
ptg8126863

ptg8126863

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Julie C. Meloni

SamsTeachYourself

Allin

One

PHP,
MySQL® and
Apache

ptg8126863

Sams Teach Yourself PHP, MySQL® and Apache All in One
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33543-3
ISBN-10: 0-672-33543-3

Library of Congress Cataloging-in-Publication Data

Meloni, Julie C.

Sams teach yourself PHP, MySQL and Apache : all in one / Julie C.

Meloni.

p. cm.

Includes index.

ISBN-13: 978-0-672-33543-3 (pbk. w/cd)

ISBN-10: 0-672-33543-3

1. Web site development. 2. PHP (Computer program language) 3.

Apache (Computer file : Apache Group) 4. MySQL (Electronic resource)

I. Title.

TK5105.888.M45 2012

005.13--dc23

2012016353

Printed in the United States of America

First Printing May 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor
Songlin Qiu

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Keith Cline

Indexer
Heather McNeill

Proofreader
Paula Lowell

Technical Editor
Timothy Boronczyk

Publishing
Coordinator
Vanessa Evans

Media Producer
Dan Scherf

Designer
Gary Adair

Compositor
Studio Galou, LLC

ptg8126863

Contents at a Glance

Introduction. ... 1

PART I: Getting Up and Running

1 Installation QuickStart Guide with XAMPP 5

2 Installing and Configuring MySQL. ... 15

3 Installing and Configuring Apache 37

4 Installing and Configuring PHP . .. 59

PART II: PHP Language Structure

5 The Building Blocks of PHP 75

6 Flow Control Functions in PHP . .. 99

7 Working with Functions. ... 119

8 Working with Arrays . .. 139

9 Working with Objects . .. 149

PART III: Getting Involved with the Code

10 Working with Strings, Dates, and Time 159

11 Working with Forms. .. 189

12 Working with Cookies and User Sessions 213

13 Working with Files and Directories . .. 229

14 Working with Images . .. 261

PART IV: PHP and MySQL Integration

15 Understanding the Database Design Process . .. 283

16 Learning Basic SQL Commands 297

17 Using Transactions and Stored Procedures in MySQL 349

18 Interacting with MySQL Using PHP . .. 357

ptg8126863

PART V: Basic Projects

19 Managing a Simple Mailing List 373

20 Creating an Online Address Book 387

21 Creating a Simple Discussion Forum. .. 417

22 Creating an Online Storefront . .. 437

23 Creating a Shopping Cart Mechanism 451

24 Creating a Simple Calendar . .. 467

25 Restricting Access to Your Applications 491

26 Logging and Monitoring Web Server Activity . .. 509

27 Application Localization. ... 527

28 Working with XML and JSON . .. 541

PART VI: Administration and Fine-Tuning

29 Apache Performance Tuning and Virtual Hosting . .. 555

30 Setting Up a Secure Web Server 573

31 Optimizing and Tuning MySQL 589

32 Performing Software Upgrades . .. 605

33 Using Application Frameworks 611

Index . .. 619

ptg8126863

Table of Contents
Introduction 1

PART I: Getting Up and Running

CHAPTER 1: Installation QuickStart Guide with XAMPP 5

Using Third-Party Installation Packages . .. 5

Installing XAMPP on Linux/UNIX 6

Installing XAMPP on Windows . .. 8

Installing XAMPP on Mac OS X 11

Securing XAMPP . .. 13

Troubleshooting . .. 14

CHAPTER 2: Installing and Configuring MySQL 15

Current and Future Versions of MySQL . .. 15

How to Get MySQL 16

Installing MySQL on Linux/UNIX 16

Installing MySQL on Mac OS X . .. 18

Installing MySQL on Windows . .. 20

Troubleshooting Your Installation 26

Basic Security Guidelines 27

Introducing the MySQL Privilege System 28

Summary 33

Q&A 34

Workshop 34

CHAPTER 3: Installing and Configuring Apache 37

Current and Future Versions of Apache 37

Choosing the Appropriate Installation Method 38

Installing Apache on Linux/UNIX 39

Installing Apache on Mac OS X 42

Installing Apache on Windows . .. 42

Apache Configuration File Structure . .. 45

Apache Log Files. .. 50

Apache-Related Commands . .. 51

Starting Apache for the First Time 53

ptg8126863

Troubleshooting . .. 55

Summary 56

Q&A 56

Workshop 57

CHAPTER 4: Installing and Configuring PHP 59

Current and Future Versions of PHP . .. 59

Building PHP on Linux/UNIX with Apache . .. 60

Installing PHP on Mac OS X . .. 63

Installing PHP on Windows . .. 63

php.ini Basics. .. 65

Testing Your Installation 65

Getting Installation Help 66

The Basics of PHP Scripts 67

Summary 73

Q&A 73

Workshop 74

PART II: PHP Language Structure

CHAPTER 5: The Building Blocks of PHP 75

Variables . .. 75

Data Types 78

Operators and Expressions 85

Constants 94

Summary 96

Q&A 96

Workshop 96

CHAPTER 6: Flow Control Functions in PHP 99

Switching Flow . .. 99

Loops . .. 105

Code Blocks and Browser Output 114

Summary. ... 116

Q&A . .. 116

Workshop 116

vi Sams Teach Yourself PHP, MySQL and Apache All in One

ptg8126863

CHAPTER 7: Working with Functions 119

What Is a Function? . .. 119

Calling Functions 120

Defining a Function. .. 121

Returning Values from User-Defined Functions 124

Variable Scope . .. 125

Saving State Between Function Calls with the static Statement 128

More About Arguments 130

Testing for the Existence of a Function 133

Summary. ... 135

Q&A . .. 135

Workshop 136

CHAPTER 8: Working with Arrays 139

What Are Arrays? 139

Creating Arrays 140

Some Array-Related Constructs and Functions 144

Summary. ... 146

Q&A . .. 146

Workshop 147

CHAPTER 9: Working with Objects 149

Creating an Object . .. 150

Object Inheritance. ... 155

Summary. ... 157

Q&A . .. 157

Workshop 157

PART III: Getting Involved with the Code

CHAPTER 10: Working with Strings, Dates, and Time 159

Formatting Strings with PHP . .. 160

Investigating Strings in PHP . .. 169

Manipulating Strings with PHP 173

Using Date and Time Functions in PHP. ... 179

Other String, Date, and Time Functions 186

Contents vii

ptg8126863

Summary. ... 186

Workshop 186

CHAPTER 11: Working with Forms 189

Creating a Simple Input Form . .. 189

Accessing Form Input with User-Defined Arrays 191

Combining HTML and PHP Code on a Single Page . .. 194

Using Hidden Fields to Save State. ... 197

Redirecting the User . .. 198

Sending Mail on Form Submission . .. 200

Creating the Form 201

Creating the Script to Send the Mail . .. 202

Working with File Uploads . .. 206

Summary. ... 210

Q&A . .. 210

Workshop 211

CHAPTER 12: Working with Cookies and User Sessions 213

Introducing Cookies . .. 213

Setting a Cookie with PHP . .. 215

Deleting a Cookie with PHP . .. 217

Session Function Overview . .. 217

Starting a Session 218

Working with Session Variables 219

Destroying Sessions and Unsetting Variables . .. 223

Using Sessions in an Environment with Registered Users . .. 224

Summary. ... 225

Q&A . .. 226

Workshop 226

CHAPTER 13: Working with Files and Directories 229

Including Files . .. 229

Using include_once . .. 233

Validating Files . .. 234

Creating and Deleting Files . .. 238

Opening a File for Writing, Reading, or Appending . .. 238

viii Sams Teach Yourself PHP, MySQL and Apache All in One

ptg8126863

Reading from Files. ... 239

Writing or Appending to a File 245

Working with Directories 248

Opening Pipes to and from Processes Using popen() . .. 251

Running Commands with exec() 254

Running Commands with system() or passthru() . .. 255

Summary. ... 257

Q&A . .. 257

Workshop 258

CHAPTER 14: Working with Images 261

Understanding the Image-Creation Process . .. 261

Necessary Modifications to PHP 262

Drawing a New Image . .. 263

Modifying Existing Images . .. 271

Image Creation from User Input 273

Using Images Created by Scripts 278

Summary. ... 280

Q&A . .. 281

Workshop 281

PART IV: PHP and MySQL Integration

CHAPTER 15: Understanding the Database Design Process 283

The Importance of Good Database Design . .. 283

Types of Table Relationships . .. 284

Understanding Normalization . .. 289

Following the Design Process . .. 292

Summary. ... 293

Q&A . .. 294

Workshop 294

CHAPTER 16: Learning Basic SQL Commands 297

Learning the MySQL Data Types 298

Learning the Table-Creation Syntax . .. 301

Using the INSERT Command . .. 302

Contents ix

ptg8126863

Using the SELECT Command. .. 304

Using WHERE in Your Queries . .. 308

Selecting from Multiple Tables . .. 310

Using the UPDATE Command to Modify Records . .. 316

Using the REPLACE Command 319

Using the DELETE Command . .. 320

Frequently Used String Functions in MySQL . .. 322

Using Date and Time Functions in MySQL . .. 331

Summary. ... 343

Q&A . .. 345

Workshop 346

CHAPTER 17: Using Transactions and Stored Procedures in MySQL 349

What Are Transactions? 349

What Are Stored Procedures?. .. 353

Summary. ... 355

Q&A . .. 355

Workshop 356

CHAPTER 18: Interacting with MySQL Using PHP 357

MySQL or MySQLi Functions? . .. 357

Connecting to MySQL with PHP. ... 358

Working with MySQL Data . .. 361

Summary. ... 369

Q&A . .. 370

Workshop 370

PART V: Basic Projects

CHAPTER 19: Managing a Simple Mailing List 373

Developing the Subscription Mechanism 374

Developing the Mailing Mechanism . .. 381

Summary. ... 384

Q&A . .. 385

Workshop 385

x Sams Teach Yourself PHP, MySQL and Apache All in One

ptg8126863

CHAPTER 20: Creating an Online Address Book 387

Planning and Creating the Database Tables . . 387

Creating an Include File for Common Functions . 390

Creating a Menu.. 391

Creating the Record-Addition Mechanism . 392

Viewing Records .. 398

Creating the Record-Deletion Mechanism . 404

Adding Subentries to a Record . . 406

Summary.. 414

Q&A . 414

Workshop . . 414

CHAPTER 21: Creating a Simple Discussion Forum
417Designing the Database Tables .. 417

Creating an Include File for Common Functions . 418

Creating the Input Forms and Scripts . . 419

Displaying the Topic List . . 423

Displaying the Posts in a Topic .. 426

Adding Posts to a Topic .. 430

Summary.. 433

Q&A . 434

Workshop . . 434

CHAPTER 22: Creating an Online Storefront 437

Planning and Creating the Database Tables . . 437

Displaying Categories of Items .. 441

Displaying Items .. 445

Summary.. 448

Q&A . 448

Workshop . . 448

CHAPTER 23: Creating a Shopping Cart Mechanism
451

Planning and Creating the Database Tables . . 451

Integrating the Cart with Your Storefront . 453

Payment Methods and the Checkout Sequence.. 462

Contents xi

ptg8126863

Summary. ... 465

Q&A . .. 465

Workshop 465

CHAPTER 24: Creating a Simple Calendar 467

Building a Simple Display Calendar . .. 467

Creating a Calendar Library . .. 483

Summary. ... 489

Q&A . .. 489

Workshop 489

CHAPTER 25: Restricting Access to Your Applications 491

Authentication Overview 491

Apache Authentication Module Functionality 493

Using Apache for Access Control 497

Combining Apache Access Methods . .. 500

Limiting Access Based on HTTP Methods. ... 501

Restricting Access Based on Cookie Values . .. 501

Summary. ... 507

Q&A . .. 507

Workshop 508

CHAPTER 26: Logging and Monitoring Web Server Activity 509

Standard Apache Access Logging 509

Standard Apache Error Logging 515

Managing Apache Logs 517

Logging Custom Information to a Database . .. 519

Summary. ... 523

Q&A . .. 524

Workshop 524

CHAPTER 27: Application Localization 527

About Internationalization and Localization . .. 527

About Character Sets . .. 528

Environment Modifications . .. 529

Creating a Localized Page Structure . .. 531

xii Sams Teach Yourself PHP, MySQL and Apache All in One

ptg8126863

Localizing Your Application with gettext() . 536

Summary.. 537

Q&A . 538

Workshop . . 538

CHAPTER 28: Working with XML and JSON
541What Is XML?. . 541

Accessing XML in PHP Using DOM Functions .. 544

Accessing XML in PHP Using SimpleXML Functions . . 546

Working with JSON . 549

Summary.. 553

Q&A . 553

Workshop . . 554

PART VI: Administration and Fine-Tuning

CHAPTER 29: Apache Performance Tuning and Virtual Hosting 555

Performance and Scalability Issues. 555

Load Testing with ApacheBench . . 559

Proactive Performance Tuning. . 561

Preventing Abuse . . 563

Implementing Virtual Hosting . . 564

Summary.. 569

Q&A . 570

Workshop . . 571

CHAPTER 30: Setting Up a Secure Web Server 573

The Need for Security . . 573

The SSL Protocol .. 574

Obtaining and Installing SSL Tools . . 579

Managing Certificates . . 582

SSL Configuration . . 585

Summary.. 586

Q&A . 586

Workshop . . 586

Contents xiii

ptg8126863

CHAPTER 31: Optimizing and Tuning MySQL 589

Building an Optimized Platform 589

Benchmarking Your Database Server . .. 590

MySQL Startup Options 591

Optimizing Your Table Structure 593

Optimizing Your Queries 594

Using the FLUSH Command . .. 595

Using the SHOW Command . .. 596

Summary. ... 603

Q&A . .. 603

Workshop 604

CHAPTER 32: Performing Software Upgrades 605

Staying in the Loop . .. 605

Upgrading MySQL 607

Upgrading Apache . .. 608

Upgrading PHP . .. 609

Summary. ... 610

Workshop 610

CHAPTER 33: Using Application Frameworks 611

Understanding Application Frameworks 611

Using the MVC Pattern 612

Installing and Using PHP Application Frameworks . .. 614

Summary. ... 617

Workshop 617

Activities 618

Index 619

xiv Sams Teach Yourself PHP, MySQL and Apache All in One

ptg8126863

About the Author
Julie C. Meloni is a technical consultant who has been developing web-based

applications since the Web first saw the light of day. She has authored numerous

books and articles on web-based programming and scripting languages and database

topics, and you can find translations of her work in 18 different languages. She blogs

at thickbook.com and nerdtripping.com—the latter reserved for tips and tricks for

traveling while nerdy.

Acknowledgments
The Apache Software Foundation, the PHP Group, and MySQL AB deserve much

more recognition than they ever get for creating these super products that drive the

vast majority of the Web.

Although this book is several editions removed from the original text by Daniel Lopez

(author of Sams Teach Yourself Apache 2 in 24 Hours) and Matt Zandstra (author of

Sams Teach Yourself PHP in 24 Hours), this book would not exist without their work oh

so many years ago.

ptg8126863

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We

value your opinion and want to know what we’re doing right, what we could do bet-

ter, what areas you’d like to see us publish in, and any other words of wisdom you’re

willing to pass our way.

You can email or write directly to let us know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book,

and that due to the high volume of mail we receive, we might not be able to reply to every

message.

When you write, please be sure to include this book’s title and author as well as your

name and phone number or email address.

E-mail: feedback@samspublishing.com

Mail: Reader Feedback

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access

to any updates, downloads, or errata that might be available for this book.

ptg8126863

Introduction

Welcome to Sams Teach Yourself PHP, MySQL, and Apache All in One, Fifth Edition. I’m

happy to report that the PHP language and its community of developers and users

continues to grow every day—hence the need for a refresh of this book.

Since the previous edition of this book, the “end of life” of PHP 4 finally set in; with

the help of a GoPHP5 initiative, web hosting providers and application developers

migrated their services and code away from PHP 4–specific features and coding prac-

tices and into the world of PHP 5—full of speed and an even greater feature set. As

with the previous edition, all the code in this edition is based on the latest version of

PHP available at the time of this writing (5.4.0, in this case).

Some of you might have heard of PHP 6 or have seen books touting PHP 6 as the

core language used. Well, a version of the language called PHP 6 never material-

ized—the functionality planned for a version 6 release was added to PHP 5.3 and

PHP 5.4. So, have no fear; you’re not missing anything if you hear PHP 6 and can-

not find anything about it online or at the PHP.net website.

Over the course of this book, you learn the concepts necessary for configuring

and managing the Apache web server, the basics of programming in PHP, and the

methods for using and administering the MySQL relational database system. The

overall goal of the book is to provide you with the foundation you need to under-

stand how seamlessly these technologies integrate with one another and to give you

practical knowledge of how to integrate them into functioning websites and web

applications. This book should be a first step—not your only step—to more

advanced site development.

Who Should Read This Book?
This book is geared toward individuals who possess a general understanding of the

concepts of working in a web-based development environment, be it Linux/UNIX,

Windows, or Mac OS X. Installation and configuration instructions assume that you

have familiarity with your operating system and the basic methods of building (on

Linux/UNIX systems) or installing (on Windows and Mac OS X systems) software.

ptg8126863

The lessons that delve into programming with PHP assume no previous knowledge

of the language. However, if you have experience with other programming lan-

guages, such as ASP (Active Server Pages), JSP (JavaServer Pages), Ruby, or Perl, you

will find the going much easier because of your familiarity with such programming

elements as variables, control structures, functions, objects, and the like. Similarly, if

you have worked with other databases, such as Oracle or Microsoft SQL Server, you

already possess a solid foundation for working through the MySQL-related lessons.

The only real requirement is that you already understand static web content cre-

ation with HTML. If you are just starting out in the world of web development, you

will still be able to use this book, but you should consider working through an HTML

tutorial. If you are comfortable creating basic pages, you will be fine.

How This Book Is Organized
This book is divided into six parts, corresponding to particular topic groups. You

should read the chapters within each part one right after another, with each chapter

building on the information found in those before it:

. Part I, “Getting Up and Running,” provides a quick-start guide to installation

and walks you through the installation and configuration of MySQL, Apache,

and PHP in depth. You need to complete at least one version of these instruc-

tions—either the quick-start installation or the longer instructions—before

moving on unless you already have access to a working installation of these tech-

nologies through a hosting provider. Even if you do not need to install and con-

figure MySQL, Apache, and PHP in your development environment, you

should still skim these lessons so that you understand the basics of their inter-

action.

. Part II, “PHP Language Structure,” is devoted to teaching you the basics of the

PHP language, including structural elements such as arrays and objects. The

examples will get you in the habit of writing code, uploading it to your server,

and testing the results.

. Part III, “Getting Involved with the Code,” consists of chapters that cover

intermediate-level application development topics, including working with

forms and files, restricting access, and completing other small projects

designed to introduce a specific concept.

2 Sams Teach Yourself PHP, MySQL®, and Apache All in One

ptg8126863

. Part IV, “PHP and MySQL Integration,” contains chapters devoted to working

with databases in general, such as database normalization, as well as using

PHP to connect to and work with MySQL. Included is a basic SQL primer,

which also includes MySQL-specific functions and other information.

. Part V, “Basic Projects,” consists of chapters devoted to performing a particular

task using PHP and MySQL, integrating all the knowledge gained so far.

Projects include an address book, a discussion forum, and a basic online store-

front, among others. These examples are built in a black-and-white environ-

ment, meaning the aesthetic display is minimal. This allows you to focus on

the programming and logic involved in building the structures rather than

making these items aesthetically pleasing.

. Part VI, “Administration and Fine-Tuning,” is devoted to administering and

tuning Apache and MySQL. It also includes information on virtual hosting

and setting up a secure web server.

If you find that you are already familiar with a topic, you can skip ahead to the

next chapter. However, in some instances, chapters refer to specific concepts learned

in previous chapters, so be aware that you might have to skim a skipped chapter so

that your development environment remains consistent with the book.

At the end of many chapters, a few quiz questions test how well you’ve learned the

material. Additional activities provide another way to apply the information

learned in the chapter and guide you toward using this newfound knowledge in the

next chapter.

About the Book’s Source Code
All the code that appears in listings throughout the chapters is also available on the

accompanying CD-ROM. You may also download the source code bundle from the

author’s website at http://www.thickbook.com/.

Typing the code on your own provides useful experience in making typos, causing

errors, and performing the sometimes mind-numbing task of tracking down errant

semicolons. However, if you want to skip that lesson and just upload the working

code to your website, feel free!

Introduction 3

http://www.thickbook.com/

ptg8126863

Conventions Used in This Book
This book uses different typefaces to differentiate between code and plain English

and to help you identify important concepts. Throughout the chapters, code, com-

mands, and text you type or see onscreen appear in a computer typeface. New

terms appear in italics at the point in the text where they are defined. In addition,

icons accompany special blocks of information:

A Note presents an interesting piece of information related to the current topic.

A Tip offers advice or teaches an easier method for performing a task.

A Caution warns you about potential pitfalls and explains how to avoid them.

4 Sams Teach Yourself PHP, MySQL®, and Apache All in One

NOTE

TIP

CAUTION

ptg8126863

CHAPTER 1

Installation QuickStart
Guide with XAMPP

In case you want to get started quickly, this short chapter steps you through installation

from the all-in-one cross-platform installation package, XAMPP. Then, the next three

chapters explain how to obtain and install MySQL, Apache, and PHP, respectively, from

the Internet so that you can make sure that your versions are up-to-date. In addition,

those next three chapters contain extended explanatory information about each step and

other important information relevant to understanding how these technologies work

together.

You should familiarize yourself with the extended information for each technology in

those next three chapters. However, if you just want to get started working on your local

machine, that’s fine, too.

Using Third-Party Installation Packages
Third-party installation packages are those bundles of programs that are provided by a com-

pany or organization other than the original creator. In this chapter, you learn how to use

the XAMPP installation package to install PHP, MySQL, and Apache simultaneously, on

whichever operating system you are using (Linux/UNIX, Windows, or Mac).

Besides my own experience as an XAMPP user for several years, I selected it for use in this

chapter because of the X in its name: The X indicates it is a cross-platform installation of

AMPP (or Apache, MySQL, PHP, and Perl). (Perl is not a topic of this book, so just consider

it a bonus.)

There are two other very good third-party installation packages for Apache, MySQL, and

PHP that are specific to operating systems:

. WAMP—Installation of Apache, MySQL, and PHP on Windows. See

http://www.wampserver.com/ for more information.

. MAMP—Installation of Apache, MySQL, and PHP on Mac. See

http://www.mamp.info/ for more information.

http://www.wampserver.com/
http://www.mamp.info/

ptg8126863

6 CHAPTER 1: Installation QuickStart Guide with XAMPP

One potential drawback to using third-party installation packages is that the ver-

sion of the core technologies that are bundled together will always be a few revision

versions behind. This happens because of the work that goes into creating and test-

ing the bundle itself, to ensure that no conflicts exist between the latest versions of

the technologies; it also has to go through a quality-assurance process. The upside

of this process, however, is that when you install these technologies using a bundled

installer, the upgrade process requires nothing more than running the new

installer—it takes care of removing and updating all the files for you.

The next three sections describe the basic installation process of XAMPP. You only

need to read the section that applies to your operating system. However, be sure to

read the “Securing XAMPP” at the end of this chapter; it applies to all operating

systems.

Installing XAMPP on Linux/UNIX
Although the following instructions were tested on an Ubuntu Linux system, the

steps are the same for a default installation of all other Linux or commercial UNIX

distributions. Should you encounter unexpected error messages during compilation,

contact your systems administrator or refer to the documentation for your particular

operating system.

If you are using the version of XAMPP included on this book’s CD-ROM, begin as

the superuser (either log in as root or su from a regular system user) and mount the

CD-ROM under /mnt on your filesystem:

mount /dev/cdrom /mnt -t iso9660

Now that you have access to the XAMPP file on the CD-ROM, or if you have down-

loaded the latest version from http://www.apachefriends.org/en/xampp-linux.html,

continue to the specific installation steps.

As the superuser, copy the file from the XAMPP directory on the CD-ROM (or from

your download location) to the /opt directory. Within the /opt directory, extract the

files you have downloaded:

tar xvfz xampp-linux-VERSION-NUMBER.tar.gz -C /opt

The XAMPP version number at the time of this writing is 1.8.0-beta2, so the file-
name is xampp-linux-1.8.0-beta2.tar.gz. Later versions will have a different
filename, so adjust the command accordingly.

NOTE

http://www.apachefriends.org/en/xampp-linux.html

ptg8126863

Installing XAMPP on Linux/UNIX 7

This creates a directory called /opt/lampp, in which XAMPP is installed. To start

XAMPP, first change directories to the new directory:

cd lampp

Issue the following command to start XAMPP (which starts Apache and MySQL):

./lampp start

You will see a message such as this:

Starting XAMPP for Linux 1.8.0...
XAMPP: Starting Apache with SSL (and PHP5)...
XAMPP: Starting MySQL...
XAMPP: Starting ProFTPD...
XAMPP for Linux started.

To test whether the web server is running, open a web browser and enter

http://localhost/xampp/index.php. The menu for the XAMPP service should

display, as shown in Figure 1.1.

FIGURE 1.1
The XAMPP
menu page.

That’s all there is to it; XAMPP has installed Apache, PHP, and MySQL on your

machine, and you can see the status of services and read more information about

it through the links in the left column when viewing http://localhost/xampp/

index.php.

To stop XAMPP and its services, you can issue the following command at any time

from the command line:

/opt/lampp/lampp stop

http://localhost/xampp/index.php
http://localhost/xampp/index.php
http://localhost/xampp/index.php

ptg8126863

8 CHAPTER 1: Installation QuickStart Guide with XAMPP

Be sure to read “Securing XAMPP” at the end of this chapter for more information

about locking down your XAMPP-powered machine (even if it is only for develop-

ment).

Installing XAMPP on Windows
The XAMPP installation file included on the CD-ROM has been tested and is suitable

for Windows operating systems from XP through Windows 7. Earlier versions of

Windows are not supported.

To use the XAMPP installation file from the CD-ROM, first insert the CD-ROM into

your PC; it should play automatically. If it does not, double-click the drive icon for

your CD-ROM under My Computer, and navigate to the directory containing the

XAMPP installer files.

Now that you have access to the XAMPP file on the CD-ROM, or if you have down-

loaded the latest version from http://www.apachefriends.org/en/xampp-

windows.html, double-click the file to launch the wizard-based installer program.

Because of the nuances in the Windows operating system releases, and because
of different security practices and programs that may be installed on Windows
machines, if any of the installation steps do not go smoothly, visit the XAMPP FAQ
for Windows users at http://www.apachefriends.org/en/faq-xampp-windows.html.

You are first asked to select your language; English is the default selection. After

selecting your language and clicking the OK button, you will see the welcome screen

of the installer program, as shown in Figure 1.2.

NOTE

FIGURE 1.2
The XAMPP
installation
main screen.

http://www.apachefriends.org/en/xamppwindows.html
http://www.apachefriends.org/en/xamppwindows.html
http://www.apachefriends.org/en/faq-xampp-windows.html

ptg8126863

Installing XAMPP on Windows 9

The XAMPP version number at the time of writing is 1.7.7, so the installation wiz-
ard displays that number. Later versions will have a different number, but the
process will be similar.

Click the Next button to continue the installation process. As with most wizard-like

installations, you are asked to select an installation location and some installation

options before moving to the next step. The XAMPP installation is no different; you

should leave the default installation location and the default installation options as

marked and click the Next button to move on past each screen. At this point, the

installation process itself happens, as shown in Figure 1.3.

NOTE

FIGURE 1.3
The XAMPP
installation
continues as
the files are
extracted.

When the installation process finishes, the installer alerts you to this status; click the

Finish button to complete the installation. Before the XAMPP installation process

completely closes, it asks whether you want to start the Control Panel for managing

the installed services, as shown in Figure 1.4.

ptg8126863

10 CHAPTER 1: Installation QuickStart Guide with XAMPP

The XAMPP Control Panel, as shown in Figure 1.5, provides you with one-click

access to starting and stopping the Apache and MySQL server processes running on

your machine. If you are running these server processes on your local machine for

development purposes only, you might want to turn them on only when you need

them; the Control Panel allows quick access to do just that.

FIGURE 1.4
The XAMPP
installation is
complete.

FIGURE 1.5
The XAMPP
Control Panel.

To test whether the web server is running, open a web browser and enter

http://localhost/xampp/xampp.php. The menu for the XAMPP service should

display, as shown in Figure 1.6.

http://localhost/xampp/xampp.php

ptg8126863

Installing XAMPP on Mac OS X 11

That’s all there is to it; XAMPP has installed Apache, PHP, and MySQL on your

machine, and you can see the status of services and read more information about it

through the links in the left column when viewing http://localhost/xampp.

Be sure to read “Securing XAMPP” at the end of this chapter for more information

about locking down your XAMPP-powered machine (even if it is only for

development).

Installing XAMPP on Mac OS X
The XAMPP installation file included on the CD-ROM has been tested and is suitable

for Mac OS X 1.4 and later. Earlier versions of Mac OS X are not supported.

To use the XAMPP installation file from the CD-ROM, first insert the CD-ROM into

your Mac; it should play automatically. If it does not, double-click the drive icon for

your CD-ROM and navigate to the directory containing the XAMPP installer files.

Now that you have access to the XAMPP file on the CD-ROM, or if you have down-

loaded the latest version from http://www.apachefriends.org/en/xampp-mac.html,

double-click the DMG image. You will see a screen like that shown in Figure 1.7.

FIGURE 1.6
The XAMPP
menu page.

http://www.apachefriends.org/en/xampp-mac.html
http://localhost/xampp

ptg8126863

12 CHAPTER 1: Installation QuickStart Guide with XAMPP

The XAMPP version number at the time of writing is 1.7.3 for Mac users, so the
installation package displays that number. Later versions will have a different num-
ber, but the process will be similar.

Follow the onscreen instruction to drag the XAMPP folder to the Applications folder.

After the folder and files are copied, you can find a link to the XAMPP Control Panel

in the /Applications/XAMPP folder, as shown in Figure 1.8.

FIGURE 1.7
Instructions for
installing
XAMPP on a
Mac.

NOTE

FIGURE 1.8
Find the link to
the XAMPP
Control Panel.

Double-click this link to start the XAMPP Control Panel, through which you can

start and stop the Apache and MySQL server processes running on your machine. If

you are running these server processes on your local machine for development pur-

poses only, you might want to turn them on only when you need them; the Control

Panel allows quick access to do just that.

To test whether the web server is running, open a web browser and enter

http://localhost/xampp/index.php. The menu for the XAMPP service should

display, as shown in Figure 1.9.

http://localhost/xampp/index.php

ptg8126863

Securing XAMPP 13

That’s all there is to it; XAMPP has installed Apache, PHP, and MySQL on your

machine, and you can see the status of services and read more information about

it through the links in the left column when viewing http://localhost/xampp/

index.php.

Be sure to read “Securing XAMPP,” next, for more information about locking down

your XAMPP-powered machine (even if it is only for development).

Securing XAMPP
The primary purpose of XAMPP is to provide a quick-and-easy installation method

for Apache, MySQL, and PHP within a development environment. One of the trade-

offs for this quick-and-easy installation is that some security settings are left incom-

plete—or, at least, up to the user to determine whether they are important enough

to set.

Using the installation right out of the (virtual) box, the following are some potential

security issues:

. The MySQL administrator user has no password. (You can use a blank

password.)

. MySQL and Apache run as the same user (nobody; relevant for Linux/UNIX

and Mac only).

. Some services are accessible to the network unless you specifically disallow

access through your personal firewall.

FIGURE 1.6
The XAMPP
menu page.

http://localhost/xampp/index.php
http://localhost/xampp/index.php

ptg8126863

14 CHAPTER 1: Installation QuickStart Guide with XAMPP

However, XAMPP provides a utility for each operating system, which you can run

and step through the process of securing your XAMPP system even in a development

environment, as follows:

. On Linux/UNIX, run the utility by entering the following on the command

line:

/opt/lampp/lampp security

. On Windows, open the Security Console by navigating to

http://localhost/xampp/index.php in your web browser and selecting Security

from the navigation menu on the left side.

. On Mac, open a terminal window and enter the following on the command

line:

/Applications/XAMPP/xamppfiles/xampp security

Troubleshooting
The steps in this chapter have been tested with the versions of the software supplied

on the CD-ROM that accompanies this book. If you experience installation prob-

lems, first check that you have followed the steps exactly as given in this chapter.

Then, check the XAMPP website at http://www.apachefriends.org/ for FAQs specific

to this installation package.

If these processes still don’t work and you want to try another all-in-one third-party

installation package, feel free to try WAMP and MAMP (mentioned at the beginning

of this chapter).

You could also try the installations the “long” way, using the extended information

found in the next three chapters. Those chapters provide troubleshooting tips and

links to additional sites that can help you work through your installation issues.

http://localhost/xampp/index.php
http://www.apachefriends.org/

ptg8126863

CHAPTER 2

Installing and Configuring
MySQL

In this chapter, you learn the following:
. How to install MySQL
. Basic security guidelines for running MySQL
. How to work with the MySQL user privilege system

This is the first of three installation-related chapters in which you learn how to set up

your development environment. We tackle the MySQL installation first because on some

systems building the PHP module requires bits of the MySQL installation to be complete

if you’re going to use MySQL with PHP.

Current and Future Versions of MySQL
The installation instructions in this chapter refer to MySQL Community Server 5.5.21, the

current production version of the software. This version number can be read as “revision

number 21 of minor release 5, of the major version 5 of the MySQL server software.”

Revisions and minor releases do not follow a set release schedule. When enhancements or

fixes are added to the code and thoroughly tested, a new version is released with a new

revision or minor version number.

By the time you purchase this book, the version number might have changed to 5.5.22 or

later. If so, read the list at http://dev.mysql.com/doc/refman/5.5/en/news-5-5-x.html for

any installation/configuration process changes. These processes make up the bulk of this

chapter.

http://dev.mysql.com/doc/refman/5.5/en/news-5-5-x.html

ptg8126863

16 CHAPTER 2: Installing and Configuring MySQL

Although it is unlikely that any installation instructions will change between minor

version updates, always check the changelog of software that you install and main-

tain. If a minor version change does occur while you are reading this book but the

changelog notes no installation changes, just make a mental note and substitute

the new version number wherever it appears in the installation instructions and

accompanying figures.

How to Get MySQL
MySQL AB was the name of the company that developed, maintained, and distrib-

uted the MySQL database server; through a series of acquisitions (Sun Microsystems

purchased MySQL AB, and Oracle Corporation purchased Sun Microsystems), data-

base giant Oracle now owns MySQL. However, the MySQL Community Edition of the

software remains open source, is supported by open source developers, and is freely

available on the MySQL website at http://www.mysql.com/. Binary distributions for

all platforms, installer packages for Mac OS X, and RPMs and source code files for

Linux/UNIX platforms are all available.

Linux and Mac OS X distributions usually contain some version or another of the
open source MySQL software, although these are usually several revision or minor
versions behind the current release.

The installation instructions in this chapter are based on the official MySQL 5.5.x

Community Server distribution. You can download all files from http://dev.mysql.com/

downloads/mysql/5.5.html, and you can find all the current versions as of the time

of this writing on the CD included with this book.

Installing MySQL on Linux/UNIX
The process of installing MySQL on Linux/UNIX is straightforward, whether you

use RPMs or install the binaries. If you are installing from RPMs, there are platform-

specific RPMs such as those for SuSE and generic Linux running on different

processor types, such as x86 32- and 64-bit.

For a minimal installation from RPMs, you need two files from the downloads page

at http://dev.mysql.com/downloads/mysql/5.5.html (or obtained from the CD-ROM

that accompanies this book):

NOTE

http://www.mysql.com/
http://dev.mysql.com/downloads/mysql/5.5.html
http://dev.mysql.com/downloads/mysql/5.5.html
http://dev.mysql.com/downloads/mysql/5.5.html

ptg8126863

Installing MySQL on Linux/UNIX 17

. MySQL-server-type-VERSIONNUMBER.PLATFORM.rpm—The MySQL server

. MySQL-client-type-VERSIONNUMBER.PLATFORM.rpm—The standard MySQL

client libraries

To perform a minimal installation from RPMs, type the following at your prompt:

rpm -i MySQL-server-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm

Replace VERSIONNUMBER in the filename with the actual version you downloaded,
and PLATFORM with the short name of the platform you are using. For example,
the current MySQL 5.5 server RPM for generic Linux distributions is MySQL-
server-5.5.21-1.linux2.6.i386.rpm, and the client libraries RPM is MySQL-
client-5.5.21-1.linux2.6.i386.rpm.

For an installation from Debian packages, you need the *.deb file from the down-

loads page at http://dev.mysql.com/downloads/mysql/5.5.html (or obtained from

the CD-ROM that accompanies this book). Then type the following at your prompt:

dpkg -i mysql-VERSION-debian6.0-i686.deb

Another painless (and very common) installation method is to install MySQL from a

binary distribution. This method requires the gunzip and tar utilities to uncompress

and unpack the distribution, and also requires the ability to create groups and users

on the system. The first series of commands in the binary distribution installation

process has you adding a group and a user and unpacking the distribution, as fol-

lows:

groupadd mysql

useradd –r -g mysql mysql

cd /usr/local

tar zxvf /path/to/mysql-VERSION-PLATFORM.tar.gz

Replace VERSION-PLATFORM in the filename with the actual version you
downloaded. For example, the current MySQL 5.5 generic Linux binary is
mysql-5.5.21-1-linux2.6.i386.tar.

Next, the instructions tell you to create a symbolic link with a shorter name:

ln -s mysql-VERSION-PLATFORM mysql

cd mysql

NOTE

NOTE

http://dev.mysql.com/downloads/mysql/5.5.html

ptg8126863

18 CHAPTER 2: Installing and Configuring MySQL

After you unpack them, the README and INSTALL files walk you through the remain-

der of the installation process for the version of MySQL you’ve chosen. In general,

the following series of commands are used:

scripts/mysql_install_db --user=mysql

chown -R root .

chown -R mysql mysql_data

chgrp -R mysql .

bin/mysqld_safe --user=mysql &

You’re now ready to start the MySQL server, so skip ahead in this chapter to the

“Basic Security Guidelines” section to learn how to add passwords and users. If you

experienced any issues with your installation, check the “Troubleshooting Your

Installation” section.

Installing MySQL on Mac OS X
The MySQL installation process for Mac OS X is fairly straightforward—there is an

installation package for Mac OS X. Go to the MySQL downloads page at

http://dev.mysql.com/downloads/mysql/5.5.html and select Mac OS X from the

drop-down list (or use the files from the CD-ROM that accompanies this book).

If you are going to the website, be sure to download the appropriate DMG archive

for your system: either 10.5 or 10.6, and either 32- or 64-bit.

When you have the file, double-click the DMG archive. After you open the DMG

archive, you will see a folder with a few files in it, as shown in Figure 2.1.

FIGURE 2.1
Showing the
contents of the
MySQL DMG
archive.

Double-click the *.pkg file in that folder and follow these installation steps to

complete the process:

http://dev.mysql.com/downloads/mysql/5.5.html

ptg8126863

Installing MySQL on Mac OS X 19

1. The MySQL installer launches automatically, as shown in Figure 2.2. Click

Continue to move to the next step.

FIGURE 2.2
The MySQL
Installer for
the Mac has
started.

2. The next few screens contain general information regarding installation and

the MySQL license. Read these screens and click Continue to move through

them.

3. After stepping through the information and licensing screens, you must

select an installation destination. Select the appropriate drive, as shown in

Figure 2.3, and then click the Continue button.

FIGURE 2.3
Select an instal-
lation location.

4. The next screen verifies your installation location selection and requires you to

click the Install button to continue. At this point, you might be prompted to

ptg8126863

20 CHAPTER 2: Installing and Configuring MySQL

enter the administrator username and password before the installation process

continues. When it continues, let the process run until you see that the instal-

lation is complete, as shown in Figure 2.4.

FIGURE 2.4
MySQL has
been installed.

Also included in the installation package is the MySQL Startup Item installer. If you

want MySQL to start automatically at system startup, install this additional pack-

age. Installation of the MySQL Startup Item follows the standard installation

method just described: Double-click the *.pkg file, select a destination disk, and

allow the installation process to run to completion. After installing the MySQL

Startup Item, use the following command in a terminal window to start MySQL:

sudo /Library/StartupItems/MySQLCOM/MySQLCOM start

When attempting to start MySQL, you might be asked to enter your administrator

password. After you do so, you can press Ctrl+D to exit the shell once MySQL has

started.

After completing the installation steps in this section, you can skip to the “Basic

Security Guidelines” section later in this chapter. If you experienced any issues with

your installation, check the “Troubleshooting Your Installation” section.

Installing MySQL on Windows
The MySQL installation process on Windows uses a standard Microsoft Windows

Installer (MSI) file to walk you through the installation and configuration of MySQL

on your Windows XP, Windows Server 2003, Windows Vista, or Windows 7 machine.

Go to the MySQL downloads page at http://dev.mysql.com/downloads/mysql/

5.5.html and select the Windows option from the drop-down menu. Download the

http://dev.mysql.com/downloads/mysql/5.5.html
http://dev.mysql.com/downloads/mysql/5.5.html

ptg8126863

Installing MySQL on Windows 21

Windows MSI Installer file for your system, either 32- or 64-bit. When this file has

been downloaded (or copied from the CD-ROM for this book), double-click it to

begin the installation process.

The following steps detail the installation of MySQL 5.5.21 on Windows 7; the instal-

lation sequence follows the same steps regardless of your Windows environment.

A ZIP Archive version is also available for Windows users. If you want to install the
ZIP Archive version, be sure to read the descriptions and instructions in the
MySQL Manual at http://dev.mysql.com/doc/refman/5.5/en/windows-choosing-
package.html.

Jumping right into the installation sequence, just follow these steps:

1. Double-click the *.msi file to begin the installation sequence. You will see the

first screen of the MySQL Setup Wizard, as shown in Figure 2.5. Click Next to

continue.

NOTE

FIGURE 2.5
The first step
of the MySQL
Setup Wizard
for Windows.

2. After agreeing to the terms and conditions, you are asked to choose a setup

type—Typical, Custom, or Complete (see Figure 2.6). The Custom option

allows you to pick and choose elements of MySQL to install, whereas the

Complete option installs all the components of MySQL, which range from

documentation to benchmarking suites. The Typical installation method is

suitable for most users because it includes the client, server, and numerous

tools for general management of your MySQL installation. Select Typical as

the installation method and click Next to continue.

http://dev.mysql.com/doc/refman/5.5/en/windows-choosingpackage.html
http://dev.mysql.com/doc/refman/5.5/en/windows-choosingpackage.html

ptg8126863

22 CHAPTER 2: Installing and Configuring MySQL

3. Confirm your choice in the next screen and click the Install button to

continue. The installation process takes over and installs files in their

proper locations.

4. When the installation is complete, you have the option of continuing to the

MySQL Instance Configuration Wizard. This wizard is highly recommended

because it creates a custom my.ini file tailored to your particular needs. To

continue to the MySQL Instance Configuration Wizard, check the Launch the

MySQL Instance Configuration Wizard check box and click the Finish button,

as shown in Figure 2.7.

FIGURE 2.6
Select an
installation
type.

FIGURE 2.7
MySQL has
been installed.
Now continue
to the MySQL
Instance
Configuration
Wizard.

5. When you see the MySQL Instance Configuration Wizard Welcome screen,

click the Next button to go to the next step in the wizard. You will see two

options for server configuration: Detailed and Standard. We use the Detailed

ptg8126863

Installing MySQL on Windows 23

Configuration option so that you can see all the options available to you. If

you decide to select the Standard Configuration option, you must manually

modify the resulting my.ini file to achieve the configuration you want. Select

the Detailed Configuration radio button, and then click Next to continue.

6. The next selection you must make is shown in Figure 2.8. In this step, you

select the type of machine you are running: Developer Machine, Server

Machine, or Dedicated MySQL Server Machine. Your selection on this screen

determines the allotments for memory, disk, and processor usage. If you

are using MySQL on your personal machine for testing purposes, select the

Developer Machine option. If MySQL is running on a machine with other

server software and can take up more system resources than if you were run-

ning it on your personal machine, select the Server Machine option. Select

the Dedicated MySQL Server Machine option if MySQL is the primary service

running on the machine and can take up the bulk of the system resources.

After making your selection, click Next to continue.

FIGURE 2.8
Select your
server type
as part of
the MySQL
configuration.

7. The next configuration option pertains to database usage. The options are

Multifunctional Database, for both InnoDB and MyISAM storage engines,

with resources split evenly between the two; Transactional Database, which

enables both InnoDB and MyISAM, but dedicates the most server resources to

InnoDB; and Non-Transactional Database Only, which disables InnoDB and

applies all resources to MyISAM. Unless you know exactly what your database

will be used for, select the Multifunctional Database radio button and click

Next to continue.

8. If you have selected a database usage option that includes the InnoDB storage

engine, the next step in the configuration process enables you to configure the

ptg8126863

24 CHAPTER 2: Installing and Configuring MySQL

disk location and storage thresholds. The defaults are shown in Figure 2.9,

which you can simply confirm by clicking Next to continue, or you can

change these settings and then click Next to continue with your custom set-

tings in place.

FIGURE 2.9
Tune the disk
usage options
for the InnoDB
storage engine.

9. The next configuration option determines the number of concurrent connec-

tions to your MySQL server. Your setting will depend on the amount of traffic

and database usage by your website or application. The default setting is

Decision Support (DSS)/OLAP, which has a maximum number of 100 concur-

rent connections with an average of 20 assumed. The Online Transaction

Processing (OLTP) option has a maximum of 500 concurrent connections, and

the Manual setting allows you to select a number from a drop-down list or

enter your own. Make your selection and click Next to continue.

10. The Networking Options screen is next in the configuration sequence. Here

you enable or disable TCP/IP networking and configure the port number used

to connect to MySQL—the default is 3306, but you can use any unused port

you choose. The other option on this screen is to enable or disable strict mode;

enabling strict mode is recommended unless you know what you’re changing.

See http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html for more

information. Make your selections and click Next to continue.

Remember to modify your firewall rules to allow traffic to flow on port 3306 or
whichever port you decide to use for MySQL.

11. After the Networking Options screen come the character set options. The

default option is Standard Character Set, which results in Latin1 being used

NOTE

http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html

ptg8126863

Installing MySQL on Windows 25

throughout your database. You can also select the Best Support for

Multilingualism option, which results in UTF8 as the character set; UTF8

allows you to store multiple languages in a single character set. If you want to

use a specific character set, select the Manual Selected Default Character Set

radio button, and then select the appropriate character set from the drop-

down list. After making your selection, click Next to continue.

12. It is recommended that MySQL be installed as a service. Check the Install as

Windows Service check box and select a name for the service. Optionally,

check the Launch the MySQL Server Automatically check box. You also have

the option of adding the MySQL bin directory to your Windows PATH for easier

invocation of MySQL from the cmd prompt; check the box if this is appropriate

for you. When you have completed your selections, click Next to continue.

13. The Security Options configuration screen is the most important screen of all.

As shown in Figure 2.10, use this configuration screen to set a root password.

Enter the password twice to confirm it. Do not check the Enable Root Access

from Remote Machines check box unless you really know what you’re doing;

typically, root connections are allowed only from localhost. In addition, you

can create an anonymous account, but doing so is not recommended for secu-

rity reasons. After completing the configuration options in this screen, click

Next to continue.

FIGURE 2.10
Creating a pass-
word for root
during MySQL
configuration.

14. One step remains in the configuration sequence, and that is to click the

Execute button to start the process. After the wizard has made it through the

various configuration steps, you will see a confirmation screen, as shown in

Figure 2.11, indicating the configuration file has been created and the MySQL

service has been started. Click Finish to close the wizard.

ptg8126863

26 CHAPTER 2: Installing and Configuring MySQL

The completion of the installation and configuration wizards results in a running

MySQL service and a custom my.ini file in the C:\Program Files\MySQL\MySQL

Server 5.5\ directory.

You can manually edit the my.ini file with any text editor. After making changes,
you must restart your MySQL server.

Now that MySQL has been started, skip to the “Basic Security Guidelines” section

later in this chapter. If you experienced any issues with your installation, check the

“Troubleshooting Your Installation” section.

Troubleshooting Your Installation
If you have any problems during the installation of MySQL, the first place you

should look is Appendix A, “Problems and Common Errors,” in the MySQL Manual,

which is located at http://dev.mysql.com/doc/refman/5.5/en/problems.html.

The following are just a few of the common installation problems:

. On Linux/UNIX and Mac OS X, incorrect permissions do not allow you to start

the MySQL daemon. If this is the case, be sure that you have changed owners

and groups to match those indicated in the installation instructions.

. If you see the message Access denied when connecting to MySQL, be sure

that you are using the correct username and password.

. If you see the message Can’t connect to server, make sure that the

MySQL daemon is running.

FIGURE 2.11
The MySQL
Configuration
Wizard com-
pletes its tasks.

TIP

http://dev.mysql.com/doc/refman/5.5/en/problems.html

ptg8126863

Basic Security Guidelines 27

If you still have trouble after reading Appendix A in the MySQL Manual, sending

an email to the MySQL mailing list (see http://lists.mysql.com/ for more informa-

tion) will likely produce results. You can also purchase support contracts from

MySQL AB.

Basic Security Guidelines
Regardless of whether you are running MySQL on Windows, Linux/UNIX, or Mac OS

X, and no matter whether you administer your own server or use a system provided

to you by your Internet service provider, you must understand basic security guide-

lines. If you are accessing MySQL through your Internet service provider, there are

several aspects of server security that you, as a non-root user, should not be able to

modify or circumvent. Unfortunately, many Internet service providers pay no mind

to security guidelines, leaving their clients exposed—and for the most part, unaware

of the risk.

Starting MySQL
Securing MySQL begins with the server startup procedure. If you are not the admin-

istrator of the server, you cannot change this, but you can certainly check it out and

report vulnerabilities to your Internet service provider.

If your MySQL installation is on Linux/UNIX or Mac OS X, your primary concern

should be the owner of the MySQL daemon—it should not be root. Running the

daemon as a non-root user such as mysql or database limits the ability of mali-

cious individuals to gain access to the server and overwrite files.

You can verify the owner of the process using the ps (process status) command
on your Linux/UNIX or Mac OS X system.

If you see that MySQL is running as root on your system, immediately contact your

Internet service provider and complain. If you are the server administrator, you

should start the MySQL process as a non-root user or specify the preferred user-

name in the startup command line:

mysqld --user=non_root_user_name

For example, if you want to run MySQL as user mysql, use this command:

mysqld --user=mysql

TIP

http://lists.mysql.com/

ptg8126863

28 CHAPTER 2: Installing and Configuring MySQL

However, the recommended method for starting MySQL is through the mysqld_safe

startup script in the bin directory of your MySQL installation:

bin/mysqld_safe --user=mysql &

Securing Your MySQL Connection
You can connect to the MySQL monitor (command-line interface) or other MySQL

applications in several different ways, each of which has its own security risks. If

your MySQL installation is on your own workstation, you have less to worry about

than users who have to use a network connection to reach their server.

If MySQL is installed on your workstation, your biggest security concern is leaving

your workstation unattended with your MySQL monitor or MySQL GUI administra-

tion tool up and running. In this type of situation, anyone can walk over and delete

data, insert bogus data, or shut down the server. Use a screensaver or lock-screen

mechanism with a password if you must leave your workstation unattended in a

public area.

If MySQL is installed on a server outside your network, the security of the connection

should be of some concern. As with any transmission of data over the Internet, data

can be intercepted. If the transmission is unencrypted, the person who intercepted

the data can piece it together and use the information. Suppose that the unencrypt-

ed transmission is your MySQL login information; a rogue individual now has

access to your database, masquerading as you.

One way to prevent this from happening is to connect to MySQL through a secure

connection such as Secure Shell (SSH), through which all transmissions to and

from the remote machine are encrypted. Similarly, if you use a web-based

administration interface, such as the highly recommended phpMyAdmin (see

http://www.phpmyadmin.net/ for more information, and note that phpMyAdmin

is installed as part of the XAMPP-based quick-start installation in Chapter 1,

“Installation QuickStart Guide with XAMPP”) or another tool used by your Internet

service provider, access that tool over a secure HTTP connection.

In the next section, you learn about the MySQL privilege system, which helps secure

your database even further.

Introducing the MySQL Privilege
System
The MySQL privilege system is always on. The first time you try to connect, and for

each subsequent action, MySQL checks the following three things:

http://www.phpmyadmin.net/

ptg8126863

Introducing the MySQL Privilege System 29

. Where you are accessing from (your host)

. Who you say you are (your username and password)

. What you’re allowed to do (your command privileges)

All this information is stored in the database called mysql, which is automatically

created when MySQL is installed. There are several privilege-related tables in the

mysql database, such as the following:

. columns_priv—Defines user privileges for specific fields within a table

. db—Defines the permissions for all databases on the server

. host—Defines the acceptable hosts that can connect to a specific database

. procs_priv—Defines user privileges for stored routines

. tables_priv—Defines user privileges for specific tables within a database

. user—Defines the command privileges for a specific user

These tables will become more important to you later in this chapter as you add a

few users to MySQL. For now, just remember that these tables exist and must have

relevant data in them for users to complete actions.

Understanding the Two-Step Authentication
Process
As you’ve learned, MySQL checks three things during the authentication process.

The actions associated with these three things are performed in two steps:

1. MySQL looks at the host you are connecting from and the username and pass-

word pair you are using. If your host is allowed to connect, your password is

correct for your username, and the username matches one assigned to the

host, MySQL moves to the second step.

2. For whichever SQL command you are attempting to use, MySQL verifies that

your user has permissions to perform that action for that database, table, and

field.

If step 1 fails, you see an error about it and you cannot continue on to step 2. For

example, suppose that you are connecting to MySQL with a username of joe and a

ptg8126863

30 CHAPTER 2: Installing and Configuring MySQL

password of abc123 and you want to access a database called myDB. You will receive

an error message if any of those connection variables is incorrect for any of the fol-

lowing reasons:

. Your password is incorrect.

. Username joe doesn’t exist.

. User joe can’t connect from localhost.

. User joe can connect from localhost but cannot use the myDB database.

You may see an error like the following:

mysql -h localhost -u joe -pabc123 test

Error 1045: Access denied for user: ‘joe@localhost’ (Using password: YES)

If user joe with a password of abc123 is allowed to connect from localhost to the

myDB database, MySQL checks the actions that joe can perform in step 2 of the

process. For our purposes, suppose that joe is allowed to select data but is not allowed

to insert data. The sequence of events and errors would look like the following:

mysql -h localhost -u joe -pabc123 test

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 12 to server version: 5.5.21-log
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> SELECT * FROM test_table;

+----+------------+
| id | test_field |
+----+------------+
| 1 | blah |
| 2 | blah blah |
+----+------------+
2 rows in set (0.0 sec)

mysql> INSERT INTO test_table VALUES (‘’, ‘my text’);

Error 1044: Access denied for user: ‘joe@localhost’ (Using password: YES)

Action-based permissions are common in applications with several levels of admin-

istration. For example, if you have created an application containing personal

financial data, you might grant only SELECT privileges to entry-level staff members,

but INSERT and DELETE privileges to executive-level staff with security clearances.

In most cases when you are accessing MySQL through an Internet service provider,

you have only one user and one database available to you. By default, that user has

ptg8126863

Introducing the MySQL Privilege System 31

access to all tables in that database and is allowed to perform all commands. In this

case, the responsibility is yours as the developer to create a secure application

through your programming.

However, if you are the administrator of your own server, or if your Internet service

provider allows you to add as many databases and users as you want and to modify

the access privileges of your users, you can do so as described in the following sub-

sections.

Adding Users to MySQL
Administering your server through a third-party application might afford you a sim-

ple method for adding users by using a wizard-like process or a graphical interface.

However, adding users through the MySQL monitor is not difficult, especially if you

understand the security checkpoints used by MySQL, which you just learned.

The simplest method for adding new users is the GRANT command. By connecting to

MySQL as the root user, you can issue one command to set up a new user. The

other method is to issue INSERT statements into all the relevant tables in the mysql

database, which requires you to know all the fields in the tables used to store per-

missions. This method works just as well but is more complicated than the simple

GRANT command. The simple syntax of the GRANT command is shown here:

GRANT privileges
ON databasename.tablename
TO username@host
IDENTIFIED BY “password”;

Following are some of the common privileges you can grant. (For a complete list, see

the GRANT entry in the MySQL Manual at http://dev.mysql.com/doc/refman/5.5/en/

grant.html.)

. ALL—Gives the user all common privileges.

. ALTER—User can alter (modify) tables, columns, and indexes.

. CREATE—User can create databases and tables.

. DELETE—User can delete records from tables.

. DROP—User can drop (delete) tables and databases.

. FILE—User can read and write files; this privilege is used to import or dump

data.

. INDEX—User can add or delete indexes.

. INSERT—User can add records to tables.

http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

ptg8126863

32 CHAPTER 2: Installing and Configuring MySQL

. PROCESS—User can view and stop system processes; only trusted users should

be able to do this.

. RELOAD—User can issue FLUSH statements; only trusted users should be able to

do this.

. SELECT—User can select records from tables.

. SHUTDOWN—User can shut down the MySQL server; only trusted users should be

able to do this.

. UPDATE—User can update (modify) records in tables.

If, for instance, you want to create a user called john with a password of 99hjc!5,

with SELECT and INSERT privileges on all tables in the database called myDB, and

you want this user to be able to connect from any host, use this command:

GRANT SELECT, INSERT
ON myDB.*
TO john@”%”
IDENTIFIED BY “99hjc!5”;

Note the use of two wildcards: * and %. These wildcards replace values. In this exam-

ple, * replaces the entire list of tables, and % replaces a list of all hosts in the known

world—a very long list indeed.

Here’s another example of adding a user with the GRANT command, this time to add

a user called jane with a password of 45sdg11, with ALL privileges on a table called

employees in the database called myCompany. This new user can connect only from

a specific host:

GRANT ALL
ON myCompany.employees
TO jane@janescomputer.company.com
IDENTIFIED BY “45sdg11”;

If you know that janescomputer.company.com has an IP address of 63.124.45.2,

you can substitute that address in the hostname portion of the command, as fol-

lows:

GRANT ALL
ON myCompany.employees
TO jane@janescomputer.company.com
IDENTIFIED BY “45sdg11”;

One note about adding users: Always use a password and make sure that the pass-

word is a good one!

ptg8126863

Summary 33

If you use the GRANT command to add users, the changes take immediate effect. To

make absolutely sure of this, you can issue the FLUSH PRIVILEGES command in the

MySQL monitor to reload the privilege tables.

Removing User Privileges
Removing privileges is as simple as adding them; instead of the GRANT command,

you use REVOKE. The REVOKE command syntax is as follows:

REVOKE privileges
ON databasename.tablename
FROM username@hostname;

In the same way that you can grant permissions using INSERT commands, you can

also revoke permissions by issuing DELETE commands to remove records from tables

in the mysql database. However, this requires that you be familiar with the fields

and tables, and it is much easier and safer to use REVOKE.

To revoke the ability for user john to INSERT items in the myCompany database, you

issue this REVOKE statement:

REVOKE privileges
ON databasename.tablename
FROM username@hostname;

Changes made to the data in the privilege tables happen immediately, but for the

server to be aware of your changes, issue the FLUSH PRIVILEGES command in the

MySQL monitor.

Summary
Thanks to a wizard-based installation method, installing MySQL on Windows and

Mac OS X is a simple process. Linux/UNIX users do not have a wizard-based instal-

lation process, but it is not difficult to follow a simple set of commands to unpack

the MySQL client and server binaries. Linux/UNIX users can also use RPMs for

installation.

Security is always a priority, and you can take several steps to ensure a safe and

secure installation of MySQL. Even if you are not the administrator of the server,

you should be able to recognize security breaches and raise a ruckus with the server

administrator.

The MySQL server should never run as the root user. In addition, named users with-

in MySQL should always have a password, and their access privileges should be well

defined.

ptg8126863

34 CHAPTER 2: Installing and Configuring MySQL

MySQL uses the privilege tables in a two-step process for each request that is made.

MySQL needs to know who you are and where you are connecting from, and each

piece of this information must match an entry in its privilege tables. Also, the user

whose identity you are using must have specific permission to perform the type of

request you are making.

You can add user privileges using the GRANT command, which uses a simple syntax

to add entries to the user table in the mysql database. The REVOKE command,

which is equally simple, is used to remove those privileges.

Q&A
Q. How do I completely remove a user? The REVOKE command just eliminates

the privileges.

A. To completely remove a user from the privilege table, you have to issue a

specific DELETE query from the user table in the mysql database.

Q. What if I tell my Internet service provider to stop running MySQL as root
and it won’t?

A. Switch providers. If your Internet service provider doesn’t recognize the risks

of running something as important as your database as the root user and

doesn’t listen to your request, find another provider. There are providers

with plans as low as $2.95/month (or even free) that do not run important

processes as the root user.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. True or false: SSH is a perfectly acceptable method to securely connect to

MySQL from a remote host.

2. Which three pieces of information does MySQL check each time a request is

made?

ptg8126863

Workshop 35

3. What command would you use to grant SELECT, INSERT, and UPDATE privi-

leges to a user named bill on localhost to all tables on the BillDB data-

base? Also, what piece of information is missing from this statement that is

recommended for security purposes?

Answers
1. True. SSH encrypts data between hosts and therefore enables you to securely

connect to your server.

2. Who you are, where you are accessing from, and what actions you’re allowed

to perform.

3. The command is as follows:

GRANT SELECT, INSERT, UPDATE
ON BillDB.*
TO bill@localhost;

The important missing piece is a password for the user.

Activities
1. Think of situations in which you might want to restrict command access at

the table level. For example, you wouldn’t want the intern-level administrator

to have shutdown privileges for the corporate database.

2. If you have administrative privileges in MySQL, issue several GRANT com-

mands to create dummy users. It doesn’t matter whether the tables and data-

bases you name are actually present.

3. Use REVOKE to remove some of the privileges of the users you created in

activity 2.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 3

Installing and Configuring
Apache

In this chapter, you learn the following:
. How to install the Apache server
. How to make configuration changes to Apache
. Where Apache log and configuration files are stored

In this chapter, you install the Apache web server and familiarize yourself with its main

components, including log and configuration files.

Current and Future Versions of Apache
The Apache HTTPD server website at http://httpd.apache.org shows announcements for

releases of the Apache 2.0.x, Apache 2.2.x, and Apache 2.4.x versions. As you can under-

stand by the version numbers, Apache 2.0.x is the oldest of the three versions. The Apache

Software Foundation maintains all three versions, but the features in Apache 2.4.x include

the latest and greatest; it is the version used in this chapter. However, if you choose to

install (or already have installed either in a local or external development environment)

Apache 2.2.x or even Apache 2.0.x, all the PHP and MySQL code in this book will still

work as described. In fact, you will find a number of hosting providers still using Apache

2.0.x—not even Apache 2.2.x, let alone the newest Apache 2.4.x branch. If you experi-

ence any issues with installing Apache 2.4.x as described in this chapter, try an earlier

version (for example, Apache 2.2.x); the installation instructions are remarkably similar.

The installation instructions in this chapter refer to Apache HTTPD server version 2.4.1

except where noted, which is the best available version of the software at the time of this

writing.

http://httpd.apache.org

ptg8126863

38 CHAPTER 3: Installing and Configuring Apache

The Apache Software Foundation uses minor and revision numbers for updates con-

taining security enhancements or bug fixes. Neither minor nor revision releases fol-

low a set release schedule. When enhancements or fixes are added to the code and

thoroughly tested, the Apache Software Foundation releases a new version.

By the time you purchase this book, the version number might have changed to

2.4.1 or later. If so, read the list of changes, which is linked from the download area

at http://httpd.apache.org/download.cgi, for any installation/configuration process

changes. These processes make up the bulk of this chapter.

Although it is unlikely that any installation instructions will change between ver-

sion updates, always check the changelog of software that you install and maintain.

If a minor or revision change does occur while you are reading this book but the

changelog notes no installation changes, just make a mental note and substitute

the new version number wherever it appears in the installation instructions and

accompanying figures.

Choosing the Appropriate Installation
Method
You have several options when it comes to getting a basic Apache installation in

place. Apache is open source, meaning that you can have access to the full source

code of the software, which in turn enables you to build your own custom server. In

addition, prebuilt Apache binary distributions are available for most modern UNIX

platforms. Finally, Apache comes already bundled with a variety of Linux distribu-

tions, and you can even purchase commercial versions with support packages from

vendors. The examples in this chapter teach you how to build Apache from source if

you are using Linux/UNIX, and how to use the installer if you plan to run Apache

on a Windows system.

Building from Source
Building from source gives you the greatest flexibility because it enables you to build

a custom server, remove modules you do not need, and extend the server with third-

party modules. Building Apache from source code enables you to easily upgrade to

the latest versions and quickly apply security patches, whereas updated versions

from vendors can take days or weeks to appear. The process of building Apache

from source is not especially difficult for simple installations, but can grow in com-

plexity when third-party modules and libraries are involved.

http://httpd.apache.org/download.cgi

ptg8126863

Installing Apache on Linux/UNIX 39

Installing a Binary
Linux/UNIX binary installations are available from vendors or you can download

them from the Apache Software Foundation website. Binary installations provide a

convenient way to install Apache for users with limited system administration

knowledge or with no special configuration needs. Third-party commercial vendors

provide prepackaged Apache installations together with an application server, addi-

tional modules, support, and so on. The Apache Software Foundation provides an

installer for Windows systems—a platform where a compiler is less commonly avail-

able than in Linux/UNIX systems.

Installing Apache on Linux/UNIX
This section explains how to install a fresh build of Apache 2.4.1 on Linux/UNIX.

The general steps necessary to successfully install Apache from source are as follows:

1. Download the software.

2. Run the configuration script.

3. Compile the code and install it.

The following sections describe these steps in detail.

Downloading the Apache Source Code
The official Apache download site is located at http://httpd.apache.org/

download.cgi. You can find several versions of the Apache source code, packaged

with different compression methods. The distribution files are first packed with the

tar utility and then compressed with either the gzip tool or the compress utility.

Download the *.tar.gz version if you have the gunzip utility installed on your

system. This utility comes installed by default in open source operating systems

such as FreeBSD and Linux. Download the *.tar.Z file if gunzip is not present

in your system. (It isn’t included in the default installation of many commercial

UNIX operating systems.)

The file you want to download will be named something similar to httpd-

VERSION.tar.gz, where VERSION is the most recent release of Apache. For example,

Apache version 2.4.1 is distributed as a file named httpd-2.4.1.tar.gz. Keep the

downloaded file in a directory reserved for source files, such as /usr/src/ or

/usr/local/src/.

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi

ptg8126863

40 CHAPTER 3: Installing and Configuring Apache

Uncompressing the Source Code
If you downloaded the tarball compressed with gzip (it will have a tar.gz suffix),

you can uncompress it using the gunzip utility (part of the gzip distribution).

Tarball is a commonly used nickname for software packed using the tar utility.

You can uncompress and unpack the software by typing the following command:

gunzip < httpd-2.4*.tar.gz | tar xvf -

Uncompressing the tarball creates a structure of directories, with the top-level

directory named httpd-VERSION. Change your current directory to this top-level

directory to prepare for configuring the software.

Preparing to Build Apache
You can specify which features the resulting binary will have by using the

configure script in the top-level distribution directory. By default, Apache is com-

piled with a set of standard modules compiled statically and is installed in the

/usr/local/apache2 directory. If you are happy with these settings, you can issue

the following command to configure Apache:

./configure

However, in preparation for the PHP installation in Chapter 4, “Installing and

Configuring PHP,” you need to make sure that mod_so is compiled into Apache.

This module, named for the UNIX shared object (*.so) format, enables the use of

dynamic modules such as PHP with Apache. To configure Apache to install itself in

a specific location (in this case, /usr/local/apache2/) and to enable the use of

mod_so, issue the following command:

./configure --prefix=/usr/local/apache2 --enable-so

The purpose of the configure script is to figure out everything related to finding

libraries, compile-time options, platform-specific differences, and so on, and to

create a set of special files called makefiles. Makefiles contain instructions to perform

different tasks, called targets, such as building Apache. The make utility reads

these files and carries out the targets’ tasks. If everything goes well, after executing

configure, you will see a set of messages related to the different checks just per-

formed and will return to the prompt:

...
configure ok

NOTE

ptg8126863

Installing Apache on Linux/UNIX 41

creating test/Makefile
config.status: creating docs/conf/httpd.conf
...
config.status: executing default commands
#

If the configure script fails, warnings appear, alerting you to track down additional

software that must be installed, such as compilers or libraries. After you install any

missing software, you can try the configure command again, after deleting the

config.log and config.status files from the top-level directory.

If the configuration process ends with a warning that you do not have APR
installed, go to httpd://apr.apache.org/ and download both the APR and APR-util
packages, and unpack them in the srclib subdirectory of your httpd-VERSION
source directory. Once they are installed, rerun the configure command.

Similarly, if the configuration process ends with a warning that you do not have
PCRE installed, go to http://www.pcre.org and download the files and install it on
your system according to the instructions found at the website. Once installed,
rerun the configure command.

Both of these requirements are changes in the requirements for the Apache 2.4.x
installation process, different from the Apache 2.2.x process.

Building and Installing Apache
The make utility reads the information stored in the makefiles and builds the server

and modules. Type make at the command line to build Apache. You will see several

messages indicating the progress of the compilation, and you will end up back at

the prompt. After compilation is finished, you can install Apache by typing make

install at the prompt. The makefiles install files and directories and return you to

the prompt:

...
Installing header files
Installing build system files
Installing man pages and online manual
...
make[1]: Leaving directory ‘/usr/local/bin/httpd-2.4.1’
#

The Apache distribution files should now be in the /usr/local/apache2 directory,

as specified by the --prefix switch in the configure command. To test that the

httpd binary built correctly, type the following at the prompt:

/usr/local/apache2/bin/httpd -v

CAUTION

http://www.pcre.org
httpd://apr.apache.org/

ptg8126863

42 CHAPTER 3: Installing and Configuring Apache

You should see the following output (your version and build date will be different):

Server version: Apache/2.4.1 (Unix)
Server built: March 12 2012 11:47:22

Unless you want to learn how to install Apache on Mac OS X or Windows, skip

ahead to the “Apache Configuration File Structure” section to learn about the

Apache configuration file.

Installing Apache on Mac OS X
Lucky you, Apache is already installed on Mac OS X! By default, the Apache server

binary is located at /usr/sbin/httpd. Configuration files such as httpd.conf, the

master configuration file for Apache, are in /etc/httpd. Because Apache is ready

to go and fully prepared to use PHP, skip ahead to the “Apache Configuration File

Structure” section to learn more about the Apache configuration file and how to

use it.

If you want to use an all-in-one package installer for Mac OS X, you can do so as
shown with XAMPP in Chapter 1, “Installation QuickStart Guide with XAMPP,” or
you can install the MAMP package from http://www.mamp.info.

Installing Apache on Windows

At the time of this writing, Apache 2.4.x is not available for Windows. Therefore,
the instructions that follow are for Apache 2.2.x. The installation process will be
similar for Apache 2.4.x when it becomes available.

Apache 2.2 runs on most Windows platforms and offers increased performance and

stability over earlier versions for Windows. You can build Apache from source, but

because not many Windows users have compilers, this section deals with the MSI

installer version.

Before installing Apache, make sure that you are not currently running a web server

(for instance, a previous version of Apache or Microsoft Internet Information

Services) on your machine. You might want to uninstall or otherwise disable exist-

ing servers. You can run several web servers, but they must run in different address

and port combinations.

NOTE

CAUTION

http://www.mamp.info

ptg8126863

Installing Apache on Windows 43

Before downloading the installer, take a moment—a very important moment—and

look for a statement on the downloads page (found at http://httpd.apache.org/

download.cgi) that says “If you are downloading the Win32 distribution, please read

these important notes.” The direct URL to these notes is http://www.apache.org/dist/

httpd/binaries/win32/README.html.

The Apache Software Foundation maintains this page for the benefit of Windows

users who want to run a version of the Apache server. On this page, there are notes

for nearly every flavor of Windows still in use, and it is in your best interest to read

the information presented. I guarantee that if you are running Apache as either a

production or development server, you will find relevant information on the notes

page.

When you’re ready to begin the installation, look for the link labeled Win32 Binary

including OpenSSL(MSI Installer). After you download the installer, double-click the

file to start the installation process. You will get a welcome screen, as shown in

Figure 3.1.

FIGURE 3.1
The Windows
installer wel-
come screen.

Click Next to continue the installation process, and you will be prompted to accept

the Apache license. Basically, the license says that you can do whatever you want

with the software—including making proprietary modifications—except claim that

you wrote it, but be sure to read the license so that you fully understand the terms.

After you accept the license, the installer presents you with a brief introduction to

Apache. Following that, it asks you to provide basic information about your com-

puter, as shown in Figure 3.2. This includes the full network address for the server

(for instance, mycomputer.mydomain.com) and the administrator’s email address.

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi
http://www.apache.org/dist/
httpd/binaries/win32/README.html

ptg8126863

44 CHAPTER 3: Installing and Configuring Apache

The server name is the name your clients will use to access your server, and the

administrator email address is added to error messages so that visitors know how to

contact you when something goes wrong.

FIGURE 3.2
The basic infor-
mation screen.

Also on this screen, you are prompted to select which installation shortcuts should

be installed—those for starting Apache as a service or those for starting Apache

manually. Installing Apache as a service causes it to run every time Windows starts,

and you can control it through the standard Windows service administration tools.

Installing Apache for the current user requires you to start Apache manually and set

the default port on which Apache listens to requests to 8080 (instead of 80). Select

the appropriate radio button and click Next to continue.

If your machine does not have a full network address, use localhost or
127.0.0.1 as the server name.

The next screen enables you to choose the type of installation: typical or custom. A

typical installation means that Apache binaries and documentation are installed, but

headers and libraries are not. This is the best option to choose unless you plan to

compile your own modules.

A custom installation enables you to choose whether to install header files or docu-

mentation. After selecting the target installation directory, which defaults to

c:\Program Files (x86)\Apache Software Foundation\Apache 2.2, the pro-

gram proceeds with the installation process. If everything goes well, it presents you

with the final screen, shown in Figure 3.3.

TIP

ptg8126863

Apache Configuration File Structure 45

In the next section, you learn about the Apache configuration file and eventually

start up your new server.

Apache Configuration File Structure
Apache keeps all its configuration information in text files. The main file is

httpd.conf. This file contains directives and containers that enable you to cus-

tomize your Apache installation. Directives configure specific settings of Apache,

such as authorization, performance, and network parameters. Containers specify the

context to which those settings refer. For example, authorization configuration can

refer to the server as a whole, to a directory, or to a single file.

Directives
The following rules apply for Apache directive syntax:

. The directive arguments follow the directive name.

. The directive arguments are separated by spaces.

. The number and type of arguments vary from directive to directive; some

have no arguments.

. A directive occupies a single line, but you can continue it on a different line

by ending the previous line with a backslash character (\).

. The pound sign (#) should precede the directive, and must appear on its

own line.

FIGURE 3.3
The successful
installation
screen.

ptg8126863

46 CHAPTER 3: Installing and Configuring Apache

The Apache server documentation offers a quick reference for directives at

http://httpd.apache.org/docs/2.4/mod/quickreference.html. You’ll soon learn about

some of the basic directives, but you should supplement your knowledge using the

online documentation.

The Apache documentation for directives typically follows this model:

. Description—This entry provides a brief description of the directive.

. Syntax—This entry explains the format of the directive options. Compulsory

parameters appear in italics, and optional parameters appear in italics and

brackets.

. Default—If the directive has a default value, it appears here.

. Context—This entry details the containers or sections in which the directive

can appear. The next section explains containers. The possible values are

server config, virtual host, directory, and .htaccess.

. Override—Apache directives belong to different categories. The Override field

specifies which directive categories can appear in .htaccess per-directory

configuration files.

. Status—This entry indicates whether the directive is built in Apache (core),

belongs to one of the bundled modules (base or extension, depending on

whether they are compiled by default), is part of a multiprocessing module

(MPM), or is bundled with Apache but not ready for use in a production server

(experimental).

. Module—This entry indicates the module to which the directive belongs.

. Compatibility—This entry contains information about which versions of

Apache support the directive.

Further explanation of the directive follows these entries in the documentation, and

a reference to related directives or documentation might appear at the end.

Containers
Directive containers, also called sections, limit the scope for which directives apply. If

directives are not inside a container, they belong to the default server scope (server

config) and apply to the server as a whole.

http://httpd.apache.org/docs/2.4/mod/quickreference.html

ptg8126863

Apache Configuration File Structure 47

These are the default Apache directive containers:

. <VirtualHost>—A VirtualHost directive specifies a virtual server. Apache

enables you to host different websites with a single Apache installation.

Directives inside this container apply to a particular website. This directive

accepts a domain name or IP address and an optional port as arguments. You

learn more about virtual hosts in Chapter 29, “Apache Performance Tuning

and Virtual Hosting.”

. <Directory>, <DirectoryMatch>—These containers allow directives to apply

to a certain directory or group of directories in the filesystem. Directory con-

tainers take a directory or directory pattern argument. Enclosed directives

apply to the specified directories and their subdirectories. The DirectoryMatch

container allows regular expression patterns to be specified as an argument.

For example, the following allows a match of all second-level subdirectories of

the www directory and made up of four numbers, such as a directory named

after a year and month (0212 for February 2012):

<DirectoryMatch “^/www/.*/[0-9]{4}”>

. <Location>, <LocationMatch>—These containers allow directives to apply to

certain requested URLs or URL patterns. They are similar to their Directory

counterparts. LocationMatch takes a regular expression as an argument. For

example, the following matches directories containing either “/my/data” or

“/your/data”:

<LocationMatch “/(my|your)/data”>

. <Files>, <FilesMatch>—Similar to the Directory and Location containers,

Files sections allow directives to apply to certain files or file patterns.

Containers surround directives, as shown in Listing 3.1.

LISTING 3.1 Container Directives Example
1: <Directory “/some/directory”>
2: SomeDirective1
3: SomeDirective2
4: </Directory>
5: <Location “/downloads/*.html”>
6: SomeDirective3
7: </Location>
8: <Files “\.(gif|jpg)”>
9: SomeDirective4
10: </Files>

ptg8126863

48 CHAPTER 3: Installing and Configuring Apache

Directives SomeDirective1 and SomeDirective2 apply to the directory

/some/directory and its subdirectories. SomeDirective3 applies to URLs referring

to pages with the .html extension under the /downloads/ URL. SomeDirective4

applies to all files with .gif or .jpg extensions.

Conditional Evaluation
Apache provides support for conditional containers. Directives enclosed in these con-

tainers are processed only if certain conditions are met:

. <IfDefine>—Directives in this container are processed if a specific command-

line switch is passed to the Apache executable. The directive in Listing 3.2 is

processed only if the -DMyModule switch is passed to the Apache binary being

executed. You can pass this directly or by modifying the apachectl script, as

described in the “Apache-Related Commands” section later in this chapter.

IfDefine containers also allow you to negate the argument. That is, directives

inside a <IfDefine !MyModule> section—notice the exclamation point before

the MyModule name—are processed only if no -DMyModule parameter is passed

as a command-line argument.

. <IfModule>—Directives in an IfModule section are processed only if the mod-

ule passed as an argument is present in the web server. For example, Apache

ships with a default httpd.conf configuration file that provides support for

different MPMs. Only the configuration belonging to the MPM compiled into

Apache is processed, as you can see in Listing 3.3. The purpose of the example

is to illustrate that only one of the directive groups will be evaluated.

LISTING 3.2 IfDefine Example
1: <IfDefine MyModule>
2: LoadModule my_module modules/libmymodule.so
3: </IfDefine>

LISTING 3.3 IfModule Example
1: <IfModule prefork.c>
2: StartServers 5
3: MinSpareServers 5
4: MaxSpareServers 10
5: MaxClients 20
6: MaxRequestsPerChild 0
7: </IfModule>
8:
9: <IfModule worker.c>
10: StartServers 3

ptg8126863

Apache Configuration File Structure 49

11: MaxClients 8
12: MinSpareThreads 5
13: MaxSpareThreads 10
14: ThreadsPerChild 25
15: MaxRequestsPerChild 0
16: </IfModule>

The ServerRoot Directive
The ServerRoot directive takes a single argument: a directory path pointing to the

directory where the server lives. All relative path references in other directives are

relative to the value of ServerRoot. If you compiled Apache from source on

Linux/UNIX, as described earlier in this chapter, the default value of ServerRoot is

/usr/local/apache2. The ServerRoot for Mac OS X users defaults to /Library/

WebServer. If you used the Windows installer, the ServerRoot is C:\Program Files

(x86)\Apache Software Foundation\Apache 2.2\.

Per-Directory Configuration Files
Apache uses per-directory configuration files to allow directives to exist outside

the main configuration file, httpd.conf. These special files can be placed in the

filesystem. Apache processes the content of these files if a document is requested in

a directory containing one of these files or any subdirectories under it. The contents

of all the applicable per-directory configuration files are merged and processed.

For example, if Apache receives a request for the /usr/local/apache2/htdocs/

index.html file, it looks for per-directory configuration files in the /, /usr, /usr/

local, /usr/local/apache2, and /usr/local/apache2/htdocs directories, in

that order.

Enabling per-directory configuration files has a performance penalty. Apache must
perform expensive disk operations looking for these files in every request, even if
the files do not exist.

Per-directory configuration files are called .htaccess by default. This is for histori-

cal reasons; they originally protected access to directories containing HTML files.

The AccessFileName directive enables you to change the name of the per-directory

configuration files from .htaccess to something else. It accepts a list of filenames

that Apache will use when looking for per-directory configuration files.

To determine whether you can override a directive in the per-directory configuration

file, check whether the Context: field of the directive syntax definition contains

CAUTION

ptg8126863

50 CHAPTER 3: Installing and Configuring Apache

.htaccess. Apache directives belong to different groups, as specified in the

Override field in the directive syntax description. Possible values for the Override

field are as follows:

. AuthConfig—Directives controlling authorization

. FileInfo—Directives controlling document types

. Indexes—Directives controlling directory indexing

. Limit—Directives controlling host access

. Options—Directives controlling specific directory features

You can control which of these directive groups can appear in per-directory configu-

ration files by using the AllowOverride directive. AllowOverride can also take an

All or a None argument. All means that directives belonging to all groups can

appear in the configuration file. None disables per-directory files in a directory and

any of its subdirectories. Listing 3.4 shows how to disable per-directory configuration

files for the server as a whole. This improves performance and is the default Apache

configuration.

LISTING 3.4 Disabling Per-Directory Configuration Files
1: <Directory />
2: AllowOverride none
3: </Directory>

Apache Log Files
Apache includes two log files by default. The access_log file is for tracking client

requests. The error_log file is for recording important events, such as errors or serv-

er restarts. These files don’t exist until you start Apache the first time. The names of

the files are access.log and error.log in Windows platforms.

The access_log File
When a client requests a file from the server, Apache records several parameters

associated with the request, including the IP address of the client, the document

requested, the HTTP status code, and the current time. Listing 3.5 shows an example

of access_log entries. Chapter 26, “Logging and Monitoring Web Server Activity,”

shows you how to modify which parameters are logged.

ptg8126863

Apache-Related Commands 51

LISTING 3.5 access_log Entries
1: 127.0.0.1 - - [12/Mar/202:08:33:25 -0700] “GET / HTTP/1.1” 200 44
2: 127.0.0.1 - - [12/Mar/2012:08:33:25 -0700] “GET /favicon.ico HTTP/1.1” 404 209

The error_log File
The error_log file includes error messages, startup messages, and any other signifi-

cant events in the life cycle of the server. This is the first place to look when you

have a problem with Apache. Listing 3.6 shows an example of error_log entries.

LISTING 3.6 error_log Entries
1: Starting the Apache2.4 service [The Apache2.4 service is running.]
2: Apache/2.4.1 (Unix) configured -- resuming normal operations
3: [Tue Mar 13 08:29:34 2012] [notice] Server built: Mar 12 2012 11:47:22
4: [Tue Mar 13 08:29:34 2012] [notice] Parent: Created child process 3504
5: [Tue Mar 13 08:29:35 2012] [notice] Child 3504: Child process is running
6: [Tue Mar 13 08:29:35 2012] [notice] Child 3504: Acquired the start mutex.

Additional Files
The httpd.pid file contains the process ID of the running Apache server. You can

use this number to send signals to Apache manually, as described in the next

section. The scoreboard file, the present on Linux/UNIX Apache, is used by the

process-based MPMs to communicate with their children. In general, you do not

need to worry about these files.

Apache-Related Commands
The Apache distribution includes several executables. This section covers only the

server binary and related scripts. Chapter 25, “Restricting Access to Your

Applications,” and Chapter 29, “Apache Performance Tuning and Virtual Hosting,”

cover additional utilities included with the Apache distribution.

Apache Server Binary
The name of the Apache executable is httpd in Linux/UNIX and Mac OS X, and

httpd.exe in Windows. It accepts several command-line options, some of which are

described in Table 3.1. You can get a complete listing of options by typing

/usr/local/apache2/bin/httpd -h on Linux/UNIX, by typing /usr/sbin/httpd

-h on Mac OS X, or by typing httpd.exe -h from a command prompt on Windows.

ptg8126863

52 CHAPTER 3: Installing and Configuring Apache

TABLE 3.1 Some httpd Options

Option Meaning

-D Allows you to pass a parameter that can be used for <IfDefine>
section processing

-l Lists compiled-in modules

-v Shows version number and server compilation time

-f Allows you to pass the location of httpd.conf if it differs from the
compile-time default

After Apache is running, you can use the kill command on Linux/UNIX and Mac

OS X to send signals to the parent Apache process. Signals provide a mechanism to

send commands to a process. To send a signal, execute the following command:

kill -SIGNAL pid

In this syntax, pid is the process ID, and SIGNAL is one of the following:

. HUP—Stop the server

. USR1 or WINCH—Graceful restart; which signal to use depends on the underly-

ing operating system

. SIGHUP—Restart

If you make some changes to the configuration files and you want them to take

effect, you must signal Apache that the configuration has changed. You can do this

by stopping and starting the server or by sending a restart signal. This tells Apache

to reread its configuration.

A normal restart can result in a momentary pause in service. A graceful restart

takes a different approach: Each thread or process serving a client continues process-

ing the current request, but when it finishes, it is killed and replaced by a new

thread or process with the new configuration. This allows seamless operation of the

web server with no downtime.

On Windows, you can signal Apache using the httpd.exe executable. Some com-

mands are listed here:

. httpd.exe -k restart—Tells Apache to restart

. httpd.exe -k graceful—Tells Apache to do a graceful restart

. httpd.exe -k stop—Tells Apache to stop

ptg8126863

Starting Apache for the First Time 53

You can access shortcuts to these commands in the Start menu entries that the

Apache installer created. If you installed Apache as a service, you can start or stop

Apache by using the Windows service interface: In Control Panel, select

Administrative Tasks and then click the Services icon.

Apache Control Script
Although it is possible to control Apache on Linux/UNIX using the httpd binary, it

is recommended that you use the apachectl tool. The apachectl support program

wraps common functionality in an easy-to-use script. To use apachectl, type the

following:

/usr/local/apache2/bin/apachectl command

In this syntax, command can be stop, start, restart, or graceful. You can also

edit the contents of the apachectl script to add extra command-line options. Some

OS distributions provide you with additional scripts to control Apache; check the

documentation included with your distribution.

Starting Apache for the First Time
Before you start Apache, verify that the minimal set of information is present in the

Apache configuration file, httpd.conf. The following sections describe the basic

information needed to configure Apache and to start the server.

Check Your Configuration File
You can edit the Apache httpd.conf file with your favorite text editor. In

Linux/UNIX and Mac OS X, this probably means vi or emacs. In Windows, you can

use Notepad or WordPad. You must remember to save the configuration file in

plaintext, which is the only format Apache understands.

You might need to change just two parameters to enable you to start Apache for the

first time: the name of the server and the address and port to which it is listening.

The name of the server is the one Apache will use when it needs to refer to itself (for

example, when redirecting requests).

Apache can usually figure out its server name from the IP address of the machine,

but not always. If the server does not have a valid DNS (domain name service)

entry, you might need to specify one of the IP addresses of the machine. If the server

is not connected to a network (you might want to test Apache on a standalone

machine), you can use the value 127.0.0.1, which is the loopback address. The

ptg8126863

54 CHAPTER 3: Installing and Configuring Apache

default port value is 80. You might need to change this value if a server is already

running in the machine at port 80 or if you do not have administrator permissions—

on Linux/UNIX and Mac OS X systems, only the root user can bind to privileged

ports (those with port numbers lower than 1024).

You can change both the listening address and the port values with the Listen

directive. The Listen directive takes either a port number or an IP address and a

port, separated by a colon. If you specify only the port, Apache listens on that port

at all available IP addresses in the machine. If you provide an additional IP address,

Apache listens at only that address and port combination. For example, Listen 80

tells Apache to listen for requests at all IP addresses on port 80. Listen

10.0.0.1:443 tells Apache to listen at only 10.0.0.1 on port 443.

The ServerName directive enables you to define the name the server will report in

any self-referencing URLs. The directive accepts a DNS name and an optional port,

separated by a colon. Make sure that ServerName has a valid value. Otherwise, the

server will not function properly; for example, it will issue incorrect redirects.

On Linux/UNIX and Mac OS X platforms, you can use the User and Group direc-

tives to specify which user and group IDs the server will run as. The nobody user is a

good choice for most platforms. However, there are problems in the HP-UX platform

with this user ID, so you must create and use a different user ID, such as www.

Starting Apache
To start Apache on Linux/UNIX, change to the directory containing the apachectl

script and execute the following command:

/usr/local/apache2/bin/apachectl start

Mac OS X users can type the following at the prompt:

/usr/sbin/httpd

To manually start Apache on Windows, click the Start link in the Control Apache

Server section, within the Apache HTTP Server 2.2 program group in the Start menu.

If you installed Apache as a service, you must start the Apache service instead.

If everything goes well, you can access Apache using a browser. A default installa-

tion page displays, such as the one shown in Figure 3.4. If you cannot start the web

server or an error page appears instead, consult the “Troubleshooting” section that

follows. Make sure that you are accessing Apache in one of the ports specified in the

Listen directive—usually port 80 or 8080.

ptg8126863

Troubleshooting 55

Troubleshooting
The following subsections describe several common problems that you might

encounter the first time you start Apache.

Already an Existing Web Server
If a server is already running on the machine and is listening to the same IP address

and port combination, Apache cannot start successfully. You will get an entry in the

error log file indicating that Apache cannot bind to the port:

[crit] (48)Address already in use: make_sock: could not bind...[alert] no
listening sockets available, shutting down

To solve this problem, you need to stop the running server or change the Apache

configuration to listen on a different port.

No Permission to Bind to Port
You will get an error if you do not have administrator permissions and you try to

bind to a privileged port (between 0 and 1024):

[crit] (13)Permission denied: make_sock: could not bind to address 10.0.0.2:80
[alert] no listening sockets available, shutting down

To solve this problem, you must either log on as the administrator before starting

Apache or change the port number; 8080 is a commonly used nonprivileged port.

FIGURE 3.4
Apache has
been installed.

ptg8126863

56 CHAPTER 3: Installing and Configuring Apache

Access Denied
You might not be able to start Apache if you do not have permission to read the

configuration files or to write to the log files. You will get an error similar to the

following:

(13)Permission denied: httpd: could not open error log file

This problem can arise if the user who built and installed Apache is different from

the user trying to run it.

Wrong Group Settings
You can configure Apache to run under a certain username and group. Apache has

default values for the running server username and group. Sometimes the default

value is not valid and you will get an error containing setgid: unable to set

group id.

To solve this problem on Linux/UNIX and Mac OS X, you must change the value of

the Group directive in the configuration file to a valid value. Check the /etc/groups

file for existing groups.

Summary
This chapter explained different ways of getting an Apache web server installed and

running on your Linux/UNIX, Mac OS X, or Windows machine. It covered both

binary and source installation and explained the basic build-time options. In addi-

tion, you learned the location of the server configuration files and the syntax of the

commands used to modify your Apache configuration. You learned about the two

main log files: access_log and error_log. You also saw how to start and stop the

server using the Apache control scripts or the Apache server binary on Linux/UNIX,

Mac OS X, and Windows platforms.

Q&A
Q. How can I start a clean build?

A. If you need to build a new Apache from source and do not want the result of

earlier builds to affect the new one, it is always a good idea to run the make

clean command. Doing so takes care of cleaning up any existing binaries,

intermediate object files, and so on.

ptg8126863

Workshop 57

Q. Why are per-directory configuration files useful?

A. Although per-directory configuration files have an effect on server perform-

ance, they can be useful for delegated administration. Because per-directory

configuration files are read every time a request is made, there is no need to

restart the server when a change is made to the configuration.

You can allow users of your website to make configuration changes on their

own without granting them administrator privileges. In this way, they can

password-protect sections of their home pages, for example.

Q. What do you mean by a valid ServerName directive?

A. The DNS system associates IP addresses with domain names. The value of

ServerName is returned when the server generates a URL. If you are using a

certain domain name, you must make sure that it is included in your DNS sys-

tem and will be available to clients visiting your site.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. How can you specify the location where you want to install Apache?

2. What is the main difference between the <Location> and <Directory> sec-

tions?

3. What is the difference between a restart and a graceful restart?

Answers
1. Linux/UNIX users can use the --prefix option of the configure script. If an

existing installation is present at that location, the configuration files are pre-

served, but the binaries are replaced. On Windows, this location is set in the

Installation Wizard.

2. Directory sections refer to filesystem objects; Location sections refer to ele-

ments in the address bar of the web page.

ptg8126863

58 CHAPTER 3: Installing and Configuring Apache

3. During a normal restart, the server is stopped and then started, causing some

requests to be lost. A graceful restart allows Apache children to continue to

serve their current requests until they can be replaced with children running

the new configuration.

Activities
1. Practice the various types of server shutdown and restart procedures.

2. Make some configuration changes, such as different port assignments and

ServerName changes.

ptg8126863

CHAPTER 4

Installing and Configuring
PHP

In this chapter, you learn the following:
. How to install PHP
. How to test your PHP installation
. How to find help when things go wrong
. The basics of the PHP language

In this chapter, you acquire, install, and configure PHP and make some basic changes to

your Apache installation.

Current and Future Versions of PHP
The installation instructions in this chapter refer to PHP version 5.4.0, which is the current

version of the software.

The PHP Group uses revisions and minor releases for updates containing security enhance-

ments or bug fixes. These releases do not follow a set release schedule; when enhance-

ments or fixes are added to the code and are thoroughly tested, the PHP Group releases a

new version with a new revision number.

It is possible that by the time you purchase this book the minor version number will have

changed, to 5.4.1 or beyond. If that is the case, you should read the list of changes at

http://www.php.net/ChangeLog-5.php for any installation/configuration process changes.

These processes make up the bulk of this chapter.

Although it is unlikely that any installation instructions will change between minor ver-

sion updates, always check the changelog of software that you install and maintain. If a

http://www.php.net/ChangeLog-5.php

ptg8126863

60 CHAPTER 4: Installing and Configuring PHP

revision does occur while you are reading this book but the changelog notes no

installation changes, just make a mental note and substitute the new version num-

ber wherever it appears in the installation instructions and accompanying figures.

Building PHP on Linux/UNIX with
Apache
This section examines one way of installing PHP with Apache on Linux/UNIX. The

process is more or less the same for any UNIX-like operating system. Although you

might be able to find prebuilt versions of PHP for your system, compiling PHP from

source gives you greater control over the features built in to your binary.

To download the PHP distribution files, go to the home of PHP, http://www.php.net/,

and follow the link to the Downloads section. Grab the latest version of the source

code—for this example, we are using 5.4.0. Your distribution will be named some-

thing similar to php-VERSION.tar.gz, where VERSION is the most recent release

number. This archive will be a compressed tar file, so you need to unpack it:

gunzip < php-VERSION.tar.gz | tar xvf -

Keep the downloaded file in a directory reserved for source files, such as /usr/src/

or /usr/local/src/. After your distribution is unpacked, you should move to the

PHP distribution directory:

cd php-VERSION

In your distribution directory, you will find a script called configure. This script

accepts additional information that is provided when the configure script is run

from the command line. These command-line arguments control the features that

PHP supports. This example includes the basic options you need to install PHP with

Apache and MySQL support. We discuss some of the available configure options

later in the chapter and throughout the book as they become relevant.

./configure --prefix=/usr/local/php \

--with-mysqli=/usr/local/mysql/bin/mysql_config \

--with-apxs2=/usr/local/apache2/bin/apxs

If you have installed MySQL or Apache in a different location than the paths indi-
cated in the configuration shown here, ensure that you substitute the appropriate
directory paths in the command.

CAUTION

http://www.php.net/

ptg8126863

Building PHP on Linux/UNIX with Apache 61

After the configure script has run, you are returned to the prompt. For example:

...
Generating files
updating cache ./config.cache
creating ./config.status
creating php5.spec
creating main/build-defs.h
creating scripts/phpize
creating scripts/man1/phpize.1
creating scripts/php-config
creating scripts/man1/php-config.1
creating sapi/cli/php.1
creating main/php_config.h
creating main/internal_functions.c
creating main/internal_functions_cli.c
+--+
| License: |
| This software is subject to the PHP License, available in this |
| distribution in the file LICENSE. By continuing this installation |
| process, you are bound by the terms of this license agreement. |
| If you do not agree with the terms of this license, you must abort |
| the installation process at this point. |
+--+

Thank you for using PHP.

#

From the prompt, issue the make command, followed by the make install com-

mand. These commands should end the process of PHP compilation and installation

and return you to your prompt:

...
chmod 755 /usr/local/apache2/modules/libphp5.so
[activating module ‘php5’ in /usr/local/apache2/conf/httpd.conf]
Installing PHP CLI binary: /usr/local/php/bin/
Installing PHP CLI man page: /usr/local/php/php/man/man1/
Installing PHP CGI binary: /usr/local/php/bin/
Installing build environment: /usr/local/php/lib/php/build/
Installing header files: /usr/local/php/include/php/
Installing helper programs: /usr/local/php/bin/
program: phpize
program: php-config

Installing man pages: /usr/local/php/php/man/man1/
page: phpize.1
page: php-config.1

...
#

You need to ensure that two very important files are copied to their correct locations.

First, issue the following command to copy the development version of php.ini to

its default location. You learn more about php.ini later in this chapter:

cp php.ini-development /usr/local/lib/php.ini

ptg8126863

62 CHAPTER 4: Installing and Configuring PHP

Next, copy the PHP shared object file to its proper place in the Apache installation

directory, if it has not already been placed there by the installation process; it usual-

ly will be, as you can see in the make install output, just shown:

cp libs/libphp5.so /usr/local/apache2/modules/

You should now be able to configure and run Apache, but let’s cover some addition-

al configuration options before heading on to the “Integrating PHP with Apache on

Linux/UNIX” section.

Additional Linux/UNIX Configuration Options
In the previous section, when we ran the PHP configure script, we included some

command-line arguments that determined some features that the PHP engine will

include. The configure script itself gives you a list of available options, including

the ones we used. From the PHP distribution directory, type the following:

./configure --help

This command produces a long list, so you might want to add it to a file and read it

at your leisure:

./configure --help > configoptions.txt

If you discover additional functionality you want to add to PHP after you install it,

simply run the configuration and build process again. Doing so creates a new ver-

sion of libphp5.so and places it in the Apache directory structure. All you have to

do is restart Apache to load the new file.

Integrating PHP with Apache on Linux/UNIX
To ensure that PHP and Apache get along with one another, you need to check for—

and potentially add—a few items to the httpd.conf configuration file. First, look for

a line like the following:

LoadModule php5_module modules/libphp5.so

If this line is not present or only appears with a pound sign (#) at the beginning of

the line, you must add the line or remove the #. This line tells Apache to use the

PHP shared object file created by the PHP build process (libphp5.so).

Next, look for this section:

#
AddType allows you to add to or override the MIME configuration
file mime.types for specific file types.
#

ptg8126863

Installing PHP on Windows 63

Add the following line to that section:

AddType application/x-httpd-php .php

This statement ensures that the PHP engine will parse files that end with the .php

extension. Your selection of filenames might differ; you might want to parse all files

ending with *.html as PHP, for example.

Save this file and then restart Apache. When you look in your error_log, you

should see something like the following line:

[Tue Mar 13 10:42:47 2012] [notice] Apache/2.4.1 (Unix) PHP/5.4.0 configured

PHP is now part of the Apache web server. If you want to learn how to install PHP

on a Mac OS X or Windows platforms, keep reading. Otherwise, you can skip ahead

to the “Testing Your Installation” section.

Installing PHP on Mac OS X
There are a few different options for installing PHP with Apache on Mac OS X,

including building from source as described in the previous section. Some users may

find the simplest method is to install PHP from a precompiled binary package, such

as those from MacPorts (at http://www.macports.org/) or as part of the all-in-one

installation packages from XAMPP (as shown in Chapter 1, “Installation QuickStart

Guide with XAMPP”) or MAMP (at http://www.mamp.info). However, if you are

comfortable with the command line, I recommend following the instructions in the

previous section, “Building PHP on Linux/UNIX with Apache.”

Installing PHP on Windows
Installing PHP on Windows requires nothing more than downloading the distribu-

tion file. To download the PHP distribution files, go to the home of PHP on Windows,

http://windows.php.net/, and follow the link to the Downloads page. Grab the latest

version of the thread-safe ZIP package—for this example, we are using 5.4.0. Your

distribution will be named something similar to php-VERSION.zip, where VERSION

is the most recent release number.

After the file downloads to your system, double-click it to launch your unzipping

software. The distribution is packed up with relative pathnames already in place, so

extract the files to a new directory called C:\php\, where it will place all the files

and subdirectories under that new directory.

http://www.macports.org/
http://www.mamp.info
http://windows.php.net/

ptg8126863

64 CHAPTER 4: Installing and Configuring PHP

Next, go to the C:\php\ directory and copy the php.ini-development file to

php.ini. Now, to get a basic version of PHP working with Apache, you need to

make a few minor modifications to the Apache configuration file.

On some Windows systems you might need to set an explicit environment variable
in order for PHP to run correctly; setting it will not cause any harm so even if you
are unsure if it is necessary, there’s no reason not to. For information on adding
the PHP directory to the PATH environment variable, see the entry in the PHP FAQ
at http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath.

Integrating PHP with Apache on Windows
To ensure that PHP and Apache get along with one another, you need to add a few

items to the httpd.conf configuration file. First, find a section that looks like this:

Example:
LoadModule foo_module modules/mod_foo.so
#
LoadModule access_module modules/mod_access.so
...
#LoadModule vhost_alias_module modules/mod_vhost_alias.so

At the end of this section, add the following:

LoadModule php5_module C:/php/php5apache2_2.dll

In addition, add the following to ensure Apache knows where php.ini resides:

PHPIniDir “C:/php/”

Next, look for this section:

#
AddType allows you to add to or override the MIME configuration
file mime.types for specific file types.
#

Add the following line:

AddType application/x-httpd-php .php

This statement ensures that the PHP engine will parse files that end with the .php

extension. Your selection of filenames might differ; for example, you might want to

parse all *.html files as PHP files.

Save the httpd.conf file and then restart Apache. The server should start without

warning; PHP is now part of the Apache web server.

NOTE

http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath

ptg8126863

Testing Your Installation 65

php.ini Basics
After you have compiled or installed PHP, you can still change its behavior

with the php.ini file. On Linux/UNIX systems, the default location for this file is

/usr/local/php/lib or the lib subdirectory of the PHP installation location you

used at configuration time. On a Windows system, this file should be in the PHP

directory or another directory as specified by the value of PHPIniDir in the Apache

httpd.conf file.

Directives in the php.ini file come in two forms: values and flags. Value directives

take the form of a directive name and a value separated by an equal sign. Possible

values vary from directive to directive. Flag directives take the form of a directive

name and a positive or negative term separated by an equal sign. Positive terms

include 1, On, Yes, and True. Negative terms include 0, Off, No, and False.

Whitespace is ignored.

On Windows systems, it is important to explicitly provide the value for the
extension_dir directive. If you installed PHP in C:\php then the value of
extension_dir should be “C:\php\ext”.

You can change your php.ini settings at any time, but after you do, you need to

restart the server for the changes to take effect. At some point, take time to read

through the php.ini file on your own to see the types of things that you can

configure.

Testing Your Installation
The simplest way to test your PHP installation is to create a small test script that

uses the phpinfo() function. This function produces a long list of configuration

information. Open a text editor and type the following line:

<?php phpinfo(); ?>

Save this file as phpinfo.php and place it in the document root of your web server—

the htdocs subdirectory of your Apache installation or the /Library/WebServer/

Documents directory on Mac OS X. Access this file using your web browser, and you

should see something like what is shown in Figure 4.1.

NOTE

ptg8126863

66 CHAPTER 4: Installing and Configuring PHP

The exact output of phpinfo() depends on your operating system, PHP version, and

configuration options.

Getting Installation Help
Help is always at hand on the Internet, particularly for problems concerning open

source software. Wait a moment before you click the Send button, however. No mat-

ter how intractable your installation, configuration, or programming problem might

seem, chances are you are not alone. Someone has probably already answered your

question.

When you hit a brick wall, your first recourse should be to the official PHP site at

http://www.php.net/ (particularly the annotated manual at http://www.php.net/

manual/). If you still cannot find your answer, don’t forget that the PHP site is

searchable. The advice you are seeking may be lurking in a press release or a FAQ

file. You can also search the mailing list archives at http://www.php.net/search.php.

These archives represent a huge information resource with contributions from many

of the great minds in the PHP community. Spend some time trying out a few key-

word combinations.

FIGURE 4.1
The results of
phpinfo().

http://www.php.net/
http://www.php.net/manual/
http://www.php.net/manual/
http://www.php.net/search.php

ptg8126863

The Basics of PHP Scripts 67

If you are still convinced that your problem has not been addressed, you might well

be doing the PHP community a service by exposing it. You can join the PHP mailing

lists at http://www.php.net/mailing-lists.php. Although these lists often have high

volume, you can learn a lot from them. If you are serious about PHP scripting, you

should certainly subscribe to at least a digest list. After you’ve subscribed to the list

that matches your concerns, consider posting your problem.

When you post a question, it is a good idea to include as much information as pos-

sible (without writing a novel). The following items are often pertinent:

. Your operating system

. The version of PHP you are running or installing

. The configuration options you chose

. Any output from the configure or make commands that preceded an installa-

tion failure

. A reasonably complete example of the code that is causing problems

Why all these cautions about posting a question to a mailing list? First, developing

research skills will stand you in good stead. A good researcher can generally solve a

problem quickly and efficiently. Posting a naive question to a technical list often

results in a wait rewarded only by a message or two referring you to the archives

where you should have begun your search for answers in the first place.

Second, remember that a mailing list is not analogous to a technical support call

center. No one is paid to answer your questions. Despite this, you have access to an

impressive pool of talent and knowledge, including that of some of the creators of

PHP itself. A good question and its answer will be archived to help other coders.

Asking a question that has already been answered several times just adds more

noise.

Having said this, don’t be afraid to post a problem to the list. PHP developers are a

civilized and helpful breed, and by bringing a problem to the attention of the com-

munity, you might be helping others to solve the same problem.

The Basics of PHP Scripts
Let’s jump straight in with a PHP script. To begin, open your favorite text editor. Like

HTML documents, PHP files are made up of plain text. You can create them with

any text editor, and most popular HTML editors and programming IDEs (integrated

development environments) provide support for PHP.

http://www.php.net/mailing-lists.php

ptg8126863

68 CHAPTER 4: Installing and Configuring PHP

A good website for finding PHP-friendly editors is at http://www.php-editors.com.

Type in the example in Listing 4.1 and save the file to the document root of your

web server, using a name something like first.php.

Listing 4.1 A Simple PHP Script
1: <?php
2: echo “<h1>Hello Web!</h1>”;
3: ?>

If you are not working directly on the machine that will be serving your PHP script,

you need to use a File Transfer Protocol (FTP) or Secure Copy (SCP) client to upload

your saved document to the server. When the document is in place on the server,

you should be able to access it using your browser. If all has gone well, you should

see the script’s output. Figure 4.2 shows the output from the first.php script.

TIP

FIGURE 4.2
Success: the
output from
first.php.

Beginning and Ending a Block of PHP Statements
When writing PHP, you need to inform the PHP engine that you want it to execute

your commands. If you don’t do this, the code you write will be mistaken for HTML

and will be output to the browser. You can designate your code as PHP with special

tags that mark the beginning and end of PHP code blocks. Table 4.1 shows four such

PHP delimiter tags.

http://www.php-editors.com

ptg8126863

The Basics of PHP Scripts 69

Table 4.1 PHP Start and End Tags

Tag Style Start Tag End Tag

Standard tags <?php ?>

Short tags <? ?>

ASP tags <% %>

Script tags <script language=”php”> </script>

Of the tags in Table 4.1, only the standard and script tags are guaranteed to work

on any configuration. You must explicitly enable the short and ASP-style tags in

your php.ini file.

To activate recognition for short tags, you must make sure that the short_open_tag

switch is set to On in php.ini:

short_open_tag = On;

To activate recognition for the ASP-style tags, you must enable the asp_tags setting

in php.ini:

asp_tags = On;

To ensure portable, reusable code, it is best to use the standard tags rather than
short tags or ASP-style tags for the simple reason that server configurations are
unique—use the standard style because you know you can count on it as part of
any configuration.

After you have edited php.ini and restarted Apache, you should be able to use any

of the four styles in your scripts. This is largely a matter of preference, although if

you intend to include XML in your script, you should disable the short tags (<? ?>)

and work with the standard tags (<?php ?>).

The character sequence <? tells an XML parser to expect a processing instruction
and is therefore often included in XML documents. If you include XML in your
script and have short tags enabled, the PHP engine is likely to confuse XML
processing instructions and PHP start tags. Disable short tags if you intend to
incorporate XML in your document.

NOTE

CAUTION

ptg8126863

70 CHAPTER 4: Installing and Configuring PHP

Let’s run through some of the ways in which you can legally write the code in

Listing 4.1. Given the configuration changes shown earlier, you can use any of the

four PHP start and end tags that you have seen:

<?
echo “Hello Web!”;
?>

<?php
echo “Hello Web!”;
?>

<%
echo “Hello Web!”;
%>

<script language=”php”>
echo “Hello Web!”;
</script>

You can also put single lines of code in PHP on the same line as the PHP start and

end tags:

<?php echo “Hello Web!”; ?>

Now that you know how to define a block of PHP code, let’s take a closer look at the

code in Listing 4.1 itself.

The echo and print() Statements
Simply put, you can use the echo statement to output data. In most cases, anything

output by echo ends up viewable in the browser. Alternatively, you could have used

the print() statement in place of the echo statement. Using echo or print() is a

matter of taste; when you look at other people’s scripts, you might see either used,

which is why I included both here.

Referring back to the code you have seen so far, note the only line of code in Listing

4.1 ended with a semicolon. The semicolon informs the PHP engine that you have

completed a statement, and is probably the most important bit of coding syntax you

could learn at this stage.

A statement represents an instruction to the PHP engine. Broadly, it is to PHP what a

sentence is to written or spoken English. A sentence should usually end with a peri-

od; a statement should usually end with a semicolon. Exceptions to this rule include

statements that enclose other statements and statements that end a block of code. In

most cases, however, failure to end a statement with a semicolon will confuse the

PHP engine and result in an error.

ptg8126863

The Basics of PHP Scripts 71

Combining HTML and PHP
The script in Listing 4.1 is pure PHP. You can incorporate this into an HTML docu-

ment by simply adding HTML outside the PHP start and end tags, as shown in

Listing 4.2.

Listing 4.2 A PHP Script Incorporated into HTML
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>A PHP script including HTML</title>
5: </head>
6: <body>
7: <h1><?php echo “hello world”; ?></h1>
8: </body>
9: </html>

As you can see, incorporating PHP code into a predominantly HTML document is

simply a matter of typing in the code. The PHP engine ignores everything outside

the PHP open and close tags. If you were to save the contents of Listing 4.2 as

helloworld.php, place it in your document root, and then view it with a browser,

as shown in Figure 4.3, you would see the string hello world in a bold heading. If

you were to view the document source, as shown in Figure 4.4, the listing would

look exactly like a normal HTML document.

FIGURE 4.3
The output of
helloworld.php
as viewed in a
browser.

ptg8126863

72 CHAPTER 4: Installing and Configuring PHP

You can include as many blocks of PHP code as you need in a single document,

interspersing them with HTML as required. Although you can have multiple blocks

of code in a single document, they combine to form a single script. Any variables

defined in the first block will usually be available to subsequent blocks.

Adding Comments to PHP Code
Code that seems clear at the time you write it can seem like a hopeless tangle when

you try to amend it 6 months later. Adding comments to your code as you write can

save you time later on and make it easier for other programmers to work with your

code.

A comment is text in a script that is ignored by the PHP engine. Comments can

make code more readable or annotate a script.

Single-line comments begin with two forward slashes (//)—the preferred style—or a

single hash or pound sign (#). The PHP engine ignores all text between these marks

and either the end of the line or the PHP close tag:

// this is a comment
this is another comment

Multiline comments begin with a forward slash followed by an asterisk (/*) and end

with an asterisk followed by a forward slash (*/):

/*
this is a comment
none of this will
be parsed by the
PHP engine
*/

FIGURE 4.4
The output of
helloworld.php
as HTML source
code.

ptg8126863

Q&A 73

Summary
In this chapter, you learned how to install and configure PHP 5.4.0 for use with

Apache on Linux/UNIX, Mac OS X, or Windows. You learned that various config-

ure options in the Linux/UNIX build script can change the features that are sup-

ported. You learned about php.ini and how to change the values of its directives.

Using the phpinfo() function, you tested your installation and produced a list of its

configuration values. You created a simple PHP script using a text editor. You exam-

ined four sets of tags that you can use to begin and end blocks of PHP code.

Finally, you learned how to use the echo and print statements to send data to the

browser, and you brought HTML and PHP together into the same script. In the next

chapter, you use these skills to test some of the fundamental building blocks of the

PHP language, including variables, data types, and operators.

Q&A
Q. This chapter covered an installation for Linux/UNIX, Mac OS X, or Windows,

and the Apache web server. Does this mean that the material presented in
this book will not apply to other servers and operating systems?

A. No. One of PHP’s great strengths is that it runs on multiple platforms. You can

find installation instructions for different web servers and configuration direc-

tives for database support in the PHP Manual. Although the examples

throughout this book are specifically geared toward the combination of PHP,

MySQL, and Apache, only slight modifications are needed to work with the

examples using different web servers or databases.

Q. Which are the best start and end tags to use?

A. It is largely a matter of preference. For the sake of portability, the standard

tags (<?php ?>) are preferred.

Q. What editors should I avoid when creating PHP code?

A. Do not use word processors that format text for printing (Microsoft Word, for

example). Even if you save files created using this type of editor in plaintext

format, hidden characters are likely to creep into your code.

Q. When should I comment my code?

A. Again, this is a matter of preference. Some short scripts will be self-explanatory

even after a long interval. For scripts of any length or complexity, you should

comment your code. Comments in your code often save you time and frustra-

tion in the long run.

ptg8126863

74 CHAPTER 4: Installing and Configuring PHP

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. From a Linux/UNIX operating system, how would you get help on configura-

tion options (the options that you pass to the configure script in your PHP

distribution)?

2. What line should you add to the Apache configuration file to ensure that the

.php extension is recognized?

3. What is PHP’s configuration file called?

4. Can a person browsing your website read the source code of PHP script you

have successfully installed?

Answers
1. You can get help on configuration options by calling the configure script in

the PHP distribution folder and passing it the --help argument:

./configure --help

2. This line ensures that Apache will treat files ending with the .php extension as

PHP scripts:

AddType application/x-httpd-php .php

3. PHP’s configuration file is called php.ini.

4. No, the user will see only the output of your script.

Activities
1. Install PHP on your system. If it is already in place, review your php.ini file

and check your configuration.

2. Familiarize yourself with the process of creating, uploading, and running PHP

scripts. In particular, create your own “Hello World” script. Add HTML code to

it, and add additional blocks of PHP. Experiment with the different PHP delim-

iter tags. Which ones are enabled in your configuration? Take a look at your

php.ini file to confirm your findings. Don’t forget to add some comments to

your code.

ptg8126863

CHAPTER 5

The Building Blocks of PHP

In this chapter, you learn the following:
. About variables—what they are, why you need to use them, and how to

use them
. How to define and access variables
. About data types
. About some of the more commonly used operators
. How to use operators to create expressions
. How to define and use constants

In this chapter, you get your hands dirty with some of the nuts and bolts of the PHP script-

ing language. Those of you new to programming might feel overwhelmed at times, but

don’t worry—you can always refer to this chapter later on. Concentrate on understanding

the concepts, rather than memorizing the features covered, because these elements are

repeated throughout the scripts in this book. Eventually you’ll get it, if not the first time.

If you’re already an experienced programmer, you should at least skim this chapter

because it covers a few PHP-specific features with regard to global variables, data types,

and changing types.

Variables
A variable is a special container that you can define, which then “holds” a value, such as

a number, string, object, array, or a Boolean. Variables are fundamental to programming.

Without variables, you would be forced to hard-code each specific value used in your

scripts. The following hard-coded statement adds two numbers together and prints the

result, which solves a simple mathematics problem:

echo (2 + 4);

ptg8126863

76 CHAPTER 5: The Building Blocks of PHP

However, this snippet of code is useful only for people who specifically want to know

the sum of 2 and 4. To get past this limitation, you could write a script for finding

the sum of another set of numbers, say 3 and 5. However, this approach to pro-

gramming is clearly absurd, and this is where variables come into play.

With variables, you can create templates for operations, such as adding two num-

bers, without worrying about the specific values the variables represent. Values are

given to the variables when the script is run, possibly through user input, through a

database query, or from the result of another action earlier in the script. In other

words, variables should be used whenever the data in your script is liable to

change—either during the lifetime of the script or when it is passed to another script

for later use.

A variable consists of a name of your choosing, preceded by a dollar sign ($).

Variable names can include letters, numbers, and the underscore character (_), but

they cannot include spaces. Names must begin with a letter or an underscore. The

following list shows some legal variables:

$a;
$a_longish_variable_name;
$2453;
$sleepyZZZZ;

Your variable names should be meaningful as well as consistent in style. For
example, if your script deals with name and password values, do not create a vari-
able called $n for the name and $p for the password—those are not meaningful
names for anyone other than you, at that particular moment. If you pick up that
script weeks later, you might think that $n is the variable for number rather than
name and that $p stands for page rather than password. And what if a co-worker
has to modify your script? How will that person know what $n and $p stood for?
You can use whatever naming convention you want for variables in your scripts, as
long as the names are descriptive and follow some sort of pattern that others can
understand.

A semicolon (;)—also known as the instruction terminator—is used to end a PHP

statement. The semicolons in the previous fragment of code are not part of the

variable names, but are used to end the statement that declares the variable as

“alive and kicking,” if you will. To declare a variable, you need only include it in

your script. When you declare a variable, you usually assign a value to it in the

same statement, as shown here:

$num1 = 8;

$num2 = 23;

NOTE

ptg8126863

Variables 77

The preceding lines declare two variables and use the assignment operator (=) to

assign values to them. You learn about assignment in more detail in the “Operators

and Expressions” section, later in this chapter. After you assign values to your vari-

ables, you can treat them exactly as if they were the values themselves. In other

words

echo $num1;

is equivalent to

echo 8;

as long as $num1 is assigned a value of 8.

Global Variables
In addition to the rules for naming variables, there are rules regarding the availabil-

ity of variables. In general, the assigned value of a variable is present only within

the function or script where it resides. For example, if you have scriptA.php that

holds a variable called $name with a value of joe, and you want to create

scriptB.php that also uses a $name variable, you can assign to that second $name

variable a value of jane without affecting the variable in scriptA.php. The value

of the $name variable is local to each script, and the assigned values are independent

of each other.

However, you can also define the $name variable as global within a script or func-

tion. If the $name variable is defined as a global variable in both scriptA.php and

scriptB.php, and these scripts are connected to each other (that is, one script calls

the other or includes the other), there will be just one value for the now-shared

$name variable. Examples of global variable scope are explained in more detail in

Chapter 7, “Working with Functions.”

Superglobal Variables
In addition to global variables of your own creation, PHP has several predefined

variables called superglobals. These variables are always present, and their values

are available to all your scripts. Each of the following superglobals is actually an

array of other variables:

. $_GET contains any variables provided to a script through the GET method.

. $_POST contains any variables provided to a script through the POST method.

. $_COOKIE contains any variables provided to a script through a cookie.

ptg8126863

78 CHAPTER 5: The Building Blocks of PHP

. $_FILES contains any variables provided to a script through file uploads.

. $_SERVER contains information such as headers, file paths, and script

locations.

. $_ENV contains any variables provided to a script as part of the server

environment.

. $_REQUEST contains any variables provided to a script via GET, POST, or

COOKIE input mechanisms.

. $_SESSION contains any variables that are currently registered in a session.

The examples in this book use superglobals in all applicable situations. Using super-

globals is crucial in creating secure applications because they reduce the likelihood

of user-injected input to your scripts. By coding your scripts to accept only what you

want, in the manner defined by you (from a form using the POST method, or from a

session, for example), you can eliminate some of the problems created by loosely

written scripts.

Data Types
Different types of data take up different amounts of memory and may be treated

differently when they are manipulated by a script. Some programming languages

therefore demand that the programmer declare in advance which type of data a

variable will contain. By contrast, PHP is loosely typed, meaning that it automatical-

ly determines the data type at the time data is assigned to each variable.

This automatic typing is a mixed blessing. On the one hand, it means that variables

can be used flexibly—in one instance, a variable can hold a string and then later in

the script it can hold an integer or some other data type. On the other hand, this

flexibility can lead to problems in larger scripts if you are specifically expecting a

variable to hold one data type when in fact it holds something completely different.

For example, suppose that you have created code to manipulate an array variable.

If the variable in question instead contains a number value and no array structure

is in place, errors will occur when the code attempts to perform array-specific opera-

tions on the variable.

Table 5.1 shows the eight standard data types available in PHP.

ptg8126863

Data Types 79

TABLE 5.1 Standard Data Types

Type Example Description

Boolean true One of the special values true or false

Integer 5 A whole number

Float or double 3.234 A floating-point number

String “hello” A collection of characters

Object An instance of a class

Array An ordered set of keys and values

Resource Reference to a third-party resource (a
database, for example)

NULL An uninitialized variable

Resource types are often returned by functions that deal with external applications

or files. For example, you will see references to “the MySQL resource ID” in Chapter

18, “Interacting with MySQL Using PHP.” The NULL type is reserved for variables

that have been declared but no value has been assigned to them.

PHP has several functions available to test the validity of a particular type of vari-

able—one for each type, in fact. The is_* family of functions, such as is_bool(),

tests whether a given value is a Boolean. Listing 5.1 assigns different data types to a

single variable and then tests the variable with the appropriate is_* function. The

comments in the code show you where the script is in the process.

You can read more about calling functions in Chapter 7.

LISTING 5.1 Testing the Type of a Variable
1: <?php
2: $testing; // declare without assigning
3: echo “is null? “.is_null($testing); // checks if null
4: echo “
”;
5: $testing = 5;
6: echo “is an integer? “.is_int($testing); // checks if integer
7: echo “
”;
8: $testing = “five”;
9: echo “is a string? “.is_string($testing); // checks if string
10: echo “
”;
11: $testing = 5.024;
12: echo “is a double? “.is_double($testing); // checks if double
13: echo “
”;
14: $testing = true;
15: echo “is boolean? “.is_bool($testing); // checks if boolean
16: echo “
”;

NOTE

ptg8126863

80 CHAPTER 5: The Building Blocks of PHP

LISTING 5.1 Continued
17: $testing = array(‘apple’, ‘orange’, ‘pear’);
18: echo “is an array? “.is_array($testing); // checks if array
19: echo “
”;
20: echo “is numeric? “.is_numeric($testing); // checks if is numeric
21: echo “
”;
22: echo “is a resource? “.is_resource($testing); // checks if is a resource
23: echo “
”;
24: echo “is an array? “.is_array($testing); // checks if is an array
25: echo “
”;
26: ?>

Put these lines into a text file called testtype.php, and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

is null? 1
is an integer? 1
is a string? 1
is a double? 1
is boolean? 1
is an array? 1
is numeric?
is a resource?
is an array? 1

When the $testing variable is declared in line 2, no value is assigned to it, so when

the variable is tested in line 3 to see whether it is NULL (using is_null()), the result

is 1 (true).

If you have configured PHP to show all notices, warnings, and errors, you will see
a notice when you run this script:

Notice: Undefined variable: testing in /path/to/testtype.php on line 3

Notices are turned on by default when you use the php-development.ini rather
than php-production.ini, and can be very helpful when debugging scripts.

After the check to see whether $testing is NULL, values are assigned to $testing

by using the = sign and then the variable istested with the appropriate is_*

function. An integer, assigned to the $testing variable in line 5, is a whole or real

number. In simple terms, you can think of a whole number as a number without a

decimal point. A string, assigned to the $testing variable in line 8, is a collection

of characters. When you work with strings in your scripts, they should always be

surrounded by double or single quotation marks (“ or ‘). A double, assigned to the

$testing variable in line 11, is a floating-point number (that is, a number that

includes a decimal point). A Boolean, assigned to the $testing variable in line 14,

NOTE

ptg8126863

Data Types 81

can have one of two special values: true or false. In line 17, an array is created

using the array() function, which you learn more about in Chapter 8, “Working

with Arrays.” This particular array contains three items, and the script dutifully

reports $testing to have a type of array.

