Beginning
Lua Programming

Beginning
Lua Programming

Beginning
Lua Programming

Kurt Jung and Aaron Brown

1807 |
{| QWILEY ;
y 2007 |

2 >

ssssssssssss

Wiley Publishing, Inc.

Beginning Lua Programming
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-06917-2

Manufactured in the United States of America

10987654321

1IMA/SS/QR/QX/IN

Library of Congress Cataloging-in-Publication Data
Jung, Kurt, 1956-
Beginning Lua programming / Kurt Jung and Aaron Brown.

p. cm.
ISBN-13: 978-0-470-06917-2 (pbk.)
ISBN-10: 0-470-06917-1 (pbk.)
1. Lua (Computer program language) I. Brown, Aaron, 1973- II. Title.
QA76.73.1.82]96 2007
005.13'3--dc22
2006036460

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Cen-
ter, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Lua 5.0 Copyright © 1994-2006, Lua.org, PUC-Rio
Lua 5.1 Copyright © 2006, Lua.org
The Lua logo was designed by Alexandre Nakonechny;j.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com

About the Authors

Between his first programs submitted to a Burroughs 5500 on Hollerith punch cards and his latest programs
tapped into a Palm Pilot, Kurt Jung has been the principal programmer on various projects ranging from
airline yield management to state machine—driven workflow.

Aaron Brown began programming in elementary school on a Commodore 64. He plays various musical
instruments and speaks Esperanto.

Credits

Acquisitions Editor
Kit Kemper

Development Editor
Maryann Steinhart

Technical Editor
Adam Dumas

Production Editor
Rachel Meyers

Copy Editor
Kathryn Duggan

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Denny Hager

Shane Johnson

Barry Offringa

Heather Ryan

Quality Control Technician
John Greenough
Jessica Kramer

Project Coordinator
Erin Smith

Proofreading and Indexing
Techbooks

Anniversary Logo Design
Richard Pacifico

Acknowledgments

This project has had strong and capable guidance from Kit Kemper and Maryann Steinhart at Wiley
Publishing. Maryann was remarkably responsive in making sure our questions were answered promptly.
May Kit and Maryann land leading roles when Hollywood makes Beginning Lua Programming into a
major motion picture.

Laurels and commendations go to Adam Dumas, the best technical editor a book could possibly have.
Adam’s thoroughness and attention to detail uncovered a humbling number of issues with the manuscript,
all of which were brought to our attention in the most courteous and constructive way and often with
insightful corrections.

The Lua community provided much help and many answers. Thanks go to Roberto Ierusalimschy,
Waldemar Celes, and Luiz Henrique de Figueiredo for creating a remarkable language about which

it is easy to remain enthusiastic. Roberto and Luiz Henrique also answered some specific questions
related to this book. The following people were very helpful in answering questions about their respec-
tive projects: André Carregal (LuaForge and the Kepler Project), Mark Hamburg (Adobe Lightroom),
Asko Kauppi (LuaSDL and LuaX), and Kein-Hong Man (ChunkSpy and the No-Frills Introduction to
Lua 5.1 VM Instructions).

From Kurt Jung: Collaborating with an individual as gifted and inventive as Aaron has been an entirely
rewarding experience. It’s with great pleasure that I look forward to future projects together. Multajn
dankojn, mia bonamiko.

The encouragement of my mother and other family members has been greatly appreciated. Although
writing this book may have given me a great excuse to delay various chores (most notably the one
involving a lawn mower) and household repairs, it never interfered with the frequent, pleasurable, and
bonding walks I take with my wife Maura, daughter Laura, and our bundle of canine energy, Brilla.

I owe the greatest thanks to Maura for her support during this endeavor.

From Aaron Brown: Apart from being my programming mentor, inviting me to collaborate on this book
with him, and being an all-around nice guy, Kurt Jung is one of the few true kindred spirits I have
encountered. Mia teraplano estas plena je angiloj!

Cathy Lewis gave advice on the writing process at a pivotal moment. She (in her capacity as my girlfriend),
my bandmates, and family also deserve thanks for their understanding of my reduced availability while

slaving in the book mines.

Special thanks to Mom (a.k.a. Marty Brown), who bought me that first computer so long ago.

Contents

Acknowledgments ix
Introduction xxiii
Chapter 1: Getting Situated 1
Choosing How to Install Lua 1
Building Lua Yourself 2
Selecting Prebuilt Lua 3
Finding Your System’s Shell 3
Windows Shells 3
Shells on Unix and Unix-Like systems 3
Shell Features 4
The Environment 4
Environment Variables on Unix-Like Systems 4
Environment Variables on Windows 5
Dealing with Tarballs and Zip Files 6
Compiling Lua 7
The Lua Source Tarball 7
Compiling Lua on Linux and Other Unix-Like Systems 8
Compiling Lua on Windows 12
Building Lua with Microsoft Visual C++ 13
Building Lua with the Tiny C Compiler 14
Building Lua with MinGW 16
Binary Packages 18
Selecting a Prebuilt Binary Package 18
Installing a Prebuilt Binary Package on a Unix-Type System 19
Installing a Prebuilt Binary Package on Windows 20
Additional Tools 21
Programmer’s Editor 21
Revision Control System 22
Summary 22
Chapter 2: First Steps 23
Numbers and Arithmetic Operations: Basic Interpreter Usage 23
Addition, Subtraction, Multiplication, Division, and Exponentiation 24
Interacting with the Interpreter 24

Other Notations for Numbers 25

Contents

Interpreter Know-How
Quitting the Interpreter
Interpreter Shortcuts
Numerical Gotchas
Division by Zero and Overflow
Floating-Point Rounding
Variables and Assignment
Assignment Basics
Multiple Assignment
Variables on the Right Side of Assignments
Strings
Quoting Strings
Quoting Strings with Double Quotes
Quoting Strings with Single Quotes
Quoting Strings with Square Brackets
Backslash Escaping
Relational Operators and Boolean Values
Comparing Numbers
Comparing Strings
The nil Value
Boolean Operators
The and Operator
The or Operator
The not Unary Operator

The Concatenation, Length, and Modulo Operators

The String Concatenation Operator

The Length Operator

The Modulo Operator
Automatic Conversion of Operands
Precedence and Associativity
Variables and Values
Comments
Expressions and Statements
Compound Statements

The if Statement

The while Loop

The for Loop

The repeat Loop

The break and do Statements
Summary
Exercises

26
26
26
27
27
28
28
29
31
32
32
32
32
33
33
35
37
37
38
40
41
42
43
44
45
45
46
47
48
49
51
52
53
54
55
58
60
62
63
66
66

Contents

Chapter 3: Extending Lua with Functions 69
Return Values 72
Using a Function that Returns a Value 72
Defining a Function that Returns a Value 73
Using return to Alter Control Flow 74
Returning Nothing 76
Returning Multiple Values 77
Adjusting Value Lists 78
Using Multiple-Valued Functions in Value Lists 78

Using Valueless Functions in Value Lists 79
Chunks as Functions 81
Variable Scope 84
Actual and Formal Arguments 84
Local Variables 85
Understanding Side Effects 91
Ordering Side Effects 91
Short-Circuit Evaluation 93
Functions Calling Functions 95
The Call Stack 95
Recursion o7
Stack Overflow 98
Tail Calls 99
Functions as Values 102
Replacing Built-In Functions 102
Comparing and Printing Functions 103
Function Definitions as Assignments 103
Local Functions 105
Whitespace, Semicolons, and Function Calls 106
Upvalues and Closures 108
Defining Functions that Create Functions 108
Defining Functions with Private State 110
Figuring Out Tricky Scope Situations 111
Summary 113
Exercises 114
Chapter 4: Working with Tables 117
Tables Introduced 117
A Shorter Way to Write Some Keys 119
Altering a Table’s Contents 120
Tables as Arrays 121
Array Length 123

Xiii

Contents

Looping through Tables 124
Tables of Functions 128
The Table Library 128
table.sort 128
table.concat 131
table.remove 132
table.maxn 132
Object-Oriented Programming with Tables 133
Functions with Variable Numbers of Arguments 136
Defining Vararg Functions 136
Scripts as Vararg Functions 140
Keyword Arguments 143
Different but the Same 144
Table Equality 144
Avoiding Bugs by Understanding Mutability 145
Variables and Mutable Values 145
Tables and Functions 147
Copying Tables 148
Building Other Data Structures from Tables 152
Custom-Made Loops 158
Global Variable Environments 163
Summary 168
Exercises 169
Chapter 5: Using Strings 171
Basic String Conversion Functions 171
String Length 173
Converting Between Characters and Character Codes 173
Formatting Strings and Numbers with string.format 174
Input/Output 180
Writing to and Reading from a File 181
Pattern-Matching 185
Searching for a Specific String 186
Matching Any of Several Characters 186
Matches of Varying Lengths 193
Captures 198
Matching Balanced Delimiters 202
More on string.find, string.match, and string.gsub 202
Iterating Through All Matches 204
Tricks for the Tricky 207
Magic Characters Chart 209
Summary 210
Exercises 210

Xiv

Contents

Chapter 6: Handling and Avoiding Errors 213
Kinds of Errors 213
Syntax Errors 213
Runtime Errors 217
Handling Errors 218
Default Error Behavior 218
Checking Assumptions 219
Code Errors 220

Data Errors 220

The assert and error Functions 220
Defining Your Own Error Condition 221
Anticipating Error Conditions 222
Working with Return Values 222
Structuring Code 224
Error-Containment Functions 227
The pcall Function 227

The xpcall Function 229
User-Written Scripts 230
Locating Errors 230
Summary 230
Exercises 231
Chapter 7: Using Modules 233
Interfaces and Implementations 233
The require Function 234
Where to Put Modules 235
Creating a Module Directory 235
Setting Lua’s Environment Variable 236
Preserving a Module’s Interface 236
Module Bookkeeping 240
Bytecode 241
Namespaces 242
Creating and Reusing Namespaces 242
Avoiding Global Variables 244
Using the strict Module 244
Reporting All Global Assighments 244

The module Function 245
C Modules 247
Summary 247
Exercises 247

XV

Contents

Chapter 8: Extending Lua’s Behavior with Metamethods 249
Using Concatenation and Arithmetical Operators on Tables 249
Relational Metamethods 257
Indexing and Call Metamethods 258
Non-Tables with Metamethods 265
Non-Syntactical Metamethods 267
Metamethod Applicability 268
Summary 268
Exercises 269

Chapter 9: Handling Events Naturally with Coroutines 271
Coroutines and Program Control 271

Coroutines Are Not Functions 272
How Coroutines Are Like Programs 272
Coroutines Transfer Control 273
Wrapping a Coroutine 273
Coroutines Are Cooperative 273
Outside Looking In 275
Coroutines Have Status 278
Rules of Conduct 279
Work Shoulder-to-Shoulder 279

Trust the Dispatcher 280
Expect the Best, Prepare for the Worst 280

Play on Your Side of the Fence 280

Avoid the Deep End 281
Managing Concurrent Tasks 281
Retaining State 282
Exercising a Coroutine’s Memory 282
Iterating with Coroutines 286
Handling Events Simply 287
The Event Loop 288
Yielding to Another Coroutine 296
Summary 297
Exercises 297

Chapter 10: Looking Under the Hood 299
Bytecode and luac 299
Garbage Collection 303
The Implementation of Tables and Strings 307

XVi

Contents

The Debug Library 308
Inspecting and Manipulating Running Code 308
Hooks 315
Other Functions in the Debug Library 321

Summary 321

Exercises 322

Chapter 11: Exploring Lua’s Libraries 325

Core Library 325
Environment Functions 326
Metatable Functions 326
Chunk-Loading Functions 328
Error-Containment Functions 330
Module Functions 331
The Garbage-Collection Function 332
Type and Conversion Functions 333
Basic Output 333
Error-Condition Functions 333
Table Traversal Functions 334
Vararg-Related Functions 335

Coroutine Library 336

Package Library 338

String Library 340
Pattern-Based String Functions 340
String-Conversion Functions 342

Table Library 344

Math Library 345
Trigonometric Functions 345
Inverse Trigonometric Functions 348
Hyperbolic Functions 351
Exponent Functions 354
Logarithm Functions 356
Adjustment Functions 358
Floating Point Representation 360
Angle Conversion Functions 361
Pseudo-Random Number Functions 362
Modulus Functions 362
Minimum and Maximum Functions 363
Constants 363

Input/Output Library 364

XVii

Contents

Operating System Library 368
CPU Timing 368
Time and Date Functions 368
Filesystem Functions 369
Other Operating System Functions 370
Debugging Library 370
Summary 373
Chapter 12: Using Community Libraries 375
Library Overview 375
Dynamically Linked Libraries 376
Resolving External References 376
Configuration Options 376
Libraries Built from Source Code 377
Building Libraries on Unix-Like Systems 378
Building Libraries on Windows 378
Limits to Portability 379
How Lua Interacts with Libraries 379
The Variable Registration Process 379
Calling a C Function from Lua 380
The pack Binary Structuring Library 383
Building the pack Library on Unix-type Systems 383
Building and Installing the pack Library on Windows 384
Testing the pack Library 384
Installing the pack Library 385
Using the pack Library 385
The cURL File Transfer Library 389
Building libcurl 389
Building libcurl on Unix-Like Systems 390
Building libcurl on Windows 391
Building luacurl 392
Building luacurl on Unix-Like Systems 392
Building luacurl on Windows 393

Using luacurl 393

The gd Graphics Library 395

Building gd 395
Building gd on Unix-Like Systems 396
Installing gd on Windows 396

Building lua-gd 397
Building lua-gd on Unix-Like Systems 397
Building lua-gd on Windows 398

Using lua-gd 399

xviii

Contents

The SQLite Database Library 405
Building SQLite3 405
Building SQLite3 on Unix-Like Systems 405
Building SQLite3 on Windows 406
Building lua-sqlite3 407
Building lua-sqlite3 on Unix-Like Systems 407
Building lua-sqlite3 on Windows 408
Using lua-sqlite3 409
Summary 411
Exercises 412
Chapter 13: Interfacing Lua with Other Languages 413
How C Programs Use Lua 413
Embedding Lua 414
Extending Lua 414
Embedding or Extending: Which Is Best? 414
Communicating Between Lua and C 415
Calling Lua from C 421
Obtaining a Lua Function 421
Calling a Lua Function 421
Protected Calls 422
Working with Userdata 423
Indexing Values in C 436
Retrieving Indexed Values 436
Setting Indexed Values 437
Retaining Values in C 438
The Registry 438

C Function Environments 439
Upvalues in C 439
Referencing Values 440
The Thread Environment 441
Layering Your Extension Library 441
Summary 447
Exercises 448
Chapter 14: Managing Information with Databases 449
Some Basic Relational Database Concepts 449
SQL, LuaSQL, and MySQL 458
Summary 466
Exercises 466

Xix

Contents

Chapter 15: Programming for the Web 467
A Web Server Primer 467
Dynamic Web Content 468

Embedded Web Server 468
Extended Web Server 469
Creating Content at Run Time with Lua 469
Executing CGI Scripts 469
CGl Scripts on Unix-Type Systems 470
CGI Scripts on Windows 470
Installing a Web Server 471
Apache 471
TinyWeb 472
Testing Your Web Server with Static Content 474
Serving Dynamic Web Content 474
Problems with CGI Scripts 475
Asynchronous Calls to the Server 476
Producing a Calendar Dynamically 478
Producing Charts Dynamically 481
Interactive CGI Applications 489
CGI Helper Routines 489
Developing CGI Scripts 498
Security Issues 498
The Kepler Project 498
CGl the Kepler Way 499
Lua Pages 500
Summary 501
Exercises 501

Chapter 16: Connecting to a Larger World 503

Installing LuaSocket 503

Compiling LuaSocket 504
Compiling on Linux and Other Unix-Like Systems 504
Compiling on Windows 504
Installing Windows Binaries 505
Network Overview 506
Routed Packets 506
Addresses 507
Domain Names 507
Identifying Internet Resources 508
Transport Protocols 509
Sockets: Streams and Datagrams 510
TCP Socket Sociology 511

XX

Contents

Using LuaSocket for Network Communication 512
Handling Multiple Persistent Connections 518
Using Lua Coroutines with the select Function 518
Multiple Connections on the Server Side 522
Setting Timeout Values for the Server Socket 523
The Application Protocols 524
Filtering the Flow of Data 524
Accessing Web Pages 527
Sending and Receiving E-mail Messages 529
Networking with Lua and Streams 536
On the Server Side: inetd and Friends 536
On the Client Side: ssh and Friends 538
Summary 541
Exercises 542
Chapter 17: Programming Games with Lua 543
Understanding Why and When to Use Lua 543
Simple 2-D Action Game Using SDL 544
Installing SDL and LuaCheia 544
Using SDL 546
Summary 562
Exercise 562
Chapter 18: Carrying Lua with You 565
Getting Started with Plua 565
Obtaining Plua 566
Examining the Distribution Contents 566
Exploring Plua’s Features 567
Running the Plua Application 567
Saving Plua Programs 569
Reading the Online Documentation 570
Using Palm OS Streams 571
Compiling Applications 572
Compiling Libraries 573
Plua on the Mothership 576
The Command-Line Compiler 576
The Palm OS Emulator 577
Obtaining the Emulator 577
Installing on Windows 578
Configuring POSE 578
Running Plua in the Emulator 578

XXi

Contents

Compiling a Program in the Emulator 580
Exiting the Emulator 580

The Palm OS Simulator 581
Obtaining the Simulator 581
Using the Simulator 581
Programming with Plua 581
Generating Graphics 582
Programming the User Interface 583
Accessing Databases 590
Summary 592
Exercises 593
Chapter 19: Fitting into the Lua Community 595
The Lua Web Site 596
The Lua Reference Manual 596
Framing Questions 597
The Lua Mailing List 597
Viewing and Searching the Archives 597
Downloading the Archives 598
Using a Web Browser to Access the List 599
Using a Newsreader to Access the List 599
Subscribing to the List Server 599
Posting Messages 600
The Lua Chat Room 601
Forums 601
The Lua Wiki 601
LuaForge 602
Annual Workshops 603
Summary 603
Appendix A: Answers 605
Index 629

xxii

Introduction

Perhaps you need one or more of these things:

A way to present dynamic information, both textual and graphical, on your website

A means to transfer legacy data to a modern database

Nonprogrammers or end users to augment your application with additional functionality
A custom program for your handheld device that you can use in the field

Scripts to drive the user interface and business logic of an enterprise-level application

An engine to run gaming scripts

An interface language for scientific instrumentation

A scripted way to monitor the health of a computer network

O 000000 oo

A robust mechanism to allow end users to set application options in an easy-to-understand con-
figuration file

If so, you'll find this versatile and fast programming language called Lua to be the perfect tool. Lua has a
gentle learning curve that will enable you to write effective programs after only a short introduction.
With it, simple programs look simple—there is no extraneous baggage you need to add to your programs
or peculiar syntax to which you need to conform to make them run. From the examples in the preceding
list, you can see that Lua is quite appropriate for use by technically adept individuals who aren’t neces-
sarily programmers.

At the other end of the continuum, Lua has features that support advanced program requirements.

It imposes very few conventions on the way you write your programs, instead providing mechanisms
with which you can construct clear and maintainable solutions to your programming tasks. Even experi-
enced software developers find novel and powerful ways of using Lua to extend and simplify their
applications.

Lua is robust, yet its mild entry curve makes it quite suitable as a first programming language. In combi-
nation, these make Lua an attractive language for students and professionals alike.

The Facets of Lua

Lua is, first and foremost, a tool for creating software. You can use the standalone interpreter that is
packaged with the Lua distribution to great advantage, and fit it seamlessly into your applications.

Introduction

Lua Is a Programming Language

Lua as a language has its own grammar and idioms. Like all languages, it is a means to communicate,
and like all programming languages, it can be used to convey instructions to a computer. But this con-
nection to hardware isn’t essential. In fact, Edsger Dijkstra, one of the towering figures of computer
science, emphasized the importance of programming without a computer to really understand and
verify programs. Lua’s syntax—the rules that dictate how its language pieces may fit together correctly—
is small, clean, and straightforward. This syntax includes ways to convey instructions as well as to
describe data.

Lua Is an Implementation

Lua is also a functioning software system. A part of what we call Lua is an actual computer application

that can interpret programs written in the Lua programming language. The Lua interpreter is written in
ANSI C, which because of its wide support, allows Lua to run on a vast spectrum of devices from high-
end network servers to small devices.

Both Lua’s language and its interpreter are mature, small, and fast. Both have been synthesized from
some of the best ideas and practices in computer science. The smallness of Lua is by design, and has
advantages well beyond Lua’s capability to run on tiny hardware. A few visits to Lua’s mailing list will
assure you that there are enthusiasts who understand every nook and cranny of this language and its
implementation. Its source code has been scrutinized. It can be argued that these insights, and the sug-
gestions for refinements that these insights foster, would be much less likely with a larger language and
implementation.

Lua Is Fast

Traditionally, programming language ease-of-use has come at the cost of performance. The C program-
ming language is known for its speed and extensive library support, but it is rarely categorized as easy
to use. Lua alters the playing field somewhat by being both easy to use and fast, and it has the ability to
interface smoothly with C libraries. How fast is Lua? In a word: very. A visit to the programming language
shootout site (shootout.alioth.debian.org) should convince you that with Lua, speed and expres-
sivity are not mutually exclusive.

Lua Is Free and Open

Lua is open-source software. You can use it in personal, academic, and commercial applications at no
cost. Your essential requirements when using Lua are to properly ascribe its copyright (Lua.org, PUC-
Rio) and to not hold its authors or copyright holders liable if anything goes wrong. You can read its
license at www . lua . org. Be aware that some of the libraries you will use with Lua are licensed under
different terms. Please understand and adhere to these licenses. A lot of hard work and ingenuity goes
into the creation of software, and your respect for its authors” intentions helps keep the open software
community vibrant and active.

XXiv

Introduction

Who This Book Is For

This book is for students and professionals who are intrigued by the prospect of learning and using a
powerful language that provides a rich infrastructure for creating programs. No programming knowl-
edge is necessary to benefit from this book except for the section on Lua bindings, which requires some
familiarity with the C programming language. A certain comfort level with command-line operations,
text editing, and directory structures is assumed.

Software developers who have experience with functions, strings, and associative arrays can skim
Chapters 2 through 5 with the caveat that certain Lua colloquialisms are introduced there along with
programming concepts.

Throughout the text, sections pertaining to a particular operating system are clearly marked and can be
skipped by readers working on a different platform.

How This Book Is Structured

This book is organized to guide you through the basics of using Lua. Its structure is as follows:

O Installing Lua on your system (Chapter 1)

0 Learning the fundamentals of programming in Lua (Chapters 2 through 10)
O Reviewing standard Lua functions (Chapter 11)
a

Exploring application development with Lua using packages contributed by the community
(Chapters 12 through 18)

0O Using Lua’s many community resources (Chapter 19)

Chapters 2 through 10 each build on concepts that are presented in its predecessors, so a sequential read-
ing of this part of the book is advised. The summary of Lua’s built-in libraries contains examples that
assume you have a good grasp of the materials presented in the first 10 chapters.

Some of the libraries and techniques presented in Chapters 12 and 13 are needed in the remaining chap-
ters of the book. Chapters 14 through 19 are relatively independent of one another and can be read out of
sequence.

What You Need to Use This Book

You need surprisingly little in the way of computer resources to learn and use Lua. This book focuses on
Windows and Unix-like (including Linux) systems, but any operating system that supports a command
shell should be suitable. You'll need a text editor to prepare and save Lua scripts.

XXV

Introduction

If you choose to extend Lua with libraries written in a programming language like C, you'll need a suit-
able software development kit. Many of these Kkits are freely available on the Internet but, unlike Lua,
they can consume prodigious amounts of disk space and memory.

Chapter 18 discusses using Lua on a Palm Pilot. Even if you don’t own or have access to one of these
devices, this chapter shows how you can simulate one on the major desktop systems.

Conventions

To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book.

Try It Out

This is an exercise you should work through, following the text in the book.

1. ATry It Out usually consists of a set of steps.
2. Each step has a number.

3. Complete all the steps, sequentially, to produce the intended results.

How It Works

After each Try It Out, the code you've typed is explained in detail.

Boxes like this one hold important, not-to-be forgotten information that is directly relevant to the sur-
rounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

QO New terms and important words are highlighted when they’re introduced.

Q Keyboard strokes look like this: Ctrl+A.

Q Filenames, URLs, and code within the text look like so: persistence.properties.
Q Codeis presented in two different ways:

In code examples, new and important code is highlighted with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

Some of the code examples are mixtures of your input and Lua’s output:

> In such examples, your input is bold
and Lua's output is not.

XXVi

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox. com. On this site, you can simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN. This book’s ISBN is
978-0-470-06917-2.

Alternatively, you can go to the main Wrox code download page at http://wrox.com/dynamic/
books/download. aspx to see the code available for this book and all other Wrox books.

After you download the code, just decompress it with your favorite compression tool.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time, you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox. com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you found. We’ll check the information and,

if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of
the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

XXvii

Introduction

Athttp://p2p.wrox.comyou will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:
1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but to post your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe To This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to questions

about how the forum software works as well as many common questions specific to P2P and Wrox books.
To read the FAQs, click the FAQ link on any P2P page.

XXViii

Getting Situated

The first order of business in learning to program in Lua is to acquire and install the necessary
tools. For your initial steps, all you need is the Lua interpreter, a small program that enables you to
type Lua commands and have them executed immediately. As you advance through this book,
you will need additional tools such as a text editor and the Lua compiler.

If you want to write web applications, you'll need access to a web server such as Kepler (a versa-
tile Lua-based web server) or Apache (an industry-wide standard). These and other web servers
are freely available on the Internet.

If you want to extend Lua with low-level libraries or to embed Lua into your application, you'll
need a software development kit (often referred to as SDK) with a compiler that is compatible with
Lua’s application program interface (referred to as API).

Lua is written in the C programming language, and a C compiler turns a program written in this
language into something that can run on your computer. Most C compilers work fine, as do
Delphi and the cross-platform Free Pascal Compiler.

This chapter is unlike the others in this book, because it has little to do with Lua and much to do
with setting up programs on your system. Although Lua doesn’t have a setup program that han-
dles installation details, you'll find the steps are straightforward. In addition to guiding you
through the process, this chapter briefly explores programming editors and revision control sys-
tems — tools that can enhance your productivity as you become proficient in Lua.

Choosing How to Install Lua

Lua can be installed on a wide variety of platforms and, after it is installed, it will function simi-
larly on all of them. Unlike most of the material that follows in this book, this chapter necessarily
delves into some platform-specific details. Basically, there are two categories that are covered here:
Windows desktop systems (including Windows 95 and up) and Unix-type systems, including
GNU/Linux, Mac OS X, AIX, BSD, and Solaris. (The many other operating systems and hardware
platforms capable of running Lua are outside the scope of this book.)

Chapter 1: Getting Situated

Lua Versions

In the instructions that follow, you'll see references to version 5.1.1. A later version of
Lua may be available as you read this. As Lua evolves, some improvements are made
that require changes to existing scripts. Your decision is either to install a version of
Lua later than 5.1.1 and encounter possible instances where you have to modify the
scripts and libraries in this book, or to install version 5.1.1 and forgo any improve-
ments that may have been made to Lua. The Lua manual includes a section at the end
named “Incompatibilities with Previous Versions” that can help you decide. If you
install a later version, you'll need to make corresponding changes to the commands
and directory names used in this chapter.

There are two excellent open-source packages for Windows that blur the Windows-Unix distinction
somewhat. One of them, the Cygwin system, provides many GNU and Linux tools (including various
shells and development tools) for Windows platforms. It is available at www . cygwin. com. Applications
that you build with this environment will run only on systems that have Cygwin installed. If you want
to install Lua in this environment, follow the directions for building Lua on Unix-type systems.

The other package is the MinGW system, which enables you to use standard Unix-like tools to build
applications that run on all 32-bit desktop versions of Windows without any extra support libraries. This
first-rate system is available at www.mingw. org.

As you read this chapter, section headers will indicate whether a Unix-like system or Windows is being
discussed. You can skip the sections that don’t apply to your platform.

The Lua interpreter, typically named lua.exe in Windows and lua in Unix and friends, is a small com-
mand-line program that executes your scripts either interactively or noninteractively. You'll become
familiar with the Lua interpreter and both of these modes in the first chapters of this book.

A note about these names: In this book, Lua refers to the Lua programming language or implementation,
and lua refers to the Lua interpreter.

To install Lua, you can download a package that has been compiled for your particular operating system
platform, or download the source code and compile it yourself. There are the advantages and disadvan-
tages to each approach, as the following sections discuss.

Building Lua Yourself

Compiling Lua is straightforward. Lua, including the language processor and its core libraries, is written
in plain vanilla C so that it can be built on a wide variety of platforms with any ANSI-compliant C com-
piler. The advantage is that the resulting libraries and interpreter program are compatible with the sys-
tem on which it’s built. This is one of the principal advantages of open-source software in general. As
long as the target platform supports the tools and libraries needed to compile the source code—in Lua’s
case, this is a standard C compiler — the resulting binary program is compatible with the platform.

Chapter 1: Getting Situated

The disadvantage of compiling Lua is that the system you intend to build it on must have a complete C
development environment. That is generally not a problem on Unix and Unix-like operating systems
where such development tools are part of a long-standing tradition. However, on platforms such as
Windows, a C compiler and its related tools and files are not installed by default. Such a development
package can require a surprisingly large amount of disk space and present a bewildering number of
options. One refreshingly small exception to this rule is the Tiny C Compiler (TCC), which runs on Linux
and Windows on the 80 x 86 platform. Building Lua with TCC is described later in this chapter.

Selecting Prebuilt Lua

Besides being able to skip the compilation step, an advantage of selecting a prebuilt version of Lua is
that it will be compatible with a number of libraries that conform to its dependency conventions. These
conventions involve issues such as which runtime libraries are used and whether those libraries are safe
to use with multiple threads of execution.

If you are a Windows user and don’t have a C development environment set up on your system,
installing the appropriate binary Lua package may be your best option. You'll see how to do that in
the section on installing binary packages later in this chapter.

Finding Your System’s Shell

Most computer systems have a shell, also known as a command-line interface. This is a program you can
use to type commands to the computer. These commands can tell the computer to copy, move, delete,
and otherwise manipulate files, and to start programs, including (of course) Lua programs and Lua
itself. In several places in this book, you'll need to access your system'’s shell; in particular, everything in
this chapter that you need to type, you need to type into the shell. You can perform some of the opera-
tions, such as creating directories and moving files, using visual tools (such as Explorer on the Windows
platform). Only the shell commands are presented here, but feel free to use whatever tools you are most
comfortable with to accomplish the task at hand.

Windows Shells

To access your shell on Windows XP or Windows 2000, select Start=>Run, type cmd, and press Enter. On
Windows Me, Windows 98, or Windows 95, select Start>Run, type command, and press Enter (Return on
some keyboards —just substitute “Return” for “Enter” whenever it’s mentioned in this book).

Shells on Unix and Unix-Like systems

On Mac OS X, open your Applications folder (on your startup disk). Inside it, open the Utilities folder;
inside that, open Terminal. On other systems with a graphical user interface (GUI), look in the menu that
you start programs from for a program with a name like xterm, Konsole, or Terminal. On systems
without a graphical user interface, you are already at the shell, as you are if you use a program such as
ssh, telnet, or PuTTY to connect to a remote Unix(-like) server.

Chapter 1: Getting Situated

Shell Features

Shells vary greatly in appearance and functionality, but each of them presents some form of a prompt to
let you know that it’s waiting for you to issue a command. In general, you type a command following the
prompt and press the Enter key to submit the command to the shell. When you are working in a shell,
there is always one directory that is considered your current working directory. Most shell prompts con-
tain that directory to make it easier for you to keep your bearings as you move from directory to directory.
For example, a typical prompt in Windows shells may look something like the following:

C:\Program Files>
and in Unix-type shells, something like the following;:
mozart maryann /usr/local/bin>

To exit the shell, type exit and press Enter.

The Environment

Each shell also has a pool of variables, known as the environment, available to programs. The environ-
ment typically holds information about where the system should look for programs and libraries, what
the shell prompt should look like, and so forth. You can view this information by issuing the following
command at the shell prompt:

set

Regardless of the platform you use, you will want to modify the shell environment to let Lua know
where to find extension modules. Additionally, if you intend to compile Lua or libraries, you'll need to
set up environment variables that your SDK will look for.

Environment Variables on Unix-Like Systems

On Unix-like systems, you generally modify the shell environment in one of the shell startup scripts. For
example, if you use the bash shell, it will process /etc/bashrc and, in your home directory, . bashrc
when it starts. The first file is used for system-wide settings, and the second is used for your own private
settings. You'll need root privileges to modify the first. Within these files, you set an environment vari-
able by including a line that looks like the following;:

export LUA_DIR=/usr/local/lib/lua/5.1

When you reference environment variables in shell scripts, you precede the name with $, as in echo
$LUA_DIR.

In this book, the following environment variables are recommended for Unix-like systems:
LUA_DIR=/usr/local/lib/lua/5.1
LUA_CPATH=?.s0; $LUA_DIR/?.s0

LUA_PATH=?.lua;$LUA_DIR/?.lua

Restart the shell for changes to take effect.

Chapter 1: Getting Situated

Now create the actual directory that LUA_DIR identifies. Do this, as root, with the following command:

mkdir -p /usr/local/lib/lua/5.1

Environment Variables on Windows

Depending on which version of Windows you use, you modify the shell environment either through the
autoexec.bat file (Window 95, 98 and ME) or, for later versions, through a dedicated dialog box that
you get to through the System Properties dialog box. If you use autoexec.bat, you set environment
variables with lines that look like the following;:

SET LUA_DIR="c:\program files\lua\5.1"

If you use the dedicated dialog box, you'll need to choose between system variables and user variables.
In this window, you can add a new variable, edit an existing variable, or delete an existing variable.
When you add or edit a variable, there are separate input fields for the variable name and its value.

Within a shell script, surround an environment variable name with the % character, as in —echo
$LUA_DIRS%.

The Windows Search Path

On a Windows system, whether you compile Lua or acquire a precompiled package, you'll want to put
the Lua interpreter, compiler, and dynamic link library in a location that makes them easy to use. From a
shell prompt, the system should launch the interpreter when you execute the 1ua command. There are
two practical approaches you can take: using aliases or using the search path.

When you're at the shell prompt, Windows enables you to use a simple alias — 1ua, for example —as a
replacement for a more complicated command, such as c: \program files\utility\lua.exe.It
implements aliases like these, in addition to command-line editing and history, using doskey. This
method may locate the aliased program slightly faster, but you cannot use the alias in a batch script.
Consult the output of the following to read more about this utility:

doskey /?

