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In terms of UNIX experience, Neil has used almost every flavor since the late 1970s, including BSD
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Neil can claim to have been using Linux since August 1993 when he acquired a floppy disk distribution
of Soft Landing (SLS) from Canada, with kernel version 0.99.11. He’s used Linux-based computers for
hacking C, C++, Icon, Prolog, Tcl, and Java at home and at work.

Most of Neil’s “home” projects were originally developed using SCO UNIX, but they’ve all ported to
Linux with little or no trouble. He says Linux is much easier because it supports quite a lot of features
from other systems, so that both BSD- and System V–targeted programs will generally compile with 
little or no change.

As the head of software and principal engineer at Camtec Electronics in the 1980s, Neil programmed 
in C and C++ for real-time embedded systems. Since then he’s worked on software development tech-
niques and quality assurance. After a spell as a consultant with Scientific Generics he is currently work-
ing as a systems architect with Celesio AG.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted barn in
Northamptonshire, England. His interests include solving puzzles by computer, music, science fiction,
squash, mountain biking, and not doing it yourself.
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micro, which with the help of a few spare parts continued to function for the next 15 years. He graduated
from Nottingham University with a degree in Electronic Engineering, but decided software was more fun.

Over the years he has worked for a variety of companies, from the very small with just a dozen employ-
ees, to the very large, including the IT services giant EDS. Along the way he has worked on a range of
projects, from real-time communications to accounting systems, very large help desk systems, and more
recently as the technical authority on a large EPoS and retail central systems program.

A bit of a programming linguist, he has programmed in various assemblers, a rather neat proprietary
telecommunications language called SL-1, some FORTRAN, Pascal, Perl, SQL, and smidgeons of Python
and C++, as well as C. (Under duress he even admits that he was once reasonably proficient in Visual
Basic, but tries not to advertise this aberration.)

Rick lives in a village in Leicestershire, England, with his wife Ann, children Jennifer and Andrew, and
two cats. Outside work his main interest is classical music, especially early religious music, and he even
does his best to find time for some piano practice. He is currently trying to learn to speak German.
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Foreword by Alan Cox

Every computer programmer has his own piles of notes and scribbles. They have their code examples
saved from the past heroic dive into the manuals or from Usenet, where sometimes even fools fear to fol-
low. (The other body of opinion is that fools all get free Usenet access and use it nonstop.) It is therefore
perhaps strange that so few books follow such a style. In the online world there are a lot of short, to-the-
point documents about specific areas of programming and administration. The Linux documentation
project released a whole pile of documents covering everything from installing Linux and Windows
on the same machine to wiring your coffee machine to Linux. Seriously. Take a look at The Linux
Documentation Project on http://www.tldp.org.

The book world, on the other hand, seems to consist mostly of either learned tomes, detailed and very
complete works that you don’t have time to read, or books for complete beginners that you buy for
friends as a joke. There are very few books that try to cover the basics of a lot of useful areas. This book
is one of them, a compendium of those programmers’ notes and scribbles, deciphered (try reading a pro-
grammer’s handwriting), edited, and brought together coherently as a book.

This updated third edition of Beginning Linux Programming has been reviewed and updated to reflect
today’s Linux developments, including a chapter on programming with the Qt toolkit, the basis of the
KDE GUI.

Chapter 18 is your chance to join the world of kernel programmers. As you will discover, it isn’t actually
that different from writing modules for large application programs. Put on your pointy hat, grow a
beard, drink Jolt Cola, and come join in the fun.

Alan

a544977 FM.qxd  12/1/03  8:55 AM  Page xxxi



a544977 FM.qxd  12/1/03  8:55 AM  Page xxxii



Introduction

Welcome to Beginning Linux Programming, 3rd Edition, an easy-to-use guide to developing programs
for the Linux and other UNIX-style operating systems.

In this book we aim to give you an introduction to a wide variety of topics important to you as a
developer using Linux. The word beginning in the title refers more to the content than to your skill
level. We’ve structured the book to help you learn more about what Linux has to offer, however
much experience you have already. Linux programming is a large field and we aim to cover
enough about a wide range of topics to give you a good “beginning” in each subject. 

Who’s This Book For?
If you’re a programmer who wishes to get up to speed with the facilities that Linux (or UNIX)
offers software developers, to maximize your programming time and your application’s use of the
Linux system, you’ve picked up the right book. Clear explanations and a tried and tested step-by-
step approach will help you progress rapidly and pick up all the key techniques. 

We assume you have some experience in C and/or C++ programming, perhaps in Windows or
some other system, but we try to keep the book’s examples simple so that you don’t need to be an
expert C coder to follow this book. Where direct comparisons exist between Linux programming
and C/C++ programming, these are indicated in the text.

As it aims to be a tutorial guide to the various tools and sets of functions/libraries available to you
on most Linux systems as well as a handy reference you can return to, this book is unique in its
straightforward approach, comprehensive coverage, and extensive examples.

Watch out if you’re totally new to Linux. This isn’t a book on installing or configur-
ing Linux. If you want to learn more about administering a Linux system, you may
wish to look at some complementary books such as Running Linux, 4th Edition, by
Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson, and Lar Kaufman (O’Reilly,
ISBN 0596002726) or Linux System Administration: A User’s Guide, by Marcel Gagné
(Addison-Wesley, ISBN 0201719347).
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What’s Covered in the Book
The book has a number of aims:

❑ To teach the use of the standard Linux C libraries and other facilities as specified by the various
Linux and UNIX standards.

❑ To show how to make the most of the standard Linux development tools.

❑ To give a concise introduction to data storage under Linux using both the DBM and MySQL
database systems.

❑ To show how to build graphical user interfaces for the X Window System. We will use both the
GTK (the basis of the GNOME environment) and Qt (the basis of the KDE environment) libraries.

❑ Having given you firm grounding, we’ll progress to real-world applications that you want to
program.

As we cover these topics, we introduce programming theory and then illustrate it with an appropriate
example(s) and a clear explanation. In this way you can learn quickly on a first read and look back over
things to brush up on all the essential elements if you need to.

While the small examples are designed mainly to illustrate a set of functions or some new theory in
action, throughout the book lies a larger sample project: a simple database application for recording
audio CD details. As your knowledge expands, you can develop, reimplement and extend the project to
your heart’s content. That said, however, the CD application doesn’t dominate any chapter, so you can
skip it if you want to, but we feel that it provides additional useful, in-depth examples of the techniques
that we’ll discuss. It certainly provides an ideal way to illustrate each of the more advanced topics as
they are introduced. Our first discussion of this application occurs at the end of Chapter 2 and shows
how a fairly large shell script is organized, how the shell deals with user input, and how it can construct
menus and store and search data.

After recapping the basic concepts of compiling programs, linking to libraries, and accessing the online
manuals, you will take a sojourn into shells. You then get stuck into C programming, where we cover
working with files, getting information from the Linux environment, dealing with terminal input and
output, and the curses library (which makes interactive input and output more tractable). You’re then
ready to tackle reimplementing the CD application in C. The application design remains the same, but
the code uses the curses library for a screen-based user interface.