From line 20 through the end of the script, no value is reassigned to $testing—only

the type is tested. Lines 20 and 22 test whether $testing is a numeric or resource

type, respectively, and because it is not, no value is displayed to the user. In line 24,

the script tests again to see whether $testing is an array, and because it is, the

value of 1 is displayed.

Changing Type with settype()
PHP also provides the function settype(), which is used to change the type of a

variable. To use settype(), you place the variable to change and the type to

change it to between the parentheses and separate the elements with a comma,

like this:

settype($variabletochange, ‘new type’);

Listing 5.2 converts the value 3.14 (a float) to each of the four standard types

examined in this chapter.

LISTING 5.2 Changing the Type of a Variable with settype()
1: <?php
2: $undecided = 3.14;
3: echo “is “.$undecided.” a double? “.is_double($undecided).”
”; // double
4: settype($undecided, ‘string’);
5: echo “is “.$undecided.” a string? “.is_string($undecided).”
”; // string
6: settype($undecided, ‘integer’);
7: echo “is “.$undecided.” an integer? “.is_integer($undecided).”
”; //

integer
8: settype($undecided, ‘double’);
9: echo “is “.$undecided.” a double? “.is_double($undecided).”
”; // double
10: settype($undecided, ‘bool’);
11: echo “is “.$undecided.” a boolean? “.is_bool($undecided).”
”; // boolean
12: ?>

Per the PHP Manual, “double” is returned in case of a float, and not simply
“float”. Your eyes are not deceiving you.

In each case, we use the appropriate is_* function to confirm the new data type

and to print the value of the variable $undecided to the browser using echo. When

we convert the string “3.14” to an integer in line 6, any information beyond the

NOTE

ptg8126863

82 CHAPTER 5: The Building Blocks of PHP

decimal point is lost forever. That’s why $undecided contains 3 after we change it

back to a double in line 8. Finally, in line 10, we convert $undecided to a Boolean.

Any number other than 0 becomes true when converted to a Boolean. When print-

ing a Boolean in PHP, true is represented as 1, and false is represented as an

empty string; so in line 11, $undecided is printed as 1.

Put these lines into a text file called settype.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

is 3.14 a double? 1
is 3.14 a string? 1
is 3 an integer? 1
is 3 a double? 1
is 1 a boolean? 1

You will not see a notice about an undefined variable like you did in the previous
section, because the variable $undecided is defined and assigned a value at the
beginning of this particular script.

Changing Type by Casting
The principal difference between using settype() to change the type of an existing

variable and changing type by casting is the fact that casting produces a copy, leav-

ing the original variable untouched. To change type through casting, you indicate

the name of a data type, in parentheses, in front of the variable you are copying.

For example, the following line creates a copy of the $originalvar variable, with a

specific type (integer) and a new name $newvar. The $originalvar variable is still

available, and is its original type; $newvar is a completely new variable.

$newvar = (integer) $originalvar

Listing 5.3 illustrates changing data types through casting.

LISTING 5.3 Casting a Variable
1: <?php
2: $undecided = 3.14;
3: $holder = (double) $undecided;
4: echo “is “.$holder.” a double? “.is_double($holder).”
”; // double
5: $holder = (string) $undecided;
6: echo “is “.$holder.” a string? “.is_string($holder).”
”; // string
7: $holder = (integer) $undecided;
8: echo “is “.$holder.” an integer? “.is_integer($holder).”
”; // integer
9: $holder = (double) $undecided;
10: echo “is “.$holder.” a double? “.is_double($holder).”
”; // double

NOTE

ptg8126863

Data Types 83

11: $holder = (boolean) $undecided;
12: echo “is “.$holder.” a boolean? “.is_bool($holder).”
”; // boolean
13: echo “<hr/>”;
14: echo “original variable type of $undecided: “;
15: echo gettype($undecided); // double
16: ?>

Listing 5.3 never actually changes the type of the $undecided variable, which

remains a double throughout this script, as illustrated on line 15, where the get-

type() function is used to determine the type of $undecided.

Despite its usage here, do not use gettype() to test for a certain type because
it can be slow and is likely to be deprecated in future versions. Use the is_* fam-
ily of functions to test type in production, as shown in Listing 5.1. This usage is
simply for illustrative purposes.

In fact, casting $undecided creates a copy that is then converted to the type speci-

fied at the time of the cast and stored in the variable $holder. This casting occurs

first in line 3, and again in lines 5, 7, 9, and 11. Because the code is working with

only a copy of $undecided and not the original variable, it never lost its original

value, as the $undecided variable did in line 6 of Listing 5.2 when its type changed

from a string to an integer.

Put the contents of Listing 5.3 into a text file called casttype.php and place this file

in your web server document root. When you access this script through your web

browser, it produces the following output:

is 3.14 a double? 1
is 3.14 a string? 1
is 3 an integer? 1
is 3.14 a double? 1
is 1 a boolean? 1
original variable type of 3.14: double

Now that you’ve seen how to change the contents of a variable from one type to

another either by using settype() or by casting, consider why this might be useful.

It is not a procedure that you will have to use often because PHP automatically casts

your variables for you when the context of the script requires a change. However,

such an automatic cast is temporary, and you might want to make a variable per-

sistently hold a particular data type, which is why PHP gives you the ability to

specifically change types.

For example, the numbers that a user types into an HTML form are made available

to your script as the string type. If you try to add two strings together because they

NOTE

ptg8126863

84 CHAPTER 5: The Building Blocks of PHP

contain numbers, PHP helpfully converts these strings into numbers while the

addition is taking place. So

“30cm” + “40cm”

results in an answer of 70.

The generic term number is used here to mean integers and floats. If the user
input were in float form, and the strings added together were “3.14cm” and
“4.12cm”, the answer provided would be 7.26.

During the casting of a string into an integer or float, PHP ignores any non-numeric

characters. The string is truncated, and any characters from the location of the first

non-numeric character onward are ignored. So, whereas “30cm” is transformed into

“30”, the string “6ft2in” becomes just 6 because the rest of the string evaluates to 0.

You might want to clean up the user input yourself and use it in a particular way in

your script. Imagine that the user has been asked to submit a number. We can sim-

ulate this by declaring a variable and assigning the user’s input to it:

$test = “30cm”;

As you can see, the user has added units to his number—instead of entering “30”,

the user has entered “30cm”. You can make sure that the user input is clean by cast-

ing it as an integer:

$newtest = (integer) $test;
echo “Your imaginary box has a width of $newtest centimeters.”;

The resulting output is as follows:

Your imaginary box has a width of 30 centimeters.

Had the the user input not been cast, and the value of the original variable, $test,

been used in place of $newtest when printing the statement about the width of a

box, the result would have been this:

Your imaginary box has a width of 30cm centimeters.

This output looks strange; in fact, it looks like parroted user input that has not been

cleaned up (which is exactly what it is).

NOTE

ptg8126863

Operators and Expressions 85

Why Test Type?
Why might it be useful to know the type of a variable? In programming, circum-

stances often arise when data is passed to you from another source, such as a func-

tion. In Chapter 7, you learn how to create functions; data is often passed between

one or more functions because they can accept information as arguments from the

code that calls them. For the function to work with the data it is given, it is a good

idea to first verify that the function has been given values of the correct data type.

For example, a function expecting data that has a type of resource will not work

well when passed a string.

Operators and Expressions
With what you have learned so far, you can assign data to variables, and you can

even investigate and change the data type of a variable. A programming language

isn’t very useful, though, unless you can manipulate the data you have stored.

Operators are symbols used to manipulate data stored in variables, to make it possi-

ble to use one or more values to produce a new value, or to check the validity of

data to determine the next step in a condition, and so forth. A value operated on by

an operator is referred to as an operand.

An operator is a symbol or series of symbols that, when used in conjunction with
values, performs an action, and usually produces a new value.

An operand is a value used in conjunction with an operator. There are usually two
or more operands to one operator.

In this simple example, two operands are combined with an operator to produce a

new value:

(4 + 5)

The integers 4 and 5 are operands. The addition operator (+) operates on these

operands to produce the integer 9. Operators almost always sit between two

operands, although you will see a few exceptions later in this chapter.

The combination of operands with an operator to produce a result is called an

expression. Although operators and their operands form the basis of expressions, an

expression need not contain an operator. In fact, an expression in PHP is defined as

anything that can be used as a value. This includes integer constants such as 654,

NOTE

ptg8126863

86 CHAPTER 5: The Building Blocks of PHP

variables such as $user, and function calls such as is_int(). The expression (4 +

5), for example, consists of two expressions (4 and 5) and an operator (+). When an

expression produces a value, it is often said to resolve to that value. That is, when all

subexpressions are taken into account, the expression can be treated as if it were a

code for the value itself. In this case, the expression (4 + 5) resolves to 9.

An expression is any combination of functions, values, and operators that resolves
to a value. As a rule of thumb, if you can use it as if it were a value, it is an
expression.

Now that you have the principles out of the way, it’s time to take a tour of the

operators commonly used in PHP programming.

The Assignment Operator
You have seen the assignment operator in use each time a variable was declared in

an example; the assignment operator consists of the single character: =. The assign-

ment operator takes the value of the right-side operand and assigns it to the left-side

operand:

$name = “Jimbo”;

The variable $name now contains the string “Jimbo”. This construct is also an

expression. Although it might seem at first glance that the assignment operator sim-

ply changes the variable $name without producing a value, a statement that uses

the assignment operator always resolves to a copy of the value of the right operand.

Therefore

echo $name = “Jimbo”;

prints the string “Jimbo” to the browser while it also assigns the value “Jimbo” to

the $name variable.

Arithmetic Operators
The arithmetic operators do exactly what you would expect—they perform arithmetic

operations. Table 5.2 lists these operators along with examples of their usage and

results.

NOTE

ptg8126863

Operators and Expressions 87

TABLE 5.2 Arithmetic Operators

Operator Name Example Sample Result

+ Addition 10+3 13

- Subtraction 10-3 7

/ Division 10/3 3.3333333333333

* Multiplication 10*3 30

% Modulus 10%3 1

The addition operator adds the right-side operand to the left-side operand. The sub-

traction operator subtracts the right-side operand from the left-side operand. The

division operator divides the left-side operand by the right-side operand. The multi-

plication operator multiplies the left-side operand by the right-side operand. The

modulus operator returns the remainder of the left-side operand divided by the

right-side operand.

The Concatenation Operator
The concatenation operator is represented by a single period (.). Treating both

operands as strings, this operator appends the right-side operand to the left-side

operand. So

“hello”.” world”

returns

“hello world”

Note that the resulting space between the words occurs because there is a leading

space in the second operand (“ world” rather than “world”). The concatenation

operator literally smashes together two strings without adding any padding. So, if

you try to concatenate two strings without leading or trailing spaces, such as

“hello”.”world”

you will get this as your result:

“helloworld”

Regardless of the data types of the operands used with the concatenation operator,

they are treated as strings, and the result is always of the string type. You will

ptg8126863

88 CHAPTER 5: The Building Blocks of PHP

encounter concatenation frequently throughout this book when the results of an

expression of some kind must be combined with a string, as in the following:

$cm = 212;
echo “the width is “.($cm/100).” meters”;

Combined Assignment Operators
Although there is only one true assignment operator, PHP provides a number of

combination operators that transform the left-side operand and return a result while

also modifying the original value of the variable. As a rule, operators use operands

but do not change their original values, but combined assignment operators break

this rule. A combined assignment operator consists of a standard operator symbol

followed by an equal sign. Combination assignment operators save you the trouble

of using two operators in two different steps within your script. For example, if you

have a variable with a value of 4, and you want to increase this value to 4 more,

you might see this:

$x = 4;
$x = $x + 4; // $x now equals 8

However, you can also use a combination assignment operator (+=) to add and

return the new value, as shown here:

$x = 4;
$x += 4; // $x now equals 8

Each arithmetic operator, as well as the concatenation operator, also has a corre-

sponding combination assignment operator. Table 5.3 lists these new operators and

shows an example of their usage.

TABLE 5.3 Some Combined Assignment Operators

Operator Example Equivalent To

+= $x += 5 $x = $x + 5

-= $x -= 5 $x = $x - 5

/= $x /= 5 $x = $x / 5

*= $x *= 5 $x = $x * 5

%= $x %= 5 $x = $x % 5

.= $x .= “ test” $x = $x.” test”

Each of the examples in Table 5.3 transforms the value of $x using the value of the

right-side operand. Subsequent uses of $x will refer to the new value. For example

ptg8126863

Operators and Expressions 89

$x = 4;
$x += 4; // $x now equals 8
$x += 4; // $x now equals 12
$x -= 3; // $x now equals 9

These operators are used throughout the scripts in the book. You will frequently see

the combined concatenation assignment operator when you begin to create dynamic

text. Looping through a script and adding content to a string, such as dynamically

building the HTML markup to represent a table, is a prime example of the use of a

combined assignment operator.

Automatically Incrementing and Decrementing an
Integer Variable
When coding in PHP, you will often find it necessary to increment or decrement a

variable that is an integer type. You usually need to do this when you are counting

the iterations of a loop. You have already learned two ways of doing this—either by

incrementing the value of $x using the addition operator

$x = $x + 1; // $x is incremented by 1

or by using a combined assignment operator

$x += 1; // $x is incremented by 1

In both cases, the new value is assigned to $x. Because expressions of this kind are

common, PHP provides some special operators that allow you to add or subtract the

integer constant 1 from an integer variable, assigning the result to the variable

itself. These are known as the post-increment and post-decrement operators. The post-

increment operator consists of two plus symbols appended to a variable name:

$x++; // $x is incremented by 1

This expression increments the value represented by the variable $x by 1. Using two

minus symbols in the same way decrements the variable:

$x--; // $x is decremented by 1

If you use the post-increment or post-decrement operators in conjunction with a

conditional operator, the operand is modified only after the first operation has fin-

ished:

$x = 3;
$y = $x++ + 3;

In this instance, $y first becomes 6 (the result of 3 + 3), and then $x is incremented.

ptg8126863

90 CHAPTER 5: The Building Blocks of PHP

In some circumstances, you might want to increment or decrement a variable in a

test expression before the test is carried out. PHP provides the pre-increment and pre-

decrement operators for this purpose. These operators behave in the same way as

the post-increment and post-decrement operators, but they are written with the plus

or minus symbols preceding the variable:

++$x; // $x is incremented by 1
--$x; // $x is decremented by 1

If these operators are used as part of a test expression, incrementing occurs before

the test is carried out. For example, in the next fragment, $x is incremented before it

is tested against 4:

$x = 3;
++$x < 4; // false

The test expression returns false because 4 is not smaller than 4.

Comparison Operators
Comparison operators perform comparative tests using their operands and return

the Boolean value true if the test is successful or false if the test fails. This type of

expression is useful when using control structures in your scripts, such as if and

while statements. This book covers if and while statements in Chapter 6, “Flow

Control Functions in PHP.”

For example, to test whether the value contained in $x is smaller than 5, you can

use the less-than operator as part of your expression:

$x < 5

If $x contains the value 3, this expression has the value true. If $x contains 7, the

expression resolves to false.

Table 5.4 lists the comparison operators.

TABLE 5.4 Comparison Operators

Operator Name Returns True If… Example ($x Is 4) Result

== Equivalence Left is $x == 5 false

equivalent to
right.

!= Nonequivalence Left is not $x != 5 true

equivalent to
right.

ptg8126863

Operators and Expressions 91

TABLE 5.4 Continued

Operator Name Returns True If… Example ($x Is 4) Result

=== Identical Left is equivalent $x === 4 true

to right, and they
are the same type.

Nonequivalence Left is equivalent $x === “4” false

to right, but they
are not the same
type.

> Greater than Left is greater $x > 4 false

than right.

>= Greater than or Left is greater $x >= 4 true

equal to than or equal
to right.

< Less than Left is less $x < 4 false

than right.

<= Less than or Left is less than $x <= 4 true

equal to or equal to right.

These operators are most commonly used with integers or doubles, although the

equivalence operator is also used to compare strings. Be very sure to understand the

difference between the == and = operators. The == operator tests equivalence, where-

as the = operator assigns value. Also, remember that === tests equivalence with

regard to both value and type.

Creating Complex Test Expressions with the
Logical Operators
Logical operators test combinations of Boolean values. For example, the or operator,

which is indicated by two pipe characters (||) or simply the word or, returns the

Boolean value true if either the left or the right operand is true:

true || false

This expression returns true.

The and operator, which is indicated by two ampersand characters (&&) or simply

the word and, returns the Boolean value true only if both the left and right

operands are true:

true && false

ptg8126863

92 CHAPTER 5: The Building Blocks of PHP

This expression returns the Boolean value false. It’s unlikely that you will use a

logical operator to test Boolean constants because it makes more sense to test two or

more expressions that resolve to a Boolean. For example

($x > 2) && ($x < 15)

returns the Boolean value true if $x contains a value that is greater than 2 and

smaller than 15. Parentheses are used when comparing expressions to make the

code easier to read and to indicate the precedence of expression evaluation. Table

5.5 lists the logical operators.

TABLE 5.5 Logical Operators

Operator Name Returns True If… Example Result

|| Or Left or right is true. true || false true

or Or Left or right is true. true or false true

xor Xor Left or right is true, true xor true false

but not both.

&& And Left and right are true. true && false false

and And Left and right are true. true and false false

! Not The single operand is ! true false

not true.

You might wonder why are there two versions of both the or and the and operators,

and that’s a good question. The answer lies in operator precedence, which we exam-

ine next.

Operator Precedence
When you use an operator within an expression, the PHP engine usually reads your

expression from left to right. For complex expressions that use more than one opera-

tor, though, the PHP engine could be led astray without some guidance. First, con-

sider a simple case:

4 + 5

There’s no room for confusion here; PHP simply adds 4 to 5. But what about the fol-

lowing fragment, with two operators:

4 + 5 * 2

This presents a problem. Should PHP find the sum of 4 and 5, and then multiply it

by 2, providing the result 18? Or does it mean 4 plus the result of 5 multiplied by 2,

resolving to 14? If you were simply to read from left to right, the former would be

ptg8126863

Operators and Expressions 93

true. However, PHP attaches different precedence to different operators, and because

the multiplication operator has higher precedence than the addition operator, the

second solution to the problem is the correct one: 4 plus the result of 5 multiplied

by 2.

However, you can override operator precedence by putting parentheses around your

expressions. In the following fragment, the addition expression is evaluated before

the multiplication expression:

(4 + 5) * 2

Whatever the precedence of the operators in a complex expression, it is a good idea

to use parentheses to make your code clearer and to save you from bugs such as

applying sales tax to the wrong subtotal in a shopping cart situation. The following

is a list of the operators covered in this chapter in precedence order (those with the

highest precedence listed first):

++, --, (cast)

/, *, %

+, -

<, <=, =>, >

==, ===, !=

&&

||

=, +=, -=, /=, *=, %=, .=

and

xor

or

As you can see, or has a lower precedence than ||, and and has a lower precedence

than &&, so you can use the lower-precedence logical operators to change the way a

complex test expression is read. In the following fragment, the two expressions are

equivalent, but the second is much easier to read:

$x and $y || $z

$x && ($y || $z)

Taking it one step further, the following fragment is easier still:

$x and ($y or $z)

However, all three examples are equivalent.

ptg8126863

94 CHAPTER 5: The Building Blocks of PHP

The order of precedence is the only reason that both && and and are available in

PHP. The same is true of || and or. In most circumstances, the use of parentheses

makes for clearer code and fewer bugs than code that takes advantage of the differ-

ence in precedence of these operators. This book tends to use the more common ||

and && operators, and relies on parenthetical statements to set specific operator

precedence.

Constants
Variables offer a flexible way of storing data because you can change their values

and the type of data they store at any time during the execution of your scripts.

However, if you want to work with a value that must remain unchanged throughout

your script’s execution, you can define and use a constant. You must use PHP’s built-

in define() function to create a constant, which subsequently cannot be changed

unless you specifically define() it again. To use the define() function, place the

name of the constant and the value you want to give it within parentheses and sep-

arated by a comma:

define(“YOUR_CONSTANT_NAME”, 42);

The value you want to set can be a number, a string, or a Boolean. By convention,

the name of the constant should be in capital letters. Constants are accessed with

the constant name only; no dollar symbol is required. Listing 5.4 shows you how to

define and access a constant.

LISTING 5.4 Defining and Accessing a Constant
1: <?php
2: define(“THE_YEAR”, “2012”);
3: echo “It is the year “.THE_YEAR;
4: ?>

Constants can be used anywhere in your scripts, including in functions stored in
external files.

Notice that in line 3 the concatenation operator is used to append the value held by

the constant to the string “It is the year “ because PHP does not distinguish

between a constant and a string within quotation marks.

TIP

ptg8126863

Constants 95

Put these few lines into a text file called constant.php and place this file in your

web server document root. When you access this script through your web browser, it

produces the following output:

It is the year 2012

The define() function can also accept a third Boolean argument that determines

whether the constant name should be case sensitive. By default, constant names are

case sensitive. However, by passing true to the define() function, you can change

this behavior. So, if you were to set up our THE_YEAR constant as

define(“THE_YEAR”, “2012”, true);

you could access its value without worrying about case:

echo the_year;
echo ThE_YeAr;
echo THE_YEAR;

The preceding three expressions are equivalent, and all result in an output of 2012.

This feature can make scripts a little friendlier for other programmers who work

with our code because they will not need to consider case when accessing a constant

we have already defined. However, given the fact that other constants are case sensi-

tive, this might make for more, rather than less, confusion as programmers forget

which constants to treat in which way. Unless you have a compelling reason to do

otherwise, the safest course is to keep your constants case sensitive and define them

using uppercase characters, which is an easy-to-remember (not to mention stan-

dard) convention.

Predefined Constants
PHP automatically provides some built-in constants for you. For example, the

constant __FILE__ returns the name of the file that the PHP engine is currently

reading. The constant __LINE__ returns the current line number of the file.

These are but two examples of what are called “magic constants,” because they

are not statically predefined and instead change depending on the context in

which they are used. For a complete list, see http://www.php.net/manual/en/

language.constants.predefined.php.

You can also find out which version of PHP is interpreting the script with the

PHP_VERSION constant. This constant can be useful if you need version information

included in script output when sending a bug report. The PHP_VERSION constant is a

predefined constant (and a reserved word). For a complete list of reserved constants,

see http://www.php.net/manual/en/reserved.constants.php.

http://www.php.net/manual/en/language.constants.predefined.php
http://www.php.net/manual/en/language.constants.predefined.php
http://www.php.net/manual/en/reserved.constants.php

ptg8126863

96 CHAPTER 5: The Building Blocks of PHP

Summary
This chapter covered some of the basic features of the PHP language. You learned

about variables and how to assign values to them using the assignment operator.

You also learned about the scope of variables and built-in superglobals. This chapter

also covered operators, and you learned how to combine some of the most common

of these into expressions. Finally, you learned how to define and access constants.

Now that you have mastered some of the fundamentals of PHP, the next chapter

really puts you in the driver’s seat. You learn how to make scripts that can make

decisions and repeat tasks, with help from variables, expressions, and operators.

Q&A
Q. Why is it useful to know the type of data that a variable holds?

A. Often the data type of a variable constrains what you can do with it. For

example, you cannot perform array-related functions on simple strings.

Similarly, you might want to make sure that a variable contains an integer or

a float before using it in a mathematical calculation, even though PHP will

often help you by changing data types for you in this situation.

Q. Should I obey any conventions when naming variables?

A. Your goal should always be to make your code easy to read and understand. A

variable such as $ab123245 tells you nothing about its role in your script and

invites typos. Keep your variable names short and descriptive.

A variable named $f is unlikely to mean much to you when you return to

your code after a month or so. A variable named $filename, however, should

make more sense.

Q. Should I learn the operator precedence table?

A. There is no reason you shouldn’t, but I would save the effort for more useful

tasks. By using parentheses in your expressions, you can make your code easy

to read while defining your own order of precedence.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

ptg8126863

Workshop 97

Quiz
1. Which of the following variable names are not valid?

$a_value_submitted_by_a_user
$666666xyz
$xyz666666
$_____counter_____
$the first
$file-name

2. What does the following code fragment output?

$num = 33;
(boolean) $num;
echo $num;

3. What does the following statement output?

echo gettype(“4”);

4. What is the output from the following code fragment?

$test_val = 5.5466;
settype($test_val, “integer”);
echo $test_val;

5. Which of the following statements does not contain an expression?

4;
is_int(44);
5/12;

6. Which of the statements in question 5 contains an operator?

7. What value does the following expression return?

5 < 2

What data type will the returned value be?

Answers
1. The variable name $666666xyz is not valid because it does not begin with a

letter or an underscore character. The variable name $the first is not valid

because it contains a space. $file-name is also invalid because it contains a

nonalphanumeric character (-).

2. The fragment prints the integer 33. The cast to Boolean produces a converted

copy of the value stored in $num. It does not alter the value actually stored

there.

ptg8126863

98 CHAPTER 5: The Building Blocks of PHP

3. The statement outputs the string “string”.

4. The code outputs the value 5. When a float is converted to an integer, any

information beyond the decimal point is lost.

5. They are all expressions because they all resolve to values.

6. The statement 5/12; contains a division operator.

7. The expression resolves to false, which is a Boolean value.

Activities
1. Create a script that contains at least five different variables. Populate them

with values of different data types and use the is_* family of functions to

test and print the type to the browser.

2. Assign values to two variables. Use comparison operators to test whether the

first value is

. The same as the second

. Less than the second

. Greater than the second

. Less than or equal to the second

Print the result of each test to the browser.

Change the values assigned to your test variables and run the script again.

ptg8126863

CHAPTER 6

Flow Control Functions in PHP

In this chapter, you learn the following:
. How to use the if statement to execute code if a test expression evaluates

to true

. How to execute alternative blocks of code when the test expression of an if
statement evaluates to false

. How to use the switch statement to execute code based on the value
returned by a test expression

. How to repeat execution of code using a while statement

. How to use for statements to make neater loops

. How to break out of loops

. How to nest one loop within another

. How to use PHP start and end tags within control structures

The scripts created in the previous chapter flow only in a single direction: forward. That is,

the same statements execute in the same order every time a script is run. This does not

allow for much flexibility because any sort of dynamic programming must, at the very

least, have a loop or two, not to mention the ability to check for the validity of certain

conditions before proceeding onward. You now learn about the programming structures

that enable your scripts to adapt to circumstances.

Switching Flow
It is common for scripts to evaluate conditions and change their behavior accordingly.

These decisions are what make your PHP pages dynamic—that is, able to change output

according to circumstances. Like most programming languages, PHP enables you to do

this with an if statement.

ptg8126863

100 CHAPTER 6: Flow Control Functions in PHP

The if Statement
The if statement is a way of controlling the execution of a statement that follows it

(that is, a single statement or a block of code inside braces). The if statement evalu-

ates an expression found between parentheses. If this expression results in a true

value, the statement is executed. Otherwise, the statement is skipped entirely. This

functionality enables scripts to make decisions based on any number of factors:

if (expression) {
// code to execute if the expression evaluates to true

}

Listing 6.1 executes a block of code only if a variable contains the string “happy”.

LISTING 6.1 An if Statement
1: <?php
2: $mood = “happy”;
3: if ($mood == “happy”) {
4: echo “Hooray! I’m in a good mood!”;
5: }
6: ?>

In line 2, the value “happy” is assigned to the variable $mood. In line 3, the compar-

ison operator == compares the value of the variable $mood with the string “happy”.

If they match, the expression evaluates to true, and the subsequent code is execut-

ed until the closing bracket is found (in this case, in line 5).

Put these lines into a text file called testif.php and place this file in your web serv-

er document root. When you access this script through your web browser, it produces

the following output:

Hooray! I’m in a good mood!

If you change the assigned value of $mood to “sad” or any other string besides

“happy”, and then run the script again, the expression in the if statement evalu-

ates to false, and the code block is skipped. The script remains silent, which leads

to the else clause.

Using the else Clause with the if Statement
When working with an if statement, you might want to define an alternative block of

code that should be executed if the expression you are testing evaluates to false. You

can do this by adding else to the if statement followed by a further block of code:

if (expression) {
// code to execute if the expression evaluates to true

} else {
// code to execute in all other cases

}

ptg8126863

Switching Flow 101

Listing 6.2 amends the example in Listing 6.1 so that a default block of code is exe-

cuted if the value of $mood is not equivalent to “happy”.

LISTING 6.2 An if Statement That Uses else
1: <?php
2: $mood = “sad”;
3: if ($mood == “happy”) {
4: echo “Hooray! I’m in a good mood!”;
5: } else {
6: echo “I’m in a $mood mood.”;
7: }
8: ?>

Put these lines into a text file called testifelse.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

I’m in a sad mood.

Notice in line 2 that the value of $mood is the string “sad”, which obviously is not

equal to “happy”, so the expression in the if statement in line 3 evaluates to false.

This results in the first block of code (line 4) being skipped. However, the block of

code after else is executed, and the alternate message is printed: I’m in a sad

mood. The string “sad” is the value assigned to the variable $mood.

Using an else clause in conjunction with an if statement allows scripts to make

decisions about code execution. However, your options are limited to an either-or

branch: either the code block following the if statement or the code block following

the else statement. You’ll now learn about additional options for the evaluation of

multiple expressions, one after another.

Using the elseif Clause with the if Statement
You can use an if...elseif...else clause to test multiple expressions (the

if...else portion) before offering a default block of code (the elseif portion):

if (expression) {
// code to execute if the expression evaluates to true

} elseif (another expression) {
// code to execute if the previous expression failed
// and this one evaluates to true

} else {
// code to execute in all other cases

}

If the initial if expression does not evaluate to true, the first block of code is

ignored. The elseif clause presents another expression for evaluation. If it evalu-

ates to true, its corresponding block of code is executed. Otherwise, the block of

ptg8126863

102 CHAPTER 6: Flow Control Functions in PHP

code associated with the else clause is executed. You can include as many elseif

clauses as you want; and if you don’t need a default action, you can omit the else

clause.

The elseif clause can also be written as two words (else if). The syntax you
use is a matter of taste, but coding standards employed by PEAR (the PHP
Extension and Application Repository) and PECL (the PHP Extension Community
Library) use elseif.

Listing 6.3 adds an elseif clause to the previous example.

LISTING 6.3 An if Statement That Uses else and elseif
1: <?php
2: $mood = “sad”;
3: if ($mood == “happy”) {
4: echo “Hooray! I’m in a good mood!”;
5: } elseif ($mood == “sad”) {
6: echo “Awww. Don’t be down!”;
7: } else {
8: echo “I’m neither happy nor sad, but $mood.”;
9: }
10: ?>

Once again, the $mood variable has a value of “sad”, as shown in line 2. This value

is not equal to “happy”, so the code in line 4 is ignored. The elseif clause in line 5

tests for equivalence between the value of $mood and the value “sad”, which in this

case evaluates to true. The code in line 6 is therefore executed. In lines 7 through 9,

a default behavior is provided, which would be invoked if the previous test condi-

tions were all false. In that case, we would simply print a message including the

actual value of the $mood variable.

Put these lines into a text file called testifelseif.php and place this file in your

web server document root. When you access this script through your web browser, it

produces the following output:

Awww. Don’t be down!

Change the value of $mood to “iffy” and run the script. It produces the following

output:

I’m neither happy nor sad, but iffy.

NOTE

ptg8126863

Switching Flow 103

The switch Statement
The switch statement is an alternative way of changing flow, based on the evalua-

tion of an expression. Using the if statement in conjunction with elseif, you can

evaluate multiple expressions, as you’ve just seen. However, a switch statement

evaluates only one expression in a list of expressions, selecting the correct one based

on a specific bit of matching code. Whereas the result of an expression evaluated as

part of an if statement is interpreted as either true or false, the expression por-

tion of a switch statement is subsequently tested against any number of values, in

hopes of finding a match:

switch (expression) {
case result1:

// execute this if expression results in result1
break;

case result2:
// execute this if expression results in result2
break;

default:
// execute this if no break statement
// has been encountered hitherto

}

The expression used in a switch statement is often just a variable, such as $mood.

Within the switch statement, you find a number of case statements. Each of these

cases tests a value against the value of the switch expression. If the case value is

equivalent to the expression value, the code within the case statement is executed.

The break statement ends the execution of the switch statement altogether.

If the break statement is omitted, the next case statement is executed, regardless of

whether a previous match has been found. If the optional default statement is

reached without a previous matching value having been found, its code is executed.

It is important to include a break statement at the end of any code that will be
executed as part of a case statement. Without a break statement, the program
flow continues to the next case statement and ultimately to the default state-
ment. In most cases, this results in unexpected behavior, likely incorrect!

Listing 6.4 re-creates the functionality of the if statement example using the

switch statement.

CAUTION

ptg8126863

104 CHAPTER 6: Flow Control Functions in PHP

LISTING 6.4 A switch Statement
1: <?php
2: $mood = “sad”;
3: switch ($mood) {
4: case “happy”:
5: echo “Hooray! I’m in a good mood!”;
6: break;
7: case “sad”:
8: echo “Awww. Don’t be down!”;
9: break;
10: default:
11: echo “I’m neither happy nor sad, but $mood.”;
12: break;
13: }
14: ?>

Once again, in line 2 the $mood variable is initialized with a value of “sad”. The

switch statement in line 3 uses this variable as its expression. The first case state-

ment in line 4 tests for equivalence between “happy” and the value of $mood. There

is no match in this case, so script execution moves on to the second case statement

in line 7. The string “sad” is equivalent to the value of $mood, so this block of code

is executed. The break statement in line 9 ends the process. Lines 10 through 12

provide the default action, should neither of the previous cases evaluate as true.

Put these lines into a text file called testswitch.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

Awww. Don’t be down!

Change the value of $mood to “happy” and run the script. It produces the following

output:

Hooray! I’m in a good mood!

To emphasize the caution about the importance of the break statement, try running

this script without the second break statement. Be sure to change the value of $mood

back to “sad” and then run the script. Your output will be as follows:

Awww. Don’t be down!I’m neither happy nor sad, but sad.

This is definitely not the desired output, so be sure to include break statements

where appropriate.

ptg8126863

Loops 105

Using the ?: Operator
The ?: or ternary operator is similar to the if statement, except that it returns a

value derived from one of two expressions separated by a colon. This construct pro-

vides you with three parts of the whole, hence the name ternary. The expression used

to generate the returned value depends on the result of a test expression:

(expression) ? returned_if_expression_is_true : returned_if_expression_is_false;

If the test expression evaluates to true, the result of the second expression is

returned; otherwise, the value of the third expression is returned. Listing 6.5 uses the

ternary operator to set the value of a variable according to the value of $mood.

LISTING 6.5 Using the ?: Operator
1: <?php
2: $mood = “sad”;
3: $text = ($mood == “happy”) ? “I am in a good mood!” : “I am in a $mood

mood.”;
4: echo “$text”;
5: ?>

In line 2, $mood is set to “sad”. In line 3, $mood is tested for equivalence to the string

“happy”. Because this test returns false, the result of the third of the three expres-

sions is returned.

Put these lines into a text file called testtern.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

I am in a sad mood.

The ternary operator can be difficult to read, but is useful if you are dealing with

only two alternatives and want to write compact code.

Loops
So far, you’ve looked at decisions that a script can make about what code to exe-

cute. Scripts can also decide how many times to execute a block of code. Loop state-

ments are specifically designed to enable you to perform repetitive tasks because

they continue to operate until a specified condition is achieved or until you explicit-

ly choose to exit the loop.

ptg8126863

106 CHAPTER 6: Flow Control Functions in PHP

The while Statement
The while statement looks similar in structure to a basic if statement, but has the

ability to loop:

while (expression) {
// do something

}

Unlike an if statement, a while statement executes for as long as the expression

evaluates to true, over and over again if need be. Each execution of a code block

within a loop is called an iteration. Within the block, you usually change something

that affects the while statement’s expression; otherwise, your loop continues indefi-

nitely. For example, you might use a variable to count the number of iterations and

act accordingly. Listing 6.6 creates a while loop that calculates and prints multiples

of 2 up to 24.

LISTING 6.6 A while Statement
1: <?php
2: $counter = 1;
3: while ($counter <= 12) {
4: echo $counter.” times 2 is “.($counter * 2).”
”;
5: $counter++;
6: }
7: ?>

This example initializes the variable $counter in line 2 with a value of 1. The

while statement in line 3 tests the $counter variable so that as long as the value of

$counter is less than or equal to 12, the loop continues to run. Within the while

statement’s code block, the value of $counter is multiplied by 2, and the result is

printed to the browser. In line 5, the value of $counter is incremented by 1. This

step is extremely important because if you did not increment the value of the

$counter variable, the while expression would never resolve to false and the loop

would never end.

Put these lines into a text file called testwhile.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

1 times 2 is 2
2 times 2 is 4
3 times 2 is 6
4 times 2 is 8
5 times 2 is 10
6 times 2 is 12
7 times 2 is 14

ptg8126863

Loops 107

8 times 2 is 16
9 times 2 is 18
10 times 2 is 20
11 times 2 is 22
12 times 2 is 24

The do...while Statement
A do...while statement looks a little like a while statement turned on its head.

The essential difference between the two is that the code block is executed before the

truth test and not after it:

do {
// code to be executed

} while (expression);

The test expression of a do...while statement should always end with a
semicolon.

This type of statement is useful when you want the code block to be executed at

least once, even if the while expression evaluates to false. Listing 6.7 creates a

do...while statement. The code block is executed a minimum of one time.

LISTING 6.7 The do...while Statement
1: <?php
2: $num = 1;
3: do {
4: echo “The number is: “.$num.”
”;
5: $num++;
6: } while (($num > 200) && ($num < 400));
7: ?>

The do...while statement tests whether the variable $num contains a value that is

greater than 200 and less than 400. Line 2 initializes $num to 1, so this expression

returns false. Nonetheless, the code block is executed at least one time before the

expression is evaluated, so the statement prints a single line to the browser.

Put these lines into a text file called testdowhile.php and place this file in your

web server document root. When you access this script through your web browser, it

produces the following output:

The number is: 1

CAUTION

ptg8126863

108 CHAPTER 6: Flow Control Functions in PHP

If you change the value of $num in line 2 to 300 and then run the script, the loop

displays

The number is: 300

and continues to print similar lines, with increasing numbers, through

The number is: 399

The for Statement
Anything you want to do with a for statement can also be done with a while state-

ment, but a for statement is often a more efficient method of achieving the same

effect. In Listing 6.6, you saw how a variable was initialized outside the while state-

ment and then tested within its expression and incremented within the code block.

With a for statement, you can achieve this same series of events, but in a single

line of code. This allows for more compact code and makes it less likely that you

might forget to increment a counter variable, thereby creating an infinite loop:

for (initialization expression; test expression; modification expression) {
// code to be executed

}

Infinite loops are, as the name suggests, loops that run without bounds. If your
loop is running infinitely, your script is running for an infinite amount of time. This
behavior is very stressful on your web server and renders the web page unusable.

The expressions within the parentheses of the for statement are separated by semi-

colons. Usually, the first expression initializes a counter variable, the second expres-

sion is the test condition for the loop, and the third expression increments the count-

er. Listing 6.8 shows a for statement that re-creates the example in Listing 6.6,

which multiplies 12 numbers by 2.

LISTING 6.8 Using the for Statement
1: <?php
2: for ($counter=1; $counter<=12; $counter++) {
3: echo $counter.” times 2 is “.($counter * 2).”
”;
4: }
5: ?>

Put these lines into a text file called testfor.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

NOTE

ptg8126863

Loops 109

1 times 2 is 2
2 times 2 is 4
3 times 2 is 6
4 times 2 is 8
5 times 2 is 10
6 times 2 is 12
7 times 2 is 14
8 times 2 is 16
9 times 2 is 18
10 times 2 is 20
11 times 2 is 22
12 times 2 is 24

The results of Listings 6.6 and 6.8 are the same, but the for statement makes the

code in Listing 6.8 more compact. Because the $counter variable is initialized and

incremented at the beginning of the statement, the logic of the loop is clear at a

glance. That is, as shown in line 2, the first expression initializes the $counter vari-

able and assigns a value of 1, the test expression verifies that $counter contains a

value that is less than or equal to 12, and the final expression increments the

$counter variable. Each of these items is found in the single line of code.

When the sequence of script execution reaches the for loop, the $counter variable

is initialized and the test expression is evaluated. If the expression evaluates to

true, the code block is executed. The $counter variable is then incremented and

the test expression is evaluated again. This process continues until the test

expression evaluates to false.

Breaking Out of Loops with the break Statement
Both while and for statements incorporate a built-in test expression with which

you can end a loop. However, the break statement enables you to break out of a

loop based on the results of additional tests. This can provide a safeguard against

error. Listing 6.9 creates a simple for statement that divides a large number by a

variable that is incremented, printing the result to the screen.

LISTING 6.9 A for Loop That Divides 4000 by 10 Incremental
Numbers
1: <?php
2: for ($counter=1; $counter <= 10; $counter++) {
3: $temp = 4000/$counter;
4: echo “4000 divided by “.$counter.” is...”.$temp.”
”;
5: }
6: ?>

In line 2, this example initializes the variable $counter and assigns a value of 1.

The test expression in the for statement verifies that the value of $counter is less

ptg8126863

110 CHAPTER 6: Flow Control Functions in PHP

than or equal to 10. Within the code block, 4000 is divided by $counter, printing

the result to the browser.

Put these lines into a text file called testfor2.php and place this file in your web

server document root. When you access this script through your web browser, it

produces the following output:

4000 divided by 1 is... 4000
4000 divided by 2 is... 2000
4000 divided by 3 is... 1333.33333333
4000 divided by 4 is... 1000
4000 divided by 5 is... 800
4000 divided by 6 is... 666.666666667
4000 divided by 7 is... 571.428571429
4000 divided by 8 is... 500
4000 divided by 9 is... 444.444444444
4000 divided by 10 is... 400

This seems straightforward enough. But what if the value you place in $counter

comes from user input? The value could be a negative number or even a string. Let’s

take the first instance, where the user input value is a negative number. Changing

the initial value of $counter from 1 to -4 causes 4000 to be divided by 0 when the

code block is executed for the fifth time. It is generally not a good idea for your code

to divide by 0 because such an operation results in an answer of “undefined.”

Listing 6.10 guards against this occurrence by breaking out of the loop if the value

of the $counter variable equals 0.

LISTING 6.10 Using the break Statement
1: <?php
2: $counter = -4;
3: for (; $counter <= 10; $counter++) {
4: if ($counter == 0) {
5: break;
6: } else {
7: $temp = 4000/$counter;
8: echo “4000 divided by “.$counter.” is...”.$temp.”
”;
9: }
10: }
11 ?>

Dividing a number by 0 does not cause a fatal error in PHP. Instead, PHP gener-
ates a warning and execution continues.

NOTE

ptg8126863

Loops 111

Listing 6.10 uses an if statement, shown in line 4, to test the value of $counter

before attempting mathematical operations using this value. If the value of

$counter is equal to 0, the break statement immediately halts execution of the

code block, and program flow continues after the for statement (line 11).

Put these lines into a text file called testfor3.php and place this file in your web

server document root. When you access this script through your web browser, it

produces the following output:

4000 divided by -4 is... -1000
4000 divided by -3 is... -1333.33333333
4000 divided by -2 is... -2000
4000 divided by -1 is... -4000

Notice that the $counter variable was initialized in line 2, outside the for state-

ment’s parentheses. This method was used to simulate a situation in which the

value of $counter is set from outside the script.

You can omit any of the expressions from a for statement, but you must remem-
ber to retain the separation semicolons.

Skipping an Iteration with the continue
Statement
The continue statement ends execution of the current iteration but doesn’t cause

the loop as a whole to end. Instead, the next iteration begins immediately. Using the

break statement as in Listing 6.10 is a little drastic. With the continue statement in

Listing 6.11, you can avoid a divide-by-0 error without ending the loop completely.

LISTING 6.11 Using the continue Statement
1: <?php
2: $counter = -4;
3: for (; $counter <= 10; $counter++) {
4: if ($counter == 0) {
5: continue;
6: }
7: $temp = 4000/$counter;
8: echo “4000 divided by “.$counter.” is...”.$temp.”
”;
9: }
10: ?>

TIP

ptg8126863

112 CHAPTER 6: Flow Control Functions in PHP

Line 5 swaps the break statement for a continue statement. If the value of the

$counter variable is equivalent to 0, the iteration is skipped, and the next one starts

immediately.

Put these lines into a text file called testcontinue.php and place this file in your

web server document root. When you access this script through your web browser, it

produces the following output:

4000 divided by -4 is... -1000
4000 divided by -3 is... -1333.33333333
4000 divided by -2 is... -2000
4000 divided by -1 is... -4000
4000 divided by 1 is... 4000
4000 divided by 2 is... 2000
4000 divided by 3 is... 1333.33333333
4000 divided by 4 is... 1000
4000 divided by 5 is... 800
4000 divided by 6 is... 666.666666667
4000 divided by 7 is... 571.428571429
4000 divided by 8 is... 500
4000 divided by 9 is... 444.44444444444
4000 divided by 10 is... 400

Using the break and continue statements can make code more difficult to read
because they often add layers of complexity to the logic of the loop statements
that contain them. Use these statements with care, or comment your code to
show other programmers (or yourself) exactly what you’re trying to achieve with
these statements.

Nesting Loops
Loops can contain other loop statements, as long as the logic is valid and the loops

are tidy. The combination of such statements proves particularly useful when work-

ing with dynamically created HTML tables. Listing 6.12 uses two for statements to

print a multiplication table to the browser.

LISTING 6.12 Nesting Two for Loops
1: <?php
2: echo “<table style=\”border: 1px solid #000;\”> \n”;
3: for ($y=1; $y<=12; $y++) {
4: echo “<tr> \n”;
5: for ($x=1; $x<=12; $x++) {
6: echo “<td style=\”border: 1px solid #000; width: 25px;
7: text-align:center;\”>”;

CAUTION

ptg8126863

Loops 113

8: echo ($x * $y);
9: echo “</td> \n”;
10: }
11: echo “</tr> \n”;
12: }
13: echo “</table>”;
14: ?>

Before you examine the for loops, take a closer look at line 2 in Listing 6.12:

echo “<table style=\”border: 1px solid black;\”> \n”;

Notice that Listing 6.12 uses the backslash character (\) before each of the quotation

marks within the string containing the style information for the table. These back-

slashes also appear in lines 6 and 7, in the style information for the table data cell.

This is necessary because it tells the PHP engine that we want to use the quotation

mark character, rather than have PHP interpret it as the beginning or end of a

string. If you did not “escape” the quotation marks with the backslash character, the

statement would not make sense to the engine; it would read it as a string followed

by a number followed by another string. Such a construct would generate an error.

This line also uses \n to represent a newline character, which makes the source easi-

er to read when it is rendered by the browser, which is useful especially when look-

ing at HTML for tables.

The outer for statement (line 3) initializes a variable called $y, assigning to it a

starting value of 1. This for statement defines an expression that intends to verify

that the value of $y is less than or equal to 12, and then defines the increment that

will be used. In each iteration, the code block prints a tr (table row) HTML element

(line 4) and begins another for statement (line 5). This inner loop initializes a vari-

able called $x and defines expressions along the same lines as for the outer loop. For

each iteration, the inner loop prints a td (table cell) element to the browser (lines 6

and 7), as well as the result of $x multiplied by $y (line 8). Line 9 closes the table

cell. After the inner loop has finished, execution falls back through to the outer

loop, where the table row closes on line 11, ready for the process to begin again.

When the outer loop has finished, the result is a neatly formatted multiplication

table. Listing 6.12 wraps things up by closing the table on line 13.

Put these lines into a text file called testnestfor.php and place this file in your

web server document root. When you access this script through your web browser, it

should look like Figure 6.1.

ptg8126863

114 CHAPTER 6: Flow Control Functions in PHP

Code Blocks and Browser Output
In Chapter 4, “Installing and Configuring PHP,” you learned that you can slip in

and out of HTML mode at will using the PHP start and end tags. In this chapter,

you have discovered that you can present distinct output to the user according to

a decision-making process you can control with if and switch statements. This

section combines these two techniques.

Imagine a script that outputs a table of values only when a variable is set to the

Boolean value true. Listing 6.13 shows a simplified HTML table constructed with

the code block of an if statement.

LISTING 6.13 A Code Block Containing Multiple echo Statements
1: <?php
2: $display_prices = true;
3: if ($display_prices) {
4: echo “<table border=\”1\”>\n”;
5: echo “<tr><td colspan=\”3\”>”;
6: echo “today’s prices in dollars”;
7: echo “</td></tr>”;
8: echo “<tr><td>\$14.00</td><td>\$32.00</td><td>\$71.00</td></tr>\n”;
9: echo “</table>”;
10: }
11: ?>

In line 8, note the dollar sign, which when meant literally and not as part of a vari-
able declaration, must be escaped with a backslash for it to be interpreted as the
dollar sign character.

FIGURE 6.1
Output of
testnestfor.php.

CAUTION

ptg8126863

Code Blocks and Browser Output 115

If the value of $display_prices is set to true in line 2, the table is printed. For the

sake of readability, we split the output into multiple echo() statements, and once

again use the backslash to escape any quotation marks used in the HTML output.

Put these lines into a text file called testmultiecho.php and place this file in your

web server document root. When you access this script through your web browser, it

should look like Figure 6.2.

FIGURE 6.2
Output of test-
multiecho.php.

There’s nothing wrong with the way this is coded, but you can save yourself some

typing by simply slipping back into HTML mode within the code block. Listing 6.14

does just that.

LISTING 6.14 Returning to HTML Mode Within a Code Block
1: <?php
2: $display_prices = true;
3: if ($display_prices) {
4: ?>
5: <table border=”1”>
6: <tr><td colspan=”3”>today’s prices in dollars</td></tr>
7: <tr><td>$14.00</td><td>$32.00</td><td>$71.00</td></tr>
8: </table>
9: <?php
10: }
11: ?>

The important thing to note here is that the shift to HTML mode on line 4 occurs

only if the condition of the if statement is fulfilled. This can save you the bother of

escaping quotation marks and wrapping our output in echo() statements. This

approach might, however, affect the readability of the code in the long run, espe-

cially if the script grows larger.

ptg8126863

116 CHAPTER 6: Flow Control Functions in PHP

Summary
In this chapter, you learned about control structures and the ways in which they can

help to make your scripts flexible and dynamic. Most of these structures reappear

regularly throughout the rest of the book.

You learned how to define an if statement and how to provide for alternative

actions with the elseif and else clauses. You learned how to use the switch state-

ment to change flow according to multiple equivalence tests on the result of an

expression. You learned about loops—in particular, the while and for statements—

and you learned how to use break and continue to prematurely end the execution

of a loop or to skip an iteration. You learned how to nest one loop within another

and saw a typical use for this structure. You also looked at a technique for using

PHP start and end tags in conjunction with conditional code blocks, to alleviate hav-

ing to escape (use the backslash in front of) special characters such as the quotation

mark and dollar sign.

You should now know enough of the basics to write scripts of your own that make

decisions and perform repetitive tasks. In the next chapter, you learn how to add

even more power to your applications. You learn how functions enable you to

organize your code, preventing duplication and improving reusability.

Q&A
Q. Must a control structure’s test expression result in a Boolean value?

A. Ultimately, yes. But in the context of a test expression, 0, an undefined vari-

able, or an empty string is converted to false. All other values evaluate to

true.

Q. Must I always surround a code block in a control statement with brackets?

A. If the code you want executed as part of a control structure consists of only a

single line, you can omit the brackets. However, the habit of always using

opening and closing brackets, regardless of structure length, is a good one.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

ptg8126863

Workshop 117

Quiz
1. How do you use an if statement to print the string “Youth message” to the

browser if an integer variable, $age, is between 18 and 35? If $age contains

any other value, the string “Generic message” should be printed to the

browser.

2. How do you extend your code in question 1 to print the string “Child mes-

sage” if the $age variable is between 1 and 17?

3. How do you create a while statement that increments through and prints

every odd number between 1 and 49?

4. How do you convert the while statement you created in question 3 into a for

statement?

Answers
1.

$age = 22;

if (($age >= 18) && ($age <= 35)) {
echo “Youth message”;

} else {
echo “Generic message”;

}

2.

$age = 12;

if (($age >= 18) && ($age <= 35)) {
echo “Youth message”;

} elseif (($age >= 1) && ($age <= 17)) {
echo “Child message”;

} else {
echo “Generic message”;

}

3.

$num = 1;

while ($num <= 49) {
echo $num.”
”;
$num += 2;

}

ptg8126863

118 CHAPTER 6: Flow Control Functions in PHP

4.

for ($num = 1; $num <= 49; $num += 2) {
echo $num.”
”;

}

Activities
1. Review the syntax for control structures. Think about how the techniques

you’ve learned will help you in your scripting. Perhaps some of the script ideas

you develop will be able to behave in different ways according to user input or

will loop to display an HTML table.

2. Start to build the control structures you will be using. Use temporary variables

to mimic user input or database queries for the time being.

ptg8126863

CHAPTER 7

Working with Functions

In this chapter, you learn the following:
. How to define and call functions from within your scripts
. How to pass values to functions and receive values in return
. How to call a function dynamically using a string stored in a variable
. How to access global variables from within a function
. How to give a function a “memory”
. How to pass data to functions by reference
. How to verify that a function exists before calling it

Functions are at the heart of a well-organized script and make your code easy to read and

reuse. No large project would be manageable without them because the problem of repeti-

tive code would bog down the development process. Throughout this chapter, you investi-

gate functions and learn some of the ways functions can save you from repetitive work.

What Is a Function?
You can think of a function as an input/output machine. This machine takes the raw

materials you feed it (input) and works with them to produce a product (output). A func-

tion accepts values, processes them, and then performs an action (printing to the browser,

for example), returns a new value, or both.

If you needed to bake a single cake, you would probably do it yourself, in your own

kitchen with your standard oven. But if you needed to bake thousands of cakes, you would

probably build or acquire a special cake-baking machine, built for baking cakes in mas-

sive quantities. Similarly, when deciding whether to create a function for reuse, the most

important factor to consider is the extent to which it can save you from writing repetitive

code.

ptg8126863

120 CHAPTER 7: Working with Functions

A function is a self-contained block of code that can be called by your scripts. When

called, the function’s code is executed and performs a particular task. You can pass

values to a function, which then uses the values appropriately—storing them, trans-

forming them, displaying them, whatever the function is told to do. When finished,

a function can also pass a value back to the original code that called it into action.

Calling Functions
Functions come in two flavors: those built in to the language and those you define

yourself. PHP has hundreds of built-in functions. Look at the following snippet for an

example of a function in use:

strtoupper(“Hello Web!”);

This example calls the strtoupper() function, passing it the string “Hello Web!”.

The function then goes about its business of changing the contents of the string to

uppercase letters. A function call consists of the function name (strtoupper in this

case) followed by parentheses. If you want to pass information to the function, you

place it between these parentheses. A piece of information passed to a function in

this way is called an argument. Some functions require that more than one argument

be passed to them, separated by commas:

some_function($an_argument, $another_argument);

strtoupper() is typical for a function in that it returns a value. Most functions

return some information back after they’ve completed their task; they usually at

least tell whether their mission was successful. strtoupper() returns a string value,

so its usage requires the presence of a variable to accept the new string, such as the

following:

$new_string = strtoupper(“Hello Web!”);

You may now use $new_string in your code, such as to print it to the screen:

echo $new_string;

This code results in the following text on the screen:

HELLO WEB!

The print() and echo() functions are not actually functions, they’re language
constructs designed to output strings to the browser. However, you will find them
in the PHP function list, at http://www.php.net/print and http://www.php.net/
echo, respectively. These constructs are similar in functionality and can be used
interchangably. Whichever one you use is a matter of taste.

NOTE

http://www.php.net/print
http://www.php.net/echo
http://www.php.net/echo

ptg8126863

Defining a Function 121

The abs() function, for example, requires a signed numeric value and returns the

absolute value of that number. Let’s try it out in Listing 7.1.

LISTING 7.1 Calling the Built-In abs() Function
1: <?php
2: $num = -321;
3: $newnum = abs($num);
4: echo $newnum;
5: //prints “321”
6: ?>

This example assigns the value -321 to a variable $num. It then passes that variable

to the abs() function, which makes the necessary calculation and returns a new

value. The code assigns this to the variable $newnum and displays the result.

Put these lines into a text file called abs.php and place this file in your web server

document root. When you access this script through your web browser, it produces

the following:

321

In fact, Listing 7.1 could have dispensed with temporary variables altogether, pass-

ing the number straight to the abs() function and directly printing the result:

echo abs(-321);

This example uses the temporary variables $num and $newnum, though, to make

each step of the process as clear as possible. Sometimes you can make your code

more readable by breaking it up into a greater number of simple expressions.

You can call user-defined functions in exactly the same way that we have been call-

ing built-in functions.

Defining a Function
You can define your own functions using the function statement:

function some_function($argument1, $argument2)
{

//function code here
}

The name of the function follows the function statement and precedes a set of

parentheses. If your function requires arguments, you must place comma-separated

variable names within the parentheses. These variables are filled by the values

passed to your function. Even if your function doesn’t require arguments, you must

nevertheless supply the parentheses.

ptg8126863

122 CHAPTER 7: Working with Functions

The naming rules for functions are similar to the naming rules for variables, which
you learned in Chapter 5, “The Building Blocks of PHP.” Names cannot include
spaces, and they must begin with a letter or an underscore. As with variables,
your function names should be meaningful and consistent in style. The capitaliza-
tion of function names is one such stylistic touch you can add to your code; using
mixed case in names, such as MyFunction() or handleSomeDifficultTask(),
makes your code much easier to read. You may hear this naming convention
referred to as CamelCase or lower CamelCase, depending on whether the first
character is capitalized.

Listing 7.2 declares and calls a function.

LISTING 7.2 Declaring and Calling a Function
1: <?php
2: function bighello()
3: {
4: echo “<h1>HELLO!</h1>”;
5: }
6: bighello();
7: ?>

The script in Listing 7.2 simply outputs the string “HELLO!” wrapped in an HTML h1

element.

Put these lines into a text file called bighello.php and place this file in your web

server document root. When you access this script through your web browser, it

should look like Figure 7.1.

NOTE

FIGURE 7.1
Output of
bighello.php.

ptg8126863

Defining a Function 123

Listing 7.2 declares a function, bighello(), that requires no arguments. Because of

this, the parentheses are left empty. Although bighello() is a working function, it

is not terribly useful. Listing 7.3 creates a function that requires an argument and

actually does something with it.

LISTING 7.3 Declaring a Function That Requires an Argument
1: <?php
2: function printBR($txt)
3: {
4: echo $txt.”
”;
5: }
6: printBR(“This is a line.”);
7: printBR(“This is a new line.”);
8: printBR(“This is yet another line.”);
9: ?>

Unlike variable names, function names are not case sensitive. In Listing 7.3, the
printBR() function could have been called as printbr(), PRINTBR(), or any
combination thereof, with success.

Put these lines into a text file called printbr.php and place this file in your web

server document root. When you access this script through your web browser, it

should look like Figure 7.2.

NOTE

FIGURE 7.2
A function that
prints a string
with an append-
ed
 tag.

In line 2, the printBR() function expects a string, so the variable name $txt is

placed between the parentheses when the function is declared. Whatever is passed to

printBR() is stored in this $txt variable. Within the body of the function, line 3

prints the $txt variable, appending a
 element to it.

ptg8126863

124 CHAPTER 7: Working with Functions

When you want to print a line to the browser, such as in line 6, 7, or 8, you can call

printBR() instead of the built-in print(), saving you the bother of typing the

 element.

Returning Values from User-Defined
Functions
The previous example output an amended string to the browser within the

printBR() function. Sometimes, however, you will want a function to provide a

value that you can work with yourself. If your function has transformed a string that

you have provided, you might want to get the amended string back so that you can

pass it to other functions. A function can return a value using the return statement

in conjunction with a value. The return statement stops the execution of the func-

tion and sends the value back to the calling code.

Listing 7.4 creates a function that returns the sum of two numbers.

LISTING 7.4 A Function That Returns a Value
1: <?php
2: function addNums($firstnum, $secondnum)
3: {
4: $result = $firstnum + $secondnum;
5: return $result;
6: }
7: echo addNums(3,5);
8: //will print “8”
9: ?>

Put these lines into a text file called addnums.php and place this file in your web

server document root. When you access this script through your web browser, it

produces the following:

8

Notice in line 2 that addNums() should be called with two numeric arguments (line 7

shows those to be 3 and 5 in this case). These values are stored in the variables

$firstnum and $secondnum. Predictably, addNums() adds the numbers contained in

these variables and stores the result in a variable called $result.

The return statement can return a value or nothing at all. How you arrive at a

value passed by return can vary. The value can be hard-coded:

return 4;

ptg8126863

Variable Scope 125

It can be the result of an expression:

return $a/$b;

It can be the value returned by yet another function call:

return another_function($an_argument);

Variable Scope
A variable declared within a function remains local to that function. In other words,

it is not available outside the function or within other functions. In larger projects,

this can save you from accidentally overwriting the contents of a variable when you

declare two variables with the same name in separate functions.

Listing 7.5 creates a variable within a function and then attempts to print it outside

the function.

LISTING 7.5 Variable Scope: A Variable Declared Within a Function Is
Unavailable Outside the Function
1: <?php
2: function test()
3: {
4: $testvariable = “this is a test variable”;
5: }
6: echo “test variable: “.$testvariable.”
”;
7: ?>

Put these lines into a text file called scopetest.php and place this file in your web

server document root. When you access this script through your web browser, it

should look like Figure 7.3.

FIGURE 7.3
Output of
scopetest.php.

ptg8126863

126 CHAPTER 7: Working with Functions

The exact output you see depends on your PHP error settings. That is, it might or
might not produce a “notice” as shown in Figure 7.3, but it will show the lack of
an additional string after “test variable”.

The value of the variable $testvariable is not printed because no such variable

exists outside the test() function. Remember that the attempt in line 6 to access a

nonexistent variable produces a notice such as the one displayed only if your PHP

settings are set to display all errors, notices, and warnings. If your error settings are

not strictly set, only the string “test variable:” is shown.

Similarly, a variable declared outside a function is not automatically available with-

in it.

Accessing Variables with the global Statement
From within one function, you cannot (by default) access a variable defined in

another function or elsewhere in the script. Within a function, if you attempt to use

a variable with the same name, you will only set or access a local variable. Let’s put

this to the test in Listing 7.6.

LISTING 7.6 Variables Defined Outside Functions Are Inaccessible
from Within a Function by Default
1: <?php
2: $life = 42;
3: function meaningOfLife()
4: {
5: echo “The meaning of life is “.$life”;
6: }
7: meaningOfLife();
8: ?>

Put these lines into a text file called scopetest2.php and place this file in your web

server document root. When you access this script through your web browser, it

should look like Figure 7.4.

NOTE

ptg8126863

Variable Scope 127

As you might expect, the meaningOfLife() function does not have access to the

$life variable in line 2; $life is empty when the function attempts to print it. On

the whole, this is a good thing because it saves you from potential clashes between

identically named variables, and a function can always demand an argument if it

needs information about the outside world. Occasionally, you might want to access

an important variable from within a function without passing it in as an argument.

This is where the global statement comes into play. Listing 7.7 uses global to

restore order to the universe.

LISTING 7.7 Accessing Global Variables with the global Statement
1: <?php
2: $life=42;
3: function meaningOfLife()
4: {
5: global $life;
6: echo “The meaning of life is “.$life”;
7: }
8: meaningOfLife();
9: ?>

Put these lines into a text file called scopetest3.php and place this file in your web

server document root. When you access this script through your web browser, it

should look like Figure 7.5.

FIGURE 7.4
Attempting to
reference a
variable from
outside the
scope of a
function.

ptg8126863

128 CHAPTER 7: Working with Functions

When you place the global statement in front of the $life variable when it is

declared in the meaningOfLife() function (line 5), it refers to the $life variable

declared outside the function (line 2).

You need to use the global statement within every function that needs to access a

particular named global variable. Be careful, though: If you manipulate the con-

tents of the variable within the function, the value of the variable changes for the

script as a whole.

You can declare more than one variable at a time with the global statement by

simply separating each of the variables you want to access with commas:

global $var1, $var2, $var3;

Usually, an argument is a copy of whatever value is passed by the calling code;
changing it in a function has no effect beyond the function block. Changing a glob-
al variable within a function, however, changes the original and not a copy. Use the
global statement carefully.

Saving State Between Function Calls
with the static Statement
Local variables within functions have a short but happy life—they come into being

when the function is called and die when execution is finished, as they should.

Occasionally, however, you might want to give a function a rudimentary memory.

FIGURE 7.5
Successfully
accessing a
global variable
from within a
function using
the global
statement.

CAUTION

ptg8126863

Saving State Between Function Calls with the static Statement 129

Assume that you want a function to keep track of the number of times it has been

called so that numbered headings can be created by a script. You could, of course,

use the global statement to do this, as shown in Listing 7.8.

LISTING 7.8 Using the global Statement to Remember the Value of a
Variable Between Function Calls
1: <?php
2: $num_of_calls = 0;
3: function numberedHeading($txt)
4: {
5: global $num_of_calls;
6: $num_of_calls++;
7: echo “<h1>”.$num_of_calls.” “.$txt.”</h1>”;
8: }
9: numberedHeading(“Widgets”);
10: echo “<p>We build a fine range of widgets.</p>”;
11: numberedHeading(“Doodads”);
12: echo “<p>Finest in the world.</p>”;
13: ?>

Put these lines into a text file called numberedheading.php and place this file in

your web server document root. When you access this script through your web

browser, it should look like Figure 7.6.

FIGURE 7.6
Using the
global
statement to
keep track of
the number of
times a function
has been
called.

This does the job. Listing 7.8 declares a variable, $num_of_calls, in line 2, outside

the function numberedHeading(). Line 5 makes this variable available to the

function by using the global statement.

Every time numberedHeading() is called, the value of $num_of_calls is incremented

(line 6). You can then print out the heading complete with the properly incremented

heading number.

ptg8126863

130 CHAPTER 7: Working with Functions

This is not the most elegant solution, however. Functions that use the global state-

ment cannot be read as standalone blocks of code. In reading or reusing them, we

need to look out for the global variables that they manipulate.

This is where the static statement can be useful. If you declare a variable within a

function in conjunction with the static statement, the variable remains local to the

function, and the function “remembers” the value of the variable from execution to

execution. Listing 7.9 adapts the code from Listing 7.8 to use the static statement.

LISTING 7.9 Using the static Statement to Remember the Value of a
Variable Between Function Calls
1: <?php
2: function numberedHeading($txt)
3: {
4: static $num_of_calls = 0;
5: $num_of_calls++;
6: echo “<h1>”.$num_of_calls.” “. $txt.”</h1>”;
7: }
8: numberedHeading(“Widgets”);
9: echo “<p>We build a fine range of widgets.</p>”;
10: numberedHeading(“Doodads”);
11: echo “<p>Finest in the world.</p>”;
12: ?>

The numberedHeading() function has become entirely self-contained. When the

$num_of_calls variable is declared on line 4, an initial value is assigned to it. This

assignment is made when the function is first called on line 8. This initial assign-

ment is ignored when the function is called a second time on line 10. Instead, the

code remembers the previous value of $num_of_calls. You can now paste the

numberedHeading() function into other scripts without worrying about global vari-

ables. Although the output of Listing 7.9 is the same as that of Listing 7.8, the code

is a bit more elegant.

More About Arguments
You’ve already seen how to pass arguments to functions, but there’s plenty more to

cover. This section covers a technique for giving your arguments default values and

explores a method of passing variables by reference rather than by value. This means

that the function is given an alias of the original value rather than a copy of it.

Setting Default Values for Arguments
PHP provides a nifty feature to help build flexible functions. Until now, you’ve heard

that some functions require one or more arguments. By making some arguments

optional, you can render your functions a little less autocratic.

ptg8126863

More About Arguments 131

Listing 7.10 creates a useful little function that wraps a string in an HTML span ele-

ment. To give the user of the function the chance to change the font-size style, you

can demand a $fontsize argument in addition to the string (line 2).

LISTING 7.10 A Function Requiring Two Arguments
1: <?php
2: function fontWrap($txt, $fontsize)
3: {
4: echo “”.$txt.””;
5: }
6: fontWrap(“A Heading
”,”24pt”);
7: fontWrap(“some body text
”,”16pt”);
8: fontWrap(“smaller body text
”,”12pt”);
9: fontWrap(“even smaller body text
”,”10pt”);
10: ?>

Put these lines into a text file called fontwrap.php and place this file in your web

server document root. When you access this script through your web browser, it

should look like Figure 7.7.

FIGURE 7.7
A function that
formats and
outputs strings.

By assigning a value to an argument variable within the function definition’s paren-

theses, you can make the $fontsize argument optional. If the function call doesn’t

define an argument for this argument, the value you have assigned to the argument

is used instead. Listing 7.11 uses this technique to make the $fontsize argument

optional.

LISTING 7.11 A Function with an Optional Argument
1: <?php
2: function fontWrap($txt, $fontsize = “12pt”)
3: {
4: echo “”.$txt.””;

ptg8126863

132 CHAPTER 7: Working with Functions

LISTING 7.11 Continued
5: }
6: fontWrap(“A Heading
”,”24pt”);
7: fontWrap(“some body text
”);
8: fontWrap(“smaller body text
”);
9: fontWrap(“even smaller body text
”);
10: ?>

When the fontWrap() function is called with a second argument, as in line 6, this

value is used to set the font-size attribute of the span element. When this argu-

ment is omitted, as in lines 7, 8, and 9, the default value of “12pt” is used instead.

You can create as many optional arguments as you want, but when you’ve given an

argument a default value, all subsequent arguments should also be given defaults.

Passing Variable References to Functions
When you pass arguments to functions, they are stored as copies in parameter vari-

ables. Any changes made to these variables in the body of the function are local to

that function and are not reflected beyond it, as illustrated in Listing 7.12.

LISTING 7.12 Passing an Argument to a Function by Value
1: <?php
2: function addFive($num)
3: {
4: $num += 5;
5: }
6: $orignum = 10;
7: addFive($orignum);
8: echo $orignum;
9: ?>

Put these lines into a text file called addfive.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following:

10

The addFive() function accepts a single numeric value and adds 5 to it, but it

returns nothing. A value is assigned to a variable $orignum in line 6 and then this

variable is passed to addFive() in line 7. A copy of the contents of $orignum is

stored in the variable $num. Although $num is incremented by 5, this has no effect on

the value of $orignum. When $orignum is printed, you find that its value is still 10.

By default, variables passed to functions are passed by value. In other words, local

copies of the values of the variables are made.

ptg8126863

Testing for the Existence of a Function 133

You can change this behavior by creating a reference to your original variable. You

can think of a reference as a signpost that points to a variable. In working with the

reference, you are manipulating the value to which it points.

Listing 7.13 shows this technique in action. When you pass an argument to a func-

tion by reference, as in line 7, the contents of the variable you pass ($orignum) are

accessed by the argument variable and manipulated within the function, rather

than just a copy of the variable’s value (10). Any changes made to an argument in

these cases change the value of the original variable. You can pass an argument by

reference by adding an ampersand to the argument name in the function definition,

as shown in line 2.

LISTING 7.13 Using a Function Definition to Pass an Argument to a
Function by Reference
1: <?php
2: function addFive(&$num)
3: {
4: $num += 5;
5: }
6: $orignum = 10;
7: addFive($orignum);
8: echo $orignum;
9: ?>

Put these lines into a text file called addfive2.php and place this file in your web

server document root. When you access this script through your web browser, it

produces the following:

15

Testing for the Existence of a Function
You do not always know that a function exists before you try to invoke it. Different

builds of the PHP engine might include different functionality, and if you are writing

a script that may be run on multiple servers, you might want to verify that key fea-

tures are available. For instance, you might want to write code that uses MySQL if

MySQL-related functions are available but simply log data to a text file otherwise.

You can use function_exists() to check for the availability of a function. func-

tion_exists() requires a string representing a function name. It returns true if the

function can be located, and false otherwise.

Listing 7.14 shows function_exists() in action and illustrates some of the other

topics we have covered in this chapter.

ptg8126863

134 CHAPTER 7: Working with Functions

LISTING 7.14 Testing for a Function’s Existence
1: <?php
2: function tagWrap($tag, $txt, $func = “”)
3: {
4: if ((!empty($txt)) && (function_exists($func))) {
5: $txt = $func($txt);
6: return “<”.$tag.”>”.$txt.”</”.$tag.”>
”;
7: } else {
8: return “”.$txt.”
”;
9: }
10: }
11:
12: function underline($txt)
13: {
14: return “”.$txt.””;
15: }
16: echo tagWrap(‘strong’, ‘make me bold’);
17: echo tagWrap(‘em’, ‘underline and italicize me’, “underline”);
18: echo tagWrap(‘em’, ‘make me italic and quote me’,
19: create_function(‘$txt’, ‘return “"$txt"”;’));
20: ?>

Listing 7.14 defines two functions, tagWrap() (line 2) and underline() (line 12).

The tagWrap() function accepts three strings: a tag, the text to format, and an

optional function name. It returns a formatted string. The underline() function

requires a single argument—the text to be formatted—and returns the text wrapped

in tags with appropriate style attributes.

When you first call tagWrap() on line 16, you pass it the string strong and the

string “make me bold”. Because you haven’t passed a value for the function argu-

ment, the default value (an empty string) is used. Line 4 checks whether the $func

variable contains characters, and, if it is not empty, function_exists() is called to

check for a function by that name. Of course, in this case, the $func variable is

empty, so the $txt variable is wrapped in tags in the else clause on lines

7 and 8 and the result is returned.

The code calls tagWrap() on line 17 with the string ‘em’, some text, and a third

argument: “underline”. function_exists() finds a function called underline()

(line 12), so it calls this function and passes the $txt argument variable to it before

any further formatting is done. The result is an italicized, underlined string.

Finally, on line 18, the code calls tagWrap(), which wraps text in quotation entities.

It is quicker to simply add the entities to the text to be transformed ourselves, but

this example serves to illustrate the point that function_exists() works as well on

anonymous functions as it does on strings representing function names.

Put these lines into a text file called exists.php and place this file in your web serv-

er document root. When you access this script through your web browser, it should

look like Figure 7.8.

ptg8126863

135Q&A

Summary
This chapter taught you about functions and how to deploy them. You learned how

to define and pass arguments to a function, how to use the global and static

statements, how to pass references to functions, and how to create default values for

function arguments. You also learned to test for the existence of functions.

Q&A
Q. Can I include a function call within a double- or single-quoted string, as I

can with a variable?

A. No. You must call functions outside quotation marks. However, you can break

the string apart and place the function call between the parts of the string,

using the concatenation operator to tie them together, as follows:

$newstring = “I purchased”.numPurchase($somenum).” items.”;

Q. What happens if I call a function that does not exist, or if I declare a func-
tion with a name already in use?

A. Calling a function that does not exist or declaring a function with the same

name as another existing function causes the script to stop execution.

Whether an error message displays in the browser depends on the error set-

tings in your php.ini file.

FIGURE 7.8
Output of
exists.php.

ptg8126863

136 CHAPTER 7: Working with Functions

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. True or false: If a function doesn’t require an argument, you can omit the

parentheses in the function call.

2. How do you return a value from a function?

3. What does the following code fragment print to the browser?

$number = 50;

function tenTimes() {
$number = $number * 10;

}

tenTimes();
echo $number;

4. What does the following code fragment print to the browser?

$number = 50;

function tenTimes() {
global $number;
$number = $number * 10;

}

tenTimes();
echo $number;

5. What does the following code fragment print to the browser?

$number = 50;

function tenTimes(&$n) {
$n = $n * 10;

}

tenTimes($number);
echo $number;

Answers
1. The statement is false. You must always include the parentheses in your func-

tion calls, whether or not you are passing arguments to the function.

2. You must use the return keyword.

ptg8126863

Workshop 137

3. It prints 50. The tenTimes() function has no access to the global $number

variable. When it is called, it manipulates its own local $number variable.

4. It prints 500. This example uses the global statement, which gives the

tenTimes() function access to the $number variable.

5. It prints 500. By adding the ampersand to the parameter variable $n, you

ensure that this argument is passed by reference. $n and $number point to the

same value, so any changes to $n are reflected when you access $number.

Activities
1. Review the syntax for creating a function that accepts arguments, manipu-

lates those values, and returns a string.

2. Create a function that accepts four string variables and returns a string

that contains an HTML table element, enclosing each of the variables in its

own cell.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 8

Working with Arrays

In this chapter, you learn the following:
. How to create associative and multidimensional arrays
. How to use the myriad array-related functions built in to PHP

Arrays are used to store and organize data. PHP includes many functions that enable you

to create, modify, and manipulate arrays, which you use often throughout the procedural

programming method described in this book.

What Are Arrays?
You’ve already learned about and used scalar variables in the earlier chapters in this

book, and therefore you know that these variables are used to store values. But scalar vari-

ables can store only one value at a time—the $color variable can hold only a value of

red or blue, and so forth, but it cannot be used to hold a list of colors in the rainbow. But

arrays are special types of variables that enable you to store as many values as you want,

including all seven of those rainbow colors.

ptg8126863

140 CHAPTER 8: Working with Arrays

Although you can store as many values as you want in an array, some array func-
tions have an upper limit of 100,000 values. If you are storing large amounts of
data in your arrays, be sure to read the PHP Manual entry for array functions you
want to use and find out whether the function has an upper limit for working with
data.

Arrays are indexed, which means that each entry is made up of a key and a value.

The key is the index position, beginning with 0 and increasing incrementally by 1

with each new element in the array. The value is whatever value you associate with

that position—a string, an integer, or whatever you want. Think of an array as a fil-

ing cabinet and each key/value pair as a file folder. The key is the label written on

the top of the folder, and the value is what is inside. You’ll see this type of structure

in action as you create arrays in the next section.

Creating Arrays
You can create an array using either the array() function or the array operator [].

The array() function is usually used when you want to create a new array and

populate it with more than one element, all in one fell swoop. The array operator is

often used when you want to create a new array with just one element at the outset,

or when you want to add to an existing array element.

The following code snippet shows how to create an array called $rainbow using the

array() function, containing all its various colors:

$rainbow = array(“red”, “orange”, “yellow”, “green”, “blue”, “indigo”,
“violet”);

The following snippet shows the same array being created incrementally using the

array operator:

$rainbow[] = “red”;
$rainbow[] = “orange”;
$rainbow[] = “yellow”;
$rainbow[] = “green”;
$rainbow[] = “blue”;
$rainbow[] = “indigo”;
$rainbow[] = “violet”;

Both snippets create a seven-element array called $rainbow, with values starting at

index position 0 and ending at index position 6. If you want to be literal about it,

you can specify the index positions, such as in this code:

$rainbow[0] = “red”;
$rainbow[1] = “orange”;
$rainbow[2] = “yellow”;

CAUTION

ptg8126863

Creating Arrays 141

$rainbow[3] = “green”;
$rainbow[4] = “blue”;
$rainbow[5] = “indigo”;
$rainbow[6] = “violet”;

However, PHP handles this numbering for you when positions are not specified, and

that eliminates the possibility that you might misnumber your elements when order

is important, as in this example:

$rainbow[0] = “red”;
$rainbow[1] = “orange”;
$rainbow[2] = “yellow”;
$rainbow[5] = “green”;
$rainbow[6] = “blue”;
$rainbow[7] = “indigo”;
$rainbow[8] = “violet”;

Regardless of whether you initially create your array using the array() function or

the array operator, you can still add to it using the array operator. In the first line of

the following snippet, six elements are added to the array, and one more element is

added to the end of the array in the second line:

$rainbow = array(“red”, “orange”, “yellow”, “green”, “blue”, “indigo”);
$rainbow[] = “violet”;

The examples used in this section are of numerically indexed arrays, arguably the

most common type you’ll see. In the next two sections, you learn about two other

types of arrays: associative and multidimensional.

Creating Associative Arrays
Whereas numerically indexed arrays use an index position as the key—0, 1, 2, and

so forth—associative arrays use actual named keys. The following example demon-

strates this by creating an array called $character with four elements:

$character = array(
“name” => “Bob”,
“occupation” => “superhero”,
“age” => 30,
“special power” => “x-ray vision”
);

The four keys in the $character array are name, occupation, age, and special

power. The associated values are Bob, superhero, 30, and x-ray vision, respective-

ly. You can reference specific elements of an associative array using the specific key,

such as in this example:

echo $character[‘occupation’];

ptg8126863

142 CHAPTER 8: Working with Arrays

The output of this snippet is this:

superhero

As with numerically indexed arrays, you can use the array operator to add to an

associative array:

$character[‘supername’] = “Mega X-Ray Guy”;

This example adds a key called supername with a value of Mega X-Ray Guy.

The only difference between an associative array and a numerically indexed array is

the key name. In a numerically indexed array, the key name is a number. In an

associative array, the key name is a meaningful word.

Creating Multidimensional Arrays
The first two types of arrays hold strings and integers, whereas this third type holds

other arrays. If each set of key/value pairs constitutes a dimension, a multidimen-

sional array holds more than one series of these key/value pairs. For example,

Listing 8.1 defines a multidimensional array called $characters, each element of

which contains an associative array. This might sound confusing, but it’s really only

an array that contains another array.

LISTING 8.1 Defining a Multidimensional Array
1: <?php
2: $characters = array(
3: array(
4: “name” => “Bob”,
5: “occupation” => “superhero”,
6: “age” => 30,
7: “special power” => “x-ray vision”
8:),
9: array(
10: “name” => “Sally”,
11: “occupation” => “superhero”,
12: “age” => 24,
13: “special power” => “superhuman strength”
14:),
15: array(
16: “name” => “Jane”,
17: “occupation” => “arch villain”,
18: “age” => 45,
19: “special power” => “nanotechnology”
20:)
21:);
22: ?>

ptg8126863

Creating Arrays 143

In line 2, the $characters array is initialized using the array() function. Lines 3–8

represent the first element, lines 9–14 represent the second element, and lines 15–20

represent the third element. These elements can be referenced as $characters[0],

$characters[1], and $characters[2].

Each element consists of an associative array, itself containing four elements: name,

occupation, age, and special_power.

However, if you attempt to print the master elements like so

echo $characters[1];

the output will be

Array

because the master element indeed holds an array as its content. To really get to the

content you want (that is, the specific information found within the inner array ele-

ment), you need to access the master element index position plus the associative

name of the value you want to view.

Take a look at this example:

echo $characters[1][‘occupation’];

It prints this:

superhero

If you add the following lines to the end of the code in Listing 8.1, it prints the infor-

mation stored in each element, with an added line displayed in the browser for good

measure:

foreach ($characters as $c) {
while (list($k, $v) = each ($c)) {

echo “$k ... $v
”;
}
echo “<hr/>”;

}

The foreach loop is concerned with the master array element, $characters. It

loops through this array and assigns the temporary name $c to the element con-

tained within each position. Next, the code begins a while loop. This loop uses two

functions to extract the contents of the inner array. First, the list() function names

placeholder variables, $k and $v, which will be populated with the keys and values

gathered from the each() function. The each() function looks at each element of

the $c array and extracts the information accordingly.

ptg8126863

144 CHAPTER 8: Working with Arrays

The echo statement simply prints each key and value ($k and $v) extracted from

the $c array using the each() function and adds a line break for display purposes.

Figure 8.1 shows the result of this file, called mdarray.php.

FIGURE 8.1
Looping through
a multidimen-
sional array.

Some Array-Related Constructs and
Functions
More than 70 array-related functions are built in to PHP, which you can read about

in detail at http://www.php.net/array. Some of the more common (and useful) func-

tions are described briefly in this section:

. count() and sizeof()—Each of these functions counts the number of ele-

ments in an array; they are aliases of each other. Given the following array

$colors = array(“blue”, “black”, “red”, “green”);

both count($colors); and sizeof($colors); return a value of 4.

. each() and list()—These functions (well, list() is a language construct

that looks like a function) usually appear together, in the context of stepping

through an array and returning its keys and values. You saw an example

of this previously, where we stepped through the $c array and printed its

contents.

. foreach()—This control structure (that looks like a function) is used to step

through an array, assigning the value of an element to a given variable, as

you saw in the previous section.

http://www.php.net/array

ptg8126863

Some Array-Related Constructs and Functions 145

. reset()—This function rewinds the pointer to the beginning of an array, as

in this example:

reset($character);

This function proves useful when you are performing multiple manipulations

on an array, such as sorting, extracting values, and so forth.

. array_push()—This function adds one or more elements to the end of an

existing array, as in this example:

array_push($existingArray, “element 1”, “element 2”, “element 3”);

. array_pop()—This function removes (and returns) the last element of an

existing array, as in this example:

$last_element = array_pop($existingArray);

. array_unshift()—This function adds one or more elements to the beginning

of an existing array, as in this example:

array_unshift($existingArray, “element 1”, “element 2”, “element 3”);

. array_shift()—This function removes (and returns) the first element of an

existing array, as in this example, where the value of the element in the first

position of $existingArray is assigned to the variable $first_element:

$first_element = array_shift($existingArray);

. array_merge()—This function combines two or more existing arrays, as in

this example:

$newArray = array_merge($array1, $array2);

. array_keys()—This function returns an array containing all the key names

within a given array, as in this example:

$keysArray = array_keys($existingArray);

. array_values()—This function returns an array containing all the values

within a given array, as in this example:

$valuesArray = array_values($existingArray);

. shuffle()—This function randomizes the elements of a given array. The syn-

tax of this function is simply as follows:

shuffle($existingArray);

ptg8126863

146 CHAPTER 8: Working with Arrays

This brief rundown of array-related functions only scratches the surface of using

arrays. However, arrays and array-related functions are used in the code examples

throughout this book, so you will get your fill soon enough. If you don’t, there’s

always the array section of the PHP Manual at http://www.php.net/array that dis-

cusses all array-related functions in great detail, including more than 10 different

methods just for sorting your arrays.

Summary
This chapter introduced you to the concepts of arrays, including how they are creat-

ed and referenced. The three array types are the numerically indexed array, associa-

tive array, and multidimensional array. In addition, you saw examples of some of

the numerous array-related functions already built in to PHP. You can use these

functions to manipulate and modify existing arrays, sometimes even creating entire-

ly new ones.

Q&A
Q. How many dimensions can multidimensional arrays have?

A. You can create as many dimensions in your multidimensional array as you

can manage, but remember the more dimensions you have, the more you

have to manage. If you have data with more than a few dimensions, it might

be wise to ask yourself whether that data should be stored differently, such as

in a database and accessed that way.

Q. If all I’m doing is creating a contact form, why would I care about arrays?

A. Arrays are useful in even the most basic client-server interactions, such as a

contact form in a website. You will learn more about forms in Chapter 11,

“Working with Forms,” but here’s something to keep in mind before you work

with the information in that chapter: If your form contains any series of

checkboxes or lists from which a user can select more than one option, that

data will be sent to your form as an array. You’ll need to get that data out of

the array if you want to work with it, and this chapter shows a few basic

examples of doing just that.

http://www.php.net/array

ptg8126863

Workshop 147

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. What construct can you use to define an array?

2. What function would you use to join two arrays?

Answers
1. array()

2. array_merge()

Activities
1. Review the process of defining a multidimensional array and referencing its

items.

2. Create a multidimensional array of movies organized by genre. This should

take the form of an associative array with genres as keys, such as Science

Fiction, Action, Adventure, and so forth. Each of the array’s elements

should be an array containing movie names, such as Alien, Terminator 3, Star

Wars, and so on. After creating your arrays, loop through them, printing the

name of each genre and its associated movies.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 9

Working with Objects

In this chapter, you learn the following:
. The basic structure of an object
. How to create and manipulate objects and the data they contain

Programmers use objects to store and organize data. Object-oriented programming is a

type of programming in which the structure of the program (or application) is designed

around these objects and their relationships and interactions. Object-oriented program-

ming structures are found in many programming languages, and are also evident in PHP.

In fact, many PHP programmers—especially those coming from a highly object-oriented

programming background—choose to develop PHP applications in an object-oriented way.

However, in PHP, it is not required that you write your scripts in an object-oriented man-

ner. Many PHP scripts, and in fact most of the ones in this book, are procedural and func-

tional rather than object-oriented. That is to say, the emphasis is on stepping through the

use of variables, data and control structures, and subroutines and functions in the course

of creating a program. The reason for this is simply that if you are altogether new to pro-

gramming it’s important to gain experience in procedural programming and the funda-

mentals of the language before you tackle a programming paradigm that itself has many

books written about it. This chapter gives you a brief glimpse into the world of objects,

because it is an important data type and concept to be familiar with as you move on to

gather even more skills and experience.

ptg8126863

150 CHAPTER 9: Working with Objects

If you are coming to PHP with a background in object-oriented programming, this
chapter will help you to understand the object model in PHP.

Creating an Object
Explaining the concept of an object is a little difficult if you’ve never encountered

the concept before, because it is inherently abstract: It’s a sort of theoretical box of

things—variables, functions, and so forth—that exists in a templated structure

called a class. Although it’s easy to visualize a scalar variable, such as $color, with

a value of red, or an array called $character with three or four different elements

inside it, some people have a difficult time visualizing objects.

For now, try to think of an object as a little box with inputs and outputs on either

side of it. The input mechanisms are methods, and methods have properties.

Throughout this section, we look at how classes, methods, and properties work

together to produce various outputs.

If the concept of classes is completely foreign to you, you can supplement your
knowledge by reading the “Classes and Objects” chapter in the PHP Manual. You
can find it at http://www.php.net/manual/en/language.oop5.php.

As mentioned previously, an object exists in a structure called a class. In each class,

you define a set of characteristics. For example, suppose you have created an auto-

mobile class. In the automobile class, you might have color, make, and model

characteristics. Each automobile object uses all the characteristics, but each object

initializes the characteristics to different values, such as silver, Mazda, and

Protege5, or red, Porsche, and Boxter.

The whole purpose of using objects is to create reusable code. Because classes are so

tightly structured but self-contained and independent of one another, you can reuse

them from one application to another. For example, suppose that you write a text-

formatting class for one project and decide you can use that class in another project.

Because a class is just a set of characteristics, you can pick up the code and use it in

the second project, reaching into it with methods specific to the second application

but using the inner workings of the existing code to achieve new results.

Creating an object is simple; you just declare it to be in existence:

class myClass {
//code will go here

}

NOTE

NOTE

http://www.php.net/manual/en/language.oop5.php

ptg8126863

Creating an Object 151

Now that you have a class, you can create a new instance of an object:

$object1 = new myClass();

In Listing 9.1, you have proof that your object exists, even though there’s nothing in

it—it’s just been named.

LISTING 9.1 Proof That Your Object Exists
1: <?php
2: class myClass {
3: //code will go here
4: }
5: $object1 = new myClass();
6: echo “\$object1 is an “.gettype($object1).”.
”;
7:
8: if (is_object($object1)) {
9: echo “Really! I swear \$object1 is an object!”;
10: }
11: ?>

If you save this code as proofofclass.php, place it in your document root, and

access it with your web browser, you will see the following on your screen:

$object1 is an object.
Really! I swear $object1 is an object!

This is not a particularly useful class because it does absolutely nothing, but it is

valid and shows you how the class template works in lines 2–5. Lines 8–10 use the

is_object() function to test whether something is an object; in this case, the some-

thing is $object1. Because the test of is_object() evaluates to true, the string

within the if statement is printed to the screen.

Next, you learn about using object properties and methods within the class tem-

plate.

Properties of Objects
The variables declared inside an object are called properties. It is standard practice to

declare your variables at the top of the class. These properties can be values, arrays,

or even other objects. The following snippet uses simple scalar variables inside the

class, prefaced with the public keyword:

class myCar {
public$color = “silver”;
public$make = “Mazda”;
public$model = “Protege5”;

}

ptg8126863

152 CHAPTER 9: Working with Objects

If you use the keyword public, protected, or private before the variable name, you
can indicate if the class member (the variable) can be accessed everywhere (pub-
lic), within the class itself or a parent class or an inherited class (protected), or
only by the class itself (private).

Now when you create a myCar object, it will always have those three properties.

Listing 9.2 shows you how to access properties after they have been declared and

values have been assigned to them.

LISTING 9.2 Showing Object Properties
1: <?php
2: class myCar {
3: public$color = “silver”;
4: public$make = “Mazda”;
5: public$model = “Protege5”;
6: }
7: $car = new myCar();
8: echo “I drive a: “.$car -> color.” “.$car -> make.” “.$car -> model;
9: ?>

If you save this code as objproperties.php, place it in your document root, and

access it with your web browser, you will see the following on your screen:

I drive a: silver Mazda Protege5

Because the odds are low that you also drive a silver Mazda Protege5, you’ll want to

change the properties of the myCar object. Listing 9.3 shows you how to do just that.

LISTING 9.3 Changing Object Properties
1: <?php
2: class myCar {
3: public$color = “silver”;
4: public$make = “Mazda”;
5: public$model = “Protege5”;
6: }
7: $car = new myCar();
8: $car -> color = “red”;
9: $car -> make = “Porsche”;
10: $car -> model = “Boxter”;
11: echo “I drive a: “.$car -> color.” “.$car -> make.” “.$car -> model;
12: ?>

If you save this code as objproperties2.php, place it in your document root, and

access it with your web browser, you will see the following on your screen:

I drive a: red Porsche Boxter

NOTE

ptg8126863

Creating an Object 153

In this instance, even if the $color, $make, and $model properties had no initial
values when declared, lines 8–10 would assign a value to them. As long as the
properties are declared, you can use them later (initial values or not).

The purpose of Listing 9.3 is to show that as long as you have a well-defined class

with properties, you can still easily change the values of the properties to fit your

needs.

Object Methods
Methods add functionality to your objects. No longer will your objects just sit there,

holding on to their properties for dear life—they’ll actually do something! Listing 9.4

shows just that.

LISTING 9.4 A Class with a Method
1: <?php
2: class myClass {
3: function sayHello() {
4: echo “HELLO!”;
5: }
6: }
7: $object1 = new myClass();
8: $object1 -> sayHello();
9: ?>

Although it is not the most thrilling example of action, if you save this code as

helloclass.php, place it in your document root, and access it with your web

browser, you will see the following on your screen:

HELLO!

A method looks and acts like a normal function but is defined within the framework

of a class. The -> operator is used to call the object method in the context of your

script. Had there been any variables stored in the object, the method would have

been capable of accessing them for its own purposes, as illustrated in Listing 9.5.

LISTING 9.5 Accessing Class Properties Within a Method
1: <?php
2: class myClass {
3: public$name = “Jimbo”;
4: function sayHello() {
5: echo “HELLO! My name is “.$this->name;
6: }
7: }
8: $object1 = new myClass();
9: $object1 -> sayHello();
10: ?>

NOTE

ptg8126863

154 CHAPTER 9: Working with Objects

If you save this code as helloclass2.php, place it in your document root, and

access it with your web browser, you will see the following on your screen:

HELLO! My name is Jimbo

The special variable $this is used to refer to the currently instantiated object as you

see on line 5. Anytime an object refers to itself, you must use the $this variable.

Using the $this variable in conjunction with the -> operator enables you to access

any property or method in a class, within the class itself.

One final tidbit regarding the basics of working with an object’s properties is how to

change a property from within a method. Previously, a property’s value changed

outside the method in which it was contained. Listing 9.6 shows how to make the

change from inside a method.

LISTING 9.6 Changing the Value of a Property from Within a Method
1: <?php
2: class myClass {
3: public$name = “Jimbo”;
4: function setName($n) {
5: $this->name = $n;
6: }
7: function sayHello() {
8: echo “HELLO! My name is “.$this->name;
9: }
10: }
11: $object1 = new myClass();
12: $object1 -> setName(“Julie”);
13: $object1 -> sayHello();
14: ?>

If you save this code as helloclass3.php, place it in your document root, and

access it with your web browser, you will see the following on your screen:

HELLO! My name is Julie

Why? Because in lines 4–6 a new function called setName() was created. When it is

called in line 12, it changes the value of $name to Julie. Therefore, when the

sayHello() function is called in line 13 and it looks for $this->name, it uses Julie,

which is the new value that was just set by the setName() function. In other words,

an object can modify its own property—in this case, the $name variable.

Constructors
A constructor is a function that lives within a class and, given the same name as the

class, is automatically called when a new instance of the class is created using new

classname. Using constructors enables you to provide arguments to your class,

ptg8126863

Object Inheritance 155

which will then be processed immediately when the class is called. You see construc-

tors in action in the next section.

Object Inheritance
Having learned the absolute basics of objects, properties, and methods, you can start

to look at object inheritance. Inheritance with regard to classes is just what it sounds

like: One class inherits functionality from its parent class. Listing 9.7 shows an

example.

LISTING 9.7 A Class Inheriting from Its Parent
1: <?php
2: class myClass {
3: public$name = “Matt”;
4: function myClass($n) {
5: $this->name = $n;
6: }
7: function sayHello() {
8: echo “HELLO! My name is “.$this->name;
9: }
10: }
11: class childClass extends myClass {
12: //code goes here
13: }
14: $object1 = new childClass(“Baby Matt”);
15: $object1 -> sayHello();
16: ?>

If you save this code as inheritance.php, place it in your document root, and

access it with your web browser, you will see the following on your screen:

HELLO! My name is Baby Matt

Lines 4–6 make up a constructor. Notice that the name of this function is the same

as the class in which it is contained: myClass. Lines 11–13 define a second class,

childClass, that contains no code. That’s fine because, in this example, the class

exists only to demonstrate inheritance from the parent class. The inheritance occurs

through the extends clause shown in line 11. The second class inherits the elements

of the first class because this clause is used.

Listing 9.8 shows you one last example of how a child class can override the meth-

ods of the parent class.

LISTING 9.8 The Method of a Child Class Overriding That of Its Parent
1: <?php
2: class myClass {

ptg8126863

156 CHAPTER 9: Working with Objects

LISTING 9.8 Continued
3: public$name = “Matt”;
4: function myClass($n) {
5: $this->name = $n;
6: }
7: function sayHello() {
8: echo “HELLO! My name is “.$this->name;
9: }
10: }
11: class childClass extends myClass {
12: function sayHello() {
13: echo “I will not tell you my name.”;
14: }
15: }
16: $object1 = new childClass(“Baby Matt”);
17: $object1 -> sayHello();
18: ?>

The only changes in this code from Listing 9.7 are the new lines 12–14. In these

lines, a function is created called sayHello() that, instead of printing HELLO! My

name is..., prints the message I will not tell you my name. Because the

sayHello() function now exists in childClass, and childClass is the class called

in line 16, its version of sayHello() is the one used.

If you save this code as inheritance2.php, place it in your document root, and

access it with your web browser, you will see the following on your screen:

I will not tell you my name

Like most elements of object-oriented programming, inheritance is useful when

attempting to make your code flexible. Suppose that you create a text-formatting

class that organizes and stores data, format it in HTML, and output the result to a

browser—your own personal masterpiece. Now suppose that you have a client who

wants to use that concept, but instead of formatting the content into HTML and

sending it to a browser, he wants to format it for plaintext and save it to a text file.

No problem; you just add a few methods and properties, and away you go. Finally,

the client comes back and says that he really wants the data to be formatted and

sent as an email—and then, what the heck, why not create XML-formatted files,

as well?

Although you might want to pull your hair out in frustration, you’re really not in

a bad situation. If you separate the compilation and storage classes from the for-

matting classes—one for each of the various delivery methods (HTML, text, email,

XML)—you essentially have a parent-child relationship. Consider the parent class as

the one that holds the compilation and storage methods. The formatting classes are

the children: They inherit the information from the parent and output the result

based on their own functionality. Everybody wins.

ptg8126863

Workshop 157

Summary
This chapter provided a foundation for working with object-oriented code. In no way

does this content cover all the aspects of object-oriented programming. Universities

teach entire series of classes (no pun intended) devoted to this topic, so you can

imagine that these pages are a little light. However, you did learn to create classes

and instantiate objects from them. You learned how to create and access the proper-

ties and methods of a class, how to build new classes, and how to inherit features

from parent classes. That’s not too shabby!

Q&A
Q. Why have I seen var instead of public, private, or protected in property

declarations?

A. In earlier versions of PHP, var was used to declare properties in classes. For

backward compatibility, if you use code that still says var in it, it will be

treated as public and not cause an error (unless you want it to be a private

or protected property).

Q. Do I have to understand object-oriented programming to become a good
PHP programmer or even to finish this book?

A. Not at all. In fact, the projects in this book are procedural or functional in

nature and do not contain object-oriented programming. Object-oriented pro-

gramming is an organizational approach intended to improve the reusability

and extensibility of the code that makes up a given application. You might

not know enough about your project in the beginning stages of development

to fully plan for an object-oriented design. When it is complete—or, at least,

approaching a solid state—you might start to see areas in which an object-

oriented approach can be taken, and you might start to combine your code

into classes, properties, and methods. But for the most part, you won’t write

simple scripts performing particular duties in object-oriented fashion unless it

is your background and comes naturally to you. For a great deal more infor-

mation on the object model in PHP, see the appropriate section of the PHP

Manual, at http://www.php.net/manual/en/language.oop5.php.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

http://www.php.net/manual/en/language.oop5.php

ptg8126863

158 CHAPTER 9: Working with Objects

Quiz
1. How can you declare a class called emptyClass that has no methods or

properties?

2. How do you choose a name for a constructor method?

3. If a variable is declared private, where can it be used?

Answers
1. Use the class keyword:

class emptyClass {
}

2. You don’t—a constructor is named for the class in which it resides.

3. Variables declared private can only be used in the class itself.

Activities
1. Create a class called baseCalc() that stores two numbers as properties. Next,

create a calculate() method that prints the numbers to the browser.

2. Now create classes called addCalc(), subCalc(), mulCalc(), and divCalc()

that inherit functionality from baseCalc() but override the calculate()

method and print appropriate totals to the browser.

ptg8126863

CHAPTER 10

Working with Strings, Dates,
and Time

In this chapter, you learn the following:
. How to format strings
. How to determine the length of a string
. How to find a substring within a string
. How to break a string down into component parts
. How to remove whitespace from the beginning or end of a string
. How to replace substrings
. How to change the case of a string
. How to acquire the current date and time
. How to get information about a date and time
. How to format date and time information
. How to test dates for validity
. How to set dates and times

No matter how rich your web content might be, at the heart of it is just HTML that tells

the browser how to render string-based content. It is no accident, then, that PHP provides

many functions with which you can format and manipulate strings. Similarly, dates and

times are so much a part of everyday life that it becomes easy to use them without think-

ing. However, because the quirks of the Gregorian calendar can be difficult to work with,

PHP provides powerful tools that make date manipulation an easy task.

Numerous PHP functions are available to you when it comes to the manipulations of

strings, dates, and times, and this chapter does not even begin to cover all of them.

However, this chapter does provide a foundation for using some of the basic string, date,

ptg8126863

160 CHAPTER 10: Working with Strings, Dates, and Time

and time functions, and an idea of how to begin thinking about using these types of

functions in your code. The rule of thumb is this: If you want to transform, manipu-

late, or display a string, date, or time, don’t build your own custom solution without

first visiting the PHP Manual, because chances are good that a function already

exists for your desired task.

Formatting Strings with PHP
Until now, you have simply printed any strings you want to display directly to the

browser in their original state. PHP provides two functions that enable you first to

apply formatting, whether to round doubles to a given number of decimal places,

define alignment within a field, or display data according to different number sys-

tems. In this section, you learn a few of the formatting options provided by

printf() and sprintf().

Working with printf()
If you have any experience with a C-like programming language, you are probably

familiar with the concept of the printf() function. The printf() function requires

a string argument, known as a format control string. It also accepts additional argu-

ments of different types, which you learn about in a moment. The format control

string contains instructions regarding the display of these additional arguments. The

following fragment, for example, uses printf() to output an integer as an octal (or

base-8) number:

<?php
printf(“This is my number: %o”, 55);
// prints “This is my number: 67”
?>

Included within the format control string (the first argument) is a special code,

known as a conversion specification. A conversion specification begins with a percent

(%) symbol and defines how to treat the corresponding argument to printf(). You

can include as many conversion specifications as you want within the format con-

trol string, as long as you send an equivalent number of arguments to printf().

The following fragment outputs two floating-point numbers using printf():

<?php
printf(“First number: %f
Second number: %f
”, 55, 66);
// Prints:
// First number: 55.000000
// Second number: 66.000000
?>

ptg8126863

Formatting Strings with PHP 161

The first conversion specification corresponds to the first of the additional arguments

to printf(), or 55. The second conversion specification corresponds to 66. The f fol-

lowing the percent symbol requires that the data be treated as a floating-point num-

ber. This part of the conversion specification is the type specifier.

printf() and Type Specifiers
You have already come across two type specifiers, o, which displays integers as

octals, and f, which displays integers as floating-point numbers. Table 10.1 lists the

other type specifiers available.

TABLE 10.1 Type Specifiers

Specifier Description

d Display argument as a decimal number

b Display an integer as a binary number

c Display an integer as ASCII equivalent

f Display an integer as a floating-point number (double)

o Display an integer as an octal number (base 8)

s Display argument as a string

x Display an integer as a lowercase hexadecimal number (base 16)

X Display an integer as an uppercase hexadecimal number (base 16)

Listing 10.1 uses printf() to display a single number according to some of the type

specifiers listed in Table 10.1. Notice that the listing does not only add conversion

specifications to the format control string. Any additional text included is also

printed.

LISTING 10.1 Demonstrating Some Type Specifiers
1: <?php
2: $number = 543;
3: printf(“Decimal: %d
”, $number);
4: printf(“Binary: %b
”, $number);
5: printf(“Double: %f
”, $number);
6: printf(“Octal: %o
”, $number);
7: printf(“String: %s
”, $number);
8: printf(“Hex (lower): %x
”, $number);
9: printf(“Hex (upper): %X
”, $number);
10: ?>

ptg8126863

162 CHAPTER 10: Working with Strings, Dates, and Time

Put these lines into a text file named printftest.php and place this file in your web

server document root. When you access this script through your web browser, it

should look something like Figure 10.1. As you can see, printf() is a quick way of

converting data from one number system to another and outputting the result.

FIGURE 10.1
Demonstrating
conversion
specifiers.

When specifying a color in HTML, you combine three hexadecimal numbers

between 00 and FF, representing the values for red, green, and blue. You can use

printf() to convert three decimal numbers between 0 and 255 to their hexadeci-

mal equivalents:

<?php
$red = 204;
$green = 204;
$blue = 204;
printf(“#%X%X%X”, $red, $green, $blue);
// prints “#CCCCCC”
?>

Although you can use the type specifier to convert from decimal to hexadecimal

numbers, you cannot use it to determine how many characters the output for each

argument should occupy. Within an HTML color code, each hexadecimal number

should be padded to two characters, which would become a problem if you changed

the $red, $green, and $blue variables in the previous fragment to contain 1, for

example. You would end up with the output #111. You can force the output of lead-

ing zeros by using a padding specifier.

Padding Output with a Padding Specifier
You can require that output be padded by leading characters. The padding specifier

should directly follow the percent sign that begins a conversion specification. To pad

output with leading zeros, the padding specifier should consist of a zero followed by

ptg8126863

Formatting Strings with PHP 163

the number of characters you want the output to take up. If the output occupies

fewer characters than this total, zeros fill the difference:

<?php
printf(“%04d”, 36);
// prints “0036”
?>

To pad output with leading spaces, the padding specifier should consist of a space

character followed by the number of characters that the output should occupy:

<?php
printf(“% 4d”, 36)
// prints “ 36”
?>

A browser will not display multiple spaces in an HTML document. You can force
the display of spaces and newlines by placing <pre> tags around your output:
<pre>
<?php
echo “The spaces will be visible”;
?>
</pre>

If you want to format an entire document as text, you can use the header()
function to change the Content-Type header:
header(“Content-Type: text/plain”);

Remember that your script must not have sent any output to the browser for the
header() function to work as desired.

You can specify any character other than a space or a zero in your padding specifier

with a single quotation mark followed by the character you want to use:

<?php
printf (“%’x4d”, 36);
// prints “xx36”
?>

You now have the tools you need to complete your HTML code example. Until now,

you could convert three numbers to hexadecimal, but could not pad the hexadeci-

mal values with leading zeros:

<?php
$red = 1;
$green = 1;
$blue = 1;
printf(“#%02X%02X%02X”, $red, $green, $blue);
// prints “#010101”
?>

TIP

ptg8126863

164 CHAPTER 10: Working with Strings, Dates, and Time

Each variable is output as a hexadecimal number. If the output occupies fewer than

two spaces, leading zeros are added.

Specifying a Field Width
You can specify the number of spaces within which your output should sit. A field

width specifier is an integer that should be placed after the percent sign that begins

a conversion specification (assuming that no padding specifier is defined). The

following fragment outputs a list of four items, all of which sit within a field of 20

spaces. To make the spaces visible on the browser, place all the output within a

pre element:

<?php
echo “<pre>”;
printf(“%20s\n”, “Books”);
printf(“%20s\n”, “CDs”);
printf(“%20s\n”, “DVDs”);
printf(“%20s\n”, “Games”);
printf(“%20s\n”, “Magazines”);
echo “</pre>”;
?>

Figure 10.2 shows the output of this fragment.

FIGURE 10.2
Aligning with
field width
specifiers.

By default, output is right-aligned within the field you specify. You can make it left-

aligned by prepending a minus (dash) to the field width specifier:

printf(“%-20s\n”, “Left aligned”);

Note that alignment applies to the decimal portion of any number that you output.

In other words, only the portion before the decimal point of a double will sit flush to

the end of the field width when right-aligned.

ptg8126863

Formatting Strings with PHP 165

Specifying Precision
If you want to output data in floating-point format, you can specify the precision to

which you want to round your data. This proves particularly useful when dealing

with currency. The precision identifier should be placed directly before the type spec-

ifier. It consists of a dot followed by the number of decimal places to which you

want to round. This specifier has an effect only on data that is output with the f

type specifier:

<?php
printf(“%.2f”, 5.333333);
// prints “5.33”
?>

In the C language, it is possible to use a precision specifier with printf() to
specify padding for decimal output. The precision specifier has no effect on deci-
mal output in PHP. Use the padding specifier to add leading zeros to integers.

Conversion Specifications: A Recap
Table 10.2 lists the specifiers that can make up a conversion specification in the

order that they would be included. Note that it is difficult to use both a padding

specifier and a field width specifier. You should choose to use one or the other, but

not both.

TABLE 10.2 Components of Conversion Specification

Name Description Example

Padding specifier Determines the number of characters ‘ 4’

that output should occupy, and the
characters to add otherwise

Field width specifier Determines the space within which ‘20’

output should be formatted

Precision specifier Determines the number of decimal ‘.4’

places to which a double should be
rounded

Type specifier Determines the data type that should ‘d’

be output

NOTE

ptg8126863

166 CHAPTER 10: Working with Strings, Dates, and Time

Listing 10.2 uses printf() to output a list of products

LISTING 10.2 Using printf() to Format a List of Product Prices
1: <?php
2: $products = array(“Green armchair” => “222.4”,
3: “Candlestick”=> “4”,
4: “Coffee table”=> “80.6”);
5: echo “<pre>”;
6: printf(“%-20s%20s\n”, “Name”, “Price”);
7: printf(“%’-40s\n”, “”);
8: foreach ($products as $key=>$val) {
9: printf(“%-20s%20.2f\n”, $key, $val);
10: }
11: echo “</pre>”;
12: ?>

The listing first defines an associative array containing product names and prices in

lines 2 through 4. It prints the opening tag of the pre element, in line 5, so that the

browser will recognize the spaces and newlines. The first printf() call on line 6

uses the following format control string:

“%-20s%20s\n”

The first conversion specification in the format control string (“%-20s”) defines a

width specifier of 20 characters, with the output to be left-justified. The string type

specifier is also used. The second conversion specification (“%20s”) sets up a right-

aligned field width. This printf() call outputs our field headers.

The second printf() function call on line 7 draws a line containing - characters,

40 characters wide. You achieve this with a padding specifier, which adds padding

to an empty string.

The final printf() call on line 9 is part of a foreach statement that loops through

the product array. The code uses two conversion specifications here—the first

(“%–20s”) prints the product name as a string left-justified within a 20-character

field, and the second (“%20.2f”) uses a field width specifier to ensure that output

will be right-aligned within a 20-character field. It also uses a precision specifier to

ensure that the output is rounded to two decimal places.

Put these lines into a text file named printftest2.php and place this file in your

web server document root. When you access this script through your web browser, it

should look like Figure 10.3.

ptg8126863

Formatting Strings with PHP 167

Argument Swapping
Suppose that you are printing dates to the browser. As shown in the following snip-

pet, assume the dates are in a multidimensional array and you are using printf()

to format the output:

<?php
$dates = array(

array(‘mon’=> 12, ‘mday’=>25, ‘year’=>2011),
array(‘mon’=> 1, ‘mday’=>23, ‘year’=>2012),
array(‘mon’=> 10, ‘mday’=>29, ‘year’=>2011)
);

$format = include(“local_format.php”);
foreach($dates as $date) {

printf(“$format”, $date[‘mon’], $date[‘mday’], $date[‘year’]);
}
?>

In the preceding snippet, the format control string comes from an include file

named local_format.php. Assuming that this file contains only

<?php
return “%02d/%02d/%d
”;
?>

the output will be in the format mm/dd/yyyy:

12/25/2011
01/23/2012
10/29/2011

Imagine now that you are installing your script for a European site, where dates are

commonly presented with days before months (dd/mm/yyyy). Assume that the core

code is written in stone and cannot be changed. What should you do? Luckily, you

FIGURE 10.3
Products and
prices formatted
with printf().

ptg8126863

168 CHAPTER 10: Working with Strings, Dates, and Time

can now alter the order in which the arguments are presented from within the

format control code by changing the return statement to the following:

return “%2\$02d/%1\$02d/%3\$d
”;

You can insert the argument number you are interested in after the initial percent-

age character that marks each conversion specification, followed by an escaped dol-

lar ($) character. So, in the fragment, you are demanding that the second argument

be presented

%2\$02d

followed by the first argument:

%1\$02d

and concluded with the third argument:

%3\$d

The result of the new code is a list of dates in British format:

25/12/2011
23/01/2012
29/10/2011

Storing a Formatted String
The printf() function outputs data to the browser, which means that the results

are not available to your scripts. You can, however, use the function sprintf(),

which is used just like printf() except that it returns a string that can be stored in

a variable for later use. The following fragment uses sprintf() to round a double

to two decimal places, storing the result in $cash:

<?php
$cash = sprintf(“%.2f”, 21.334454);
echo “You have \$$cash to spend.”;
// Prints “You have $21.33 to spend.”
?>

One particular use of sprintf() is to write formatted data to a file—you can call

sprintf() and assign its return value to a variable that can then be printed to a

file with fputs().

ptg8126863

Investigating Strings in PHP 169

Investigating Strings in PHP
You do not always know everything about the data you are working with. Strings

can arrive from many sources, including user input, databases, files, and web pages.

Before you begin to work with data from an external source, you often need to find

out more about the data. PHP provides many functions that enable you to acquire

information about strings.

A Note About Indexing Strings
This book frequently uses the word index in relation to strings. You have come across

this word in the context of arrays, such as in Chapter 8, “Working with Arrays.” In

fact, strings and arrays are not as different as you might imagine. You can think of

a string as an array of characters, and thus you can access the individual characters

of a string as if they were elements of an array:

<?php
$test = “phpcoder”;
echo $test[0]; // prints “p”
echo $test[4]; // prints “o”
?>

It is important to remember that when this book discusses the position or index of a

character within a string, the characters, just like array elements, have a starting

index value of 0, not 1.

Finding the Length of a String with strlen()
You can use the built-in strlen() function to determine the length of a string. This

function requires a string as its argument and returns an integer representing the

number of characters in the string you passed to it. strlen() might be used to

check the length of user input, as in the following fragment, which tests a member-

ship code to ensure that it is exactly four characters long:

<?php
$membership = “pAB7”;
if (strlen($membership) == 4) {

echo “<p>Thank you!</p>”;
} else {

echo “<p>Your membership number must be four characters long.</p>”;
}
?>

The user is thanked for his input only if the $membership variable holds a string

that is exactly four characters long. Otherwise, an error message is presented.

ptg8126863

170 CHAPTER 10: Working with Strings, Dates, and Time

Finding a Substring Within a String with strstr()
You can use the strstr() function to test whether a string exists within another

string. This function requires two arguments: the source string and the substring you

want to find within it. The function returns false if it cannot find the substring;

otherwise, it returns the portion of the source string, beginning with the substring.

For the following example, imagine that you want to treat membership codes that

contain the string AB differently from those that do not:

<?php
$membership = “pAB7”;
if (strstr($membership, “AB”)) {

echo “<p>Your membership expires soon!</p>”;
} else {

echo “<p>Thank you!</p>”;
}
?>

Because the value of the $membership variable contains the substring AB, the

strstr() function returns the string AB7. The function resolves to true when tested,

so the code prints the appropriate message, “Your membership expires soon!”.

But what happens if you search for “pab7”? Because strstr() is case sensitive, AB

will not be found. The if statement’s original test will fail, and the default message

(“Thank you!”) will be printed to the browser. If you want to search for either AB or

ab within the string, you must use strstr() in place of substr(); the function is

used in exactly the same way, but its search is not case sensitive.

Finding the Position of a Substring with strpos()
The strpos() function tells you whether a string exists within a larger string as well

as where it is found. The strpos() function requires two arguments: the source

string and the substring you are seeking. The function also accepts an optional third

argument, an integer representing the index from which you want to start search-

ing. If the substring does not exist, strpos() returns false; otherwise, it returns the

index at which the substring begins. The following fragment uses strpos() to

ensure that a string begins with the string mz:

<?php
$membership = “mz00xyz”;
if (strpos($membership, “mz”) === 0) {

echo “Hello mz!”;
}
?>

Notice the trick that had to be played to get the expected results. Although the

strpos() function finds mz in the string, it finds it at the first element—the 0

position. Returning zero will resolve to false in the if condition test. To work

ptg8126863

Investigating Strings in PHP 171

around this, the code uses the equivalence operator ===, which returns true if the

left and right operands are equivalent and of the same type, as they are in this case.

This is just one of several variations on string-related functions meant to find nee-

dles in haystacks. Visit the PHP Manual page for this function for links to many

other related functions.

Extracting Part of a String with substr()
The substr() function returns a string based on the start index and length of the

characters you are looking for. This function requires two arguments: a source string

and the starting index. Using these arguments, the function returns all the charac-

ters from the starting index to the end of the string you are searching. You can also

(optionally) provide a third argument—an integer representing the length of the

string you want returned. If this third argument is present, substr() returns only

that number of characters, from the start index onward:

<?php
$test = “phpcoder”;
echo substr($test,3).”
”; // prints “coder”
echo substr($test,3,2).”
”; // prints “co”
?>

If you pass substr() a negative number as its second (starting index) argument, it

will count from the end rather than the beginning of the string. The following frag-

ment writes a specific message to people who have submitted an email address end-

ing in .fr:

<?php
$test = “pierre@wanadoo.fr”;
if ($test = substr($test, -3) == “.fr”) {

echo “<p>Bonjour! Nous avons des prix spéciaux de vous.</p>”;
} else {

echo “<p>Welcome to our store.</p>”;
}
?>

Tokenizing a String with strtok()
You can parse a string word by word using the strtok() function. This function

requires two arguments: the string to tokenize and the delimiters by which to split

the string. The delimiter string can include as many characters as you want, and the

function will return the first token found. After strtok() has been called for the first

time, the source string is cached—for subsequent calls, you should pass only the

delimiter string to the strtok() function. The function returns the next found token

every time it is called, returning false when the end of the string is reached. The

ptg8126863

172 CHAPTER 10: Working with Strings, Dates, and Time

strtok() function is usually called repeatedly within a loop. Listing 10.3 uses

strtok() to tokenize a URL, splitting the host and path from the query string and

further dividing the name/value pairs of the query string.

LISTING 10.3 Dividing a String into Tokens with strtok()
1: <?php
2: $test = “http://www.google.com/search?”;
3: $test .= “hl=en&ie=UTF-8&q=php+development+books&btnG=Google+Search”;
4: $delims = “?&”;
5: $word = strtok($test, $delims);
6: while (is_string($word)) {
7: if ($word) {
8: echo $word.”
”;
9: }
10: $word = strtok($delims);
11: }
12: ?>

Put these lines into a text file named teststrtotok.php and place this file in your

web server document root. When you access this script through your web browser, it

should look like Figure 10.4.

FIGURE 10.4
Output of test-
strtotok.php,
a tokenized
string.

The strtok() function is something of a blunt instrument, and a few tricks are

required to work with it. The code first stores the delimiters to work with in a vari-

able, $delims, on line 4. It calls strtok() on line 5, passing it the URL to tokenize

and the $delims string, and stores the first result in $word. Within the conditional

expression of the while loop on line 6, the code tests that $word is a string. If it

isn’t, the end of the string has been reached and no further action is required.

ptg8126863

Manipulating Strings with PHP 173

Listing 10.3 tests the return type because a string containing two delimiters in a row

would cause strtok() to return an empty string when it reaches the first of these

delimiters. So, a more conventional test such as

while ($word) {
$word = strtok($delims);

}

would fail if $word is an empty string, even if the end of the source string has not

yet been reached.

Having established that $word contains a string, the code can go on to work with it.

If $word does not contain an empty string, print it to the browser on line 8. The code

must then call strtok() again on line 10 to repopulate the $word variable for the

next test. Notice that the source string to strtok() is not passed a second time. (If

were to do this, the first word of the source string would be returned once again, and

you would find yourself in an infinite loop.)

Manipulating Strings with PHP
PHP provides many functions that transform a string argument, subtly or radically,

as you’ll soon see.

Cleaning Up a String with trim(), ltrim(), and
strip_tags()
When you acquire text from user input or an external file, you cannot always be

sure that you haven’t also picked up whitespace at the beginning and end of your

data. The trim() function shaves any whitespace characters, including newlines,

tabs, and spaces, from both the start and end of a string. It accepts the string to

modify, returning the cleaned-up version. For example:

<?php
$text = “\t\tlots of room to breathe “;
echo “<pre>$text</pre>”;
// prints “ lots of room to breathe “;
$text = trim($text);
echo “<pre>$text</pre>”;
// prints “lots of room to breathe”;
?>

Of course, this might be more work than you require. You might want to keep white-

space at the beginning of a string but remove it from the end. You can use PHP’s

rtrim() function exactly as you would use trim(). However, rtrim() removes

whitespace at only the end of the string argument:

ptg8126863

174 CHAPTER 10: Working with Strings, Dates, and Time

<?php
$text = “\t\tlots of room to breathe “;
echo “<pre>$text</pre>”;
// prints “ lots of room to breathe “;
$text = rtrim($text);
echo “<pre>$text</pre>”;
// prints “ lots of room to breathe”;
?>

PHP provides the ltrim() function to strip whitespace from only the beginning of a

string. Once again, you call this function with the string you want to transform and

it returns a new string, shorn of tabs, newlines, and spaces:

<?php
$text = “\t\tlots of room to breathe “;
echo “<pre>$text</pre>”;
// prints “ lots of room to breathe “;
$text = ltrim($text);
echo “<pre>$text</pre>”;
// prints “lots of room to breathe “;
?>

It is not unusual to have to remove tags from a block of text to display it without

any HTML formatting. PHP provides the strip_tags() function for this purpose.

The strip_tags() function accepts two arguments: the text to transform and an

optional set of HTML tags that strip_tags() can leave in place. The tags in this list

should not be separated by any characters:

<?php
$string = “<p>\”I simply will not have it,\”
said Mr Dean.</p>
<p>The end.</p>”;
echo strip_tags($string, “
<p>”);
?>

The previous code fragment creates an HTML-formatted string. When you call

strip_tags(), you pass it the $string variable and a list of exceptions. The result

is that the
 and <p> tags are left in place and all other tags are stripped out.

In addition, the matching tag for <p>—</p>—is also removed.

The output of this snippet is as follows:

“I simply will not have it,”
said Mr Dean.

The end.

Note that the emphasis and strong formatting are gone, but the paragraphs and

line breaks remain.

ptg8126863

Manipulating Strings with PHP 175

Replacing a Portion of a String Using
substr_replace()
The substr_replace() function works similarly to the substr() function, except it

enables you to replace the portion of the string that you extract. The function

requires three arguments: the string to transform, the text to add to it, and the start-

ing index; it also accepts an optional length argument. The substr_replace()

function finds the portion of a string specified by the starting index and length

arguments, replaces this portion with the string provided, and returns the entire

transformed string.

The following code fragment for renewing a user’s membership number changes its

second two characters:

<?php
$membership = “mz11xyz”;
$membership = substr_replace($membership, “12”, 2, 2);
echo “New membership number: $membership”;
// prints “New membership number: mz12xyz”
?>

The result of this code is that the old membership number, “mz11xyz”, is trans-

formed into the new membership number, “mz12xyz”.

Replacing Substrings Using str_replace
The str_replace() function is used to replace all instances of a given string within

another string. It requires three arguments: the search string, the replacement string,

and the master string. The function returns the transformed string.

The following example uses str_replace() to change all references to 2010 to 2012

within a master string:

<?php
$string = “<h1>The 2010 Guide to All Things Good in the World</h1>”;
$string .= “<p>Site contents copyright 2010.</p>”;
echo str_replace(“2010”,”2012”,$string);
?>

The str_replace() function accepts arrays as well as strings for all its arguments.

