAR Y: ItemType);
VAR Current, NextOlder: QueueType;
BEGIN

IF EmptyQ(Q) THEN
WriteLn('EMPTY ')

ELSE BEGIN
IF Q^.Prev = NIL THEN BEGIN

Y := Q^.Value;
Dispose(Q);
Q := NIL;
END

ELSE BEGIN
Current := Q;
WHILE Current^.Prev^.Prev <> NIL DO

Current := Current^.Prev;
Y := Current^.Prev^.Value;
Dispose(Current^.Prev);
Current^.Prev := NIL;

Section 9.5 Implementing Stacks and Queues 399

END;
END;

END; { ExitQ }

Here, if the queue is not empty, a test is made to see whether there is only one
item in the queue, Q^.Prev = NIL, if this is the case, the value is taken from
that item, the item is disposed of, and the queue is set to NIL to show that it is
empty. If there is more than one item, the chain of pointers is followed back
until Current points to the last but one element. Notice the double pointer
reference of:

WHILE Current^.Prev^.Prev <> NIL DO

When the last but one element is found, then the value in the last element is
reached and the last element is disposed of through Current^.Prev by the
following statements.

Y := Current^.Prev^.Value;
Dispose(Current^.Prev);
Current^.Prev := NIL;

To help you understand this, you should follow the ExitQ algorithm through
to remove an item from the queue, using the diagram of Figure 9.28.

Figure 9.28 A dynamic queue

Item 4

Queue

Item 3 Item 2 Item 1

Last item to join queue

Next item to leave queue

Big Cardinals

The standard INTEGER type available in Pascal has values that are limited to
the range –32768 to 32767. Cardinal numbers are integers that are greater than
or equal to zero. If we attempted to represent a cardinal by an INTEGER, its
value would be limited to the range 0 to 32767. However, we can define much
larger cardinals together with operations on them: this will be the BigCard
abstract data type, defined by the BigCardLib unit of Figure 9.29.

Big cardinal numbers, consisting of 100 or more decimal digits can be represented
in different ways. One way is to use arrays, and build the various BigCard
operations based on the arrays. Another way is to use already existing
libraries. We have followed this second approach, and have used stacks to
implement BigCards.

400 Chapter 9 Algorithms to Run With

Figure 9.29 The BigCardLib unit

UNIT BigCardLib;

INTERFACE
USES IntStackLib; { Integer stacks }

TYPE BigCard = StackType;
PROCEDURE CreateBigCard(VAR BC: BigCard);
PROCEDURE ReadBigCard(VAR BC: BigCard);
PROCEDURE WriteBigCard(BC: BigCard);
PROCEDURE AddBigCard(BC1, BC2: BigCard;

VAR BC3: BigCard);
IMPLEMENTATION

PROCEDURE CreateBigCard(VAR BC: BigCard);
BEGIN

Create(BC);
END; { CreateBigCard }

PROCEDURE ReadBigCard(VAR BC: BigCard);
CONST EndLine = #13;
VAR Ch: CHAR;

 Val: INTEGER;
BEGIN

Read(Ch);
WHILE (Ch <> EndLine) AND (NOT Full(BC)) DO BEGIN

{ Convert only the Char digits }
IF ('0' <= Ch) AND (Ch <= '9') THEN BEGIN

Val := ORD(Ch) - ORD('0');
Push(BC, Val);

END;
Read(Ch);

END;
END; { ReadBigCard }

PROCEDURE WriteBigCard(BC: BigCard);
VAR C: INTEGER;

 T: BigCard;
BEGIN

Create(T);
Pour(BC, T);
WHILE NOT Empty(T) DO BEGIN

Pop(T, C);
Write(C: 1);

END;
END; { WriteBigCard }

PROCEDURE AddBigCard(BC1, BC2: BigCard;
VAR BC3: BigCard);

VAR Carry, T: BigCard;

Section 9.5 Implementing Stacks and Queues 401

 A, B, C, S, Sum: INTEGER;
BEGIN

Create(Carry);
Create(T);
Push(Carry, 0);
WHILE (NOT Empty(BC1)) OR (NOT Empty(BC2)) DO BEGIN

IF Empty(BC1) THEN
A := 0

ELSE
Pop(BC1, A);

IF Empty(BC2) THEN
B := 0

ELSE
Pop(BC2, B);

Pop(Carry, C);
Sum := A + B + C;
IF Sum < 10 THEN BEGIN

S := Sum;
C := 0;
END

ELSE BEGIN
S := Sum - 10;
C := 1;

END;
Push(T, S);
Push(Carry, C);

END;
Pop(Carry, C);
IF C = 1 THEN

Push(T, C);
Clear(BC3);
Pour(T, BC3);

END; { AddBigCard }

END. { BigCardLib }

The unit BigCardLib, shown in Figure 9.29, indicates it uses IntStackLib,
which was derived from StackLib by modifying the definition of ItemType
to be INTEGER, and by adding operations Clear (to empty a stack) and Pour.
In BigCardLib, the type BigCard is defined to be type StackType.
Similarly, CreateBigCard is a renaming of the Create procedure in
StackLib.

Reading very large cardinals can be inconvenient, so it would be useful to be able
to separate every three digits with a comma or a blank as in the following 60
digit prime number:
108,488,104,853,637,470,612,961,399,842,972,948,409,834,611,
525,790,577,216,753

Procedure ReadBigCard accepts such sequences of characters as input, beginning
with the most significant digits. The characters representing non digits

402 Chapter 9 Algorithms to Run With

(commas or blanks) are ignored, leaving only the numeric digits in stack BC
with the least significant value at the top, ready to be added.

WriteBigCard is a procedure that first reverses the order of the digits of a
given BigCard BC by pouring it into a temporary stack T. This puts the most
significant digit of the number at the top of the stack; it then outputs this stack
digit by digit, putting them back on the original stack as it does so.

AddBigCard is an implementation of the diagram shown in Chapter 8 of the
Principles book (Fig. 8.44). It uses four stacks BC1, BC2, BC3 and Carry. It is
assumed that the BigCards have been read into BC1 and BC2 by
ReadBigCard, which leaves the least significant digits at the top of each
stack. Carry is a small stack that is initialized to a value of zero.

The way in which this adder works is to pop the values A and B from the top of
the two input stacks, and to add these together with the value C from the
Carry stack. If the Sum of these three is less than 10, then this Sum is sent to
the output stack BC3 otherwise a carry value of 1 is pushed onto the Carry
stack and (Sum - 10) is pushed onto the output stack BC3. This process of
popping from the input stacks, and creating an output stack continues until both
input stacks are empty.

If the BigCard operands to the adder are of different lengths, then one stack
will become empty before the other. If the empty stack is still popped an error
message would be output. For this reason a test is made before each pop, and a
value of zero is used in the addition if the stack is empty. This corresponds to
representing a number by appending any number of zeros before that number.

An alternative way to handle this problem of different length BigCards would
be to modify the IntStackLib procedure Pop to produce the value 0 when the
stack is empty. This change would make the AddBigCard algorithm slightly
shorter, but the modification of a general stack ADT for solving a particular
problem is not good programming practice.

Figure 9.30 shows an example program using BigCardLib.

Figure 9.30 Program BigCardProg

PROGRAM BigCardProg;

USES BigCardLib;

VAR X, Y, Z: BigCard;

BEGIN
CreateBigCard(X);
CreateBigCard(Y);
CreateBigCard(Z);
Write('Enter a big value: ');
ReadBigCard(X);
Write('Enter a big value: ');
ReadBigCard(Y);
AddBigCard(X, Y, Z);

Section 9.5 Implementing Stacks and Queues 403

WriteBigCard(Z);
END. { BigCardProg }

Other operations on BigCards must be added to BigCardLib. These include the
remaining arithmetic operations, as well as various moves and comparisons.
Such new operations are like CopyBigCard(A, B) to copy the value of A onto
B, and Equal(A, B), a BOOLEAN function that compares any two BigCards
and returns a value of TRUE, when the BigCards are of the same size and have
identical digits. A procedure Assign(S, L, V) can be written to assign the
content of string S having length L to the BigCard variable V. It provides a
way of creating constant BigCards. These and the other arithmetic operations
should be added to BigCardLib.

SetLib: Stack of Strings

As a final example of a useful library that involves data structures, we present
SetLib. It ties together many concepts of this chapter and the previous one,
showing how easy it is to “grow” libraries by making use of other libraries as
building blocks.

Previously, sets have been restricted to a fixed number of small enumerated
elements. This could be sufficient for some needs, but it is very restrictive for
others. In this example, we will consider a more general type of sets—sets of
strings. The string set elements could be numbers, words, quotes, or any
combinations of these.

String set elements could, for example, involve people with detailed but
“unstructured” descriptions such as:

"Able, John (818)885-3399 #1234 Zip=91330 Male, etc. "

"Charlie, Female Very Tall (123)456-7890 Volleyball"

"Bob Baker #5678 Male Blonde (818)349-4296 Born: 670312"

Sets of strings of various lengths could be stored externally in files. Internally
they could be implemented in a number of ways: arrays of strings, stacks of
strings, arrays of records, etc. The order of occurrence of elements in a set is not
significant and the order of items in a stack is also not significant, so an
implementation of sets based on stacks seems all right and will be done here.
You are encouraged to try other implementations.

Figure 9.31 Unit SetLib

UNIT SetLib;
(* Sets of character strings *)
INTERFACE

USES StrStackLib;

TYPE EltType = ItemType; { Items are Strings }
 SetType = StackType;

404 Chapter 9 Algorithms to Run With

PROCEDURE CreateSet(VAR S: SetType);
PROCEDURE ReadSet(VAR S: SetType);
PROCEDURE WriteSet(S: SetType);
PROCEDURE Intersect(X, Y : SetType; VAR Z: SetType);
FUNCTION IsEmpty(S: SetType): BOOLEAN;

IMPLEMENTATION

PROCEDURE CreateSet(VAR S: SetType);
BEGIN

Create(S);
END; { CreateSet }

PROCEDURE ReadSet(VAR S: SetType);
VAR A: EltType;

 I: INTEGER;
 Ch: CHAR;

BEGIN
Create(S);
Write('How many ? ');
Read(I);
Read(Ch);
WHILE I > 0 DO BEGIN

Read(A);
Push(S, A);
Dec(I);

END;
END; { ReadSet }

PROCEDURE WriteSet(S: SetType);
VAR A: EltType;
BEGIN

WHILE NOT Empty(S) DO BEGIN
Pop(S, A);
WriteLn(A);

END
END; { WriteSet }

PROCEDURE Intersect(X, Y : SetType; VAR Z: SetType);
VAR I, J: EltType;

 T: SetType;
BEGIN

Create(T);
WHILE NOT Empty(X) DO BEGIN

Pop(X, I);
WHILE NOT Empty(Y) DO BEGIN

Pop(Y, J); Push(T, J);
IF I = J THEN

Push(Z, I);
END;

Section 9.5 Implementing Stacks and Queues 405

WHILE NOT Empty(T) DO BEGIN
Pop(T, J);
Push(Y, J);

END;
END;

END; { Intersect }

FUNCTION IsEmpty(S: SetType): BOOLEAN;
BEGIN

IsEmpty := Empty(S);
END; { IsEmpty }

END. { SetLib }

The unit SetLib, shown in Figure 9.31, uses StrStackLib which is derived
from StackLib in the same way that IntStackLib was derived from
StackLib. The type of ItemType was changed from CHAR to STRING. In
SetLib, ItemType is renamed EltType (for Element Type), and StackType is
renamed SetType.

Only the operations CreateSet, ReadSet, WriteSet Intersect and
IsEmpty are described here. Other operations, including Union, Difference,
Include, Exclude, SetSize, EqualSet, IsEltOf, IsSetOf, IsEmpty, must
be added later.

Figure 9.32 Program SetProg

PROGRAM SetProg;

USES SetLib;
VAR R, S, T: SetType;
BEGIN

CreateSet(R);
CreateSet(S);
CreateSet(T);
ReadSet(R);
ReadSet(S);
Intersect(R, S, T);
Write('Common ones: ');
WriteLn;
WriteSet(T);

END. { SetProg }

The simple program SetProg, shown in Figure 9.32, creates three string sets,
reads in two string sets, finds their intersection and outputs the resulting
intersection. Notice that there is no reference to strings or stacks that underlie
these Sets; such details are hidden. This shows the power of using libraries!
We have “adopted” rather than “inherited” the important aspects of other
libraries into our own libraries. The output from a typical run of SetProg is as
follows:

How many elements in the set? 3

406 Chapter 9 Algorithms to Run With

first
second
third
How many elements in the set? 2
third
fourth
Elements common to both sets:
third

Files of strings like the above three examples could be used to create sets
having various characteristics such as:

A = Set of all those in area code 818

B = Set of all Males

C = Set of all Males in area code 818

Another important procedure would be BuildSet, that builds a Set of strings
that contain a given substring. For example,

BuildSet(File1, A, "(818)") adds all strings from File1 having
the given area code

BuildSet(File1, B, "Male") adds all strings from File1 having
the pattern Male

From these two sets, the third set C can be determined as the intersection of the
other two by the call

Intersect(A, B, C);

9.6 Trees

In Chapter 9 of the Principles book, we discussed briefly the representation of
trees. As we already mentioned in that chapter, the most convenient way to
represent a tree is through the use of pointers. We can represent a node in a
binary tree by a record that contains the value associated with the node and
two pointers, Left and Right, which point to the left and right sub-trees of
the node.

One of the applications of such a binary tree is as a method of sorting. First the
items to be sorted are read in and the binary search tree constructed, and then
the tree is “traversed” to get the values out in increasing order. The following
is a step by step description of how a binary search tree might be built to store
the following sequence of digits:

6 4 9 8 1 2 5 7 3.

The digit 6 is read; since it is the
first, it becomes the root node, at this
stage the only node of the tree.

6

Section 9.6 Trees 407

The digit 4 is read, since it is less
than 6, it is made into a node
attached to the left branch of the root
node

6

4

The digit 9 is read, since it is greater
than 6, it is made into a node
attached to the right branch of the
root node.

6

4 9

The digit 8 is read, since it is greater
than 6, the right branch is followed;
it is less than 9, the value of the next
node reached, and is made into a node
and attached as the left branch of
this node.

6

4 9

8

The digit 1 is read, since it is less
than 6, the left branch is followed,
since it is less than 4, it is put into a
node attached to the left branch of
this node.

6

4 9

81

The digit 2 is read, since it is less
than 6, the left branch is followed,
since it is less than 4, the left branch
is followed, since it is greater than 1,
it is made into a node attached as the
right branch of this node.

6

4 9

81

2

The digit 5 is read, since it is less
than 6, the left branch is followed,
since it is greater than 4, it is made
into a node and attached as the right
branch of this node.

6

4

9

8

1

2

5

408 Chapter 9 Algorithms to Run With

The digit 7 is read; since it is greater
than 6, the right branch is followed;
since it is less than 9, the left branch
is followed; since it is less than 8, it is
made into a node attached as the left
branch of this node.

6

4

9

8

1

2

5

7

The digit 3 is read; since it is less
than 6, the left branch is followed;
since it is less than 4, the left branch
is followed; since it is greater than 1,
the right branch is followed; since it
is greater than 2, it is made into a
node attached as the right branch of
this node.

6

4

9

8

1

2

5

7

3

Now, having put the numbers into a binary search tree as we just described, we
must bring them out in ascending order. The output algorithm that we will use
is recursive and similar to the Traversal algorithm we introduced in Chapter 9
of the Principles book.

Traverse(Tree)
If Tree not empty

Traverse left sub-tree
Output Node
Traverse right sub-tree

End Traverse

The tree that we have just constructed is output following this algorithm as
shown by the following trace.

Traverse left sub-tree 6

4

9

8

1

2

5

7

3

Section 9.6 Trees 409

Traverse left sub-tree 4

1

2

5

3

Traverse left sub-tree

Nothing to traverse

Output node

Output 1

Traverse right sub-tree

1

2

3

Traverse left sub-tree

Nothing to traverse

Output node

Output 2

Traverse right sub-tree

2

3

Traverse left sub-tree

Nothing to traverse

Output node

Output 3

Traverse right sub-tree

Nothing to traverse

3

Output node

Output 4

Traverse right sub-tree

4

1

2

5

3

Traverse left sub-tree

Nothing to traverse

Output node

Output 5

Traverse right sub-tree

Nothing to traverse

5

410 Chapter 9 Algorithms to Run With

The rest of the tree is output continuing to follow the same recursive algorithm.

Program TreeSort, in Figure 9.33, shows a Pascal implementation of the
process just described.