From there, we cover data management. Meeting the dbm database library is sufficient cause for us to
reimplement the application, but this time with a design that will re-emerge in some later chapters. In a
later chapter we look at how the data could be stored in a relational database using MySQL, and we also
reuse this data storage technique later in the chapter, so you can see how the techniques compare. The
size of these recent applications means that we then need to deal with such nuts-and-bolts issues as
debugging, source code control, software distribution, and makefiles.

You will also look at how different Linux processes can communicate, using a variety of techniques, and
then look at how Linux programs can use sockets to support TCP/IP networking to different machines,
including the issues of talking to machines that use different processor architectures. 
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Having got the foundations of Linux programming in place, we cover the creation of graphical programs.
We do this over two chapters, looking first at the GTK toolkit, which underlies the GNOME environment,
and then at the Qt toolkit, which underlies the KDE environment.

As the book’s final “programming” chapter, we give an introduction to writing device drivers—an
important step along the path to understanding the Linux kernel itself.

We finish off with a brief look at the standards that keep Linux systems from different vendors similar
enough that we can move between them easily and write programs that will work on different distribu-
tions of Linux.

As you’d expect, there’s a fair bit more in between, but we hope that this gives you a good idea of the
material we’ll be discussing.

What You Need to Use This Book
In this book, we’ll give you a taste of programming for Linux. To help you get the most from the chap-
ters, we would really like you to try out the examples as you read. These also provide a good base for
experimentation and will hopefully inspire you to create programs of your own. We hope you will read
this book in conjunction with experimenting on your own Linux installation.

Linux is available for many different systems. Its adaptability is such that enterprising souls have per-
suaded it to run in one form or another on just about anything with a processor in it! Examples include
systems based on the Alpha, SPARC, ARM, PowerPC, and 68000 CPUs as well as the Intel x86/Pentium-
class processors (and compatibles) found in today’s PCs. 

To develop this book we primarily used x86-based systems, but very little of what we cover is Intel-specific.
Although it is possible to run Linux on a 386 with 2-MB RAM and no hard disk (truly!), to run Linux suc-
cessfully and follow the examples in this book, we recommend that you pick one of the more popular
Linux distributions such as Red Hat, Debian, or SuSE, and check the hardware recommendations they give.

We wrote this book and developed the examples on two Linux systems with different specifications, so
we’re confident that if you can run Linux, you can make good use of this book. Furthermore, we tested
the code on other versions of Linux during the book’s technical review.

As for software requirements, we suggest that you use a recent version of a Linux distribution. Although
it’s possible to put together a Linux from scratch, it’s much easier to start with a prepackaged version,
and with many of the vendors now providing online updates to keep the versions of components
updated, and bugs fixed, it’s a good way for most users to run their Linux systems. 

Because Linux and the GNU toolset and others are released under the GPL, they have certain properties,
one of which is freedom. They will always have the source code available, and no one can take that free-
dom away. They are, therefore, examples of Open Source software—a weaker term for other software
that may also have the source code available subject to certain conditions; see http://www.open
source.org/ for more details. With GNU/Linux, you will always have the option of support—either
doing it yourself with the source code or hiring someone else. There are an ever-increasing number of
companies offering commercial support for Linux and associated tools.

a544977 FM.qxd  12/1/03  8:55 AM  Page xxxv



xxxvi

Introduction

Source Code
We have tried to provide example programs and code snippets that best illustrate the concepts being dis-
cussed in the text. Please note that, in order to make the new functionality being introduced as clear as
possible, we have taken one or two liberties with coding style.

In particular, we do not always check that the return results from every function we call are what we
expect. In production code for real applications we would certainly do this check, and you too should
adopt a rigorous approach toward error handling. (We discuss some of the ways that errors can be
caught and handled in Chapter 3.)

The complete source code from the book is available for download from http://www.wrox.com.

The source code in the book is made available under the terms of the GNU General Public License,
http://www.gnu.org/licenses/gpl.txt. The following permission statement applies to all the
source code available in this book:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

Although all the code you need is listed in the book, we suggest you download a copy of the code to
save yourself a lot of typing.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book:

When we introduce them, we highlight important words in italics. Characters we want you to type are in
bold font. We show keyboard strokes like this: Ctrl+A.

Boxes like this one hold important, not-to-be-forgotten, mission-critical information
that is directly relevant to the surrounding text.
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We present code in three different ways:

$ who
root     tty1         Sep 10 16:12
rick     tty2         Sep 10 16:10

When the command line is shown, it’s in the above style, whereas output is in this style. The $ is the
prompt (if the superuser is required for the command, the prompt will be a # instead) and the bold text
is what you type in and press Enter to execute. Any text following that in the same font but in non-bold
is the output of the bolded command. In the example above you type in the command who, and you see
the output below the command.

Prototypes of UNIX-defined functions and structures are shown in bold as follows:

#include <stdio.h>

int printf (const char *format, ...);

In our code examples, the code foreground style shows new, important material, such as

/* This is what new, important, and pertinent code looks like.

while code that looks like this (code background style) is less important:

/*This is what code that has been seen before looks like.

And often when a program is added to throughout a chapter, code that is added later is in foreground
style first and background style later. For example, a new program would look like this:

/*Code example
/*That ends here.

And if we add to that program later in the chapter, it looks like this instead:

/*Code example
/*That ends here.

/*New code added.

The last convention we’ll mention is that we presage example code with a “Try It Out” heading that
aims to split the code up where it’s helpful, highlight the component parts, and show the progression of
the application. When it’s important, we also follow the code with a “How It Works” section to explain
any salient points of the code in relation to previous theory. We find these two conventions help break
up the more formidable code listings into palatable morsels.

Customer Support
We offer source code for download, errata, and technical support from the Wrox Web site at
http://www.wrox.com. In addition you can join mailing lists for author and peer discussion at
http://p2p.wrox.com (see the last section in this introduction for more info on the P2P site).
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Source Code and Updates
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either through the
Search utility or by using one of the title lists) and double click the Download Code link on the book’s
detail page and you can obtain all the source code for the book. You can also click the Download Bonus
Chapters link to download the Tcl, Perl, programming for X, HTML programming, and CGI chapters that
were originally in the second edition.

The files are archived in standard Linux compressed tar format, using the file extension .tgz. You can
extract these on Linux using the command ‘tar zxvf’ followed by the downloaded file’s name. If you
prefer a graphical tool under Linux, then File Roller can also be used. If you want to extract the files under
Windows, the tgz format is supported by several Windows archive programs, such as WinZip. When you
extract the files, the code will be extracted into chapter folders as long as you haven’t set your compres-
sion software to ignore the file structure of the archive.

Errata
We have made every effort to ensure that there are no errors in the text or in the code. 

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
utility or one of the title lists. Then, on the book details page, click on the Book Errata link. On this page
you will be able to view all errata that has been submitted for this book and posted by Wrox editors. You
can also click the Submit Errata link on this page to notify us of any errors that you’ve found.

While we’re on the subject of submitting errata, we want to hear about any error you find in this book.
Simply e-mail the information to techsupwrox@wrox.com. We’ll check the information and, if appropri-
ate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

If you do e-mail us, your e-mail should include the following things:

* In the Subject field, include the book’s title, the last six digits of the ISBN (544977 for this book),
and the number of the page upon which the error occurs.