This enables you to perform multiple search and replace operations on a subject

string, and even on more than one subject string. Take the following snippet, for

instance:

<?php
$source = array(

“The package which is at version 4.2 was released in 2005.”,
“The year 2005 was an excellent time for PointyThing 4.2!”);

$search = array(“4.2”, “2005”);

ptg8126863

176 CHAPTER 10: Working with Strings, Dates, and Time

$replace = array(“6.3”, “2012”);
$source = str_replace($search, $replace, $source);
foreach($source as $str) {

echo “$str
”;
}
?>

The output is of this snippet is as follows:

The package which is at version 6.3 was released in 2012.
The year 2012 was an excellent time for PointyThing 6.3!

When an array of strings is passed to str_replace() for its first and second

arguments, it attempts to switch each search string with its corresponding replace

string in the text to be transformed. When the third argument is an array, the

str_replace() function returns an array of strings. The search and replace

operation will have been executed on each string in the array.

Converting Case
PHP provides several functions that allow you to convert the case of a string.

Changing case is often useful for string comparisons. To get an uppercase version of

a string, use the strtoupper() function. This function requires only the string that

you want to convert and returns the converted string:

<?php
$membership = “mz11xyz”;
$membership = strtoupper($membership);
echo “$membership”; // prints “MZ11XYZ”
?>

To convert a string to lowercase characters, use the strtolower() function. Once

again, this function requires the string you want to convert and returns the convert-

ed version:

<?php
$membership = “MZ11XYZ”;
$membership = strtolower($membership);
echo “$membership”; // prints “mz11xyz”
?>

PHP also provides a case function that has a useful cosmetic purpose. The

ucwords() function makes the first letter of every word in a string uppercase. The

following fragment makes the first letter of every word in a user-submitted string

uppercase:

<?php
$full_name = “violet elizabeth bott”;
$full_name = ucwords($full_name);

ptg8126863

Manipulating Strings with PHP 177

echo $full_name; // prints “Violet Elizabeth Bott”
?>

Although this function makes the first letter of each word uppercase, it does not

touch any other letters. So, if the user had had problems with her Shift key in the

previous example and submitted VIolEt eLIZaBeTH bOTt, the preceding approach

would not have done much to fix the string. The output would have been VIolEt

ELIZaBeTH BOTt, which isn’t much of an improvement. You can deal with this by

making the submitted string lowercase with the strtolower() function before

invoking ucwords():

<?php
$full_name = “VIolEt eLIZaBeTH bOTt”;
$full_name = ucwords(strtolower($full_name));
echo $full_name; // prints “Violet Elizabeth Bott”
?>

Finally, the ucfirst() function capitalizes only the first letter in a string. The fol-

lowing fragment capitalizes the first letter in a user-submitted string:

<?php
$myString = “this is my string.”;
$myString = ucfirst($myString);
echo $myString; // prints “This is my string.”
?>

Working with case-related string functions can prove useful when attempting to

authenticate passwords that are not case sensitive, for example. If the user inputs

MyPass and the stored password is mypass but you do not want the match to be

case sensitive, you can attempt to match a lowercase (or uppercase) version of the

user input with the lowercase (or uppercase) version of the stored password. If they

match in their similarly cased format, the user can be authenticated even if he

typed something different from what was actually stored.

Wrapping Text with wordwrap() and nl2br()
When you present plaintext within a web page, you are often faced with a problem

in which new lines are not displayed and your text runs together into one big mess.

The nl2br() function conveniently converts every new line into an HTML break. So

<?php
$string = “one line\n”;
$string .= “another line\n”;
$string .= “a third for luck\n”;
echo nl2br($string);
?>

ptg8126863

178 CHAPTER 10: Working with Strings, Dates, and Time

outputs

one line

another line

a third for luck

The nl2br() function is great for maintaining newlines that are already in the text

you are converting. Occasionally, you might want to add arbitrary line breaks to

format a column of text. The wordwrap() function is perfect for this. wordwrap()

requires one argument: the string to transform. By default, wordwrap() wraps lines

every 75 characters and uses \n as its line break character. So, the code fragment

<?php
$string = “Given a long line, wordwrap() is useful as a means of “;
$string .= “breaking it into a column and thereby making it easier to read”;
echo wordwrap($string);
?>

outputs the following:

Given a long line, wordwrap() is useful as a means of breaking it into a
column and thereby making it easier to read

Because the lines are broken with the character \n, the formatting does not show up

in HTML code, of course—the output here is what you see if you view the source in

your browser. The wordwrap() function has two more optional arguments: a num-

ber representing the maximum number of characters per line and a string represent-

ing the end of line string you want to use. So, applying the function call

echo wordwrap($string, 24, “
\n”);

to the $string variable used earlier, the output is this:

Given a long line,

wordwrap() is useful as

a means of breaking it

into a column and

thereby making it easier

to read

The wordwrap() function does not automatically break at your line limit if a word

has more characters than the limit. You can, however, use an optional fourth argu-

ment to enforce this. The argument should be a positive integer. So, using word-

wrap() in conjunction with the fourth argument, you can wrap a string even when

it contains words that extend beyond the limit you are setting. This fragment

<?php
$string = “As usual you will find me at http://www.witteringonaboutit.com/”;
$string .= “chat/eating_green_cheese/forum.php. Hope to see you there!”;
echo wordwrap($string, 24, “
\n”, 1);
?>

ptg8126863

Using Date and Time Functions in PHP 179

outputs

As usual you will find

me at

http://www.witteringonab

outit.com/chat/eating_gr

een_cheese/forum.php.

Hope to see you there!

instead of

As usual you will find

me at

http://www.witteringonaboutit.com/chat/eating_green_cheese/forum.php.

Hope to see you there!

Breaking Strings into Arrays with explode()
The delightfully named explode() function is similar in some ways to strtok().

But explode() breaks up a string into an array, which you can then store, sort, or

examine as you want. The explode() function requires two arguments: the delim-

iter string that you want to use to break up the source string and the source string

itself. The function optionally accepts a third argument that determines the maxi-

mum number of pieces the string can be broken into. The delimiter string can

include more than one character, all of which form a single delimiter (unlike multi-

ple delimiter characters passed to strtok(), each of which will be a delimiter in its

own right). The following fragment breaks up a date and stores the result in an

array:

<?php
$start_date = “2012-02-19”;
$date_array = explode(“-”, $start_date);
// $date_array[0] == “2012”
// $date_array[1] == “02”
// $date_array[2] == “19”
echo $date_array[0].”-”.$date_array[1].”-”.$date_array[2];
//prints 2012-02-19
?>

Now that your head is full with some common PHP string functions, let’s move on to

date and time functions.

Using Date and Time Functions in PHP
The following sections introduce you to the date- and time-related functions specifi-

cally in PHP. Try out each listing for yourself to see how simple and powerful these

functions can be.

ptg8126863

180 CHAPTER 10: Working with Strings, Dates, and Time

Getting the Date with time()
PHP’s time() function gives you all the information you need about the current

date and time. It requires no arguments and returns an integer. For us humans, the

returned number is a little hard on the eyes, but it’s extremely useful nonetheless:

echo time();
// sample output: 1326853185
// this represents January 17, 2012 at 09:19PM

The integer returned by time() represents the number of seconds elapsed since mid-

night GMT on January 1, 1970. This moment is known as the UNIX epoch, and the

number of seconds that have elapsed since then is referred to as a timestamp. PHP

offers excellent tools to convert a timestamp into a form that humans are comfort-

able with. Even so, you might think, “Isn’t a timestamp a needlessly convoluted way

of storing a date?” In fact, the opposite is true. From just one number, you can

extract enormous amounts of information. Even better, a timestamp can make date

arithmetic much easier than you might imagine.

Think of a homegrown date system in which you record days of the month as well

as months and years. Now imagine a script that must add one day to a given date.

If this date happened to be 31 December 1999, rather than adding 1 to the date,

you’d have to write code to set the day of the month to 1, the month to January,

and the year to 2000. Using a timestamp, you need add only a day’s worth of

seconds (60 * 60 * 24, or 86,400) to your current figure and you’re done. You can

convert this new figure into something friendlier, at your leisure.

Converting a Timestamp with getdate()
Now that you have a timestamp to work with, you must convert it before you pres-

ent it to the user. getdate() optionally accepts a timestamp and returns an associa-

tive array containing information about the date. If you omit the timestamp, get-

date() works with the current timestamp as returned by time(). Table 10.3 lists the

elements contained in the array returned by getdate().

ptg8126863

Using Date and Time Functions in PHP 181

TABLE 10.3 The Associative Array Returned by getdate()

Key Description Example

seconds Seconds past the minute (0–59) 53

minutes Minutes past the hour (0–59) 44

hours Hours of the day (0–23) 17

mday Day of the month (1–31) 3

wday Day of the week (0–6) 0

mon Month of the year (1–12) 2

year Year (four digits) 2008

yday Day of year (0–365) 33

weekday Day of the week (name) Sunday

month Month of the year (name) February

0 Timestamp 1202082293

Listing 10.4 uses getdate() in line 2 to extract information from a timestamp,

employing a foreach statement to print each element (line 3). You can see typical

output of this script, called getdate.php, in Figure 10.5.

LISTING 10.4 Acquiring Date Information with getdate()
1: <?php
2: $date_array = getdate(); // no argument passed so today’s date will be used
3: foreach ($date_array as $key => $val) {
4: echo “$key = $val
”;
5: }
6: ?>
7: <hr/>
8: <?php
9: echo “<p>Today’s date: “.$date_array[‘mon’].”/”.$date_array[‘mday’].”/”.
10: $date_array[‘year’].”</p>”;
11: ?>

ptg8126863

182 CHAPTER 10: Working with Strings, Dates, and Time

If running this code results in a warning such as
Warning: getdate(): It is not safe to rely on the system’s timezone settings.
You are *required* to use the date.timezone setting or the
date_default_timezone_set() function.

you need to make a modification to your php.ini file. Specifically, look for lines
like this:
; Defines the default timezone used by the date functions
; http://php.net/date.timezone
;date.timezone =

Change the value of date.timezone to your time zone. (See http://php.net/
date.timezone for a valid list.) For example:
; Defines the default timezone used by the date functions
; http://php.net/date.timezone
date.timezone = America/New_York

Be sure to restart Apache after making changes to php.ini.

Converting a Timestamp with date()
You can use getdate() when you want to work with the elements that it outputs.

Sometimes, though, you want to display the date as a string. The date() function

returns a formatted string that represents a date. You can exercise an enormous

amount of control over the format that date() returns with a string argument that

you must pass to it. In addition to the format string, date() optionally accepts a

timestamp. Table 10.4 lists some of the codes that a format string can contain. You

can find the complete list at http://www.php.net/date. Any other data you include

in the format string passed to date() is included in the return value.

FIGURE 10.5
Using getdate().

CAUTION

http://php.net/date.timezone
http://php.net/date.timezone
http://www.php.net/date

ptg8126863

Using Date and Time Functions in PHP 183

TABLE 10.4 Some Format Codes for Use with date()

Format Description Example

a am or pm (lowercase) am

A AM or PM (uppercase) AM

d Day of month (number with leading zeros) 01

D Day of week (three letters) Tue

e Timezone identifier America/New_York

F Month name January

h Hour (12-hour format—leading zeros) 09

H Hour (24-hour format—leading zeros) 21

g Hour (12-hour format—no leading zeros) 9

G Hour (24-hour format—no leading zeros) 21

i Minutes 21

j Day of the month (no leading zeros) 17

l Day of the week (name) Tuesday

L Leap year (1 for yes, 0 for no) 1

m Month of year (number—leading zeros) 01

M Month of year (three letters) Jan

n Month of year (number—no leading zeros) 1

s Seconds of hour 11

S Ordinal suffix for the day of the month th

r Full date standardized to RFC 822 Tue, 17 Jan 2012

(http://www.faqs.org/rfcs/rfc822.html) 09:21:11 -0500

U Timestamp 1326853271

y Year (two digits) 12

Y Year (four digits) 2012

z Day of year (0–365) 17

Z Offset in seconds from GMT -18000

Listing 10.5 puts a few of these formats to the test.

LISTING 10.5 Formatting a Date with date()
1: <?php
2: $time = time(); //stores the exact timestamp to use in this script
3: echo date(“m/d/y G:i:s e”, $time);
4: echo “
”;

http://www.faqs.org/rfcs/rfc822.html

ptg8126863

184 CHAPTER 10: Working with Strings, Dates, and Time

LISTING 10.5 Continued
5: echo “Today is “;
6: echo date(“jS \of F Y, \a\\t g:ia \i\\n e”, $time);
7: ?>

Listing 10.5 calls date() twice: the first time on line 3 to output an abbreviated date

format, and the second time on line 6 for a longer format. Save the text of this list-

ing in a file named datetest.php and open it in your web browser. Your date will

differ from the following, obviously, but here’s some sample output:

01/17/12 21:29:31 America/New_York
Today is 17th of January 2012, at 9:29pm in America/New_York

Although the format string looks arcane, it’s easy to build. If you want to add a

string that contains letters that are also format codes to the format, you can escape

them by placing a backslash (\) in front of them. For characters that become control

characters when escaped, you must escape the backslash that precedes them. For

example, \t is a format code for a tab. So to ensure that the tab prints, use \\t as

in the example in Listing 10.5.

Another example is in the context of a word you are adding to a string (for exam-

ple, the). The word the is made up of three format codes, so all must be escaped:

<?php
echo date(‘l \t\h\e jS’);
//prints Tuesday the 3rd
?>

Also note that the date() function returns information according to your local time

zone. If you want to format a date in GMT, you use the gmdate() function, which

works in exactly the same way.

Creating Timestamps with mktime()
You can already get information about the current time, but you cannot yet work

with arbitrary dates. mktime() returns a timestamp that you can then use with

date() or getdate(). mktime() accepts up to six integer arguments in the follow-

ing order:

Hour

Minute

Second

Month

Day of month

Year

ptg8126863

Using Date and Time Functions in PHP 185

Listing 10.6 uses mktime() to get a timestamp it then uses with the date() function.

LISTING 10.6 Creating a Timestamp with mktime()
1: <?php
2: // make a timestamp for Jan 17 2012 at 9:34 pm
3: $ts = mktime(21, 34, 0, 1, 17, 2012);
4: echo date(“m/d/y G:i:s e”, $ts);
5: echo “
”;
6: echo “The date is “;
7: echo date(“jS \of F Y, \a\\t g:ia \i\\n e”, $ts);
8: ?>

This code calls mktime() on line 3 and assigns the returned timestamp to the $ts

variable. It then uses the date() function on lines 4 and 7 to output formatted ver-

sions of the date using $ts. You can choose to omit some of or all the arguments to

mktime(), and the value appropriate to the current time is used instead. mktime()

also adjusts for values that go beyond the relevant range, so an hour argument of

25 translates to 1:00 a.m. on the day after that specified in the month, day, and

year arguments.

Save the text of this listing in a file named mktimetest.php and open it in your

web browser. You should see the following

01/17/12 21:34:00 America/New_York
The date is 17th of January 2012, at 9:34pm in America/New_York

Testing a Date with checkdate()
You might need to accept date information from user input. Before you work with a

user-entered date or store it in a database, make sure that the date is valid. check-

date() accepts three integers: month, day, and year. checkdate() returns true if

the month is between 1 and 12, the day is acceptable for the given month and year

(accounting for leap years), and the year is between 0 and 32767. Be careful,

though: A date might be valid but not acceptable to other date functions. For exam-

ple, the following line returns true:

checkdate(4, 4, 1066)

If you were to attempt to build a date with mktime() using these values, you’d end

up with a timestamp of -1. As a rule of thumb, don’t use mktime() with years

before 1902, and be cautious of using date functions with any date before 1970,

because negative numbers are not valid dates. Because the UNIX epoch began

January 1, 1970, anything before that is an invalid (negative) timestamp.

ptg8126863

186 CHAPTER 10: Working with Strings, Dates, and Time

Other String, Date, and Time Functions
PHP does not lack for functions, especially for common items such as strings and

dates. It is worth your while to bookmark the following chapters in the PHP Manual:

. “Strings” at http://www.php.net/manual/en/ref.strings.php

. “Date/Time” at http://www.php.net/manual/en/ref.datetime.php

In addition to keeping up with functions as they are added to PHP, the user-

contributed notes for each function often offer solutions to various programming

tasks that you might find useful as you build your own applications.

Summary
In this chapter, you learned about some of the functions that enable you to take

control of the strings in your PHP scripts. You learned how to format strings with

printf() and sprint(). You should be able to use these functions to create strings

that both transform and format data. You learned about functions that investigate

strings. You should be able to discover the length of a string with strlen(), deter-

mine the presence of a substring with strpos(), and extract a substring with

substr(). You should be able to tokenize a string with strtok().

You also learned about functions that transform strings. You can now remove white-

space from the beginning or end of a string with trim(), ltrim(), or rtrim(). You

can change the case of characters in a string with strtoupper(), strtolower(), or

ucwords(). You can replace all instances of a string with str_replace().

You also learned how to use various PHP functions to perform date- and time-

related actions. The time() function gets a date stamp for the current date and

time, and you can use getdate() to extract date information from a timestamp

and date() to convert a timestamp into a formatted string. You learned how to cre-

ate a timestamp using mktime(), and how to test a date for validity with check-

date(). You learn many more powerful date-related functions in Chapter 16,

“Learning Basic SQL Commands,” so much so that you might find yourself using

MySQL and not PHP for many of your date-related needs.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

http://www.php.net/manual/en/ref.strings.php
http://www.php.net/manual/en/ref.datetime.php

ptg8126863

Workshop 187

Q&A
Q. Can I combine multiple string functions?

A. Yes. You can nest any function, not just string functions. Just remember to

count your opening and closing parentheses to ensure that you’ve nested your

functions appropriately.

Q. What do I do with dates and times stored in my database, not just in my
scripts?

A. You will learn about MySQL date and time functions in Chapter 16, “Learning

Basic SQL Commands,” but in general a good rule of thumb is that if you are

extracting dates and times from a database and you want to perform date

and time-related operations (such as calculating time or converting time from

one type to another), you make your database do the work for you. But

there’s nothing stopping you from using PHP date and time functions on data

extracted out of the database.

Quiz
1. What conversion specifier would you use with printf() to format an integer

as a double? Indicate the full syntax required to convert the integer 33.

2. How would you pad the conversion you effected in question 1 with zeros so

that the part before the decimal point is four characters long?

3. How would you specify a precision of two decimal places for the floating-point

number you have been formatting in the previous questions?

4. What function would you use to extract a substring from a string?

5. How might you remove whitespace from the beginning of a string?

6. How would you break up a delimited string into an array of substrings?

7. Using PHP, how do you acquire a UNIX timestamp that represents the current

date and time?

8. Which PHP function accepts a timestamp and returns an associative array

that represents the given date?

9. Which PHP function do you use to format date information?

10. Which PHP function could you use to check the validity of a date?

ptg8126863

188 CHAPTER 10: Working with Strings, Dates, and Time

Answers
1. The conversion specifier f is used to format an integer as a double:

printf(“%f”, 33);

2. You can pad the output from printf() with the padding specifier—that is, a

space or a zero followed by a number representing the number of characters

you want to pad by:

printf(“%04f”, 33);

3. The precision specifier consists of a dot (.) followed by a number representing

the precision you want to apply. You should place the precision specifier before

the conversion specifier:

printf(“%04.2f”, 33);

4. The substr() function extracts and returns a substring.

5. The ltrim() function removes whitespace from the start of a string.

6. The explode() function splits up a string into an array.

7. Use time().

8. The getdate() function returns an associative array whose elements contain

aspects of the given date.

9. Use date().

10. You can check a date with the checkdate() function.

Activities
1. Create a feedback form that accepts a user’s full name and an email address.

Use case-conversion functions to capitalize the first letter of each name the

user submits and print the result back to the browser. Check that the user’s

email address contains the @ symbol and print a warning otherwise.

2. Create an array of doubles and integers. Loop through the array, converting

each element to a floating-point number with a precision of 2. Right-align the

output within a field of 20 characters.

3. Create a birthday countdown script. Given form input of month, day, and

year, output a message that tells the user how many days, hours, minutes,

and seconds until the big day.

ptg8126863

CHAPTER 11

Working with Forms

In this chapter, you learn the following:
. How to access information from form fields
. How to work with form elements that allow multiple selections
. How to create a single document that contains both an HTML form and the

PHP code that handles its submission
. How to save state with hidden fields
. How to redirect the user to a new page
. How to build HTML forms and PHP code that send mail
. How to build HTML forms that upload files and write the PHP code to handle

the uploads

Until now, the PHP examples in this book have been missing a crucial dimension. Sure,

you know the basics, can set variables and arrays, create and call functions, and work

with strings. But that’s all meaningless if users cannot interact in a meaningful way with

your website. HTML forms are the principal means by which substantial amounts of infor-

mation pass from the user to the server, so this chapter moves into this dimension and

looks at strategies for acquiring and working with user input.

Creating a Simple Input Form
For now, let’s keep the HTML separate from the PHP code. Listing 11.1 builds a simple

HTML form.

LISTING 11.1 A Simple HTML Form
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>A simple HTML form</title>

ptg8126863

190 CHAPTER 11: Working with Forms

LISTING 11.1 Continued
5: </head>
6: <body>
7: <form method=”post” action=”send_simpleform.php”>
8: <p><label for=”user”>Name:</label>

9: <input type=”text” id=”user” name=”user”></p>
10: <p><label for=”message”>Message:</label>

11: <textarea id=”message” name=”message” rows=”5” cols=”40”></textarea></p>
12: <button type=”submit” name=”submit” value=”send”>Send Message</button>
13: </form>
14: </body>
15: </html>

Put these lines into a text file called simpleform.html and place that file in your

web server document root. This listing defines a form that contains a text field with

the name “user” on line 9, a text area with the name “message” on line 11, and a

submit button on line 12. The FORM element’s ACTION argument points to a file

called send_simpleform.php, which processes the form information. The method of

this form is POST, so the variables are stored in the $_POST superglobal.

Listing 11.2 creates the code that receives user input and displays it within the con-

text of an HTML page.

LISTING 11.2 Reading Input from a Form
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>A simple response</title>
5: </head>
6: <body>
7: <p>Welcome, <?php echo $_POST[‘user’]; ?>!</p>
8: <p>Your message is:
9: <?php echo $_POST[‘message’]; ?></p>
10: </body>
11: </html>

Put these lines into a text file called send_simpleform.php and place that file in

your web server document root. Now access the form itself (simpleform.html) with

your web browser, and you should see something like Figure 11.1.

ptg8126863

Accessing Form Input with User-Defined Arrays 191

The script in Listing 11.2 is called when the user submits the form created in Listing

11.1. The code in Listing 11.2 accesses two variables: $_POST[‘user’] and

$_POST[‘message’]. These are references to the variables in the $_POST superglob-

al, which contain the values that the user entered in the user text field and the

message text area. Forms in PHP really are as simple as that.

Enter some information in the form fields and click the Send Message button. You

should see your input echoed to the screen.

You could also use the GET method in this form (and others). POST can handle
more data than GET and does not pass the data in the query string. If you use the
GET method, be sure to change your superglobal to $_GET and not $_POST.

Accessing Form Input with User-Defined
Arrays
The previous example showed how to gather information from HTML elements that

submit a single value per element name, such as text fields, text areas, and radio

buttons. This leaves you with a problem when working with elements such as check-

boxes because it is possible for the user to choose one or more items. If you name

the checkbox INPUT element with a plain name, like so

<input type=”checkbox” id=”products” name=”products”>

FIGURE 11.1
The form creat-
ed by simple-
form.html.

NOTE

ptg8126863

192 CHAPTER 11: Working with Forms

the script that receives this data has access to only a single value corresponding to

this name ($_POST[‘products’]) (and therefore only the first checkbox in the list

that the user selected). You can change this behavior by renaming an element of

this kind so that its name ends with an empty set of square brackets. Listing 11.3

does this.

LISTING 11.3 An HTML Form Including Multiple Check Boxes
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>An HTML form with checkboxes</title>
5: </head>
6: <body>
7: <form action=”send_formwithcb.php” method=”POST”>
8: <p><label>Name:</label>

9: <input type=”text” name=”user” /></p>
10: <fieldset>
11: <legend>Select Some Products:</legend>

12: <input type=”checkbox” id=”tricorder”
13: name=”products[]” value=”Tricorder”>
14: <label for=”tricorder”>Tricorder</label>

15:
16: <input type=”checkbox” id=”ORAC_AI”
17: name=”products[]” value=”ORAC AI”>
18: <label for=”ORAC_AI”>ORAC AI</label>

19:
20: <input type=”checkbox” id=”HAL_2000”
21: name=”products[]” value=”HAL 2000”>
22: <label for=”HAL_2000”>HAL 2000</label>
23: </fieldset>
24: <button type=”submit” name=”submit” value=”submit”>Submit Form</button>
25: </form>
26: </body>
27: </html>

Put these lines into a text file called formwithcb.html and place that file in your

web server document root. Next, in the script that processes the form input, you find

that the value of all checked checkboxes with the “products[]” name are available

in an array called $_POST[‘products’]. Each checkbox is indicated in lines 12

through 22.That the user’s choices are made available is demonstrated in an array

in Listing 11.4.

LISTING 11.4 Reading Input from the Form in Listing 11.3
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Reading checkboxes</title>

ptg8126863

Accessing Form Input with User-Defined Arrays 193

5: </head>
6: <body>
7: <p>Welcome, <?php echo $_POST[‘user’]; ?>!</p>
8: <p>Your product choices are:
9: <?php
10: if (!empty($_POST[‘products’])) {
11: echo “”;
12: foreach ($_POST[‘products’] as $value) {
13: echo “$value”;
14: }
15: echo “”;
16: } else {
17: echo “None”;
18: }
19: ?>
20: </body>
21: </html>

Put these lines into a text file called send_formwithcb.php and place that file in

your web server document root. Now access the form (formwithcb.html) with your

web browser and check some checkboxes. Figure 11.2 shows an example.

FIGURE 11.2
The form creat-
ed in Listing
11.3.

Line 7 of the script in Listing 11.4 accesses the $_POST[‘user’] variable, which is

derived from the user INPUT field in the form. On line 10, the code tests for the

$_POST[‘products’] variable. If $_POST[‘products’] is present and is not empty,

execution loops through it on line 12, and outputs each choice to the browser on

line 13. The text within the value attribute of the selected checkbox becomes one of

the stored values in the array.

Submit the form, and you might see something like that shown in Figure 11.3.

ptg8126863

194 CHAPTER 11: Working with Forms

Although the looping technique is particularly useful with checkboxes, it can also

work with other types of form elements. For example, if you use a SELECT element

that allows for multiple selections, you are also enabling a user to choose many val-

ues within a single field name.

As long as the name you choose ends with empty square brackets, PHP compiles the

user input for this field into an array.

Combining HTML and PHP Code on a
Single Page
In some circumstances, you might want to include the form-parsing PHP code on

the same page as a hard-coded HTML form. Such a combination can prove useful if

you need to present the same form to the user more than once. You would have

more flexibility if you were to write the entire page dynamically, of course, but you

would miss out on one of the great strengths of PHP, which is that it mingles well

with standard HTML. The more standard HTML you can include in your pages, the

easier they are for designers and page builders to amend without asking you, the

programmer, for help.

For the following examples, imagine that you’re creating a site that teaches basic

math to preschool children and have been asked to create a script that takes a num-

ber from form input and tells the user whether it’s larger or smaller than a prede-

fined integer.

Listing 11.5 creates the HTML. For this example, you need only a single text field,

but even so, the code listing includes a little PHP.

FIGURE 11.3
Sample output of
send_formwithcb.php.

ptg8126863

Combining HTML and PHP Code on a Single Page 195

LISTING 11.5 An HTML Form That Calls Itself
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>An HTML form that calls itself</title>
5: </head>
6: <body>
7: <form action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>” method=”POST”>
8: <p><label for=”guess”>Type your guess here:</label>

9: <input type=”text” id=”guess” name=”guess” /></p>
10: <button type=”submit” name=”submit” value=”submit”>Submit</button>
11: </form>
12: </body>
13: </html>

The action of this script is $_SERVER[‘PHP_SELF’], as shown in line 7. This global

variable represents the name of the current script. In other words, the action tells the

script to reload itself. The script in Listing 11.5 does not produce any output, but if

you upload the script to your web server, access the page, and view the source of the

page, you will notice that the form action now contains the name of the script itself.

In Listing 11.6, you begin to build up the PHP element of the page.

LISTING 11.6 A PHP Number-Guessing Script
1: <?php
2: $num_to_guess = 42;
3: if (!isset($_POST[‘guess’])) {
4: $message = “Welcome to the guessing machine!”;
5: } elseif (!is_numeric($_POST[‘guess’])) { // is not numeric
6: $message = “I don’t understand that response.”;
7: } elseif ($_POST[‘guess’] == $num_to_guess) { // matches!
8: $message = “Well done!”;
9: } elseif ($_POST[‘guess’] > $num_to_guess) {
10: $message = $_POST[‘guess’].” is too big! Try a smaller number.”;
11: } elseif ($_POST[‘guess’] < $num_to_guess) {
12: $message = $_POST[‘guess’].” is too small! Try a larger number.”;
13: } else { // some other condition
14: $message = “I am terribly confused.”;
15: }
16: ?>

First, you must define the number that the user guesses, and this is done in line 2

when 42 is assigned to the $num_to_guess variable. Next, you must determine

whether the form has been submitted. You can test for submission by looking for the

existence of the variable $_POST[‘guess’], which is available only if the form

script has been submitted (with or without a value in the field). If a value for

$_POST[‘guess’] isn’t present, you can safely assume that the user arrived at the

ptg8126863

196 CHAPTER 11: Working with Forms

page without submitting a form. If the value is present, you can test the value it

contains. The test for the presence of the $_POST[‘guess’] variable takes place on

line 3.

Lines 3 through 15 represent an if...elseif...else control structure. Only one of

these conditions will be true at any given time, depending on what (if anything)

was submitted from the form. Depending on the condition, a different value is

assigned to the $message variable. That variable is then printed to the screen in line

23 in Listing 11.6, which is part of the HTML portion of the script.

LISTING 11.6 A PHP Number-Guessing Script (Continued)
17: <!DOCTYPE html>
18: <html>
19: <head>
20: <title>A PHP number guessing script</title>
21: </head>
22: <body>
23: <h1><?php echo $message; ?></h1>
24: <form action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>” method=”POST”>
25: <p><label for=”guess”>Type your guess here:</label>

26: <input type=”text” is=”guess” name=”guess” /></p>
27: <button type=”submit” name=”submit” value=”submit”>Submit</button>
28: </form>
29: </body>
30: </html>

Place the PHP anfd HTML code (all the lines in Listing 11.6) into a text file called

numguess.php and put this file in your web server document root. Now access the

script with your web browser, and you should see something like Figure 11.4.

FIGURE 11.4
The form creat-
ed in Listing
11.6.

You could still make a few more additions, but you can probably see how simple it

would be to hand the code to a designer for aesthetic treatment. The designer can do

her part without having to disturb the programming in any way—the PHP code is at

the top, and the rest is almost entirely HTML.

ptg8126863

Using Hidden Fields to Save State 197

Using Hidden Fields to Save State
The script in Listing 11.6 has no way of knowing how many guesses a user has

made, but you can use a hidden field to keep track of this value. A hidden field

behaves the same as a text field, except that the user cannot see it unless he views

the HTML source of the document that contains it.

Take the original numguess.php script and save a copy as numguess2.php. In the

new version, add a line after the initial assignment of the $num_to_guess variable:

$num_tries = (isset($_POST[‘num_tries’])) ? $num_tries + 1 : 1;

This line initializes a variable called $num_tries and assigns a value to it. If the

form has not yet been submitted (if $_POST[‘num_tries’] is empty), the value of

the $num_tries variable is 1 because you are on your first attempt at guessing the

number. If the form has already been sent, the new value is the value of

$_POST[‘num_tries’] plus 1.

The next change comes after the HTML level H1 heading:

<p>Guess number: <?php echo $num_tries; ?></p>

This new line simply prints the current value of $num_tries to the screen.

Finally, before the HTML code for the form submission button, add the hidden field.

This field saves the incremented value of $num_tries:

<input type=”hidden” name=”num_tries” value=”<?php echo $num_tries; ?>”/>

Listing 11.7 shows the new script in its entirety.

LISTING 11.7 Saving State with a Hidden Field
1: <?php
2: $num_to_guess = 42;
3: $num_tries = (isset($_POST[‘num_tries’])) ? $num_tries + 1 : 1;
4: if (!isset($_POST[‘guess’])) {
5: $message = “Welcome to the guessing machine!”;
6: } elseif (!is_numeric($_POST[‘guess’])) { // is not numeric
7: $message = “I don’t understand that response.”;
8: } elseif ($_POST[‘guess’] == $num_to_guess) { // matches!
9: $message = “Well done!”;
10: } elseif ($_POST[‘guess’] > $num_to_guess) {
11: $message = $_POST[‘guess’].” is too big! Try a smaller number.”;
12: } elseif ($_POST[‘guess’] < $num_to_guess) {
13: $message = $_POST[‘guess’].” is too small! Try a larger number.”;
14: } else { // some other condition
15: $message = “I am terribly confused.”;
16: }
17: ?>
18: <!DOCTYPE html>

ptg8126863

198 CHAPTER 11: Working with Forms

LISTING 11.7 Continued
19: <html>
20: <head>
21: <title>A PHP number guessing script</title>
22: </head>
23: <body>
24: <h1><?php echo $message; ?></h1>
25: <p>Guess number: <?php echo $num_tries; ?></p>
26: <form action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>” method=”POST”>
27: <p><label for=”guess”>Type your guess here:</label>

28: <input type=”text” id=”guess” name=”guess” /></p>
29: <input type=”hidden” name=”num_tries” value=”<?php echo $num_tries; ?>”/>
30: <button type=”submit” name=”submit” value=”submit”>Submit</button>
31: </form>
32: </body>
33: </html>

Save the numguess2.php file and place it in your web server document root. Access

the form a few times with your web browser and try to guess the number (pretend-

ing you don’t already know it). The counter should increment by 1 each time you

access the form.

Redirecting the User
Our simple script still has one major drawback: The form is reloaded whether or not

the user guesses correctly. The fact that the HTML is hard-coded makes it difficult to

avoid writing the entire page. You can, however, redirect the user to a congratula-

tions page, thereby sidestepping the issue altogether.

When a server script communicates with a client, it must first send some headers

that provide information about the document to follow. PHP usually handles this for

you automatically, but you can choose to send your own header lines with PHP’s

header() function.

To call the header() function, you must be absolutely sure that no output has been

sent to the browser. The first time content is sent to the browser, PHP sends out head-

ers of its own, and it’s too late for you to send any more. Any output from your doc-

ument, even a line break or a space outside your script tags, causes headers to be

sent. If you intend to use the header() function in a script, you must make certain

that nothing precedes the PHP code that contains the function call. You should also

check any libraries that you might be using.

Listing 11.8 shows typical headers sent to the browser by PHP, beginning with line 3,

in response to the request in line 1.

ptg8126863

Redirecting the User 199

LISTING 11.8 Typical Server Headers Sent from a PHP Script
1: HTTP/1.1 200 OK
2: Date: Sun, 29 Jan 2012 15:50:28 PST
3: Server: Apache/2.2.21 (Win32) PHP/5.4.0
4: X-Powered-By: PHP/5.4.0
5: Connection: close
6: Content-Type: text/html

By sending a Location header rather than PHP’s default header, you can cause the

browser to be redirected to a new page, such as the following:

header(“Location: http://www.samspublishing.com”);

Assuming that you’ve created a suitably upbeat page called congrats.html, we can

amend the number-guessing script to redirect the user if she guesses correctly, as

shown in Listing 11.9. The only change between this and Listing 11.7 comes after

the elseif clause on line 8.

LISTING 11.9 Using header() to Redirect User
1: <?php
2: $num_to_guess = 42;
3: $num_tries = (isset($_POST[‘num_tries’])) ? $num_tries + 1 : 1;
4: if (!isset($_POST[‘guess’])) {
5: $message = “Welcome to the guessing machine!”;
6: } elseif (!is_numeric($_POST[‘guess’])) { // is not numeric
7: $message = “I don’t understand that response.”;
8: } elseif ($_POST[‘guess’] == $num_to_guess) { // matches!
9: header(“Location: congrats.html”);
10: exit;
11: } elseif ($_POST[‘guess’] > $num_to_guess) {
12: $message = $_POST[‘guess’].” is too big! Try a smaller number.”;
13: } elseif ($_POST[‘guess’] < $num_to_guess) {
14: $message = $_POST[‘guess’].” is too small! Try a larger number.”;
15: } else { // some other condition
16: $message = “I am terribly confused.”;
17: }
18: ?>
19:
20: <!DOCTYPE html>
21: <html>
22: <head>
23: <title>A PHP number guessing script</title>
24: </head>
25: <body>
26: <h1><?php echo $message; ?></h1>
27: <p>Guess number: <?php echo $num_tries; ?></p>
28: <form action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>” method=”POST”>
29: <p><label for=”guess”>Type your guess here:</label>

30: <input type=”text” id=”guess” name=”guess” /></p>
31: <input type=”hidden” name=”num_tries” value=”<?php echo $num_tries; ?>”/>
32: <button type=”submit” name=”submit” value=”submit”>Submit</button>
33: </form>
34: </body>
35: </html>

http://www.samspublishing.com

ptg8126863

200 CHAPTER 11: Working with Forms

The elseif clause of the if statement on line 8 now causes the browser to send the

user away to a page called congrats.html. The exit statement on line 10 immedi-

ately ends execution and output of this script, which ensures that all output from

the current page is aborted.

Sending Mail on Form Submission
You’ve already seen how to take form responses and print the results to the screen,

so you’re only one step away from sending those responses in an email message.

Before learning about sending mail, however, read through the next section to make

sure that your system is properly configured.

System Configuration for the mail() Function
Before you can use the mail() function to send mail, you need to set up a few direc-

tives in the php.ini file so that the function works properly. Open php.ini with a

text editor and look for these lines:

[mail function]
; For Win32 only.
; http://php.net/smtp
SMTP = localhost
; http://php.net/smtp-port
smtp_port = 25

; For Win32 only.
; http://php.net/sendmail-from
;sendmail_from = me@example.com

; For Unix only. You may supply arguments as well (default: “sendmail -t -i”).
; http://php.net/sendmail-path
;sendmail_path =

If you’re using Windows as your web server platform, the first two directives apply to

you. For the mail() function to send mail, it must be able to access a valid outgoing

mail server. If you plan to use the outgoing mail server of your choosing, the entry

in php.ini could look like this:

SMTP = smtp.yourisp.net

The second configuration directive is sendmail_from, which is the email address

used in the From header of the outgoing email. It can be overwritten in the mail

script itself but normally operates as the default value, as in this example:

sendmail_from = youraddress@yourdomain.com

ptg8126863

Creating the Form 201

A good rule of thumb for Windows users is that whatever outgoing mail server

you’ve set up in your email client on that machine, you should also use as the value

of SMTP in php.ini.

If your web server is running on a Linux/UNIX platform, you use the sendmail

functionality of that particular machine. In this case, only the last directive applies

to you: sendmail_path. The default is sendmail -t -i, but if sendmail is in an

odd place or if you need to specify different arguments, feel free to do so, as in the

following example, which does not use real values:

sendmail_path = /opt/sendmail -odd -arguments

After making any changes to php.ini on any platform, you must restart the web

server process for the changes to take effect.

Creating the Form
In Listing 11.10, you see the basic HTML for creating a simple feedback form named

feedback.html. This form has an action of sendmail.php, which you create in the

next section. The fields in feedback.html are simple: Lines 8 and 9 create a name

field and label, lines 10 and 11 create the return email address field and label, and

lines 12 and 13 contain the text area and label for the user’s message.

LISTING 11.10 Creating a Simple Feedback Form
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>E-Mail Form</title>
5: </head>
6: <body>
7: <form action=”sendmail.php” method=”POST”>
8: <p><label for=”name”>Name:</label>

9: <input type=”text” size=”25” id=”name” name=”name”/></p>
10: <p><label for=”email”>E-Mail Address:</label>

11: <input type=”text” size=”25” id=”email” name=”email”/></p>
12: <p><label for=”msg”>Message:</label>

13: <textarea id=”msg” name=”msg” cols=”30” rows=”5”></textarea></p>
14: <button type=”submit” name=”submit” value=”send”>Send Message</button>
15: </form>
16: </body>
17: </html>

Put all the lines shown in Listing 11.10 into a text file called feedback.html and

place this file in your web server document root. Now access the script with your

web browser, and you should see something like Figure 11.5.

ptg8126863

202 CHAPTER 11: Working with Forms

In the next section, you create the script that sends this form to a recipient.

Creating the Script to Send the Mail
This script differs only slightly in concept from the script in Listing 11.4, which sim-

ply printed form responses to the screen. In the script shown in Listing 11.11, in

addition to printing the responses to the screen, you send them to an email address.

LISTING 11.11 Sending the Simple Feedback Form
1: <?php
2: //start building the mail string
3: $msg = “Name: “.$_POST[‘name’].”\n”;
4: $msg .= “E-Mail: “.$_POST[‘email’].”\n”;
5: $msg .= “Message: “.$_POST[‘message’].”\n”;
6:
7: //set up the mail
8: $recipient = “you@yourdomain.com”;
9: $subject = “Form Submission Results”;
10: $mailheaders = “From: My Web Site <defaultaddress@yourdomain.com> \n”;
11: $mailheaders .= “Reply-To: “.$_POST[‘email’];
12:
13: //send the mail
14: mail($recipient, $subject, $msg, $mailheaders);
15: ?>
16: <!DOCTYPE html>
17: <html>
18: <head>
19: <title>Sending mail from the form in Listing 11.10</title>
20: </head>
21: <body>
22: <p>Thanks, <?php echo $_POST[‘name’]; ?>,
23: for your message.</p>

FIGURE 11.5
The form creat-
ed in Listing
11.10.

ptg8126863

Creating the Script to Send the Mail 203

24: <p>Your e-mail address:
25: <?php echo $_POST[‘email’]; ?></p>
26: <p>Your message:
 <?php echo $_POST[‘message’]; ?> </p>
27: </body>
28: </html>

The variables printed to the screen in lines 22–26 are $_POST[‘name’],

$_POST[‘email’], and $_POST[‘message’]—the names of the fields in the form,

their values saved as part of the $_POST superglobal. That’s all well and good for

printing the information to the screen, but in this script, you also want to create a

string that’s sent in email. For this task, you essentially build the email by concate-

nating strings to form one long message string, using the newline (\n) character to

add line breaks where appropriate.

Lines 3 through 5 create the $msg variable, a string containing the values typed by

the user in the form fields (and some label text for good measure). This string forms

the body of the email. Note the use of the concatenation operator (.=) when adding

to the $msg variable in lines 4 and 5.

Lines 8 and 9 are hard-coded variables for the email recipient and the subject of the

email message. Replace you@yourdomain.com with your own email address, obvi-

ously. If you want to change the subject, feel free to do that, too!

Lines 10 and 11 set up some mail headers, namely the From: and Reply-to: head-

ers. You could put any value in the From: header; this is the information that dis-

plays in the From or Sender column of your email application when you receive this

mail.

If your outbound mail server is a Windows machine, you should replace the \n
newline character with \r\n.

The mail() function uses five parameters: the recipient, the subject, the message,

any additional mail headers, and any additional sendmail parameters. In our

example, we use only the first four parameters. The order of these parameters is

shown in line 14.

Put these lines into a text file called sendmail.php and place that file in your web

server document root. Use your web browser and go back to the form, enter some

information, and click the submission button. You should see something like Figure

11.6 in your browser.

CAUTION

ptg8126863

204 CHAPTER 11: Working with Forms

If you then check your email, you should have a message waiting for you. It might

look something like Figure 11.7.

FIGURE 11.6
Sample results
from
sendmail.php.

FIGURE 11.7
Email sent from
sendmail.php.

This example does not include any server-side validation of form elements and
just assumes that the user has entered values into the form. In a real-life situa-
tion, you would check for the presence and validity of the values entered in the
form before doing anything with the mail, either through JavaScript or HTML5 form
validation.

NOTE

ptg8126863

Creating the Script to Send the Mail 205

Formatting Your Mail with HTML
The “trick” to sending HTML-formatted email is not a trick at all. In fact, it only

involves writing the actual HTML and modifying the headers sent by the mail()

function. In Listing 11.12, a variation of Listing 11.11, changes were made in

lines 12–14 and lines 18–19.

LISTING 11.12 Sending the Simple Feedback Form: HTML Version
1: <?php
2: //start building the mail string
3: $msg = “<p>Name: “.$_POST[‘name’].”</p>”;
4: $msg .= “<p>E-Mail: “.$_POST[‘email’].”</p>”;
5: $msg .= “<p>Message: “.$_POST[‘message’].”</p>”;
6:
7: //set up the mail
8: $recipient = “you@yourdomain.com”;
9: $subject = “Form Submission Results”;
10: $mailheaders = “MIME-Version: 1.0\r\n”;
11: $mailheaders .= “Content-type: text/html; charset=ISO-8859-1\r\n”;
12: $mailheaders = “From: My Web Site <defaultaddress@yourdomain.com> \n”;
13: $mailheaders .= “Reply-To: “.$_POST[‘email’];
14:
15: //send the mail
16: mail($recipient, $subject, $msg, $mailheaders);
17: ?>
18: <!DOCTYPE html>
19: <html>
20: <head>
21: <title>Sending the Simple Feedback Form - HTML Version</title>
22: </head>
23: <body>
24: <p>Thanks, <?php echo $_POST[‘name’]; ?>,
25: for your message.</p>
26: <p>Your e-mail address:
27: <?php echo $_POST[‘email’]; ?></p>
28: <p>Your message:
 <?php echo $_POST[‘message’]; ?> </p>
29: </body>
30: </html>

In lines 3–5, the message string now contains HTML code. Additional headers are

created in lines 10–11, which set the Mime Version header to 1.0 and the Content-

type header to text/html with a character set of ISO-8859-1. When opened in an

HTML-enabled mail client, the HTML in the message string appears as intended, as

shown in Figure 11.8.

ptg8126863

206 CHAPTER 11: Working with Forms

Working with File Uploads
So far, you’ve looked at simple form input. However, web browsers support file

uploads, and so, of course, does PHP. In this section, you examine the features that

PHP makes available to deal with this kind of input.

Information about the uploaded file becomes available to you in the $_FILES super-

global, which is indexed by the name of the upload field (or fields) in the form. The

corresponding value for each of these keys is an associative array. These fields are

described in Table 11.1, using fileupload as the name of the form field used for the

upload.

TABLE 11.1 File Upload Global Variables

Element Contains Example

$_FILES[‘fileupload’][‘name’] Original name of file test.gif
uploaded

$_FILES[‘fileupload’] Path to temporary file /tmp/phprDfZvN

[‘tmp_name’]

$_FILES[‘fileupload’][‘size’] Size (in bytes) of 6835
uploaded file

$_FILES[‘fileupload’][‘type’] MIME type of uploaded image/gif

file (where given by
client)

FIGURE 11.8
Email sent from
Listing 11.12.

ptg8126863

Working with File Uploads 207

Keep these elements in the back of your mind for a moment while you create the

upload form in the next section.

Creating the File Upload Form
First, you must create the HTML form to handle the upload. HTML forms that

include file upload fields must include an ENCTYPE argument:

enctype=”multipart/form-data”

PHP also works with an optional hidden field that can be inserted before the file

upload field. This field must be called MAX_FILE_SIZE and should have a value rep-

resenting the maximum size in bytes of the file that you’re willing to accept. The

MAX_FILE_SIZE field is obeyed at the browser’s discretion, so you should rely on the

php.ini setting, upload_max_filesize, to cap unreasonably large uploads. After

the MAX_FILE_SIZE field has been entered, you are ready to add the upload field

itself. This is simply an INPUT element with a TYPE argument of “file”. You can

give it any name you want. Listing 11.13 brings all this together into an HTML

upload form.

LISTING 11.13 A Simple File Upload Form
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>A simple file upload form</title>
5: </head>
6: <body>
7: <form action=”do_upload.php” enctype=”multipart/form-data” method=”POST”>
8: <input type=”hidden” name=”MAX_FILE_SIZE” value=”1048576” />
9: <p><label for=”fileupload”>File to Upload:</label>
10: <input type=”file” id=”fileupload” name=”fileupload” /></p>
11: <button type=”submit” name=”submit” value=”send”>Upload File</button>
12: </form>
13: </body>
14: </html>

As you can see, file uploads are limited to 1MB (or 1048576 bytes) on line 8, and the

name of the file upload field is fileupload, as shown on line 8. Save this listing in

a text file called fileupload.html and place that file in your web server document

root. Use your web browser to access this form and you should see something like

Figure 11.9.

ptg8126863

208 CHAPTER 11: Working with Forms

This form calls the do_upload.php script, which you create next.

Creating the File Upload Script
If you remember the information regarding the $_FILES superglobal, you have all

the information you need to write a simple file upload script. This script is the back-

end for the form created in Listing 11.14.

LISTING 11.14 A File Upload Script
1: <?php
2: $file_dir = “/path/to/upload/directory”;
3:
4: foreach($_FILES as $file_name => $file_array) {
5: echo “path: “.$file_array[‘tmp_name’].”
\n”;
6: echo “name: “.$file_array[‘name’].”
\n”;
7: echo “type: “.$file_array[‘type’].”
\n”;
8: echo “size: “.$file_array[‘size’].”
\n”;
9:
10: if (is_uploaded_file($file_array[‘tmp_name’])) {
11: move_uploaded_file($file_array[‘tmp_name’],
12: “$file_dir/”.$file_array[‘name’])
13: or die (“Couldn’t move file”);
14: echo “File was moved!”;
15: } else {
16: echo “No file found.”;
17: }
18: }
19: ?>

FIGURE 11.9
The form creat-
ed by Listing
11.13.

ptg8126863

Working with File Uploads 209

In Listing 11.14, you first create the $file_dir variable on line 2 to store path infor-

mation. This path should be one that exists on your system, and the web server user

(for example, httpd, www, nobody) must have write permissions for it.

The path used in line 2 is a Linux/UNIX path. Windows users would use a path
including the drive letter, such as the following:
$file_dir = “C:\Users\You\Desktop”;

Line 4 begins a foreach statement that loops through every element in the $_FILES

array. A foreach loop is used rather than an if statement to make the script capa-

ble of scaling to deal with multiple uploads on the same page. The foreach loop

beginning on line 4 stores the upload file’s name in the $file_name variable and

the file information in the $file_array variable. You can then output the informa-

tion you have about the upload.

Before moving the uploaded file from its temporary position to the location specified

in line 2, first check that the file exists (has been uploaded). The code does so on line

10, using the is_uploaded_file() function. This function accepts a path to an

uploaded file and returns true only if the file in question is a valid upload file. This

function therefore enhances the security of your scripts.

Assuming that all is well, the file is copied from its temporary home to a new direc-

tory on lines 11 to 13. Another function, move_uploaded_file(), is used for this

purpose. This function copies a file from one place to another, first performing the

same security checks as those performed by is_uploaded_file(). The

move_uploaded_file() function requires a path to the source file and a path to the

destination. It returns true if the move is successful and false if the file isn’t a

valid upload file or if the file couldn’t be found.

Beware of the names of uploaded files. Operating systems such as Mac OS and
Windows are pretty relaxed when it comes to file naming, so expect uploaded files
to come complete with spaces, quotation marks, and all manner of other unex-
pected characters. Therefore, it’s a good idea to filter filenames.

Put all the code in Listing 11.14 into a text file called do_upload.php and place that

file in your web server document root. Use your web browser to go back to the form

and then try to upload a file. If successful, you should see something like Figure

11.10 in your browser.

NOTE

CAUTION

ptg8126863

210 CHAPTER 11: Working with Forms

Summary
Things are really getting exciting now. A few items are still missing, of course, but

there’s plenty of book left. Now that you can get information from the user, it would

be nice to be able to do something with it—write it to a file, perhaps? That’s the sub-

ject of an upcoming chapter.

In this chapter, you learned how to work with various superglobals and form input.

You also learned how to send raw headers to the client to redirect a browser. You

learned how to acquire list information from form submissions and how to pass

information from script call to script call using hidden fields. You also learned how

to send your form results in email, and how to upload files through your web brows-

er using a PHP script.

Q&A
Q. When I submit other forms online, sometimes I see all the values I entered

in the URL leading to the next page. Why is that?

A. If you submit a form, such as a Google search, and the next URL you see

includes the values that you entered, such as a search for “cheese” that might

produce a URL like this:

https://www.google.com/#hl=en&output=search&q=cheese

FIGURE 11.10
Sample results
from Listing
11.14.

https://www.google.com/#hl=en&output=search&q=cheese

ptg8126863

Workshop 211

Then what you are seeing is the output of a form that uses a GET action

instead of a POST action. In this case, there are at least two fields—one hid-

den, called “output,” and one that you see, called “q” (for query, presumably).

The value of “cheese” is the value you typed in the INPUT field.

Q. Why would I need to limit the upload size on a form?

A. Without restricting the size of an upload in a form designed to upload files,

you can run into the situation of leading users toward an action they can

never complete, which could freeze up their system and yours. Think about

the situation when you are looking to accept file uploads of digital images,

and a user has created a very large image—let’s say 10 megabytes. If the

intention was to accept only thumbnails of images—something on the order

of 350 kilobytes—simply telling the user to adhere to that limit isn’t enough.

With a combination of MAX_FILE_SIZE in the form and php.ini settings for

upload_max_filesize (among others), you can ensure that a single user’s

action won’t clog up the pipes.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. Which predefined variable do you use to find the name of the script?

2. Which built-in associative array contains all values submitted as part of a

POST request?

3. Which built-in associative array contains all values submitted as part of a file

upload?

4. What function do you use to redirect the browser to a new page?

5. What are the five arguments used by the mail() function?

6. On the client side, how do you limit the size of a file that a user can submit

via a particular upload form?

ptg8126863

212 CHAPTER 11: Working with Forms

Answers
1. The variable $_SERVER[‘PHP_SELF’] holds the name of the script.

2. The $_POST superglobal.

3. The $_FILES superglobal.

4. The header() function, along with a location.

5. The recipient, the subject, the message string, additional headers, and

additional parameters.

6. Use a hidden field called MAX_FILE_SIZE in your form.

Activities
1. Create a calculator script that enables the user to submit two numbers and

choose an operation (addition, multiplication, division, or subtraction) to

perform on them.

2. Use hidden fields with the script you created in activity 1 to store and display

the number of requests that the user submitted.

ptg8126863

CHAPTER 12

Working with Cookies and
User Sessions

In this chapter, you learn the following:
. How to store and retrieve cookie information
. What session variables are and how they work
. How to start or resume a session
. How to store variables in a session
. How to destroy a session
. How to unset session variables

PHP contains numerous functions for managing and keeping track of user information,

including both simple cookies and all-encompassing user sessions. Sessions use techniques

built in to the PHP language, making the act of saving state as easy as referencing a

superglobal variable.

Introducing Cookies
You can use cookies within your PHP scripts to store small bits of information about a

user. A cookie is a small amount of data stored by the user’s browser in compliance with a

request from a server or script. A single host can request that up to 20 cookies be stored by

a user’s browser. Each cookie consists of a name, value, and expiration date, as well as

host and path information. The size of an individual cookie is limited to 4KB.

After a cookie is set, only the originating host can read the data, ensuring that the user’s

privacy is respected. Furthermore, users can configure their browser to notify them upon

receipt of all cookies, or even to refuse all cookie requests. For this reason, cookies should

be used in moderation and should not be relied on as an essential element of an environ-

ment design without first warning users.

ptg8126863

214 CHAPTER 12: Working with Cookies and User Sessions

The Anatomy of a Cookie
A PHP script that sets a cookie might send headers that look something like this:

HTTP/1.1 200 OK
Date: Wed, 18 Jan 2012 10:50:58 GMT
Server: Apache/2.2.21 (Unix) PHP/5.4.0
X-Powered-By: PHP/5.4.0
Set-Cookie: vegetable=artichoke; path=/; domain=yourdomain.com
Connection: close
Content-Type: text/html

As you can see, this Set-Cookie header contains a name/value pair, a path, and a

domain. If set, the expiration field provides the date at which the browser should

“forget” the value of the cookie. If no expiration date is set, the cookie expires when

the user’s session expires—that is, when he closes his browser.

The path and domain fields work together: The path is a directory found on the

domain, below which the cookie should be sent back to the server. If the path is “/”,

which is common, that means the cookie can be read by any files below the docu-

ment root. If the path is “/products/”, the cookie can be read only by files within

the /products directory of the website.

The domain field represents the Internet domain from which cookie-based communi-

cation is allowed. For example, if your domain is www.yourdomain.com and you

use www.yourdomain.com as the domain value for the cookie, the cookie will be

valid only when browsing the www.domain.com website. This could pose a problem

if you send the user to some domain like www2.domain.com or billing.domain.com

within the course of his browsing experience, because the original cookie will no

longer work. Therefore, it is common simply to begin the value of the domain slot in

cookie definitions with a dot, leaving off the host (for example, .domain.com). In

this manner, the cookie is valid for all hosts on the domain. The domain cannot be

different from the domain from which the cookie was sent; otherwise, the cookie

will not function properly, if at all, or the web browser will refuse the cookie in its

entirety.

Accessing Cookies
If your web browser is configured to store cookies, it keeps the cookie-based informa-

tion until the expiration date. If the user points the browser at any page that match-

es the path and domain of the cookie, it resends the cookie to the server. The brows-

er’s headers might look something like this:

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.7 (KHTML, like
Gecko) Chrome/16.0.912.75 Safari/535.7

www.yourdomain.com
www.yourdomain.com
www.domain.com
www2.domain.com

ptg8126863

Setting a Cookie with PHP 215

Host: www.yourdomain.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en,pdf
Accept-Charset: iso-8859-1,*,utf-8
Cookie: vegetable=artichoke

A PHP script then has access to the cookie in the environment variable HTTP_COOKIE

or as part of the $_COOKIE superglobal variable, which you may access three differ-

ent ways:

echo $_SERVER[‘HTTP_COOKIE’]; // will print “vegetable=artichoke”
echo getenv(‘HTTP_COOKIE’); // will print “vegetable=artichoke”
echo $_COOKIE[‘vegetable’]; // will print “artichoke”

Setting a Cookie with PHP
You can set a cookie in a PHP script in two ways. First, you can use the header()

function to set the Set-Cookie header. The header() function requires a string that

is then included in the header section of the server response. Because headers are

sent automatically for you, header() must be called before any output at all is sent

to the browser:

header(“Set-Cookie: vegetable=artichoke; expires=Thu, 19-Jan-12 14:39:58 GMT;
path=/; domain=yourdomain.com”);

Although not difficult, this method of setting a cookie requires you to build a func-

tion to construct the header string. Although formatting the date as in this example

and URL-encoding the name/value pair is not a particularly arduous task, it is a

repetitive one because PHP provides a function that does just that: setcookie().

The setcookie() function does what its name suggests—it outputs a Set-Cookie

header. For this reason, it should be called before any other content is sent to the

browser. The function accepts the cookie name, cookie value, expiration date in

UNIX epoch format, path, domain, and integer that should be set to 1 if the cookie

is to be sent only over a secure connection. All arguments to this function are

optional apart from the first (cookie name) parameter.

Listing 12.1 uses setcookie() to set a cookie.

LISTING 12.1 Setting and Printing a Cookie Value
1: <?php
2: setcookie(“vegetable”, “artichoke”, time()+3600, “/”, “.yourdomain.com”, 0);
3:
4: if (isset($_COOKIE[‘vegetable’])) {
5: echo “<p>Hello again! You have chosen: “.$_COOKIE[‘vegetable’].”.</p>”;
6: } else {

ptg8126863

216 CHAPTER 12: Working with Cookies and User Sessions

LISTING 12.1 Continued
7: echo “<p>Hello, you. This may be your first visit.</p>”;
8: }
9: ?>

Even though the listing sets the cookie (line 2) when the script is run for the first

time, the $_COOKIE[‘vegetable’] variable is not created at this point. Because a

cookie is read only when the browser sends it to the server, you cannot read it until

the user revisits a page within this domain.

The cookie name is set to “vegetable” on line 2, and the cookie value to “arti-

choke”. The time() function gets the current timestamp and adds 3600 to it (3,600

seconds in an hour). This total represents the expiration date. The code defines a

path of “/”, which means that a cookie should be sent for any page within this

server environment. The domain argument is set to “.yourdomain.com” (you

should make the change relevant to your own domain or leave it blank if you are

working on localhost), which means that a cookie will be sent to any server in

that group. Finally, the code passes 0 to setcookie(), signaling that cookies can be

sent in an unsecure environment.

Passing setcookie() an empty string (“”) for string arguments or 0 for integer

fields causes these arguments to be skipped.

With using a dynamically created expiration time in a cookie, as in Listing 12.1,
note the expiration time is created by adding a certain number of seconds to the
current system time of the machine running Apache and PHP. If this system clock
is not accurate, the machine may send the cookie at an expiration time that has
already passed.

You can view your cookies in most modern web browsers. Figure 12.1 shows the

cookie information stored for Listing 12.1. The cookie name, content, and expiration

date appear as expected; the domain name will differ when you run this script on

your own domain.

NOTE

ptg8126863

Session Function Overview 217

For more information on using cookies, and the setcookie() function in particular,

see the PHP Manual entry at http://www.php.net/setcookie.

Deleting a Cookie with PHP
Officially, to delete a cookie, you call setcookie() with the name argument only:

setcookie(“vegetable”);

This approach does not always work well, however, and you should not rely on it.

Instead, to delete a cookie, it is safest to set the cookie with a date that you are sure

has already expired:

setcookie(“vegetable”, “”, time()-60, “/”, “.yourdomain.com”, 0);

Also make sure that you pass setcookie() the same path, domain, and secure

parameters as you did when originally setting the cookie.

Session Function Overview
Session functions provide a unique identifier to a user, which can then be used to

store and acquire information linked to that ID. When a visitor accesses a session-

enabled page, either a new identifier is allocated or the user is reassociated with

one that was already established in a previous visit. Any variables that have been

associated with the session become available to your code through the $_SESSION

superglobal.

FIGURE 12.1
Viewing a
stored cookie in
a web browser.

http://www.php.net/setcookie

ptg8126863

218 CHAPTER 12: Working with Cookies and User Sessions

Session state is usually stored in a temporary file, although you can implement

database storage or other server-side storage methods using a function called

session_set_save_handler(). The use of session_set_save_handler() and

a discussion about other advanced session functionality are beyond the scope

of this book, but you can find more information in the PHP Manual section for

sessions for all items not discussed here.

Starting a Session
To work with a session, you need to explicitly start or resume that session unless you

have changed your php.ini configuration file. By default, sessions do not start

automatically. If you want to start a session this way, you must find the following

line in your php.ini file and change the value from 0 to 1 (and restart the web

server):

session.auto_start = 0

By changing the value of session.auto_start to 1, you ensure that a session initi-

ates for every PHP document. If you don’t change this setting, you need to call the

session_start() function in each script.

After a session is started, you instantly have access to the user’s session ID via the

session_id() function. The session_id() function enables you to either set or

retrieve a session ID. Listing 12.2 starts a session and prints the session ID to the

browser.

LISTING 12.2 Starting or Resuming a Session
1: <?php
2: session_start();
3: echo “<p>Your session ID is “.session_id().”.</p>”;
4: ?>

When this script (let’s call it session_checkid.php) is run for the first time from a

browser, a session ID is generated by the session_start() function call on line 2. If

the script is later reloaded or revisited, the same session ID is allocated to the user.

This action assumes that the user has cookies enabled. For example, when I run this

script the first time, the output is as follows:

Your session ID is 8jou17in51d08e5onsjkbles16.

When I reload the page, the output is still

Your session ID is 8jou17in51d08e5onsjkbles16.

because I have cookies enabled and the session ID still exists.

ptg8126863

Working with Session Variables 219

Because start_session() attempts to set a cookie when initiating a session for the

first time, it is imperative that you call this function before you output anything else

at all to the browser. If you do not follow this rule, your session will not be set, and

you will likely see warnings on your page.

Sessions remain current as long as the web browser is active. When the user restarts

the browser, the cookie is no longer stored. You can change this behavior by altering

the session.cookie_lifetime setting in your php.ini file. The default value is 0,

but you can set an expiry period in seconds.

Working with Session Variables
Accessing a unique session identifier in each of your PHP documents is only the start

of session functionality. When a session is started, you can store any number of vari-

ables in the $_SESSION superglobal and then access them on any session-enabled

page.

Listing 12.3 adds two variables into the $_SESSION superglobal: product1 and

product2 (lines 3 and 4).

LISTING 12.3 Storing Variables in a Session
1: <?php
2: session_start();
3: $_SESSION[‘product1’] = “Sonic Screwdriver”;
4: $_SESSION[‘product2’] = “HAL 2000”;
5: echo “The products have been registered.”;
6: ?>

The magic in Listing 12.3 will not become apparent until the user moves to a new

page. Listing 12.4 creates a separate PHP script that accesses the variables stored in

the $_SESSION superglobal.

LISTING 12.4 Accessing Stored Session Variables
1: <?php
2: session_start();
3: ?>
4: <p>Your chosen products are:</p>
5:
6: <?php echo $_SESSION[‘product1’]; ?>
7: <?php echo $_SESSION[‘product2’]; ?>
8:

Figure 12.2 shows the output from Listing 12.4. As you can see, you have access to

the $_SESSION[‘product1’] and $_SESSION[‘product2’] variables in an entirely

new page.

ptg8126863

220 CHAPTER 12: Working with Cookies and User Sessions

Although not a terribly interesting or useful example, the script does show how to

access stored session variables. Behind the scenes, PHP writes information to a tem-

porary file. You can find out where this file is being written on your system by using

the session_save_path() function. This function optionally accepts a path to a

directory and then writes all session files to it. If you pass it no arguments, it returns

a string representing the current directory to which it saves session files. On my

system, the following prints /tmp:

echo session_save_path();

A glance at my /tmp directory reveals a number of files with names like the

following:

sess_fa963e3e49186764b0218e82d050de7b
sess_76cae8ac1231b11afa2c69935c11dd95
sess_bb50771a769c605ab77424d59c784ea0

Opening the file that matches the session ID I was allocated when I first ran Listing

12.2, I can see how the registered variables have been stored:

product1|s:17:”Sonic Screwdriver”;product2|s:8:”HAL 2000”;

When a value is placed in the $_SESSION superglobal, PHP writes the variable name

and value to a file. This information can be read and the variables resurrected

later—as you have already seen. After you add a variable to the $_SESSION super-

global, you can still change its value at any time during the execution of your

script, but the altered value is not reflected in the global setting until you reassign

the variable to the $_SESSION superglobal.

FIGURE 12.2
Accessing
stored session
variables.

ptg8126863

Working with Session Variables 221

The example in Listing 12.3 demonstrates the process of adding variables to the

$_SESSION superglobal. This example is not very flexible, however. Ideally, you

should be able to register a varying number of values. You might want to let users

pick products from a list, for example. In this case, you can use the serialize()

function to store an array in your session.

Listing 12.5 creates a form that allows a user to choose multiple products. You use

the session variables to create a rudimentary shopping cart.

LISTING 12.5 Adding an Array Variable to a Session Variable
1: <?php
2: session_start();
3: ?>
4: <!DOCTYPE html>
5: <html>
6: <head>
7: <title>Storing an array with a session</title>
8: </head>
9: <body>
10: <h1>Product Choice Page</h1>
11: <?php
12: if (isset($_POST[‘form_products’])) {
13: if (!empty($_SESSION[‘products’])) {
14: $products = array_unique(
15: array_merge(unserialize($_SESSION[‘products’]),
16: $_POST[‘form_products’]));
17: $_SESSION[‘products’] = serialize($products);
18: } else {
19: $_SESSION[‘products’] = serialize($_POST[‘form_products’]);
20: }
21: echo “<p>Your products have been registered!</p>”;
22: }
23: ?>
24: <form method=”post” action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”>
25: <p><label for=”form_products”>Select some products:</label>

26: <select id=”form_products” name=”form_products[]” multiple=”multiple”

size=”3”>
27: <option value=”Sonic Screwdriver”>Sonic Screwdriver</option>
28: <option value=”Hal 2000”>Hal 2000</option>
29: <option value=”Tardis”>Tardis</option>
30: <option value=”ORAC”>ORAC</option>
31: <option value=”Transporter bracelet”>Transporter bracelet</option>
32: </select></p>
33: <button type=”submit” name=”submit” value=”choose”>Submit Form</button>
34: </form>
35: <p>go to content page</p>
36: </body>
37: </html>

The listing starts or resumes a session by calling session_start() on line 2. This

call gives access to any previously set session variables. An HTML form begins on

ptg8126863

222 CHAPTER 12: Working with Cookies and User Sessions

line 24 and, on line 26, creates a SELECT element named form_products[], which

contains OPTION elements for a number of products.

Remember that HTML form elements that allow multiple selections, such as check
boxes and multiple select lists, should have square brackets appended to the
value of their NAME attributes. This makes the user’s choices available to PHP in
an array.

The block of PHP code beginning on line 11 tests for the presence of the

$_POST[‘form_products’] array (line 12). If the variable is present, you can

assume that the form has been submitted and information has already been stored

in the $_SESSION superglobal.

Line 12 tests for an array called $_SESSION[‘products’]. If the array exists, it was

populated on a previous visit to this script, so the code merges it with the

$_POST[‘form_products’] array, extracts the unique elements, and assigns the

result back to the $products array (lines 14–16). Then the $products array is added

to the $_SESSION superglobal on line 17.

Line 35 contains a link to another script, which will demonstrate access to the prod-

ucts the user has chosen. This new script is created in Listing 12.6, but in the mean-

time you can save the code in Listing 12.5 as arraysession.php.

Moving on to Listing 12.6, you see how to access the items stored in the session cre-

ated in arraysession.php.

LISTING 12.6 Accessing Session Variables
1: <?php
2: session_start();
3: ?>
4: <!DOCTYPE html>
5: <html>
6: <head>
7: <title>Accessing session variables</title>
8: </head>
9: <body>
10: <h1>Content Page</h1>
11: <?php
12: if (isset($_SESSION[‘products’])) {
13: echo “Your cart:”;
14: foreach (unserialize($_SESSION[‘products]) as $p) {
15: echo “”.$p.”;
16: }
17: echo “”;
18: }
19: ?>
20: <p>return to product choice page</p>

NOTE

ptg8126863

Destroying Sessions and Unsetting Variables 223

21: </body>
22: </html>

Once again, session_start() resumes the session on line 2. Line 12 tests for the

presence of the $_SESSION[‘products’] variable. If it exists, the variable is unseri-

alized and looped through on lines 14–16, printing each of the user’s chosen items

to the browser. Figure 12.3 shows an example of the output.

FIGURE 12.3
Accessing an
array of session
variables.

For a real shopping cart program, of course, you would keep product details in a

database and test user input, rather than blindly store and present it, but Listings

12.5 and 12.6 demonstrate the ease with which you can use session functions to

access array variables set in other pages.

Destroying Sessions and Unsetting
Variables
You can use session_destroy() to end a session, erasing all session variables. The

session_destroy() function requires no arguments. You should have an estab-

lished session for this function to work as expected. The following code fragment

resumes a session and abruptly destroys it:

session_start();
session_destroy();

When you move on to other pages that work with a session, the session you have

destroyed will not be available to them, forcing them to initiate new sessions of their

own. Any registered variables will be lost.

ptg8126863

224 CHAPTER 12: Working with Cookies and User Sessions

The session_destroy() function does not instantly destroy registered variables,

however. They remain accessible to the script in which session_destroy() is called

(until it is reloaded). The following code fragment resumes or initiates a session and

registers a variable called test, set to 5. Destroying the session does not destroy the

registered variable:

session_start();
$_SESSION[‘test’] = 5;
session_destroy();
echo $_SESSION[‘test’]; // prints 5

To remove all registered variables from a session, you simply unset the variable:

session_start();
$_SESSION[‘test’] = 5;
session_destroy();
unset($_SESSION[‘test’]);
echo $_SESSION[‘test’]; // prints nothing (or a notice about an undefined index)

Using Sessions in an Environment with
Registered Users
The examples you’ve seen so far have gotten your feet wet with sessions, but per-

haps additional explanation is warranted for using sessions “in the wild,” so to

speak. The following two sections outline some examples of common session usage.

In later chapters of this book, sessions are used in the sample applications you

build.

Working with Registered Users
Suppose that you’ve created an online community, or a portal, or some other type of

application that users can “join.” The process usually involves a registration form,

where the user creates a username and password and completes an identification

profile. From that point forward, each time a registered user logs in to the system,

you can grab the user’s identification information and store it in the user’s session.

The items you decide to store in the user’s session should be those items you can

imagine using quite a bit—and that would be inefficient to continually extract from

the database. For example, suppose that you have created a portal in which users

are assigned a certain level, such as administrator, registered user, anonymous

guest, and so forth. Within your display modules, you would always want to check

ptg8126863

Summary 225

to verify that the user accessing the module has the proper permissions to do so.

Thus, “user level” is an example of a value stored in the user’s session, so that the

authentication script used in the display of the requested module only has to check

a session variable—there is no need to connect to, select, and query the database.

Working with User Preferences
If you are feeling adventurous in the design phase of a user-based application, you

might build a system in which registered users can set specific preferences that affect

the way they view your site. For example, you might allow your users to select from

a predetermined color scheme, font type and size, and so forth. Or, you might allow

users to turn “off” (or “on”) the visibility of certain content groupings.

You can store each of those functional elements in a session. When the user logs in,

the application loads all relevant values into the user’s session and reacts according-

ly for each subsequently requested page. Should the user decide to change her pref-

erences, she could do so while logged in—you could even prepopulate a “prefer-

ences” form based on the items stored in the session instead of going back to the

database to retrieve them. If the user changes any preferences while she is logged in,

simply replace the value stored in the $_SESSION superglobal with the new selec-

tion—no need to force the user to log out and then log back in again.

Summary
In this chapter, you looked at different ways of saving state in a stateless protocol,

including setting a cookie and starting a session. All methods of saving state use

some manner of cookies or query strings, sometimes combined with the use of files

or databases. These approaches all have their benefits and problems.

You learned that a cookie alone is not intrinsically reliable and cannot store much

information. However, it can persist over a long period. Approaches that write infor-

mation to a file or database involve some cost to speed and might become a prob-

lem on a popular site; this is a matter to explore with your systems administrators.

About sessions themselves, you learned how to initiate or resume a session with

session_start(). When in a session, you learned how to add variables to the

$_SESSION superglobal, check that they exist, unset them if you want, and destroy

the entire session.

ptg8126863

226 CHAPTER 12: Working with Cookies and User Sessions

Q&A
Q. What will happen to my application if users disable cookies?

A. Simply put, if your application relies heavily on cookies and users have cook-

ies disabled, your application won’t work. However, you can do your part to

warn users that cookies are coming by announcing your intention to use cook-

ies, and also by checking that cookies are enabled before doing anything

“important” with your application. The idea being, of course, that even if

users ignore your note that cookies must be turned on in order to use your

application, specifically disallowing users to perform an action if your cookie

test fails will get their attention!

Q. Should I be aware of any pitfalls with session functions?

A. The session functions are generally reliable. However, remember that cookies

cannot be read across multiple domains. So, if your project uses more than

one domain name on the same server (perhaps as part of an e-commerce

environment), you might need to consider disabling cookies for sessions by set-

ting the

session.use_cookies

directive to 0 in the php.ini file.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. Which function would you use to start or resume a session within a PHP

script?

2. Which function can return the current session’s ID?

3. How can you end a session and erase all traces of it for future visits?

ptg8126863

Workshop 227

Answers
1. You can start a session by using the session_start() function within your

script.

2. You can access the session’s ID by using the session_id() function.

3. The session_destroy() function removes all traces of a session for future

requests.

Activities
. Create a script that uses session functions to track which pages in your envi-

ronment the user has visited.

. Create a new script that will list for the user all the pages she has visited with-

in your environment, and when.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 13

Working with Files and
Directories

In this chapter, you learn the following:
. How to include other files in your documents
. How to test for the existence of files and directories
. How to open a file before working with it
. How to read data from files
. How to write or append to a file
. How to lock a file
. How to work with directories
. How to pipe data to and from external applications
. How to send shell commands and display results in the browser

Testing for the existence of files, reading from them, and writing to them are important

features of any rich programming language. PHP is no exception, in that it provides

functions that make these processes straightforward. In addition, because PHP, Apache,

and MySQL are not the only applications on your machine, you might sometimes need

to access those other applications from within your PHP code, something you are shown

how to do in this chapter.

Including Files
The include statement enables you to incorporate other files (usually other PHP scripts)

into your PHP documents. PHP code in these included files will then be executed as if it

were part of the main document. This is useful for including code libraries within multiple

pages.

ptg8126863

230 CHAPTER 13: Working with Files and Directories

Suppose, for instance, you create a really useful function. Without the include

statement, your only option is to paste your new function into every document that

needs to use it. Of course, if you discover a bug or want to add a feature, you have

to find every page you pasted the function into and make the change—over and

over again. The include statement saves you from such a chore. You can add your

newly created function to a single document, such as myinclude.php and, at run-

time, read it into any page that needs it.

The include statement requires a single argument: a relative path to the file to

include. Listing 13.1 creates a simple PHP script that uses include to incorporate

and output the contents of a file.

LISTING 13.1 Using include()
1: <?php
2: include ‘myinclude.php’;
3: ?>

The include statement in Listing 13.1 incorporates the document myinclude.php,

the contents of which you can see in Listing 13.2.

LISTING 13.2 The File Included in Listing 13.1
1: I have been included!!

Put the contents of Listing 13.1 in a file named test_include.php, and the con-

tents of Listing 13.2 in a file named myinclude.php. Place both files in your web

server document root. When you access test_include.php through your web

browser, the output on the screen is as follows:

I have been included!!

This might seem strange to you, given that you’re including plaintext within a block

of PHP code. In fact, the contents of an included file display as text by default. If you

want to execute PHP code in an included file, you must enclose it in PHP start and

end tags. Listing 13.3 amends the contents of myinclude.php so that code is execut-

ed in the included file.

LISTING 13.3 An Include File Containing PHP Code
1: <?php
2: echo “I have been included!!
”;
3: echo “But now I can add up... 4 + 4 = “.(4 + 4);
4: ?>

ptg8126863

Including Files 231

Put the contents of Listing 13.3 in a file named myinclude2.php and change

the value of the included file in test_include.php to point to this new file.

Place both these files in your web server document root. Now, when you access

test_include.php through your web browser, the output on the screen is as

follows:

I have been included!!
But now I can add up... 4 + 4 = 8

The only way you would see the number 8 is if the code for adding 4 and 4 were

executed as PHP, and it was.

Returning a Value from an Included Document
Included files in PHP can return a value in the same way that functions do. As in a

function, using the return statement ends the execution of code within the included

file. In addition, no further HTML is included. Listings 13.4 and 13.5 include a file

and assign its return value to a variable.

LISTING 13.4 Using include to Execute PHP and Assign the Return
Value
1: <?php
2: $addResult = include ‘returnvalue.php’;
3: echo “The include file returned “.$addResult;
4: ?>

LISTING 13.5 An Include File That Returns a Value
1: <?php
2: $retval = (4 + 4);
3: return $retval;
4: ?>
5: This HTML will never be displayed because it comes after a return statement!

Put the contents of Listing 13.4 in a file named test_returnvalue.php; put the

contents of Listing 13.5 in a file named returnvalue.php. Place both of these files

in your web server document root. When you access test_returnvalue.php

through your web browser, the output is this:

The include file returned 8.

Just as the string suggests on line 5 of Listing 13.5, anything outside the PHP block

will not be displayed if there is a PHP block present in the included file.

ptg8126863

232 CHAPTER 13: Working with Files and Directories

Using include Within Control Structures
If you use an include statement within a conditional statement, it is treated like

any other code—the file is included only if the condition is met. For example, the

include statement in the following fragment will never be called:

$test = “1”;
if ($test == “2”) {

include ‘file.txt’; // won’t be included
}

If you use an include statement within a loop, the file will literally be included

each time the loop iterates. Listing 13.6 illustrates this concept by using an include

statement in a for loop. The include statement references a different file for each

iteration.

LISTING 13.6 Using include Within a Loop
1: <?php
2: for ($x = 1; $x<=3; $x++) {
3: $incfile = “incfile”.$x.”.txt”;
4: echo “Attempting to include “.$incfile.”
”;
5: include $incfile;
6: echo “<hr/>”;
7: }
8: ?>

Save the contents of Listing 13.6 in a file named loopy_include.php and place it in

the document root of the web server, along with three different files: incfile1.txt,

incfile2.txt, and incfile3.txt. If we assume that each of these files simply con-

tains a confirmation of its own name, the output should look like Figure 13.1.

FIGURE 13.1
Output of
loopy_
include.php.

ptg8126863

Including Files 233

Although this code worked fine, using the include function in this manner is some-

times not such a great idea, as discussed in the next subsection.

Using include_once
One problem caused by using several different libraries of code within your code is

the danger of calling include twice on the same file. This sometimes happens in

larger projects when different library files call include on a common file. Including

the same file twice often results in repeated declarations of functions and classes,

thereby causing the PHP engine great unhappiness.

This situation is remedied by using the include_once statement in place of the

include statement. The include_once statement requires the path to an include

file and otherwise behaves the same way as the include statement the first time it

is called. However, if include_once is called again for the same file during script

execution, the file will not be included again. This makes include_once an excel-

lent tool for the creation of reusable code libraries!

The include_path Directive
Using include and include_once to access your code libraries can increase the

flexibility and reusability of your projects. However, there are still headaches

to overcome. Portability, in particular, can suffer if you hard-code the paths to

included files. Imagine that you create a lib directory and reference it throughout

your project:

include_once ‘/home/user/bob/htdocs/project4/lib/mylib.inc.php’;

When you move your project to a new server, you might find that you have to

change a hundred or more include paths, if this is hard-coded in a hundred or

more files. You can escape this fate by setting the include_path directive in your

php.ini file:

include_path .:/home/user/bob/htdocs/project4/lib/

The include_path value can include as many directories as you want, separated by

colons (semicolons in Windows). The order of the items in the include_path direc-

tive determines the order in which the directories are searched for the named file.

The first dot (.) before the first colon indicates “current directory,” and should be

present. Now any path used in include or include_once can be relative to the

value of include_path:

include_once ‘mylib.inc.php’;

When you move your project, you need to change only the include_path directive.

ptg8126863

234 CHAPTER 13: Working with Files and Directories

PHP also has a require statement, which performs a similar function to include,
and a require_once statement that works similarly to include_once.

Anything pulled into your code by require is executed regardless of a script’s
flow, and therefore shouldn’t be used as part of conditional or loop structures.

Also, be aware that a file included as the result of a require statement cannot
return a value.

Validating Files
Before you work with a file or directory within your code, it is often a good idea to

learn more about it, and determining whether it actually exists is a pretty good

start! PHP provides many functions to help you to discover information about files

on your system. This section briefly covers some of the most useful functions.

Checking for Existence with file_exists()
You can test for the existence of a file with the file_exists() function. This func-

tion requires a string representation of an absolute or relative path to a file, which

might or might not be present. If the file is found, the file_exists() function

returns true; otherwise, it returns false:

if (file_exists(‘test.txt’)) {
echo “The file exists!”;

}

This is all well and good, but what if you’re unsure whether something is a file or a

directory, and you really need to know? Read on.

A File or a Directory?
You can confirm that the entity you’re testing is a file, as opposed to a directory,

using the is_file() function. The is_file() function requires the file path and

returns a Boolean value:

if (is_file(‘test.txt’)) {
echo “test.txt is a file!”;

}

Conversely, you might want to check that the entity you’re testing is a directory. You

can do this with the is_dir() function. is_dir() requires the path to the directory

and returns a Boolean value:

if (is_dir(‘/tmp’)) {
echo “/tmp is a directory”;

}

NOTE

ptg8126863

Validating Files 235

After you know a file or directory exists, you might need to test its permissions. You

learn about this in the next section.

Checking the Status of a File
When you know that a particular entity exists, and it’s what you expect it to be

(either a directory or a file), you need to know what you can do with it. Typically,

you might want to read, write to, or execute a file. PHP can help you determine

whether you can perform these operations.

The is_readable() function tells you whether you can read a file. On UNIX sys-

tems, you might be able to see a file but still be barred from reading its contents

because of its user permissions. The is_readable() function accepts the file path as

a string and returns a Boolean value:

if (is_readable(‘test.txt’)) {
echo “test.txt is readable”;

}

The is_writable() function tells you whether you have the proper permission to

write to a file. As with is_readable(), the is_writable() function requires the file

path and returns a Boolean value.

if (is_writable(‘test.txt’)) {
echo “test.txt is writable”;

}

The is_executable() function tells you whether you can execute the given file,

relying on either the file’s permissions or its extension, depending on your platform.

The function accepts the file path and returns a Boolean value.

if (is_executable(‘test.txt’)) {
echo “test.txt is executable”;

}

Permission-related information isn’t all you might need to know about a file. The

next section shows how to determine the file size.

Determining File Size with filesize()
Given the path to a file, the filesize() function attempts to determine and return

its size in bytes. It returns false if it encounters problems:

echo “The size of test.txt is “.filesize(‘test.txt’);

Finding the specific file size is important in situations where you want to attach a

file to an email or stream a file to the user—you need to know the size so as to prop-

erly create the headers (in the case of the email) or know when to stop sending bytes

ptg8126863

236 CHAPTER 13: Working with Files and Directories

to the user (in the case of the stream). For more general purposes, you might want

to get the file size so that you can display it to the user before she attempts to down-

load some monstrous application or high-resolution photograph from your site.

Getting Date Information About a File
Sometimes you need to know when a file was last written to or accessed. PHP pro-

vides several functions that can provide this information.

You can find out the last-accessed time of a file using the fileatime() function.

This function requires the file path and returns the date that the file was last

accessed. To access a file means either to read or write to it. Dates are returned from

all the date information functions in timestamp—that is, the number of seconds

since January 1, 1970. The examples in this book use the date() function to trans-

late this value into human-readable form:

$atime = fileatime(“test.txt”);
echo “test.txt was last accessed on “.date(“D d M Y g:i A”, $atime);
// Sample output: test.txt was last changed on Sat 26 Apr 2008 12:52 PM

You can discover the modification date of a file with the function filemtime(),

which requires the file path and returns the date in UNIX epoch format. To modify a

file means to change its contents in some way:

$mtime = filemtime(“test.txt”);
echo “test.txt was last modified on “.date(“D d M Y g:i A”, $mtime);
// Sample output: test.txt was last modified on Wed 18 Jan 2012 7:11 PM

PHP also enables you to test the change time of a document with the filectime()

function. On UNIX systems, the change time is set when a file’s contents are modi-

fied or when changes are made to its permissions or ownership. On other platforms,

the filectime() returns the creation date:

mtime = filemtime(“test.txt”);
echo “test.txt was last modified on “.date(“D d M Y g:i A”, $mtime);
// Sample output: test.txt was last modified on Wed 18 Jan 2012 7:11 PM

Creating a Function That Performs Multiple
File Tests
Listing 13.7 creates a function that brings together the file-related functions just dis-

cussed into one script.

ptg8126863

Validating Files 237

LISTING 13.7 A Function to Output the Results of Multiple File Tests
1: <?php
2: function outputFileTestInfo($f) {
3: if (!file_exists($f)) {
4: echo “<p>$f does not exist</p>”;
5: return;
6: }
7: echo “<p>$f is “.(is_file($f) ? “” : “not “).”a file</p>”;
8: echo “<p>$f is “.(is_dir($f) ? “” : “not “).”a directory</p>”;
9: echo “<p>$f is “.(is_readable($f) ? “”: “not “).”readable</p>”;
10: echo “<p>$f is “.(is_writable($f) ? “”: “not “).”writable</p>”;
11: echo “<p>$f is “.(is_executable($f) ? “”: “not “).”executable</p>”;
12: echo “<p>$f is “.(filesize($f)).” bytes</p>”;
13: echo “<p>$f was accessed on “.date(“D d M Y g:i A”,fileatime($f)).”</p>”;
14: echo “<p>$f was modified on “.date(“D d M Y g:i A”,filemtime($f)).”</p>”;
15: echo “<p>$f was changed on “.date(“D d M Y g:i A”,filectime($f)).”</p>”;
16: }
17: $file = “test.txt”;
18: outputFileTestInfo($file);
19: ?>

If you save this code to the document root of your web server as filetests.php and

run through your web browser, the output would look something like Figure 13.2

(provided you have a file named test.txt also in the document root).

FIGURE 13.2
Output of
filetests.php.

Notice that the ternary operator is used as a compact way of working with some of

these tests. Let’s look at one such test, found in line 7, in more detail:

echo “<p>$f is “.(is_file($f) ? “” : “not “).”a file</p>”;

ptg8126863

238 CHAPTER 13: Working with Files and Directories

The is_file() function is used as the left-side expression of the ternary operator. If

it returns true, an empty string is returned. Otherwise, the string “not “ is

returned. The return value of the ternary expression is added to the string to be

printed with concatenation operators. This statement could be made clearer, but less

compact, as follows:

$is_it = is_file($f) ? “” : “not “;
echo “<p>”.$f.” is “.$is_it.” a file</p>”;

You could, of course, be even clearer with an if statement, but imagine how large

the function would become if you used the following:

if (is_file($f)) {
echo “<p>$f is a file</p>”;

} else {
echo “<p>$f is not a file</p>”;

}

Because the result of these three approaches is the same, the approach you take

becomes a matter of preference.

Creating and Deleting Files
If a file does not yet exist, you can create it with the touch() function. Given a

string representing a file path, touch() attempts to create an empty file of that

name. If the file already exists, its contents is not disturbed, but the modification

date is updated to reflect the time at which the function executed:

touch(‘myfile.txt’);

You can remove an existing file with the unlink() function. As did the touch()

function, unlink() accepts a file path:

unlink(‘myfile.txt’);

All functions that create, delete, read, write, and modify files on UNIX systems

require the correct file or directory permissions to be set.

Opening a File for Writing, Reading, or
Appending
Before you can work with a file, you must first open it for reading or writing, or for

performing both tasks. PHP provides the fopen() function for doing so, and this

ptg8126863

Reading from Files 239

function requires a string that contains the file path, followed by a string that con-

tains the mode in which the file is to be opened. The most common modes are read

(r), write (w), and append (a).

The fopen() function returns a file resource you use later to work with the open file.

To open a file for reading, you use the following:

$fp = fopen(“test.txt”, “r”);

You use the following to open a file for writing:

$fp = fopen(“test.txt”, “w”);

To open a file for appending (that is, to add data to the end of a file), you use this:

$fp = fopen(“test.txt”, “a”);

The fopen() function returns false if the file cannot be opened for any reason.

Therefore, it’s a good idea to test the function’s return value before proceeding to

work with it. You can do so with an if statement:

if ($fp = fopen(“test.txt”, “w”)) {
// do something with the $fp resource

}

Or, you can use a logical operator to end execution if an essential file can’t be

opened:

($fp = fopen(“test.txt”, “w”)) or die(“Couldn’t open file, sorry”);

If the fopen() function returns true, the rest of the expression is not parsed, and

the die() function (which writes a message to the browser and ends the script) is

never reached. Otherwise, the right side of the or operator is parsed, and the die()

function is called.

Assuming that all is well and you go on to work with your open file, you should

remember to close it when you finish. You can do so by calling fclose(), which

requires the file resource returned from a successful fopen() call as its argument:

fclose($fp);

The resource that became available ($fp) is now unavailable to you.

Reading from Files
PHP provides a number of functions for reading data from files. These functions

enable you to read by the byte, by the whole line, and even by the single character.

ptg8126863

240 CHAPTER 13: Working with Files and Directories

Reading Lines from a File with fgets() and feof()
When you open a file for reading, you might want to access it line by line. To read a

line from an open file, you can use the fgets() function, which requires the file

resource returned from fopen() as its argument. You must also pass fgets() an

integer as a second argument, which specifies the number of bytes that the function

should read if it doesn’t first encounter a line end or the end of the file. The fgets()

function reads the file until it reaches a newline character (“\n”), the number of

bytes specified in the length argument, or the end of the file—whichever comes first:

$line = fgets($fp, 1024); // where $fp is the file resource returned by fopen()

Although you can read lines with fgets(), you need some way to tell when you

reach the end of the file. The feof() function does this by returning true when the

end of the file has been reached and false otherwise. The feof() function requires

a file resource as its argument:

feof($fp); // where $fp is the file resource returned by fopen()

You now have enough information to read a file line by line, as shown in

Listing 13.8.

LISTING 13.8 Opening and Reading a File Line by Line
1: <?php
2: $filename = “test.txt”;
3: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
4: while (!feof($fp)) {
5: $line = fgets($fp, 1024);
6: echo $line.”
”;
7: }
8: ?>

If this code were saved to the document root of your web server as readlines.php

and run through your web browser, the output would look something like Figure

13.3 (although the contents of your text file might differ).

ptg8126863

Reading from Files 241

The code calls fopen() on line 3, using the name of the file that you want to read

as its argument. The or die() construct is used to ensure that script execution ends

if the file cannot be read. This usually occurs if the file does not exist or if the file’s

permissions do not allow read access to the file.

The actual reading of the file contents takes place in the while statement on line 4.

The while statement’s test expression calls feof() for each iteration, ending the

loop when it returns true. In other words, the loop continues until it reaches the

end of the file. Within the code block, fgets() on line 5 extracts a line (or 1024

bytes, whichever comes first) from the file. The result is assigned to $line and print-

ed to the browser on line 6, appending a
 tag for the sake of readability.

Reading Arbitrary Amounts of Data from a File
with fread()
Rather than reading text by the line, you can choose to read a file in arbitrarily

defined chunks. The fread() function accepts a file resource as an argument, as

well as the number of bytes you want to read. The fread() function returns the

amount of data you requested, unless the end of the file is reached first:

$chunk = fread($fp, 16);

Listing 13.9 amends the previous example so that it reads data in chunks of 8 bytes

rather than by the line.

FIGURE 13.3
Output of
readlines.php.

ptg8126863

242 CHAPTER 13: Working with Files and Directories

LISTING 13.9 Reading a File with fread()
1: <?php
2: $filename = “test.txt”;
3: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
4: while (!feof($fp)) {
5: $chunk = fread($fp, 8);
6: echo $chunk.”
”;
7: }
8: ?>

If this code were saved to the document root of your web server as readlines2,php

and run through your web browser, the output would look something like Figure 13.4.

FIGURE 13.4
Output of
readlines2.php.

Although the fread() function enables you to define the amount of data acquired

from a file, it doesn’t let you decide the position from which the acquisition begins.

You can set this manually with the fseek() function.

The fseek() function lets you to change your current position within a file. It

requires a file resource and an integer that represents the offset from the start of the

file (in bytes) to which you want to jump:

fseek($fp, 64);

Listing 13.10 uses fseek() and fread() to output the second half of a file to the

browser.

ptg8126863

Reading from Files 243

LISTING 13.10 Moving Around a File with fseek()
1: <?php
2: $filename = “test.txt”;
3: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
4: $fsize = filesize($filename);
5: $halfway = (int)($fsize / 2);
6: echo “Halfway point: “.$halfway.”
\n”;
7: fseek($fp, $halfway);
8: $chunk = fread($fp, ($fsize - $halfway));
9: echo $chunk;
10: ?>

If this code were saved to the document root of your web server as readseek.php

and run through your web browser, the output would look something like

Figure 13.5.

FIGURE 13.5
Output of
readseek.php.

The code calculates the halfway point of our file on line 5, by dividing the return

value of filesize() by 2. It uses this as the second argument to fseek() on line 7,

jumping to the halfway point of the text file. Finally, on line 8, fread() is called to

extract the second half of the file and then the result is printed to the browser.

Reading Characters from a File with fgetc()
The fgetc() function is similar to fgets() except that it returns only a single char-

acter from a file every time it is called. Because a character is always 1 byte in size,

fgetc() doesn’t require a length argument. You must simply pass it a file resource:

$char = fgetc($fp);

ptg8126863

244 CHAPTER 13: Working with Files and Directories

Listing 13.11 creates a loop that reads the file test.txt one character at a time,

outputting each character to the browser on its own line.

LISTING 13.11 Moving Around a File with fgetc()
1: <?php
2: $filename = “test.txt”;
3: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
4: while (!feof($fp)) {
5: $char = fgetc($fp);
6: echo $char.”
”;
7: }
8: ?>

If this code were saved to the document root of your web server as readchars.php

and run through your web browser, the output would look something like

Figure 13.6.

FIGURE 13.6
Output of
readchars.php.

Reading File Contents with file_get_contents()
Now that you get the point of creating a file resource with fopen() and performing

one or more actions on that resource, you can dispense with those pleasantries and

get right to the point by using file_get_contents() to read an entire file into a

string. For example, the following single line of code reads the contents of a file

called test.txt into a variable called $contents:

$contents = file_get_contents(“test.txt”);

ptg8126863

Writing or Appending to a File 245

This function affords you some other possibilities as well; the following shows allow-

able options when calling file_get_contents():

file_get_contents ($filename [$use_include_path [, $context [, $offset [,
$maxlen]]]]);

These additional options are described as such:

. use_include_path—a Boolean value that indicates whether or not the func-

tion should search the entire include_path for the filename.

. context—a context resource created by stream_context_create(); use NULL

if not needed.

. offset—the point at which reading should start, such as 5 for the fifth char-

acter in the file. Note that while you can use file_get_contents() with

non-local files (such as URLs), offset cannot be used in those situations.

. maxlen—the maximum length of data to read, in bytes. The default is to read

all of the data.

If the fine-grained controls of the previous functions are not necessary in your

scripts, then file_get_contents() will serve many of your basic file reading pur-

poses quite well.

Writing or Appending to a File
The processes for writing to and appending to a file are the same—the difference lies

in the mode with which you call the fopen() function. When you write to a file,

you use the mode argument “w” when you call fopen():

$fp = fopen(“test.txt”, “w”);

All subsequent writing occurs from the start of the file. If the file doesn’t already

exist, it is created. If the file already exists, any prior content is destroyed and

replaced by the data you write.

When you append to a file, you use the mode argument “a” in your fopen() call:

$fp = fopen(“test.txt”, “a”);

Any subsequent writes to your file are added to the end of your existing content, but

if you attempt to append content to a nonexistent file, the file is created first.

ptg8126863

246 CHAPTER 13: Working with Files and Directories

Writing to a File with fwrite() or fputs()
The fwrite() function accepts a file resource and a string, and then writes the

string to the file. The fputs() function works in exactly the same way:

fwrite($fp, “hello world”);
fputs($fp, “hello world”);

Writing to files is as straightforward as that. Listing 13.12 uses fwrite() to print to

a file. It then appends an additional string to the same file using fputs().

LISTING 13.12 Writing and Appending to a File
1: <?php
2: $filename = “test.txt”;
3: echo “<p>Writing to “.$filename.” ... </p>”;
4: $fp = fopen($filename, “w”) or die(“Couldn’t open $filename”);
5: fwrite($fp, “Hello world\n”);
6: fclose($fp);
7: echo “<p>Appending to “.$filename.” ...</p>”;
8: $fp = fopen($filename, “a”) or die(“Couldn’t open $filename”);
9: fputs($fp, “And another thing\n”);
10: fclose($fp);
11: ?>

The screen output of this script, when run from your web browser, is as follows:

Writing to test.txt ...
Appending to test.txt ...

If you open the test.txt file or use readlines.php to read its contents, you find

the file now contains the following:

Hello world
And another thing

Writing File Contents with file_put_contents()
Much like the file_get_contents() function discussed previously, the

file_put_contents() function is a more streamlined approach to file operations.

Specifically, file_put_contents() directly mimics the process of calling fopen(),

fwrite(), and fclose() in succession, to write data to a file.

The following shows allowable parameters when calling file_put_contents():

file_put_contents ($filename, $data [, $flags [, $context]]);

ptg8126863

Writing or Appending to a File 247

These additional options are described as such:

. data—a string or array that will contain the written data.

. flags—one or more of FILE_USE_INCLUDE_PATH (whether or not to look for

the target file in the include_path), FILE_APPEND (whether or not to append

data to a file if the file already exists), and LOCK_EX (whether or not to

acquire an exclusive lock on writing to the target file), which can be combined

with the | operator.

. context— a context resource created by stream_context_create(); use NULL

if not needed.

If you were to rewrite Listing 13.12 using file_put_contents(), it would look like

Listing 13.13:

LISTING 13.13 Writing and Appending to a File
1: <?php
2: $filename = “test.txt”;
3: echo “<p>Writing to “.$filename.” ... </p>”;
4: file_put_contents ($filename, “Hello world\n”);
5: echo “<p>Appending to “.$filename.” ...</p>”;
6: file_put_contents ($filename, “And another thing\n”, FILE_APPEND);
7: ?>

Locking Files with flock()
The techniques you just learned for reading and amending files work fine if only a

single user is accessing your script. In the real world, however, you would expect

many users to access your website, and the scripts within it, at more or less the same

time. Imagine what would happen if two users were to execute a script that writes to

one file at the same moment: The file would quickly become corrupt.

PHP provides the flock() function to forestall this eventuality. The flock() func-

tion locks a file to warn other processes against writing to or reading from that file

while the current process is working with it. The flock() function requires a valid

file resource from an open file and an integer representing the kind of lock you want

to set. PHP provides predefined constants for each of the integers you’re likely to

need. Table 13.1 lists three kinds of locks you can apply to a file.

ptg8126863

248 CHAPTER 13: Working with Files and Directories

TABLE 13.1 Integer Arguments to the flock() Function

Constant Integer Lock Type Description

LOCK_SH 1 Shared Allows other processes to read the
file but prevents writing (used when
reading a file)

LOCK_EX 2 Exclusive Prevents other processes from either
reading from or writing to a file (used
when writing to a file)

LOCK_UN 3 Release Releases a shared or exclusive lock

You should call flock() directly after calling fopen(), and then call it again to

release the lock before closing the file. If the lock is not released, you cannot to read

from or write to the file. Here is an example of this sequence of events:

$fp = fopen(“test.txt”, “a”) or die(“Couldn’t open file.”);
flock($fp, LOCK_EX); // create exclusive lock
// write to the file
flock($fp, LOCK_UN); // release the lock
fclose($fp);

For more information on file locking, see the PHP Manual entry for the flock()
function at http://www.php.net/flock.

Working with Directories
Now that you can test, read, and write to files, let’s turn our attention to directories.

PHP provides many functions for working with directories. Let’s look at how to cre-

ate, remove, and read from them.

Creating Directories with mkdir()
The mkdir() function enables you to create a directory. The mkdir() function

requires a string that represents the path to the directory you want to create and an

octal number integer that represents the mode you want to set for the directory.

Remember, you specify an octal (base 8) number using a leading 0; for example,

0777 or 0400.

The mode argument has an effect only on UNIX systems. The mode should consist

of three numbers between 0 and 7, representing permissions for the directory owner,

group, and everyone, respectively. The mkdir() function returns true if it successfully

TIP

http://www.php.net/flock

ptg8126863

Working with Directories 249

creates a directory or false if it doesn’t. If mkdir() fails, it is usually because the

containing directory has permissions that preclude processes with the script’s user ID

from writing.

If you’re not comfortable setting UNIX directory permissions, you should find that

one of the following examples fits your needs. Unless you really need your directory

to be world-writable, you should probably use 0755, which allows the world to read

your directory but not to write to it:

mkdir(“testdir”, 0777); // global read/write/execute permissions
mkdir(“testdir”, 0755); // world/group: read/execute; owner: read/write/execute

Removing a Directory with rmdir()
The rmdir() function enables you to remove a directory from the filesystem if the

process running your script has the right to do so, and if the directory is empty. The

rmdir() function requires only a string representing the path to the directory you

want to delete.

rmdir(“testdir”);

Opening a Directory for Reading with opendir()
Before you can read the contents of a directory, you must first obtain a directory

resource. You can do so with the opendir() function. The opendir() function

requires a string that represents the path to the directory you want to open. The

opendir() function returns a directory handle unless the directory isn’t present or

readable; in that case, it returns false:

$dh = opendir(“testdir”);

In this case, $dh is the directory handle of the open directory.

Reading the Contents of a Directory with
readdir()
Just as you use the fgets() function to read a line from a file, you can use read-

dir() to read a file or directory name from a directory. The readdir() function

requires a directory handle and returns a string containing the item name. If the

end of the directory is reached, readdir() returns false. Note that readdir()

returns only the names of its items, rather than full paths. Listing 13.14 shows the

contents of a directory.

ptg8126863

250 CHAPTER 13: Working with Files and Directories

LISTING 13.14 Listing the Contents of a Directory with readdir()
1: <?php
2: $dirname = “.”;
3 : $dh = opendir($dirname) or die(“Couldn’t open directory”);
4:
5: while (!(($file = readdir($dh)) === false)) {
6: if (is_dir(“$dirname/$file”)) {
7: echo “(D) “;
8: }
9: echo $file.”
”;
10: }
11: closedir($dh);
12: ?>

If this code were saved to the document root of your web server as readdir.php and

run through your web browser, the output would look something like Figure 13.7.

FIGURE 13.7
Output of
readdir.php.

Listing 13.14 opens the directory for reading with the opendir() function on line 3

and uses a while statement to loop through each of its elements, beginning on line

5. It calls readdir() as part of the while statement’s test expression and assigns the

result to the $file variable.

Within the body of the while statement, the $dirname variable is used in conjunc-

tion with the $file variable to create a full file path, which is then tested on line 6.

If the path represents a directory, the code prints D to the browser on line 7. Finally,

the filename (or directory name) is printed on line 9.

ptg8126863

Opening Pipes to and from Processes Using popen() 251

Listing 13.14 uses a cautious construction in the test of the while statement. Most

PHP programmers (myself included) would use something like the following:

while ($file = readdir($dh)) {
echo $file.”
”;

}

In this case, the value returned by readdir() is tested and, because any string other

than “0” resolves to true, there should be no problem. Imagine, however, a directo-

ry that contains four files: 0, 1, 2, and 3. On my system, the output from the preced-

ing code is as follows:

.

..

When the loop reaches the file named 0, the string returned by readdir() resolves

to false, which causes the loop to end. The approach in Listing 13.14 uses === to

check that the return value returned by readdir() is not exactly equivalent to false.

The result 0 only resolves to false in the test, so the problem is circumvented.

If you find the ordering of items in a directory listing to be arbitrary, it’s because
the filesystem determines the order. If you want the items ordered in a specific
fashion, you must read the contents into an array, which can then be sorted to
your liking and subsequently displayed.

Opening Pipes to and from Processes
Using popen()
Earlier in this chapter, you learned how to open a file for reading and writing using

the fopen() function. Now, you see that you can open a pipe to a process using the

popen() function.

The popen() function is used like this:

$file_pointer = popen(“some command”, mode)

The mode is either r (read) or w (write).

Listing 13.15 is designed to produce an error—it attempts to open a nonexistent file

for reading.

LISTING 13.15 Using popen() to Read a File
1: <?php
2: $file_handle = popen(“/path/to/fakefile 2>&1”, “r”);
3: $read = fread($file_handle, 2096);

NOTE

ptg8126863

252 CHAPTER 13: Working with Files and Directories

LISTING 13.15 Continued
4: echo $read;
5: pclose($file_handle);
6: ?>

Listing 13.15 first calls the popen() function in line 2, attempting to open a file for

reading. In line 3, any error message stored in the $file_handle pointer is read and

printed to the screen in line 4. Finally, line 5 closes the file pointer opened in line 2.

If you save this code as test_popen.php, place it in your document root, and access

it with your web browser, you will see an error message such as this one:

The system cannot find the path specified.

Listing 13.16 also uses popen() to read the output of a process; in this case, the out-

put of the UNIX who command.

LISTING 13.16 Using popen() to Read the Output of the UNIX who
Command (UNIX Only)
1: <?php
2: $handle = popen(“who”, “r”);
3: while (!feof($handle)) {
4: $line = fgets($handle,1024);
5: if (strlen($line) >= 1) {
6: echo $line.”
”;
7: }
8: }
9: pclose($handle);
10: ?>

In line 2, a file pointer is returned when popen() is used for reading. Line 3 begins a

while loop that reads each line of output from the process and eventually prints the

line—if it contains information—in line 6. The connection is closed in line 9.

If you save this code as popen_who.php, place it in your document root, and access

it with your web browser, you will see something like the following (with your actual

information, not mine, of course):

julie pts/0 Mar 14 06:19 (adsl-63-206-120-158.dsl.snfc21.pacbell.net)

Listing 13.17 shows how to use popen() in write mode to pass data to an external

application. The external application in this case is called column. The goal of the

script is to take the elements of a multidimensional array and output them in table

format, in an ASCII file.

ptg8126863

Opening Pipes to and from Processes Using popen() 253

LISTING 13.17 Using popen() to Pass Data to the UNIX column
Command (UNIX Only)
1: <?php
2: $products = array(
3: array(“HAL 2000”, 2, “red”),
4: array(“Tricorder”, 3, “blue”),
5: array(“ORAC AI”, 1, “pink”),
6: array(“Sonic Screwdriver”, 1, “orange”)
7:);
8:
9: $handle = popen(“column -tc 3 -s / > /somepath/purchases.txt”, “w”);
10: foreach ($products as $p) {
11: fputs($handle, join(‘/’,$p).”\n”);
12: }
13: pclose($handle);
14: echo “done”;
15: ?>

Lines 2–7 define a multidimensional array called $products and in it place four

entries representing products with names, quantities, and colors. In line 9, popen()

is used in write format to send a command to the column application. This com-

mand sends parameters to the column application telling it to format the input as a

three-column table, using / as a field delimiter. The output is sent to a file named

purchases.txt. (Be sure to change the pathname to one that exists on your

system.)

Lines 10–12 use foreach to loop through the $products array and send each ele-

ment to the open file pointer. The join() function is then used to convert the arrays

to a string, with the specified delimiter appended to it. The code closes the open file

pointer in line 13, and in line 14 prints a status message to the screen.

If you save this code as popen_column.php, place it in your document root, and

access it with your web browser, it should create a file in the specified location.

Looking at the file created on my machine, I see the following text:

HAL 2000 2 red
Tricorder 3 blue
ORAC AI 1 pink
Sonic Screwdriver 1 orange

You may or may not have the column program on your system, but this section

illustrated the logic and syntax for opening a pipe to an application. Feel free to try

out this logic with other programs available to you.

ptg8126863

254 CHAPTER 13: Working with Files and Directories

Running Commands with exec()
The exec() function is one of several functions you can use to pass commands to

the shell. The exec() function requires a string representing the path to the com-

mand you want to run, and optionally accepts an array variable that will contain

the output of the command and a scalar variable that will contain the return value

(1 or 0). For example:

exec(“/path/to/somecommand”, $output_array, $return_val);

Listing 13.18 uses the exec() function to produce a directory listing with the shell-

based ls command.

LISTING 13.18 Using exec() and ls to Produce a Directory Listing
(UNIX Only)
1: <?php
2: exec(“ls -al .”, $output_array, $return_val);
3: echo “Returned “.$return_val.”
<pre>”;
4: foreach ($output_array as $o) {
5: echo $o.”\n”;
6: }
7: echo “</pre>”;
8: ?>

Line 2 issues the ls command using the exec() function. The output of the com-

mand is placed into the $output_array array and the return value in the

$return_val variable. Line 3 simply prints the return value, whereas the foreach

loop in lines 4–6 prints out each element in $output_array.

The string in line 3 includes an opening <pre> tag, and line 7 provides a closing
tag. This simply ensures that your directory listing will be readable, using HTML
preformatted text.

If you save this code as exec_ls.php, place it in your document root, and access it

with your web browser, you will see something like Figure 13.8 (with your actual

information, not mine, of course).

NOTE

ptg8126863

Running Commands with system() or passthru() 255

As wonderful as PHP is, you might sometime want to integrate some sort of func-

tionality within your PHP-based application but someone else has already written

code in Perl that does the same thing. In cases like this, there’s no need to reinvent

the wheel; you can simply use exec() to access the existing script and utilize its

functionality. However, remember that calling an external process always adds

some amount of additional overhead to your script, in terms of both time and

memory usage.

Running Commands with system() or
passthru()
The system() function is similar to the exec() function in that it launches an

external application, and it utilizes a scalar variable for storing a return value:

system(“/path/to/somecommand”, $return_val);

The system() function differs from exec() in that it outputs information directly to

the browser, without programmatic intervention. The following snippet of code uses

system() to print a man page for the man command, formatted with the

<pre></pre> tag pair:

<?php
echo “<pre>”;
system(“man man | col –b”, $return_val);
echo “</pre>”;
?>

FIGURE 13.8
Output of
exec_ls.php.

ptg8126863

256 CHAPTER 13: Working with Files and Directories

Similarly, the passthru() function follows the syntax of the system() function, but

it behaves differently. When you are using passthru(), any output from the shell

command is not buffered on its way back to you; this is suitable for running com-

mands that produce binary data rather than simple text data. An example of this is

to use shell tools to locate an image and send it back to the browser, as shown in

Listing 13.19.

LISTING 13.19 Using passthru() to Output Binary Data
1: <?php
2: if ((isset($_GET[‘imagename’])) && (file_exists($_GET[‘imagename’]))) {
3: header(“Content-type: image/gif”);
4: passthru(“giftopnm “.$_GET[‘imagename’].” |
5: pnmscale -xscale .5 -yscale .5 | ppmtogif”);
6: } else {
7: echo “The image “.$_GET[‘imagename’].” could not be found”;
8: }
9: ?>

The shell utilities used in this script—giftopnm, pnmscale, and ppmtogif—might
or might not be installed on your system. If they are not, you can probably install
them from your OS distribution CD, but don’t worry about it just for this example.
The point is just to use this listing to understand the concept of using the
passthru() function.

If this file is named getbinary.php, it is called from HTML like this:

<img src=”getbinary.php?imagename=<?php echo urlencode(“test.gif”) ?>”>

In line 2 of Listing 13.19, the user input is tested to ensure that the file in question

(test.gif, according to the HTML snippet) exists. Because the script outputs GIF

data to the browser, the appropriate header is set on line 3.

On lines 4 and 5, the passthru() function consecutively executes three different

commands (giftopnm, pnmscale, and ppmtogif), thus scaling the image to 50% of

its original height and width. The output of the passthru() function—that is, the

new image data—is sent to the browser.

In this and other system-related examples, you could use escapeshellcmd() or
escapeshellarg() function to escape elements in the user input. Doing so
ensures that the user cannot trick the system into executing arbitrary commands
such as deleting important system files or resetting passwords. These functions
go around the first instance of the user input, such as the following:
$new_input = escapeshellcmd($_GET[‘someinput’]);

NOTE

NOTE

ptg8126863

257Q&A

You then reference $new_input throughout the remainder of your script, instead
of $_GET[‘someinput’]. Using these two commands, plus ensuring that your
script is written so as to only perform tasks you want it to do, and not commands
from your users, is a way to keep your system secure.

Summary
In this chapter, you learned how to use the include family of statements

(include_once, require, and require_once thrown in for good measure) to incor-

porate files into your documents and to execute any PHP code contained in include

files. You learned how to use some of PHP’s file-testing functions and explored func-

tions for reading files by the line, by the character, and in arbitrary chunks. You

learned how to write to files, by either replacing or appending to existing content,

and you learned how to create, remove, and read directories.

You were also introduced to various methods of communicating with your system

and its external applications. Although PHP is a fast and robust language, you

might find it more cost- and time-effective to simply utilize preexisting scripts in

other languages such as C or Perl. You can access these external applications using

the popen(), exec(), system(), and passthru() functions.

You learned how to pipe data to a command using popen(), which is useful for

applications that accept data from standard input and when you want to parse

data as it is sent to you by an application. You also learned to use exec() and sys-

tem() to pass commands to the shell and acquire user input. You also learned to use

the passthru() function to accept binary data that is the result of a shell com-

mand.

Now that you can work with the filesystem a little more, you can save and access

substantial amounts of data. If you need to look up data from large files, however,

such scripts begin to slow down considerably. When that occurs, you should look

into a database system, which will be coming your way shortly.

Q&A
Q. Does the include statement slow down my scripts?

A. Because an included file must be opened and parsed by the engine, it adds

some overhead. However, the benefits of reusable code libraries often outweigh

the relatively low performance overhead.

NOTE

ptg8126863

258 CHAPTER 13: Working with Files and Directories

Q. Should I always end script execution if a file cannot be opened for writing or
reading?

A. You should always allow for this possibility. If your script absolutely depends

on the file you want to work with, you might want to use the die() function,

writing an informative error message to the browser. In less-critical situations,

you still need to allow for the failure, perhaps by adding it to a log file.

Q. Where can I get more information about security on the web?

A. One authoritative introduction to web security is “The World Wide Web

Security FAQ” document written by Lincoln Stein, which you can find at

http://www.w3.org/Security/Faq/.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. What functions do you use to add library code to the currently running script?

2. What function do you use to find out whether a file is present on your file-

system?

3. How do you determine the size of a file?

4. What function do you use to open a file for reading or writing?

5. What function do you use to read a line of data from a file?

6. How can you tell when you’ve reached the end of a file?

7. What function do you use to write a line of data to a file?

8. How do you open a directory for reading?

9. What function do you use to read the name of a directory item after you’ve

opened a directory for reading?

10. Which function do you use to open a pipe to a process?

11. How can you read data from a process after you have opened a connection?

What about writing data?

12. How can you escape user input to make it a little safer before passing it to a

shell command?

http://www.w3.org/Security/Faq/

ptg8126863

259Workshop

Answers
1. You can use the require or include statement to incorporate PHP files into

the current document. You could also use include_once or require_once.

2. You can test for the existence of a file with the file_exists() function.

3. The filesize() function returns a file’s size in bytes.

4. The fopen() function opens a file. It accepts the path to a file and a character

representing the mode. It returns a file resource.

5. The fgets() function reads data up to the buffer size you pass it, the end of

the line, or the end of the document, whichever comes first.

6. The feof() function returns true when the file resource it has passed reaches

the end of the file.

7. You can write data to a file with the fputs() function.

8. The opendir() function enables you to open a directory for reading.

9. The readdir() function returns the name of a directory item from an opened

directory.

10. The popen() function is used to open a pipe to a process.

11. You can read and write to and from a process just as you can with an open

file, namely with feof() and fgets() for reading and fputs() for writing.

12. If user input is part of your shell command, you can use the escapeshell-

cmd() or escapeshellarg() function to properly escape it.

Activities
1. Create a form that accepts a user’s first and second name. Create a script that

saves this data to a file.

2. Create a script that reads the data file you created in the first activity. In addi-

tion to writing its contents to the browser (adding a
 tag to each line),

print a summary that includes the number of lines in the file and the file’s

size.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 14

Working with Images

In this chapter, you learn the following:
. How to modify PHP to increase image-related functionality
. How to create a new image
. How to modify existing images

A standard installation of PHP has many built-in functions for dynamically creating and

manipulating images. Popular uses include the creation of charts and graphs and the

modifications of existing images to display watermarks. With a few adjustments, you can

expand the functionality even more.

This chapter covers the basics of creating and manipulating images using PHP functions.

Understanding the Image-Creation Process
Creating an image with PHP is not like creating an image with a drawing program (for

example, Sumo Paint, Corel DRAW, or Windows Draw): There’s no pointing and clicking

or dragging buckets of color into a predefined space to fill your image. Similarly, there’s

no Save As functionality, in which your drawing program automatically creates a GIF,

JPEG, PNG, and so on, just because you ask it to do so.

Instead, you have to become the drawing application. As the programmer, you must tell

the PHP engine what to do at each step along the way. You are responsible for using the

individual PHP functions to define colors, draw and fill shapes, size and resize the image,

and save the image as a specific file type. It’s not as difficult as it might seem, however, if

you understand each step along the way and complete the tasks in order.

ptg8126863

262 CHAPTER 14: Working with Images

The examples in this chapter are not the most exciting examples ever, but only so
much can be printed in the pages of a book (especially when that book is printed
in black and white). Rest assured that these examples cover the fundamental
knowledge required to work with the image-related functions in PHP.

A Word About Color

When defining colors in your image-related scripts, you use the RGB color system.
Using decimal values from 0 to 255 for each of the red, green, and blue (R, G, and
B) entries, you can define a specific color. A value of 0 indicates no amount of
that specific color, and a value of 255 indicates the highest amount of that color.

For example, the RGB value for pure red is (255,0,0) or the entire allocation of
red values, no green, and no blue. Similarly, pure green has a value of (0,255,0),
and pure blue has a value of (0,0,255). White has an RGB value of
(255,255,255), and black has an RGB value of (0,0,0). A nice shade of purple
has an RGB value of (153,51,153), and a light gray has an RGB value of
(204,204,204). For reference, you can see a list of colors and their RGB values at
http://en.wikipedia.org/wiki/Web_colors.

Necessary Modifications to PHP
Current versions of the PHP distribution include a bundled version of Thomas

Boutell’s GD graphics library. The inclusion of this library eliminates the need to

download and install several third-party libraries, but this library needs to be acti-

vated at installation time.

To enable the use of the GD library at installation time, Linux/UNIX users must add

the following to the configure parameters when preparing to build PHP:

--with-gd

After running the PHP configure program again, you must go through the make

and make install process as you did in Chapter 4, “Installing and Configuring

PHP.” Windows users who want to enable GD simply have to activate php_gd2.dll

as an extension in the php.ini file, as you learned in Chapter 4.

When using the GD library, you are limited to working with GIF files. Working with

GIF files might suit your needs perfectly, but if you want to create JPEG or PNG files

on Linux/UNIX, you must download and install the few libraries listed here and

make some modifications to your PHP installation. (These libraries are included and

enabled in a Windows installation.)

NOTE

http://en.wikipedia.org/wiki/Web_colors

ptg8126863

Drawing a New Image 263

. JPEG libraries, from http://www.ijg.org/.

. PNG libraries, from http://www.libpng.org/pub/png/libpng.html.

. If you are working with PNG files, you should also install the zlib library, from

http://www.zlib.net/.

Follow the instructions at these sites to install the libraries. After installation,

Linux/UNIX users must again reconfigure and rebuild PHP by first adding the fol-

lowing to the PHP configure parameters (assuming that you want to use all three;

if not, just add the applicable ones):

--with-jpeg-dir=[path to jpeg directory]
--with-png-dir=[path to PNG directory]
--with-zlib=[path to zlib directory]

After running the PHP configure program again, you need to go through the make

and make install process as you did in Chapter 4. Your libraries should then be

activated and ready for use.

Drawing a New Image
The basic PHP function used to create a new image is called ImageCreate(), but

creating an image is not as simple as just calling the function. Creating an image is

a stepwise process and includes the use of several different PHP functions.

Creating an image begins with the ImageCreate() function, but all this function

does is set aside a canvas area for your new image. The following line creates a

drawing area that is 300 pixels wide by 300 pixels high:

$myImage = ImageCreate(300,300);

With a canvas now defined, you should next define a few colors for use in that new

image. The following examples define five such colors (black, white, red, green, and

blue, respectively), using the ImageColorAllocate() function and RGB values:

$black = ImageColorAllocate($myImage, 0, 0, 0);
$white = ImageColorAllocate($myImage, 255, 255, 255);
$red = ImageColorAllocate($myImage, 255, 0, 0);
$green = ImageColorAllocate($myImage, 0, 255, 0);
$blue = ImageColorAllocate($myImage, 0, 0, 255);

In your script, the first color you allocate is used as the background color of the
image. In this case, the background color will be black. You could also have
named the variable $background_color or some other contextually meaningful
name.

NOTE

http://www.ijg.org/
http://www.libpng.org/pub/png/libpng.html
http://www.zlib.net/

ptg8126863

264 CHAPTER 14: Working with Images

Now that you know the basics of setting up your drawing canvas and allocated col-

ors, you can move on to learning to draw shapes and actually output the image to

a web browser.

Drawing Shapes and Lines
Several PHP functions can assist you in drawing shapes and lines on your canvas:

. ImageEllipse() is used to draw an ellipse.

. ImageArc() is used to draw a partial ellipse.

. ImagePolygon() is used to draw a polygon.

. ImageRectangle() is used to draw a rectangle.

. ImageLine() is used to draw a line.

Using these functions requires thinking ahead because you must set up the points

where you want to start and stop the drawing that occurs. Each of these functions

uses x-axis and y-axis coordinates as indicators of where to start drawing on the

canvas. You must also define how far along the x-axis and y-axis you want the

drawing to occur.

For example, the following line draws a rectangle on the canvas beginning at point

(15,15) and continuing on for 80 pixels horizontally and 140 pixels vertically, so

that the lines end at point (95,155). In addition, the lines will be drawn with the

color red, which has already been defined in the variable $red.

ImageRectangle($myImage, 15, 15, 95, 155, $red);

If you want to draw another rectangle of the same size but with white lines, begin-

ning at the point where the previous rectangle stopped, you would use this code:

ImageRectangle($myImage, 95, 155, 175, 295, $white);

Finally, to add another red rectangle aligned with the first, but beginning at the

rightmost point of the white rectangle, use the following:

ImageRectangle($myImage, 175, 15, 255, 155, $red);

Listing 14.1 shows the image-creation script so far, with a few more lines added to

output the image to the web browser.