Figure 9.33 Program TreeSort

PROGRAM TreeSort;

TYPE TreePointer = ^TreeElement;
 TreeElement = RECORD

 Value: INTEGER;
 Left: TreePointer;
 Right: TreePointer;

 END;

PROCEDURE TreeTraverse(CurrentNode: TreePointer);
BEGIN

IF CurrentNode <> NIL THEN BEGIN
TreeTraverse(CurrentNode^.Left);
WriteLn(CurrentNode^.Value: 4);
TreeTraverse(CurrentNode^.Right);

END;
END; { TreeTraverse }

PROCEDURE BuildTree(VAR TreeRoot: TreePointer);
VAR Current, Node, Next: TreePointer;

 NewValue, TerminalValue: INTEGER;
BEGIN

TreeRoot := NIL;
Write('Enter terminal value ');
Read(TerminalValue);
WriteLn('Enter values terminated by terminal value');
Read(NewValue);
WHILE NewValue <> TerminalValue DO BEGIN

New(Node);
Node^.Value := NewValue;
Node^.Left := NIL;
Node^.Right := NIL;
IF TreeRoot = NIL THEN

TreeRoot := Node
ELSE BEGIN

Next := TreeRoot;
WHILE Next <> NIL DO BEGIN

Current := Next;
IF Node^.Value < Current^.Value THEN

Next := Current^.Left
ELSE

Next := Current^.Right;
END;
IF Node^.Value < Current^.Value THEN

Section 9.6 Trees 411

Current^.Left := Node
ELSE

Current^.Right := Node;
END;
Read(NewValue);

END;
END; { BuildTree }

VAR Root: TreePointer;

BEGIN
BuildTree(Root);
WriteLn('Sorted list is:');
TreeTraverse(Root);

END. { TreeSort }

Procedure TreeTraverse is exactly as described by the pseudocode above.
Procedure BuildTree is more complex. The outer loop is repeated as long as
there are values to input. For each value read a new node is created. This node
is then inserted at the right place in the tree. To find the right place, the tree
is traversed by following left and right branches depending on the value to be
inserted.

9.7 Chapter 9 Review

This chapter offered many illustrations of the use of the data structures
described in the previous chapter. These data structures were illustrated with
Pascal programs that implemented the algorithms described in Chapter 9 of
the Principles book.

In particular, many different sorting algorithms were shown, one of which was
recursive. Some searching algorithms, both for linear lists and for patterns
within a string were also illustrated.

Libraries of various kinds were created, including IntArrayLib, ComplexLib,
StackLib, QueueLib, MatrixLib and SetLib. Different techniques for
representing stacks and queues were illustrated, including arrays and dynamic
variables, and structures linked by pointers.

Later, in following computer science courses on data structures, you will consider
and learn more details of such structures. For instance, stacks and queues will be
implemented in other ways. Trees and graphs, and other more “nonlinear”
structures will be introduced, implemented and analyzed.

412 Chapter 9 Algorithms to Run With

9.8 Chapter 9 Problems

1. StringLib
Implement a StringLib unit that is based on StackLib and
whose INTERFACE part is the following.

UNIT StringLib;

INTERFACE
USES StackLib;

CONST
MaxLen = 80; (* Longest length *)
EndStr = #0; (* End of String *)
EndLin = #13; (* Carriage return *)

TYPE
Strng = StackType;

PROCEDURE ReadStrng(VAR Str: Strng);
(* Read characters until a Return *)
(* Destroy any previous contents! *)

PROCEDURE WriteStrng(Str: Strng);
(* Display contents of a string *)

FUNCTION LenStrng(Str: Strng): INTEGER;
(* Return the count of characters *)

PROCEDURE AssignStrng(Source: Strng;
 VAR Destin: Strng);

(* Assign Source string to Destin *)

PROCEDURE JoinStrng(Str1, Str2: Strng;
 VAR Str3: Strng);

(* Joins 2 strings into a long one *)

PROCEDURE SearchStrng(Str, Pat: Strng;
 VAR Posn, Count: INTEGER);

(* Search Str for a Pattern Pat *)
(* return a count of occurrences *)
(* return a position of last one *)
(* return 0 for no occurrences *)

FUNCTION EqualStrng(Str1, Str2: Strng): BOOLEAN;
(* Compare two strings *)
(* Return TRUE if exactly equal *)

Section 9.8 Chapter 9 Problems 413

(* in both size and also content *)

END. { StringLib }

Create other procedures such as:
CompareStr(A, B, C)

where the result C is:
0 if the two strings A and B are identical

If the strings are not identical, then if the difference in ASCII value for
the first differing characters is positive—the first string comes after
the second string in ASCII ordering—the value of C is set to 1,
otherwise it is set to -1.

FromPat(Str, Pat, C)

where the string C is the substring of Str starting at the first occurrence
of Pat and continuing to the end of Str. If Pat does not occur in Str, C is
the null string.

AfterPat(Str, Pat, C)

where the string C is the substring of Str starting after the first
occurrence of Pat and continuing to the end of Str. If Pat does not occur
in Str, C is the null string.

BeforePat(Str, Pat, C)

where the string C is the substring of Str starting at the beginning of
Str and continuing up to the first occurrence of Pat. If Pat does not occur
in Str, C is the null string.

UptoPat(Str, Pat, C)

where the string C is the substring of Str starting at the beginning of
Str and continuing up to the end of the first occurrence of Pat. If Pat
does not occur in Str, C is the null string.

2. Complete SetLib
Complete the Set library shown in this chapter by providing
procedures for Union, Difference, Include, Exclude, IsEltOf,
IsSetOf, EqualElt, EqualSet, IsEmpty and SetSize.

3. BinTreeLib
Create a binary tree library whose data are binary trees where each
node has a value and a left and right branch, and whose actions are
ReadTree, WriteTree, CreateNode, SetNodeValue,
AttachLeftNode, AttachRightNode, DetachLeftNode,
DetachRightNode, MoveToLeftNode and MoveToRightNode.

414 Chapter 9 Algorithms to Run With

4. StackUtilLib
Create the IMPLEMENTATION Part of the following Stack Utility
Library. Create also a program to test this Library.

UNIT StackUtilLib;
(* Useful Utilities for Stacks *)

INTERFACE
USES StackLib;

PROCEDURE Clear(VAR S: StackType);
(* Remove all items from a stack *)

PROCEDURE Reverse(VAR S: StackType);
(* Flip the entire contents of the stack *)

PROCEDURE Pour(Source: StackType;
VAR Destin: StackType);

(* Dump the Source Stack into the Destination
Stack *)

PROCEDURE Cop(Source: StackType; T: ItemType);
(* Show the item at the top of a given stack *)

FUNCTION IsEqual(S, T: StackType): BOOLEAN;
(* Return value TRUE when S and T are identical *)

END. { StackUtilLib }

Section 9.9 Chapter 9 Programming Projects 415

9.9 Chapter 9 Programming Projects

Queue Abstract Data Type

The following INTERFACE part describes a Library of Queues. Create the
IMPLEMENTATION part. Then use this Library to illustrate some potential use
of queues.

UNIT QueueLib;
(* A Queue implemented as an Array *)

INTERFACE

CONST Length = 50;

TYPE RANGE = 0..Length;
 ItemType = CHAR;

QUEUETYPE = RECORD
 item: ARRAY [RANGE] OF ItemType;
 Rear: RANGE; { Point of entry }
 Front: RANGE; { Point of exit }
 Size: RANGE; { Object count

}
END;

PROCEDURE CreateQ(VAR Q: QUEUETYPE);
(* Set up a Queue initially *)

PROCEDURE EnterQ(VAR Q: QUEUETYPE; X: ItemType);
(* Put object X onto Rear *)

PROCEDURE ExitQ(VAR Q: QUEUETYPE; VAR Y:ItemType);
(* Remove object Y from the front *)

FUNCTION EmptyQ(Q: QUEUETYPE): BOOLEAN;
(* Indicate no objects in Queue Q *)

FUNCTION FullQ(Q: QUEUETYPE): BOOLEAN;
(* Indicate that Queue is filled *)

PROCEDURE Next(VAR Point: RANGE);
(* Bump pointer to circular array *)

END. { QueueLib }

416 Chapter 9 Algorithms to Run With

PES: Performance Evaluation of Sorts

The goal of this project is to study the time performance of programs using
PerformLib with its two procedures StartTime and TellTime. These two
procedures "sandwich" the part of a program that is to be evaluated.
StartTime begins the timing and TellTime indicates the time in “ticks” (1/60 of
a second) elapsed since this beginning.

UNIT PerformLib;

INTERFACE
PROCEDURE StartTime();

FUNCTION TellTime: LONGINT;

IMPLEMENTATION
USES Events;

VAR TimeOfStarting: LONGINT;

PROCEDURE StartTime();
BEGIN

TimeOfStarting := TickCount();
END; { StartTime }

FUNCTION TellTime(): LONGINT;
VAR FinishTime: LONGINT;
BEGIN

FinishTime := TickCount();
TellTime := FinishTime - TimeOfStarting;

END; { TellTime }

END. { PerformLib }

Your project is to experiment with sort programs, to gain insights into the time
behavior of such algorithms. The following SwapSort is good as a starting
point. Use random numbers to create the arrays.

(* SwapSort *)
FOR I := 1 TO N-1 DO

FOR J := 1 TO N-1 DO (* ORDER *)
IF A[J] > A[J+1] THEN (* SWAP *)

Temp := A[J];
A[J] := A[J+1];
A[J+1] := Temp;

END (* IF *);
END (* FOR J *);

END *(FOR I *);

Experiment with this sort in the following ways:

a. Determine the time when the array size is varied, from 25 to 50, 100,
200, 400, 800, 1600. Sketch a plot of this. Note

Section 9.9 Chapter 9 Programming Projects 417

a. To avoid data pattern dependencies, you should run the sort against
many different sets of data.

b. since, for short lists, the time taken is too short to measure
accurately, you should do many runs and count the cumulative time and
then allow for the overhead.

The following loop is suggested:

StartTime();
FOR Count := 1 TO 100 DO

BEGIN
RandomData(A);
DummyBubbleSort(A);

END;
Overhead := TellTime();
StartTime();
FOR Count := 1 TO 100 DO

BEGIN
RandomData(A);
BubbleSort(A);

END;
SortTime := (TickCount() - Overhead) DIV 100;

DummyBubbleSort is a procedure with the same heading as
BubbleSort but with an empty body.

b. Change the inner loop from N-1 passes to N-I passes. Notice the effect
of this change.

c. Modify the program to stop when no swaps were made in a pass by,
counting the number of swaps in a pass. Note the effect and justify it.

Time Permitting

d. Make SWAP as a procedure and see if that method of calling the
procedure causes much slowdown.

e. Modify the program to stop when no swaps were made in a pass by using
a logical variable to determine if a swap was made.

f. Modify the program to swap values that are some distance apart
(instead of being adjacent). This should produce an incredible effect!

g. Create one of the other 3 sorts (especially InsertSort, which is not done
in the book) and compare times.

h. Try any other modifications, variations, etc. like creating your own sort
(even a SlowSort!).

418 Chapter 9 Algorithms to Run With

VS: Visual Sorts

The purpose of this project is to obtain some appreciation for the way in which
the various sort algorithms work by showing on the screen the data as it is
sorted.

UNIT SortViewLib;

INTERFACE
USES

SortEnvLib, ScreenIO, Graphics, QuickDraw;

PROCEDURE MakeWindow;
PROCEDURE MakeSquare(X, Y: INTEGER;

VAR Square: Rect);
PROCEDURE DrawDot(X, Y: INTEGER);
PROCEDURE EraseDot(X, Y: INTEGER);
PROCEDURE MoveDot(FromX, FromY,

ToX, ToY: INTEGER);
PROCEDURE ShowData(DataList: DataArrayType);
PROCEDURE CloseWindow;
PROCEDURE Beep;
PROCEDURE Freeze;
PROCEDURE MakeSortViewData(VAR DataList:

 DataArrayType);

IMPLEMENTATION

CONST
Min = 10;
Max = 350;
Left = 10;
Bottom = 10;
Right = 310;
Top = 310;
Scale = (Right - Left) DIV MaxData;
Border = 2;

PROCEDURE MakeWindow;
BEGIN

 OpenGraphicWindow(Min, Min, Max, Max,
'Sort View');

 ScClear;
 MoveTo(Left - Border, Bottom - Border);
 LineTo(Left - Border, Top + Border);
 LineTo(Right + Border, Top + Border);
 LineTo(Right + Border, Bottom - Border);
 LineTo(Left - Border, Bottom - Border);

END; { MakeWindow }

Section 9.9 Chapter 9 Programming Projects 419

PROCEDURE MakeSquare(X, Y: INTEGER;
VAR Square: Rect);

CONST DotSize = 2;
BEGIN

Square.top := Scale * Y -
 DotSize + Bottom;

Square.bottom := Scale * Y +
 DotSize + Bottom;

Square.left := Scale * X - DotSize + Left;
Square.right := Scale * X + DotSize + Left;

END; { MakeSquare }

PROCEDURE DrawDot(X, Y: INTEGER);
VAR Sq: Rect;
BEGIN

MakeSquare(X, Y, Sq);
PaintOval(Sq);

END; { DrawDot }

PROCEDURE EraseDot(X, Y: INTEGER);
VAR Sq: Rect;
BEGIN

MakeSquare(X, Y, Sq);
EraseOval(Sq);

END; { EraseDot }

PROCEDURE MoveDot(FromX, FromY,
ToX, ToY: INTEGER);

BEGIN
EraseDot(FromX, FromY);
DrawDot(ToX, ToY);

END; { MoveDot }

PROCEDURE ShowData(DataList: DataArrayType);
VAR Index: INTEGER;
BEGIN

FOR Index := 1 TO MaxData DO
 DrawDot(Index, DataList[Index]);

END; { ShowData }

PROCEDURE CloseWindow;
BEGIN

CloseGraphicWindow();
END; { CloseWindow }

PROCEDURE Beep;
BEGIN

ScBeep(1);
END; { Beep }

420 Chapter 9 Algorithms to Run With

PROCEDURE Freeze;
BEGIN

ScFreeze;
END; { Freeze }

PROCEDURE MakeSortViewData(VAR DataList:
 DataArrayType);

VAR Index, Source, Dest, Temp: INTEGER;
BEGIN

FOR Index := 1 TO MaxData DO
DataList[Index] := Index;

FOR Index := 1 TO 2 * MaxData DO BEGIN
Source := (RandInt() Mod MaxData) + 1;
Dest := (RandInt() Mod MaxData) + 1;
Temp := DataList[Source];
DataList[Source] := DataList[Dest];
DataList[Dest] := Temp;

END;
END; { MakeSortViewData }

END. { SortViewLib }

The library SortViewLib shown above contains the following procedures that
can be used to show the movement of data during a sort:

MakeWindow :
Constructs a graphic window in which the diagram will be drawn

DrawDot(X, Y: INTEGER)
Draws a dot at the position X, Y in the graphic window.

EraseDot(X, Y: INTEGER)
Erases the dot at the position X, Y in the graphic window.

MoveDot(FromX, FromY, ToX, ToY: INTEGER)
Erases the dot at the position FromX, FromY, and draws a dot at
position ToX, ToY

ShowData(DataList: DataArrayType)
Plots one dot for each data value in DataList; each value is plotted
with index of the value in the list as the x-coordinate and the actual
value of the item as the y-coordinate. Thus, if the value of the Ith
data item is J, it will be represented by a dot at I, J.

CloseWindow
Closes and deletes the graphic window.

Beep
Sounds a tone on the terminal.

Freeze
Freezes the screen until it is released by depressing any key.
MakeSortViewData(VAR DataList: DataArrayType)

Section 9.9 Chapter 9 Programming Projects 421

The data consists of the integer values 1..MaxData arranged in
random order in DataList.

Enter and compile the library. Next enter and compile the following program.

PROGRAM SortViewBubble;
USES SortEnvLib, SortViewLib;

VAR Data: DataArrayType;
 Count, Index: INTEGER;

PROCEDURE BubbleSort(VAR Data: DataArrayType);
VAR Posn, Temp: INTEGER;

 Done: BOOLEAN;
BEGIN

Done := FALSE;
WHILE NOT Done DO BEGIN

Done := TRUE;
FOR Posn := 1 TO MaxData - 1 DO

IF Data[Posn] < Data[Posn + 1] THEN BEGIN
MoveDot(Posn, Data[Posn], Posn+1,

 Data[Posn]);
MoveDot(Posn+1, Data[Posn+1], Posn,

 Data[Posn+1]);
Temp := Data[Posn];
Data[Posn] := Data[Posn+1];
Data[Posn + 1] := Temp;
Done := FALSE;

END;
END;

END; { BubbleSort }

BEGIN
MakeWindow;
MakeSortViewData(Data);
ShowData(Data);
Beep;
Freeze;
BubbleSort(Data);
Beep;
Freeze;
CloseWindow;

END. { SortViewBubble }

When the diagram starts, the data is a random set of dots on the screen. After
it has been sorted, all the dots lie on a diagonal line from bottom left to top
right. The way in which the dots move to reach their final position provides a
visualization of how the sort algorithm works. Study the way in which the
calls to the procedures in SortViewLib have been put in SortViewBubble
and construct similar programs to show the data movements for the other
sorting algorithms described in this chapter.

422 Chapter 9 Algorithms to Run With

Section 10.1 Preview 423

Chapter 10 The Seven Step Method
This chapter implementations solutions as computer programs, and then
demonstrates how to verify the correctness of solutions through testing. To
reach this solution, the seven step problem-solving method– introduced in the
Principles book– will be reviewed and discussed. Although we’ll concentrate on
the implementation in Pascal of an already designed program, we cannot ignore
the design.