* In the body of the message, tell us your name, contact information, and the problem.

We won’t send you junk mail, we promise. We need these details to help you as quickly as possible.

Note that the Wrox support process can offer support only to issues that are directly
pertinent to the content of our published title. Support for questions that fall out-
side of the scope of normal book support is provided by the community lists of our
http://p2p.wrox.com forums.
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p2p.wrox.com
For author and peer discussion, join the P2P mailing lists at wrox.com. Our unique system provides 
programmer-to-programmer contact on mailing lists, forums, and newsgroups, all in addition to our
one-to-one e-mail support system discussed in the previous section. Wrox authors and editors and other
industry experts are present on our mailing lists.

At http://p2p.wrox.com you will find a number of different lists that will help you, not only while
you read this book but also as you develop your own applications. To subscribe to a mailing list just fol-
low these steps:

1. Go to http://p2p.wrox.com and choose the appropriate category from the left menu bar.

2. Click on the link for the mailing list that you want to join.

3. Follow the instructions to subscribe and fill in your e-mail address and password.

4. Reply to the confirmation e-mail that you receive.

5. Use the subscription manager to join more lists and set your e-mail preferences.

a544977 FM.qxd  12/1/03  8:55 AM  Page xxxix



a544977 FM.qxd  12/1/03  8:55 AM  Page xl



1
Getting Started

In this chapter, we discover what Linux is and how it relates to its inspiration, UNIX. We’ll take a
guided tour of the facilities provided by a Linux development system, and we’ll write and run the
first program. Along the way, we’ll be looking at

❑ UNIX, Linux, and GNU

❑ Programs and programming languages for Linux

❑ How to locate development resources

❑ Static and shared libraries

❑ The UNIX philosophy

An Introduction to UNIX, Linux, and GNU
In recent years Linux has become a phenomenon. Hardly a day goes by without Linux cropping
up in the media in some way. We’ve lost count of the number of applications that have been made
available on Linux and the number of organizations that have adopted it.

Linux owes its success to systems and applications that preceded it: UNIX and GNU software.
In this section we will look at how Linux came to be and what its roots are.

What Is UNIX?
The UNIX operating system was originally developed at Bell Laboratories, once part of the
telecommunications giant AT&T. Designed in the 1970s for Digital Equipment PDP computers,
UNIX has become a very popular multiuser, multitasking operating system for a wide variety of
hardware platforms, from PC workstations to multiprocessor servers and supercomputers.

b544977 Ch01.qxd  12/1/03  8:55 AM  Page 1



A Brief History of UNIX
Strictly, UNIX is a trademark administered by The Open Group, and it refers to a computer operating
system that conforms to a particular specification. This specification, known as The Single UNIX
Specification, defines the names of, interfaces to, and behaviors of all mandatory UNIX operating system
functions. The specification is largely a superset of an earlier series of specifications, the P1003, or POSIX
specifications, developed by the IEEE (Institute of Electrical and Electronic Engineers).

The UNIX source code belongs to SCO. Many UNIX-like systems are available commercially, such as
SCO’s Unixware, IBM’s AIX, HP’s HP-UX, and Sun’s Solaris. Some have been made available for free,
such as FreeBSD and Linux. Only a few systems currently conform to The Open Group specification,
which allows them to be marketed with the name UNIX. 

In the past, compatibility among different UNIX systems has been a real problem, although POSIX was a
great help in this respect. These days, by following a few simple rules it is possible to create applications
that will run on all UNIX and UNIX-like systems. More details on Linux and UNIX standards can be
found in Chapter 19.

UNIX Philosophy
In the following chapters we hope to convey a flavor of Linux (and therefore UNIX) programming.
Although programming in C is in many ways the same whatever the platform, it’s true to say that UNIX
developers have a special view of program and system development, and this view is equally applicable
to Linux.

The UNIX operating system, and hence Linux, encourages a certain programming style. Following are a
few characteristics shared by typical UNIX programs and systems:

❑ Simplicity: Many of the most useful UNIX utilities are very simple and, as a result, small and
easy to understand. “Small and Simple” is a good technique to learn. Larger, more complex sys-
tems are guaranteed to contain larger, more complex bugs, and debugging is a chore that we’d
all like to avoid!

❑ Focus: It’s often better to make a program perform one task well than to throw in every feature
along with the kitchen sink. A program with  “feature bloat” can be difficult to use and difficult
to maintain. Programs with a single purpose are easier to improve as better algorithms or inter-
faces are developed. In UNIX, small utilities are often combined to perform more demanding
tasks when the need arises, rather than trying to anticipate a user’s needs in one large program.

❑ Reusable Components: Make the core of your application available as a library. Well-documented
libraries with simple but flexible programming interfaces can help others to develop variations or
apply the techniques to new application areas. Examples include the dbm database library, which
is a suite of reusable functions rather than a single database management program.

❑ Filters: Many UNIX applications can be used as filters. That is, they transform their input and
produce output. As we’ll see, UNIX provides facilities that allow quite complex applications to
be developed from other UNIX programs by combining them in novel ways. Of course, this
kind of reuse is enabled by the development methods that we’ve previously mentioned.

❑ Open File Formats: The more successful and popular UNIX programs use configuration files
and data files that are plain ASCII text. If this is an option for your program development, it’s a
good choice. It enables users to use standard tools to change and search for configuration items
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and to develop new tools for performing new functions on the data files. A good example of this
is the ctags source code cross-reference system, which records symbol location information as
regular expressions suitable for use by searching programs.

❑ Flexibility: You can’t anticipate exactly how ingeniously users will use your program. Try to be
as flexible as possible in your programming. Try to avoid arbitrary limits on field sizes or num-
ber of records. If you can, write the program so that it’s network-aware and able to run across a
network as well as on a local machine. Never assume that you know everything that the user
might want to do.

What Is Linux?
As you may already know, Linux is a freely distributed implementation of a UNIX-like kernel, the low-
level core of an operating system. Because Linux takes the UNIX system as its inspiration, Linux and
UNIX programs are very similar. In fact, almost all programs written for UNIX can be compiled and run
on Linux. Also, some commercial applications sold for commercial versions of UNIX can run unchanged
in binary form on Linux systems. 

Linux was developed by Linus Torvalds at the University of Helsinki, with the help of UNIX program-
mers from across the Internet. It began as a hobby inspired by Andy Tanenbaum’s Minix, a small UNIX-
like system, but has grown to become a complete system in its own right. The intention is that the Linux
kernel will not incorporate proprietary code but will contain nothing but freely distributable code.

Versions of Linux are now available for a wide variety of computer systems using many different types of
CPUs, including PCs based on Intel x86 and compatible processors; workstations and servers using Sun
SPARC, IBM PowerPC, and Intel Itanium; and even some handheld PDAs and the Sony Playstation 2. If
it’s got a processor, someone somewhere is trying to get Linux running on it! 

The GNU Project and the Free Software Foundation
Linux owes its existence to the cooperative efforts of a large number of people. The operating system kernel
itself forms only a small part of a usable development system. Commercial UNIX systems traditionally
come bundled with applications that provide system services and tools. For Linux systems, these addi-
tional programs have been written by many different programmers and have been freely contributed.