LISTING 14.1 Creating a New Image
1: <?php
2: //create the canvas

ptg8126863

Drawing a New Image 265

3: $myImage = ImageCreate(300,300);
4:
5: //set up some colors for use on the canvas
6: $black = ImageColorAllocate($myImage, 0, 0, 0);
7: $white = ImageColorAllocate($myImage, 255, 255, 255);
8: $red = ImageColorAllocate($myImage, 255, 0, 0);
9: $green = ImageColorAllocate($myImage, 0, 255, 0);
10: $blue = ImageColorAllocate($myImage, 0, 0, 255);
11:
12: //draw some rectangles
13: ImageRectangle($myImage, 15, 15, 95, 155, $red);
14: ImageRectangle($myImage, 95, 155, 175, 295, $white);
15: ImageRectangle($myImage, 175, 15, 255, 155, $red);
16:
17: //output the image to the browser
18: header (“Content-type: image/png”);
19: ImagePng($myImage);
20:
21: //clean up after yourself
22: ImageDestroy($myImage);
23: ?>

Lines 18–19 output the stream of image data to the web browser by first sending the

appropriate header() function, using the MIME type of the image being created.

Then you use the ImageGif(), ImageJpeg(), or ImagePng() function as appropriate

to output the data stream; this example outputs a PNG file. In line 22, you use the

ImageDestroy() function to clear up the memory used by the ImageCreate() func-

tion at the beginning of the script.

Save this listing as imagecreate.php and place it in the document root of your web

server. When accessed, it should look something like Figure 14.1, only in color.

FIGURE 14.1
A canvas with
three drawn
rectangles.

ptg8126863

266 CHAPTER 14: Working with Images

Using a Color Fill
The output of Listing 14.1 produced only outlines of rectangles. PHP has image func-

tions designed to fill areas as well:

. ImageFilledEllipse() is used to fill an ellipse.

. ImageFilledArc() is used to fill a partial ellipse.

. ImageFilledPolygon() is used to fill a polygon.

. ImageFilledRectangle() is used to fill a rectangle.

You use these functions just like their nonfill counterparts. In Listing 14.2, the nonfill

functions are replaced with functions designed to fill an area. In other words, only

lines 13–15 have changed.

LISTING 14.2 Creating a New Image with Color Fills
1: <?php
2: //create the canvas
3: $myImage = ImageCreate(300,300);
4:
5: //set up some colors for use on the canvas
6: $black = ImageColorAllocate($myImage, 0, 0, 0);
7: $white = ImageColorAllocate($myImage, 255, 255, 255);
8: $red = ImageColorAllocate($myImage, 255, 0, 0);
9: $green = ImageColorAllocate($myImage, 0, 255, 0);
10: $blue = ImageColorAllocate($myImage, 0, 0, 255);
11:
12: //draw some rectangles
13: ImageFilledRectangle($myImage, 15, 15, 95, 155, $red);
14: ImageFilledRectangle($myImage, 95, 155, 175, 295, $white);
15: ImageFilledRectangle($myImage, 175, 15, 255, 155, $red);
16:
17: //output the image to the browser
18: header (“Content-type: image/png”);
19: ImagePng($myImage);
20:
21: //clean up after yourself
22: ImageDestroy($myImage);
23: ?>

Save this listing as imagecreatefill.php and place it in the document root of your

web server. When accessed, it should look something like Figure 14.2, but again, in

color.

ptg8126863

Drawing a New Image 267

Getting Fancy with Pie Charts
The previous examples were a little boring, but they introduced you to the basic

process of creating images: defining the canvas, defining the colors, and then draw-

ing and filling. You can use this same sequence of events to expand your scripts to

create charts and graphs, using either static or dynamic data for the data points.

Listing 14.3 draws a basic pie chart. Lines 1–10 look similar to the previous listings

because they just set up the canvas size and colors to be used.

LISTING 14.3 A Basic Pie Chart
1: <?php
2: //create the canvas
3: $myImage = ImageCreate(300,300);
4:
5: //set up some colors for use on the canvas
6: $white = ImageColorAllocate($myImage, 255, 255, 255);
7: $red = ImageColorAllocate($myImage, 255, 0, 0);
8: $green = ImageColorAllocate($myImage, 0, 255, 0);
9: $blue = ImageColorAllocate($myImage, 0, 0, 255);
10:
11: //draw a pie
12: ImageFilledArc($myImage, 100, 100, 200, 150, 0, 90, $red, IMG_ARC_PIE);
13: ImageFilledArc($myImage, 100, 100, 200, 150, 90, 180 , $green,

IMG_ARC_PIE);
14: ImageFilledArc($myImage, 100, 100, 200, 150, 180, 360 , $blue,

IMG_ARC_PIE);
15:
16: //output the image to the browser
17: header (“Content-type: image/png”);
18: ImagePng($myImage);
19:
20: //clean up after yourself
21: ImageDestroy($myImage);
22: ?>

FIGURE 14.2
A canvas with
three drawn
and filled
rectangles.

ptg8126863

268 CHAPTER 14: Working with Images

Because the first defined color is white, the color of the canvas will be white.

Lines 12–14 use the ImageFilledArc() function, which has several attributes:

. The image identifier

. The partial ellipse centered at x

. The partial ellipse centered at y

. The partial ellipse width

. The partial ellipse height

. The partial ellipse start point

. The partial ellipse end point

. Color

. Style

Look at line 14 from Listing 14.3:

14: ImageFilledArc($myImage, 100, 100, 200, 150, 180, 360 , $blue,
IMG_ARC_PIE);

The arc should be filled with the defined color $blue and should use the

IMG_ARC_PIE style. The IMG_ARC_PIE style is one of several built-in styles (actually,

defined constants) used in the display; this one says to create a rounded edge.

You can learn about all the predefined image-related constants in the PHP
Manual, at http://us2.php.net/manual/en/image.constants.php.

Save this listing as imagecreatepie.php and place it in the document root of your

web server. When accessed, it should look something like Figure 14.3, but in color.

NOTE

http://us2.php.net/manual/en/image.constants.php

ptg8126863

Drawing a New Image 269

You can extend the code in Listing 14.3 and give your pie a 3D appearance. To do

so, define three more colors for the edge. These colors can be either lighter or darker

than the base colors, as long as they provide some contrast. The following examples

define lighter colors:

$lt_red = ImageColorAllocate($myImage, 255, 150, 150);
$lt_green = ImageColorAllocate($myImage, 150, 255, 150);
$lt_blue = ImageColorAllocate($myImage, 150, 150, 255);

To create the shading effect, you use a for loop to add a series of small arcs at the

points (100,110) to (100,101), using the lighter colors as fill colors:

for ($i = 110;$i > 100;$i--) {
ImageFilledArc ($myImage, 100, $i, 200, 150, 0, 90, $lt_red, IMG_ARC_PIE);
ImageFilledArc ($myImage, 100, $i, 200, 150, 90, 180, $lt_green,
IMG_ARC_PIE);

ImageFilledArc ($myImage, 100, $i, 200, 150, 180, 360, $lt_blue,
IMG_ARC_PIE);

}

Listing 14.4 shows the code used for a 3D pie.

LISTING 14.4 A 3D Pie Chart
1: <?php
2: //create the canvas
3: $myImage = ImageCreate(300,300);
4:
5: //set up some colors for use on the canvas
6: $white = ImageColorAllocate($myImage, 255, 255, 255);
7: $red = ImageColorAllocate($myImage, 255, 0, 0);

FIGURE 14.3
A simple pie
with slices.

ptg8126863

270 CHAPTER 14: Working with Images

LISTING 14.4 Continued
8: $green = ImageColorAllocate($myImage, 0, 255, 0);
9: $blue = ImageColorAllocate($myImage, 0, 0, 255);
10: $lt_red = ImageColorAllocate($myImage, 255, 150, 150);
11: $lt_green = ImageColorAllocate($myImage, 150, 255, 150);
12: $lt_blue = ImageColorAllocate($myImage, 150, 150, 255);
13:
14: //draw the shaded area
15: for ($i = 110;$i > 100;$i--) {
16: ImageFilledArc ($myImage,100,$i,200,150,0,90,$lt_red,IMG_ARC_PIE);
17: ImageFilledArc ($myImage,100,$i,200,150,90,180,$lt_green,IMG_ARC_PIE);
18: ImageFilledArc ($myImage,100,$i,200,150,180,360,$lt_blue,IMG_ARC_PIE);
19: }
20:
21: //draw a pie
22: ImageFilledArc($myImage, 100, 100, 200, 150, 0, 90, $red, IMG_ARC_PIE);
23: ImageFilledArc($myImage, 100, 100, 200, 150, 90, 180 , $green, IMG_ARC_PIE);
24: ImageFilledArc($myImage, 100, 100, 200, 150, 180, 360 , $blue, IMG_ARC_PIE);
25:
26: //output the image to the browser
27: header (“Content-type: image/png”);
28: ImagePng($myImage);
29:
30: //clean up after yourself
31: ImageDestroy($myImage);
32: ?>

Save this listing as imagecreate3dpie.php and place it in the document root of

your web server. When accessed, it should look something like Figure 14.4, but in

color.

FIGURE 14.4
A 3D pie, with
slices.

These are just basic examples that show the power of some of the image-drawing

and filling functions. In the next section, you learn how to manipulate existing

images.

ptg8126863

Modifying Existing Images 271

Modifying Existing Images
The process of creating images from other images follows the same essential steps as

creating a new image—the difference lies in what acts as the image canvas.

Previously, you created a new canvas using the ImageCreate() function. When cre-

ating an image from a new image, you use the ImageCreateFrom*() family of

functions.

You can create images from existing GIFs, JPEGs, PNGs, and plenty of other image

types. The functions used to create images from these formats are called

ImageCreateFromGif(), ImageCreateFromJpg(), ImageCreateFromPng(), and so

forth. In the next example, you can see how easy it is to create a new image from

an existing one. Figure 14.5 shows the base image.

FIGURE 14.5
The base
image.

Listing 14.5 shows how to use an existing image as the canvas, which then has

filled ellipses drawn on it.

LISTING 14.5 Creating a New Image from an Existing Image
1: <?php
2: //use existing image as a canvas
3: $myImage = ImageCreateFromPng(“baseimage.png”);
4:
5: //allocate the color white
6: $white = ImageColorAllocate($myImage, 255, 255, 255);
7:
8: //draw on the new canvas
9: ImageFilledEllipse($myImage, 100, 70, 20, 20, $white);
10: ImageFilledEllipse($myImage, 175, 70, 20, 20, $white);
11: ImageFilledEllipse($myImage, 250, 70, 20, 20, $white);
12:
13: //output the image to the browser
14: header (“Content-type: image/png”);
15: ImagePng($myImage);

ptg8126863

272 CHAPTER 14: Working with Images

LISTING 14.5 Continued
16:
17: //clean up after yourself
18: ImageDestroy($myImage);
19: ?>

Save this listing as imagefrombase.php and place it in the document root of your

web server. When accessed, it should look something like Figure 14.6.

FIGURE 14.6
Drawing on an
existing image.

The next example takes this process a few steps forward and uses some different

image-modification functions. In this case, the existing images are four PNG

images, each with a differently colored triangular slice on a gray background. In

Listing 14.6, you stack these images on top of each other and blend them together

at each step so that the gray background becomes transparent and the image

beneath it shows through.

LISTING 14.6 Stacking Images and Making Them Transparent
1: <?php
2: //select an image to start with
3: $baseimage = ImageCreateFromPng(“img1.png”);
4:
5: //loop through images #2 through the end
6: for($i=2; $i <5; $i++) {
7: //allocate the transparent color, and stack
8: $myImage = ImageCreateFromPng(“img”.$i.”.png”);
9: $gray = ImageColorAllocate($myImage, 185, 185, 185);
10: ImageColorTransparent($myImage, $gray);
11: ImageCopyMerge($baseimage,$myImage,0,0,0,0,150,150,100);
12: }
13:
14: //output the image to the browser
15: header (“Content-type: image/png”);
16: ImagePng($baseimage);
17:

ptg8126863

Image Creation from User Input 273

18: //clean up after yourself
19: ImageDestroy($baseimage);
20: ?>

In line 3, one of the images is selected to be the base image. In this case, it’s

img1.png. The for loop in lines 8–11 handles the bulk of the work. Knowing that

you have four images and that you are already using the first one as the base, that

leaves three more images to be stacked and made transparent.

After the new layer is created on line 8, its gray areas are indicated as transparent,

and it is merged on top of the base image. As the layers are stacked, the base image

contains an increasing number of layers until the total number of four layers is

reached. At that point, the image is sent to the browser in lines 15–16.

Save this listing as imagestacker.php and place it in the document root of your

web server. When accessed, it should look something like Figure 14.7.

FIGURE 14.7
Stacked trans-
parent images
produce a
composite.

Image Creation from User Input
In addition to creating images from other images and drawing images on your own,

you can create images based on user input. No fundamental difference exists in how

the scripts are created except for the fact that you gather values from a form instead

of hard-coding them into your script.

Listing 14.7 creates an all-in-one form and script that asks for user input for a vari-

ety of attributes ranging from image size to text and background colors, as well as a

message string. You are introduced to the imagestring() function, which is used to

“write” a string onto an image.

Let’s get into the script, where lines 2–38 represent the user input form, and the

remaining lines handle the image created according to user specifications.

ptg8126863

274 CHAPTER 14: Working with Images

LISTING 14.7 Creating an Image from User Input
1: <?php
2: if (!$_POST) {
3: //show form
4: ?>
5: <!DOCTYPE html>
6: <html>
7: <head>
8: <title>Image Creation Form</title>
9:
10: <style type=”text/css”>
11: fieldset{border: 0; padding: 0px 0px 12px 0px;}
12: fieldset label {margin-left: 24px;}
13: legend, label {font-weight:bold;}
14: </style>
15:
16: </head>
17: <body>
18: <h1>Create an Image</h1>
19: <form method=”POST” action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”>
20:
21: <fieldset>
22: <legend>Image Size:</legend>

23: <label for=”w”>W:</label>
24: <input type=”text” id=”w” name=”w” size=”5” maxlength=”5” />
25: <label for=”h”>H:</label>
26: <input type=”text” id=”h” name=”h” size=”5” maxlength=”5” />
27: </fieldset>
28:
29: <fieldset>
30: <legend>Background Color:</legend>

31: <label for=”b_r”>R:</label>
32: <input type=”text” id=”b_r” name=”b_r” size=”3” maxlength=”3” />
33: <label for=”b_g”>G:</label>
34: <input type=”text” id=”b_g” name=”b_g” size=”3” maxlength=”3” />
35: <label for=”b_b”>B:</label>
36: <input type=”text” id=”b_b” name=”b_b” size=”3” maxlength=”3” />
37: </fieldset>
38:
39: <fieldset>
40: <legend>Text Color:</legend>

41: <label for=”t_r”>R:</label>
42: <input type=”text” id=”t_r” name=”t_r” size=”3” maxlength=”3” />
43: <label for=”t_g”>G:</label>
44: <input type=”text” id=”t_g” name=”t_g” size=”3” maxlength=”3” />
45: <label for=”t_b”>B:</label>
46: <input type=”text” id=”t_b” name=”t_b” size=”3” maxlength=”3” />
47: </fieldset>
48:
49: <p><label for=”string”>Text String:</label>
50: <input type=”text” id=”string” name=”string” size=”35” /></p>
51:
52: <p><label for=”font_size”>Font Size:</label>
53: <select id=”font_size” name=”font_size”>
54: <option value=”1”>1</option>
55: <option value=”2”>2</option>
56: <option value=”3”>3</option>
57: <option value=”4”>4</option>

ptg8126863

Image Creation from User Input 275

58: <option value=”5”>5</option>
59: </select></p>
60:
61: <fieldset>
62: <legend>Text Starting Position:</legend>

63: <label for=”x”>X:</label>
64: <input type=”text” id=”x” name=”x” size=”3” maxlength=”3” />
65: <label for=”y”>Y:</label>
66: <input type=”text” id=”y” name=”y” size=”3” maxlength=”3” />
67: </fieldset>
68:
69: <button type=”submit” name=”submit” value=”create”>Create Image</button>
70: </form>
71: </body>
72: </html>

The bulk of this code listing so far is just an HTML form that defines several fields to

obtain the image specifications. You can see that lines 1–4 are the only PHP code in

this listing so far, and those lines check to see whether the form has been submitted

(if the $_POST superglobal exists). After that check has happened, we break out of

PHP and just provide the code for the form, which is shown only if the form has not

been submitted; you could have put this HTML in an echo statement within PHP,

but there’s no reason to make the PHP compiler do the work if it doesn’t have to.

The form fields in lines 24 and 26 define the width and the height of the image you

want to draw. Next, the code sets up form fields to obtain the RGB values for a back-

ground color (lines 32, 34, and 36) and a text color (lines 42, 44, and 46).

You could create drop-down list boxes containing values 0 through 255 for the red,
green, and blue values. This would ensure that the user input was within the
required range.

Line 50 contains a form field for the input string. This string will be drawn onto the

background of the image in the text color specified. Lines 53–59 represent a drop-

down list for the selection of the font size. The function used to draw text on a string

uses five sizes, 1 through 5 (the higher the number, the larger the font), for the

default fixed-width font installed on the server.

You can specify fonts using the imageloadfont() and imagettftext()
functions. Learn more at http://www.php.net/image.

Finally, lines 64 and 66 allow you to define the text starting position. The upper-left

corner of the image area would be X position 0, Y position 0; 10 increments down-

ward would be Y position 10, 10 increments to the right would be X position 10, and

so forth.

TIP

NOTE

http://www.php.net/image

ptg8126863

276 CHAPTER 14: Working with Images

If you stop the script here and close up the if...else statement and PHP block,

you will see a form like Figure 14.8 when it’s loaded in your web browser.

FIGURE 14.8
User input form
for image
creation.

In only 23 more lines, you can finish this script and generate images with text

strings, so take a look at the remainder of Listing 14.7.

LISTING 14.7 (continued)
73: <?php
74: } else {
75: //create image
76: //create the canvas
77: $myImage = ImageCreate($_POST[‘w’], $_POST[‘h’]);
78:
79: //set up some colors
80: $background = ImageColorAllocate ($myImage, $_POST[‘b_r’],
81: $_POST[‘b_g’], $_POST[‘b_b’]);
82: $text = ImageColorAllocate ($myImage, $_POST[‘t_r’],
83: $_POST[‘t_g’], $_POST[‘t_b’]);
84:
85: // write the string at the top left
86: ImageString($myImage, $_POST[‘font_size’], $_POST[‘x’],
87: $_POST[‘y’], $_POST[‘string’], $text);
88:
89: //output the image to the browser
90: header (“Content-type: image/png”);
91: ImagePNG($myImage);
92:
93: //clean up after yourself

ptg8126863

Image Creation from User Input 277

94: ImageDestroy($myImage);
95: }
96: ?>

The majority of lines 73–96 you’ve already seen, only this time it uses extracted ele-

ments from the $_POST superglobal to take the place of hard-coded values. Line 77

uses the width and height values from the form to set up the initial image. Lines

80–83 define two colors, $background and $text, using the appropriate RGB values

provided by the form.

The colors weren’t given actual color names in this script because there’s no
way to know what the user input would create—you could call the color $red, but
you would look stupid if the user defined it as 0,255,0 because that’s the RGB
value for green. Instead, simply name the colors after their purpose, not their
appearance.

Lines 86–87 represent the only new item in this script: the use of the ImageString()

function. The six parameters for this function are the image stream ($myImage), the

font size ($_POST[‘font_size’]), the starting X and Y positions ($_POST[‘x’] and

$_POST[‘y’]), the string to be drawn ($_POST[‘string’]), and the color in which

to draw it ($text). Lines 90–91 output the image to the browser, and line 94

destroys and cleans up the image creation process.

If you save this file as imagestring.php, place it in the document root of the web

server, and fill out the form, the output could look something like Figure 14.9. But

quite likely your results will differ because there are many variables to play with.

NOTE

FIGURE 14.9
Sample output
from image
creation form.

Try it yourself, using various sizes, colors, and text strings.

ptg8126863

278 CHAPTER 14: Working with Images

Using Images Created by Scripts
All the earlier scripts produce image output, but you call them as standalone scripts.

Using the results of an image created by a script, within your HTML, is as simple as

using the name of the script—not an image—in the src attribute of the img tag. For

example:

In Listing 14.8, you create a simple script to produce an image. An img tag then

calls this image and the browser displays it.

To add some new functionality to the mix, this basic script loads and uses a custom

font to display a text string as a graphic—much like the user-generated text in the

previous section, except the font is fancier. The reasons for this will soon become

clear.

First, create the image-generating script. Listing 14.8 shows an example.

LISTING 14.8 Creating an Image with Custom Font and Text
1: <?php
2: //create the canvas
3: $myImage = ImageCreate(150,25);
4:
5: //set up some colors for use on the canvas
6: $white = ImageColorAllocate($myImage, 255, 255, 255);
7: $black = ImageColorAllocate($myImage, 0, 0, 0);
8:
9: //load a font
10: $font = imageloadfont(“hootie.gdf”);
11:
12: // write the string
13: ImageString($myImage, $font, 0, 0, “CAPTCHA!”, $black);
14:
15: //output the image to the browser
16: header (“Content-type: image/png”);
17: ImagePng($myImage);
18:
19: //clean up after yourself
20: ImageDestroy($myImage);
21: ?>

Line 3 creates a canvas that is 150 pixels wide and 25 pixels high. This size is

something commonly seen in a CAPTCHA. In fact, that’s part of what you’re

creating here.

ptg8126863

Using Images Created by Scripts 279

A CAPTCHA is a graphical challenge-response test to determine whether a user is
a human. You might have encountered a CAPTCHA when completing a form to
leave a comment on a website or to participate in a discussion forum, or when
creating a user account. The idea is that only a human can read alphanumeric
text in an image. You can read more about CAPTCHAs at http://en.wikipedia.org/
wiki/Captcha.

Lines 5–7 set up the colors available to this script: white as the background and

black as another color. Line 10 loads a font, using the imageloadfont() function.

You could also use the imagettftext() function if you want to use TrueType fonts.

In this example, the hootie.gdf font is a freely available font that comes in a sin-

gle file placed on the filesystem and then loaded by the function calling it.

You can find the font used in this example, as well as several other free fonts,
just by searching “free GDF font” or “free TrueType font” in Google or your search
engine of choice.

Line 13 uses the font loaded in line 10 as part of the ImageString() function call.

In this example, $font is in the second parameter, meaning that the font and font

size of the included font package are used in this instance of the function. The start-

ing X and Y positions are hard-coded as 0 in the third and fourth parameters, and

the string to be drawn—”CAPTCHA!”—is also hard-coded. The color in which to draw

this string is $black, the value in the final parameter.

Lines 16–17 output the stream of image data to the web browser by first sending the

appropriate header() function and then using ImagePng() to output the data

stream; this example outputs a PNG file. Line 20 uses the ImageDestroy() function

to clear up the memory used by the ImageCreate() function at the beginning of the

script.

If you stop at this point, send the script to your web server, and simply load it in

your browser window, it will display the CAPTCHA! in a custom font. But the pur-

pose of this section is to show how to load this image with the img tag, and to do

that you need a little HTML file. Listing 14.9 contains an img tag that does just that.

LISTING 14.9 Using Images Created by Scripts
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Using Images Created by Scripts</title>
5: </head>

TIP

NOTE

http://en.wikipedia.org/wiki/Captcha
http://en.wikipedia.org/wiki/Captcha

ptg8126863

280 CHAPTER 14: Working with Images

LISTING 14.9 Continued
6: </body>
7: <h1>Generated Image Below...</h1>
8:
9: </body>
10: </html>

This little HTML file contains one line of interest: line 7. In line 7, you can see that

the value of the src attribute of the img tag is the name of the script created in

Listing 14.8: imagecustomfont.php. Name the HTML file something like useim-

age.html, and send both the HTML and the PHP script to your web server.

Open useimage.html in your web browser and you will see something like

Figure 14.10—namely, CAPTCHA! in a custom font, which is actually displayed

in a graphic.

FIGURE 14.10
Using images
created by
scripts.

If you were really using this script as part of a CAPTCHA system, you would make

at least two additions to it: randomizing the string instead of hard-coding it, and

saving the randomized string in a database table so that the input matching process

can occur.

Summary
This chapter briefly introduced you to what you can do with images and PHP.

Reading the “Image Functions” section of the PHP Manual, at http://www.php.net/

image, is highly recommended, not only for a complete list of image-related func-

tions, but also for examples and discussion about their use in your applications.

http://www.php.net/image
http://www.php.net/image

ptg8126863

Workshop 281

In this chapter, you learned about installing and using additional libraries for work-

ing with images. (The examples used PNGs, but you were given instructions for

using GIFs and JPGs, as well.) You learned the basic steps for creating an image can-

vas and allocating color and for drawing and filling shapes. You learned that your

drawing canvas can consist of an existing image and that you can merge layers so

that a final image is a composite of the merged layers. In addition, you saw how

simple it is to use input from users (in this case, from an HTML form) in your

image-creation scripts and how to use scripts as image sources in HTML code.

Q&A
Q. How do I use dynamic data to create the slices of a pie chart?

A. When creating any image, the start points and drawing lengths do not need

to be statically indicated—they can be variables whose values are determined

by a database, user input, or calculations within the script. For example, this

code creates a red, filled arc of 90°:

ImageFilledArc($myImage,50,50,100,50,0,90,$red,IMG_ARC_PIE);

You could set this up so that the red-filled arc at the top of the pie holds the

percentage of the total for May Sales in a variable called $may_sales_pct.

The line then becomes something like this:

ImageFilledArc($myImage,50,50,100,50,0,$may_sales_pct,$red,IMG_ARC_PIE);

The number then is filled in from the calculations or database queries in your

script. Be sure to add code to verify that all your arcs add up to 360.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. What RGB values would you use for pure black and pure white?

2. How do you create a new, blank canvas that is 300 pixels wide and 200 pixels

tall?

3. What function is used to draw a polygon? A filled polygon?

ptg8126863

282 CHAPTER 14: Working with Images

Answers
1. (0,0,0) is pure black, and (255,255,255) is pure white.

2. To create a new, blank canvas that is 300 pixels wide and 200 pixels tall, use

the following:

$new_image = ImageCreate(300,200);

3. ImagePolygon() and ImageFilledPolygon()

Activities
1. Instead of creating a pie chart, use your drawing skills to create a bar chart

with either vertical or horizontal bars, each 30 pixels wide and filled with the

same color, but of different lengths. Make sure that there are 10 pixels of

space between each bar.

2. Extend the functionality from the first step by adding a form front end to it,

and allow users to enter numbers of their choice. Generate your bar chart

from those numbers.

ptg8126863

CHAPTER 15

Understanding the Database
Design Process

In this chapter, you learn the following:
. Some advantages to good database design
. Three types of table relationships
. How to normalize your database
. How to implement a good database design process

In this chapter, you learn the reasoning behind designing a relational database. After this

concept-focused chapter, you jump headlong into learning the basic MySQL commands in

preparation for integrating MySQL in your own applications.

The Importance of Good Database Design
A good database design is crucial for a high-performance application, just as an aerody-

namic body is important to a race car. If a car does not have smooth lines, it produces

drag and goes slower. Without optimized relationships, your database will not perform as

efficiently as possible. Thinking about relationships and database efficiency—which

includes ease of maintenance, minimizing duplications, and avoiding inconsistencies—is

part of normalization.

ptg8126863

284 CHAPTER 15: Understanding the Database Design Process

Specifically, normalization refers to the process of structuring data to minimize
duplication and inconsistencies.

Beyond the issue of performance is the issue of maintenance—your database should

be easy to maintain. This includes storing only a limited amount (if any) of repeti-

tive data. If you have a lot of repetitive data and one instance of that data under-

goes a change (such as a name change), that change has to be made for all occur-

rences of the data. To eliminate duplication and enhance your ability to maintain

the data, you might create a table of possible values and use a key to refer to the

value. That way, if the value changes names, the change occurs only once—in the

master table. The reference remains the same throughout other tables.

For example, suppose that you are responsible for maintaining a database of stu-

dents and the classes in which they are enrolled. If 35 of these students are in the

same class, let's call it Advanced Math, this class name would appear 35 times in

the table. Now, if the instructor decides to change the name of the class to

Mathematics IV, you must change 35 records to reflect the new name of the class. If

the database were designed so that class names appeared in one table and just the

class ID number was stored with the student record, you would have to change only

1 record—not 35—to update the name change.

The benefits of a well-planned and designed database are numerous, and it stands

to reason that the more work you do up front, the less you have to do later. A really

bad time for a database redesign is after the public launch of the application using

it—although it does happen, and the results are costly.

So, before you even start coding an application, spend a lot of time designing your

database. Throughout the rest of this chapter, you learn more about relationships

and normalization, two important pieces to the design puzzle.

Types of Table Relationships
Table relationships come in several forms:

. One-to-one relationships

. One-to-many relationships

. Many-to-many relationships

NOTE

ptg8126863

Types of Table Relationships 285

For example, suppose that you have a table called employees that contains each

person’s Social Security number, name, and the department in which he or she

works. Suppose that you also have a separate table called departments, containing

the list of all available departments, made up of a Department ID and a name. In

the employees table, the Department ID field matches an ID found in the depart-

ments table. You can see this type of relationship in Figure 15.1. The PK next to the

field name indicates the primary key for the table.

employees

SS_Number
DeptID
FirstName
LastName

PK

departments

DeptID
DeptName

0

0PK

FIGURE 15.1
The
employees and
departments
tables are relat-
ed through the
DeptID key.

In the following sections, you take a closer look at each of the relationship types.

One-to-One Relationships
In a one-to-one relationship, a key appears only once in a related table. The

employees and departments tables do not have a one-to-one relationship because

many employees undoubtedly belong to the same department. A one-to-one rela-

tionship exists, for example, if each employee is assigned one computer within a

company. Figure 15.2 shows the one-to-one relationship of employees to computers.

EMPLOYEE 1 COMPUTER 1

EMPLOYEE 2 COMPUTER 2

EMPLOYEE 3 COMPUTER 3

EMPLOYEE 4 COMPUTER 4

FIGURE 15.2
One computer
is assigned to
each employee.

The employees and computers tables in your database would look something like

Figure 15.3, which represents a one-to-one relationship.

ptg8126863

286 CHAPTER 15: Understanding the Database Design Process

One-to-Many Relationships
In a one-to-many relationship, keys from one table appear multiple times in a

related table. The example shown in Figure 15.1, indicating a connection between

employees and departments, illustrates a one-to-many relationship. A real-world

example is an organizational chart of the department, as shown in Figure 15.4.

employees

SS_Number
DeptID
FirstName
LastName
ComputerID

PK

computers

ComputerID
ComputerDesc

0

0 PK

FIGURE 15.3
One-to-one rela-
tionship in the
data model.

EMPLOYEE 1 EMPLOYEE 2

DEPARTMENT
A

EMPLOYEE 3 EMPLOYEE 4

FIGURE 15.4
One department
contains many
employees.

The one-to-many relationship is the most common type of relationship. Another

practical example is the use of a state abbreviation in an address database; each

state has a unique identifier (CA for California, PA for Pennsylvania, and so on),

and each address in the United States has a state associated with it.

If you have eight friends in California and five in Pennsylvania, you use only two

distinct abbreviations in your table. One abbreviation (CA) represents a one-to-eight

relationship, and the other (PA) represents a one-to-five relationship.

ptg8126863

Types of Table Relationships 287

Many-to-Many Relationships
The many-to-many relationship often causes problems in practical examples of nor-

malized databases, so much so that it is common to simply break many-to-many

relationships into a series of one-to-many relationships. In a many-to-many rela-

tionship, the key value of one table can appear many times in a related table. So

far, it sounds like a one-to-many relationship, but here’s the curveball: The opposite

is also true, meaning that the primary key from that second table can also appear

many times in the first table.

Think of such a relationship this way, using the example of students and classes: A

student has an ID and a name. A class has an ID and a name. A student usually

takes more than one class at a time, and a class always contains more than one

student, as you can see in Figure 15.5.

CLASS
A

STUDENT 1 STUDENT 5

STUDENT 7

STUDENT 6STUDENT 2

STUDENT 3

STUDENT 4

CLASS
B

CLASS
C

FIGURE 15.5
Students take
classes, and
classes contain
students.

As you can see, this sort of relationship does not present an easy method for relat-

ing tables. Your tables could look like Figure 15.6, seemingly unrelated.

students

StudentID
FirstName
LastName

PK

classes

ClassID
ClassDesc

PK

FIGURE 15.6
The students
table and the
classes table,
unrelated.

To make the theoretical many-to-many relationship, you create an intermediate

table, one that sits between the two tables and essentially maps them together. You

might build such a table similar to the one in Figure 15.7.

ptg8126863

288 CHAPTER 15: Understanding the Database Design Process

If you take the information in Figure 15.5 and put it into the intermediate table,

you can create something like Figure 15.8.

students

StudentID
FirstName
LastName

PK
classes

ClassID
ClassDesc

PK

students_classes_map

StudentID
ClassID 0

0

0

0

FIGURE 15.7
The
students_
classes_map
table acts as an
intermediary.

STUDENTID

STUDENT 1

STUDENT 2

STUDENT 3

STUDENT 4

STUDENT 5

STUDENT 6

STUDENT 7

STUDENT 1

STUDENT 2

STUDENT 3

STUDENT 4

CLASSID

CLASS A

CLASS A

CLASS A

CLASS A

CLASS B

CLASS B

CLASS C

CLASS B

CLASS B

CLASS C

CLASS C

FIGURE 15.8
The
students_
classes_map
table populated
with data.

As you can see, many students and many classes happily coexist within the

students_classes_map table.

With this introduction to the types of relationships, learning about normalization

should be a snap.

ptg8126863

Understanding Normalization 289

Understanding Normalization
Normalization is simply a set of rules that will ultimately make your life easier

when you are acting as a database administrator. It is the art of organizing your

database in such a way that your tables relate where appropriate and are flexible

for future growth.

The sets of rules used in normalization are called normal forms. If your database

design follows the first set of rules, it is considered in the first normal form. If the first

three sets of rules of normalization are followed, your database is said to be in the

third normal form.

Throughout this chapter, you learn about each rule in the first, second, and

third normal forms—the most foundational of the nine different normalizations—

and, I hope, will follow them as you create your own applications. In the chapter,

you use a sample set of tables for a students-and-courses database and take it to the

third normal form.

Problems with the Flat Table
Before launching into the first normal form, you have to start with something that

needs to be fixed. In the case of a database, it’s the flat table. A flat table is like a

spreadsheet—it has many, many columns. There are no relationships between

multiple tables; all the data you could possibly want is right there in that flat table.

This scenario is inefficient and consumes more physical space on your hard drive

than a normalized database.

In your students-and-courses database, assume that you have the following fields in

your flat table:

. StudentName—The name of the student.

. CourseID1—The ID of the first course taken by the student.

. CourseDescription1—The description of the first course taken by the

student.

. CourseInstructor1—The instructor of the first course taken by the student.

. CourseID2—The ID of the second course taken by the student.

. CourseDescription2—The description of the second course taken by the

student.

ptg8126863

290 CHAPTER 15: Understanding the Database Design Process

. CourseInstructor2—The instructor of the second course taken by the

student.

. Repeat CourseID, CourseDescription, and CourseInstructor columns

many more times to account for all the classes students can take during their

academic career.

With what you’ve learned so far, you should be able to identify the first problem

area: CourseID, CourseDescription, and CourseInstructor columns are repeated

groups.

Eliminating redundancy is the first step in normalization, so next you take this flat

table to first normal form. If your table remained in its flat format, you could have

a lot of unclaimed space and a lot of space being used unnecessarily—not an effi-

cient table design.

First Normal Form
The rules for the first normal form are as follows:

. Eliminate repeating information.

. Create separate tables for related data.

If you think about the flat table design with many repeated sets of fields for the

students-and-courses database, you can identify two distinct topics: students and

courses. Taking your students-and-courses database to the first normal form means

that you create two tables: one for students and one for courses, as shown in

Figure 15.9.

students

StudentID
StudentName

PK

student_courses

StudentID
CourseID
CourseDescription
CourseInstructor

0

0

FIGURE 15.9
Breaking the
flat table into
two tables.

Your two tables now represent a one-to-many relationship of one student to many

courses. Students can take as many courses as they want and are not limited to the

number of CourseID/CourseDescription/CourseInstructor groupings that exist-

ed in the flat table.

ptg8126863

Understanding Normalization 291

The next step is to put the tables into second normal form.

Second Normal Form
The rule for the second normal form is as follows:

. No nonkey attributes depend on a portion of the primary key.

In plain English, this means that if fields in your table are not entirely related to a

primary key, you have more work to do. In the students-and-courses example, you

need to break out the courses into their own table and modify the

students_courses table.

CourseID, CourseDescription, and CourseInstructor can become a table called

courses with a primary key of CourseID. The students_courses table should then

just contain two fields: StudentID and CourseID. You can see this new design in

Figure 15.10.

students

StudentID
StudentName

PK
courses

ClassID
ClassDescription
CourseInstructor

PK

student_courses

StudentID
ClassID 0

0

0

0

FIGURE 15.10
Taking your
tables to
second
normal form.

This structure should look familiar to you as a many-to-many relationship using an

intermediary mapping table. The third normal form is the last form you look at

here, and you should find that it is just as simple to understand as the first two.

Third Normal Form
The rule for the third normal form is as follows:

. No attributes depend on other nonkey attributes.

This rule simply means that you need to look at your tables and see whether you

have more fields that can be broken down further and that are not dependent on a

key. Think about removing repeated data and you’ll find your answer: instructors.

Inevitably, an instructor teaches more than one class. However, CourseInstructor

ptg8126863

292 CHAPTER 15: Understanding the Database Design Process

is not a key of any sort. So, if you break out this information and create a separate

table purely for the sake of efficiency and maintenance (as shown in Figure 15.11),

that is the third normal form.

students

StudentID
StudentName

PK instructors

InstructorID
InstructorName
InstructorNotes

PK

courses

ClassID
ClassDescription
CourseInstructorID

PK

student_courses

StudentID
CourseID 0

0

0

0
0

0

FIGURE 15.11
Taking your
tables to third
normal form.

Third normal form is usually adequate for removing redundancy and allowing for

flexibility and growth. The next section gives you some pointers for the thought

process involved in database design and where it fits in the overall design process of

your application.

Following the Design Process
The greatest problem in application design is a lack of forethought. As it applies to

database-driven applications, the design process must include a thorough evalua-

tion of your database—what it should hold, how data relates to each other, and

most important, whether it is scalable.

The general steps in the design process are as follow:

. Define the objective.

. Design the data structures (tables, fields).

. Discern relationships.

. Define and implement business rules.

. Create the application.

Creating the application is the last step, not the first. Many developers take an idea

for an application, build it, and then go back and try to make a set of database

tables fit into it. This approach is completely backward, inefficient, and will cost a

lot of time and money.

ptg8126863

Summary 293

Before you start any application design process, sit down and talk it out. If you can-

not describe your application—including the objectives, audience, and target mar-

ket—you are not ready to build it, let alone model the database.

After you can describe the actions and nuances of your application to other people

and have it make sense to them, you can start thinking about the tables you want

to create. Start with big flat tables because after you write them down, your new-

found normalization skills will take over. You will be able to find your redundancies

and visualize your relationships. As you become more experienced, you will be able

to minimize the steps in this process, but there’s nothing wrong with stepping

through them carefully and explicitly.

The next step is to do the normalization. Go from a flat table to the first normal

form and so on up to the third normal form if possible. Use paper, pencils, sticky

notes, or whatever helps you to visualize the tables and relationships. There’s no

shame in data modeling on sticky notes until you are ready to create the tables

themselves. Plus, using sticky notes is a lot cheaper than buying software to do it for

you; modeling software ranges from one hundred to several thousands of dollars.

After you have a preliminary data model, look at it from the application’s point of

view. Or look at it from the point of view of the person using the application you

are building. This is the point where you define business rules and see whether your

data model breaks. An example of a business rule for an online registration appli-

cation is, “Each user must have one email address, and it must not belong to any

other user.” If EmailAddress is not a unique field in your data model, your model

will break based on the business rule.

After your business rules have been applied to your data model, only then can

application programming begin. You can rest assured that your data model is solid

and you will not be programming yourself into a brick wall. The latter event is all

too common.

Summary
Following proper database design is the only way your application will be efficient,

flexible, and easy to manage and maintain. An important aspect of database

design is to use relationships between tables instead of throwing all your data into

one long flat file. Types of relationships include one-to-one, one-to-many, and

many-to-many.

ptg8126863

294

Using relationships to properly organize your data is called normalization. There

are many levels of normalization, but the primary levels are the first, second, and

third normal forms. Each level has a rule or two that you must follow. Following all

the rules helps ensure that your database is well organized and flexible.

To take an idea from inception through to fruition, you should follow a design

process. This process essentially says, “Think before you act.” Discuss rules, require-

ments, and objectives, and only then create the final version of your normalized

tables.

Q&A
Q. Are there only three normal forms?

A. No, there are more than three normal forms. Additional forms are the Boyce-

Codd normal form, fourth normal form, and fifth normal form/Join-Projection

normal form. These forms are not often followed in practical application

development because the benefits of doing so are outweighed by the cost in

man-hours and database efficiency (but it is certainly fine if you implement

them). For more information, please see http://en.wikipedia.org/wiki/

Database_normalization#Normal_forms.

Workshop
The workshop is designed to help you review what you have learned and begin put-

ting your knowledge into practice.

Quiz
1. Name three types of data relationships.

2. Because many-to-many relationships are difficult to represent in an efficient

database design, what should you do?

3. Name a few ways you can create visualizations of data relationships.

http://en.wikipedia.org/wiki/Database_normalization#Normal_forms
http://en.wikipedia.org/wiki/Database_normalization#Normal_forms

ptg8126863

Workshop 295

Answers
1. One-to-one, one-to-many, many-to-many.

2. Create a series of one-to-many relationships using intermediary mapping

tables.

3. You can use a range of tools, from sticky notes and string (where notes are the

tables and string shows the relationships between tables) to software used to

draw diagrams, to software programs that interpret your SQL statements and

produce visualizations.

Activity
Explain each of the three normal forms to a person who works with spreadsheets

and flat tables.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 16

Learning Basic SQL
Commands

In this chapter, you learn the following:
. The basic MySQL data types
. How to use the CREATE TABLE command to create a table
. How to use the INSERT command to enter records
. How to use the SELECT command to retrieve records
. How to use basic functions, the WHERE clause, and the GROUP BY clause in

SELECT expressions
. How to select from multiple tables, using JOIN or subselects
. How to use the UPDATE and REPLACE commands to modify existing records
. How to use the DELETE command to remove records
. How to use string functions built in to MySQL
. How to use date and time functions built in to MySQL

The preceding chapter explained the basics of the database design process, and this chap-

ter provides a primer on the core SQL syntax, which you use to create and manipulate

your MySQL database tables. This is a hands-on chapter, and it assumes that you can

issue queries directly to MySQL, either through the MySQL command-line interface or

through another management interface such as phpMyAdmin, which is included in the

XAMPP installation provided through the Quick Start process in Chapter 1, “Installation

QuickStart Guide with XAMPP.”

Note that although this might not be the most exciting chapter in the book, it does show

you many basic and functional examples of elements you’ll use throughout the rest of

your work.

ptg8126863

298 CHAPTER 16: Learning Basic SQL Commands

Learning the MySQL Data Types
Properly defining the fields in a table is important to the overall optimization of

your database. You should use only the type and size of field you really need to use;

do not define a field as 10 characters wide if you know you’re only going to use 2

characters—that’s 8 extra characters the database has to account for, even if they

are unused. These field types are also referred to as data types, as in the “type of

data” you will be storing in those fields.

MySQL uses many different data types, broken into three categories: numeric, date

and time, and string types. Pay close attention because properly defining the data

type is more important than any other part of the table-creation process.

Numeric Data Types
MySQL uses all the standard ANSI SQL numeric data types. So if you’re coming to

MySQL from a different database system, these definitions will look familiar to you.

The following list shows the common numeric data types and their descriptions:

The terms signed and unsigned are used in the list of numeric data types. If you
remember your basic algebra, you’ll recall that a signed integer can be a positive
or negative integer, whereas an unsigned integer is always a non-negative integer.

. INT—A normal-sized integer that can be signed or unsigned. If signed, the

allowable range is from –2147483648 to 2147483647. If unsigned, the allow-

able range is from 0 to 4294967295. You can specify a width of up to 11 digits.

. TINYINT—A small integer that can be signed or unsigned. If signed, the allow-

able range is from –128 to 127. If unsigned, the allowable range is from 0 to

255. You can specify a width of up to 4 digits.

. SMALLINT—A small integer that can be signed or unsigned. If signed, the

allowable range is from –32768 to 32767. If unsigned, the allowable range is

from 0 to 65535. You can specify a width of up to 5 digits.

. MEDIUMINT—A medium-sized integer that can be signed or unsigned. If signed,

the allowable range is from –8388608 to 8388607. If unsigned, the allowable

range is from 0 to 16777215. You can specify a width of up to 9 digits.

. BIGINT—A large integer that can be signed or unsigned. If signed, the allow-

able range is from –9223372036854775808 to 9223372036854775807. If

unsigned, the allowable range is from 0 to 18446744073709551615. You can

specify a width of up to 11 digits.

NOTE

ptg8126863

Learning the MySQL Data Types 299

. FLOAT(M,D)—A floating-point number that cannot be unsigned. You can

define the display length (M) and the number of decimals (D). This is not

required and defaults to 10,2, where 2 is the number of decimals and 10 is the

total number of digits (including decimals). Decimal precision can go to 24

places for a FLOAT.

. DOUBLE(M,D)—A double-precision floating-point number that cannot be

unsigned. You can define the display length (M) and the number of decimals

(D). This is not required and will default to 16,4, where 4 is the number of

decimals. Decimal precision can go to 53 places for a DOUBLE. REAL is a syn-

onym for DOUBLE.

. DECIMAL(M,D)—An unpacked floating-point number that cannot be unsigned.

In unpacked decimals, each decimal corresponds to 1 byte. Defining the dis-

play length (M) and the number of decimals (D) is required. NUMERIC is a syn-

onym for DECIMAL.

Of all the MySQL numeric data types, you will likely use INT most often. You can

run into problems if you define your fields to be smaller than you actually need; for

example, if you define an ID field as an unsigned TINYINT, you cannot successfully

insert that 256th record if ID is a primary key (and thus required).

Date and Time Types
MySQL has several data types available for storing dates and times, and these data

types are flexible in their input. In other words, you can enter dates that are not

really days, such as February 30—February has only 28 or 29 days, never 30. Also,

you can store dates with missing information. For example, if you know that some-

one was born sometime in November 1980, you can use 1980-11-00, where 00

would have been for the day, if you knew it.

The flexibility of MySQL’s date and time types also means that the responsibility for

date checking falls on the application developer (that would be you). MySQL checks

only two elements for validity: that the month is between 0 and 12 and that the day

is between 0 and 31. MySQL does not automatically verify that the thirtieth day of

the second month (February 30) is a valid date. Therefore, any date validation you

want to include in your application should happen in your PHP code before you

even attempt to add a record with a bogus date into your database table.

The MySQL date and time data types are as follows:

. DATE—A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31.

For example, December 30, 1973, is stored as 1973-12-30.

ptg8126863

300 CHAPTER 16: Learning Basic SQL Commands

. DATETIME—A date and time combination in YYYY-MM-DD HH:MM:SS format,

between 1000-01-01 00:00:00 and 9999-12-31 23:59:59. For example, 3:30 in

the afternoon on December 30, 1973, is stored as 1973-12-30 15:30:00.

. TIMESTAMP—A timestamp between midnight, January 1, 1970, and sometime

in 2037. You can define multiple lengths to the TIMESTAMP field, which directly

correlates to what is stored in it. The default length for TIMESTAMP is 14, which

stores YYYYMMDDHHMMSS. This looks like the previous DATETIME format,

only without the hyphens between numbers; 3:30 in the afternoon on

December 30, 1973, is stored as 19731230153000. Other definitions of TIME-

STAMP are 12 (YYMMDDHHMMSS), 8 (YYYYMMDD), and 6 (YYMMDD).

. TIME—Stores the time in HH:MM:SS format.

. YEAR(M)—Stores a year in two-digit or four-digit format. If the length is speci-

fied as 2 (for example, YEAR(2)), YEAR can be 1970 to 2069 (70 to 69). If the

length is specified as 4, YEAR can be 1901 to 2155. The default length is 4.

You will likely use DATETIME or DATE more often than any other date- or time-related

data type.

String Types
Although numeric and date types are fun, most data you’ll store will be in string

format. This list describes the common string data types in MySQL:

. CHAR(M)—A fixed-length string between 1 and 255 characters in length (for

example, CHAR(5)), right-padded with spaces to the specified length when

stored. Defining a length is not required, but the default is 1.

. VARCHAR(M)—A variable-length string between 1 and 255 characters in length;

for example, VARCHAR(25). You must define a length when creating a VARCHAR

field.

. BLOB or TEXT—A field with a maximum length of 65,535 characters. BLOBs are

Binary Large Objects and are used to store large amounts of binary data, such

as images or other types of files. Fields defined as TEXT also hold large

amounts of data; the difference between the two is that sorts and comparisons

on stored data are case sensitive on BLOBs and are not case sensitive in TEXT

fields. You do not specify a length with BLOB or TEXT.

. TINYBLOB or TINYTEXT—A BLOB or TEXT column with a maximum length of

255 characters. You do not specify a length with TINYBLOB or TINYTEXT.

ptg8126863

Learning the Table-Creation Syntax 301

. MEDIUMBLOB or MEDIUMTEXT—A BLOB or TEXT column with a maximum length

of 16,777,215 characters. You do not specify a length with MEDIUMBLOB or

MEDIUMTEXT.

. LONGBLOB or LONGTEXT—A BLOB or TEXT column with a maximum length of

4,294,967,295 characters. You do not specify a length with LONGBLOB or LONG-

TEXT.

. ENUM—An enumeration, which is a fancy term for list. When defining an

ENUM, you are creating a list of items from which the value must be selected

(or it can be NULL). For example, if you want your field to contain A or B or C,

you would define your ENUM as ENUM (‘A’, ‘B’, ‘C’), and only those val-

ues (or NULL) could ever populate that field. ENUMs can have 65,535 different

values. ENUMs use an index for storing items.

The SET type is similar to ENUM in that it is defined as a list. However, the SET
type is stored as a full value rather than an index of a value, as with ENUMs.

You will probably use VARCHAR and TEXT fields more often than other field types,

and ENUMs are useful as well.

Learning the Table-Creation Syntax
The table-creation command requires

. Name of the table

. Names of fields

. Definitions for each field

The generic table-creation syntax is

CREATE TABLE table_name (column_name column_type);

The table name is up to you, of course, but should be a name that reflects the usage

of the table. For example, if you have a table that holds the inventory of a grocery

store, you would not name the table s. You would probably name it something like

grocery_inventory. Similarly, the field names you select should be as concise as

possible and relevant to the function they serve and the data they hold. For exam-

ple, you might call a field holding the name of an item item_name, not n.

NOTE

ptg8126863

302 CHAPTER 16: Learning Basic SQL Commands

The following table-creation example creates a generic grocery_inventory table

with fields for ID, item name, item description, item price, and quantity. Each of the

fields are a different type; the ID and quantity fields hold integers, the item name

field holds up to 50 characters, the item description field holds up to 65,535 charac-

ters of text, and the item price field contains a float:

CREATE TABLE grocery_inventory (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

item_name VARCHAR (50) NOT NULL,

item_desc TEXT,

item_price FLOAT NOT NULL,

curr_qty INT NOT NULL

);

The id field is defined as a primary key. You learn more about keys in later chap-
ters, in the context of creating specific tables as parts of sample applications. In
addition, by using auto_increment as an attribute of the field in the example
here, you are telling MySQL to go ahead and add the next available number to the
id field for you when a record is inserted.

The MySQL server responds with Query OK each time a command, regardless of

type, is successful. Otherwise, an error message displays, telling you where your

query went awry. Depending on the interface you are using, you may or may not

see this specific response. However, regardless of the interface, it should provide you

with some indication of the status of the query.

Using the INSERT Command
After you have created some tables, you use the SQL command INSERT for adding

new records to these tables. The basic syntax of INSERT is

INSERT INTO table_name (column list) VALUES (column values);

Within the parenthetical list of values, you must enclose strings within quotation

marks. The SQL standard is single quotes, but MySQL enables the usage of either

single or double quotes. So, if you are used to working in Oracle, which forces single-

quoted strings, there’s no need to change your behavior. Remember to escape the

type of quotation mark used, if it is within the string itself.

Integers do not require quotation marks around them.

NOTE

NOTE

ptg8126863

Using the INSERT Command 303

Here is an example of a string where escaping is necessary:

O’Connor said “Boo”

If you enclose your strings in double quotes, the INSERT statement looks like this:

INSERT INTO table_name (column_name) VALUES (“O’Connor said \”Boo\””);

If you enclose your strings in single quotes instead, the INSERT statement looks like

this:

INSERT INTO table_name (column_name) VALUES (‘O\’Connor said “Boo”’);

A Closer Look at INSERT
Besides the table name, the INSERT statement consists of two main parts: the col-

umn list and the value list. Only the value list is actually required, but if you omit

the column list, you must specifically provide for each column in your value list—in

the exact order.

Using the grocery_inventory table as an example, you have five fields: id,

item_name, item_desc, item_price, and curr_qty. To insert a complete record, you

could use either of these statements:

. A statement with all columns named:

INSERT INTO grocery_inventory

(id, item_name, item_desc, item_price, curr_qty)

VALUES (‘1’, ‘Apples’, ‘Beautiful, ripe apples.’, ‘0.25’, 1000);

. A statement that uses all columns but does not explicitly name them:

INSERT INTO grocery_inventory VALUES (‘2’, ‘Bunches of Grapes’,

‘Seedless grapes.’, ‘2.99’, 500);

Give both of them a try and see what happens. You should get a successful response

to both commands.

Now for some more interesting methods of using INSERT. Because id was defined at

creation time as an auto-incrementing integer in the grocery_inventory table, you

do not have to put it in your value list. However, if there’s a value you specifically

do not want to list (such as id), you then must list the remaining columns in use.

For example, the following statement does not list the columns and does not give a

value for id:

INSERT INTO grocery_inventory VALUES

(‘Bottled Water (6-pack)’, ‘500ml spring water.’, 2.29, 250);

ptg8126863

304 CHAPTER 16: Learning Basic SQL Commands

The preceding statement produces an error, such as this:

ERROR 1136: Column count doesn’t match value count at row 1

Because you did not list any columns in this query, MySQL expects all of them to be

in the value list; since you did not, the query results in an error. If your goal was to

let MySQL do the work for you by auto-incrementing the id field, you could use

either of these statements:

. A statement with all columns named except id:

INSERT INTO grocery_inventory (item_name, item_desc, item_price, curr_qty)

VALUES (‘Bottled Water (6-pack)’, ‘500ml spring water.’, ‘2.29’, 250);

. A statement that uses all columns, but does not explicitly name them and

indicates a NULL entry for id (so one is filled in for you):

INSERT INTO grocery_inventory VALUES (‘NULL’, ‘Bottled Water (12-pack)’,

‘500ml spring water.’, 4.49, 500);

Go ahead and try both so that your grocery_inventory table has four records in

total. It makes no different to MySQL which one you use, but as with everything

based on your own preferences, be consistent in your application development.

Consistent structures are easier for you to debug later because you know what to

expect.

Using the SELECT Command
SELECT is the SQL command used to retrieve records from your tables. This com-

mand syntax can be totally simple or very complicated, depending on which fields

you want to select, whether you want to select from multiple tables, and what condi-

tions you plan to impose. As you become more comfortable with database program-

ming, you will learn to enhance your SELECT statements, ultimately making your

database do as much work as possible and not overworking your programming lan-

guage.

The most basic SELECT syntax looks like this:

SELECT expressions_and_columns FROM table_name
[WHERE some_condition_is_true]
[ORDER BY some_column [ASC | DESC]]
[LIMIT offset, rows]

Look at the first line:

SELECT expressions_and_columns FROM table_name

ptg8126863

Using the SELECT Command 305

One handy expression is the * symbol, which stands for everything. So, to select

everything (all rows, all columns) from the grocery_inventory table, your SQL

statement would be

SELECT * FROM grocery_inventory;

Depending on how much data is in the grocery_inventory table, your results will

vary, but the results might look something like this:

+----+-------------------------+-------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-------------------------+-------------------------+------------+----------+
1	Apples	Beautiful, ripe apples.	0.25	1000
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bottled Water (12-pack)	500ml spring water.	4.49	500
+----+-------------------------+-------------------------+------------+----------+
4 rows in set (0.00 sec)

This output comes from the MySQL command line interface; it creates a lovely,
formatted table with the names of the columns along the first row as part of the
resultset. If you are using a different interface to MySQL, your results will look dif-
ferent. (Focus on observing the expected data and not the interface differences.)

If you want to select specific columns only, replace the * with the names of the

columns, separated by commas. The following statement selects just the id,

item_name, and curr_qty fields from the grocery_inventory table:

SELECT id, item_name, curr_qty FROM grocery_inventory;

The results are displayed as:

+----+-------------------------+----------+
| id | item_name | curr_qty |
+----+-------------------------+----------+
1	Apples	1000
2	Bunches of Grapes	500
3	Bottled Water (6-pack)	250
4	Bottled Water (12-pack)	500
+----+-------------------------+----------+
4 rows in set (0.00 sec)

Ordering SELECT Results
Results of SELECT queries are ordered as they were inserted into the table and should

not be relied on as a meaningful ordering system. If you want to order results a specific

way, such as by date, ID, name, and so on, specify your requirements using the ORDER

NOTE

ptg8126863

306 CHAPTER 16: Learning Basic SQL Commands

BY clause. In the following statement, the intention is a resultset ordered alphanu-

merically by item_name:

SELECT id, item_name, curr_qty FROM grocery_inventory

ORDER BY item_name;

Success! The results are as follows:

+----+-------------------------+----------+
| id | item_name | curr_qty |
+----+-------------------------+----------+
1	Apples	1000
4	Bottled Water (12-pack)	500
3	Bottled Water (6-pack)	250
2	Bunches of Grapes	500
+----+-------------------------+----------+
4 rows in set (0.03 sec)

When selecting results from a table without specifying a sort order, the results
may or may not be ordered by their key value. This occurs because MySQL reuses
the space taken up by previously deleted rows. In other words, if you add records
with ID values of 1 through 5, delete the record with ID number 4, and then add
another record (ID number 6), the records might appear in the table in this order:
1, 2, 3, 6, 5.

The default sorting of ORDER BY results is ascending (ASC); strings sort from A to Z,

integers start at 0, and dates sort from oldest to newest. You can also specify a

descending sort, using DESC:

SELECT id, item_name, curr_qty FROM grocery_inventory

ORDER BY item_name DESC;

Here are the results:

+----+-------------------------+----------+
| id | item_name | curr_qty |
+----+-------------------------+----------+
2	Bunches of Grapes	500
3	Bottled Water (6-pack)	250
4	Bottled Water (12-pack)	500
1	Apples	1000
+----+-------------------------+----------+
4 rows in set (0.00 sec)

You’re not limited to sorting by just one field—you can specify as many fields as you

want as long as they are separated by commas. The sorting priority is the order in

which you list the fields.

TIP

ptg8126863

Using the SELECT Command 307

Limiting Your Results
You can use the LIMIT clause to return only a certain number of records from your

SELECT query result. Two requirements apply when using the LIMIT clause: the off-

set and the number of rows. The offset is the starting position, and the number of

rows should be self-explanatory.

Suppose that you have more than two or three records in the grocery_inventory

table, and you want to select the ID, name, and quantity of the first two, ordered by

curr_qty. In other words, you want to select the two items with the least inventory.

The following single-parameter limit starts at the 0 position and goes to the second

record:

SELECT id, item_name, curr_qty FROM grocery_inventory

ORDER BY curr_qty LIMIT 2;

Here are the results:

+----+------------------------+----------+
| id | item_name | curr_qty |
+----+------------------------+----------+
| 3 | Bottled Water (6-pack) | 250 |
| 2 | Bunches of Grapes | 500 |
+----+------------------------+----------+
2 rows in set (0.00 sec)

The LIMIT clause can prove useful in an actual application. For example, you can

use the LIMIT clause within a series of SELECT statements to travel through results

in steps (first two items, next two items, next two items after that):

1. SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 0, 2;

2. SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 2, 2;

3. SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 4, 2;

If you specify an offset and number of rows in your query, and no results

are found, you won’t see an error—just an empty resultset. For example, if

the grocery_inventory table contains only six records, a query with a LIMIT

offset of 6 produces no results.

In web-based applications, when you see lists of data display with links such as

“previous 10” and “next 10,” it’s a safe bet that a LIMIT clause is at work.

ptg8126863

308 CHAPTER 16: Learning Basic SQL Commands

Using WHERE in Your Queries
You have learned numerous ways to retrieve particular columns from your tables

but not specific rows. This is when the WHERE clause comes in to play. From the

example SELECT syntax, you see that WHERE is used to specify a particular condition:

SELECT expressions_and_columns FROM table_name
[WHERE some_condition_is_true]

An example is to retrieve all the records for items with a quantity of 500:

SELECT * FROM grocery_inventory WHERE curr_qty = 500;

Here are the results:

+----+-------------------------+---------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-------------------------+---------------------+------------+----------+
| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |
| 4 | Bottled Water (12-pack) | 500ml spring water. | 4.49 | 500 |
+----+-------------------------+---------------------+------------+----------+
2 rows in set (0.00 sec)

As shown previously, if you use an integer as part of your WHERE clause, quotation

marks are not required. Quotation marks are required around strings, however, and

the same rules apply with regard to escaping characters as you learned in the sec-

tion on INSERT.

Using Operators in WHERE Clauses
You’ve used the equal sign (=) in your WHERE clauses to determine the truth of a con-

dition—that is, whether one thing is equal to another. You can use many types of

operators, with comparison operators and logical operators being the most popular

types. Table 16.1 lists the comparison operators and their meanings.

TABLE 16.1 Basic Comparison Operators and Their Meanings

Operator Meaning

= Equal to

!= Not equal to

<= Less than or equal to

< Less than

>= Greater than or equal to

> Greater than

ptg8126863

Using WHERE in Your Queries 309

There’s also a handy operator called BETWEEN, which is useful with integer or date

comparisons because it searches for results between a minimum and maximum

value. For example:

SELECT * FROM grocery_inventory WHERE item_price BETWEEN 1.50 AND 3.00;

Here are the results:

+----+------------------------+---------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+------------------------+---------------------+------------+----------+
| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |
| 3 | Bottled Water (6-pack) | 500ml spring water. | 2.29 | 250 |
+----+------------------------+---------------------+------------+----------+
2 rows in set (0.00 sec)

Other operators include logical operators, which enable you to use multiple compar-

isons within your WHERE clause. The basic logical operators are AND and OR. When

using AND, all comparisons in the clause must be true to retrieve results, whereas

using OR allows a minimum of one comparison to be true. Also, you can use the IN

operator to specify a list of items that you want to match.

String Comparison Using LIKE
You were introduced to matching strings within a WHERE clause by using = or !=, but

there’s another useful operator for the WHERE clause when comparing strings: the

LIKE operator. This operator uses two characters as wildcards in pattern matching:

. %—Matches multiple characters

. _—Matches exactly one character

For example, if you want to find records in the grocery_inventory table where the

first name of the item starts with the letter A, you would use the following:

SELECT * FROM grocery_inventory WHERE item_name LIKE ‘A%’;

Here are the results:

+----+-----------+-------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-----------+-------------------------+------------+----------+
| 1 | Apples | Beautiful, ripe apples. | 0.25 | 1000 |
+----+-----------+-------------------------+------------+----------+
1 row in set (0.00 sec)

ptg8126863

310 CHAPTER 16: Learning Basic SQL Commands

Unless performing a LIKE comparison on a binary string, the comparison is not
case sensitive. You can force a case-sensitive comparison using the BINARY key-
word.

Selecting from Multiple Tables
You are not limited to selecting only one table at a time. That would certainly make

application programming a long and tedious task! When you select from more than

one table in one SELECT statement, you are really joining the tables together.

Suppose that you have two tables: fruit and color. You can select all rows from

each of the two tables by using two separate SELECT statements:

SELECT * FROM fruit;

This query might result in something like this:

+----+-----------+
| id | fruitname |
+----+-----------+
1	apple
2	orange
3	grape
4	banana
+----+-----------+
4 rows in set (0.00 sec)

SELECT * FROM color;

The second query could result in data like this:

+----+-----------+
| id | colorname |
+----+-----------+
1	red
2	orange
3	purple
4	yellow
+----+-----------+
4 rows in set (0.00 sec)

When you want to select from both tables at once, the syntax of the SELECT state-

ment differs somewhat. First, you must ensure that all the tables you’re using in

your query appear in the FROM clause of the SELECT statement. Using the fruit and

NOTE

ptg8126863

Selecting from Multiple Tables 311

color example, if you simply want to select all columns and rows from both tables,

you might think you would use the following SELECT statement:

SELECT * FROM fruit, color;

With this query, you get results like this:

+----+-----------+----+-----------+
| id | fruitname | id | colorname |
+----+-----------+----+-----------+
1	apple	1	red
2	orange	1	red
3	grape	1	red
4	banana	1	red
1	apple	2	orange
2	orange	2	orange
3	grape	2	orange
4	banana	2	orange
1	apple	3	purple
2	orange	3	purple
3	grape	3	purple
4	banana	3	purple
1	apple	4	yellow
2	orange	4	yellow
3	grape	4	yellow
4	banana	4	yellow
+----+-----------+----+-----------+
16 rows in set (0.00 sec)

Sixteen rows of repeated information are probably not what you were looking for.

What this query did is literally join a row in the color table to each row in the

fruit table. Because there are 4 records in the fruit table and 4 entries in the

color table, that’s 16 records returned to you.

When you select from multiple tables, you must build proper WHERE clauses to

ensure that you really get what you want. In the case of the fruit and color

tables, what you really want is to see the fruitname and colorname records from

these two tables where the IDs of each match up. This brings us to the next nuance

of the query: how to indicate exactly which field you want when the fields are

named the same in both tables.

Simply, you append the table name to the field name, like this:

tablename.fieldname

So, the query for selecting fruitname and colorname from both tables where the IDs

match would be as follows:

SELECT fruitname, colorname FROM fruit, color WHERE fruit.id = color.id;

ptg8126863

312 CHAPTER 16: Learning Basic SQL Commands

This query produces a better result for you:

+-----------+-----------+
| fruitname | colorname |
+-----------+-----------+
apple	red
orange	orange
grape	purple
banana	yellow
+-----------+-----------+
4 rows in set (0.00 sec)

However, if you attempt to select a column that appears in both tables with the

same name, you get an ambiguity error:

SELECT id, fruitname, colorname FROM fruit, color

WHERE fruit.id = color.id;

This query produces the following error:

ERROR 1052: Column: ‘id’ in field list is ambiguous

If you want to select the ID from the fruit table, you use this:

SELECT fruit.id, fruitname, colorname FROM fruit,

color WHERE fruit.id = color.id;

This query produces these results:

+------+-----------+-----------+
| id | fruitname | colorname |
+------+-----------+-----------+
1	apple	red
2	orange	orange
3	grape	purple
4	banana	yellow
+------+-----------+-----------+
4 rows in set (0.00 sec)

This was a basic example of joining two tables together for use in a single SELECT

query. The JOIN keyword is an actual part of SQL, which enables you to build more

complex queries.

Using JOIN
You can use several types of JOINs in MySQL, all of which refer to the order in which

the tables are put together and the results are displayed. The type of JOIN used with

the fruit and color tables is an INNER JOIN, although it wasn’t written explicitly

as such. To rewrite the SQL statement using the proper INNER JOIN syntax, you use

the following:

ptg8126863

Selecting from Multiple Tables 313

SELECT fruitname, colorname FROM fruit

INNER JOIN color ON fruit.id = color.id;

Your resultset looks like this:

+-----------+-----------+
| fruitname | colorname |
+-----------+-----------+
apple	red
orange	orange
grape	purple
banana	yellow
+-----------+-----------+
4 rows in set (0.00 sec)

The ON clause replaces the WHERE clause you’ve seen before; in this instance, it tells

MySQL to join together the rows in the tables where the IDs match each other.

When joining tables using ON clauses, you can use any conditions that you would

use in a WHERE clause, including all the various logical and arithmetic operators.

Another common type of JOIN is the LEFT JOIN. When joining two tables with LEFT

JOIN, all rows from the first table are returned, no matter whether there are matches

in the second table. Suppose that you have two tables in an address book, one

called master_name, containing basic records, and one called email, containing

email records. Any records in the email table would be tied to a particular ID of

a record in the master_name table. For example, look at these two tables (the

master_name and email tables, respectively):

+---------+-----------+----------+
| name_id | firstname | lastname |
+---------+-----------+----------+
1	John	Smith
2	Jane	Smith
3	Jimbo	Jones
4	Andy	Smith
5	Chris	Jones
6	Anna	Bell
7	Jimmy	Carr
8	Albert	Smith
9	John	Doe
+---------+-----------+----------+

+---------+-------------------+
| name_id | email |
+---------+-------------------+
2	jsmith@jsmith.com
6	annabell@aol.com
9	jdoe@yahoo.com
+---------+-------------------+

ptg8126863

314 CHAPTER 16: Learning Basic SQL Commands

Using LEFT JOIN on these two tables, you can see that if a value from the email

table does not exist, an empty value appears in place of an email address:

SELECT firstname, lastname, email FROM master_name

LEFT JOIN email ON master_name.name_id = email.name_id;

The LEFT JOIN query here produces these results:

+-----------+----------+-------------------+
| firstname | lastname | email |
+-----------+----------+-------------------+
John	Smith	
Jane	Smith	jsmith@jsmith.com
Jimbo	Jones	
Andy	Smith	
Chris	Jones	
Anna	Bell	annabell@aol.com
Jimmy	Carr	
Albert	Smith	
John	Doe	jdoe@yahoo.com
+-----------+----------+-------------------+
9 rows in set (0.00 sec)

A RIGHT JOIN works like LEFT JOIN but with the table order reversed. In other

words, when using a RIGHT JOIN, all rows from the second table are returned, no

matter whether matches exist in the first table. However, in the case of the

master_name and email tables, there are only three rows in the email table, where-

as there are nine rows in the master_name table. This means that only three of the

nine rows are returned by this query:

SELECT firstname, lastname, email FROM master_name

RIGHT JOIN email ON master_name.name_id = email.name_id;

The results are as expected:

+-----------+----------+-------------------+
| firstname | lastname | email |
+-----------+----------+-------------------+
Jane	Smith	jsmith@jsmith.com
Anna	Bell	annabell@aol.com
John	Doe	jdoe@yahoo.com
+-----------+----------+-------------------+
3 rows in set (0.00 sec)

Several different types of JOINs are available in MySQL, and you have learned

about the most common types. To learn more about JOINs such as CROSS

JOIN, STRAIGHT JOIN, and NATURAL JOIN, visit the MySQL Manual at

http://dev.mysql.com/doc/refman/5.5/en/join.html. As you continue your

learning elsewhere, I highly recommend learning more about and practicing

JOINs; they can be one of the most powerful tools in your SQL toolkit.

http://dev.mysql.com/doc/refman/5.5/en/join.html

ptg8126863

Selecting from Multiple Tables 315

Using Subqueries
Simply stated, a subquery is a SELECT statement that appears within another SQL

statement. Such queries can prove extremely useful because they often eliminate the

need for bulky JOIN queries, and in the case of application programming, sub-

queries can eliminate the need for multiple queries within loops.

An example of the basic subquery syntax is shown here:

SELECT expressions_and_columns FROM table_name WHERE somecolumn = (SUBQUERY);

You can also use subqueries with UPDATE and DELETE statements, as shown here:

DELETE FROM table_name WHERE somecolumn = (SUBQUERY);

or

UPDATE table_name SET somecolumn = ‘something’ WHERE somecolumn = (SUBQUERY);

The outer statement of a subquery can be SELECT, INSERT, UPDATE, DELETE, SET,
or DO.

The subquery must always appear in parentheses—no exceptions!

When using subqueries, the WHERE portion of the outer statement does not have to

use the = comparison operator. In addition to =, you can use any of the basic com-

parison operators as well as keywords such as IN.

The following example uses a subquery to obtain records from users in the mas-

ter_name table who have an email address in the email table:

SELECT firstname, lastname FROM master_name

WHERE name_id IN (SELECT name_id FROM email);

The results of this query may look something like this:

+—————-+—————+

| firstname | lastname |
+-----------+----------+
Jane	Smith
Anna	Bell
John	Doe
+-----------+----------+
3 rows in set (0.00 sec)

For a more detailed discussion of subqueries, including limitations, see the

Subqueries section of the MySQL Manual at http://dev.mysql.com/doc/refman/

5.5/en/subqueries.html.

NOTE

http://dev.mysql.com/doc/refman/5.5/en/subqueries.html
http://dev.mysql.com/doc/refman/5.5/en/subqueries.html

ptg8126863

316 CHAPTER 16: Learning Basic SQL Commands

Using the UPDATE Command to Modify
Records
UPDATE is the SQL command used to modify the contents of one or more columns in

an existing record or set of records. The most basic UPDATE syntax looks like this:

UPDATE table_name
SET column1=’new value’,
column2=’new value2’
[WHERE some_condition_is_true]

The guidelines for updating a record are similar to those used when inserting a

record: The data you’re entering must be appropriate to the data type of the field,

and you must enclose your strings in single or double quotes, escaping where neces-

sary.

For example, assume that you have a table called fruit containing an ID, a fruit

name, and the status of the fruit (ripe or rotten):

+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	apple	ripe
2	orange	rotten
3	grape	ripe
4	banana	rotten
+----+------------+--------+
4 rows in set (0.00 sec)

To update the status of the fruit to ripe, use

UPDATE fruit SET status = ‘ripe’;

You receive a response from the database like so:

Query OK, 2 rows affected (0.00 sec)
Rows matched: 4 Changed: 2 Warnings: 0

Take a close look at the result of the query. It was successful, as you can tell from the

Query OK message. Also note that only two rows were affected—if you try to set the

value of a column to the value it already is, the update won’t occur for that column.

The second line of the response shows that four rows were matched, and only two

were changed. If you’re wondering what matched, the answer is simple: Because

you did not specify a particular condition for matching, the match is all rows.

ptg8126863

Using the UPDATE Command to Modify Records 317

You must be careful and use a condition when updating a table, unless you really

intend to change all the columns for all records to the same value. For the sake of

argument, assume that the word grape is spelled incorrectly in its row in the table,

and you want to use UPDATE to correct this mistake:

UPDATE fruit SET fruit_name = ‘grape’;

This query would have horrible results:

Query OK, 4 rows affected (0.00 sec)
Rows matched: 4 Changed: 4 Warnings: 0

When you read the result, you should be filled with dread: Four of four records were

changed, instead of only the one you intended, meaning your fruit table now

looks like this:

+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	grape	ripe
2	grape	ripe
3	grape	ripe
4	grape	ripe
+----+------------+--------+
4 rows in set (0.00 sec)

All your fruit records are now grapes. While you were attempting to correct the

spelling of one field, all fields were changed because you failed to specify a condi-

tion.

When doling out UPDATE privileges to your users, think about the responsibility

you’re giving to someone—one wrong move and your entire table could be grapes.

In the preceding example, you could have used the id or fruit_name field in your

WHERE clause, as you will see in the following section.

Conditional UPDATEs
Making a conditional UPDATE means that you are using WHERE clauses to match spe-

cific records. Using a WHERE clause in an UPDATE statement is just like using a WHERE

clause in a SELECT statement. All the same comparison and logical operators can be

used, such as equal to, greater than, OR, and AND.

Assume that your fruit table has not been completely filled with grapes but

instead contains four records, one with a spelling mistake (grappe instead of grape).

The UPDATE statement to fix the spelling mistake is as follows:

UPDATE fruit SET fruit_name = ‘grape’ WHERE fruit_name = ‘grappe’;

ptg8126863

318 CHAPTER 16: Learning Basic SQL Commands

In this case, only one row was matched and one row was changed, as shown with

this result:

Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Your fruit table should be intact, and all fruit names should be spelled properly:

SELECT * FROM fruit;

This SELECT query shows the following:

+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	apple	ripe
2	pear	ripe
3	banana	ripe
4	grape	ripe
+----+------------+--------+
4 rows in set (0.00 sec)

Using Existing Column Values with UPDATE
Another feature of UPDATE is the capability to use the current value in the record as

the base value. For example, go back to the grocery_inventory table example,

with a table that looks like this:

+----+-------------------------+-------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-------------------------+-------------------------+------------+----------+
1	Apples	Beautiful, ripe apples.	0.25	1000
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bottled Water (12-pack)	500ml spring water.	4.49	500
5	Bananas	Bunches, green.	1.99	150
6	Pears	Anjou, nice and sweet.	0.5	500
7	Avocado	Large Haas variety.	0.99	750
+----+-------------------------+-------------------------+------------+----------+
7 rows in set (0.00 sec)

When someone purchases a product, such as an apple (id = 1), the inventory table

should be updated accordingly. However, you won’t know exactly what number to

enter in the curr_qty column, just that you sold one. In this case, use the current

value of the column and subtract 1:

UPDATE grocery_inventory SET curr_qty = curr_qty - 1 WHERE id = 1;

This query should give you a new value of 999 in the curr_qty column, and indeed

it does:

SELECT * FROM grocery_inventory;

ptg8126863

Using the REPLACE Command 319

The SELECT query shows the new inventory quantity:

+----+-------------------------+-------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-------------------------+-------------------------+------------+----------+
1	Apples	Beautiful, ripe apples.	0.25	999
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bottled Water (12-pack)	500ml spring water.	4.49	500
5	Bananas	Bunches, green.	1.99	150
6	Pears	Anjou, nice and sweet.	0.5	500
7	Avocado	Large Haas variety.	0.99	750
+----+-------------------------+-------------------------+------------+----------+
7 rows in set (0.00 sec)

Using the REPLACE Command
Another method for modifying records is to use the REPLACE command, which is

remarkably similar to the INSERT command.

REPLACE INTO table_name (column list) VALUES (column values);

The REPLACE statement works like this: If the record you are inserting into the table

contains a primary key value that matches a record already in the table, the record

in the table is deleted and the new record inserted in its place.

The REPLACE command is a MySQL-specific extension to ANSI SQL. This command
mimics the action of a DELETE and re-INSERT of a particular record. In other words,
you get two commands for the price of one.

Using the grocery_inventory table, the following command replaces the entry for

Apples:

REPLACE INTO grocery_inventory VALUES

(1, ‘Granny Smith Apples’, ‘Sweet!’, ‘0.50’, 1000);

You should see the following result:

Query OK, 2 rows affected (0.00 sec)

In the query result, notice that the result states 2 rows affected. In this case,

because id is a primary key that had a matching value in the grocery_inventory

table, the original row was deleted and the new row was inserted: 2 rows

affected.

Use a SELECT query to verify that the entry is correct, which it is:

NOTE

ptg8126863

320 CHAPTER 16: Learning Basic SQL Commands

+----+-------------------------+-------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-------------------------+-------------------------+------------+----------+
1	Granny Smith Apples	Sweet!	0.50	1000
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bottled Water (12-pack)	500ml spring water.	4.49	500
5	Bananas	Bunches, green.	1.99	150
6	Pears	Anjou, nice and sweet.	0.5	500
7	Avocado	Large Haas variety.	0.99	750
+----+-------------------------+-------------------------+------------+----------+
7 rows in set (0.00 sec)

If you use a REPLACE statement, and the value of the primary key in the new record

does not match a value for a primary key already in the table, the record is simply

inserted, and only one row is affected.

Using the DELETE Command
The basic DELETE syntax is as follows:

DELETE FROM table_name
[WHERE some_condition_is_true]
[LIMIT rows]

Notice that no column specification is used in the DELETE command—when you use

DELETE, the entire record is removed. You might recall the fiasco earlier in this chap-

ter regarding grapes in the fruit table, when updating a table without specifying a

condition caused an update of all records. You must be similarly careful when using

DELETE.

Assuming the following structure and data in a table called fruit

+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	apple	ripe
2	pear	rotten
3	banana	ripe
4	grape	rotten
+----+------------+--------+
4 rows in set (0.00 sec)

the following statement removes all records in the table:

DELETE FROM fruit;

ptg8126863

Using the DELETE Command 321

You can always verify the deletion by attempting to SELECT data from the table. If

you were to issue this command after removing all the records:

SELECT * FROM fruit;

You would see that all your fruit is gone:

Empty set (0.00 sec)

Conditional DELETE
A conditional DELETE statement, just like a conditional SELECT or UPDATE statement,

means you are using WHERE clauses to match specific records. You have the full

range of comparison and logical operators available to you, so you can pick and

choose which records you want to delete.

A prime example is to remove all records for rotten fruit from the fruit table:

DELETE FROM fruit WHERE status = ‘rotten’;

Two records were deleted:

Query OK, 2 rows affected (0.00 sec)

Only ripe fruit remains:

+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
| 1 | apple | ripe |
| 3 | banana | ripe |
+----+------------+--------+
2 rows in set (0.00 sec)

You can also use ORDER BY clauses in your DELETE statements; look at the basic

DELETE syntax with the ORDER BY clause added to its structure:

DELETE FROM table_name
[WHERE some_condition_is_true]
[ORDER BY some_column [ASC | DESC]]
[LIMIT rows]

At first glance, you might wonder, “Why does it matter in what order I delete

records?” The ORDER BY clause isn’t for the deletion order; it’s for the sorting order of

records.

ptg8126863

322 CHAPTER 16: Learning Basic SQL Commands

In this example, a table called access_log shows access time and username:

+----+---------------------+----------+
| id | date_accessed | username |
+----+---------------------+----------+
1	2012-01-06 06:09:13	johndoe
2	2012-01-06 06:09:22	janedoe
3	2012-01-06 06:09:39	jsmith
4	2012-01-06 06:09:44	mikew
+----+---------------------+----------+
4 rows in set (0.00 sec)

To remove the oldest record, first use ORDER BY to sort the results appropriately, and

then use LIMIT to remove just one record:

DELETE FROM access_log ORDER BY date_accessed DESC LIMIT 1;

Select all from access_log and verify that only three records exist:

SELECT * FROM access_log;

The results are as follows:

+----+---------------------+----------+
| id | date_accessed | username |
+----+---------------------+----------+
2	2012-01-06 06:09:22	janedoe
3	2012-01-06 06:09:39	jsmith
4	2012-01-06 06:09:44	mikew
+----+---------------------+----------+
3 rows in set (0.00 sec)

Frequently Used String Functions in
MySQL
MySQL’s built-in string-related functions can be used several ways. You can use func-

tions in SELECT statements without specifying a table to retrieve a result of the func-

tion. Or you can use functions to enhance your SELECT results by concatenating two

fields to form a new string. The following examples are by no means a complete

library of MySQL string-related functions. For more, see the MySQL Manual at

http://dev.mysql.com/doc/refman/5.5/en/string-functions.html.

Length and Concatenation Functions
The group of length and concatenation functions focuses on the length of strings

and concatenating strings together. Length-related functions include LENGTH(),

http://dev.mysql.com/doc/refman/5.5/en/string-functions.html

ptg8126863

Frequently Used String Functions in MySQL 323

OCTET_LENGTH(), CHAR_LENGTH(), and CHARACTER_LENGTH(), which do almost the

same thing: count characters in a string.

SELECT LENGTH(‘This is cool!’);

The result is this:

+-------------------------+
| LENGTH(‘This is cool!’) |
+-------------------------+
| 13 |
+-------------------------+
1 row in set (0.00 sec)

The fun begins with the CONCAT() function, which concatenates two or more strings:

SELECT CONCAT(‘My’, ‘S’, ‘QL’);

This query results in the following:

+-------------------------+
| CONCAT(‘My’, ‘S’, ‘QL’) |
+-------------------------+
| MySQL |
+-------------------------+
1 row in set (0.00 sec)

Imagine using this function with a table containing names, split into firstname

and lastname fields. Instead of using two strings, use two field names to concate-

nate the firstname and the lastname fields. By concatenating the fields, you reduce

the lines of code necessary to achieve the same result in your application:

SELECT CONCAT(firstname, lastname) FROM master_name;

This query results in the following:

+-----------------------------+
| CONCAT(firstname, lastname) |
+-----------------------------+
| JohnSmith |
| JaneSmith |
| JimboJones |
| AndySmith |
| ChrisJones |
| AnnaBell |
| JimmyCarr |
| AlbertSmith |
| JohnDoe |
+-----------------------------+
9 rows in set (0.00 sec)

ptg8126863

324 CHAPTER 16: Learning Basic SQL Commands

If you’re using a field name and not a string in a function, do not enclose the field
name within quotation marks. If you do, MySQL interprets the string literally. In a
CONCAT() example, like this

SELECT CONCAT(‘firstname’, ‘lastname’) FROM master_name;

you get the following result:
+---------------------------------+
| CONCAT(‘firstname’, ‘lastname’) |
+---------------------------------+
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
+---------------------------------+
9 rows in set (0.00 sec)

The CONCAT() function would be useful if there were some sort of separator between

the names, and that’s where the next function comes in: CONCAT_WS().

As you might have figured out, CONTACT_WS() stands for concatenate with separator.

The separator can be anything you choose, but the following example uses

whitespace:

SELECT CONCAT_WS(‘ ‘, firstname, lastname) FROM master_name;

This query results in the following:

+-------------------------------------+
| CONCAT_WS(‘ ‘, firstname, lastname) |
+-------------------------------------+
| John Smith |
| Jane Smith |
| Jimbo Jones |
| Andy Smith |
| Chris Jones |
| Anna Bell |
| Jimmy Carr |
| Albert Smith |
| John Doe |
+-------------------------------------+
9 rows in set (0.00 sec)

TIP

ptg8126863

Frequently Used String Functions in MySQL 325

If you want to shorten the width of your result table, you can use AS to name the

custom result field:

SELECT CONCAT_WS(‘ ‘, firstname, lastname) AS fullname FROM master_name;

With this, you get the following results:

+--------------+
| fullname |
+--------------+
| John Smith |
| Jane Smith |
| Jimbo Jones |
| Andy Smith |
| Chris Jones |
| Anna Bell |
| Jimmy Carr |
| Albert Smith |
| John Doe |
+--------------+
9 rows in set (0.00 sec)

Trimming and Padding Functions
MySQL provides several functions for adding and removing extra characters (includ-

ing whitespace) from strings. The RTRIM() and LTRIM() functions remove white-

space from either the right or left side of a string:

SELECT RTRIM(‘stringstring ‘);

This query results in the following, although it is difficult to see the change:

+--------------------------+
| RTRIM(‘stringstring ‘) |
+--------------------------+
| stringstring |
+--------------------------+
1 row in set (0.00 sec)

The LTRIM() function results are easier to see:

SELECT LTRIM(‘ stringstring’);

This query results in the following, with the whitespace clearly stripped:

+-------------------------+
| LTRIM(‘ stringstring’) |
+-------------------------+
| stringstring |
+-------------------------+
1 row in set (0.00 sec)

ptg8126863

326 CHAPTER 16: Learning Basic SQL Commands

You may have padded strings to trim if the string is coming out of a fixed-width

field and either doesn’t need to carry along the additional padding or is being

inserted into a varchar or other non-fixed-width field. If your strings are padded

with a character besides whitespace, use the TRIM() function to name the characters

you want to remove. For example, to remove the leading X characters from the

string XXXneedleXXX, use

SELECT TRIM(LEADING ‘X’ FROM ‘XXXneedleXXX’);

Here is the result of this query:

+---------------------------------------+
| TRIM(LEADING ‘X’ FROM ‘XXXneedleXXX’) |
+---------------------------------------+
| needleXXX |
+---------------------------------------+
1 row in set (0.00 sec)

You can use TRAILING to remove the characters from the end of the string:

SELECT TRIM(TRAILING ‘X’ FROM ‘XXXneedleXXX’);

The results of this query are as follows:

+--+
| TRIM(TRAILING ‘X’ FROM ‘XXXneedleXXX’) |
+--+
| XXXneedle |
+--+
1 row in set (0.00 sec)

If neither LEADING nor TRAILING is indicated, both are assumed:

SELECT TRIM(‘X’ FROM ‘XXXneedleXXX’);

This query results in this:

+-------------------------------+
| TRIM(‘X’ FROM ‘XXXneedleXXX’) |
+-------------------------------+
| needle |
+-------------------------------+
1 row in set (0.00 sec)

Just as RTRIM() and LTRIM()remove padding characters, RPAD() and LPAD() add

characters to a string. For example, you might want to add specific identification

characters to a string that is part of an order number, in a database used for sales.

ptg8126863

Frequently Used String Functions in MySQL 327

When you use the padding functions, the required elements are the string, the target

length, and the padding character. For example, pad the string needle with the X

character until the string is 10 characters long using this query:

SELECT RPAD(‘needle’, 10, ‘X’);

You will see this result:

+-------------------------+
| RPAD(‘needle’, 10, ‘X’) |
+-------------------------+
| needleXXXX |
+-------------------------+
1 row in set (0.00 sec)

Location and Position Functions
The group of location and position functions is useful for finding parts of strings

within other strings. The LOCATE() function returns the position of the first occur-

rence of a given substring within the target string. For example, you can look for a

needle in a haystack:

SELECT LOCATE(‘needle’, ‘haystackneedlehaystack’);

You should see this result:

+--+
| LOCATE(‘needle’, ‘haystackneedlehaystack’) |
+--+
| 9 |
+--+
1 row in set (0.00 sec)

The substring needle begins at position 9 in the target string. If the substring can-

not be found in the target string, MySQL returns 0 as a result.

Unlike position counting within most programming languages, which start at 0,
position counting using MySQL starts at 1.

An extension of the LOCATE() function is to use a third argument for starting posi-

tion. If you start looking for needle in haystack before position 9, you’ll receive a

result. Otherwise, because needle starts at position 9, you’ll receive a 0 result if you

specify a greater starting position.

NOTE

ptg8126863

328 CHAPTER 16: Learning Basic SQL Commands

Substring Functions
If your goal is to extract a substring from a target string, several functions fit the

bill. Given a string, starting position, and length, you can use the SUBSTRING()

function. This example gets three characters from the string MySQL, starting at posi-

tion 2:

SELECT SUBSTRING(“MySQL”, 2, 3);

The result is as follows:

+--------------------------+
| SUBSTRING(“MySQL”, 2, 3) |
+--------------------------+
| ySQ |
+--------------------------+
1 row in set (0.00 sec)

If you just want a few characters from the left or right ends of a string, use the

LEFT() and RIGHT() functions:

SELECT LEFT(“MySQL”, 2);

The result of this query is as follows:

+------------------+
| LEFT(“MySQL”, 2) |
+------------------+
| My |
+------------------+
1 row in set (0.00 sec)

Similarly, using RIGHT()

SELECT RIGHT(“MySQL”, 3);

produces the following results:

+-------------------+
| RIGHT(“MySQL”, 3) |
+-------------------+
| SQL |
+-------------------+
1 row in set (0.00 sec)

One of the many common uses of substring functions is to extract parts of order

numbers to find out who placed the order. In some applications, the system is

designed to automatically generate an order number containing a date, customer

ptg8126863

Frequently Used String Functions in MySQL 329

identification, and other information. If this order number always follows a particu-

lar pattern, such as XXXX-YYYYY-ZZ, you can use substring functions to extract the

individual parts of the whole. For example, if ZZ always represents the state to

which the order was shipped, you can use the RIGHT() function to extract these

characters and report the number of orders shipped to a particular state.

String Modification Functions
PHP has numerous functions to modify the appearance of strings, but if you can

perform the task as part of the SQL statement, all the better—let the database sys-

tem do as much work as possible.

The MySQL LCASE() and UCASE() functions transform a string into lowercase or

uppercase:

SELECT LCASE(‘MYSQL’);

This query produces the following results:

+----------------+
| LCASE(‘MYSQL’) |
+----------------+
| mysql |
+----------------+
1 row in set (0.00 sec)

For uppercasing, use the following

SELECT UCASE(‘mysql’);

This query produces the following results:

+----------------+
| UCASE(‘mysql’) |
+----------------+
| MYSQL |
+----------------+
1 row in set (0.00 sec)

A practical use of the LCASE() and UCASE() functions is when you are validating
user input against data stored in MySQL—such as in the case of a user login
form. If you want the login process to appear not case sensitive, you could
attempt to match the uppercase (or lowercase) version of the user input against
the uppercase (or lowercase) version of the data stored in the table.

TIP

ptg8126863

330 CHAPTER 16: Learning Basic SQL Commands

Remember, if you use the functions with field names, don’t use quotation marks:

SELECT UCASE(lastname) FROM master_name;

Use the preceding query to produce results like this:

+-----------------+
| UCASE(lastname) |
+-----------------+
| BELL |
| CARR |
| DOE |
| JONES |
| JONES |
| SMITH |
| SMITH |
| SMITH |
| SMITH |
+-----------------+
9 rows in set (0.00 sec)

Another fun string-manipulation function is REPEAT(), which does just what it

sounds like—repeats a string for a given number of times:

SELECT REPEAT(“bowwow”, 4);

You should see this result:

+--------------------------+
| REPEAT(“bowwow”, 4) |
+--------------------------+
| bowwowbowwowbowwowbowwow |
+--------------------------+
1 row in set (0.00 sec)

The REPLACE() function replaces all occurrences of a given string with another

string:

SELECT REPLACE(‘bowwowbowwowbowwowbowwow’, ‘wow’, ‘WOW’);

This query produces the following:

+---+
| REPLACE(‘bowwowbowwowbowwowbowwow’, ‘wow’, ‘WOW’) |
+---+
| bowWOWbowWOWbowWOWbowWOW |
+---+
1 row in set (0.00 sec)

ptg8126863

Using Date and Time Functions in MySQL 331

Using Date and Time Functions in
MySQL
You can use MySQL’s built-in date-related functions in SELECT statements, with or

without specifying a table, to retrieve a result of the function. Or you can use the

functions with any type of date field: date, datetime, timestamp, and year.

Depending on the type of field in use, the results of the date-related functions are

more or less useful. The following examples are by no means a complete library of

MySQL date and time-related functions. For more, see the MySQL Manual at

http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html.

Working with Days
The DAYOFWEEK() and WEEKDAY() functions do similar things with slightly different

results. Both functions find the weekday index of a date, but the difference lies in

the starting day and position.

If you use DAYOFWEEK(), the first day of the week is Sunday, at position 1, and the

last day of the week is Saturday, at position 7. For example:

SELECT DAYOFWEEK(‘2012-01-09’);

This query produces the following result:

+-------------------------+
| DAYOFWEEK(‘2012-01-09’) |
+-------------------------+
| 2 |
+-------------------------+
1 row in set (0.00 sec)

The result shows that January 9, 2012, was weekday index 2, or Monday. Using the

same date with WEEKDAY() gives you a different result with the same meaning:

+-----------------------+
| WEEKDAY(‘2012-01-09’) |
+-----------------------+
| 0 |
+-----------------------+
1 row in set (0.00 sec)

The result shows that January 9, 2012, was weekday index 0. Because WEEKDAY()

uses Monday as the first day of the week at position 0 and Sunday as the last day at

position 6, 0 is accurate: Monday.

http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html

ptg8126863

332 CHAPTER 16: Learning Basic SQL Commands

The DAYOFMONTH() and DAYOFYEAR() functions are more straightforward, with only

one result and a range that starts at 1 and ends at 31 for DAYOFMONTH() and 366 for

DAYOFYEAR(). Some examples follow:

SELECT DAYOFMONTH(‘2012-01-09’);

This query produces the following results:

+--------------------------+
| DAYOFMONTH(‘2012-01-09’) |
+--------------------------+
| 9 |
+--------------------------+
1 row in set (0.00 sec)

Now try:

SELECT DAYOFYEAR(‘2012-01-09’);

This query produces the following results:

+-------------------------+
| DAYOFYEAR(‘2012-01-09’) |
+-------------------------+
| 09 |
+-------------------------+
1 row in set (0.00 sec)

It might seem odd to have a function that returns the day of the month on a partic-

ular date because the day is right there in the string. But think about using these

types of functions in WHERE clauses to perform comparisons on records. If you have a

table that holds online orders with a field containing the date the order was placed,

you can quickly get a count of the orders placed on any given day of the week, or

see how many orders were placed during the first half of the month versus the sec-

ond half.

The following two queries show how many orders were placed during the first three

days of the week (throughout all months) and then the remaining days of the week:

SELECT COUNT(id) FROM orders WHERE DAYOFWEEK(date_ordered) < 4;

SELECT COUNT(id) FROM orders WHERE DAYOFWEEK(date_ordered) > 3;

Using DAYOFMONTH(), the following examples show the number of orders placed dur-

ing the first half of any month versus the second half:

SELECT COUNT(id) FROM orders WHERE DAYOFMONTH(date_ordered) < 16;

SELECT COUNT(id) FROM orders WHERE DAYOFMONTH(date_ordered) > 15;

ptg8126863

Using Date and Time Functions in MySQL 333

You can use the DAYNAME() function to add more life to your results because it

returns the name of the weekday for any given date:

SELECT DAYNAME(date_ordered) FROM orders;

This query produces results such as these:

+-----------------------+
| DAYNAME(date_ordered) |
+-----------------------+
| Thursday |
| Monday |
| Thursday |
| Thursday |
| Wednesday |
| Thursday |
| Sunday |
| Sunday |
+-----------------------+
8 rows in set (0.00 sec)

Functions aren’t limited to WHERE clauses—you can use them in ORDER BY clauses as

well, such as the following:

SELECT DAYNAME(date_ordered) FROM orders ORDER BY DAYOFWEEK(date_ordered);

Working with Months and Years
Days of the week are not the only parts of the calendar, and MySQL has functions

specifically for months and years as well. Just like the DAYOFWEEK() and DAYNAME()

functions, MONTH() and MONTHNAME() return the number of the month in a year and

the name of the month for a given date. For example:

SELECT MONTH(‘2012-01-09’), MONTHNAME(‘2012-01-09’);

This query produces the following:

+---------------------+-------------------------+
| MONTH(‘2012-01-09’) | MONTHNAME(‘2012-01-09’) |
+---------------------+-------------------------+
| 1 | January |
+---------------------+-------------------------+
1 row in set (0.00 sec)

ptg8126863

334 CHAPTER 16: Learning Basic SQL Commands

Using MONTHNAME() on the orders table shows the proper results but can show a lot

of repeated data:

+-------------------------+
| MONTHNAME(date_ordered) |
+-------------------------+
| November |
| November |
| November |
| November |
| November |
| November |
| November |
| October |
+-------------------------+
8 rows in set (0.00 sec)

You can use DISTINCT to get nonrepetitive results:

SELECT DISTINCT MONTHNAME(date_ordered) FROM orders;

This query produces results like these:

+-------------------------+
| MONTHNAME(date_ordered) |
+-------------------------+
| November |
| October |
+-------------------------+
2 rows in set (0.00 sec)

For work with years, the YEAR() function returns the year of a given date:

SELECT DISTINCT YEAR(date_ordered) FROM orders;

This query produces results like the following:

+--------------------+
| YEAR(date_ordered) |
+--------------------+
| 2011 |
| 2012 |
+--------------------+
1 row in set (0.00 sec)

Working with Weeks
Weeks can be tricky things—there can be 53 weeks in a year if Sunday is the first

day of the week and December hasn’t ended. For example, December 30 of 2001

was a Sunday:

SELECT DAYNAME(‘2001-12-30’);

ptg8126863

Using Date and Time Functions in MySQL 335

Here’s proof:

+-----------------------+
| DAYNAME(‘2001-12-30’) |
+-----------------------+
| Sunday |
+-----------------------+
1 row in set (0.00 sec)

That fact made December 30 of 2001 part of the 53rd week of the year, which you

can see using this query:

SELECT WEEK(‘2001-12-30’);

The week of the year is shown appropriately in the results:

+--------------------+
| WEEK(‘2001-12-30’) |
+--------------------+
| 53 |
+--------------------+
1 row in set (0.00 sec)

The 53rd week contained December 30 and 31 and was only 2 days long; the first

week of 2002 began with January 1.

If you want your weeks to start on Mondays but still want to find the week of the

year, the optional second argument enables you to change the start day. A 1 indi-

cates a week that starts on Monday. In the following examples, a Monday start day

makes December 30 part of the 52nd week of 2001, but December 31 is still part of

the 53rd week of 2001:

SELECT WEEK(‘2001-12-30’,1);

This query produces the following results:

+----------------------+
| WEEK(‘2001-12-30’,1) |
+----------------------+
| 52 |
+----------------------+
1 row in set (0.00 sec)

While this query:

SELECT WEEK(‘2001-12-31’,1);

produces this result:

ptg8126863

336 CHAPTER 16: Learning Basic SQL Commands

+----------------------+
| WEEK(‘2001-12-31’,1) |
+----------------------+
| 53 |
+----------------------+
1 row in set (0.00 sec)

Working with Hours, Minutes, and Seconds
If you’re using a date that includes the exact time, such as datetime or timestamp,

or even just a time field, there are functions to find the hours, minutes, and seconds

from that string. Not surprisingly, these functions are called HOUR(), MINUTE(), and

SECOND(). HOUR() returns the hour in a given time, which is between 0 and 23. The

range for MINUTE() and SECOND() is 0 to 59.

Here is an example:

SELECT HOUR(‘2012-01-09 07:27:49’) AS hour,

MINUTE(‘2012-01-09 07:27:49’) AS minute,

SECOND(‘2012-01-09 07:27:49’) AS second;

This query produces the following:

+------+--------+--------+
| hour | minute | second |
+------+--------+--------+
| 7 | 27 | 49 |
+------+--------+--------+
1 row in set (0.00 sec)

That’s a lot of queries to get at one time from a datetime field—you can put the

hour and minute together and even use CONCAT_WS() to put the : between the

results and get a representation of the time:

SELECT CONCAT_WS(‘:’,HOUR(‘2012-01-09 07:27:49’),

MINUTE(‘2012-01-09 07:27:49’)) AS sample_time;

This query produces the following:

+-------------+
| sample_time |
+-------------+
| 7:27 |
+-------------+
1 row in set (0.00 sec)

In the next section, you learn how to use the DATE_FORMAT() function to properly

format dates and times.

ptg8126863

Using Date and Time Functions in MySQL 337

Formatting Dates and Times with MySQL
The DATE_FORMAT() function formats a date, datetime, or timestamp field into a

string by using options that tell it exactly how to display the results. The syntax of

DATE_FORMAT() is as follows:

DATE_FORMAT(date,format)

Table 16.2 lists many formatting options for DATE_FORMAT().

TABLE 16.2 DATE_FORMAT() Format String Options

Option Result

%M Month name (January through December)

%b Abbreviated month name (Jan through Dec)

%m Month, padded digits (01 through 12)

%c Month (1 through 12)

%W Weekday name (Sunday through Saturday)

%a Abbreviated weekday name (Sun through Sat)

%D Day of the month using the English suffix, such as first, second,
third, and so on

%d Day of the month, padded digits (00 through 31)

%e Day of the month (0 through 31)

%j Day of the year, padded digits (001 through 366)

%Y Year, four digits

%y Year, two digits

%X Four-digit year for the week where Sunday is the first day; used
with %V

%x Four-digit year for the week where Monday is the first day; used
with %v

%w Day of the week (0=Sunday…6=Saturday)

%U Week (0 through 53) where Sunday is the first day of the week

%u Week (0 through 53) where Monday is the first day of the week

%V Week (1 through 53) where Sunday is the first day of the week;
used with %X

%v Week (1 through 53) where Monday is the first day of the week;
used with %x

%H Hour, padded digits (00 through 23)

ptg8126863

338 CHAPTER 16: Learning Basic SQL Commands

TABLE 16.2 Continued

%k Hour (0 through 23)

%h Hour, padded digits (01 through 12)

%l Hour (1 through 12)

%i Minutes, padded digits (00 through 59)

%S Seconds, padded digits (00 through 59)

%s Seconds, padded digits (00 through 59)

%r Time, 12-hour clock (hh:mm:ss [AP]M)

%T Time, 24-hour clock (hh:mm:ss)

%p AM or PM

Any other characters used in the DATE_FORMAT() option string appear literally.

To display the 02:02 result that we rigged in the previous section, you use the %h

and %i options to return the hour and minute from the date with a : between the

two options. For example:

SELECT DATE_FORMAT(‘2012-01-09 02:02:00’, ‘%h:%i’) AS sample_time;

This query produces the following:

+-------------+
| sample_time |
+-------------+
| 02:02 |
+-------------+
1 row in set (0.00 sec)

The following are just a few more examples of the DATE_FORMAT() function in use,

but this function is best understood by practicing it yourself.

SELECT DATE_FORMAT(‘2012-01-09’, ‘%W, %M %D, %Y’) AS sample_time;

This query produces the following output:

+----------------------------+
| sample_time |
+----------------------------+
| Monday, January 9th, 2012 |
+----------------------------+
1 row in set (0.00 sec)

NOTE

ptg8126863

Using Date and Time Functions in MySQL 339

Here’s a query to format the time right now (well, when I wrote this):

SELECT DATE_FORMAT(NOW(),’%W the %D of %M, %Y

around %l o\’clock %p’) AS sample_time;

The output as I ran the query just this moment was this:

+---+
| sample_time |
+---+
| Tuesday the 10th of January, 2012 around 8 o’clock PM |
+---+
1 row in set (0.04 sec)

Take some time to play around with date formatting options on your own; there are

plenty, and you’ll find them easy to follow.

Performing Date Arithmetic with MySQL
MySQL has several functions to help perform date arithmetic, and this is one of the

areas where it is typically more efficient to allow MySQL to do the math than your

PHP script. The DATE_ADD() and DATE_SUB() functions return a result given a start-

ing date and an interval. The syntax for both functions is as follows:

DATE_ADD(date,INTERVAL value type)

DATE_SUB(date,INTERVAL value type)

Table 16.3 shows the possible types and their expected value format.

TABLE 16.3 Values and Types in Date Arithmetic

Value Type

Number of seconds SECOND

Number of minutes MINUTE

Number of hours HOUR

Number of days DAY

Number of months MONTH

Number of years YEAR

“minutes:seconds” MINUTE_SECOND

“hours:minutes” HOUR_MINUTE

“days hours” DAY_HOUR

“years-months” YEAR_MONTH

“hours:minutes:seconds” HOUR_SECOND

“days hours:minutes” DAY_MINUTE

“days hours:minutes:seconds” DAY_SECOND

ptg8126863

340 CHAPTER 16: Learning Basic SQL Commands

For example, to find the date of the current day plus 21 days, use the following:

SELECT DATE_ADD(NOW(), INTERVAL 21 DAY);

The query as I ran it just now produced the following result:

+----------------------------------+
| DATE_ADD(NOW(), INTERVAL 21 DAY) |
+----------------------------------+
| 2012-01-31 21:02:16 |
+----------------------------------+
1 row in set (0.02 sec)

Using DATE_SUB() produced this result:

+----------------------------------+
| DATE_SUB(NOW(), INTERVAL 21 DAY) |
+----------------------------------+
| 2011-12-20 21:02:23 |
+----------------------------------+
1 row in set (0.00 sec)

Use the expression DAY as shown in Table 16.3, despite what might be a natural ten-

dency to use DAYS instead of DAY. Using DAYS results in an error:

ERROR 1064: You have an error in your SQL syntax near ‘DAYS)’ at line 1

If you use DATE_ADD() or DATE_SUB() with a date value rather than a datetime

value, the result is shown as a date value unless you use expressions related to

hours, minutes, and seconds. In that case, your result is a datetime result.

For example, the result of the first query here remains a date field, whereas the sec-

ond becomes a datetime:

SELECT DATE_ADD(“2011-12-31”, INTERVAL 1 DAY);

This query produces the following results:

+--+
| DATE_ADD(“2011-12-31”, INTERVAL 1 DAY) |
+--+
| 2012-01-01 |
+--+
1 row in set (0.00 sec)

While this query:

SELECT DATE_ADD(“2011-12-31”, INTERVAL 12 HOUR);

produces this result:

ptg8126863

Using Date and Time Functions in MySQL 341

+--+
| DATE_ADD(“2011-12-31”, INTERVAL 12 HOUR) |
+--+
| 2011-12-31 12:00:00 |
+--+
1 row in set (0.00 sec)

You can also perform date arithmetic using the + and - operators instead of

DATE_ADD() and DATE_SUB() functions, such as here:

SELECT “2011-12-31” + INTERVAL 1 DAY;

This query produces the following result:

+-------------------------------+
| “2011-12-31” + INTERVAL 1 DAY |
+-------------------------------+
| 2012-01-01 |
+-------------------------------+
1 row in set (0.00 sec)

Special Functions and Conversion Features
The MySQL NOW() function returns a current datetime result and is useful for time-

stamping login or access times, as well as for numerous other tasks. MySQL has a

few other functions that perform similarly.

The CURDATE() and CURRENT_DATE() functions are synonymous, and each returns

the current date in YYYY-MM-DD format:

SELECT CURDATE(), CURRENT_DATE();

This query produces results like the following:

+------------+----------------+
| CURDATE() | CURRENT_DATE() |
+------------+----------------+
| 2012-01-10 | 2012-01-10 |
+------------+----------------+
1 row in set (0.01 sec)

Similarly, the CURTIME() and CURRENT_TIME() functions return the current time in

HH:MM:SS format:

SELECT CURTIME(), CURRENT_TIME();

ptg8126863

342 CHAPTER 16: Learning Basic SQL Commands

This query produces results like the following:

+-----------+----------------+
| CURTIME() | CURRENT_TIME() |
+-----------+----------------+
| 09:14:26 | 09:14:26 |
+-----------+----------------+
1 row in set (0.00 sec)

The NOW(), SYSDATE(), and CURRENT_TIMESTAMP() functions return values in full

datetime format (YYYY-MM-DD HH:MM:SS):

SELECT NOW(), SYSDATE(), CURRENT_TIMESTAMP();

This query produces results like the following:

+---------------------+---------------------+---------------------+
| NOW() | SYSDATE() | CURRENT_TIMESTAMP() |
+---------------------+---------------------+---------------------+
| 2012-01-10 15:23:52 | 2012-01-10 15:23:52 | 2012-01-10 15:23:52 |
+---------------------+---------------------+---------------------+
1 row in set (0.00 sec)

The UNIX_TIMESTAMP() function returns the current date in—or converts a given

date to—UNIX timestamp format. UNIX timestamp format is in seconds since the

epoch, or seconds since midnight, January 1, 1970. For example:

SELECT UNIX_TIMESTAMP();

This query produces results like the following for the time the query is run:

+------------------+
| UNIX_TIMESTAMP() |
+------------------+
| 1326247953 |
+------------------+
1 row in set (0.00 sec)

This query gets the UNIX timestamp for a specific date:

SELECT UNIX_TIMESTAMP(‘1973-12-30’);

The result of this query is:

+------------------------------+
| UNIX_TIMESTAMP(‘1973-12-30’) |
+------------------------------+
| 126086400 |
+------------------------------+
1 row in set (0.00 sec)

The FROM_UNIXTIME() function performs a conversion of a UNIX timestamp to a

full datetime format when used without any options:

SELECT FROM_UNIXTIME(‘1326247953’);

ptg8126863

Summary 343

The result of this query is as follows:

+-----------------------------+
| FROM_UNIXTIME(‘1326247953’) |
+-----------------------------+
| 2012-01-10 21:12:33 |
+-----------------------------+
1 row in set (0.00 sec)

You can use the format options from the DATE_FORMAT() functions to display a

timestamp in a more appealing manner:

SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(), ‘%D %M %Y at %h:%i:%s’);

The result of this query at the moment I wrote this is this:

+---+
| FROM_UNIXTIME(UNIX_TIMESTAMP(), ‘%D %M %Y at %h:%i:%s’) |
+---+
| 10th January 2012 at 09:15:38 |
+---+
1 row in set (0.00 sec)

Summary
In this chapter, you learned the basics of SQL, from table creation to manipulating

records. The table-creation command requires three important pieces of information:

the table name, the field name, and the field definitions. Field definitions are impor-

tant because a well-designed table helps speed along your database. MySQL has

three different categories of data types: numeric, date and time, and string.

The INSERT command, used to add records to a table, names the table and columns

you want to populate and then defines the values. When placing values in the

INSERT statement, you must enclose strings within single or double quotes. The

SELECT SQL command is used to retrieve records from specific tables. The * charac-

ter enables you to easily select all fields for all records in a table, but you can also

specify particular column names. If the resultset is too long, the LIMIT clause pro-

vides a simple method for extracting slices of results if you indicate a starting posi-

tion and the number of records to return. To order the results, use the ORDER BY

clause to select the columns to sort. Sorts can be performed on integers, dates, and

strings, in either ascending or descending order. The default order is ascending.

Without specifying an order, results display in the order they appear in the table.

You can pick and choose which records you want to return using WHERE clauses to

test for the validity of conditions. Comparison or logical operators are used in WHERE

clauses, and sometimes both types are used for compound statements. Selecting

ptg8126863

344 CHAPTER 16: Learning Basic SQL Commands

records from multiple tables within one statement is as advanced as it gets because

this type of statement—called JOIN—requires forethought and planning to produce

correct results. Common types of JOIN are INNER JOIN, LEFT JOIN, and RIGHT

JOIN, although MySQL supports many different kinds of JOIN. You also learned that

you can use subqueries instead of JOINs when working with multiple tables.

The UPDATE and REPLACE commands modify existing data in your MySQL tables.

UPDATE is good for changing values in specific columns and for changing values in

multiple records based on specific conditions. REPLACE is a variation of INSERT that

deletes and then reinserts a record with a matching primary key. Be careful when

using UPDATE to change values in a column because failure to add a condition

results in the given column being updated throughout all records in the table.

The DELETE command is simple: It removes whole records from tables. This also

makes it dangerous, so be sure you give DELETE privileges only to users who can

handle the responsibility. You can specify conditions when using DELETE so that

records are removed only if a particular expression in a WHERE clause is true. Also,

you can delete smaller sets of records in your table using a LIMIT clause. If you have

an exceptionally large table, deleting portions is less resource-intensive than delet-

ing each record in a huge table.

You were introduced to MySQL functions that perform actions on strings, dates, and

times. If you have strings in MySQL that you want to concatenate or for which you

want to count characters, you can use functions such as CONCAT(), CONCAT_WS(),

and LENGTH(). To pad or remove padding from strings, use RPAD(), LPAD(), TRIM(),

LTRIM(), and RTRIM() to get just the strings you want. You can also find the loca-

tion of a string within another string, or return a part of a given string using the

LOCATE(), SUBSTRING(), LEFT(), and RIGHT() functions. Functions such as

LCASE(), UCASE(), REPEAT(), and REPLACE() also return variations of the original

strings. MySQL’s built-in date and time functions can definitely take some of the

load off your application by internally formatting dates and times and performing

the date and time arithmetic. The formatting options used for the DATE_FORMAT()

function provide a simple method to produce a custom display string from any sort

of date field. The DATE_ADD() and DATE_SUB() functions and their numerous avail-

able interval types help you determine dates and times in the past or future. In

addition, functions such as DAY(), WEEK(), MONTH(), and YEAR() prove useful for

extracting parts of dates for use in WHERE or ORDER BY clauses.

ptg8126863

345Q&A

Q&A
Q. What characters can I use to name my tables and fields, and what is the

character limit?

A. The maximum length of database, table, or field names is 64 characters. Any

character you can use in a directory name or filename, you can use in data-

base and table names, except / and .. These limitations are in place because

MySQL creates directories and files in your filesystem, which correspond to

database and table names. No character limitations (besides length) apply in

field names.

Q. Can I use multiple functions in one statement, such as making a concate-
nated string all uppercase?

A. Sure. Just be mindful of your opening and closing parentheses. This example

shows how to uppercase the concatenated first and last names from the mas-

ter name table:

SELECT UCASE(CONCAT_WS(‘ ‘, firstname, lastname)) FROM master_name;

The results would be something like this:

+--+
| UCASE(CONCAT_WS(‘ ‘, firstname, lastname)) |
+--+
| JOHN SMITH |
| JANE SMITH |
| JIMBO JONES |
| ANDY SMITH |
| CHRIS JONES |
| ANNA BELL |
| JIMMY CARR |
| ALBERT SMITH |
| JOHN DOE |
+--+
9 rows in set (0.00 sec)

If you want to uppercase just the last name, use this:

SELECT CONCAT_WS(‘ ‘, firstname, UCASE(lastname)) FROM master_name;

The results would be something like this:

+--+
| CONCAT_WS(‘ ‘, firstname, UCASE(lastname)) |
+--+
| John SMITH |
| Jane SMITH |

ptg8126863

346 HOUR 5: Text Alignment, Lists, and Special Characters

| Jimbo JONES |
| Andy SMITH |
| Chris JONES |
| Anna BELL |
| Jimmy CARR |
| Albert SMITH |
| John DOE |
+--+
9 rows in set (0.00 sec)

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. The integer 56678685 could be which data type(s)?

2. How would you define a field that could contain only the following strings:

apple, pear, banana, cherry?

3. What would be the LIMIT clauses for selecting the first 25 records of a table?

Then the next 25?

4. How do you formulate a string comparison using LIKE to match first names

of John or Joseph?

5. How do you explicitly refer to a field called id in a table called table1?

6. Write a SQL statement that joins two tables, orders and items_ordered,

each of which has a primary key of order_id. From the orders table, select

the following fields: order_name and order_date. From the items_ordered

table, select the item_description field.

7. Write a SQL query to find the starting position of a substring “grape” in a

string “applepearbananagrape”.

8. Write a query that selects the last five characters from the string “applepear-

bananagrape”.

ptg8126863

347Workshop

Answers
1. MEDIUMINT, INT, or BIGINT.

2. ENUM (‘apple’, ‘pear’, ‘banana’, ‘cherry’)

or

SET (‘apple’, ‘pear’, ‘banana’, ‘cherry’)

3. LIMIT 0, 25 and LIMIT 25, 25

4. LIKE ‘Jo%’

5. Use table1.id instead of id in your query.

6. SELECT orders.order_name, orders.order_date,

items_ordered.item_description FROM orders LEFT JOIN

items_ordered ON orders.order_id = items_ordered.id;

7. SELECT LOCATE(‘grape’, ‘applepearbananagrape’);

8. SELECT RIGHT(“applepearbananagrape”, 5);

Activity
Take the time to create some sample tables and practice using basic INSERT and

SELECT commands.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 17

Using Transactions and
Stored Procedures in MySQL

In this chapter, you learn the following:
. The basics of transactions and how to use them in MySQL
. The basics of stored procedures and how to create and access them

in MySQL

In the preceding chapter, you learned the basics of SQL and how to use the MySQL

command-line interface to issue queries and retrieve the results. Armed with only that

knowledge, you can successfully complete the projects found in the remaining chapters

of this book. However, when you move forward with your knowledge and think about

building applications suitable for use in an enterprise environment, you might require

more advanced tactics to maintain the integrity of your data and enhance your applica-

tion’s communication with MySQL.

Although the remaining chapters in this book do not contain elements from this

chapter—keeping the examples as simple as possible so that your foundational knowledge

is strong—you can easily update the code on your own to include the information you

learn in this chapter.

What Are Transactions?
Database transactions are sets of queries that must execute in such a way so that if one

query fails to execute completely they all fail. For instance, suppose that you have a set of

three queries, the second dependent on the results of the first, and the third dependent on

the results of the second. If the second query fails, you need to have a way to negate the

results of the first query; similarly, if the third query fails, you need to negate the results of

the first and second queries, as well.

ptg8126863

350 CHAPTER 17: Using Transactions and Stored Procedures in MySQL

By instituting transactional processing in your database-driven applications, you

ensure the integrity of the data stored in your database. The following sections

describe the process of using transactions both through the command-line interface

and PHP functions.

Fully transactional tables in MySQL are available when using the InnoDB storage
engine. Beginning with MySQL 5.5.5, InnoDB is the default storage engine for new
tables (see http://dev.mysql.com/doc/refman/5.5/en/innodb-default-se.html for
more information). If your tables are of the MyISAM type, they will not be fully
transactional.

Basic Syntax Used in Transactions
You need to understand the following key terms when thinking about using transac-

tions with MySQL:

. COMMIT—This command occurs at the end of the series of queries in your

transaction and is issued only if all the required queries have executed

successfully.

. ROLLBACK—This command is used when one or more of the series of queries in

your transaction fails and resets the affected tables to their pretransaction

state.

Going back to the scenario mentioned at the start of this discussion, of three queries

dependent on each other, a sequence of events in the MySQL command-line inter-

face might look something like this:

1. Issue the BEGIN command to begin a new transaction.

2. Select a value from table1 to insert into table2.

3. If a value cannot be selected from table1, issue a ROLLBACK command to

ensure that the transaction ends and that the tables return to their previous

state.

4. If a value can be selected from table1, insert a value into table2.

5. If the insertion of a record into table2 fails, issue a ROLLBACK command to

ensure that the transaction ends and that the tables return to their previous

state.

6. If a value can be inserted into table1, insert a value into table2.

NOTE

http://dev.mysql.com/doc/refman/5.5/en/innodb-default-se.html

ptg8126863

What Are Transactions? 351

7. If the insertion of a record into table3 fails, issue a ROLLBACK command to

ensure that the transaction ends and that the tables return to their previous

state.

8. However, if the insertion of a record into table3 is successful, issue a COMMIT

command to ensure that the transaction ends and that the tables update

appropriately.

For more information on the inner workings of transactions in MySQL,

see the MySQL Manual at http://dev.mysql.com/doc/refman/5.5/en/

sql-syntax-transactions.html.

The next section provides an example of transactions as used with inventory and

sales records tables.

Working Example Using Transactions
For the purposes of this example, suppose that you’ve created an online storefront

with database tables that hold inventory, sales records, and the line items for the

sales records. The CREATE statements might look something like this:

CREATE TABLE store_inventory (
id int not null primary key auto_increment,
item_name varchar(50),
item_price float(6,2),
item_qty int

) ENGINE=InnoDB;

CREATE TABLE store_orders (
id int not null primary key auto_increment,
purchaser_name varchar(50),
purchase_date datetime

) ENGINE=InnoDB;

CREATE TABLE store_orders_items (
id int not null primary key auto_increment,
order_id int,
inventory_id int,
item_qty int

) ENGINE=InnoDB;

In the store_inventory table for this example, you can find two records:

+----+------------+------------+----------+
| id | item_name | item_price | item_qty |
+----+------------+------------+----------+
| 1 | Great Book | 19.99 | 10 |
| 2 | Awesome CD | 9.99 | 20 |
+----+------------+------------+----------+

http://dev.mysql.com/doc/refman/5.5/en/sql-syntax-transactions.html
http://dev.mysql.com/doc/refman/5.5/en/sql-syntax-transactions.html

ptg8126863

352 CHAPTER 17: Using Transactions and Stored Procedures in MySQL

If a shopper wants to purchase two Great Books and one Awesome CD through your

online store, the process would go something like this:

1. The user completes an online form and attempts to pay for the purchases, so

issue a BEGIN command for the transaction that would be part of the checkout

script:

BEGIN;

2. Decrement the quantity of items in the store_inventory table:

UPDATE store_inventory SET item_qty = item_qty - 2 WHERE id = 1;
UPDATE store_inventory SET item_qty = item_qty - 1 WHERE id = 2;

3. Add a record to the store_orders table:

INSERT INTO store_orders (purchaser_name, purchase_date)
VALUES (‘John Smith’, now());

4. If adding the record fails, issue a ROLLBACK command to reset the available

quantity of the items:

ROLLBACK;

5. If adding the record succeeds, get the ID of the record just added and use it in

your query to add line items to the sales record by inserting records in the

store_orders_items table:

INSERT INTO store_orders_items (order_id, inventory_id, item_qty)
VALUES (‘1’, ‘1’, ‘2’);

INSERT INTO store_orders_items (order_id, inventory_id, item_qty)
VALUES (‘1’, ‘2’, ‘1’);

6. If adding the records fails, issue a ROLLBACK command to reset the available

quantity of the items and remove the record in store_orders:

ROLLBACK;

7. If adding the records succeeds but the subsequent charging of a credit card or

other payment method fails, issue a ROLLBACK command to reset the available

quantity of the items, remove the record in store_orders, and remove the

records in store_orders_items:

ROLLBACK;

8. If adding the records succeeds and the subsequent charging of a credit card or

other payment method succeeds, issue a COMMIT command to ensure that all

the changes are stored and the transaction ends:

COMMIT;

ptg8126863

What Are Stored Procedures? 353

Of course, an online storefront does not directly interface with MySQL via the

command-line interface but rather through a scripting language such as PHP.

However, if you understand the processes behind the transaction, plugging it into

PHP is simple—issuing the queries and commands listed previously is no different

from any other PHP-to-MySQL communication, which you learn about in Chapter

18, “Interacting with MySQL Using PHP.”

In addition to the information you learn in Chapter 18, be sure to review these func-

tion definitions in the PHP Manual if you intend to use transactions in your scripts:

. mysqli_autocommit()—http://www.php.net/mysqli_autocommit

. mysqli_commit()—http://www.php.net/mysqli_commit

. mysqli_rollback()—http://www.php.net/mysqli_rollback

I also can’t stress enough that you review the MySQL Manual for more information on

transactions, at http://dev.mysql.com/doc/refman/5.5/en/sql-syntax-transactions.html,

especially the areas that discuss the types of transactions that cannot be rolled back—

administrative actions, for the most part, but still useful to know.