You can also use the Windows search path mechanism. When a command is invoked that is not internal
(such as dir or del) and is not qualified with path information, Windows examines the search path,
looking for a matching executable. To see the current search path from the shell, execute this command:

path

In the following steps, you work with files and directories so you can use Windows Explorer if you like.
Complete these steps to move the Lua executables to a directory that is included in the Windows search
path:

1. If your current search path does not include a directory where you store utilities, create one
now (the directory c: \program files\utility is assumed for this example, but the choice is
yours). Note that quotes are necessary when specifying names with spaces:

mkdir "c:\program files\utility"

Chapter 1: Getting Situated

2. Add this directory to the Windows search path. On older versions of Windows, use the
autoexec.bat file in the root directory of the boot drive. (More recent versions of Windows
still support this, but they also provide a graphical environment editor that you by opening the
System applet from the Control Panel.)

If the text field containing the path variable is too small to see the entire value, cut and paste the
value to your text editor, make the appropriate change, and then cut and paste the modified
value back to the path edit field.

3. The new search path applies only to shells that are opened after the change, so exit and restart
your shell.

Recommended Settings for Windows

For this book, the following environment variables are recommended on Windows systems:

UTIL_DIR=c:\program files\utility
LUA_DIR=c:\program files\lua\5.1
LUA_CPATH=?.d11;%LUA_DIR%\?.dl1l
LUA_PATH=?.lua; $LUA_DIR%\?.lua

The UTIL_DIR variable identifies the utility directory you created in the preceding section. Additionally,
if you have a software development kit and intend to compile Lua and possibly libraries for Lua, set the
following environment variables:

SDK_DIR=c:\program files\msc
INCLUDE=%SDK_DIR%\include; $SDK_DIR%\include\usr
LIB=%SDK_DIR%\1ib;%SDK_DIR%\lib\usr

The sDK_DIR depends on where you installed your SDK.

Restart your shell for environment changes to take effect. Then use Windows Explorer or the command
shell to create the various directories that these environment variables identify.

Dealing with Tarballs and Zip Files

Whether you install Lua using precompiled packages or compile it from a source code package, you will
be dealing with a packaging form colloquially known as a farball. Files of this type have the extension
.tar.gz or . tgz. A tarball bundles a group of files that can be distributed over one or more directories.
The contents, owners, permissions, and timestamps of the bundled files are preserved using the tar util-
ity, whose name derives from its original purpose of transferring files to and from a tape archive. The
amalgamated file is then compressed using the gzip utility or, for tarballs with the . tar.bz2 extension,
using the slower and more aggressive bzip2 compression utility. Although tarballs are part of the Unix
tradition, tools for managing them on Windows are freely available. In particular, one versatile open-
source utility for Windows that handles any type of package you are likely to encounter is 7z. Both
graphical and shell-oriented versions are available from www.7-zip.org. Whichever version you use,
make sure the directory in which you install 7-zip is included in your system search path. Extracting the

Chapter 1: Getting Situated

contents of a tarball in Windows is a two-step process. Here’s how to do it from the shell. First, unzip the
embedded tarball using a command like the following;:

7z x somefile.tar.gz

In a standard package, this creates the file somefile. tar. Extract the contents of this tarball with a com-
mand like the following:

7z x somefile.tar

Another packaging format, more common for Windows-based projects, is the zip file, which has a . zip
extension. The zip and unzip utilities on Unix-style systems manage files of this type. On Windows,
you can extract the contents of a zip file using 7z with a command like the following;:

7z x somefile.zip

Compiling Lua

In the general sense, compiling an application refers to the process of building an executable program
from source components. The executable program comprises processor instructions that a computer can
follow. It may also contain certain resources such as embedded icons and copyright notices. Source code
is the text that is created in a programming language by a programmer. Strictly speaking, compilation is
the intricate step that translates a source-code text file to a machine-code object file. Object files usually
contain references to other object files that may or may not be part of the same package. A linker gener-
ates an executable program by combining all required object files and resolving their references to one
another. Sometimes the compilation and linking steps are combined by a wrapper program.

The Lua Source Tarball

The contents of the Lua tarball are organized as follows:

lua-5.1.1
doc
etc
src
test

In the first level of this directory, you can read various text documents prepared by the Lua authors. The
README file explains what Lua is, the terms by which it is available, how to install it, and its origin. The
HISTORY file tracks the changes to the Lua language, its application programming interface (API), and
its implementation. Read the relevant portion of that file when upgrading to a new version of Lua to
understand the changes that have been made. The INSTALL file has information about building Lua.

You can read these files using a text viewer or editor. If you are using a Unix-type system, the less com-
mand is convenient for scanning text files. The 1ynx character-mode web browser is great for exploring

Chapter 1: Getting Situated

the distribution: use the arrow keys to drill into and out of directories and the contents of text and
HTML files. Press Q to exit 1ess or 1lynx when you are ready to return to the shell itself. If you are a
Windows user, note that the files have Unix-style line endings that will not be properly handled by
Windows Notepad, so you should use a programmer’s editor or a web browser to read them.

With your web browser, you can explore the hyperlinked Lua manual in the doc subdirectory. The src
subdirectory contains all of the source code for the Lua interpreter, compiler, and core libraries. The etc
subdirectory contains miscellaneous files such as the Lua icon and the source code for an especially
small interpreter with reduced functionality. The test subdirectory contains a number of Lua scripts
that provide an excellent survey of Lua’s capabilities. Some of these scripts push at the far reaches of
Lua’s domain, so don’t be dismayed if some appear rather dense at first.

Compiling Lua on Linux and Other Unix-Like Systems

One of the first things you should do at your shell is to check whether you have a functioning C com-
piler. To do so, execute the following command:

cc -Vv
If version and configuration information is displayed, then it’s likely that you've got everything you
need to successfully build Lua. If you receive a message indicating that the command cc could not be
found, try executing gcc -v instead. If neither of these commands work, you need to find out if either

the C development tools have not been installed or some configuration setting is simply keeping them
from being available to you.

Where you build Lua depends on your purposes. If you intend for Lua to be used by other users on your
system, and you have the appropriate privileges, you’'ll want to select a standard location for source
code such as /usr/local/src. Otherwise, your home directory is a logical choice. In the shell, change
your default working directory with the following command:

cd /usr/local/src
Alternatively, simply use cd to go to your home directory.
Assuming you are connected to the Internet, acquire the source package as follows:

wget http://www.lua.org/ftp/lua-5.1.1.tar.gz
The program wget is a standard tool for retrieving Internet resources such as web pages and other files.
If your system doesn’t have it, you can try curl or an interactive web browser. The file you download

will be in the form of a tarball that has the extension . tar.gz. Extract the contents as follows:

tar xzvf lua-5.1.1.tar.gz

The tar utility will recreate the same directory structure that the Lua authors used to package the source
materials. Drop into the newly created directory by executing the following command:

cd lua-5.1.1

Chapter 1: Getting Situated

You'll use the make utility to control the build process. This utility reads a script, typically named
makefile, that describes the dependency relationships between the various source files and intermedi-
ate and final targets. For example, one of the lines in Lua’s makefile is as follows:

lua.o: lua.c lua.h luaconf.h lauxlib.h lualib.h

Here, 1ua. o is the object file that corresponds to lua. ¢, the main source file of the Lua interpreter. The
other files that have the extension .h are header files that contain definitions and prototypes. This line
is interpreted as: If 1ua. o is missing or if its timestamp is older than any of the timestamps of lua.c,
lua.h, luaconf.h, lauxlib.h, or lualib.h, then invoke the appropriate rule to generate 1ua.o. The
make utility is indispensable for keeping track of this kind of dependency and for automating the build
process.

If you type make by itself, as shown in the following line, you get a list of the various platforms on
which you can build Lua:

make
The output looks like this:

Please do
make PLATFORM
where PLATFORM is one of these:
aix ansi bsd generic linux macosx mingw posix solaris

Select the platform that you're on. For example, if you are compiling on Linux, execute the following
command:

make linux
You'll see the commands displayed on the console as they are executed.

If you are familiar with building other open-source packages, you'll notice that Lua’s approach is a little
different. There is no configuration stage to identify the characteristics of the system and create a tailor-
made makefile. Instead, the platform argument you provide is all the information make needs to select
the correct commands and parameters.

Because Lua has such standard requirements, it is unlikely that you will encounter any problems build-
ing it. If errors do occur at this stage, they are likely to be related to an incomplete installation of the C
development tools or incorrectly configured search paths for header files or libraries. If that happens,
read the documentation for your operating system distribution to install and configure the development
tools properly.

With the default settings used here, make will generate the Lua interpreter (1ua) and the Lua byte-code

compiler (1uac). These will be created in the src subdirectory. No shared libraries will be created — all

of the Lua internals required by each of these executables will be statically linked. For example, compo-
nents such as the parser will be embedded into both 1ua and luac, but the byte-code interpreter will be
embedded only into lua.

Chapter 1: Getting Situated

10

After make completes, your shell prompt is displayed. If no error messages were encountered during the
building process, you can test the Lua interpreter by executing the following command:

make test
That should result in output that looks like

Hello world, from Lua 5.1!
In the unlikely event that you don’t get this response, the probable culprit is the unavailability of one or
more runtime libraries. Although the Lua internals are statically linked into 1ua, other libraries are
expected to be available for dynamic linking when lua is actually run. These runtime dependencies
include the math library, the general purpose C library, and, depending on your platform, libraries that

support screen formatting and text input editing and recall. List the shared library dependencies with
the following 1dd command:

1dd src/lua
The result is a series of lines such as this:

libm.so.6 => /lib/libm.so.6 (0x40024000
libdl.so.2 => /1lib/libdl.so.2 (0x40047000)

If, in the output, you see one or more “not found” lines such as the following, you'll know that the refer-
enced library is not present on your system or that the dynamic loader is unable to find it:

libncurses.so.5 => not found

In this case, consult your operating system documentation to guide you through the process of installing
the missing library. Alternatively, you can rebuild 1ua with fewer dependencies with the command make
clean generic.

If you have root privileges on your system and would like 1ua and luac to be available for other users,
you should become root at this point. Do this with the following command:

su -
Alternatively, you can use the sudo command to elevate your privilege level for particular commands.

In this case, prefix the command requiring root authority with sudo. In general, using sudo requires
some configuration using the visudo command.

The hyphen tells the command that you want the root’s environment, including its search paths, to be
loaded. Doing so will likely change your default working directory, so you may need to return to the
lua directory by using the cd command. For example:

cd /usr/local/src/lua-5.1.1

Chapter 1: Getting Situated

You're now ready to install the Lua executables, static library, header files, and manual pages. To do so,
execute the following command:

make install

Then execute the following command to return to your nonroot session:
exit

The following command should present the 1ua manual page:
man lua

You can scroll up and down through the document by using the standard navigation keys. Press Q to
return to the shell itself.

Now enter following command:
lua -v
This should present you with a version statement like the following:
Lua 5.1.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio
Any problem at this point indicates an issue that you can clarify with the following which command:
which lua
The response should be a line like this:
/usr/local/bin/lua

A response like the following means that 1ua was installed into a directory that is not in your search path,
which is an ordered list of directories that the operating system examines to resolve external commands:

which: no lua in (/usr/local/bin:/usr/bin)

You can remedy this by editing the PATH variable in your shell startup script to include the directory in
which lua and luac were installed. You need to exit and restart the shell for these changes to take effect.

If you don’t have root privileges or simply want to test the installation locally, you can execute the fol-
lowing command:

make local

This creates several additional directories such as bin and man beneath the current directory.

11

Chapter 1: Getting Situated

Alternatively, you can specify some other location for the installation. For example, if you want to install
in /tmp/lua-5.1.1, execute the following command:

make INSTALL_TOP=/tmp/lua-5.1.1 install
In these last cases, you'll need to specify a full or relative path to lua, luac, and the man pages because
the default search path won’t include them. For example, to read the man page installed with the last
example, execute the following:

man /tmp/lua-5.1.1/man/manl/lua.l
Then, to test 1ua, execute the following command:

/tmp/lua-5.1.1/bin/lua -v

This section led you through a basic build of Lua on Unix-like systems. Many options exist for configur-
ing Lua in different ways. For example, you can configure Lua to use a primitive data type other than
double for numbers. The curious can examine src/luaconf.h to see the configurable options. Your
best approach at this point is to leave them at their default settings. This book assumes that you are
using Lua with its default options.

Compiling Lua on Windows

12

Although Lua compiles cleanly on Windows, the makefile that comes with the Lua source package is
oriented toward Unix-style systems. Unless you are using a Unix emulation layer such as Cygwin, you'll
need to craft your own approach to the task of creating the Lua interpreter and byte-code compiler.

Alot of C/C++ compilers exist for Windows, and many of them are available for free. The tools in these
SDKs generally have their own particular set of command line switches, configuration conventions, and
system dependencies, making it impractical to cover more than one Windows SDK in this book. The
instructions in this book assume you are using the Microsoft Visual C++ 6.0 SDK. Later versions of this
kit have been released, but Visual C++ 6.0 is still widely used in the industry because of its support for a
broad range of Windows versions. You can configure it to generate programs that use MSVCRT.DLL, a
system library that is available on all 32-bit desktop versions of Windows. An effort has been made in
this book to provide instructions that will generate applications and libraries that are compatible with
the Lua binaries for Windows available on LuaForge. These binaries are easy to deploy, because they
depend only on libraries that come with Windows.

If you have a later version of Visual C++ or are using another SDK (such as a product from Pelles C or
Borland) you will need to consult the appropriate documentation to find how to build and deploy appli-
cations and libraries. Recent versions of the Microsoft C++ SDK require manifest files to be deployed
along with applications and libraries.

The directions that follow create the Lua interpreter and compiler. Three approaches are shown. The first
works well with Visual C++ 6.0. If you are some other large-scale C development system, follow these
directions with the understanding that you may need to make toolkit-specific changes. The second
approach is suitable for users of TCC, and the third applies to the MinGW SDK.

Chapter 1: Getting Situated

Building Lua with Microsoft Visual C++

First, make sure that the SDK’s bin directory has been included in your system’s search path. Under the
SDK’s include directory, make a subdirectory named usr. Similarly, under the SDK’s 1ib directory,
make a subdirectory named usr. Additionally, as covered in the environment section, you should set the
LIB environment variable to the SDK’s 1ib and 1ib\usr directories, and the INCLUDE environment
variable to the SDK’s include and include\usr directories. Your SDK may include a batch file named
vevars32.bat that can help with this. If you modify these environment variables, exit and restart the
shell to have your changes take effect.

Create a directory in which to build Lua. The following lines assume that this will be c: \dev:
(]

cd \

mkdir dev

cd dev

Download lua-5.1.1.tar.gz and place it in this directory. Extract the contents. Here are the com-
mands you would use with 7-zip:

7z x lua-5.1.1.tar.gz
7z x lua-5.1.1.tar

This creates a subdirectory named lua-5.1.1. Delete lua-5.1.1. tar at this point, like this:
del lua-5.1.1.tar
Drop into the src subdirectory like this:
cd lua-5.1.1\src
Create a new text file and add the following lines:
cl /MD /02 /W3 /c /DLUA_BUILD_AS_DLL *.c
del *.o
ren lua.obj lua.o
ren luac.obj luac.o
ren print.obj print.o
link /DLL /IMPLIB:lua5.1.lib /OUT:lua5.1.dl1 *.obj
link /OUT:lua.exe lua.o lua5.1.1lib

1lib /out:lua5.l-static.lib *.obj
link /OUT:luac.exe luac.o print.o lua5.l-static.lib

Save the file as build.bat in the current directory (c: \dev\lua-5.1.1\src).
While you're still in the src subdirectory, run the newly created batch script from the shell:

build

13

Chapter 1: Getting Situated

This compiles each of the source files into a corresponding object file. Prior to linking these object files
into a dynamic link library, three object files are renamed to keep them from being included in the
library. These are the interpreter, the compiler, and a support file for the compiler. Finally, the interpreter
and compiler executables are created. The Lua interpreter is quite small, because its main functionality
comes from the dynamic link library. To test the Lua interpreter, execute the following command:

.\lua ..\test\hello.lua
This should result in the following output:
Hello world, from Lua 5.1!

Copy the import library and header files associated with the dynamic-link library to standard develop-
ment directories where your compiler and linker can find them. The approach taken here is to place
them in the usr subdirectory beneath the SDK’s 1ib and include directories. These subdirectories can
then hold third-party files where they won’t be confused with toolkit files.

To install Lua, create a file with the following contents:

xcopy luab5.1.lib "%SDK_DIR%\1lib\usr*.*" /vy

xcopy luab.l-static.lib "$SDK_DIR%\lib\usr*.*" /y
xcopy lua.exe "$UTIL_DIR%*.*" /y

xcopy luac.exe "SUTIL_DIR®*.*" /vy

xcopy lua5.1.dll "$UTIL_DIR%*.*" /y

xcopy lua.h "$SDK_DIR%\include\usr*.*" /y

xcopy luaconf.h "$SDK_DIR%$\include\usr*.*" /y
xcopy lualib.h "$SDK_DIR%\include\usr*.*" /y
xcopy lauxlib.h "%SDK_DIR%\include\usr*.*" /y

Save this file as install.bat in the src directory. Copy the files by executing this batch script:

install

Building Lua with the Tiny C Compiler

14

The Tiny C Compiler (TCC) is a freely available C development system that you can use to build Lua on
both Linux and Windows. It is discussed here because it is an excellent way for Windows users who
don’t have a C toolkit to familiarize themselves with developing programs in C. The TCC web site
(http://fabrice.bellard. free. fr/tcc) contains a link to the Window binary distribution in the
form of a zip file that includes everything you need to compile Lua.

TCC is perfectly suitable for building Lua itself, but you may want to consider a more full-featured SDK
if you intend to build extension libraries for Lua.

Download the zip file and place it in the directory above the point where you want to install TCC.
Assuming you are using the 7-zip utility and the version of the file is 0.9.23, extract the contents of the

file as follows:

7z x tcc-0.9.23.zip

Chapter 1: Getting Situated

This creates the following subdirectory structure:
tcc-0.9.23
doc
examples
include
sys
winapi
1lib
tcec
With this particular version of TCC, you need to make two small adjustments before proceeding. In the
include/winapi directory, open the winnt . h file with your text editor. On lines 1814 and 2288, change
the occurrences of value to _value.

Change your working directory to Lua’s source directory. For example, if you extracted the Lua tarball
in c: \dev, use the following shell commands:

Gk
cd \dev\lua-5.1.1\src

TCC requires a change to the file 1do. c. Open this file with your text editor and find line 487, which
reads as follows:

static void f_parser (lua_State *L, void *ud) {
Just beneath it, add the following line:

typedef Proto* (* load_func) (lua_State*, ZIO*, Mbuffer*, const char*);
Several lines lower, find the line that includes

((c == LUA_SIGNATURE[O]) ? luaU_undump : luaY_parser)
and replace

luaU_undump
with

(load_func) luaU_undump
and

luaY_parser
with

(load_func) luaY_parser.

15

Chapter 1: Getting Situated

Use your text editor to prepare the following batch file. Adjust the first line if necessary to specify

the directory in which you installed TCC. The second line begins with SET TccCMD and ends with
-lkernel32 —make sure it is all on one line. (The O symbol indicates that the code line is too long to
print on one line in the book; the code that follows is a continuation of the first line. In other words, O
tells you to keep typing on the same line.)

SET TCCDIR=c:\program files\tcc-0.9.23

SET TCCCMD="%TCCDIR%\tcc\tcc" -D_WIN32 -I"$TCCDIR%\include" :)
-I"$TCCDIR%\include\winapi" -L"%TCCDIR%\1lib" -lkernel32

ren luac.c luac.cO

ren print.c print.c0

$TCCCMD% -0 lua.exe *.c

ren lua.c lua.cO

ren luac.cO luac.c

ren print.c0 print.c

$TCCCMD% -o luac.exe *.c

ren lua.c0 lua.c

SET TCCDIR=

SET TCCCMD=

SET TCCIMP=

Save this file as build.bat in the current directory. Build Lua by running this batch script:
.\build

Although TCC can generate dynamic link libraries, the code that is shown here builds statically linked
versions of lua.exe and luac.exe. Copy these to your utility directory as follows:

xcopy lua.exe "SUTIL_DIRS*.*" /y
xcopy luac.exe "SUTIL_DIR®*.*" /vy

Building Lua with MinGW

16

The MinGW package provides you with all the command-line tools you need to develop Windows
applications. An optional related package, MSYS, includes a Unix-like shell and, among other tools, awk,
bzip2, find, grep, sed, tar, vi, and which. The instructions that follow cover only the use of MinGW,
but MSYS is definitely worth investigating if you want the power and flexibility of working in a Unix-
like development environment. The MinGW website has an excellent FAQ (Frequently Asked Questions)
page as well as a comprehensive wiki to help you use the MinGW and MSYS systems to their fullest.

The following instructions show you how to install the MinGW system. You need about 50MB of space
available on your disk. Obtain the following files (or more recent versions if they are available) from the
current section of download page of the MinGW site, www . mingw. org:

binutils-2.15.91-20040904-1.tar.gz
w32api-3.6.tar.gz
mingw-utils-0.3.tar.gz
gcc-core-3.4.2-20040916-1.tar.gz
mingw-runtime-3.9.tar.gz

Chapter 1: Getting Situated

Create a directory for the MinGW files as follows:

These instructions assume you will install MinGW in c : \mingw, but you can choose another location
if you like. If you do, make the appropriate changes in the following lines.

@s
mkdir \mingw
cd \mingw

Extract the contents of the tarballs as follows, changing all occurrences of \path\to to the directory
where you placed the downloaded files:

The 7-zip tool is used in this example; remember that its directory must be in the Windows search path.
If you have downloaded more recent versions of any of these files, be sure to make the appropriate file-
name changes. .

7z x \path\to\binutils-2.15.91-20040904-1.tar.gz
7z x \path\to\w32api-3.6.tar.gz

7z x \path\to\mingw-utils-0.3.tar.gz

7z x \path\to\gcc-core-3.4.2-20040916-1.tar.gz
7z x \path\to\mingw-runtime-3.9.tar.gz

7z x -y *.tar

del *.tar

Place c¢: \mingw\bin in your Windows search path. (See “The Windows Search Path” earlier in this
chapter for more details on setting this.)

Create a directory in which to build Lua. The following lines assume that this will be c: \dev:

cE
mkdir \dev
cd \dev

Extract the contents. Here’s how to do this if you are using the 7-zip tool:

7z x \path\to\lua-5.1.1.tar.gz
7z x lua-5.1.1.tar
del lua-5.1.1.tar

Drop into the src subdirectory as follows:
cd lua-5.1.1\src
With your Windows text editor, create a new file with the following contents:

gcc -02 -Wall -c *.c

ren lua.o lua.obj

ren luac.o luac.obj

ren print.o print.obj

gcc -shared -Wl,--export-all-symbols -o lua5.1.d1l1l *.o
strip --strip-unneeded lua5.1.d11

gcc -o lua.exe -s lua.obj lua5.1.d11l -1m

gcc -o luac.exe -s -static luac.obj print.obj *.o -1lm

17

Chapter 1: Getting Situated

Save the file as build.bat in the c: \dev\lua-5.1.1\src directory. While you're still in Lua’s src
directory, invoke this batch file to build Lua:

.\build

The batch script generates three files: lua. exe, luac.exe, and lua5.1.d11. You can verify that they
use only standard Windows libraries as follows:

If you have installed the MSY'S tools, replace £ind with grep.
objdump -x lua.exe | find "DLL Name"
This will print the following import references:

DLL Name: KERNEL32.d1l1l
DLL Name: msvcrt.dll
DLL Name: lua5.1.dl1l

You can repeat this for luac.exe and lua5.1.d11. Notice that luac.exe does not depend on
lua5.1.d11.

Install the three files in your utility directory as follows:

xcopy lua.exe "SUTIL_DIRS*.*" /y
xcopy luac.exe "$UTIL_DIR%*.*" /y
xcopy luab5.1.dll "SUTIL_DIR®*.*" /y

Binary Packages

Unlike source code that can conform to a wide spectrum of environments, binary applications (that is,
those that have already been compiled) function only in a particular niche. Binary packages need to dis-
tinguish a number of factors, including the following:

Q Operating system (such as AIX, Solaris, Linux, or Windows)

O Hardware architecture (such as 32-bit versus 64-bit or Intel versus PowerPC)

Q Required C runtime library (such as the various versions of the Microsoft Visual C runtime

library)

These are mostly issues that you don’t have to be concerned with when compiling Lua from source code,
but you do need to pay attention to when the packages are precompiled. Despite the plethora of different
platforms, there is a good chance that you can find a binary package for your particular environment.

Selecting a Prebuilt Binary Package

To acquire a Lua package precompiled for your platform, visit LuaForge (http://luaforge.net/), a web
site devoted to open-source projects created and maintained by members of the growing Lua community.

18

Chapter 1: Getting Situated

One of the most popular packages maintained at LuaForge is LuaBinaries, a set of ready-made Lua pack-
ages (http://luaforge.net/projects/luabinaries/). In the file download section of the LuaBinaries
site is a list of files that includes entries like these:

lua5_1_Win32_bin.tar.gz 82060 1,376 Intel x86 .gz
lua5_1_Linux26_bin.tar.gz 127132 80 Intel x86 .gz

The names of these files include abbreviated information about their contents. For more detailed infor-
mation about each of the packages, read the packaging file (apackaging_lua5.1.html) located in the
same directory. It will help you select the appropriate package for your platform.

Installing a Prebuilt Binary Package
on a Unix-Type System

After you have selected the appropriate tarball from the LuaBinaries site, download it and place it in
the /tmp directory. The following commands assume you have selected 1ua5_1_Linux24g3_bin.tar
.gz —make the appropriate changes if necessary. Unpack it as follows:

cd /tmp
tar xzvf lua5_1_ Linux24g3_bin.tar.gz

This creates the following directory structure:

lua5.1

bin
Linux24g3

In the Linux24g3 subdirectory are three files: the interpreter (1ua5. 1), the byte-code compiler
(1uacs5.1), and a utility that helps with embedding Lua scripts into C programs (bin2c5.1). Make sure
the interpreter works with your system, as follows:

lua5.1/bin/Linux24g3/lua5.1 -v
This should result in the following output:

Lua 5.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio

You should get the same response when invoking the compiler with the -v switch. If you don’t get this,
you've likely selected a binary package that is incompatible with your operating system.

If the interpreter and compiler work with your system, move them to a location in your search path. If
you have root privileges and want to make Lua available to all users of your system, the location /usr/
local/bin is traditional. If you lack sufficient privileges or are interested only in using Lua yourself, the
bin directory beneath your home directory is a good location. In this last case, you may need to create
the bin subdirectory and set it as part of your PATH environment variable.

19

Chapter 1: Getting Situated

Assuming you have root privileges and want to make Lua available to all users of your system, execute
these commands:

su -

cd /tmp/lua5.1/bin/Linux24g3

mv lua5.1 /usr/local/bin/lua

mv luac5.1l /usr/local/bin/luac

chown root.root /usr/local/bin/{lua, luac}
chmod u=rwx,go=rx /usr/local/bin/{lua, luac}
cd /tmp

rm -fr luab5.1

exit

Now you should be able to execute 1ua without any path qualification, like this:

lua -v

Installing a Prebuilt Binary Package on Windows

20

If you are installing onto a 32-bit version of Windows, a safe bet is to select the package named
lua5_1_Win32_bin.tar.gz. This package uses the C runtime library MSVCRT . DLL, which is available
on all recent versions of Windows.

After you download one of the tarballs, you need to extract the package contents to a suitable location
using a utility such as Winzip or 7-zip. The following instructions assume you have downloaded the
package lua5_1_Win32_bin.tar.gz and are using the 7-zip command-line utility —make the appro-
priate changes if you have selected a different package or are using a different extraction utility. Place
the package in the directory of your choice, and then execute the following commands at a shell prompt:

7z x lua5_1_Win32_bin.tar.gz
7z x luab_1_Win32_bin.tar
del lua5_1_Win32_bin.tar

The following directory structure will be created:

luab5.1
bin
Win32

Four files are included in the Win32 subdirectory: the interpreter (1ua5. 1. exe), the byte-code compiler
(1uac5.1.exe), the Lua core in dynamic link library form (1ua5.1.d11), and an embedding tool
(bin2c5.1. exe). Change your default working directory to Win32 with the following command:

cd lua5.1\bin\Win32

Install the dynamic link library and executables as follows:
copy /b lua5.l.exe "SUTIL_DIR%\lua.exe"
copy /b luacb.l.exe "SUTIL_DIR%\luac.exe"

copy /b lua5.1.dl1l "SUTIL_DIRS%\"
copy /b bin2c5.1.exe "$UTIL_DIR%\bin2c.exe"

Chapter 1: Getting Situated

You do not rename the library, 1ua5.1.d11, because references to it are embedded in the interpreter and
compiler.

Type lua -v and luac -v from any working directory to make sure the two programs are accessible on the
search path.

An additional nicety is to add the Lua icon to this directory. You can copy the icon named lua.ico in
the etc directory of the Lua source package to the utility directory.

Additional Tools

While on the topic of getting situated with Lua, a few notes about programming editors and script man-
agement are appropriate. Although these tools and methods are not required to create programs, their
use definitely makes you more productive.

Programmer’s Editor

One tool you want to choose carefully is your text editor. You'll use it not only to create Lua scripts, but
also to read and search through them. A vast number of free and commercial text editors are available
for all mainstream platforms. Wikipedia has a comprehensive summary of their availability and features
athttp://en.wikipedia.org/wiki/Comparison_of_text_editors. Programmer’s editors provide
features well beyond the basic editing of text including features such as the following:

0 Advanced search and replace using regular expressions, a powerful form of recognizing pat-
terns in text

Syntax highlighting that gives you visual confirmation that your script is properly structured
Multiple undoing and redoing

Bracket matching

The capability to automatically hide portions of text and code

Macros to automatically repeat time-consuming or error-prone operations

O 000 oo

The capability to filter selected portions of text through an external program (that is, one written
in Lua) to process text in ways that might be awkward or complicated using the editor’s own
commands

Most programmer’s editors enable you to configure syntax highlighting for various programming lan-
guages, and syntax highlighting for Lua is provided as part of many editor packages. An editor’s high-
lighting mechanism might have trouble with Lua’s novel way of handling multiline comments and
strings, but you can usually configure it to handle those constructions at least gracefully if not perfectly.

21

Chapter 1: Getting Situated

Revision Control System

Organizing your Lua scripts in a directory or directory tree makes it easier to reuse code that you have
written. It also simplifies your managing those scripts with a revision control system such as CVS or
Subversion. A revision control system enables you to do the following:

Recover an earlier revision of a script

Review the history of a script’s progress in the form of commit log entries

Safely develop scripts from more than one machine

Back up your work easily because only the repository needs to be backed up

U 00 oo

Create and merge multiple sets of files—known as branches — to distinguish between the
installed and developmental versions of your scripts

One advanced system, Monotone, uses distributed repositories with Lua as a scripting language.
Revision control is usually associated with collaborative team efforts, but it has many benefits for the
independent programmer as well. The usual cycle is to edit and test your script until you reach some
sort of milestone, and then commit the script with a note to the revision control system’s repository.

Many well-written books and how-to guides exist for setting up and using open-source revision control
systems.

Summary

22

You now have a working Lua interpreter and compiler on your system.
In this chapter, you learned about the following;:

Q Lua’s package structure
How to build Lua from scratch
How to install a precompiled Lua package

The advantages of a programmer’s editor

U 0O 0 O

The advantages of a revision control system for your source code

You'll use the various shell operations you learned about in the chapters ahead. When you extend Lua’s
functionality with libraries, you'll use the same techniques to obtain and install the libraries as you did
in this chapter for Lua itself.

First Steps

This chapter and the next two lay the foundation you need to understand the rest of the book. As
such, they cover a great deal of material, although they're still very basic. If you've never pro-
grammed before, you'll learn a lot of new concepts; if you're an experienced programmer, you'll
see a lot of things that you already know. In the latter case, you are encouraged to skim, but be
warned: Some of the Lua building blocks covered in these three chapters may have no counterpart
in the languages you are familiar with.

This chapter explains the:

Q Arithmetic operations

Variables and assignment

Q

Q Strings
Q true, false, and nil values
a

if statements and while, for, and repeat loops

Numbers and Arithmetic Operations:
Basic Interpreter Usage

The Lua interpreter — lua—is a program that can execute Lua code that you type right after you

type it.

This is how the term interpreter is used in this chapter, but it can also refer to a particular inter-
nal component of the Lua implementation — more on this in the next chapter and Chapter 10.

In this section, you explore the basics of using lua.

Chapter 2: First Steps

Addition, Subtraction, Multiplication,
Division, and Exponentiation

Start with something simple —adding two and two. Access your system’s shell, as described in Chapter
1. When you're there, type lua and press Enter (Return on some keyboards). You should see something
like the following;:

Lua 5.1.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio
>

Typing lua starts the Lua interpreter. When it starts, it prints its version number and copyright informa-
tion, and then it prints the following:

>
This Lua prompt tells you it’s waiting for you to give it something to do.
Now type the following (the part you type is bold):

> print(2 + 2)
Then press Enter. You should see the following:

4
>

Lua looked between the parentheses, saw 2 + 2, added two and two, and followed the print command
and output the result to the screen. It then displayed another prompt to tell you it was ready for more.

Lua can handle subtraction, negative numbers, numbers with decimal points, multiplication (using *),
division (using /), exponentiation (using), and combinations of these. Here are some examples:

> print (2 - 2)

0

> print (-2 + -2)

-4

> print (2.5 + 2.75)
5,25

> print (3 * 3)

9

> print (100 / 4)

25

> print (3 * 2)

9

> print(5 * -5 + 1 + 1 + 0.5)
-22.5

Interacting with the Interpreter

The interpreter knows how to respond when you type Lua code that either contains a mistake or is
incomplete. Sooner or later, you'll type something that makes no sense to Lua. In case you haven’t

24

Chapter 2: First Steps

already done this accidentally, now is the time to do it on purpose to see what happens. Type print (2 +
+ 2) and press Enter. Here’s what you get:

> print (2 + + 2)
stdin:1: unexpected symbol near '+'
>

Lua sees something that doesn’t make sense (two plus signs next to each other), so it prints a short
explanation of why it doesn’t make sense. The explanation is also known as an error message.

Because Lua is only a computer program, its explanations aren’t always easy to understand at first, but
this one (unexpected symbol near '+') is fairly straightforward. Next to a plus sign, Lua found some-
thing it wasn’t expecting —in this case another plus sign.