Chapter Overview
10.1 Method: Part II..425

The Seven Step Method...425
10.2 Design Stage: Acme Payroll System...........................426

1. Problem Definition..426
Problem Definition Application.........................426

2. Solution Design...427
Solution Design Application..............................427

3. Solution Refinement..428
Solution Refinement Application.......................428

4. Testing Strategy Development...............................429
Testing Strategy Development Application........429

10.3 Implementation Stage: Acme Payroll System.............431
5. Program Coding and Testing...................................431

Case Study: The Acme Payroll System...............432
6. Documentation Completion....................................444

Documentation Completion Application.............444
7. Program Maintenance..445

Program Maintenance Application.....................445
10.4 An Advanced Case Study: Building a Text Index.........445

Design Stage...446
1. Problem Definition..446
2. Solution Design..446
3. Solution Refinement.......................................447
Binary Search Tree Unit....................................449
Queues Unit...451

Implementation Stage...452
4. Testing Strategy Development.......................452
5. Program Coding and Testing...........................453
6. Documentation...463
7. Program Maintenance.....................................463

10.5 Chapter 10 Review...464
10.6 Chapter 10 Programming Problems.............................464

1. Editor Application..464
2. Typing..470
3. Calculator Applications..472

10.7 Chapter 10 Programming Projects...............................473

424 Chapter 10 The Seven Step Method

10.8 Level 1 — Getting Started...473
1–1. General...474

A Guessing Game..474
1–2. Business...474

Computing a Customer's Change.........................474
1–3. Scientific...475

A Bouncing Ball...475
10.9 Level 2 — Getting Organized with Procedures............477

2–1. General...477
Your Age in Days...477

2–2 Business..477
What’s the Cost of My Mortgage?......................477

2–3 Scientific..478
Solving the Quadratic Equation.........................478

10.10 Level 3 — Getting Fancier with Parameters...............479
3–1. General...479

Count the Word Occurrences in a Text..................479
Processing Personnel Data..................................480

3–3. Scientific...481
Plotting a Function...481

10.11 Level 4 — Getting Your Wings with Units..................483
4–1 General...483

The Kwic Index..483
4–2 Business..484

Information Retrieval..484
4–3 Scientific..486

Complex Algebra...486

Section 10.1 Method: Part II 425

10.1 Method: Part II

In Chapter 10 of the Principles book, you have seen a second and more thorough
presentation of the method for solving a problem with a computer, which was
introduced in Chapter 2 of the same book.

The preceding chapters have introduced you to a number of practical tools based
on the Pascal programming language. These will be helpful when you come to
the Coding and Testing step of the method. This step is only the fifth step of
the method, and that means that you must do the first four steps before starting
programming. We’ll review very briefly the seven step method here, as it was
already well covered in the Principles book.

When solving large problems with a computer, it is absolutely necessary to
design the solutions with great care, since rushing into the coding of a program
(step 5) before the solution has been carefully defined is a very common and big
mistake. The aim of this chapter is to review the implementation of solutions
as computer programs, and the verification of the correctness of the solutions
through testing.

The Seven Step Method

In Chapter 2 of the Principles book, we introduced a seven-step problem-solving
method, in order to help you make sure your solutions are well designed before
you start programming them.

The seven steps of the method are

1. Problem Definition

2. Solution Design

3. Solution Refinement

4. Testing Strategy Development

5. Program Coding and Testing

6. Documentation Completion

7. Program Maintenance

The first four steps are usually grouped together as part of the Design stage,
while the last three steps belong to the Implementation stage. Although this
chapter is concerned mainly with Step 5, the Program Coding and Testing, we
will briefly review the other steps here so that Step 5 is seen in its proper
context. These steps will be illustrated by following through the complete
solution of a simple example.

426 Chapter 10 The Seven Step Method

10.2 Design Stage: Acme Payroll System

1. Problem Definition

This step produces a precise description of the problem to solve. The three
major parts in the definition of the specifications is to determine

• what the input of the process is going to be,

• what output it is to produce

• and what the relationship between the two is.

Problem Definition Application

To illustrate all the steps, we’ll consider the problem of developing a new
computer system for the payroll of the Acme Company, as we have done in the
Principles book.

The Acme Company payroll system must compute the pay of a list of hourly
paid employees based on a line of input data per employee. The input data is
kept in a file and each line of data corresponds to one employee and consists of
three integers (the number of hours worked in 1

100 ths of an hour, the hourly
rate in cents, the number of dependents), followed by a character string (the
employee name). These data will have the following format:

3050 1025 8 Gabrotil Michael

The end of the data will be indicated by the end of the file.

The computation of the gross pay is done by multiplying the hours worked by
the hourly rate. Hours above 40 are to be paid one and a half times the normal
hourly rate. For each dependent, the employee gets an exemption of $20 for tax
withholding computation. Federal and state withholdings are computed by
applying rates of 18% and 3%, respectively, to the taxable amount. Social
security withholdings are computed by applying a 5% rate to the gross pay.
Net pay is computed by subtracting the various withholdings from the gross
pay. Results must be displayed on one line per employee: name, gross pay,
federal withholdings, state withholdings, social security withholdings, and
net pay, using the format

Gabrotil Michael 312.63 27.47 4.58 7.63 272.95

At the end of processing, a summary line with the totals of the various
withholdings and pay categories should be displayed, using a similar format,
so that the results are aligned with the preceding individual columns.

Input data must be validated before they are used. The following validity
ranges should be used.

The number of hours worked cannot be negative or greater than 55.

The hourly rate cannot be less than $3.50 or more than $16.50.

Section 10.2 Design Stage: Acme Payroll System 427

The number of dependents cannot be negative or greater than 12.

2. Solution Design

In this step, we decompose the problem we have to solve into its major
components. We analyze the problem statement and divide it into a number of
subproblems. Each subproblem is itself then divided into smaller subproblems,
and this decomposition is continued until we have subproblems whose solutions
are simple and are easily converted into a computer program.

The result of the solution design step consists of the basic structural design for
the computer solution to the problem.

Solution Design Application

Based on the specifications for the Acme Payroll System developed in the
previous step, we define all the tasks that have to be done in order to produce
the payroll. This first level of decomposition is simple. The system will have
to:

• read in and validate the employees’ pay data,

• process the data and display the results for each employee

• display a summary of the payroll operation.

This leads us to the structure chart of Figure 10.1.

Figure 10.1 Structure chart for payroll system

 Data
Validation

Process an
 Employee

 Display
Summary

Calculate
 Payroll

 Compute
Withholdings

Accumulate
and Display

refinement added

This structure chart corresponds to the following very high level pseudocode:

Calculate Payroll
Initialize
For each employee

Read and validate data
Process employee

Display summary
End Calculate Payroll

428 Chapter 10 The Seven Step Method

In the structure chart Initialize does not appear, as it is so simple it is part of
the main program Calculate Payroll. Process employee is further broken down
into three sub-tasks:

Process employee
Compute Gross Pay
Compute Withholdings
Accumulate totals and display

results for employee
End Process employee

Here again, Compute Gross Pay does not appear on the structure chart because it
is so simple it does not justify a separate box.

3. Solution Refinement

Using the structure chart developed in the previous step as a starting point, we
refine this solution by adding more detail. Each box in the structure chart must
be converted into a detailed pseudocode algorithm. The specification of our
data interfaces between functions is made more detailed by giving precise
descriptions of the data, and also by using parameter lists for our algorithms.

Solution Refinement Application

At this stage we define data types for the variables used for input, major
processing, and output. We define a record variable, Employee Data, with
fields Name, of type String, and Hours, Rate and Dependents of type Integer.
We also specify simple Integer variables Gross Pay, State Tax, Federal Tax,
Soc Sec Tax, Net Pay, Gross Total, Soc Sec Total, Federal Total, State Total,
and Net Total. We also define a Boolean variable Valid Data to indicate the
result of the data validation.

Using pseudocode, we develop the algorithms for each functional part of the
solution.

Calculate Payroll
Display title and column headings
Set all totals to zero
While there are data to read

Input Employee Data
Data Validation(Employee Data, Valid Data)
If Valid Data

Process Employee(Employee Data, Totals)
Display Summary(Totals)

End Calculate Payroll

In order to simplify the pseudocode, we use collective names to represent groups
of variables. We develop pseudocode algorithms for the following structure
chart components:

Data Validation(Employee Data, Valid Data)

Section 10.2 Design Stage: Acme Payroll System 429

Process Employee(Employee Data, Totals)

Compute Withholdings(Gross Pay, Employee Data,
Withholdings)

Accumulate and Display(Employee Data, Pay Data,
Totals)

The complete pseudocode for these components was developed in Chapter 10 of
the Principles book, and we won't copy it here, as the program code in step 5
below is more accurate.

4. Testing Strategy Development

Although we cannot test a program before it is written, it is important to devise
a plan for testing before actually coding the program. If we do this, developing
a testing strategy and the test cases that go with it will help us find errors in
the design.

Although the approach chosen for testing may be top-down, bottom-up, or a
combination of both, we'll concentrate on top-down testing. This means starting
the development of the program at the top of the structure chart and working
down component by component. This also means that we'll have to use program
stubs for the lower level components during the initial steps of development.
This way, the testing will be done in stages as the program development
progresses.

In stubs it is usual that a message indicating that the procedure has been called
is displayed. The stubs are later replaced by a complete procedure that
actually does the desired processing.

The result of this step is a description of the testing strategy, input data for all
test cases along with the corresponding expected output, and pseudocode for
stubs when necessary.

Testing Strategy Development Application

For our payroll program, we identify the various cases including abnormal
values (cases 1-3 below), and normal values (cases 4-8):

1. Hours worked negative or greater than 55.

2. Rate less than $3.50 or greater than $16.50.

3. Number of dependents negative or greater than 12.

4. No overtime.

5. With overtime.

6. No dependents.

7. With dependents.

8. Zero hours.

430 Chapter 10 The Seven Step Method

From these cases, we make up our test data.

Hours Rate Dep. Name
-10 400 2 hours-negative
5510 400 2 hours-too-large
1050 349 2 rate-too-low
1050 1651 2 rate-too-high
1050 400 -1 dependents-negative
1050 400 13 dependents-too-large
6000 100 3 hours-and-rate
6000 400 14 hours-and-dependents
1050 100 14 rate-and-dependents
6000 100 14 hours-rate-dependents
4000 400 0 no-overtime-no-dep
4000 400 2 no-overtime-with-dep
5500 400 0 max-overtime-no-dep
5500 600 12 maximum-hours-and-dep
4000 1650 12 maximum-rate-and-dep

0 500 2 zero-hour-and-dep

The expected results for these test data must be computed manually and given
here.

Invalid hours for hours-negative
Invalid hours for hours-too-large
Invalid rate for rate-too-low
Invalid rate for rate-too-high
Invalid dependents for dependents-negative
Invalid dependents for dependents-too-large
Invalid hours for hours-and-rate
Invalid rate for hours-and-rate
Invalid hours for hours-and-dependents
Invalid dependents for hours-and-dependents
Invalid rate for rate-and-dependents
Invalid dependents for rate-and-dependents
Invalid hours for hours-rate-dependents
Invalid rate for hours-rate-dependents
Invalid dependents for hours-rate-dependents

Name Gross Fed State Soc Net

no-overtime-no-dep 160.00 28.80 4.80 8.00 118.40

no-overtime-with-dep 160.00 21.60 3.60 8.00 126.80

max-overtime-no-dep 250.00 45.00 7.50 12.50 185.00

maximum-hours-and-dep 375.00 24.30 4.05 18.75 327.90

maximum-rate-and-dep 660.00 75.60 12.60 33.00 538.80

zero-hour-and-dep 0.00 0.00 0.00 0.00 0.00

Totals 1605.00 195.30 32.55 80.25 1296.90

Section 10.3 Implementation Stage: Acme Payroll System 431

10.3 Implementation Stage: Acme Payroll System

5. Program Coding and Testing

The actual computer program is coded from our pseudocode algorithms. Then,
using our testing strategy, we test the program. For large programs, using the
top-down approach, the coding will be done progressively, the various
components being coded with the necessary stubs, so that they can be tested
systematically. The programming and coding step is finished when all the
coding has been done and when all the test data have been correctly processed.

The results of this step are the program, able to run with a set of test data,
along with information on the testing that has been done.

The written program should follow some common guidelines for good
programming style.

• Develop programs using a top-down approach so that they are well
structured, with procedures of reasonable size (not longer than a page or
two) and no large blocks of code.

• Use the basic control structures (sequence, selection, repetition) to write
your code. The flow of control should be as straightforward as possible:
blocks of code should be entered only at the top and be exited only at
the bottom.

• Strive for simplicity and clarity: there should be no “clever” coding
that makes the program hard to understand.

• Use parameters to transfer information to and from procedures or
functions and do not use global data whenever possible.

• Avoid side effects in functions, such as returning VAR parameters or
changing the value of global variables.

• Declare variables as local as possible.

• Use status VAR parameters to signal error conditions during execution of
a procedure or a function.

• Use symbolic constants to improve readability and portability.

• Each program should have an extensive preface, including a brief
statement of the problem, appropriate references to external documents,
name of the original programmer or team, date of the original
implementation, and a change log. The change log should have an
entry for each significant alteration of the program, including the date
of the change, the name of the person who made the change, and a brief
description of the change.

• Each procedure or function should be documented in a similar manner.

• Choose meaningful identifiers to improve program readability.

• Use uppercase and lowercase letters to improve program readability.

432 Chapter 10 The Seven Step Method

• Use blank lines to separate components, and use indentation to indicate
the flow of control that will be followed at runtime.

• Meaningful comments that explain the program should be included.
Difficult sections of code should contain explanatory comments. The
pseudocode developed earlier may sometimes be used as comments.

Case Study: The Acme Payroll System

The program of our case study provides an example that adheres to these
guidelines. We will develop it using a top-down approach. Our first version
will comprise the main program with stubs for the three main functions of
Figure 10.1.

PROGRAM Payroll;
(* This program computes the weekly pay of hourly paid *)
(* employees. It reads lines of data comprising for each *)
(* employee: hours worked, hourly rate, number of depen- *)
(* dents and name of employee. The validated data is then*)
(* used to compute gross pay, federal withholdings (18% *)
(* of taxable income), state withholdings (3% of taxable *)
(* income), social security withholdings (5% of gross pay)*)
(* and net pay, which are printed for each employee. At *)
(* the end of processing, the program prints the accu- *)
(* mulated totals of each category *)
(* *)
(* Philip Marcmotil December 1993 *)

CONST Blanks = ' ';
Title = ' Computation of weekly pay';
Header = 'Gross Fed State Soc Net';

TYPE TotalsType = RECORD
FederalTotal: LONGINT;
StateTotal: LONGINT;
SSTotal: LONGINT;
GrossTotal: LONGINT;
NetTotal: LONGINT;

END;
 EmpRecordType = RECORD

Name: STRING;
Dependents: LONGINT;
Hours: LONGINT;
Rate: LONGINT;

END;

PROCEDURE DataValidation(EmployeeData: EmpRecordType;
 VAR ValidData: BOOLEAN);

(* Validation of hours, rate and dependents data *)
BEGIN

Section 10.3 Implementation Stage: Acme Payroll System 433

ValidData := TRUE;
WriteLn('DataValidation');

END; { DataValidation }

PROCEDURE ProcessEmployee(EmployeeData: EmpRecordType;
 VAR TotalList: TotalsType);

(* Processing of data for one employee *)
BEGIN

WriteLn('ProcessEmployee');
END; { ProcessEmployee }

PROCEDURE DisplaySummary(TotalList: TotalsType);
(* Print a summary of the payroll computation *)
BEGIN

WriteLn('DisplaySummary');
END; { DisplaySummary }

VAR Employee: EmpRecordType;
 Valid: BOOLEAN;
 DataFile: TEXT;
 Totals: TotalsType;

BEGIN
Assign(DataFile, 'Payroll.data');
Reset(DataFile);
WriteLn(Blanks, Title);
WriteLn(Blanks, Header);

WITH Totals DO BEGIN
FederalTotal := 0;
StateTotal := 0;
SSTotal := 0;
GrossTotal := 0;
NetTotal := 0;

END;

WHILE NOT Eof(DataFile) DO BEGIN
WITH Employee DO

ReadLn(DataFile, Hours, Rate, Dependents, Name);
DataValidation(Employee, Valid);
IF Valid THEN

ProcessEmployee(Employee, Totals);
END;
DisplaySummary(Totals);
Close(DataFile);

END. { Payroll }

This version can be compiled and run with our test data. It produces the
following output.

Computation of weekly pay

434 Chapter 10 The Seven Step Method

Gross Fed State Soc Net
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DataValidation
ProcessEmployee
DisplaySummary

This shows that all the input data were read (16 lines of data) and that the
procedures were called in the right order. Our next version will develop code
for the three stubs: DataValidation, ProcessEmployee and
DisplaySummary, and in so doing introduce three new stubs:
ComputeWithholdings, AccumulateAndDisplay and PrintDollars. The
last of these, PrintDollars, did not appear in the pseudocode version of the
program but was found necessary for the printing of monetary values during the
elaboration of the previous stubs.