What Are Stored Procedures?
Simply put, a stored procedure is a procedure in SQL that is stored in the database

server rather than the web server. You might be thinking that you don’t store any

procedures on the web server, but in fact you do: Any script that contains SQL

queries counts as a procedure stored on the web server. For example, every query in

your application that selects, deletes, updates, or inserts data into tables—which you

will have painstakingly coded in your scripts—can be stored in the database as a

stored procedure and referenced as such in your scripts.

Proponents of using stored procedures in code point to performance and mainte-

nance as key reasons for doing so:

. Better performance—Stored procedures exist as precompiled SQL in the

database, so a typical two-step process (compile and execute) becomes a

single-step process (execute).

. Ease of maintenance—Maintaining one statement in one place (the data-

base) is significantly less time-consuming than maintaining one statement in

numerous places, such as all through scripts on your web server. In addition,

storing all your statements in the database as opposed to actual text files in

your web server document root is one more line of defense should someone

gain access to the files on your web server; all that person has are queries that

call stored procedures instead of the logic of the procedure itself.

http://www.php.net/mysqli_commit
http://www.php.net/mysqli_rollback
http://dev.mysql.com/doc/refman/5.5/en/sql-syntax-transactions.html
http://www.php.net/mysqli_autocommit

ptg8126863

354 CHAPTER 17: Using Transactions and Stored Procedures in MySQL

An example of a useful stored procedure is the SQL query used to generate a report

of some sort—be it financial data, sales inventory, or otherwise; just imagine a com-

plex query that involves a lot of processing. Creating a stored procedure out of this

type of query goes along with the performance benefits of stored procedures. If you

have a simple query used often throughout your application, creating a stored pro-

cedure for it would go along with the maintenance benefits of stored procedures.

Regardless of the simplicity or complexity of the stored procedure, creating and

using it follows the same basic process.

This stored procedure example uses the following table:

CREATE TABLE testSP (
id int not null primary key auto_increment,
field_name varchar(25),
date_added datetime

) ENGINE=InnoDB;

The values of this table for testing purposes are as follows:

+----+------------+---------------------+
| id | field_name | date_added |
+----+------------+---------------------+
1	Value 1	2012-01-23 09:40:24
2	Value 2	2012-01-24 09:40:24
3	Value 3	2012-01-25 09:40:24
4	Value 4	2012-01-26 09:40:24
5	Value 5	2012-01-27 09:40:24
6	Value 6	2012-01-30 09:40:24
7	Value 7	2012-01-31 09:40:24
8	Value 8	2012-02-01 09:40:24
9	Value 9	2012-02-02 09:40:24
10	Value 10	2012-02-14 09:40:24
+----+------------+---------------------+

Moving past this sample table and into the stored procedure syntax, you next must

ensure that MySQL knows the delimiter character you’ll be using in your stored pro-

cedures. This example uses // as the delimiter, so you issue the following query:

DELIMITER //

The syntax for creating a basic stored procedure is as follows:

CREATE PROCEDURE procedure_name () query //

For this example, the stored procedure simply selects all data from the testSP table

that has been added in the past 7 days. The name of the stored procedure is sp1:

CREATE PROCEDURE sp1 () SELECT * FROM testSP WHERE date_added BETWEEN

DATE_SUB(NOW(), INTERVAL 7 DAY) AND NOW() //

ptg8126863

Q&A 355

To call the stored procedure, use the CALL command:

CALL sp1 () //

The results of the stored procedure (the SELECT query) are returned to you:

+----+------------+---------------------+
| id | field_name | date_added |
+----+------------+---------------------+
2	Value 2	2012-01-24 09:40:24
3	Value 3	2012-01-25 09:40:24
4	Value 4	2012-01-26 09:40:24
5	Value 5	2012-01-27 09:40:24
6	Value 6	2012-01-30 09:40:24
+----+------------+---------------------+

In Chapter 18, you learn the process for issuing these and all SQL queries using PHP.

Clearly, these few pages do not even begin to scratch the surface of working with

stored procedures. This section intends only to introduce you to the concept.

Additional recommended reading includes the MySQL Manual entries on stored

procedures, at http://dev.mysql.com/doc/refman/5.5/en/stored-routines.html.

Summary
This short chapter provided an introduction to the concepts of transactional process-

ing and the use of stored procedures in MySQL when using the InnoDB storage

engine. In addition to a brief overview of both topics, real-life examples described

each of these advanced topics. The overall purpose of this chapter was to introduce

you to some concepts and keywords you should understand by the time you are

developing enterprise applications on your own. Keep these ideas in the back of

your mind as you work through the examples in this book and try to find ways to

improve on the basic queries used.

Q&A
Q. Do I have to use transactions all the time now that MySQL supports them?

A. No, especially not if the dynamic aspect of your application or site is for

dynamic display of data and not for dynamic insertion of data. In addition, if

the insertion of data is not necessarily related to any financial- or inventory-

related actions, you could get away with not using transactions. In other

words, if you do not use transactions and an insert or update query fails, be

sure that you can live with the failure—either because no money or crucial

customer data would be lost.

http://dev.mysql.com/doc/refman/5.5/en/stored-routines.html

ptg8126863

356 CHAPTER 17: Using Transactions and Stored Procedures in MySQL

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. True or False: MyISAM is the default and fully transactional storage engine in

MySQL.

2. If step two of a three-step transaction fails, what command would you issue?

3. What are two advantages of using stored procedures?

Answers
1. False. InnoDB is the default storage engine and supports full transactions.

2. ROLLBACK

3. Better performance and ease of maintenance

Activities
1. Think of some additional types of database interactions that might require

transactions, and create your own set of tables like those shown in this chap-

ter. Practice issuing and rolling back commands in all the logical places where

your interactions could call for them.

2. Create a stored procedure (and its required tables) that reports on all sales

transactions that include a specific item, that took place between two given

dates.

ptg8126863

CHAPTER 18

Interacting with MySQL
Using PHP

In this chapter, you learn the following:
. How to connect to MySQL using PHP
. How to insert and select data through PHP scripts

Now that you have learned the basics of PHP and the basics of working with MySQL, you

are ready to make the two interact. Think of PHP as a conduit to MySQL: The commands

you learned in the previous chapter are the same commands that you send to MySQL in

this chapter, only this time you send them with PHP.

MySQL or MySQLi Functions?
If you are returning to PHP from working with it years earlier, or have worked with

current versions of PHP but with very old versions of MySQL, you might have used the

mysql_* family of functions. You might also find code examples all over the Internet that

use the mysql_* family of functions.

However, since MySQL 4.1.3 (well over 7 years ago at this point), the database system

includes functionality necessitating new communications methods in PHP, all encom-

passed in the mysqli_* family of functions.

All code in this chapter, and throughout the rest of this book, uses the mysqli_* family

of functions. For more information, see the PHP Manual chapter “MySQL Improved

Extension,” at http://www.php.net/mysqli.

http://www.php.net/mysqli

ptg8126863

358 CHAPTER 18: Interacting with MySQL Using PHP

Connecting to MySQL with PHP
To successfully use the PHP functions to talk to MySQL, you must have MySQL run-

ning at a location to which your web server can connect (not necessarily the same

machine as your web server). You also must have created a user (with a password),

and you must know the name of the database to which you want to connect. If you

followed the instructions in Chapter 2, “Installing and Configuring MySQL,” and

Chapter 4, “Installing and Configuring PHP,” you should already have taken care of

this. If you are using PHP and MySQL as part of a hosting package at an Internet

service provider, make sure that you have either been given or have created a user-

name, password, and database name before proceeding.

In all script examples in this chapter, the database name is testDB, the user is

joeuser, and the password is somepass. Substitute your own information when you

use these scripts.

All code in this chapter (as well as other chapters moving forward) reflect the pro-
cedural use of the mysqli_* family of functions. You can also use these functions
in an object-oriented way. For more information on that, visit the PHP Manual at
http://www.php.net/mysqli.

If you are coming to PHP from an object-oriented programming language or have
an object-oriented mindset, I recommend reviewing the object-oriented functionality
in the PHP Manual and substituting it where appropriate—conceptually, these
processes are all quite similar.

However, if you are new to programming, or have not yet embraced an object-
oriented mindset, there is nothing wrong with learning the procedural style or
using it in your daily work. I continue to use procedural programming throughout
this book because it has proven the best way for new programmers to understand
the processes.

Making a Connection
The basic syntax for a connection to MySQL is as follows:

$mysqli = mysqli_connect(“hostname”, “username”, “password”, “database”);

The value of $mysqli is the result of the function and is used in later functions for

communicating with MySQL.

With sample values inserted, the connection code looks like this:

$mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);

NOTE

http://www.php.net/mysqli

ptg8126863

Connecting to MySQL with PHP 359

Listing 18.1 is a working example of a connection script. It creates a new connection

in line 2 and then tests to see whether an error occurred. If an error occurred, line 5

prints an error message and uses the mysqli_connect_error() function to print the

message. If no error occurs, line 8 prints a message that includes host information

resulting from calling the mysqli_get_host_info() function.

LISTING 18.1 A Simple Connection Script
1: <?php
2: $mysqli = new mysqli(“localhost”, “joeuser”, “somepass”, “testDB”);
3:
4: if (mysqli_connect_errno()) {
5: printf(“Connect failed: %s\n”, mysqli_connect_error());
6: exit();
7: } else {
8: printf(“Host information: %s\n”, mysqli_get_host_info($mysqli));
9: }
10: ?>

Save this script as mysqlconnect.php and place it in the document area of your web

server. Access the script with your web browser and you will see something like the

following, if the connection was successful:

Host information: localhost via TCP/IP

You might also see this:

Host information: Localhost via UNIX socket

If the connection fails, an error message is printed. Line 5 generates an error via the

mysqli_connect_error() function. An example is shown here:

Connect failed: Access denied for user ‘joeuser’@’localhost’ (using password:
YES)

However, if the connection is successful, line 8 prints the output of
mysqli_get_host_info(), such as examples above.

Although the connection closes when the script finishes its execution, it is a good

practice to close the connection explicitly. You can see how to do this in line 9 of

Listing 18.2, using the mysqli_close() function.

LISTING 18.2 The Modified Simple Connection Script
1: <?php
2: $mysqli = new mysqli(“localhost”, “joeuser”, “somepass”, “testDB”);
3:
4: if (mysqli_connect_errno()) {
5: printf(“Connect failed: %s\n”, mysqli_connect_error());
6: exit();

ptg8126863

360 CHAPTER 18: Interacting with MySQL Using PHP

LISTING 18.2 Continued
7: } else {
8: printf(“Host information: %s\n”, mysqli_get_host_info($mysqli));
9: mysqli_close($mysqli);
10: }
11: ?>

We did not use the mysql_close() function after line 5 because if line 5 is executed,

it is because no connection was made in the first place.

That’s all there is to basic connectivity to MySQL using PHP. The next section covers

the query execution functions, which are much more interesting than simply open-

ing a connection and letting it sit there.

Executing Queries
Half the battle in executing MySQL queries using PHP is knowing how to write the

SQL—and you’ve already learned the basics of this in previous chapters. The

mysqli_query() function in PHP is used to send your SQL query to MySQL.

In your script, first make the connection and then execute a query. The script in

Listing 18.3 creates a simple table called testTable.

LISTING 18.3 A Script to Create a Table
1: <?php
2: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
3:
4: if (mysqli_connect_errno()) {
5: printf(“Connect failed: %s\n”, mysqli_connect_error());
6: exit();
7: } else {
8: $sql = “CREATE TABLE testTable
9: (id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
10: testField VARCHAR(75))”;
11: $res = mysqli_query($mysqli, $sql);
12:
13: if ($res === TRUE) {
14: echo “Table testTable successfully created.”;
15: } else {
16: printf(“Could not create table: %s\n”, mysqli_error($mysqli));
17: }
18:
19: mysqli_close($mysqli);
20: }
21: ?>

When you issue queries via a script, the semicolon at the end of the SQL state-
ment is not required.

NOTE

ptg8126863

Working with MySQL Data 361

In lines 8–10, the text that makes up the SQL statement is assigned to the variable

$sql. This is arbitrary, and you do not even need to place the content of your SQL

query in a separate variable. (It appears as such in the example so that the different

parts of this process are clear.)

The mysqli_query function returns a value of true or false, and this value is

checked in the if...else statement beginning in line 13. If the value of $res is

true, a success message is printed to the screen. If you access MySQL through the

command-line interface to verify the creation of the testTable table, you will see

the following output of DESCRIBE testTable:

+-----------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+----------------+
| id | int(11) | | PRI | NULL | auto_increment |
| testField | varchar(75) | YES | | NULL | |
+-----------+-------------+------+-----+---------+----------------+

If this is the case, congratulations; you have successfully created a table in your

MySQL database using PHP.

However, if the value of $res is not true and the table was not created, an error

message appears, generated by the mysqli_error() function.

Retrieving Error Messages
Take some time to familiarize yourself with the mysqli_error() function; it will

become your friend. When used in conjunction with the PHP die() function, which

simply exits the script at the point at which it appears, the mysqli_error() func-

tion returns a helpful error message when you make a mistake.

For example, now that you have created a table called testTable, you cannot exe-

cute that script again without an error. Try to execute the script again; when you

execute the script, you should see something like the following in your web browser:

Could not create table: Table ‘testtable’ already exists

How exciting! Move on to the next section to start inserting data into your table,

and soon you’ll be retrieving and formatting it via PHP.

Working with MySQL Data
Inserting, updating, deleting, and retrieving data all revolve around the use of the

mysqli_query() function to execute the basic SQL queries you learned about in

Chapter 16, “Learning Basic SQL Commands.” For INSERT, UPDATE, and DELETE

ptg8126863

362 CHAPTER 18: Interacting with MySQL Using PHP

queries, no additional scripting is required after the query has been executed

because you’re not displaying any results (unless you want to). When using SELECT

queries, you have a few options for displaying the data retrieved by your query. After

an important message about SQL Injection, we start with the basics and insert some

data so that you’ll have something to retrieve later.

Avoiding SQL Injection
In the table-creation script in Listing 18.3, the data used in the SQL query was hard-

coded into the script. However, in the types of dynamic websites or web-based appli-

cations that you are likely to build, you will most often be INSERTing data into a

table or SELECTing from a table based on user input from a form or other process. If

you do not pay attention to this user input and sanitize it before using it in your

queries, you are vulnerable to SQL injection.

SQL injection happens when nefarious individuals take the opportunity to type full

or partial SQL queries in your form fields, with the assumption that when the script

processes these queries, security will be breached and data potentially exposed.

A famous XKCD comic strip, informally known as the “Little Bobby Tables” strip,
perfectly illustrates the issue of SQL injections. This strip is often referenced in
discussion forums and other programming-related help sites, with respondents
saying “Don’t forget Little Bobby Tables!” when providing answers to form input
and query-related questions. You can see the strip at http://xkcd.com/327/.

Take the following example, which attempts to gather user information from a table

called users where the name field matches a value completed in a form; this is

much like a web-based login process:

SELECT * FROM users
WHERE name = ‘“.$_POST[‘username_from_form’].”’;

Imagine the value entered in the username_from_form field is something like this:

‘ or ‘1’=’1

This results in a full query as follows:

SELECT * FROM users
WHERE name = ‘ ‘ or ‘1’=’1’;

This query always results in a valid response, because 1 = 1 always returns true.

NOTE

http://xkcd.com/327/

ptg8126863

Working with MySQL Data 363

You probably get the idea, but if not, the PHP Manual has several more

examples on the SQL Injection page at http://www.php.net/manual/en/

security.database.sql-injection.php. Throughout this book, the code examples limit

vulnerability to SQL injection, with one exception: displaying error messages. While

you are learning, and operating in a development rather than production environ-

ment, I support the printing of error messages to the screen so that you understand

what is happening (or not). In a production environment, you should suppress error

messages, especially when they show the names of database users or tables.

After you have mastered the concepts involved with working with MySQL and PHP
in the procedural ways as indicated throughout this book, take a look at the PDO
(PHP Data Objects) abstraction layer for further hardening of your production
applications: http://www.php.net/manual/en/book.pdo.php. A good place to
start would be the section on prepared statements and stored procedures:
http://www.php.net/manual/en/pdo.prepared-statements.php.

Inserting Data with PHP
The easiest (and safest) method for inserting data at this stage in the game is to

simply hard-code the INSERT statement, as shown in Listing 18.4.

LISTING 18.4 A Script to Insert a Record
1: <?php
2: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
3:
4: if (mysqli_connect_errno()) {
5: printf(“Connect failed: %s\n”, mysqli_connect_error());
6: exit();
7: } else {
8: $sql = “INSERT INTO testTable (testField) VALUES (‘some value’)”;
9: $res = mysqli_query($mysqli, $sql);
10:
11: if ($res === TRUE) {
12: echo “A record has been inserted.”;
13: } else {
14: printf(“Could not insert record: %s\n”, mysqli_error($mysqli));
15: }
16:
17: mysqli_close($mysqli);
18: }
19: ?>

The only change between this script—for record insertion—and the script in Listing

18.3 for table creation is the SQL query stored in the $sql variable on line 8 and text

modifications on lines 12 and 14. The connection code and the structure for issuing

TIP

http://www.php.net/manual/en/security.database.sql-injection.php
http://www.php.net/manual/en/security.database.sql-injection.php
http://www.php.net/manual/en/book.pdo.php
http://www.php.net/manual/en/pdo.prepared-statements.php

ptg8126863

364 CHAPTER 18: Interacting with MySQL Using PHP

a query remain the same. In fact, most procedural code for accessing MySQL falls

into this same type of code template.

Call this script mysqlinsert.php and place it on your web server. Running this

script results in the addition of a row to the testTable table. To enter more records

than the one shown in the script, you can either make a long list of hard-coded SQL

statements and use mysqli_query() multiple times to execute these statements or

you can create a form-based interface to the record addition script, which we do

next.

To create the form for this script, you need only one field, because the id field can

automatically increment. The action of the form is the name of the record-addition

script; let’s call it insert.php. Your HTML form might look something like Listing

18.5.

LISTING 18.5 An Insert Form
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Record Insertion Form</title>
5: </head>
6: <body>
7: <form action=”insert.php” method=”POST”>
8: <p><label for=”testfield”>Text to Add:</label>

9: <input type=”text” id=”testfield” name=”testfield” size=”30” /></p>
10: <button type=”submit” name=”submit” value=”insert”>Insert Record</button>
11: </form>
12: </body>
13: </html>

Save this file as insert_form.html and put it in the document root of your web

server. Next, create the insert.php script shown in Listing 18.6. The value entered

in the form replaces the hard-coded values in the SQL query with a variable called

$_POST[‘testfield’] (guarded against SQL injection, of course).

LISTING 18.6 An Insert Script Used with the Form
1: <?php
2: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
3:
4: if (mysqli_connect_errno()) {
5: printf(“Connect failed: %s\n”, mysqli_connect_error());
6: exit();
7: } else {
8: $clean_text = mysqli_real_escape_string($mysqli, $_POST[‘testfield’]);
9: $sql = “INSERT INTO testTable (testField)

ptg8126863

Working with MySQL Data 365

10: VALUES (‘“.$clean_text.”’)”;
11: $res = mysqli_query($mysqli, $sql);
12:
13: if ($res === TRUE) {
14: echo “A record has been inserted.”;
15: } else {
16: printf(“Could not insert record: %s\n”, mysqli_error($mysqli));
17: }
18:
19: mysqli_close($mysqli);
20: }
21: ?>

The only changes between this script and the script in Listing 18.4 is line 8, where

the form input is sanitized to avoid SQL injection, and in line 10, where we use the

sanitized string $clean_text in place of the hard-coded text string from the previous

example. To sanitize the input, we use the mysqli_real_escape_string() function;

this function requires that a connection has already been made, and so it is placed

in this position within the else portion of the if…else statement.

Save the script as insert.php and put it in the document root of your web server. In

your web browser, access the HTML form that you created. It should look something

like Figure 18.1.

FIGURE 18.1
The HTML form
for adding a
record.

Enter a string in the Text to Add field, as shown in Figure 18.2.

ptg8126863

366 CHAPTER 18: Interacting with MySQL Using PHP

Finally, click the Insert Record button to execute the insert.php script and insert the

record. If successful, you will see results similar to Figure 18.3.

FIGURE 18.2
Text typed in
the form field.

FIGURE 18.3
The record has
been success-
fully added.

To verify the work that has been done with PHP, you can use the MySQL command-

line interface to view the records in the table using a SELECT query:

SELECT * FROM testTable;

ptg8126863

Working with MySQL Data 367

The output should be as follows:

+----+---------------------+
| id | testField |
+----+---------------------+
| 1 | some value |
| 2 | Little Bobby Tables |
+----+---------------------+
2 rows in set (0.00 sec)

Next you learn how to retrieve and format results with PHP, and not just the

command-line interface.

Retrieving Data with PHP
Because you have a few rows in your testTable table, you can write a PHP script to

retrieve that data. Starting with the basics, we write a script that issues a SELECT

query but doesn’t overwhelm you with result data. Let’s just get the number of rows.

To do this, use the mysqli_num_rows() function; see line 12 of Listing 18.7.

LISTING 18.7 A Script to Retrieve Data
1: <?php
2: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
3:
4: if (mysqli_connect_errno()) {
5: printf(“Connect failed: %s\n”, mysqli_connect_error());
6: exit();
7: } else {
8: $sql = “SELECT * FROM testTable”;
9: $res = mysqli_query($mysqli, $sql);
10:
11: if ($res) {
12: $number_of_rows = mysqli_num_rows($res);
13: printf(“Result set has %d rows.\n”, $number_of_rows);
14: } else {
15: printf(“Could not retrieve records: %s\n”, mysqli_error($mysqli));
16: }
17:
18: mysqli_free_result($res);
19: mysqli_close($mysqli);
20: }
21: ?>

Save this script as count.php, place it in your web server document directory, and

access it through your web browser. You should see a message like this (the actual

number will vary depending on how many records you inserted into the table):

Result set has 4 rows.

ptg8126863

368 CHAPTER 18: Interacting with MySQL Using PHP

Line 12 uses the mysqli_num_rows() function to retrieve the number of rows in the

resultset ($res), and it places the value in a variable called $number_of_rows. Line

13 prints this number to your browser. The number should be equal to the number

of records you inserted during testing.

There’s a new function in this listing that was not in previous listings. Line 18 shows

the use of the mysqli_free_result() function. Using mysqli_free_result()

before closing the connection with mysqli_close() ensures that all memory associ-

ated with the query and result is freed for use by other scripts.

Now that you know there are some records in the table (four, according to the out-

put), you can get fancy and fetch the actual contents of those records. You can do

this in a few ways, but the easiest method is to retrieve each row from the table as

an array.

You use a while statement to go through each record in the resultset, placing the

values of each field into a specific variable and then displaying the results onscreen.

The syntax of mysqli_fetch_array() is as follows:

$newArray = mysqli_fetch_array($result_set);

Follow along using the sample script in Listing 18.8.

LISTING 18.8 A Script to Retrieve Data and Display Results
1: <?php
2: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
3:
4: if (mysqli_connect_errno()) {
5: printf(“Connect failed: %s\n”, mysqli_connect_error());
6: exit();
7: } else {
8: $sql = “SELECT * FROM testTable”;
9: $res = mysqli_query($mysqli, $sql);
10:
11: if ($res) {
12: while ($newArray = mysqli_fetch_array($res, MYSQLI_ASSOC)) {
13: $id = $newArray[‘id’];
14: $testField = $newArray[‘testField’];
15: echo “The ID is “.$id.” and the text is: “.$testField.”
”;
16: }
17: } else {
18: printf(“Could not retrieve records: %s\n”, mysqli_error($mysqli));
19: }
20:
21: mysqli_free_result($res);
22: mysqli_close($mysqli);
23: }
24: ?>

ptg8126863

Summary 369

Save this script as select.php, place it in your web server document directory, and

access it through your web browser. You should see a message for each record

entered into testTable, as shown in Figure 18.4. This message is created in the

while loop in lines 12 through 15.

FIGURE 18.4
Selecting
records from
MySQL.

As you can see, you can create an entire database-driven application using just four

or five MySQLi functions. This chapter barely scratched the surface of using PHP

with MySQL; there are many more MySQLi functions in PHP.

Additional MySQL Functions in PHP
More than 100 MySQL-specific functions are available through the MySQLi interface

in PHP. Most of these functions are simply alternative methods of retrieving data or

are used to gather information about the table structure in question. Throughout

this book, especially in the project-related chapters a little later, you’ll gradually be

introduced to more of the MySQL-specific functions in PHP. However, for a complete

list of functions, with practical examples, visit the MySQLi section of the PHP

Manual at http://www.php.net/mysqli.

Summary
Using PHP and MySQL to create dynamic, database-driven websites is a breeze. Just

remember that the PHP functions are essentially a gateway to the database server;

anything you can enter using the MySQL command-line interface, you can use with

the mysqli_query() function. You also learned how to avoid SQL injections when

receiving user input from a form.

http://www.php.net/mysqli

ptg8126863

370 CHAPTER 18: Interacting with MySQL Using PHP

To connect to MySQL with PHP, you need to know your MySQL username, password,

and database name. When connected, you can issue standard SQL commands with

the mysqli_query() function. If you have issued a SELECT command, you can use

mysqli_num_rows() to count the records returned in the resultset. If you want to dis-

play the data found, you can use mysqli_fetch_array() to get all the results dur-

ing a loop and display them onscreen.

Q&A
Q. Is it possible to use both mysql_* and mysqli_* functions in one

application?

A. If PHP was built with both libraries enabled, you can use either set of func-

tions to talk to MySQL. However, be aware that if you use the mysql_* set of

functions with a version of MySQL later than 4.1.3, you cannot access certain

new functionality. In addition, if you are inconsistent with your usage

throughout your application, maintenance and upkeep of your application

will be time-consuming and produce less-than-optimal results.

Workshop
The workshop is designed to help you review what you’ve learned and begin

putting your knowledge into practice.

Quiz
1. What is the primary function used to make the connection between PHP and

MySQL, and what information is necessary?

2. Which PHP function retrieves the text of a MySQL error message?

3. Which PHP function counts the number of records in a resultset?

Answers
1. The mysqli_connect() function creates a connection to MySQL and requires

the hostname, username, and password.

2. The mysqli_error() function returns a MySQL error message.

3. The mysqli_num_rows() function counts the number of records in a

resultset.

ptg8126863

Workshop 371

Activities
1. Using an HTML form and PHP script, create a table that contains fields for a

person’s first and last names. Create another script that adds records to the

table.

2. Once you have records in your table, create a PHP script that retrieves and

displays these records in alphabetical order by last name.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 19

Managing a Simple
Mailing List

In this chapter, you learn the following:
. How to create a subscribe/unsubscribe form and script
. How to create a front end for sending your message
. How to create the script that sends your message

This chapter provides the first of several hands-on, small projects designed to pull together

your PHP and MySQL knowledge. In this chapter, you learn how to create a managed

distribution list that you can use to send out newsletters or anything else to a list of email

addresses in a database.

As with all the small sample projects in this book, these projects
might not be exactly what you plan to build with your new PHP and
MySQL knowledge. However, I cannot stress enough that the concepts
and examples shown in this and other projects are similar to those
you will encounter when developing any application that uses CRUD
functionality (create, read, update, delete).

The mailing mechanism you use in this chapter is not meant to be a replacement for

mailing list software, which is specifically designed for bulk messages. You should use the

type of system you build in this chapter only for small lists, fewer than a few hundred

email addresses.

NOTE

ptg8126863

374 CHAPTER 19: Managing a Simple Mailing List

Developing the Subscription
Mechanism
You learned in earlier chapters that planning is the most important aspect of creat-

ing any product. In this case, think of the elements you need for your subscription

mechanism:

. A table to hold email addresses

. A way for users to add or remove their email addresses

. A form and script for sending the message

The following sections describe each item individually.

Creating the subscribers Table
You really need only one field in the subscribers table: to hold the email address

of the user. However, you should have an ID field just for consistency among your

tables, and because referencing an ID is much simpler than referencing a long

email address in where clauses. So, in this case, your MySQL query would look

something like this:

CREATE TABLE subscribers (
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
email VARCHAR (150) UNIQUE NOT NULL

);

Note the use of UNIQUE in the field definition for email. This means that although

id is the primary key, duplicates should not be allowed in the email field either. The

email field is a unique key, and id is the primary key.

Log in to MySQL via the command line and issue this query. After creating the

table, issue a DESC or DESCRIBE query to verify that the table has been created to

your specifications, such as the following:

mysql> DESC subscribers;

+-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| email | varchar(150) | NO | UNI | NULL | |
+-------+--------------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

Now that you have a table in your database, you can create the form and script

that place values in there.

ptg8126863

Developing the Subscription Mechanism 375

Creating an Include File for Common Functions
Although there are only two scripts in this process, some common functions exist

between them—namely, the database connection information. To make your scripts

more concise in situations like this, take the common functions or code snippets and

put them in a file to be included in your other scripts via the include() function

that you learned about in Chapter 13, “Working with Files and Directories.” Listing

19.1 contains the code shared by the scripts in this chapter.

LISTING 19.1 Common Functions in an Included File
1: <?php
2: // function to connect to database
3: function doDB() {
4: global $mysqli;
5:
6: //connect to server and select database
7: $mysqli = mysqli_connect(“localhost”, “joeuser”,
8: “somepass”, “testDB”);
9:
10: //if connection fails, stop script execution
11: if (mysqli_connect_errno()) {
12: printf(“Connect failed: %s\n”, mysqli_connect_error());
13: exit();
14: }
15: }
16: // function to check email address
17: function emailChecker($email) {
18: global $mysqli, $safe_email, $check_res;
19:
20: //check that email is not already in list
21: $safe_email = mysqli_real_escape_string($mysqli, $email);
22: $check_sql = “SELECT id FROM SUBSCRIBERS
23: WHERE email = ‘“.$safe_email.”’”;
24: $check_res = mysqli_query($mysqli, $check_sql)
25: or die(mysqli_error($mysqli));
26: }
27: ?>

Lines 3–15 set up the first function, doDB(), which is simply the database connec-

tion function. If the connection cannot be made, the script exits when this function

is called; otherwise, it makes the value of $mysqli available to other parts of your

script.

Lines 17–26 define a function called emailChecker(), which takes an input and

returns an output—like most functions do. We look at this one in the context of the

script, as we get to it in Listing 19.2

Save this file as ch19_include.php and place it on your web server. In Listing 19.2,

you will see how to include this file when necessary in your scripts.

ptg8126863

376 CHAPTER 19: Managing a Simple Mailing List

Creating the Subscription Form
The subscription form is actually an all-in-one form and script called manage.php,

which handles both subscribe and unsubscribe requests. Listing 19.2 shows the code

for manage.php, which uses a few user-defined functions to eliminate repetitious

code and to start you thinking about creating functions on your own. The code

looks long, but a line-by-line description follows (and a lot of the code just displays

an HTML form, so no worries).

LISTING 19.2 Subscribe and Unsubscribe with manage.php
1: <?php
2: include ‘ch19_include.php’;
3: //determine if they need to see the form or not
4: if (!$_POST) {
5: //they need to see the form, so create form block
6: $display_block = <<<END_OF_BLOCK
7: <form method=”POST” action=”$_SERVER[PHP_SELF]”>
8:
9: <p><label for=”email”>Your E-Mail Address:</label>

10: <input type=”email” id=”email” name=”email”
11: size=”40” maxlength=”150” /></p>
12:
13: <fieldset>
14: <legend>Action:</legend>

15: <input type=”radio” id=”action_sub” name=”action”
16: value=”sub” checked />
17: <label for=”action_sub”>subscribe</label>

18: <input type=”radio” id=”action_unsub” name=”action”
19: value=”unsub” />
20: <label for=”action_unsub”>unsubscribe</label>
21: </fieldset>
22:
23: <button type=”submit” name=”submit” value=”submit”>Submit</button>
24: </form>
25: END_OF_BLOCK;
26: } else if (($_POST) && ($_POST[‘action’] == “sub”)) {
27: //trying to subscribe; validate email address
28: if ($_POST[‘email’] == “”) {
29: header(“Location: manage.php”);
30: exit;
31: } else {
32: //connect to database
33: doDB();
34:
35: //check that email is in list
36: emailChecker($_POST[‘email’]);
37:
38: //get number of results and do action
39: if (mysqli_num_rows($check_res) < 1) {
40: //free result
41: mysqli_free_result($check_res);
42:
43: //add record
44: $add_sql = “INSERT INTO subscribers (email)
45: VALUES(‘“.$safe_email.”’)”;

ptg8126863

Developing the Subscription Mechanism 377

46: $add_res = mysqli_query($mysqli, $add_sql)
47: or die(mysqli_error($mysqli));
48: $display_block = “<p>Thanks for signing up!</p>”;
49:
50: //close connection to MySQL
51: mysqli_close($mysqli);
52: } else {
53: //print failure message
54: $display_block = “<p>You’re already subscribed!</p>”;
55: }
56: }
57: } else if (($_POST) && ($_POST[‘action’] == “unsub”)) {
58: //trying to unsubscribe; validate email address
59: if ($_POST[‘email’] == “”) {
60: header(“Location: manage.php”);
61: exit;
62: } else {
63: //connect to database
64: doDB();
65:
66: //check that email is in list
67: emailChecker($_POST[‘email’]);
68:
69: //get number of results and do action
70: if (mysqli_num_rows($check_res) < 1) {
71: //free result
72: mysqli_free_result($check_res);
73:
74: //print failure message
75: $display_block = “<p>Couldn’t find your address!</p>
76: <p>No action was taken.</p>”;
77: } else {
78: //get value of ID from result
79: while ($row = mysqli_fetch_array($check_res)) {
80: $id = $row[‘id’];
81: }
82:
83: //unsubscribe the address
84: $del_sql = “DELETE FROM subscribers
85: WHERE id = “.$id;
86: $del_res = mysqli_query($mysqli, $del_sql)
87: or die(mysqli_error($mysqli));
88: $display_block = “<p>You’re unsubscribed!</p>”;
89: }
90: mysqli_close($mysqli);
91: }
92: }
93: ?>
94: <!DOCTYPE html>
95: <html>
96: <head>
97: <title>Subscribe/Unsubscribe to a Mailing List</title>
98: </head>
99: <body>
100: <h1>Subscribe/Unsubscribe to a Mailing List</h1>
101: <?php echo “$display_block”; ?>
102: </body>
103: </html>

ptg8126863

378 CHAPTER 19: Managing a Simple Mailing List

Listing 19.2 might be long, but it’s not complicated. In fact, it could be longer were

it not for the user-defined functions placed in ch19_include.php and included on

line 2 of this script.

Line 4 starts the main logic of the script. Because this script performs several actions,

you need to determine which action it is currently attempting. If the presence of

$_POST is false, you know that the user has not submitted the form; therefore, you

must show the form to the user.

Lines 6–25 create the subscribe/unsubscribe form by storing a string in the $dis-

play_block variable using the heredoc format. In the heredoc format, the string

delimiter can be any string identifier following <<<, as long as the ending identifier

is on its own line, as you can see in this example on line 25.

You can learn more about the heredoc and other string formats in the PHP Manual
at http://www.php.net/manual/en/language.types.string.php.

In the form, we use $_SERVER[PHP_SELF] as the action (line 7), and then create a

text field called email for the user’s email address (lines 9–11) and set up a set of

radio buttons (lines 13–21) to find the desired task. At the end of the string creation,

the script breaks out of the if...else construct, skips down to line 101, and pro-

ceeds to print the HTML stored in the $display_block variable. The form displays

as shown in Figure 19.1.

NOTE

FIGURE 19.1
The subscribe/
unsubscribe
form.

Back inside the if...else construct, if the presence of $_POST is true, you need to

do something. There are two possibilities: the subscribing and unsubscribing actions

for the email address provided in the form. You determine which action to take by

looking at the value of $_POST[‘action’] from the radio button group.

http://www.php.net/manual/en/language.types.string.php

ptg8126863

Developing the Subscription Mechanism 379

In line 26, if the presence of $_POST is true and the value of $_POST[‘action’] is

“sub”, you know the user is trying to subscribe. To subscribe, the user needs an

email address, so check for one in lines 28–30. If no address is present, redirect the

user back to the form.

However, if an address is present, call the doDB() function (stored in

ch19_include.php) in line 34 to connect to the database so that you can issue

queries. In line 36, you call the second of our user-defined functions:

emailChecker(). This function takes an input ($_POST[‘email’], in this case) and

processes it. If you look back to lines 21–25 of Listing 19.1, you’ll see code within the

emailChecker() function that issues a query in an attempt to find an id value in

the subscribers table for the record containing the email address passed to the

function. The function then returns the resultset, called $check_res, for use within

the larger script.

Note the definition of global variables at the beginning of both user-defined func-
tions in Listing 19.1. These variables need to be shared with the entire script, and
so are declared global.

Jump down to line 39 of Listing 19.2 to see how the $check_res variable is used:

The number of records referred to by the $check_res variable is counted to deter-

mine whether the email address already exists in the table. If the number of rows is

less than 1, the address is not in the list, and it can be added. The record is added,

the response is stored in lines 44–48, and the failure message (if the address is

already in the table) is stored in line 54. At that point, the script breaks out of the

if...else construct, skips down to line 101, and proceeds to print the HTML cur-

rently stored in $display_block. You’ll test this functionality later.

The last combination of inputs occurs if the presence of $_POST is true and the

value of the $_POST[‘action’] variable is “unsub”. In this case, the user is trying

to unsubscribe. To unsubscribe, an existing email address is required, so check for

one in lines 59–61. If no address is present, send the user back to the form.

If an address is present, call the doDB() function in line 64 to connect to the data-

base. Then, in line 67, you call emailChecker(), which again returns the resultset,

$check_res. Line 70 counts the number of records in the result set to determine

whether the email address already exists in the table. If the number of rows is less

than 1, the address is not in the list and it cannot be unsubscribed.

In this case, the response message is stored in lines 75–76. However, if the number of

rows is not less than 1, the user is unsubscribed (the record deleted) and the response

NOTE

ptg8126863

380 CHAPTER 19: Managing a Simple Mailing List

is stored in lines 84–88. At that point, the script breaks out of the if...else

construct, skips down to line 101, and proceeds to print the HTML.

Figures 19.2 through 19.5 show the various results of the script, depending on the

actions selected and the status of email addresses in the database.

FIGURE 19.2
Successful
subscription.

FIGURE 19.3
Subscription
failure.

FIGURE 19.4
Successful
unsubscribe
action.

ptg8126863

Developing the Mailing Mechanism 381

Next, you create the form and script that sends along mail to each of your sub-

scribers.

Developing the Mailing Mechanism
With the subscription mechanism in place, you can create a basic form interface

for a script that takes the content of your form and sends it to every address in

your subscribers table. This is another one of those all-in-one scripts, called

sendmymail.php, and it is shown in Listing 19.3.

Before attempting to use the script in this section, make sure that you have read
the section in Chapter 11, “Working with Forms,” regarding the configuration in
your php.ini file. The php.ini file is required to send mail.

LISTING 19.3 Send Mail to Your List of Subscribers
1: <?php
2: include ‘ch19_include.php’;
3: if (!$_POST) {
4: //haven’t seen the form, so display it
5: $display_block = <<<END_OF_BLOCK
6: <form method=”POST” action=”$_SERVER[PHP_SELF]”>
7:
8: <p><label for=”subject”>Subject:</label>

9: <input type=”text” id=”subject” name=”subject” size=”40” /></p>
10:
11: <p><label for=”message”>Mail Body:</label>

12: <textarea id=”message” name=”message” cols=”50”

rows=”10”></textarea></p>
13: <button type=”submit” name=”submit” value=”submit”>Submit</button>
14: </form>
15: END_OF_BLOCK;
16: } else if ($_POST) {

FIGURE 19.5
Unsuccessful
unsubscribe
action.

NOTE

ptg8126863

382 CHAPTER 19: Managing a Simple Mailing List

LISTING 19.3 Continued
17: //want to send form, so check for required fields
18: if (($_POST[‘subject’] == “”) || ($_POST[‘message’] == “”)) {
19: header(“Location: sendmymail.php”);
20: exit;
21: }
22:
23: //connect to database
24: doDB();
25:
26: if (mysqli_connect_errno()) {
27: //if connection fails, stop script execution
28: printf(“Connect failed: %s\n”, mysqli_connect_error());
29: exit();
30: } else {
31: //otherwise, get emails from subscribers list
32: $sql = “SELECT email FROM subscribers”;
33: $result = mysqli_query($mysqli, $sql)
34: or die(mysqli_error($mysqli));
35:
36: //create a From: mailheader
37: $mailheaders = “From: Your Mailing List
38: <you@yourdomain.com>”;
39: //loop through results and send mail
40: while ($row = mysqli_fetch_array($result)) {
41: set_time_limit(0);
42: $email = $row[‘email’];
43: mail(“$email”, stripslashes($_POST[‘subject’]),
44: stripslashes($_POST[‘message’]), $mailheaders);
45: $display_block .= “newsletter sent to: “.$email.”
”;
46: }
47: mysqli_free_result($result);
48: mysqli_close($mysqli);
49: }
50: }
51: ?>
52: <!DOCTYPE html>
53: <html>
54: <head>
55: <title>Sending a Newsletter</title>
56: </head>
57: <body>
58: <h1>Send a Newsletter</h1>
59: <?php echo $display_block; ?>
60: </body>
61: </html>

As in Listing 19.2, the file of user-defined functions is included on line 2. Although

only the database connection function is used in this file, there’s no harm in having

the other function in the file, as well.

The main logic of the script starts at line 3, where you determine whether the user

has seen the form yet. If the presence of the $_POST variable is false, you know the

user has not submitted the form; therefore, you must show the form.

ptg8126863

Developing the Mailing Mechanism 383

Lines 5–15 create the form for sending the newsletter to your subscriber list, which

uses $_SERVER[PHP_SELF] as the action (line 6), creates a text field called subject

for the subject of the mail, and creates a textarea called message for the body of

the mail to be sent.

At this point, the script breaks out of the if...else construct, and the HTML is

printed. The form displays as shown in Figure 19.6.

FIGURE 19.6
Form for send-
ing the bulk
mail.

If the presence of $_POST is not false, the script should send the form to the email

addresses in the subscribers table. Before sending the message, you must check for

the two required items from the form in lines 18–20: $_POST[‘subject’] and

$_POST[‘message’]. If either of these items is not present, redirect the user to the

form again.

If the required items are present, the script moves on to line 24, which calls the

database connection function. A query is issued in line 33, which grabs all the email

addresses from the subscribers table. There is no order to these results, although

you could throw an order by clause in there if you want to send them out in

alphabetic order for whatever reason.

Lines 37–38 create a From: mail header, which is used inside the upcoming while

loop, when the mail is sent. This header ensures that the mail looks like it is from a

person and not a machine because you’ve specifically provided a value in this

string. The while loop, which begins on line 40, extracts the email addresses from

the resultset one at a time. On line 41, you use the set_time_limit() function to

set the time limit to 0, or “no limit.” Doing so allows the script to run for as long as

it needs to.

ptg8126863

384 CHAPTER 19: Managing a Simple Mailing List

Because the script in Listing 19.3 simply executes the mail() function numerous
times, it does not take into account the queuing factors in actual mailing list soft-
ware, which are designed to ease the burden on your outgoing mail server. Using
set_time_limit() does not ease its burden; it just allows the script to continue
to run when it might have timed out before.

In lines 43–44, the mail is sent using the mail() function, inserting the values from

the form where appropriate. Line 45 adds to a string that is later printed to the

screen, which shows to whom the mail was sent. Figures 19.7 and 19.8 show the

outcome of the script.

CAUTION

FIGURE 19.7
Mail has been
sent!

Summary
In this chapter, you applied your basic PHP and MySQL knowledge to the creation of

a personal mailing list. Included were the database table creation, the subscribe and

unsubscribe mechanisms, and the form and script for sending the mail.

FIGURE 19.8
The mail arrived
safely.

ptg8126863

Workshop 385

Q&A
Q. How can I ease the burden on my mail server?

A. Besides looking into packaged mailing list software, you can bypass the

mail() function and talk directly to your SMTP server via a socket connection.

Such an example is shown in the PHP manual for the fsockopen() function

(http://www.php.net/fsockopen), as well as in other developer resource sites.

Q. Where do bounced messages go?

A. As with any email (not just those sent in the manner described in this chap-

ter), bounces go to whatever address you specify in your From: or Reply-to:

mail headers.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. Which PHP function sends mail?

2. Why is $mysqli named as a global variable in Listing 19.1?

3. What PHP function call causes the script to execute for as long as it needs to

run?

Answers
1. This is not a trick question. It’s the mail() function!

2. Because the variable $mysqli is created and assigned a value in a function

that is included in one script for use by another, the variable must be declared

as global to ensure it is usable outside of the confines of the function in which

it was created.

3. set_time_limit(0)

http://www.php.net/fsockopen

ptg8126863

386 CHAPTER 19: Managing a Simple Mailing List

Activities
1. Modify the manage.php script to display the user’s email as part of the

response message for any action that is taken.

2. Modify the sendmymail.php script to add additional form fields that will cor-

respond to section headings in the message string itself. Remember that when

the form is submitted, those strings will have to be concatenated into one mes-

sage string that is sent to the mail() function.

ptg8126863

CHAPTER 20

Creating an Online Address
Book

In this chapter, you learn the following:
. How to create relational tables for an online address book
. How to create the forms and scripts for adding and deleting records in the

address book
. How to create the forms and scripts for viewing records

In this chapter, you create a manageable online address book. You learn how to create the

relevant database tables, as well as the forms and scripts for adding, deleting, and viewing

database records.

These basic concepts are the foundations of developing any application
that uses CRUD functionality (create, read, update, delete), which is
precisely what a lot of web-based applications are.

Planning and Creating the Database
Tables
When you think of an address book, the obvious fields come to mind: name, address, tele-

phone number, email address. However, if you look at (or remember) a paper-based

address book, you might note there are several entries for one person. Maybe that person

has three telephone numbers, or two email addresses, and so forth—whatever didn’t fit in

the original template. In an online address book, a set of related tables helps alleviate the

redundancy and repetition of information and allows you to display all information in a

unified view.

NOTE

ptg8126863

388 CHAPTER 20: Creating an Online Address Book

Table 20.1 shows sample table and field names to use for your online address book.

In a minute, you use actual SQL statements to create the tables, but first you should

look at this information and try to see the relationships appear. Ask yourself which

of the fields should be primary or unique keys.

TABLE 20.1 Address Book Table and Field Names

Table Name Field Names

master_name id, date_added, date_modified, f_name, l_name

address id, master_id, date_added, date_modified, address, city,
state, zipcode, type

telephone id, master_id, date_added, date_modified, tel_number,
type

fax id, master_id, date_added, date_modified, fax_number,
type

email id, master_id, date_added, date_modified, email, type

personal_notes id, master_id, date_added, date_modified, note

Notice the use of date-related fields; each table has a date_added and date_

modified field in it. The fields help maintain your data; you might at some point

want to issue a query that removes all records older than a certain number of

months or years, or removes all records that haven’t been updated within a certain

period.

As you can see in the following SQL statements, the master_name table has two

fields besides the ID and date-related fields: f_name and l_name, for first name and

last name. The id field is the primary key. No other keys need to be primary or

unique unless you really want to limit your address book to one John Smith, one

Mary Jones, and so forth.

The field lengths for the text fields in the following statements are arbitrary; you
can make them as long or as short as you want, within the allowable definition of
the field type.

The following SQL statement creates the master_name table:

CREATE TABLE master_name (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

date_added DATETIME,

date_modified DATETIME,

f_name VARCHAR (75),

l_name VARCHAR (75)

);

NOTE

ptg8126863

Planning and Creating the Database Tables 389

Next, you create the supplementary tables, which all relate back to the

master_name table. For instance, the address table has the basic primary key id

field, the date_added field, and the date_modified field, plus the field through

which the relationship will be made—the master_id field.

The master_id is equal to the id field in the master_name table, matching the per-

son whose address this is. The master_id field is not a unique key because it is a

perfectly valid assumption that one person may have several address entries. You

see this in the type field, defined as an enumerated list containing three options:

home, work, or other. A person may have one or more of all three types, so no other

keys are present in this table besides the primary key id. Assuming that this particu-

lar address book contains only U.S. addresses, round out the table with address,

city, state, and zipcode fields:

CREATE TABLE address (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

master_id INT NOT NULL,

date_added DATETIME,

date_modified DATETIME,

address VARCHAR (255),

city VARCHAR (30),

state CHAR (2),

zipcode VARCHAR (10),

type ENUM (‘home’, ‘work’, ‘other’)

);

The telephone, fax, and email tables are all variations on the same theme:

CREATE TABLE telephone (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

master_id INT NOT NULL,

date_added DATETIME,

date_modified DATETIME,

tel_number VARCHAR (25),

type ENUM (‘home’, ‘work’, ‘other’)

);

CREATE TABLE fax (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

master_id INT NOT NULL,

date_added DATETIME,

date_modified DATETIME,

fax_number VARCHAR (25),

type ENUM (‘home’, ‘work’, ‘other’)

);

CREATE TABLE email (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

master_id INT NOT NULL,

date_added DATETIME,

date_modified DATETIME,

email VARCHAR (150),

type ENUM (‘home’, ‘work’, ‘other’)

);

ptg8126863

390 CHAPTER 20: Creating an Online Address Book

The personal_notes table also follows the same sort of pattern, except that

master_id is a unique key and allows only one notes record per person:

CREATE TABLE personal_notes (

id int NOT NULL PRIMARY KEY AUTO_INCREMENT,

master_id INT NOT NULL UNIQUE,

date_added DATETIME,

date_modified DATETIME,

note TEXT

);

Now that your tables are created, you can work through the forms and scripts for

managing and viewing your records.

Creating an Include File for Common
Functions
In Chapter 19, “Managing a Simple Mailing List,” an included file of common func-

tions was used to make your scripts more concise. The same thing is true in this

chapter. Although the only content in the common functions file is the database

connection function, this process serves two purposes: to make your scripts more

concise and to eliminate the need to modify the database connection information

throughout multiple files should that information change. Listing 20.1 contains the

code shared by the scripts in this chapter.

LISTING 20.1 Common Functions in an Included File
1: <?php
2: function doDB() {
3: global $mysqli;
4:
5: //connect to server and select database; you may need it
6: $mysqli = mysqli_connect(“localhost”, “joeuser”,
7: “somepass”, “testDB”);
8:
9: //if connection fails, stop script execution
10: if (mysqli_connect_errno()) {
11: printf(“Connect failed: %s\n”, mysqli_connect_error());
12: exit();
13: }
14: }
15: ?>

Lines 2–14 set up the database connection function, doDB. If the connection cannot

be made, the script exits when this function is called; otherwise, it makes the value

of $mysqli available to other parts of your script.

ptg8126863

Creating a Menu 391

Save this file as ch20_include.php and place it on your web server. The other code

listings in this chapter include this file within the first few lines of the script.

Creating a Menu
Your online address book contains several actions, so it makes sense to create a

menu for your links. Listing 20.2 creates a simple menu for all the scripts you create

in this chapter, called mymenu.html

LISTING 20.2 Address Book Menu
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>My Address Book</title>
5: </head>
6: <body>
7: <h1>My Address Book</h1>
8:
9: <p>Management</p>
10:
11: Add an Entry
12: Delete an Entry
13:
14:
15: <p>Viewing</p>
16:
17: Select a Record
18:
19: </body>
20: </html>

Figure 20.1 shows the output of Listing 20.2. You tackle each of these items in order,

starting with “Add an Entry” in the next section.

FIGURE 20.1
Address book
menu.

ptg8126863

392 CHAPTER 20: Creating an Online Address Book

Creating the Record-Addition
Mechanism
Just because you’ll potentially be adding information to six different tables doesn’t

mean your form or script will be monstrous. In fact, your scripts won’t look much

different from any of the ones you created in previous lessons. With practice, you

can make these verbose scripts much more streamlined and efficient.

Listing 20.3 shows a basic record-addition script, called addentry.php, which has

two parts: what to do if the form should be displayed (lines 4–89) and what actions

to take if the form is being submitted (lines 91–187). Lines 3–89 simply place the

contents of the HTML form into a string called $display_block.

LISTING 20.3 Basic Record-Addition Script Called addentry.php
1: <?php
2: include ‘ch20_include.php’;
3:
4: if (!$_POST) {
5: //haven’t seen the form, so show it
6: $display_block = <<<END_OF_TEXT
7: <form method=”post” action=”$_SERVER[PHP_SELF]”>
8: <fieldset>
9: <legend>First/Last Names:</legend>

10: <input type=”text” name=”f_name” size=”30”
11: maxlength=”75” required=”required” />
12: <input type=”text” name=”l_name” size=”30”
13: maxlength=”75” required=”required” />
14: </fieldset>
15:
16: <p><label for=”address”>Street Address:</label>

17: <input type=”text” id=”address” name=”address”
18: size=”30” /></p>
19:
20: <fieldset>
21: <legend>City/State/Zip:</legend>

22: <input type=”text” name=”city” size=”30” maxlength=”50” />
23: <input type=”text” name=”state” size=”5” maxlength=”2” />
24: <input type=”text” name=”zipcode” size=”10” maxlength=”10” />
25: </fieldset>
26:
27: <fieldset>
28: <legend>Address Type:</legend>

29: <input type=”radio” id=”add_type_h” name=”add_type”
30: value=”home” checked />
31: <label for=”add_type_h”>home</label>
32: <input type=”radio” id=”add_type_w” name=”add_type”
33: value=”work” />
34: <label for=”add_type_w”>work</label>
35: <input type=”radio” id=”add_type_o” name=”add_type”
36: value=”other” />
37: <label for=”add_type_o”>other</label>
38: </fieldset>

ptg8126863

Creating the Record-Addition Mechanism 393

39:
40: <fieldset>
41: <legend>Telephone Number:</legend>

42: <input type=”text” name=”tel_number” size=”30” maxlength=”25” />
43: <input type=”radio” id=”tel_type_h” name=”tel_type”
44: value=”home” checked />
45: <label for=”tel_type_h”>home</label>
46: <input type=”radio” id=”tel_type_w” name=”tel_type”
47: value=”work” />
48: <label for=”tel_type_w”>work</label>
49: <input type=”radio” id=”tel_type_o” name=”tel_type”
50: value=”other” />
51: <label for=”tel_type_o”>other</label>
52: </fieldset>
53:
54: <fieldset>
55: <legend>Fax Number:</legend>

56: <input type=”text” name=”fax_number” size=”30” maxlength=”25” />
57: <input type=”radio” id=”fax_type_h” name=”fax_type”
58: value=”home” checked />
59: <label for=”fax_type_h”>home</label>
60: <input type=”radio” id=”fax_type_w” name=”fax_type”
61: value=”work” />
62: <label for=”fax_type_w”>work</label>
63: <input type=”radio” id=”fax_type_o” name=”fax_type”
64: value=”other” />
65: <label for=”fax_type_o”>other</label>
66: </fieldset>
67:
68: <fieldset>
69: <legend>Email Address:</legend>

70: <input type=”email” name=”email” size=”30” maxlength=”150” />
71: <input type=”radio” id=”email_type_h” name=”email_type”
72: value=”home” checked />
73: <label for=”email_type_h”>home</label>
74: <input type=”radio” id=”email_type_w” name=”email_type”
75: value=”work” />
76: <label for=”email_type_w”>work</label>
77: <input type=”radio” id=”email_type_o” name=”email_type”
78: value=”other” />
79: <label for=”email_type_o”>other</label>
80: </fieldset>
81:
82: <p><label for=”note”>Personal Note:</label>

83: <textarea id=”note” name=”note” cols=”35”
84: rows=”3”></textarea></p>
85:
86: <button type=”submit” name=”submit”
87: value=”send”>Add Entry</button>
88: </form>
89: END_OF_TEXT;

Stop here for a minute and make sure you know what is going on in the listing so

far. Before any other code, note that the file with a user-defined function is included

on line 2. After that, as already noted, this script performs one of two tasks at any

ptg8126863

394 CHAPTER 20: Creating an Online Address Book

given time: It either shows the record-addition form or it performs the SQL queries

related to adding a new record.

The logic that determines the task begins at line 4, with a test for the value of

$_POST. If there is no value in the $_POST superglobal, the user has not submitted

the form and therefore needs to see the form. The HTML for the form is placed in a

string called $display_block, from lines 6–89. The script then breaks out of the

if...else construct and jumps down to line 189, which outputs the HTML and

prints the value of $display_block, in this case the form. Figure 20.2 displays the

outcome.

FIGURE 20.2
The record-
addition form.

Pick up the code in the listing with the else if statement, or what happens if the

form has been submitted.

LISTING 20.3 (continued)
90: } else if ($_POST) {
91: //time to add to tables, so check for required fields
92: if (($_POST[‘f_name’] == “”) || ($_POST[‘l_name’] == “”)) {
93: header(“Location: addentry.php”);
94: exit;
95: }
96:

ptg8126863

Creating the Record-Addition Mechanism 395

97: //connect to database
98: doDB();
99:
100: //create clean versions of input strings
101: $safe_f_name = mysqli_real_escape_string($mysqli,
102: $_POST[‘f_name’]);
103: $safe_l_name = mysqli_real_escape_string($mysqli,
104: $_POST[‘l_name’]);
105: $safe_address = mysqli_real_escape_string($mysqli,
106: $_POST[‘address’]);
107: $safe_city = mysqli_real_escape_string($mysqli,
108: $_POST[‘city’]);
109: $safe_state = mysqli_real_escape_string($mysqli,
110: $_POST[‘state’]);
111: $safe_zipcode = mysqli_real_escape_string($mysqli,
112: $_POST[‘zipcode’]);
113: $safe_tel_number = mysqli_real_escape_string($mysqli,
114: $_POST[‘tel_number’]);
115: $safe_fax_number = mysqli_real_escape_string($mysqli,
116: $_POST[‘fax_number’]);
117: $safe_email = mysqli_real_escape_string($mysqli,
118: $_POST[‘email’]);
119: $safe_note = mysqli_real_escape_string($mysqli,
120: $_POST[‘note’]);
121:
122: //add to master_name table
123: $add_master_sql = “INSERT INTO master_name (date_added,
124: date_modified, f_name, l_name) VALUES
125: (now(), now(), ‘“.$safe_f_name.”’, ‘“.$safe_l_name.”’)”;
126: $add_master_res = mysqli_query($mysqli, $add_master_sql)
127: or die(mysqli_error($mysqli));
128:
129: //get master_id for use with other tables
130: $master_id = mysqli_insert_id($mysqli);
131:
132: if (($_POST[‘address’]) || ($_POST[‘city’]) ||
133: ($_POST[‘state’]) || ($_POST[‘zipcode’])) {
134: //something relevant, so add to address table
135: $add_address_sql = “INSERT INTO address (master_id,
136: date_added, date_modified, address, city, state,
137: zipcode, type) VALUES
138: (‘“.$master_id.”’, now(), now(),
139: ‘“.$safe_address.”’, ‘“.$safe_city.”’,
140: ‘“.$safe_state.”’ , ‘“.$safe_zipcode.”’ ,
141: ‘“.$_POST[‘add_type’].”’)”;
142: $add_address_res = mysqli_query($mysqli, $add_address_sql)
143: or die(mysqli_error($mysqli));
144: }
145:
146: if ($_POST[‘tel_number’]) {
147: //something relevant, so add to telephone table
148: $add_tel_sql = “INSERT INTO telephone (master_id, date_added,
149: date_modified, tel_number, type) VALUES
150: (‘“.$master_id.”’, now(), now(),
151: ‘“.$safe_tel_number.”’, ‘“.$_POST[‘tel_type’].”’)”;
152: $add_tel_res = mysqli_query($mysqli, $add_tel_sql)
153: or die(mysqli_error($mysqli));
154: }

ptg8126863

396 CHAPTER 20: Creating an Online Address Book

LISTING 20.3 (continued)
155:
156: if ($_POST[‘fax_number’]) {
157: //something relevant, so add to fax table
158: $add_fax_sql = “INSERT INTO fax (master_id, date_added,
159: date_modified, fax_number, type) VALUES
160: (‘“.$master_id.”’, now(), now(), ‘“.$safe_fax_number.”’,
161: ‘“.$_POST[‘fax_type’].”’)”;
162: $add_fax_res = mysqli_query($mysqli, $add_fax_sql)
163: or die(mysqli_error($mysqli));
164: }
165: if ($_POST[‘email’]) {
166: //something relevant, so add to email table
167: $add_email_sql = “INSERT INTO email (master_id, date_added,
168: date_modified, email, type) VALUES
169: (‘“.$master_id.”’, now(), now(), ‘“.$safe_email.”’,
170: ‘“.$_POST[‘email_type’].”’)”;
171: $add_email_res = mysqli_query($mysqli, $add_email_sql)
172: or die(mysqli_error($mysqli));
173: }
174:
175: if ($_POST[‘note’]) {
176: //something relevant, so add to notes table
177: $add_notes_sql = “INSERT INTO personal_notes (master_id,
178: date_added, date_modified, note) VALUES
179: (‘“.$master_id.”’, now(), now(),
180: ‘“.$safe_note.”’)”;
181: $add_notes_res = mysqli_query($mysqli, $add_notes_sql)
182: or die(mysqli_error($mysqli));
183: }
184: mysqli_close($mysqli);
185: $display_block = “<p>Your entry has been added. Would you
186: like to add another?</p>”;
187: }
188: ?>
189: <!DOCTYPE html>
190: <head>
191: <title>Add an Entry</title>
192: </head>
193: <body>
194: <h1>Add an Entry</h1>
195: <?php echo $display_block; ?>
196: </body>
197: </html>

The else condition on Line 90 is invoked if there is a value in $_POST, meaning

that the user has submitted the form. In this simple example, two fields were desig-

nated as required fields: the first name and last name of the person. So, lines 92–95

check for values in $_POST[‘f_name’] and $_POST[‘l_name’] and redirect the user

back to the form if either value is missing.

ptg8126863

Creating the Record-Addition Mechanism 397

Because the two required fields in the form are marked as such using the HTML5
required attribute, the form will not be submitted without text in the fields.
However, for older browsers or those devices not supporting the HTML5 required
attribute in INPUT fields, this server-side check does the trick.

After making it through the check for required fields, the code connects to the

database in line 98. Once the database connection is made, you can safely use

mysqli_real_escape_string() to sanitize the user input and create “safe” versions

of those strings for use in INSERT statements.

Next comes the multitude of insertion statements, only one of which is required: the

insertion of a record into the master_name table. This occurs on lines 123–127. After

the insertion is made, the id of this record is extracted using mysqli_insert_id()

on line 130. You use this value, now referred to as $master_id, in your remaining

SQL queries.

The SQL queries for inserting records into the remaining tables are all conditional,

meaning they occur only if some condition is true. In lines 132–133, you see that the

condition that must be met is that a value exists for any of the following variables:

$_POST[‘address’], $_POST[‘city’], $_POST[‘state’], and $_POST[‘zipcode’].

Lines 135–143 create and issue the query if this condition is met.

The same principle holds true for adding to the telephone table (lines 146–154), the

fax table (lines 156–164), the email table (lines 165–173), and the personal_notes

table (lines 175–183). If the conditions are met, records are inserted into those tables.

Once through this set of conditions, the message for the user is placed in the

$display_block variable, and the script exits this if...else construct and prints

HTML from lines 189–197. Figure 20.3 shows an output of the record-addition script.

NOTE

FIGURE 20.3
A record has
been added.

ptg8126863

398 CHAPTER 20: Creating an Online Address Book

Add a few records using this form so that you have some values to play with in the

following sections. On your own, try to modify this script in such a way that the val-

ues entered in the form print to the screen after successful record insertion.

Viewing Records
If you verified your work in the preceding section by issuing queries through the

MySQL monitor or other interface, you probably became tired of typing SELECT *

FROM... for every table. In this section, you create the two-part script that shows

you how to select and view records in your database.

Listing 20.4 shows the select-and-view script called selentry.php, which has three

parts: the record-selection form (lines 5–42), the code to display the record contents

(lines 43–172), and the HTML template that displays the dynamically generated

strings (lines 176–184). Because this code is long, the listing is broken into smaller

chunks for discussion.

LISTING 20.4 Script Called selentry.php for Selecting and Viewing
a Record
1: <?php
2: include ‘ch20_include.php’;
3: doDB();
4:
5: if (!$_POST) {
6: //haven’t seen the selection form, so show it
7: $display_block = “<h1>Select an Entry</h1>”;
8:
9: //get parts of records
10: $get_list_sql = “SELECT id,
11: CONCAT_WS(‘, ‘, l_name, f_name) AS display_name
12: FROM master_name ORDER BY l_name, f_name”;
13: $get_list_res = mysqli_query($mysqli, $get_list_sql)
14: or die(mysqli_error($mysqli));
15:
16: if (mysqli_num_rows($get_list_res) < 1) {
17: //no records
18: $display_block .= “<p>Sorry, no records to select!</p>”;
19:
20: } else {
21: //has records, so get results and print in a form
22: $display_block .= “
23: <form method=\”post\” action=\””.$_SERVER[‘PHP_SELF’].”\”>
24: <p><label for=\”sel_id\”>Select a Record:</label>

25: <select id=”sel_id\” name=\”sel_id\” required=\”required\”>
26: <option value=\”\”>-- Select One --</option>”;
27:
28: while ($recs = mysqli_fetch_array($get_list_res)) {
29: $id = $recs[‘id’];

ptg8126863

Viewing Records 399

30: $display_name = stripslashes($recs[‘display_name’]);
31: $display_block .=
32: “<option value=\””.$id.”\”>”.$display_name.”</option>”;
33: }
34:
35: $display_block .= “
36: </select>
37: <button type=\”submit\” name=\”submit\”
38: value=\”view\”>View Selected Entry\”></button>
39: </form>”;
40: }
41: //free result
42: mysqli_free_result($get_list_res);

As with the addentry.php script, the selentry.php script performs one of two tasks

at any given time: It either shows the selection form or it performs all the SQL

queries related to viewing the record. No matter which of the two tasks the script

performs, the database still comes into play. Given that, include the file with the

connection function on line 2, and call that function on line 3.

The logic that determines the task begins at line 5, with a test for the value of the

$_POST superglobal. If $_POST has no value, the user is not coming from the selec-

tion form and therefore needs to see it. A string called $display_block is started

in line 7, and this string will ultimately hold the HTML that makes up the record-

selection form.

Lines 10–12 select specific fields from the records in the master_name table to build

the selection drop-down options in the form. For this step, you need only the name

and ID of the person whose record you want to select. Line 16 tests for results of the

query; if the query has no results, you cannot build a form. If this were the case, the

value of $display_block would be filled with an error message and the script

would end, printing the resulting HTML to the screen.

However, assume that you have a few records in the master_name table. In this

case, you have to extract the information from the query results to be able to build

the form. This is done in lines 28–33, with form elements written to the

$display_block string both above and below it.

This listing stops at line 42, but you’ll soon see lines 43 through the end of the

script. If you were to close up the if statement and the PHP block and print the

value of $display_block to the screen at this point, you would see a form some-

thing like that shown in Figure 20.4 (with different entries, depending on what is in

your database, of course).

ptg8126863

400 CHAPTER 20: Creating an Online Address Book

However, you must finish the selentry.php script in order for it to be useful, so con-

tinue Listing 20.4 at line 43, which begins the else portion of the if...else state-

ment.

LISTING 20.4 (continued)
43: } else if ($_POST) {
44: //check for required fields
45: if ($_POST[‘sel_id’] == “”) {
46: header(“Location: selentry.php”);
47: exit;
48: }
49:
50: //create safe version of ID
51: $safe_id = mysqli_real_escape_string($mysqli, $_POST[‘sel_id’]);52:
52:
53: //get master_info
54: $get_master_sql = “SELECT concat_ws(‘ ‘,f_name,l_name) as display_name
55: FROM master_name WHERE id = ‘“.$safe_id.”’”;
56: $get_master_res = mysqli_query($mysqli, $get_master_sql)
57: or die(mysqli_error($mysqli));
58:
59: while ($name_info = mysqli_fetch_array($get_master_res)) {
60: $display_name = stripslashes($name_info[‘display_name’]);
61: }
62:
63: $display_block = “<h1>Showing Record for “.$display_name.”</h1>”;
64:
65: //free result
66: mysqli_free_result($get_master_res);
67:
68: //get all addresses
69: $get_addresses_sql = “SELECT address, city, state, zipcode, type FROM
70: address WHERE master_id = ‘“.$safe_id.”’”;
71: $get_addresses_res = mysqli_query($mysqli, $get_addresses_sql)
72: or die(mysqli_error($mysqli));
73:
74: if (mysqli_num_rows($get_addresses_res) > 0) {
75: $display_block .= “<p>Addresses:

FIGURE 20.4
The record-
selection form.

ptg8126863

Viewing Records 401

76: ”;
77:
78: while ($add_info = mysqli_fetch_array($get_addresses_res)) {
79: address = stripslashes($add_info[‘address’]);
80: $city = stripslashes($add_info[‘city’]);
81: $state = stripslashes($add_info[‘state’]);
82: $zipcode = stripslashes($add_info[‘zipcode’]);
83: $address_type = $add_info[‘type’];
84:
85: $display_block .= “$address $city $state $zipcode
86: ($address_type)”;
87: }
88: $display_block .= “”;
89: }
90: //free result
91: mysqli_free_result($get_addresses_res);

Line 43 contains the else portion of the if...else statement and is invoked if the

user submits the form and wants to see a specific record. It first checks for a required

field, in line 45; in this case, it is checking for the value of $_POST[‘sel_id’]. This

value matches the ID from the master_name table to that of the selection made in

the record-selection form. If that value does not exist, the user is redirected back to

the selection form—you can’t very well gather information from a set of tables when

the primary key isn’t present!

Assuming that a value was present for $_POST[‘sel_id’], a safe version of it is cre-

ated in line 51. Next, you create and issue a query in lines 54–57 that obtains the

name of the user whose record you want to view. This information is placed in the

now-familiar $display_block string, which will continue to be built as the script

continues.

Lines 69–89 represent the query against the address table, and the resulting display

string that is built. If the selected individual has no records in the address table,

nothing is added to the $display_block string. However, if there are one or more

entries, the addresses for this person are added to the $display_block string as one

or more unordered list elements, as shown in lines 78–87.

Lines 92–168 of Listing 20.4 perform the same type of looping and writing to the

$display_block variable, but the tables are different. For instance, lines 92–109

look for information in the telephone table and create an appropriate string to be

added to $display_block, if any information is present. The same structure is

repeated in lines 114–130 for information from the fax table, lines 135–150 for

information from the email table, and lines 155–172 for any content present in the

personal_notes table.

ptg8126863

402 CHAPTER 20: Creating an Online Address Book

LISTING 20.4 (continued)
92: //get all tel
93: $get_tel_sql = “SELECT tel_number, type FROM telephone WHERE
94: master_id = ‘“.$safe_id.”’”;
95: $get_tel_res = mysqli_query($mysqli, $get_tel_sql)
96: or die(mysqli_error($mysqli));
97:
98: if (mysqli_num_rows($get_tel_res) > 0) {
99: $display_block .= “<p>Telephone:

100: ”;
101:
102: while ($tel_info = mysqli_fetch_array($get_tel_res)) {
103: $tel_number = stripslashes($tel_info[‘tel_number’]);
104: $tel_type = $tel_info[‘type’];
105:
106: $display_block .= “$tel_number ($tel_type)”;
107: }
108: $display_block .= “”;
109: }
110: //free result
111: mysqli_free_result($get_tel_res);
112:
113: //get all fax
114: $get_fax_sql = “SELECT fax_number, type FROM fax WHERE
115: master_id = ‘“.$safe_id.”’”;
116: $get_fax_res = mysqli_query($mysqli, $get_fax_sql)
117: or die(mysqli_error($mysqli));
118:
119: if (mysqli_num_rows($get_fax_res) > 0) {
120: $display_block .= “<p>Fax:

121: ”;
122:
123: while ($fax_info = mysqli_fetch_array($get_fax_res)) {
124: $fax_number = stripslashes($fax_info[‘fax_number’]);
125: $fax_type = $fax_info[‘type’];
126:
127: $display_block .= “$fax_number ($fax_type)”;
128: }
129: $display_block .= “”;
130: }
131: //free result
132: mysqli_free_result($get_fax_res);
133:
134: //get all email
135: $get_email_sql = “SELECT email, type FROM email WHERE
136: master_id = ‘“.$safe_id.”’”;
137: $get_email_res = mysqli_query($mysqli, $get_email_sql)
138: or die(mysqli_error($mysqli));
139: if (mysqli_num_rows($get_email_res) > 0) {
140: $display_block .= “<p>Email:

141: ”;
142:
143: while ($email_info = mysqli_fetch_array($get_email_res)) {
144: $email = stripslashes($email_info[‘email’]);
145: $email_type = $email_info[‘type’];
146:
147: $display_block .= “$email ($email_type)”;

ptg8126863

Viewing Records 403

148: }
149: $display_block .= “”;
150: }
151: //free result
152: mysqli_free_result($get_email_res);
153:
154: //get personal note
155: $get_notes_sql = “SELECT note FROM personal_notes WHERE
156: master_id = ‘“.$safe_id.”’”;
157: $get_notes_res = mysqli_query($mysqli, $get_notes_sql)
158: or die(mysqli_error($mysqli));
159:
160: if (mysqli_num_rows($get_notes_res) == 1) {
161: while ($note_info = mysqli_fetch_array($get_notes_res)) {
162: $note = nl2br(stripslashes($note_info[‘note’]));
163: }
164: $display_block .= “<p>Personal Notes:

165: $note</p>”;
166: }
167: //free result
168: mysqli_free_result($get_notes_res);

You still have to do a little housekeeping and finish up the script, as shown in the

last portion of Listing 20.4.

LISTING 20.4 (continued)
169: $display_block .= “

170: <p style=\”text-align:center\”>
171: select another</p>”;
172: }
173: //close connection to MySQL
174: mysqli_close($mysqli);
175: ?>
176: <!DOCTYPE html>
177: <html>
178: <head>
179: <title>My Records</title>
180: </head>
181: <body>
182: <?php echo $display_block; ?>
183: </body>
184: </html>

Lines 169–171 simply print a link back to the selection form before closing up the

if...else statement in line 172 and the PHP block in the line following. Lines 176

through the end of the script are the generic HTML template that surround the con-

tents of the $display_block string.

After selecting a record from the form shown in Figure 20.4, you will see a result like

that shown in Figure 20.5—your data will vary, of course.

ptg8126863

404 CHAPTER 20: Creating an Online Address Book

When you try this script for yourself, against your own records, you should see infor-

mation only for those individuals who have additional data associated with them.

For example, if you have an entry for a friend, and all you have is an email address

entered in the email table, you shouldn’t see any text relating to address, telephone,

fax, or personal notes—no associated records were entered in those tables.

Creating the Record-Deletion
Mechanism
The record-deletion mechanism is nearly identical to the script used to view a

record. In fact, you can just take the first 42 lines of Listing 20.4, paste them into a

new file called delentry.php, and change “View” to “Delete” in lines 24 and 38.

Starting with a new line 43, the remainder of the code for delentry.php is shown in

Listing 20.5.

LISTING 20.5 Script Called delentry.php for Selecting and Deleting
a Record
43: } else if ($_POST) {
44: //check for required fields
45: if ($_POST[‘sel_id’] == “”) {
46: header(“Location: delentry.php”);
47: exit;
48: }
49:
50: //create safe version of ID
51: $safe_id = mysqli_real_escape_string($mysqli, $_POST[‘sel_id’]);
52:

FIGURE 20.5
An individual’s
record.

ptg8126863

Creating the Record-Deletion Mechanism 405

53: //issue queries
54: $del_master_sql = “DELETE FROM master_name WHERE
55: id = ‘“.$safe_id.”’”;
56: $del_master_res = mysqli_query($mysqli, $del_master_sql)
57: or die(mysqli_error($mysqli));
58:
59: $del_address_sql = “DELETE FROM address WHERE
60: id = ‘“.$safe_id.”’”;
61: $del_address_res = mysqli_query($mysqli, $del_address_sql)
62: or die(mysqli_error($mysqli));
63:
64: $del_tel_sql = “DELETE FROM telephone WHERE id = ‘“.$safe_id.”’”;
65: $del_tel_res = mysqli_query($mysqli, $del_tel_sql)
66: or die(mysqli_error($mysqli));
67:
68: $del_fax_sql = “DELETE FROM fax WHERE id = ‘“.$safe_id.”’”;
69: $del_fax_res = mysqli_query($mysqli, $del_fax_sql)
70: or die(mysqli_error($mysqli));
71:
72: $del_email_sql = “DELETE FROM email WHERE id = ‘“.$safe_id.”’”;
73: $del_email_res = mysqli_query($mysqli, $del_email_sql)
74: or die(mysqli_error($mysqli));
75:
76: $del_note_sql = “DELETE FROM personal_notes WHERE
77: id = ‘“.$safe_id.”’”;
78: $del_note_res = mysqli_query($mysqli, $del_note_sql)
79: or die(mysqli_error($mysqli));
80:
81: mysqli_close($mysqli);
82:
83: $display_block = “<h1>Record(s) Deleted</h1>
84: <p>Would you like to
85: delete another?</p>”;
86: }
87: ?>
88: <!DOCTYPE html>
89: <html>
90: <head>
91: <title>My Records</title>
92: </head>
93: <body>
94: <?php echo $display_block; ?>
95: </body>
96: </html>

Picking up in line 45, the script looks for the required field, $_POST[‘sel_id’], just

as it did in the selentry.php script. If that required value does not exist, the script

redirects the user to the selection form, but if it does exist, a safe version is created in

line 51. In lines 54–79, queries delete all information related to the selected individ-

ual from all tables. Lines 83–85 place a nice message in $display_block, and the

script exits and prints the HTML to the screen. Figure 20.6 shows an output of the

record-deletion script.

ptg8126863

406 CHAPTER 20: Creating an Online Address Book

When you go back to the record-selection form after deleting a record, you’ll note

that the individual you deleted is no longer in the selection menu—as it should be!

Adding Subentries to a Record
At this point in the chapter, you’ve learned how to add, remove, and view records.

What’s missing is adding additional entries to the related tables after you’ve already

entered a master record—entries for home versus work telephone number, for exam-

ple. All you need to do is make a few changes to existing scripts.

In the selentry.php script in Listing 20.4, change lines 185–186 to read as follows:

$display_block .= “<p style=\”text-align:center\”>
add info ...
select another</p>”;

This change simply adds a link to the addentry.php script and also passes it a vari-

able that will become accessible to the next script via $_GET[‘master_id’].

Now you need to modify the addentry.php script from Listing 20.3 to account for its

dual purposes. Here is a summary of the changes to the original script.

Replace the first 16 lines of the original addentry.php script with the following

snippet:

<?php
include ‘ch20_include.php’;
doDB();

if ((!$_POST) || ($_GET[‘master_id’] != “”)) {
//haven’t seen the form, so show it
$display_block = “
<form method=\”post\” action=\””.$_SERVER[‘PHP_SELF’].”\”>”;
if (isset($_GET[‘master_id’])) {

FIGURE 20.6
Deleting a
record.

ptg8126863

Adding Subentries to a Record 407

//create safe version of ID
$safe_id = mysqli_real_escape_string($mysqli, $_GET[‘master_id’]);

//get first, last names for display/tests validity
$get_names_sql = “SELECT concat_ws(‘ ‘, f_name, l_name) AS display_name

FROM master_name WHERE id = ‘“.$safe_id.”’”;
$get_names_res = mysqli_query($mysqli, $get_names_sql)

or die(mysqli_error($mysqli));

if (mysqli_num_rows($get_names_res) == 1) {
while ($name_info = mysqli_fetch_array($get_names_res)) {

$display_name = stripslashes($name_info[‘display_name’]);
}

}
}

if (isset($display_name)) {
$display_block .= “<p>Adding information for
$display_name:</p>”;

} else {
$display_block .= <<<END_OF_TEXT
<fieldset>
<legend>First/Last Names:</legend>

<input type=”text” name=”f_name” size=”30”

maxlength=”75” required=”required” />
<input type=”text” name=”l_name” size=”30”

maxlength=”75” required=”required” />
</fieldset>

END_OF_TEXT;
}
$display_block .= <<<END_OF_TEXT

<p><label for=”address”>Street Address:</label>

This snippet simply moves around the form elements, printing the first and last

name fields only if they contain a new record. If they contain an addition to a

record, the individual’s name is extracted from the database for aesthetic purposes

as well as for a validity check of the ID.

Next, find this line in the original addentry.php script:

<button type=”submit” name=”submit” value=”send”>Add Entry</button>

Directly above it, add the following:

END_OF_TEXT;
if ($_GET) {

$display_block .= “<input type=\”hidden\” name=\”master_id\”
value=\””.$_GET[‘master_id’].”\”>”;

}

$display_block .= <<<END_OF_TEXT

This modification ensures that the known value of master_id is passed along to the

next task, if it is present.

ptg8126863

408 CHAPTER 20: Creating an Online Address Book

Identify what were lines 91–130 of the original script, beginning with the comment

time to add to tables and ending with obtaining the value of $master_id.

Replace those lines with the following:

//time to add to tables, so check for required fields
if ((($_POST[‘f_name’] == “”) || ($_POST[‘l_name’] == “”)) &&
(!isset($_POST[‘master_id’]))) {

header(“Location: addentry.php”);
exit;

}

//connect to database
doDB();

//create clean versions of input strings
$safe_f_name = mysqli_real_escape_string($mysqli,

$_POST[‘f_name’]);
$safe_l_name = mysqli_real_escape_string($mysqli,

$_POST[‘l_name’]);
$safe_address = mysqli_real_escape_string($mysqli,

$_POST[‘address’]);
$safe_city = mysqli_real_escape_string($mysqli,

$_POST[‘city’]);
$safe_state = mysqli_real_escape_string($mysqli,

$_POST[‘state’]);
$safe_zipcode = mysqli_real_escape_string($mysqli,

$_POST[‘zipcode’]);
$safe_tel_number = mysqli_real_escape_string($mysqli,

$_POST[‘tel_number’]);
$safe_fax_number = mysqli_real_escape_string($mysqli,

$_POST[‘fax_number’]);
$safe_email = mysqli_real_escape_string($mysqli,

$_POST[‘email’]);
$safe_note = mysqli_real_escape_string($mysqli,

$_POST[‘note’]);

if (!$_POST[‘master_id’]) {
//add to master_name table
$add_master_sql = “INSERT INTO master_name (date_added, date_modified,

f_name, l_name) VALUES (now(), now(),
‘“.$safe_f_name.”’, ‘“.$safe_l_name.”’)”;

$add_master_res = mysqli_query($mysqli, $add_master_sql)
or die(mysqli_error($mysqli));

//get master_id for use with other tables
$master_id = mysqli_insert_id($mysqli);

} else {
$master_id = mysqli_real_escape_string($mysqli, $_POST[‘master_id’]);

}

These lines modify the check for required fields, allowing the script to continue with-

out values for first and last names, but only if it has a $_POST[‘master_id’] value.

Then the script connects to the database to perform all the additions you want it to,

but it skips the addition to the master_name table if a value for $_POST[‘master_

id’] exists.

ptg8126863

Adding Subentries to a Record 409

Finally, in the section of the script that handles the insertion into the personal_

notes table, change INSERT into to UPDATE to handle an update of the notes field:

$add_notes_sql = “UPDATE personal_notes set note = ‘“.$safe_note.”’,
date_modified = now() WHERE master_id = ‘“.$master_id.”’”;

The new script should look like Listing 20.6.

LISTING 20.6 New addentry.php Script
1: <?php
2: include ‘ch20_include.php’;
3: doDB();
4:
5: if ((!$_POST) || ($_GET[‘master_id’] != “”)) {
6: //haven’t seen the form, so show it
7: $display_block = “
8: <form method=\”post\” action=\””.$_SERVER[‘PHP_SELF’].”\”>”;
9: if (isset($_GET[‘master_id’])) {
10: //create safe version of ID
11: $safe_id = mysqli_real_escape_string($mysqli, $_GET[‘master_id’]);
12:
13: //get first, last names for display/tests validity
14: $get_names_sql = “SELECT concat_ws(‘ ‘, f_name, l_name) AS

display_name
15: FROM master_name WHERE id = ‘“.$safe_id.”’”;
16: $get_names_res = mysqli_query($mysqli, $get_names_sql)
17: or die(mysqli_error($mysqli));
18:
19: if (mysqli_num_rows($get_names_res) == 1) {
20: while ($name_info = mysqli_fetch_array($get_names_res)) {
21: $display_name = stripslashes($name_info[‘display_name’]);
22: }
23: }
24: }
25:
26: if (isset($display_name)) {
27: $display_block .= “<p>Adding information for
28: $display_name:</p>”;
29: } else {
30: $display_block .= <<<END_OF_TEXT <fieldset>
31: <legend>First/Last Names:</legend>

32: <input type=”text” name=”f_name” size=”30”
33: maxlength=”75” required=”required” />
34: <input type=”text” name=”l_name” size=”30”
35: maxlength=”75” required=”required” />
36: </fieldset>
37: END_OF_TEXT;
38: }
39: $display_block .= <<<END_OF_TEXT
40: <p><label for=”address”>Street Address:</label>

41: <input type=”text” id=”address” name=”address”
42: size=”30” /></p>
43:
44: <fieldset>

ptg8126863

410 CHAPTER 20: Creating an Online Address Book

LISTING 20.6 Continued
45: <legend>City/State/Zip:</legend>

46: <input type=”text” name=”city” size=”30” maxlength=”50” />
47: <input type=”text” name=”state” size=”5” maxlength=”2” />
48: <input type=”text” name=”zipcode” size=”10” maxlength=”10” />
49: </fieldset>
50:
51: <fieldset>
52: <legend>Address Type:</legend>

53: <input type=”radio” id=”add_type_h” name=”add_type”
54: value=”home” checked />
55: <label for=”add_type_h”>home</label>
56: <input type=”radio” id=”add_type_w” name=”add_type”
57: value=”work” />
58: <label for=”add_type_w”>work</label>
59: <input type=”radio” id=”add_type_o” name=”add_type”
60: value=”other” />
61: <label for=”add_type_o”>other</label>
62: </fieldset>
63:
64: <fieldset>
65:
66: <legend>Telephone Number:</legend>

67: <input type=”text” name=”tel_number” size=”30” maxlength=”25” />
68: <input type=”radio” id=”tel_type_h” name=”tel_type”
69: value=”home” checked />
70: <label for=”tel_type_h”>home</label>
71: <input type=”radio” id=”tel_type_w” name=”tel_type”
72: value=”work” />
73: <label for=”tel_type_w”>work</label>
74: <input type=”radio” id=”tel_type_o” name=”tel_type”
75: value=”other” />
76: <label for=”tel_type_o”>other</label>
77: </fieldset>
78:
79: <fieldset>
80: <legend>Fax Number:</legend>

81: <input type=”text” name=”fax_number” size=”30” maxlength=”25” />
82: <input type=”radio” id=”fax_type_h” name=”fax_type”
83: value=”home” checked />
84: <label for=”fax_type_h”>home</label>
85: <input type=”radio” id=”fax_type_w” name=”fax_type”
86: value=”work” />
87: <label for=”fax_type_w”>work</label>
88: <input type=”radio” id=”fax_type_o” name=”fax_type”
89: value=”other” />
90: <label for=”fax_type_o”>other</label>
91: </fieldset>
92:
93: <fieldset>
94: <legend>Email Address:</legend>

95: <input type=”email” name=”email” size=”30” maxlength=”150” />
96: <input type=”radio” id=”email_type_h” name=”email_type”
97: value=”home” checked />
98: <label for=”email_type_h”>home</label>
99: <input type=”radio” id=”email_type_w” name=”email_type”
100: value=”work” />
101: <label for=”email_type_w”>work</label>

ptg8126863

Adding Subentries to a Record 411

102: <input type=”radio” id=”email_type_o” name=”email_type”
103: value=”other” />
104: <label for=”email_type_o”>other</label>
105: </fieldset>
106:
107: <p><label for=”note”>Personal Note:</label>

108: <textarea id=”note” name=”note” cols=”35”
109: rows=”3”></textarea></p>
110: END_OF_TEXT;
111: if ($_GET) {
112: $display_block .= “<input type=\”hidden\” name=\”master_id\”
113: value=\””.$_GET[‘master_id’].”\”>”;
114: }
115: $display_block .= <<<END_OF_TEXT
116: <button type=”submit” name=”submit”
117: value=”send”>Add Entry</button>
118: </form>
119: END_OF_TEXT;
120: } else if ($_POST) {
121: //time to add to tables, so check for required fields
122: if ((($_POST[‘f_name’] == “”) || ($_POST[‘l_name’] == “”)) &&
123: (!isset($_POST[‘master_id’]))) {
124: header(“Location: addentry.php”);
125: exit;
126: }
127:
128: //connect to database
129: doDB();
130: //create clean versions of input strings
131: $safe_f_name = mysqli_real_escape_string($mysqli,
132: $_POST[‘f_name’]);
133: $safe_l_name = mysqli_real_escape_string($mysqli,
134: $_POST[‘l_name’]);
135: $safe_address = mysqli_real_escape_string($mysqli,
136: $_POST[‘address’]);
137: $safe_city = mysqli_real_escape_string($mysqli,
138: $_POST[‘city’]);
139: $safe_state = mysqli_real_escape_string($mysqli,
140: $_POST[‘state’]);
141: $safe_zipcode = mysqli_real_escape_string($mysqli,
142: $_POST[‘zipcode’]);
143: $safe_tel_number = mysqli_real_escape_string($mysqli,
144: $_POST[‘tel_number’]);
145: $safe_fax_number = mysqli_real_escape_string($mysqli,
146: $_POST[‘fax_number’]);
147: $safe_email = mysqli_real_escape_string($mysqli,
148: $_POST[‘email’]);
149: $safe_note = mysqli_real_escape_string($mysqli,
150: $_POST[‘note’]);
151:
152: if (!$_POST[‘master_id’]) {
153: //add to master_name table
154: $add_master_sql = “INSERT INTO master_name (date_added,

date_modified,
155: f_name, l_name) VALUES (now(), now(),
156: ‘“.$safe_f_name.”’, ‘“.$safe_l_name.”’)”;
157: $add_master_res = mysqli_query($mysqli, $add_master_sql)

ptg8126863

412 CHAPTER 20: Creating an Online Address Book

LISTING 20.6 Continued
158: or die(mysqli_error($mysqli));
159:
160: //get master_id for use with other tables
161: $master_id = mysqli_insert_id($mysqli);
162: } else {
163: $master_id = mysqli_real_escape_string($mysqli,

$_POST[‘master_id’]);
164: }
165:
166: if (($_POST[‘address’]) || ($_POST[‘city’]) ||
167: ($_POST[‘state’]) || ($_POST[‘zipcode’])) {
168: //something relevant, so add to address table
169: $add_address_sql = “INSERT INTO address (master_id,
170: date_added, date_modified, address, city, state,
171: zipcode, type) VALUES
172: (‘“.$master_id.”’, now(), now(),
173: ‘“.$safe_address.”’, ‘“.$safe_city.”’,
174: ‘“.$safe_state.”’ , ‘“.$safe_zipcode.”’ ,
175: ‘“.$_POST[‘add_type’].”’)”;
176: $add_address_res = mysqli_query($mysqli, $add_address_sql)
177: or die(mysqli_error($mysqli));
178: }
179:
180: if ($_POST[‘tel_number’]) {
181: //something relevant, so add to telephone table
182: $add_tel_sql = “INSERT INTO telephone (master_id, date_added,
183: date_modified, tel_number, type) VALUES
184: (‘“.$master_id.”’, now(), now(),
185: ‘“.$safe_tel_number.”’, ‘“.$_POST[‘tel_type’].”’)”;
186: $add_tel_res = mysqli_query($mysqli, $add_tel_sql)
187: or die(mysqli_error($mysqli));
188: }
189:
190: if ($_POST[‘fax_number’]) {
191: //something relevant, so add to fax table
192: $add_fax_sql = “INSERT INTO fax (master_id, date_added,
193: date_modified, fax_number, type) VALUES
194: (‘“.$master_id.”’, now(), now(), ‘“.$safe_fax_number.”’,
195: ‘“.$_POST[‘fax_type’].”’)”;
196: $add_fax_res = mysqli_query($mysqli, $add_fax_sql)
197: or die(mysqli_error($mysqli));
198: }
199: if ($_POST[‘email’]) {
200: //something relevant, so add to email table
201: $add_email_sql = “INSERT INTO email (master_id, date_added,
202: date_modified, email, type) VALUES
203: (‘“.$master_id.”’, now(), now(), ‘“.$safe_email.”’,
204: ‘“.$_POST[‘email_type’].”’)”;
205: $add_email_res = mysqli_query($mysqli, $add_email_sql)
206: or die(mysqli_error($mysqli));
207: }
208:
209: if ($_POST[‘note’]) {
210: //something relevant, so add to notes table
211: $add_notes_sql = “UPDATE personal_notes set note =
212: ‘“.$safe_note.”’, date_modified = now()

ptg8126863

Adding Subentries to a Record 413

213: WHERE master_id = ‘“.$master_id.”’”;
214: }
215: mysqli_close($mysqli);
216: $display_block = “<p>Your entry has been added. Would you
217: like to add another?</p>”;
218: }
219: ?>
220: <!DOCTYPE html>
221: <head>
222: <title>Add an Entry</title>
223: </head>
224: <body>
225: <h1>Add an Entry</h1>
226: <?php echo $display_block; ?>
227: </body>
228: </html>

You can try out this revised script by selecting a record to view and then following

the add info link. You should see a form like that shown in Figure 20.7.

FIGURE 20.7
Adding to a
record.

After submitting this form, you can go back through the selection sequence and

view the record to verify that your changes have been made.

ptg8126863

414 CHAPTER 20: Creating an Online Address Book

Summary
In this chapter, you applied your basic PHP and MySQL knowledge to create a per-

sonal address book. You learned how to create the database table and scripts for

record addition, removal, and simple viewing. You also learned how to add multiple

records attached to a single master entry.

Q&A
Q. What do I do if I want to add additional sections to my address book, such

as entries for a person’s birthday or other information?

A. Different tables are used for address, telephone, fax, email, and personal notes

because it is possible for a person to have more than one record containing

those types of information. In the case of a person’s birthday, a person has

just one of those, so a relational database is overkill because only one record

would ever exist per user. So, to add a person’s birthday you should add a field

to the master_name table. In the case of adding tables for other information,

ask yourself whether a person will only ever have one instance of that infor-

mation (such as birthday) or multiple instances (such as email addresses). If

the latter case, create a table much like the address, telephone, fax, email,

or personal_notes tables, which use master_id as a foreign key.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. When you are passing a variable through the query string, which superglobal

does it belong in?

2. How many records in the address, email, telephone, and fax tables can you

have for each individual in your master_name table?

3. Through which database field are additional records attached to a master

record?

ptg8126863

415Workshop

Answers
1. The $_GET superglobal.

2. As many as you want—it’s relational!

3. The master_id field.

Activities
1. Go through each of the administration scripts and modify the code so that a

link to the menu prints at the bottom of each screen.

2. Use the second version of the addentry.php script to add secondary contact

information to records in your database. Figure 20.8 shows what a record will

look like after the script adds secondary contact information to it.

FIGURE 20.8
An individual’s
record with
multiple entries
in tables.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 21

Creating a Simple Discussion
Forum

In this chapter, you learn the following:
. How to create tables for a simple discussion forum
. How to create input forms for a simple discussion forum
. How to display a simple discussion forum

In this chapter, you learn the design process behind a simple discussion forum. This

includes developing the database tables and user input forms and displaying the results.

When broken into pieces like this, such a task seems simple—and it is! The ultimate goal

is to understand the concepts and relationships that go into making something like a dis-

cussion forum, not to create the world’s most full-functioned system. In fact, you’ll see it’s

quite sparse, but it sure is relational.

Designing the Database Tables
Think of the basic components of a forum: topics and posts. A forum—if properly used by

its patrons—should have several topics, and each of those topics will have one or more

posts submitted by users. Knowing that, you should realize that the posts are tied to the

topics through a key field. This key forms the relationship between the two tables.

Think about the requirements for the topics themselves. You definitely need a field for the

title, and subsequently you might want fields to hold the creation time and the identifica-

tion of the user who created the topic. Similarly, think of the requirements for the posts:

You want to store the text of the post, the time of its creation, and the identity of person

who created it. Most important, you need that key to tie the post to the topic.

ptg8126863

418 CHAPTER 21: Creating a Simple Discussion Forum

The following two table creation statements create these tables, called forum_topics

and forum_posts:

CREATE TABLE forum_topics (

topic_id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

topic_title VARCHAR (150),

topic_create_time DATETIME,

topic_owner VARCHAR (150)

);

CREATE TABLE forum_posts (

post_id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

topic_id INT NOT NULL,

post_text TEXT,

post_create_time DATETIME,

post_owner VARCHAR (150)

);

This simple forum example identifies users by their email addresses and does not
require any sort of login sequence.

You should now have two empty tables waiting for some input. In the next section,

you create the input forms for adding a topic and a post.

Creating an Include File for Common
Functions
Previous chapters used an included file of common functions to make your scripts

more concise and to help manage information that might change over time, such

as a database username and password. The same thing is true in this chapter.

Listing 21.1 contains the code shared by the scripts in this chapter.

LISTING 21.1 Common Functions in an Included File
1: <?php
2: function doDB() {
3: global $mysqli;
4:
5: //connect to server and select database; you may need it
6: $mysqli = mysqli_connect(“localhost”, “joeuser”,
7: “somepass”, “testDB”);
8:
9: //if connection fails, stop script execution
10: if (mysqli_connect_errno()) {
11: printf(“Connect failed: %s\n”, mysqli_connect_error());
12: exit();
13: }
14: }
15: ?>

NOTE

ptg8126863

Creating the Input Forms and Scripts 419

Lines 2–14 set up the database connection function, doDB. If the connection cannot

be made, the script exits when this function is called; otherwise, it makes the value

of $mysqli available to other parts of your script.

Save this file as ch21_include.php and place it on your web server. The other code

listings in this chapter include this file within the first few lines of the script.

Creating the Input Forms and Scripts
Before you can add any posts, you must add a topic to the forum. It is common

practice in forum creation to add the topic and the first post in that topic at the

same time, because from a user’s point of view, it doesn’t make much sense to add a

topic and then go back, select the topic, and add a reply. You want the process to be

as smooth as possible. Listing 21.2 shows the form for a new topic creation, which

includes a space for the first post in the topic.

LISTING 21.2 Form for Adding a Topic
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Add a Topic</title>
5: </head>
6: <body>
7: <h1>Add a Topic</h1>
8: <form method=”post” action=”do_addtopic.php”>
9:
10: <p><label for=”topic_owner”>Your Email Address:</label>

11: <input type=”email” id=”topic_owner” name=”topic_owner” size=”40”
12: maxlength=”150” required=”required” /></p>
13:
14: <p><label for=”topic_title”>Topic Title:</label>

15: <input type=”text” id=”topic_title” name=”topic_title” size=”40”
16: maxlength=”150” required=”required” /></p>
17: <p><label for=”post_text”>Post Text:</label>

18: <textarea id=”post_text” name=”post_text” rows=”8”
19: cols=”40” ></textarea></p>
20:
21: <button type=”submit” name=”submit” value=”submit”>Add Topic</button>
22:
23: </form>
24: </body>
25: </html>

Seems simple enough: The three fields shown in the form, which you can see in

Figure 21.1, are all you need to complete both tables; your script and database can

fill in the rest. Save Listing 21.2 as something like addtopic.html and put it in your

web server document root so that you can follow along.

ptg8126863

420 CHAPTER 21: Creating a Simple Discussion Forum

To create the entry in the forum_topics table, you use the values from the

$_POST[‘topic_title’] and $_POST[‘topic_owner’] variables from the input

form. The topic_id and topic_create_time fields will be automatically incre-

mented and added via the now() MySQL function, respectively.

Similarly, in the forum_posts table, you use the values of $_POST[‘post_text’]

and $_POST[‘topic_owner’] from the input form, and the post_id, post_cre-

ate_time, and the topic_id fields will be automatically incremented or otherwise

supplied. Because you need a value for the topic_id field to be able to complete the

entry in the forum_posts table, you know that query must happen after the query

to insert the record in the forum_topics table. Listing 21.3 creates the script to add

these records to the table.

LISTING 21.3 Script for Adding a Topic
1: <?php
2: include ‘ch21_include.php’;
3: doDB();
4:
5: //check for required fields from the form
6: if ((!$_POST[‘topic_owner’]) || (!$_POST[‘topic_title’]) ||
7: (!$_POST[‘post_text’])) {
8: header(“Location: addtopic.html”);
9: exit;
10: }
11:
12: //create safe values for input into the database
13: $clean_topic_owner = mysqli_real_escape_string($mysqli,
14: $_POST[‘topic_owner’]);
15: $clean_topic_title = mysqli_real_escape_string($mysqli,

FIGURE 21.1
The topic-
creation form.

ptg8126863

Creating the Input Forms and Scripts 421

16: $_POST[‘topic_title’]);
17: $clean_post_text = mysqli_real_escape_string($mysqli,
18: $_POST[‘post_text’]);
19:
20: //create and issue the first query
21: $add_topic_sql = “INSERT INTO forum_topics
22: (topic_title, topic_create_time, topic_owner)
23: VALUES (‘“.$clean_topic_title .”’, now(),
24: ‘“.$$clean_topic_owner.”’)”;
25:
26: $add_topic_res = mysqli_query($mysqli, $add_topic_sql)
27: or die(mysqli_error($mysqli));
28:
29: //get the id of the last query
30: $topic_id = mysqli_insert_id($mysqli);
31:
32: //create and issue the second query
33: $add_post_sql = “INSERT INTO forum_posts
34: (topic_id, post_text, post_create_time, post_owner)
35: VALUES (‘“.$topic_id.”’, ‘“.$clean_post_text.”’,
36: now(), ‘“.$clean_topic_owner.”’)”;
37:
38: $add_post_res = mysqli_query($mysqli, $add_post_sql)
39: or die(mysqli_error($mysqli));
40: //close connection to MySQL
41: mysqli_close($mysqli);
42:
43: //create nice message for user
44: $display_block = “<p>The ”.$_POST[“topic_title”].”
45: topic has been created.</p>”;
46: ?>
47: <!DOCTYPE html>
48: <html>
49: <head>
50: <title>New Topic Added</title>
51: </head>
52: <body>
53: <h1>New Topic Added</h1>
54: <?php echo $display_block; ?>
55: </body>
56: </html>

Lines 2–3 include the file of user-created functions and call the database connection

function. Next, lines 6–10 check for the three required fields needed to complete

both tables (the topic owner, a topic title, and some text for the post). If any one

of these fields is not present, the user is redirected to the original form. Lines 13–18

create database-safe versions of the contents of those variables.

Lines 21–27 create and insert the first query, which adds the topic to the

forum_topics table. Note that no value is entered for the id field in the table;

the automatically incrementing value is added by the system per the original

table definition. The MySQL now() function is used to timestamp the record

with the current time at insertion. The other fields in the record are completed

using values from the form.

ptg8126863

422 CHAPTER 21: Creating a Simple Discussion Forum

Line 30 shows the use of a handy function: mysqli_insert_id(). This function

retrieves the primary key ID of the last record inserted into the database by this

script. In this case, mysqli_insert_id() gets the id value from the forum_topics

table, which will become the entry for the topic_id field in the forum_posts table.

Lines 33–39 create and insert the second query, again using a mixture of informa-

tion known and supplied by the system. The second query adds the text of the user’s

post to the forum_posts table. Lines 44–45 simply create a display string for the

user, and the rest of the script rounds out the HTML that is rendered by the browser.

Save this listing as do_addtopic.php—the name of the action in the previous

script—and place it in the document root of your web server. Complete the form you

created from Listing 21.1 and then submit it, and you should see the New Topic

Added message. Figures 21.2 and 21.3 show the sequence of events.

FIGURE 21.2
Adding a topic
and first post.

FIGURE 21.3
Successful
addition of
a topic and
first post.

ptg8126863

Displaying the Topic List 423

In the next section, you put together two more pieces of the puzzle: displaying the

topics and posts and replying to a topic.

Displaying the Topic List
Now that you have a topic and at least one post in your database, you can display

this information and let people add new topics or reply to existing ones. In Listing

21.4, you take a step back and create a page that lists all the topics in the forum.

This page shows the basic information of each topic and provides the user with a

link to add a new topic; you have already created the form and script for that. The

code in Listing 21.4 represents an entry page for your forum.

Although Listing 21.4 looks like a lot of code, it’s actually many small, simple con-

cepts you’ve already encountered, starting with the include() function and data-

base connection function in lines 2–3.

LISTING 21.4 Topic Listing Script
1: <?php
2: include ‘ch21_include.php’;
3: doDB();
4:
5: //gather the topics
6: $get_topics_sql = “SELECT topic_id, topic_title,
7: DATE_FORMAT(topic_create_time, ‘%b %e %Y at %r’) AS
8: fmt_topic_create_time, topic_owner FROM forum_topics
9: ORDER BY topic_create_time DESC”;
10: $get_topics_res = mysqli_query($mysqli, $get_topics_sql)
11: or die(mysqli_error($mysqli));
12:
13: if (mysqli_num_rows($get_topics_res) < 1) {
14: //there are no topics, so say so
15: $display_block = “<p>No topics exist.</p>”;
16: } else {
17: //create the display string
18: $display_block <<<END_OF_TEXT
19: <table>
20: <tr>
21: <th>TOPIC TITLE</th>
22: <th># of POSTS</th>
23: </tr>
24: END_OF_TEXT;
25:
26: while ($topic_info = mysqli_fetch_array($get_topics_res)) {
27: $topic_id = $topic_info[‘topic_id’];
28: $topic_title = stripslashes($topic_info[‘topic_title’]);
29: $topic_create_time = $topic_info[‘fmt_topic_create_time’];
30: $topic_owner = stripslashes($topic_info[‘topic_owner’]);
31:
32: //get number of posts
33: $get_num_posts_sql = “SELECT COUNT(post_id) AS post_count FROM
34: forum_posts WHERE topic_id = ‘“.$topic_id.”’”;

ptg8126863

424 CHAPTER 21: Creating a Simple Discussion Forum

LISTING 21.4 Continued
35: $get_num_posts_res = mysqli_query($mysqli, $get_num_posts_sql)
36: or die(mysqli_error($mysqli));
37:
38: while ($posts_info = mysqli_fetch_array($get_num_posts_res)) {
39: $num_posts = $posts_info[‘post_count’];
40: }
41:
42: //add to display
43: $display_block .= <<<END_OF_TEXT
44: <tr>
45: <td>
46: $topic_title

47: Created on $topic_create_time by $topic_owner</td>
48: <td class=”num_posts_col”>$num_posts</td>
49: </tr>
50: END_OF_TEXT;
51: }
52: //free results
53: mysqli_free_result($get_topics_res);
54: mysqli_free_result($get_num_posts_res);
55:
56: //close connection to MySQL
57: mysqli_close($mysqli);
58:
59: //close up the table
60: $display_block .= “</table>”;
61: }
62: ?>
63: <!DOCTYPE html>
64: <html>
65: <head>
66: <title>Topics in My Forum</title>
67: <style type=”text/css”>
68: table {
69: border: 1px solid black;
70: border-collapse: collapse;
71: }
72: th {
73: border: 1px solid black;
74: padding: 6px;
75: font-weight: bold;
76: background: #ccc;
77: }
78: td {
79: border: 1px solid black;
80: padding: 6px;
81: }
82: .num_posts_col { text-align: center; }
83: </style>
84: </head>
85: <body>
86: <h1>Topics in My Forum</h1>
87: <?php echo $display_block; ?>
88: <p>Would you like to add a topic?</p>
89: </body>
90: </html>

ptg8126863

Displaying the Topic List 425

Lines 6–11 show the first of the database queries, and this particular one selects all

the topic information in order by descending date. In other words, these lines gather

the data in such a way that the topic that was created most recently will appear at

the top of the list. In the query, notice the use of the date_format() function to cre-

ate a much nicer date display than the raw value stored in the database.

Line 13 checks for the presence of any records returned by the query. If no records

are returned, and therefore no topics are in the table, you want to tell the user. Line

15 creates this message. At this point, if no topics existed, the script would break out

of the if...else construct and be over with; the next action would occur at line 63,

which is the start of the static HTML. If the script ended here, the message created in

line 15 would be printed in line 87.

If you have topics in your forum_topics table, however, the script continues at line

16. At line 18, a block of text is assigned to the $display_block variable, contain-

ing the beginnings of an HTML table. Lines 19–23 set up a table with two columns:

one for the title and one for the number of posts. At line 26, you begin to loop

through the results of the original query.

The while loop in line 26 says that while there are elements to be extracted from

the resultset, extract each row as an array called $topic_info, and use the field

names as the array element to assign the value to a new variable. So, the first ele-

ment the script tries to extract is the topic_id field, on line 27. It assigns the value

of $topic_info[‘topic_id’] to the $topic_id variable, meaning that it gets a

local value for $topic_id from an array called $topic_info, containing a field

called topic_id. Continue doing this for the $topic_title, $topic_create_time,

and $topic_owner variables in lines 28–30. The stripslashes() function removes

any escape characters that may have been input into the table at the time of record

insertion.

Lines 33–36 create and issue another query, in the context of the while loop, to get

the number of posts for that particular topic. In line 43, the script continues the cre-

ation of the $display_block string, using the concatenation operator (.=) to make

sure that this string is tacked on to the end of the display string we have built so far.

In lines 45–47, you create the HTML table column to display the link to the file that

will show the topic (showtopic.php) and print the topic owner and creation time.

The second HTML table column, on line 48, shows the number of posts. The script

breaks out of the while loop on line 51, and in line 60 adds the last bit to the

$display_block string to close the table. The remaining lines print the HTML for

the page, including the value of the $display_block string.

ptg8126863

426 CHAPTER 21: Creating a Simple Discussion Forum

If you save this file as topiclist.php and place it in your web server document

root, and if you have topics in your database tables, you might see something like

Figure 21.4.

FIGURE 21.4
Topics are
available.

Displaying the Posts in a Topic
As you might have guessed, the next item on the task list is to build that show-

topic.php file to show the topic’s postings. Listing 21.5 does just that. In this listing,

lines 6–9 check for the existence of a value for topic_id in the GET query string.

Because you intend to show all the posts within a selected topic, you need to know

which topic to use in your query, and this is the manner in which the information is

given to you. If a value in $_GET[‘topic_id’] does not exist, the user is redirected

back to the topic listing page, presumably to try again.

LISTING 21.5 Script to Show Topic Posts
1: <?php
2: include ‘ch21_include.php’;
3: doDB();
4:
5: //check for required info from the query string
6: if (!isset($_GET[‘topic_id’])) {
7: header(“Location: topiclist.php”);
8: exit;
9: }
10:
11: //create safe values for use
12: $safe_topic_id = mysqli_real_escape_string($mysqli, $_GET[‘topic_id’]);
13:
14: //verify the topic exists
15: $verify_topic_sql = “SELECT topic_title FROM forum_topics
16: WHERE topic_id = ‘“.$safe_topic_id.”’”;
17: $verify_topic_res = mysqli_query($mysqli, $verify_topic_sql)
18: or die(mysqli_error($mysqli));
19:

ptg8126863

Displaying the Posts in a Topic 427

20: if (mysqli_num_rows($verify_topic_res) < 1) {
21: //this topic does not exist
22: $display_block = “<p>You have selected an invalid topic.

23: Please try again.</p>”;
24: } else {
25: //get the topic title
26: while ($topic_info = mysqli_fetch_array($verify_topic_res)) {
27: $topic_title = stripslashes($topic_info[‘topic_title’]);
28: }
29:
30: //gather the posts
31: $get_posts_sql = “SELECT post_id, post_text,

DATE_FORMAT(post_create_time,
32: ‘%b %e %Y
%r’) AS fmt_post_create_time, post_owner
33: FROM forum_posts
34: WHERE topic_id = ‘“.$safe_topic_id.”’
35: ORDER BY post_create_time ASC”;
36: $get_posts_res = mysqli_query($mysqli, $get_posts_sql)
37: or die(mysqli_error($mysqli));
38:
39: //create the display string
40: $display_block = <<<END_OF_TEXT
41: <p>Showing posts for the $topic_title topic:</p>
42: <table>
43: <tr>
44: <th>AUTHOR</th>
45: <th>POST</th>
46: </tr>
47: END_OF_TEXT;
48:
49: while ($posts_info = mysqli_fetch_array($get_posts_res)) {
50: $post_id = $posts_info[‘post_id’];
51: $post_text = nl2br(stripslashes($posts_info[‘post_text’]));
52: $post_create_time = $posts_info[‘fmt_post_create_time’];
53: $post_owner = stripslashes($posts_info[‘post_owner’]);
54:
55: //add to display
56: $display_block .= <<<END_OF_TEXT
57: <tr>
58: <td>$post_owner

59: created on:
$post_create_time</td>
60: <td>$post_text

61:
62: REPLY TO POST</td>
63: </tr>
64: END_OF_TEXT;
65: }
66:
67: //free results
68: mysqli_free_result($get_posts_res);
69: mysqli_free_result($verify_topic_res);
70:
71: //close connection to MySQL
72: mysqli_close($mysqli);
73:
74: //close up the table
75: $display_block .= “</table>”;
76: }

ptg8126863

428 CHAPTER 21: Creating a Simple Discussion Forum

LISTING 21.5 Continued
77: ?>
78: <!DOCTYPE html>
79: <html>
80: <head>
81: <title>Posts in Topic</title>
82: <style type=”text/css”>
83: table {
84: border: 1px solid black;
85: border-collapse: collapse;
86: }
87: th {
88: border: 1px solid black;
89: padding: 6px;
90: font-weight: bold;
91: background: #ccc;
92: }
93: td {
94: border: 1px solid black;
95: padding: 6px;
96: vertical-align: top;
97: }
98: .num_posts_col { text-align: center; }
99: </style>
100: </head>
101: <body>
102: <h1>Posts in Topic</h1>
103: <?php echo $display_block; ?>
104: </body>
105: </html>

Lines 15–18 show the first of these queries, and this one is used to validate that the

topic_id sent in the query string is actually a valid entry by selecting the associat-

ed topic_title for the topic in question. If the validation fails the test in line 20, a

message is created in lines 22–23, and the script breaks out of the if...else state-

ment and finishes up by printing HTML. This output looks like Figure 21.5.

FIGURE 21.5
Invalid topic
selected.

ptg8126863

Displaying the Posts in a Topic 429

If, however, the topic is valid, extract the value of topic_title in line 27, again

using stripslashes() to remove any escape characters that may have been auto-

matically added upon insertion. Next, the script creates and issues a query in lines

31–37 to gather all the posts associated with that topic in ascending order by time.

In this case, newest posts are at the bottom of the list. Line 40 starts a block of text,

containing the beginnings of an HTML table. Lines 42–46 set up a table with two

columns: one for the author of the post and one for the post text itself. The script

stops writing the text block momentarily, and at line 49 begins to loop through the

results of the original query.

The while loop in line 49 says that although there are elements to be extracted

from the resultset, extract each row as an array called $posts_info, and use the

field names as the array element to assign the value to a new variable. So, the first

element the script tries to extract is the post_id field on line 50. It assigns the value

of $posts_info[‘post_id’] to the variable $post_id, meaning that it gets a local

value for $post_id from an array called $posts_info, containing a field called

post_id. Continue doing this for the $post_text, $post_create_time, and

$post_owner variables in lines 51–53. The stripslashes() function is again used

to remove any escape characters, and the nl2br() function is used on the value

of $posts_info[post_text] to replace all newline characters with line-break

characters.

In line 56, the script continues to write to the $display_block string, using the

concatenation operator (.=) to make sure that this string is tacked on to the end

of the string we have created so far. Lines 58–59 create the HTML table column to

display the author and creation time of the post. The second HTML table row, on

lines 60–63, shows the text of the post as well as a link to reply to the post. The

script breaks out of the while loop on line 65, and on line 75 adds the last bit to

the $display_block string to close the table. The remaining lines print the HTML

for the page, including the value of the $display_block string.

If you save this file as showtopic.php and place it in your web server document

root, and if you have posts in your database tables, you might see something like

Figure 21.6.

ptg8126863

430 CHAPTER 21: Creating a Simple Discussion Forum

A one-post topic is boring, so let’s finish up this chapter by creating the script to add

a post to a topic.

Adding Posts to a Topic
In this final step, you create the replytopost.php script, which contains code that

looks similar to the script used to add a new topic. Listing 21.6 shows the code for

this all-in-one form and script, which begins with the inclusion of the functions file

and the initiation of the database connection on lines 2–3. Although the script per-

forms different tasks depending on the status of the form (whether it’s being shown

or submitted), both conditions require database interaction at some point.

LISTING 21.6 Script to Add Replies to a Topic
1: <?php
2: include ‘ch21_include.php’;
3: doDB();
4:
5: //check to see if we’re showing the form or adding the post
6: if (!$_POST) {
7: // showing the form; check for required item in query string
8: if (!isset($_GET[‘post_id’])) {
9: header(“Location: topiclist.php”);
10: exit;
11: }
12:
13: //create safe values for use
14: $safe_post_id = mysqli_real_escape_string($mysqli, $_GET[‘post_id’]);
15:
16: //still have to verify topic and post
17: $verify_sql = “SELECT ft.topic_id, ft.topic_title FROM forum_posts
18: AS fp LEFT JOIN forum_topics AS ft ON fp.topic_id =
19: ft.topic_id WHERE fp.post_id = ‘“.$safe_post_id.”’”;
20:

FIGURE 21.6
Posts in a topic.

ptg8126863

Adding Posts to a Topic 431

21: $verify_res = mysqli_query($mysqli, $verify_sql)
22: or die(mysqli_error($mysqli));
23:
24: if (mysqli_num_rows($verify_res) < 1) {
25: //this post or topic does not exist
26: header(“Location: topiclist.php”);
27: exit;
28: } else {
29: //get the topic id and title
30: while($topic_info = mysqli_fetch_array($verify_res)) {
31: $topic_id = $topic_info[‘topic_id’];
32: $topic_title = stripslashes($topic_info[‘topic_title’]);
33: }
34: ?>
35: <!DOCTYPE html>
36: <html>
37: <head>
38: <title>Post Your Reply in <?php echo $topic_title; ?></title>
39: </head>
40: <body>
41: <h1>Post Your Reply in <?php echo $topic_title; ?></h1>
42: <form method=”post” action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”>
43: <p><label for=”post_owner”>Your Email Address:</label>

44: <input type=”email” id=”post_owner” name=”post_owner” size=”40”
45: maxlength=”150” required=”required”></p>
46: <p><label for=”post_text”>Post Text:</label>

47: <textarea id=”post_text” name=”post_text” rows=”8” cols=”40”
48: required=”required”></textarea></p>
49: <input type=”hidden” name=”topic_id” value=”<?php echo $topic_id; ?>”>
50: <button type=”submit” name=”submit” value=”submit”>Add Post</button>
51: </form>
52: </body>
53: </html>
54: <?php
55: }
56: //free result
57: mysqli_free_result($verify_res);
58:
59: //close connection to MySQL
60: mysqli_close($mysqli);
61:
62: } else if ($_POST) {
63: //check for required items from form
64: if ((!$_POST[‘topic_id’]) || (!$_POST[‘post_text’]) ||
65: (!$_POST[‘post_owner’])) {
66: header(“Location: topiclist.php”);
67: exit;
68: }
69:
70: //create safe values for use
71: $safe_topic_id = mysqli_real_escape_string($mysqli, $_POST[‘topic_id’]);
72: $safe_post_text = mysqli_real_escape_string($mysqli, $_POST[‘post_text’]);
73: $safe_post_owner = mysqli_real_escape_string($mysqli, $_POST[‘post_owner’]);
74:
75: //add the post
76: $add_post_sql = “INSERT INTO forum_posts (topic_id,post_text,
77: post_create_time,post_owner) VALUES
78: (‘“.$safe_topic_id.”’, ‘“.$safe_post_text.”’,

ptg8126863

432 CHAPTER 21: Creating a Simple Discussion Forum

LISTING 21.6 Continued
79: now(),’”.$safe_post_owner.”’)”;
80: $add_post_res = mysqli_query($mysqli, $add_post_sql)
81: or die(mysqli_error($mysqli));
82:
83: //close connection to MySQL
84: mysqli_close($mysqli);
85:
86: //redirect user to topic
87: header(“Location: showtopic.php?topic_id=”.$_POST[‘topic_id’]);
88: exit;
89: }
90: ?>

Line 6 checks to see whether the form is being submitted. If $_POST does not have a

value, the form has not yet been submitted, and it must be shown. Before showing

the form, however, you must check for that one required item; lines 8–11 check

for the existence of a value for post_id in the GET query string. If a value in

$_GET[‘post_id’] does not exist, the user is redirected back to the topic listing

page.

If you made it past the check for a value in $_GET[‘post_id’], lines 17–22 create

and issue a complicated-looking query that gets the values of the topic_id and

topic_title fields from the forum_topics table, based on the only value that you

know: a now-database-safe (thanks to line 14) value of $_GET[‘post_id’]. This

query both validates the existence of the post and gets information you will need

later in the script. Lines 24–27 act on the results of this validity test, again redirect-

ing the user back to the topiclist.php page if the test fails.

If the value of $_GET[‘post_id’] represents a valid post, you extract the value of

topic_id and topic_title in lines 30–33, again using stripslashes() to remove

any escape characters. Next, the script prints to the screen the entirety of the form

for adding a post, and that’s it for this script until the user clicks the form submis-

sion button. In the form, you see that the action is $_SERVER[‘PHP_SELF’] on line

42, indicating that this script will be recalled into action. A hidden field in line 49

holds the information that needs to be passed along to the next iteration of the

script.

Moving on to line 62, this block of code is executed when the script is reloaded and

$_POST contains a value. This block checks for the presence of all required fields

from the form (lines 64–68) and then, if they are all present, issues the query to add

the post to the database (lines 76–81) using safe values created in lines 71–73. After

the post is added to the database, the user is redirected to the showtopic.php page

(lines 87–88), using the appropriate query string to display the active topic.

ptg8126863

Summary 433

If you save this file as replytopost.php and place it in your web server document

root, try it out and you may see something like Figures 21.7 and 21.8.

FIGURE 21.7
Preparing to add
a post.

Summary
To take an idea from inception through to fruition, you should follow a design

process. This process essentially says, “Think before you act.” Discuss rules, require-

ments, and objectives; then create the final version of your normalized tables.

FIGURE 21.8
A post was
added to the
list.

ptg8126863

434 CHAPTER 21: Creating a Simple Discussion Forum

In this chapter, you saw how forums are hierarchical in nature: Forums contain

topics; topics contain posts. You cannot have a topic without a post, and posts do

not exist in forums without belonging to a topic. You applied this knowledge to the

creation of tables to hold forum topics and posts, and used PHP scripts to create

the input and display pages for these items.

Q&A
Q. What if I want multiple forums? This sequence assumes that only one forum

is available.

A. If you want to have multiple forums in your discussion board, create a table

called forums (or something to that effect) containing fields for an ID, name,

and perhaps a forum description. Then, in the forum_topics and

forum_posts tables, add a field called forum_id so that these elements lower

in the hierarchy are tied to the master forum. Be sure to amend the SQL

queries for record insertion to account for the value of the forum_id.

Next, instead of starting your display at the topic level, begin it at the forum

level. Just as you created a script to display topics, create a script to show the

forums. The link to the forum display would contain the forum_id, and the

page itself would show all the topics within that forum.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. How is the topic ID value passed to the showtopic.php script?

2. What else, besides telling the user that the topic was successfully added, could

we do at the end of the do_addtopic.php script?

3. Why does the script use the mysqli_real_escape_string() function on

values from forms?

ptg8126863

Workshop 435

Answers
1. Through the $_GET superglobal, named as the the value of

$_GET[‘topic_id’].

2. Just as with the replytopost.php script, we could eliminate the message dis-

play and simply redirect the user to the topic she just created, showing the

new topic and post in all its glory.

3. The mysqli_real_escape_string() function guards against SQL injection

attacks by preparing “safe” strings for insertion into the database tables.

Activities
1. You’ll notice that none of these pages are really tied together with any sort of

navigation. Take these basic framework scripts and apply some navigational

flow to them. Make sure that users can always add a topic or return to the

topic list from any given page, for example.

2. Use the information provided in the Q&A section to integrate and display

multiple forums into your tidy little discussion board. While you’re at it, apply

some text styles and colors to jazz up these bare-bones examples.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 22

Creating an Online Storefront

In this chapter, you learn the following:
. Create relational tables for an online store
. Create scripts to display store categories
. Create scripts to display individual items

In this short chapter, you create a generic online storefront. As with the previous project

chapters, you learn how to create the relevant database tables as well as the scripts for

displaying the information to the user. The examples used in this chapter represent one

of an infinite number of possibilities to complete these tasks and are meant to provide a

foundation of knowledge rather than a definitive method for completing this task.

Planning and Creating the Database
Tables
Before you tackle the process of creating database tables for an online store, think about

the real-life shopping process. When you walk into a store, items are ordered in some

fashion: The hardware and the baby clothes aren’t mixed together, the electronics and

the laundry detergent aren’t side by side, and so on. Applying that knowledge to database

normalization, already you can see that you need a table to hold categories and a table

to hold items. In this simple store, each item belongs to one category.