The Linux community (together with others) supports the concept of free software, that is, software that is
free from restrictions, subject to the GNU General Public License. Although there may be a cost involved
in obtaining the software, it can thereafter be used in any way desired and is usually distributed in source
form.

The Free Software Foundation was set up by Richard Stallman, the author of GNU Emacs, one of the
best-known text editors for UNIX and other systems. Stallman is a pioneer of the free software concept
and started the GNU Project (the name GNU stands for GNU’s Not Unix), an attempt to create an oper-
ating system and development environment that would be compatible with UNIX but not suffer the
restrictions of the proprietary UNIX name and source code. GNU may turn out to be very different from
UNIX at the lowest level but still supports UNIX applications.

The GNU Project has already provided the software community with many applications that closely
mimic those found on UNIX systems. All these programs, so-called GNU software, are distributed under
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the terms of the GNU General Public License (GPL), a copy of that may be found at http://www.
gnu.org. This license embodies the concept of copyleft (a takeoff on “copyright”). Copyleft is intended
to prevent others from placing restrictions on the use of free software.

A few major examples of software from the GNU Project distributed under the GPL follow:

❑ GCC: The GNU Compiler Collection, containing the GNU C compiler

❑ G++: A C++ compiler, included as part of GCC

❑ GDB: A source code–level debugger

❑ GNU make: A version of UNIX make

❑ Bison: A parser generator compatible with UNIX yacc

❑ bash: A command shell

❑ GNU Emacs: A text editor and environment

Many other packages have been developed and released using free software principles and the GPL,
including graphical image manipulation tools such as the Gimp, spreadsheets, source code control tools,
compilers and interpreters, Internet tools, and two complete object-based environments: GNOME and
KDE. We will discuss GNOME and KDE in Chapters 16 and 17. 

There is now so much free software available that with the addition of the Linux kernel it could be said
that the goal of a creating GNU, a free UNIX-like system, has been achieved with Linux. To recognize the
contribution made by GNU software, many people now refer to Linux systems in general as
GNU/Linux.

You can find out more about the free software concept at http://www.gnu.org.

Linux Distributions
As we have already mentioned, Linux is actually just a kernel. You can obtain the sources for the kernel
to compile and install it and then obtain and install many other freely distributed software programs to
make a complete Linux. These installations are usually referred to as Linux systems, although they consist
of much more than just the kernel. Most of the utilities come from the GNU Project of the Free Software
Foundation.

As you can probably appreciate, creating a Linux system from just source code is a major undertaking.
Fortunately, many people have put together distributions (often called flavors), usually on CD-ROM, that
contain not just the kernel but also many other programming tools and utilities. These often include an
implementation of the X Window System, a graphical environment common on many UNIX systems.
The distributions usually come with a setup program and additional documentation (normally all on the
CD[s]) to help you install your own Linux system. Some well-known distributions (particularly on the
Intel x86 and Pentium families of processors) are Red Hat Linux, SuSE Linux, and Debian GNU/Linux,
but there are many others.
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Programming Linux
Many people think that programming Linux means using C. It’s true that UNIX was originally written
in C and that the majority of UNIX applications are written in C, but C is not the only option available to
Linux programmers, or UNIX programmers for that matter. In the course of the book, we’ll introduce a
couple of the alternatives.

A vast range of programming languages are available for Linux systems, and many of them are free and
available on CD-ROM collections or from FTP archive sites on the Internet. Here’s a partial list of pro-
gramming languages available to the Linux programmer:

Ada C C++

Eiffel Forth Fortran

Icon Java JavaScript

Lisp Modula 2 Modula 3

Oberon Objective C Pascal

Perl PostScript Prolog

Python Scheme Smalltalk

SQL Tcl/Tk Bourne Shell 

We’ll see how we can use a Linux shell (bash) to develop small- to medium-sized applications in
Chapter 2. For the rest of the book, we’ll mainly concentrate on C. We’ll direct our attention mostly
toward exploring the Linux programming interfaces from the perspective of the C programmer. 
We will assume knowledge of the C programming language.

Linux Programs
Linux applications are represented by two special types of files: executables and scripts. Executable files
are programs that can be run directly by the computer; they correspond to Windows .exe files. Scripts
are collections of instructions for another program, an interpreter, to follow. These correspond to
Windows .bat or .cmd files, or interpreted BASIC programs.

Linux doesn’t require executables or scripts to have a specific filename or any extension whatsoever. File sys-
tem attributes, which we discuss in Chapter 2, are used to indicate that a file is a program that may be run.
In Linux, we can replace scripts with compiled programs (and vice versa) without affecting other programs
or the people who call them. In fact, at the user level, there is essentially no difference between the two.

In fact, the first version of UNIX was written in PDP 7 assembler language in 1969. 
C was conceived by Dennis Ritchie around that time, and in 1973 he and Ken
Thompson rewrote essentially the entire UNIX kernel in C, quite a feat in the days
when system software was written in assembly language.
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When we log in to a Linux system, we interact with a shell program (often bash) that runs programs in
the same way that the Windows command prompt does. It finds the programs we ask for by name by
searching for a file with the same name in a given set of directories. The directories to search are stored
in a shell variable, PATH, in much the same way as with Windows. The search path (to which we can
add) is configured by your system administrator and will usually contain some standard places where
system programs are stored. These include

❑ /bin: Binaries, programs used in booting the system

❑ /usr/bin: User binaries, standard programs available to users

❑ /usr/local/bin: Local binaries, programs specific to an installation

An administrator’s login, such as root, may use a PATH variable that includes directories where system
administration programs are kept, such as /sbin and /usr/sbin.

Optional operating system components and third-party applications may be installed in subdirectories
of /opt, and installation programs might add to your PATH variable by way of user install scripts.

Note that Linux, like UNIX, uses the colon (:) character to separate entries in the PATH variable, rather
than the semicolon (;) that MS-DOS and Windows use. (UNIX chose : first, so ask Microsoft why
Windows is different, not why UNIX is different!) Here’s a sample PATH variable:

/usr/local/bin:/bin:/usr/bin:.:/home/neil/bin:/usr/X11R6/bin

Here the PATH variable contains entries for the standard program locations, the current directory (.),
a user’s home directory, and the X Window System. 

Remember, Linux uses a forward slash (/) to separate directory names in a file name rather than the
backslash (\) of Windows. Again, UNIX got there first.

The C Compiler
On POSIX-compliant systems, the C compiler is called c89. Historically, the C compiler was simply
called cc. Over the years, different vendors have sold UNIX-like systems with C compilers with differ-
ent facilities and options, but often still called cc.

When the POSIX standard was prepared, it was impossible to define a standard cc command with
which all these vendors would be compatible. Instead, the committee decided to create a new standard
command for the C compiler, c89. When this command is present, it will always take the same options,
independent of the machine.

On Linux systems that do try to implement the standards, you might find that any or all of the commands
c89, cc, and gcc refer to the system C compiler, usually the GNU C compiler, or gcc. On UNIX systems,
the C compiler is almost always called cc.