PROGRAM Payroll;
(* This program computes the weekly pay of hourly paid *)
(* employees. It reads lines of data comprising for each *)
(* employee: hours worked, hourly rate, number of depen- *)
(* dents and name of employee. The validated data is then*)
(* used to compute gross pay, federal withholdings (18% *)
(* of taxable income), state withholdings (3% of taxable *)

Section 10.3 Implementation Stage: Acme Payroll System 435

(* income), social security withholdings (5% of grosspay)*)
(* and net pay, which are printed for each employee. At *)
(* the end of processing, the program prints the accu- *)
(* mulated totals of each category *)
(* *)
(* Philip Marcmotil December 1993 *)

CONST Blanks = ' ';
 Title = ' Computation of weekly pay';
 Header = 'Gross Fed State Soc Net';

TYPE TotalsType = RECORD
 FederalTotal: LONGINT;
 StateTotal: LONGINT;
 SSTotal: LONGINT;
 GrossTotal: LONGINT;
 NetTotal: LONGINT;
 END;
 EmpRecordType = RECORD
 Name: STRING;
 Dependents: LONGINT;
 Hours: LONGINT;
 Rate: LONGINT;
 END;
 PayRecordType = RECORD
 Name: STRING;
 FederalTax: LONGINT;
 StateTax: LONGINT;
 SSTax: LONGINT;
 GrossPay: LONGINT;
 NetPay: LONGINT;
 END;

 PROCEDURE PrintDollars(Amount, Width: LONGINT);
 (* Print dollar Amount with period and cents in *)
 (* given Width *)
 BEGIN
 Write('PrintDollars ');
 END; { PrintDollars }

 PROCEDURE DataValidation(EmployeeData: EmpRecordType;
 VAR ValidData: BOOLEAN);
 (* Validation of hours, rate and dependents data *)
 CONST MinHours = 0;
 MaxHours = 5500; (* 55 hours *)
 MinRate = 350; (* $2.50 *)
 MaxRate = 1650; (* $12.50 *)
 MinDep = 0;
 MaxDep = 12;
 BEGIN

436 Chapter 10 The Seven Step Method

 WITH EmployeeData DO BEGIN
 ValidData := TRUE;
 IF (Hours < MinHours) OR (Hours > MaxHours) THEN BEGIN
 ValidData := FALSE;
 Writeln('Invalid hours for ', Name);
 END;
 IF (Rate < MinRate) OR (Rate > MaxRate) THEN BEGIN
 ValidData := FALSE;
 Writeln('Invalid rate for ', Name);
 END;
 IF (Dependents < MinDep) OR
 (Dependents > MaxDep) THEN BEGIN
 ValidData := FALSE;
 Writeln('Invalid dependents for ', Name);
 END;
 END;
 END; { DataValidation }

 PROCEDURE ProcessEmployee(EmployeeData: EmpRecordType;
 VAR TotalList: TotalsType);
 (* Processing of data for one employee *)
 CONST NormalHours = 4000; { 40 hours }
 Overtime = 5; { 0.5 normal rate }

 VAR Pay: PayRecordType;

 PROCEDURE ComputeWithholdings(Dependents: LONGINT;
 VAR ComputedPay: PayRecordType);
 (* Computation of federal, state and *)
 (* social security withholdings *)
 BEGIN
 Writeln('ComputeWithholdings');
 WITH ComputedPay DO BEGIN
 FederalTax := 0;
 StateTax := 0;
 SSTax := 0;
 END;
 END; { ComputeWithholdings }

 PROCEDURE AccumulateAndDisplay(ComputedPay:
 PayRecordType;
 VAR Totals: TotalsType);
 (* Accumulation of totals of data and *)
 (* printing of employee data *)
 BEGIN
 Writeln('AccumulateAndDisplay');
 END; { AccumulateAndDisplay }

 BEGIN { ProcessEmployee }
 Pay.Name := EmployeeData.Name;

Section 10.3 Implementation Stage: Acme Payroll System 437

 WITH EmployeeData, Pay DO BEGIN
 GrossPay := Hours * Rate DIV 100;
 { Hours given in 0.01 of hour }
 IF Hours > NormalHours THEN
 GrossPay := GrossPay + Overtime * Rate
 * (Hours - NormalHours) DIV 1000;
 { Overtime/10 and hours/100 }
 ComputeWithholdings(Dependents, Pay);
 NetPay := GrossPay - FederalTax - StateTax - SSTax;
 AccumulateAndDisplay(Pay, TotalList);
 END;
 END; { ProcessEmployee }

 PROCEDURE DisplaySummary(TotalList: TotalsType);
 (* Print a summary of the payroll computation *)
 BEGIN
 WITH TotalList DO BEGIN
 WriteLn;
 Write(' Totals ');
 PrintDollars(GrossTotal, 9);
 PrintDollars(FederalTotal, 9);
 PrintDollars(StateTotal, 9);
 PrintDollars(SSTotal, 9);
 PrintDollars(NetTotal, 9);
 WriteLn
 END;
 END; { DisplaySummary }

VAR Employee: EmpRecordType;
 Valid: BOOLEAN;
 DataFile: TEXT;
 Totals: TotalsType;

BEGIN
 Assign(DataFile, 'Payroll.data');
 Reset(DataFile);
 WriteLn(Blanks, Title);
 WriteLn(Blanks, Header);

 WITH Totals DO BEGIN
 FederalTotal := 0;
 StateTotal := 0;
 SSTotal := 0;
 GrossTotal := 0;
 NetTotal := 0;
 END;

 WHILE NOT Eof(DataFile) DO BEGIN
 WITH Employee DO
 ReadLn(DataFile, Hours, Rate, Dependents, Name);

438 Chapter 10 The Seven Step Method

 DataValidation(Employee, Valid);
 IF Valid THEN
 ProcessEmployee(Employee, Totals);
 END;
 DisplaySummary(Totals);
 Close(DataFile);
END. { Payroll }

Note that procedures ComputeWithholdings and AccumulateAndDisplay
have been declared local to procedure ProcessEmployee. This is to keep
things as local as possible, and also to keep as close as possible to the structure
shown in the structure chart. With our input data, this version of the program
produced the following output.

Computation of weekly pay
Gross Fed State Soc Net

Invalid hours for hours-negative
Invalid hours for hours-too-large
Invalid rate for rate-too-low
Invalid rate for rate-too-high
Invalid dependents for dependents-negative
Invalid dependents for dependents-too-large
Invalid hours for hours-and-rate
Invalid rate for hours-and-rate
Invalid hours for hours-and-dependents
Invalid dependents for hours-and-dependents
Invalid rate for rate-and-dependents
Invalid dependents for rate-and-dependents
Invalid hours for hours-rate-dependents
Invalid rate for hours-rate-dependents
Invalid dependents for hours-rate-dependents
ComputeWithholdings
AccumulateAndDisplay
ComputeWithholdings
AccumulateAndDisplay
ComputeWithholdings
AccumulateAndDisplay
ComputeWithholdings
AccumulateAndDisplay
ComputeWithholdings
AccumulateAndDisplay
ComputeWithholdings
AccumulateAndDisplay

Totals PrintDollars PrintDollars PrintDollars PrintDollars
PrintDollars

This output shows that our validation process works correctly, and that, for
normal cases, the procedures are called in the correct order.

Our last version is complete and produces the expected results after some slight
adjustments to the spacing in the Header string constant so that the column

Section 10.3 Implementation Stage: Acme Payroll System 439

names print properly over the columns (addition of constant NameLen). Such
adjustments are to be expected after one can see exactly what is being printed
out.

PROGRAM Payroll;
(* This program computes the weekly pay of hourly paid *)
(* employees. It reads lines of data comprising for each *)
(* employee: hours worked, hourly rate, number of depen- *)
(* dents and name of employee. The validated data is then*)
(* used to compute gross pay, federal withholdings (18% *)
(* of taxable income), state withholdings (3% of taxable *)
(* income), social security withholdings (5% of grosspay)*)
(* and net pay, which are printed for each employee. At *)
(* the end of processing, the program prints the accu- *)
(* mulated totals of each category *)
(* *)
(* Philip Marcmotil December 1993 *)

CONST Blanks = ' ';
 Title = ' Computation of weekly pay';
 Header = 'Gross Fed State Soc Net';
 NameLen = 23;

TYPE TotalsType = RECORD
 FederalTotal: LONGINT;
 StateTotal: LONGINT;
 SSTotal: LONGINT;
 GrossTotal: LONGINT;
 NetTotal: LONGINT;
 END;
 EmpRecordType = RECORD
 Name: STRING;
 Dependents: LONGINT;
 Hours: LONGINT;
 Rate: LONGINT;
 END;
 PayRecordType = RECORD
 Name: STRING;
 FederalTax: LONGINT;
 StateTax: LONGINT;
 SSTax: LONGINT;
 GrossPay: LONGINT;
 NetPay: LONGINT;
 END;

 PROCEDURE PrintDollars(Amount, Width: LONGINT);
 (* Print dollar Amount with period and cents in *)
 (* given Width *)
 VAR Cents: LONGINT;
 BEGIN

440 Chapter 10 The Seven Step Method

 Write(Amount DIV 100: Width-3, '.');
 Cents := Amount MOD 100;
 IF Cents < 10 THEN
 Write('0', Cents: 1)
 ELSE
 Write(Cents: 2);
 END; { PrintDollars }

 PROCEDURE DataValidation(EmployeeData: EmpRecordType;
 VAR ValidData: BOOLEAN);
 (* Validation of hours, rate and dependents data *)
 CONST MinHours = 0;
 MaxHours = 5500; (* 55 hours *)
 MinRate = 350; (* $2.50 *)
 MaxRate = 1650; (* $12.50 *)
 MinDep = 0;
 MaxDep = 12;
 BEGIN
 WITH EmployeeData DO BEGIN
 ValidData := TRUE;
 IF (Hours < MinHours) OR (Hours > MaxHours) THEN BEGIN
 ValidData := FALSE;
 Writeln('Invalid hours for ', Name);
 END;
 IF (Rate < MinRate) OR (Rate > MaxRate) THEN BEGIN
 ValidData := FALSE;
 Writeln('Invalid rate for ', Name);
 END;
 IF (Dependents < MinDep) OR
 (Dependents > MaxDep) THEN BEGIN
 ValidData := FALSE;
 Writeln('Invalid dependents for ', Name);
 END;
 END;
 END; { DataValidation }

 PROCEDURE ProcessEmployee(EmployeeData: EmpRecordType;
 VAR TotalList: TotalsType);
 (* Processing of data for one employee *)
 CONST NormalHours = 4000; { 40 hours }
 Overtime = 5; { 0.5 normal rate }

 VAR Pay: PayRecordType;

 PROCEDURE ComputeWithholdings(Dependents: LONGINT;
 VAR ComputedPay:
PayRecordType);
 (* Computation of federal, state and *)
 (* social security withholdings *)
 CONST FederalRate = 18; (* 18% *)

Section 10.3 Implementation Stage: Acme Payroll System 441

 StateRate = 3; (* 3% *)
 SSRate = 5; (* 5% *)
 Exemption = 2000; (* $20.00 *)
 VAR Taxable: LONGINT;
 BEGIN
 WITH ComputedPay DO BEGIN
 Taxable := GrossPay - Dependents * Exemption;
 IF Taxable > 0 THEN BEGIN
 FederalTax := Taxable * FederalRate DIV 100;
 StateTax := Taxable * StateRate DIV 100;
 END
 ELSE BEGIN
 FederalTax := 0;
 StateTax := 0;
 END;
 SSTax := GrossPay * SSRate DIV 100;
 END;
 END; { ComputeWithholdings }

 PROCEDURE AccumulateAndDisplay(ComputedPay:
 PayRecordType;
 VAR Totals: TotalsType);
 (* Accumulation of totals of data and *)
 (* printing of employee data *)
 BEGIN
 WITH ComputedPay, Totals DO BEGIN
 FederalTotal := FederalTotal + FederalTax;
 StateTotal := StateTotal + StateTax;
 SSTotal := SSTotal + SSTax;
 GrossTotal := GrossTotal + GrossPay;
 NetTotal := NetTotal + NetPay;
 Write(Name: NameLen);
 PrintDollars(GrossPay, 9);
 PrintDollars(FederalTax, 9);
 PrintDollars(StateTax, 9);
 PrintDollars(SSTax, 9);
 PrintDollars(NetPay, 9);
 Writeln
 END;
 END; { AccumulateAndDisplay }

 BEGIN { ProcessEmployee }
 Pay.Name := EmployeeData.Name;
 WITH EmployeeData, Pay DO BEGIN
 GrossPay := Hours * Rate DIV 100;
 { Hours given in 0.01 of hour }
 IF Hours > NormalHours THEN
 GrossPay := GrossPay +
 Overtime * Rate * (Hours - NormalHours) DIV 1000;
 { Overtime/10 and hours/100 }

442 Chapter 10 The Seven Step Method

 ComputeWithholdings(Dependents, Pay);
 NetPay := GrossPay - FederalTax - StateTax - SSTax;
 AccumulateAndDisplay(Pay, TotalList);
 END;
 END; { ProcessEmployee }

 PROCEDURE DisplaySummary(TotalList: TotalsType);
 (* Print a summary of the payroll computation *)
 BEGIN
 WITH TotalList DO BEGIN
 WriteLn;
 Write(' Totals ': NameLen);
 PrintDollars(GrossTotal, 9);
 PrintDollars(FederalTotal, 9);
 PrintDollars(StateTotal, 9);
 PrintDollars(SSTotal, 9);
 PrintDollars(NetTotal, 9);
 WriteLn
 END;
 END; { DisplaySummary }

VAR Employee: EmpRecordType;
 Valid: BOOLEAN;
 DataFile: TEXT;
 Totals: TotalsType;

BEGIN
 Assign(DataFile, 'Payroll.data');
 Reset(DataFile);
 WriteLn(Blanks, Title);
 WriteLn(' ': NameLen + 4, Header);

 WITH Totals DO BEGIN
 FederalTotal := 0;
 StateTotal := 0;
 SSTotal := 0;
 GrossTotal := 0;
 NetTotal := 0;
 END;

 WHILE NOT Eof(DataFile) DO BEGIN
 WITH Employee DO
 ReadLn(DataFile, Hours, Rate, Dependents, Name);
 DataValidation(Employee, Valid);
 IF Valid THEN
 ProcessEmployee(Employee, Totals);
 END;
 DisplaySummary(Totals);
 Close(DataFile);
END. { Payroll }

Section 10.3 Implementation Stage: Acme Payroll System 443

Program testing should not be too difficult if the program has been well
designed, and if the design has been closely followed and coded using good
programming style.

However, even if we are very careful, some semantic errors (the program does
not produce the desired results) usually occur, and the effort needed to find and
correct these errors is never negligible. To make the debugging process less
onerous, it is useful to follow some debugging guidelines.

• First, make sure that the results given by the program are really
erroneous before investing time to find the error. In particular, be
certain that the pre computed results that go with the test cases are
right.

• Do a walk through the code with the input data to see if you can locate
the error quickly. This is also called “desk checking” or producing a
trace of the program execution.

• Either by inserting write statements at key points in the program or by
using a symbolic debugger, try to trace the location of the error to a
small segment of the program. For instance, if you think that a given
procedure may be the source of the error, insert write statements or
breakpoints at the beginning of that procedure to examine arguments
passed to it, and at the end of the procedure to examine the results it
computed.

• If your program is large and if you haven’t been able to isolate the
error, reduce your program to a simplified version. Such a version of the
program is a copy where some segments of code have been deleted. This
will require some planning and also some effort, but with the tools at
your disposal (text editor, symbolic debugger) is well worth it.

Your Pascal system most certainly contains a symbolic debugger, and it will be
well worth your time to learn how to use it effectively. It will allow you to
carefully control the execution of any program and to examine the state of the
program. The debugger will display the source program, the procedure calls
chain, and the values of variables and parameters so that you will know
exactly what the program is doing. Using the source program displayed, you
can set breakpoints, that is, places where execution will temporarily halt. You
can examine values of any variables visible at that point in the program and
you can even modify these values if you wish. You can also change the
execution mode of the program to single step, so that one statement is executed
at a time. Since a sophisticated symbolic debugger is available on most
systems, you should invest some time in learning how to use it, because this will
improve your programming efficiency in a noticeable way.

6. Documentation Completion

Documentation is a vital part of any program. In particular the user needs some
kind of user’s manual to know how to use the program. But this manual is only a
small part of the program’s documentation. In fact all the steps in the problem
solving method produce some sort of documentation: program specifications,

444 Chapter 10 The Seven Step Method

structure and modular charts, pseudocode and data definition, test data and
results, program code. In this step, you must collect all the documentation
pieces, and integrate them in what is called external documentation. Internal
documentation is part of the program code in the form of comments, but also of
well chosen variable and constant names, and of indentation to show clearly
the structure of the program.

Documentation Completion Application

The payroll system documentation will include the problem definition, the
design documents, a description of the testing performed, a history of the
program development and its different versions, and a user’s manual. Such a
manual was developed in the Principles book. We’ll show that manual here
again to be complete.

Acme Payroll User’s Manual

Payroll is a program to compute and display the weekly pay
of hourly paid employees. For each employee it will read a
series of four data items separated by at least one blank:
number of hours worked during the week (0–55), hourly rate
of pay ($3.50–$16.50), number of dependents (0–12), and name
of employee (20 characters). If the data are valid, the
program will compute and display federal (18% of taxable
income), state (3% of taxable income), and social security
(5% of gross pay) withholdings, as well as gross and net pay
for the employee.

• The program will read data for each employee from the
file Payroll.data until it reaches the end of the
file. It will produce results on the screen. Input
data format is such that three integer values precede
a character string, as in
4500 600 3 Allan Mackenzie

• Output data will be written one line at a time, each
line corresponding to an employee. A normal output
line will consist of a 20-character string followed by
five values. The last line will contain the word
“Totals” followed by five values and will be separated
from the previous output line by a blank line. The
output will be preceded by the title lines:
 Computation of Weekly Pay
 Gross Fed State Soc. Net

• A normal output line will look like

Allan Mackenzie 285.00 40.50 6.75 14.25 223.50

• Erroneous data will produce error messages of the form

Invalid hours for Robert A. Verner

Section 10.3 Implementation Stage: Acme Payroll System 445

Invalid rate for Simon J. C. W. Surry
Invalid dependents for T. Guy Rimmer

• These messages will appear if the values read are not
within the given limits. A single employee data line
with erroneous data can generate from one to three
error messages. The erroneous data have to be
corrected and resubmitted.