After printing the error message, Lua displayed another prompt to let you know it was ready for more.
You'll get similar error messages if you leave out print or its parentheses, like this:

> 2 + 2

stdin:1: unexpected symbol near '2'
> print 2 + 2

stdin:1: '=' expected near '2'

If you type something that makes sense except that it’s incomplete, Lua lets you finish it on another line.
For example, press Enter before the close parenthesis, type the close parenthesis, and press Enter again,
like this:

> print (2 + 2
>>)
4

Lua sees that the first line you typed was incomplete, so it printed >>. This is a continuation prompt, Lua’s
way of letting you know that it’s waiting for you to finish what you started. When Lua got the close
parenthesis on the next line, it was able to print the result.

Other Notations for Numbers

You can also write numbers using scientific notation, where the part before the upper- or lowercase e is
multiplied by 10 to the power after the e. For example, 5e2 means 5 times 10 to the 2nd power, or 500.
Scientific notation is normally used to write extremely large or extremely small numbers, or for Lua to
print them. Here are some examples:

> print (5e2)

500

> print (5e-2)

0.05

> print(1.2193263111264E17 / 987654321)
123456789

> print (123456789 * 987654321)
1.2193263111264e+17

> print(2.3283064365387e-10 * 4294967296)
1

25

Chapter 2: First Steps

The numbers you use in daily life (and have used so far in this chapter) are decimal, or base 10. This
means that there are 10 digits, 0-9. Lua also understands hexadecimal (base 16) numbers, using the letters
a-f (or A-F) to represent 10 through 15. Hexadecimal numbers should start with 0x or 0x. (That’s a zero
before the %, not a letter O.) They have to be integers (whole numbers). Take a look at these examples:

> print (0x1)

1

> print (0x10)

16

> print (0xff)
255

> print (0XA)

10

> print (0x03e8)
1000

> print (-0x£000)
-61440

> print (Oxff.ff)
stdin:1: ')' expected near '.'

Lua 5.0 did not understand hexadecimal numbers.

Interpreter Know-How

Before learning any more about the Lua language, you should know a couple things about the interpreter.

Quitting the Interpreter
Sooner or later, you'll want to take a break. There are three ways to get out of the interpreter:
Q Press Ctrl+C. This sends the interpreter what is called an interrupt signal. If the interpreter is
waiting for you to type something, this will exit the interpreter. If the interpreter is stuck, doing

something (or nothing) over and over without stopping, then this same key combination will
get you back to the state where the interpreter is waiting for you to type something.

Q Press Ctrl+Z (or on Unix-like platforms, including Mac OS X, press Ctrl+D) at the beginning of
an empty line and press Enter. This sends an end-of-file (EOF). It’s a signal to Lua that it should
give up trying to get input from you.

Q The most typing-intensive way to stop the interpreter is to type the following line:

os.exit ()

Interpreter Shortcuts

Depending on your system, you may be able to scroll through an editable history of previous lines
you've typed by using the up- and down-arrow keys on your keyboard.

26

Chapter 2: First Steps

On Windows XP and Windows 2000, this history feature is handled by the cmd shell. On Windows 95,
98, and Me, it is handled by the doskey utility (if it's running). On Unix-like systems, it’s handled by
the GNU Readline and History libraries, if they were linked to when your copy of Lua was compiled.

Here’s another typing saver. When the interpreter sees a line that starts with =, such as the following, it
treats the rest of the line as though it came between the parentheses of a print:

> =2 + 2
4

This is not part of the Lua language proper —it only works when you're typing something into the inter-
preter interactively. This means it’s not to be confused with the use of the equal sign that is part of Lua
proper, which you'll learn about in the next section. You can substitute this typing-saver use of = for
print () in some of the examples in this chapter, but not all of them. Roughly speaking, you can only use
it if what you're typing is a line unto itself, and not part of one of the multiline structures you'll learn
about later. For consistency, this book generally uses print (), but you should substitute = when possible.

If you can access the history of what you ve typed with the arrow keys, you may (depending on your
system) see that lines that start with = have been transformed into lines that start with return. You'll
learn about return in the next chapter.

Numerical Gotchas

At the intersection of the elegant world of mathematics and the sometimes rough-and-ready world of
computers, nonintuitive things may happen. This section explains the major ones.

Division by Zero and Overflow

In arithmetic, dividing a number by zero is undefined. It’s also undefined in Lua, which in practice
means that what happens when you divide by zero depends on the C compiler used to compile your
copy of Lua. To find out what happens on your own system, simply divide something by zero and
observe the result. Here is an incomplete list of the possibilities:

O Lua may abruptly exit (with no error message).

QO Lua may freeze and your operating system may display an error message. (If necessary, use
Ctrl+C to get out of Lua.)

Q The calculation may succeed and give a result. This result may not be a regular number but may
instead look like -1 . #IND, 1.#INF, Inf, or NaN.

If you do get a pseudo-number like NaN, beware: These generally have unusual behavior, sometimes to
the extent of not being equal to themselves.

Unless you're prepared for the results, never divide by zero.

27

Chapter 2: First Steps

On most systems, the highest and lowest possible numbers have more than 300 digits (when written in
regular base-10 notation). If you happen to go beyond these limits, the same division-by-zero warnings
discussed in this section apply.

Floating-Point Rounding

Decimal-point notation cannot accurately express fractions unless they can be expressed in tenths, hun-
dredths, and so on. For instance, % is %o, or 0.5; % is %0 or 0.25; but % is somewhere between 0.33333333 and
0.33333334. Most computer hardware stores numbers in base-2 format, which has a similar problem —
numbers not expressible as halves, quarters, eighths, and so on must be rounded to the nearest such frac-
tion before they can be stored. This means that even a seemingly simple number like 0.1 cannot be accu-
rately represented.

Another type of rounding takes place when a number is printed —if it would have an absurdly long
number of decimal places, it is rounded to a nearby number. The following example demonstrates both
types of rounding:

This example uses some things you won’t learn until later in this chapter. It’s shown here for reference
purposes only.

> AlmostOne = 0.1 + 0.1 + 0.1 + 0.1 + 0.1 +
>> 0.1 + 0.1 + 0.1 +0.1+ 0.1

> print (AlmostOne < 1)

true

> print (AlmostOne)

1

Don’t let this scare you off —in most situations problems like this don’t arise. However, if you do run
into two numbers that look alike but are not equal to each other, you now know a possible cause.

If you want to know more about these issues, go to the library or the web. One standard reference is
David Goldberg’s paper “What Every Computer Scientist Should Know About Floating-Point
Arithmetic,” which is available at http: //docs.sun.com/source/806-3568/ncg_goldberg.html.

By default, Lua uses what are known as double-precision floating-point numbers. It’s possible to
recompile Lua to use another representation for numbers. Unless you're using special hardware, doing
this will not avoid the problems just discussed (or it will trade them for another set of problems).

Variables and Assignment

28

Like almost all programming languages, Lua has variables. For now, you can think of these as named
cubbyholes or storage containers for values. (Numbers are the only values you've encountered so far,
but you'll learn about other types later in the chapter.) After you put a value into a variable, you can
refer to it using the variable’s name.

Chapter 2: First Steps

Assignment Basics

Putting a value into a variable is called assignment. Here are two examples of assignment (along with
some prints that show what’s going on):

> NumberA = 2

> print (NumberA)

2

> NumberB = 2 + 2

> print (NumberB)

4

> print (NumberA + NumberB)
6

An equal sign assigns a value to a variable. In these examples, the value 2 is assigned to the variable
Numbera, and the value 4 (the result of 2 + 2) is assigned to the variable NumberB.

After a value has been assigned to a variable, you can access the value again using the variable’s name,
such as print (NumberA) or print (NumberA + NumberB).

Notice that Lua’s equal sign means a different thing than the one in algebra. The algebraic equal sign is a
statement of fact indicating that two things are equal. Lua’s equal sign is a command to Lua to make two
things equal, so that the one on the left can be used in place of the one on the right. Because of this, a
particular variable may contain different values at different points in a program. Here’s an example:

Sum = 2 + 2
print (Sum)

Sum = 2 + 5000
print (Sum)
002

UV VvV iV V

There are rules for variable names, or identifiers: An identifier has to start with a letter or an underscore.
It can’t contain anything other than letters, underscores, or digits. Nor can it be one of Lua’s reserved
words or keywords, which are and, break, do, else, elseif, end, false, for, function, if, in, local,
nil, not, or, repeat, return, then, true, until, and while. The following are all valid identifiers:

Q a

Q a

0 ABC

] _XyZ

a something_55
O AnotherThing
a

29

Chapter 2: First Steps

None of the following are valid identifiers:

QO function (a keyword)
a this-var (contains something other than a letter, number, or underscore)

0 1stThing (starts with something other than a letter or underscore)

Lua is case-sensitive, which means that NUM, Num, and num are all different identifiers:

NUM = 1
Num = 2
num = 3
print (NUM)

print (Num)

print (num)

WV DV HV V VYV

This also means that FUNCTION, Function, and fUnCtIoN are all valid identifiers, because none of them
is the keyword function.

There are various styles for identifiers:

0 totalsales

a total_sales

0 totalsales

U TotalSales
Some programmers even use different styles for different types of variables. If you're working on some-
one else’s code, use the style used by that code. In your own code, pick a style and stick to it. This book

uses the style Totalsales. Lua itself generally uses the totalsales style, so in this book, you can tell
by looking whether a variable is defined in an example or built into Lua.

Lua has a few special variables that start with an underscore followed by capital letters (and possibly a
number), such as _G or _PROMPT2. Avoid using names like that so that your variables don’t clash with

them.

A single underscore (_) is often used as a variable for junk values—values that need to be assigned, but
won’t be used. (You see this in Chapter 4 and elsewhere in the book.)

30

Chapter 2: First Steps

Multiple Assignment

You can assign multiple values to multiple variables at the same time. You can also print multiple values
at the same time. The comma is used for both. Here’s how you use the comma for multiple assignment,
and for printing multiple values at the same time:

> Sum, Product, Exponent = 10 + 10, 10 * 10, 10 ~ 10
> print (Sum, Product, Exponent)
20 100 10000000000

In this example, three values were generated by adding 10 to itself, multiplying it by itself, and raising it
to the 10th power. These three values were assigned respectively to the three variables Sum, Product,
and Exponent. These three variables (more specifically, the values in these variables) were then printed.

You can also use multiple assignment to swap, rotate, or otherwise interchange the contents of variables.
Here’s an example:

>A, B=1, 2

> print (A, B)

1 2

> A, B=B, A

> print (A, B)

2 1

> John, Jane, Jolene = "chips", "lemonade", "egg salad"
> print (John, Jane, Jolene)

chips lemonade egg salad

> John, Jane, Jolene = Jane, Jolene, John
> print (John, Jane, Jolene)
lemonade egg salad chips

Notice that without multiple assignment, swapping the contents of two variables would require a third
variable for temporary storage:

>A =1

> B =

> print (A, B)
1 2

> Tmp = A

> A =B

> B = Tmp

> print (A, B)
2 1

31

Chapter 2: First Steps

Variables on the Right Side of Assignments

As you may have noticed in some the previous examples, and as shown in the following example, the
thing to the right of the equal sign can also be a variable:

> A =10
> B = A
> print (B)
10

Even if a variable got its value from another variable, the two variables are independent. For example:

> A =10

> B = A

> print (A, B)
10 10

> A = 555

> print (A, B)
555 10

This is because once the assignment gets the value of a variable that’s on its right side, it forgets what
variable the value came from (or even that it came from a variable at all).

Strings

Numbers are nice, but most programs need to deal with strings, which are sequences of characters
(a letter, digit, space, or punctuation mark) or control characters (such a newline or formfeed).

Quoting Strings

A string can contain any text— even something that itself looks like Lua code — so it needs to be sepa-
rated from the actual Lua code that comes before and after it. This is called quoting the string.

There are three ways to quote strings: with double quotes, with single quotes, and with square brackets.

Quoting Strings with Double Quotes

The double quote characters (") mark the beginning and end of the string. Marking the beginning and
end is all they do; they are not actually part of the string, which is why print doesn’t print them, as in
this example:

> print ("This is a string!")
This is a string!

32

Chapter 2: First Steps

Like numbers, strings are values, which means they can be assigned to variables. Here’s an example:

> Name, Phone = "Jane X. Doe", "248-555-5898"
> print (Name, Phone)
Jane X. Doe 248-555-5898

The same variable can contain both a string and a number at different times, as shown here:

> Var = 42

> print (Var)

42

> Var = "forty-two"
> print (Var)
forty-two

You can also have an empty string, which contains no characters between the quote marks. For example:

> print("")

Quoting Strings with Single Quotes

You can also quote strings by using the single quote (or apostrophe) character (), like this:

> print ('This is also a string.')
This is also a string.

Single quotes work exactly like double quotes except that a single-quoted string can contain a double

quote (without that double quote marking the end of the string). Similarly, a double-quoted string can
contain a single quote (without that single quote marking the end of the string). Here are some exam-

ples:

> print ('Cry "Havoc," and let slip the dogs of war')
Cry "Havoc," and let slip the dogs of war
> print ("Cry 'Havoc,' and let slip the dogs of war")
Cry 'Havoc,' and let slip the dogs of war

Other than how they treat embedded double and single quotes, single and double quotes work exactly
the same, and you can use either one. The best practice is to pick one and stick with it in all cases except
those in which the other is more convenient.

Quoting Strings with Square Brackets

You can also quote strings with pairs of square brackets. Square brackets are used mainly for strings that
would be too unwieldy to quote with double or single quotes, like this one:

> print ([[There are some
>> funky "\' characters
>> in this string.]])
There are some

funky "\' characters

in this string.

33

Chapter 2: First Steps

34

If you mark the beginning of a string with two open square brackets ([[), then you mark the end with
two close square brackets (] 1). Inside such a string, no characters have any special meaning —a double
quote represents a double quote, a newline (the invisible character that marks the end of a line, as when
you press Enter) represents a newline, a backslash represents a backslash, a backslash followed by a let-
ter n represents a backslash followed by a letter n, and so on. Strings quoted this way are sometimes
called long strings, because they can be spread out over several lines, but they work fine on one line too.

If the first character of a square-bracket string is a newline, it is ignored. This allows you to write multi-
line square-bracket strings in an easier-to-read way. The following two prints print exactly the same
thing, but the second looks more like its result:

> print ([[+----- +
>> | Lua |
>> f-———— +
>> 11])

R +

| Lua |

R +

> print ([
>> 4--—-m +
>> | Lua |
>> f-———— +
>> 11])

R +

| Lua |

R +

What if you wanted to print two close square brackets inside a long string? For example:

> print ([[Here]] are some square brackets.]])
stdin:1: ')' expected near 'are'

The square brackets are interpreted by Lua as the end of the string. A backslash (the Lua escape charac-
ter, discussed in the following section) won’t prevent this from happening, because backslashes have no
special meaning inside square-bracket strings. Instead, put an equal sign between the string’s opening
square brackets, and another between the closing square brackets:

> print ([=[Here]] are some square brackets.]=])
Here]] are some square brackets.

If you need to, you can use multiple equal signs — the same number at the beginning and the end — like
this:

> print ([=[babble]=] burble]=])

stdin:1: ')' expected near 'burble'

> print ([==[babble]=] burble]==])

babble]1=] burble

> print ([====[babble]=]==]===] burble]====])
babble]=]==]===] burble

Chapter 2: First Steps

In other words, a square-bracket string starts with an open square bracket, zero or more equal signs, and
another open square bracket, and it ends with a close square bracket, the same number of equal signs,
and another close square bracket.

Lua 5.0 had a slightly different quoting method for long strings: The beginning was always [[(never

[=[or [==1[), and the end was always 11 (never 1=1or 1==1). Also, matching sets of bracket pairs
could nest— [[[[1111 was legal and equivalent to " [[11". The equivalent Lua 5.1 long string
would be [=[[1111=].

Backslash Escaping

You can use the backslash character (\)inside double- and single-quoted strings to do things that would
otherwise be inconvenient or impossible.

When the double quote character occurs within a double-quoted string, it has a special meaning: end of
string. As you saw earlier, one way to avoid this special meaning (so that a double quote can be part of a
string) is to quote the string with single quotes. Here’s another way, using the backslash:

> print ("Cry \"Havoc\"")
Cry "Havoc"

When a double quote is preceded by a backslash, the double quote’s end-of-string meaning is taken
away (escaped), and it becomes a part of the string. The backslash itself is not part of the string (in the
same way that the quotes at the beginning and end of the string aren’t part of it).

In other words, a backslash followed by a double quote represents a double quote. In the same way, a
backslash followed by a single quote represents a single quote. For example:

> print ('Ain\'t nobody\'s business if you do!"')
Ain't nobody's business if you do!

A backslash followed by a backslash represents a backslash (just one):

> print ("1 backslash: \\ 2: \\\\ 3: \\\\\\")
1 backslash: \ 2: \\ 3: \\\

And a backslash followed by a newline represents a newline:

> print ("one\
>> two")

one

two

Different systems have different conventions for what character or character sequence is used to mark
the end of a line. Lua accounts for this automatically — if any of the common end-of-line characters or
character sequences occur in Lua code, inside or outside of string quotes, they are silently translated to
newlines.

35

Chapter 2: First Steps

36

Normally, breaking a string into two lines would result in an error such as this:

> print ("one
>> two")
stdin:1: unfinished string near '"one'

In addition to letting double quotes, single quotes, backslashes, and newlines represent themselves, the
backslash also gives special meanings to some characters. For example, a backslash followed by a lower-
case letter n represents a newline:

> print ("one\ntwo")
one

two

These sequences of characters that start with a backslash are called escape sequences, because they tem-
porarily escape from the normal interpretation of characters. Here are all of them:

Escape Sequence Meaning

\a \Bell (in certain circumstances, printing this character
causes the computer to beep — a stands for “alert”)

\b Backspace

\f Formfeed

\n Newline

\r Carriage return (some operating systems use this by itself
or in combination with newline to represent the end of a
line)

\t Tab (used to format text in columns)

\v Vertical tab

\\ Backslash

\" Double quote

\! Single quote (apostrophe)

\99 The character whose numeric representation is 99
(described next)

\ Newline (a backslash followed by a literal newline repre-

sents a newline)

A backslash followed by one, two, or three decimal digits represents the character whose numeric repre-
sentation (inside the computer’s memory or on a disk) is that number. This varies from system to sys-
tem, but on most systems "\99" is the same as "c" — of course, in most circumstances it would make
more sense to use the latter form rather than the former.

Chapter 2: First Steps

Lua’s escape sequences are similar to those of the C language. The most important difference is that
numeric escapes like \123 are interpreted as decimal (base 10), not octal (base 8).

Lua strings can include any character, including the null byte: the (invisible) character whose numeric
representation is 0. However, parts of Lua that depend on the C language to handle strings will consider
that character to mark the end of the string. For example:

> EmbeddedNull = "BEFORE\Oafter"
> print (EmbeddedNull)
BEFORE

Relational Operators and Boolean Values

+,-,*, /,and ~ are called operators, or more specifically, arithmetic operators. Arithmetic operators ask
“how much” questions. In this section you learn about relational operators, which ask yes-or-no questions.

Comparing Numbers

The operators in this section are relational because they ask about the relation between two values:
whether one value is less than the other, greater than it, equal to it, and so on.

Here’s how to ask Lua whether one number is less than another:

> print (4 < 5)
true
> print (5 < 4)
false

You've learned about two types of values so far: numbers and strings. The less-than operator always
gives true or false as a result. true and false look like strings at first glance, but actually they are a
new type, called Boolean values (named after the 19th-century mathematician George Boole). There are
lots of numbers (1, -300, 3.14159) and lots of strings ("Hello there!", "apple", "asdfjkl; "), but
true and false are the only Booleans. Because they are values, they can be assigned to variables. To
hard-code a Boolean value into a program, just type true or false (with no quotes), like this:

> Booleanl, Boolean2, Boolean3 = true, false, 1 < 2
> print (Booleanl, Boolean2, Boolean3)
true false true

There are six relational operators:

O A<B IsAless than B?
O aA>B Is Agreater than B?

QO A <=BIsAless than or equal to B?

37

Chapter 2: First Steps

Q aA>=BIs A greater than or equal to B?
O A==BlsAequaltoB?

QO A-~=BIsAnotequal to B?

Of these six, <, >, <=, and >= determine what order two values are in. == and ~= just determine whether
two values are equal. For example:

> print (1l > 1)
false

> print (1 > 2)
false

> print (1l >= 1)
true

> print (1 >= 2)
false

> print (1l == 1)
true

> print (1l == 2)
false

> print (1l ~= 1)
false

> print (1l ~= 2)
true

Two values of different types are never considered equal, even if they look similar.
So the number 1 is not equal to the string "1", and the string "true" is not equal to
the Boolean true. Also, unlike some other languages, the number 0 is not equal to
either the empty string " " or the Boolean false, and the number 1 is not equal to
the Boolean true.

Here are a Couple common errors:

> Num == 42

stdin:1: '=' expected near '=='
> print (Num = 42)

stdin:1: ')' expected near '='

A single equal sign is used for assignment and a double equal sign is used for equality comparison. It’s
very common to mix these up, but Lua always spots the error.

Comparing Strings

If two strings have the same characters in them (in the same order), then they are considered the same
string, which means they are equal to each other (because a value is always equal to itself). For example:

> Strl = "Jane X. Doe"
> Str2 = "Jane X. Doe"
> print (Strl == Str2)
true

38

Chapter 2: First Steps

<, >, <=,and >= can be used on strings as well. Single-character strings compare based on their collation
(sorting) order in the current locale. In the simplest case, this is their order in your system’s character set.
(Locale is a system setting that determines, among other things, the appropriate alphabetization order
for the language being used.) Here are some examples:

> print("a" < "b")
true
> print("a" < "a")
false
> print("a" <= "a")
true
> print ("A" < "a")
true
> print (" " > "\n")
true

Multiple-character strings compare based on the first character that is different, like this:

> print ("abcd" < "abce")
true

The absence of a character is considered less than any character, as these examples illustrate:

> print("" < "A")

true

> print ("" < "\0")

true

> print("abc" < "abcd")
true

Although == and ~= can be used with values of any type, even values of two different types, the <, >, <=,
and >= operators can only be used with two numbers or two strings. Anything else causes an error, as
these examples show:

> print (false < true)
stdin:1: attempt to compare two boolean values
stack traceback:

stdin:1: in main chunk

[C]: ?
> print (42 >= "41")
stdin:1: attempt to compare string with number
stack traceback:

stdin:1: in main chunk

[C]: 2

The rule that <, >, <=, and >= can only be used to compare two strings or two numbers is not strictly

true. You'll learn how to bypass this rule— and several other rules given in this chapter — with metata-
bles in Chapter 8.

39

Chapter 2: First Steps

The nil Value

40

Assigning an initial value to a variable is called initializing it. A variable that has had no value assigned
to it is said to be uninitialized. You've learned about three types of value (also known as datatypes) so far:
numbers, strings, and Booleans. There’s one more type to learn about in this chapter, and you'll see it if
you print the value of an uninitialized variable such as the following;:

> print (Asdf)
nil

This is the value nil. Its type is also named nil; in fact it is the only value whose type is nil. It is used
mainly to represent the absence of any other value. Any uninitialized variable has nil as its value.

You can also explicitly assign nil to a variable, which you might do if you want Lua to forget about the
variable’s previous value. For example:

> Password = "S$xa(yb'y"
> print (Password)
$xa(yb'y

> Password = nil
> print (Password)
nil

nil also comes into play when an assignment is made that has more variables on its left side than values
on its right side. Here’s an example:

C, D=3, 4
A, B, C, D=1, 2
print (A, B, C, D)
2 nil nil

=V VvV VvV

If there are more variables on the left side of an assignment than there are values on the right side, the
list of values is adjusted to the correct length by adding nils to the end. So the line where a and B are
assigned as follows:

>A, B, C, D=1, 2
acts just as though it had been written like this:

>A, B, C, D=1, 2, nil, nil

This means that extra variables (C and D in this example) are set to nil, even if they already have been
set to another value.

Chapter 2: First Steps

If there are more values on the right than variables on the left, the list of values is adjusted by throwing
away the extra values, like this:

>A, B=1, 2, 3, 4
> print (A, B)
1 2

nil is different from false, 0, and the string "nil". But, like all values, it’s equal to itself:

> print(nil ~= false)
true

> print(nil ~= 0)
true

> print (nil ~= "nil")
true

> print (nil == nil)
true

If a nil turns up where you don’t expect it, a typo is usually the cause. In the following example, the
variable LoginCount is initialized, but then its name is miscapitalized as LogInCount, which is a differ-
ent variable:

> MaxLoginCount = 100
> LoginCount = 50
> print (LogInCount > MaxLoginCount)
stdin:1: attempt to compare number with nil
stack traceback:

stdin:1: in main chunk

[C]: ?

Because LogInCount is uninitialized, its value is nil, which can’t be compared to a number.

In the next example, Joe and Mike were intended as strings, but because they are not quoted, they’re
treated as (uninitialized) variables:

> FirstNameA, FirstNameB = Joe, Mike
> print (FirstNameA < FirstNameB)
stdin:1: attempt to compare two nil values
stack traceback:
stdin:1: in main chunk
[C]: 2

Boolean Operators

The three Boolean operators — and, or, and not — are handy for working with Boolean values. However,
as you will see, they can also be given non-Boolean values, and two of them (and and or) don’t always
even give Boolean results.

41

Chapter 2: First Steps

The and Operator

42

Like the other operators you've seen so far, the and operator takes two values, one to its left and one to
its right. The values given to an operator are called operands. The simple explanation of and is that it
gives a true result only if both of its operands are true, as follows:

> print (false and false)
false

> print (false and true)
false

> print (true and false)
false

> print (true and true)
true

One way that you can use this is to check if a number is within a range. In the following example Num >
10 is true and Num < 20 is true, so the result is true:

> Num = 15
> print (Num > 10 and Num < 20)
true

If you use operands that aren’t Booleans, the behavior of and is a bit more subtle. Here are some
examples —see if you can figure out what rules and is following in them:

> print (false and nil)
false

> print(nil and false)
nil

> print (false and 1)
false

> print (1 and false)
false

> print(nil and 1)
nil

> print(l and nil)
nil

> print(nil and true)
nil

> print (true and nil)
nil

> print (true and 1)

1

> print (1 and true)
true

> print("a" and 1)

1

> print(l and "a")

a

Chapter 2: First Steps

The more complicated explanation of the and operator is that if its first operand is false or nil, then
the first operand is used as the result; otherwise the second operand is used as the result. Mentally apply
that rule to the preceding examples to see if you come up with the same answer as Lua.

Notice that the complicated explanation is the same as the simple explanation if you consider both
false and nil to be false values and everything else to be true values. There’s a distinction here
between true and false, which are proper names for specific values in Lua, and “true” and “false,”
which are adjectives. In this book, the adjectives will always be in the same typeface as the surrounding
text, and the names will be in this typeface, like so:

false and nil are false. true and "Jane Doe" are true.

Remember, false and nil are the two false values, and every other value is a true
value. This means that, unlike some other languages, the number 0 and the empty
string are both true.

The or Operator

The or operator gives a false result only if both its operands are false, as follows:

> print (false or false)
false

> print (false or true)
true

> print (true or false)
true

> print (true or true)
true

Like and, the result of or is always one of its operands. If its first operand is something other than false
or nil, then the first operand is used as the result; otherwise the second operand is used as the result.

For example:

> print (42 or nil)

42

> print(nil or 42)

42

> print (false or nil)

nil

> print(nil or false)
false

> print("first" or "second")
first

> print (false or "second")
second

43

Chapter 2: First Steps

This behavior comes in handy in the following example.

> print (FavoriteFruit or "apple")

apple

> FavoriteFruit = "kiwi"

> print (FavoriteFruit or "apple")
kiwi

The print line (which occurs twice in the example) is the interesting one here. If there’s a favorite fruit,
that line prints it. If, however, FavoriteFruit is uninitialized (and therefore is nil), there’s no favorite
fruit, and the default ("apple") is printed.

There can be chains of these, in which case, the result is the first value that is true. Here’s an example:

> Choicel, Choice2, Choice3 = nil, "pencil", "pen"
> print (Choicel or Choice2 or Choice3)
pencil

Mathematicians consider the ox operator to be the Boolean equivalent of addition, and the and operator
to be the Boolean equivalent of multiplication.

The not Unary Operator

Most of the operators you've learned about so far are binary; that is, they take two operands, one to the
left of the operator and one to the right. (This meaning of binary is not to be confused with the base-two
number system.) You've seen one unary (a one-operand) operator as well, although you may not have
realized it. It’s the so-called unary minus, and you’ve already used it to make negative numbers, like
this:

> print (-50)

-50

> print (-2 + -2)
-4

You can also use it to make any positive value negative, or make a negative value positive. :

> Two = 2

> print (-Two)

-2

> MinusTwo = -Two
> print (-MinusTwo)
2

- is both a binary and a unary operator, but Lua never gets these two uses confused, because it’s always
visible from the context which one you intended:

> print(-13 - -2)
-11

44

Chapter 2: First Steps

and and or are both binary, but the remaining Boolean operator, not, is unary. As with -, the not
operand goes to its right. If that operand is false or nil, then the result of not is true; otherwise, it’s
false:

> print (not false)
true

> print (not nil)
true

> print (not true)
false

> print (not 50)
false

> print (not "Hello")
false

If a true value is preceded by two nots, the result is true; if a false value (that is, false ornil) is pre-
ceded by two nots, the result is false:

> print (not not true)
true

> print (not not 50)

true

> print (not not "Hello")
true

> print (not not false)
false

> print (not not nil)
false

The Concatenation, Length,
and Modulo Operators

There are three other operators you need to know about: concatenation, length, and modulo. You'll
examine all three in the following sections.

The String Concatenation Operator

The string concatenation operator is written like this: . . (two periods, with no spaces between them). It
takes two strings as operands and concatenates them, or splices them together. Here are some examples:

> print ("App" .. "le")

Apple

> print("a" .. "b" .. "c" .. "d")

abcd

> Name = "dear reader"

> print("Hello, " .. Name .. ", how are you?")

Hello, dear reader, how are you?

45

Chapter 2: First Steps

The .. operator creates a new string by putting its two operands together with no space between them.
If you want a space (or some other separator), explicitly include it in the concatenation, like this:

> print ("Jane" .. "Doe")
JaneDoe

> print("Jane" .. " " .. "Doe")
Jane Doe

As mentioned previously, two strings with the same characters in the same order are the same string.
This means that two different concatenations can have equal results. For example:

> OneAndTwoThree, OneTwoAndThree = "1" .. "23", "12" .. "3"
> print (OneAndTwoThree, OneTwoAndThree)

123 123

> print (OneAndTwoThree == OneTwoAndThree)

true

Concatenating a string to the empty string gives the same string:

> print("abcd" .. "" == "abcd")
true

The Length Operator

46

The length operator #, like not and one version of -, is a unary operator. It measures the length of a
string. (It also measures the length of a table, which you'll learn about in Chapter 4.) Take a look at these
examples:

print (#"")
print (#"!")
print (#"\n")
print (#"abcd")

VerbForms = "see saw seen'
print (#VerbForms)

V V&V PV EV OV

=
[N}

The length of a string is simply the number of characters in it. (Notice that "\n" is a single character,
even though it is typed as two.)

Lua considers a character to be exactly one byte—a small chunk of memory just big enough to be able to
take on one of 256 different values. (To be pedantic, Lua considers a character a C char, but that will be

Chapter 2: First Steps

one byte on any system you're likely to use.) This makes a difference if you're using a character encod-
ing (UTE-8, for example) in which some characters take up more than one byte; the following word
looks like it’s four characters long, but Lua sees it as five:

> print (#"fi_o")
5

Lua counts the null byte just like any other character:

> NullByte = "\O"

> NullBytes = NullByte .. NullByte .. NullByte
> print (#NullByte)

1

> print (#NullBytes)

3

> print (#"before\Obetween\0behind")

21

Lua 5.0 didn’t have the length operator #. To get the length of a string, use the function string.len;
to get the length of a table, use the function table.getn.

The Modulo Operator

Imagine the hour hand of a clock. If it’s pointed at 3 and you turn it two hours forward, it’s now pointed
at 5. This can be modeled by addition: 3 plus 2 equals 5. But what if, when it’s pointed at 5, you turn it
144 hours forward? The answer is that it will still be pointed at 5 because 144 is divisible by 12. After the
hour hand passes 12, the addition model breaks down (in this case giving the answer 149). The modulo
operator, %, is good for modeling cyclical things like hours in a day, days in a week, or musical pitches in
an octave.

Try It Out Using % to Model a Clock Face

The following example models setting an hour hand to 3, moving it two hours forward, moving it 144
hours forward, and moving it 149 hours backward. For this example, pretend that the top of the clock
says 0 instead of 12 (the fact that real clocks go from 1 to 12 rather than 0 to 11 could be adjusted for by
adding and subtracting 1 at the appropriate points, but that would needlessly complicate this example).

print (Hour)

> Hour = 3

> Hour = Hour + 2

> Hour = Hour % 12
> print (Hour)

5

> Hour = Hour + 144
> Hour = Hour % 12
> print (Hour)

5

> Hour Hour - 149
> Hour Hour % 12
>

0

47

Chapter 2: First Steps

How It Works

The lines where addition or subtraction is done represent turning the hour hand, but they can leave
Hour either too high (greater than or equal to 12) or too low (negative). The lines where % is used adjust
for this. Hour % 12 is pronounced “hour modulo twelve” or “hour mod twelve,” and it means “What
would Hour be if I added or subtracted enough 12s so that it was less than 12 and greater than or equal
to zero?”

For positive numbers (even fractional ones), this is the same as the remainder of a division. For example,
35 % 12 is 11 because 12 goes into 35 two times with a remainder of 11. This can be used to check
whether a number is divisible by another number. For instance, if X is even, then X % 2 will be 0.

In other languages, the modulo operators and functions treat negative numbers differently than the Lua
% operator does. The Lua operator follows the definition of modulo most commonly used by mathemati-
cians. One way of stating this definition is as follows:

To find x % v, add Y to (or subtract it from) X as many times as necessary until a

number between 0 and Y is reached. (This number can be exactly equal to 0, but it

cannot be exactly equal to v.)
This definition allows the clock-face example to work even when Hour briefly becomes negative.

As with division by zero, using zero as the second operand of % is undefined.

Lua 5.0 didn’t have the % operator. Use the function math.mod instead, but be warned that it has dif-
ferent behavior with negative numbers.

Automatic Conversion of Operands

48

Some operators (such as ==) can take operands of any type. Other operators (such as <) expect operands
of a certain type and produce an error message if given the wrong type. The arithmetical operators (+, -,
*, /, ~, and %) fall into this second category, except that they will attempt to convert string operands into
numbers, like this:

> print("2" () 0))
4

The result is still a number, not a string. If the conversion attempt fails, an error message like the follow-
ing results:

> print ("x" + "y")
stdin:1: attempt to perform arithmetic on a string value
stack traceback:

stdin:1: in main chunk

[C]: 2

Chapter 2: First Steps

If the string is a hexadecimal number, it must be positive. (Negative hexadecimal numbers may be con-
verted correctly, but this is not guaranteed — it depends on the C library used to compile Lua.)