It’s not a good idea to delete directories from PATH unless you are sure that you
understand what will result if you do.
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In this book, we’ll be using gcc because it’s provided with Linux distributions and because it supports
the ANSI standard syntax for C. If you ever find yourself using a UNIX system without gcc, we recom-
mend that you obtain and install it. You can find it at http://www.gnu.org. Wherever we use gcc in
the book, simply substitute the relevant command on your system.

Try It Out—Our First Linux C Program
Let’s start developing for Linux using C by writing, compiling, and running our first Linux program.
It might as well be that most-famous of all starting points, Hello World.

1. Here’s the source code for the file hello.c:

#include <stdio.h>

int main()
{

printf(“Hello World\n”);
exit(0);

}

To enter this program, you’ll need to use an editor. There are many to choose from on a typical Linux
system. Popular with many users is the vi editor. Both of the authors like emacs, so we suggest you take
the time to learn some of the features of this powerful editor. To learn more about emacs you can use its
online tutorial. To do this, start the editor by running the emacs command and then type Ctrl+H fol-
lowed by t for the tutorial. emacs also has its entire manual available. When in emacs, type Ctrl+H and
then i for information. Some versions of emacs may have menus that you can use to access the manual
and tutorial.

2. Let’s compile, link, and run our program.

$ gcc -o hello hello.c
$ ./hello
Hello World
$

How It Works
We invoked the GNU C compiler (on Linux this will most likely be available as cc too) that translated
our C source code into an executable file called hello. We ran the program and it printed a greeting.
This is just about the simplest example there is, but if you can get this far with your system, you should
be able to compile and run the remainder of the examples in the book. If this did not work for you, make
sure that the C compiler is installed on your system. For example, many Linux distributions have an
install option called Software Development that we should select.

Since this is the first program we’ve run, it’s a good time to point something out. The hello program
will probably be in your home directory. If PATH doesn’t include a reference to your home directory, the
shell won’t be able to find hello. Furthermore, if one of the directories in PATH contains another pro-
gram called hello, that program will be executed instead. This would also happen if such a directory is
mentioned in PATH before your home directory. To get around this potential problem, we can prefix pro-
gram names with ./ (e.g., ./hello). This specifically instructs the shell to execute the program in the
current directory with the given name.
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If you forget the -o name option that tells the compiler where to place the executable, the compiler will
place the program in a file called a.out (meaning assembler output). Just remember to look for an
a.out if you think you’ve compiled a program and you can’t find it! In the early days of UNIX, people
wanting to play games on the system often ran them as a.out to avoid being caught by system adminis-
trators, and some UNIX installations routinely delete all files called a.out every evening.

Development System Roadmap
For a Linux developer, it can be important to know a little about where tools and development resources
are located. The following sections provide a brief look at some important directories and files. 

Applications
Applications are usually kept in directories reserved for them. Applications supplied by the system for
general use, including program development, are found in /usr/bin. Applications added by system
administrators for a specific host computer or local network are often found in /usr/local/bin or /opt.

Administrators favor /usr/local, as it keeps vendor-supplied files and later additions separate from
the applications supplied by the system. Keeping /usr organized in this way may help when the time
comes to upgrade the operating system, since only /usr/local need be preserved. We recommend that
you compile your applications to run and access required files from the /usr/local hierarchy.

Additional features and programming systems may have their own directory structures and program
directories. Chief among these is the X Window System, which is commonly installed in the /usr/X11
directory. Alternative locations include /usr/X11R6 for Revision 6, also used by the XFree86 variant for
Intel processors distributed by the XFree consortium as well as many Linux distributions. Other UNIX-
like systems may choose different locations, such as /usr/openwin for Sun’s Open Windows provided
with Solaris.

The GNU compiler system’s driver program, gcc (which we used in our programming example earlier
in the chapter), is typically located in /usr/bin or /usr/local/bin, but it will run various compiler-
support applications from another location. This location is specified when you compile the compiler
itself and varies with the host computer type. For Linux systems, this location might be a version-specific
subdirectory of /usr/lib/gcc-lib/. On one of the author’s machines at the time of writing it is
/usr/lib/gcc-lib/i486-suse-linux/3.3/. The separate passes of the GNU C/C++ compiler, and
GNU-specific header files, are stored here.

Header Files
For programming in C and other languages, we need header files to provide definitions of constants
and declarations for system and library function calls. For C, these are almost always located in
/usr/include and subdirectories thereof. You can normally find header files that depend on the partic-
ular incarnation of Linux that you are running in /usr/include/sys and /usr/include/linux.

Other programming systems will also have include files that are stored in directories that get searched
automatically by the appropriate compiler. Examples include /usr/include/X11 for the X Window
System and /usr/include/g++ for GNU C++.
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We can use include files in subdirectories or nonstandard places by specifying the -I flag to the C com-
piler. For example,

$ gcc -I/usr/openwin/include fred.c

will direct the compiler to look in the directory /usr/openwin/include, as well as the standard places,
for header files included in the fred.c program. Refer to the manual page for the C compiler (man gcc)
for more details.

It’s often convenient to use the grep command to search header files for particular definitions and func-
tion prototypes. Suppose we need to know the name of the #defines used for returning the exit status
from a program. Simply change to the /usr/include directory and grep for a probable part of the
name like this:

$ grep EXIT_ *.h
...
stdlib.h:#define        EXIT_FAILURE    1       /* Failing exit status.  */
stdlib.h:#define        EXIT_SUCCESS    0       /* Successful exit status.  */
...
$

Here grep searches all the files in the directory with a name ending in .h for the string EXIT_. In this
example, it has found (among others) the definition we need in the file stdlib.h.

Library Files
Libraries are collections of precompiled functions that have been written to be reusable. Typically, they con-
sist of sets of related functions to perform a common task. Examples include libraries of screen-handling
functions (the curses and ncurses libraries) and database access routines (the dbm library). We’ll show
you some libraries in later chapters.

Standard system libraries are usually stored in /lib and /usr/lib. The C compiler (or more exactly,
the linker) needs to be told which libraries to search, as by default it searches only the standard C library.
This is a remnant of the days when computers were slow and CPU cycles were expensive. It’s not
enough to put a library in the standard directory and hope that the compiler will find it; libraries need
to follow a very specific naming convention and need to be mentioned on the command line.

A library filename always starts with lib. Then follows the part indicating what library this is (like c for
the C library, or m for the mathematical library). The last part of the name starts with a dot ., and speci-
fies the type of the library:

❑ .a for traditional, static libraries

❑ .so for shared libraries (see the following)

The libraries usually exist in both static and shared formats, as a quick ls /usr/lib will show. We can
instruct the compiler to search a library either by giving it the full path name or by using the -l flag.
For example,

$ gcc -o fred fred.c /usr/lib/libm.a
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tells the compiler to compile file fred.c, call the resulting program file fred, and search the mathemati-
cal library in addition to the standard C library to resolve references to functions. A similar result is
achieved with the following command:

$ gcc -o fred fred.c -lm

The -lm (no space between the l and the m) is shorthand (shorthand is much valued in UNIX circles) for
the library called libm.a in one of the standard library directories (in this case /usr/lib). An addi-
tional advantage of the -lm notation is that the compiler will automatically choose the shared library
when it exists.