To run the program, enter the payroll data in file
Payroll.data and execute Payroll.

7. Program Maintenance

As you already know, program maintenance is not directly part of the original
implementation process. Many large programs have long lifetimes that often
exceed the lifetime of the hardware they run on. Maintenance includes all
activities that occur after a program first becomes operational, and in
particular:

• the discovery and elimination of program errors,

• the modification of the current program,

• the addition of new features, and

• the updating of the documentation.

The documentation must be complete and accurate: don’t forget that most
program maintenance is done by someone not involved in the original design.

Program Maintenance Application

The changes and improvements to the payroll program might have the
program actually produce the employees’ paychecks, or add a unit to compute
tax withholdings in a more flexible way, or even add an interactive way of
fixing the erroneous data.

10.4 An Advanced Case Study: Building a Text Index

We’ll now look at a somewhat larger case study, involving several units. The
design of this case study was done in Chapter 10 of the Principles book, so we’ll
only give a summary of it here, and concentrate on the implementation.

446 Chapter 10 The Seven Step Method

Design Stage

1. Problem Definition

We are designing a program that reads in a text stored in a given file, that
collects all the significant words of that text together with the page numbers
where the words occur, and that displays an alphabetical index of the words
with their page numbers.

The program prompts the user for the name of the file of trivial words not to be
included in the index, for the name of the text file, and the name of the new
index file.

Give name of trivial words file:
Give name of text file:
Give name of output file:
Index complete

The format of the index will be the following:

June 1 8
Karine 1 2 3 4 5 6 7 8

9 10
Kludge 5 9

2. Solution Design

The program will keep the index in a binary search tree (illustrated in Chapter
9). This structure has the property of keeping its elements ordered, which
makes it possible to display its contents easily in order. We will use a binary
search tree unit, which will encapsulate its representation and operations.

The page numbers associated with a word will be kept in a queue, where each
page number is unique and will be output in the order of insertion. We’ll use a
separate unit for the ADT queue, similar to QueueLib seen in Chapter 9.

Thus, our solution is based on two library units, one for binary search trees and
the other for queues, as shown in Figure 10.2.

Figure 10.2 Modular design chart for building a text index

BinarySearch
Trees

Queues

Build Index

Section 10.4 An Advanced Case Study: Building a Text Index 447

We’ll use two binary search trees, one for the trivial words, and another one for
the significant words. From the binary search tree operations, we’ll use the
initialization of a tree, the search for a word in a tree, the insertion of an
element in a tree, and the traversal of a tree to display its contents.

We will use a queue structure to store all the page numbers associated with a
word, and the queue operations to initialize a queue, to insert an element in a
queue, to eliminate an element from a queue, and to count the elements in a
queue. Figure 10.3 shows the complete structure chart for the Build Index
program.

Figure 10.3 Structure chart for building a text index

Traverse
 Tree

Search
 Key

Insert
Word

Build
Index

Create
 Tree

 Get
Word

Create
Queue

Insert
NodeEnqueue Display

Element

Display
 Word

Count
Queue Dequeue

3. Solution Refinement

The words from the text are kept in a long buffer (storage area). The buffer is a
big array of characters, and each word in it is identified by the index of its first
character, as shown in Figure 10.4.

Figure 10.4 Word buffer

SecondFirst FourthThird New

Buffer

Word 1 Word 3 Old Index
Word 2 Word 4 New Index

index 1

index 6
index 12

Associated with the buffer are two indices, Old Index and New Index.
Normally, Old Index always points to the next free space in the buffer.
However, when a new word is read, it is added to the buffer by advancing New
Index which then points to the next free space after the new word. When it is
decided to keep that new word Old Index is updated to the value of New Index.
Otherwise the next word read is stored over the word that is not kept.

448 Chapter 10 The Seven Step Method

All the information for the index is kept in a binary search tree whose nodes
have the structure shown in Figure 10.5.

Figure 10.5 Binary search tree nodes

3 5 8

8

12

9

9

Word 8

4 6

6

Word 6

Page numbers

Index to word buffer

RightLeft

Pages

Last Page

Key

PointerPointer

In this case, we are referring to word 3.

Each indexed word is represented by a node, which has five parts: Key, an
index to the word in the buffer, a Last page number (to avoid keeping duplicate
page numbers), a Pages queue, and a left and a right pointer for the tree
structure.

Using these data structures the Build Index program first initializes various
variables, then reads the trivial words file and builds the trivial words tree.
Then it reads the text and inserts the non-trivial words in the word index tree.
Finally, it traverses the word index tree and displays the word index. We
won’t repeat here the pseudocode solution which was given in Chapter 10 of
the Principles book. Let’s just give the main processing loop for the building of
the index binary search tree.

Input Character
While text not finished

Select Character
End of line:

Terminate current line
Increment and display line number

Letter:
Get Word(Text File, Character,

Old Index, New Index)
Search Word in trivial words tree
If NOT trivial

Insert Word(Index, Page number,
New Index, Old Index)

End of page:
Increment Page number

Input Character

Section 10.4 An Advanced Case Study: Building a Text Index 449

The text is read character by character, end of line characters update the Line
number, end of page characters update the Page number, while letters invoke
Get Word, check to see if the word is significant and if it is, invoke Insert Word
to insert it in the Index tree.

Get Word reads in a word, character by character until it finds a non digit or non
letter character, and stores it temporarily in the big character buffer. To
separate words in the buffer, Get Word also stores the word length in the first
character of the word, in the format of Pascal Strings. Get Word does not
modify Old Index but changes New Index.

Insert Word checks to see whether the word is already in the binary search
tree. If it is, it only updates its element in the tree by adding, if necessary, a
new page number to its associated queue. It also doesn't update Old Index so
that the duplicate word is not kept in the buffer. For a new word, the
associated queue is initialized. In the trivial words tree, trivial words don't
need a page queue, and have a zero page number. The new word element is
inserted into the tree and Old Index is updated to keep the word in the buffer.

An element is displayed by first displaying the associated word, followed by a
number of spaces to align all index entries. Then, the page numbers are removed
one by one from the Pages queue and displayed. They are also counted and, if
they take more than one line, are displayed on the next lines after skipping the
space underneath the word.

A word is displayed by displaying all its characters from the buffer, and then
padding the rest of the word space with blanks.

Binary Search Tree Unit

A tree is defined as a pointer to a tree node, whose structure was just described
(Figure 10.5). The way in which a binary search tree is constructed is shown in
Chapter 9.

The BinSearchTrees unit implements the ADT binary search tree. It includes
the operations that appear in the unit interface below.

UNIT BinSearchTrees;
(* This unit offers type BinarySearchTree and the *)
(* operations that apply to it. The user can create and *)
(* build binary search trees with elements of type *)
(* ElementType in the nodes. *)
(* P. J. Gabrini December 1993 *)
INTERFACE
USES Queues;

TYPE KeyType = INTEGER;
 ElementType = RECORD
 Key: KeyType;
 LastPage: INTEGER;
 Pages: Queue;
 END;
 BinarySearchTree = ^TreeNode;

450 Chapter 10 The Seven Step Method

 TreeNode = RECORD
 Element: ElementType;
 Left, Right: BinarySearchTree;
 END;
 TraverseProc = PROCEDURE(E: ElementType);
 CompProc = FUNCTION(K1, K2: KeyType): INTEGER;
 DisplayProc = PROCEDURE(K: KeyType);

 PROCEDURE DisplayKey(Element: KeyType);
 (* Display a key value *)

 PROCEDURE InitializeTree(VAR Tree: BinarySearchTree);
 (* Must be called first, it initializes a Tree. *)

 PROCEDURE DeleteTree(VAR Tree: BinarySearchTree);
 (* All information about the Tree and the data
 records it contains are deleted. *)

 PROCEDURE InsertNode(VAR Tree: BinarySearchTree;
 Element: ElementType;
 Comp: CompProc);
 (* Insert Element at proper position into the Tree
 according to the Element's key. Use Comp for key
 comparisons. If a node already existed with same
 key, it is updated with value Element. *)

 PROCEDURE DeleteNode(VAR Tree: BinarySearchTree;
 Key: KeyType;
 Compare: CompProc);
 (* Find the element with this Key and delete it from
 the tree. Use Compare for key comparisons. If no
 node has this Key, Tree is unchanged. *)

 PROCEDURE TraverseTree(VAR Tree: BinarySearchTree;
 Process: TraverseProc);
 (* Apply Process to each node of Tree in order. *)

 FUNCTION SearchKey(Tree: BinarySearchTree;
 Key: KeyType;
 VAR Element: ElementType;
 Compare: CompProc): BOOLEAN;
 (* Search for an Element identified by Key in the Tree.
 Use Compare for key comparisons. *)

 PROCEDURE DisplayTree(Tree: BinarySearchTree;
 Indentation: INTEGER;
 DisplayKey: DisplayProc);
 (* Display Tree keys with indentations to show Tree
 structure. The tree traversal operation is recursive
 (it calls itself on the left and right subtrees) and

Section 10.4 An Advanced Case Study: Building a Text Index 451

 very simple. *)

Note that unit BinSearchTrees uses unit Queues and that it defines the
elements to be used as nodes of the binary search tree.

Queues Unit

The Queue Abstract Data Type will be defined in a slightly different way from
what we defined in QueueLib at the end of Chapter 9. We’ll use different, and
more commonly used names for the two major operations, and add an operation
to count the queue elements and an operation to examine the front element of the
queue. These operations are described in the Queues unit interface below. A
queue is implemented as a record with two indices, a counter, and an array of
elements.

UNIT Queues;
(* This unit offers type Queue and all operations that *)
(* normally apply to queues. The user can create and *)
(* manipulate queues of elements of type QElementType. *)
(* P. J. Gabrini December 1993 *)
INTERFACE
 CONST MaxQueue = 50;
 TYPE QElementType = INTEGER;
 Queue = RECORD
 Head, Tail, Number: 0..MaxQueue;
 Data: ARRAY [1..MaxQueue] OF
QElementType;
 END;
 VAR QueueError: BOOLEAN; { Result of operation:
 QueueError is always false
 unless the operation failed }

 PROCEDURE InitializeQueue(VAR Q: Queue);
 (* Create an empty queue Q, must be called first *)

 PROCEDURE Enqueue(VAR Q: Queue; Item: QElementType);
 (* Insert element Item at the end of queue Q *)

 PROCEDURE Dequeue(VAR Q: Queue; VAR Item: QElementType);
 (* Delete first element of queue Q and return it in Item *)

 FUNCTION CountQueue(Q: Queue): INTEGER;
 (* Return the current number of elements in queue Q *)

 PROCEDURE QueueHead(Q: Queue; VAR Item: QElementType);
 (* Return value of first element of queue Q in Item *)

Note that this unit defines Queues of integers, and that it can be easily
changed by redefining QElementType.

452 Chapter 10 The Seven Step Method

Implementation Stage

4. Testing Strategy Development

In Chapter 10 of the Principles book, we have identified the following test
cases.

1. Empty trivial words file: the index will include all the words in the
text.

2. Only one trivial word: the only trivial word will not appear in the
index.

3. One page text file: the page numbers are all the same, and appear only
once for each word.

4. Text file with several pages: general case.

5. Text file with only trivial words: the index will be empty.

6. Text file with no trivial words: the index will include all the words in
the text.

7. Word found on more pages than fit on a single line: necessary to test the
splitting of the page numbers over several lines.

Three trivial words file are needed to test all cases.

Trivial 1: an empty file for case 1

Trivial 2: a file with a single word for case 2
kernel

Trivial 3: a general file including the list given in the Principles book.
for On on Had a is this At If To as her much the when
up was we Am Did He Its That With an by do did be but
has his like nor ours there will you with whom A An
But For Do Has His I In My Much She The We You all and
at from have hers if it me my of or so their these
those to us whose All As By From Have No Our So This
Will Your am are etc had he him in its mine no not off
our she that them they who your yours

Three special text files are also needed.

Text 1: a one page text file with words in alphabetical order

albatross beauty cartography demon earl fugitive gross
helicopter indeed joy kernel lullaby mammoth nerd
opera possible quintessence refrigeration subtlety ton
utilitarian vampire wapiti xylophone yak zero

Text 2: the same file as Text 1 but with an end of page mark between
every word

albatross\ beauty\ cartography\ demon\ earl\ fugitive\
gross\ helicopter\ indeed\ joy\ kernel\ lullaby\
mammoth\ nerd\ opera\ possible\ quintessence\

Section 10.4 An Advanced Case Study: Building a Text Index 453

refrigeration\ subtlety\ ton\ utilitarian\ vampire\
wapiti\ xylophone\ yak\ zero

Text 3: a file with only two words repeated thirty times with an end of
page after each occurrence.

albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty\
albatross beauty\ albatross beauty\ albatross beauty

The following combinations will be used for the various cases.

Cases 1 and 3: Text 1 and Trivial 1. The index contains all the words in the
same order with only a page 1 reference.

Cases 2 and 3: Text 1 and Trivial 2. The index contains all the words except
“kernel” in the same order with only a page 1 reference.

Cases 4 and 6: Text 2 and Trivial 3. The index contains all the words in the
same order each with a different page reference.

Case 5: Trivial 3 and Trivial 3. The index is empty.

Case 7: Text 3 and Trivial 2. The index contains two words each with thirty
page references.

To these cases must be added a case with words that are longer than the word
length (16) to make sure they are treated correctly, and of course a long and
realistic text.

5. Program Coding and Testing

The main program follows from the pseudocode solution introduced in Chapter
10 of the Principles book.

PROGRAM BuildIndex;
{* Read in a text from a file, and produce the *)
(* corresponding index for all the words in the *)
(* text, except for trivial words kept in a *)
(* separate file. *)
(* P. J. Gabrini December 1993 *)
USES BinSearchTrees, Queues;

CONST BufferLength = 10000;
 WordLength = 16;
 EndOfPage = '\';
 Space = ' ';
 ItemsPerLine = 8;

454 Chapter 10 The Seven Step Method

 EndOfLine = CHR(13);

VAR Buffer: ARRAY [1..BufferLength] OF CHAR;
 { Global word buffer }
 Words, TrivialWords: BinarySearchTree;
 OldIndex, NewIndex, PageNumber, LineNumber: INTEGER;
 Ch: CHAR;
 Word: ElementType;
 TriviaName, TextName: STRING; { file names }
 TriviaFile, TextFile: TEXT; { file variables }

 PROCEDURE DisplayWord(Index: INTEGER);
 (* Display a word from global buffer in WordLength width
*)
 VAR CharNumber: INTEGER;
 BEGIN
 FOR CharNumber := Index+1 TO
 Index+ORD(Buffer[Index]) DO
 Write(Buffer[CharNumber]); { output word }
 FOR CharNumber := ORD(Buffer[Index]) TO
 WordLength-1 DO
 Write(Space); { pad with blanks }
 END; { DisplayWord }

 PROCEDURE DisplayElement(Elt: ElementType);
 (* Display an index element: word and page references *)
 VAR Index, NumbersDisplayed, Item: INTEGER;
 BEGIN
 DisplayWord(Elt.Key);
 NumbersDisplayed := 0;
 WHILE CountQueue(Elt.Pages) <> 0 DO BEGIN
 IF NumbersDisplayed = ItemsPerLine THEN BEGIN
 WriteLn; { line is full }
 NumbersDisplayed := 0;
 { skip space under word }
 FOR Index := 1 TO WordLength DO
 Write(Space);
 END;
 Dequeue(Elt.Pages, Item); { get next page number }
 Write(Item:6); { output page number }
 Inc(NumbersDisplayed);
 END;
 WriteLn;
 END; { DisplayElement }

 FUNCTION WordCompare(First, Second: KeyType): INTEGER;
 (* Compare two words stored in global Buffer, and return
 the difference computed between the two words. *)
 VAR Continue: BOOLEAN;
 Last1, Last2: INTEGER;

Section 10.4 An Advanced Case Study: Building a Text Index 455

 BEGIN
 Continue := TRUE;
 Last1 := First + ORD(Buffer[First]);
 Last2 := Second + ORD(Buffer[Second]);
 INC(First); INC(Second);
 WHILE Continue AND
 (First <= Last1) AND (Second <= Last2) DO BEGIN
 IF Buffer[First] <> Buffer[Second] THEN BEGIN
 WordCompare := ORD(Buffer[First]) -
 ORD(Buffer[Second]);
 Continue := FALSE; { not identical, stop }
 END
 ELSE
 IF (First = Last1) THEN
 IF (Second = Last2) THEN { identical }
 WordCompare := 0
 ELSE { second is longer }
 WordCompare := -1
 ELSE { first is longer }
 WordCompare := 1;
 Inc(First);
 Inc(Second);
 END;
 END; { WordCompare }