Next, think about the items themselves. Depending on the type of store you have, your

items might or might not have colors, and might or might not have sizes. But all

your items will have a name, a description, and a price. Again, thinking in terms of

normalization, you can imagine that you might have one general items table and two

additional tables that relate to the general items table.

ptg8126863

438 CHAPTER 22: Creating an Online Storefront

Table 22.1 shows sample table and field names to use for your online storefront. In

a minute, you create the actual SQL statements, but first you should look at this

information and try to see the relationships. Ask yourself which of the fields should

be primary or unique keys.

TABLE 22.1 Storefront Table and Field Names

Table Name Field Names

store_categories id, cat_title, cat_desc

store_items id, cat_id, item_title, item_price,

item_desc, item_image

store_item_size item_id, item_size

store_item_color item_id, item_color

As you can see in the following SQL statements, the store_categories table has

two fields besides the id field: cat_title and cat_desc, for title and description,

respectively. The id field is the primary key, and cat_title is a unique field

because there’s no reason you would have two identical categories:

CREATE TABLE store_categories (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

cat_title VARCHAR (50) UNIQUE,

cat_desc TEXT

);

Next we tackle the store_items table, which has five fields besides the id field—

none of which are unique keys. The lengths specified in the field definitions are arbi-

trary; you should use whatever best fits your store.

The cat_id field relates the item to a particular category in the store_categories

table. This field is not unique because you will want more than one item in each

category. The item_title, item_price, and item_desc (for description) fields are

self-explanatory. The item_image field holds a filename (in this case, the file is

assumed to be local to your server) that you use to build an HTML tag when

it is time to display your item information:

CREATE TABLE store_items (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

cat_id INT NOT NULL,

item_title VARCHAR (75),

item_price FLOAT (8,2),

item_desc TEXT,

item_image VARCHAR (50)

);

ptg8126863

Planning and Creating the Database Tables 439

Both the store_item_size and store_item_color tables contain optional infor-

mation: If you sell books, they won’t have sizes or colors, but if you sell shirts, they

will. For each of these tables, the item_id and item_size fields are not unique keys

because you can associate as many colors and sizes with a particular item as you

want:

CREATE TABLE store_item_size (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

item_id INT NOT NULL,

item_size VARCHAR (25)

);

CREATE TABLE store_item_color (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

item_id INT NOT NULL,

item_color VARCHAR (25)

);

These are all the tables necessary for a basic storefront—that is, for displaying the

items you have for sale. Chapter 23, “Creating a Shopping Cart Mechanism,” inte-

grates the user experience into the mix. For now, just concentrate on your inventory.

In Chapter 20, “Creating an Online Address Book,” you learned how to use PHP

forms and scripts to add or delete records in your tables. If you apply the same prin-

ciples to this set of tables, you can easily create an administrative front end to your

storefront. We do not go through that process in this book, but feel free to do it on

your own. (If you understood what was going on in Chapter 20, you know enough

about PHP and MySQL to complete the tasks.)

For now, you can simply issue MySQL queries, via the MySQL monitor or other inter-

face, to add information to your tables. Following are some examples, if you want

to follow along with sample data.

Inserting Records into the store_categories Table
The following queries create three categories in your store_categories table: hats,

shirts, and books.

INSERT INTO store_categories VALUES

(‘1’, ‘Hats’, ‘Funky hats in all shapes and sizes!’);

INSERT INTO store_categories VALUES (‘2’, ‘Shirts’, ‘From t-shirts to

sweatshirts to polo shirts and beyond.’);

INSERT INTO store_categories VALUES (‘3’, ‘Books’, ‘Paperback, hardback,

books for school or play.’);

In the next section, we add some items to the categories.

ptg8126863

440 CHAPTER 22: Creating an Online Storefront

Inserting Records into the store_items Table
The following queries add three item records to each category. Feel free to add many

more.

INSERT INTO store_items VALUES (‘1’, ‘1’, ‘Baseball Hat’, ‘12.00’,

‘Fancy, low-profile baseball hat.’, ‘baseballhat.gif’);

INSERT INTO store_items VALUES (‘2’, ‘1’, ‘Cowboy Hat’, ‘52.00’,

‘10 gallon variety’, ‘cowboyhat.gif’);

INSERT INTO store_items VALUES (‘3’, ‘1’, ‘Top Hat’, ‘102.00’,

‘Good for costumes.’, ‘tophat.gif’);

INSERT INTO store_items VALUES (‘4’, ‘2’, ‘Short-Sleeved T-Shirt’,

‘12.00’, ‘100% cotton, pre-shrunk.’, ‘sstshirt.gif’);

INSERT INTO store_items VALUES (‘5’, ‘2’, ‘Long-Sleeved T-Shirt’,

‘15.00’, ‘Just like the short-sleeved shirt, with longer sleeves.’,

‘lstshirt.gif’);

INSERT INTO store_items VALUES (‘6’, ‘2’, ‘Sweatshirt’, ‘22.00’,

‘Heavy and warm.’, ‘sweatshirt.gif’);

INSERT INTO store_items VALUES (‘7’, ‘3’, ‘Jane\’s Self-Help Book’,

‘12.00’, ‘Jane gives advice.’, ‘selfhelpbook.gif’);

INSERT INTO store_items VALUES (‘8’, ‘3’, ‘Generic Academic Book’,

‘35.00’, ‘Some required reading for school, will put you to sleep.’,

‘boringbook.gif’);

INSERT INTO store_items VALUES (‘9’, ‘3’, ‘Chicago Manual of Style’,

‘9.99’, ‘Good for copywriters.’, ‘chicagostyle.gif’);

The preceding queries refer to various graphics, such as baseballhat.gif, which
are not included in the code. You can find sample images or make some place-
holder graphics of your own.

Inserting Records into the store_item_size Table
The following queries associate sizes with one of the three items in the shirts cate-

gory and a generic “one size fits all” size to each of the hats (assume that they’re

strange hats). On your own, insert the same set of size associations for the remain-

ing items in the shirts category:

INSERT INTO store_item_size (item_id, item_size) VALUES (1,’One Size Fits All’);

INSERT INTO store_item_size (item_id, item_size) VALUES (2,’One Size Fits All’);

INSERT INTO store_item_size (item_id, item_size) VALUES (3,’One Size Fits All’);

INSERT INTO store_item_size (item_id, item_size) VALUES (4,’S’);

INSERT INTO store_item_size (item_id, item_size) VALUES (4,’M’);

INSERT INTO store_item_size (item_id, item_size) VALUES (4,’L’);

INSERT INTO store_item_size (item_id, item_size) VALUES (4,’XL’);

NOTE

ptg8126863

Displaying Categories of Items 441

Inserting Records into the store_item_color Table
The following queries associate colors with one of the three items in the shirts

category. On your own, insert color records for the remaining shirts and hats.

INSERT INTO store_item_color (item_id, item_color) VALUES (1,’red’);

INSERT INTO store_item_color (item_id, item_color) VALUES (1,’black’);

INSERT INTO store_item_color (item_id, item_color) VALUES (1,’blue’);

Displaying Categories of Items
Believe it or not, the most difficult task in this project is now complete. Compared to

thinking up categories and items, creating the scripts used to display the informa-

tion is easy!

The first script you make is one that lists categories and items. Obviously, you do not

want to list all categories and all items all at once as soon as the user walks in the

door, but you do want to give the user the option of immediately picking a category,

seeing its items, and then picking another category. In other words, this script serves

two purposes: It shows the categories, and then if a user clicks a category link, it

shows the items in that category.

Listing 22.1 shows the full code for seestore.php. If you have worked through this

book sequentially, you will notice a lot of the same basic construction you saw in

previous chapters; as I mentioned earlier in this book, these projects are all exam-

ples of foundational CRUD (create, read, update, delete) applications. Even so, the

code is still explained in detail after the listing.

LISTING 22.1 Script to View Categories
1: <?php
2: //connect to database
3: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
4:
5: $display_block = “<h1>My Categories</h1>
6: <p>Select a category to see its items.</p>”;
7:
8: //show categories first
9: $get_cats_sql = “SELECT id, cat_title, cat_desc FROM
10: store_categories ORDER BY cat_title”;
11: $get_cats_res = mysqli_query($mysqli, $get_cats_sql)
12: or die(mysqli_error($mysqli));
13:
14: if (mysqli_num_rows($get_cats_res) < 1) {
15: $display_block = “<p>Sorry, no categories to browse.</p>”;
16: } else {
17: while ($cats = mysqli_fetch_array($get_cats_res)) {
18: $cat_id = $cats[‘id’];
19: $cat_title = strtoupper(stripslashes($cats[‘cat_title’]));

ptg8126863

442 CHAPTER 22: Creating an Online Storefront

LISTING 22.1 Continued
20: $cat_desc = stripslashes($cats[‘cat_desc’]);
21:
22: $display_block .= “<p><a href=\””.$_SERVER[‘PHP_SELF’].
23: “?cat_id=”.$cat_id.”\”>”.$cat_title.”
”
24: .$cat_desc.”</p>”;
25:
26: if (isset($_GET[‘cat_id’]) && ($_GET[‘cat_id’] == $cat_id)) {
27: //create safe value for use
28: $safe_cat_id = mysqli_real_escape_string($mysqli,
29: $_GET[‘cat_id’]);
30:
31: //get items
32: $get_items_sql = “SELECT id, item_title, item_price
33: FROM store_items WHERE
34: cat_id = ‘“.$cat_id.”’ ORDER BY item_title”;
35: $get_items_res = mysqli_query($mysqli, $get_items_sql)
36: or die(mysqli_error($mysqli));
37:
38: if (mysqli_num_rows($get_items_res) < 1) {
39: $display_block = “<p>Sorry, no items in this
40: category.</p>”;
41: } else {
42: $display_block .= “”;
43: while ($items = mysqli_fetch_array($get_items_res)) {
44: $item_id = $items[‘id’];
45: $item_title = stripslashes($items[‘item_title’]);
46: $item_price = $items[‘item_price’];
47:
48: $display_block .= “<a

href=\”showitem.php?item_id=”.
49: $item_id.”\”>”.$item_title.”
50: (\$”.$item_price.”)”;
51: }
52:
53: $display_block .= “”;
54: }
55: //free results
56: mysqli_free_result($get_items_res);
57: }
58: }
59: }
60: }
61: //free results
62: mysqli_free_result($get_cats_res);
63: //close connection to MySQL
64: mysqli_close($mysqli);
65: ?>
66: <!DOCTYPE html>
67: <html>
68: <head>

ptg8126863

Displaying Categories of Items 443

69: <title>My Categories</title>
70: </head>
71: <body>
72: <?php echo $display_block; ?>
73: </body>
74: </html>

Given the length of scripts you saw in Chapter 20, these 74 fully functional lines

should be a welcome change. Line 3 opens the database connection because regard-

less of which action the script is taking—showing categories or showing items in cat-

egories—the database is necessary.

Line 5 starts the $display_block string, with some basic page title information

added to it. Lines 9–12 create and issue the query to retrieve the category informa-

tion. Line 14 checks for categories; if none are in the table, a message is stored in the

$display block variable for display to the user, and that’s all this script does. (It

jumps to the HTML in line 66 and prints to the screen after freeing up some data-

base results.) However, if categories are found, the script moves on to line 17, which

begins a while loop to extract the information.

In the while loop, lines 18–20 retrieve the ID, title, and description of the category.

String operations are performed to ensure that no slashes are in the text and that the

category title is in uppercase for display purposes. Lines 22–24 place the category

information, including a self-referential page link, in the $display_block string.

If a user clicks the link displayed by that string, she returns to this same script,

except with a category ID passed in the query string. The script checks for this value

in line 26.

If a $_GET[‘cat_id’] value has been passed to the script (and has been verified as a

valid ID) because the user clicked on a category link in hopes of seeing listed items,

the script builds and issues another query using a safe version of that value (lines

32–36) to retrieve the items in the category. Lines 38–51 check for items and then

build an item string as part of $display_block. Part of the information in the string

is a link to a script called showitem.php, which you create in the next section.

After reaching that point, the script has nothing left to do besides free up some

resources, and it prints the HTML and value of $display_block. Figure 22.1 shows the

outcome of the script when accessed directly; only the category information shows.

ptg8126863

444 CHAPTER 22: Creating an Online Storefront

In Figure 22.2, you see what happens when the user clicks on the HATS link: The

script gathers all the items associated with the category and prints them on the

screen. The user can still jump to another category on this same page, and the script

will gather the items for that category.

FIGURE 22.1
Categories in
the store.

FIGURE 22.2
Items within a
category in the
store.

The last piece of the puzzle for this chapter is the creation of the item display page.

ptg8126863

Displaying Items 445

Displaying Items
The item display page in this chapter simply shows all the item information. In

Chapter 23, you add a few lines to it to make it function with an Add to Cart but-

ton, but for now we focus on the display. Listing 22.2 shows the code for

showitem.php.

LISTING 22.2 Script to View Item Information
1: <?php
2: //connect to database
3: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
4:
5: $display_block = “<h1>My Store - Item Detail</h1>”;
6:
7: //create safe values for use
8: $safe_item_id = mysqli_real_escape_string($mysqli, $_GET[‘item_id’]);
9:
10: //validate item
11: $get_item_sql = “SELECT c.id as cat_id, c.cat_title, si.item_title,
12: si.item_price, si.item_desc, si.item_image FROM store_items
13: AS si LEFT JOIN store_categories AS c on c.id = si.cat_id
14: WHERE si.id = ‘“.$safe_item_id.”’”;
15: $get_item_res = mysqli_query($mysqli, $get_item_sql)
16: or die(mysqli_error($mysqli));
17:
18: if (mysqli_num_rows($get_item_res) < 1) {
19: //invalid item
20: $display_block .= “<p>Invalid item selection.</p>”;
21: } else {
22: //valid item, get info
23: while ($item_info = mysqli_fetch_array($get_item_res)) {
24: $cat_id = $item_info[‘cat_id’];
25: $cat_title = strtoupper(stripslashes($item_info[‘cat_title’]));
26: $item_title = stripslashes($item_info[‘item_title’]);
27: $item_price = $item_info[‘item_price’];
28: $item_desc = stripslashes($item_info[‘item_desc’]);
29: $item_image = $item_info[‘item_image’];
30: }
31:
32: //make breadcrumb trail & display of item
33: $display_block .= <<<END_OF_TEXT
34: <p>You are viewing:

35: $cat_title >

$item_title</p>
36: <div style=”float: left;”><img src=”$item_image” alt=”$item_title”

/></div>
37: <div style=”float: left; padding-left: 12px”>
38: <p>Description:
$item_desc</p>
39: <p>Price: \$$item_price</p>
40: END_OF_TEXT;
41:
42: //free result
43: mysqli_free_result($get_item_res);
44:

ptg8126863

446 CHAPTER 22: Creating an Online Storefront

LISTING 22.2 Continued
45: //get colors
46: $get_colors_sql = “SELECT item_color FROM store_item_color WHERE
47: item_id = ‘“.$safe_item_id.”’ ORDER BY item_color”;
48: $get_colors_res = mysqli_query($mysqli, $get_colors_sql)
49: or die(mysqli_error($mysqli));
50:
51: if (mysqli_num_rows($get_colors_res) > 0) {
52: $display_block .= “<p>Available Colors:
”;
53: while ($colors = mysqli_fetch_array($get_colors_res)) {
54: item_color = $colors[‘item_color’];
55: $display_block .= $item_color.”
”;
56: }
57: }
58: //free result
59: mysqli_free_result($get_colors_res);
60:
61: //get sizes
62: $get_sizes_sql = “SELECT item_size FROM store_item_size WHERE
63: item_id = “.$safe_item_id.” ORDER BY item_size”;
64: $get_sizes_res = mysqli_query($mysqli, $get_sizes_sql)
65: or die(mysqli_error($mysqli));
66:
67: if (mysqli_num_rows($get_sizes_res) > 0) {
68: $display_block .= “<p>Available Sizes:
”;
69: while ($sizes = mysqli_fetch_array($get_sizes_res)) {
70: $item_size = $sizes[‘item_size’];
71: $display_block .= $item_size.”
”;
72: }
73: }
74: //free result
75: mysqli_free_result($get_sizes_res);
76:
77: $display_block .= “</div>”;
78: }
79: //close connection to MySQL
80: mysqli_close($mysqli);
81: ?>
82: <!DOCTYPE html>
83: <html>
84: <head>
85: <title>My Store</title>
86: </head>
87: <body>
88: <?php echo $display_block; ?>
89: </body>
90: </html>

Line 3 makes the database connection because information in the database forms

all the content of this page. Line 5 starts the $display_block string, with some

basic page title information.

Lines 11–13 create and issue the query to retrieve the category and item informa-

tion, using the safe value created in line 8. This particular query is a table join.

Instead of selecting the item information from one table and then issuing a second

ptg8126863

Displaying Items 447

query to find the name of the category, this query simply joins the table on the cate-

gory ID to find the category name.

Line 15 checks for a result; if there is no matching item in the table, a message is

printed to the user and that’s all this script does. However, if item information is

found, the script moves on and gathers the information in lines 23–30.

In lines 34–35, you first create what’s known as a breadcrumb trail. This is simply a

navigational device used to get back to the top-level item in the architecture. In

other words, you’re going to print a link so the user can get back to the category.

The category ID, retrieved from the master query in this script, is appended to the

link in the breadcrumb trail.

In lines 36–39, you continue to add to the $display_block, setting up a display of

information about the item. You use the values gathered in lines 23–30 to create an

image link, print the description, and print the price. What’s missing are the colors

and sizes, so lines 46–57 select and print any colors associated with this item, and

lines 62–73 gather the sizes associated with the item.

Lines 77–78 wrap up the $display_block string and the master if...else state-

ment. Because the script has nothing left to do after closing the connection to

MySQL, it prints the HTML (lines 82–90) including the value of $display_block.

Figure 22.3 shows the outcome of the script when selecting the baseball hat from the

hats category. Of course, your display will differ from mine because you won’t have

the same images I used, but you get the idea.

FIGURE 22.3
The baseball
hat item page.

That’s all there is to creating a simple item display. In Chapter 23, you modify this

script so that it can add the item to a shopping cart.

ptg8126863

448 CHAPTER 22: Creating an Online Storefront

Summary
In this chapter, you applied your basic PHP and MySQL knowledge to the creation of

a storefront display. You learned how to create the database table and scripts for

viewing categories, item lists, and single items.

Q&A
Q. In the item detail record, you use single filenames in the item_image field.

What if I want to link to items on a different server?

A. You can enter a URL in the item_image field as long as you define the field to

hold a long string such as a URL.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. Which PHP function was used to uppercase the category title strings?

2. Why don’t the store_item_size and store_item_color tables contain any

unique keys?

3. Why do you continue to use mysqli_real_escape_string() on values that

will be used in database queries?

Answers
1. strtoupper()

2. Presumably, you will have items with more than one color and more than one

size. Therefore, item_id is not a unique key. Also, items may have the same

colors or sizes, so the item_color and item_size fields must not be primary

or unique either.

3. You should use mysqli_real_escape_string() to ensure values from the

user, which will be used in database queries, are safe to use, no matter if

you’ve created one script, ten scripts, or one hundred.

ptg8126863

Workshop 449

Activities
1. Create three more categories, with an item or two in each, by issuing queries

of your own in MySQL.

2. Make some images (or use Creative Commons licensed images) for each of

the items in your store, and put them in an images directory on your server.

Doing so necessitates one change to the showitem.php script: adding the

image directory to the file path of the generated tag.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 23

Creating a Shopping Cart
Mechanism

In this chapter, you learn the following:
. How to create relational tables for the shopping cart and checkout portion of

an online store
. How to create the scripts to add and remove cart items
. Some methods for processing transactions, and how to create your checkout

sequence

In this chapter, you integrate a shopping cart mechanism and checkout procedure into

the basic storefront display that you created in Chapter 22, “Creating an Online

Storefront.” You learn the methods for creating relevant database tables as well as what

goes into scripts for adding and deleting cart items. The examples used in this chapter

again represent only a few of an infinite number of possibilities to complete these tasks

and are meant as working examples rather than the definitive guide for building an

online store.

Planning and Creating the Database
Tables
Because the goal of this chapter is to provide the user with a way to select and order items,

you can imagine what the tables will be—first and foremost, you need a table to hold the

shopping cart information. In addition to the cart table, you need a table to store orders,

along with one to store the items purchased as part of each order.

The following SQL statements were used to create the three new tables, starting with the

store_shoppertrack table. This is the table used to hold items as users add them to their

shopping cart.

ptg8126863

452 CHAPTER 23: Creating a Shopping Cart Mechanism

The field lengths used to define these tables were chosen arbitrarily to accommo-
date several possible inputs. Feel free to modify the lengths to meet your specific
needs.

CREATE TABLE store_shoppertrack (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

session_id VARCHAR (32),

sel_item_id INT,

sel_item_qty SMALLINT,

sel_item_size VARCHAR(25),

sel_item_color VARCHAR(25),

date_added DATETIME

);

In this table, the only key is the id field for the record. The session_id cannot be

unique; otherwise, users could order only one item from your store, which is not a

good business practice.

The value stored in the session_id field identifies the user; it matches the value of

the PHP session ID assigned to that particular user. The sel_* fields hold the

selections by the user: the selected item, the selected quantity of the item, and the

selected color and size of the item. Finally, there’s a date_added field. Many times,

users place items in their cart and never go through the checkout process. This prac-

tice leaves straggling items in your tracking table, which you might want to clear

out periodically. For example, you might want to delete all cart items more than a

week old—this is where the date_added field is helpful.

The next table holds the order information:

CREATE TABLE store_orders (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

order_date DATETIME,

order_name VARCHAR (100),

order_address VARCHAR (255),

order_city VARCHAR (50),

order_state CHAR(2),

order_zip VARCHAR(10),

order_tel VARCHAR(25),

order_email VARCHAR(100),

item_total FLOAT(6,2),

shipping_total FLOAT(6,2),

authorization VARCHAR (50),

status ENUM(‘processed’, ‘pending’)

);

The only key field in the store_orders table is the id. For the sake of brevity in this

chapter, we make an assumption that the billing and shipping addresses of the user

NOTE

ptg8126863

Integrating the Cart with Your Storefront 453

are the same and that this store sells only to U.S. addresses. It’s simple enough for

you to add another block of fields for shipping address information, if you want to

do so. If this were a live example, you certainly would want to; otherwise, you

would lose business from shoppers who purchase items for gifts, for instance.

Also, this table assumes that you are not storing credit card information, which you

absolutely should not do unless you have super-encrypted the information and are

sure that your firewalled server is secure. Instead, this table is based on the idea of

real-time, credit card processing. You learn about a few real-time transaction options

at the end of this chapter.

The final table holds the line items in each order, store_orders_items:

CREATE TABLE store_orders_items (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

order_id INT,

sel_item_id INT,

sel_item_qty SMALLINT,

sel_item_size VARCHAR(25),

sel_item_color VARCHAR(25),

sel_item_price FLOAT(6,2)

);

The sel_* fields should look familiar. With the exception of sel_item_price, they

are the same fields that appear in the store_shoppertrack table because what

you are tracking in that table are the line items that people want to purchase. The

primary key in this table is the id field, and the order_id field ties each line item

to the appropriate record in store_orders.

The sel_item_price field is included here, as opposed to simply relating to the item

record, because you might have occasion to change the pricing in your item record.

If you change the price in the item record, and you relate the sold line items to the

current catalog price, your line item prices won’t reflect what the user actually paid.

With your tables all squared away, we can move on to adding an item to the user’s

shopping cart.

Integrating the Cart with Your
Storefront
In this section, you make modifications to the showitem.php script from Chapter 22.

The goal is to transform the item information page into an item information page

with a form for selecting colors, sizes, and quantities.

ptg8126863

454 CHAPTER 23: Creating a Shopping Cart Mechanism

In the original script, insert the following before line 2:

session_start();

Because the shopping cart elements are attached to the user through a session ID,

the session must be started. The next changes do not occur until what was line 39 of

the showitem.php script from Chapter 22, so that’s where we start in Listing 23.1.

LISTING 23.1 New Lines in showitem.php
39: <p>Price: \$$item_price</p>
40: <form method=”post” action=”addtocart.php”>
41: END_OF_TEXT;
42:
43: //free result
44: mysqli_free_result($get_item_res);
45:
46: //get colors
47: $get_colors_sql = “SELECT item_color FROM store_item_color WHERE
48: item_id = ‘“.$safe_item_id.”’ ORDER BY item_color”;
49: $get_colors_res = mysqli_query($mysqli, $get_colors_sql)
50: or die(mysqli_error($mysqli));
51:
52: if (mysqli_num_rows($get_colors_res) > 0) {
53: $display_block .= “<p><label for=\”sel_item_color\”>
54: Available Colors:</label>

55: <select id=\”sel_item_color\” name=\”sel_item_color\”>”;
56:
57: while ($colors = mysqli_fetch_array($get_colors_res)) {
58: $item_color = $colors[‘item_color’];
59: $display_block .= “<option value=\””.$item_color.”\”>”.
60: $item_color.”</option>”;
61: }
62: $display_block .= “</select></p>”;
63: }
64:
65: //free result
66: mysqli_free_result($get_colors_res);
67:
68: //get sizes
69: $get_sizes_sql = “SELECT item_size FROM store_item_size WHERE
70: item_id = “.$safe_item_id.” ORDER BY item_size”;
71: $get_sizes_res = mysqli_query($mysqli, $get_sizes_sql)
72: or die(mysqli_error($mysqli));
73:
74: if (mysqli_num_rows($get_sizes_res) > 0) {
75: $display_block .= “<p><label for=\”sel_item_size\”>
76: Available Sizes:</label>

77: <select id=\”sel_item_size\” name=\”sel_item_size\”>”;
78:
79: while ($sizes = mysqli_fetch_array($get_sizes_res)) {
80: $item_size = $sizes[‘item_size’];
81: $display_block .= “<option value=\””.$item_size.”\”>”.
82: $item_size.”</option>”;
83: }

ptg8126863

Integrating the Cart with Your Storefront 455

84: }
85:
86: $display_block .= “</select></p>”;
87:
88: //free result
89: mysqli_free_result($get_sizes_res);
90:
91: $display_block .= “
92: <p><label for=\”sel_item_qty\”>Select Quantity:</label>
93: <select id=\”sel_item_qty\” name=\”sel_item_qty\”>”;
94:
95: for($i=1; $i<11; $i++) {
96: $display_block .= “<option value=\””.$i.”\”>”.$i.”</option>”;
97: }
98:
99: $display_block .= <<<END_OF_TEXT
100: </select></p>
101: <input type=”hidden” name=”sel_item_id”
102: value=”$_GET[item_id]” />
103: <button type=”submit” name=”submit” value=”submit”>
104: Add to Cart</button>
105: </form>
106: </div>
107: END_OF_TEXT;
108: }
109:
110: //close connection to MySQL
111: mysqli_close($mysqli);
112: ?>
113: <!DOCTYPE html>
114: <html>
115: <head>
116: <title>My Store</title>
117: <style type=”text/css”>
118: label {font-weight: bold;}
119: </style>
120: </head>
121: <body>
122: <?php echo $display_block; ?>
123: </body>
124: </html>

The first change is at the new line 40, where the $display_block string is continued

to include the beginning <form> element. The action of the form is a script called

addtocart.php, which you create in the next section.

The next change occurs at line 55, where the $display_block string is continued to

include the opening tag of a <select> element named sel_item_color (and the

“Available Colors” text is now surrounded by a <label> tag in lines 53–54, because

it is labeling a form element). In lines 58–60, the colors are put into <option> ele-

ments for the user to choose from instead of simply printing on the screen. Line 62

closes the <select> element.

ptg8126863

456 CHAPTER 23: Creating a Shopping Cart Mechanism

The same types of changes are made for item sizes. Lines 75–77 reflect the continua-

tion of the $display_block string to include the <select> element, named

sel_item_size. Lines 80–82 write the colors in <option> elements, and line 86 clos-

es the <select> element.

Lines 91–97 are additions to the script. These lines create a <select> element, called

sel_item_qty, for the user to pick how many items to purchase (a for loop iterates

through numbers from 1 to 10 to create the <option> elements). Line 100 closes this

<select> element, and lines 101–102 adds a hidden field for the item_id. Lines

103–104 adds the submit button, and line 105 closes the form. We close the connec-

tion to MySQL in line 111, and the remaining lines include the bits of HTML used to

render the page, with the addition of a stylesheet entry for the <label> tag to make

it bold like the nonlabels used in the display.

When viewing the baseball hat item using the new version of showitem.php, you

would see Figure 23.1, reflecting the addition of the form elements.

FIGURE 23.1
The new base-
ball hat item
page.

The next step is to create the addtocart.php script so that the form you just created

actually does something.

Adding Items to Your Cart
The addtocart.php script simply writes information to the store_shoppertrack

table and redirects the user to the view of the shopping cart. We create the addto-

cart.php script first in Listing 23.2, and then tackle the showcart.php script next.

ptg8126863

Integrating the Cart with Your Storefront 457

LISTING 23.2 The addtocart.php Script
1: <?php
2: session_start();
3:
4: if (isset($_POST[‘sel_item_id’])) {
5: //connect to database
6: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
7:
8: //create safe values for use
9: $safe_sel_item_id = mysqli_real_escape_string($mysqli,
10: $_POST[‘sel_item_id’]);
11: $safe_sel_item_qty = mysqli_real_escape_string($mysqli,
12: $_POST[‘sel_item_qty’]);
13: $safe_sel_item_size = mysqli_real_escape_string($mysqli,
14: $_POST[‘sel_item_size’]);
15: $safe_sel_item_color = mysqli_real_escape_string($mysqli,
16: $_POST[‘sel_item_color’]);
17:
18: //validate item and get title and price
19: $get_iteminfo_sql = “SELECT item_title FROM store_items WHERE
20: id = ‘“.$safe_sel_item_id.”’”;
21: $get_iteminfo_res = mysqli_query($mysqli, $get_iteminfo_sql)
22: or die(mysqli_error($mysqli));
23:
24: if (mysqli_num_rows($get_iteminfo_res) < 1) {
25:
26: //free result
27: mysqli_free_result($get_iteminfo_res);
28:
29: //close connection to MySQL
30: mysqli_close($mysqli);
31:
32: //invalid id, send away
33: header(“Location: seestore.php”);
34: exit;
35: } else {
36: //get info
37: while ($item_info = mysqli_fetch_array($get_iteminfo_res)) {
38: $item_title = stripslashes($item_info[‘item_title’]);
39: }
40:
41: //free result
42: mysqli_free_result($get_iteminfo_res);
43:
44: //add info to cart table
45: $addtocart_sql = “INSERT INTO store_shoppertrack
46: (session_id, sel_item_id, sel_item_qty,
47: sel_item_size, sel_item_color, date_added)
48: VALUES (‘“.$_COOKIE[‘PHPSESSID’].”’,
49: ‘“.$safe_sel_item_id.”’,
50: ‘“.$safe_sel_item_qty.”’,
51: ‘“.$safe_sel_item_size.”’,
52: ‘“.$safe_sel_item_color.”’, now())”;
53: $addtocart_res = mysqli_query($mysqli, $addtocart_sql)
54: or die(mysqli_error($mysqli));
55:
56:

ptg8126863

458 CHAPTER 23: Creating a Shopping Cart Mechanism

LISTING 23.2 Continued
57: //close connection to MySQL
58: mysqli_close($mysqli);
59:
60: //redirect to showcart page
61: header(“Location: showcart.php”);
62: exit;
63: }
64:
65: } else {
66: //send them somewhere else
67: header(“Location: seestore.php”);
68: exit;
69: }
70: ?>

Line 2 continues the user session, which is important because you need to capture

the user’s session ID to write to the store_shoppertrack table.

In line 4, the script verifies that a value is present in $_POST[‘sel_item_id’],

meaning that the user came to this script after submitting the proper form. If there

is no value, the script jumps down to line 51 and sends the user away in line 53,

and that’s it for the script.

However, if there is a value in $_POST[‘sel_item_id’], line 6 makes the database

connection, lines 9–16 create safe versions of the form information, and line 17

issues a query to verify that the selected item ID is for a valid item. Lines 19–22 cre-

ate and issue a SQL query to gather the title of the selected item. Line 24 checks for

a result; if there is no result, the user is again redirected away in line 33 because the

item selection was not valid.

If the item selection is valid, the script continues to line 38 and extracts this value

from the resultset. The script now has enough information to add the item selection

to the store_shoppertrack table, which it does in lines 45–54.

After the query has been issued, the user is redirected to showcart.php, which con-

tains all cart items. You create this script in the next section.

Viewing the Cart
Now that you can add items to a cart, you want to see them! Listing 23.3 shows the

code for showcart.php.

LISTING 23.3 The showcart.php Script
1: <?php
2: session_start();
3:
4: //connect to database

ptg8126863

Integrating the Cart with Your Storefront 459

5: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
6:
7: $display_block = “<h1>Your Shopping Cart</h1>”;
8:
9: //check for cart items based on user session id
10: $get_cart_sql = “SELECT st.id, si.item_title, si.item_price,
11: st.sel_item_qty, st.sel_item_size, st.sel_item_color FROM
12: store_shoppertrack AS st LEFT JOIN store_items AS si ON
13: si.id = st.sel_item_id WHERE session_id =
14: ‘“.$_COOKIE[‘PHPSESSID’].”’”;
15: $get_cart_res = mysqli_query($mysqli, $get_cart_sql)
16: or die(mysqli_error($mysqli));
17:
18: if (mysqli_num_rows($get_cart_res) < 1) {
19: //print message
20: $display_block .= “<p>You have no items in your cart.
21: Please continue to shop!</p>”;
22: } else {
23: //get info and build cart display
24: $display_block .= <<<END_OF_TEXT
25: <table>
26: <tr>
27: <th>Title</th>
28: <th>Size</th>
29: <th>Color</th>
30: <th>Price</th>
31: <th>Qty</th>
32: <th>Total Price</th>
33: <th>Action</th>
34: </tr>
35: END_OF_TEXT;
36:
37: while ($cart_info = mysqli_fetch_array($get_cart_res)) {
38: $id = $cart_info[‘id’];
39: $item_title = stripslashes($cart_info[‘item_title’]);
40: $item_price = $cart_info[‘item_price’];
41: $item_qty = $cart_info[‘sel_item_qty’];
42: $item_color = $cart_info[‘sel_item_color’];
43: $item_size = $cart_info[‘sel_item_size’];
44: $total_price = sprintf(“%.02f”, $item_price * $item_qty);
45:
46: $display_block .= <<<END_OF_TEXT;
47: <tr>
48: <td>$item_title
</td>
49: <td>$item_size
</td>
50: <td>$item_color
</td>
51: <td>\$ $item_price
</td>
52: <td>$item_qty
</td>
53: <td>\$ $total_price</td>
54: <td>remove</td>
55: </tr>
56: END_OF_TEXT;
57: }
58: $display_block .= “</table>”;
59: }
60: //free result
61: mysqli_free_result($get_cart_res);
62:

ptg8126863

460 CHAPTER 23: Creating a Shopping Cart Mechanism

LISTING 23.3 Continued
63: //close connection to MySQL
64: mysqli_close($mysqli);
65: ?>
66: <!DOCTYPE html>
67: <html>
68: <head>
69: <title>My Store</title>
70: <style type=”text/css”>
71: table {
72: border: 1px solid black;
73: border-collapse: collapse;
74: }
75: th {
76: border: 1px solid black;
77: padding: 6px;
78: font-weight: bold;
79: background: #ccc;
80: text-align: center;
81: }
82: td {
83: border: 1px solid black;
84: padding: 6px;
85: vertical-align: top;
86: text-align: center;
87: }
88: </style>
89: </head>
90: <body>
91: <?php echo $display_block; ?>
92: </body>
93: </html>

Line 2 continues the user session, which is important because you need to match the

user’s session ID with the records in the store_shoppertrack table. Line 5 makes

the database connection, and line 7 begins the $display_block string, with a head-

ing for the page.

Lines 10–14 represent a joined query, in which the user’s saved items are retrieved.

The id, sel_item_qty, sel_item_size, and sel_item_color fields are extracted

from store_shoppertrack, and the item_title and item_price fields are

retrieved from the store_items table based on the matching information from

store_shoppertrack. In other words, instead of printing 2 for the selected item,

Baseball Hat is shown as the title. Lines 15–16 issue the query, and line 18 checks

for results.

If there are no results, the user has no items in the store_shoppertrack table. A

message is written to the $display_block string, and the script exits and shows the

message.

ptg8126863

Integrating the Cart with Your Storefront 461

If there are indeed results, the beginning of an HTML table is created in lines 24–34,

with columns defined for all the information in the cart (plus one column for an

action link). Line 37 begins the while loop to extract each item from the

store_shoppertrack, and this loop continues until line 56, printing the informa-

tion in the proper table cell.

In line 54, you see a link created for an item removal script, which you create in the

next section. Line 58 closes the table, and the script finishes and prints HTML to the

screen in lines 66–93, including some stylesheet entries for your table headings and

other cells.

Now, go back to an item page and add the item to your cart. After the items are

written to the store_shoppertrack table, you should be redirected to the show-

cart.php page, and your newly selected items should be displayed. Figure 23.2

shows my cart after adding some items.

FIGURE 23.2
Items added to
cart.

The next step is to create the removefromcart.php script.

Removing Items from Your Cart
The removefromcart.php script is short because all it does is issue a query and redi-

rect the user to another script. Inevitably, a user will want to weed items out of his

cart, and this script enables him to do just that. Listing 23.4 shows the complete

script.

ptg8126863

462 CHAPTER 23: Creating a Shopping Cart Mechanism

LISTING 23.4 The removefromcart.php Script
1: <?php
2: session_start();
3:
4: if (isset($_GET[‘id’])) {
5: //connect to database
6: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
7:
8: //create safe values for use
9: $safe id = mysqli_real_escape_string($mysqli, $_GET[‘id’]);
10:
11: $delete_item_sql = “DELETE FROM store_shoppertrack WHERE
12: id = ‘“.$safe_id.”’ and session_id =
13: ‘“.$_COOKIE[‘PHPSESSID’’”;
14: $delete_item_res = mysqli_query($mysqli, $delete_item_sql)
15: or die(mysqli_error($mysqli));
16:
17: //close connection to MySQL
18: mysqli_close($mysqli);
19:
20: //redirect to showcart page
21: header(“Location: showcart.php”);
22: exit;
23: } else {
24: //send them somewhere else
25: header(“Location: seestore.php”);
26: exit;
27: }
28: ?>

Line 2 continues the user session because you need to match the user’s session ID

with the records in the store_shoppertrack table. Line 4 checks for a value in

$_GET[‘id’]. If a value does not exist in $_GET[‘id’], the user is not clicking the

link from her cart and, therefore, is sent away in line 22.

If a value exists in $_GET[‘id’], line 6 makes the database connection, line 9 cre-

ates a database-safe version of the variable, and a SQL query (lines 11–13) is issued

(lines 14–15), and the user is redirected to the showcart.php script (line 21), where

the item should no longer be displayed in the user’s shopping cart. Try it and see!

Payment Methods and the Checkout
Sequence
Several commerce methods exist when it comes time to pay for the purchases in the

shopping cart. The “right” method for you depends on your business—merchant

accounts through banking institutions often require you to have a business license,

a reseller’s permit, and other pieces of paper proving that you’re a legitimate busi-

ness. If you’re simply a person who has a few items to sell, you might not want to

go through all that paperwork. However, you still have options.

ptg8126863

Payment Methods and the Checkout Sequence 463

Regardless of the payment method you choose, one thing is certain: If you are pass-

ing credit card information over the Web, you must do so over an SSL (Secure

Sockets Layer) connection. Obtaining an SSL certificate and installing it on your sys-

tem is covered in Chapter 30, “Setting Up a Secure Web Server.” You do not have to

use this secure connection during the user’s entire shopping experience, just from

the point at which sensitive information will be captured, such as when you send

the user to the checkout form.

Creating the Checkout Form
At this point in the book, you should be well versed in creating a simple form. At

the beginning of this chapter, you created the store_orders table with fields to use

as a guideline for your form:

. order_name

. order_address

. order_city

. order_state

. order_zip

. order_tel

. order_email

In addition, your form needs fields for the credit card number, expiration date, and

the name on the credit card. Another nice feature is to repeat the user’s shopping

cart contents with an item subtotal so that the customer remembers what he’s pay-

ing for and approximately how much the order will cost. Also at this point of the

checkout sequence, you offer any shipping options you might have. Shipping and

sales tax would be calculated in the next step of the process.

From the point of clicking the submit button on the form, the checkout sequence

depends on the payment method you are using. The next section goes through the

basic steps and offers suggestions on various methods of payment processing.

Performing the Checkout Actions
If you have obtained a merchant account through your bank, you can utilize

real-time payment services such as Authorize.Net’s payment gateway services

or PayPal’s PayFlo product. For more information about these services, see

http://www.authorize.net and https://www.paypal.com/webapps/mpp/merchant,

respectively.

http://www.authorize.net
https://www.paypal.com/webapps/mpp/merchant

ptg8126863

464 CHAPTER 23: Creating a Shopping Cart Mechanism

PHP does not contain built-in functions that enable direct access to these payment

gateways, but when you have an account with merchant services of these types, you

can download scripts that you can use in your own applications, or you are given

information on an API for application developers.

Authorize.Net and PayPal are two of several transaction-processing gateways that

exist for use by merchants—I include them here because I have personally (and suc-

cessfully) used both gateway services since their inception. However, be aware that

your bank will usually provide a list of merchants it prefers you to use. So if you

stray from your bank’s list of preferred vendors, be sure to research your selected

vendor thoroughly to avoid any delays with deposits and to ensure that you’re get-

ting the best deal.

After you have selected a transaction processor, your checkout script should follow a

path such as the following:

1. Total the items, add tax, and add shipping. This gives you the total amount to

authorize from the credit card.

2. Perform credit card authorization for the total amount.

3. You receive either a success or failure response from your card-processing rou-

tine. If the response is a failure, print a message to the user and the transac-

tion is over. If the response is a success, continue to step 4.

4. Write the basic order information to a table such as store_orders, including

the authorization code you receive on successful authorization. Get the id

value of this record using mysql_insert_id().

5. For each item in the shopping cart tied to this user, insert a record into

store_orders_itemmap. Each record references the id (as order_id) gathered

in the previous step.

6. Delete the shopping cart items for this user.

7. Display the order with the authorization code in place of the credit card infor-

mation on the screen so that the user can print it and hold it as a receipt. You

can also send this information via email to the user.

The steps listed here—with the exception of the actual payment authorization

code—are the same simple steps you have been using throughout this book, and

there’s no reason to make them more difficult than they need to be.

ptg8126863

465Workshop

Summary
In this chapter, you applied your basic PHP and MySQL knowledge to the integra-

tion of a shopping cart into the storefront from Chapter 22. Included were the data-

base table creation, modifications to the item detail page, and new scripts for

adding and removing cart items.

Q&A
Q. How can users be sure that an item is in stock when they add it to their

cart?

A. If the store_items table were modified to contain a field for the current

quantity, and when a user completed the checkout sequence that quantity was

decreased by the number of items that the user ordered, then in the

showitem.php script you could generate a drop-down list that had a maxi-

mum selection of the number of items remaining in inventory. Of course, if

you are working with thousands of items in inventory it shouldn’t matter if

your drop-down selector only allows the purchase of 10 at a time. However,

for a better user experience you would want the user to be able to add as

many to their cart as possible, and in that case you might also add an inven-

tory check before finishing the add-to-cart sequence, and disallow the addition

of a quantity greater than the quantity in stock.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. When removing an item from the cart, why do you suppose that the query

validates the session ID of the user against the record?

2. What would be a reason not to store the price in a hidden field when adding

to the cart?

3. What would you do to the database and form to handle the need for different

shipping and billing addresses?

ptg8126863

466 CHAPTER 23: Creating a Shopping Cart Mechanism

Answers
1. Users should be able to remove only their own items.

2. If you stored the price in a hidden field, a rogue user could change that value

before posting the form (writing whatever price he wanted into the

store_shoppertrack table as opposed to the actual price).

3. Modify the existing address-related fields in the store_orders table so that it

is clear they are either for shipping or billing addresses, then duplicate the set

of fields in the table (and give them a name indicating they’re for either ship-

ping or billing—whichever you didn’t use already) and also the form and the

eventual INSERT statement.

Activities
1. Even if you do not have a merchant account, set up the checkout form as

described in the “Creating the Checkout Form” section. Don’t forget to add a

link to the shopping cart (or any other page in the store) to this “checkout”

functionality.

2. After creating the checkout form, save the order information and line items to

the database tables created at the beginning of this chapter. Don’t worry

about the merchant account or payment processing at this point. Just get the

process going that allows users to save items in their shopping cart, check out

by giving you some dummy credit card and address information, and then

store that basic order information in the store_orders table and the items in

the order in the store_orders_items table.

ptg8126863

CHAPTER 24

Creating a Simple Calendar

In this chapter, you learn the following:
. How to build a simple calendar script
. How to view and add events in your calendar
. How to build a class library to generate date pull-downs in HTML forms

This chapter pulls together the skills you’ve learned so far regarding the PHP language

and building small CRUD applications—those that create, retrieve, update, and delete

data. In this chapter, you continue your learning in the context of creating a small

calendar application.

Building a Simple Display Calendar
You’ll use the date and time functions you learned in Chapter 10, “Working with Strings,

Dates, and Time,” to build a calendar that displays the dates for any month between 1990

and 2020. Those are randomly selected years and have no significance—you can make

your calendar go from 1980 to 2025 if you want, or any other range of dates that make

sense to you. The user can select both month and year with pull-down menus, and the

dates for the selected month will be organized according to the days of the week.

In this script, we work with two variables—one for month and one for year—which are

supplied by user input. These pieces of information are used to build a timestamp based

on the first day of the selected month. If user input is invalid or absent, the default value

is the first day of the current month.

Checking User Input
When the user accesses the calendar application for the first time, no information will

have been submitted. Therefore, we must ensure that the script can handle the fact that

ptg8126863

468 CHAPTER 24: Creating a Simple Calendar

the variables for month and year might not be defined. We could use the isset()

function for this because it returns false if the variable passed to it has not been

defined. However, let’s use the checkdate() function instead, which not only will

see whether the variable exists but will also do something meaningful with it,

namely, validate that it is a date. Listing 24.1 shows the fragment of code that

checks for month and year variables coming from a form, and builds a timestamp

based on them.

LISTING 24.1 Checking User Input for the Calendar Script
1: <?php
2: if ((!isset($_POST[‘month’])) || (!isset($_POST[‘year’]))) {
3: $nowArray = getdate();
4: $month = $nowArray[‘mon’];
5: $year = $nowArray[‘year’];
6: } else {
7: $month = $_POST[‘month’];
8: $year = $_POST[‘year’];
9: }
10: $start = mktime (12, 0, 0, $month, 1, $year);
11: $firstDayArray = getdate($start);
12: ?>

Listing 24.1 is a fragment of a larger script, so it does not produce any output itself.

But it’s an important fragment to understand, which is why it sits all alone here,

ready for an explanation.

In the if statement on line 2, we test whether the month and year have been

provided by a form. If the month and year have not been defined, the mktime()

function used later in the fragment will not be able to make a valid date from

undefined month and year arguments.

If the values are present, we use getdate() on line 3 to create an associative array

based on the current time. We then set values for $month and $year ourselves, using

the array’s mon and year elements (lines 4 and 5). If the variables have been set

from the form, we put the data into $month and $year variables so as not to touch

the values in the original $_POST superglobal.

Now that we are sure that we have valid data in $month and $year, we can use

mktime() to create a timestamp for the first day of the month (line 10). We will

need information about this timestamp later on, so on line 11, we create a variable

called $firstDayArray that will store an associative array returned by getdate()

and based on this timestamp.

ptg8126863

Building a Simple Display Calendar 469

Building the HTML Form
We now need to create an interface by which users can ask to see data for a month

and year. For this, we use SELECT elements. Although we could hard-code these in

HTML, we must also ensure that the pull-downs default to the currently chosen

month, so we will dynamically create these pull-downs, adding a SELECT attribute

to the OPTION element where appropriate. The form is generated in Listing 24.2.

LISTING 24.2 Building the HTML Form for the Calendar Script
1: <?php
2: if ((!isset($_POST[‘month’])) || (!isset($_POST[‘year’]))) {
3: $nowArray = getdate();
4: $month = $nowArray[‘mon’];
5: $year = $nowArray[‘year’];
6: } else {
7: $month = $_POST[‘month’];
8: $year = $_POST[‘year’];
9: }
10: $start = mktime (12, 0, 0, $month, 1, $year);
11: $firstDayArray = getdate($start);
12: ?>
13: <!DOCTYPE html>
14: <html>
15: <head>
16: <title><?php echo “Calendar:”.$firstDayArray[‘month’].”
17: “.$firstDayArray[‘year’]; ?></title>
18: <body>
19: <h1>Select a Month/Year Combination</h1>
20: <form method=”post” action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”>
21: <select name=”month”>
22: <?php
23: $months = Array(“January”, “February”, “March”, “April”, “May”,
24: “June”, “July”, “August”, “September”, “October”, “November”, “December”);
25: for ($x=1; $x <= count($months); $x++) {
26: echo”<option value=\”$x\””;
27: if ($x == $month) {
28: echo “ selected”;
29: }
30: echo “>”.$months[$x-1].”</option>”;
31: }
32: ?>
33: </select>
34: <select name=”year”>
35: <?php
36: for ($x=1990; $x<=2020; $x++) {
37: echo “<option”;
38: if ($x == $year) {
39: echo “ selected”;
40: }
41: echo “>$x</option>”;
42: }
43: ?>
44: </select>

ptg8126863

470 CHAPTER 24: Creating a Simple Calendar

LISTING 24.2 Continued
45: <button type=”submit” name=”submit” value=”submit”>Go!</button>
46: </form>
47: </body>
48: </html>

Having created the $start timestamp and the $firstDayArray date array in lines

2–11, let’s begin to write the HTML for the page. Notice that we use $firstDayArray

to add the month and year to the TITLE element on lines 16 and 17.

Line 20 is the beginning of our form. To create the SELECT element for the month

pull-down, we drop back into PHP mode on line 22 to write the individual OPTION

tags. First, for display purposes, we create in lines 23 and 24 an array called

$months that contains the names of the 12 months. We then loop through this

array, creating an OPTION tag for each name (lines 25–31).

This is an overcomplicated way of writing a simple SELECT element were it not for

the fact that we are testing $x (the counter variable in the for statement) against

the $month variable on line 27. If $x and $month are equivalent, we add the string

SELECTED to the OPTION tag, ensuring that the correct month will be selected auto-

matically when the page loads. We use a similar technique to write the year pull-

down on lines 36–42. Finally, back in HTML mode, we create a submit button on

line 45.

We now have a form that can send the month and year parameters to itself and will

default either to the current month and year or the month and year previously cho-

sen. If you save this listing as dateselector.php, place it in your web server docu-

ment root, and access it with your web browser, you should see something like

Figure 24.1. (Your month and year might differ.)

FIGURE 24.1
The calendar
form.

ptg8126863

Building a Simple Display Calendar 471

Creating the Calendar Table
We now need to create a table and populate it with dates for the chosen month. We

do this in Listing 24.3, which represents the complete calendar display script.

Although line 2 is new, lines 3–64 should be familiar from your work with Listing

24.2, with some stylesheet entries added in lines 19–35. That addition in line 2

simply defines a constant variable, in this case ADAY (for example, “a day”) with a

value of 86400. This value represents the number of seconds in a day, which the

script uses later.

LISTING 24.3 The Complete Calendar Display Script
1: <?php
2: define(“ADAY”, (60*60*24));
3: if ((!isset($_POST[‘month’])) || (!isset($_POST[‘year’]))) {
4: $nowArray = getdate();
5: $month = $nowArray[‘mon’];
6: $year = $nowArray[‘year’];
7: } else {
8: $month = $_POST[‘month’];
9: $year = $_POST[‘year’];
10: }
11: $start = mktime (12, 0, 0, $month, 1, $year);
12: $firstDayArray = getdate($start);
13: ?>
14: <!DOCTYPE html>
15: <html>
16: <head>
17: <title><?php echo “Calendar: “.$firstDayArray[‘month’].”
18: “.$firstDayArray[‘year’’]; ?></title>
19: <style type=”text/css”>
20: table {
21: border: 1px solid black;
22: border-collapse: collapse;
23: }
24: th {
25: border: 1px solid black;
26: padding: 6px;
27: font-weight: bold;
28: background: #ccc;
29: }
30: td {
31: border: 1px solid black;
32: padding: 6px;
33: vertical-align: top;
34: width: 100px;
35: }
36: </style>
37: <body>
38: <h1>Select a Month/Year Combination</h1>
39: <form method=”post” action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”>
40: <select name=”month”>

ptg8126863

472 CHAPTER 24: Creating a Simple Calendar

LISTING 24.3 Continued
41: <?php
42: $months = Array(“January”, “February”, “March”, “April”, “May”,
43: “June”, “July”, “August”, “September”, “October”, “November”, “December”);
44: for ($x=1; $x <= count($months); $x++) {
45: echo”<option value=\”$x\””;
46: if ($x == $month) {
47: echo “ selected”;
48: }
49: echo “>”.$months[$x-1].”</option>”;
50: }
51: ?>
52: </select>
53: <select name=”year”>
54: <?php
55: for ($x=1980; $x<=2010; $x++) {
56: echo “<option”;
57: if ($x == $year) {
58: echo “ selected”;
59: }
60: echo “>$x</option>”;
61: }
62: ?>
63: </select>
64: <button type=”submit” name=”submit” value=”submit”>Go!</button>
65: </form>
66:

67: <?php
68: $days = Array(“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”);
69: echo “<table><tr>\n”;
70: foreach ($days as $day) {
71: echo “<td>”.$day.</td>\n”;
72: }
73: for ($count=0; $count < (6*7); $count++) {
74: $dayArray = getdate($start);
75: if (($count % 7) == 0) {
76: if ($dayArray[‘mon’] != $month) {
77: break;
78: } else {
79: echo “</tr><tr>\n”;
80: }
81: }
82: if ($count < $firstDayArray[‘wday’] || $dayArray[‘mon’] != $month) {
83: echo “<td> </td>\n”;
84: } else {
85: echo “<td>”.$dayArray[‘mday’].”</td>\n”;
86: $start += ADAY;
87: }
88: }
89: echo “</tr></table>”;
90: ?>
91: </body>
92: </html>

ptg8126863

Building a Simple Display Calendar 473

We pick up the entirely new code at line 66 of Listing 24.3. Because the table will be

indexed by days of the week, we loop through an array of day names in lines 70–72,

printing each in its own table cell, on line 71. All the real magic of the script hap-

pens in the final for statement beginning on line 73.

In line 73, we initialize a variable called $count and ensure that the loop will end

after 42 iterations. This is to make sure that we will have enough cells to populate

with date information, taking into consideration that a four-week month might

actually have partial weeks at the beginning and the end, thus the need for six 7-

day weeks (rows).

Within this for loop, we transform the $start variable into a date array with

getdate(), assigning the result to $dayArray (line 73). Although $start is the

first day of the month during the loop’s initial execution, we will increment this

timestamp by the value of ADAY (24 hours) for every iteration (see line 85).

On line 75, we test the $count variable against the number 7, using the modulus

operator. The block of code belonging to this if statement will therefore be run only

when $count is either zero or a multiple of 7. This is our way of knowing whether

we should end the loop altogether or start a new row, where rows represent weeks.

After we have established that we are in the first iteration or at the end of a row, we

can go on to perform another test on line 76. If the mon (month number) element

of the $dayArray is no longer equivalent to the $month variable, we are finished.

Remember that $dayArray contains information about the $start timestamp,

which is the current place in the month that we are displaying. When $start goes

beyond the current month, $dayArray[“mon”] will hold a different figure than the

$month number provided by user input. Our modulus test demonstrated that we are

at the end of a row, and the fact that we are in a new month means that we can

leave the loop altogether. Assuming, however, that we are still in the month that we

are displaying, we end the row and start a new one on line 79.

In the next if statement, on line 82, we determine whether to write date informa-

tion to a cell. Not every month begins on a Sunday, so it’s likely that our rows will

contain an empty cell or two. Similarly, few months will finish at the end of one of

our rows, so it’s also likely that we will have a few empty cells before we close the

table.

We have stored information about the first day of the $firstDayArray; in particu-

lar, we can access the number of the day of the week in $firstDayArray[‘wday’].

If the value of $count is smaller than this number, we know that we haven’t yet

reached the correct cell for writing. By the same token, if the value of the $month

ptg8126863

474 CHAPTER 24: Creating a Simple Calendar

variable is no longer equal to $dayArray[‘mon’], we know that we have reached

the end of the month (but not the end of the row, as we determined in our earlier

modulus test). In either case, we write an empty cell to the browser on line 83.

In the final else clause on line 84, we can do the fun stuff. We have already deter-

mined that we are within the month that we want to list, and that the current day

column matches the day number stored in $firstDayArray[‘wday’]. Now we must

use the $dayArray associative array that we established early in the loop to write

the day of the month and some blank space into a cell.

Finally, on line 86, we need to increment the $start variable, which contains our

date stamp. We just add the number of seconds in a day to it (we defined this value

in line 2), and we’re ready to begin the loop again with a new value in $start to be

tested. If you save this listing as showcalendar.php, place it in your web server doc-

ument root, and access it with your web browser, you should see something like

Figure 24.2 (your month and year might differ).

FIGURE 24.2
The calendar
form and script.

Adding Events to the Calendar
Displaying the calendar is great, but with just a few extra lines of code, you can

make it interactive—that is, you can add and view events on a given day. To begin,

let’s create a simple database table that holds event information. For purposes of

simplicity, these events will occur on only a single day and only their start date and

time will be shown. Although you can make the event entries as complex as you

want, this example is here just to show the basic process involved.

The calendar_events table will include fields for the start date and time, the event

title, and an event short description:

ptg8126863

Building a Simple Display Calendar 475

CREATE TABLE calendar_events (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

event_title VARCHAR (25),

event_shortdesc VARCHAR (255),

event_start DATETIME

);

We can use the code in Listing 24.3 as our base (the script called showcalendar.php).

In this new script, we add a link to a pop-up window as part of the calendar display.

Each date is a link; the pop-up window calls another script that displays the full text

of an event as well as provide the capability to add an event. To begin, add the fol-

lowing JavaScript code in the <head> area, before the opening <body> tag—after

line 36 of the original script in Listing 24.3:

<script type=”text/javascript”>
function eventWindow(url) {

event_popupWin = window.open(url, ‘event’, ‘resizable=yes, scrollbars=yes,
toolbar=no,width=400,height=400’);

event_popupWin.opener = self;
}
</script>

This JavaScript function defines a 400×400 window that will call a URL we provide.

We use this JavaScript function to replace what was line 85 of the original script in

Listing 24.3; we now wrap the date display in this link to the JavaScript-based pop-

up window, which calls a script named event.php. The new code is as follows:

echo “<td><a href=\”javascript:eventWindow(‘event.php?m=”.$month.
“&d=”.$dayArray[‘mday’].”&y=$year’);\”>”.$dayArray[‘mday’].”

”.$event_title.”</td>\n”;

Not only do we call the event.php file, but we also have to send along with it the

date information for the particular link that is clicked. This is done via the query

string, and you can see we’re sending along three variables—what will become

$_GET[‘m’] for the month, $_GET[‘d’] for the day, and $_GET[‘y’] for the year.

Only one change remains for this particular script before we tackle the event.php

script—adding an indicator to this particular view, if events do indeed exist. The

query that checks for existing events on a given day appears at the onset of the

else statement that was originally found at line 84. An entirely new else statement

is shown; you can see that the database connection is made, a query is issued, and,

if results are found, text is printed within the table cell for that day:

} else {
$mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
$chkEvent_sql = “SELECT event_title FROM calendar_events WHERE

month(event_start) = ‘“.$month.”’ AND
dayofmonth(event_start) = ‘“.$dayArray[‘mday’].”’
AND year(event_start) = ‘“.$year.”’ ORDER BY event_start”;

ptg8126863

476 CHAPTER 24: Creating a Simple Calendar

$chkEvent_res = mysqli_query($mysqli, $chkEvent_sql)
or die(mysqli_error($mysqli));

if (mysqli_num_rows($chkEvent_res) > 0) {
while ($ev = mysqli_fetch_array($chkEvent_res)) {

$event_title = stripslashes($ev[‘event_title’]);
}

} else {
$event_title = “”;

}

echo “<td><a href=\”javascript:eventWindow(‘event.php?m=”.$month.
“&d=”.$dayArray[‘mday’].”&y=$year’);\”>”.
$dayArray[‘mday’].”

”.$event_title.”</td>\n”;

unset($event_title);

$start += ADAY;
}

In Listing 24.4, you can see the entirely new script, which we’ll call

showcalendar_withevent.php.

LISTING 24.4 Calendar Display Script with Entry-Related Modifications
1: <?php
2: define(“ADAY”, (60*60*24));
3: if ((!isset($_POST[‘month’])) || (!isset($_POST[‘year’]))) {
4: $nowArray = getdate();
5: $month = $nowArray[‘mon’];
6: $year = $nowArray[‘year’];
7: } else {
8: $month = $_POST[‘month’];
9: $year = $_POST[‘year’];
10: }
11: $start = mktime (12, 0, 0, $month, 1, $year);
12: $firstDayArray = getdate($start);
13: ?>
14: <!DOCTYPE html>
15: <html>
16: <head>
17: <title><?php echo “Calendar: “.$firstDayArray[‘month’].” “.
18: $firstDayArray[‘year’] ?></title>
19: <head>
20: <style type=”text/css”>
21: table {
22: border: 1px solid black;
23: border-collapse: collapse;
24: }
25: th {
26: border: 1px solid black;
27: padding: 6px;
28: font-weight: bold;
29: background: #ccc;
30: }
31: td {

ptg8126863

Building a Simple Display Calendar 477

32: border: 1px solid black;
33: padding: 6px;
34: vertical-align: top;
35: width: 100px;
36: }
37: </style>
38: <script type=”text/javascript”>
39: function eventWindow(url) {
40: event_popupWin = window.open(url, ‘event’,
41: ‘resizable=yes,scrollbars=yes,toolbar=no,width=400,height=400’);
42: event_popupWin.opener = self;
43: }
44: </script>
45: <body>
46: <h1>Select a Month/Year Combination</h1>
47: <form method=”post” action=”<?php echo $_SERVER[‘PHP_SELF’]; ?>”>
48: <select name=”month”>
49: <?php
50: $months = Array(“January”, “February”, “March”, “April”, “May”, “June”,
51: “July”, “August”, “September”, “October”, “November”, “December”);
52: for ($x=1; $x <= count($months); $x++) {
53: echo”<option value=\”$x\””;
54: if ($x == $month) {
55: echo “ selected”;
56: }
57: echo “>”.$months[$x-1].”</option>”;
58: }
59: ?>
60: </select>
61: <select name=”year”>
62: <?php
63: for ($x=1990; $x<=2020; $x++) {
64: echo “<option”;
65: if ($x == $year) {
66: echo “ selected”;
67: }
68: echo “>$x</option>”;
69: }
70: ?>
71: </select>
72: <button type=”submit” name=”submit” value=”submit”>Go!</button>
73: </form>
74:

75: <?php
76: $days = Array(“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”);
77: echo “<table><tr>\n”;
78: foreach ($days as $day) {
79: echo “<th>$day</th>\n”;
80: }
81:
82: for ($count=0; $count < (6*7); $count++) {
83: $dayArray = getdate($start);
84: if (($count % 7) == 0) {
85: if ($dayArray[‘mon’] != $month) {
86: break;
87: } else {
88: echo “</tr><tr>\n”;
89: }

ptg8126863

478 CHAPTER 24: Creating a Simple Calendar

LISTING 24.4 Continued
90: }
91: if ($count < $firstDayArray[‘wday’] || $dayArray[‘mon’] != $month) {
92: echo “<td> </td>\n”;
93: } else {
94: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”,

“testDB”);
95: $chkEvent_sql = “SELECT event_title FROM calendar_events WHERE
96: month(event_start) = ‘“.$month.”’ AND
97: dayofmonth(event_start) = ‘“.$dayArray[‘mday’].”’
98: AND year(event_start) = ‘“.$year.”’ ORDER BY

event_start”;
99: $chkEvent_res = mysqli_query($mysqli, $chkEvent_sql)
100: or die(mysqli_error($mysqli));
101:
102: if (mysqli_num_rows($chkEvent_res) > 0) {
103: while ($ev = mysqli_fetch_array($chkEvent_res)) {
104: $event_title .= stripslashes($ev[‘event_title’].”
”;
105: }
106: } else {
107: $event_title = “”;
108: }
109:
110: echo “<td><a href=\”javascript:eventWindow(‘event.php?m=”.$month.
111: “&d=”.$dayArray[‘mday’].”&y=$year’);\”>”.
112: $dayArray[‘mday’].”

”.$event_title.”</td>\n”;
113:
114: unset($event_title);
115: $start += ADAY;
116: }
117: }
118: echo “</tr></table>”;
119:
120: //close connection to MySQL
121: mysqli_close($mysqli);
122: ?>
123: </body>
124: </html>

In Figure 24.3, you can see the new calendar, including the representation of the

event title on a date that, for illustrative purposes here, I’ve prepopulated with an

event in the calendar_events table.

All that remains is adding the all-in-one event.php script used in the pop-up

window to display and also add an event to the calendar (on a particular day).

Listing 24.5 contains all the necessary code; the fun part starts at line 8, which

connects to the MySQL database. Line 11 checks whether the event entry form has

been submitted; if it has, database-safe values are created in lines 14–24, and an

INSERT statement is created and issued to add the event to the calendar_events

table before continuing (lines 29–34).

ptg8126863

Building a Simple Display Calendar 479

LISTING 24.5 Showing Events/Adding Events via Pop-Up
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Show/Add Events</title>
5: <body>
6: <h1>Show/Add Events</h1>
7: <?php
8: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”);
9:
10: //add any new event
11: if ($_POST) {
12:
13: //create database-safe strings
14: $safe_m = mysqli_real_escape_string($mysqli, $_POST[‘m’]);
15: $safe_d = mysqli_real_escape_string($mysqli, $_POST[‘d’]);
16: $safe_y = mysqli_real_escape_string($mysqli, $_POST[‘y’]);
17: $safe_event_title = mysqli_real_escape_string($mysqli,
18: $_POST[‘event_title’]);
19: $safe_event_shortdesc = mysqli_real_escape_string($mysqli,
20: $_POST[‘event_shortdesc’]);
21: $safe_event_time_hh = mysqli_real_escape_string($mysqli,
22: $_POST[‘event_time_hh’]);
23: $safe_event_time_mm = mysqli_real_escape_string($mysqli,
24: $_POST[‘event_time_mm’]);
25:
26: $event_date = $safe_y.”-”.$safe_m.”-”.$safe_d.”
27: “.$safe_event_time_hh.”:”.$safe_event_time_mm.”:00”;
28:
29: $insEvent_sql = “INSERT INTO calendar_events (event_title,
30: event_shortdesc, event_start) VALUES
31: (‘“.$safe_event_title.”’, ‘“.$safe_event_shortdesc.”’,
32: ‘“.$event_date.”’)”;
33: $insEvent_res = mysqli_query($mysqli, $insEvent_sql)

FIGURE 24.3
Showing the cal-
endar with an
event.

ptg8126863

480 CHAPTER 24: Creating a Simple Calendar

LISTING 24.5 Continued
34: or die(mysqli_error($mysqli));
35:
36: } else {
37:
38: //create database-safe strings
39: $safe_m = mysqli_real_escape_string($mysqli, $_GET[‘m’]);
40: $safe_d = mysqli_real_escape_string($mysqli, $_GET[‘d’]);
41: $safe_y = mysqli_real_escape_string($mysqli, $_GET[‘y’]);
42: }
43:
44: //show events for this day
45: $getEvent_sql = “SELECT event_title, event_shortdesc,
46: date_format(event_start, ‘%l:%i %p’) as fmt_date
47: FROM calendar_events WHERE month(event_start) =
48: ‘“.$safe_m.”’ AND dayofmonth(event_start) =
49: ‘“.$safe_d.”’ AND year(event_start) =
50: ‘“.$safe_y.”’ ORDER BY event_start”;
51: $getEvent_res = mysqli_query($mysqli, $getEvent_sql)
52: or die(mysqli_error($mysqli));
53:
54: if (mysqli_num_rows($getEvent_res) > 0) {
55: $event_txt = “”;
56: while ($ev = @mysqli_fetch_array($getEvent_res)) {
57: $event_title = stripslashes($ev[‘event_title’]);
58: $event_shortdesc = stripslashes($ev[‘event_shortdesc’]);
59: $fmt_date = $ev[‘fmt_date’];
60: $event_txt .= “”.$fmt_date.”:
61: “.$event_title.”
”.$event_shortdesc.””;
62: }
63: $event_txt .= “”;
64: mysqli_free_result($getEvent_res);
65: } else {
66: $event_txt = “”;
67: }
68: // close connection to MySQL
69: mysqli_close($mysqli);
70:
71: if ($event_txt != “”) {
72: echo “<p>Today’s Events:</p>
73: $event_txt
74: <hr/>”;
75: }
76:
77: // show form for adding an event
78: echo <<<END_OF_TEXT
79: <form method=”post” action=”$_SERVER[PHP_SELF]”>
80: <p>Would you like to add an event?

81: Complete the form below and press the submit button to
82: add the event and refresh this window.</p>
83:

ptg8126863

Building a Simple Display Calendar 481

84: <p><label for=”event_title”>Event Title:</label>

85: <input type=”text” id=”event_title” name=”event_title”
86: size=”25” maxlength=”25” /></p>
87:
88: <p><label for=”event_shortdesc”>Event Description:</label>

89: <input type=”text” id=”event_shortdesc” name=”event_shortdesc”
90: size=”25” maxlength=”255” /></p>
91: <fieldset>
92: <legend>Event Time (hh:mm):</legend>
93: <select name=”event_time_hh”>
94: END_OF_TEXT;
95:
96: for ($x=1; $x <= 24; $x++) {
97: echo “<option value=\”$x\”>$x</option>”;
98: }
99:
100: echo <<<END_OF_TEXT
101: </select> :
102: <select name=”event_time_mm”>
103: <option value=”00”>00</option>
104: <option value=”15”>15</option>
105: <option value=”30”>30</option>
106: <option value=”45”>45</option>
107: </select>
108: </fieldset>
109: <input type=”hidden” name=”m” value=”$safe_m”>
110: <input type=”hidden” name=”d” value=”$safe_d”>
111: <input type=”hidden” name=”y” value=”$safe_y”>
112:
113: <button type=”submit” name=”submit” value=”submit”>Add Event</button>
114: </form>
115: END_OF_TEXT;
116: ?>
117: </body>
118: </html>

Lines 45–52 create and issue the query and retrieve all records that correspond to

events on this given day. The text block used to display entries is created in lines

54–67. However, users also need to see the form for adding an event, and this is

built in lines 79–114, effectively the end of the script.

Figure 24.4 shows how a pop-up looks when a link is followed from the calendar

and an entry is already present. In this example, we wanted to add another event

on this day, so the form has been completed in preparation for adding the addition-

al event.

ptg8126863

482 CHAPTER 24: Creating a Simple Calendar

In Figure 24.5, a second event has been added to this particular day.

FIGURE 24.4
Showing the day
detail, ready to
add another
event.

FIGURE 24.5
A second event
has been
added.

Obviously, this is a simple example, but it shows that it is indeed easy to build a

calendar-based application in just a few short scripts.

ptg8126863

Creating a Calendar Library 483

Creating a Calendar Library
Because dates are ubiquitous in web-based application interfaces, and because

working with dates can be complicated, let’s look at creating a class library to auto-

mate some of the work you might do with dates. Along the way, we revisit some of

the techniques we have already covered in this book—especially in Chapter 9,

“Working with Objects.”

The simple date_pulldown library created in this instance will consist of three sepa-

rate select elements: one for day of the month, one for month, and one for year.

When a user submits a page, the script will verify the form input. If there is a prob-

lem with the input, we will refresh the page with the user’s input still in place. This

is easy to accomplish with text boxes but is more of a chore with pull-down menus.

Pages that display information pulled from a database present a similar problem.

Data can be entered straight into the value attributes of text-type input elements.

Dates will need to be split into month, day, and year values, and then the correct

option elements selected.

The date_pulldown class aims to make date pull-downs sticky (so that they will

remember settings from page to page) and easy to set. To create our class, we first

need to declare it and create a constructor.

A constructor is a function that exists within a class and is automatically called
when a new instance of the class is created.

We can also declare some class properties. We will step through Listing 24.6; this

first snippet shows the beginning of the class.

LISTING 24.6 The Calendar Library Class
1: class date_pulldown {
2: public $name;
3: public $timestamp = -1;
4: public $months = array(“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,
5: “Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”);
6: public $yearstart = -1;
7: public $yearend = -1;
8:
9: function date_pulldown($name) {
10: $this->name = $name;
11: }

We first declare the $name property on line 2. We use it to name the HTML select

elements. The $timestamp property, defined on line 3, will hold a UNIX timestamp.

NOTE

ptg8126863

484 CHAPTER 24: Creating a Simple Calendar

The $months array property, defined on lines 4–5, contains the strings we display in

our month pull-down. The $yearstart and $yearend properties (lines 6 and 7) are

both set to –1, pending initialization. They will eventually hold the first and last

years of the range that will be presented in the year pull-down.

The constructor is simple. It accepts a string, which we assign to the $name property.

Now that we have the basis of our class, we need a set of methods by which the

client code can set the date. Listing 24.6 continues as follows.

LISTING 24.6 (continued)
12: function setDate_global() {
13: if (!$this->setDate_array($GLOBALS[$this->name])) {
14: return $this->setDate_timestamp(time());
15: }
16: return true;
17: }
18:
19: function setDate_timestamp($time) {
20: $this->timestamp = $time;
21: return true;
22: }
23:
24: function setDate_array($inputdate) {
25: if (is_array($inputdate) &&
26: isset($inputdate[‘mon’]) &&
27: isset($inputdate[‘mday’]) &&
28: isset($inputdate[‘year’])) {
29:
30: $this->timestamp = mktime(11, 59, 59,
31: $inputdate[‘mon’], $inputdate[‘mday’], $inputdate[‘year’]);
32: return true;
33: }
34: return false;
35: }

Of the methods shown here, setDate_timestamp() is the simplest (lines 19–22). It

requires a UNIX timestamp, which it assigns to the $timestamp property. But let’s

not forget the others.

The setDate_array() method (lines 24–35) expects an associative array with at

least three keys: mon, mday, and year. These keys will have data values in the same

format as in the array returned by getdate(). This means that setDate_array()

will accept a hand-built array such as

array(“mday”=> 25, “mon”=>3, “year”=> 2012);

or the result of a call to getdate():

getdate(1208052013);

ptg8126863

Creating a Calendar Library 485

It is no accident that the pull-downs we build later will be constructed to produce an

array containing mon, mday, and year keys. The method uses the mktime() function

to construct a timestamp, which is then assigned to the $timestamp variable.

The setDate_global() method (lines 12–17) is called by default. It attempts to find

a global variable with the same name as the object’s $name property. This is passed

to setDate_array(). If this method discovers a global variable of the right struc-

ture, it uses that variable to create the $timestamp variable. Otherwise, the current

date is used.

The ranges for days and months are fixed, but years are a different matter. As

Listing 24.6 continues, we create a few methods to allow the client code to set a

range of years, although we also provide default behavior.

LISTING 24.6 (continued)
36: function setYearStart($year) {
37: $this->yearstart = $year;
38: }
38:
40: function setYearEnd($year) {
41: $this->yearend = $year;
42: }
43:
44: function getYearStart() {
45: if ($this->yearstart < 0) {
46: $nowarray = getdate(time());
47: $this->yearstart = $nowarray[‘year’]-5;
48: }
49:
50: return $this->yearstart;
51: }
52:
53: function getYearEnd() {
54: if ($this->yearend < 0) {
55: $nowarray = getdate(time());
56: $this->yearend = $nowarray[‘year’]+5;
57: }
58: return $this->yearend;
59: }

The setYearStart() and setYearEnd() methods (lines 36–43) are straightforward

in that a year is directly assigned to the appropriate property. The getYearStart()

method tests whether the $yearstart property has been set, and if it has not, the

method assigns a $yearstart value 5 years before the current year. The

getYearEnd() method performs a similar operation.

We’re now ready to create the business end of the class as Listing 24.6 continues.

ptg8126863

486 CHAPTER 24: Creating a Simple Calendar

LISTING 24.6 (continued)
60: function output() {
61: if ($this->timestamp < 0) {
62: $this->setDate_global();
63: }
64: $datearray = getdate($this->timestamp);
65: $out = $this->day_select($this->name, $datearray);
66: $out .= $this->month_select($this->name, $datearray);
67: $out .= $this->year_select($this->name, $datearray);
68: return $out;
69: }
70:
71: function day_select($fieldname, $datearray) {
72: $out = “<select name=\”$fieldname”.”[‘mday’]\”>\n”;
73: for ($x=1; $x<=31; $x++) {
74: $out .= “<option value=\”$x\””.($datearray[‘mday’]==($x)
75: ?” selected”:””).”>”.sprintf(“%02d”, $x) .”</option>\n”;
76: }
77: $out .= “</select>\n”;
78: return $out;
79: }
80:
81: function month_select($fieldname, $datearray) {
82: $out = “<select name=\”$fieldname”.”[‘mon’]\”>\n”;
83: for ($x = 1; $x <= 12; $x++) {
84: $out .= “<option value=\””.($x).”\””.($datearray[‘mon’]==($x)
85: ?” selected”:””).”> “.$this->months[$x-1].”</option>\n”;
86: }
87: $out .= “</select>\n”;
88: return $out;
89: }
90:
91: function year_select($fieldname, $datearray) {
92: $out = “<select name=\”$fieldname”.”[‘year’]\”>”;
93: $start = $this->getYearStart();
94: $end = $this->getYearEnd();
95: for ($x= $start; $x < $end; $x++) {
96: $out .= “<option value=\”$x\””.($datearray[‘year’]==($x)
97: ?” selected”:””).”>”.$x.”</option>\n”;
98: }
99: $out .= “</select>\n”;
100: return $out;
101: }
102: }

The output() method orchestrates most of this code (lines 60–69). It first checks the

$timestamp property, and, unless one of the setDate methods has been called, the

value of $timestamp will be set to –1 and setDate_global() will be called by

default. The timestamp is passed to the getdate() function to construct a date

array, and a method is called to produce each pull-down.

The day_select() method (lines 71–79) simply constructs an HTML select ele-

ment with an option element for each of the 31 possible days in a month. The

ptg8126863

Creating a Calendar Library 487

object’s current date is stored in the $datearray argument variable, which is used

during the construction of the element to set the selected attribute of the relevant

option element. The sprintf() function formats the day number, adding a leading

zero to days 1–9. The month_select() and year_select() methods (lines 81–101)

use similar logic to construct the month and year pull-downs.

Why did we break down the output code into four methods, rather than simply cre-

ating one block of code? When we build a class, we have two kinds of programmer

in mind: one who will want to instantiate a date_pulldown object, and one who

will want to subclass the date_pulldown class to refine its functionality.

For the former, we want to provide a simple and clear interface to the class’s func-

tionality. The programmer can then instantiate an object, set its date, and call the

output() method. For the latter, we want to make it easy to change discrete ele-

ments of the class’s functionality. By putting all the output code into one method,

we would force a child class that needed to tweak output to reproduce a lot of code

that is perfectly usable. By breaking this code into discrete methods, we allow for

subclasses that can change limited aspects of functionality without disturbing the

whole. If a child class needs to represent the year pull-down as two radio buttons,

for example, you can simply override the year_select() method.

Listing 24.7 contains some code that calls the library class. Before you try to execute

this code, take the code from Listing 24.6, surround it with PHP opening and closing

tags, and save it into a file called date_pulldown.class.php. Place this file in the

document root of your web server because Listing 24.7 uses it and it had better be

there!

LISTING 24.7 Using the date_pulldown Class
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Using the date_pulldown Class</title>
5: </head>
6: <?php
7: include(“date_pulldown.class.php”);
8: $date1 = new date_pulldown(“fromdate”);
9: $date2 = new date_pulldown(“todate”);
10: $date3 = new date_pulldown(“foundingdate”);
11: $date3->setYearStart(“1972”);
12: if (empty($foundingdate)) {
13: $date3->setDate_array(array(‘mday’=>26, ‘mon’=>4, ‘year’=>1984));
14: }
15: ?>
16: <body>
17: <form>
18: <p>From:

19: <?php echo $date1->output(); ?></p>
20:

ptg8126863

488 CHAPTER 24: Creating a Simple Calendar

LISTING 24.7 Continued
21: <p>To:

22: <?php echo $date2->output(); ?></p>
23:
24: <p>Company Founded:

25: <?php echo $date3->output(); ?></p>
26:
27: <button type=”submit” name=”submit” value=”submit”>Submit</button>
28: </form>
29: </body>
30: </html>

On line 7, we include the date_pulldown.class.php; after we have included the

class file, we can use all of its methods. We use the class’s default behavior for all

the pull-downs, apart from “foundingdate”. For this particular object, we override

the default year start, setting it to 1972 on line 11. On line 13, we assign this pull-

down an arbitrary date that will be displayed until the form is submitted (see

Figure 24.6).

FIGURE 24.6
The pull-downs
generated by the
date_pulldown
class.

This is only the front end of a form, with no action or method; you need to supply
your own action or method for this to actually do something.

NOTE

ptg8126863

489Workshop

Summary
In this chapter, you pulled together the PHP date-related functions you learned

about earlier in the book to work within a basic calendar application display. You

learned how to test the validity of an input date using checkdate(), and you

worked through a sample script that applied some of the tools you have learned.

You also saw one method for adding and viewing events within your calendar

application. You also learned how to build a date-related class library that can be

used to automate some of the more tedious aspects of working with dates within

HTML forms.

Q&A
Q. Are there any functions for converting between different calendars?

A. Yes. PHP provides an entire suite of functions that cover alternative calendars.

You can read about these in the official PHP Manual at http://www.php.net/

manual/en/ref.calendar.php.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. What PHP function did we use to create a timestamp?

2. What PHP function did we use to create an associative array of date-related

information?

3. Why are the variables in the date_pulldown class declared as public?

http://www.php.net/manual/en/ref.calendar.php
http://www.php.net/manual/en/ref.calendar.php

ptg8126863

490 CHAPTER 24: Creating a Simple Calendar

Answers
1. mktime()

2. getdate()

3. Public variables are available outside of the class, as these variables need

to be.

Activities
1. Modify the calendar display script to show an entire year of the calendar—

from January through December. After that, display the calendar as a 3×4

grid, or four rows of three months on each row.

2. Modify the event-creation script to use the date pull-down class.

ptg8126863

CHAPTER 25

Restricting Access to Your
Applications

In this chapter, you learn the following:
. How to restrict access based on the user, client IP address, domain name,

and browser version
. How to use the user management tools provided with Apache
. How to store and retrieve cookie information
. How to use cookies for authentication

This chapter explains how to use Apache to restrict access to parts of a website based on

the identity of the user or on information about the request. On the application side of

things, you can create your own mechanism for user validation and check the validity of

your users through cookies.

Authentication Overview
Authorization and authentication are common requirements for many websites. Before

continuing, a few definitions are in order.

Authentication establishes the identity of parties in a communication. You can authenticate

yourself through something you know such as a password or a cookie, through something

tangible such as an ID card or a key, through something intrinsically part of you such as

your fingerprint or your retina, or through any combination of these elements. In the

context of a website, authentication is usually restricted to the use of passwords and

certificates.

ptg8126863

492 CHAPTER 25: Restricting Access to Your Applications

Authorization deals with protecting access to resources. You can authorize access

based on several factors, such as the IP address the user is coming from, the user’s

browser type, the content the user is trying to access, or who the user is (previously

determined via authentication).

Apache includes several modules that provide authentication and access control

and that you can use to protect both dynamic and static content. You can either

use one of these modules or implement your own access control at the application

level and provide customized login screens, single sign-on, and other advanced

functionality.

Client Authentication
Users are authenticated for tracking or authorization purposes. The HTTP specifica-

tion provides two authentication mechanisms: basic and digest. In both cases, the

process is the following:

1. A client tries to access restricted content in the web server.

2. Apache checks whether the client is providing a username and password. If

not, Apache returns an HTTP 401 status code, indicating that user authentica-

tion is required.

3. The client reads the response and prompts the user for the required username

and password (usually with a pop-up dialog box).

4. The client retries accessing the web page, this time transmitting the username

and password as part of the HTTP request. The client remembers the username

and password and transmits them in later requests to the same site, so the

user does not need to retype them for every request.

5. Apache checks the validity of the credentials and grants or denies access based

on the user identity and other access rules.

In the basic authentication scheme, the username and password are transmitted in

cleartext as part of the HTTP request headers. This poses a security risk because an

attacker could easily peek at the conversation between server and browser, learn the

username and password, and reuse them freely afterward.

The digest authentication provides increased security because it transmits a digest

instead of the clear text password. The digest is based on a combination of several

parameters, including the username, password, and request method. The server can

calculate the digest on its own and check that the client knows the password, even

when the password itself is not transmitted over the network.

ptg8126863

Apache Authentication Module Functionality 493

A digest algorithm is a mathematical operation that takes a text and returns anoth-
er text, a digest, which uniquely identifies the original one. A good digest algorithm
should make sure that, at least for practical purposes, different input texts pro-
duce different digests and that the original input text cannot be derived from the
digest. MD5 is the name of a commonly used digest algorithm.

Because of potential differences in browser support for digest authentication, you

might want to restrict its use to scenarios in which you have control over the brows-

er software of your clients, such as in a corporate intranet.

In any case, for both digest and basic authentication, the requested information

itself is transmitted unprotected over the network. A better choice to secure access to

your website involves using the HTTP over SSL protocol, as described in Chapter 30,

“Setting Up a Secure Web Server.”

User Management Methods
When the authentication module receives the username and password from the

client, it needs to verify that they are valid against an existing repository of users.

The usernames and passwords can be stored in a variety of ways, including the file-

and database-based mechanisms provided for by Apache. Third-party modules pro-

vide support for additional mechanisms such as Lightweight Directory Access Protocol

(LDAP) and Network Information Services (NIS).

Apache Authentication Module
Functionality
Apache provides the basic framework and directives to perform authentication and

access control. The authentication modules provide support for validating passwords

against a specific back-end method (file, database, and so on). Users can optionally

be organized in groups, easing management of access control rules.

Apache provides three built-in directives related to authentication that can be used

with any of the authentication modules: AuthName, AuthType, and Require.

AuthName accepts a string argument, the name for the authentication realm. A

realm is a logical area of the web server that you are asking the password for. It is

displayed in the browser pop-up window.

AuthType specifies the type of browser authentication: basic or digest.

NOTE

ptg8126863

494 CHAPTER 25: Restricting Access to Your Applications

Require enables you to specify a list of users or groups that will be allowed access.

The syntax is Require user followed by one or more usernames, or Require group

followed by one or more group names. For example

Require user joe bob

or

Require group employee contractor

If you want to grant access to anyone who provides a valid username and password,

you can do so as follows:

Require valid-user

With the preceding directives, you can control who has access to specific virtual

hosts, directories, files, and so on. Although authentication and authorization are

separate concepts, in practice they intertwine in Apache. Access is granted based on

specific user identity or group membership. Some third-party modules, such as cer-

tain LDAP-based modules, allow for clearer separation between authentication and

authorization.

The authentication modules included with Apache provide the following

. Back-end storage—Provides text or database files containing the username

and group information

. User management—Supplies tools for creating and managing users and

groups in the back-end storage

. Authoritative information—Specifies whether the results of the module are

authoritative

Sometimes users will not be allowed access to a particular realm because their
information is not found in the user database provided by the module, or because
no authentication rules matched their information. In that case, one of two situa-
tions will occur:

. If the module specifies its results as authoritative, a user is denied
access and Apache returns an error.

. If the module specifies its results as not authoritative, other modules
can attempt to authenticate the user.

This enables you to have a main authorization module that knows about most
users and have additional modules that can authenticate the rest of the users.

NOTE

ptg8126863

Apache Authentication Module Functionality 495

File-Based Authentication
The mod_auth Apache module provides basic authentication via text files contain-

ing usernames and passwords, similar to how traditional UNIX authentication

works with the /etc/passwd and /etc/groups files.

Back-End Storage
When using back-end storage methods, you need to specify the file containing the

list of usernames and passwords and, optionally, the file containing the list of

groups.

The users file is a UNIX-style password file, containing names of users and en-

crypted passwords. The entries look like the following, on UNIX, using the crypt

algorithm:

admin:iFrlxqg0Q6RQ6

On Windows, using the MD5 algorithm, they look like this:

admin:$apr1$Ug3. ...$jVTedbQWBKTfXsn5jK6UX/

The groups file contains a list of groups and the users who belong to each one of

them, separated by spaces, such as in the following entry:

web: admin joe Daniel

The AuthUserFile and the AuthGroupFile directives take a path argument, point-

ing to the users file and the groups file. The groups file is optional.

User Management
The Apache distribution includes the htpasswd utility on UNIX and htpasswd.exe

on Windows; they are designed to help you manage user password files. Both ver-

sions are functionally identical, but the Windows version uses a different method to

encrypt the password. The encryption is transparent to the user and administrator.

On Linux/UNIX, the first time you add a user, you need to type

/usr/local/apache2/bin/htpasswd -c file userid

where file is the password file that will contain the list of usernames and pass-

words, and userid is the username you want to add. You are then prompted for a

password, and the file is created. For example, on Linux/UNIX, the command

/usr/local/apache2/bin/htpasswd -c /usr/local/apache2/conf/htusers admin

creates the password file /usr/local/apache2/conf/htusers and adds the admin

user.

ptg8126863

496 CHAPTER 25: Restricting Access to Your Applications

Similar functionality exists on Windows, where the command-line operation might

look something like this:

htpasswd -c “C:\Program Files\Apache Software Foundation\Apache2.2\conf\htusers”

admin

The -c command-line option tells the htpasswd executable that it should create the

file. When you want to add users to an existing password file, do not use the -c

option; if you do so, the file will be overwritten.

It is important that you store the password file outside the document root and thus

make it inaccessible via a web browser. Otherwise, an attacker could download the

file and get a list of your usernames and passwords. Although the passwords are

encrypted, when you have the file, it is possible to perform a brute-force attack to

try to guess them.

Using mod_auth

Listing 25.1 shows a configuration example that restricts access to the private

directory in the document root to authenticated users present in the htusers pass-

word file. Note that the optional AuthGroupFile directive is not present.

LISTING 25.1 File-Based Authentication Example
1: <Directory /usr/local/apache2/htdocs/private>
2: AuthType Basic
3: AuthName “Private Area”
4: AuthUserFile /usr/local/apache2/conf/htusers
5: Require valid-user
6: </Directory>

Database File-Based Access Control
Storing usernames and passwords in plaintext files is convenient, but this method

does not scale well. Apache would need to open and read the files sequentially to

look for a particular user. When the number of users grows, this operation becomes

very time-consuming. The mod_auth_dbm module enables you to replace the text-

based files with indexed database files, which can handle a much greater number of

users without performance degradation. The mod_auth_dbm module is included with

Apache, but is not enabled by default. Enabling this module occurs when configur-

ing Apache to be built using the --enable-module=dbm option.

Back-End Storage
The mod_auth_dbm module provides two directives, AuthDBMUserFile and

AuthDBMGroupFile, that point to the database files containing the usernames and

ptg8126863

Using Apache for Access Control 497

groups. Unlike plaintext files, both directives can point to the same file, which com-

bines both users and groups.

User Management
Apache provides a utility for both UNIX and Windows users, called htdbm, that

enables you to create and manage users and groups stored in a database file.

You can find the utility in the bin directory of the Apache distribution; once there,

to add a user to a new database, type the following:

htdbm –c databasename userid

You are then prompted for the password, and the user is added to a new database

file.

If you ever need to delete the user daniel, you can issue the following command:

htdbm –x databasename daniel

You can find complete syntax information by invoking htdbm without any

arguments.

Using Apache for Access Control
The mod_authz_host module, enabled by default, enables you to restrict access to

resources based on parameters of the client request, such as the presence of a specif-

ic header or the IP address or hostname of the client.

Implementing Access Rules
You can specify access rules using the Allow and Deny directives. Each of these direc-

tives takes a list of arguments such as IP addresses, environment variables, and

domain names.

Allow/Deny Access by IP Addresses
You can deny or grant access to a client based on its IP address:

Allow from 10.0.0.1 10.0.0.2 10.0.0.3

You can also specify IP address ranges with a partial IP address or a network/mask

pair. In addition, you can specify the first 1, 2, or 3 bytes of an IP address. Any IP

address containing those will match this rule. For example, the rule

Deny from 10.0

matches any address starting with 10.0, such as 10.0.1.0 and 10.0.0.1.

ptg8126863

498 CHAPTER 25: Restricting Access to Your Applications

You can also use the IP address and the netmask; the IP address specifies the net-

work, and the mask specifies which bits belong to the network prefix and which

ones belong to the nodes. The rule

Allow from 10.0.0.0/255.255.255.0

matches IP addresses 10.0.0.1, 10.0.0.2, and so on, to 10.0.0.254.

You can also specify the network mask via high-order bits. For example, you could

write the previous rule as follows:

Allow from 10.0.0.0/24

Allow/Deny Access by Domain Name
You can control access based on specific hostnames or partial domain names. For

example, Allow from example.com matches www.example.com, foo.example.com,

and so on.

Enabling access rules based on domain names forces Apache to do a reverse
DNS lookup on the client address, bypassing the settings of the HostName-
Lookups directive. This has performance implications.

Allow/Deny Access Based on Environment Variables
You can specify access rules based on the presence of a certain environment variable

by prefixing the name of the variable with the string env=. You can use this feature

to grant or deny access to certain browsers or browser versions to prevent specific

sites from linking to your resources and so on. For this example to work as intended,

the client needs to transmit the User-Agent header.

For example:

BrowserMatch MSIE iexplorer
Deny from env=iexplorer

Because the client sends the User-Agent header, it could possibly be omitted or

manipulated, but most users will not do so, and this technique will work in most

cases.

Allow/Deny Access to All Clients
The keyword all matches all clients. You can specify Allow from all or Deny

from all to grant or deny access to all clients.

NOTE

www.example.com

ptg8126863

Using Apache for Access Control 499

Evaluating Access Rules
You can have several Allow and Deny access rules. You can choose the order in

which the rules are evaluated by using the Order directive. Rules evaluated later

have higher precedence. Order accepts one argument, which can be Deny,Allow,

Allow,Deny, or Mutual-Failure. Deny,Allow is the default value for the Order

directive. Note that there is no space in the value.

Deny,Allow

Deny,Allow specifies that Deny directives are evaluated before Allow directives. With

Deny,Allow, the client is granted access by default if there are no Allow or Deny

directives or the client does not match any of the rules. If the client matches a Deny

rule, it is denied access unless it also matches an Allow rule, which takes precedence

because Allow directives are evaluated last and have greater priority.

Listing 25.2 shows how to configure Apache to allow access to the /private loca-

tion to clients coming from the internal network or the domain example.com and

deny access to everyone else.

LISTING 25.2 Deny,Allow Access Control Configuration Example
1: <Location /private>
2: Order Deny,Allow
3: Deny from all
4: Allow from 10.0.0.0/255.255.255.0 example.com
5: </Location>

Allow,Deny

Allow,Deny specifies that Allow directives are evaluated before Deny directives. With

Allow,Deny, the client is denied access by default if there are no Allow or Deny

directives or if the client does not match any of the rules. If the client matches an

Allow rule, it is granted access unless it also matches a Deny rule, which takes prece-

dence.

Note that the presence of Order Allow,Deny without any Allow or Deny rules caus-

es all requests to the specified resource to be denied because the default behavior is

to deny access.

Listing 25.3 allows access to everyone except a specific host.

LISTING 25.3 Allow,Deny Access Control Configuration Example
1: <Location /some/location/>
2: Order Allow,Deny
3: Allow from all

ptg8126863

500 CHAPTER 25: Restricting Access to Your Applications

LISTING 25.3 Continued
4: Deny from host.example.com
5: </Location>

Mutual-Failure

In the case of Mutual-Failure, the host is granted access only if it matches an

Allow directive and does not match any Deny directive.

Combining Apache Access Methods
In previous sections, you learned how to restrict access based on user identity or

request information. The Satisfy directive enables you to determine whether both

types of access restrictions must be satisfied to grant access. Satisfy accepts one

parameter, which can be either all or any.

Satisfy all means that the client will be granted access if it provides a valid

username and password and passes the access restrictions. Satisfy any means the

client will be granted access if it provides a valid username and password or passes

the access restrictions.

Why is this directive useful? For example, you might want to provide free access to

your website to users coming from an internal, trusted address, but require users

coming from the Internet to provide a valid username and password. Listing 25.4

demonstrates just that.

LISTING 25.4 Mixing Authentication and Access Control Rules
1: <Location /restricted>
2: Allow from 10.0.0.0/255.255.255.0
3: AuthType Basic
4: AuthName “Intranet”
5: AuthUserFile /usr/local/apache2/conf/htusers
6: Require valid-user
7: Satisfy any
8: </Location>

Access control based on connection or request information is not completely
secure. Although it provides an appropriate level of protection for most cases, the
rules rely on the integrity of your DNS servers and your network infrastructure. If
an attacker gains control of your DNS servers, or your routers or firewalls are
incorrectly configured, he can easily change authorized domain name records to
point to his machine or pretend he is coming from an authorized IP address.

NOTE

ptg8126863

Restricting Access Based on Cookie Values 501

Limiting Access Based on HTTP
Methods
In general, you want your access control directives to apply to all types of client

requests, and this is the default behavior. In some cases, however, you want to

apply authentication and access rules to only certain HTTP methods such as GET

and HEAD.

The <Limit> container takes a list of methods and contains the directives that apply

to requests containing those methods. The complete list of methods that you can use

is GET, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL,

COPY, MOVE, LOCK, and UNLOCK.

The <LimitExcept> section provides complementary functionality, containing direc-

tives that will apply to requests not containing the listed methods.

Listing 25.5 shows an example from the default Apache configuration file. The

<Limit> and <LimitExcept> sections allow read-only methods but deny requests to

any other methods that can modify the content of the file system, such as PUT. For

more information on the myriad options available here, see the Apache documenta-

tion at http://httpd.apache.org/docs-2.2/mod/core.html.

LISTING 25.5 Restricting Access Based on Rule
1: <Directory /home/*/public_html>
2: AllowOverride FileInfo AuthConfig Limit
3: Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
4: <Limit GET POST OPTIONS PROPFIND>
5: Order Allow,Deny
6: Allow from all
7: </Limit>
8: <LimitExcept GET POST OPTIONS PROPFIND>
9: Order Deny,Allow
10: Deny from all
11: </LimitExcept>
12: </Directory>

In the next section, you learn about restricting access on the application side based

on information found in cookies.

Restricting Access Based on Cookie
Values
In Chapter 12, “Working with Cookies and User Sessions,” you learned all about the

structure of a cookie and how to set and access cookie variables in PHP. The next

few sections show some practical uses of cookies for authentication purposes.

http://httpd.apache.org/docs-2.2/mod/core.html

ptg8126863

502 CHAPTER 25: Restricting Access to Your Applications

Suppose that you want to create a login form that checks for values against a data-

base. If the user is authorized, you send a cookie that says as much. Then, for all

pages you want to restrict only to authorized users, you check for the specific cookie.

If the cookie is present, the user can see the page. If the cookie is not present, the

user is either sent back to the login form or a message regarding access restrictions

can be printed to the screen. The next few sections go through each of these steps.

Creating the Authorized Users Table
When you’re integrating user accounts into a web-based application, it is common

to store the user-specific information in a database table. The information in this

table can then be used to authorize the user and grant access to areas of the site

specifically for these “special” users.

The following table-creation command creates a table called auth_users in your

MySQL database, with fields for the ID, first name, last name, email address, user-

name, and password:

CREATE TABLE auth_users (

id int NOT NULL PRIMARY KEY AUTO_INCREMENT,

f_name VARCHAR(50),

l_name VARCHAR(50),

email VARCHAR(150),

username VARCHAR(25),

password VARCHAR(41)

);

The following INSERT command puts a record in the auth_users table for a user

named John Doe, with an email address of john@doe.com, a username of jdoe, and

a password of doepass:

INSERT INTO auth_users VALUES (‘1’, ‘John’, ‘Doe’, ‘john@doe.com’,

‘jdoe’, PASSWORD(‘doepass’));

This INSERT command should be self-explanatory, with the exception of the use of

the PASSWORD() function. When this function is used in the INSERT command, what

is stored in the table is in fact not the actual password, but a 41-character hash of

the password.

When you view the contents of the auth_users table, you will see the hash in the

password field, as follows:

+----------+---+
| username | password |
+----------+---+
| jdoe | *0AAD744979343D58A7F17A50E514E6AD6533D04B |
+----------+---+

ptg8126863

Restricting Access Based on Cookie Values 503

Although it might look like it is encrypted, a hash is in fact not an encrypted bit of

information. Instead, it is a “fingerprint” of the original information. Hashes are

generally used, like fingerprints, to perform matches. In this case, when you check

your user’s password, you check that the hash of the input matches the stored hash.

Using hashes alleviates the need—and security risk—of storing actual passwords.

Creating the Login Form and Script
After you authorize users in your table, you need to give them a mechanism for

proving their authenticity. In this case, a simple two-field form will do, as shown in

Listing 25.6.

LISTING 25.6 User Login Form
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>User Login Form</title>
5: </head>
6: <body>
7: <h1>Login Form</h1>
8: <form method=”post” action=”userlogin.php”>
9: <p><label for=”username”>username:

10: <input type=”text” id=”username” name=”username” /></label></p>
11: <p><label for=”password”>password:

12: <input type=”password” id=”password” name=”password” /></label></p>
13: <button type=”submit” name=”submit” value=”login”>Login</button>
14: </form>
15: </body>
16: </html>

Put these lines into a text file called userlogin.html, and place it in your web serv-

er document root. Next, you create the script itself, which the form expects to be

called userlogin.php (see Listing 25.7).

LISTING 25.7 User Login Script
1: <?php
2: //check for required fields from the form
3: if ((!isset($_POST[‘username’])) || (!isset($_POST[‘password’]))) {
4: header(“Location: userlogin.html”);
5: exit;
6: }
7:
8: //connect to server and select database
9: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”)
10: or die(mysqli_error());
11:
12: //use mysqli_real_escape_string to clean the input
13: $username = mysqli_real_escape_string($mysqli, $_POST[‘username’]);
14: $password = mysqli_real_escape_string($mysqli, $_POST[‘password’]);

ptg8126863

504 CHAPTER 25: Restricting Access to Your Applications

LISTING 25.7 Continued
15:
16: //create and issue the query
17: $sql = “SELECT f_name, l_name FROM auth_users WHERE
18: username = ‘“.$username.”’ AND
19: password = PASSWORD(‘“.$password.”’)”;
20: $result = mysqli_query($mysqli, $sql) or die(mysqli_error($mysqli));
21:
22: //get the number of rows in the result set; should be 1 if a match
23: if (mysqli_num_rows($result) == 1) {
24:
25: //if authorized, get the values of f_name l_name
26: while ($info = mysqli_fetch_array($result)) {
27: $f_name = stripslashes($info[‘f_name’]);
28: $l_name = stripslashes($info[‘l_name’]);
29: }
30:
31: //set authorization cookie
32: setcookie(“auth”, “1”, 0, “/”, “yourdomain.com”, 0);
33:
34: //create display string
35: $display_block = “
36: <p>”.$f_name.” “.$l_name.” is authorized!</p>
37: <p>Authorized Users’ Menu:</p>
38:
39: secret page
40: ”;
41: } else {
42: //redirect back to login form if not authorized
43: header(“Location: userlogin.html”);
44: exit;
45: }
46: //close connection to MySQL
47: mysqli_close($mysqli);
48: ?>
49: <!DOCTYPE html>
50: <html>
51: <head>
52: <title>User Login</title>
53: </head>
54: <body>
55: <?php echo $display_block; ?>
56: </body>
57: </html>

Put these lines into a text file called userlogin.php, modify line 32 so that “your-

domain.com” is your actual domain name, and place this file in your web server

document root. In a moment, you’ll try it out, but first let’s examine what the script

is doing.

Line 3 checks for the two required fields—the only two fields in the form:

$_POST[‘username’] and $_POST[‘password’]. If either of these fields is not pres-

ent, the script redirects the user back to the original login form. If the two fields are

ptg8126863

Restricting Access Based on Cookie Values 505

present, the script moves along to line 9, which connects to the database server in

preparation for issuing the SQL query to check the authenticity of the user. Before

issuing the query, though, lines 13 and 14 sanitize the user input. Once sanitized,

the query and its execution are found in lines 17–20. Note that the query checks the

hash of the password input from the form against the password stored in the table.

These two elements must match each other, and belong to the username in ques-

tion, to authorize the user.

Line 23 tests the result of the query by counting the number of rows in the resultset.

The row count should be exactly 1 if the username and password pair represents a

valid login. If this is the case, the mysqli_fetch_array() function is used in lines

26–29 to extract the first and last names of the user. These names are used for aes-

thetic purposes only.

Line 32 sets the authorization cookie. The name of the cookie is auth, and the value

is 1. If a 0 is put in the time slot, the cookie lasts as long as this user’s web browser

session is open. When the user closes the browser, the cookie expires. Lines 35–40

create a message for display, including a link to a file you create in a moment.

Finally, lines 41–45 handle a failed login attempt. In this case, the user is simply

redirected back to the original login form.

Go ahead and access the login form and input the valid values for the John Doe

user. When you submit the form, the result should look like Figure 25.1.

FIGURE 25.1
Successful login
result.

Try to log in with an invalid username and password pair, and you should

be redirected to the login form. In the next (and final) section, you create the

secretpage.php script, which reads the authentication cookie you have just set

and acts accordingly.

ptg8126863

506 CHAPTER 25: Restricting Access to Your Applications

Testing for the auth Cookie
The last piece of this puzzle is to use the value of the auth cookie to allow a user to

access a private file. In this case, Listing 25.8 shows the file in question.

LISTING 25.8 Checking for auth Cookie
1: <?php
2: if ($_COOKIE[‘auth’] == “1”) {
3: $display_block = “<p>You are an authorized user.</p>”;
4: } else {
5: //redirect back to login form if not authorized
6: header(“Location: userlogin.html”);
7: exit;
8: }
9. ?>
10: <!DOCTYPE html>
11: <html>
12: <head>
13: <title>Secret Page</title>
14: </head>
15: <body>
16: <?php echo $display_block; ?>
17: </body>
18: </html>

From the menu shown in Figure 25.1, click the Secret Page link. Because you are an

authorized user, you should see a result like Figure 25.2.

FIGURE 25.2
Accessing the
secret page as
an authorized
user.

Close your browser and attempt to access secretpage.php directly. You will find

that you cannot, and you will be redirected to the original login form because the

authentication cookie has not been set after a successful login.

ptg8126863

Q&A 507

Summary
This chapter explained how to use Apache features to restrict access to your website

based on the identity of the remote user and information from the HTTP request or

network connection. It also covered some authentication modules included with

Apache and additional tools that you can use to create and manage your user and

group databases.

In addition, you learned one method for using cookie values to allow access to spe-

cific parts of your PHP application.

Q&A
Q. I have a UNIX system. Can I use /etc/passwd as my user database?

A. Although using /etc/passwd might seem convenient, it is advisable that you

do not use the existing /etc/passwd file for authenticating users of your web-

site. Otherwise, an attacker who gains access to a user of your website will

also gain access to the system. Keep separate databases and encourage users

to choose different passwords for their system accounts and web access.

Periodically run password checkers that scan for weak passwords and accounts

in which the username is also the password.

Q. Why am I asked for my password twice in some websites?

A. Your browser keeps track of your password so that you do not have to type it

for every request. The stored password is based on the realm (AuthName direc-

tive) and the hostname of the website. Sometimes you can access a website via

different names, such as yourdomain.com and www.yourdomain.com. If you

are authorized to access a certain restricted area of yourdomain.com but are

redirected or follow a link to www.yourdomain.com, you will be asked again

to provide the username and password because your browser thinks it is a

completely different website.

Q. Are there any serious security or privacy issues raised by cookies?

A. A server can access a cookie set only from its own domain. Although a cookie

can be stored on the user’s hard drive, there is no other access to the user’s file

system. It is possible, however, to set a cookie in response to a request for an

image. So, if many sites include images served from a third-party ad server or

counter script, the third party might be able to track a user across multiple

domains.

www.yourdomain.com
www.yourdomain.com

ptg8126863

508 CHAPTER 25: Restricting Access to Your Applications

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. What are the advantages of database files over plaintext files for storing user

authentication information?

2. Can you name some disadvantages of HTTP basic authentication?

3. What function is designed to allow you to set a cookie on a visitor’s browser?

Answers
1. Database files are much more scalable because they can be indexed, and also

clustered for robustness. This means that Apache does not need to read the file

sequentially until a match is found for a particular user but rather can jump

to the exact location.

2. One disadvantage is that the information is transmitted in cleartext over the

network. This means that unless you are using SSL, it is possible for an attack-

er to read the packets your browser sends to the server and steal your pass-

word. Another disadvantage is that HTTP authentication does not provide a

means for customizing the login (except the realm name). It is common for

websites to implement custom login mechanisms using HTML forms and

cookies.

3. The setcookie() function enables you to set a cookie (although you could

also output a Set-Cookie header using the header() function).

Activity
Practice using the various types of authentication—both server based and with

PHP—on your development server. Get a feel for the differences between basic HTTP

authentication and something you devise on your own.

ptg8126863

CHAPTER 26

Logging and Monitoring Web
Server Activity

In this chapter, you learn the following:
. How to understand Apache log formats and logging levels
. How to rotate and analyze Apache logs
. How to interpret common errors that might appear in your logs
. How to create scripts that log specific items to database tables
. How to create custom reports based on these logging tables

This chapter describes how the logging system in Apache works and how you can cus-

tomize it (which information to store and where). In addition, you learn a quick way to

use PHP and MySQL to log specific items of interest to you outside the realm of the

Apache log files.

Standard Apache Access Logging
Using Apache’s basic logging features, you can keep track of who visits your websites by

logging accesses to the servers hosting them. You can log every aspect of the browser

requests and server responses, including the IP address of the client, user, and resource

accessed. You need to take three steps to create a request log:

1. Define what you want to log—your log format.

2. Define where you want to log it—your log files, a database, an external program.

3. Define whether to log—conditional logging rules.

ptg8126863

510 CHAPTER 26: Logging and Monitoring Web Server Activity

The next few sections take a closer look at these steps.

Defining What to Log
As well as logging nearly every aspect associated with the request, you can define

how your log entries appear by creating a log format. A log format is a string that

contains text mixed with log-formatting directives. Log-formatting directives start

with a % followed by a directive name or identifier, usually a letter indicating the

piece of information to be logged.

When Apache logs a request, it scans the string and substitutes the value for each

directive. For example, if the log format is This is the client address %a, the

log entry is something like This is the client address 10.0.0.2. That is, the

logging directive %a replaces the IP address of the client making the request. Table

26.1 provides a comprehensive list of all formatting directives.

TABLE 26.1 Log Formatting Directives

Formatting Options Explanation

Data from the Client
%a Remote IP address, from the client.

%h Hostname or IP address of the client making the
request. Whether the hostname is logged depends on
two factors: The IP address of the client must resolve to
a hostname via a reverse DNS lookup, and Apache must
be configured to do that lookup using the
HostNameLookups directive, explained later in this chap-
ter. If these conditions are not met, the IP address of
the client is logged rather than the hostname.

%l Remote user, obtained via the identd protocol. This
option is not very useful because the majority of the
client machines do not support this protocol.

%u Remote user, from the HTTP basic authentication
protocol.

Data from the Server
%A Local IP address, from the server.

%D Time it took to serve the request, in microseconds.

%{env_variable}e Value for an environment variable named env_variable.
(There are many.)

%{time_format}t Current time. If {time_format} is present, it is inter-
preted as an argument to the UNIX strftime function.
See the logresolve Apache manual page for details.

ptg8126863

Standard Apache Access Logging 511

Formatting Options Explanation

%T Time it took to serve the request, in seconds.

%v Canonical name of the server that answered the
request.

%V Server name according to the UseCanonicalName
directive.

%X Status of the connection to the server. A value of x
means the connection was aborted before the server
could send the data. A + means the connection will be
kept alive for further requests from the same client. A -
means the connection will be closed.

Data from the Request
%{cookie_name}C Value for a cookie named cookie_name.

%H Request protocol, such as HTTP or HTTPS.

%m Request method such as GET, POST, PUT, and so on.

%{header_name}i Value for a header named header_name in the request
from the client. This information can be useful, for exam-
ple, to log the names and versions of your visitors’
browsers.

%r Text of the original HTTP request.

%q Query parameters, if any, prefixed by a ?.

%U Requested URL, without query parameters.

%y Username for the HTTP authentication (basic or digest).

Data from the Response
%b, %B Size, in bytes, of the body of the response sent back to

the client (excluding headers). The only difference
between the options is that if no data was sent, %b will
log a - and %B will log 0.

%f Path of the file served, if any.

%t Time when the request was served.

%{header_name}o Value for a header named header_name in the response
to the client.

%>s Final status code. Apache can process several times the
same request (internal redirects). This is the status
code of the final response.

ptg8126863

512 CHAPTER 26: Logging and Monitoring Web Server Activity

The Common Log Format (CLF) is a standard log format. Most websites can log

requests using this format, and many log processing and reporting tools understand

the format. Its format is the following:

“%h %l %u %t \”%r\” %>s %b”

That is, it includes the hostname or IP address of the client, remote user via identd,

remote user via HTTP authentication, time when the request was served, text of the

request, status code, and size in bytes of the content served.

You can read the Common Log Format documentation of the original W3C server
at http://www.w3.org/Daemon/User/Config/Logging.html.

The following is a CLF entry example:

10.0.0.1 - - [19/Jan/2012:17:32:43 -0500] “GET / HTTP/1.0” 200 1101

You are now ready to learn how to define log formats using the LogFormat directive.

This directive takes two arguments: The first argument is a logging string, and the

second is a nickname that will be associated with that logging string.

For example, the following directive from the default Apache configuration file

defines the CLF and assigns it the nickname common:

LogFormat “%h %l %u %t \”%r\” %>s %b” common

You can also use the LogFormat directive with only one argument, either a log for-

mat string or a nickname. This has the effect of setting the default value for the log-

ging format used by the TransferLog directive, explained in “Defining Where to

Log” later in this chapter.

The HostNameLookups Directive
When a client makes a request, Apache knows only the IP address of the client.

Apache must perform what is called a reverse DNS lookup to find out the hostname

associated with the IP address. This operation can be time-consuming and can intro-

duce a noticeable lag in the request processing. The HostNameLookups directive

enables you to control whether to perform the reverse DNS lookup.

The HostNameLookups directive can take one of the following arguments: on, off, or

double. The default is off. The double lookup argument means that Apache finds

out the hostname from the IP and then tries to find the IP from the hostname. This

NOTE

http://www.w3.org/Daemon/User/Config/Logging.html

ptg8126863

Standard Apache Access Logging 513

process is necessary if you are really concerned with security, as described in

http://httpd.apache.org/docs-2.2/dns-caveats.html. If you are using hostnames as

part of your Allow and Deny rules, a double DNS lookup is performed regardless of

the HostNameLookups settings.

If HostNameLookups is enabled (on or double), Apache logs the hostname. This

causes extra load on your server, which you should be aware of when making the

decision to turn HostNameLookups on or off. If you choose to keep HostNameLookups

off, which is recommended for medium- to high-traffic sites, Apache logs only the

associated IP address. There are plenty of tools to resolve the IP addresses in the logs

later. See the “Managing Apache Logs” section later in this chapter. In addition, the

result is passed to CGI scripts via the environment variable REMOTE_HOST.

The IdentityCheck Directive
At the beginning of the chapter, you learned how to log the remote username via

the identd protocol using the %l log formatting directive. The IdentityCheck direc-

tive takes a value of on or off to enable or disable checking for that value and mak-

ing it available for inclusion in the logs. Because the information is not reliable and

takes a long time to check, it is switched off by default and should probably never

be enabled. %l was mentioned only because it is part of the CLF. For more informa-

tion on the identd protocol, see RFC 1413 at http://www.rfc-editor.org/rfc/

rfc1413.txt.

Status Code
You can specify whether to log specific elements in a log entry. At the beginning of

the chapter, you learned that log directives start with a %, followed by a directive

identifier. In between, you can insert a list of status codes, separated by commas. If

the request status is one of the listed codes, the parameter is logged; otherwise, a - is

logged.

For example, the following directive identifier logs the browser name and version for

malformed requests (status code 400) and requests with methods not implemented

(status code 501). This information can prove useful for tracking which clients are

being used to access your website.

%400,501{User-agent}i

You can precede the method list with an ! to log the parameter if the methods are

implemented:

%!400,501{User-agent}i

http://httpd.apache.org/docs-2.2/dns-caveats.html
http://www.rfc-editor.org/rfc/rfc1413.txt
http://www.rfc-editor.org/rfc/rfc1413.txt

ptg8126863

514 CHAPTER 26: Logging and Monitoring Web Server Activity

Defining Where to Log
Logging to files is the default way of logging requests in Apache. You can define the

name of the file using the TransferLog and CustomLog directives.

The TransferLog directive takes a file argument and uses the latest log format

defined by a LogFormat directive with a single argument (the nickname or the for-

mat string). If no log format is present, it defaults to the CLF.

The following example shows how to use the LogFormat and TransferLog directives

to define a log format that is based on the CLF but that also includes the browser

name:

LogFormat “%h %l %u %t \”%r\” %>s %b \”%{User-agent}i\””
TransferLog logs/access_log

The CustomLog directive enables you to specify the logging format explicitly. It takes

at least two arguments: a logging format and a destination file. The logging format

can be specified as a nickname or as a logging string directly.

For example, the directives

LogFormat “%h %l %u %t \”%r\” %>s %b \”%{User-agent}i\”” myformat
CustomLog logs/access_log myformat

and

CustomLog logs/access_log “%h %l %u %t \”%r\” %>s %b \”%{User-agent}i\””

are equivalent.

The CustomLog directive accepts an environment variable as a third argument. If

the environment variable is present, the entry is logged; otherwise, it is not. If the

environment variable is negated by prefixing an ! to it, the entry is logged if the

variable is not present.

The following example shows how to avoid logging images in GIF and JPEG format

in your logs:

SetEnvIf Request_URI “(\.gif|\.jpg)$” image
CustomLog logs/access_log common env=!image

The regular expression used for pattern matching in this and other areas of the
httpd.conf file follows the same format for regular expressions in PHP and other
programming languages.

NOTE

ptg8126863

Standard Apache Error Logging 515

Both TransferLog and CustomLog directives can accept an executable program,

prefixed by a pipe sign, |, as an argument. Apache writes the log entries to the stan-

dard input of this program. The program, in turn, processes the input by logging the

entries to a database, transmitting them to another system, and so on.

If the program dies for some reason, the server makes sure that it restarts. If the

server stops, the program also stops. The rotatelogs utility, bundled with Apache

and explained later in this chapter, is an example of a logging program.

As a general rule, unless you have a specific requirement for using a particular pro-

gram, it is easier and more reliable to log to a file on disk and do the processing,

merging, analysis of logs, and so on, at a later time, possibly on a different

machine.

Make sure that the program you use for logging requests is secure, because it
runs as the user Apache was started with. On UNIX, this usually means root
because the external program is started before the server changes its user ID to
the value of the User directive, typically nobody or www.

Standard Apache Error Logging
Apache can be configured to log error messages and debugging information, in

addition to client requests. In addition to errors generated by Apache itself, CGI

errors can be logged.

Each error log entry is prefixed by the time the error occurred and the client IP

address or hostname, if available. As with HTTP request logging, you can log error

information to a file or program. On UNIX systems, you can also log to the syslog

daemon. On Windows, errors can be logged in the Windows event log and are then

viewable via the Windows Event Viewer. Use the ErrorLog directive to define where

you want your logs to go.

Logging Errors to a File
A file argument indicates the path to the error log file. If the path is relative, it is

assumed to be relative to the server root. By default, the error log file is located in

the logs directory and is named error_log on UNIX and error.log on Windows.

The following is an example:

ErrorLog logs/my_error_log

NOTE

ptg8126863

516 CHAPTER 26: Logging and Monitoring Web Server Activity

Logging Errors to a Program
You can specify the path to a program, prefixed by a pipe |. Apache logs errors to

the standard input of the program, and the program further processes them. The fol-

lowing is an example:

ErrorLog “|/usr/local/bin/someprogram”

The syslog Daemon Argument
On a UNIX system, if you specify syslog as an argument, you can log error mes-

sages to the UNIX system log daemon syslogd. By default, log errors are logged to

the syslog facility local7. The facility is the part of the system generating the error.

You can specify a facility by providing syslog:facility as an argument. Examples

of syslog facilities are mail, uucp, local0, local1, and so on. For a complete list,

look at the documentation for syslog included with your system. (Try man syslogd

or man syslogd.conf at the command line.) The following is an example of log-

ging to syslog:

ErrorLog syslog:local6

The LogLevel Directive
The error information provided by Apache has several degrees of importance. You

can choose to log only important messages and disregard informational or trivial

warning messages. The LogLevel directive takes an error-level argument. Only

errors of that level of importance or higher are logged.

Table 26.2 specifies the valid values for the LogLevel directive, as specified by the

Apache documentation. By default, the LogLevel value is warn. That should be

enough for most Apache installations. If you are trying to troubleshoot a specific

configuration, you can alter the level to debug.

TABLE 26.2 LogLevel Options as Described in the Apache
Documentation

Setting Description Example

emerg Emergencies—system is Child cannot open lock

unusable file. Exiting.

alert Action must be taken getpwuid: couldn’t

immediately determine user name

from uid.

crit Critical conditions socket: Failed to get a

socket, exiting child.

ptg8126863

Managing Apache Logs 517

Setting Description Example

error Error conditions Premature end of script

headers.

warn Warning conditions Child process 1234 did not

exit, sending another

SIGHUP.

notice Normal but significant httpd: caught SIGBUS,

conditions attempting to dump core

in...

info Informational Server seems busy, (You may

need to increase

StartServers, or

Min/MaxSpareServers)...

debug Debug-level messages Opening config file...

Managing Apache Logs
Apache provides several tools for managing your logs. Other Apache-specific third-

party tools are available and mentioned here. Because Apache can log requests in

the CLF, you can use most generic log-processing tools with Apache as well.

Resolving Hostnames
Earlier in the chapter, you learned how to use the HostNameLookups directive to

enable or disable hostname resolution at the time the request is made. If HostName-

Lookups is set to off (the default), the log file contains only IP addresses. Later, you

can use the command-line logresolve utility on UNIX or logresolve.exe on

Windows to process the log file and convert the IP addresses to hostnames.

The logresolve utility reads log entries from standard input and outputs the result

to its standard output. To read to and from a file, you can use redirection on both

UNIX and Windows:

logresolve < access.log > resolved.log

Log-resolving tools are efficient because they can cache results and do not cause any

delay when serving requests to clients.

ptg8126863

518 CHAPTER 26: Logging and Monitoring Web Server Activity

Log Rotation
In websites with high traffic, access log files can quickly grow in size. You should

have a mechanism to rotate logs periodically, archiving and compressing older logs

at defined intervals.

Log files should not be removed while Apache is running because the server is writ-

ing directly to them. A solution would be to use an intermediate program to log the

requests. The program, in turn, takes care of rotating the logs.

Apache provides the rotatelogs program on UNIX and rotatelogs.exe on

Windows for this purpose. It accepts three arguments: a filename, a rotate interval

in seconds, and an optional offset in minutes against UTC (coordinated universal

time).

For example

TransferLog “|bin/rotatelogs /var/logs/apachelog 86400”

creates a new log file and moves the current log to the /var/logs directory daily.

(At the end of the command, 86400 is the number of seconds in 1 day.)

If the path to the program includes spaces, you might need to escape them by
prefixing them with a \ (backslash)—for example, My\ Documents. This is espe-
cially common in the Windows platform.

If the name of the file includes % prefixed options, the name is treated as input to

the strftime function that converts the % options to time values. The manual page

for the rotatelogs utility contains a complete listing of options, but here’s an

example:

TransferLog “|bin/rotatelogs /var/logs/apachelog%m_%d_%y 86400”

This command adds the current month, day, and year to the log filename.

If the name does not include any %-formatted options, the current time in seconds is

added to the name of the archived file.

Log Analysis
Whether you have a single server and log files, or a cluster of servers producing

their own log files, after you collect the logs you can analyze them and gain infor-

mation about traffic and visitor behavior.

NOTE

ptg8126863

Logging Custom Information to a Database 519

Many commercial, shareware, and freeware applications are available for server-

side log analysis and reporting. Two popular open source applications are Webalizer

(http://www.mrunix.net/webalizer/) and awstats (http://awstats.sourceforge.net/).

Wusage is a nice, inexpensive commercial alternative at http://www.boutell.com/

wusage/.

Monitoring Error Logs
If you run Apache on a UNIX system, you can use the tail command-line utility to

monitor in real-time log entries to both your access and error logs. The syntax is

tail -f logname

where logname is the path to the Apache log file. It prints onscreen the last few lines

of the log file and continues to print entries as they are added to the file.

You can find additional programs that enable you to identify problems quickly by

scanning your error log files for specific errors, malformed requests, and so on and

reporting on them. ScanErrLog is one such program; you can find it at

http://www.librelogiciel.com/software/.