Although libraries are usually found in standard places in the same way as header files, we can add to
the search directories by using the -L (uppercase letter) flag to the compiler. For example,

$ gcc -o x11fred -L/usr/openwin/lib x11fred.c -lX11 

will compile and link a program called x11fred using the version of the library libX11 found in the
/usr/openwin/lib directory.

Static Libraries
The simplest form of library is just a collection of object files kept together in a ready-to-use form. When a
program needs to use a function stored in the library, it includes a header file that declares the function.
The compiler and linker take care of combining the program code and the library into a single executable
program. We must use the –l option to indicate which libraries other than the standard C runtime library
are required.

Static libraries, also known as archives, conventionally have names that end with .a. Examples are
/usr/lib/libc.a and /usr/X11/lib/libX11.a for the standard C library and the X11 library,
respectively.

We can create and maintain our own static libraries very easily by using the ar (for archive) program
and compiling functions separately with gcc -c. We should try to keep functions in separate source
files as much as possible. If functions need access to common data, we can place them in the same source
file and use static variables declared in that file.

Try It Out—Static Libraries
Let’s create our own small library containing two functions and then use one of them in an example pro-
gram. The functions are called fred and bill and just print greetings. 

1. First, we’ll create separate source files (imaginatively called fred.c and bill.c) for each of
them. Here’s the first:

#include <stdio.h>

void fred(int arg)
{

printf(“fred: you passed %d\n”, arg);
}
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And here’s the second:

#include <stdio.h>

void bill(char *arg)
{

printf(“bill: you passed %s\n”, arg);
}

2. We can compile these functions individually to produce object files ready for inclusion into a
library. We do this by invoking the C compiler with the -c option, which prevents the compiler
from trying to create a complete program. Trying to create a complete program would fail
because we haven’t defined a function called main.

$ gcc -c bill.c fred.c
$ ls *.o
bill.o  fred.o

3. Now let’s write a program that calls the function bill. First, it’s a good idea to create a header
file for our library. This will declare the functions in our library and should be included by all
applications that wish to use our library. It’s a good idea to include the header file in the files
fred.c and bill.c too. This will help the compiler pick up any errors.

/*
This is lib.h. It declares the functions fred and bill for users

*/

void bill(char *);
void fred(int);

4. The calling program (program.c) can be very simple. It includes the library header file and
calls one of the functions from the library.

#include “lib.h”

int main()
{

bill(“Hello World”);
exit(0);

}

5. We can now compile the program and test it. For now, we’ll specify the object files explicitly to
the compiler, asking it to compile our file and link it with the previously compiled object mod-
ule bill.o.

$ cgcc -c program.c
$ cgcc -o program program.o bill.o
$ ./program
bill: we passed Hello World
$

6. Now let’s create and use a library. We use the ar program to create the archive and add our
object files to it. The program is called ar because it creates archives, or collections, of individual
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files placed together in one large file. Note that we can also use ar to create archives of files of
any type.  (Like many UNIX utilities, ar is a generic tool.)

$ ar crv libfoo.a bill.o fred.o
a - bill.o
a - fred.o

7. The library is created and the two object files added. To use the library successfully, some sys-
tems, notably those derived from Berkeley UNIX, require that a table of contents be created for
the library. We do this with the ranlib command. In Linux, this step isn’t necessary (but it is
harmless) when we’re using the GNU software development tools.

$ ranlib libfoo.a

Our library is now ready to use. We can add to the list of files to be used by the compiler to create our
program like this:

$ gcc -o program program.o libfoo.a
$ ./program
bill: you passed Hello World
$

We could also use the –l option to access our library, but as it is not in any of the standard places, we have
to tell the compiler where to find it by using the –L option like this:

$ gcc –o program program.o –L. –lfoo

The –L. option tells the compiler to look in the current directory (.) for libraries. The –lfoo option tells
the compiler to use a library called libfoo.a (or a shared library, libfoo.so, if one is present).

To see which functions are included in an object file, library, or executable program, we can use the nm
command. If we take a look at program and lib.a, we see that the library contains both fred and bill,
but that program contains only bill. When the program is created, it includes only functions from the
library that it actually needs. Including the header file, which contains declarations for all of the func-
tions in the library, doesn’t cause the entire library to be included in the final program.

If we’re familiar with Windows software development, there are a number of direct analogies here:

Item UNIX Windows

object module func.o FUNC.OBJ

static library lib.a LIB.LIB

program program PROGRAM.EXE

Shared Libraries
One disadvantage of static libraries is that when we run many applications at the same time and they all
use functions from the same library, we may end up with many copies of the same functions in memory
and indeed many copies in the program files themselves. This can consume a large amount of valuable
memory and disk space.
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Many UNIX systems and Linux support shared libraries can overcome this disadvantage. A complete
discussion of shared libraries and their implementation on different systems is beyond the scope of this
book, so we’ll restrict ourselves to the visible implementation under Linux.

Shared libraries are stored in the same places as static libraries, but shared libraries have a different 
filename suffix. On a typical Linux system, the shared version of the standard math library is
/usr/lib/libm.so. 

When a program uses a shared library, it is linked in such a way that it doesn’t contain function code
itself, but references to shared code that will be made available at run time. When the resulting program
is loaded into memory to be executed, the function references are resolved and calls are made to the
shared library, which will be loaded into memory if needed.

In this way, the system can arrange for a single copy of a shared library to be used by many applications
at once and stored just once on the disk. An additional benefit is that the shared library can be updated
independently of the applications that rely on it. Symbolic links from the /usr/lib/libm.so file to the
actual library revision (/usr/lib/libm.so.N where N represents a major version number—6 at the time
of writing) are used. When Linux starts an application, it can take into account the version of a library
required by the application to prevent major new versions of a library from breaking older applications.

For Linux systems, the program (the dynamic loader) that takes care of loading shared libraries and
resolving client program function references is called ld.so and may be made available as ld-
linux.so.2 or ld-lsb.so.1. The additional locations searched for shared libraries are configured in
the file /etc/ld.so.conf, which needs to be processed by ldconfig if changed (for example, if X11
shared libraries are added when the X Window System is installed).

We can see which shared libraries are required by a program by running the utility ldd. For example, if
we try running it on our example application, we get the following:

$ ldd program
libc.so.6 => /lib/libc.so.6 (0x4002a000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

In this case, we see that the standard C library (libc) is shared (.so). Our program requires major
Version 6. Other UNIX systems will make similar arrangements for access to shared libraries. Refer to
your system documentation for details.

In many ways, shared libraries are similar to dynamic-link libraries used under Windows. The .so
libraries correspond to .DLL files and are required at run time, while the .sa libraries are similar to .LIB
files included in the program executable.

Getting Help
The vast majority of Linux systems are reasonably well documented with respect to the system program-
ming interfaces and standard utilities. This is true because, since the earliest UNIX systems, programmers

The following example outputs are taken from a SuSE 8.2 distribution. Your output
may differ slightly if you are not using this distribution.
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have been encouraged to supply a manual page with their applications. These manual pages, which are
sometimes provided in a printed form, are invariably available electronically.