The string concatenation operator also does an automatic conversion, from number to string. For example:

> print (111 .. 999)
111999

Precedence and Associativity

You may remember from math class that both 5 * 5 + 1 and 1 + 5 * 5 give the same result— multiplication
is done before addition even if it comes later. Multiplication is therefore said to have a higher precedence
than addition. However, if you want to do a lower-precedence operation before a higher-precedence one,
you can surround the lower-precedence one in parentheses.

The following shows that, no matter what the left-to-right order, multiplication will always be done
before addition, unless the addition is wrapped in parentheses, in which case it will be done first:

> print(5 * 5 + 1)
26

> print(l1 + 5 * 5)
26

> print(5 * (5 + 1))
30

> print((1 + 5) * 5)
30

Notice that parentheses are being put to two different uses here — to override precedence and to wrap
the thing being printed. These two uses are completely unrelated, but in both cases each open parenthe-
sis must have a corresponding close parenthesis. If the open and close parentheses don’t match up,
you'll get either an error message or a continuation prompt telling you to finish what you started:

> print((1 + 5) * 5))

stdin:1: unexpected symbol near ')'
> print (5 * (5 + 1)

>>

What about two operators that have the same precedence? In some cases, it doesn’t matter what order
they’re donein: (2 +3) + 4and 2 + (3 + 4) are both 9. But how about 2 - 3 + 4? This will give a differ-
ent answer depending on whether the subtraction or the addition is done first, and precedence can’t be
used to decide this because addition and subtraction have the same precedence. In this case, the subtrac-
tion is done first because it’s on the left, and + and - are both left-associative operators. Anytime two
operators are the same precedence, they are done from left to right if they’re left associative, and right to
left if they’re right associative. Lua only has two right-associative operators: . . (string concatenation)
and ~ (exponentiation). (That’s not counting unary operators, which are done from right to left because
that’s the only way that makes sense.)

49

Chapter 2: First Steps

50

The following chart lists all of Lua’s operators, from highest precedence to lowest. (All operators are
binary unless marked as unary, and all binary operators are left associative unless marked as right
associative.)

~ (exponentiation; right-associative)
not (Boolean negation; unary), - (unary minus), # (length; unary)
* (multiplication), / (division), $ (modulo)
+ (addition), - (subtraction)
. (string concatenation; right-associative)

< (less than), > (greater than), ~= (not equal to), <= (less than or equal to), == (equal to), >= (greater
than or equal to)

and (Boolean “multiplication”)

or (Boolean “addition”)

Most experienced programmers do not memorize this whole chart, nor do they check it every time they
can’t remember a precedence. Rather, they memorize a handful of the most commonly used precedences
and use parentheses for anything they’re not sure of. It doesn’t hurt to add parentheses even if they're
not strictly necessary according to the precedence chart, and it often makes your code easier for you and
others to understand.

On the other hand, Lua’s precedence chart is well thought out, and many common idioms do not require
parentheses. For example, relational operators have comparatively low precedence, which means that

arithmetic results don’t need to be wrapped in parentheses before being compared:

> CreditA, DebitA, CreditB, DebitB = 1000, 150, 500, 25

> print (CreditA - DebitA == CreditB - DebitB)
false
> print (CreditA - DebitA > CreditB - DebitB)
true

and and or both have very low precedence, so you don’t need to wrap comparisons in parentheses
before using and or or:

> CreditA, DebitA, CreditB, DebitB = 1000, 150, 500, 505
> print (CreditA >= DebitA and CreditB >= DebitB)

false

> print (CreditA >= DebitA or CreditB >= DebitB)

true

and has higher precedence than or, so you can use A and B or C to mean “if A, then B, otherwise C.”

Chapter 2: First Steps

Here’s the A and B or C trick in action:

B, C = "B was chosen", "C was chosen"
A = true

print (A and B or C)

was chosen

A = false

print (A and B or C)

was chosen

QV VWV VvV YV

A is anded with B and the result (a if A is false, otherwise B) is ored with c. The upshot is that whether A
is true or false determines whether the result is B or C. This would have worked the same if 2 had been
set to any true value instead of true, or nil instead of false. It would not have worked, though, if B
had been nil or false:

B, C = false, "C was chosen"
A = true

print (A and B or C)

was chosen

Q VvV VvV Vv

This is a limitation of this idiom — the middle value must be true.

Variables and Values

Earlier you read that variables are like named cubbyholes or containers for values. This means that the
following assignment finds the three cubbyholes Number, Greetingl, and Greeting?2 (creating them if
they don’t already exist) and puts 123 in Number, "Hello" in Greetingl, and "Hello" in Greeting2:

Number, Greetingl, Greeting2 = 123, "Hello", "Hello"

This is illustrated in Figure 2-1.

Number Greetingl Greeting?2
123 "Hello" "Hello"
Figure 2-1

For everything you’ve done and will do in this chapter, that’s a perfectly accurate mental model, but
later you'll run into situations where it would lead you astray. Before you get it too ingrained in your
head, a somewhat more accurate model is that the following finds the three names Number, Greetingl,

51

Chapter 2: First Steps

and Greeting?2 (creating them if they don’t already exist) and points Number’s arrow at 123 and
Greetingl’s and Greeting2’s arrows at "Hello":

Number, Greetingl, Greeting2 = 123, "Hello", "Hello"

This is illustrated in Figure 2-2.

Number Greetingl Greeting2

Figure 2-2

The difference is that instead of Greetingl and Greeting2 each containing "Hello", they only point to
it. Chapter 4 explains why this is important.

Comments

If Lua sees two consecutive hyphens outside of a string, it considers everything until the end of that line
a comment and ignores it. For example:

> print ("Hello") -- This is a comment.
Hello

> print ("Goodbye") -- So is this.
Goodbye

Comments are useful to explain your code’s purpose to other programmers (or to remind yourself when
you return to the code after a few months). Whenever you change your code, make certain you update
your comments appropriately.

Comments can also be used to temporarily comment out code that you want Lua to ignore but don’t
want to delete entirely, like this:

> -- print("Hello")
>

If the two hyphens are immediately followed by an open square bracket, zero or more equal signs, and
another open square bracket, then Lua uses the rules described previously for long strings (square

52

Chapter 2: First Steps

bracket strings) to ignore the following text (including the rule about nested sets of square brackets
needing different numbers of equal signs). This is most often used for multiline comments such as the
following:

> --[[This is

>> a multi-line
>> comment.]]

>

It can also be used to temporarily comment out code in the middle of a line, like this:

> print(2 + --[[2 +]] 2)
4

Or to temporarily comment out multiple lines of code, like this:

> - [

>> print ("Multiple")
>> print("lines.")
>> —-1]

>

Notice that the closing brackets have -- in front of them. This lets you add a single - in front of the
opening brackets (turning that line into a single-line comment rather than the start of a multiline com-
ment) without the closing brackets causing an error:

> ——-[[

> print ("Multiple")
Multiple

> print("lines.")
lines.

> —-1]

>

That looks pretty silly typed into the interpreter, but you'll find it useful for debugging when you start
saving code to (and executing it from) files.

Even though code typed directly into the interpreter is normally short-lived and not commented, much
of the following example code is commented for your benefit.

Expressions and Statements

For most of this chapter, you've been using expressions and statements. For the rest of the chapter to
make sense, these terms need to be defined.

53

Chapter 2: First Steps

An expression is something that has a value. As you've used print, you've been putting expressions
(separated by commas when there is more than one) between its parentheses. An expression can be a lit-
eral value, such as a quoted string, true, false, or nil. Literal means that you can tell just by looking at
it what it is. For example, a variable named Count may contain a number (and probably does, given its
name), but it’s not a literal number, like 42 is.

An expression can also be a variable name, like Count. It can also be an expression preceded by a unary
operator, an expression wrapped in parentheses, or two expressions separated by a binary operator. For
example, -Count is an expression because Count is an expression, and an expression preceded by a
unary operator is also an expression. 2 + 3 is an expression because 2 and 3 are expressions, and separat-
ing two expressions with a binary operator makes another expression. Take a look at the following
example:

Count > 5 and #(FirstNameStr .. LastNameStr) <= 20

Even a complicated expression like this can be explained as the literals 5 and 20 and the variable names
Count, FirstNameStr, and LastNameStr combined according to the preceding rules.

There are other rules for making expressions, but these are the only ones relevant to this chapter.

A statement is the smallest complete unit of Lua code. A Lua program is simply one or more statements
(actually zero or more, because if you enter an empty line into the interpreter, you're executing a valid
program that does nothing). Lua doesn’t know what to do with an expression unless it’s wrapped in a
statement such as the following;:

> 2 + 2

stdin:1: unexpected symbol near '2'
> print (2 + 2)

4

As this example implies, print (...) is a statement. Assignment is also a statement, and these are the only
two types of statement you've learned about so far in this chapter. You'll learn more in the next section.

For the most part, expressions and statements are two different things. There is one type of expression
that can be used as a statement, and you'll learn about it next chapter.

Compound Statements

54

Compound statements are statements that can contain other statements. The following sections describe
five of Lua’s compound statements: the if statement; the while, for, and repeat loops; and the do statement.

At any time during the execution of a program, a certain part of the program is in control. By default,
control flows from each statement to the one after it, but most compound statements are control
structures, so-named because they are structures (with multiple parts), and they alter the flow of control.
The if statement is one of these control structures.

Chapter 2: First Steps

The if Statement

Say you have two strings, strl and Str2, and you want to concatenate them in (the < operator’s ver-
sion of) alphabetical order. To do so, you need to test whether Str1 comes before Str2 and, if it does,
concatenate them with str1 first, but otherwise concatenate them with str2 first. You already know

enough to do this, if you use the A and B or C trick described earlier. Give it a try.

You should come up with the following;:

> Strl, Str2 = "aardvark", "zebra"

> print (Strl < Str2 and Strl .. Str2 or Str2 .. Strl)
aardvarkzebra

>

> Strl, Str2 = "zebra", "aardvark"

> print (Strl < Str2 and Strl .. Str2 or Str2 .. Strl)
aardvarkzebra

There’s another way to do this, using the if control structure.

Try It Out Using if to Make a Choice

The if version is a bit wordier but, at least in this case, it’s easier to read, and it scales up more easily to
more complicated things. Here’s the code:

> Strl, Str2 = "aardvark", "zebra"
> if Strl < Str2 then

>> print (Strl .. Str2)

>> else

>> print (Str2 .. Strl)

>> end

aardvarkzebra

> -- Do it again with the strings swapped:
> Strl, Str2 = "zebra", "aardvark"
> if Strl < Str2 then

>> print (Strl .. Str2)

>> else

>> print (Str2 .. Strl)

>> end

aardvarkzebra

How It Works

In English: If the two strings are in the right order, then print them; otherwise, print them in reverse
order.

55

Chapter 2: First Steps

56

The if control structure has the following form:

if an expression then
zero or more statements
else
zero or more sStatements
end

The expression is evaluated, that is, its value is checked. If the value is true (that is, something other than
false or nil), then only the statements between the then and the else are executed; if the expression
is false (that is, false or nil) then only the statements between the else and the end are executed.

An if statement doesn’t have to be spread out across several lines. If it’s not too long, you can fit it on
one line. If you do spread it across several lines, indent the statements before and after the else, as the
preceding example shows. Lua doesn’t care about indentation, but humans find it much easier to read
properly indented code.

If you have no statements to put in the else clause (the part between the else and the end), just leave
the else out. For example:

if not Asdf then print("Asdf is false") end

if X" .. "Y' .. "z == "XYZ" then

Name = "Virginia"

print("Yes, " .. Name .. ", it's \"XYZ\"")
end

It’s possible to rewrite the alphabetical concatenation example with no else clause. Give it a try before
you look at the following example. (Hint: the print statement needs to come after the end.)

> Strl, Str2 = "aardvark", "zebra"
> if Strl > Str2 then
>> Strl, Str2 = Str2, Strl

>> end

> print (Strl .. Str2)

aardvarkzebra

> -- Do it again with the strings swapped:
> Strl, Str2 = "zebra", "aardvark"

> if Strl > Str2 then

>> Strl, Str2 = Str2, Strl
>> end

> print (Strl .. Str2)
aardvarkzebra

In English: If the two strings are in the wrong order, swap them. Then print them (whether they were
swapped or not).

This code does one thing if Strl is greater than Str2 and does something else if Str1 is less than or
equal to Str2. Similarly, the first version does one thing if Str1 is less than Str2 and something else if
Strl is greater than or equal to Str2. Because an if structure is a statement, it can be put inside a then

Chapter 2: First Steps

clause or an else clause. This fact can be used to do one thing if Str1 is less than Str2, another thing if
Strl is greater than str2, and yet another if they are equal. Write a version that concatenates Str1 and
Str2 in order as before if they are inequal, but only prints one of them if they are equal. This means that
the following:

Strl, Str2 = "aardvark", "aardvark"
should result in this:
aardvark

After you've written your code, test it and make sure it works. Testing it in this case means trying it out
with all three cases: two strings in the right order, two strings in the wrong order, and two identical
strings.

There are several correct ways to write this code. Here’s one:

if Strl == Str2 then
-- Str2 is a duplicate of Strl; replace it with the
-- empty string:
Str2 = "
else
if Strl > Str2 then
-- They're in the wrong order; swap 'em:
Strl, Str2 = Str2, Stril
end
end
print (Strl .. Str2)

Because the inner if doesn’t have an else, the strings are only executed if one of the two tests turns out
true; if not, none of the statements except the final print is executed.

Notice that the contents of the outer i £ statement’s then and else clauses are indented one level (which
is two spaces in this book), and the inner i f statement’s then clause is indented one more level.

If an if statement is nested inside the else clause of another i f statement, Lua allows them to be com-
bined into one if statement using the keyword elseif.

Here’s the nested-if version of alphabetical concatenation rewritten using elseif:

if Strl == Str2 then
-- Str2 is a duplicate of Strl; replace it with the
-- empty string:
Str2 = "
elseif Strl > Str2 then
-- They're in the wrong order; swap 'em:
Strl, Str2 = Str2, Strl
end
print (Strl .. Str2)

57

Chapter 2: First Steps

The elseif test (to see if the strings are in the wrong order) is only done if the i f test (to see if the
strings are equal) turned out false.

An if statement can have zero or more elseifs, and zero or one else. If there is an else, it has to be
the last part of the 1f:

if N == 1 then
print ("N is one")
elseif N == 2 then
print ("N is two")
elseif N == 3 then
print ("N is three")
else
print ("N is neither one nor two nor three")
end

In an if like this, the test expressions (right before then) are evaluated from the first one downward,
until the first true one is found, at which point the next statement block (the part between the then and
the next elseif, else, or end) is executed, and the if is exited. The statement block after the else is
only executed if none of the test expressions are true. In this example, you can tell at a glance that only
one of the prints will be executed.

The while Loop

58

The if control structure gives a program the power to decide whether something gets executed. Lua’s
other control structures —while, repeat, and for —give a program the power to decide how many times
something gets executed. They are called loops, and the simplest is while, whose form is as follows:

while an expression do
zero or more statements
end

The expression is evaluated. If it’s true, the statements between do and end are executed, and then the
expression is evaluated again. If it is still true, the statements are executed again, and the cycle contin-
ues. If the expression evaluates as false at any time (including the first time it’s evaluated), the while
statement is exited, which means that the statements are not executed and the expression is not evalu-
ated again. For example, the following code does nothing:

while false do
print ("This will")
print ("never print.")
end

On the other hand, here’s an example that will run forever — (or until you stop it by pressing Ctrl+C):

while true do

print ("It keeps")

print ("going and going.")
end

Chapter 2: First Steps

More interesting cases are those where the expression starts out true, and then becomes false, like in the
following example, which uses while to count to 10:

> Counter = 1

> while Counter <= 10 do
>> print (Counter)

>> Counter = Counter + 1
>> end

V P W oo Jo U1l i WDN B

Here, Counter is set to 1, and as long as it’s less than or equal to 10, it is printed and then incremented
(increased by one). At the end of the tenth time through the loop, Counter is set to 11. The test—
whether Counter is less than or equal to 10 —is done an eleventh time, this time with a false result,
which means the loop is done.

A factorial is a number formed by multiplying a sequence of consecutive integers starting with 1. For
example, the factorial of 5 (notated by mathematicians as “5!”) is 1x2x3x4x5, or 120. (Apart from their
use in the mathematical field of combinatorics, factorials are quite handy for writing examples in pro-
gramming books.)

The following code prints all the factorials less than 100:

>N, F=1, 1
> while F < 100 do

>> print(N .. "! is " .. F)

>> N=N+1

>> -- Compute the factorial of the new N based on
>> -- the factorial of the old N:

>> F=F*N

>> end

1! is 1

2! is 2

3! is 6

4! is 24

The first line initializes (gives initial values to) N and F, setting N to 1 and F to the factorial of 1, which
also happens to be 1. The expression after while makes sure that F is less than 100. Inside the loop’s
body, N and F are printed, N is incremented, and the factorial of the new value of N is computed, using
the fact thatn! equals (n - 1) !xn.

59

Chapter 2: First Steps

The for Loop

60

One difference between the factorial loop and the 1-to-10 loop is that you knew the 1-to-10 loop’s body
would be executed 10 times, but you didn’t know how many times the factorial loop’s body would be
executed (unless you figured the factorials out in your head). To know when to exit the loop, Lua had to
compute 4!, see that it was less than 100, and then compute 5! and see that it was not less than 100. The
while loop is for situations where you don’t know how many times you want the loop to repeat. When
you do know how many times you want the loop to repeat, use Lua’s for loop. (It’s called for because
it does things for a certain number of times.)

Here’s the 1-to-10 loop rewritten with for:

> for Counter = 1, 10 do
>> print (Counter)
>> end

P W oo Jo Ul W

Notice how much simpler it is than the first version. The for loop has the following form:

for variable = start number, end number, step do
zero or more sStatements
end

The value start number is assigned to variable, the zero or more statements are executed, step
is added to variable (step is optional and usually left out, in which case 1 is used), and if variable is
still less than or equal to end number, then the loop body is executed again.

If Lua sees that the variable will never either reach or go beyond end number, then the body is never
executed:
> for N =1, 0 do
>> print (N)
>> end
>

The right thing is done for negative and fractional values and cases where the difference between the
start number and the end number is not divisible by the step value:

Chapter 2: First Steps

> for N =
>> print
>> end

3

2

1

> for N = -50, -45.25, 2.5 do
>> print (N)
>> end

-50

-47.5

> for N = 2,
>> print (N)
>> end

2

4

1, -1 do
)

— W
=

5, 2 do

The start number, end number, and step value don’t need to be, and often aren't, literal numbers — they
can be any expressions that evaluate to numbers. This evaluation takes place once, at the beginning of
the loop (unlike a while loop’s test expression, which is evaluated over and over as the loop loops).
That’s why the following example loops five times, even though End gets lower and lower:

> End = 5
> for I = 1, End do

>> End = End - 1 -- The loop doesn't care that End is being
>> -- changed.

>> print("I is " .. I .. " and End is " .. End)

>> end

I is 1 and End is
is 2 and End is
is and End is
is and End is
is and End is

HH H H
g W
o RPN W

for loops can be nested inside each other. For example:

> for Outer = 1, 3 do
>> for Inner = 1, 3 do

>> print ("Outer: " .. Outer .. "; Inner: " .. Inner)
>> end

>> end

Outer: 1; Inner: 1
Outer: 1; Inner: 2
Outer: 1; Inner: 3
Outer: 2; Inner: 1
Outer: 2; Inner: 2
Outer: 2; Inner: 3
Outer: 3; Inner: 1
Outer: 3; Inner: 2
Outer: 3; Inner: 3

61

Chapter 2: First Steps

A common mistake is to forget the do after a for or while, or the then after an if or
elseif. If you do this, you'll get an error message:

> for N = 1, 10
>> print (N)

stdin:2: 'do' expected near 'print'

Another way to say something loops is to say that it iterates. Looping in general is called iteration, but
each time the body of a loop is executed is called an iteration.

On each iteration of a for loop, there’s an implicit assignment to the loop variable (the variable named
right after for). This variable has a behavior that you might not expect. In the following example, N is
used both outside the loop and as a loop variable:

> N = "outside"
> for N = 1, 3 do
>> print (N)

>> end

1

2

3

> print (N)
outside

The outside value of N was unaffected by the numbers that were assigned to N inside the loop. A for
loop’s variable is only visible inside the loop —if you look at it outside the loop, you'll get any value it
was given outside the loop (nil if it hasn’t been given a value outside the loop). This is because the N
inside the loop and the N outside the loop are actually two different variables — they’re in two different
scopes. (You learn more about this in the next chapter.)

The repeat Loop

62

The repeat loop is different in three ways from the while loop:

Q Its expression is tested after its body (the statements between do and end), which means that the
body is always executed at least once.

Q The sense of the test is reversed — the while loop keeps going while the expression is true; the
repeat loop, whose expression comes after the keyword until, keeps going until the expres-
sion is true.

QO A repeat loop, unlike a while (or any other compound statement for that matter), does not end
with the keyword end.

Chapter 2: First Steps

Here’s the factorial example rewritten to use a repeat loop:

>N, F=1, 1

> repeat

>> print(N .. "! is " .. F)

>> -- Compute the next N and its factorial:
>> N=N+1

>> F=F*N

>> until F >= 100

1! is 1

2! is 2

3! is 6

4! is 24

There’s sort of an incipient bug in this version. It is that if you had wanted to see all factorials less than 1,
then the while version would have given you the correct answer (none), but the repeat version would
have incorrectly printed like this:

1!

is 1

That’s why you only use repeat when you know that you want the loop’s body to be executed at least
one time.

The repeat loop is the least commonly used control structure. There are a few examples of it in
Chapter 18.

The break and do Statements

The break statement exits a while, for, or repeat loop prematurely. For example:

> for N =1, 10 do

>>
>>
>>
>>
>>

vV ol w N

if N > 5 then
break
end
print (N)
end

63

Chapter 2: First Steps

If a break is inside more than one loop, it only breaks out of the innermost one as follows:

> for Outer = 1, 3 do
>> for Inner = 101, 103 do

>> print ("Outer: " .. Outer .. "; Inner: " .. Inner)

>> if Inner == 102 then

>> print ("Breaking out of inner loop; 103 won't be reached.")
>> break

>> end

>> end

>> end

Outer: 1; Inner: 101
Outer: 1; Inner: 102
Breaking out of inner loop; 103 won't be reached.
Outer: 2; Inner: 101
Outer: 2; Inner: 102
Breaking out of inner loop; 103 won't be reached.
Outer: 3; Inner: 101
Outer: 3; Inner: 102
Breaking out of inner loop; 103 won't be reached.

Use break with caution; sometimes it’s the simplest way to do what you want, but more often it makes
code hard to understand. If the following loop has no breaks in it, you can tell at a glance that it will
execute 10 times:

for Times = 1, 10 do
A bunch
of code
goes here.

end

But if the line i f Times == 5 then break end is in the middle, the loop will execute 4% times, which is a
bit harder to hold in your head while you're looking for a bug.

A break must be the last statement in a block. A block is a group of statements between the following;:

Q doandend
0 repeatanduntil

Q thenandelseif, else, or end

Q elseif and end

A elseandend

In other words, a block is a do block (more about these in a moment), a loop, or a branch of an if state-

ment. There are other blocks too, but these are the ones relevant to break. The following example demon-
strates the error caused by trying to use break as something other than the last statement in a block:

> while true do

>> break

>> print ("Never reached")

stdin:3: 'end' expected (to close 'while' at line 1) near 'print'

64

Chapter 2: First Steps

This limitation is not a hardship, because even if you could put statements after a break, they would
never get executed. During debugging, however, it can be convenient to break out of the middle of a
block, and you can do this by wrapping the break in its own block. Lua’s final compound statement, the
do block, is useful for this, as you can see in the following example:

> for N = 1, 10 do
>> print ("Before")
>> do break end
>> print ("After")
>> end

Before

>

The do block has the following form:

do
zero or more statements
end

It can also be used to force code typed directly into the interpreter to be executed as one unit, as in the
second of the following examples, which, unlike the first, has all of its output in the same place, instead
of it being interleaved with the code:

> print ("\nHere are some numbers:")

Here are some numbers:
> for N =1, 5 do

>> print (N)

>> end

=W N e

5
> print ("There were some numbers.")
There were some numbers.

> do
>> print ("\nHere are some numbers:")
>> for N =1, 5 do

>> print (N)

>> end

>> print ("There were some numbers.")
>> end

Here are some numbers:

U W N

There were some numbers.

65

Chapter 2: First Steps

Summary

This chapter introduced you to the most fundamental elements of the Lua programming language. Most
of the examples were given as typed into lua, the Lua interpreter. In this chapter, you learned the fol-

lowing:

g
a

Numbers, strings, Booleans, and nil are different types of values.
To print a value, use print and parentheses.

You can use operators to do math, compare values, concatenate strings, and do various other
things with values.

Operators are applied in order of their precedence, but you can use parentheses to control this.
You use a single equal sign to assign a value to a variable.

Variable names (identifiers) must include only letters, digits, and underscores, and begin with a
letter or an underscore. You cannot use keywords such as and, true, and if as variable names.

Comments start with two dashes.

Literal values and variables are expressions. You can build more complex expressions from less
complex ones with operators and parentheses.

Statements are the smallest complete unit of Lua code.

To determine whether to do something, or how many times to do something, you use the con-
trol structures i f, for, while, and repeat.

Often in this chapter, you have given names to values using assignment. It’s possible to give names to
pieces of code too. For example, you can write a big i f structure and give it a name, and then when you
want to use it, you don’t have to type the whole thing in again, you just need to type the name. Pieces of
code that are nameable like this are called functions, and they’re the subject of the next chapter. Before
leaving this chapter, though, take some time to do the exercises and test your understanding of what
you've learned so far. You'll find answers in the appendix.

Exercises

1.

Why does the following code give an error message rather than printing “Hello”?

> Print("Hello")
stdin:1: attempt to call global 'Print' (a nil value)
stack traceback:

2.

stdin:1: in main chunk

[C]: 2
Assuming X is true and Y is nil, what is the value of the following expression?
(X and "ABC") .. (Y and "DEF" or 123)

66

Chapter 2: First Steps

3. The expression from the previous exercise does not have a value if x is false. Why is that?
4. Consider the following i f statement:

if N < 10 then

print ("x")
elseif N > 0 then
print ("x")
end

If N is 5, how many x’s will be printed?

5. Write a for loop that prints out the even numbers between 2 and 10, inclusive, in reverse order.

67

One
Con

Extending Lua with
Functions

of the key concepts in programming is abstraction, which means ignoring unimportant details.
sider the following set of instructions:

1. Gettwo slices of bread, a jar of peanut butter, a jar of jelly, and a butter knife.

2. Using the butter knife, spread a thin layer of peanut butter on one side of one piece of bread.
3. Using the butter knife, spread a thin layer of jelly on one side of the other piece of bread.
4. Attach the two pieces of bread together by pressing the peanut-buttered side of the one to

the jellied side of the other.

Now compare those instructions with the following:

1

The

. Make a peanut-butter-and-jelly sandwich.

first set of instructions is less abstract than the second, because it contains details that would

only be helpful to someone naive in the ways of sandwich preparation. The second set of instruc-
tions abstracts away these details. Consider the following code:

Chapter 3: Extending Lua with Functions

This is less abstract than the following code:

for I =1, 10 do
print (I)
end

Both examples do the same thing, but the second one takes advantage of the fact that Lua knows how to
count. This demonstrates one of the benefits of abstraction — there’s less to type! A related benefit is that
it makes code easier to understand: When you know how for loops work, you can tell at a glance that
the second example prints the numbers from 1 to 10, whereas you’d only know that for sure about the
first one if you were to proofread it and make sure that (for instance) it doesn’t print two sixes in a row.

Functions are the most important means of abstraction in Lua. You've already used one function in the
previous chapter: print. In the following example, the print function is being told to do its thing with
two pieces of data — the string "The answer is" and the number 42:

print ("The answer is", 42)

Another way of saying this is that print is being called with two arguments. print is only one of many
built-in functions that Lua has, but almost any program you write will involve you defining your own
functions.

Take a look at the following example:

> function Greet (Name)

>> print ("Hello, " .. Name .. ".")
>> end

> Greet ("John")

Hello, John.

> Greet("Jane")

Hello, Jane.

> Greet ("Aloysius")

Hello, Aloysius.

The first line (“function Greet (Name) ”) tells Lua that you're defining a function, that the function’s
name will be Greet, and that it will take one argument, whose value will be placed into the variable
Name. When the function is called, the second line concatenates the string "Hello, " with (the contents
of) Name and a period, and prints the result. The last line of the function tells Lua that you're done defin-
ing the function. A function definition like this is a statement.

The function is then called three times, each time with a different name as an argument, and prints a
greeting customized for a person with that name. Because the details of how to greet someone are only in
one place, you only need to make any change you want once, rather than every time you greet someone.

The inside of a function definition is executed only when or if the function is called. In the preceding
example, because the call to print is inside Greet, nothing is printed when Greet is defined, but some-
thing is printed each time Greet is called. This point may seem obvious, but if you're a beginning pro-
grammer, you might find yourself forgetting it when confronted with more complex pieces of code.

70

Chapter 3: Extending Lua with Functions

Functions can have more than one line of code inside them. In fact, they can include all the things cov-
ered in the preceding chapter. Here’s one that includes assignment and an i f control structure:

function Greet (Name)

if Name == "Joe" then
MsgStr = "Whaddya know, Joe?"
else
MsgStr = "Hello, " .. Name .. "."
end
print (MsgStr)
end

For that matter, functions can even contain no lines of code, in which case they do nothing. Functions
can also take any number of arguments, or none, as in the following example:

> function NoNameGreet ()
>> print ("Hello.")

>> end

> NoNameGreet ()

Hello.

> function TwoNameGreet (Namel, Name2)

>> print ("Hello, " .. Namel .. " and " .. Name2 .. ".")
>> end

> TwoNameGreet ("Mutt", "Jeff")
Hello, Mutt and Jeff.

If a function is called with more arguments than it was written for, the extra arguments are thrown away,
like this:

> NoNameGreet ("Cathy")

Hello.

> TwoNameGreet ("Larry", "Moe", "Curly", "Shemp")
Hello, Larry and Moe.

If a function is called with fewer arguments than it was written for, the remaining arguments are (inside
the function) set tonil as follows:

> function Print2Args(Argl, Arg2)
>> print (Argl, Arg2)

>> end

> Print2Args("lst argument", "2nd argument")
1lst argument 2nd argument

> Print2Args("lst argument")

lst argument nil

> Print2Args ()

nil nil

71

Chapter 3: Extending Lua with Functions

Notice that this behavior (discarding extra arguments and setting missing ones to ni1) exactly parallels
the behavior of multiple assignment (described in Chapter 2):

> Varl, Var2 = "lst value", "2nd value", "3rd value"
> print(Varl, Var2)

1st value 2nd value

> Varl, Var2 = "lst value"

> print(Varl, Var2)

1st value nil

This chapter is all about functions. It explains how to do the following:

Q Give names to pieces of code and refer to them by those names (this is one of the most impor-
tant methods used to structure a program)

Q Execute a file that contains Lua code

(W]

Use variables that are only valid in limited parts of a program

Q Use the same variable name to refer to different variables in different parts of a program

Return Values

Functions —both ones built into Lua and ones that you define — can refurn values. This means that a
function call can result in a value that you can then pass to another function, use in a variable assign-
ment, or otherwise operate on. In other words, function calls are actually expressions that, like print
and Greet, you can use as statements.

Using a Function that Returns a Value

You can return values from functions that you've defined. But first, you should see how to get a return
value from a function that’s already built into Lua.

Lua’s built-in type function is a good example of a function that returns a value. Here are some exam-
ples of this function:

> print (type(42))

number

> print (type("Hello, Aloysius."))
string

> print (type(true))

boolean

> print (type(type(true)))

string

> print (type(nil) .. type(false))
nilboolean

> SomeType = type(42)

> print (SomeType)

number

72

Chapter 3: Extending Lua with Functions

The type function takes one argument, which can be any value. It always returns a string that names the
datatype of its argument, which will be — one of the following eight strings: "boolean", "function",
"nil", "number", "string", "table", "thread", or "userdata". So, when type is called with a
number as an argument, it returns the string "number"; when type is called with nil as an argument, it
returns the string "nil"; and so on.

These eight strings represent all eight Lua types. Booleans, nils, numbers, and strings were covered last
chapter. Right now you’re learning about functions. Tables, threads, and userdata will be explained in

Chapter 4, Chapter 9, and Chapter 13, respectively.

As the preceding examples show, a call to type is an expression and can be used wherever an expression
is legal. You can use it as the argument to another function:

print (type (type (true)))
Or as an operator’s operand:

print (type(nil) .. type(false))
Or in an assignment:

SomeType = type (42)

If you call type in the interpreter without doing anything with its value, nothing happens (the value is
thrown away):

> type(42)
>

This is why the type result has been passed to print in the preceding examples.

Defining a Function that Returns a Value

Unsurprisingly, Lua makes it easy to define your own functions that have return values. You use the
return statement.

The following function, Average, uses return to return the average of its two arguments:

> function Average (Numl, Num2)

>> return (Numl + Num2) / 2

>> end

> Average(0, 10)

> print (Average(0, 10))

5

> print (Average (Average (10, 20), Average(30, 40)))
25

73

Chapter 3: Extending Lua with Functions

The first time Average is called, nothing is done with the result, so the result is thrown away, and you
never see it. The second time it is called, the result (5) is passed to print, so you do see it. On the next
line, Average is called twice, and the results are passed to a third call of Average. This is equivalent to
the following:

Avgl, Avg2 = Average (10, 20), Average(30, 40)
print (Average (Avgl, Avg2))

Using the return values of function calls as arguments to other function calls is very common. If carried
to an extreme, it can get a bit hard to read, in which case assigning intermediate results to variables (like
Avgl) can make things more legible.

This Average function can only average two numbers. In the next chapter, you'll learn how to write a
function that can average however many numbers you give it.

Using return to Alter Control Flow

74

Functions, just like the break statement and the i £, for, and while control structures, alter the flow of
control through a program. The return statement also alters the flow of control.

In the following example, return is used to jump past the bottom of the function:

> -- Returns true if Str has an even number of characters;
> -- otherwise returns false:

> function EvenLen(Str)

>> if #Str % 2 == 0 then

>> return true

>> else

>> return false

>> end

>> print ("This will never get printed!")
>> end

> print (EvenLen("Jane"))

true

> print (EvenLen("Joe"))

false

>

The if tests whether the length of str is evenly divisible by 2. If it is, the function immediately returns
true, which means that the rest of the function (in this case, the final print call) never gets executed. If
the length is not evenly divisible by 2, the function immediately returns false, and the print is again
not reached.