Logging Custom Information to a
Database
Creating your own logging tables in MySQL, matched up with snippets of PHP code,

can help you to capture access-related information for specific pages of your site.

Using this information, you can create customized reports. This method can be

much less cumbersome than wading through Apache log files, especially when you

are just searching for a subset of access information. The following sections outline a

simple version of this process.

Creating the Database Table
The first step in your custom logging method is to create the database table. The fol-

lowing table-creation command creates a table called access_tracker in your

MySQL database, with fields for an ID, page title, user agent, and date of access:

CREATE TABLE access_tracker (

id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

page_title VARCHAR(50),

user_agent TEXT,

date_accessed DATE

);

http://www.mrunix.net/webalizer/
http://awstats.sourceforge.net/
http://www.boutell.com/wusage/
http://www.boutell.com/wusage/
http://www.librelogiciel.com/software/

ptg8126863

520 CHAPTER 26: Logging and Monitoring Web Server Activity

Next you create the code snippet that writes to this table.

Creating the PHP Code Snippet
As you might have gathered already, code snippet simply means a little bit of code. In

other words, something that doesn’t qualify as a long script but just serves a simple

purpose. In this case, the code snippet in Listing 26.1 writes some basic information

to the access_tracker table.

LISTING 26.1 Code Snippet for Access Tracking
1: <?php
2: //set up static variables
3: $page_title = “sample page A”;
4: $user_agent = getenv(‘HTTP_USER_AGENT’);
5:
6: //connect to server and select database
7: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”)
8: or die(mysql_error());
9:
10: //create and issue query
11: $sql = “INSERT INTO access_tracker (page_title,user_agent,date_accessed)
12: VALUES (‘$page_title’, ‘$user_agent’, now())”;
13: $result = mysqli_query($mysqli, $sql) or die(mysqli_error($mysqli));
14:
15: //close connection to MySQL
16: mysqli_close($mysqli);
17: ?>

What you do with this snippet is simple, for purposes of illustration here: Place it at

the beginning of every page you want to track. For each page, change the value of

$page_title in the snippet to represent the actual title of the page.

Now create a script called sample1.php, containing the contents of Listing 26.1 and

then the contents in Listing 26.2.

LISTING 26.2 HTML Page Example
1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Sample Page A</title>
5: </head>
6: <body>
7: <h1>Sample Page A</h1>
8: <p>blah blah blah.</p>
9: </body>
10: </html>

ptg8126863

Logging Custom Information to a Database 521

Create a few copies of this file with different filenames and values for $page_title.

Then access these different pages with your web browser to fill up your logging

table.

Creating Sample Reports
When you have the data in your access_tracker table, you can create a simple

report screen to disseminate this information. The code in Listing 26.3 creates a

report that issues queries to count total results as well as the breakdown of browsers

in use. Each of these blocks is explained after the code listing.

LISTING 26.3 Creating an Access Report
1: <?php
2: //connect to server and select database
3: $mysqli = mysqli_connect(“localhost”, “joeuser”, “somepass”, “testDB”)
4: or die(mysqli_error());
5:
6: //issue query and select results for counts
7: $count_sql = “SELECT count(page_title) AS p_count FROM access_tracker”;
8: $count_res = mysqli_query($mysqli, $count_sql) or

die(mysqli_error($mysqli));
9:
10: while ($count_info = mysqli_fetch_array($count_res)) {
11: $all_count = $count_info[‘p_count’];
12: }
13:
14: //issue query and select results for user agents
15: $user_agent_sql = “SELECT DISTINCT user_agent, count(user_agent) AS
16: ua_count FROM access_tracker GROUP BY user_agent
17: ORDER BY ua_count desc”;
18: $user_agent_res = mysqli_query($mysqli, $user_agent_sql)
19: or die(mysqli_error($mysqli));
20:
21: //start user agent display block
22: $user_agent_block = “”;
23:
24: //loop through user agent results
25: while ($row_ua = mysqli_fetch_array($user_agent_res)) {
26: $user_agent = $row_ua[‘user_agent’];
27: $user_agent_count = $row_ua[‘ua_count’];
28: $user_agent_block .= “
29: ”.$user_agent.”
30:
31: accesses per browser: “.$user_agent_count.”
32:
33: ”;
34: }
35:
36: //finish up the user agent block
37: $user_agent_block .= “”;
38:
39: //issue query and select results for pages
40: $page_title_sql = “SELECT DISTINCT page_title, count(page_title) AS

ptg8126863

522 CHAPTER 26: Logging and Monitoring Web Server Activity

LISTING 26.3 Continued
41: pt_count FROM access_tracker GROUP BY page_title
42: ORDER BY pt_count desc”;
43: $page_title_res = mysqli_query($mysqli, $page_title_sql)
44: or die(mysqli_error($mysqli));
45:
46: //start page title display block
47: $page_title_block = “”;
48:
49: //loop through results
50: while ($row_pt = mysqli_fetch_array($page_title_res)) {
51: $page_title = $row_pt[‘page_title’];
52: $page_count = $row_pt[‘pt_count’];
53: $page_title_block .= “
54: ”.$page_title.”
55:
56: accesses per page: “.$page_count.”
57:
58: ”;
59: }
60:
61: //finish up the page title block
62: $page_title_block .= “”;
63:
64: //close connection to MySQL
65: mysqli_close($mysqli);
66: ?>
67: <!DOCTYPE html>
68: <html>
69: <head>
70: <title>Access Report</title>
71: </head>
72: <body>
73: <h1>Access Report</h1>
74: <p>Total Accesses Tracked:
75: <?php echo “$all_count”; ?></p>
76: <p>Web Browsers Used:
77: <?php echo “$user_agent_block”; ?></p>
78: <p>Individual Pages:
79: <?php echo “$page_title_block”; ?></p>
80: </body>
81: </html>

Line 3 connects to the database so that you can issue the queries against the

access_tracker table. Lines 7–8 issue the query to select the count of all pages, and

lines 15–19 count the user agent accesses. Line 22 starts an unordered list block for

the results of the user agent query, and lines 25–34 loop through the results and cre-

ate the list, which is closed in line 37.

Lines 40–44 create and issue the query to count the individual pages. Line 47 starts

an unordered list block for the results of this query, and lines 50–59 loop through

the results and create the list of accessed pages, which is closed in line 62.

ptg8126863

Summary 523

Put these lines into a text file called accessreport.php, and place this file in your

web server document root. When you access this report, you will see something like

Figure 26.1. Your page names, counts, and browsers will differ, but you get the idea.

FIGURE 26.1
Custom access
report for
tracked pages.

This sort of tracking is a lot easier than wading through Apache access logs, but I do

not recommend completely replacing your access logs with a database-driven sys-

tem. That’s a bit too much database-connection overhead, even if MySQL is particu-

larly nice on your system. Instead, target your page tracking to something particu-

larly important.

Summary
This chapter explained how to log specific information about the requests and errors

generated by Apache. You can store the logs in files or databases or pass them to

external programs. You learned about the different utilities available for managing,

processing, and analyzing logs, both the ones included with Apache and those

available from third parties.

In this chapter, you also learned an easy method for using PHP code snippets and a

MySQL database to perform simple access tracking of specific pages. This informa-

tion was displayed in an easy-to-understand access report built with PHP.

ptg8126863

524 CHAPTER 26: Logging and Monitoring Web Server Activity

Q&A
Q. Why wouldn’t I want to log images?

A. In heavily loaded servers, logging can become a bottleneck. If the purpose of

logging is to count the number of visitors and analyze their usage of the web-

site, you can achieve this result by logging only the HTML pages, not the

images contained in them. This reduces the number of hits stored in the logs

and the time spent writing them.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. How can you avoid logging hits from a client accessing your website from a

particular network?

2. How can you log images to a different file?

3. Why would you want to turn HostNameLookups off in your Apache configura-

tion?

Answers
1. In some situations, you might want to ignore requests coming from a particu-

lar network, such as your own, so that they do not skew the results. You can

do this either by post-processing the logs and removing them or by using the

SetEnvIf directive:

SetEnvIf Remote_Addr 10\.0\.0\. intranet
CustomLog logs/access_log “%h %l %u %t \”%r\” %>s %b” !intranet

2. Earlier in the chapter, you learned how to avoid logging images. Instead of

ignoring images altogether, you can easily log them to a separate file, using

the same environment variable mechanism:

SetEnvIf Request_URI “(\.gif|\.jpeg)$” image
CustomLog logs/access_log common env=!image
CustomLog logs/images_log common env=image

ptg8126863

525Workshop

3. Having HostNameLookups on causes extra load on the server because it looks

up the IP of the user accessing the site and writes that to the log file. You can

still get the information at a later date by using a hostname resolver when

generating usage reports, and the server load is then minimized for the user.

Activities
1. Create a tracking script that logs accesses to a database via PHP. Using the list

of possible environment variables, log more than just the page title, user

agent, and date accessed.

2. Create a report of the access data you have stored, only this time add a date

range selector and only produce results that fall within the selected range.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 27

Application Localization

In this chapter, you learn the following:
. How to recognize and prepare for character set differences
. How to prepare the structure of your application and produce localized sites

The key phrase in World Wide Web is World Wide. Creating a website useful to speakers

of different languages is a breeze using PHP and MySQL. The process of preparing your

applications for use in multiple locales is called internationalization; customizing your code

for each locale is called localization.

About Internationalization and
Localization
First and foremost, it’s important to understand that neither internationalization nor

localization is the same thing as content translation. In fact, you can have a fully trans-

lated website—all in German, all in Japanese, or all in whatever language you want—

and it will not be considered an internationalized or localized website. It will just be a

translated one. The key aspects of an internationalized application are as follows:

. Externalizing all strings, icons, and graphics

. Modifying the display of formatting functions (dates, currency, numbers, and so on)

After you have constructed your application so that your strings are externalized—when

all strings used in functions, classes, and other scripts are managed in one place and

included or otherwise referred to as constant variables—and your formatting functions

can change per locale, you can begin the process of localization. Translation happens to

be a part of localization.

ptg8126863

528 CHAPTER 27: Application Localization

A locale is essentially a grouping—in this case, a grouping of the translated strings,

graphics, text, and formatting conventions that will be used in the application or

website to be localized. These groupings are usually referred to by the name of the

pervasive language of the application, such as the German locale. Although it

might be obvious that the German locale includes text translated into German, it

does not mean that the website is applicable only to people in Germany. Austrians

who speak German would probably utilize a localized German website, but it would

not be referred to as the Austrian locale.

In the next few sections, you learn about working with different character sets

and how to modify your environment to successfully prepare your applications for

localization.

About Character Sets
Character sets are usually referred to as single-byte or multibyte, referring to the num-

ber of bytes needed to define a relationship with a character used in a language.

English, German, and French (among many others) are single-byte languages; only

1 byte is necessary to represent a character such as the letter a or the number 9.

Single-byte code sets have, at most, 256 characters, including the entire set of ASCII

characters, accented characters, and other characters necessary for formatting.

Multibyte code sets have more than 256 characters, including all single-byte charac-

ters as a subset. Multibyte languages include traditional and simplified Chinese,

Japanese, Korean, Thai, Arabic, Hebrew, and so forth. These languages require more

than 1 byte to represent a character. A good example is the word Tokyo, the capital

of Japan. In English, it is spelled with four different characters, using a total of 5

bytes. However, in Japanese, the word is represented by two syllables, tou and kyou,

each of which uses 2 bytes, for a total of 4 bytes used.

This is a complete simplification of character sets and the technology behind them,

but the relevance is this: To properly interpret and display the text of web pages in

their intended language, it is up to you to tell the web browser which character set

to use. This is achieved by sending the appropriate headers before all content.

If you have a set of pages that include Japanese text and you do not send the cor-

rect headers regarding language and character set, those pages will render incorrect-

ly in web browsers whose primary language is not Japanese. In other words, because

no character set information is included, the browser assumes that it is to render the

text using its own default character set. For example, if your Japanese pages use the

Shift_JIS or UTF-8 character set and your browser is set for ISO-8859-1, your browser

will try to render the Japanese text using the single-byte ISO-8859-1 character set. It

ptg8126863

Environment Modifications 529

will fail miserably in this unless the headers alert it to use Shift_JIS or UTF-8 and

you have the appropriate libraries and language packs installed on your operating

system.

Mojibake is the term for this type of unrecognizable characters. For more informa-
tion, see http://en.wikipedia.org/wiki/Mojibake.

The headers in question are the Content-type and Content-language headers, and

these can also be set as HTML5 tag attributes. Because you have all the tools for a

dynamic environment, it’s best to both send the appropriate headers before your

text and print the correct HTML5 attributes tags in your document. The following is

an example of the header() function outputting the proper character information

for an English site:

header(“Content-Type: text/html;charset=ISO-8859-1”);
header(“Content-Language: en”);

The accompanying HTML5 tags would be these:

<html lang=”en”>
<meta charset=”ISO-8859-1”>

A German site would use the same character set but a different language code:

header(“Content-Type: text/html;charset=ISO-8859-1”);
header(“Content-Language: de”);

The accompanying HTML5 tags would be these:

<html lang=”de”>
<meta charset=”ISO-8859-1”>

A Japanese site uses both a different character set and different language code:

header(“Content-Type: text/html;charset=Shift_JIS”);
header(“Content-Language: ja”);

The accompanying HTML5 tags would be these:

<html lang=”ja”>
<meta charset=”Shift_JIS”>

Environment Modifications
Your environment, as defined in the installation chapters of this book, need not

change to handle localized websites. Although you can use several language-related

settings in Apache, PHP, and MySQL to accommodate localized websites, you can

TIP

http://en.wikipedia.org/wiki/Mojibake

ptg8126863

530 CHAPTER 27: Application Localization

also perform all the tasks in this chapter without making any language-related

changes to your configuration. Just for your own information, the next few sections

point you to the appropriate documentation for internationalization using Apache,

PHP, and MySQL.

Configuration Changes to Apache
In Chapter 29, “Apache Performance Tuning and Virtual Hosting,” you learn about

the concept of content negotiation using the mod_mime or mod_negotiation mod-

ules and the AddLanguage and AddCharset directives (among others). You use these

directives when you manually change the extension of your file and want Apache

to interpret the character set to be used, based on that extension. However, that is

not what this chapter discusses. You want all your localized websites to have the

same file-naming conventions (such as index.html and company_info.html) and

not have to manually create multiple pages with different language-based exten-

sions to accommodate translated files. Your goal regarding website localization is to

have a single set of pages filled with the appropriately translated text running from

one web server.

There’s nothing wrong with Apache-based content negotiation using multiple files
with language-based naming conventions. It’s just not the focus of this chapter. You
can read more about Apache-based content negotiation at http://httpd.apache.org/
docs-2.2/content-negotiation.html.

Configuration Changes to PHP
As with Apache, no configuration changes in PHP are required for any tasks in this

chapter. However, you can use a host of functions related to the handling of multi-

byte characters, if you want. These functions are in the PHP manual at

http://www.php.net/mbstring and must be enabled during the configuration process

using this code. (Windows users enable the php_mbstring.dll extension in php.ini.)

--enable-mbstring=LANG

Here, LANG is a language code, such as ja for Japanese, cn for Simplified Chinese,

and so forth. Or, you can use this line to enable all available languages:

--enable-mbstring=all

When you enable mbstring functions in PHP, you can set several options in the

php.ini configuration file to use these functions properly. After this is configured,

you can use any of the more than 40 mbstring-related functions for handling

multibtye input in PHP.

NOTE

http://httpd.apache.org/docs-2.2/content-negotiation.html
http://httpd.apache.org/docs-2.2/content-negotiation.html
http://www.php.net/mbstring

ptg8126863

Creating a Localized Page Structure 531

The manual entries for these functions are comprehensive and recommended read-

ing for advanced work with multibyte character sets and dynamic content. You will

get by just fine in this chapter without them, although it is recommended that at

some point you peruse the PHP manual for your own edification.

Configuration Changes to MySQL
No explicit changes are needed in MySQL for the localization examples used in this

chapter because the examples are not database-driven. The default character set

used in MySQL is ISO-8859-1, but that does not mean that you are limited only to

storing single-byte characters in your database tables. For more information on the

current language-related elements of MySQL, read the MySQL Manual entry at

http://dev.mysql.com/doc/refman/5.5/en/globalization.html.

Creating a Localized Page Structure
In this section, you look at a functioning example of a localized welcome page that

uses PHP to enable a user to select a target language and then receive the appropri-

ate text. The goal of this section is to show an example of externalizing the strings

used in this script, which is one of the characteristics of internationalization.

In this script, the user happens upon your English-based website but is also present-

ed with an option to browse within the locale of his choice—English, German, or

Japanese. Three elements are involved in this process:

. Creating and using a master file for sending locale-specific header

information

. Creating and using a master file for displaying the information based on the

selected locale

. Using the script itself

Listing 27.1 shows the contents of the master file used for sending locale-specific

header information.

LISTING 27.1 Language Definition File
1: <?php
2: if ((!isset($_SESSION[‘lang’])) || (!isset($_GET[‘lang’]))) {
3: $_SESSION[‘lang’] = “en”;
4: $currLang = “en”;
5: } else {
6: $currLang = $_GET[‘lang’];
7: $_SESSION[‘lang’] = $currLang;

http://dev.mysql.com/doc/refman/5.5/en/globalization.html

ptg8126863

532 CHAPTER 27: Application Localization

LISTING 27.1 Continued
8: }
9:
10: switch($currLang) {
11: case “en”:
12: define(“CHARSET”,”ISO-8859-1”);
13: define(“LANGCODE”, “en”);
14: break;
15:
16: case “de”:
17: define(“CHARSET”,”ISO-8859-1”);
18: define(“LANGCODE”, “de”);
19: break;
20:
21: case “ja”:
22: define(“CHARSET”,”UTF-8”);
23: define(“LANGCODE”, “ja”);
24: break;
25:
26: default:
27: define(“CHARSET”,”ISO-8859-1”);
28: define(“LANGCODE”, “en”);
29: break;
30: }
31:
32: header(“Content-Type: text/html;charset=”.CHARSET);
33: header(“Content-Language: “.LANGCODE);
34: ?>

Lines 2–8 of Listing 27.1 set up the session value needed to store the user’s selected

language choice.

The session_start() function is not used in the define_lang.php or the
lang_strings.php file listed in the following paragraphs because these files are
included via the include() function from within the master file. The master file,
which you will create shortly, calls the session_start() function, which will be
valid for these included files as well.

If no session value exists, the English locale settings are used. If your site were a

German site by default, you would change this file to use the German locale by

default. This script prepares for the next script, which contains an input-selection

mechanism, by setting the value of $currLang to the result of this input in line 6.

The switch statement beginning on line 10 contains several case statements

designed to assign the appropriate values to the constant variables CHARSET

and LANGCODE. Lines 32–33 actually utilize these variables for the first time

when dynamically creating and sending the headers for Content-type and

Content-language.

NOTE

ptg8126863

Creating a Localized Page Structure 533

Save this file as define_lang.php and place it in the document root of your web

browser. This file defines two constants used in the next script, which is the actual

display script. The constants are CHARSET and LANGCODE, corresponding to the char-

acter set and language code for each locale. The display script uses these constants

to create the proper META tags regarding character set and language code. Although

this script sends the headers, it’s a good idea to ensure that they are part of the page

itself to aid in any necessary input from forms.

Listing 27.2 creates a function that simply stores the externalized strings used in

the display script. This example uses two: one to welcome the user to the page

(WELCOME_TXT) and one to introduce the language selection process (CHOOSE_TXT) .

LISTING 27.2 String Definition File
1: <?php
2: function defineStrings() {
3: switch($_SESSION[‘lang’]) {
4: case “en”:
5: define(“WELCOME_TXT”,”Welcome!”);
6: define(“CHOOSE_TXT”,”Choose Language”);
7: break;
8:
9: case “de”:
10: define(“WELCOME_TXT”,”Willkommen!”);
11: define(“CHOOSE_TXT”,”Sprache auswählen”);
12: break;
13:
14: case “ja”:
15: define(“WELCOME_TXT”,”[unprintable characters]”);
16: define(“CHOOSE_TXT”,”[unprintable characters]”);
17: break;
18:
19: default:
20: define(“WELCOME_TXT”,”Welcome!”);
21: define(“CHOOSE_TXT”,”Choose Language”);
22: break;
23: }
24: }
25: ?>

Use the file lang_strings.php from the CD included with this book to use the actu-

al Japanese characters that cannot be displayed here. Place this file in the document

root of your web browser. This file defines two constants, WELCOME_TXT and

CHOOSE_TXT, which are used in the display script. These constants are defined within

the context of the function called defineStrings(), although you could just as eas-

ily make this file a long switch statement outside the context of the function struc-

ture. I’ve simply put it in a function for the sake of organization and for ease of

explanation when it comes time to use the display script.

ptg8126863

534 CHAPTER 27: Application Localization

Finally, it’s time to create the display script. Remember, one key element of interna-

tionalization is to externalize all strings so that only one master file needs to be

used. Listing 27.3 is such an example.

LISTING 27.3 Localized Welcome Script
1: <?php
2: session_start();
3: include ‘define_lang.php’;
4: include ‘lang_strings.php’;
5: defineStrings();
6: ?>
7: <!DOCTYPE html>
8: <html lang=”<?php echo LANGCODE; ?>”>
9: <head>
10: <title><?php echo WELCOME_TXT; ?></title>
11: <meta charset=”<?php echo CHARSET; ?>” />
12: <body>
13: <h1 style=”text-align: center;”><?php echo WELCOME_TXT; ?></h1>
14: <p style=”text-align: center; font-weight: bold;”>
15: <?php echo CHOOSE_TXT; ?>

16: <a href=”<?php echo $_SERVER[‘PHP_SELF’].”?lang=en”; ?>”>
17:
18: <a href=”<?php echo $_SERVER[‘PHP_SELF’].”?lang=de”; ?>”>
19:
20: <a href=”<?php echo $_SERVER[‘PHP_SELF’].”?lang=ja”; ?>”>
21:
22: </p>
23: </body>
24: </html>

Notice that Listing 27.3 is a basic template because all the language-related ele-

ments are externalized in the define_lang.php or lang_strings.php files. All this

third file does is display the appropriate results, depending on the selected (or

default) locale.

Line 5 calls the defineStrings() function, which then makes available the appro-

priate values for the two constant variables, which are used in lines 8, 10, 11, 13,

and 15. Lines 16–18 display flags representing the English, German, and Japanese

locales, which are clickable. When the user clicks one of the flags, the locale

changes to the new, selected locale, and the strings used are those appropriate to the

new locale. These links contain the lang variable, which is passed to the script as

$_GET[‘lang’]. If you look at line 6 of Listing 27.1, you will see how the code uses

this to change the setting regarding the user’s preferred locale.

ptg8126863

Creating a Localized Page Structure 535

Despite the use here for illustrative purposes in a development environment, the
use of a flag to represent language selection options is not recommended,
because there exists no natural graphic representation for a language. Take, for
instance, the use of the flag of Great Britain to represent English and the flag of
Germany to represent German. English has an official or majority status in over 80
different countries, and German in at least 10—no single flag can represent that
information.

Save this file as lang_selector.php and place it in the document root of your web

browser. When visited for the first time, it should look something like Figure 27.1.

NOTE

FIGURE 27.1
Viewing the
language selec-
tor for the first
time.

Until another language is selected, the default is English; accordingly, the Welcome

and Choose Language text appears in English. When the user clicks the German

flag, he sees Figure 27.2; when the user clicks the Japanese flag, he sees Figure 27.3.

FIGURE 27.2
Viewing the
German
language
page.

ptg8126863

536 CHAPTER 27: Application Localization

Companies and organizations that offer localized versions of their websites often

have long discussions about how to represent the locale selections—flags, names of

countries, names of languages, and so forth. There is no clear-cut answer, but please

remember that the use of flags is frowned upon. How to display the language selec-

tion is definitely a business decision, but if you have gone through the process of

externalizing strings, text, and images and created an internationalized website

template that is ready to be localized, the format of your locale selection is the least

of your concerns.

Localizing Your Application with
gettext()
The previous sections walked you through a basic approach to application interna-

tionalization and localization. A more advanced approach would be to use the

built-in PHP function called gettext(), which is a gateway of sorts (an API, or

application programming interface) to the GNU gettext package.

For more information about GNU gettext, see http://www.gnu.org/software/
gettext/gettext.htm.

The use of gettext and its PHP-related functions requires translation catalog files to

be in specific format. A popular cross-platform editor for these files is Poedit (see

http://www.poedit.com/). Once a translation catalog template has been created (full

of your externalized strings), you can give the template to translators you have

hired, or that you use through a crowdsourcing service such as Transifex

(https://www.transifex.net/) or Get Localization (http://www.getlocalization.com/).

With completed catalog files in hand, you can put them in a directory in your web

server document root and begin the process of using gettext functions.

FIGURE 27.3
Viewing the
Japanese
language
page.

NOTE

http://www.gnu.org/software/gettext/gettext.htm
http://www.gnu.org/software/gettext/gettext.htm
http://www.poedit.com/
http://www.transifex.net/
http://www.getlocalization.com/

ptg8126863

537Summary

You can learn more about gettext and the PHP gettext-related functions in

the PHP Manual at http://www.php.net/gettext, but in general the process goes

something like this:

. Use putenv() to set the LC_ALL environment variable for the locale.

. Use setlocale() to set a value for LC_ALL (see http://www.php.net/setlocale).

. Use bindtextdomain() to set the location of the translation catalog for

the given domain (domain in this case means a name identifying the

application, not a domain like www.mydomain.com; see http://www.php.net/

bindtextdomain).

. Use textdomain() to set the default domain to use with gettext (see

http://www.php.net/textdomain).

. From this point forward, use either gettext(“some string”) or _(“some

string”) to invoke the gettext translation for that string. So, if you have a

translation catalog that assigns the German translated string “Willkommen!”

for “Welcome”, and all the environment variables are set as appropriate for

German, the following code will output “Willkommen!”:

echo _(“Welcome”);

Once you have a handle on the basics of application internationalization and local-

ization, if you are going to develop an application used by speakers of many differ-

ent languages, I recommend looking into a gettext-based localization framework

and crowdsourced translation services (unless you have a plethora of native lan-

guage speakers at your disposal or a lot of money to spend on translation services).

Summary
This chapter introduced you to the basics of internationalization and localization.

You learned the two keys to creating an internationalized site: All strings, text, and

graphics are externalized, as is number, currency, and date formatting. You also

learned that neither internationalization nor localization is equivalent to translat-

ing text; translation is just one part of localization.

You also learned a little bit about character sets: They can be single-byte or multi-

byte. You also learned the importance of sending the appropriate language-related

headers so that your web browser can interpret and display your text properly.

You also created a practical example of how to store a locale-related session vari-

able, to determine and send the localized strings to a preexisting template. This tem-

plate can be used by all locales because each element was externalized. As a bit of a

http://www.php.net/gettext
http://www.php.net/setlocale
www.mydomain.com
http://www.php.net/bindtextdomain
http://www.php.net/bindtextdomain
http://www.php.net/textdomain

ptg8126863

538 CHAPTER 27: Application Localization

bonus, you learned about an advanced step in using application frameworks for

localization, using PHP’s gettext functions.

Q&A
Q. How do I go about localizing numbers, dates, and currency using PHP?

A. Two functions will prove very useful to you in this regard: number_format()

and date(). You have already learned about the date() function. To use it

in a localized environment, you simply rearrange the month, day, and year

elements as appropriate to the locale (MM-DD-YYYY, DD-MM-YYYY, and so

forth). The number_format() function is used for numbers and currency; it

groups the thousandths with a comma, period, or space, as appropriate to the

locale. Read the PHP Manual entry at http://www.php.net/number_format for

possible uses.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. Is English a single-byte or multibyte language? What about Japanese?

2. What two headers related to character encoding are crucial in a localized site?

3. In addition to text strings, what other content elements need attention when

internationalizing a site?

Answers
1. English is single-byte; Japanese is double-byte.

2. Content-Type with the charset indicator, Content-Language.

3. The formatting of dates, currency, and numbers are other types of content ele-

ments that need attention in the internationalization process.

http://www.php.net/number_format

ptg8126863

539Workshop

Activities
1. Use Google Translate (or your own knowledge) to add “Welcome!” messages in

a few different languages to the language definition and display files you cre-

ated in this chapter.

2. Because graphical representations of flags are nonoptimal for use in selecting

languages, change the flag-based language selection in the sample files from

this chapter to something more appropriate.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 28

Working with XML and JSON

In this chapter, you learn the following:
. How to create a basic XML document structure
. How to access XML in PHP using DOM functions
. How to access XML in PHP using SimpleXML functions
. How to work with JSON data

This chapter introduces you to working with XML documents and JSON data via PHP, but

in no way is it comprehensive—entire books have been written on XML alone. However,

for people new to XML, XML manipulation via PHP, and to receiving and working with

JSON data, some sets of functions are more manageable than others; this chapter intro-

duces you to a few of them.

What Is XML?
The name XML comes from the full name of the language, Extensible Markup Language.

Although markup is in the name of the language, do not think of XML as you do HTML.

XML is used for the storage and exchange of data within tag pairs of your own designa-

tion, whereas HTML is a presentation language that allows you to delineate the structure

and presentation of the document being viewed, regardless of the data it contains.

Basic XML Document Structure
XML documents contain two major elements: the prolog and the body. The prolog contains

the XML declaration statement and any processing instructions and comments you want

to add.

ptg8126863

542 CHAPTER 28: Working with XML and JSON

For a complete definition of XML documents, read the XML specification at
http://www.w3.org/TR/REC-xml.

The following snippet is a valid prolog:

<?xml version=”1.0” ?>
<!-- Sample XML document -->

After the prolog comes the content structure. XML is hierarchical, like a book—books

have titles and chapters, each of which contain paragraphs, and so forth. There is

only one root element in an XML document. Continuing the book example, the ele-

ment might be called Books, and the tags <Books></Books> surround all other

information:

<Books>

Next, add any subsequent elements—called children—to your document. Continuing

the book example, you need a master book element and then within it elements for

title, author, and publishing information. Call these child elements Title, Author,

and PublishingInfo. But the publishing information will likely contain more than

one bit of information; you need a publisher’s name, location, and year of publica-

tion. Not a problem. Just create another set of child elements within your parent ele-

ment (which also happens to be a child element of the root element). For example,

just the <PublishingInfo> element could look like this:

<PublishingInfo>
<PublisherName>Sams Publishing</PublisherName>
<PublisherCity>Indianapolis</PublisherCity>
<PublishedYear>2012</PublishedYear>

</PublishingInfo>

All together, a sample books.xml document with one entry could look something

like this:

<?xml version=”1.0” ?>
<!--Sample XML document -->
<Books>

<Book>
<Title>A Very Good Book</Title>
<Author>Jane Doe</Author>
<PublishingInfo>

<PublisherName>Sams Publishing</PublisherName>
<PublisherCity>Indianapolis</PublisherCity>
<PublishedYear>2012</PublishedYear>

</PublishingInfo>
</Book>

</Books>

NOTE

http://www.w3.org/TR/REC-xml

ptg8126863

What Is XML? 543

Keep in mind two important rules for creating valid XML documents:

. XML is case sensitive, so <Book> and <book> are considered different elements.

. All XML tags must be properly closed, XML tags must be properly nested, and

no overlapping tags are allowed.

Add some dummy entries to the books.xml file and place it in the document root of

your web server for use in later examples. You will use the same XML file through-

out the different interface examples shown in this chapter.

When Might You Use XML and PHP?
The short (and snarky) answer to this question is “anytime you want,” but the seri-

ous answer is, as you can imagine, a little more complex than that. Earlier in this

section, I noted that XML defines and carries content. This is still true. But what does

that look like in “real life”?

The examples in this chapter use XML to store a small catalog of books. Imagine a

large catalog of books stored in a proprietary database format, but one that has the

capability to output data in XML format. If you need to get your hands on that cat-

alog of books, but have no intention of purchasing or using the proprietary software

in which it lives, XML would be the answer—using XML as a data interchange for-

mat. The owner of that data that is stored in a proprietary format, or in a manner

that precludes direct access by a third-party (that is, you), exports the catalog into

XML format. You can then parse and display the XML however you want, using one

of the formats described in this chapter.

You’ll next learn about parsing XML documents using two different function fami-

lies—DOM functions and SimpleXML functions. While they both produce the same

results (parsing XML documents to provide you with data you can use later in your

script), the approach is slightly different for each of them. For example, while

SimpleXML functions are much simpler to use than DOM functions, as you’ll see

after you work through the code listings, there would be a performance loss when

working with large files since the entire XML document is loaded into memory and

parsed before you can even begin to work with it. There are tradeoffs to be had with

either choice, which is why this chapter simply introduces you to two sets of func-

tions and leaves you to your own devices to figure out what really does (or does not)

work for you and your development situation.

ptg8126863

544 CHAPTER 28: Working with XML and JSON

Accessing XML in PHP Using DOM
Functions
The DOM XML extension has been part of PHP since version 4, but was completely

overhauled in PHP 5. The primary change was to include the DOM functionality

within a default installation of PHP, which is to say that no additional libraries or

extensions need to be installed or configured to use these functions.

DOM stands for Document Object Model. For more information about DOM, visit
http://www.w3.org/TR/DOM-Level-2-Core/core.html.

The purpose of DOM functions is to enable you to work with data stored in an XML

document using the DOM API. The most basic DOM function is DOMDocument->

load(), which creates a new DOM tree from the contents of a file. After you create

the DOM tree, you can use other DOM functions to manipulate the data. In Listing

28.1, DOM functions are used to loop through a DOM tree and retrieve stored values

for later display.

LISTING 28.1 Loop Through an XML Document Using DOM Functions
1: <?php
2: $dom = new DomDocument;
3: $dom->load(“books.xml”);
4:
5: foreach ($dom->documentElement->childNodes as $books) {
6: if (($books->nodeType == 1) && ($books->nodeName == “Book”)) {
7:
8: foreach ($books->childNodes as $theBook) {
9: if (($theBook->nodeType == 1) &&
10: ($theBook->nodeName == “Title”)) {
11: $theBookTitle = $theBook->textContent;
12: }
13:
14: if (($theBook->nodeType == 1) &&
15: ($theBook->nodeName == “Author”)) {
16: $theBookAuthor = $theBook->textContent;
17: }
18:
19: if (($theBook->nodeType == 1) &&
20: ($theBook->nodeName == “PublishingInfo”)) {
21:
22: foreach ($theBook->childNodes as $thePublishingInfo) {
23: if (($thePublishingInfo->nodeType == 1) &&
24: ($thePublishingInfo->nodeName == “PublisherName”)) {
25: $theBookPublisher = $thePublishingInfo->textContent;
26: }
27:
28: if (($thePublishingInfo->nodeType == 1) &&
29: ($thePublishingInfo->nodeName == “PublishedYear”)) {

NOTE

http://www.w3.org/TR/DOM-Level-2-Core/core.html

ptg8126863

Accessing XML in PHP Using DOM Functions 545

30: $theBookPublishedYear =
31: $thePublishingInfo->textContent;
32: }
33: }
34: }
35: }
36:
37: echo “
38: <p>”.$theBookTitle.”
39: by “.$theBookAuthor.”

40: published by “.$theBookPublisher.” in “.$theBookPublishedYear.”</p>”;
41:
42: unset($theBookTitle);
43: unset($theBookAuthor);
44: unset($theBookPublisher);
45: unset($theBookPublishedYear);
46: }
47: }
48: ?>

Line 2 creates a new DOM document, and line 3 loads the contents of books.xml into

this document. The document tree is now accessible through $dom, as you can see in

later lines. Line 5 begins the master loop through the document tree, as it places each

node of the document into an array called $books.

Line 6 looks for an element called Book, and processing continues if it finds one.

Remember, the <Book></Book> tag pair surrounds each entry for a book in the

books.xml file. If processing continues, line 8 gathers all the child nodes into an

array called $theBook, and the if statements in lines 9–12 and 14–17 look for specific

nodes called Title and Author, respectively, and place the values into the variables

$theBookTitle and $theBookAuthor for later use.

Line 19 begins a similar if statement, but because this line looks for a node called

Publishing Info and you know that the <PublishingInfo></PublishingInfo> tag

pair contains its own set of child nodes, another looping construct is needed to obtain

the information in the next level of data. On line 22, child nodes are found and placed

in the array called $thePublishingInfo, and then if statements in lines 23–26

and lines 28–32 look for specific nodes called PublisherName and PublishedYear,

respectively, and place the values into the variables $theBookPublisher and

$theBookPublishedYear for later use.

After the loop created in line 8 is closed in line 35, lines 37–40 echo a marked-up

string to the browser, using values stored in $theBookTitle, $theBookAuthor,

$theBookPublisher, and $theBookPublishedYear variables. After these values

are used, they are unset in lines 42–45, and the loop continues for the next Book

entry in the document tree.

ptg8126863

546 CHAPTER 28: Working with XML and JSON

Save this listing as domexample.php and place it in the document root of your web

server. When viewed through your web browser you should see something like

Figure 28.1.

FIGURE 28.1
Text extracted
and displayed
using DOM
functions.

For a complete listing of all DOM-related classes, methods, and related functions in

PHP, visit the PHP Manual at http://www.php.net/dom.

In the next section, you use the same books.xml file, but retrieve and display its

values using the SimpleXML family of functions rather than DOM.

Accessing XML in PHP Using
SimpleXML Functions
SimpleXML is enabled by default in PHP5 and requires no additional installation or

configuration steps. It lives up to its description in the PHP Manual of being “a very

simple and easily usable toolset to convert XML” while still being powerful.

Unlike the DOM family of functions, there are only a few SimpleXML functions and

methods. The most basic SimpleXML function parses the XML data into an object

that you can directly access and manipulate without SimpleXML-specific functions

to do so (in other words, as you would work with any object). The first function you

need to know about is simplexml_load_file(), which loads a file and creates an

object out of the data:

$object_with_data = simplexml_load_file(“somefile.xml”);

Listing 28.2 uses a short bit of code to create a SimpleXML object and then displays

the hierarchy of the data stored in the object.

http://www.php.net/dom

ptg8126863

Accessing XML in PHP Using SimpleXML Functions 547

LISTING 28.2 Load and Display Data Using SimpleXML
1: <?php
2: $theData = simplexml_load_file(“books.xml”);
3: echo “<pre>”;
4: print_r($theData);
5: echo “</pre>”;
6: ?>

Line 2 uses simple_load_file() to load the contents of books.xml into an object

called $theData. In line 4, the print_r() function outputs a human-readable ver-

sion of the data stored in the object, surrounded by the <pre></pre> tag pair.

Save this listing as simplexml_dump.php and place it in the document root of your

web server. When viewed through your web browser, you should see something like

Figure 28.2.

FIGURE 28.2
Data dumped
from a
SimpleXML
object.

Dumping out data is not all that spectacular, but it does show you the structure of

the object, which in turn lets you know how to access the data in a hierarchical

fashion. For instance, the output of simplexml_dump.php shows the entry for a

book:

[0] => SimpleXMLElement Object
(

[Title] => A Very Good Book
[Author] => Jane Doe

ptg8126863

548 CHAPTER 28: Working with XML and JSON

[PublishingInfo] => SimpleXMLElement Object
(

[PublisherName] => Sams Publishing
[PublisherCity] => Indianapolis
[PublishedYear] => 2012

)
)

To reference this record directly, you use the following:

$theData->Book

You access the elements in the record like this:

. $theData->Book->Title for the Title

. $theData->Book->Author for the Author

. $theData->Book->PublishingInfo->PublisherName for the Publisher

Name

. $theData->Book->PublishingInfo->PublisherCity for the Publisher

City

. $theData->Book->PublishingInfo->PublishedYear for the Published

Year

But because you likely would want to loop through all the records and not just

the first one, the references to the data are a little different, as you can see in

Listing 28.3.

LISTING 28.3 Through an XML Document Using SimpleXML
1: <?php
2: $theData = simplexml_load_file(“books.xml”);
3:
4: foreach($theData->Book as $theBook) {
5: $theBookTitle = $theBook->Title;
6: $theBookAuthor = $theBook->Author;
7: $theBookPublisher = $theBook->PublishingInfo->PublisherName;
8: $theBookPublisherCity = $theBook->PublishingInfo->PublisherCity;
9: $theBookPublishedYear = $theBook->PublishingInfo->PublishedYear;
10:
11: echo “
12: <p>”.$theBookTitle.”
13: by “.$theBookAuthor.”

14: published by “.$theBookPublisher.” (“.$theBookPublisherCity.”)
15: in “.$theBookPublishedYear.”</p>”;
16:
17: unset($theBookTitle);
18: unset($theBookAuthor);
19: unset($theBookPublisher);

ptg8126863

Working with JSON 549

20: unset($theBookPublishedYear);
21: }
22: ?>

In line 2, the contents of books.xml are loaded using simple_load_file() into an

object called $theData. In line 4, the contents of $theData->Book, which is to say

all the individual records, are put into an array called $theBook. Lines 5–9 gather

the value of specific elements, beginning at the level of $theBook, and these values

are output in lines 11–15. Lines 17–20 unset the value of the variables for the next

pass through the loop.

Save this listing as simplexmlexample.php and place it in the document root of

your web server. When viewed through your web browser, you should see something

like Figure 28.3.

FIGURE 28.3
Text extracted
and displayed
using
SimpleXML
functions.

Note that the output looks quite similar to the output of Listing 28.1, and in fact the

SimpleXML example is just a simpler (or more concise) version of the DOM-based

example you saw earlier.

For more information about the SimpleXML functions in PHP, visit the PHP Manual

at http://www.php.net/simplexml.

Working with JSON
JSON, which stands for JavaScript Object Notation, is another data interchange format

(like XML) that is simple for both humans and machines to read and write. Because

of this simplicity, JSON output has become increasingly popular and may one day

eclipse (if it hasn’t already) the use of XML output for data exposed via application

programming interfaces (APIs).

http://www.php.net/simplexml

ptg8126863

550 CHAPTER 28: Working with XML and JSON

Using JSON, you can have collections of name/value pairs (which take the form of

objects) and you can have an ordered list of values (which take the form of an

array). If you were to redo an entry in the books.xml file from earlier in the chapter,

into JSON format, it might look like the following snippet:

{
“book”:[
{
“title”:”A Very Good Book”,
“author”:”Jane Doe”,
“publisher_name”:”Sams Publishing”,
“publisher_city”:”Indianapolis”,
“publisher_year”:”2012”

}
]

}

Adding two other entries would give you some JSON-formatted data like that shown

in Listing 28.4.

LISTING 28.4 JSON-Formatted Books Data
1: {
2: “book”:[
3: {
4: “title”:”A Very Good Book”,
5: “author”:”Jane Doe”,
6: “publisher_name”:”Sams Publishing”,
7: “publisher_city”:”Indianapolis”,
8: “publisher_year”:”2012”
9: },
10: {
11: “title”:”An Academic Book”,
12: “author”:”Anne Smith”,
13: “publisher_name”:”University of California Press”,
14: “publisher_city”:”Berkeley”,
15: “publisher_year”:”2011”
16: },
17: {
18: “title”:”Some Fluff Fiction”,
19: “author”:”Jimbo Jones”,
20: “publisher_name”:”Fluffy Press”,
21: “publisher_city”:”New York”,
22: “publisher_year”:”2009”
23: }
24:]
25: }

To learn much more about JSON, see http://www.json.org. A useful tool when cre-
ating JSON for the first time is the JSON Parser at http://json.parser.online.fr/,
which enables you to paste text and find (and fix) syntax errors.

NOTE

http://www.json.org
http://json.parser.online.fr/

ptg8126863

Working with JSON 551

Once you have some JSON, you can use the PHP json_decode() function to take

the well-formatted data and turn it into an object, just as you did with the

SimpleXML example earlier. Listing 28.5 uses a short bit of code to load some JSON

data and display the hierarchy of the data stored in the object.

LISTING 28.5 Load and Display JSON Data
1: <?php
2: $theData = file_get_contents(“books.xml”);
3: echo “<pre>”;
4: print_r(json_decode($theData));
5: echo “</pre>”;
6: ?>

Line 2 uses file_get_contents() to load the contents of books.txt (a text file

containing the JSON data shown in Listing 28.4) into an object called $theData. In

line 4, the print_r() function outputs a human-readable version of the decoded

JSON data stored in the object, surrounded by the <pre></pre> tag pair.

Save this listing as json_dump.php and place it in the document root of your web

server. When viewed through your web browser, you should see something like

Figure 28.4.

FIGURE 28.4
Data formerly in
JSON format.

ptg8126863

552 CHAPTER 28: Working with XML and JSON

To create a formatted version of this data, you access the elements in the record like

this:

. $theData->book->title for the Title

. $theData->book->author for the Author

. $theData->book->publisher_name for the Publisher Name

. $theData->book->publisher_city for the Publisher City

. $theData->book->publisher_year for the Published Year

As mentioned previously, of the most popular ways of consuming JSON is as output

from APIs. The following URL contains an example API endpoint for accessing the

Google search API with two variables: v for the API version (1.0 in this case) and u

for the search term (PHP in this case):

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=PHP

Change line 2 of Listing 28.5 to the following and save the file as

json_google_dump.php and place it in the document root of your web server:

$theData = file_get_contents(“http://ajax.googleapis.com/ajax/services/
search/web?v=1.0&q=PHP”);

When you view this script in your web browser, you should see something like

Figure 28.5.

FIGURE 28.5
JSON output
from a Google
search.

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=PHP

ptg8126863

Q&A 553

Once you know the basics of working with JSON data, which—after you have used

the json_decode() function in PHP—is really just the basics of working with

objects, you have all the data on the Internet in the palm of your hands. Well, not

all of it, but a fair portion of it. For a comprehensive list and more information

about APIs, visit ProgrammableWeb at http://www.programmableweb.com/.

Summary
This brief chapter introduced you to two sets of PHP functions used to manipulate

XML (DOM functions and SimpleXML) and JSON. In addition to a brief overview of

both topics, you saw examples of displaying information stored in XML or JSON

data using these functions. The purpose of this chapter was just to introduce you to

the concept of working with XML and JSON using PHP. If you are interested in using

XML and PHP together, you might also want to look into AJAX (Asynchronous

JavaScript and XML), which often uses PHP to produce or modify XML or JSON data

before it is displayed to the client.

Q&A
Q. Why would I use XML to store data when MySQL is a great (and free)

database?

A. XML can be used not only as a storage method, but also as an intermediary

for data transfer. For instance, you might use XML in conjunction with a data-

base, by extracting data and sending it to a third-party function that only

interprets XML data. In addition, although it is true that MySQL is great (and

free), some users might not have access to MySQL or any other database, in

which case XML files can play the role of a database system.

Q. How do I create JSON from arrays and objects created in other parts of my
scripts?

A. If you want to produce JSON output, you just use the json_encode() func-

tion, which takes your existing arrays and objects and puts them into JSON

format. See http://www.php.net/json_encode for more information.

http://www.programmableweb.com/
http://www.php.net/json_encode

ptg8126863

554 CHAPTER 28: Working with XML and JSON

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. What should be the opening line of a valid XML document?

2. Does the following code put your XML content into a new DOM document?

$dom = new DomDocument;

3. What code would be used to load the contents of a file called my.xml into a

SimpleXML object called $myData?

Answers
1. <?xml version=”1.0”>

2. No, it just creates a DOM document referenced as $dom. To load the content

you must also use something like this:

$dom->load(“books.xml”);

3. $myData = simplexml_load_File(“my.xml”);

Activities
1. Create a script that formats the JSON-encoded books data to produce the same

result in the browser as shown in Listings 28.1 and 28.3.

2. Make an array of data, either manually or through a script that retrieves

information from a database, and then encode it in JSON format. If you then

create another script that loads that output and formats it for use, you will

have created and used an API for your own application.

ptg8126863

CHAPTER 29

Apache Performance Tuning
and Virtual Hosting

In this chapter, you learn the following:
. Which operating system and Apache-related settings can limit the server’s

ability to scale or degrade performance
. Several tools for load testing Apache
. How to fine-tune Apache for optimum performance
. How to configure Apache to detect and prevent abusive behavior from clients
. How to configure name-based virtual hosts, IP-based virtual hosts, and the

difference between the two
. The dependencies virtual hosting has on DNS
. How to set up scaled-up cookie-cutter virtual hosts

This administration-related chapter focuses on increasing the performance and scalability

of your Apache server. In addition, you learn about name-based and IP-based virtual

hosting and Domain Name System (DNS)-related issues and issues related to the web

browser itself. This chapter also explains different mechanisms that you can use to isolate

clients from each other and the associated security trade-offs.

Performance and Scalability Issues
This section covers scalability problems and how to prevent them. This section is more of a

“don’t do this” list, explaining limiting factors that can degrade performance or prevent

the server from scaling. You also learn about the proactive tuning of Apache for optimal

performance.

ptg8126863

556 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

Operating System Limits
Several operating system factors limit Apache’s performance. These factors relate to

process creation, memory limits, and the maximum simultaneous number of open

files or connections.

The UNIX ulimit command enables you to set several of the limits covered in this
section on a per-process basis. Refer to your operating system documentation for
details on ulimit’s syntax.

Processes
Apache provides settings for preventing the number of server processes and threads

from exceeding certain limits. These settings affect scalability because they limit the

number of simultaneous connections to the web server, which in turn affects the

number of visitors you can service simultaneously from one server.

The Apache Multi-Processing Module (MPM) settings are in turn constrained by OS set-

tings limiting the number of processes and threads. How to change those limits

varies from operating system to operating system. In Linux kernels, it requires

changing the NR_TASKS defined in the /proc/sys/kernel/threads-max file. You

can read the contents of the file with this command:

cat /proc/sys/kernel/threads-max

You can write to the file using this command:

echo value > /proc/sys/kernel/threads-max

In Linux (unlike most other UNIX versions), there is a mapping between threads

and processes, and they are similar from the point of view of the OS.

In Solaris, those parameters can be changed in the /etc/system file. Those changes

do not require rebuilding the kernel but might require a reboot to take effect. You

can change the total number of processes by changing the max_nprocs entry and

the number of processes allowed for a given user with maxuproc.

File Descriptors
Whenever a process opens a file (or a socket), a structure called a file descriptor is

assigned until the file is closed. The OS limits the number of file descriptors that a

given process can open, thus limiting the number of simultaneous connections the

web server can have. How those settings are changed depends on the operating sys-

tem. On Linux systems, you can read or modify /proc/sys/fs/file-max. On

NOTE

ptg8126863

Performance and Scalability Issues 557

Solaris systems, you must edit the value for rlim_fd_max in the /etc/system file.

This change requires a reboot to take effect.

You can find additional information at http://httpd.apache.org/docs/2.4/vhosts/

fd-limits.html.

Controlling External Processes
Apache provides several directives to control the amount of resources external

processes use. Such processes include CGI scripts spawned from the server and pro-

grams executed via server-side includes, but do not include PHP scripts that are

invoked using the module version because the module is part of the server process.

Following the installation instructions in the initial chapters of this book will result
in PHP being installed as a module. Therefore, these directives will not apply in
your situation, unless you modified the installation type on your own or are in a
virtual hosting situation in which PHP is not installed as a module. However, in the
latter situation, it is unlikely you would be able to modify these directives anyway.

Support for the following Apache directives (used in httpd.conf) is available only

on UNIX and varies from system to system:

. RLimitCPU—Accepts two parameters: the soft limit and the hard limit for the

amount of CPU time in seconds that a process is allowed. If the max keyword

is used, it indicates the maximum setting allowed by the operating system.

The hard limit is optional. The soft limit can be changed between restarts,

and the hard limit specifies the maximum allowed value for that setting.

. RLimitMem—The syntax is identical to RLimitCPU, but this directive specifies

the amount (in bytes) of memory used per process.

. RLimitNProc—The syntax is identical to RLimitCPU, but this directive

specifies the number of processes.

These three directives help to prevent malicious or poorly written programs from

running out of control.

Performance-Related Apache Settings
This section presents different Apache settings that affect performance.

NOTE

http://httpd.apache.org/docs/2.4/vhosts/fd-limits.html
http://httpd.apache.org/docs/2.4/vhosts/fd-limits.html

ptg8126863

558 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

File System Access
From a resource standpoint, accessing files on disk is an expensive process, so you
should try to minimize the number of disk accesses required for serving a request.
Symbolic links, per-directory configuration files, and content negotiation are some of
the factors that affect the number of disk accesses:

. Symbolic links—In UNIX, a symbolic link (or symlink) is a special kind of file
that points to another file. It is created with the UNIX ln command and is
useful for making a certain file appear in different places.

Two of the parameters that the Options directive allows are FollowSymLinks

and SymLinksIfOwnerMatch. By default, Apache won’t follow symbolic links
because they can be used to bypass security settings. For example, you can
create a symbolic link from a public part of the website to a restricted file or
directory not otherwise accessible via the Web. So, also by default, Apache
needs to perform a check to verify that the file is not a symbolic link. If
SymLinksIfOwnerMatch is present, it follows a symbolic link if the same user
who created the symbolic link owns the target file.

Because those tests must be performed for every path element and for every
path that refers to a filesystem object, they can be taxing on your system. If you
control the content creation, you should add an Options +FollowSymLinks

directive to your configuration and avoid the SymLinksIfOwnerMatch argu-
ment. In this way, the tests won’t take place, and performance isn’t affected.

. Per-directory configuration files—As explained in Chapter 3, “Installing
and Configuring Apache,” it is possible to have per-directory configuration
files. These files, usually named .htaccess, provide a convenient way of con-
figuring the server and allow for some degree of delegated administration.
However, if this feature is enabled, Apache has to look for these files in each
directory in the path leading to the file being requested, resulting in taxing
filesystem accesses. If you don’t have a need for per-directory configuration
files, you can disable this feature by adding AllowOverride none to your
configuration. Doing so avoids the performance penalty associated with
accessing the filesystem looking for .htaccess files.

. Content negotiation—Apache can serve different versions of a file depending
on client language or preferences. This can be accomplished using specific
language-related file extensions, but in that case, Apache must access the
filesystem for every request, looking for files such as extensions. If you need to
use content negotiation, make sure that you at least use a type-map file, min-
imizing accesses to disk. Some application-based alternatives to Apache con-
tent negotiation for internationalization purposes can be found in Chapter
27, “Application Localization.”

ptg8126863

Load Testing with ApacheBench 559

. Scoreboard file—This is a special file that the main Apache process uses to

communicate with its child processes on older operating systems. You can

specify its location using the ScoreBoardFile directive, but most modern

platforms do not require the use of this file. If this file is required, you might

find improved performance if you place it on a RAM disk. A RAM disk is a

mechanism that allows a portion of the system memory to be accessed as a

filesystem. The details on creating a RAM disk vary from system to system.

Network and Status Settings
A number options can degrade performance:

. HostnameLookups—When HostnameLookups is set to on or double, Apache

performs a DNS lookup to capture the hostname of the client each time the

client makes a request. This constant lookup introduces a delay into the

response process. The default setting for this directive is off. If you want to

capture the hostname of the requestor, you can always process the request

logs with a log resolver later, offline, and not in real time.

. Accept mechanism—Apache can use different mechanisms to control how

Apache children arbitrate requests. The optimal mechanism depends on the

specific platform and number of processors. You can find additional informa-

tion at http://httpd.apache.org/docs-2.4/misc/perf-tuning.html.

. mod_status—This module collects statistics about the server, connections, and

requests, which slows down Apache. For optimal performance, disable this

module, or at least make sure that ExtendedStatus is set to off, which is the

default.

Load Testing with ApacheBench
You can test the performance of your site with benchmarking and traffic-generation

tools. Many commercial and open source tools are available, each with varying

degrees of sophistication. In general, it is difficult to accurately simulate real-world

request traffic because visitors have different navigation patterns, access the Internet

using connections with different speeds, stop a download if it is taking too long,

click the reload button repeatedly if they get impatient, and so on. As such, some

tools record actual network traffic for later replay.

However, for a quick—but accurate—glimpse at basic information regarding your

server’s capability to handle heavy traffic, the Apache server comes with a simple,

http://httpd.apache.org/docs-2.4/misc/perf-tuning.html
http://httpd.apache.org/docs-2.4/misc/perf-tuning.html

ptg8126863

560 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

but useful, load-testing tool called ApacheBench, or ab. You can find it in the bin

directory of the Apache distribution.

This tool enables you to request a certain URL a number of times and display a

summary of the result. The following command requests the main page of Google

1,000 times, with 10 simultaneous clients at any given time:

/usr/local/apache2/bin/ab -n 1000 -c 10 http://www.google.com/

If you invoke ab without any arguments, you get a complete listing of command-
line options and syntax. In addition, the trailing slash on the target URL is
required, unless a specific page is named.

The result will look similar to the following:

This is ApacheBench, Version 2.3 <$Revision: 655654 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking www.google.com (be patient)
Completed 100 requests
Completed 200 requests
Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Finished 1000 requests

Server Software: gws
Server Hostname: www.google.com
Server Port: 80

Document Path: /
Document Length: 11955 bytes

Concurrency Level: 10
Time taken for tests: 50.751 seconds
Complete requests: 1000
Failed requests: 669

(Connect: 0, Receive: 0, Length: 669, Exceptions: 0)
Write errors: 0
Total transferred: 12710814 bytes
HTML transferred: 11974814 bytes
Requests per second: 19.70 [#/sec] (mean)
Time per request: 507.515 – (mean)
Time per request: 50.751 – (mean, across all concurrent requests)
Transfer rate: 244.58 [Kbytes/sec] received

Connection Times (ms)

NOTE

http://www.google.com/
http://www.zeustech.net/
http://www.apache.org/
www.google.com
www.google.com

ptg8126863

Proactive Performance Tuning 561

min mean[+/-sd] median max
Connect: 31 50 11.3 46 179
Processing: 88 454 53.8 449 803
Waiting: 84 285 119.0 282 694
Total: 136 504 56.5 499 850

Percentage of the requests served within a certain time (ms)
50% 499
66% 512
75% 521
80% 527
90% 540
95% 564
98% 711
99% 754
100% 850 (longest request)

These requests were made over the open Internet; you should get many more

requests per second if you conduct the test against a server on the same machine or

over a local network, so bear that in mind as you test.

The output of the tool should be self-explanatory; what will be most relevant are the

number of requests per second and the average time it takes to fully service a

request (the Total time). You can also see how all the requests were served in less

than 1 second.

You can play with different settings for the number of requests and with the number

of simultaneous clients to find the point at which your server slows down signifi-

cantly.

Proactive Performance Tuning
The previous sections explained which settings might prevent Apache from scaling.

Now it’s time for you to learn some techniques to proactively increase the perform-

ance of your server.

Mapping Files to Memory
As explained previously, accesses to disk affect performance significantly. Although

most modern operating systems keep a cache of the most frequently accessed files,

Apache also enables you to explicitly map a file into memory so that access to disk

is not necessary. The module that performs this mapping is mod_file_cache. You

can specify a list of files to memory map by using the MMapFile directive, which

applies to the server as a whole. An additional directive in Apache 2.x, CacheFile,

takes a list of files, caches the file descriptors at startup, and keeps them around

between requests, saving time and resources for frequently requested files.

ptg8126863

562 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

Distributing the Load
Another way to increase the overall performance of your web services for your end

users is to distribute the load among several servers. You can do so in a variety of

ways:

. Use a hardware load balancer to direct network and HTTP traffic across sever-

al servers, making it look like a single server from the outside.

. Use a software load-balancer solution using a reverse proxy with

mod_rewrite.

. Use separate servers to provide images, large download files, and other static

material. For example, you can place your images in a server called

images.example.com and link to them from your main server.

Caching
The fastest way to serve content is not to serve it at all! This can be achieved by

using appropriate HTTP headers that instruct clients and proxies of the validity in

time of the requested resources. In this way, some resources that appear in multiple

pages but do not change frequently, such as logos or navigation buttons, are trans-

mitted only once for a certain period of time.

In addition, you can use mod_cache in Apache 2.x to cache dynamic content so that

it does not have to be created for every request. This is potentially a big performance

boost because dynamic content usually requires accessing databases, processing

templates, and so on, which can take significant resources.

Apache 2.4 has many caching features that were considered experimental in earli-
er versions of Apache. See the Apache Caching Guide for more information on
this topic: http://httpd.apache.org/docs/2.4/caching.html.

Reducing Transmitted Data
Another method for reducing server load is to reduce the amount of data being

transferred to the client. This in turn makes your clients’ websites operate faster,

especially those over slow links. You can do a number of things to achieve this:

. Reduce the number of images.

. Reduce the size of your images.

NOTE

http://httpd.apache.org/docs/2.4/caching.html

ptg8126863

Preventing Abuse 563

. Compress large, downloadable files.

. Precompress static HTML and use content negotiation.

. Use mod_deflate to compress HTML content. This can be useful if CPU power

is available and clients are connecting over slow links. The content will be

delivered quicker, and the process will be free sooner to answer additional

requests.

Network Settings
HTTP 1.1 allows multiple requests to be served over a single connection. HTTP 1.0

enables the same thing with keepalive extensions. The KeepAliveTimeout directive

enables you to specify the maximum time in seconds that the server waits before

closing an inactive connection. Increasing the timeout means that you increase the

chance of the connection being reused. However, it also ties up the connection and

Apache process during the waiting time, which can degrade performance, as dis-

cussed earlier in the chapter.

Preventing Abuse
Denial of service (DoS) attacks work by swamping your web server with a great num-

ber of simultaneous requests, slowing down the server or preventing access altogeth-

er. DoS attacks are difficult to prevent in general, and usually the most effective way

to address them is at the network or operating system level. One example is to block

specific addresses from making requests to the server; although you can block

addresses at the web server level, it is more efficient to block them at the network

firewall/router or with the operating system network filters.

Other kinds of abuse include posting extremely big requests or opening many simul-

taneous connections. You can limit the size of requests and timeouts to minimize the

effect of attacks. The default request timeout is 300 seconds, but you can change it

with the TimeOut directive. A number of directives enable you to control the size of

the request body and headers: LimitRequestBody, LimitRequestFields,

LimitRequestFieldSize, LimitRequestLine, and LimitXMLRequestBody.

Robots
Robots, web spiders, and web crawlers are names that describe a category of programs

that access pages in your website, recursively following your site’s links. Web search

ptg8126863

564 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

engines use these programs to scan the Internet for web servers, download their con-

tent, and index it. Real-life users use these types of programs to download an entire

website or portion of a website for later offline browsing. Normally, these programs

are well behaved, but sometimes they can be aggressive and swamp your website

with too many simultaneous connections or become caught in cyclic loops.

Well-behaved spiders request a special file, called robots.txt, that contains instruc-

tions about how to access your website and which parts of the website won’t be

available to them. You can find the syntax for the file at http://www.robotstxt.org/.

By placing a properly formatted robots.txt file in your web server document root,

you can control spider activity. In addition, you can stop the requests at the router

or operating system level.

Implementing Virtual Hosting
The first generation of web servers was designed to handle the contents of a single

site. The standard way of hosting several websites in the same machine was to

install and configure separate web server instances for each site. As the Internet

grew, so did the need for hosting multiple websites, and a more efficient solution

was developed: virtual hosting. Virtual hosting allows a single instance of Apache to

serve different websites, identified by their domain names or IP addresses. IP-based

virtual hosting means that each domain is assigned a different IP address; name-

based virtual hosting means that several domains share a single IP address.

Web clients use the DNS to translate hostnames into IP addresses and vice versa.

Several mappings are possible:

. One-to-one—Each hostname is assigned a single, unique IP address. This is

the foundation for IP-based virtual hosting.

. One-to-many—A single hostname is assigned to several IP addresses. This is

useful for having several Apache instances serving the same website. If each

of the servers is installed in a different machine, it is possible to balance the

web traffic among them, improving scalability.

. Many-to-one—You can assign the same IP address to several hostnames. The

client specifies the website it is accessing by using the Host: header in the

request. This is the foundation for name-based virtual hosting.

http://www.robotstxt.org/

ptg8126863

Implementing Virtual Hosting 565

When a many-to-one mapping is in place, a DNS server can usually be configured
to respond with a different IP address for each DNS query, which helps to distrib-
ute the load. This is known as round-robin DNS. However, if you have the opportu-
nity to use a load-balancing device instead of relying on a DNS server, doing so
will alleviate any problems that may arise when tying your web server to your DNS
server. Using a load balancer also eliminates the possibility that high traffic to
your web server will bring down your DNS server.

IP-Based Virtual Hosting
The simplest virtual host configuration is when each host is assigned a unique IP

address. Each IP address maps the HTTP requests that Apache handles to separate

content trees in their own VirtualHost containers, as shown in the following snippet:

Listen 192.168.128.10:80
Listen 192.168.129.10:80

<VirtualHost 192.168.128.10:80>
DocumentRoot /usr/local/apache2/htdocs/host1
[other configurations specific to this host]

</VirtualHost>

<VirtualHost 192.168.129.10:80>
DocumentRoot /usr/local/apache2/htdocs/host2
[other configurations specific to this host]

</VirtualHost>

If a DocumentRoot or any other configurations are not specified for a given virtual

host, the global setting, specified outside any <VirtualHost> section, is used. In this

example, each virtual host has its own DocumentRoot. When a request arrives,

Apache uses the destination IP address to direct the request to the appropriate host.

For example, if a request comes for IP 192.168.128.10, Apache returns the docu-

ments from /usr/local/apache2/htdocs/host1.

If the host operating system cannot resolve an IP address used as the VirtualHost

container’s name and there’s no ServerName directive, Apache complains at server

startup time that it cannot map the IP addresses to hostnames. This complaint is

not a fatal error. Apache still runs, but the error indicates that there might be some

work to be done with the DNS configuration so that web browsers can find your

server. You can use a fully qualified domain name (FQDN) rather than an IP address

as the VirtualHost container name and the Listen directive binding (if the

domain name resolves in DNS to an IP address configured on the machine and

Apache can bind to it).

NOTE

ptg8126863

566 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

Name-Based Virtual Hosts
As a way to mitigate the consumption of IP addresses for virtual hosts, the HTTP/1.1

protocol version introduced the Host header, which enables a browser to specify the

exact host for which the request is intended. This allows several hostnames to share

a single IP address. Most browsers nowadays provide HTTP/1.1 support.

You cannot use SSL with name-based virtual hosts, except in tightly
controlled circumstances. Please see http://httpd.apache.org/docs/2.4/
ssl/ssl_faq.html#vhosts for more information. You can, however, use SSL
with IP-based virtual hosts.

Listing 29.1 shows a typical set of request headers from the Mozilla Firefox browser.

If the URL were entered with a port number, it would be part of the Host header

contents as well.

LISTING 29.1 Request Headers
GET / HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.7 (KHTML, like Gecko)
Chrome/16.0.912.75 Safari/535.7
Host: host1.example.com
Connection: Keep-Alive

Apache uses the Host: header for configurations in which multiple hostnames can

be shared by a single IP address—the many-to-one scenario outlined earlier this

chapter—hence the description name-based virtual hosts.

Prior to Apache 2.4, using the NameVirtualHost directive enables you to specify IP

address and port combinations on which the server receives requests for name-based

virtual hosts. In Apache 2.2 and earlier, this is a required directive for name-based

virtual hosts.

If you are using Apache 2.4, the NameVirtualHost directive is not used; instead,
simply be sure you have matched the proper IP and ServerName in the
VirtualHost container.

NOTE

NOTE

http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html#vhosts
http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html#vhosts

ptg8126863

Implementing Virtual Hosting 567

Listing 29.2 has Apache dispatch all connections to 192.168.128.10 based on the

Host header contents.

LISTING 29.2 Name-Based Virtual Hosts
#Only use NameVirtualHost if pre-Apache 2.4
NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80

<VirtualHost 192.168.128.10>
ServerName host1.example.com
DocumentRoot /usr/local/apache2/htdocs/host1

</VirtualHost>

<VirtualHost 192.168.128.10>
ServerName host2.example.com
DocumentRoot /usr/local/apache2/htdocs/host2

</VirtualHost>

For every hostname that resolves to 192.168.128.10, Apache can support another

name-based virtual host. If a request comes for that IP address for a hostname that

is not included in the configuration file, say host3.example.com, Apache simply

associates the request to the first container in the configuration file; in this case,

host1.example.com. The same behavior is applied to requests that are not accom-

panied by a Host header; whichever container is first in the configuration file is the

one that gets the request.

An end user from the example.com domain might have his machine set up with

example.com as his default domain. In that case, he might direct his browser to

http://host1/ rather than the fully qualified http://host1.example.com/. The

Host header would simply have host1 in it rather than host1.example.com. To

make sure that the correct virtual host container gets the request, you can use the

ServerAlias directive as shown in Listing 29.3.

LISTING 29.3 The ServerAlias Directive
#Only use NameVirtualHost if pre-Apache 2.4
NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80

<VirtualHost 192.168.128.10>
ServerName host1.example.com
ServerAlias host1
DocumentRoot /usr/local/apache2/htdocs/host1

</VirtualHost>

<VirtualHost 192.168.128.10>
ServerName host2.example.com
ServerAlias host2
DocumentRoot /usr/local/apache2/htdocs/host2

</VirtualHost>

http://host1.example.com/

ptg8126863

568 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

In fact, you can give ServerAlias a space-separated list of other names that might

show up in the Host header so that you don’t need a separate VirtualHost con-

tainer with a bunch of common directives just to handle all the name variants.

HTTP 1.1 forces the use of the Host header. If the protocol version is identified as 1.1

in the HTTP request line, the request must be accompanied by a Host header. In the

early days of name-based virtual hosts, Host headers were considered a trade-off:

Fewer IP resources were required, but legacy browsers that did not send Host headers

were still in use and, therefore, could not access all the server’s virtual hosts. Today,

that is not a consideration; there is no statistically significant number of such legacy

browsers in use.

Mass Virtual Hosting
In the previous listings, the DocumentRoot directives follow a simple pattern:

DocumentRoot /usr/local/apache2/htdocs/hostname

where hostname is the hostname portion of the FQDN used in the virtual host’s

ServerName. For just a few virtual hosts, this configuration is fine. But what if there

are dozens, hundreds, or even thousands of these virtual hosts? The configuration

file can become difficult to maintain. Apache provides a good solution for cookie-

cutter virtual hosts with mod_vhost_alias. You can configure Apache to map the

virtual host requests to separate content trees with pattern-matching rules in the

VirtualDocumentRoot directive. This functionality proves especially useful for

Internet service providers (ISPs) that want to provide a virtual host for each one of

their users. The following example provides a simple mass virtual host configuration:

#Only use NameVirtualHost if pre-Apache 2.4
NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80

VirtualDocumentRoot /usr/local/apache2/htdocs/%1

The %1 token used in this example’s VirtualDocumentRoot directive is substituted

for the first portion of the FQDN. The mod_vhost_alias directives have a language

for mapping FQDN components to filesystem locations, including characters within

the FQDN.

If all the VirtualHost containers are eliminated and our configuration is simplified

to the one shown here, the server serves requests for any subdirectories created in

the /usr/local/apache2/htdocs directory. If the hostname portion of the FQDN is

matched as a subdirectory, Apache looks there for content when it translates the

request to a filesystem location.

ptg8126863

Summary 569

Although virtual hosts normally inherit directives from the main server context,

some of them, such as Alias directives, do not get propagated. For instance, the vir-

tual hosts will not inherit this filesystem mapping:

Alias /icons /usr/local/apache2/icons

The FollowSymLinks flag for the Options directive is also disabled in this context.

However, a variant of the ScriptAlias directive is supported.

The VirtualScriptAlias directive shown in the following snippet treats requests for

any resources under /cgi-bin as containing CGI scripts:

#Only use NameVirtualHost if pre-Apache 2.4
NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
VirtualDocumentRoot /usr/local/apache2/htdocs/%1/docs
VirtualScriptAlias /usr/local/apache2/htdocs/%1/cgi-bin

Note that cgi-bin is a special token for that directive; calling the directory just cgi

won’t work; it must be cgi-bin.

For IP-based virtual hosting needs, there are variants of these directives: Virtual-

DocumentRootIP and VirtualScriptAliasIP.

Summary
This chapter provided information on Apache and operating system settings that

can affect scalability and performance. In most cases, the problems in website per-

formance relate to dynamic content generation and database access. Writing effi-

cient scripts can help alleviate issues in those categories. Hardware-related improve-

ments, such as high-quality network cards and drivers, increased memory, and disk

arrays can also provide enhanced performance.

With regard to virtual hosting, you can configure Apache to handle virtual hosts in

a variety of ways. Whether you need a large number of cookie-cutter virtual hosts, a

varied set of different virtual host configurations, or the number of IP addresses you

can use is limited, there’s a way to configure Apache for your application. Name-

based virtual hosting is a common technique for deploying virtual hosts without

using up IP addresses. IP-based virtual hosting is another method when you have

plenty of IP addresses available and you want to keep your configuration tidy, with

a one-to-one balance of IP addresses to virtual hosts. In addition, if you cannot

change your DNS configuration, you have the recourse of using separate port num-

bers for your virtual hosts.

ptg8126863

570 CHAPTER 29: Apache Performance Tuning and Virtual Hosting

Q&A
Q. How can I measure whether my site is fast enough?

A. Many developers test their sites locally or over an internal network, but if you

run a public website, chances are good that many of your users will access it

over slow links. Try navigating your website from a dialup account and make

sure that your pages load fast enough, with the rule of thumb being that

pages should load in less than three seconds.

Q. How can I migrate an existing name-based virtual host to its own machine
while maintaining continuous service?

A. If a virtual host is destined to move to a neighboring machine, which by defi-

nition cannot have the same IP address, there are some extra measures to

take. A common practice is to do something like the following, although

many variations on these steps are possible:

1. Set the time-to-live (TTL) of the DNS mapping to a very low number. This

increases the frequency of client lookups of the hostname.

2. Configure an IP alias on the old host with the new IP address.

3. Configure the virtual host’s content to be served by both name- and IP-

address-based virtual hosts.

4. After all the requests for the virtual host at the old IP address diminish

(due to DNS caches expiring their old lookups), migrate the server.

Q. Can I mix IP- and name-based virtual hosting?

A. Yes. If multiple IP addresses are bound, you can allocate their usage a number

of different ways. A family of name-based virtual hosts might be associated

with each; just use a separate NameVirtualHost directive for each IP (if pre-

Apache 2.4) or a controlled set of ServerName directives. One IP might be ded-

icated as an IP-based virtual host for SSL, for instance, whereas another might

be dedicated to a family of name-based virtual hosts.

ptg8126863

Workshop 571

Workshop
The workshop is designed to help you review what you’ve learned.

Quiz
1. Name some Apache settings that might affect Apache performance.

2. Name some operating system settings that might limit scalability and

performance.

3. Name some approaches to improve performance.

4. Is the ServerName directive necessary in a VirtualHost container?

Answers
1. Some of the Apache settings that might affect performance include

FollowSymLinks, SymLinksIfOwnerMatch arguments to the Options directive,

enabling per-directory configuration files, hostname lookups, having a score-

board file, and statistics collection with mod_status.

2. Some operating system settings that might affect scalability and performance

include limits for number of processes, open file descriptors, and memory

allowed per process.

3. The following are some suggestions for improving performance: load distribu-

tion via a hardware load balancer or reverse proxy, data compression,

caching, mapping files to memory, and compiling modules statically.

4. The ServerName directive is necessary in a VirtualHost container only when

name-based virtual hosts are used. The Host header contents are

compared to the contents of the ServerName directive. If a match isn’t

satisfied, the VirtualHost containers’ ServerAlias directive value(s) are

checked for matches.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 30

Setting Up a Secure
Web Server

In this chapter, you learn the following:
. The SSL/TLS family of protocols and the underlying cryptography concepts
. What secure certificates are and how to create and manage them
. How to activate the mod_ssl Apache module

This chapter explains how to set up an Apache server capable of secure transactions. If

you are using shared server space with a hosting provider, you do not have access to these

configuration options; the process of setting up a secure web server is specific to the

provider and usually is not something you can do yourself. However, if you have root

access to your server, this chapter will teach you the basics of securing your web server.

The Need for Security
Several types of Internet-related transactions require a high level of security. These include

financial transactions, such as banking operations and electronic commerce, but also any

exchange of sensitive information, such as medical records and corporate documents.

Secure transactions over the Internet require three main elements:

. Confidentiality—If you are transmitting or accessing sensitive information such as

your credit card number or your personal medical history, you certainly do not want

a stranger to get hold of it.

. Integrity—Transmitted information must be protected from external manipula-

tion—if you place an order online to buy 100 shares of stock, you don’t want any-

one to intercept the message and change it to an order to buy 1,000 shares.

. Authentication—You need to trust that the organizations or individuals you are

communicating with are who they say they are.

ptg8126863

574 CHAPTER 30: Setting Up a Secure Web Server

The SSL Protocol
SSL stands for Secure Sockets Layer, and TLS stands for Transport Layer Security. These

two families of protocols were originally designed to provide security for HTTP trans-

actions, but they also can be used for a variety of other Internet protocols such as

IMAP (Internet Message Access Protocol) and NNTP (Network News Transfer Protocol).

HTTP running over SSL is referred to as Secure HTTP.

Netscape released SSL version 2 in 1994 and SSL version 3 in 1995. TLS is an IETF

(Internet Engineering Task Force) standard designed to standardize SSL as an Internet

protocol, but it is just a modification of SSL version 3 with a small number of added

features and minor cleanups. The TLS acronym is the result of arguments between

Microsoft and Netscape over the naming of the protocol because each company pro-

posed its own name. However, the name has not stuck, and most people refer to

these protocols simply as SSL. Unless otherwise specified, the rest of this chapter

refers to SSL/TLS as SSL.

You specify that you want to connect to a server using SSL by replacing http with

https in the protocol component of a URI (uniform resource identifier). The default

port for HTTP over SSL is 443.

The following sections explain how SSL addresses the confidentiality, integrity, and

authentication requirements outlined previously. You also learn a bit about the

underlying mathematical and cryptographic principles at the core of SSL.

Addressing the Need for Confidentiality
The SSL protocol protects data by encrypting it. Encryption is the process of convert-

ing a message, the plaintext, into a new encrypted message, the ciphertext. Although

the plaintext is readable by everyone, the ciphertext is completely unintelligible to

anyone who might intercept it. Decryption is the reverse process, which transforms

the ciphertext back into the original plaintext.

Usually, the encryption and decryption process involves an additional piece of infor-

mation: a key. If both sender and receiver share the same key, the process is referred

to as symmetric cryptography. If sender and receiver have different, complementary

keys, the process is called asymmetric or public key cryptography.

Symmetric Cryptography
If the key used to both encrypt and decrypt the message is the same, the process is

known as symmetric cryptography. DES, Triple DES, RC4, and RC2 are algorithms

used for symmetric key cryptography. Many of these algorithms can have different

key sizes, measured in bits. In general, given an algorithm, the greater the number

ptg8126863

The SSL Protocol 575

of bits in the key, the more secure the algorithm is and the slower it will run because

of the increased computational needs of performing the algorithm.

Symmetric cryptography is relatively fast compared to public key cryptography,

which is explained in the next section. Symmetric cryptography has two main draw-

backs, however. One is that keys must be changed periodically to avoid providing

an eavesdropper with access to large amounts of material encrypted with the same

key. The other issue is the key distribution problem: How do you get the keys to each

one of the parties, and do so in a safe manner? This was one of the original limiting

factors of symmetric cryptography; the problem was solved by periodically having

people traveling around with suitcases full of keys. Then along came public key

cryptography.

Public Key Cryptography
Public key cryptography takes a different approach than its symmetric predecessor.

Instead of both parties sharing the same key, a pair of keys exists: one public and

the other private. The public key can be widely distributed, whereas the owner keeps

the private key secret. These two keys are complementary—a message encrypted with

one of the keys can be decrypted only by the other key.

Using this method, anyone wanting to transmit a secure message to you can

encrypt the message using your public key, assured that only the owner of the pri-

vate key—you—can decrypt it. Even if an eavesdropper has access to the public key,

he cannot decrypt the communication meant for you. In fact, you want the public

key to be as widely available as possible so that more people can send encrypted

messages to you. Public key cryptography can also be used to provide message

integrity and authentication. People with public keys place these keys on public key

servers or simply send the keys to others with whom they want to have secure email

exchanges. Using the appropriate software tools, such as PGP or GnuPG, the sender

encrypts the outgoing message based on the recipient’s public key.

The assertion that only the owner of the private key can decrypt a message meant

for her means that with the current knowledge of cryptography and availability of

computing power, brute force alone will not break the encryption in a reasonable

time frame; however, if the underlying algorithm or its implementation is flawed,

such attacks are possible.

Public key cryptography is similar to giving away many identical padlocks and
retaining the master key. Anybody who wants to send you a message privately can
do so by putting it in a safe and locking it with one of those padlocks (public keys)
before sending it to you. Only you have the appropriate key (private key) to open
that padlock (decrypt the message).

NOTE

ptg8126863

576 CHAPTER 30: Setting Up a Secure Web Server

The SSL protocol uses public key cryptography in the initial handshake phase

to securely exchange symmetric keys that can then be used to encrypt the

communication.

Addressing the Need for Integrity
Data integrity is preserved by performing a special calculation on the contents of

the message and storing the result with the message itself. When the message

arrives at its destination, the recipient then performs the same calculation and com-

pares the results. If the contents of the message changed, the results of the calcula-

tion will differ—and you’ll know someone else has tampered with it.

Digest algorithms perform just that process: creating message digests. A message

digest is a method of creating a fixed-length representation of an arbitrary message

that uniquely identifies it (like a fingerprint). A good message digest algorithm

should be irreversible and collision resistant, at least for practical purposes.

Irreversible means that the original message cannot be obtained from the digest, and

collision resistant means that no two different messages should have the same digest.

Examples of digest algorithms are MD5 (Message Digest) and SHA (Secure Hash).

Message digests alone, however, do not guarantee the integrity of the message—an

attacker could change the text and the message digest. Message authentication codes,

or MACs, are similar to message digests, but incorporate a shared secret key in the

process. The result of the algorithm depends both on the message and the key used.

Because the attacker has no access to the key, he cannot modify both the message

and the digest. HMAC (Hash Message Authentication Code) is an example of a mes-

sage authentication code algorithm.

The SSL protocol uses MAC codes to avoid replay attacks and to ensure integrity of

the transmitted information.

Addressing the Need for Authentication
SSL uses certificates to authenticate the parties in a communication. Public key cryp-

tography can be used to digitally sign messages. In fact, just the act of your encrypt-

ing a message with your secret key guarantees the receiver that the message came

from you. Other digital signature algorithms involve first calculating a digest of the

message and then signing the digest.

You can tell that the person who created that public and private key pair is the

one sending the message, but how do you tie that key to a person or organization

that you can trust in the real world? It is plausible that an attacker could imperson-

ate a sender’s identity and distribute a different public key, claiming it is the legiti-

mate one.

ptg8126863

The SSL Protocol 577

Trust can be achieved by using digital certificates. Digital certificates are electronic

documents that contain a public key and information about its owner (name,

address, and so on). To be useful, the certificate must be signed by a trusted third

party (certification authority, or CA) who certifies that the information is correct.

There are many different kinds of CAs, as described later in the chapter. Some of

them are commercial entities, providing certification services to companies conduct-

ing business over the Internet. Companies providing internal certification services

create other CAs.

The CA guarantees that the information in the certificate is correct, and that the key

belongs to that individual or organization. Certificates have a period of validity and

can expire or be revoked. Certificates can be chained so that the certification process

can be delegated. For example, a trusted entity can certify companies, which in turn

can take care of certifying its own employees.

If this whole process is to be effective and trusted, the certificate authority must

require appropriate proof of identity from individuals and organizations before it

issues a certificate.

By default, browsers include a collection of root certificates for trusted certificate

authorities.

SSL and Certificates
The main standard defining certificates is X.509, adapted for Internet usage. An

X.509 certificate contains the following information:

. Issuer—The name of the signer of the certificate

. Subject—The person holding the key being certified

. Subject public key—The public key of the subject

. Control information—Data such as the dates for which the certificate is

valid

. Signature—The signature that covers the previous data

You can check a real-life certificate by connecting to a secure server with your brows-

er. If the connection has been successful, a little padlock icon or another visual clue

is added to the status bar of your browser. Depending on your browser, you should

be able to click the representative icon to view information on the SSL connection

and the remote server certificate. In the following example, the SSL certificate is

examined for https://www.amazon.com/. You can see that the issuer of the certifi-

cate is VeriSign (see Figure 30.1). The page and its assets downloaded seamlessly

because VeriSign is a trusted certification authority.

https://www.amazon.com/

ptg8126863

578 CHAPTER 30: Setting Up a Secure Web Server

In the case of the certificate in Figure 30.1, the Subject is an entity named

Amazon.com, Inc. located in Seattle, Washington, United States. The common name

of this entity is www.amazon.com.

C stands for country, ST for state, L for locality, O for organization, and CN for common

name. In a website certificate, the common name identifies the fully qualified domain

name (FQDN) of the website. This is the server name part of the URL; in this case,

the www.amazon.com domain and the hostname www. If this address does not

match what you typed in the location bar, the browser issues an error.

If the CN were *.amazon.com, the SSL certificate would be valid for any host on
the amazon.com domain.

SSL Protocol Summary
You have seen how SSL achieves confidentiality via encryption, integrity via mes-

sage authentication codes, and authentication via certificates and digital signatures.

The process to establish an SSL connection is the following:

1. The user uses his browser to connect to the remote web server.

2. The handshake phase begins—the browser and server exchange keys and

certificate information.

FIGURE 30.1
SSL certificate
in use at
www.amazon.
com.

NOTE

www.amazon.com
www.amazon.com
www.amazon.com
www.amazon.com

ptg8126863

Obtaining and Installing SSL Tools 579

3. The browser checks the validity of the server certificate, including that it has

not expired, that it has been issued by a trusted CA, and so on.

4. Optionally, the server can require the client to present a valid certificate

as well.

5. Server and client use each other’s public key to securely agree on a symmetric

key.

6. The handshake phase concludes and transmission continues using symmetric

cryptography.

Obtaining and Installing SSL Tools
SSL support is provided by mod_ssl, an Apache module. This module requires the

OpenSSL library—an open source implementation of the SSL/TLS protocols and a

variety of other cryptographic algorithms. OpenSSL is based on the SSLeay library

developed by Eric A. Young and Tim J. Hudson.

Because of the restrictions on the distribution of string cryptography and patented

intellectual property worldwide, the installation of SSL-related tools varies in its ease

from platform to platform. The following sections provide an overview for obtaining

and installing SSL-related tools.

OpenSSL
You can find all the files and instructions necessary for installing OpenSSL at

http://www.openssl.org/. Users of UNIX/Linux (and their variants) will find the

installation of the OpenSSL software to be similar to installing other system tools.

However, the casual Windows user will discover that there are currently no freely

distributed precompiled binaries. As such, Windows users must compile the OpenSSL

tools on their own. After you have installed the OpenSSL toolkit, you have all the

necessary elements for creating and manipulating certificates and keys, as well as

for interfacing with the mod_ssl Apache module.

Installation for Windows Users
Windows users familiar with the process of building their own binaries may do so

with the OpenSSL source code provided at the OpenSSL website. The instructions for

compiling OpenSSL on Windows are in the INSTALL.W32 file found in the source dis-

tribution. Restating these instructions is beyond the scope of this book; however, you

http://www.openssl.org/

ptg8126863

580 CHAPTER 30: Setting Up a Secure Web Server

will find they are comprehensive and well written. The required tools are ActiveState

Perl for Windows and one of the following C compilers:

. Visual C++

. Borland C

. GNU C (Cygwin or MinGW)

Be sure to follow the instructions appropriate to your compiler of choice because

they are different for each. You can also find tips from Apache for compiling

OpenSSL as part of the Apache compilation instructions at http://httpd.apache.org/

docs/2.4/platform/win_compiling.html.

Installation for UNIX/Linux Users
If you are running a recent Linux or FreeBSD distribution, OpenSSL might already

be installed in your system. Should you need to install OpenSSL, you can download

the source from the OpenSSL website. After you have downloaded the file, uncom-

press it and cd into the created directory (replace -version in the following com-

mands with your particular current version of OpenSSL):

gunzip < openssl-version.tar.gz | tar xvf -

cd openssl-version

Complete installation instructions are found in the INSTALL file, but in short, the

config script helps you build the software, which is followed by the make and make

install processes.

The mod_ssl Apache Module
In the past, SSL extensions for Apache had to be distributed separately because of

export restrictions. Currently, mod_ssl is bundled with Apache 2.2 and above, but

only as part of the source distributions. Although this is not an issue for UNIX/Linux

users, Windows users will find they must build Apache from source to build the

mod_ssl module; mod_ssl is not distributed in the precompiled and distributed

binaries. The mod_ssl module depends on the OpenSSL library, so a valid OpenSSL

installation is required.

For Windows Users
When downloading the precompiled installation binaries, be sure to select the ver-

sion with openssl in the filename. For instance, httpd-2.2.22-win32-x86-

openssl-0.9.8t.msi is the name of the Windows installer for Apache 2.2.22.

http://httpd.apache.org/docs/2.4/platform/win_compiling.html
http://httpd.apache.org/docs/2.4/platform/win_compiling.html

ptg8126863

Obtaining and Installing SSL Tools 581

At the time of writing, there was no Windows binary distribution for Apache 2.4.
When there is, you can expect it to follow this naming convention.

If you want to build OpenSSL and Apache with mod_ssl from source, follow the

Apache documentation found at http://httpd.apache.org/docs/2.4/platform/

win_compiling.html. Again, restating these instructions is beyond the scope of this

book, but they will provide you with all the information you need if you choose to

go that route. The core requirements for building from source are as follows:

. Installed OpenSSL toolkit

. Microsoft Visual C++ 5.0 or higher

. The Windows Platform SDK

. The awk utility (awk, gawk, or similar)

For UNIX/Linux Users
The source distribution used in Chapter 3, “Installing and Configuring Apache,”

should already include the files necessary to use mod_ssl. Therefore, for UNIX/Linux

users to use mod_ssl, you only need to follow the configure and make/make

install process again, with the following addition as part of the configure

command:

--enable-ssl --with-ssl=/usr/local/ssl/

This assumes that you installed OpenSSL in the listed location; if it resides in anoth-

er directory on your server, just substitute the location in the preceding command.

If you compiled mod_ssl statically into Apache, you can check whether it is present

by issuing the following command, which provides a list of compiled-in modules:

/usr/local/apache2/bin/httpd -l

The preceding command assumes that you installed Apache in the /usr/local/
apache2 directory.

If mod_ssl was compiled as a dynamic loadable module, the following line must be

added to or uncommented in the Apache configuration file (httpd.conf):

LoadModule ssl_module modules/libmodssl.so

NOTE

NOTE

http://httpd.apache.org/docs/2.4/platform/win_compiling.html
http://httpd.apache.org/docs/2.4/platform/win_compiling.html

ptg8126863

582 CHAPTER 30: Setting Up a Secure Web Server

When you have finished making changes to the httpd.conf file, restart Apache

so that your changes take effect. If you look in your error_log after restarting,

mod_ssl will be part of your server signature, as follows:

Apache/2.4.1 (Unix) mod_ssl/2.4.1 OpenSSL/0.9.8t PHP/5.4.0

Managing Certificates
After installing and configuring OpenSSL and mod_ssl, the next step for a working

SSL server implementation is to create a server certificate. This section explains in

detail how to create and manage certificates and keys by using the openssl com-

mand-line tool. If you are using SSL for an e-commerce site, encryption protects

customer data from eavesdroppers, and the certificate enables customers to verify

that you are who you claim to be.

The examples refer to the UNIX version of the command-line program openssl. If
you are running under Windows, you need to use openssl.exe instead and
change the paths of the examples to use backslashes rather than forward slash-
es. In addition, if you installed OpenSSL in a directory unlike the one listed here,
simply substitute that directory in the examples.

Creating a Key Pair
You must have a public/private key pair before you can create a certificate request.

Assume that the FQDN for the certificate you want to create is www.example.com.

You can create the keys by issuing the following command:

openssl genrsa –-des3 -out www.example.com.key 1024

. The genrsa switch indicates to OpenSSL that you want to generate a key pair.

. The -des3 switch indicates that the private key should be encrypted and

protected by a pass phrase.

. The -out switch indicates where to store the results.

. 1024 indicates the number of bits of the generated key.

The result of invoking this command looks like this:

Generating RSA private key, 1024 bit long modulus
.............++++++
.............++++++
e is 65537 (0x10001)
Enter pass phrase for www.example.com.key:

NOTE

www.example.com
www.example.com.key
www.example.com.key

ptg8126863

Managing Certificates 583

As you can see, you are asked to provide a pass phrase; choose a secure one.

The pass phrase is necessary to protect the private key, and you are asked for it

whenever you want to start the server.

You can choose not to password-protect the key. This is convenient because you
will not need to enter the pass phrase during reboots, but it is highly unsecure,
and a compromise of the server means a compromise of the key as well. In any
case, you can choose to unprotect the key either by leaving out the -des3 switch
in the generation phase or by issuing the following command:

openssl rsa -in www.example.com.key -out www.example.com.key.unsecure

It is a good idea to back up the www.example.com.key file. You can learn about the

contents of the key file by issuing the following command:

openssl rsa -noout -text -in www.example.com.key

Elements of the key are then displayed to you.

Creating a Certificate Signing Request
To get a certificate issued by a CA, you must submit a certificate signing request. To

create a request, issue the following command:

req -new -key www.example.com.key -out www.example.com.csr

You are prompted for the certificate information, something like this:

Using configuration from /usr/local/ssl/install/openssl/openssl.cnf
Enter PEM pass phrase:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []: San Francisco
Organization Name (eg, company) [Internet Widgits Pty Ltd]:.
Organizational Unit Name (eg, section) []:.
Common Name (eg, YOUR name) []:www.example.com
Email Address []:administrator@example.com
Please enter the following ‘extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

TIP

www.example.com.key
www.example.com.key.unsecure
www.example.com.key
www.example.com.key
www.example.com.key
www.example.com.csr
www.example.com

ptg8126863

584 CHAPTER 30: Setting Up a Secure Web Server

It is important that the Common Name field entry matches the address that visitors to

your website will type in their browsers. This is one of the checks that the browser

performs for the remote server certificate. If the names differ, a warning indicating

the mismatch issues to the user.

The certificate is now stored in www.example.com.csr. You can learn about the

contents of the certificate using the following command:

openssl req -noout -text -in www.example.com.csr

You can submit the certificate signing request file to a CA for processing. VeriSign,

Thawte, and Network Solutions are two of those CAs, but many CAs are available.

You can learn more about the VeriSign, Thawtem, and Network Solutions submis-

sion procedures at their websites for their products:

. VeriSign—http://www.verisign.com/ssl/

. Thawte—http://www.thawte.com/ssl/web-server-ssl-certificates/

. Network Solutions—http://www.networksolutions.com/SSL-certificates/

Creating a Self-Signed Certificate
You can also create a self-signed certificate. That is, you can be both the issuer and

the subject of the certificate. Although this is not useful for a commercial website, it

enables you to test your installation of mod_ssl and to have a secure web server

while you wait for the official certificate from the CA:

openssl x509 -req -days 30 -in

www.example.com.csr -signkey

www.example.com.key -out www.example.com.cert

You need to copy your certificate www.example.com.cert (either the one returned by

the CA or your self-signed one) to /usr/local/ssl/openssl/certs/ and your key

to /usr/local/ssl/openssl/private/.

Protect your key file by issuing the following command:

chmod 400 www.example.com.key

This command makes the key readable by only the root user.

www.example.com.csr
www.example.com.csr
http://www.verisign.com/ssl/
http://www.thawte.com/ssl/web-server-ssl-certificates/
http://www.networksolutions.com/SSL-certificates/
www.example.com.csr
www.example.com.key
www.example.com.cert
www.example.com.cert
www.example.com.key

ptg8126863

SSL Configuration 585

SSL Configuration
The previous sections introduced the (not-so-basic) concepts behind SSL, and you

have learned how to generate keys and certificates. Now you can configure Apache

to support SSL. As you learned earlier in the chapter, the mod_ssl module must

either be compiled statically, or, if you have compiled as a loadable module, the

appropriate LoadModule directive must be present in the httpd.conf file.

Apache 2.2 and later ships with an “extra” configuration file specifically for run-

ning an SSL-aware server. To use this extra file, just uncomment this line in

httpd.conf:

Include conf/extra/httpd-ssl.conf

Next, modify the standard configuration snippet in httpd-ssl.conf, replacing the

information with your own, of course:

UseCanonicalName On
<VirtualHost www.example.com:443>
ServerName www.example.com
SSLEngine on
SSLCertificateFile /usr/local/ssl/openssl/certs/www.example.com.cert
SSLCertificateKeyFile /usr/loca/ssl/openssl/certs/www.example.com.key
</VirtualHost>

This snippet configures a new virtual host that will listen to port 443 (the default

port for HTTPS); you enable SSL on that virtual host with the SSLEngine directive.

The SSLCertificateFile and SSLCertificateKeyfile directives indicate where to

find the server’s certificate and the file containing the associated key.

Starting the Server
Previous versions of Apache required you to issue the apachectl startssl com-

mand when you wanted to start Apache in secure mode. However, given the configu-

ration methods defined in the previous section, starting Apache in secure mode is no

different from starting Apache without SSL: Issue the apachectl start command.

As long as the httpd-ssl.conf file is included in httpd.conf via directive, per the

earlier instructions, Apache starts the SSL-enabled server. If your server is already

running and you restart it, you are prompted for your pass phrase if your key is pro-

tected by one. After you enter the correct pass phrase, Apache starts, and you should

be able to connect securely to it using the https://www.example.com/ URL. Substitute

your own domain name, of course. If you cannot successfully start your server, check

the Apache error log for clues about what might have gone wrong. For example, if

you cannot bind to the port, make sure that another Apache instance is not running

already. You must have administrator privileges to bind to port 443.

https://www.example.com/URL

ptg8126863

586 CHAPTER 30: Setting Up a Secure Web Server

Summary
This chapter explained the fundamentals of the SSL protocol and mod_ssl, the

Apache module that implements support for SSL. You were given an introduction

to installing and configuring OpenSSL and mod_ssl, and how to use the openssl

command-line tool for certificate and key generation and management. You can

access the mod_ssl reference documentation at http://httpd.apache.org/docs/2.4/

mod/mod_ssl.html for in-depth syntax explanation and additional configuration

information. Bear in mind also that SSL is just part of maintaining a secure server,

which includes applying security patches, OS configuration, access control, physical

security, and so on.

Q&A
Q. Can I have SSL with name-based virtual hosting?

A. A question that comes up frequently is how to make name-based virtual hosts

work with SSL. The answer is that you currently cannot, as noted in Chapter

29, “Apache Performance Tuning and Virtual Hosting.” Name-based virtual

hosts depend on the Host header of the HTTP request, but the certificate verifi-

cation happens when the SSL connection is being established and no HTTP

request can be sent. There is a protocol for upgrading an existing HTTP con-

nection to TLS, but it is mostly unsupported by current browsers (see RFC 2817,

at http://www.rfc-editor.org/rfc/rfc2817.txt).

Q. Can I use SSL with other protocols?

A. The mod_ssl module implements the SSL protocol as a filter. Other protocols

using the same Apache server can easily take advantage of the SSL.

Workshop
The workshop is designed to help you review what you’ve learned.

Quiz
1. Name three requirements to carry on secure communications on the Internet.

2. How do you start an SSL-enabled instance of Apache?

http://httpd.apache.org/docs/2.4/mod/mod_ssl.html
http://httpd.apache.org/docs/2.4/mod/mod_ssl.html
http://www.rfc-editor.org/rfc/rfc2817.txt

ptg8126863

587Workshop

Answers
1. Confidentiality, integrity, and authentication.

2. Ensure that the httpd-ssl.conf file is included via a directive in the

httpd.conf file, and issue the command apachectl start. As long as the

httpd-ssl.conf file is included, any SSL-enabled instances will start along

with non-SSL instances.

ptg8126863

This page intentionally left blank

ptg8126863

CHAPTER 31

Optimizing and Tuning MySQL

In this chapter, you learn the following:
. Basic hardware and software optimization tips for your MySQL server
. Key startup parameters for your MySQL server
. How to use the OPTIMIZE TABLE command
. How to use the EXPLAIN command
. How to use the FLUSH command to clean up tables, caches, and log files
. How to use SHOW commands to retrieve information about databases, tables,

and indexes
. How to use SHOW commands to find system status information

Proper care and feeding of your MySQL server will keep it running happily and without

incident. The optimization of your system consists of proper hardware maintenance and

software tuning.

For additional methods of maintaining and administering your
MySQL server, consider the MySQL Workbench product. You can find
information and screenshots of this feature-rich graphical interface at
http://www.mysql.com/products/workbench/.

Building an Optimized Platform
Designing a well-structured, normalized database schema is just half of the optimization

puzzle (albeit an important half). The other half is building and fine-tuning the server

that will house your database. Think about the four main components of a server: CPU,

memory, hard drive, and operating system. Each of these components must be up to speed

or no amount of design or programming will make your database faster:

. CPU—The faster the CPU, the faster MySQL can process your data. There’s no real

secret to this, but a 3.0GHz processor is significantly faster than a 1.0GHz processor.

With processor speeds consistently increasing, and with reasonable prices all

around, it is not difficult to get a good bang for your buck.

NOTE

http://www.mysql.com/products/workbench/

ptg8126863

590 CHAPTER 31: Optimizing and Tuning MySQL

. Memory—Put as much RAM in your machine as you can. You can never

have enough, and RAM is cheap these days. Having available RAM can help

balance out sluggish CPUs.

. Hard drive—The proper hard drive will be both large enough and fast

enough to accommodate your database server and its traffic. An important

measurement of hard drive speed is its seek time, or the amount of time it

takes for the drive to spin around and find a specific piece of information.

Seek time is measured in milliseconds, and an average disk seek time is

around 8 or 9 milliseconds for desktop drives and 3 to 5 milliseconds for

servers. When buying a hard drive, make sure that it is big enough to accom-

modate all the data you’ll eventually store in your database and fast enough

to find it quickly.

. Operating system—If you use an operating system that’s a resource hog (for

example, Windows), you have two choices: Buy enough resources so that it

doesn’t matter, or use an operating system that doesn’t suck away all your

resources.

Whether you’re purchasing these components yourself to build a machine, or

shopping for managed solutions of customized servers, if you put the proper pieces

together at the system level, you’ll have taken several steps toward overall server

optimization.

The selection of MySQL table type—MyISAM or InnoDB—is also an optimization
option. Depending on your selection, various additional optimizations will be
available to you. I recommend taking a look at the table-specific optimization
tips in the MySQL manual at http://dev.mysql.com/doc/refman/5.5/
en/optimization.html, as well as the MySQL Performance Blog at
http://www.mysqlperformanceblog.com/.

Benchmarking Your Database Server
You can perform a quick test of your server speed using the benchmark() MySQL

function to see how long it takes to process a given expression. For example, you

can make the test expression something simple, such as 10+10, or something more

extravagant, such as extracting pieces of dates and performing advanced

calculations.

NOTE

http://dev.mysql.com/doc/refman/5.5/en/optimization.html
http://dev.mysql.com/doc/refman/5.5/en/optimization.html
http://www.mysqlperformanceblog.com/

ptg8126863

MySQL Startup Options 591

No matter the result of the expression, the result of benchmark() will always be 0.

The purpose of benchmark() is not to retrieve the result of an expression, but to see

how long it takes to repeat the expression for a specific number of times. For exam-

ple, the following command executes the expression 10+10 one million times:

select benchmark(1000000,10+10);

The result of this command on one of my test systems is this:

+--------------------------+
| benchmark(1000000,10+10) |
+--------------------------+
| 0 |
+--------------------------+
1 row in set (0.04sec)

This command also executes the date extraction expression one million times:

select benchmark(1000000, extract(year from now()));

The result of this command on one of my test systems is as follows:

+--+
| benchmark(1000000, extract(year from now())) |
+--+
| 0 |
+--+
1 row in set (0.09sec)

The important number is the time in seconds, which is the elapsed time for the

execution of the function; the first test took 0.04 seconds, and the second took

0.09 seconds. You might want to run the same uses of benchmark() multiple times

during different parts of the day (when your server is under different loads) to get a

better idea of how your server is performing, and to try some benchmarks that

put your server through more heavier processing than these simple examples.

MySQL Startup Options
MySQL administrators can fine-tune a wealth of server parameters, much of which

the average user never needs to use. And frankly, if you are using MySQL in a virtu-

al hosting environment, you cannot use the information except to ask for changes

in your server setup. So as not to completely overwhelm you with information, this

section contains only a few of the common startup options for a finely tuned MySQL

server.

ptg8126863

592 CHAPTER 31: Optimizing and Tuning MySQL

You can read more in the MySQL Manual at http://dev.mysql.com/doc/
refman/5.5/en/server-system-variables.html.

When you start MySQL, a configuration file called my.cnf is loaded. This file con-

tains information ranging from port number to buffer sizes but can be overruled by

command-line startup options.

In the support-files subdirectory of your MySQL installation directory (or in the

installation directory itself on Windows), you’ll find sample configuration files, each

tuned for a specific range of installed memory:

. my-small.cnf—For systems with less than 64MB of RAM, where MySQL is

used occasionally.

. my-medium.cnf—For systems with less than 64MB of RAM, where MySQL is

the primary activity on the system, or for systems with up to 128MB of RAM,

where MySQL shares the box with other processes. This is the most common

configuration, where MySQL is installed on the same box as a web server and

receives a moderate amount of traffic.

. my-large.cnf—For a system with 128MB to 512MB of RAM, where MySQL is

the primary activity.

. my-huge.cnf—For a system with 1GB to 2GB of RAM, where MySQL is the pri-

mary activity.

To use any of these as the base configuration file, simply copy the file of your choice

to /etc/my.cnf (or wherever my.cnf is on your system) and change any system-

specific information, such as port or file locations.

Key Startup Parameters
Two primary startup parameters affect your system the most: key_buffer_size and

table_cache. If you get only two server parameters correctly tuned, make sure

they’re these two!

The value of key_buffer_size is the size of the buffer used with indexes. The larger

the buffer, the faster the SQL command finishes and a result is returned. Try to find

the fine line between finely tuned and overoptimized; you might have a

key_buffer_size of 256MB on a system with 512MB of RAM, but any more than

256MB could cause degraded server performance.

NOTE

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html

ptg8126863

Optimizing Your Table Structure 593

A simple way to check the actual performance of the buffer is to examine four

additional variables: key_read_requests, key_reads, key_write_requests, and

key_writes. You can find the values of these variables by issuing the SHOW STATUS

command.

A long list of variables and values are returned, listed in alphabetic order. Find the

rows that look something like this. (Your values will differ.)

Key_read_requests	10182771
Key_reads	9326
Key_write_requests	48487
Key_writes	2287

If you divide the value of key_reads by the value of key_read_requests, the result

should be less than 0.01. Also, if you divide the value of key_writes by the value of

key_write_requests, the result should be less than 1. Using the previous values

yields results of 0.000915861721998 and 0.047167281951863, respectively; well

within the acceptable parameters. You could try to get these numbers even smaller

by increasing the value of key_buffer_size, but these numbers are fine as they are.

The other important server parameter is table_cache, which is the number of open

tables for all threads. The default is 64, but you might need to adjust this number.

Using the SHOW STATUS command, look for a variable called open_tables in the

output. If this number is large, the value of table_cache should be increased.

The sample configuration files included with your MySQL installation use various

combinations of key_buffer_size and table_cache. You can use these combina-

tions as a baseline for any modifications you need to make. Whenever you modify

your configuration, you have to restart your server for changes to take effect—

sometimes with no knowledge of the consequences of your changes. In this case,

be sure to try your modifications in a development environment before rolling the

changes into production.

Optimizing Your Table Structure
An optimized table structure is different from a well-designed table. Table structure

optimization has to do with reclaiming unused space after deletions and basically

cleaning up the table after structural modifications have been made. The OPTIMIZE

TABLE SQL command takes care of this, using the following syntax:

OPTIMIZE TABLE table_name[,table_name]

ptg8126863

594 CHAPTER 31: Optimizing and Tuning MySQL

For example, if you want to optimize the grocery_inventory table in the testDB

database, use: OPTIMIZE TABLE grocery_inventory. You might see a status

message that simply says “OK,” or one that says “ Table does not support optimize,

doing recreate + analyze instead.” These are both fine, as the outcome is the same—

your table has been optimized.

Be aware that tables are locked while undergoing optimization, so if your table is

large, perform the optimization during scheduled downtime or when little traffic is

flowing to your system.

Optimizing Your Queries
Query optimization has a lot to do with the proper use of indexes. The EXPLAIN

command examines a given SELECT statement to see whether it is optimized the

best that it can be, using indexes wherever possible. This proves especially useful

when looking at complex queries involving JOINs. The syntax for EXPLAIN is as

follows:

EXPLAIN SELECT statement

The output of the EXPLAIN command is a table of information containing the fol-

lowing columns:

. id—The select identifier ID.

. select_type—The type of SELECT statement, of which there are several.

. table—The name of the table.

. type—The join type, of which there are several.

. possible_keys—This column indicates which indexes MySQL could use to

find the rows in this table. If the result is NULL, no indexes would help with

this query. You should then take a look at your table structure and see

whether there are any indexes you could create that would increase the

performance of this query.

. key—The key actually used in this query, or NULL if no index was used.

. key_len—The length of the key used, if any.

. ref—Any columns used with the key to retrieve a result.

. rows—The number of rows MySQL must examine to execute the query.

ptg8126863

Using the FLUSH Command 595

. Extra—Additional information regarding how MySQL will execute the query.

There are several options, such as Using index (an index was used) and

Where (a WHERE clause was used).

There’s not much optimizing you can do with a “select all” query except add a

WHERE clause with the primary key. The possible_keys column would then show

PRIMARY, and the Extra column would show Where used.

When using EXPLAIN on statements involving JOIN, a quick way to gauge the opti-

mization of the query is to look at the values in the rows column. Suppose that you

have 2 and 1 as results; multiply these numbers together and you have 2 as your

answer. This is the number of rows that MySQL must look at to produce the results

of the query. You want to get this number as low as possible, and 2 is as low as it

can go.

For a great deal more information on the EXPLAIN command, visit the MySQL

Manual at http://dev.mysql.com/doc/refman/5.5/en/using-explain.html.

Using the FLUSH Command
Users with reload privileges for a specific database can use the FLUSH command to

clean up the internal caches used by MySQL. Often, only the root-level user has the

appropriate permissions to issue administrative commands such as FLUSH.

The FLUSH syntax is as follows:

FLUSH flush_option

The FLUSH command has nine different options, with these being the most

common:

. PRIVILEGES

. TABLES

. HOSTS

. LOGS

You have used the FLUSH PRIVILEGES command before, after adding new users.

This command simply reloads the grant tables in your MySQL database, enabling

the changes to take effect without stopping and restarting MySQL. When you issue a

FLUSH PRIVILEGES command, the Query OK response assures you that the cleaning

http://dev.mysql.com/doc/refman/5.5/en/using-explain.html

ptg8126863

596 CHAPTER 31: Optimizing and Tuning MySQL

process occurred without a hitch. For example, the process would look like this in

the command-line interface:

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.10 sec)

The FLUSH TABLES command closes all tables currently open or in use and essential-

ly gives your MySQL server a millisecond of breathing room before starting back to

work. When your caches are empty, MySQL can better utilize available memory.

Again, you’re looking for the Query OK response:

mysql> FLUSH TABLES;

Query OK, 0 rows affected (0.21 sec)

The FLUSH HOSTS command works specifically with the host cache tables. If you

cannot connect to your MySQL server, a common reason is that the maximum

number of connections has been reached for a particular host, and it is throwing

errors. When MySQL sees numerous errors on connection, it assumes that something

is amiss and simply blocks any additional connection attempts to that host. The

FLUSH HOSTS command resets this process and again allows connections to be

made:

mysql> FLUSH HOSTS;

Query OK, 0 rows affected (0.00 sec)

The FLUSH LOGS command closes and reopens all log files. If your log file is getting

to be a burden, and you want to start a new one, this command creates a new,

empty log file. Weeding through a year’s worth of log entries in one file looking for

errors can be a chore, so try to flush your logs at least monthly:

mysql> FLUSH LOGS;

Query OK, 0 rows affected (0.04 sec)

For more information on FLUSH, visit the MySQL Manual at http://dev.mysql.com/

doc/refman/5.5/en/flush.html.

Using the SHOW Command
The SHOW command has several different uses and produces output displaying a

great deal of useful information about your MySQL database, users, and tables.

Depending on your access level, some SHOW commands are unavailable to you

or provide only minimal information. The root-level user can use all the SHOW

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://dev.mysql.com/doc/refman/5.5/en/flush.html

ptg8126863

Using the SHOW Command 597

commands, with the most comprehensive results. The common uses of SHOW include

the following, which you soon learn about in more detail:

SHOW GRANTS FOR user
SHOW DATABASES [LIKE something]
SHOW [OPEN] TABLES [FROM database_name] [LIKE something]
SHOW CREATE TABLE table_name
SHOW [FULL] COLUMNS FROM table_name [FROM database_name] [LIKE something]
SHOW INDEX FROM table_name [FROM database_name]
SHOW TABLE STATUS [FROM db_name] [LIKE something]
SHOW STATUS [LIKE something]
SHOW VARIABLES [LIKE something]

The SHOW GRANTS command displays the privileges for a given user at a given host.

This is an easy way to check on the current status of a user, especially if you have a

request to modify a user’s privileges. With SHOW GRANTS, you can check first to see

that the user doesn’t already have the requested privileges. For example, examine

the privileges available to the joeuser user we created early in this book:

SHOW GRANTS FOR joeuser@localhost;

The results of this query are as follows:

+--+
| Grants for joeuser@localhost |
+--+
| GRANT ALL PRIVILEGES ON *.* TO ‘joeuser’@’localhost’ IDENTIFIED|
| BY PASSWORD ‘ *13883BDDBE566ECEFF0501CDE9B293303116521A’ |
+--+

1 rows in set (0.00 sec)

If you’re not the root-level user or the joeuser user, you get an error; unless you’re

the root-level user, you can see only the information relevant to yourself. For exam-

ple, the joeuser user isn’t allowed to view information about the root-level user:

SHOW GRANTS FOR root@localhost;

This query results in the following error message:

ERROR 1044: Access denied for user:’joeuser@localhost’ to database ‘mysql’

Be aware of your privilege level throughout the remainder of this chapter. If you are

not the root-level user, some of these commands are not available to you or display

only limited information.

Some popular SHOW commands follow; for more information, see the MySQL

Manual at http://dev.mysql.com/doc/refman/5.5/en/show.html.

http://dev.mysql.com/doc/refman/5.5/en/show.html

ptg8126863

598 CHAPTER 31: Optimizing and Tuning MySQL

Retrieving Information About Databases
and Tables
You have used a few of the basic SHOW commands earlier in this book to view the list

of databases and tables on your MySQL server. As a refresher, the SHOW DATABASES

command does just that—it lists all the databases on your MySQL server. Here is one

result example:

+-------------------+
| Database |
+-------------------+
| testDB |
| mysql |
+-------------------+
2 rows in set (0.00 sec)

After you’ve selected a database to work with, you can also use SHOW to list the

tables in the database. This example is the result of running a SHOW DATABASES

query after the testDB has been selected. (Your table listing may vary.)

+---------------------+
| Tables_in_testDB |
+---------------------+
| grocery_inventory |
| email |
| master_name |
| myTest |
| testTable |
+---------------------+
5 rows in set (0.01 sec)

If you add OPEN to your SHOW TABLES command, you get a list of all the tables in

the table cache, showing how many times they’re cached and in use:

SHOW OPEN TABLES;

A result looks something like this:

+----------+-------------------+--------+-------------+
| Database | Table | In_use | Name_locked |
+----------+-------------------+--------+-------------+
mysql	procs_priv	0	0
mysql	db	0	0
mysql	host	0	0
testdb	grocery_inventory	0	0
mysql	user	0	0
mysql	tables_priv	0	0
mysql	columns_priv	0	0
+----------+-------------------+--------+-------------+
7 rows in set (0.00 sec)

ptg8126863

Using the SHOW Command 599

Using this information in conjunction with the FLUSH TABLES command you

learned earlier in this chapter helps keep your database running smoothly. If SHOW

OPEN TABLES shows that tables are cached numerous times but are not currently in

use, go ahead and use FLUSH TABLES to free up that memory.

Retrieving Table Structure Information
A helpful command is SHOW CREATE TABLE, which does what it sounds like; it shows

you the SQL statement used to create a specified table:

SHOW CREATE TABLE grocery_inventory;

The preceding command results in the following:

+--------------------+---+
| Table | Create Table
|+————————---+---+
| grocery_inventory | CREATE TABLE ‘grocery_inventory’ (

‘id’ int(11) NOT NULL auto_increment,
‘item_name’ varchar(50) NOT NULL default “,
‘item_desc’ text,
‘item_price’ float NOT NULL default ‘0’,
‘curr_qty’ int(11) NOT NULL default ‘0’,
PRIMARY KEY (‘id’)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

+--------------------+---+
1 row in set (0.00 sec)

This is essentially the same information you get if you dump the table schema, but

you can use the SHOW CREATE TABLE command quickly if you’re just looking for a

reminder or a simple reference to a particular table-creation statement.

If you need to know the structure of the table but don’t necessarily need the SQL

command to create it, you can use the SHOW COLUMNS command, as follows:

SHOW COLUMNS FROM grocery_inventory;

This query results in something like this:

+------------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+----------------+
id	int(11)	NO	PRI		auto_increment
item_name	varchar(50)	NO			
item_desc	text	YES			
item_price	float	NO			
curr_qty	int(11)	NO			
+------------+-------------+------+-----+---------+----------------+
5 rows in set (0.01 sec)

ptg8126863

600 CHAPTER 31: Optimizing and Tuning MySQL

The SHOW COLUMNS and DESCRIBE commands are aliases for one another and,
therefore, do the same thing.

The SHOW INDEX command displays information about all the indexes present in a

particular table. The syntax is

SHOW INDEX FROM table_name [FROM database_name]

This command produces a table full of information, ranging from the column name

to the cardinality of the index. Table 31.1 describes the columns returned from this

command.

TABLE 31.1 Columns in the SHOW INDEX Result

Column Name Description

Table The name of the table.

Non_unique 1 or 0.

1 = Index can contain duplicates.

0 = Index can’t contain duplicates.

Key_name The name of the index.

Seq_in_index The column sequence number for the Index; starts at 1.

Column_name The name of the column.

Collation The sort order of the column, either A (ascending) or NULL (not
sorted).

Cardinality Number of unique values in the index.

Sub_part On a partially indexed column, this shows the number of
indexed characters, or NULL if the entire key is indexed.

Packed The size of numeric columns.

Null Displays whether the column can contain NULL values.

Index_type The index method used.

Comment Any additional comments.

Another command that produces a wide table full of results is the SHOW TABLE

STATUS command, the syntax of which is as follows:

SHOW TABLE STATUS [FROM database_name] LIKE ‘something’

NOTE

ptg8126863

Using the SHOW Command 601

This command produces a table full of information, ranging from the size and num-

ber of rows to the next value to use in an auto_increment field. Table 31.2 describes

the columns returned from this command.

TABLE 31.2 Columns in the SHOW TABLE STATUS Result

Column Name Description

Name The name of the table.

Engine The storage engine used for this table.

Version The version of the table’s *.frm file.

Row_format The row storage format: fixed, dynamic, or compressed.

Rows The number of rows.

Avg_row_length The average row length.

Data_length The length of the data file.

Max_data_length The maximum length of the data file.

Index_length The length of the index file.

Data_free The number of bytes allocated but not used.

Auto_increment The next value to use in an auto_increment field.

Create_time The date and time when the table was created (in
datetime format).

Update_time The date and time when the data file was last updated (in
datetime format).

Check_time The date and time when the table was last checked (in
datetime format).

Collation The character set and collation type for the table.

Checksum The checksum value of the table, if applicable.

Create_options Any extra options used in the CREATE TABLE statement.

Comment Any comments added when the table was created. In addi-
tion, InnoDB tables uses this column to report the free
space in the tablespace.

Retrieving System Status
The SHOW STATUS and SHOW VARIABLES commands quickly provide important infor-

mation about your database server. The syntax for these commands is simply SHOW

STATUS or SHOW VARIABLES—nothing fancy.

ptg8126863

602 CHAPTER 31: Optimizing and Tuning MySQL

More than 300 status variables will appear as the output of SHOW STATUS, but some

of the most useful are as follows:

. Aborted_connects—The number of failed attempts to connect to the MySQL

server. Anytime you see an aborted connection, you should investigate the

problem. It could be related to a bad username and password in a script, or

the number of allowable simultaneous connections could be set too low for the

flood of traffic to your site.

. Connections—The aggregate number of connection attempts to the MySQL

server during the current period of uptime.

. Max_used_connections—The maximum number of connections that have

been in use simultaneously during the current period of uptime.

. Slow_queries—The number of queries that have taken more than

long_query_time, which defaults to 10 seconds. If you have more than one

slow query, it is time to investigate your SQL syntax!

. Uptime—The total number of seconds the server has been up during the cur-

rent period of uptime.

You can find a comprehensive list of SHOW STATUS variables and an

explanation of their values in the MySQL Manual, at http://dev.mysql.com/

doc/refman/5.5/en/server-status-variables.html.

The SHOW VARIABLES command produces 325 results that control the general

operation of MySQL and include the following useful tidbits:

. connect_timeout—Shows the number of seconds the MySQL server waits

during a connection attempt before it gives up

. max_connections—The allowable number of simultaneous connections to

MySQL before a connection is refused

. port—The port on which MySQL is running

. table_type—The table type for MySQL

. version—The MySQL version number

You can find a comprehensive list of the variables returned by the SHOW VARIABLES

results and an explanation of their values in the MySQL Manual at

http://dev.mysql.com/doc/refman/5.5/en/show-variables.html. After you know the

values you have, you can change them in your MySQL configuration file or startup

command.

http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.5/en/show-variables.html

ptg8126863

Q&A 603

Summary
Running an optimized MySQL server starts with the hardware and operating system

in use. Your system’s CPU should be sufficiently fast, and you should have enough

RAM in use to pick up the slack when your CPU struggles. This is especially true if

MySQL shares resources with other processes, such as a web server.

In addition, the hard drive in use is important because a small hard drive limits the

amount of information you can store in your database. The seek time of your hard

drive is important. A slow seek time causes the overall performance of the server to

be slower. Your operating system should not overwhelm your machine and should

share resources with MySQL rather than use all the resources itself.

Some key startup parameters for MySQL are the values of key_buffer_size and

table_cache, among others. You can find baseline values in sample MySQL config-

uration files, or you can modify the values of these variables and watch the server

performance to see whether you hit on the right result for your environment.

Beyond hardware and software optimization is the optimization of tables, as well as

SELECT queries. Table optimization, using the OPTIMIZE command, enables you to

reclaim unused space. You can see how well (or not) optimized your queries are by

using the EXPLAIN command. The resulting output shows if and when indexes are

used and whether you can use any indexes to speed up the given query.

Paying attention to your MySQL server ensures that it continues to run smoothly.

Basic administration commands, such as FLUSH and SHOW, help you to recognize

and quickly fix potential problems. All these commands are designed to give MySQL

a millisecond of rest time and breathing room if it is under a heavy load. Numerous

SHOW commands display structural information about databases, tables, and index-

es, as well as how the system is performing.

Q&A
Q. Can MySQL take advantage of multiple CPUs in a single server?

A. Absolutely. If your operating system supports multiple CPUs, MySQL takes

advantage of them. However, the performance and tuning of MySQL using

multiple processors varies, depending on the operating system.

Q. What permission level must I have to use the OPTIMIZE command?

A. Any user with INSERT privileges for a table can perform OPTIMIZE commands.

If a user has only SELECT permissions, the OPTIMIZE command will not

execute.

ptg8126863

604 CHAPTER 31: Optimizing and Tuning MySQL

Workshop
The workshop is designed to help you review what you’ve learned and begin learn-

ing how to put your knowledge into practice.

Quiz
1. Which MySQL function enables you to run an expression many times over to

find the speed of the iterations?

2. Which SQL command cleans up the structure of your tables?

3. Which FLUSH command resets the MySQL log files?

4. To quickly determine whether MySQL has support for InnoDB tables, would

you use SHOW STATUS or SHOW VARIABLES?

5. Write a SQL statement that enables you to see the SQL statement used to cre-

ate a table called myTable.

Answers
1. The benchmark() function

2. OPTIMIZE

3. FLUSH LOGS

4. SHOW VARIABLES

5. SHOW CREATE TABLE myTable

Activities
1. If you have root-level access to your server, change the values of

key_buffer_size and table_cache, and run benchmark() functions after

each change to see how the execution times differ.

2. Use OPTIMIZE on all the tables you have created in your database to clean up

any structural issues.

3. Use the SHOW STATUS command to retrieve information about your MySQL

server, and then issue FLUSH commands to clean up the server. After each

command, use SHOW STATUS again to see which commands affect which

results in the SHOW STATUS results display.

ptg8126863

CHAPTER 32

Performing Software
Upgrades

In this chapter, you learn the following:
. How to keep up-to-date with new software releases
. How to upgrade between minor versions of MySQL
. How to upgrade between minor versions of Apache
. How to upgrade between minor versions of PHP

Throughout this book, you have been reminded to seek out information about new

versions of PHP, Apache, and MySQL, and to be mindful of updates. Also, you have been

shown how to add functionality to PHP at build time, but only in the context of installing

the software. In this short chapter, you learn how to update your already installed soft-

ware over the normal course of time, without wreaking havoc on your system.