The man command provides access to the online manual pages. The pages vary considerably in quality
and detail. Some may simply refer the reader to other, more thorough documentation, while others give
a complete list of all options and commands that a utility supports. In either case, the manual page is a
good place to start.

The GNU software suite and some other free software use an online documentation system called info.
You can browse full documentation online using a special program, info, or via the info command of
the emacs editor. The benefit of the info system is that you can navigate the documentation using links
and cross-references to jump directly to relevant sections. For the documentation author, the info sys-
tem has the benefit that its files can be automatically generated from the same source as the printed,
typeset documentation.

Try It Out—Manual Pages and info
Let’s look for documentation of the GNU C compiler. 

1. First let’s look at the manual page.

$ man gcc

GCC(1)                         GNU                         GCC(1)

NAME
gcc - GNU project C and C++ compiler

SYNOPSIS
gcc [-c|-S|-E] [-std=standard]

[-g] [-pg] [-Olevel]
[-Wwarn...] [-pedantic]
[-Idir...] [-Ldir...]
[-Dmacro[=defn]...] [-Umacro]
[-foption...] [-mmachine-option...]
[-o outfile] infile...

Only the most useful options are listed here; see below
for the remainder.  g++ accepts mostly the same options as
gcc.

DESCRIPTION
When you invoke GCC, it normally does preprocessing, com_
pilation, assembly and linking.  The ``overall options’’
allow you to stop this process at an intermediate stage.
For example, the -c option says not to run the linker.
Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing.
Some options control the preprocessor and others the com_
piler itself. Yet other options control the assembler and
linker; most of these are not documented here, since you
rarely need to use any of them.

...
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If we wish, we can read about the options that the compiler supports. The manual page in this case is
quite long, but it forms only a small part of the total documentation for GNU C (and C++).

When reading manual pages, we can use the spacebar to read the next page, Enter (or Return if your
keyboard has that key instead) to read the next line, and q to quit altogether.

2. To get more information on GNU C, we can try info.

$ info gcc

File: gcc.info,  Node: Top,  Next: G++ and GCC,  Up: (DIR)
Introduction
************

This manual documents how to use the GNU compilers, as well as their
features and incompatibilities, and how to report bugs.  It corresponds
to GCC version 3.3.  The internals of the GNU compilers, including how
to port them to new targets and some information about how to write
front ends for new languages, are documented in a separate manual.
*Note Introduction: (gccint)Top.

* Menu:

* G++ and GCC::     You can compile C or C++ Applications.
* Standards::       Language standards supported by GCC.
* Invoking GCC::    Command options supported by `gcc’.
* C Implementation:: How GCC implements the ISO C specification.
* C Extensions::    GNU extensions to the C language family.
* C++ Extensions::  GNU extensions to the C++ language.
* Objective-C::     GNU Objective-C runtime features.
* Compatibility::   Binary Compatibility
—zz-Info: (gcc.info.gz)Top, 40 lines —Top— Subfile: gcc.info-1.gz—*** Tags o
Welcome to Info version 4.5. Type ? for help, m for menu item.

We’re presented with a long menu of options that we can select to move around a complete text version
of the documentation. Menu items and a hierarchy of pages allow us to navigate a very large document.
On paper, the GNU C documentation runs to many hundreds of pages.

The info system also contains its own help page in info form pages, of course. If we type Ctrl+H, we’ll
be presented with some help that includes a tutorial on using info. The info program is available with
many Linux distributions and can be installed on other UNIX systems.

Summary
In this introductory chapter, we’ve looked at Linux programming and the things Linux holds in com-
mon with proprietary UNIX systems. We’ve noted the wide variety of programming systems available
to us as UNIX developers. We’ve also presented a simple program and library to demonstrate the basic
C tools, comparing them with their Windows equivalents.
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2
Shell Programming

Having just started this book on programming Linux using C, we now take a detour into writing
shell programs. Why? Well, Linux isn’t like systems where the command-line interface is an
afterthought to the graphical interface. UNIX, Linux’s inspiration, originally had no graphical inter-
face at all; everything was done from the command line. Consequently, the command line system of
UNIX had a lot of development and became a very powerful feature. This has been carried into
Linux, and some of the most powerful things that you can do are most easily done from the shell.
Because the shell is so important to Linux, we thought we should cover shell programming early.

Throughout this chapter, we’ll be learning the syntax, structures, and commands available to you
when you’re programming the shell, usually making use of interactive (screen-based) examples.
These should serve as a useful synopsis of most of the shell’s features and their effects. We will
also sneak a look at a couple of particularly useful command line utilities often called from the
shell: grep and find. While looking at grep we will also cover the fundamentals of regular
expressions, which crop up in Linux utilities and also in programming languages such as Perl and
PHP. At the end of the chapter, we show you how to program a real-life script, which is repro-
grammed and extended in C throughout the book. In this chapter, we’ll cover

❑ What a shell is

❑ Basic considerations

❑ The subtleties of syntax: variables, conditions, and program control

❑ Lists

❑ Functions

❑ Commands and command execution

❑ Here documents

❑ Debugging

❑ grep and regular expressions

❑ find
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So, whether you’re faced with a nightmare of a shell script in your system administration, want to proto-
type your latest big (but beautifully simple) idea, or just want to speed up some repetitive task, this
chapter is for you.

Why Program with a Shell?
In UNIX, which is the parent operating system of Linux and the origin of many of the ideas and of the
philosophy of the operating system, a variety of different shell programs are available. The most common
on commercial versions of UNIX is probably the Korn shell, but there are many others. So why use a shell
to program? Well, the shell leads a double life. Although it has superficial similarities to the Windows
command prompt, it’s much more powerful, capable of running reasonably complex programs in its own
right. You can not only execute commands and call Linux utilities; you can also write them. The shell uses
an interpreted language, which generally makes debugging easier because you can execute single lines,
and there’s no recompile time. However, this can make the shell unsuitable for time-critical or processor-
intensive tasks.

One reason to use the shell for programming is that you can program the shell quickly and simply. Also,
a shell is always available even on the most basic Linux installation. So for simple prototyping you can
find out if your idea works. The shell is also ideal for any small utilities that perform some relatively
simple task where efficiency is less important than easy configuration, maintenance, and portability. You
can use the shell to organize process control, so that commands run in a predetermined sequence depen-
dent on the successful completion of each stage.

A Bit of Philosophy
Here we come to a bit of UNIX—and of course Linux—philosophy. UNIX is built on and depends on
a high level of code reuse. You build a small and simple utility and people use it as one link in a string
of others to form a command. One of the pleasures of Linux is the variety of excellent tools available.
A simple example is

$ ls -al | more

This command uses the ls and more utilities and pipes the output of the file listing to a screen-at-a-time
display. Each utility is one more building block. You can often use many small scripts together to create
large and complex suites of programs.