 PROCEDURE GetWord(VAR InputFile: TEXT;
 VAR Ch: CHAR;
 VAR New, Old: INTEGER);
 (* Read a word from input file and store it into
 global buffer *)
 BEGIN
 New := Old + 1; { index of first character }
 REPEAT { for all letters including accented }
 Write(Ch);
 Buffer[New] := Ch;
 Inc(New);
 Read(InputFile, Ch);
 UNTIL (Ch < '0') OR (Ch > '9') AND (Ch < 'A') OR
 (Ch > 'Z') AND (Ch < 'a') OR
 (Ch > 'z') AND (Ch < #128) OR (Ch > #159) OR
 Eof(InputFile);
 Buffer[Old] := CHR(New - Old - 1); { word length }
 END; { GetWord }

 PROCEDURE InsertWord(VAR Root: BinarySearchTree;
 Page: INTEGER;
 VAR New, Old: INTEGER);
 (* Insert a word in index tree if not already there.
 Add new reference to its page number queue *)
 VAR Word: ElementType;

456 Chapter 10 The Seven Step Method

 AlreadyIn: BOOLEAN;
 Last: INTEGER;
 BEGIN
 AlreadyIn := SearchKey(Root, Old, Word, WordCompare);
 IF AlreadyIn THEN BEGIN
 IF Word.LastPage <> Page THEN BEGIN
 { add only new page references }
 Enqueue(Word.Pages, Page);
 Word.LastPage := Page;
 { update existing node }
 InsertNode(Root, Word, WordCompare);
 END;
 END
 ELSE BEGIN { new word }
 Word.Key := Old;
 InitializeQueue(Word.Pages);
 IF Page <> 0 THEN BEGIN
 { page is zero for trivial words }
 Enqueue(Word.Pages, Page);
 Word.LastPage := Page;
 END;
 InsertNode(Root, Word, WordCompare);
 Old := New; { keep word in global buffer }
 END;
 END; { InsertWord }

BEGIN { BuildIndex }
 InitializeTree(Words);
 InitializeTree(TrivialWords);
 OldIndex := 1;
 PageNumber := 1;
 LineNumber := 1;

 {**** read in file of trivial words and create tree ****}
 Write('Give name of trivial words file: ');
 Read(TriviaName);
 Assign(TriviaFile, TriviaName);
 Reset(TriviaFile);
 WriteLn('List of trivial words: ');
 Read(TriviaFile, Ch);
 WHILE NOT Eof(TriviaFile) DO
 CASE Ch OF
 'A'..'Z','a'..'z':
 BEGIN
 GetWord(TriviaFile, Ch, NewIndex, OldIndex);
 InsertWord(TrivialWords,0,NewIndex,OldIndex);
 END
 ELSE BEGIN
 Write(Ch);
 Read(TriviaFile, Ch);

Section 10.4 An Advanced Case Study: Building a Text Index 457

 END
 END;
 Close(TriviaFile);
 WriteLn; WriteLn; WriteLn;

 {**** read in text file and create word tree ****}
 Write('Give name of text file: ');
 Read(TextName);
 Assign(TextFile, TextName);
 Reset(TextFile);
 WriteLn; WriteLn;
 Write(LineNumber:6, Space);
 Read(TextFile, Ch);
 WHILE NOT Eof(TextFile) DO {read text and create index}
 CASE Ch OF
 EndOfLine:
 BEGIN
 WriteLn; Read(TextFile, Ch);
 Inc(LineNumber);
 Write(LineNumber: 6, Space);
 END;
 'A'..'Z','a'..'z':
 BEGIN
 GetWord(TextFile, Ch, NewIndex, OldIndex);
 IF NOT SearchKey(TrivialWords, OldIndex,
 Word, WordCompare) THEN
 InsertWord(Words, PageNumber,
 NewIndex, OldIndex);
 END;
 EndOfPage:
 BEGIN
 Inc(PageNumber);
 Write(Ch);
 Read(TextFile, Ch);
 END
 ELSE
 BEGIN
 Write(Ch);
 Read(TextFile, Ch);
 END
 END;
 Close(TextFile);
 WriteLn; WriteLn;
 WriteLn('Text word index');
 WriteLn;
 TraverseTree(Words, DisplayElement); { output index }
 WriteLn;
 WriteLn('Index complete');
END. { BuildIndex }

458 Chapter 10 The Seven Step Method

To run this program we need to complete the IMPLEMENTATION parts of the two
units it uses. The IMPLEMENTATION part of unit Queues corresponding to
the INTERFACE part given earlier follows.

IMPLEMENTATION
 { Empty queue: Tail = 0, Head = MaxQueue, Number = 0
 Full queue: Tail = Head, Number = MaxQueue
 Average queue: Tail indicates actual last element
 Head indicates previous first element }

 PROCEDURE InitializeQueue(VAR Q: Queue);
 (* Create queue Q *)
 BEGIN
 Q.Tail := 0;
 Q.Number := 0;
 Q.Head := MaxQueue;
 QueueError := FALSE;
 END; { InitializeQueue }

 PROCEDURE Enqueue(VAR Q: Queue; Item : QElementType);
 (* Insert element Item in queue Q *)
 BEGIN
 IF NOT (Q.Number = MaxQueue) THEN BEGIN
 WITH Q DO BEGIN
 Tail := (Tail MOD MaxQueue) + 1;
 Data[Tail] := Item;
 Inc(Number);
 END;
 QueueError := FALSE;
 END
 ELSE
 QueueError := TRUE; { full queue }
 END; { Enqueue }

 PROCEDURE Dequeue(VAR Q: Queue; VAR Item : QElementType);
 (* Retrieve in Item and delete head of queue Q *)
 BEGIN
 IF NOT (Q.Number = 0) THEN BEGIN
 WITH Q DO BEGIN
 Head := (Head MOD MaxQueue) + 1;
 Item := Data[Head];
 Dec(Number);
 IF Number = 0 THEN BEGIN { queue is now empty}
 Tail := 0;
 Head := MaxQueue;
 END;
 END;
 QueueError := FALSE;
 END
 ELSE

Section 10.4 An Advanced Case Study: Building a Text Index 459

 QueueError := TRUE; { no element to retrieve }
 END; { Dequeue }

 FUNCTION CountQueue(Q: Queue): INTEGER;
 (* Return number of elements in Q *)
 BEGIN
 CountQueue := Q.Number;
 END; { CountQueue }

 PROCEDURE QueueHead(Q: Queue; VAR Item: QElementType);
 (* Return value of first element of queue Q in Item *)
 BEGIN
 IF Q.Number <> 0 THEN BEGIN
 Item := Q.Data[Q.Head MOD MaxQueue + 1];
 QueueError := FALSE;
 END
 ELSE
 QueueError := TRUE; { no queue }
 END; { QueueHead }

END. { Queues }

The IMPLEMENTATION part of UNIT BinSearchTrees corresponding to the
INTERFACE part given earlier follows. The procedures and functions correspond
to the algorithms given in Chapter 10 of the Principles book.
IMPLEMENTATION

 PROCEDURE DisplayKey(Element: KeyType);
 (* Display a key value *)
 BEGIN
 Write(Element: 6);
 END; { DisplayKey }

 PROCEDURE InitializeTree(VAR Tree: BinarySearchTree);
 (* The first procedure to call, which initializes a tree
 *)
 BEGIN
 Tree := NIL;
 END; { InitializeTree }

 PROCEDURE DeleteTree(VAR Tree: BinarySearchTree);
 (* All information about the tree and the data records it
 contains are deleted *)
 BEGIN
 IF Tree <> NIL THEN BEGIN
 DeleteTree(Tree^.Left);
 DeleteTree(Tree^.Right);
 Dispose(Tree);
 END;
 END; { DeleteTree }

460 Chapter 10 The Seven Step Method

 PROCEDURE InsertNode(VAR Tree: BinarySearchTree;
 Element: ElementType;
 Compare: CompProc);
 (* Insert Element into the Tree. The key is in the
 Element.*)
 VAR Diff: INTEGER;
 BEGIN
 IF Tree = NIL THEN BEGIN { insert at current position}
 New(Tree); { create new node }
 Tree^.Element := Element;
 Tree^.Left := NIL;
 Tree^.Right := NIL;
 END
 ELSE BEGIN
 Diff := Compare(Element.Key, Tree^.Element.Key);
 IF Diff < 0 THEN { look left }
 InsertNode(Tree^.Left, Element, Compare)
 ELSE IF Diff > 0 THEN { look right }
 InsertNode(Tree^.Right, Element, Compare)
 ELSE { already in Tree update node }
 Tree^.Element := Element;
 END;
 END; { InsertNode }

 PROCEDURE DeleteNode(VAR Tree: BinarySearchTree;
 Key: KeyType;
 Compare: CompProc);
 (* Find the Element with this Key and delete it from
 the Tree *)

 PROCEDURE FindPredecessor(Tree: BinarySearchTree;
 VAR Node: BinarySearchTree);
 (* Find rightmost node in left subtree *)
 BEGIN
 Node := Tree^.Left;
 WHILE Node^.Right <> NIL DO
 Node := Node^.Right;
 END; { FindPredecessor }

 VAR Diff: INTEGER;
 Node: BinarySearchTree;
 BEGIN
 IF Tree <> NIL THEN BEGIN
 Diff := Compare(Tree^.Element.Key, Key);
 IF Diff = 0 THEN { found node to delete }
 IF Tree^.Left = NIL THEN BEGIN { empty left
 branch }
 Node := Tree;
 Tree := Tree^.Right;
 Dispose(Node);

Section 10.4 An Advanced Case Study: Building a Text Index 461

 END
 ELSE
 IF Tree^.Right = NIL THEN BEGIN
 { empty right branch }
 Node := Tree;
 Tree := Tree^.Left;
 Dispose(Node);
 END
 ELSE BEGIN
 { no branch empty, find inorder
 predecessor }
 FindPredecessor(Tree, Node);
 Tree^.Element := Node^.Element;
 DeleteNode(Tree^.Left,
 Tree^.Element.Key, Compare);
 END
 ELSE
 IF Diff < 0 THEN { try left }
 DeleteNode(Tree^.Left, Key, Compare)
 ELSE { try right }
 DeleteNode(Tree^.Right, Key, Compare)
 END;
 END; { DeleteNode }

 PROCEDURE TraverseTree(VAR Tree: BinarySearchTree;
 Process: TraverseProc);
 (* Call Process for each node in order.
 Don't call any procedures that modify links
 while in mid traversal, like InsertNode,
 DeleteNode, DeleteTree. *)
 BEGIN
 IF Tree <> NIL THEN BEGIN
 TraverseTree(Tree^.Left, Process);
 Process(Tree^.Element);
 TraverseTree(Tree^.Right, Process);
 END;
 END; { TraverseTree }

 FUNCTION SearchKey(Tree: BinarySearchTree;
 Key: KeyType;
 VAR Element: ElementType;
 Compare: CompProc): BOOLEAN;
 (* Search for "Key" in the Tree. If found then return
 true and Element will contain the node information,
 otherwise return false. *)
 VAR Diff: INTEGER;
 BEGIN
 IF Tree = NIL THEN
 SearchKey := FALSE
 ELSE BEGIN

462 Chapter 10 The Seven Step Method

 Diff := Compare(Key, Tree^.Element.Key);
 IF Diff = 0 THEN BEGIN { found }
 Element := Tree^.Element;
 SearchKey := TRUE;
 END
 ELSE IF Diff < 0 THEN { look left }
 SearchKey := SearchKey(Tree^.Left, Key,
 Element, Compare)
 ELSE { look right }
 SearchKey := SearchKey(Tree^.Right, Key,
 Element, Compare);
 END;
 END; { SearchKey }

 PROCEDURE DisplayTree(Tree: BinarySearchTree;
 Indentation: INTEGER;
 DisplayKey: DisplayProc);
 (* Print Tree with indentations to show structure *)
 VAR Indent: INTEGER;
 BEGIN
 IF Tree <> NIL THEN BEGIN
 DisplayTree(Tree^.Right, Indentation+1,DisplayKey);
 FOR Indent := 1 TO Indentation DO
 Write(' ');
 DisplayKey(Tree^.Element.Key);
 WriteLn;
 DisplayTree(Tree^.Left, Indentation+1, DisplayKey);
 END;
 END; { DisplayTree }

END. { BinSearchTrees }

The program BuildIndex was run with the files identified in the testing
strategy section. It gave the expected results. Here is part of the index
produced for a normal text.

though 4
thought 1 2 5
threatening 4
three 8
through 3 6 9
thus 9
time 1 2 4 5 8

9
together 1 2
told 5
tonight 5 8
too 2 3
took 6 9 10
tooth 10

Section 10.4 An Advanced Case Study: Building a Text Index 463

Use your copy of the program to build the index of other texts. If you find bugs,
you must remove them! Note that to compile your program you need to compile
first the Queues unit, then the BinSearchTrees unit, and then the
BuildIndex program. This is because units used by a program must always be
compiled before their users.

6. Documentation

All the results of the previous steps should be integrated in the documentation:
problem specifications, solution design and refinement, testing strategy,
program code, and testing results. The user's manual was already done in the
Principles book, we repeat it here for the sake of completeness.

User’s Manual for the Build Index Program

The Build Index program builds the index of a text. The
program prompts you for a file of trivial words (words of
the text that must not be part of the index). The program
then prompts you for the name of the text file, and the name
of the output index file. To run it, select Execute in the
menu and double-click on Build Index. The program will start
executing and will start prompting you. When the execution
is over, the program will display the message:

Index complete

• You can examine the index and print it if need be. The index file
comprises the input text with added line numbers, and an alphabetical
list of all the words in the text (except for the trivial words) followed
by a list of page numbers as in the following:
June 1 8
Karine 1 2 3 4 5 6 7 8

9 10
Kludge 5 9

7. Program Maintenance

With a larger program the risk of bugs is higher, despite all the precautions
that were taken. Part of that program maintenance includes bug removal, but
also making improvements. We can improve the program by giving the option
to the user to list the trivial words used as part of a better documentation of the
index. We can also make the program recognize true end of pages instead of an
arbitrary sign. We can also modify the program so that it displays page and
line numbers as part of the index. Etc. Etc.

464 Chapter 10 The Seven Step Method

10.5 Chapter 10 Review

In this chapter we have reviewed the seven step problem solving method
which was introduced in Chapter 2 of the Principles book, and illustrated in
various other chapters of that book. Here, we have concentrated on only one of
these seven steps—the implementation in Pascal of an already designed
program. However, the implementation cannot be done in a vacuum, divorced
from the design, and we have therefore included each of the seven steps so that
the implementation can be seen in its proper context.

It is important for you to remember that a lack of method will be disastrous for
you when you start developing programs on a larger scale, maybe even before.
The complexity of a given application grows quickly, as the number of
interactions between the various parts of a system increases. The examples we
have presented were aimed at showing that. The complete example to build a
text index is still small, but is big enough to show that a larger system is harder
to understand, even under good conditions.

10.6 Chapter 10 Programming Problems

A programmer spends a great deal of time modifying already written programs,
generally written by somebody else. We will therefore start with a series of
program modification exercises. The following programs were introduced in
Chapter 2 of this book, when you used them to get a beginning experience in
actually using programs. The following problems show you the programs and
ask you to change their behavior by modifying them.