Chapter 3: Extending Lua with Functions

If this sounds familiar, it’s because return is very similar to break, which you learned about in the last
chapter. In fact, there are two differences:

0 Dbreak exits the innermost loop; return exits the innermost function (functions, like loops, can
be nested).

0 Because loops don’t return values, break cannot be followed by an expression like return can.

Like break, return must be the last statement in a block. In the last chapter, an incomplete list of blocks
was given (do blocks; for, while, and repeat loops; branches of if statements). The only other blocks
are functions and chunks. A chunk is a piece of code executed as a unit, such as the following:

QO Acomplete file
0 Asingle line typed into the Lua interpreter without causing the continuation prompt to appear

Q Multiple lines typed into the Lua interpreter, of which all but the last cause the continuation
prompt to appear

Again as with break, if you want (for debugging purposes) to return from the middle of a block, just use
a dummy do block like this:

> function ReturnFromMiddle()

>> print ("Does get printed")

>> do return true end

>> print ("Doesn't get printed")
>> end

> ReturnFromMiddle()

Does get printed

>

In the last chapter, you saw how break can sometimes make loops, especially long ones, harder to
understand. For similar reasons, returning from the middle of functions, particularly long ones, can
make them harder to understand. To verify that the last line of EvenLen will never be executed, you
need to examine the whole function, a small hardship which would be greater with a larger function.

This book often has you write functions like this:
function EvenLen (Str)

if #Str % 2 == 0 then
Ret = true

else
Ret = false
end
return Ret
end

75

Chapter 3: Extending Lua with Functions

The return value is assigned to Ret in the middle of the function, but Ret is only returned at the very
end, so the function has only one exit point, while the earlier version of EvenLen had two. (There’s actu-
ally something wrong with this example —Ret is visible outside the function, when it really should be
the function’s own private variable. You'll learn how to avoid this later in this chapter.)

The practice of having only one exit point from each block is part of what is known as structured pro-
gramming, a school of thought most identified with programming pioneer Edsger Dijkstra (1930-2002).
Structured programming is much less controversial now than when it was first introduced in the
1960s, but it is by no means universally regarded as correct. We, the authors of this book, think of it as a
rule of thumb to which exceptions can be made.

Returning Nothing

76

Before you learned about return, you saw how to write functions that don’t include return. What do
such functions return? It’s easy enough to find out. When print is called with no arguments, it just
prints an empty line, like this:

> print()

>

If you create a function that does nothing and has no return statement, and print its result, you get an
empty line as shown here:

> function DoNothing()
>> end
> print (DoNothing())

>

If functions like this returned nil, you would see it here. This is a strong hint that functions that don’t
use return really do not return a value. You can verify this by trying to print the following DoNothing
return value, which results in type complaining that it wasn’t given a value:

> print (type (DoNothing()))
stdin:1: bad argument #1 to 'type' (value expected)
stack traceback:

[C]: in function 'type'

stdin:1: in main chunk

[C]: 2

To explicitly return no value, use return with no value. The following version of DoNothing behaves
exactly the same as the previous version:

function DoNothing ()
return
end

Chapter 3: Extending Lua with Functions

And the following function also does nothing and returns nothing:

function DoNothing ()

do return end

print ("This will never print.")
end

Not having a return statement at the end of a function has exactly the same effect as having a return
that returns no values.

Returning Multiple Values

So far, you've seen functions that return one value and functions that return no values. Functions can
also return more than one value, and this turns out to be a particularly handy feature of Lua.

Here’s a function that takes three arguments and returns all of them.

> function ReturnArgs(Argl, Arg2, Arg3)
>> return Argl, Arg2, Arg3

>> end

> print (ReturnArgs(1l, 2, 3))

1 2 3

> print (ReturnArgs (ReturnArgs(l, 2, 3)))

1 2 3

> A, B, C = ReturnArgs("alpha", "bravo", "charlie")
> print(A, B, C)

alpha bravo charlie

To return multiple values, simply separate the values with commas. Just from reading the following line,
you might think that print is being given only one argument:

print (ReturnArgs (1, 2, 3))
But it actually gets three arguments — the three values returned by Returnargs. The next line is just a
generalization of this. Returnargs is given three arguments; it returns three values; those three values
are given to another call of Returnargs, which itself returns three values; and those values are given to
print (which prints them):

print (ReturnArgs (ReturnArgs (1, 2, 3)))

You can also use a call to a function that returns multiple values as the right side of an assignment, like
this:

A, B, C = ReturnArgs("alpha", "bravo", "charlie")

77

Chapter 3: Extending Lua with Functions

Adjusting Value Lists

You just saw that you can use a function that returns multiple values as the first and only argument to

another function (in which case it’s as though the function was called with multiple arguments) or as the

entire right-hand side of an assignment (in which case it’s as though multiple values were assigned).
What if you use a function that returns multiple values as one of several arguments to another function,
or as only part of the right side of an assignment? As you know, if you call a function with more than

one argument, then the arguments are separated with commas. The same applies to assignment state-
ments that assign more than one value and return statements that return more than one value. These
lists of zero or more (in the case of functions and return) or one or more (in the case of assignment) val-
ues are called value lists.

When you call functions in value lists, their return values are adjusted. This is similar to the process of
adjustment (described in Chapter 2) that happens in assignment statements.

Using Multiple-Valued Functions in Value Lists

Here’s how multiple-valued functions work in various positions in value lists of various lengths, using
the Returnargs function defined in the previous section:

> print (1, ReturnArgs("a", "b", "c"))

1 a b @

> print (ReturnArgs(1l, 2, 3), "a")

1 a

> print (ReturnArgs(1l, 2, 3), ReturnArgs("a", "b", "c"))
1 a b c

The rule that Lua follows it this:

If a function call returning multiple values is the last (or only) expression in a value
list, then all the function’s return values are used. If a function call returning multi-
ple values is in a value list but is not the last expression, then only its first return
value is used; its remaining return values are discarded.

This explains why the following:
print (ReturnArgs(l, 2, 3), ReturnArgs("a", "b", "c"))
printed this:

1 a b c

78

Chapter 3: Extending Lua with Functions

ReturnArgs (1, 2, 3) was not the last expression in the print list of arguments, so only its first return
value (1) was used, and its second and third values were thrown away. The Returnargs ("a", "b",
"c") was the last expression in print’s argument list, so all three of its return values ("a", "b", and
"c") were passed as (the second, third, and fourth) arguments to print.

The rule also applies to value lists with more than two expressions in them, such as these:

> print(

>> ReturnArgs(1l, 2, 3),

>> ReturnArgs(4, 5, 6),

>> ReturnArgs(7, 8, 9),

>> ReturnArgs (10, 11, 12))

1 4 7 10 11 12

Although these examples were given using the print function, the value lists in return and assign-
ment statements work the same way:

> function Test ()
>> return ReturnArgs(l, 2, 3), ReturnArgs(4, 5, 6)

>> end

> print (Test())

1 4 5 6

> A, B, C, D = ReturnArgs(1l, 2, 3), ReturnArgs(4, 5, 6)
> print(A, B, C, D)

1 4 5 6

Using Valueless Functions in Value Lists

What about functions that return no values, such as the following:

> function DoNothing()

>> end

> print (1, DoNothing())

1

> print (DoNothing(), 2)

nil 2

> print (DoNothing(), DoNothing())
nil

This is just an application of the same rule: When the call to DoNothing is the last expression in the
value list, no adjustment is made and no corresponding value is passed to print, and when the call to
DoNothing is not the last expression in the value list, it is adjusted from no values to one value, namely
nil. Here’s the rule rephrased to cover functions that return no values:

If a function call is the last (or only) expression in a value list, then all (if any) values
returned by the function are used. If a function call is in a value list but is not the
last expression, then its first return value (or nil, if it returns nothing) is used and
any remaining return values are discarded.

79

Chapter 3: Extending Lua with Functions

80

This rule (adjust every expression except the last to one value) may seem more complicated than neces-
sary, but there is good reasoning behind it. If every expression in a value list were adjusted to one value,
there would need to be a special way to override this, which would make the ability of Lua functions to
return multiple values harder to use. If no expressions in a value list were adjusted to one value, then
any function returning less or more than one value would throw off the positioning of everything that
came after it in the value list.

As you saw with type, a function call used as a statement is adjusted to no return values, because
there’s nowhere for those values to go.

As covered in the previous chapter and earlier in this one, the whole value list involved in an assign-
ment or a function call is adjusted to the right size by discarding values or adding nils. That adjustment
happens after the adjustment of individual expressions in the value list that this section has been
describing:

> A, B = DoNothing(), 1, 2

> print (A, B)

nil 1

> A, B, C = ReturnArgs(1l, 2, 3), 4
> print (A, B, C)

1 4 nil

To force a function call at the end of a value list to be adjusted to one value, surround the whole function
call (including its parentheses) with parentheses:

> print("a", (ReturnArgs("b", "c", "d")))
a b

> print("a", (DoNothing()))

a nil

You've seen three uses for parentheses: function calls, controlling precedence in expressions, and function
definitions. It may seem as though adjusting to one value is yet another use of parentheses, but in Lua,
these are the same type of parentheses used to control precedence. You can use a function to return less or
more than one value only when a call to it is the last expression in a value list. Wrapping such a call in
parentheses has no effect on precedence, because there are no operators and therefore no precedence to con-
trol, but it does cause the last expression in the value list to no longer be a function call (even though it
contains one), and to therefore no longer be eligible for multiple- or zero-value treatment.

return is not a function. This means that you should not surround whatever comes after it in parenthe-
ses, unless you want to force adjustment to one value as shown in the following example:

> -- This example requires the ReturnArgs function used
> -- earlier.

> function Test()

>> return (ReturnArgs(l, 2, 3))

>> end
> print (Test())
1

Chapter 3: Extending Lua with Functions

Chunks as Functions

Earlier in this chapter, a chunk was defined as a piece of code executed as a unit. The simplest example is
code typed into the interpreter. When you enter a line into the interpreter, it checks whether you typed
any complete statements. If so, it executes those statements as a chunk. If not, it prints a continuation
prompt so you can finish. After it has amassed a whole number of statements, it compiles (converts) them
into bytecode — an internal representation much more efficient than the text that you type in (which is
also known as source code). This bytecode is meant for the internal component of Lua also known as the
interpreter, which is the second meaning of the term interpreter mentioned in the previous chapter. When
there is a possibility for confusion, the first interpreter can be called 1ua or the command-line interpreter,
and the second can be called the bytecode interpreter.

The command-line interpreter and the bytecode interpreter are not two independent things. Rather, the
command-line interpreter uses (and depends on) the bytecode interpreter.

After a chunk has been compiled into bytecode, it is a function (albeit one without a name). This means
that chunks, including those typed into the interpreter, can be returned from the following:

> return
>

The return can even come from deep within a chunk, like this:

> for I =1, 10 do
>> print(I)

>> if I == 5 then return end
>> end

1

2

3

4

5

>

If values are returned, 1ua passes them to print so you can see them, as shown here:

> return nil, "Hello", nil
nil Hello nil

This is how the equal-sign typing saver described in the last chapter works. When the interpreter sees a
chunk that starts with an equal sign, it replaces the equal sign with "return " before compiling the
chunk like this:

> =nil, "Hello", nil
nil Hello nil

81

Chapter 3: Extending Lua with Functions

When a chunk typed into the interpreter is executed as a function, no arguments are passed to it.

Another important type of chunk is a file containing Lua code. Such a file is often called a script.

Try It Out Writing Your First Lua Script

Unlike code typed directly into the interpreter, scripts are self-contained programs, which you can run
repeatedly without having to type them in again. The following very simple script gives a greeting that
is traditional in programming examples.

1. Create a file with the following contents and name it hello.lua:

-- This is the first file-based example in the book.
print ("Hello, world!")

2. Access your system’s shell, and make sure you're in the same directory as the file you just cre-
ated (as described in Chapter 1). Then type the following and press Enter:

lua hello.lua

You should see the following:

Hello, world!

How It Works

When 1lua is started with a filename, it loads that file as a chunk and executes it. As with any chunk, a
file can be returned from it, and values can be returned from it, but if the file is executed as shown in this
example, these values will simply be thrown away. Arguments can be given to a file, as you'll learn in
the next chapter.

From here on, many of the examples will be presented as scripts to be executed by giving the filename
to lua.

If you don’t want to have to type lua every time you run a file like this, you can make it directly executable.
On Unix-like platforms this is done by making its first line something like %! /usr/local/bin/lua or
#!/usr/bin/env lua, and marking the file as executable with chmod a+x followed by the file’s
name. (If Lua saw # ! in the middle of a script, it would complain, but if it sees # as the very first char-
acter, it just skips to the second line.)

There are several ways to do it on Windows. Ussing hello. lua as an example, one method is to make
a file called hello . cmd that consists of a line like this:

@lua "C:\Your\Dirs\Here\hello.lua" %*
Or if that doesn’t work because you are running an earlier version of Windows, you can use the follow-
ing method, which limits the number of command-line arguments to nine (replace

"C:\Your\Dirs\Here\" with the full path to the Lua file):

@lua "C:\Your\Dirs\Here\hello.lua" %1 %2 %3 %4 %5 %6 %7

o°

8 %9

82

Chapter 3: Extending Lua with Functions

The . cmd file must be in a directory in your system’s search path. After you do this, typing hello will
run the file.

You can also execute a string as a chunk. First use the built-in function loadstring to convert it to a
function, and then call the function like this:

> Fnc = loadstring("print('Hello!')")
> Fnc()
Hello!

loadstring is an excellent example of the usefulness of multiple return values. If it succeeds in convert-
ing the string to a function, it returns that function; otherwise, it returns nil and an error message.
That’s demonstrated by the following example, which also shows that 1oadstring takes an optional
second argument — a a string used as a name for the chunk in any error messages:

> Fnc, ErrStr = loadstring("print(2 + + 2)", "A STRING CHUNK")
> if Fnc then

>> Fnc ()

>> else

>> print (ExrrStr)

>> end

[string "A STRING CHUNK"]:1: unexpected symbol near '+'

You can use the vararg mechanism described in the next chapter to access any arguments given to the
function returned by loadstring (although not in Lua 5.0).

Like all chunks, a chunk compiled by 1oadstring has no access to local variables from other chunks.
For example:

> Test = "global"

> do

>> local Test = "local"

>> Fnc = loadstring("print(Test)")

>> Fnc() -- This prints Test's global value.
>> end

global

loadstring may seem like a very powerful function, but it’s seldom necessary. If
you feel a need to use it, chances are that what you want to do should be done
another way instead (with the closures described later in this chapter, for example,
or with the get fenv and setfenv functions described in the next chapter). An
exception to this is a program that (like the Lua interpreter) accepts code while it’s
running, and runs that code. That type of thing is the ideal use of loadstring.

83

Chapter 3: Extending Lua with Functions

Variable Scope

In the last chapter, you saw that the variable created by a for loop is only visible inside the loop, and that
a variable outside the loop can have the same name without them affecting each other. (Visible here means
that it can be assigned to and its value can be read.) This is possible because Lua, like most modern pro-
gramming languages, has variable scopes, which are regions within which certain variables are visible.

In early computer languages, all variables were in the same scope, which made it hard to write large
programs, because you needed to make sure that the same name wasn’t used for two different things.

The first step in understanding scopes is learning the distinction between a function’s actual arguments
and its formal arguments. This is explained by the next section.

Actual and Formal Arguments

84

In the following example, what is PrintArg’s argument?

> -- Prints its one argument:
> function PrintArg(Arg)

>> print (Arg)

>> end

> PrintArg(true)

true

There are two answers to that question. The argument PrintArg is defined with is Arg, but the argu-
ment it’s called with is true. The arguments that a function is defined to take are called formal arguments;
the arguments that it is called with are called actual arquments.

This terminology is not totally standardized. For instance, some people call formal arguments parame-
ters and reserve the word argument for actual arguments.

Formal arguments are just the names by which actual arguments are referred to inside a function when
it is called. This is why using something other than a name as a formal argument is an error, such as the
following:

> function Oops (true)
stdin:1l: <name> or '...' expected near 'true'

Chapter 3: Extending Lua with Functions

Local Variables

A function’s formal arguments are only visible inside the function, and any variable from outside the
function is only visible if it does not share a name with a formal argument. For example:

Arg, NotShadowed = "Outside 1", "Outside 2"

-- Prints its one argument and the value of NotShadowed:
function ScopeTest (Arg)

>> print (Arg, NotShadowed)

>> end

>

> ScopeTest (true)

true Outside 2

> print (Arg)

Outside 1

vV V. V V

When ScopeTest is called, a new variable is created, named Arg, and the actual argument for
ScopeTest is assigned to it. Because this variable is only visible inside the function, it is called a local
variable. When the value of Arg is printed, it’s the local Arg (whose value is true) that gets printed, and
not the outer Arg (whose value is "Outside 1"). For this reason, the local Arg is said to shadow the outer
Arg. On the other hand, Not Shadowed, which does not share a name with any variable local to the func-
tion, is not shadowed, and is therefore accessible in the normal way.

After ScopeTest returns, the outer Arg is unaffected.
Scopes can be nested inside each other, as shown in this rather contrived example:

> function ScopeTest2(LclA)
>> print ("LclA is " .. LclA)
>> for LeclB = 1, 5 do

>> print ("LclB is " .. LclB)
>> LclA = LelA + 1

>> end

>> print ("LclA is now " .. Lcld)
>> end

>

> ScopeTest2(100)
LclAa is 100

LclB is 1

LclB is
LclB is
LclB is
LclB is
LclA is now 105

Uk W N

The scope of Lc1a is the whole function. The scope of Lc1B is just the loop. The example also shows that
you can assign to local variables from containing scopes.

Functions and for loops create their own local variables, but you can create local variables too.

85

Chapter 3: Extending Lua with Functions

86

This example introduces the keyword local:

> function ScopeTest3(Lcl)
>> for I =1, 5 do

>> Lcl = Lel .. "a"
>> print (Lcl)

>> local Lcl = "
>> Lcl = Lel .. "z"
>> print (Lcl)

>> end

>> print ("The loop is done.")
>> print (Lcl)

>> end

>

> ScopeTest3("")

a

Z

aa

Z

aaa

aaaa
Z

aaaaa

Z

The loop is done.
aaaaa

local Lcl = " " is a statement that creates a new local variable named Lc1 and initializes it to the empty
string. This new local variable’s scope starts on the statement after the 1ocal statement. Because it’s
inside the scope of another variable also named Lc1 (the function’s formal argument), it shadows that
outer variable.

Every time the 1ocal statement is executed, a new local variable is created and initialized. That’s why
the outer Lcl becomes a longer and longer string of a’s, whereas the inner Lc1 is never longer than one
z, because it keeps getting recreated and hence doesn’t remember its previous value.

The scope of a local variable created with the 1ocal statement has to end somewhere. In this example, it
ends at the end of the loop (the same place that the scope of the loop variable I ends). You can see that
this is true, because when the value of Lc1 is printed after the loop is done, it’s the outer Lc1 whose
value get printed.

A local variable’s scope extends to the end of the innermost block that encloses it. A
block is a do block, the body of a while or for loop, the body of a repeat loop plus
its until expression, a branch of an if statement, a function, or a chunk.

Figure 3-1 shows all the scopes in ScopeTest3, and clearly illustrates why the two Lc1s are called outer
and inner. The scope of the outer Lc1 starts at the top of the function’s body and ends at the bottom of
the function’s body; the scope of the I loop variable starts at the top of the loop body and ends at the

Chapter 3: Extending Lua with Functions

bottom of the loop body; the scope of the inner starts right after the 1ocal statement and ends at the bot-
tom of the loop body.

function ScopeTest3

(Lcl)

for I =1, 5 do

Lcl = Lcl

print (Lcl)

local Lcl ="

g

—— The scope of the
outer Lcl

Lcl = Lcl

print (Lcl)

The scope of I

end

print (Lcl)

print ("The loop is done.")

The scope of the
inner Lcl

end
Figure 3-1

Variables from outer scopes are always visible in inner scopes, unless they are shadowed. This is easier
to show using the following do blocks to delimit scopes without altering control flow:

> do

>> local A = "Al"

>> do

>> local B = "B1"

>> do

>> local A = "A2"
>> do

>> local B = "B2"
>> B = "still B2"
>> end

>> do

>> local C = "C1"
>> print (A, B, C)
>> end

>> end

>> end

>> end

A2 Bl Ccl

87

Chapter 3: Extending Lua with Functions

The inner A is printed because it shadows the outer one, but the first B is printed because the second B is
not in a containing scope. By the time C’s scope starts, the second B scope has already ended. Figure 3-2
illustrates this:

do
local A = "Al"
do @® — The first
A's scope
local B = "B1"
o The first
do B's scope
local A = "A2"
do [] The second
A's scope
local B = "B2"
B = "still B2" [The second
B's scope
end
do
local ¢ = "C1"
print (A, B, C) [C's scope
end
end
end
end
Figure 3-2

One of the benefits of indenting by block is that it makes scopes easier to see. To find out where the inner
Lcl’s scope ends in ScopeTest3, all you need to do is find the first line below the 1ocal line that’s far-
ther to the left—Lc1’s scope includes everything up to that line:

function ScopeTest3 (Lcl)
for T =1, 5 do

Lcl = Lel .. "a"
print (Lcl)

local Lcl = "
Lcl = Lel .. "z"

88

Chapter 3: Extending Lua with Functions

print (Lcl)
end
print ("The loop is done.")
print(Lcl)
end

As mentioned earlier (and illustrated by the positioning of the boxes in Figures 3-1 and 3-2), the scope
of a variable created by a 1ocal statement doesn’t begin until the following statement. This means that
if a variable name appears on both sides of a 1ocal statement’s equal sign, the one on the left names the
variable whose scope is about to begin, and the one on the right names a variable in a containing scope:

> do

>> local Lcl = "aardvark"

>> -- The first Lcl's scope starts here.
>> local Lcl = Lcl .. "zebra"

>> -- The second Lcl's scope starts here.
>> print (Lcl)

>> -- Both scopes end here.

>> end

aardvarkzebra

A chunk is a block, which means that if a local variable is not contained within any other blocks, its scope
ends when the chunk ends. This means that a local variable is never visible in two different files. It also
means that a local variable is never visible in two different chunks of interpreter input. Here’s an example:

> City = "New York"

> local City = "London"
> print (City)

New York

In this example, the first line gives a value to the variable City, which is not a local variable. The second
line creates and initializes a local variable, also named City, which is forgotten about as soon as the line
is done executing. The third line prints the value of a variable named City. Because there is no contain-

ing block with a local variable of that name, the ity from the first line is used.

Variables that aren’t local are called global variables. They are called this because they are visible globally,
everywhere in the program, even across different chunks. Their scopes begin and end at the beginning
and end of the program. Not counting for loop variables, all the variables you used in the previous
chapter were global.

You can shadow global variables by local variables as follows:

> Var = "global"

> do

>> local Var = "local"
>> print (Var)

>> Var = "still local"
>> print (Var)

>> end

local

still local
> print (Var)
global

89

Chapter 3: Extending Lua with Functions

20

You can create and initialize multiple local variables at the same time. Other than creating new local
variables, you follow the same rules as for multiple assignment (for example, nils are used if the list of
values is too short):

> do

>> local A, B =1, 2

>> print (A, B)

>> local A, B =1

>> print (A, B)

>> local A, B=1, 2, 3
>> print (A, B)

>> end

1 2

1 nil
1 2

You can create local variables without initializing them. This is exactly like initializing them to ni1:

> do

>> local A

>> print (a)

>> local B, C
>> print (B, C)
>> end

nil

nil nil

Whether you make the nil implicit (Local &) or explicit (local A = nil) is a stylistic choice. Generally,
you shouldn’t use the explicit version if the nil will never be seen because it will be replaced with
another value. An example of this is the following rewritten version of the EvenLen function:

Remember that the second version of EvenLen given earlier (the one with only one exit point) had a
problem. The problem was that, before returning its return value, it stored it in the global variable Ret,
which means that if Ret was used as a global anywhere else, calling EvenLen would rudely overwrite
its value. (You can verify this by calling EvenLen and then printing Ret.) This is exactly the problem
that local variables are meant to solve. Here, EvenLen is rewritten so that the Ret it uses is only visi-
ble inside it.

function EvenLen (Str)
local Ret
if #Str % 2 == 0 then
Ret = true

else
Ret = false
end
return Ret
end

Chapter 3: Extending Lua with Functions

Don’t make the mistake of thinking that regular assignment (an equal sign but no
local keyword) is for assigning to global variables and the 1ocal keyword is for

assigning to local variables. Rather, regular assignment assigns to either globals or
locals (whichever is visible, scopewise), and the 1ocal keyword creates new locals
and optionally assigns initial values to those very locals.

Understanding Side Effects

If a statement or expression causes something to change, this is called a side effect, such as when the
print function changes what’s on the screen. For example, the following function changes the value of
the global variable G1:

The val variable created in this example is not part of the side effect, because creating a new local vari-
able doesn’t change the value of a variable that already exists.

function SetGl (Val)
Gl = val
end

On the other hand, the type function has no side effects —all it does is return a value. However, this
value may then be used by another function or statement that does have a side effect.

Ordering Side Effects

If two functions are free of side effects, it doesn’t matter which order they’re called in. In the following
example, it is impossible to tell whether the type on the left was called before or after the one on the
right, but that’s okay, because all that matters is that the left one’s return value was used as the first
print argument (and the right return value as the second):

> print(type(l), type("a"))
number string

If two functions do have side effects, though, you can see which order they’re called in. This will be easi-
est to demonstrate with a function that has both a return value and a side effect:

-- Prints a message with Val, then returns Val:
function PrintReturn (Val)

print ("Returning: " .. tostring(Val))
return Val
end

91

Chapter 3: Extending Lua with Functions

PrintReturn takes a single argument. It prints a message that it is about to return this argument, and
then it does so. It uses the built-in Lua function tostring to convert the argument to a string (otherwise
the concatenation operator would choke on nil and Booleans):

> print (PrintReturn(l), PrintReturn(2), PrintReturn(3))
Returning: 1

Returning: 2

Returning: 3

1 2 3

This example showed that the three calls to PrintReturn are made from left to right, but don’t rely on
this —the order is actually undefined and only happens to be left to right in the current implementation.
If you want to make sure that function calls are made in a particular order, make them part of different
statements like this:

> do

>> local Vall = PrintReturn(1l)
>> local Val2 = PrintReturn(2)
>> local Val3 = PrintReturn(3)
>> print(vall, val2, Val3)

>> end

Returning: 1

Returning: 2

Returning: 3

1 2 3

This holds for function calls used in expressions, too — they’re done left to right, but don’t rely on it:

> print (PrintReturn(l) + PrintReturn(2))
Returning: 1

Returning: 2

3

Similarly, the current implementation of Lua assigns from right to left, but this behavior shouldn’t be
relied on:

>A, A=1, 2
> print (A)
1

What is guaranteed is that all function calls to the right of an assignment will be made before any of the
variables to the left are assigned to. This is just a special case of the rule that all expressions to the right
of an assignment are evaluated before any assigning is done. (If it weren't for that rule, you couldn’t use
multiple assignment to swap values, which was demonstrated in the previous chapter.) In the following
example, when 1 is added to B, the initial value of B is used, and when 1 is added to 2, the initial value
of A is used. Only after both calls to PrintReturn are made (with these incremented values) do A and B
get new values:

>A, B=1, 10

> A, B = PrintReturn(B + 1), PrintReturn(A + 1)
Returning: 11

Returning: 2

92

Chapter 3: Extending Lua with Functions

> print (A, B)
11 2

It’s also guaranteed that any function call used as an argument (or part of an argument) to another func-
tion will be made before the other function is called. So, the innermost PrintReturn is called before the
one whose parentheses it is inside (which would be true even if the outer PrintReturn never did any-
thing with its argument):

> print (PrintReturn(PrintReturn(l) + 1))
Returning: 1

Returning: 2

2

Functions that don’t have side effects are easier to decipher than those that do because you don’t have to
think about how many times or in what order they’re executed. Side effects that are only visible within a
small part of the program (that is, assigning to a local variable) are easier to decipher than those visible
throughout the whole program, because you don’t have to consider them while thinking about the rest
of the program. This doesn’t mean that you should completely avoid side effects. It does mean that,
when faced with the choice of writing a function with side effects or without, you should write it with-
out side effects unless there’s a good reason to write it with them. It also means that, unless a variable
needs to be visible throughout the entire program, it should be made local with as narrow a scope as
possible.

The and and or operators have a special behavior regarding side effects. This behavior is called short-
circuit (or shortcut) evaluation, and it is demonstrated next.

Short-Circuit Evaluation

Remember that the length operator # gets the length of a string. If it’s given something that doesn’t have
a length (a Boolean in the following example), it will error out, but notice that there is no error when Len
is given a Boolean, even though Len returns an expression that includes an attempt to get its argument’s
length:

> print (#true)
stdin:1: attempt to get length of a boolean value
stack traceback:

stdin:1: in main chunk

[C]: ?
>
> -- Returns Val's length, or false if Val isn't a string:
> function Len(Val)
>> return type(Val) == "string" and #val

>> end

>

> print(Len(""))

0

> print (Len("abc"))
3

> print (Len(true))
false

93

Chapter 3: Extending Lua with Functions

In the previous chapter, you learned that and uses its second operand as its result only if its first operand
is true. However, if its first operand is false, then not only does it not use its second operand as its
result, but it doesn’t even evaluate the second operand, so any side effects the second operand might
have had will not happen. This also applies to errors; giving a Boolean to the # operator causes an error,
but in the previous example, Val is only given to # if it’s a string. The following examples, which use the
PrintReturn function, will make this clearer:

> print (PrintReturn(l) and PrintReturn(2))
Returning: 1

Returning: 2

2

> print (PrintReturn(l) and PrintReturn(false))
Returning: 1

Returning: false

false

> print (PrintReturn(nil) and PrintReturn(2))
Returning: nil

nil

> print (PrintReturn(nil) and PrintReturn(false))
Returning: nil

nil

The first operand of an and is always evaluated (which means any side effects it has will happen). The
second operand is only evaluated if it needs to be —if the first operand is false (false or nil), then
that’s the result of the and, which means that there’s no need to evaluate the second operand.

This also applies to or —if the first operand of or is true (anything other than false or nil), then
that’s the result, and the second operand is not evaluated. For example:

> print (PrintReturn(l) or PrintReturn(2))
Returning: 1

1

> print (PrintReturn(l) or PrintReturn(false))
Returning: 1

1

> print (PrintReturn(nil) or PrintReturn(2))
Returning: nil

Returning: 2

2

> print (PrintReturn(nil) or PrintReturn(false))
Returning: nil

Returning: false

false

Every function, even a supposedly side effect-free function like type, has the side effect of taking awhile
to execute. Normally, this can be ignored, but not if a function takes a particularly long time to execute,
or if it’s in a time-critical section of a program. To see what this has to do with short-circuit evaluation,
imagine that you have a function called search that always returns some true value and takes a long
time to run. It may or may not have been run earlier in the program. If it was run, its result will be in the
variable SearchResult. In this situation, the following statement is a concise way of printing the search
result while making sure that Search is not called unnecessarily:

print (SearchResult or Search (SearchStr))

94

Chapter 3: Extending Lua with Functions

Short-circuit evaluation doesn’t do anything that couldn’t be done with if statements —and vice versa,
for that matter. Use whichever one is easier to understand in a given case.

Functions Calling Functions

From within many of the preceding functions, you called print. You can also call your own functions
from within functions.

The Call Stack

When a function calls another function, the calling function gets put on hold while the called one is
doing its thing. Lua keeps track of which function is active and which ones are on hold with something
called the call stack. Explaining how the call stack works will require an example (given in the following
Try It Out) in which function calls are nested within other function calls.

Try It Out Use Creating Nested Function Calls

1. Save the following code under the filename nestedcalls.lua:

-- A demonstration of functions calling functions.

function A()

print (" About to enter B")

B()

print (" Just exited B")
end

function B()

print (" About to enter C")

c()

print (" Just exited C")
end

function C()
print (" Inside C")
end

print ("About to enter A")
A()
print ("Just exited A")

2. Asyoudid with hello.lua earlier, run it by typing this into your shell:

lua nestedcalls.lua

You should see this:

About to enter A
About to enter B
About to enter C
Inside C
Just exited C

95

Chapter 3: Extending Lua with Functions

Just exited B
Just exited A

How It Works

Lua keeps a stack of information about all currently running functions. It’s called a stack because things
are only put onto or taken off of the top. When a function is called, information about it is put on the top
of the stack (making the stack taller), and when a function returns, that function’s information is
removed from the top of the stack (making the stack shorter). Because this stack grows every time a
function is called, it’s called the call stack. The information about one function call is said to occupy one
stack frame.

A stack is also used to keep track of C function calls. This type of stack is called the C stack, and it's
separate from Lua’s call stack. Functions written in C also use a stack to interact with Lua, called the
Lua API stack, and it is actually a little window on part of the call stack. This glosses over some
details, but if you really want to know how it works, look at Lua’s source code.

In this example, the prints are formatted so as to be more and more indented as the stack gets taller. At
the stack’s tallest point — the line where Inside C is printed — the stack frame at the top of the stack
(not counting print’s stack frame) contains (among other things) the current location inside c. (Location
here means the location of control: which statement is being executed and which expression is being
evaluated.) The stack frame underneath that contains the current location inside the function that called
¢, namely B. This is the point to which control will return when ¢ returns. The next stack frame contains
the current location inside 2, and the bottom one contains the current location inside the function that
called a, which is the whole file. (Remember that files are chunks, which are executed as functions.) All
of these locations are highlighted here:

-- A demonstration of functions calling functions.

function A()

print (" About to enter B")

B()

print (" Just exited B")
end

function B()

print (" About to enter C")

C()

print (" Just exited C")
end

function C()
print (" Inside C")
end

print ("About to enter A")

A()
print ("Just exited A")

96

Chapter 3: Extending Lua with Functions

These locations will be listed (in stack order) if an error happens inside c. For instance, if two nils are
added together like this:

function C()

print (nil + nil)

print (" Inside C")
end

then the result will be three About to enter messages, followed by the error message, followed by a
stack traceback, which is a multiline message showing the current location of control in each function on
the stack, from the top down:

About to enter A
About to enter B
About to enter C

lua: nestedcalls.lua:16: attempt to perform arithmetic on a nil value

stack traceback:
nestedcalls.lua:16: in function 'C'
nestedcalls.lua:11: in function 'B'
nestedcalls.lua:5: in function ‘A’
nestedcalls.lua:21: in main chunk
[C]: 2

The bottom of the stack is [C] : 2. This just means that the main chunk was called by a C program (the
Lua interpreter).

You'll learn more about stack tracebacks in Chapter 6. The reason for introducing the concept of the call
stack now is that it makes it much easier to explain the concepts of recursion, stack overflow, and tail calls.