Staying in the Loop
You should already have bookmarked the websites for Apache, PHP, and MySQL. It

doesn’t matter whether you have been using these technologies for 6 days or 6 years;

there will always be a need to refer back to the sites. (I do, all the time!) If the primary

reason for visiting the websites is to obtain information about updates, you could always

subscribe to an announcements-only mailing list:

. For PHP announcements, go to http://www.php.net/mailing-lists.php and subscribe

to the Announcements list.

. For MySQL announcements, go to http://lists.mysql.com/ and subscribe to the

MySQL Announcements list.

. For Apache announcements, go to http://www.apache.org/foundation/

mailinglists.html and subscribe to the Apache News and Announcements list.

http://www.php.net/mailing-lists.php
http://lists.mysql.com/
http://www.apache.org/foundation/mailinglists.html
http://www.apache.org/foundation/mailinglists.html

ptg8126863

606 CHAPTER 32: Performing Software Upgrades

When to Upgrade
As indicated in Part I, “Getting Up and Running” (the installation chapters), revi-

sion and minor version changes occur whenever the developers find it necessary to

do so—not on any particular schedule. But just because a minor version change has

occurred, that doesn’t necessarily mean you should run right out and upgrade your

software. Sometimes, however, you should upgrade as soon as possible.

Software releases typically adhere to the format major.minor.revision; for example,
PHP 5.4.0 would be major version 5, minor version 4, revision 0. It is true that
changes in revisions may be “minor” in nature, but the release is referred to as a
revision.

The primary instance in which you should immediately upgrade your software is

when a security fix is announced. Usually, security issues are not discovered until

they are exploited—sometimes in a testing environment, but sometimes by a rogue

user who just wants to cause trouble for the world. After verification of a security

issue, you can bet that it becomes the top priority for developers to fix, and quickly

you will see an announcement of an upgrade. When that occurs, you should

upgrade immediately, even if you don’t use the particular element that is the cause

of the security issue. A hole is a hole. Why leave it uncovered?

Here is an example of the Apache changelog documenting a change that occurred

between version 2.0.61 and 2.0.63 (version 2.0.62 was not released to the public)

that indicates a need to upgrade:

SECURITY: CVE-2007-6388 (cve.mitre.org)
mod_status: Ensure refresh parameter is numeric to prevent a possible XSS
attack caused by redirecting to other URLs.

A good rule of thumb is that if the word security appears anywhere in the changelog,

you should upgrade. In the PHP 5 changelog, at http://www.php.net/ChangeLog-

5.php, security-related fixes are grouped together and tend to be at the top of the list

because of their importance.

However, if the release is just a maintenance release, meaning that it contains bug

fixes and general enhancements that occur through normal development, you prob-

ably do not need to drop everything and upgrade your software. Here are some

examples of maintenance items from the Apache and PHP changelogs, respectively:

mpm_winnt: Eliminate wait_for_many_objects. Allows the clean shutdown of the
server when the MaxClients is higher then 257, in a more responsive manner.
Fixed bug #43137 (rmdir() and rename() do not clear statcache).

TIP

http://www.php.net/ChangeLog-5.php
http://www.php.net/ChangeLog-5.php

ptg8126863

Upgrading MySQL 607

If nothing in the list of changes is relevant to you, your work, or your environment,

you could probably put off the upgrade until scheduled downtime or a rainy day.

For example, if all the bugs fixed in a maintenance release of PHP have to do with

the Windows platform and you run PHP on Linux, you can put the task aside,

worry-free.

Even if you do not immediately upgrade your software, it is a good idea to stay at

least within a few revisions of the current production version of the software.

Anything past that and it becomes more likely that new features would be added or

bugs fixed that are indeed relevant to your work or your environment.

Upgrading MySQL
Whether you use UNIX/Linux or Windows, upgrading versions of MySQL is simple:

Install the new version as if the other version does not exist.

Before upgrading to a new version of MySQL, always back up your existing
databases.

Updates to MySQL are quite simple within the same base version; 5.4 is a

base version, 5.5 is a base version, and so on. This means that upgrading

any revision in the 5.5.x family is as simple as installing the new software

on top of the old software. With the Windows Installer, this is all invisible

to you but is exactly what occurs. UNIX/Linux users who install from the

binary distribution simply relink the mysql symbolic directory to the new,

unpacked distribution, as part of the installation process.

If you run into problems during the upgrade process, refer to the troubleshooting

tips at http://dev.mysql.com/doc/refman/5.5/en/upgrading.html. However, upgrad-

ing minor versions of MySQL has always been a painless experience for me, on mul-

tiple platforms.

If you change character sets when upgrading, you must run the following
command to adjust the collation of your existing data:

myisamchk -r -q --set-collation=new_collation_name

CAUTION

NOTE

http://dev.mysql.com/doc/refman/5.5/en/upgrading.html

ptg8126863

608 CHAPTER 32: Performing Software Upgrades

Upgrading Apache
As with MySQL, upgrading or rebuilding Apache follows the same process as

installing the software in the first place. Windows users have the benefit of an

installer application that automatically detects the previous version, removes core

components, and installs new ones. The Windows Installer will, however, retain

existing configuration files. You are responsible for upgrading any other version-

specific modules that may be tied to specific versions of Apache.

For UNIX/Linux users, the process also follows the same path as the original instal-

lation. When you unpack your new distribution, it creates a directory named with

the new version number. For example, if your previous version was 2.2.17 and you

are upgrading to 2.4.1, your directories will be named httpd-2.2.17 and httpd-

2.4.1, respectively.

The actual installation directory for Apache is determined by you, when you run the

configure script, as in this example:

./configure --prefix=/usr/local/apache2

After running the configure script to build the new version of Apache, just go

through the make and make install process as you did when installing Apache in

the first place.

Now, should you want to install your new version of Apache directly over your old

version, you can—even with the old httpd binary still running. Just be sure to back

up your configuration files in case something goes awry. However, if you are more

comfortable installing your new version in a different directory, that’s fine, too; you

just have to move all your web-related files (that is, everything in the document

root) to the new directory and make all appropriate edits to your fresh, new

httpd.conf file. Whichever method you choose is up to you. (One method just

requires more file movement and reconfiguration than the other.)

After upgrading Apache on UNIX/Linux, you should also rebuild your PHP module.

Windows users do not have a module to rebuild but should ensure that the appro-

priate PHP-related changes are still present in the httpd.conf file related to loading

the module residing in the PHP directory tree.

Modifying Apache Without Upgrading
Suppose that you need to add or remove functionality from Apache but are not

upgrading to a new minor version. An example is to add a new module or to

upgrade the version of OpenSSL used on your system.

ptg8126863

Upgrading PHP 609

In this case, UNIX/Linux users should go to the existing source directory (such as

httpd-2.2.17, using the earlier example) and type make clean at the prompt. This

will, essentially, reset the makefiles so that you can rebuild Apache without relying

on previous, cached values. After the make clean command, run the configure

script with your new parameters, and go through the make and make install

process again. You do not need to rebuild the PHP module in this situation.

Windows users would activate the prebuilt modules by uncommenting the appropri-

ate lines in httpd.conf or by adding the lines if they do not already exist.

Upgrading PHP
Given that UNIX/Linux users can add so much functionality to PHP through various

build options, it is likely that you will upgrade or modify PHP more often than

Apache or MySQL. Regardless of whether you are upgrading to a new revision or

minor version or simply adding new functionality (or removing some you no longer

need), the process for modifying an existing version is exactly the same as installing

it in the first place: configure, make, make install. The make install step places

the PHP module in the appropriate place in the Apache directory tree. When your

new module is in place, restart Apache—the new version of PHP should be in use.

When you upgrade PHP to a new version, you will have a completely distinct direc-

tory tree when you extract the distribution archive, based on the new version num-

ber. Perform the configure, make, make install steps within this new directory

structure, and a new PHP module will be built, independent of the other.

Windows users have a different set of tasks to perform: Adding new functionality to

an existing module requires only that you activate the module by uncommenting its

entry in php.ini and then restart Apache. Upgrading to a new minor version

requires you to download a new distribution file. The contents of this file extract into

a directory named for the version it represents. You must then follow the steps

required for installation, regarding the configuration of php.ini, because each ver-

sion produces a different file. Finally, change any PHP-related pathnames in the

Apache httpd.conf file and restart the server. The new version of PHP should be in

use.

Using PECL and PEAR to Extend PHP
You can obtain a wealth of user-created extensions and applications from PECL

(the PHP Extension Community Library, at http://pecl.php.net/), and PEAR (the PHP

Extension and Application Repository, at http://pear.php.net/). These sites are governed

by rules and style guides, so everything you download from these sites is of high

quality.

http://pecl.php.net/
http://pear.php.net/

ptg8126863

610 32: Performing Software Upgrades

If you are looking for additional extensions for your PHP installation, look to PECL.

If you are looking for a library of open source code to integrate in your application,

look to PEAR.

Summary
This short chapter provided some guidelines for keeping your installations of

MySQL, Apache, and PHP current. You learned where to look for updates and how

to weigh the importance of upgrading to a new version. In addition, you learned

the step-by-step processes for upgrading or modifying MySQL, Apache, and PHP.

Workshop
The workshop is designed to help you review what you’ve learned, and begin

putting your knowledge into practice.

Quiz
1. How would you refer to software in which the major version is 3, the minor

version is 4, and the revision is 14?

2. What is considered the primary reason for upgrading to a new minor version

of any software?

3. What command cleans up previous makefiles and cached settings?

Answers
1. The full version number would be 3.4.14.

2. Security issues that have been found and fixed by the developers.

3. The make clean command.

Activity
By the time you read this chapter, it is very likely that one or more of PHP, MySQL,

and Apache will have a different version number than the ones either included on

the CD or that you downloaded and installed at the beginning of the book. So, if

you have the permissions to upgrade (that is, if you are not using a virtual hosting

environment), just pick one (or more) of the technologies and go through the

upgrade process.

ptg8126863

CHAPTER 33

Using Application Frameworks

In this short chapter, you learn, including the
following:
. What an application framework is and how it can help you
. The basics of the model-view-controller pattern of software architecture
. Considering and installing some popular PHP application frameworks

This book has taught you the basics of creating dynamic functionality within a website, be

it individual scripts used to increase functionality or display dynamic data or a series of

scripts hooked together in some consistent fashion to produce a web-based application.

When you are ready to move to larger projects, in which you are likely to want to use

functionality that others most certainly have used in their projects but you have neither

the time nor inclination to reinvent the wheel, an application framework will become

your new best friend.

Understanding Application Frameworks
Getting to the heart of the matter, an application framework is nothing more than a set of

libraries and templates that enable you to rapidly develop feature-rich dynamic sites and

web applications without building every piece of the puzzle from scratch. If you recall, in

the chapters in Part V, “Basic Projects,” I was always careful to note that the examples

showed but one of many ways to create scripts to achieve the overall goal. The use of an

application framework allows you to say “I understand there are many ways to create a

login sequence (or shopping cart, or discussion forum, and so on), and instead of starting

from scratch, I will implement the [application framework] way of doing things.”

Besides the obvious benefit of reusing a stable codebase for common functionality, using a

framework also helps a developer adhere to a consistent software architectural pattern. In

ptg8126863

612 CHAPTER 33: Using Application Frameworks

the case of PHP frameworks, that pattern is typically the model-view-controller

(MVC) pattern, which you learn more about in the next section. Another aspect of

adhering to a framework, and thus some sort of software architecture, is the ability

to implement a stable and consistent three-tier architecture for your application. In

a three-tier architecture, you have a physical tier to represent the client, and then

an application and database under your control and management. In other words,

a user’s web browser or mobile device (client) connects directly to your application—

and typically the presentation layer of it, or what you see in the browser—which in

turn reaches back into the database to retrieve data to be presented.

It’s important to understand that some content management systems—installable

software packages in their own right, such as WordPress (http://www.wordpress.org),

Drupal (http://www.drupal.org), and Joomla (http://www.joomla.org)—are not

technically application frameworks, but it is possible to install and customize the

applications in such a way as to create your own flavor of it while reusing their

feature-rich codebase.

Using the MVC Pattern
One goal of any software architecture pattern is to provide consistent structures,

elements, and properties and attributes among the constituent pieces so as to ensure

the transparency of the inner workings of the application for those developing and

maintaining it. Think about the situation where one person has been coding an

application alone without adhering to any architectural pattern: What happens

when a new person joins the team, or the original person leaves it? Without a

fundamental and shared body of knowledge—such as the adherence to a general

architectural pattern—enormous amounts of time will be spent getting the new

person up to speed, and that doesn’t even begin to touch on the issues he will have

in consistently auditing, testing, and maintaining the hodgepodge code.

The MVC software architecture pattern is ready-made for web-based applications,

and in fact many applications (or even just dynamic websites) adhere to some ver-

sion of this pattern without even trying too hard. Figure 33.1 illustrates the MVC

concept in a basic way, with solid lines indicating direct associations between each

of the three components and dashed lines indicating what are sometimes indirect

associations between some of the parts.

http://www.wordpress.org
http://www.drupal.org
http://www.joomla.org

ptg8126863

Using the MVC Pattern 613

In general, the three components can be defined like this:

. Model—Stores and separates data. It is not a database itself, but rather think

about the parts of your scripts to date that reach back into the database and

pull information out of it, before it is displayed to the user.

. View—The visual representation of data in the model. These are like the parts

of your scripts to date that have done nothing but display data you have

retrieved from the database.

. Controller—The way in which the user invokes an action in a system. Often

referred to as the “brains” of the application, it determines how the model will

be used to achieve a successful result of that action.

Here’s another way of thinking about the flow in an MVC application. Assume that

a user in an online store is viewing an item page and wants to add that item to her

shopping cart:

1. The user presses a submit button on the page, with the mouse.

2. The controller accepts the form action and sends information to the model.

3. To show the user that an action and change in their data has occurred, the

view communicates with the model to get data back out to show the user.

4. The controller waits for more user actions, when the cycle will repeat.

Each of the PHP frameworks discussed in this chapter enable you to easily apply an

MVC pattern to your software applications. Many other PHP frameworks do as well,

and although you might not choose to adhere to the pattern, it is recommended

that you do so to enable easier testing, development, deployment, and ongoing

maintenance of your applications.

Controller

View Model

FIGURE 33.1
Visualizing the
MVC pattern.

ptg8126863

614 CHAPTER 33: Using Application Frameworks

For even more examples and explanations of the MVC pattern, see Jeff Atwood’s
clear and concise blog post “Understanding Model-View-Controller” at
http://www.codinghorror.com/blog/2008/05/understanding-model-view-
controller.html.

Installing and Using PHP Application
Frameworks
At the time of this writing, developers worldwide use more than 30 PHP application

frameworks. Selecting a few to discuss in general was no small feat, but the ones I’m

calling out in this chapter have a (relatively) long history and an active developer

community with considerable uptake. In fact, those are three features unrelated to

the code itself that you should think about when evaluating a framework for your

own purposes: Has it been around awhile and is it stable? Are people actively using

it? Is the parent company or group of developers actively maintaining it?

Other considerations for selection include the following:

. Determining whether the framework is best suited for the type of application

you are creating; some frameworks are great for e-commerce, some for content

publication, and some for both.

. Determining whether the framework provides you with the opportunity to

use a software architecture pattern, and if so, whether it is the one you want

to use.

. Determining whether the framework requires additional PHP modules or

server libraries. If it does, but you do not control your server and therefore

cannot modify the libraries and modules installed, that framework cannot

work for you.

The next few sections cover the three popular open source PHP application

frameworks: Zend, CakePHP, and CodeIgniter. Again, these are not the only

possible frameworks; in fact, Symfony (http://www.symfony.com/) and Yii

(http://www.yiiframework.com/) could easily have been included in the “best

of breed” list.

Wikipedia maintains a comprehensive list of PHP application frameworks at
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#PHP.

NOTE

NOTE

http://www.codinghorror.com/blog/2008/05/understanding-model-view-controller.html
http://www.codinghorror.com/blog/2008/05/understanding-model-view-controller.html
http://www.symfony.com/
http://www.yiiframework.com/
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#PHP

ptg8126863

Installing and Using PHP Application Frameworks 615

Considering the Zend Framework
If you are developing enterprise-grade PHP applications, seriously consider starting

with the Zend Framework (http://framework.zend.com/). You might have heard of

Zend, the company behind the Zend Framework, as its founders have been contribu-

tors to the PHP language itself almost since its initial creation. The core PHP engine

is often referred to as the Zend engine. In other words, if evaluating the Zend

Framework according to the criteria I previously mentioned, you would be hard-

pressed to find a framework that is more stable, has been around longer, or has

more people actively developing the framework and applications with it.

Although the name of the software is the Zend Framework, and indeed it is a frame-

work, you might also hear it referred to as a component library because it is possible

to pick and choose from a set of loosely coupled components instead of implement-

ing a structured, well-architected application. For example, Zend’s separate compo-

nents address database connections and profiling, internationalization and localiza-

tion, authentication, authorization, and session management, consuming and

exposing web services, and mail functions, to name a few.

That the framework is made of components is not a negative evaluation at all, but

it does warrant a reminder that one of the goals of using frameworks and adhering

to an architecture pattern is for the ease of maintenance—your application can be

kept tidy, for lack of a better word. If your application includes a library of frame-

work components and you are only using one of them, you might ask yourself if the

overhead of maintaining the framework (updates, patches, and so on) is worth it.

Your answers will vary, and only you will know which decision is right for you.

To download and install the Zend Framework with the existing PHP, Apache, and

MySQL installation that you’ve been working with in this book, first go to the

Requirements page at http://framework.zend.com/manual/en/requirements.

introduction.html to ensure you have the correct version of PHP and any ancillary

libraries and modules. If you do, go to http://framework.zend.com/download/latest

for links to the Full or Minimal version of the software. After you have obtained the

distribution archive in the format of your choice, just extract it according to the

instructions included in the distribution. (In brief, you extract a directory and put it

in your existing filesystem.) The Zend Framework QuickStart Guide, at http://

framework.zend.com/manual/en/learning.quickstart.intro.html, walks you through

the process of using the framework and its components through the creation of

sample applications.

http://framework.zend.com/
http://framework.zend.com/manual/en/requirements.introduction.html
http://framework.zend.com/manual/en/requirements.introduction.html
http://framework.zend.com/download/latest
http://framework.zend.com/manual/en/learning.quickstart.intro.html
http://framework.zend.com/manual/en/learning.quickstart.intro.html

ptg8126863

616 CHAPTER 33: Using Application Frameworks

Considering CakePHP
Another of the long-standing and stable PHP application frameworks with a strong

user and developer community is CakePHP (http://www.cakephp.org/). At its core,

CakePHP is an MVC framework, with components for common functionality such as

database connections, authentication, authorization, and session management, and

consuming and exposing web services—all much like the Zend Framework and, in

fact, numerous other frameworks.

One of CakePHP’s greatest selling points is its ease of use (or ease of integration)

while not allowing its simplicity to hinder feature-rich development and enterprise

deployment. Like the Zend Framework, you do not have to deal with custom config-

uration files, and instead you just download and install the framework and get

started with rapid development. From the perspective of the new user, CakePHP wins

points for having detailed and user-friendly documentation as well as multimedia

tutorials, in addition to the standard developer forums.

To download and install CakePHP with the existing PHP, Apache, and MySQL instal-

lation that you’ve been working with in this book, first go to the Installation page of

the CakePHP Cookbook (also known as the documentation) at

http://book.cakephp.org/2.0/en/installation.html to ensure you have the correct ver-

sion of PHP and any ancillary libraries and modules. If you do, download the cur-

rent version from links further down the page or on the main page of the site.

After you have obtained the distribution archive, just extract it into your web server

document root. You have a few different options for using CakePHP in a develop-

ment or production environment, all discussed in the Cookbook at

http://book.cakephp.org/2.0/en/installation.html. Once CakePHP is installed, head

to the QuickStart Guide at http://book.cakephp.org/2.0/en/getting-started.html for a

walkthrough on using CakePHP to create some sample applications.

Considering CodeIgniter
Although CakePHP is billed as easy to use (and it is), CodeIgniter

(http://www.codeigniter.com) is a good starting place for true beginners. While fea-

ture rich, its functionality is targeted at delivering content rather than commerce or

other transactional processes. This is not at all a bad thing, because delivering con-

tent in an easy-to-use manner within architecturally sound software is always a

plus. I might not use CodeIgniter in the enterprise, but many web developers make

a fine living with numerous happy clients without ever entering the enterprise

space. So again, pick the framework that is right for you.

http://www.cakephp.org/
http://book.cakephp.org/2.0/en/installation.html
http://book.cakephp.org/2.0/en/installation.html
http://book.cakephp.org/2.0/en/getting-started.html
http://www.codeigniter.com

ptg8126863

617Workshop

In addition to being an MVC framework, CodeIgniter addresses common functional-

ity such as database connections, authentication, authorization, and session man-

agement, localization, image manipulation, and consuming and exposing web

services, among others—much like the other frameworks discussed in this chapter.

Again, like the other frameworks discussed, installation consists of downloading and

installing the framework and beginning to develop immediately (and rapidly). Like

CakePHP, CodeIgniter wins points for having detailed and user-friendly documenta-

tion as well as multimedia tutorials, in addition to the standard developer forums.

To download and install CodeIgniter with the existing PHP, Apache, and MySQL

installation that you’ve been working with in this book, first go to the Server

Requirements page of the documentation at http://codeigniter.com/user_guide/

general/requirements.html to ensure you have the correct version of PHP and any

ancillary libraries and modules. If you do, download the current version from the

Downloads page at http://codeigniter.com/downloads/.

Summary
This short chapter introduced you to the concept of using an application framework,

and specifically one using the model-view-controller pattern of software architecture.

Before reading about three popular PHP application frameworks (Zend, CakePHP,

and CodeIgniter), you learned the basics of how to evaluate a framework for use in

your own application development.

Workshop
The workshop is designed to help you review what you’ve learned and begin putting

your knowledge into practice.

Quiz
1. What are some of the benefits of using an application framework?

2. In the MVC pattern, what does the model do?

3. Do you have to use an application framework?

http://codeigniter.com/user_guide/general/requirements.html
http://codeigniter.com/user_guide/general/requirements.html
http://codeigniter.com/downloads/

ptg8126863

618 CHAPTER 33: Using Application Frameworks

Answers
1. Working with a stable codebase, adhering to a software architecture pattern,

and not reinventing the wheel.

2. The model stores and separates data from the controlling and viewing compo-

nents.

3. Not at all. In fact, nothing in this book—which covers fundamental aspects of

developing with PHP and MySQL—relies on a framework.

Activities
1. Download and install at least one of the frameworks discussed in this chapter.

(If you install more than one, delete the old ones first to avoid collisions.)

2. Follow at least one of the tutorials provided by the developers of these frame-

works so that you can gain some practical knowledge of using a framework as

well as the MVC pattern.

ptg8126863

Numbers
3D pie charts, creating, 269-270

Symbols
+ (addition operators), 85-87

&& (and operator), 91-92

[] (array operators), 140

= (assignment operators), 77, 86-89

* (asterisks), 305

comments, 72

wildcards, 32

\ (backslashes)

directives, 45

escaping string quotation
marks, 113

time stamp conversions, 184

. (concatenation operators), 87-88

/ (division operators), 87

$ (dollar signs), variable names, 76

… (ellipses)

color fills, 266

drawing, 264

= (equal to operator), 308

== (equivalence operators), 90

// (forward slashes), comments, 72

> (greater than operators),
91, 308

>= (greater than or equal to
operators), 91, 308

=== (identical operators), 91

< (less than operators), 91, 308

<= (less than or equal to operators),
91, 308

% (modulus operators), 87

* (multiplication operators), 87

! (not operators), 92

!= (nonequivalence operators), 90

!= (not equal to operator), 308

|| (or operators), 91-92

() (parentheses), subqueries, 315

% (percent signs)

conversion specifications,
160-162

log-formatting directives, 510

wildcards, 32

(pound signs)

comments, 72

directives, 45

PHP/Apache integration, 62

“” (quotation marks)

escaping strings, 113

MySQL field names, 324

; (semicolons)

instruction terminators, 76

statements, 70

- (subtraction operators), 87

? (ternary operator), 105

A
%a format string option

(DATE_FORMAT() function), 337

%A log-formatting directive, 510

ab (ApacheBench), 559-561

aborted_connects status
variable, 602

abs() function, 121

abuse prevention, 563-564

accept mechanisms, 559

Index

access

authentication

authoritative information, 494

back-end storage, 494

browsers, 493

client, 492-493

combining with access control
rules, 500

database file-based, 496-497

defined, 491

denying access, 494

directives, 493-494

etc/passwd file, 507

file-based, 495-496

realms, 493

user management, 494

authorization, 492

class properties with object
methods, 153

constants, 94

cookies, 214-215

log files, 50

global variables, 127

reports, creating, 521-522

restricting based on

cookies, 502-506

HTTP methods, 501

rules

clients, 498

combining with authentica-
tion, 500

domain names, 498

environment variables, 498

evaluating, 499-500

implementing, 497-498

ptg8126863

IP addresses, 497

security, 500

session variables, 219-223

variables, 126-128

XML in PHP

DOM functions, 544-546

SimpleXML functions,
546-549

Access denied error messages, 26

AccessFileName directive, 49

ACTION argument, 190

action-based permissions, 30

AddCharset directive, 530

addentry.php script, 392-396,
409-413

addFive() function, 132

addition (+) operators, 85-87

AddLanguage directive, 530

addNums() function, 124

address books

birthdays, adding, 414

database tables, creating,
387-390

email tables, 389

fax tables, 389

field names, 388

master name tables,
388-389

personal notes tables, 390

telephone tables, 389

include files, creating, 390-391

menus, creating, 391

records

adding, 392-398

deleting, 404-406

subentries, adding, 406-413

viewing, 398-404

addresses

IP

access control, 497

reverse DNS lookups, 512

listening, 54

addtocart.php script, 456-458

alert option (LogLevel directive), 516

algorithms

digest, 493, 576

symmetric key cryptography, 574

ALL privilege (MySQL), 31

Allow,Deny argument (Order
directive), 499

Allow directive (access rules), 497

AllowOverride directive, 50

ALTER privilege (MySQL), 31

alternative calendars, 489

ampersands (&&), 91-92

analyzing logs, 518

and operator, 92

Apache

access control

clients, 498

combining with authentica-
tion, 500

domain names, 498

environment variables, 498

evaluating rules, 499-500

implementing rules, 497-498

IP addresses, 497

restricting based on cookies,
502-506

restricting based on HTTP
methods, 501

authentication

authoritative information, 494

back-end storage, 494

browsers, 493

client, 492-493

combining with access control
rules, 500

database file-based, 496-497

denying access, 494

directives, 493-494

etc/passwd file, 507

file-based, 495-496

realms, 493

user management, 494

Caching Guide website, 562

changelog example, 606

clean build, 56

commands, 51-53

configuring, 45

conditional containers, 48-49

containers, 46-47

directives, 45-46

per-directory configuration
files, 49-50, 57

ServerRoot directive, 49

container, 48

content-based content negotia-
tion, 530

installation

binary, 39

Linux/UNIX, 39-42

Mac, 42

methods, selecting, 38

source code, 38

Windows, 42-44

internationalization configuration
changes, 530

licenses, 43

logging, 509

analysis, 518

errors, 515-519

files, 50-51, 514

formatting, 510-513

hostname lookups, 512

hostname resolution, 517

identity checks, 513

images, 514, 524

programs, 515

request logs, creating, 509

rotation, 518

status codes, 513

mod ssl module, 580-582

modifying without upgrading, 608

MPM settings, 556

News and Announcements list
website, 605

620 access

ptg8126863

performance

abuse prevention, 563-564

caching, 562

file system settings, 558-559

load distribution, 562

load testing, 559-561

mapping files to memory, 561

network settings, 559, 563

operating system limits,
556-557

speed, 570

status settings, 559

transmitted data,
reducing, 562

PHP installation on Linux/UNIX,
60-62

PHP integration, 62-64

secure mode, starting, 585

starting, 53-54

troubleshooting

access denied, 56

binding to ports
permissions, 55

existing web servers, 55

group settings, 56

upgrading, 608-609

versions, 37-38

virtual hosting, 564

DNS, 564

IP-based, 564-565, 570

mass, 568-569

name-based, 564-570

website, 37-39

ApacheBench (ab), 559-561

apachectl utility, 53

APIs

output, 552

ProgrammableWeb website, 553

appending files, 239, 245-246

application frameworks

benefits, 611

CakePHP, 616

choosing, 614

CodeIgniter, 616-617

content management
systems, 612

defined, 611

evaluating, 614

MVC pattern, 612

components, 613

displaying, 612

flow, 613

websites, 614

Symfony, 614

Wikipedia listing of, 614

Yii, 614

Zend, 615

application localization

character sets, 528-529

environment modifications,
530-531

flags for language selections,
535

gettext() function, 536-537

internationalization, 527

locales, 528

numbers/dates/currency, 538

page structures, 531

language definition file,
531-532

language selector, 535

locale selection formats, 536

string definition file, 533

welcome script, 534

applying directives, 47

APR (Apache) website, 41

arcs

color fills, 266

drawing, 264

arguments

ACTION, 190

Allow,Deny, 499

AllowOverride directive, 50

CustomLog directive, 514

default values, setting, 130-132

defined, 120

Deny,Allow, 499

directives, 45

ENCTYPE, 207

flock() function, 247

HostNameLookups directive, 512

LogFormat directive, 512

Mutual-Failure, 500

optional, setting, 131

rotatelogs/rotatelogs.exe utili-
ties, 518

swapping, 167-168

syslog, 516

TYPE, 207

variable references, passing,
132-133

arithmetic operators, 86-87

array() function, 81, 140

array operator ([]), 140

arrays, 79

associative

creating, 141-142

getdate() function, 180

contact forms, 146

creating, 140-141

defined, 139

functions

array_keys(), 145

array_merge(), 145

array_pop(), 145

array_push(), 145

array_shift(), 145

array_unshift(), 145

array_values(), 145

count(), 144

each(), 144

foreach(), 144

list(), 144

reset(), 145

shuffle(), 145

sizeof(), 144

arrays 621

ptg8126863

HTML form input, accessing,
191-194

keys, 140

multidimensional

creating, 142-144

dimensions, 146

session variables, adding, 221

strings, breaking, 179

values, 140

website, 146

array_keys() function, 145

array_merge() function, 145

array_pop() function, 145

array_push() function, 145

array_shift() function, 145

array_unshift() function, 145

array_values() function, 145

ASP tags, 69

assignment operators (=), 77, 86-89

associative arrays

creating, 141-142

getdate() function, 180

asterisks (*), 305

comments, 72

wildcards, 32

asymmetric cryptography, 574-576

auth cookies, testing, 506

AuthDBMGroupFile directive, 496

AuthDBMUserFile directive, 496

authentication, 573

authoritative information, 494

back-end storage, 494

browsers, 493

client, 492-493

combining with access control
rules, 500

database file-based, 496-497

defined, 491

denying access, 494

directives, 493-494

etc/passwd file, 507

file-based, 495-496

MySQL privileges, 29-31

realms, 493

SSL, 576-578

user management, 494

AuthGroupFile directive, 495

AuthName directive, 493

authorization, 492

authorized users tables, creating,
502-503

Authorize.Net, 463

AuthType directive, 493

AuthUserFile directive, 495

availability

functions, 133-134

variables, 77

awstats, 519

B
%b format string option (DATE_

FORMAT() function), 337

%b log-formatting directive, 511

back-end storage, 494-496

background colors, 263

backslashes (\)

directives, 45

escaping string quotation marks,
113

timestamp conversions, 184

basic authentication, 492

BEGIN command, 352

benchmark() function, 590-591

benchmarking, 590-591

BETWEEN operator, 309

BIGINT data type, 298

binaries

Apache installation, 39

distributions, 17

outputting, 256

server binary commands, 51-53

BINARY keyword, 310

bindtextdomain() function, 537

BLOB data type, 300

books.xml document, 542

booleans, 79

Boyce-Codd normal forms, 294

breadcrumb trails, 447

break statements, 109-111

browsers

Apache, starting, 54

authentication, 493

padlock icons, 577

built-in functions, 120

bulk mail, sending, 383

C
-c command-line option, htpasswd

utility, 496

%c format string option (DATE_
FORMAT() function), 337

%C log-formatting directive, 511

CacheFile directive, 561

CakePHP, 616

calendar_events table, 474

calendars

alternative, 489

events, adding, 474-482

HTML forms, building,
469-470

libraries, creating, 483-488

tables, creating, 471-474

user input, 467-468

CALL command, 355

calling functions, 120-121, 135

Can’t connect to server error
message, 26

canvas area (images), 263

CAPTCHAs, 279

CAs (certification authorities), 577

case sensitivity

comparison operators, 310

constants, 94

functions, 123

XML documents, 543

casting variables, 82-84

622 arrays

ptg8126863

categories (online storefront items),
displaying, 441-444

cat_desc field (store_categories
table), 438

cat_id field (store_items table), 438

cat_title field (store_categories
table), 438

certificates (digital), 577

chaining, 577

key pairs, creating, 582-583

self-signed, creating, 584

signing, 577

signing requests, 583-584

testing, 577

X.509, 577-578

certification authorities (CAs), 577

CGI errors, logging, 515

CHAR_LENGTH() function, 323

CHARACTER_LENGTH() function, 323

characters

files, reading, 243-244

names, 345

sets, 528

multibyte, 528

MySQL installation, 24

single-byte, 528

unrecognizable
characters, 529

CHAR(M) data type, 300

CHARSET variable, 532

charts (pie), 267-270

3D, 269-270

dynamic data, 281

slices, 268

$check_res variable, 379

checkdate() function, 185, 468

checkout actions (shopping carts),
463-464

checkout forms (shopping
carts), 463

children (XML documents), 542

ciphertext, 574

classes

date_pulldown, 483, 487-488

defined, 150

inheritance, 155

properties

accessing with object
methods, 153

values, modifying, 154

clauses

LIMIT, 307

ON, 313

ORDER BY

date/time functions, 333

DELETE command, 321

SELECT command, 305

WHERE, 308

BETWEEN operator, 309

comparison operators, 308

LIKE operator, 309

logical operators, 309

clean builds (Apache), 56

cleaning up strings

ltrim() function, 174

rtrim() function, 173

strip_tags() function, 174

trim() function, 173

CLF (Common Log Format), 512

clients

access control, 498

authentication, 492-493

requests, tracking, 50

closing files, 239

code blocks

brackets, 116

echo statements, 114

HTML mode, returning, 115

code snippets, 520

CodeIgniter, 616-617

collision resistant message
digests, 576

colors (images)

allocating, 263

background, 263

fills, 266

RGB values, 262

column command, 252-253

columns_priv tables, 29

combined assignment operators,
88-89

commands

Apache, 51-53

BEGIN, 352

CALL, 355

certificate signing requests, 583

column, 252-253

COMMIT, 350-352

CREATE TABLE, 301-302

DELETE, 320-321

conditional, 321-322

MySQL privileges, 33

ORDER BY clause, 321

subqueries, 315

EXPLAIN, 594

FLUSH, 595-596

FLUSH HOSTS, 596

FLUSH LOGS, 596

FLUSH PRIVILEGES, 33, 595

FLUSH TABLES, 596

GRANT, 31-32

INNER JOIN, 312

INSERT, 303-304

authorized user tables,
creating, 502

MySQL users, adding, 31

syntax, 302

JOIN, 312

key pairs, creating, 582

kill, 52

LEFT JOIN, 313-314

ln, 558

make

Apache, building, 41

PHP installation, 61

make install, 41, 61

commands 623

ptg8126863

OPTIMIZE, 603

OPTIMIZE TABLE SQL, 593

ps, 27

REPLACE, 319-320

REVOKE, 33

RIGHT JOIN, 314

ROLLBACK, 350-352

running

exec() function, 254-255

passthru() function, 256

system() function, 255

SELECT, 304-305

* symbol, 305

limiting results, 307

ordering results, 305-306

subqueries, 315

syntax, 304

SHOW, 596-597

SHOW COLUMNS, 599

SHOW CREATE TABLE, 599

SHOW DATABASES, 598-599

SHOW GRANTS, 597

SHOW INDEX, 600

SHOW STATUS, 593, 601-602

SHOW TABLE STATUS, 600

SHOW VARIABLES, 601-602

ulimit, 556

UPDATE

conditional, 317

existing values, 318-319

subqueries, 315

tables, 316-317

who, 252

comments, 72-73

COMMIT command, 350-352

Common Log Format (CLF), 512

comparison operators, 90-91

case sensitivity, 310

WHERE clauses, 308

complementary keys, 575

component libraries, 615

CONCAT() function, 323

CONCAT_WS() function, 324

concatenation functions, 322-325

concatenation operators (.), 87-88

concurrent connections, 24

conditional containers, 48-49

conditional DELETE command,
321-322

conditional statements (included
files), 232

conditional updates (tables), 317

confidentiality, 573

public key cryptography, 575-576

symmetric cryptography, 574

configuration files, customizing, 52

configuring

Apache

conditional containers, 48-49

containers, 46-48

directives, 45-46

files, 53-54

installation software, 40-41

per-directory configuration
files, 49-50, 57

script, 40-41

ServerRoot directive, 49

cookies, 215

mail() function, 200-201

PHP, 60-62

php.ini file, 65

SSL, 585

connect_timeout variable, 602

connections

MySQL, 28

MySQL with PHP

closing, 359

creating, 358

errors, 359-361

queries, executing, 360-361

syntax, 358

SSL, 578

status variable, 602

constants, 94-95

constructors

defined, 483

objects, 154

contact forms, 146

containers, 46

conditional, 48-49

defined, 45

directories, 47

files, 47

Limit, 501

LimitExcept, 501

syntax, 47

URLs, 47

virtual servers, 47-48

VirtualHost, 565

content

management systems, 612

negotiation, 558

structure (XML documents), 542

continue statements, 111-112

control information
(certificates), 577

control scripts (Apache), 53

conversion functions, 342-343

conversion specifiers

printf() function, 160-162

string field width, 165-166

converting

string text case, 176-177

timestamps to dates

date() function, 182-184

getdate() function, 180-182

$_COOKIE superglobal, 77

cookies

access restrictions, 502

auth cookie, testing, 506

authorized users tables,
creating, 502-503

login forms, creating, 503

login scripts, creating,
503-505

624 commands

ptg8126863

accessing, 214-215

auth, testing, 506

$_COOKIE superglobal, 215

defined, 213

deleting, 217

disabling, 226

domain field, 214

expiration dates, 214-216

headers, 214

HTTP_COOKIE environment
variable, 215

path field, 214

printing, 215

security, 507

setting, 215

size, 213

viewing, 216

count() function, 144

$count variable, 473

CPUs (MySQL), 589, 603

CREATE privilege (MySQL), 31

CREATE TABLE command, 301-302

crit option (LogLevel directive), 516

cross-platform editors, 536

crowdsourcing services, 536

CURDATE() function, 341

currency, 538

CURRENT_DATE() function, 341

current dates/times, retrieving, 180,
341-343

CURRENT_TIME() function, 341

CURRENT_TIMESTAMP() function,
342

CURTIME() function, 341

customizing. See modifying

CustomLog directive, 514

D
%D format string option (DATE_

FORMAT() function), 337

%D log-formatting directive, 510

D option (httpd/httpd.exe
commands), 52

data

binaries

Apache installation, 39

distributions, 17

outputting, 256

server binary commands,
51-53

integrity (security), 573-576

JSON, 549

API output, 552

formatting, 550-552

Google search output, 552

loading/displaying, 551

output, creating, 553

MySQL

inserting with PHP, 363-367

retrieving with PHP, 367-369

SQL injections, avoiding,
362-363

passing to external applications,
252-253

types, 78

changing, 82-84

date/time, 299-300

defining, 298

numeric, 298-299

standard, 78

string, 300-301

testing, 79-80, 85

XML storage, 553

databases

address books, creating,
387-390

email tables, 389

fax tables, 389

field names, 388

master name tables,
388-389

personal notes tables, 390

telephone tables, 389

custom logs, creating

code snippets, creating,
520-521

database tables,
creating, 519

sample reports, 521-523

dates/times, storing, 187

designing

good, 283-284

process, 292-293

discussion forum tables, creat-
ing, 417-418

file-based authentication,
496-497

information, retrieving, 598-599

InnoDB storage engine, 350

maintenance, 284

normalization, 283, 289

additional forms, 294

first normal forms, 290

flat tables, 289-290

normal forms, 289

redundancy, 290

second normal forms, 291

third normal forms, 291-292

performance, 283

shopping cart tables

adding items to cart,
456-458

cart, viewing, 458-461

checkout actions, 463-464

checkout forms, creating, 463

date items were added to
cart field, 452

fields, 451-453

id fields, 452

item inventory, 465

real-time credit card process-
ing, 453

removing items from cart,
461-462

selections, holding, 452

shipping addresses, 453

databases 625

ptg8126863

storefront integration,
453-456

users, identifying, 452

stored procedures

benefits, 353

calling, 355

creating, 354

defined, 353

syntax, 354

website, 355

storefront tables

categories of items, display-
ing, 441-444

creating, 437-439

field names, 438

items, displaying, 445-447

records, adding, 439-441

store_categories table, 438

store_item_color table, 439

store_item_size table, 439

store_items table, 438

table relationships

many-to-many, 287-288

one-to-many, 286

one-to-one, 285

types, 284

transactions

BEGIN command, 352

COMMIT command, 350-352

defined, 349

displaying versus inserting
data, 355

online storefront example,
351-353

ROLLBACK command,
350-352

syntax, 350-351

website, 351

users, adding/deleting, 497

DATE_ADD() function, 339-341

date_added field (shopping cart
database tables), 452

DATE data type, 299

date_format() function, 343

discussion forum topic lists, 425

options, 337

syntax, 337

date() function, 182-184

files, 236

localization, 538

date_pulldown class, 483, 487-488

date_pulldown library, 483

DATE_SUB() function, 339-341

dates/times

calendars

events, adding, 474-482

HTML forms, building,
469-470

libraries, creating, 483-488

tables, creating, 471-474

user input, 467-468

current, retrieving, 180

data types, 299-300

databases, 187

dates, testing, 185

files, 236

functions, 331

arithmetic, 339-341

conversion, 342-343

current, 341-343

days, 331-333

formatting, 337-339

hours, 336

minutes, 336

months, 333

seconds, 336

weeks, 334-336

years, 334

HH:MM:SS time format, 341

localization, 538

timestamps

converting to dates, 180-184

creating, 184-185

defined, 180

UNIX epoch, 180

website resources, 186

YYYY-MM-DD format, 341

DATETIME data type, 300

day functions, 331-333

day_select() function, 486

DAYNAME() function, 333

DAYOFMONTH() function, 332

DAYOFWEEK() function, 331

DAYOFYEAR() function, 332

db tables, 29

Debian packages, 17

debug option (LogLevel directive),
517

DECIMAL(M,D) data type, 299

declaring

functions, 122-123

objects, 150

properties, 157

variables, 76, 125-126

decrementing integers, 89-90

decryption, 574

define() function, 94-95

defineStrings() function, 533-534

defining functions, 121

delentry.php script, 404-406

DELETE command, 320-321

conditional, 321-322

MySQL privileges, 33

ORDER BY clause, 321

subqueries, 315

DELETE privilege (MySQL), 31

deleting

address book records, 404-406

cookies, 217

database users, 497

directories, 249

files, 238

MySQL privileges, 33-34

session variables, 224

626 databases

ptg8126863

shopping cart items, 461-462

table records, 320-322

tags from strings, 174

whitespace from strings, 173

Denial of Service (DoS), 563

Deny directive (access rules), 497

Deny,Allow argument (Order
directive), 499

DES algorithm, 574

designing databases

good, 283-284

process, 292-293

destroying sessions, 223-224

die() function, 239

digest algorithms, 493, 576

digest authentication, 492

digital certificates, 577

chaining, 577

key pairs, creating, 582-583

self-signed, creating, 584

signing, 577

signing requests, 583-584

testing, 577

X.509, 577-578

directives

\ (backslashes), 45

(pound sign), 45

AccessFileName, 49

AddCharset, 530

AddLanguage, 530

Allow, 497

AllowOverride, 50

arguments, 45

AuthDBMGroupFile, 496

AuthDBMUserFile, 496

authentication, 493-494

AuthGroupFile, 495

AuthName, 493

AuthType, 493

AuthUserFile, 495

CacheFile, 561

containers, 46-49

CustomLog, 514

defined, 45

Deny, 497

documentation, 46

ErrorLog, 515

flag, 65

HostNameLookups, 512

IdentityCheck, 513

include_path, 233

KeepAliveTimeout, 563

Listen, 54, 565

LoadModule, 585

LogFormat, 512-514

log-formatting, 510-511

LogLevel, 516-517

MMapFile, 561

NameVirtualHost, 566

Options

mass virtual hosting, 569

parameters, 558

Order, 499-500

overriding, 50

php.ini file, 65

Require, 494

Satisfy, 500

ScoreBoardFile, 559

ScriptAlias, 569

ServerAlias, 567

ServerName

configuration files,
checking, 54

validity, 57

ServerRoot, 49

SSLCertificateFile, 585

SSLCertificateKeyfile, 585

SSLEngine, 585

syntax, 45-46

TimeOut, 563

TransferLog, 514

value, 65

VirtualDocumentRoot, 568

VirtualDocumentRootIP, 569

VirtualScriptAlias, 569

VirtualScriptAliasIP, 569

website, 46

directories

creating, 248-249

deleting, 249

directives, applying, 47

file/directory conformation,
validating, 234

listing (UNIX), 254

opening, 249

per-directory configuration files,
49-50, 57

PHP, 64

reading, 249-251

source files, 60

subdirectories, 592

usr/local/apache2, 41

usr/local/php/lib, 65

usr/local/src, 60

usr/src, 60

<Directory> container, 47

<DirectoryMatch> container, 47

disabling

cookies, 226

per-directory configuration
files, 50

discussion forums

database tables, creating,
417-418

included files, 418-419

multiple, creating, 434

posts

adding, 430-433

displaying, 426-429

first entry, creating, 420-422

topics

lists, displaying, 423-426

form, creating, 419

script, creating, 420-422

discussion forums 627

ptg8126863

$_display_block strings, 399

display scripts (localized), 534

displaying

address book records, 398-404

cookies, 216

discussion forum topic lists,
423-426

form URL values, 210

JSON data, 551

multiple spaces (HTML), 163

MVC pattern, 612

object properties, 152

online storefront

categories of items, 441-444

items, 445-447

posts (discussion forums),
426-429

shopping cart items, 458-461

distribution files, 41, 63

division operators (/), 87

DNS

reverse lookups, 512

round-robin, 565

virtual hosting, 564

do while loops, 107-108

Document Object Model (DOM), 544

documents

formatting as text, 163

included files, 229-231

calling twice, 233

conditional statements, 232

loops, 232

performance, 257

portability, 233

return values, 231

XML, 541-543

capabilities, 543

case sensitivity, 543

children, 542

content structure, 542

parsing with DOM functions,
544-546

parsing with SimpleXML
functions, 546-549

prologs, 541

root elements, 542

sample, 542

tags, 543

XML specification, 542

doDB() function, 375, 379

dollar signs ($), variable names, 76

DOM (Document Object Model),
544-546

domain fields (cookies), 214

domain names, 498

domexample.php, 546

DoS (Denial of Service), 563

double argument (HostNameLookups
directive), 512

double data types, 79

DOUBLE(M,D) data type, 299

downloading

Apache source code, 39

CakePHP, 616

CodeIgniter, 617

MySQL, 16

PHP distribution files, 63

XAMPP installation, 8

Zend Framework, 615

drawing images

background colors, 263

canvas area, 263

colors, 263

custom fonts, 279-280

from existing images, 271-273

ImageColorAllocate()
function, 263

ImageCreate() function, 263

lines, 264-265

pie charts, 267-270, 281

scripts, 278-280

shapes, 264-265

transparent, 272-273

user input, 273-277

x-axis coordinates, 264

y-axis coordinates, 264

DROP privilege (MySQL), 31

Drupal website, 612

E
%e format string option (DATE_

FORMAT() function), 337

%e log-formatting directive, 510

each() function, 144

echo() function, 120

echo statements, 114

multidimensional arrays, 144

PHP scripts, 70

ellipses (…)

color fills, 266

drawing, 264

else clauses, 100-101

elseif clauses, 101-102

email

feedback forms

creating, 201-202

formatting, 205

sending, 202-203

fields (subscribers tables), 374

HTML formatting, 205

sending, 200-201

tables (online address
books), 389

emailChecker() function, 375, 379

emerg option (LogLevel
directive), 516

encryption

keys, 574

passwords, 495

public key cryptography, 575-576

symmetric cryptography, 574

ENCTYPE argument (file upload
forms), 207

ending

sessions, 223-224

statements, 68-70

tags, 68-70, 73

628 $_display_block strings

ptg8126863

ENUM data type, 301

$_ENV superglobal, 78

environment modifications (interna-
tionalization)

Apache configuration
changes, 530

MySQL configuration
changes, 531

PHP configuration changes, 530

environment variables

access control, 498

HTTP_COOKIE, 215

PATH, 64

equal signs (=)

assignment operators, 77, 86

equivalence operators), 90

identical operators (===), 91

equal to operator (=), 308

equivalence operators (==), 90

error option (LogLevel directive), 517

ErrorLog directive, 515

errors

logging

Apache, 51

files, 515

importance levels, 516-517

monitoring, 519

programs, 516

UNIX syslog daemon, 516

messages

Access denied, 26

Can’t connect to server, 26

MySQL privilege authentica-
tion, 29

MySQL/PHP
connections, 361

escapeshellarg() function, 256

escapeshellcmd() function, 256

escaping

string quotation marks, 113

user input elements, 256

etc/passwd files, 507

evaluating

access control rules, 499-500

application frameworks, 614

events (calendar), adding, 474-482

exclamation points (!), 92

exec() function, 254-255

executability, 235

exit statements, 200

expiration dates (cookies), 214-216

EXPLAIN command, 594

explode() function, 179

expressions, 85-86

Extensible Markup Language.
See XML

extensions (PHP), 609

external applications, passing data,
252-253

external processes, 557

extracting portions of strings, 171

F
%f log-formatting directive, 511

f option (httpd/httpd.exe
commands), 52

fax tables (online address
books), 389

fcose() function, 239

feedback forms

creating, 201-202

emailing, 202-203

formatting, 205

feof() function, 240-241

fgetc() function, 243-244

fgets() function, 240-241

field width specifiers (strings),
164-166

fields (online storefront database
tables), 438-439

fifth normal forms, 294

$file_array variable, 209

file-based authentication, 495-496

$file_dir variable, 209

file_exists() function, 234

file_get_contents() function,
244-245, 551

$file_name variable, 209

file_put_contents() function, 246-247

FILE privilege (MySQL), 31

file system access settings, 558-559

fileatime() function, 236

filectime() function, 236

filemtime() function, 236

files

Apache configuration

conditional containers, 48-49

containers, 46-48

directives, 45-46

per-directory configuration
files, 49-50, 57

ServerRoot directive, 49

Apache log, 50-51

appending, 239, 245-246

closing, 239

configuration, 52-54

content negotiation, 558

creating, 238

date/time information, 236

deleting, 238

descriptors, 556

directives, applying, 47

distribution, 41

error logs, 515

etc/passwd, 507

executability, 235

existence, checking, 234

file/directory confirmation,
validating, 234

groups, 495

htaccess, 49

httpd.conf, 45

included, 229-231

calling twice, 233

conditional statements, 232

files 629

ptg8126863

discussion forums, creating,
418-419

loops, 232

mailing lists, 375

online address books,
creating, 390-391

performance, 257

portability, 233

return values, 231

INSTALL, 18

language definition, 531-532

locking, 247-248

logging to, 514

makefiles, 40

mapping to memory, 561

my.cnf, 592

navigating, 242

opening, 238, 258

per-directory configuration,
49-50, 57, 558

PHP distribution, 63

php.ini, 65, 381

phpinfo.php, 65

reading, 235, 239

arbitrarily, 241-243

characters, 243-244

entire contents, 244-245

line by line, 240-241

popen() function, 251

README, 18

robots.txt, 564

scoreboard, 559

size, determining, 235-236

source, directories, 60

status, checking, 235

string definition, 533

testing, 236-238

translation catalog, 536

upload forms

$_FILES superglobal, 206

creating, 207

scripts, creating, 208-209

size, 211

upload names, 209

users, back-end storage, 495

writing, 235, 239

file_put_contents() function,
246-247

fopen() function, 245

fwrite() function, 246

<Files> container, 47

$_FILES superglobal, 78, 206

filesize() function, 235-236

<FilesMatch> container, 47

fills (images), 266

finding

error logs, 515

PHP text editors, 68

string lengths, 169

substrings, 170-171

first normal forms, 290

flag directives, 65

flat tables, 289-290

FLOAT(M,D) data type, 299

floating data types, 79

flock() function, 247-248

flow control

code blocks114-116

loops, 105

breaking, 109-111

do while, 107-108

for, 108-109

foreach, 143, 209

included files, 232

infinite, 108

iterations, 106

nesting, 112-113

skipping iterations, 111-112

while, 106-107, 252, 429

MVC pattern, 613

switching flow

if else statements, 100-101

if elseif statements, 101-102

if statements, 100

switch statements, 103-104

ternary operators, 105

FLUSH command, 595-596

FLUSH HOSTS command, 596

FLUSH LOGS command, 596

FLUSH PRIVILEGES command,
33, 595

FLUSH TABLES command, 596

FollowSymLinks parameter, 558

fonts

custom, 279-280

images, 275

fontWrap() function, 132

fopen() function, 238, 245

for statements, 108-111

foreach() function, 144

foreach loops, 143, 209

foreign languages. See localization

formatting

date/time functions, 337-339

documents, 163

email to HTML, 205

JSON data, 552

locale selections, 536

logging

CLF (Common Log Format),
512

defining, 512

directives, 510-511

host name lookups, 512

identity checks, 513

status codes, 513

strings

argument swapping, 167-168

field width specifiers,
164-166

printf() function, 160-164

storing, 168

forms

checkout (shopping carts), 463

feedback

creating, 201-202

630 files

ptg8126863

emailing, 202-203

formatting, 205

file uploads, 206

$_FILES superglobal, 206

creating, 207

scripts, creating, 208-209

size, 211

hidden fields, 197-198

HTML

accessing input via arrays,
191-194

calendar, building, 469-470

creating, 189-191

input, reading, 190

PHP combination, 194-196

input, 419

redirecting users, 198-200

server headers, 198

subscribe/unsubscribe, 376-381

URL values, viewing, 210

user login, 503

forum_posts table, 418

forum_topics table, 418

forward slashes (//), 72

fourth normal forms, 294

fputs() function, 246

FQDN (fully qualified domain name),
565, 582

frameworks (application)

benefits, 611

CakePHP, 616

choosing, 614

CodeIgniter, 616-617

content management
systems, 612

defined, 611

evaluating, 614

MVC pattern, 612-614

Symfony, 614

Wikipedia listing of, 614

Yii, 614

Zend, 615

fread() function, 241-243

From headers (email), 200, 203

FROM_UNIXTIME() function, 342

fseek() function, 242-243

fully qualified domain name (FQDN),
565, 582

function_exists() function, 133

function statement, 121

functions. See individual function
names

fwrite() function, 246

G
GD graphics library, 262

Get Localization, 536

GET method (forms), 191

$_GET superglobal, 77

getdate() function, 180-182, 468

gettext() function, 536-537

gettext package (GNU), 536

gettype() function, 83

getYearEnd() function, 485

getYearStart() function, 485

giftopnm shell utility, 256

global statement

global variables, accessing, 127

variable values, remembering
between calls, 129-130

global variables, 77, 127

gmdate() function, 184

GNU gettext package, 536

GRANT command, 31-32

greater than (>) operators, 91, 308

greater than or equal to (>=) opera-
tors, 91, 308

group settings (Apache), 56

groups file (back-end storage), 495

gunzip utility, 17, 40

H
%H format string option (DATE_

FORMAT() function), 337-338

%h log-formatting directive, 510-511

hard drives, MySQL optimization, 590

hardware load balancers, 562

Hash Message Authentication Code
(HMAC), 576

hashes, 503

header() function

cookies, setting, 215

document formatting, 163

redirecting users (forms),
198-200

headers

cookies, 214

From

email, 203

outgoing email, 200

messages (localization), 528-529

Reply-to, 203

request, 566

User-Agent, 498

heredoc, 378

HH:MM:SS time format, 341

hidden fields (forms), 197-198

HMAC (Hash Message Authentication
Code), 576

host tables, 29

hosting (virtual)

DNS, 564

IP-based, 564-565, 570

mass, 568-569

name-based, 564-570

HostNameLookups directive,
512, 559

hostnames

lookups, 512

resolving, 517

HOUR() function, 336

hour functions, 336

.htaccess files, 49, 558

htdbm utility, 497

htdocs subdirectory, 65

htdocs subdirectory 631

ptg8126863

HTML (Hypertext Markup Language)

calendar form, building, 469-470

code blocks, 115

email, formatting, 205

feedback forms

creating, 201-202

emailing, 202-203

formatting, 205

file upload forms

$_FILES superglobal, 206

creating, 207

scripts, creating, 208-209

size, 211

forms

accessing input via arrays,
191-194

creating, 189-191

input, reading, 190

PHP combination, 194

multiple spaces, displaying, 163

PHP combination, 71-72

PHP combination forms

calling itself, 194

hidden fields, 197-198

number-guessing script,
195-196

redirecting users, 198-200

server headers, 198

XML, compared, 541

htpasswd utility, 495

htpasswd.exe utility, 495

HTTP (Hypertext Transfer Protocol)

1.1, 566

access, limiting, 501

headers, 562

requests, logging, 509

files, 514

formatting, 510-512

host name lookups, 512

identity checks, 513

images, 514

status codes, 513

secure, 574

httpd binary, 51

httpd.conf file, 45

httpd.exe command, 51

httpd.pid file, 51

Hypertext Markup Language.
See HTML

Hypertext Transfer Protocol.
See HTTP

I
%i format string option (DATE_

FORMAT() function), 338

%i log-formatting directive, 511

I option (httpd/httpd.exe
commands), 52

id fields

shopping cart database
tables, 452

store_categories table, 438

identd protocol, 513

identical operators (===), 91

IdentityCheck directive, 513

IETF (Internet Engineering Task
Force), 574

if statements

code listing, 100

comparison operators, 90

else clause, 100-101

elseif clause, 101-102

number-guessing script, 196

redirecting users (forms), 200

<IfDefine> container, 48

<IfModule> container, 48

ImageArc() function, 264

ImageColorAllocate() function, 263

ImageCreate() function, 263, 279

ImageCreateFromGif() function, 271

ImageCreateFromJpg() function, 271

ImageCreateFromPng() function, 271

ImageDestroy() function, 279

ImageEllipse() function, 264

ImageFilledArc() function, 266-268

ImageFilledEllipse() function, 266

ImageFilledPolygon() function, 266

ImageFilledRectangle() function, 266

ImageGif() function, 265

ImageJpeg() function, 265

ImageLine() function, 264

imageloadfont() function, 275, 279

ImagePng() function, 265, 279

ImagePolygon() function, 264

ImageRectangle() function, 264

images

colors

allocating, 263

background, 263

fills, 266

RGB values, 262

creating

custom fonts, 279-280

from existing images,
271-272

PHP, 261

scripts, 278-280

user input, 273-277

drawing

canvas area, 263

from existing images, 273

functions, 271

ImageColorAllocate()
function, 263

ImageCreate() function, 263

lines, 264-265

shapes, 264-265

transparent, 272-273

x-axis coordinates, 264

y-axis coordinates, 264

fonts, 275

GD graphics library, 262

JPEG libraries, 263

logging, 514, 524

online storefronts, 438, 448

632 HTML (Hypertext Markup Language)

ptg8126863

pie charts, 267

3D, 269-270

dynamic data, 281

slices, 268

PNG libraries, 263

predefined constants, 268

RGB color values, 262

stacking, 272-273

zlib library, 263

imagestring() function, 273, 277-279

imagettftext() function, 275, 279

IMAP (Internet Message Access
Protocol), 574

include_once statements, 233

include_path directive, 233

include statements, 229-230

conditional statements, 232

loops, 232

performance, 257

return values, 231

included files, 229-230

calling twice, 233

conditional statements, 232

discussion forums, creating,
418-419

loops, 232

mailing lists, 375

online address books, creating,
390-391

performance, 257

portability, 233

return values, 231

incorrect permissions (MySQL
installation), 26

incrementing integers, 89-90

INDEX privilege (MySQL), 31

index strings, 169

infinite loops, 108

info option (LogLevel directive), 517

inheritance (objects), 155-156

INNER JOIN command, 312

InnoDB storage engine, 350

input (users)

calendars, 467-468

elements, escaping, 256

forms, 189-194

images, creating, 273-277

input forms

accessing input via arrays,
191-194

creating, 189-191

discussion forums, creating, 419

input, reading, 190

input scripts, 420-422

INSERT command, 303-304

authorized user tables,
creating, 502

MySQL users, adding, 31

syntax, 302

INSERT privilege (MySQL), 31

INSERT statements (MySQL data
with PHP), 363

INSTALL files (MySQL), 18

installation

Apache

binary, 39

Linux/UNIX, 39-42

Mac, 42

methods, selecting, 38

source code, 38

versions, 37-38

Windows, 42-44

CakePHP, 616

CodeIgniter, 617

mod ssl module

UNIX/Linux, 581-582

Windows, 580

MySQL

file downloads, 16

Linux/UNIX, 16-18

Mac, 18-20

troubleshooting, 26-27

versions, 15-16

Windows, 20-26

OpenSSL library

UNIX/Linux, 580

Windows, 579

PHP

help, 66-67

Linux/UNIX with Apache,
60-62

Mac, 63

testing, 65-66

versions, 59-60

Windows, 63-64

third-party packages, 5-6

XAMPP

Linux/UNIX, 6-8

Mac OS X, 11-13

troubleshooting, 14

Windows, 8-11

Zend Framework, 615

instruction terminators, 76

INT data type, 298

integers, 79, 89-90

integrating PHP with Apache

Linux/UNIX, 62-63

Windows, 64

internal caches (MySQL), 595-596

internationalization

character sets

header messages, 528-529

multibyte, 528

single-byte, 528

unrecognizable
characters, 529

content translation,
compared, 527

defined, 527

environment modifications

Apache, 530

MySQL, 531

PHP, 530

gettext() function, 536-537

key aspects, 527

locales, 528

internationalization 633

ptg8126863

localized page structures, 534

language definition file,
531-532

language selector, 535

locale selection formats, 536

string definition file, 533

Internet Engineering Task Force
(IETF), 574

Internet Message Access Protocol
(IMAP), 574

IP addresses

access control, 497

reverse DNS lookups, 512

IP-based virtual hosting,
564-565, 570

irreversible message digests, 576

is_* functions, 79

is_dir() function, 234

is_executable() function, 235

is_file() function, 234, 238

is_readable() function, 235

is_uploaded_file() function, 209

is_writable() function, 235

isset() function, 468

issuers (certificates), 577

item_desc field (store_items
table), 438

item_image field, 438, 448

item_price field (store_items
table), 438

item_title field (store_items
table), 438

iterations (loops)

defined, 106

skipping, 111-112

J
%j format string option (DATE_

FORMAT() function), 337

JavaScript Object Notation. See JSON

JOIN command, 312

Join-Projection normal forms, 294

joining tables, 312-314

Joomla website, 612

JPEG libraries, 263

JSON (JavaScript Object
Notation), 549

API output, 552

formatting, 550-552

Google search output, 552

loading/displaying, 551

output, creating, 553

Parser, 550

website, 550

json_decode() function, 551-553

json_dump.php, 551

json_encode() function, 553

K
%k format string option (DATE_

FORMAT() function), 338

KeepAlivetimeout directive, 563

key_buffer_size parameter, 592

key_read_requests parameter, 593

key_reads parameter, 593

key_write_requests parameter, 593

key_writes parameter, 593

keys

arrays, 140

encryption

pairs, creating, 582-583

public key cryptography,
575-576

symmetric cryptography, 574

public, 577

keywords

BINARY, 310

public, 151

kill command, 52

L
%l format string option (DATE_

FORMAT() function), 338

%l log-formatting directive, 510

LANGCODE variable, 532

language definition file, 531-532

language selectors (localization), 535

LCASE() function, 329

LDAP (Lightweight Directory Access
Protocol), 493

leading spaces (padding
specifiers), 163

LEFT() function, 328

LEFT JOIN command, 313-314

LENGTH() function, 323

lengths

functions, 322-325

names, 345

shopping cart database table
fields, 452

strings, finding, 169

less than (<) operators, 91, 308

less than or equal to (<=) operators,
91, 308

levels (error logging), 516-517

lib subdirectory, 65

libraries

calendar, creating, 483-488

component, 615

date_pulldown, 483

GD graphics, 262

JPEG, 263

OpenSSL

UNIX/Linux installation, 580

website, 579

Windows installation, 579

PHP Extension Community
(PECL), 609

PNG, 263

SSLeay, 579

zlib, 263

licenses (Apache), 43

Lightweight Directory Access
Protocol (LDAP), 493

LIKE operator, 309

<Limit> container, 501

LIMIT clause, 307

<LimitExcept> container, 501

634 internationalization

ptg8126863

limiting access. See restricting
access

lines, drawing, 264-265

links (symbolic), 558

Linux

Apache

installation, 39-42

modifications, 609

starting, 54

upgrading, 608

apachectl utility, 53

httpd binary, 51

mod ssl module, installing,
581-582

MySQL

installation, 16-18

upgrading, 607

OpenSSL, installing, 580

PHP

installation with Apache,
60-62

Apache integration, 62-63

php.ini file, 65

server processes, 556

XAMPP installation, 6-8

list() function, 144

Listen directive, 54, 565

listening addresses, 54

lists (user), accessing, 494

“Little Bobby Tables” comic
strip, 362

ln command, 558

load distribution, 562

load testing, 559-561

LoadModule directive (SSL
configuration), 585

local variables, 77

locales

defined, 528

selection formats, 536

localization

character sets

header messages, 528-529

multibyte, 528

single-byte, 528

unrecognizable
characters, 529

environment modifications

Apache configuration
changes, 530

MySQL configuration
changes, 531

PHP configuration
changes, 530

flags for language
selections, 535

gettext() function, 536-537

internationalization, 527

locales

defined, 528

selection formats, 536

numbers/dates/currency, 538

page structures

language definition file,
531-532

language selector, 535

locale selection formats, 536

string definition file, 533

welcome script, 534

LOCATE() function, 327

<Location> container, 47

location functions, 327

<Locationmatch> container, 47

locking files, 247-248

LogFormat directive, 512-514

logging

analysis, 518

Apache

access, 50

error, 51

httpd.pid file, 51

scoreboard file, 51

custom

code snippets, creating,
520-521

database tables,
creating, 519

sample reports, 521-523

errors

files, 515

importance levels, 516-517

monitoring, 519

programs, 516

UNIX syslog daemon, 516

files, 514

formatting

CLF (Common Log
Format), 512

defining, 512

directives, 510-511

host name lookups, 512

identity checks, 513

status codes, 513

hostname resolution, 517

images, 514, 524

programs, 515

request logs, 509

rotation, 518

logical operators, 91-92, 309

login forms, 503

login scripts, 503-505

LogLevel directive, 516-517

logresolve utility, 517

logresolve.exe utility, 517

LONGBLOB data type, 301

LONGTEXT data type, 301

loops, 105

breaking, 109-111

do while, 107-108

for, 108-109

foreach

file upload forms, 209

multidimensional arrays, 143

loops 635

ptg8126863

included files, 232

infinite, 108

iterations

defined, 106

skipping, 111-112

nesting, 112-113

while, 106-107

discussion forum posts,
displaying, 429

popen() function, 252

LPAD() function, 326

ltrim() function, 174, 325

M
%M format string option (DATE_

FORMAT() function), 337

%m format string option (DATE_
FORMAT() function), 337

%m log-formatting directive, 511

Mac installations

Apache, 42

MAMP package, 5

MySQL, 18-20

PHP, 63

XAMPP, 11-13

MacPorts website, 63

MACs (message authentication
codes), 576

mail() function, 384

parameters, 203

system configuration, 200-201

mailing lists

bounced messages, 385

mailing mechanisms, 381-384

MySQL, 27

PHP, 67

server burden, easing, 385

subscription mechanisms

include files, creating, 375

subscribers table,
creating, 374

subscription forms, creating,
376-381

mailing mechanisms, 381-384

maintenance

databases, 284

releases, 606

make command

Apache, building, 41

PHP installation, 61

make install command, 41, 61

makefiles (Apache installations), 40

MAMP installation package, 5

managing

logs, 517-519

users

authentication, 494

database file-based authenti-
cation, 497

file-based authentication, 495

many-to-many table relationships,
287-288

many-to-one mappings (DNS virtual
hosting), 564

mapping files, 561

masks (network), 498

mass virtual hosting, 568-569

master name tables (online address
books), 388-389, 399-401

max_connections variable, 602

max_used_connections status
variable, 602

MD5 algorithm, 576

meaningOfLife() function, 127

MEDIUMBLOB data type, 301

MEDIUMINT data type, 298

MEDIUMTEXT data type, 301

memory

files, mapping, 561

MySQL optimization, 590

menus (online address books), 391

message authentication codes
(MACs), 576

message digests, 576

methods

defined, 150

GET, 191

HTTP, 501

objects, 153-154

POST, 190-191

migrating name-based virtual
hosts, 570

MINUTE() function, 336

minute functions, 336

mkdir() function, 248-249

mktime() function, 184-185

calendar libraries, creating, 485

calendar user input, 468

MMapFile directive, 561

mod_auth_dbm module, 496-497

mod_auth module, 495-496

mod_authz_host module

access rules

evaluating, 499-500

implementing, 497-498

clients, 498

domain names, 498

environment variables, 498

IP addresses, 497

mod cache module, 562

mod deflate module, 563

mod file cache module, 561

mod ssl module, 579-582

mod status module, 559

Model View Controller. See MVC
pattern

modifying

Apache

installations, 44

without upgrading, 608

class properties with object
methods, 154

configuration files, 52

data types

casting, 82-84

settype() function, 81-82

environment internationalization
configuration changes,
530-531

636 loops

ptg8126863

images, 271-273

logs

code snippets, creating,
520-521

database tables,
creating, 519

sample reports, 521-523

object properties, 152

string text case, 176-177

strings, 329-330

tables

conditional DELETE
command, 321-322

DELETE command, 320-321

REPLACE command, 319-320

UPDATE command, 316-319

modules

authentication

back-end storage, 494

denying access, 494

directives, 493-494

mod_auth, 495-496

mod_auth_dbm, 496-497

user management, 494

mod_auth_dbm, 496-497

mod_auth, 495-496

mod_authz_host

clients, 498

domain names, 498

environment variables, 498

evaluating access rules,
499-500

implementing access rules,
497-498

IP addresses, 497

mod cache, 562

mod deflate, 563

mod file cache, 561

mod ssl, 579-582

mod status, 559

storage, 494

modulus operators (%), 87

Mojibake, 529

monitoring error logs, 519

MONTH() function, 333

month functions, 333

month_select() function, 487

MONTHNAME() function, 333

$months variable (calendar
libraries), 483

move_uploaded_file() function, 209

MPMs (Multi-Processing Module),
48, 556

multibyte character sets, 528

multibyte strings website, 530

multidimensional arrays

creating, 142-144

dimensions, 146

multiline comments, 72

multiple functions, 345

multiple spaces (HTML),
displaying, 163

multiple tables, selecting, 310-312

multiplication operators (*), 87

Mutual-Failure argument (Order
directive), 500

MVC (Model View Controller)
pattern, 612-614

my.cnf file, 592

my-huge.cnf configuration file, 592

my-large.cnf configuration file, 592

my-medium.cnf configuration
file, 592

my-small.cnf configuration file, 592

MySQL

Announcements list website, 605

Configuration wizard, 22

character sets, 24

completing, 25

concurrent connections, 24

database usage, 23

networking options, 24

security, 25

server types, 23

as service, 25

connections, 28

CREATE TABLE command,
301-302

data

inserting with PHP, 363-367

retrieving with PHP, 367-369

SQL injections, avoiding,
362-363

data types

date/time, 299-300

defining, 298

numeric, 298-299

string, 300-301

date/time functions

arithmetic, 339-341

conversion, 342-343

current, 341-343

days, 331-333

formatting, 337-339

hours, 336

minutes, 336

months, 333

seconds, 336

storing, 187

weeks, 334-336

years, 334

DELETE command, 320-321

field names, 324

InnoDB storage engine, 350

INSERT command, 302-304

installation

file downloads, 16

Linux/UNIX, 16-18

Mac OS X, 18-20

troubleshooting, 26-27

versions, 15-16

Windows, 20-26

internationalization configuration
changes, 531

mailing list, 27

Manual website

date/time functions, 331

MySQL 637

ptg8126863

EXPLAIN command, 595

FLUSH command, 596

JOINs, 314

language-related
elements, 531

MySQL privileges listing, 31

optimization, 590

problems and errors, 26

SHOW command, 597

SHOW STATUS command,
602

SHOW VARIABLES
command, 602

startup options, 592

stored procedures, 355

subqueries, 315

transactions, 351

multiple CPUs, 603

multiple functions, 345

obtaining, 16

optimization, 589

benchmarking, 590-591

databases/table information,
retrieving, 598-599

internal caches, 595-596

queries, 594-595

SHOW command, 596-597

startup options, 591-593

system status, retrieving,
601-602

table structures, 593, 599-
601

websites, 590

performance blog, 590

PHP connections

closing, 359

creating, 358

errors, 359-361

queries, executing, 360-361

syntax, 358

PHP functions, 369

privilege system

adding, 31-33

authentication, 29-31

overview, 28-29

removing, 33-34

tables, 29

queries, executing with PHP,
360-361

REPLACE command, 319-320

running as root, 27, 34

security, 27-28

SELECT command, 304-305

* symbol, 305

limiting results, 307

ordering results, 305-306

subqueries, 315

syntax, 304

Setup wizard, 21

stored procedures, 353-355

string functions

concatenation, 322-325

length, 322-325

location, 327

modification, 329-330

padding, 326-327

position, 327

substring, 328-329

trimming, 325

tables

joining, 312-314

multiple, selecting, 310-312

transactions

BEGIN command, 352

COMMIT command, 350-352

defined, 349

displaying versus inserting
data, 355

online storefront example,
351-353

ROLLBACK command, 350-
352

syntax, 350-351

website, 351

UPDATE command, 316-319

upgrading, 607

WHERE clauses, 308-309

Workbench website, 589

mysqli_* functions, 357

mysqli_close(), 359

mysqli_connect_error(), 359

mysqli_error(), 361

mysqli_fetch_arrays(), 368

mysqli_free_result(), 368

mysqli_insert_id(), 397, 422

mysqli_num_rows(), 367-368

mysqli_query(), 361

mysqli_real_escape_string(), 397

N
\n (newline characters), 113

name-based virtual hosting, 564-569

IP-based virtual hosting
combination, 570

listing, 567

migrating, 570

request headers, 566

ServerAlias directive, 567

SSL support, 586

$name variable, 483

names

characters, 345

constants, 94

domain, 498

error logs, 515

functions, 122-123

length, 345

tables, 301

uploaded files, 209

variables, 76, 96

NameVirtualHost directive, 566

navigation

breadcrumb trails, 447

files, 242

nesting loops, 112-113

Network Information Services
(NIS), 493

638 MySQL

ptg8126863

Network News Transfer Protocol
(NNTP), 574

Network Solutions website, 584

networks

masks, 498

MySQL installation options, 24

settings, 559, 563

newline characters (\n), 113

NIS (Network Information
Services), 493

nl2br() function, 177

NNTP (Network News Transfer
Protocol), 574

nonequivalence operators (!=), 90

normal forms, 289

additional forms, 294

first, 290

second, 291

third, 291-292

normalization, 283

flat tables, 289-290

normal forms, 289

additional forms, 294

first, 290

second, 291

third, 291-292

redundancy, 290

not equal to operator (!=), 308

not operators (!), 92

notice option (LogLevel
directive), 517

now() function, 341-342, 421

NULL data types, 79

number_format() function, 538

number-guessing script, 195-196

numberedHeading() function, 129

numbers, localization, 538

numeric data types, 298-299

O
%o log-formatting directive, 511

object-oriented programming
(OOP), 149

objects, 79

constructors, 154

creating, 150-151

declaring, 150

inheritance, 155-156

methods, 153-154

properties, 151-153

declaring, 157

modifying, 152

public keyword, 152

viewing, 152

OCTET_LENGTH() function, 323

off argument (HostNameLookups
directive), 512

on argument (HostNameLookups
directive), 512

ON clause, 313

one-to-many mappings (DNS virtual
hosting), 564

one-to-many table relationships, 286

one-to-one mappings (DNS virtual
hosting), 564

one-to-one table relationships, 285

online address books

birthdays, adding, 414

database tables, creating,
387-390

include files, creating, 390-391

menus, creating, 391

records

adding, 392-398

deleting, 404-406

subentries, adding, 406-413

viewing, 398-404

online storefronts

categories of items, displaying,
441-444

database tables

adding records, 439-441

creating, 437-439

field names, 438

store_categories table, 438

store_item_color table, 439

store_item_size table, 439

store_items table, 438

items, displaying, 445-447

shopping carts. See shopping
carts

OOP (object-oriented
programming), 149

opendir() function, 249

opening

directories, 249

files, 238

appending, 239

failures, 258

reading, 239

writing, 239

pipes, 251

OpenSSL library, 579

installing

UNIX/Linux, 580

Windows, 579

website, 579

operands, 85

operating systems

MySQL optimization, 590

performance limitations,
556-557

operators

addition (+), 85

and (&&), 91-92

arithmetic, 86-87

array ([]), 140

assignment (=), 77, 86-89

BETWEEN, 309

combined assignment, 88-89

comparison, 90-91

case sensitivity, 310

WHERE clauses, 308

concatenation (.), 87-88

defined, 85

division (/), 87

equal to (=), 308

equivalence operators (==), 90

operators 639

ptg8126863

greater than operators (>),
91, 308

greater than or equal to opera-
tors (>=), 91, 308

identical operators (===), 91

less than operators (<), 91, 308

less than or equal to operators
(<=), 91, 308

LIKE, 309

logical, 91-92, 309

modulus operators (%), 87

multiplication operators (*), 87

not operators (!), 92

nonequivalence operators
(!=), 90

not equal to operator (!=), 308

operands, 85

or operators (||), 91-92

post-decrement, 89

post-increment, 89

precedence, 92-96

subtraction (-), 87

ternary (?), 105

optimization (MySQL), 589

benchmarking, 590-591

databases/table information,
retrieving, 598-599

internal caches, 595-596

queries, 594-595

SHOW command, 596-597

startup options, 591-593

system status, retrieving,
601-602

table structures, 593, 599-601

websites, 590

OPTIMIZE command, 603

OPTIMIZE TABLE SQL command, 593

optional arguments, setting, 131

options

DATE_FORMAT() function, 337

httpd/httpd.exe binaries, 51

LogLevel directive, 516

Options directive

mass virtual hosting, 569

parameters, 558

or operators (||), 91-92

ORDER BY clause

date/time functions, 333

DELETE command, 321

SELECT command, 305

Order directive

access control rules,
evaluating, 499

Allow,Deny argument, 499

Deny,Allow argument, 499

Mutual-Failure argument, 500

orignum variable (addFive()
function), 132

output

binary data, 256

JSON, creating, 553

processes, reading, 252

output() function, 486

overriding directives, 50

ownership (processes), 27

P
%p format string option (DATE_

FORMAT() function), 338

packages

third-party installation, 5-6

XAMPP

download website, 8

Linux/UNIX, 6-8

Mac OS X, 11-13

security, 13-14

troubleshooting, 14

Windows, 8-11

padding

functions, 326-327

strings, 162-164

padlock icons, 577

parameters

file_put_contents() function, 246

mail() function, 203

MySQL startup, 592

Options directive, 558

parentheses (), subqueries, 315

parsing XML documents

DOM functions, 544-546

SimpleXML functions, 546-549

passing data to external
applications, 252-253

passthru() function, 256

PASSWORD() function, 502

passwords

authentication, 492

encrypting, 495

storing, 496, 507

PATH environment variables, 64

path fields (cookies), 214

PayPal PayFlo, 463

PCRE (Apache) website, 41

PDO (PHP Data Objects) abstraction
layer, 363

PEAR (PHP Extension and
Application Repository), 609

PECL (PHP Extension Community
Library), 609

per-directory configuration files,
49-50, 57, 558

percent signs (%)

conversion specifications,
160-162

log-formatting directives, 510

wildcards, 32

performance

Apache settings, 558-559

databases, 283

included files, 257

load testing, 559-561

operating system limits, 556-557

speed, 570

tuning

abuse prevention, 563-564

caching, 562

640 operators

ptg8126863

load distribution, 562

mapping files to memory, 561

network settings, 563

transmitted data,
reducing, 562

permissions. See privileges

personal notes tables (online
address books), 390, 401

PHP

Announcements list website, 605

Apache integration, 62-64

application frameworks, 614-617

changelog website, 606

code blocks, 614-616

comments, adding, 72-73

constants, 94-95

cookies, deleting, 217

data objects (PDO) abstraction
layer, 363

data, output, 70

data types, 78

changing with casting, 82-84

changing with settype()
function, 81-82

standard, 78

testing, 79-80, 85

dates/times, retrieving, 180

directories

adding to PATH environment
variables, 64

creating, 248-249

deleting, 249

opening, 249

reading, 249-251

distribution files,
downloading, 63

expressions, 85-86

Extension and Application
Repository (PEAR), 609

Extension Community Library
(PECL), 609

extensions, 609

file upload forms, 207

files

appending, 239, 245-246

closing, 239

locking, 247-248

opening, 238

reading, 239

reading arbitrarily, 241-243

reading characters, 243-244

reading entire contents,
244-245

reading line by line, 240-241

writing, 239, 245-247

HTML combination, 71-72

HTML combination forms

calling itself, 194

hidden fields, 197-198

number-guessing script,
195-196

redirecting users, 198-200

server headers, 198

images. See images

included files, 229-230

calling twice, 233

conditional statements, 232

loops, 232

performance, 257

portability, 233

return values, 231

installation

help, 66-67

Linux/UNIX with Apache,
60-62

Mac, 63

testing, 65-66

Windows, 63-64

integers, incrementing/
decrementing, 89-90

internationalization configuration
changes, 530

Linux/UNIX, 62

loops. See loops

mailing lists, 67

Manual website

alternative calendars, 489

arrays, 146

classes, 150

dates/times, 186

DOM, 546

file locking, 248

multibyte strings, 530

predefined image-related
constants, 268

SimpleXML functions, 549

strings, 186

MySQL connections

closing, 359

creating, 358

errors, 359-361

queries, executing, 360-361

syntax, 358

MySQL data

inserting, 363-367

retrieving, 367-369

SQL injections, voiding,
362-363

MySQL functions, 369

php.ini file, 61, 65

scripts, 67

example, 68

start/end tags, 68-70

text editors, 68, 73

statements. See statements

strings

argument swapping, 167-168

arrays, breaking into, 179

case, converting, 176-177

cleaning up, 173-174

field width specifiers,
164-166

indexing, 169

lengths, finding, 169

nesting functions, 187

portions, extracting, 171

portions, replacing, 175

PHP 641

ptg8126863

print() function, 160-164

storing, 168

substrings, finding, 170-171

substrings, replacing,
175-176

tokenizing, 171-173

website resource, 186

whitespace

text wrapping, removing,
177-179

upgrading, 609-610

variables. See variables

versions, 59-60

website, 60, 66

XML, accessing

DOM functions, 544-546

SimpleXML functions,
546-549

php.ini file, 61, 65, 381

phpinfo() function, 65-66

phpinfo.php file, 65

phpMyAdmin interface, 28

pie charts, creating, 267

3D, 269-270

dynamic data, 281

slices, 268

pipe symbols (||), or operators,
91-92

pipes, opening, 251

PNG libraries, 263

pnmscale shell utility, 256

Poedit, 536

Polygons, 264-266

popen() function, 251-253

port values, 54

port variable, 602

portability (included files), 233

ports, binding errors, 55

position functions, 327

post-decrement operators, 89

post-increment operators, 89

POST method, 190-191

$_POST superglobal, 77

posts (discussion forums)

adding, 430-433

displaying, 426-429

first entry, creating, 420-422

pound signs (#)

comments, 72

directives, 45

PHP/Apache integration, 62

ppmtogif shell utility, 256

<pre> tags, 163

precedence (operators), 92-96

precision specifiers (string field
width), 165

predefined constants, 95

predefined image-related
constants, 268

preventing abuse, 563-564

print() function, 70, 120

print_r() function, 551

printBR() function, 123

printf() function

conversion specifications,
160-162

format control string, 160

padding specifiers, 162-164

type specifiers, 161-162

printing cookies, 215

privileges (MySQL)

adding, 31-33

authentication, 29-31

incorrect, 26

overview, 28-29

removing, 33-34

tables, 29

PROCESS privilege (MySQL), 32

processes

output, reading, 252

ownership, 27

processing, 48-49

procs_priv table, 29

product price list, formatting, 166

ProgrammableWeb website, 553

Programs, 515-516

prologs (XML documents), 541

properties

classes, 153-154

defined, 151

objects, 151-153

declaring, 157

modifying, 152

public keyword, 152

viewing, 152

protocols

HTTP. See HTTP

identd, 513

IMAP, 574

LDAP, 493

SSL, 574

authentication, 576-578

certificates. See certificates
(digital)

confidentiality, 574-576

configuring, 585

connections, 578

data integrity, 576

mod ssl module, 580-582

name-based virtual hosting
support, 586

OpenSSL, 579-580

support module, 579

TLS, 574

ps command, 27

public keys (certificates), 574-577

public keyword (object
properties), 151

putenv() function, 537

Q
%q log-formatting directive, 511

queries

MySQL

executing with PHP, 360-361

optimizing, 594-595

642 PHP

ptg8126863

subqueries, 315

tables

conditions, specifying,
308-309

limiting results, 307

ordering results, 305-306

string comparisons, 309

question marks (?), ternary
operators, 105

quotation marks (“”)

MySQL field names, 324

strings, escaping, 113

R
%r format string option (DATE_

FORMAT() function), 338

%r log-formatting directive, 511

RAM disks, 559

RC2 algorithm, 574

RC4 algorithm, 574

readdir() function, 249-251

reading

directories, 249-251

files, 235, 239

arbitrarily, 241-243

characters, 243-244

entire contents, 244-245

line by line, 240-241

popen() function, 251

process output, 252

README files (MySQL
installation), 18

real-time credit card processing
(shopping cart database
tables), 453

realms (authentication), 493

records

online address book

adding, 392-398

birthdays, adding, 414

deleting, 404-406

subentries, adding, 406-413

viewing, 398-404

online storefront database
tables, adding, 439-441

tables

adding, 302-304

conditional deleting, 321-322

conditions, specifying,
308-309

deleting, 320-321

limiting, 307

modifying with REPLACE
command, 319-320

modifying with UPDATE
command, 316-319

ordering, 305-306

retrieving, 304

string comparisons, 309

rectangles, 264-266

redirecting users (forms), 198-200

redundancy (normalization), 290

registered user sessions, 224-225

relationships (tables)

many-to-many, 287-288

one-to-many, 286

one-to-one, 285

types, 284

RELOAD privilege (MySQL), 32

removefromcart.php script, 461-462

removing. See deleting

REPEAT() function, 330

REPLACE command, 319-320

REPLACE() function, 330

replacing

portions of strings, 175

substrings, 175-176

Reply-to headers (email), 203

replytopost.php script, 430-433

reports, 521-523

request headers, 566

request logs, 509

$_REQUEST superglobal, 78

Require directive
(authentication), 494

require_once statements, 234

require statements, 234

reserved constants, 95

reset() function, 145

resolving hostnames, 517

resource data types, 79

restricting access

authentication

authoritative information, 494

back-end storage, 494

browsers, 493

combining with access control
rules, 500

database file-based, 496-497

defined, 491

denying access, 494

directives, 493-494

etc/passwd file, 507

file-based, 495-496

realms, 493

user lists, 494

user management, 494

authorization, 492

cookies, 502-506

HTTP methods, 501

rules, 497-500

resuming sessions, 218-219

retrieving MySQL data with PHP,
367-369

return statements, 124-125, 168

return values (included files), 231

reverse DNS lookups, 512

REVOKE command, 33

RGB color values, 262

RIGHT() function, 328

RIGHT JOIN command, 314

RLimitCPU directive, 557

RLimitMem directive, 557

RLimitNProc directive, 557

rmdir() function, 249

robots, 563

robots.txt files, 564

robots.txt files 643

ptg8126863

ROLLBACK command, 350-352

root elements (XML documents), 542

root users (MySQL), 27, 34

rotatelogs utility, 515, 518

rotatelogs.exe utility, 518

rotating logs, 518

round-robin DNS, 565

RPAD() function, 326

rtrim() function, 173, 325

rules (access control)

clients, 498

combining with
authentication, 500

domain names, 498

environment variables, 498

evaluating, 499-500

implementing, 497-498

IP addresses, 497

security, 500

running commands (with functions),
254-256

S
%s format string option (DATE_

FORMAT() function), 338

%s log-formatting directive, 511

Satisfy directive (access control and
authentication combination), 500

saving form state, 197-198

sayHello() function, 154

scalability

Apache settings, 558-559

load testing, 559-561

operating system limits, 556-557

tuning, 561-564

ScanErrLog, 519

scoreboard files, 51, 559

ScoreBoardFile directive, 559

script tags, 69

ScriptAlias directive (mass virtual
hosting), 569

scripts

addentry.php, 392-396, 409-413

addtocart.php, 456-458

configure

Apache installations, 40-41

PHP, 60

control, 53

delentry.php, 404-406

discussion forums

posts, adding, 430-433

posts, displaying, 426-429

topic listing, 423-425

feedback forms, emailing,
202-203

file upload, 208-209

images, creating, 278-280

input, 420-422

localized welcome, 534

PHP, 67-68

comments, adding, 72-73

data, output, 70

example, 68

HTML/PHP combination,
71-72

start/end tags, 68-70

text editors, 68, 73

removefromcart.php, 461-462

replytopost.php, 430-433

selentry.php, 398-404

showcalendar_withevent.php,
476-478

showcart.php, 458-461

showitem.php

shopping cart storefront
integration, 454-456

storefront items, displaying,
445-447

user login, 503-505

SECOND() function, 336

second functions, 336

second normal forms, 291

sections. See containers

Secure Hash (SHA) algorithm, 576

security

abuse prevention, 563-564

access control rules, 500

Apache secure mode,
starting, 585

authentication, 492, 573

certificates

chaining, 577

key pairs, creating, 582-583

self-signed, creating, 584

signing, 577

signing requests, 583-584

testing, 577

X.509, 577-578

confidentiality, 573

cookies, 507

data integrity, 573

digest authentication, 492

files, locking, 247-248

hashes, 503

HTTP, 574

MySQL, 25-28

program logging, 515

requirements, 573

software upgrades, 606

SSL

authentication, 576-578

certificates. See certificates
(digital)

confidentiality, 574-576

configuring, 585

connections, 578

data integrity, 576

mod ssl module, 580-582

name-based virtual hosting
support, 586

OpenSSL, 579-580

public key cryptography,
575-576

support module, 579

symmetric cryptography, 574

644 ROLLBACK command

ptg8126863

TLS, 574

Web, 258

XAMPP, 13-14

sel_* fields (shopping cart database
tables), 452-453

sel_item_price fields (shopping cart
database tables), 453

SELECT command

* symbol, 305

limiting results, 307

ordering results, 305-306

subqueries, 315

syntax, 304

tables, 310-312

SELECT privilege (MySQL), 32

selentry.php script, 398-404

self-signed certificates, creating, 584

semicolons (;)

instruction terminators, 76

statements, 70

sending

bulk mail, 383

email, 200-201

feedback forms via email,
201-205

signals, 52

serialize() function, 221

$_SERVER superglobal, 78

ServerAlias directive, 567

ServerName directive

configuration files, checking, 54

validity, 57

ServerRoot directive, 49

servers

binary commands, 51-53

headers (forms), 198

mail burden, easing, 385

processes, 556

SSL

authentication, 576-578

certificates. See certificates
(digital)

confidentiality, 574-576

configuring, 585

connections, 578

data integrity, 576

mod ssl module, 580-582

name-based virtual hosting
support, 586

OpenSSL, 579-580

support module, 579

TLS, 574

types, 23

virtual, 47

services

MySQL as, 25

Network Information (NIS), 493

session_destroy() function, 223-224

session_id fields (shopping cart
database tables), 452

session_id() function, 218

session_save_path() function, 220

session_set_save_handler()
function, 218

session_start() function, 218, 532

$_SESSION superglobal, 78, 219

sessions

destroying, 223-224

ids, accessing, 218

overview, 217

pitfalls, 226

registered users, 224-225

resuming, 218-219

session_set_save_handler()
function, 218

starting, 218-219

state, 218

user preferences, 225

variables

accessing, 219-223

adding to arrays, 221

removing, 224

storing, 219

Set-Cookie header, 214

SET data type, 301

set_time_limit() function, 383

setcookie() function, 215

setDate_array() function, 484

setDate_global() function, 485

setDate_timestamp() function, 484

setlocale() function, 537

setName() function, 154

settype() function, 81-82

setYearEnd() function, 485

setYearStart() function, 485

SHA (Secure Hash) algorithm, 576

shading pie charts, 269

shapes, drawing, 264-265

shell utilities, 256

shipping addresses (shopping cart
database tables), 453

shopping carts

checkout actions, 463-464

checkout forms, creating, 463

database tables, 451-453

items

adding, 456-458

inventory, 465

removing, 461-462

storefront integration, 453-456

viewing, 458-461

short tags, 69

SHOW COLUMNS command, 599

SHOW command, 596-597

SHOW CREATE TABLE
command, 599

SHOW DATABASES command,
598-599

SHOW GRANTS command, 597

SHOW INDEX command, 600

SHOW STATUS command, 593,
601-602

SHOW TABLE STATUS command, 600

SHOW VARIABLES command,
601-602

SHOW VARIABLES command 645

ptg8126863

showcalendar_withevent.php script,
476-478

showcart.php script, 458-461

showitem.php script

shopping cart storefront
integration, 454-456

storefront items, displaying,
445-447

shuffle() function, 145

SHUTDOWN privilege (MySQL), 32

signals, sending, 52

signatures (certificates), 577

signing requests (certificates),
583-584

SimpleXML functions, 546-549

simplexmlexample.php, 549

single-byte character sets, 528

single-line comments, 72

size

cookies, 213

files

determining, 235-236

upload forms, 211

sizeof() function, 144

slow_queries status variable, 602

SMALLINT data type, 298

software

Apache installation, configuring,
40-41

load balancers, 562

upgrades

Apache, 608-609

maintenance releases, 606

MySQL, 607

PHP, 609-610

security fixes, 606

version changes, 606

websites, 605

when to upgrade, 606-607

Solaris, 556-557

source code (Apache), 38-40

source files (directories), 60

spaces (text), 163

special characters, 163

speed (performance), 570

sprintf() function, 168, 487

SQL injections, avoiding, 362-363

SSL (Secure Sockets Layer), 574

authentication, 576-578

certificates

chaining, 577

key pairs, creating, 582-583

self-signed, creating, 584

signing, 577

signing requests, 583-584

testing, 577

X.509, 577-578

confidentiality, 574-576

configuring, 585

connections, 578

data integrity, 576

mod ssl module, 580-582

name-based virtual hosts,
566, 586

OpenSSL, 579-580

support module, 579

SSLCertificateFile directive, 585

SSLCertificateKeyfile directive, 585

SSLeay library, 579

SSLEngine directive, 585

stacking images, 272-273

standard data types, 78

standard tags, 69

start tags, 68-70, 73

$start variable (calendars), 473

starting

Apache

access denied, 56

binding to ports
permissions, 55

browsers, 54

configuration files, checking,
53-54

existing web servers, 55

group settings, 56

Linux/UNIX, 54

secure mode, 585

Windows, 54

comments, 72

MySQL, 27-28

sessions, 218-219

statements, 68-70

startup options (MySQL), 591-593

state

forms, saving, 197-198

sessions, storing, 218

statements. See also commands

break, 109-111

conditional, 232

continue, 111-112

do while, 107-108

echo, 114

multidimensional arrays, 144

PHP scripts, 70

ending, 70

exit, 200

for, 108-111

foreach, 209

function, 121

global

global variables,
accessing, 127

variable values, remembering
between calls, 129-130

if

code listing, 100

comparison operators, 90

else clause, 100-101

elseif clause, 101-102

number-guessing script, 196

redirecting users (forms), 200

include, 229-230

conditional statements, 232

loops, 232

performance, 257

return values, 231

646 showcalendar_withevent.php script

ptg8126863

include_once, 233

INSERT, 363

PHP, 76

require, 234

require_once, 234

return, 124-125, 168

starting/ending, 68-70

static, 130

switch, 103-104

while, 106-107, 241

static statement, 130

status

codes, logging, 513

files, checking, 235

settings, 559

system, retrieving, 601-602

storage

back-end, 494-496

data (XML), 553

formatted strings, 168

logs, 514

passwords, 496, 507

sessions, 218-219

stored procedures, 353-355

storefronts

categories of items, displaying,
441-444

database tables

adding records, 439-441

creating, 437-439

field names, 438

store_categories table, 438

store_item_color table, 439

store_item_size table, 439

store_items table, 438

items, displaying, 445-447

shopping carts. See shopping
carts

store_categories table, 438-439

store_item_color table, 438-441

store_item_size table, 438-440

store_items table, 438-440

str_replace() function, 175-176

string data types, 300-301

$string variable (strip_tags()
function), 174

strings, 79

arrays, breaking into, 179

cleaning up, 173-174

definition file, 533

$display_block, 399

escaping quotation marks, 113

formatting, 160

argument swapping, 167-168

field width specifiers,
164-166

printf() function, 160-164

storing, 168

functions

concatenation, 322-325

length, 322-325

location, 327

modification, 329-330

padding, 326-327

position, 327

substring, 328-329

trimming, 325

indexing, 169

lengths, finding, 169

log formats, 510-511

nesting functions, 187

portions

extracting, 171

replacing, 175

substrings

finding, 170-171

replacing, 175-176

tags, removing, 174

text

case, converting, 176-177

wrapping, 177-179

tokenizing, 171-173

website resources, 186

whitespace, removing, 173

strip_tags() function, 174

stripslashes() function, 425

strlen() function, 169

strpos() function, 170-171

strstr() function, 170

strtok() function, 171-173, 179

strtolower() function, 176

strtoupper() function, 120

strtoupper_replace() function, 176

subdirectories, 65, 592

subentries (online address book
records), adding, 406-413

subexpressions, 86

subjects (certificates), 577

subqueries, 315

subscribers tables, creating, 374

subscription forms, creating,
376-381

subscription mechanisms

include files, creating, 375

subscribers table, creating, 374

subscription forms, creating,
376-381

substr() function, 171

substr_replace() function, 175

SUBSTRING() function, 328

substring functions, 328-329

substrings

finding, 170-171

replacing, 175-176

subtraction operators (-), 87

superglobal variables

$_COOKIE, 77, 215

$_ENV, 78

$_FILES, 78, 206

$_GET, 77

$_POST, 77

$_REQUEST, 78

$_SERVER, 78

$_SESSION, 78, 219

support-files subdirectory
(MySQL), 592

support-files subdirectory (MySQL) 647

ptg8126863

swapping arguments, 167-168

switch statements, 103-104

switching flow

if statements

code listing, 100

else clause, 100-101

elseif clause, 101-102

switch statements, 103-104

ternary operators, 105

symbolic links, 558

Symfony framework website, 614

SymLinksIfOwnerMatch parameter
(Options directive), 558

symmetric cryptography, 574

SYSDATE() function, 342

syslog daemon (error logging),
515-516

system status, retrieving, 601-602

system() function, 255

T
%T format string option (DATE_

FORMAT() function), 338

%t log-formatting directive, 510-511

table-cache parameter, 593

table_type variable, 602

tables

authorized users, creating,
502-503

calendar, creating, 471-474

calendar_events, 474

creating, 301-302

custom logs

code snippet, 520-521

creating, 519

sample reports, 521-523

discussion forum database,
creating, 417-418

flat, 289-290

information, retrieving, 598-599

joining, 312-314

modifying

REPLACE command, 319-320

UPDATE command, 316-319

multiple, selecting, 310-312

MySQL privileges, 29

names, 301

online address books, creating,
387-390

online storefront databases

adding records, 439-441

creating, 437-439

field names, 438

store_categories table, 438

store_item_size table, 439

store_items table, 438

queries

conditions, specifying,
308-309

limiting, 307

ordering, 305-306

string comparisons, 309

records

adding, 302-304

conditional deleting, 321-322

deleting, 320-321

retrieving, 304

relationships

many-to-many, 287-288

one-to-many, 286

one-to-one, 285

types, 284

shopping cart databases

adding items to cart,
456-458

cart, viewing, 458-461

checkout actions, 463-464

checkout forms, creating, 463

date items were added to
cart field, 452

fields, 451-453

item inventory, 465

real-time credit card
processing, 453

removing items from cart,
461-462

selections, holding, 452

shipping addresses, 453

storefront integration,
453-456

users, identifying, 452

structure

information, retrieving,
599-601

optimizing, 593

subqueries, 315

subscribers, creating, 374

tables_priv table, 29

tags

ASP, 69

end, 68-70, 73

<pre>, 163

script, 69

short, 69

standard, 69

start, 68-70, 73

strings, removing, 174

XML, 543

tagWrap() function, 134

tail command-line utility, 519

tar utility, 17

tarball, 40

targets (makefiles), 40

telephone tables (online address
books), 389

ternary operators (?), 105

test() function, 126

testing

auth cookies, 506

certificates, 577

data types, 79-80, 85

dates, 185

files, 236-238

dates/times, 236

executability, 235

existence, 234

file/directory confirmation,
234

648 swapping arguments

ptg8126863

readability, 235

size, 235-236

status, 235

writability, 235

function availability, 133-134

load, 559-561

PHP installations, 65-66

text

documents, formatting, 163

images, creating, 279-280

strings

converting, 176-177

wrapping, 177-179

TEXT data type, 300

text editors (PHP scripts), 68, 73

textdomain() function, 537

Thawte, 584

third normal forms, 291-292

third-party installation packages, 5-6

TIME data type, 300

time() function, 180, 216

TimeOut directive, 563

times/dates

calendars

events, adding, 474-482

HTML forms, building,
469-470

libraries, creating, 483-488

tables, creating, 471-474

user input, 467-468

current, retrieving, 180

data types, 299-300

databases, 187

dates, testing, 185

files, 236

functions

arithmetic, 339-341

conversion, 342-343

current, 341-343

days, 331-333

formatting, 337-339

hours, 336

minutes, 336

months, 333

seconds, 336

weeks, 334-336

years, 334

HH:MM:SS time format, 341

timestamps

converting to dates with
date() function, 182-184

converting to dates with
getdate() function, 180-182

creating, 184-185

defined, 180

UNIX epoch, 180

website resources, 186

YYYY-MM-DD format, 341

TIMESTAMP data type, 300

$timestamp variable (calendar
libraries), 483

timestamps

converting to dates

date() function, 182-184

getdate() function, 180-182

creating, 184-185

defined, 180

TINYBLOB data type, 300

TINYINT data type, 298

TINYTEXT data type, 300

TLS (Transport Layer Security), 574

tokenizing strings, 171-173

topics (discussion forums)

first entry, creating, 420-422

forms, 419

lists, displaying, 423-426

posts

adding, 430-433

displaying, 426-429

scripts, 420-422

touch() function, 238

tracking client requests, 50

TRAILING function, 326

transactions

BEGIN command, 352

COMMIT command, 350-352

defined, 349

displaying versus inserting
data, 355

online storefront example,
351-353

ROLLBACK command, 350-352

syntax, 350-351

website, 351

TransferLog directive, 514

Transifex, 536

translation catalog files, 536

transmitted data, reducing, 562

transparent images, 272-273

Transport Layer Security (TLS), 574

trim() function, 173

trimming functions, 325

Triple DES algorithm, 574

troubleshooting

Apache startup, 55-56

installations, 14

MySQL installations, 26-27

tuning performance

abuse prevention, 563-564

caching, 562

load distribution, 562

mapping files to memory, 561

network settings, 563

transmitted data, reducing, 562

TYPE argument (file upload
forms), 207

type specifiers (printf() function),
161-162

U
%U format string option (DATE_

FORMAT() function), 337

%u log-formatting directive, 510-511

UCASE() function, 329

ucfirst() function, 177

ucwords() function, 176

ucwords() function 649

ptg8126863

ulimit command, 556

uncompressing Apache source
code, 40

underline() function, 134

“Understanding Model-
View-Controller” blog, 614

UNIX

Apache

installation, 39-42

modifications, 609

starting, 54

upgrading, 608

apachectl utility, 53

column command, 252-253

directories, listing, 254

epoch, 180

FROM_UNIXTIME() function, 342

httpd binary, 51

ln command, 558

logresolve utility, 517

mod ssl module, installing,
581-582

MySQL

installation, 16-18

upgrading, 607

OpenSSL, installing, 580

PHP with Apache, 60-63

php.ini file, 65

rotatelogs utility, 518

syslog daemon, 515-516

tail command-line utility, 519

ulimit command, 556

UNIX_TIMESTAMP() function, 342

who command output,
reading, 252

XAMPP installation, 6-8

UNIX_TIMESTAMP() function, 342

unlink() function, 238

unrecognizable characters, 529

unsubscribe forms, creating, 378-381

UPDATE command

conditional, 317

existing values, 318-319

subqueries, 315

tables, 316-317

UPDATE privilege (MySQL), 32

updating tables, 316-319

upgrades

Apache, 608-609

MySQL, 607

PHP, 609-610

Software, 605-607

uptime status variable, 602

URLs

directives, applying, 47

form values, viewing, 210

User-Agent headers, environment
variable access control, 498

user-defined functions

calling, 121

values, returning, 124-125

users

authorization tables, creating,
502-503

databases, adding/deleting, 497

login forms, 503

login scripts, 503-505

input

calendars, 467-468

elements, escaping, 256

forms, 189-194

images, creating, 273-277

lists, authentication, 494

managing

authentication, 494

database file-based authenti-
cation, 497

file-based authentication, 495

MySQL, adding, 31-33

names, authentication, 492

redirecting forms, 198-200

root, 27, 34

sessions

destroying, 223-224

ids, accessing, 218

overview, 217

pitfalls, 226

registered users, 224-225

resuming, 218-219

session_set_save_handler()
function, 218

starting, 218-219

state, 218

user preferences, 225

variables, 219-224

tables, 29

users file (back-end storage), 495

usr/local/apache2 directory, 41

usr/local/php/lib directory, 65

usr/local/src directory, 60

usr/src directory, 60

utilities

apachectl, 53

giftopnm shell, 256

gunzip, 17, 40

htdbm, 497

htpasswd/htpasswd.exe, 495

logresolve, 517

logresolve.exe, 517

pnmscale shell, 256

ppmtogif shell, 256

rotatelogs, 515, 518

rotatelogs.exe, 518

tail command-line, 519

tar, 17

V
%V format string option (DATE_

FORMAT() function), 337

%V log-formatting directive, 511

v option (httpd/httpd.exe
commands), 52

validating files, 234-236

value directives, 65

values

arguments, 130-132

650 ulimit command

ptg8126863

arrays, 140

functions, returning, 124-125

port, 54

return, 231

variables, 76, 129-130

VARCHAR(M) data type, 300

variables

assignment operator (=), 77

availability, 77

casting, 82-84

CHARSET, 532

$check_res, 379

$COOKIE, 215

$count, 473

declaring, 76

defined, 75

environment

access control, 498

HTTP_COOKIE, 215

PATH, 64

$file_array, 209

$file_dir, 209

$file_name, 209

functions

declaring outside, 126

declaring within, 125-126

global access, 126-128

references, passing, 132-133

values between calls, remem-
bering, 129-130

global, 77, 127

integer, 89-90

LANGCODE, 532

local, 77

$month, 483

$name, 483

names, 76, 96

orignum, 132

sessions, 219

accessing, 219-223

adding to arrays, 221

removing, 224

storing, 219

SHOW VARIABLES command, 602

$start, 473

status, 602

$string, 174

superglobal, 77

$_COOKIE, 77, 215

$_ENV, 78

$_FILES, 78, 206

$_GET, 77

$_POST, 77

$_REQUEST, 78

$_SERVER, 78

$_SESSION, 78, 219

$timestamp, 483

values, 76

VeriSign, 584

version variable, 602

versions

Apache, 37-38

MySQL, 15-16

PHP, 59-60

viewing. See displaying

virtual hosting, 564

DNS, 564

IP-based, 564-565, 570

mass, 568-569

name-based, 564-570

listing, 567

migrating, 570

request headers, 566

ServerAlias directive, 567

SSL support, 586

virtual servers, specifying, 47

VirtualDocumentRoot directive, 568

VirtualDocumentRootIP directive, 569

<VirtualHost> containers, 47, 565

VirtualScriptAlias directive, 569

VirtualScriptAliasIP directive, 569

W
%W format string option (DATE_

FORMAT() function), 337

WAMP installation package, 5

warn option (LogLevel directive), 517

web

crawlers, 563

pages (localization)

flags for language selections,
535

language definition file,
531-532

language selector, 535

local selection formats, 536

string definition file, 533

welcome script, 534

security, 258

server activity, logging

analysis, 518

code snippets, creating,
520-521

database tables, creating,
519

errors, 515-519

files, 514

formatting, 510-513

hostname lookups, 512

hostname resolution, 517

identity checks, 513

images, 514, 524

programs, 515

request logs, creating, 509

rotation, 518

sample reports, 521-523

status codes, 513

spiders, 563

Webalizer, 519

websites

accept mechanisms, 559

alternative calendars, 489

Apache, 37-39

APR, 41

websites 651

ptg8126863

based content
negotiation, 530

Caching Guide, 562

News and Announcements
list, 605

application frameworks listing
(Wikipedia), 614

arrays, 144-146

Authorize.Net, 463

awstats, 519

bindtextdomain() function, 537

CakePHP, 616

CAPTCHAs, 279

CodeIgniter, 616-617

Common Log Format documenta-
tion, 512

dates/times resources, 186

Debian file downloads, 17

directives, 46

DOM, 544

Drupal, 612

echo() function, 120

file descriptors, 557

file locking, 248

Get Localization, 536

GNU gettext package, 536

heredoc, 378

identd protocol, 513

InnoDB storage engine, 350

Joomla, 612

JPEG libraries, 263

JSON, 550

MacPorts, 63

MAMP installation package, 5

Mojibake, 529

MVC pattern, 614

MySQL

Announcements, 605

file downloads, 16

mailing list, 27

optimization, 590

Performance blog, 590

upgrades, 607

Workbench, 589

MySQL Manual

date/time functions, 331

EXPLAIN command, 595

FLUSH command, 596

JOINs, 314

language-related
elements, 531

optimization, 590

privileges listing, 31

problems and errors, 26

SHOW command, 597

SHOW STATUS command, 602

SHOW VARIABLES
command, 602

startup options, 592

stored procedures, 355

subqueries, 315

transactions, 351

mysqli_* functions, 357, 369

Network Solutions, 584

normal forms, 294

OpenSSL library, 579

PayPal PayFlow, 463

PCRE (Apache), 41

PDO abstraction layer, 363

PHP, 60, 66

Announcements, 605

changelog, 606

directory, adding to PATH
environment variables, 64

mailing lists, 67

text editors, 68

PHP Manual

alternative calendars, 489

arrays, 146

classes, 150

dates/times, 186

DOM, 546

file locking, 248

multibyte strings, 530

predefined image-related
constants, 268

SimpleXML functions, 549

strings, 186

phpMyAdmin interface, 28

PNG libraries, 263

Poedit, 536

predefined constants, 95

print() function, 120

ProgrammableWeb, 553

reserved constants, 95

RGB color values, 262

robots.txt, 564

ScanErrLog, 519

setlocale() function, 537

SimpleXML functions, 549

software upgrades, 605

SQL injections, 362-363

SSL with virtual hosts, 566

string resource, 186

Symfony framework, 614

textdomain() function, 537

Thawte, 584

Transifex, 536

VeriSign, 584

WAMP installation package, 5

web security, 258

Webalizer, 519

Win32 distribution notes, 43

WordPress, 612

Wusage, 519

XAMPP download, 8

XML document specification, 542

Yii framework, 614

Zend Framework, 615

zlib library, 263

week functions, 334-336

WEEKDAY() function, 331

WHERE clause, 308-309

652 websites

ptg8126863

while loops, 106-107, 241

discussion forum posts,
displaying, 429

popen() function, 252

whitespace (strings), 173

who command output, reading, 252

Wikipedia application framework
listing, 614

wildcards (*/%), 32

Win32 distribution notes, 43

Windows

Apache

installation, 42-44

modifications, 609

starting, 54

upgrading, 608

htpasswd utility, 495

httpd.exe binary, 51

logresolve.exe utility, 517

mod ssl module, installing, 580

MySQL

installation, 20-26

upgrading, 607

OpenSSL, installing, 579

PHP

Apache integration, 64

installation, 63-64

upgrading, 609

rotatelogs.exe utility, 518

WAMP installation package, 5

XAMPP, 8-11

wizards (MySQL)

Configuration, 22-25

Setup, 21

WordPress website, 612

wordwrap() function, 178-179

Workbench (MySQL), 589

“The World Wide Web Security FAQ”
website, 258

wrapping string text, 177-179

writing files, 235, 239

file_put_contents() function,
246-247

fopen() function, 245

fwrite() function, 246

Wusage, 519

X
x-axis coordinates, 264

%x format string option (DATE_FOR-
MAT() function), 337

%X log-formatting directive, 511

X.509 certificates, 577

XAMPP

download website, 8

Linux/UNIX, 6-8

Mac OS X, 11-13

security, 13-14

troubleshooting, 14

Windows, 8-11

XML (Extensible Markup
Language), 541

capabilities, 543

data storage, 553

defined, 541

documents, 541-543

case sensitivity, 543

children, 542

content structure, 542

parsing with DOM functions,
544-546

parsing with SimpleXML func-
tions, 546-549

prologs, 541

root elements, 542

sample, 542

tags, 543

XML specification, 542

HTML, compared, 541

PHP access

DOM functions, 544-546

SimpleXML functions,
546-549

xor operators, 92

Y
y-axis coordinates, 264

%y format string option (DATE_
FORMAT() function), 337

%y log-formatting directive, 511

YEAR data type, 300

YEAR() function, 334

year functions, 334

year_select() function, 487

Yii framework website, 614

YYYY-MM-DD date format, 341

Z
Zend engine, 615

Zend Framework, 615

zlib library, 263

zlib library 653

V413HAV
Typewritten Text
V413HAV

ptg8126863

The print version of this title comes with

a disc of companion content. As an eBook

reader, you have access to these files by

following the steps below:

1. On your PC or Mac, open a web
browser and go to this URL:
www.informit.com/ebookfiles/
9780672335433

2. Download the ZIP file (or files) from
the website to your hard drive.

3. Unzip the files and follow the
directions for use in the book.

Please note that many of our companion
content files can be very large, especially
image and video files. You will be able to
see the size of any file for download once
you reach the URL listed above.

If you are unable to locate the files for this
title by following the steps above, please
visit www.informit.com/about/contact_us
and select “Digital Products Help” and
supply the URL from step one within the
Comments box. Our customer service
representatives will assist you.

Where are the Companion
Content Files?
Thank you for purchasing this digital version of:
Sams Teach Yourself PHP, MySQL and Apache
All in One

Legal Notice: Pearson and these brands makes no warranty or representation, either express or implied, with respect to this software, its quality, performance, merchantability,

or fitness for a particular purpose. In no event will Pearson and these brands its distributors, or dealers be liable for direct, indirect, special, incidental or consequential damages

arising out of the use or inability to use the software. The exclusion of implied warranties is not permitted in some states. Therefore, the above exclusion may not apply to you.

This warranty provides you with specific legal rights. There may be other rights that you may have that vary from state to state. The software and media files are copyrighted by

the authors and Pearson and these brands. You have the non-exclusive right to use these programs and files. You may use them on one computer at a time. You may not distribute

the URL to third parties or redistribute the files over a network. You may transfer the files onto a single hard disk so long as you can prove ownership of this eBook. You may not

reverse engineer, decompile, or disassemble the software or media files. You may not modify or translate the software or media, or distribute copies of the software or media

without the written consent of Pearson and these brands.

The Professional and Personal Technology Brands of Pearson

www.informit.com/ebookfiles/9780672335433
www.informit.com/about/contact_us

	Table of Contents
	Introduction
	PART I: Getting Up and Running
	CHAPTER 1: Installation QuickStart Guide with XAMPP
	Using Third-Party Installation Packages
	Installing XAMPP on Linux/UNIX
	Installing XAMPP on Windows
	Installing XAMPP on Mac OS X
	Securing XAMPP
	Troubleshooting

	CHAPTER 2: Installing and Configuring MySQL
	Current and Future Versions of MySQL
	How to Get MySQL
	Installing MySQL on Linux/UNIX
	Installing MySQL on Mac OS X
	Installing MySQL on Windows
	Troubleshooting Your Installation
	Basic Security Guidelines
	Introducing the MySQL Privilege System
	Summary
	Q&A
	Workshop

	CHAPTER 3: Installing and Configuring Apache
	Current and Future Versions of Apache
	Choosing the Appropriate Installation Method
	Installing Apache on Linux/UNIX
	Installing Apache on Mac OS X
	Installing Apache on Windows
	Apache Configuration File Structure
	Apache Log Files
	Apache-Related Commands
	Starting Apache for the First Time
	Troubleshooting
	Summary
	Q&A
	Workshop

	CHAPTER 4: Installing and Configuring PHP
	Current and Future Versions of PHP
	Building PHP on Linux/UNIX with Apache
	Installing PHP on Mac OS X
	Installing PHP on Windows
	php.ini Basics
	Testing Your Installation
	Getting Installation Help
	The Basics of PHP Scripts
	Summary
	Q&A
	Workshop

	PART II: PHP Language Structure
	CHAPTER 5: The Building Blocks of PHP
	Variables
	Data Types
	Operators and Expressions
	Constants
	Summary
	Q&A
	Workshop

	CHAPTER 6: Flow Control Functions in PHP
	Switching Flow
	Loops
	Code Blocks and Browser Output
	Summary
	Q&A
	Workshop

	CHAPTER 7: Working with Functions
	What Is a Function?
	Calling Functions
	Defining a Function
	Returning Values from User-Defined Functions
	Variable Scope
	Saving State Between Function Calls with the static Statement
	More About Arguments
	Testing for the Existence of a Function
	Summary
	Q&A
	Workshop

	CHAPTER 8: Working with Arrays
	What Are Arrays?
	Creating Arrays
	Some Array-Related Constructs and Functions
	Summary
	Q&A
	Workshop

	CHAPTER 9: Working with Objects
	Creating an Object
	Object Inheritance
	Summary
	Q&A
	Workshop

	PART III: Getting Involved with the Code
	CHAPTER 10: Working with Strings, Dates, and Time
	Formatting Strings with PHP
	Investigating Strings in PHP
	Manipulating Strings with PHP
	Using Date and Time Functions in PHP
	Other String, Date, and Time Functions
	Summary
	Workshop

	CHAPTER 11: Working with Forms
	Creating a Simple Input Form
	Accessing Form Input with User-Defined Arrays
	Combining HTML and PHP Code on a Single Page
	Using Hidden Fields to Save State
	Redirecting the User
	Sending Mail on Form Submission
	Creating the Form
	Creating the Script to Send the Mail
	Working with File Uploads
	Summary
	Q&A
	Workshop

	CHAPTER 12: Working with Cookies and User Sessions
	Introducing Cookies
	Setting a Cookie with PHP
	Deleting a Cookie with PHP
	Session Function Overview
	Starting a Session
	Working with Session Variables
	Destroying Sessions and Unsetting Variables
	Using Sessions in an Environment with Registered Users
	Summary
	Q&A
	Workshop

	CHAPTER 13: Working with Files and Directories
	Including Files
	Using include_once
	Validating Files
	Creating and Deleting Files
	Opening a File for Writing, Reading, or Appending
	Reading from Files
	Writing or Appending to a File
	Working with Directories
	Opening Pipes to and from Processes Using popen()
	Running Commands with exec()
	Running Commands with system() or passthru()
	Summary
	Q&A
	Workshop

	CHAPTER 14: Working with Images
	Understanding the Image-Creation Process
	Necessary Modifications to PHP
	Drawing a New Image
	Modifying Existing Images
	Image Creation from User Input
	Using Images Created by Scripts
	Summary
	Q&A
	Workshop

	PART IV: PHP and MySQL Integration
	CHAPTER 15: Understanding the Database Design Process
	The Importance of Good Database Design
	Types of Table Relationships
	Understanding Normalization
	Following the Design Process
	Summary
	Q&A
	Workshop

	CHAPTER 16: Learning Basic SQL Commands
	Learning the MySQL Data Types
	Learning the Table-Creation Syntax
	Using the INSERT Command
	Using the SELECT Command
	Using WHERE in Your Queries
	Selecting from Multiple Tables
	Using the UPDATE Command to Modify Records
	Using the REPLACE Command
	Using the DELETE Command
	Frequently Used String Functions in MySQL
	Using Date and Time Functions in MySQL
	Summary
	Q&A
	Workshop

	CHAPTER 17: Using Transactions and Stored Procedures in MySQL
	What Are Transactions?
	What Are Stored Procedures?
	Summary
	Q&A
	Workshop

	CHAPTER 18: Interacting with MySQL Using PHP
	MySQL or MySQLi Functions?
	Connecting to MySQL with PHP
	Working with MySQL Data
	Summary
	Q&A
	Workshop

	PART V: Basic Projects
	CHAPTER 19: Managing a Simple Mailing List
	Developing the Subscription Mechanism
	Developing the Mailing Mechanism
	Summary
	Q&A
	Workshop

	CHAPTER 20: Creating an Online Address Book
	Planning and Creating the Database Tables
	Creating an Include File for Common Functions
	Creating a Menu
	Creating the Record-Addition Mechanism
	Viewing Records
	Creating the Record-Deletion Mechanism
	Adding Subentries to a Record
	Summary
	Q&A
	Workshop

	CHAPTER 21: Creating a Simple Discussion Forum
	Designing the Database Tables
	Creating an Include File for Common Functions
	Creating the Input Forms and Scripts
	Displaying the Topic List
	Displaying the Posts in a Topic
	Adding Posts to a Topic
	Summary
	Q&A
	Workshop

	CHAPTER 22: Creating an Online Storefront
	Planning and Creating the Database Tables
	Displaying Categories of Items
	Displaying Items
	Summary
	Q&A
	Workshop

	CHAPTER 23: Creating a Shopping Cart Mechanism
	Planning and Creating the Database Tables
	Integrating the Cart with Your Storefront
	Payment Methods and the Checkout Sequence
	Summary
	Q&A
	Workshop

	CHAPTER 24: Creating a Simple Calendar
	Building a Simple Display Calendar
	Creating a Calendar Library
	Summary
	Q&A
	Workshop

	CHAPTER 25: Restricting Access to Your Applications
	Authentication Overview
	Apache Authentication Module Functionality
	Using Apache for Access Control
	Combining Apache Access Methods
	Limiting Access Based on HTTP Methods
	Restricting Access Based on Cookie Values
	Summary
	Q&A
	Workshop

	CHAPTER 26: Logging and Monitoring Web Server Activity
	Standard Apache Access Logging
	Standard Apache Error Logging
	Managing Apache Logs
	Logging Custom Information to a Database
	Summary
	Q&A
	Workshop

	CHAPTER 27: Application Localization
	About Internationalization and Localization
	About Character Sets
	Environment Modifications
	Creating a Localized Page Structure
	Localizing Your Application with gettext()
	Summary
	Q&A
	Workshop

	CHAPTER 28: Working with XML and JSON
	What Is XML?
	Accessing XML in PHP Using DOM Functions
	Accessing XML in PHP Using SimpleXML Functions
	Working with JSON
	Summary
	Q&A
	Workshop

	PART VI: Administration and Fine-Tuning
	CHAPTER 29: Apache Performance Tuning and Virtual Hosting
	Performance and Scalability Issues
	Load Testing with ApacheBench
	Proactive Performance Tuning
	Preventing Abuse
	Implementing Virtual Hosting
	Summary
	Q&A
	Workshop

	CHAPTER 30: Setting Up a Secure Web Server
	The Need for Security
	The SSL Protocol
	Obtaining and Installing SSL Tools
	Managing Certificates
	SSL Configuration
	Summary
	Q&A
	Workshop

	CHAPTER 31: Optimizing and Tuning MySQL
	Building an Optimized Platform
	Benchmarking Your Database Server
	MySQL Startup Options
	Optimizing Your Table Structure
	Optimizing Your Queries
	Using the FLUSH Command
	Using the SHOW Command
	Summary
	Q&A
	Workshop

	CHAPTER 32: Performing Software Upgrades
	Staying in the Loop
	Upgrading MySQL
	Upgrading Apache
	Upgrading PHP
	Summary
	Workshop

	CHAPTER 33: Using Application Frameworks
	Understanding Application Frameworks
	Using the MVC Pattern
	Installing and Using PHP Application Frameworks
	Summary
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Where are the Companion Content Files?