1. Editor Application

TED is a Tiny Editor used to create and modify files of text. This editor acts on
a line at a time. It requests operations by displaying a question mark “?” and
the following commands may be given (by the first letter of the command: A, B,
D, etc. in upper or lower case):

B to go to the Beginning of the file
D to Delete the line at the given position
T to Type out the entire file
P to move the Now pointer to the Previous line
N to move the Now pointer to the Next or following line
I to Insert one line after given line
F to Find a given string, starting at the present line
M to Modify the present line
H to provide Help, by listing all commands
R to replace a given line by another
S to Save a file
L to Load a previous file which was created and saved
E to End or exit the edit session

Section 10.6 Chapter 10 Programming Problems 465

The Pascal program for TED is rather short because it makes use of data
structures from the UNIT StackLib2. The source code for StackLib2 is:

UNIT StackLib2;

INTERFACE
 TYPE ItemType = STRING;
 StackType = ^StackElement;
 StackElement = RECORD
 Value: ItemType;
 Prev: StackType;
 END;

 PROCEDURE Create(VAR Stack: StackType);
 (* Sets up stack, initially *)

 PROCEDURE Push(VAR Stack: StackType;
 X: ItemType);
 (* Puts object X onto Stack *)

 PROCEDURE Pop(VAR Stack: StackType;
 VAR Y: ItemType);
 (* Takes object Y off Stack *)

 FUNCTION Empty(Stack: StackType):BOOLEAN;
 (* Shows if Stack is empty *)

IMPLEMENTATION
 PROCEDURE Create(VAR Stack: StackType);
 BEGIN
 Stack := NIL;
 END; { Create }

 PROCEDURE Empty(Stack: StackType): BOOLEAN;
 BEGIN
 IF Stack = NIL THEN
 Empty := TRUE
 ELSE
 Empty := FALSE;
 END; { Empty }

 PROCEDURE Push(VAR Stack: StackType;
 X: ItemType);
 VAR Next: StackType;
 BEGIN
 New(Next);
 Next^.Prev := Stack;
 Next^.Value := X;
 Stack := Next;
 END; { Push }

466 Chapter 10 The Seven Step Method

 PROCEDURE Pop(VAR Stack: StackType;
 VAR Y: ItemType);
 VAR PrevTop: StackType;
 BEGIN
 IF Empty(Stack) THEN
 WriteLn('EMPTY ')
 ELSE BEGIN
 Y := Stack^.Value;
 PrevTop := Stack^.Prev;
 Dispose(Stack);
 Stack := PrevTop;
 END;
 END; { Pop }

END. { StackLib2 }

The Pascal program for TED is:

PROGRAM TED;
(* A line editor that uses stacks of lines, *)
(* which are strings. *)

USES StackLib2;

VAR PStack, NStack: StackType;
 Line: STRING;
 Command, Return: CHAR;

 PROCEDURE Help();
 BEGIN
 WriteLn('The commands are:');
 WriteLn('B to go to the Beginning of the file');
 WriteLn('D to Delete the line at the given
position');
 WriteLn('T to Type out the entire file');
 WriteLn('P to move to the Previous line');
 WriteLn('N to move to the Next or following
line');
 WriteLn('I to Insert one line after given
line');
 WriteLn('F to Find a given string');
 WriteLn('M to Modify the present line');
 WriteLn('H to provide Help, by listing all
commands');
 WriteLn('R to replace a given line by another');
 WriteLn('S to Save a file');
 WriteLn('L to Load a previously created file');
 WriteLn('E to End or exit the edit session');
 END; { Help }

Section 10.6 Chapter 10 Programming Problems 467

 PROCEDURE Insert();
 (* Inserts a single line after this one *)
 BEGIN
 ReadLn(Line);
 Push(PStack, Line);
 END; { Insert }

 PROCEDURE Delete();
 (* Deletes the single present line *)
 VAR Line: STRING;
 BEGIN
 IF Empty(PStack) THEN
 WriteLn('What!?')
 ELSE BEGIN
 Pop(PStack, Line);
 WriteLn('Deleted: ', Line);
 END;
 END; { Delete }

 PROCEDURE TypePage();
 (* Types all lines in page and stops at end *)
 VAR Line: STRING;
 BEGIN
 { Pour Present stack to Next one }
 WHILE NOT Empty(PStack) DO BEGIN
 Pop(PStack, Line);
 Push(NStack, Line);
 END;

 { Pour Next stack while printing }
 WHILE NOT Empty(NStack) DO BEGIN
 Pop(NStack, Line);
 WriteLn(Line);
 Push(PStack, Line);
 END;
 END; { TypePage }

 PROCEDURE Replace();
 BEGIN
 Delete();
 Write('Replace:');
 Insert();
 END; { Replace }

 PROCEDURE GoBegin();
 (* Goes to the first line of the page *)
 VAR Line: STRING;
 BEGIN
 WHILE NOT Empty(PStack) DO BEGIN
 Pop(Pstack, Line);

468 Chapter 10 The Seven Step Method

 Push(NStack, Line);
 END;
 Pop(NStack, Line);
 Push(PStack, Line);
 WriteLn(Line);
 END; { GoBegin }

 PROCEDURE NextLine();
 (* Goes to the following line *)
 VAR Line: STRING;
 BEGIN
 IF Empty(NStack) THEN
 WriteLn('At the end of page')
 ELSE BEGIN
 Pop(NStack, Line);
 Push(PStack, Line);
 WriteLn(Line);
 END;
 END; { NextLine }

 PROCEDURE Previous();
 (* Go to previous line *)
 BEGIN
 WriteLn('This command not yet implemented');
 END; { Previous }

 PROCEDURE Modify();
 (* Modify the present line *)
 BEGIN
 WriteLn('This command not yet implemented');
 END; { Modify }

 PROCEDURE Find();
 (* Find given string starting at present line *)
 BEGIN
 WriteLn('This command not yet implemented');
 END; { Find }

 PROCEDURE Save();
 (* Save page in file *)
 BEGIN
 WriteLn('This command not yet implemented');
 END; { Save }

 PROCEDURE Load();
 (* Load previously saved file into page *)
 BEGIN
 WriteLn('This command not yet implemented');
 END; { Load }

Section 10.6 Chapter 10 Programming Problems 469

 PROCEDURE Capitalize(VAR Ch: CHAR);
 (* Procedure capitalizes any passed letter *)
 CONST UpperLowerDiff = ORD('a') - ORD('A');
 BEGIN
 IF ('a' <= Ch) AND (Ch <= 'z') THEN
 CH := CHR(ORD(Ch) - UpperLowerDiff);
 END; { Capitalize }

BEGIN
 Create(PStack);
 Create(NStack);
 WriteLn('Enter a command');
 Write('?');
 Read(Command);
 Read(Return);
 Capitalize(Command);

 WHILE Command <> 'E' DO BEGIN
 IF Command = 'B' THEN GoBegin()
 ELSE IF Command = 'D' THEN Delete()
 ELSE IF Command = 'T' THEN TypePage()
 ELSE IF Command = 'P' THEN Previous()
 ELSE IF Command = 'N' THEN NextLine()
 ELSE IF Command = 'I' THEN Insert()
 ELSE IF Command = 'F' THEN Find()
 ELSE IF Command = 'M' THEN Modify()
 ELSE IF Command = 'H' THEN Help()
 ELSE IF Command = 'R' THEN Replace()
 ELSE IF Command = 'S' THEN Save()
 ELSE IF Command = 'L' THEN Load()
 { More commands can go here }
 ELSE WriteLn('What!?');

 WriteLn;
 Write('?');
 Read(Command);
 Read(Return);
 Capitalize(Command);
 END;
END. { TED }

You will notice that not all the commands in TED have been implemented;
there are just place holders for them. Complete the implementation of TED and
then:

• Add more commands, such as Append, to insert more than one line

• Output with line numbers for reference

• Provide more detailed help or instructions

470 Chapter 10 The Seven Step Method

2. Typing

TypeTimer is an application program that presents a line of text to be typed in,
and then indicates how quickly this line was typed. Accuracy is not measured
because it is assumed that errors can easily be corrected. A typical run of this
program is shown below; the part of the dialog that the user typed is shown in
bold.

Typing Speed Test
You are to type the following line
Type Return when you are ready, and
type Return when you are finished
A quick brown fox jumps over the lazy dog
A quick brown fox jumps overf the laxy dog
The time taken is 50 units.

Time is measured by units, which are not seconds, but some arbitrary units that
are consistent and serve to compare times to measure progress. The Pascal code
for TypeTimer is:

PROGRAM TypeTimer;
(* Evaluates time to type a line of text *)
USES Events;

CONST Return = #13;

VAR TimeOfStarting: LONGINT;

 PROCEDURE StartTime();
 BEGIN
 TimeOfStarting := TickCount();
 END; { StartTime }

 FUNCTION TellTime(): LONGINT;
 VAR FinishTime: LONGINT;
 BEGIN
 FinishTime := TickCount();
 TellTime := FinishTime - TimeOfStarting;
 END; { TellTime }

VAR ElapsedTime: LONGINT;
 Ch: CHAR;
 Text: STRING;

BEGIN
 WriteLn('Typing Speed Test');
 WriteLn('You are to type the following line');
 WriteLn('Press return when you are ready, and');
 WriteLn('press return when you are finished');
 WriteLn('A quick brown fox jumps over the lazy
dog');
 WriteLn;

Section 10.6 Chapter 10 Programming Problems 471

 Read(Ch);
 StartTime;
 Read(Text);
 ElapsedTime := TellTime();
 WriteLn('The time taken was ', ElapsedTime: 8, '
units');
END. { TypeTimer }

Typer2 is another application program that presents a number of lines of
various kinds of text and indicates whether the typed line is correct or has
errors.

PROGRAM Typer2;
(* Typing test to determine accuracy *)

CONST Return = #13;

VAR Ch: CHAR;
 Line, InLine, Response: STRING;
 GoodResponse, Same: BOOLEAN;

BEGIN
 WriteLn('Typing Accuracy Test');
 WriteLn('What do you wish to try?');
 WriteLn('Silly sentences or serious statements?');
 WriteLn('Enter "silly" or "serious"');
 ReadLn(Response);
 GoodResponse := FALSE;
 WHILE NOT GoodResponse DO
 IF Response = 'silly' THEN BEGIN
 GoodResponse := TRUE;
 Line := 'exquisite farm wench gives body jolt
to prize stinker';
 END
 ELSE
 IF Response = 'serious' THEN BEGIN
 GoodResponse := TRUE;
 Line := 'a quick brown fox jumps over the
lazy dog';
 END
 ELSE BEGIN
 WriteLn('Try again--Enter "silly" or
"serious"');
 ReadLn(Response);
 END;
 WriteLn('Type the following');
 WriteLn(Line);
 ReadLn(InLine);
 IF Line = InLine THEN
 WriteLn('CORRECT!')

472 Chapter 10 The Seven Step Method

 ELSE
 WriteLn('ERROR!!!');
 WriteLn('Try again soon');
END. { Typer2 }

Typer2, as it stands has only two sentences, neither of them really serious.
Extend the program to draw on a richer repertoire of sentences from a file.
Other extensions to be made are:

• to combine both speed and accuracy tests into one,

• to keep track of your progress after each exercise.

• to enter yet a third kind of file, “semi-serious”,

• to count the number of errors.

3. Calculator Applications

Calculate is a calculator that is simulated by a computer. It provides the
typical four arithmetic functions (add, subtract, multiply, divide). Entering
the letter “q” or “Q” causes the calculation to quit. The Pascal program for
Calculate is

PROGRAM Calculate;
(* Four Function Calculator of Real Values *)

VAR Value, Result: REAL;
 Ch, Action, Return: CHAR;

BEGIN
 Write('Calculate Real Numbers ');
 WriteLn;
 Write('End with ''Q'' for quit ');
 WriteLn;
 Write(' Enter a value: ');
 WriteLn;
 Read(Result);
 Read(Return); { to "eat" Carriage Return }
 Write(' Enter an action: ');
 WriteLn;
 Read(Action);
 Read(Return); { to "eat" Carriage Return }

 Action := UpCase(Action);
 WHILE (Action <> 'Q') DO BEGIN
 Write(' Enter a value ');
 WriteLn;
 Read (Value);
 Read(Return); { to "eat" Carriage Return }
 IF (Action = '+') OR (Action = 'A') THEN
 Result := Result + Value

Section 10.6 Chapter 10 Programming Problems 473

 ELSE IF (Action = '-') OR (Action = 'S') THEN
 Result := Result - Value
 ELSE IF (Action = '*') OR (Action = 'M') THEN
 Result := Result * Value
 ELSE IF (Action = '/') OR (Action = 'D') THEN
 Result := Result / Value
 ELSE
 Write('Error ')
 { END IF };
 Write(' The Result is ');
 Write(Result: 10:3); WriteLn;
 Write(' Enter an action ');
 WriteLn;
 Read(Action);
 Read(Return); { to "eat" Carriage Return }
 Action := UpCase(Action);
 END { WHILE };

 WriteLn('End of Calculation ');
END { Calculate }.

Extend this program to:

• Compute squares and powers

• Include trigonometric functions

• Output results in scientific notation

Make another version of this calculator that uses ComplexLib from Chapter 8
to work with complex numbers. Extend this version to:

• Compute complex conjugates

• Compute magnitudes and angles

• Output results in polar notation.

10.7 Chapter 10 Programming Projects

The following is a series of problems and projects to be solved in the way in
which we have done the two case studies in this chapter, that is, all the steps
of the seven step process except for the actual implementation must be followed.
These problems are presented in order of increasing difficulty and complexity,
and cover various domains of application: general, business and scientific.
They were already described in Chapter 10 of the Principles book. If you did
the design then, only the implementation remains to be done!

10.8 Level 1 — Getting Started

The first-level problems require the development of your first programs.

474 Chapter 10 The Seven Step Method

1–1. General

A Guessing Game

You are on vacation at home and planning to enjoy your free time. Alas! your
parents ask you to take care of your little sister, and she is a real pest. In order
not to see your vacation time slowly wasted, you decide to have the computer
entertain your little sister. To do this, you want to develop a simple game
program that will pick randomly an integer number between 1 and 1,000. The
program will ask your little sister to guess that number in a maximum of ten
tries, and will produce an appropriate message when the end of the game is
reached.

Obviously, the program needs to be interactive: It will display a message at
the start of the game, prompt your sister for a guess, and each time she makes a
guess it will have to indicate whether the guess was between the limits or was
high or low, or detect that the guess was right. At the end of a game the
program will allow your little sister to decide to continue to play or to stop.

The input format is simply that of an integer number, or a character for yes or
no. The output formats are mostly messages.

Start-of-game message:

Let's play a guessing game.
I pick a number between 0 and 1,000. You have to guess
it. But you have only 10 tries to guess my number.

End-of-game messages:

Congratulations! 999 is right.
You lose! My number was 999
Do you want another game? (Y/N)

Game messages:

Make a guess:
Wait a minute! My number is greater than 0!
You wasted a guess! My number is 1,000 or less.
Well ... your number is too small.
Sorry, but your number is too big.

Don’t forget! You have seen this example in Chapter 4.

1–2. Business

Computing a Customer's Change

Your cousin just opened a small store and does not have the funds to buy one of
those sophisticated cash registers that compute the change to return to a
customer. Since he still possesses his old personal computer, he asks you to
develop a program that, given an amount due and a payment, computes the

Section 10.8 Level 1 — Getting Started 475

change. This way he will be able to make sure that whoever he hires won't
make a mistake on the change to give back to the customer. The program will
compute the change repeatedly until a zero value is given to indicate
termination.

The change must be computed in dollar bills, quarters, dimes, nickels, and
pennies, with the smallest number of coins. The clerk will enter the amount due
in cents, the payment also in cents, and the program will return the number of
dollars, quarters, dimes, nickels, and pennies to give back. The clerk will be
prompted to enter the amount due and the payment by the following messages:

Enter amount due in cents (negative or zero to stop):
Enter payment in cents:

The change will be indicated in the following way:

Dollars 1
Quarters 1
Dimes 1
Nickels 1
Pennies 1

Don’t forget! We have seen examples of change making in Chapters 3, 4, 5, 7
and 8.

1–3. Scientific

A Bouncing Ball

While waiting for your date to show up, you idly bounced a tennis ball on the
sidewalk. This gave you the idea to develop a program to compute and display
some data on the bounces a ball will make when dropped from a given height.
Forgetting your late date, you went home to solve this interesting problem.

To simplify the problem, you assume the ball bounces in place, that is, it
remains bouncing on the same spot and does not have any forward motion. The
program will prompt the user for the initial height of the ball, the number of
bounces to consider, and the ball’s elasticity (which must be positive). It will
compute the height of each bounce based on the initial height and the ball's
elasticity, and display it. The program will also compute the total distance
traveled, which is the sum of the up and down bounces, for the given number of
bounces, and display it. The program will repeat this process until the user
tells it to stop.

If the ball is at height h, when it bounces, it reaches new height h', which is
computed by the formula

h ' = h × resilience

where resilience is expressed as the elasticity coefficient raised to the nth
power, if n is the bounce number:

resilience = elasticityn

476 Chapter 10 The Seven Step Method

If the original height is H, then the first bounce height will be

h
1
 = H × elasticity

Note that, in your simplified conditions, an elasticity coefficient greater than
one means that the ball will never stop bouncing, and that each bounce will be
higher than the preceding one.

The ball will travel the distance shown in Figure 10.6, which we have drawn
to help you, and where we have represented a forward motion for the sake of
clarity (the ball bounces on the same spot).

Figure 10.6. Distance traveled by ball as it bounces

1

0.8

0.64

0.512

0.4

10 2 3 4 5 Bounces

Heights

Ball bounces

Each time the ball bounces, it travels twice the height of the bounce, so the
total distance traveled is

H + 2h
1
 + 2h

2
 + 2h

3
 + 2h

4
 + ...

The user will be prompted for the initial height in this way:

Give the height in inches from which the ball is
dropped:

Then the user will be asked the number of bounces:

Give the number of times the ball will bounce:

And finally the user will be asked the elasticity of the ball:

Give the elasticity of the ball (between 0 and 1
if the ball is to stop bouncing):

For each bounce the program will display the following:

On bounce 9 the ball rises to a height of 99.9 inches

After the last bounce the program will display the following:

The total distance traveled by a ball with an
elasticity of 0.999
when dropped from a height of 99.9 inches

Section 10.8 Level 1 — Getting Started 477

and after bouncing 9 times is 999 inches.

The user will be asked if he wants to continue:

Another try?

10.9 Level 2 — Getting Organized with Procedures

The second level of problems requires the use of procedures and functions to
manage larger programs.

2–1. General

Your Age in Days

Your problem is to write a program that will read in a person's birth date and
the current date, and compute and display the person's age in days. The
program will have to be interactive, to validate the dates it reads and to
display results in a clear manner. When the dates given are incorrect, precise
messages should be displayed. The program should be set up in such a way that
it can compute repeatedly a number of ages and let the user decide when to
terminate execution.

The various output formats are mostly user’s prompts and error messages.

Enter birth date in the form 11 21 91:
Enter current date in the form 11 21 91:
Today you are 2059 days old
Want to compute another age?
Incorrect value for month.
Incorrect value for day.
Incorrect value for year.
Incorrect values for day and month.
Incorrect values for month and year.
Incorrect values for day and year.
Incorrect values for day, month and year.
You are not born yet!

2–2 Business

What’s the Cost of My Mortgage?

The loan department of your bank still uses silly tables to determine what the
monthly payment of a mortgage loan is going to be. The consumer association
wants you to design a program to compute interactively monthly mortgage
payments as well as the cost of such a loan over the first 5 years of the loan and
the total cost of that loan. In order to validate the input data, the loan

478 Chapter 10 The Seven Step Method

amounts must be between $1,000 and $500,000, the loan interest must be between
3 and 20%, and the loan length must always be between 1 and 35 years.