Recursion

If a function calls itself, it is said to be recursive. Lua uses the call stack to store local variables, which
means that multiple calls to the same function can be active at the same time without one call’s local
variables stomping on those of another call.

Recursion is most often used when the problem to be solved is defined in terms of itself. The factorials in
the previous chapter are an example of this: a number’s factorial is defined as that number times the fac-
torial of that number minus one (for example, the factorial of 5 is 5 times the factorial of 4). By itself, this is
a circular definition and hence useless. Circularity is avoided by defining the factorial of 0 to be 1. This is
easily translated into a Lua function. One branch of an i f statement handles the base case— the part of the
definition that isn’t self-referential. The i£’s other branch handles the self-referential, or recursive, case:

> -- Returns the factorial of N:
> function Fact (N)
>> local Ret

>> if N == 0 then
>> -- Base case:
>> Ret =1

>> else

97

Ch

apter 3: Extending Lua with Functions

>> -- Recursive case:

>> Ret = N * Fact(N - 1)
>> end

>> return Ret

>> end

>
> for N = 0, 5 do

>> print(N .. "! is " .. Fact(N))
>> end

0! is 1

1! is 1

2! is 2

3! is 6

41 is 24

5! is 120

A step-by-step breakdown of the call Fact (2) would look like this:

1. wis 2. Because it is not equal to 0, Fact is called recursively with 1 as an argument.

2. This recursive call to Fact creates a new variable N (local to this call) and sets it to 1. This N is
completely independent of the N from the previous call. Because it’s not 0, Fact is called yet
again, with 0 as an argument.

3. At this point, the call stack is at its tallest— three stack frames taller than before the first call to
Fact was made. This third call does take the base case, returning 1.

4. Control returns to the second call, which receives the 1 returned by the third call. It multiplies
this 1 by N, which is also 1, and returns the result (also 1).

5. The first call receives this 1, multiplies it by 2, and returns the result (also 2). After the return,
the stack will be back to the height it started at.

If you’ve worked with recursion before, this will all be old news to you. If you haven’t worked with
recursion before and you're having trouble wrapping your head around it, try going step-by-step
through another call or two to Fact with slightly higher numbers. You'll find that, to keep track of each
call’s location of control and value of N, you need to simulate a stack (mentally or on paper).

Stack Overflow

98

If the call stack gets too tall, it can run out of space. This is called stack overflow, and it is an error.

Fact only works on non-negative integers. If it’s given a negative or fractional number, a stack overflow
occurs, as shown in the following example:

> print (Fact(-1))
stdin:8: stack overflow
stack traceback:

stdin:8: in function 'Fact'
stdin:8: in function 'Fact'
stdin:8: in function 'Fact'
stdin:8: in function 'Fact'
stdin:8: in function 'Fact'

Chapter 3: Extending Lua with Functions

stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:
stdin:

[C]:

o 0O 0O 0

= 0 00 00 00 O 0O 00 0

in
in
in
in
in

in
in
in
in
in
in
in
in
in

function 'Fact'
function 'Fact'
function 'Fact'
function 'Fact'
function 'Fact'

function 'Fact'
function 'Fact'
function 'Fact'
function 'Fact'
function 'Fact'
function 'Fact'
function 'Fact'
function 'Fact'
main chunk

A negative or fractional number is handled with the recursive case, but the base case is never reached,
which means that the stack gets taller and taller (which takes awhile) until it overflows, or tries to go
beyond its maximum size. The stack traceback in the error message only shows the top and bottom of
the stack (the dots represent the middle).

For most purposes, you are not likely to run out of stack space if your program isn’t buggy. Stack over-
flow is usually a sign of an infinite recursion, as the previous example shows. If you do want to keep the
stack from growing unnecessarily, there are two ways to do it. One is to use iteration (a loop) instead of

recursion, like this:

-- Returns the factorial of N (iteratively):

function Fact (N)

local Ret =

for T = 1, N do
Ret = Ret * I

end
return Ret
end

1

The other way is to make sure that a recursive call is a tail call, which means it has a certain form
explained in the next section.

If for some reason you need to change how big the stack gets before it overflows, edit the value of
LUAI_MAXCALLS in src/luaconf . h before compiling Lua. Due to the way the stack is grown, this
value should be twice the maximum number of stack frames you need to use.

Tail Calls

In the recursive version of Fact, there’s still more work to be done after the recursive call returns. You
need to multiply the recursive call’s result by N, and assign that value to Ret, which you must then

return. Here’s how:

-- Returns the factorial of N:

function Fact (N)

99

Chapter 3: Extending Lua with Functions

local Ret
if N == 0 then
-- Base case:
Ret =1
else
-- Recursive case:
Ret = N * Fact(N - 1)
end
return Ret
end
If there were nothing left to do but return the recursive call’s result after it returned, you wouldn’t need
to make a new stack frame for it. Instead, you could overwrite the current function’s stack frame (the
information in it no longer being necessary).

This type of function call whose result is immediately returned by the calling function is called a tail call.
When Lua sees a tail call, it does the preceding optimization, reusing the calling function’s stack frame
rather than making a new one. Therefore, the following function will run forever (or until interrupted),
continually calling itself but never consuming more than one stack frame:

function ForeverTail ()
return ForeverTail ()
end

When you do interrupt it, it looks like the stack is big, but it isn’t really. Lua keeps track of how many
tail calls have happened and shows them in the traceback, but they don’t take up any space in the actual
call stack:

> ForeverTail ()

stdin:2: interrupted!

stack traceback:
stdin:2: in function 'ForeverTail'
stdin:2: in function <stdin:1>
(tail call): ?

=
©
H
—
Q
)
-
=
RO R VIV v]

B e S R ALV IRV v]

100

Chapter 3: Extending Lua with Functions

In the following function, it may seem that there is nothing left to do after the call, and that the call is
therefore a tail call:

function ForeverNotTail ()
ForeverNotTail() -- Is this a tail call?
end

This is not a tail call, though, because there is something left to do before returning: the list of
ForeverNotTail return values must be adjusted to zero. Therefore, ForeverNotTail, unlike
ForeverTail, will overflow the stack.

A tail call is always a return statement whose expression is a single function call.

None of the following are tail calls —the first because there’s no return, the rest because the return’s
expression is something other than a single function call:

Fun ()
return Fun() + 1
return X and Fun()

return (Fun()) -- This expression is a single function call
-- surrounded in parentheses, which is different than the
-- required single function call (the parentheses adjust
-- Fun to one return value).

return Fun(), Fun()

A recursive function that uses a tail call to call itself is said to be tail recursive. The recursive version of
Fact is not tail recursive, but you can rewrite it to be tail recursive by introducing an accumulator —a
variable that keeps track of all the multiplications done so far:

-- Returns the factorial of N (tail-recursively). Calls
-- itself with two arguments, but when you call it, you need
-- supply only one argument (like the other Fact functions).
function Fact (N, Acc)
-- Initialize the accumulator to 1:
Acc = Acc or 1
if N == 0 then
-- Base case:
return Acc
else
-- Recursive case:
return Fact(N - 1, N * Acc)
end
end

101

Chapter 3: Extending Lua with Functions

This version of Fact will recurse forever (instead of overflowing the stack) if you give it a negative or
fractional number.

Although none of the preceding examples show it, a tail call is still a tail call even if it’s not a recursive call.

Functions as Values

Functions are values (as are numbers, strings, Booleans, and ni1). For example, take a look at the following;:
print (type("Hello"))

This operates by looking in the global variable type, finding a function there, calling that function with
the value "Hello", looking in the global variable print, finding a function there, and calling that func-
tion with the value returned by the function in type.

If you call type with a function as an argument, it returns the string " function":
> print (type (print))

function

Replacing Built-In Functions

You can demonstrate that functions are values by replacing the print function with your own function:

-- Give the print function another name, so it'll still be
-- accessible:
RealPrint = print

-- Prints a message and its one argument:
function FakePrint(Val)
>> RealPrint ("Inside FakePrint:", Val)

vV V V V V V

>
> -- Replace print with FakePrint:
> print = FakePrint

> -- Use print:

> print ("Hello")

Inside FakePrint: Hello

> print (true)

Inside FakePrint: true

> == Undo the damage:

> print = RealPrint

> =-- Back to normal:

> print ("Hello")

Hello

> print (true)

true

102

Chapter 3: Extending Lua with Functions

There are two reasons that you need to assign the real print function to RealPrint before assigning
the FakePrint function to print. One is to give FakePrint some way to print things; the other is to
allow the real print function to be put back in its rightful place afterwards.

If you play around a bit, you'll find that the Lua interpreter actually uses whatever function it finds in
the global variable print to print any values returned from interpreted chunks, like this:

> print = FakePrint

> return "abc"
Inside FakePrint: abc

Comparing and Printing Functions

You can compare functions for equality (or inequality), like this:

> print = RealPrint

> print (print == RealPrint)
true

> print (print == type)
false

If you print a function (or convert it to a string with tostring), it will appear as the word function, fol-
lowed by a colon, a space, and a number (a hexadecimal number on most systems):

> print (print)
function: 0x481720

The only thing you need to know about this number is that two different functions that exist at the same
time will have different numbers.

Under the hood, this number represents the function’s location in memory.

Function Definitions as Assignments

Because functions are values and function names are variable names, it could be deduced that the func-
tion statement is a type of assignment. This is indeed true. Take a look at the function statement:

function name(formal arguments)
statements
end

This does exactly the same thing as the following assignment statement of the form:

name = function (formal arguments)
Statements
end

To the right of the equal sign (and spilling out onto the next two lines) is a function expression —an
expression whose value is a newly created function.

103

Chapter 3: Extending Lua with Functions

You can use a function expression wherever you can use any other expression. You can print it, pass it to
another function, assign it, compare it, and so on. In the following example, function() endisa func-
tion expression representing a function that takes no arguments, does nothing, and returns nothing;:

> print (function() end)
function: 0x493888

> print (type(function() end))
function

As this example shows, you do not need to give a function a name. A function without a name is called
an anonymous function. You can call an anonymous function by wrapping the function expression that
created it in parentheses (and following that with the usual parentheses used in function calls), like this:

> (function(A, B)
>> print (A + B)
>> end) (2, 3)

5

Calling an anonymous function (or anything that doesn’t look like the part of a function call before the
arguments) is yet another use for parentheses, but as far as Lua is concerned, these are the same paren-
theses used to control precedence and to adjust to a single value.

Every time a function expression is evaluated, a new function is created. That’s why DoNothingl and
DoNothing2 are not equal in the following example, even though the expressions that created them look
alike:

> DoNothingl, DoNothing2 = function() end, function() end
> print (DoNothingl, DoNothing2)

function: 0x493£20 function: 0x493£38
> print (DoNothingl == DoNothing2)
false

For the same reason, both times MakeDoNothing is called in the following example, it returns a different
function, even though each of those functions is created by literally the same function expression:

> -- Returns a do-nothing function:

> function MakeDoNothing /()

>> return function() end

>> end

>

> print (MakeDoNothing() == MakeDoNothing())
false

Two different function expressions or function statements will always create two
different functions, even if the text of the expressions or statements is the same. A
single function expression or statement will create two different functions if it is
executed twice.

104

Chapter 3: Extending Lua with Functions

As shown by the MakeDoNothing example, you can return functions just like other values. In Lua,
unlike in some other languages, there are no arbitrary limits on what can be done with functions (as
compared with other values). For this reason, Lua functions are said to be first-class values.

Local Functions

You can also assign functions to local variables. This can be done either with a function expression, like
this:

> do

>> local LclAverage = function(Numl, Num2)
>> return (Numl + Num2) / 2

>> end

>> print(LclAverage(10, 20))

>> end

15

> -- This will print the global variable LclAverage, which
> -- will be nil:

> print (LclAverage)

nil

Or with a local form of the function statement, like this:

> do

>> local function LclAverage (Numl, Num2)
>> return (Numl + Num2) / 2

>> end

>> print (LclAverage (10, 20))

>> end

15

> -- This will print the global variable LclAverage, which
> -- will be nil:

> print (LclAverage)

nil

Because they can be hidden from the rest of a program, local functions have the same benefits as local
variables of other types. More specifically, a function is a good candidate for localization if it only makes
sense in one small part of a program — especially if it’s a closure that will be recreated several times as a
program runs.

Another use of local functions is to speed up time-critical loops. This works because access to local vari-
ables is faster than access to global variables. For example, if you use the (global) type function inside a
loop that needed to run as quickly as possible, you could precede the loop with the following:

local type = type
However, optimizations like this should be done only if they're necessary, as discussed in Chapter 4.
Because the scope of a variable created by a 1ocal statement starts on the next statement, creating a

recursive local function like the following will not work because the F referred to inside the function is a
global variable (or possibly a local in a containing scope):

105

Chapter 3: Extending Lua with Functions

local F = function()
code that does something or other
F() -- A failed attempt at a recursive call -- the local F
-- is not visible here.
more code that does something or other
end

Instead, you need to create the 1ocal first, and then assign the function:
local F

F = function()
something or other

F() -- This really is a recursive call.
more something or other
end

Conveniently, the 1ocal function statement does exactly that for you behind the scenes:

local function F()
something or other
F() -- This, too, really is a recursive call, because the
-- "local function" statement arranges for the body of
-- the function to be within the scope of the function's
-- name.
more something or other
end

In the same way that an assignment such as A = 5 assigns to either a local variable or a global one

(depending on whether a local variable named & is visible), a function statement such as function F ()
creates either a local function or a global one, depending on whether a local named F is visible.

Whitespace, Semicolons,
and Function Calls

This is a convenient time to cover some topics that aren’t all directly related to functions.

Characters that have no visual appearance other than moving other characters farther apart (such as the
space and newline characters) are called whitespace. Outside of strings, Lua is very tolerant of different
uses of whitespace. It treats the following pieces of code the same:

for I=1,10 do local X=I*7 print(I,X)end--Cramped!

for

, 10 do
local X

106

Chapter 3: Extending Lua with Functions

= I = 7
print (
I 7 X)
end -- Spacy!!

The first example is cramped and hard to read, and the second is just silly, but in between these two
extremes, you'll see variation from programmer to programmer. In your own code, you should pick a
whitespace style that is not too far from the mainstream, but you should also cultivate an eye for varia-
tions, so that if you work with other people on a project that has a consistent whitespace style, you can
pick it up easily. For instance, did you notice that the comment markers in this book have spaces separat-
ing them from any code before or comments after them? Did you notice that commas in this book have
spaces after (but not before) them?

Another point of variation among Lua programmers is the use of the semicolon. You can follow any
statement by a semicolon if you want. For example:

> print("Test");
Test

Semicolons can ease the transition for programmers used to languages where semicolons are required.
Most Lua programmers do not use semicolons, or if they do, they use them only to separate multiple
statements on the same line, like this:

function Avg(A, B) local Sum = A + B; return Sum / 2; end

There is a situation where a semicolon is required, and it’s related to a situation where a newline is pro-
hibited. For example, Lua reads the following in a single chunk:

Funl ()
(function() return Fun2 end) ()

But Lua doesn’t know whether this is supposed to be one statement (call Fun1 with no arguments, call
its return value with the anonymous function as an argument, and call that function’s return value with
no arguments) or two statements (call Fun1, and then call the anonymous function). For this reason, Lua
doesn’t allow a newline before the open parenthesis of a function call, as in the following example:

> print
>> ("Lua")
stdin:2: ambiguous syntax (function call x new statement) near '('

If you follow this rule, and you still get the ambiguous syntax message, you'll need to put a semicolon at
the end of the statement before the line where the error occurs, like this:

> do

>> print ("2 plus 3 is:")

>> (function(A, B)

stdin:3: ambiguous syntax (function call x new statement) near '('

> do
>> print("2 plus 3 is:");
>> (function(a, B)

107

Chapter 3: Extending Lua with Functions

>> print(A + B)
>> end) (2, 3)

>> end

2 plus 3 is:

5

A function call variant that you’ll run into is this: When a function is called with one argument, and that
argument is a literal string, the parentheses can be left out. For example:

> print "with a space"
with a space

> print"or without"

or without

Upvalues and Closures

You saw earlier that if the same function statement or expression is executed twice, it creates two dif-
ferent functions. The reason for this is that two functions created by the same source code can act differ-
ently from each other if they have upvalues and are therefore closures. Definitions of these terms will have
to wait until after the following example.

Defining Functions that Create Functions

You've already seen one function that created (and returned) other functions: MakeDoNothing. That was
a bit boring, though, because even though it created a unique function each time it was called, all those
functions did the same thing (which was nothing). The following function, MakeLessThan, creates less-
than functions, each of which tests whether its argument is less than a particular number:

> -- Returns a function that tests whether a number is
> -- less than N:

> function MakeLessThan (N)

>> return function(X)

>> return X < N
>> end
>> end

>

> LessThanFive = MakeLessThan(5)
> LessThanTen = MakeLessThan(10)
> print (LessThanFive(4))

true

> print (LessThanTen(4))

true

> print (LessThanFive(5))

false

> print (LessThanTen(5))

true

> print (LessThanFive(9))

false

> print (LessThanTen(9))

108

Chapter 3: Extending Lua with Functions

true
> print (LessThanFive(10))
false
> print (LessThanTen(10))
false

Remember that when you call a function, a new local variable is created for each of its arguments. So
when MakeLessThan is called with 5 as an argument, a local variable N is created and initialized to 5.
Normally, this N would no longer be visible after MakeLessThan returns, but because there’s a function
(the anonymous one after return) in N's scope that uses N, N will last as long as the function does.
MakeLessThan returns the function and assigns it to LessThanFive.

Next, MakeLessThan is called with 10 as an argument. At this point, a local variable N is created and ini-
tialized to 10. This is a newly created variable —it’s different from the other N created for the previous
call. MakeLessThan returns a function that uses this new N, and this function is assigned to LessThan
Ten. Calling LessThanFive and LessThanTen with various values shows that they live up to the names
given to them. LessThanFive tests whether its argument is less than 5, and LessThanTen does the
same with 10.

When a function uses a variable that is local to a containing scope (such as N in this example), that variable
is called an external local variable or an upvalue. The term “upvalue” is somewhat misleading, because an
upvalue is not a value, but a variable used in a certain context. (The term dates back to Lua 3.1, when it
was more accurate.) Despite this, it is used in this book because it’s in common use among Lua program-
mers, and it’s much shorter than the more accurate “external local variable.” A function that has one or
more upvalues is called a closure. (All functions, even those with no upvalues, are represented in the same
way internally. For this reason, “closure” is sometimes used as a synonym for “function.”)

Earlier it was said that local variables reside on the stack, but the stack is not a good place for long-term
storage; when a function returns, its stack frame is abandoned, and when a function does a tail call, its
stack frame is overwritten. Lua handles this by making sure that an upvalue is migrated from the stack
to a safe place elsewhere in memory whenever the block it was created in is exited. Knowing that Lua
initially stores local variables on the stack and migrates them elsewhere only if needed is good back-
ground information, but it is not strictly necessary for an understanding of either local variables or
upvalues. An implementation of Lua could be written that always kept local variables somewhere other
than the stack. It would act the same as the real implementation of Lua, except that it would be slower.
(Actually, it would be different in one other way — it would not impose a limit on the number of local
variables visible at one time. In practice, though, this limit in the real implementation is high enough
that it is seldom if ever reached.)

You can call a function returned by another function directly, without giving it a name first. In the fol-
lowing example, MakeLessThan is called with 10 as an argument. The function it returns is then called

with 5 as an argument. Because 5 is less than 10, true is printed:

> print (MakeLessThan(10) (5))
true

Two closures can share an upvalue, and upvalues can be assigned to. Both of these facts are demon-
strated by the following example.

109

Chapter 3: Extending Lua with Functions

Defining Functions with Private State

The following MakeGetAndInc example makes and returns two functions: one that gets a value, and
another that increments that value. These functions have private state— "state” because there’s change-
able data that’s remembered in between calls, and “private” because this data is stored in a local variable
visible to only these functions.

> -- Returns two functions: a function that gets N's value,
> -- and a function that increments N by its argument.
> function MakeGetAndInc (N)

>> -- Returns N:

>> local function Get()

>> return N

>> end

>>

>> -- Increments N by M:

>> local function Inc (M)

>> N=N+M

>> end

>>
>> return Get, Inc
>> end

-- Make two pairs of get and increment functions, one

-- pair initialized to 0 and the other initialized to 100:
GetA, IncA = MakeGetAndInc(0)

GetB, IncB = MakeGetAndInc(100)

-- Try them out:

print (GetA())

V ©V V V V V V V

print (GetB())
100

> IncA(5)

> print (GetA())
5

> IncA(5)

> print (GetA())
10

> IncB(1)

> print (GetB())
101

> IncA(1l)

> print (GetA())
11

As you can see, Geta and IncA both refer to the same N, but GetB and IncB both refer to another N.
Geta and Inca refer to the N created by the first call to MakeGetAndInc. The initial value of this Nis 0,
but it gets a new value every time Inca is called, and that new value is visible to GetA. GetB and IncB
act the same way, except their value is stored in the N created by the second call to MakeGetAndInc.

This is also a good example of local functions. The names Get and Inc are only visible inside MakeGet
AndInc. Because there’s no need to make them globally visible, it would have been a programming
no-no to do so, because then MakeGetAndInc would not be usable in a program that already used one
or both of those names for global variables.

110

Chapter 3: Extending Lua with Functions

There are two ways to accidentally use a global when a local was intended. One is to
misspell the name of a local variable. The other is to forget the 1ocal keyword. Both
of these are common sources of bugs.

Figuring Out Tricky Scope Situations

Every iteration of a for loop creates a new local loop variable. This is demonstrated by the following
example:

> for I =1, 2 do

>> if I == 1 then
>> function One()
>> return I

>> end

>> else

>> function Two()
>> return I

>> end

>> end

>> end

> print(One())

1

> print (Two())

2

Both One and Two return variables named 1, but they are different variables —if they were the same 1,
then one and Two would return the same value.

for loops in Lua 5.0 actually did use the same loop variable for each iteration. If this example is tried in
Lua 5.0, both one and Two return 2 because they refer to the same I, whose value when the loop ends is 2.
Additionally, assigning to the loop variable (which is fine in Lua 5.1) has undefined behavior in Lua 5.0.

If you are ever in doubt about the scope of a variable, start from the statement where the variable’s name
is used and search upwards for the following:

O A local statement that creates a variable of this name, or a 1ocal function statement that cre-
ates a function of this name

QO A function definition (a function statement, local function statement, or function expres-
sion) that uses this name as a formal argument

O A for loop that uses this name as a loop variable

The first one of these that you run into whose scope extends to the statement where you started search-
ing is the place where your (local) variable was created. (Remember that the scope of a variable created
with local extends to the end of the innermost block that encloses it; this also applies to the scope of a
function created with a 1ocal function statement.) If your search hits the top of the file without find-
ing anything, the variable is global.

111

Chapter 3: Extending Lua with Functions

If your program is properly indented, this is a simple up-and-out search. You never need to look at a line
that is indented further (to the right) than any line you have already looked at.

In the following example, PrintStr prints "Inside first do block" even though the call to it is in the
scope of a local str whose value is "Inside second do block":

> do

>> local Str = "Inside first do block"
>>

>> function PrintStr()

>> print (Str)

>> end

>> end

> do

>> local Str = "Inside second do block"
>> PrintStr()

>> end

Inside first do block

It doesn’t matter where the call is. What matters is where Str is actually named, and that’s inside the
definition of PrintStr (which is inside the first do block). A function cannot see local variables from the
scope that called it (unless that happens to be the same scope in which it’s defined). This means that you
can tell everything you need to know about a variable’s scope by looking at the program’s source code,
without having to figure out which functions call which. In the same way, Lua itself can tell everything it
needs to know about a variable’s scope when it compiles source code into bytecode, rather than having
to wait till runtime (when the program is running).

Because variable scope is determined by the structure of a program’s source code, Lua is said to have
lexical scope (The term “lexical” here means “based on source code.”)

Actually, although whether a variable is global or local is determined lexically, Lua global variables are
not lexically scoped. In most cases they can be treated as if they are; the exception happens when the
function setfenv is used. You'll learn about set fenv in the next chapter.

Lua’s scoping rules allow arbitrarily complex combinations of global variables, local variables, closures
with upvalues from multiple scopes, closures that share some upvalues but not others, upvalues that
themselves contain closures, and so on. But the rules themselves are relatively simple, considering their
power. Here they are:

QO Eachtimea local or local function statement is executed, a new local variable (or possibly
several, in the case of 1ocal) is created. Its scope extends downward to the end of the inner-
most enclosing block.

Q Eachtime a for loop iterates, a new local variable (or possibly several, in the case of the generic
for loop you'll learn about next chapter) is created. Its scope extends to the end of the loop.

Q Each time a function is called, a new local variable is created for each formal argument. The
scope of these variables extends to the end of the function.

Q If a variable was not created in any of the three aforementioned ways, it’s global.

112

Chapter 3: Extending Lua with Functions

Each time a function or local function statement is executed, or a function expression is
evaluated, a new function is created.

There is no limitation on reading from or assigning to a visible local variable from within a func-
tion. (In other words, closures are possible.)

So if you find yourself not understanding why a program is doing what it’s doing, and you think it may
be a scoping issue, ask yourself these questions:

a
a
a

Is this a global or local variable?
Where and when was this local variable created?

Where and when was this function created?

Summary

In this chapter, you learned almost everything you need to know about functions. Namely:

Q

0O 0 0 O

O O

Functions allow complexity to be compartmentalized, and let you use the same code in different
places in a program.

A chunk is treated by Lua as a function.
To run a Lua script, give lua a filename when you start it.
Functions can take zero or more arguments and return zero or more values.

When a function is called, a local variable is created for each of its formal arguments. These local
variables are only visible inside the function.

The local keyword and the for loop also create local variables.

A function can call itself, which is called recursion. During recursion, or in any case where two
calls are made to the same function, each call has its own local variables.

A stack is used to keep track of function calls. You can us tail calls to avoid exhausting the large
but finite space available for this stack.

A function is a type of value (as are numbers, strings, Booleans, and nil). You can create func-
tions at runtime, pass them as arguments, return them, assign them, compare them, used them
without naming them, and so on.

A function has full access to all local variables that are visible where the function is defined. A
function that takes advantage of this is called a closure, and the variables from outer scopes that it
accesses are called upvalues. You can use upvalues to create (from the same definition, at runtime)
functions with different behavior, as well as to create functions that retain state between calls.

There are a couple remaining facts about functions that weren’t covered in this chapter. For example,
how do you create a function that (like print) can take an indefinite number of arguments? You'll learn
this and more in the next chapter, which is about tables, Lua’s tool for combining multiple pieces of data
into one. When you complete the next chapter, you’ll understand all of the basic elements of Lua, and
you'll be ready to start applying that knowledge in the chapter after that. This chapter ends with some
exercises to test your understanding of functions. The answers are in the appendix.

113

Chapter 3: Extending Lua with Functions

Exercises

1. Write a TypedToString function that converts a value to a string and prefixes that string with
the value’s type. (You don’t have to deal specially with the fact that a function converted to a
string already has its type prefixed to it.)

> print (TypedToString("abc"))

string: abc

> print (TypedToString(42))

number: 42

> print (TypedToString(true))

boolean: true

> print (TypedToString(function() end))
function: function: 0x485al0

2. Write a function SumProd that returns both the sum and the product of two numbers:
> print (SumProd(1, 1))
2 1
> print (SumProd(2, 2))
4 4
> print (SumProd(3, 5))
8 15

3. Using sumProd from the previous exercise, what will the following print?

print (SumProd (3, 3), SumProd(5, 5))

4. What does the following print?

Continent = "North America"

function F(Continent)
Continent = "Australia"
end

F(Continent)
print (Continent)

5. The following MakeDot ter function is intended to return a function that appends N dots to its
argument (and returns the result). It almost works, but every time it’s used to make a new dot-
ter function, the old ones stop working right. Why does this happen, and what one-line change
can be made to make it work right?

> function MakeDotter (N)

>> Dots = ""

>> for I = 1, N do

>> Dots = Dots .. "."

>> end

>> return function(Str)

>> return Str .. Dots

>> end

>> end

>

> -- Make a function that appends one dot to its argument:

114

Chapter 3: Extending Lua with Functions

Y VOVQV YV VWYV PV YV

OneDotter = MakeDotter(1l)
print (OneDotter ("A"))

print (OneDotter ("B"))

-- Make a function that appends three dots to its argument:
ThreeDotter = MakeDotter(3)

print (ThreeDotter ("C"))

print (ThreeDotter ("D"))

-- OneDotter now appends three dots instead of one:
print (OneDotter ("E"))

115

Working with Tables

This chapter explores a new data type called a table. It’s a data structure, which means that it lets
you combine other values. Because of its flexibility, it is Lua’s only data structure. (It is possible to
create other, special-purpose data structures in C.)

In this chapter, you learn how to do the following:

Q Create and modify tables

Q Loop through the elements of tables

Q Use Lua’s built-in table library

Q Write programs in an object-oriented style
a

Write functions that take variable numbers of arguments

Tables Introduced

The following example creates a table and assigns it to the variable NameToInstr, and then looks
around inside the table:

> NameToInstr {["John"] = "rhythm guitar",
>> ["Paul"] "bass guitar",
>> ["George"] = "lead guitar",
>> ["Ringo"] = "drumkit"}

> print (NameToInstr["Paul"])
bass guitar

> A = "Ringo"

> print (NameToInstr[A])

drumkit

> print (NameToInstr["Mick"])

nil

Chapter 4: Working with Tables

A table is a collection of key-value pairs. In this example, the expression that starts and ends with { and }
(curly braces) is a table constructor that creates a table that associates the key "John" with the value
"rhythm guitar", the key "Paul" with the value "bass guitar", and so on. Each key is surrounded in
[and] (square brackets) and is separated from its value by an equal sign. The key-value pairs are sepa-
rated from each other by commas.

After the table is created and assigned to NameToInstr, square brackets are used to retrieve the values
for particular keys. When NameToInstr["Paul"] is evaluated, the resultis "bass guitar", whichis
the value associated with the key "Paul" in the NameToInstr table.

The term “value” is used here to mean “the second half of a key-value pair.” Both this sense and the
broader sense used in Chapters 2 and 3 are used in this chapter; which sense is intended should be clear
from the context. A “key” is a value in the broader (but not the narrower) sense.

As the line with NameToInstr [A] shows, the expression in between the square brackets doesn’t have to
be a literal string. Here it is a variable, but it can be any expression. (This also applies to the square
brackets inside table constructors —if an expression inside square brackets is a function call, it is
adjusted to one value.)

If you ask a table for the value of a key it doesn’t contain, it gives you nil:

> print (NameToInstr["Mick"])
nil

This means that nil cannot be a value in a table. Another way of saying this is that there is no difference
between a key not existing in a table, and that key existing but having ni1 as its value. Keys cannot be
nil, although if the value of a nil key is asked for, the result will be ni1:

> Tbl = {}
> print (Tbl[nil])
nil

Both keys and values can be any type other than nil. For example:

> T = {[print] = "The print function",
>> ["print"] = print,
>> [0.1] = 0.2}

> print (T[print]) -- Function key, string value.
The print function

> print (T["print"]) -- String key, function value.
function: 0x481720

> print (T[0.1]) -- Number key, number value.

0.2

The association between a key and a value is one-way. NameToInstr ["Ringo"] is "drumkit", but
NameToInstr["drumkit"] isnil. A given value can be associated with multiple keys, but a given key
can only have one value at a time. For example:

> T = {["a"] = "duplicate value",
>> ["b"] = "duplicate value",
>> ["duplicate key"] = "y",

118

Chapter 4: Working with Tables

>> ["duplicate key"] = "z"}
> print(T["a"])

duplicate value

> print (T["b"])

duplicate value

> print (T["duplicate key"])

Z

Keys follow the same equality rules as other values, so (in the following example, 1 and "1" are two dis-
tinct keys:

> T = {[1] = llnumberlll [Illll] = Ilstringll}
> print(T[1], T["1"])
number string

A Shorter Way to Write Some Keys

A key is often called an index to a table, and accessing a key’s value (like T[X]) is called indexing the
table.

The word “index” has other uses too. For example, getting the nth character of a string is “indexing”
that string, and a loop variable, particularly one with an integer value, can be called an index (which is
why some of the loop variables in this book are named 1).

The value of a particular index of a particular table is often called a field, and the index itself is called a
field name. This terminology is used especially when the field name is a valid identifier. If a field name is
a valid identifier, you can use it in a table constructor without the square brackets or quotes. The follow-
ing is another way to write the constructor for NameToInstr:

NameToInstr = {John = "rhythm guitar",

Paul = "bass guitar",
George = "lead guitar",
Ringo = "drumkit"}

That doesn’t work with any of the following tables, because none of the keys are valid identifiers (notice
that the error messages are different, because the keys are invalid identifiers for different reasons):

> T = {1lst = "test"}

stdin:1: malformed number near 'lst'
> T = {two words = "test"}

stdin:1: '}' expected near 'words'

> T = {and = "test"}

stdin:1: unexpected symbol near 'and'

You can also access fields in an existing table (if the field names are valid identifiers) by using . (a dot)
instead of square brackets and quotes, like this:

> print (NameToInstr.George)
lead guitar

119

Chapter 4: Working with Tables

You can index a table within a table in one step, as follows:

> Tbll = {Tbl2 = {Bool = true}}
> print (Tbl1l.Tbl2.Bool)

true

> print (Tb1l1["Tbl2"].Bool)

true

> print (Tbll.Tbl2["Bool"])

true

> print (Tbll["Tbl2"] ["Bool"])
true

This works for tables within tables within tables, as deep as you want to go. If there are enough nested
tables, then Tb1.Think.Thank. Thunk.Thenk.Thonk is perfectly valid.

Don’t let the flexibility of tables and the variety of methods for accessing them confuse you. In particu-
lar, remember that NameToInstr["John"] and NameToInstr.John both mean “get the value for the
"John" key,” and NameToInstr [John] means “get the value for whatever key is in the variable John.”
If you find yourself getting a nil when you don’t expect to, make sure you're not mixing these up.

Altering a Table’s Contents

After you create a table, you can modify or remove the values already in it, and you can add new values
to it. You do these things with the assignment statement.

Try It Out Assigning to Table Indexes

Type the following into the Lua interpreter:

> Potluck = {John = "chips", Jane = "lemonade",

>> Jolene = "egg salad"}

> Potluck.Jolene = "fruit salad" -- A change.

> Potluck.Jayesh = "lettuce wraps" -- An addition.
> Potluck.John = nil -- A removal.

> print (Potluck.John, Potluck.Jane, Potluck.Jolene,
>> Potluck.Jayesh)

Here’s the result:

nil lemonade fruit salad lettuce wraps

How It Works

In this exercise, you create a table with three people and their foods. You then use assignment to change
one person’s food, to add a new person-food pair to the table, and to remove an existing person-food pair.

Potluck.Jolene = "fruit salad" overwrites the previous value of Potluck.Jolene ("egg salad").

Potluck.Jayesh = "lettuce wraps" adds a new key (and its value) to the table. The value of
Potluck.Jayesh before this line would have been nil.

120

Chapter 4: Working with Tables

Potluck.John = nil overwrites the previous value of Potluck.John with nil. This is another way of
saying that it removes the key "John" from the table (because there’s no difference between a nil-val-
ued key and a nonexistent key).

Notice that, except in the line with the table constructor, the variable Potluck is never assigned to.
Rather, individual fields of the table in Potluck are being assigned to. This is called indexing assignment.

The Lua reference manual actually calls table fields a third type of variable (after globals and locals).
This usage makes some things clearer, but it isn’t widespread, so it isn't followed in this book.

Often the most convenient way to populate a table is to start with an empty table and add things to it
one at a time. Here’s an example of creating a table of the first five perfect squares and then printing it:

> Squares = {} -- A table constructor can be empty.
> for I =1, 5 do

>> Squares[I] = I * 2

>> end

> for I =1, 5 do

>> print(I .. " squared is " .. Squares[I])

>> end
squared is
squared is
squared is
squared is
squared is

U W N
N PO s
[S2RNe)]

You can assign to nested tables in one step, as in Tb1.Think [Thank] . Thunk = true.

Here are a couple of other table constructor tidbits. You can optionally follow the final value in a table
constructor by a comma: {A =1, B=2, C =3, }. This is convenient for automatically generated table
constructors, and for frequently edited ones (so you don’t have to always make sure to delete a comma if
a value becomes the last one). And instead of commas, you can use semicolons (or a mixture of commas
and semicolons): {A=1; B=2; C=3}.

Tables as Arrays

It’s common for the keys of a table to be consecutive integers, starting at 1. For example:

> Months = {[1l] = "January", [2] = "February", [3] = "March",
>> [4] = "April", [5] = "May", [6] = "June", [7] = "July",
>> [8] = "August", [9] = "September", [10] = "October",

>> [11] = "November", [12] = "December"}

> print (Months[11])

November

A table used in this way is sometimes called an array (or a list). To emphasize that a table is nof being
used as an array, it can be called an associative table.

121

Chapter 4: Working with Tables

You can write table constructors that build arrays in a more concise, less error-prone way that doesn’t
require writing out each integer key. For example:

> Months = {"January", "February", "March", "April", "May",

>> "June", "July", "August", "September", "October",
>> "November", "December"}

> print (Months[11])

November

Inside a table constructor, the first value that doesn’t have a key (and an equal sign) in front of it is asso-
ciated with the key 1. Any subsequent such values are given a key one higher than that given to the pre-
vious such value. This rule applies even if key-value pairs with equal signs are intermixed, like this:

> T = {A = llxII’ llonell’ B = llyll’ lltwoll’ C = “Z", llthreell}
> print(T[1], T[2], TI[3])
one two three

Usually this sort of mixed table constructor is easier to read if the consecutive-integer values are all
together and the other key-value pairs are all together.

If a function call is used as the value of an explicit key ({K = F () }, for example), it’s adjusted to one
return value. If it’s used as the value of an implicit integer key, it’s only adjusted to one return value if
it’s not the last thing in the table constructor; if it is the last thing, no adjustment is made:

> function ReturnNothing()
>> end

>

> function ReturnThreeVals/()
>> return "x", "y", "z"

>> end

TblA = {ReturnThreeVals(), ReturnThreeVals()}
print (Tb1lA[1], TblA[2], TblA[3], TblA[4])
X Y z
TblB = {ReturnNothing(), ReturnThreeVals()}
-- The following nil is the result of adjustment:
print (Tb1B[1], TblB[2], TblB[3], TblB[4])
nil X v z
TblC = {ReturnThreeVals(), ReturnNothing()}
-- The following three nils are not the result of adjustment;
-- they're there because TblC[2] through Tb1lC[4] were not
-- given values in the constructor:
print (Tb1C[1], TblC[2], TblC[3], TblC[4])
nil nil nil
TblD = {ReturnNothing(), ReturnNothing()}
-- The first nil that follows is the result of adjustment; the
-- second is there because TblD[2] was not given a value
-- in the constructor:
print (TblD[1], TblD[2])
nil nil

V V V X V V V

V VVV VXV VYV VYV

122

Chapter 4: Working with Tables

Array Length

The # (length) operator can be used to measure the length of an array. Normally, this number is also the
index of the last element in the array, as in the following example:

> Empty = {}

> One = {"a"}

> Three = {"a", "b", "c"}

> print (#Empty, #One, #Three)
0 1 3

Apart from arrays with gaps (discussed shortly), the length operator gives the same result whether a
table got the way it is purely because of its constructor (as previously shown) or because of assignments
made to it after it was created like this:

Empty = {"Delete me!"}
Empty[1] = nil
Three = {"a"}
Three[2], Three[3] = "b", "c"
print (#Empty, #Three)

3

SV V. V V YV

It also doesn’t matter whether the constructor uses implicit or explicit integer indexing, as shown here:

> print (#{[1] = "a", [2] = "b"})
2

Noninteger indexes (or nonpositive integer indexes, for that matter) do not count — the length operator
measures the length of a table as an array as follows:

> Two = {"a", "b", Ignored = true, [0.5] = true}
> print (#Two)
2

An array is said to have a gap if there are is a nil somewhere between element 1 and the highest posi-
tive integer element with a value that is not nil. Here is an example of a gap in an array:

Tl = {nil, "b", "c"} -- Gap between beginning and
-- element 2.

T2 = {"a", "b", nil, nil, "e"} -- Gap between element 2 and
-- element 5.

T3 = {"a", "b", "c", nil} -- No gap! (Element 3 is the last

-- element in the array.)

Arrays with gaps cause the length operator to behave unpredictably. The only thing you can be sure of is
that it will always return the index of a non-nil value that is followed by a nil, or possibly 0 if element 1
of the array is nil. For example:

> T = {"a", Ilbll’ LIl n:i.l, ngn}

> print (#T)
5

123

Chapter 4: Working with Tables

T = {}

W VvV V VvV V

-- Equivalent table; different result:

T[1], T[2], T[3], T[4], T[5] = "a", "b", "c", nil, "e"
print (#T)

For this reason, it’s generally a good idea to avoid having gaps in your arrays. However, an array is just
a table used in a certain way, not a separate datatype, so this warning about avoiding gaps only applies
if you're planning to use a table as an array. This means there’s nothing wrong with the following table:

-- Considered as an array, this would have gaps, but it's
-- obviously intended as an associative table:

AustenEven

[1811]
[1813]
[1814]
[1816]
[1817]
[1818]

s = {[1775] = "born",

"Sense and Sensibility published",

"Pride and Prejudice published",

"Mansfield Park published",

"Emma published",

"died",

"Northanger Abbey and Persuasion published"}

You can define # operator to always give either the first element followed by nil or the last, but both of
these approaches require searches through the table much more time-consuming than the way that #
actually works.

Lua 5.0 dealt with array length differently. In addition to the nonexistence of the # operator, the main
differences were that the functions table.getn and table.setn were used to get and set the length
of an array, and a table’s "n" field could be used to store its array length.

Looping through Tables

Printing a table gives similar results to printing a function:

> print ({})
table: 0x493bc0

This means that to see what’s inside a table, you need to look at each key-value pair in turn. In the previ-
ous Squares example, this was done with a for loop hardcoded to run to 5 (the length of Squares).
You could improve this by using the # operator, so that if the array’s length is changed, you only need to

it in one place:

> Squares
> for I =

= {}
1, 5 do

>> Squares[I] = I * 2

>> end
> for I =

1, #Squares do

>> print(I .. " squared is " .. Squares[I])

>> end

U W N

124

squared i
squared i
squared i
squared i
squared i

=
0]

N = O

Ul o

Chapter 4: Working with Tables

This is better, but there’s an even better way to loop through an array, as you'll see in the following Try It
Out.

Try It Out Using ipairs to Loop through an Array

Type the following into the interpreter. The first of the two loops is the for loop you already know from
Chapter 2. The second is still a for loop, but it looks and works a bit differently.

> Squares = {}

> for I =1, 5 do

>> Squares|[I] = I * 2

>> end

> for I, Square in ipairs(Squares) do

>> print(I .. " squared is " .. Square)
>> end

1 squared is
squared is
squared is
squared is
squared is

U W N
NP O
[S2RNe)]

How It Works

The first for loop in this example loops through a series of numbers. The second one is a new type of
for loop that loops (in this case) through an array. It’s called the generic for loop because, as you will
see soon, it is able to iterate through anything at all (including tables that aren’t arrays and even things
other than tables). The for loop you learned about in Chapter 2 is called the numeric for loop. You can
tell the difference between them because the generic for will always include the keyword in.

The thing that makes this example’s generic for treat Squares as an array is the use of the function
ipairs in the line:

for I, Square in ipairs(Squares) do

This line means “loop (in order) through each key-value pair in the array Squares, assigning the key
and value to (respectively) the loop variables I and Square.” To write your own similar loop, replace
Squares with the array you want to loop through, and replace I and square with the names you want
to give to its keys and values. (As you'll soon see, ipairs can be replaced when you don’t want to treat
the thing being looped through as an array.)

Squares itself never needs to be indexed in the body of the loop, because Square is available.

If you use a generic for loop with ipairs to loop through an array that has gaps, it will stop when it
reaches the first gap, as follows:

> for Number, Word in ipairs({"one", "two", nil, "four"}) do
>> print (Number, Word)

>> end
1 one
2 two

125

Chapter 4: Working with Tables

That means that, if an array has gaps, looping through it with a generic for and ipairs will not necessarily
give the same results as looping through it with a numeric for whose end value is the length of the array.

A generic for loop that uses ipairs after the in keyword is often called an ipairs loop for short. If pairs
is used instead of ipairs, then all key-value pairs, not just the array ones, are looped through.

Avpairs loop has the same form as an ipairs loop:

for Key, Val in ipairs(Tbl) do

for Key, Val in pairs(Tbl) do

Try this pairs loop:

> NameToInstr = {John = "rhythm guitar",
>> Paul = "bass guitar",
>> George = "lead guitar",

>> Ringo = "drumkit"}

> for Name, Instr in pairs(NameToInstr) do
>> print (Name .. " played " .. Instr)

>> end

Ringo played drumkit

George played lead guitar

John played rhythm guitar

Paul played bass guitar

This is similar to an ipairs loop in that on each iteration, the first loop variable (Name) is set to a key in
the table given to pairs, and the second loop variable (Instr) is set to that key’s value. One difference
is that the first value no longer has to be a positive integer (although it could be, if there happened to be
any positive integer keys in NameToInstr).

The second difference is that the key-value pairs are looped through in an arbitrary order. The order in
which pairs occur in the table constructor does not matter. Nor is there any significance to the order in
which keys are added or removed after a table is constructed. The only guarantee is that each pair will
be visited once and only once. Tables in general have no intrinsic order (other than the arbitrary order
shown by a pairs loop). Even the order shown by an ipairs loop is only a result of adding 1 to each
index to get the next one. pairs often visits integer keys all together and in the correct order, but it’s not
guaranteed to do so. For example:

>T = (A ="a", B= "b", C = "c"}

> T[1], T[2], TI[3] = "one", "two", "three"
> for K, V in pairs(T) do

>> print (K, V)

>> end

A a

1 one

C c

B b

3 three
2 two

Both ipairs loops and pairs loops have the property that neither loop variable is ever nil. (This can
be deduced from what has been said about nil keys and nil values.)

126

Chapter 4: Working with Tables

Like the loop variable in a numeric for, the loop variables in a generic for are local to each iteration.
They can be assigned to, although because of their limited scope, there’s seldom a reason to do this:

> T = {Gleep = true, Glarg = false}

> for Fuzzy, Wuzzy in pairs(T) do

>> Fuzzy, Wuzzy = Fuzzy .. "ing", #tostring(Wuzzy)
>> print (Fuzzy, Wuzzy)

>> end

Gleeping 4

Glarging 5

> -- The table itself is unchanged:
> print(T.Gleep, T.Glarg)

true false

> print (T.Gleeping, T.Glarging)

nil nil

Because the assignments are made to the loop variables, and not to fields in the table itself, they do not
alter the table’s contents. If you do want to alter the table’s contents, do an indexing assignment on the
table itself, like this:

> T = {"apple", "banana", "kiwi"}
> for I, Fruit in ipairs(T) do
>> T[I] = Fruit .. "s"

>> end

> print(T[2])

bananas

Adding a previously nonexistent key to a table while looping over it with pairs has undefined results.
If you need to do this, save a list of the changes you need to make in another table and apply them after
the loop is over. You can remove a key (by setting its value to nil) and change a key’s value during a
pairs loop.

You can use loop variables as upvalues to closures. As shown in the previous chapter (with a numeric
for), each iteration means a new upvalue:

> -- A table that maps numbers to their English names:
> Numbers = {"one", "two", "three"}

> -- A table that will contain functions:

> PrependNumber = {}

> for Num, NumName in ipairs(Numbers) do

>> -- Add a function to PrependNumber that prepends NumName
>> -- to its argument:

>> PrependNumber [Num] = function(Str)

>> return NumName .. ": " .. Str

>> end

>> end

> -- Call the second and third functions in PrependNumber:

> print (PrependNumber[2] ("is company"))
two: is company

> print (PrependNumber[3] ("is a crowd"))
three: is a crowd

127

Chapter 4: Working with Tables

In this example, each time the loop iterates, a new function is created that prepends (appends to the front)
a spelled-out number name to its argument and returns the result. These functions are placed, by num-
ber, into the PrependNumber table, so that when, for example, PrependNumber [2] is called, it prepends
"two: " to its argument.

The notes about Lua 5.0's numeric for in the previous chapter also apply to the generic for.
Assigning to the first (that is, leftmost) loop variable has undefined results, and the scope of the loop
variables extends over the entire loop (not each individual iteration). This means that if you tried the
PrependNumber example on Lua 5.0, you would get “attempt to concatenate anil value”
errors because both loop variables are set to nil when the end of the table is reached.

To loop through a table in a way not supported by either ipairs or pairs, use either while or the
numeric for (along with some extra bookkeeping), or structure your data differently. An example of the
latter is the following loop, which is a rewrite of the earlier pairs loop through NameToInstr that goes
in the order specified by the table (it also serves as an example of tables within tables):

> NamesAndInstrs = {

>> {Name = "%°hn TIngtr = "rhythm guitar"},
>> {Name = "Paul", Instr = "bass guitar"},
>> {Name = "George", Instr = "lead guitar"},
>> {Name = "Ringo", Instr = "drumkit"}}

> for _, NameInstr in ipairs(NamesAndInstrs) do

>> print (NameInstr.Name .. " played " .. NameInstr.Instr)
>> end

John played rhythm guitar

Paul played bass guitar

George played lead guitar

Ringo played drumkit

Yet another option is to write your own function to use instead of ipairs or pairs. This is covered later
in this chapter.

Tables of Functions

Using tables that contain functions is a handy way to organize functions, and Lua keeps many of its
built-in functions in tables, indexed by strings. For example, the table found in the global variable table
contains functions useful for working with tables. If you assign another value to table, or to one of the
other global variables used to store built-in functions, the functions won’t be available anymore unless
you put them somewhere else beforehand. If you do this accidentally, just restart the interpreter.

The Table Library

The functions contained in table are known collectively as the table library.

table.sort

One function in the table library is table. sort. Here is an example of how you use this function:

> Names = {"Scarlatti", "Telemann", "Corelli", "Purcell",
>> "Vivaldi", "Handel", "Bach"}

128

Chapter 4: Working with Tables

> table.sort (Names)
> for I, Name in ipairs(Names) do
>> print (I, Name)
>> end

Bach
Corelli
Handel
Purcell
Scarlatti
Telemann
Vivaldi

~ oUW N

The table. sort function takes an array and sorts it in place. This means that, rather than returning a
new array that’s a sorted version of the one given to it, table. sort uses indexing assignment (a side
effect) on the given array itself to move its values to different keys. (See Chapter 3 for an explanation of
side effects.)

table.sort uses the < operator to decide whether an element of the array should come before another
element. To override this behavior, give a comparison function as a second argument to table.sort. A
comparison function takes two arguments and returns a true result if and only if its first argument
should come before its second argument.

table.sort only looks at a table as an array. It ignores any noninteger keys and any integer keys less
than 1 or greater than the table’s array length. To sort a table that isn’t an array, you need to put its con-
tents into an array and sort that array. The following Try It Out demonstrates this, as well as the use of a
comparison function.

Try It Out Sorting the Contents of an Associative Table

1. Save the following as sortednametoinstr.lua:

-- A demonstration of sorting an associative table.

NameToInstr = {John = "rhythm guitar",
Paul = "bass guitar",
George = "lead guitar",
Ringo = "drumkit"}

-- Transfer the associative table NameToInstr to the
-- array Sorted:
Sorted = {}
for Name, Instr in pairs(NameToInstr) do
table.insert (Sorted, {Name = Name, Instr = Instr})
end
-- The comparison function sorts by Name:
table.sort (Sorted, function(A, B) return A.Name < B.Name end)

-- Output:
for _, NameInstr in ipairs(Sorted) do
print (NameInstr.Name .. " played " .. NameInstr.Instr)
end
2. Run sortednametoinstr.lua by typing lua sortednametoinstr. lua into your shell.

The output is as follows (in alphabetical order by the player’s name):

129

Chapter 4: Working with Tables

George played lead guitar
John played rhythm guitar
Paul played bass guitar
Ringo played drumkit

How It Works

The contents of NameToInstr are transferred, one-by-one, into Sorted using the table. insert func-
tion. This function, like table. sort, works by side-effecting the table given to it rather than by return-
ing a value. Specifically, it puts its second argument at the end of the array given as the first argument.
For example, if the first argument is a fifteen-element array, it will be given a sixteenth element (the sec-
ond argument). Take a look at the following argument:

table.insert (Arr, Val)
This has the same effect as the following:
Arr[#Arr + 1] = Val

Both table.sort and table. insert could be rewritten to have no side effect on the tables they are
given, but they would then need to spend time making independent copies of those tables to return.

After sorted has been populated, it can be passed to table.sort, but because each of its elements is
itself a table, a comparison function needs to be given as well (otherwise table.sort would use < to
compare the subtables, which would cause an error). The comparison function is quite simple. It just
asks whether the Name element of its first argument is less than that of its second argument. It would be
very easy to change it to sort by Instr instead, or (by using >) to have it sort in reverse order.

The comparison function accepted by table. sort is an example of a callback. A callback is a function
that you write to be called by a library function. It gets its name from the fact that it allows a library to
call back into code you have written (reversing the normal situation, in which you call a function in the
library).

For efficiency, table. sort performs an unstable sort, which means that two elements that are consid-
ered equal by the comparison function may end up in a different order than they started in.

If you need a stable sort, one solution is to record all the elements’ original positions and have the com-
parison function use that as a tiebreaker.

If you're using table. sort with a comparison function, and you're getting errors that you can’t make sense
of within your comparison function or within table. sort itself, your comparison function may be at fault.
table.sort relies on a comparison function having consistent results —it should always return false for
things that it considers equal, it should never say that A is less than B if it’s already said that B is less than 3,
it should say that A is less than C if it’s already said that A is less than B and B is less than ¢, and so on.

In the following example, the comparison function returns inconsistent results. It says that, for sorting
purposes, 5 is less than 5. This confuses table.sort, hence the following error:

>T = {5, 5, 10, 15}
> table.sort (T,

130

Chapter 4: Working with Tables

>> function(A, B)
>> return not (A < B) -- BAD COMPARISON FUNCTION!
>> end)
stdin:3: attempt to compare nil with number
stack traceback:
stdin:3: in function <stdin:2>
[C]: in function 'sort'
stdin:1: in main chunk
[C]: 2

The desired effect of not (A < B) was presumably to sort in reverse order. Either A > B or B < A would
have had that effect.

table.concat

The function table. concat takes an array of strings (or numbers) and concatenates them all into one
string, as follows:

> print (table.concat({"a", "bc", "d"}))
abcd

If given a second argument, it puts it in between the elements of the array like this:

> -- Returns a string showing an array's elements separated by
> -- commas (and spaces):

> function CommaSeparate (Arr)

>> return table.concat(Arr, ", ")

>> end

>

> print (CommaSeparate({"a", "bc", "d"}))

a, bc, d

Normally, all elements from the first to the last will be concatenated. To start concatenating at a different
element, give its index as the third argument of table. concat; to stop concatenating at a different ele-
ment, give its index as the fourth argument of table. concat:

> Tbhl = {"a“, llbll, naw, Ildll}

> =-- Concatenate the second through last elements:
> print(table.concat(Tbl, "", 2))

bcd

> -- Concatenate the second through third elements:
> print(table.concat(Tbl, "", 2, 3))

bc

If any of the second through fourth arguments are ni1, the defaults of (respectively) the empty string, 1,
and the length of the array are used, as follows:

> print(table.concat(Tbl, nil, nil, 3))
abc

If the third argument is greater than the fourth argument, the empty string is returned, like this:

> print(table.concat(Tbl, "-", 4, 1) == "")
true

131

Chapter 4: Working with Tables

table.remove

The table. insert function (seen in the most recent Try It Out) has a counterpart that removes ele-
ments from an array, table.remove. By default, both work on the last element of the array (or the top
element when viewing the array as a stack). table.remove works by side effect like table.insert
does, but it also returns a useful value — the element it just removed —as follows:

The following examples use the CommaSeparate function defined in the previous example.

> T = {}

> table.insert (T, "a")

> table.insert (T, "b")

> table.insert (T, "c")

> print (CommaSeparate(T))

a, b, c

> print(table.remove(T))
€

> print (CommaSeparate(T))
a, b

> print (table.remove(T))
b

> print (CommaSeparate(T))
a

> print (table.remove(T))
a

> -- T is now empty again:
> print (#T)

0

Both of these functions take an optional second argument that specifies the position at which to insert or
remove an element. (In the case of table. insert, this means that the thing to be inserted is either the
second or the third argument, depending on whether a position argument is given.) Any elements above
that inserted or removed are shifted up or down to compensate, like this:

> T = {llall, llbll, Ilcll}
> table.insert(T, 2, "X")

> -- C is now the fourth element:
> print (CommaSeparate(T))
a, X, b, ¢
> print(table.remove(T, 2))
X
> -- C is the third element again:
> print (CommaSeparate(T))
a, b, c
table.maxn

The function table.maxn looks at every single key-value pair in a table and returns the highest positive
number used as a key, or 0 if there are no positive numbers used as keys. For example:

> print(table.maxn({"a", nil, nil, "c"}))
4

> print(table.maxn({[1.5] = true}))

1.5

132

Chapter 4: Working with Tables

> print(table.maxn({["1.5"] = true}))
0

One possible use for table.maxn is to find the length of arrays with gaps, but keep in mind both that it
is time-consuming in proportion to the size of the table (including nonnumeric keys) and that it consid-
ers fractional keys as well as integers.

That covers all the functions in Lua’s built-in table library. Among Lua’s other built-in libraries are the
string library (whose functions are found in the string table), the mathematical library (in the math
table), the input/output library (in the io table), and the basic or base library (functions like print,
tostring, and pairs). You'll learn about these and other built-in libraries throughout the book. In par-
ticular, the next chapter will discuss the string library in detail.

Object-Oriented Programming with Tables

Another use for tables is in what is known as object-oriented programming. In this style of programming,
functions that deal with a particular type of value are themselves part of that value. Such a value is
called an object, and its functions are called methods.

The term “object” is also sometimes used in a more general sense, to mean a value (such as a table or
function) that is not equal to any other value created at a different time.

It’s quite easy to rewrite the MakeGetAndInc example from Chapter 3 to return a two-method object
rather than two functions. Here’s how:

-- Returns a table of two functions: a function that gets
-- N's value, and a function that increments N by its
-- argument.
function MakeGetAndInc (N)

-- Returns N:

local function Get()

return N
end

-- Increments N by M:

local function Inc (M)
N=N+M

end

return {Get = Get, Inc = Inc}
end

An object is created and used like so:

-- Create an object:

A = MakeGetAndInc(50)
-- Try out its methods:
print (A.Get())

vV V V V

50

> A.Inc(2)

> print (A.Get())
52

133

Chapter 4: Working with Tables

This is an improvement on the previous technique in that only the newly created object needs to be
given a name (rather than both functions), and in that the functions are bundled up into an object (so
that the whole object can be passed around the program as a unit).

Both of these advantages are greater the more methods there are, and this is an acceptable way of imple-
menting objects. But it has two disadvantages: each time an object is created (or instantiated), a closure
needs to be created for each method, and an object’s state is stored in multiple places (as an upvalue in
each method) rather than in one place.

The creation of a closure for each method is really only a disadvantage for efficiency reasons. In a pro-
gram that instantiates several new multiple-method objects a second, creating all those closures could
have a noticeable speed impact.

The second point, about state being stored as an upvalue within each method, means that you can use a
method apart from its object, as shown here:

> A = MakeGetAndInc(50)

> Inc, Get = A.Inc, A.Get

> A = nil

> -- The methods are still usable even though A is no longer
> -- accessible:

> Inc(2)

> print(Get())

52

This might occasionally be convenient, but it’s usually just confusing.

A technique that avoids these problems is to store the object’s state in the object (table) itself, and have
the methods be, rather than closures, just regular functions that take the object as an argument:

-- Returns Obj.N:
function Get (0bj)
return Obj.N

end

-- Increments Obj.N by M:

function Inc(Obj, M)
Obj.N = 0bj.N + M

end

-- Creates an object:

function MakeGetAndInc (N)
return {N = N}

end

The Inc method of an object A would then be called like Inc (&, 5), which means you’d need to keep
track of which methods go with which objects. You wouldn’t need to keep track of this if the methods
were (as in an earlier example) fields of their objects, but you’d still need to type the object’s name twice:
A.Inc(A, 5).

To get around this problem, Lua offers a bit of syntactic sugar. Syntax just means grammar — the rules of
how operators, variable names, parentheses, curly braces, and so on can fit together to make a valid Lua

134

Chapter 4: Working with Tables

program. And syntactic sugar just means an extension to Lua’s syntax that doesn’t give Lua any new
powers, but does make programs easier to type or read. For example, the equivalence between a func-
tion statement and an assignment statement with a function expression as a value (which you learned
about in the previous chapter) is due to the former being syntactic sugar for the latter.

Similarly, when Lua sees something that looks like A: Inc (5) (note the colon), it treats it as though it
were A.Inc (A, 5).Ais used both as the source for the Inc function and as the first argument to that
function. Because the methods in the previous example are written to expect their first argument to be
the object, the only change you need to make in order to use colon syntax is to include Get and Inc in
the object that MakeGetAndInc returns. (Get and Inc are also made local below this, because they no
longer need to be used anywhere but inside MakeGetaAndInc.) Now the methods are called right from
the object, just as in the example at the beginning of this section, but with a colon substituted for the dot:

> do -- Local scope for Get and Inc.
>> -- Returns Obj.N:

>> local function Get (0bj)

>> return Obj.N

>> end

>>

>> -- Increments O0bj.N by M:
>> local function Inc(0bj, M)
>> 0Obj.N = Obj.N + M

>> end

>>

>> -- Creates an object:

>> function MakeGetAndInc (N)
>> return {N = N, Get = Get, Inc = Inc}
>> end

>> end

>

> -- Create an object:

> A = MakeGetAndInc (50)

> -- Try out its methods:

> print (A:Get())

50

> A:Inc(2)

> print (A:Get())

52

There’s also syntactic sugar for defining methods: function T:F (X) is equivalent to function
T.F(self, X), which itself is equivalent to T.F = function(self, X). You can rewrite the preceding
example to use this if you make a table in which you can put Get and Inc, and if you have them use
self instead of Obj as a name for their (now implicit) first argument. Here’s how:

do -- Local scope for T.
-- A table in which to define Get and Inc:
local T = {}

-- Returns self.N:
function T:Get ()
return self.N

end

-- Increments self.N by M:

135

Chapter 4: Working with Tables

function T:Inc (M)
self .N = self.N + M
end

-- Creates an object:
function MakeGetAndInc (N)
return {N = N, Get = T.Get, Inc = T.Inc}
end
end

Note the following about this example:

Q If the colon syntax is used to define a function, Lua itself will take care of inserting the formal
self argument. If you forget this and try do to it yourself by typing function T:Get(self), then Lua
will treat that as though it were function T.Get (self, self), which is not what you want.

0 Get and Inc are neither local nor global — they are fields of a (local) table. local function
T:Get () would be wrong for the same reason that 1ocal T.Get = function(self) would be
wrong —the local keyword is for creating new local variables, but T.Get is not a variable
name (it’s the name of a table field).

Q Because the colon syntaxes for function calls and function definitions are just syntactic sugar,
you can mix and match them. You can use the dot syntax to call a function defined with the
colon syntax, and you can use the colon syntax to call a function defined with the dot syntax
(assuming, of course, that the actual arguments correspond with the formal arguments after
translating from colon syntax to dot syntax).

Q Tisonly used as a container for Get and Inc up to the point they’re put into a real object. If
there were something else that all objects needed to have in common (for instance, a default
value for N), T would be a good place to put it.

Later in this chapter, you'll see an extended example that uses the colon syntax for something more
interesting than incrementing numbers.

Functions with Variable
Numbers of Arguments

Functions that accept variable numbers of arguments are called vararg functions and, as promised in the
previous chapter, you'll now learn how to write them.

Defining Vararg Functions

The Average function returns the average of all its arguments. It also introduces the built-in function
assert, which does nothing if its first argument is true and triggers an error if it’s false. (The second
argument is used as the error message.) Here’s an example of how you use the Average function:

> -- Returns the average of all its arguments:
> function Average(...)

>> local Ret, Count = 0, 0

>> for _, Num in ipairs({...}) do

136

Chapter 4: Working with Tables

>> Ret = Ret + Num
>> Count = Count + 1
>> end

>> assert (Count > 0, "Attempted to average zero numbers")
>> return Ret / Count

>> end

>

> print (Average(1))

1

> print (Average (41, 43))

42

> print (Average (31, -41, 59, -26, 53))
15.2

> print (Average())
stdin:7: Attempted to average zero numbers
stack traceback:
[C]: in function 'assert'
stdin:7: in function 'Average'
stdin:1: in main chunk
[C]: 2

The Average function’s formal argument list consists only of . . . (three dots), which tells Lua that
Average is a vararg function. Within a vararg function, three dots can be used as an expression, which is
called a vararg expression. A vararg expression, like a function call, can evaluate to zero or more values.
The vararg expression in Average is inside a table constructor. When Average is called with 1 as an
argument, it is as though the table constructor looked like {1}. When it’s called with 41 and 43 as argu-
ments, it’s as though the table constructor looked like {41, 43}. When it’s called with 31, -41, 59, -26,
and 53 as arguments, it’s as though the table constructor looked like {31, -41, 59, -26, 53}. And
when it’s called with no arguments, it’s as though the table constructor looked like {}.

You can use a vararg expression anywhere any other expression can be used. It follows exactly the same
adjustment rules as a function call. For example, the vararg expression in the following assignment

would be adjusted to two values:
Varl, Var2 =

Both vararg expressions in the following return statement would be adjusted to one value:
return ..., (...)

And the one in the following function call would not be adjusted at all—all of its zero or more values
would be passed along to print:

print ("args here:", ...)
A vararg expression includes any nil passed to the function, as follows:

> function F(...)

>> print(...)

>> end

>

> F(nil, "b", nil, nil)

nil b nil nil

137

Chapter 4: Working with Tables

A vararg function can also have regular (named) formal arguments, in which case the three dots come
last and catch any actual arguments that are left over after the leftmost ones are assigned to the named
formal arguments. Here’s an example that makes that clearer:

> function F(Argl, Arg2, ...)
>> print ("Argl and Arg2:", Argl, Arg2)
>> print ("The rest:", ...)

>> end

>

> F()

Argl and Arg2: nil nil

The rest:

> F("a")

Argl and Arg2: a nil

The rest:

> F("a", "b")

Argl and Arg2: a b

The rest:

> -- Now there will be arguments left over after Argl and
> == Arg2 have been taken care of:
> F("a", "b", "c")

Argl and Arg2: a b

The rest: c

> F("a", "b", "c", "d")

Argl and Arg2: a b

The rest: @ d

A vararg expression cannot be used as an upvalue. Again, this will make more sense with an example.
Let’s say you want to write a MakePrinter function. MakePrinter will return a function that takes no
arguments and prints all the arguments given to MakePrinter. The obvious way to write this is like this:

function MakePrinter(...)
return function()
print(...) -- THIS DOESN'T WORK!
end
end

But if you type that in, Lua will complain partway through:

> function MakePrinter(...)

>> return function()

>> print(...) -- THIS DOESN'T WORK!

stdin:3: cannot use '...' outside a vararg function near '...'

The anonymous function is not a vararg function. The vararg expression used in it is local to
MakePrinter, which makes it an upvalue in the anonymous function, and because vararg expressions
can’t be used as upvalues, another way needs to be found to make the MakePrinter arguments avail-
able inside the anonymous function. That part is actually quite easy —just put the vararg expression
inside a table constructor, and use the variable holding that table as the upvalue. The hard part is calling
print with each of the table’s values as arguments. That’s easy to do with the unpack function, which
takes an array as its first argument and returns, in order, all of the elements of that array (up to the
array’s length). For example:

138

Chapter 4: Working with Tables

> function MakePrinter(...)
>> local Args = {...}
>> return function()

>> print (unpack (Args))
>> end

>> end

>

> Printer = MakePrinter("a", "b", "c")
> Printer()
a b c

Because unpack uses its argument’s length, it may not act right with an array that has gaps, which Args
will if MakePrinter is given any nil arguments. The fix for this involves extra arguments to unpack, as
well as a new built-in function, select.

The first select argument is a positive integer. If it’s 1, select will return all its additional arguments;
if it’s 2, select will return all its additional arguments except for the first; and so on:

print (select (1, "a", "b", "c"))
b €

print (select(2, "a", "b", "c"))
@

print (select (3, "a", "b", "c"))

-- This returns nothing:
print (select(4, "a", "b", "c"))

VVQVoyVvoeyv

As a special case, if the first select argument is the string "#", then it returns how many additional
arguments it received, as follows:

> print (select ("#"))

S print (select ("#", "a"))

i print (select("#", "a", "b"))

i print (select ("#", "a", "b", "c"))
3

It’s this "#" usage that lets you find out how many values (including ni1ls) are in a vararg expression (or
in any expression that can have multiple values, for that matter):

> function F(...)

>> print (select ("#", ...))
>> end

>

> F(nil, "b", nil, nil)

4

You might think that # . . . would get the length of a vararg expression, but all it really does is get the
length of the first element of the vararg expression (which, being used as an operand, is not eligible for
multiple-value treatment and so is adjusted to one value).