Although banks are a little secretive about the formulas they use to compute
mortgage loans, we know that they base their computations on a monthly rate,
that can be computed from the annual mortgage rate compounded twice a year.
Loan rate tables show you that

(1 + Monthly Rate)12y = (1 + Annual Rate/2)2y

which leads to

(1 + Monthly Rate)6 = (1 + Annual Rate/2)

or

6 × log(1 + Monthly Rate) = log(1 + Annual Rate/2)

and finally

Monthly Rate = e log(1 + Annual Rate/2)/6 -1

Using this, we can compute the monthly payment.

Monthly Payment = Monthly Rate x Loan x (1 + Monthly Rate)12y

(1 + Monthly Rate)12y - 1

The program will use these formulas to compute and display the monthly
payment of a given mortgage loan and to produce a detailed report of the
payments over the first 5 years if needed.

The output format used will be the following:

Amount of mortgage loan:
Annual interest rate:
Length of mortgage loan (in years):
Monthly payment: 999.99
Do you want a detailed report?
Interest paid in 5 years: 12345.67
5 year balance: 23456.78
Total cost of mortgage loan: 34567.89

The detailed report format will be the following:

Payment# Interest Capital Cum. Int. Balance
1 97.59 44.21 97.59 9955.79
2 97.16 44.65 194.75 9911.14

2–3 Scientific

Solving the Quadratic Equation

The problem you have to solve now is the well-known quadratic equation.
Remember its form?

ax 2 + bx + c = 0

Section 10.9 Level 2 — Getting Organized with Procedures 479

Your program will accept the values of the three coefficients a, b, and c and
compute the roots of the equation. The program will prompt the user for the
three coefficients repeatedly, and stop when the user enters three zeroes for the
coefficients. The program will distinguish between the various solutions and
display the results with an appropriate message: one root, double root, real
roots, complex roots, as well as an error message if coefficients a and b are zero
while c is not.

The output formats will be the following:

Give values of three coefficients:
Contradiction 2.0 = 0
One root = -25.0
Double root = 120.0
Root 1 = -2.0
Root 2 = -1.0
Complex roots = -18.0 +/- 12.4i

10.10 Level 3 — Getting Fancier with Parameters

The third level of problems requires the use of procedures and functions to
manage larger programs and provides practice in how to parameterize them.

3–1. General

Count the Word Occurrences in a Text

We want a program to read a text, to extract the various words from the text,
and to count the number of occurrences of each word. The program will output a
list of all the words in the text in alphabetical order (ascending or descending)
with their number of occurrences. A word is defined to be a sequence of
characters between two separators, and the separators will include all
punctuation signs, as well as all available special characters. In fact, a
separator will be any character other than a letter (upper case or lower case) or
a digit.

The program will prompt the user for the name of a text file to use as input file.
It will read the entire file, separate the words and count their occurrences, and
finally display the words in alphabetical order, one per line, with their
corresponding number of occurrences.

The input and output formats can be summed up by the following messages and
examples of output.

Give the name of your text file:
In what order do you want the word list? (A/D):
Number of occurrences for the 96 words found in
fffff.ttt

Word : Occurrences
A 18

480 Chapter 10 The Seven Step Method

At 1
Words table is full, no room for xxxxxx

3–2. Business

Processing Personnel Data

Your chum Arnie, from the personnel department of the good old municipal
services, has just given you a frantic call: he needs, right now, all sorts of
employee lists, and his information systems department just told him it would
take three to six months for them to produce a feasibility study for a needed
program to read, sort, and display data on municipal employees. Obviously, he
will get nowhere with his own services, and has the OK to contract out to you
the writing of this program.

Further prodding on your part elicits a little more information on the program:
it must be interactive; it must run on a Macintosh; it will be used by his boss in
the personnel department; it should be able to read various employee files; and
it should be able to sort employee records extremely quickly by name, by age, or
by seniority, and to display these records in four different simple formats. The
employee files all have the same format: one line per employee with family
name, first name, employee number, hiring date, birth year, and various
informations including the social security number.

The program will display a short menu to the user, and read and validate the
user's choice. The menu format will be the following:

1. Read data from file
2. Sort by age
3. Sort by name
4. Sort by seniority
5. Display name and birth year
6. Display name and first name
7. Display name and hired date
8. Display all information
9. Exit program
Please enter your selection and press return:

The program will have to make sure that operations 2 to 8 are not usable until
operation 1 has been used at least once. The program will display the
following message:

No data has been read yet

After each sort, a message will be displayed:

Employees sorted by age
Employees sorted by name
Employees sorted by seniority

The output formats for operations 5, 6, 7, and 8 are quite simple: the employee
name will be followed by a single value, or all the values:

Berger 1956
Berger Antonia

Section 10.10 Level 3 — Getting Fancier with Parameters 481

Berger 710221
Berger Antonia BERA0 710221 1956 198-39-9739 Middle-management

The personnel department foresees a new format for employee records which
would double or even triple their size. The sorting of employee records must be
designed so that the change in size of the employee records does not unduly
affect the sorting time (a variation of Count Sort —see Chapter 9— seems in
order).

In order to read in the employee data, the program will prompt the user in the
following manner:

Please give name of employees file:

Once the data have been read, a message indicating the number of records read
will be displayed:

Number of employee records read: 99

In the case of a large file, the program will check that the data can be stored in
the employees table; if not, it will display the following message and skip the
rest of the file.

File too large, input truncated

3–3. Scientific

Plotting a Function

In this graphic era, we want to be able to plot a given function y = f(x) between
two values of x. The plot of such a function will be graphical and will appear
in the usual manner, that is, assuming a vertical y axis and a horizontal x axis.
We want the plot to show parallels to the x and y axis for the minimum values
of x and of y, with some indication of the x and y values. We also want the user
to be able to plot any function of one variable, and to define the range of x
values for the plot, as well as the size of the plot.

A typical output would look like Figure 10.7.

482 Chapter 10 The Seven Step Method

Figure 10.7. Plot for y = x

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| |
|

0.00

0.50

1.00

1.50

0.00 1.00 2.00

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Section 10.10 Level 4 — Getting Your Wings with Units 483

10.11 Level 4 — Getting Your Wings with Units

The fourth level of problems requires the creation and use of separately
compilable units to construct a complete program.

4–1 General

The Kwic Index

Suppose we were interested in programming languages and looking for books or
papers on the subject. It will be easy to find promising titles in a listing
provided that the authors have been considerate enough to put the words
Programming Language at the beginning of the title. Thus the book
Programming Language Concepts will be where we expect to find it in the
alphabetical ordering. However, the paper A Comparative Study of
Programming Languages will be in another part of the listing and, unless we
think of looking under Comparative , we will be unlikely to find it without a
sequential scan through the catalogue—something that rapidly exceeds our
attention span making us very likely to miss items.

The Key Word in Context (KWIC) index tries to solve this problem by listing
each title several times, once for each of its keywords—“noise words” such as a,
the, and, of, and so on are not counted as keywords. We might define a KWIC
index as being produced by taking each title, generating circularly shifted
copies, each with a different keyword at the beginning and then sorting the
newly generated list alphabetically. A circularly shifted copy is formed by
moving one or more words from the beginning of the title to the end. The title A
Comparative Study of Programming Languages would appear four times as:

Comparative Study of Programming Languages. A
Study of Programming Languages. A Comparative
Programming Languages. A Comparative Study of
Languages. A Comparative Study of Programming

This is not very easy to read and in its final form of the index, part of the
listing might be rearranged as:

A Comparative Study of Programming Languages

 Programming Language Concepts

 Programming Language Landscape:...

 Programming Language Structures

 A Comparison of Programming Languages for Softw...

 Programming Languages: Design a...

 Principles of Programming Languages: Design, ...

...ion to the Study of Programming Languages

 Concepts of Programming Languages

 Concurrency and Programming Languages

 Fundamentals of Programming Languages

484 Chapter 10 The Seven Step Method

...cture and Design of Programming Languages

where the titles have been aligned on the word that is being used for the
alphabetical ordering and sufficient other words are provided to give some
context. Also appearing would be a citation to allow the reader to find the
work.

The KWIC program accepts an ordered set of lines, each line is an ordered set of
words, and each word is an ordered set of characters. Each line consists of two
parts, a Title-Part and a Reference-Part. The Reference-Part is enclosed in
brackets. It is assumed that brackets never occur in either the Title-Part or the
Reference-Part. An example of input data is:

Software Engineering with Ada [Booch 1983]
The Mythical Man Month [Brooks 1975]
An Overview of JSD [Cameron 1986]
Nesting in Ada is for the Birds [Clark et al. 1980]
Object Oriented Programming [Cox 1986]
Social Processes and Proofs of Theorems and Programs

[DeMillo et al. 1979]
Programming Considered as a Human Activity [Dijkstra 1965]

A Title-Part may be circularly shifted by removing the first word and
appending it at the end of the line to form a new Title-Part. From each line in
the input data, new lines are constructed by appending a copy of the Reference-
Part from the original line to all distinct circularly shifted Title-Parts. The
first word of each such line is the keyword . Those Title-Parts that begin with
the keywords: a, an, and, as, be, by, for, from, in, is, not, of, on, or, that,
the, to, with, and without are ignored. The output of the KWIC program is a
listing of all the titles constructed in this way and displayed so that the title
is presented with its original word ordering with all keywords lined up
vertically in the center of the page. Where a line must be truncated at the
beginning or end in order to fit on the printed line with the keyword aligned the
truncation is shown with an ellipsis, “...”.

4–2 Business

Information Retrieval

The board of directors of the Piranha Club, of which you are a member, have
commissioned you to implement a small data base system for the members of the
club. Members will give information that will be stored in the system and will
be retrieved for the benefit of other members. Members’ data will be kept in a
permanent file and the system will allow the addition of new members, as well
as the deletion of departing members, and also the updating of member
information. Some security checks will be implemented in the system by
keeping a password with each member's data, and requiring that password for
certain operations. The password will be kept in the system in a ciphered form
in order to improve system security. The system will display a menu of the

Section 10.10 Level 4 — Getting Your Wings with Units 485

possible operations to the user who will then choose the desired operation. On
program exit, the members table will be automatically stored in a new file.

After discussions with the board of directors, the following formats are agreed
upon. The format of the menu will be the following:

1. Add a new member
2. Check membership
3. Get a member's name
4. Get a member's address
5. Get a member's phone number
6. Get information on a member
7. Change member's password
8. Remove member
9. Show member list
10. Exit program
Please enter your selection and press return:

The various messages of the query system will be the following:

Initialization from a data file

Initializing members table. Give file name:

Addition of a new member

Give ID of employee to add:
Give member name:
Give member address:
Give member phone number:
Give member password:
Member added

Checking a membership

Give ID of employee to look for:
XXXXXXX is a member
XXXXXXX is not a member

Information query on a member

Give ID of employee:
The member's name is:
The member's address is:
The member's phone number is:
Sorry but this ID does not belong to a member.

Changing a member’s password

Give ID whose password must be changed:
Give new password:
Give your old password:
Give new password again:
Password has been changed
Wrong password.
You don't seem to be sure.
Password has not been changed

486 Chapter 10 The Seven Step Method

Removal of a member

Give ID of employee to eliminate:
Give Password of member you want to eliminate:
Wrong password, member could not be removed
Member removed

Display of the member table

Give administrative password:
Sorry but you do not have access to the list.

Copy of members table into a data file at end of execution

Saving members table. Give file name:

4–3 Scientific

Complex Algebra

Several methods are known to find the roots of an equation. One of the most
efficient of these methods is the Newton-Raphson method, developed by Isaac
Newton around 1685, and refined by Joseph Raphson in 1690. We can design a
Pascal program to apply the method without much difficulty. However, now
that we have reached level 4, we can be a little more ambitious. We will
design and implement a Pascal program to apply the Newton-Raphson method
to find the root of a polynomial equation in x of a given degree whose
coefficients are complex numbers.

The program will read in the degree of the equation, the corresponding
coefficients, the requested accuracy, and the starting point for the Newton-
Raphson method; it will apply the method and return a result for the root or an
explicative message when the root can not be computed. The program will
repeatedly prompt the user for data, and stop when the user wants to stop.

The following is the format of the dialogue messages that will be used by the
program.

Give the degree of the polynomial:
Give the polynomial coefficients defining the function
Coefficient of degree 9 ; real part:
Coefficient of degree 9 ; imaginary part:
Indicate the precision you wish to achieve:
Indicate the maximum number of iterations:
Now give the starting value for x(real part):
Now give the starting value for x(imaginary part):
The root is 9.9999999999 + 9.9999999999i
Newton-Raphson took 9 iterations
For a precision of 9.999999E-09
More?

	Table of Contents
	Preface
	Chapter 1 - An Overview
	1.1 Preview
	1.2 Introduction to Programming Practice: Pascal
	1.3 Hardware: Computers and Peripherals
	1.4 The World of Programming
	1.5 Pascal
	1.6 Communicating to Computers
	1.7 Chapter 1 Review

	Chapter 2 - Computing: A Short Survey of Some Applications
	2.1 Preview
	2.2 Software and Applications
	2.3 Application Software
	2.4 Chapter 2 Review

	Chapter 3 - Programming Language: Pascal
	3.1 Preview
	3.2 Languages
	3.3 Pascal Programs
	3.4 More Example Programs
	3.5 Chapter 3 Review
	3.6 Chapter 3 Problems
	3.7 Chapter 3 Programming Project

	Chapter 4 - Data and Actions
	4.1 Preview
	4.2 Programming: Data and Actions
	4.3 More Programs: A Top View of Pascal
	4.4 Programming Style
	4.5 Layout of Programs
	4.6 More Programs: Continued
	4.7 A Foretaste o fProcedures
	4.8 Chapter 4 Review
	4.9 Chapter 4 Problems
	4.10 Chapter 4 Programming Projects

	Chapter 5 - The Four Fundamental Forms in Pascal
	5.1 Preview
	5.2 The Sequence Form in Pascal
	5.3 Conditions in Pascal
	5.4 Repetition Form: The WHILE statement
	5.5 WHILES, REALS, and Errors
	5.6 Selection Forms in Pascal
	5.7 More Selections: Combinations of Selection Forms
	5.8 Select Form: Handling Many Branches
	5.9 Awkward Nests: General Nesting
	5.10 Subprograms: Using Subprograms as Black Boxes
	5.11 Binary Logic Library: BitLib
	5.12 Chapter 5 Review
	5.13 Chapter 5 Problems
	5.14 Chapter 5 Programming Problems
	5.15 Chapter 5 Programming Projects

	Chapter 6 - Pascal with Bigger Blocks
	6.1 Preview
	6.2 Conglomerations
	6.3 More Data
	6.4 More Repetition Forms
	6.5 The For Loop
	6.6 Character Type
	6.7 Boolean Type in Pascal
	6.8 More Types
	6.9 Programmer Defined Types
	6.10 Strings in Pascal
	6.11 Simple Files in Pascal
	6.12 Modification of Programs
	6.13 Programming Style
	6.14 Errors in Programming
	6.15 Debugging, Testing, Proving
	6.16 Chapter 6 Review
	6.17 Chapter 6 Problems
	6.18 Chapter 6 Programming Problems
	6.19 Chapter 6 Programming Projects

	Chapter 7 - Better Blocks: Procedures and Libraries
	7.1 Preview
	7.2 Procedures in Pascal
	7.3 Syntax of Subprogram Forms
	7.4 Passing Parameters
	7.5 Procedures with Char, Boolean and Other Types
	7.6 Procedures with User-Defined types
	7.7 More on Passing Parameters
	7.8 Nested Procedures
	7.9 Functions in Pascal
	7.10 SubPrograms: Variations on a theme
	7.11 Recursion in Pascal
	7.12 Libraries in Pascal
	7.13 Function and Procedure Types
	7.14 Top-Down Development
	7.15 Chapter 7 Review
	7.16 Chapter 7 Problems
	7.17 Chapter 7 Programming Problems
	7.18 Chapter 7 Programming Projects

	Chapter 8 - Pascal Data Structures
	8.1 Preview
	8.2 Arrays in Pascal
	8.3 Two Dimensional Arrays in Pascal
	8.4 N-Dimensional Arrays
	8.5 Records in Pascal
	8.6 Sets in Pascal
	8.7 Dynamic Variables and Pointers in Pascal
	8.8 Chapter 8 Review
	8.9 Chapter 8 Problems
	8.10 Chapter 8 Programming Projects

	Chapter 9 - Algorithms to Run With
	9.1 Preview
	9.2 Sorting Algorithms
	9.3 Improving sorts (Optional)
	9.4 Searching
	9.5 Implementing Stacks and Queues
	9.6 Trees
	9.7 Chapter 9 Review
	9.8 Chapter 9 Problems
	9.9 Chapter 9 Programming Projects

	Chapter 10 - The Seven Step Method
	10.1 Method: Part II
	10.2 Design Stage: Acme Payroll System
	10.3 Implementation Stage: Acme Payroll System
	10.4 An Advanced Case Study: Building a Text Index
	10.5 Chapter 10 Review
	10.6 Chapter 10 Programming Problems
	10.7 Chapter 10 Programming Projects
	10.8 Level 1 - Getting Started
	10.9 Level 2 - Getting Organized with Procedures
	10.10 Level 3 - Getting Fancier with Parameters
	10.11 Level 4 - Getting Your Wings with Units