139

Chapter 4: Working with Tables

unpack takes a second and third argument specifying where it starts and stops, getting values out of the
table given to it:

If these arquments are not given, they default to 1 and the length of the table.

> -- Get elements 2 through 4 (inclusive):
> print (unpack({llall, Ilb"’ llcll’ lldll’ llell)’ 2’ 4))
b € d

Here’s the rewritten version of MakePrinter that handles nils properly. It uses select ("#", ...) to
count MakePrinter’s arguments, and when it calls unpack, it unpacks all elements from the first up to
however many arguments it counted:

> function MakePrinter(...)

>> local Args = {...}

>> local ArgCount = select("#", ...)
>> return function()

>> print (unpack(Args, 1, ArgCount))
>> end
>> end

>
> Printer = MakePrinter(nil, "b", nil, nil)
> Printer()

nil b nil nil

If a vararg function doesn’t contain any vararg expressions, then a local arg variable is created and ini-
tialized to a table of all the extra arguments. arg.n is the number of extra arguments. It is as though the
first lines of the function were as follows:

local arg = {...}
arg.n = select("#", ...)

This is done so that vararg functions written for Lua 5.0 will run on Lua 5.1. Lua 5.0 had no vararg
expression, so vararg arguments were always put in such an arg table.

In addition to the lack of the vararg expression and use of arg, Lua 5.0 did not have the select func-
tion, and its unpack function took only one argument.

Scripts as Vararg Functions

You already know that chunks are functions. In this section, you'll see that they are vararg functions. In
particular, Lua scripts are vararg functions and they can be given arguments on the command line.

Try It Out Creating Command-Line Arguments

1. Save the following as cmdlineargs.lua:

-- This script lists (by number) all arguments given to it
-- on the command line.

local Count = select("#", ...)
if Count > 0 then

140

Chapter 4: Working with Tables

print ("Command-line arguments:")
for I = 1, Count do
print (I, (select(I, ...))) -- The parentheses adjust
-- select to one value.
end
else
print ("No command-line arguments given.")
end

2. Run it by typing the following into your shell:

lua cmdlineargs.lua this is a test

The output should be as follows:

Command-line arguments:

1 this
2 is

3 a

4 test

How It Works

When you type the name of a program (1ua) into the shell, the words that come after it are called com-
mand-line arguments. The shell passes these arguments along to the program. In this case, 1ua treats the
first command-line argument, cmdlineargs. lua, as the name of a program. It compiles that program
into a function, and calls the function with the remaining command-line arguments (the strings "this",
"is ", "a", and "test ").

This example also shows how you can use select to access arguments without putting them into a
table first.

The shell gives special meaning to some characters. For example, it treats spaces as argument separators.
If you want to include a special character in an argument, you need to escape it or quote it. The exact
rules for escaping or quoting characters vary from shell to shell, but something like the following:

lua cmdlineargs.lua "this is a test" "" "<*>"

generally results in this:

Command-line arguments:

1 this is a test
2
3 <*>

The second argument is the empty string.

Command-line arguments are always strings, which means you don’t have to worry about a gap caused
byanil.

lua treats some of its command-line arguments specially. These are called options, and they all start with
a hyphen. The following table lists the 1ua options:

141

Chapter 4: Working with Tables

Option Action
-e Executes the following command-line argument as Lua code.
-1 Uses the require function on the library named by the following command-line

argument. (You'll learn about require in Chapter 7.)

-i Enters interactive mode after running the script named after all the options (or exe-
cuting any -e arguments).

-v Prints version information.

-- Stops handling options (this is useful if you want to run a script whose name starts
with “-").

- Stops handling options and executes 1ua’s input as a single chunk.

Here are a couple examples. Starting 1ua like this
lua -e "print('Hello')"

prints “Hello”, but does not enter interactive mode (the Lua interpreter). Starting it like this:
lua -1 sortednametoinstr.lua

runs sortednametoinstr. lua and then enters interactive mode, where you have access to any global
variables it created (which in this case are NameToInstr and Sorted):

Lua 5.1.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio
George played lead guitar

John played rhythm guitar

Paul played bass guitar

Ringo played drumkit

> print (NameToInstr.John)

rhythm guitar

> print (Sorted[4] .Name)

Ringo

The options -e and -1 can be combined with the command-line arguments immediately following
them. The following example of -e does exactly the same thing as the one given earlier:

lua "-eprint('Hello')"
A script’s command-line arguments are also available in the global table arg, even if a vararg expression
is used in the script. This is done to give access to the script’s name (found at arg[0]) and the inter-
preter’s name and any options (found at negative indexes). If 1ua is started with the following:

lua -1 cmdlineargs.lua this is a test

then this is the arg:

{{-2] = "lua",
[-1] = "-iv",

142

Chapter 4: Working with Tables

[0] = "cmdlineargs.lua",
[1] = "this",

2] = "ig®,

[3] = "a",

[4] = "test"}

Notice that, unlike the arg described in the previous section, this one doesn’t have its length in arg.n.
The length is easy enough to find out, though (for instance, with #arg, or with a loop if you want to
count the nonpositive indexes).

Keyword Arguments

In the previous chapter, you saw that a function call whose sole argument is a literal string doesn’t
require parentheses. The same applies to table constructors. For example:

> print {}
table: 0x493760
> print{}
table: 0x493978

This can be used to simulate keyword arguments — arguments that are identified not by their position, but
by being associated with an identifier. In all three of the following examples, a function called Sort is
being called with its Arr keyword argument set to T and its CompFnc keyword argument set to F (the
last example reveals that all that’s really going on is that an associative table is being passed to Sort):

Sort{Arr = T, CompFnc F}

Sort{CompFnc = F, Arr = T}
Sort ({Arr = T, CompFnc = F})

There is no special syntax for defining functions with keyword arguments — they’re just defined to take
a single table as an argument. For example, you could define Sort as follows:

-- A wrapper for table.sort that takes keyword arguments:
function Sort (KeyArgs)
local Arr = KeyArgs.Arr -- The array to be sorted.
local CompFnc = KeyArgs.CompFnc -- Comparison function.
or function(A, B) return A < B end -- Default.
if KeyArgs.Reverse then
-- Reverse the sense of the comparison function:
local OrigCompFnc = CompFnc
CompFnc = function(A, B)
return OrigCompFnc (B, A)
end
end
table.sort (Arr, CompFnc)
return Arr
end

143

Chapter 4: Working with Tables

The Reverse argument reverses the sense of the comparison function. When no CompFnc is given, but
Reverse is set to true, the sense of the default comparison function is reversed, which sorts the table in
reverse order:

> Letters = {Ilall’ Ilbll’ llcll)

> Sort{Reverse = true, Arr = Letters}
> print (table.concat (Letters))

cba

The usual reasons for writing a function to take keyword arguments are that it has a lot of optional argu-
ments, or that it has so many arguments that it’s hard to remember what order they go in.

Different but the Same

A common problem in understanding how Lua works comes from the fact that tables are mutable, which
means they can be changed. Side-effecting a table — changing it using indexing assignment —is called
mutating the table. There’s no way to mutate a string (or a number, Boolean, or nil) —it can only be
replaced with a different value. (Strings, numbers, Booleans, and nil are therefore said to be immutable.)
But a table can be mutated, and afterward it will have different content, but it will still be the same table.

Table Equality

Because tables are mutable, there needs to be a way to tell whether two tables are really the same table or
not (so that you can tell if a mutation of one will be visible in the other). You do this with the == (equal-
ity) operator. When two tables are tested for equality, their contents are not looked at. Rather, they are
considered equal if and only if they were created by the same table constructor at the same time (and are
therefore the same table). In the following example, A and B are equal because they were created by the
same table constructor at the same time:

> A = {}

> B = A

> print (A == B)
true

In the next example, C and D are unequal because they were created by two different table constructors,
and E and F are unequal because they were created by the same table constructor at different times:

>C, D= {}, {}

> print(C == D)

false

>

> function CreateTbl ()
>> return {}

>> end

>

> E, F = CreateTbl(), CreateTbl()
> print(E == F)

false

144

Chapter 4: Working with Tables

Functions follow the same equality rule as tables: Two functions are equal if and only if they were created
by the same function expression (or function statement) at the same time. This is because both table
constructors and function expressions create new objects (using the term “object” in the broad sense).

Avoiding Bugs by Understanding Mutability

Among other things, you can use mutability to model things in the real world, most of which are muta-
ble. For example, this book would still be the same book if you “mutated” it by writing your name in it.
But mutability can also be a source of bugs, if you don’t keep track of what’s what. In the real world, you
would never confuse having both hands on the same book with having each hand on a different book.
But in Programming Land, it’s not too tough to forget that two variables (or two table fields, or a vari-
able and a table field) both contain the same table.

For example, imagine the following variant of table. sort, which still sorts its first argument in place
but also returns it:

function TableSort (Arr, CompFnc)
table.sort (Arr, CompFnc)
return Arr

end

This would be convenient in some cases, letting you sort an array and pass it to another function in one
statement like this:

SomeFnc (TableSort (SomeArr))
instead of in two statements like this:

table.sort (SomeArr)
SomeFnc (SomeArr)

But it might also imply Sorted is sorted and SomeArr is unsorted after the following line:
local Sorted = TableSort (SomeArr)
If you write a function that side-effects a table given to it, make sure that’s clear in any documentation

you write for the function. If you're using a function that someone else wrote, make sure you know if the
function causes side effects in any tables given to it.

Variables and Mutable Values

In Chapter 2, you saw an illustration of the cubbyhole model (shown in Figure 4-1) and the arrow model
(shown in Figure 4-2) of the association between variables and their values.

Number Greetingl Greeting?2
123 "Hello" "Hello"
Figure 4-1

145

Chapter 4: Working with Tables

Number Greetingl Greeting?2

Figure 4-2

Both of these models are accurate for immutable values (ignoring memory usage). But the cubbyhole
model doesn’t work for mutable values. Consider the following code:

A, B = {}, {}
C =B

-- Before
B.Test = "test"
-- After

print (C.Test)
test

V V V V VvV V

An arrow diagram of the variables as of the Before comment (shown in Figure 4-3) reflects the fact that
B and C are the same table.

Figure 4-3

It’s an easy step from there to an accurate arrow diagram of the variables as of the After comment, as
shown in Figure 4-4.

Figure 4-4

A cubbyhole diagram as of the Before comment (see Figure 4-5) does not show that B and c are the
same table.

146

Chapter 4: Working with Tables

A B C
{} {} {}
Figure 4-5

It thus could lead to an incorrect diagram as of the Af ter comment, as shown in Figure 4-6):

A B C
{} {Test = "test"} {}
Wrong!
Figure 4-6

Tables and Functions

You saw earlier that functions follow the same equality rule as tables. Another thing that functions have
in common with tables is mutability. Closure functions can be mutated by calling them, as is done with
Counter in the following example:

> do

>> local Count = 0
>>

>> function Counter()
>> Count = Count + 1
>> return Count

>> end

>> end

> print(Counter())

1

> print (Counter())

2

> print (Counter())

3

A difference between tables and functions is that tables do not have upvalues. A local variable inside a
function is evaluated every time the function is called, but a local variable inside a table constructor is
evaluated only once, while the table is being constructed. That’s why, in the following code, Tb1.Str is
still "before" even after Str has been set to "after":

> do

>> local Str = "before"
>> Fnc = function() return Str end

147

Chapter 4: Working with Tables

>> Thl = {Str = Str}
>> Str = "after"

>> end

> print (Fnc())

after

> print (Tbl.Str)
before

It’s easy to get an upvalue-like effect by assigning to a table field instead of a local, like this:

> do

>> local Str = "before"
>> Tbl = {Str = Str}

>> Tbl.Str = "after"

>> end

> print (Tbl.Str)

after

If you want multiple tables to share state, have them share a subtable, as Tb11 and Tb12 share SubTbl
here:

> do

>> local SubTbl = {Str = "before"}
>> Tbll = {SubTbl = SubTbl}

>> Tbl2 = {SubTbl = SubTbl}

>> end

> Tbll.SubTbl.Str = "after"

> print (Tbl2.SubTbl.Str)

after

If you're familiar with the distinction between pass by value and pass by reference, you may think that
Lua passes immutable values by value and mutable values by reference, but that isn't true— arguments
are always passed by value. A function’s caller can tell whether the function did an indexing assign-
ment to a table the caller gave it, but not whether the function did a regular assignment to one of its
arguments.

If you absolutely needed to use the language of values versus references to describe Lua’s treatment of
mutable values, you could say that mutable values themselves are references.

Copying Tables

Sometimes you need to make a copy of a table. For example, if you want to sort a table without altering
the unsorted table, you need to make a copy and sort that. The simplest way (which is all you need in
many circumstances) is to make a shallow copy:

-- Makes a shallow copy of a table:
function ShallowCopy (Src)

local Dest = {}

for Key, Val in pairs(Src) do

Dest[Key] = Val

end

return Dest
end

148

Chapter 4: Working with Tables

In this example, ShallowCopy creates a fresh table (Dest) and then loops through all key-value pairs in
Src, putting each value into Dest at the appropriate key. (Src and Dest stand for “source” and “desti-
nation.”) This is called a shallow copy because it doesn’t burrow deep into Src —if any of Src’s values
or keys are tables, those very tables will be put into Dest, not copies of them. Copying subtables as well
as the top level of a table is called making a deep copy. You can change a ShallowCopy to make a deep
copy by adding the following two lines (and the name, of course):

-- Makes a deep copy of a table. Doesn't properly handle
-- duplicate subtables.
function DeepCopy (Src)
local Dest = {}
for Key, Val in pairs(Src) do
Key = type(Key) == "table" and DeepCopy (Key) or Key
Val = type(Val) == "table" and DeepCopy(Val) or Val
Dest[Key] = Val
end
return Dest
end

The new lines test whether a key or value is a table. If it is, they call DeepCopy recursively to make a
deep copy of it. Unlike ShallowCopy, a copy made by DeepCopy will never have any subtables in com-
mon with the original, which means that the copy can have side effects without affecting the original.
For example:

> Bodyl = {Head = {"Eyes", "Nose", "Mouth", "Ears"},
>> Arms = {Hands = {"Fingers"}},

>> Legs = {Feet = {"Toes"}}}

> Body2 = DeepCopy (Bodyl)

> print (Bodyl.Legs.Feet[1l], Body2.Legs.Feet[1])

Toes Toes

> Body2.Legs.Feet[1l] = "Piggies"

> -- If ShallowCopy had been used, this would print
> -- Piggies Piggies:

> print (Bodyl.Legs.Feet[1], Body2.Legs.Feet[1])
Toes Piggies

>

There are two problems with this version of DeepCopy. One is that it treats functions the same as it treats
anything else that isn’t a table —it doesn’t make copies of them. There are ways to copy functions, but
none of them is completely general, unless you use an add-on library such as Pluto. (A general solution
needs to treat upvalues correctly, including upvalues shared between functions.) Copying functions is
seldom necessary, though, so you can ignore this problem here.

Pluto is a persistence library, which means that it allows arbitrary Lua values to be saved to disk and
reloaded later, even after Lua has been restarted. It's available at luaforge .net.

The other problem is more serious. If a table appears more than once within the table being copied, it
shows up as different tables in the copy. For example:

SubTbl = {}

Orig = {SubTbl, SubTbl, SubTbl}

Copy = DeepCopy (0Orig)

-- Orig contains the same table three times:

V V V V

149

Chapter 4: Working with Tables

> for I, SubTbl in ipairs(Orig) do
>> print (I, SubTbl)

>> end

1 table: 0x4a0538

2 table: 0x4a0538

3 table: 0x4a0538

> -- Copy contains three different tables:

> for I, SubTbl in ipairs(Copy) do
>> print (I, SubTbl)

>> end

1 table: 0x4a0a08
2 table: 0x4a0a48
3 table: 0x4a0a98

Something even more interesting happens when you pass DeepCopy a table that has a cycle. A table is
said to have a cycle if it contains any table (including itself) that directly or indirectly contains itself. In
the following example, T is such a table; to copy it, DeepCopy first needs to copy T.T, but to copy that, it
needs to copy T.T.T, and so on. Because these are all the same table, DeepCopy keeps recursing until it
runs out of stack space or you interrupt it:

T = {}
T.T =T
-- The same table, within itself:
print(T, T.T.T.T.T.T.T)

table: 0x495478 table: 0x495478

> T2 = DeepCopy(T)

stdin:3: stack overflow

stack traceback:

>
>
>
>

stdin:3: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:5: in function 'DeepCopy'
stdin:1: in main chunk

[C]: 2

There is a general solution to this problem, and it involves keeping track of what tables have already
been copied. You use it in the following Try It Out.

150

Chapter 4: Working with Tables

Try It Out Copying Subtables Correctly

1. Enter this version of DeepCopy into an interpreter session:

-- Makes a deep copy of a table. This version of DeepCopy
-- properly handles duplicate subtables, including cycles.
-- (The Seen argument is only for recursive calls.)
function DeepCopy (Src, Seen)
local Dest
if Seen then
-- This will only set Dest if Src has been seen before:
Dest = Seen|[Src]
else
-- Top-level call; create the Seen table:
Seen = {}
end
-- If Src is new, copy it into Dest:
if not Dest then
-- Make a fresh table and record it as seen:

Dest = {}
Seen[Src] = Dest
for Key, Val in pairs(Src) do
Key = type(Key) == "table" and DeepCopy (Key, Seen) or Key
Val = type(Val) == "table" and DeepCopy(Val, Seen) or Val
Dest [Key] = Val
end
end
return Dest

end

2. Now test it with a particularly hairy case —a table that contains itself as both a key and a value:

> T = {}

> T[T] =T

> T2 = DeepCopy(T)

> -- T2 really is cyclical:

> print (T2[T2] [T2] [T2] [T2] [T2] [T2])
table: 0x703198

> -- And a side effect to it isn't visible in the source
> -- table:

> T2.Test = "test"

> print (T2[T2] [T2] [T2].Test)

test

> print (T[T][T] [T].Test)

nil

How It Works

This version of DeepCopy works by storing every copy it makes as a value in an associative table, the
key being that copy’s source table. That lets it avoid making more than one copy of a given table. This

mapping between already seen source and destination tables is in the second argument of DeepCopy,
which is Seen.

When you called DeepCopy, you gave it only one argument. It saw that Seen was nil and initialized it
to an empty table. It then saw that Dest was nil (because it hadn’t been found in Seen), so it created a

151

Chapter 4: Working with Tables

fresh destination table, assigned it to Dest, and established an association between the source table and
the destination table in Seen. Then it looped through src. This part of DeepCopy is almost the same as
the previous version. The only difference is that recursive calls pass the Seen argument. When the first
recursive call (for Key) was made, that call saw that Seen was set, so it assigned Seen[Src] to Dest. If
Src had not been seen yet, that assignment would have done nothing, and the loop inside the next i £
statement would have been entered. But in this case, a table got assigned to Dest, so the loop was
skipped. The same happened with the second recursive call (for val).

Building Other Data Structures from Tables

In Lua, tables serve the same purposes as what other languages call tables, dictionaries, associative
arrays, or hash tables, such as the following;:

Potluck = {John = "chips", Jane = "lemonade",
Jolene = "egg salad"}

and what other languages call arrays or vectors, such as these:

Days = {"Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"}

You can build other data structures out of tables as well. For example, you can use table. insert and
table.remove to treat a table as a stack, and use tables within tables to represent tree-structured data—
data that branches out like a tree, as shown in Figure 4-7.

Roberto lerusalimschy

/

Living ——— > Gary Larson
Person —— > Dead ———> Jane Austen
Place — Rio de Janeiro Archimedes

The North Pole

Figure 4-7
The diagram in the figure could be represented as follows:

{Person = {
Living = {"Roberto Ierusalimschy", "Gary Larson"},

152

Chapter 4: Working with Tables

Dead = {"Jane Austen", "Archimedes"}},
Place = {"Rio de Janeiro", "The North Pole"}}

Special-purpose data structures like these can be accessed and manipulated like ordinary tables, but if
they behave differently enough from tables, you can write special-purpose functions that work with
them. It may be convenient to use the colon syntax to attach such functions to the data structures them-
selves. The following Try It Out is an example of this. It’s an implementation of a ring, a data structure
that is something like a stack, except the top (referred to in the exercise as the current element) can be
moved, and the top and bottom act like they’re hooked onto each other.

Try It Out Using a Table as a Ring
1. Save the following file as ring. lua:

-- A ring data structure:

-- Returns X mod Y, but one-based: the return value will
-- never be less than 1 or greater than Y. (Y is assumed to
-- be positive.)
local function OneMod (X, Y)
return (X - 1) $ Y + 1
end

-- A table in which to create the methods:
local Methods = {}

-- Inserts a new element into self:
function Methods:Push (Elem)

table.insert (self, self.Pos, Elem)
end

-- Removes the current element from self; returns nil if
-- self is empty:
function Methods:Pop ()
local Ret
if #self > 0 then
Ret = table.remove(self, self.Pos)
-- Keep self.Pos from pointing outside the array by
-- wrapping it around:
if self.Pos > #self then
self.bPos =1
end
end
return Ret
end

-- Rotates self to the left:
function Methods:RotateL ()
if #self > 0 then
self.Pos = OneMod(self.Pos + 1, #self)
end
end

-- Rotates self to the right:

153

Chapter 4: Working with Tables

function Methods:RotateR ()
if #self > 0 then
self.Pos = OneMod(self.Pos - 1, #self)
end
end

-- Returns the ring's size:

function Methods:Size()
return #self

end

-- Returns a string representation of self:
function Methods:ToString ()
-- Convert the parts of self to the left and to the right
-- of self.Pos to strings:
local LeftPart = table.concat(self, ", ", 1, self.Pos - 1)
local RightPart = table.concat(self, ", ", self.Pos, #self)
-- Only put a separator between them if neither is the
-- empty string:
local Sep
if LeftPart == "" or RightPart == "" then
Sep = ""
else
Sep = ", "
end
-- RightPart's first element is self.Pos, so put it first:
return RightPart .. Sep .. LeftPart
end

-- Instantiates a ring:
function MakeRing (Ring)
-- Make an empty ring if an array of initial ring values
-- wasn't passed in:
Ring = Ring or {}
-- Ring.Pos is the position of the current element of the
-- ring; initialize it to 1 (all methods that expect
-- there to be a current element first make sure the ring
-- isn't empty) :
Ring.Pos = 1
-- Give the ring methods and return it:
for Name, Fnc in pairs (Methods) do

Ring[Name] = Fnc
end
return Ring
end
2. Start lua as follows (this will run ring.lua and then enter interactive mode):

lua -i ring.lua

3. Within interactive mode, use the function MakeRing to create a ring, and use that ring’s meth-

ods to manipulate it:

154

Chapter 4: Working with Tables

> R = MakeRing{"the", "time", "has", "come"} -- Another use
> -- for the syntax from the "Keyword Arguments" section.
> print (R:ToString())

the, time, has, come

> print (R:Pop())

the

> R:Push("today")

> print (R:ToString())

today, time, has, come

> R:RotateL()

> print (R:ToString())

time, has, come, today

> print(R:Pop(), R:Pop(), R:Pop())
time has come

> R:Push("here")

> print (R:ToString(), R:Size())
here, today 2

> R:Push("tomorrow")

> R:Push("gone")

> print (R:ToString())

gone, tomorrow, here, today

> R:RotateR()

> print (R:ToString())

today, gone, tomorrow, here

> R:RotateR()

> print (R:ToString())

here, today, gone, tomorrow

How It Works

MakeRing instantiates a new ring. If you call it with no argument, it makes an empty ring, but if you call
it with an array, it uses that array’s elements as the elements of the ring (the first element is the initial

current element). A ring has the following six methods:

0O Push—Adds a new element to the ring.
Pop — Removes the current element from the ring and returns it.

RotateL —Rotates the ring left by one element.

Size —Returns the size of the ring.

a
a
0 RotateR— Rotates the ring right by one element.
a
a

ToString— Returns a string listing all elements of the ring, with the current one first.

When used in the context of stacks and related structures, Push and Pop mean insert and remove.

Aring is represented as an array with a Pos field that points to its current element. For example, take a

look at the ring in Figure 4-8.

155

Chapter 4: Working with Tables

current

the

Figure 4-8

This ring could be represented as any of the following (the methods are left out for clarity):

{"the", "time", "has", "come", Pos = 1}
{"come", "the", "time", "has", Pos = 2}
{"has", "come", "the", "time", Pos = 3}
{"time", "has", "come", "the", Pos = 4}

Rotating a ring takes the same amount of time no matter how big the ring is. But pushing or popping an
element can take an amount of time proportional to the size of the ring. More specifically, it takes an
amount of time proportional to the number of elements from Pos to the end of the array. That’s because
when table. insert and table.remove insert or remove an item into or from the middle of an array,
they need to go through every element between there and the end of the array and shift them up or
down to compensate. This implementation of rings was written that way because it’s simple and easy to
understand, and the time that it takes to push or pop is not even noticeable in most circumstances.

If pushing and popping does consume a problematic amount of time, either because of the sheer size of
a ring, or because a bunch of pushes or pops were being done in a time-critical section of code, then you
could optimize the rings — reimplementing them in a more efficient way using a different representation.
One simple optimization would be to arrange for Pos to go up on pushes and down on pops. This way,
when Pos hits the sweet spot at the end of the array, it would stay at the end unless the ring was rotated.

156

Chapter 4: Working with Tables

Another optimization would be to represent each element as a table with a val field (that element’s
value), and Left and Right fields (the tables of the elements counterclockwise and clockwise from that
element). Doing it that way has the advantage of making pushes and pops take the same amount of time
no matter how big the ring is. It's more complicated, though, because pushes and pops have to do the
correct relinking of the Left and Right fields of the element in question, and those of its two neighbors.
Additionally, each push creates a new table, which takes more time than simply inserting a value suffi-
ciently close to the end of an array, so for rings with less than 50 or 60 elements, this approach is actually
slower than the worst case of the version given in ring. lua.

A good rule of thumb is to first write something in as simple and clear a way as possible, test it to make
sure it’s correct, and then don’t optimize it— unless it’s slowing the whole program down enough to
detract from the program’s usability.

Here are a few more comments:

Q Other than ToString, which expects everything in the ring to be a string or a number,
ring.lua’s rings can hold any value —except for nil. There are (at least) a couple ways to fix
this. One is to replace table. insert and table.remove with code that can handle a nil, and
use a field in self to keep track of the size instead of #. The other is to create a value that won't
be equal to any other value that might be pushed into the ring, and use that value to represent
nil. So Push, when given a nil, would push that value instead, and Pop, when popping that
value, would return nil. You can use a do-nothing function or an empty table for the value.

O The size of the ring is measurable with the # operator, but that might no longer be true if the
implementation were changed. That’s why there’s a Size method: it hides the details of how
the size is kept track of.

Q The only global variable set by ring. lua is MakeRing because it’s the only thing needed to cre-
ate a ring.

Q The local function 0neMod is there to make the rotation methods easier to read by abstracting
away a bit of arithmetic.

O Youcan use lua -i filename to write, test, and debug code. If you make a change in the file,
and you don’t want to exit the interpreter just to reload it, call dofile with the filename, such
as dofile("ring.lua").If you want to test a local function (such as OneMod), you can make it
global for long enough to test it and then relocalize it.

Q The guts of this implementation are not hidden, which means that goofy fiddling like R. Pos = -
1 can be done. This is fine in a prototype, but you want to prevent it in code intended for seri-
ous use. One way would be to put nothing but methods in the tables returned by MakeRing.
There would be an upvalue containing a table whose keys would be the tables returned by
MakeRing, and whose values would be tables with Pos and the contents of the corresponding
ring. Only MakeRing and the methods would have access to that upvalue. When a method
wanted to get at the contents or position of its ring, it would index the upvalue with self.
Another way of protecting an object’s guts from fiddling is described in Chapter 11.

Because of tables’ flexibility, you often don’t need a customized data structure. Just ask yourself how you
most often want to access your data— usually an associative table or an array will do the job. For instance,
the task of finding a user’s information based on his or her username is obviously suited to an associative
table whose keys are usernames and whose values are tables of information about each user. The task of
displaying all users in alphabetical order by username is suited to a sorted array. It's common to create ad

157

Chapter 4: Working with Tables

hoc tables to do something that the main table you're using can’t do. If you were working with an associa-
tive table like the one described previously, keyed by usernames, but you wanted to do something that
grouped users by last name, you could create a table like the following, with last names as keys and arrays
of users as values:

local LastUsers = {} -- Keys: last names; vals: arrays of
-- UserInfos.
for Username, UserInfo in pairs(Users) do
-- If this last name hasn't been seen yet, make an empty array:

LastUsers|[UserInfo.LastName] = LastUsers[UserInfo.LastName] or {}
table.insert (LastUsers[UserInfo.LastName], UserInfo)
end

Custom-Made Loops

Most times when you want to loop through a table, pairs or ipairs is appropriate, but if neither is,
you can instead write and use your own function. Here, for example, is a function similar to ipairs, but
it goes through the array given to it in reverse order:

-- An iterator factory -- like ipairs, but goes through the
-- array in reverse order:
function ReverseIpairs (Arr)

local I = #Arr

local function Iter()
local Retl, Ret2
if I > 0 then
Retl, Ret2 = I, Arr[I]

I=1I-1
end
return Retl, Ret2

end

return Iter

end

for I, Str in ReverseIpairs({"one", "two", "three"}) do
print (I, Str)

end

The output is as follows:

3 three
2 two
1 one

The Iter function is what is known in the Lua world as an iterator. In the simplest terms, an iterator is a
function that, each time you call it, returns the next element or elements from the thing you're looping
through. The generic for expects to find an iterator to the right of the keyword in. ReverseIpairs is
not an iterator —it, like ipairs and pairs, is an iterator factory — a function that returns an iterator.

158

Chapter 4: Working with Tables

(This book follows that terminological distinction, but elsewhere, you may see iterator factories referred
to as iterators, when the context makes it clear what’s being talked about.) In this example, the for does
not find ReverseIpairs to the right of the in, but Tter, because that’s what the call to ReverseIpairs
returns. The for then calls Iter, puts its results into the newly created local I and Str variables, and
executes the body of the loop. It keeps on doing this until Iter’s first return value is nil, at which point
the loop is exited.

That last sentence is a rule about all iterators. That is, when an iterator returns nil as its first value (or
when it returns nothing, which for adjusts to nil), the loop is ended. For this reason, the leftmost loop
variable (which receives the iterator’s first return value) is called the loop’s control variable.

This implementation of ReverseIpairs returns what is called a stateful iterator because it includes (as
the upvalues Arr and I) the current state of the iteration. You can also write stateless iterators, which
depend on for to keep track of the current state of the iteration for them.

Try this stateless version of ReverseIpairs:

do -- Local scope for Iter.
-- Reverselpairs's iterator; Arr is the "invariant state",
-- and I is the control variable's previous value:
local function Iter (Arr, I)
if I > 1 then

I=1I-1
return I, Arr[I] -- Violates structured programming
-- (not a severe misdeed in such a small function).
end
end
-- An iterator factory -- like ipairs, but goes through

-- the array in reverse order:
function Reverselpairs (Arr)
return Iter, Arr, #Arr + 1

end

end

for I, Str in ReverseIpairs({"one", "two", "three"}) do
print (I, Str)

end

It prints the same thing as the stateful version:

3 three
2 two
1 one

The generic for actually expects up to three values to the right of the in:

O The iterator itself

Q Aninvariant state (nil in a stateful iterator, and usually the table being looped through in a
stateless iterator)

0 Aseed value for the loop’s control variable (nil in a stateful iterator and in some stateless iterators)

159

Chapter 4: Working with Tables

Every time for calls the iterator, it passes it two arguments: the invariant state and the value of the con-
trol variable from the previous iteration. That’s why it needs the seed value — to have something to pass
the iterator before the first iteration.

In the example, ReverseIpairs returns Iter, the array it was given (the invariant state), and the length
of the array plus one (the seed value for the control variable). for then calls Iter with the array and the
seed value. Iter doesn’t know that it’s being called on the first iteration. It just sees that its second argu-
ment is 4 and, in effect, thinks to itself: “If the last value of the control variable was 4, then it’s time for
me to return 3 and the 3rd element of my first argument.” for assigns these values to I and Str, and
executes the body of the loop. Then it calls Iter again, with the array and 3 as arguments. This process
continues until the last time Iter is called. Because its second argument is 1, it returns nothing. for
looks at Iter’s first return value and, seeing it to be (after adjustment) nil, ends the loop.

The built-in function next is a stateless iterator. It takes a table and a key in that table and returns the
“next” key-value pair in the table, like this:

> NameToInstr = {John = "rhythm guitar",
>> Paul = "bass guitar",
>> George = "lead guitar",

>> Ringo = "drumkit"}

> print (next (NameToInstr, "Ringo"))
George lead guitar

> print (next (NameToInstr, "George"))
John rhythm guitar

> print (next (NameToInstr, "John"))
Paul bass guitar

If given the seed value nil, it returns the “first” key-value pair in the table, and if given the “last” key in
the table, it returns nil, like this:

> print (next (NameToInstr))
Ringo drumkit

> print (next (NameToInstr, "Paul"))
nil

“Next,” “first,” and “last” are in quotes here because the order of the table is arbitrary. But it’s the same
arbitrary order in which pairs loops through a table. In fact, all pairs does is return next, the table
given to it, and nil, so that if you write one of the following;:

for Key, Val in next, Tbl, nil do

for Key, Val in next, Tbl do
it’s the same as writing this:

for Key, Val in pairs(Tbl) do

pairs has parentheses after it and next doesn’t because pairs is an iterator factory and needs to be
called, but next is an iterator and needs to be given straight to for.

160

Chapter 4: Working with Tables

If you check it out, you'll see that next and the iterator returned by pairs are actually different func-
tions, but that’s just a quirk of the Lua implementation. Both are just wrappers around the same func-
tion written in C.

ipairs is similar. It returns a stateless iterator, the table given to it, and a seed value of 0. The iterator
(called IpairsIter in the following example) works by adding one to its second argument and return-
ing that key-value pair of its first argument:

> IpairsIter, Arr, Seed = ipairs({"one", "two", "three"})
> print(IpairsIter, Arr, Seed)

function: 0x480c68 table: 0x496230 0

> print (IpairsIter(Arr, 0))

1 one

> print (IpairsIter(Arr, 1))

2 two

> print(IpairsIter(Arr, 2))

3 three

> print (IpairsIter(Arr, 3)) -- This will return nothing.

IpairsIter isnot a built-in function, but it’s easy to write. Here’s how:

function IpairsIter (Arr, PrevI)
local CurI = PrevI + 1
Val = Arr[CurI]
if val ~= nil then
return Curl, Val
end
end

The behavior of the generic for is complex, but it allows for to be both flexible and efficient — flexible
because an iterator can be written for anything you want