For example, if you want to print a reference copy of the bash manual pages, use

$ man bash | col -b | lpr

Furthermore, because of Linux’s automatic file type handling, the users of these utilities usually don’t
need to know what language the utilities are written in. If the utility needs to run faster, it’s quite com-
mon to prototype utilities in the shell and reimplement them later in C or C++, Perl, Python, or some
other language that executes more swiftly once an idea has proven its worth. Conversely, if the utility
works well enough in the shell, you can leave well enough alone.
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Whether you ever reimplement the script depends on whether it needs optimizing, whether it needs to
be portable, whether it should be easy to change, and whether (as usually happens) it outgrows its origi-
nal purpose.

There are already loads of examples of shell scripts on your Linux system in case you’re curious, includ-
ing package installers, .xinitrc and startx, and the scripts in /etc/rc.d to configure the
system on boot-up.

What Is a Shell?
Before jumping in and discussing how to program using a shell, let’s review the shell’s function and the
different shells available for Linux.

A shell is a program that acts as the interface between you and the Linux system, allowing you to enter
commands for the operating system to execute. In that respect, it resembles the Windows command
prompt, but as we mentioned earlier, Linux shells are much more powerful. For example, input and out-
put can be redirected using < and >, data piped between simultaneously executing programs using |,
and output from a subprocess grabbed by using $(...).  On Linux it’s quite feasible to have multiple
shells installed, with different users able to pick the one they prefer. In Figure 2-1 we show how the shell
(two shells actually, both bash and csh) and other programs sit around the Linux kernel.

Figure 2-1

Since Linux is so modular, you can slot in one of the many different shells in use, although most of them
are derived from the original Bourne shell. On Linux, the standard shell that is always installed as
/bin/sh is called bash (the GNU Bourne-Again SHell), from the GNU suite of tools. Because this is an
excellent shell that is always installed on Linux systems, is open source, and is portable to almost all
UNIX variants, bash is the shell we will be using. In this chapter, we’ll use bash version 2 and mostly use
the features common to all POSIX-compatible shells. We’ll also assume that the shell has been installed
as /bin/sh and that it is the default shell for your login. On most Linux distributions, the program
/bin/sh, the default shell, is actually a link to the program /bin/bash.

The
X Window
System

Other
programs

bash

csh

Kernel
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You can check the version of bash you have with the following command:

$ /bin/sh —version
GNU bash, version 2.05b.0(1)-release (i686-pc-linux-gnu)
Copyright (C) 2002 Free Software Foundation, Inc.

When you create a Linux user, you can set the shell that she will use. Figure 2-2 shows the default selec-
tion available in Red Hat’s user manager.

Figure 2-2

To change to a different shell—if bash isn’t the default on your system, for exam-
ple—just execute the desired shell’s program (e.g., /bin/bash) to run the new shell
and change the command prompt. If bash isn’t installed on your UNIX system, you
can download it free from the GNU Web site at http://www.gnu.org. The sources
are highly portable, and chances are good that it will compile on your version of
UNIX straight out of the box.
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Many other shells are available, either free or commercially. Following is a brief summary of some of the
more common shells available:

Shell Name A Bit of History

sh (Bourne) The original shell from early versions of UNIX.

csh, tcsh, zsh The C shell, and its derivatives, originally created by Bill Joy of Berkeley
UNIX fame. The C shell is probably the third most popular type of shell
after bash and the Korn shell.

ksh, pdksh The Korn shell and its public domain cousin. Written by David Korn, this is
the default shell on many commercial UNIX versions.

bash The Linux staple shell from the GNU project. bash, or Bourne Again SHell,
has the advantage that the source code is freely available, and even if it’s
not currently running on your UNIX system, it has probably been ported to
it. bash has many similarities to the Korn shell.

Except for the C shell and a small number of derivatives, all of these are very similar and are closely
aligned with the shell specified in the X/Open 4.2 and POSIX 1003.2 specifications. POSIX 1003.2 lays
down the minimum specification for a shell, but the extended specification in X/Open provides a more
friendly and powerful shell. X/Open is usually the more demanding specification, but it also yields a
friendlier system. 

Pipes and Redirection
Before we get down to the details of shell programs, we need to say a little about how inputs and out-
puts of Linux programs (not just shell programs) can be redirected. 

Redirecting Output
You may already be familiar with some redirection, such as

$ ls -l > lsoutput.txt

which saves the output of the ls command into a file called lsoutput.txt.

However, there is much more to redirection than this simple example reveals. We’ll learn more about the
standard file descriptors in Chapter 3, but for now all we need to know is that file descriptor 0 is the
standard input to a program, file descriptor 1 is the standard output, and file descriptor 2 is the standard
error output. You can redirect each of these independently. In fact, you can also redirect other file
descriptors, but it’s unusual to want to redirect any other than the standard ones: 0, 1, and 2.

In the preceding example, we redirect the standard output into a file by using the > operator. By default,
if the file already exists, it will be overwritten. If you want to change the default behavior, you can use
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the command set -C, which sets the noclobber option to prevent a file from being overwritten using redi-
rection. We’ll show you more options for the set command later in the chapter.

To append to the file, we use the >> operator. For example, 

$ ps >> lsoutput.txt

will append the output of the ps command to the end of the specified file.

To redirect the standard error output, we preface the > operator with the number of the file descriptor
we wish to redirect. Since the standard error is on file descriptor 2, we use the 2> operator. This is often
useful to discard error information and prevent it from appearing on the screen.

Suppose we want to use the kill command to kill a process from a script. There is always a slight risk
that the process will die before the kill command is executed. If this happens, kill will write an error
message to the standard error output, which, by default, will appear on the screen. By redirecting both
the standard output and the error, you can prevent the kill command from writing any text to the screen.

The following command,

$ kill -HUP 1234 >killout.txt 2>killerr.txt

will put the output and error information into separate files.

If you prefer to capture both sets of output into a single file, you can use the >& operator to combine the
two outputs. So

$ kill -1 1234 >killouterr.txt 2>&1

will put both the output and error outputs into the same file. Notice the order of the operators. This
reads as “redirect standard output to the file killouterr.txt, then direct standard error to the same
place as the standard output.” If you get the order wrong, the redirect won’t work as you expect.

Since you can discover the result of the kill command using the return code (which we discuss in more
detail later in this chapter), we don’t often want to save either standard output or standard error. We can
use the UNIX universal “bit bucket” of /dev/null to efficiently discard the entire output, like this:

$ kill -1 1234 >/dev/null 2>&1

Redirecting Input
Rather like redirecting output, we can also redirect input. For example,

$ more < killout.txt

Obviously, this is a rather trivial example under Linux; the Linux more command is quite happy to
accept filenames as parameters, unlike the Windows command-line equivalent.
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Pipes
We can connect processes using the pipe | operator. In Linux, unlike in MS-DOS, processes connected by
pipes can run simultaneously and are automatically rescheduled as data flows between them. As a sim-
ple example, we could use the sort command to sort the output from ps.

If we don’t use pipes, we must use several steps, like this:

$ ps > psout.txt
$ sort psout.txt > pssort.out

A much more elegant solution is to connect the processes with a pipe, like this:

$ ps | sort > pssort.out

Since we probably want to see the output paginated on the screen, we could connect a third process,
more, all on the same command line:

$ ps | sort | more

There’s practically no limit to the permissible number of connected processes. Suppose we want to see
all the different process names that are running excluding shells. We could use

$ ps –xo comm | sort | uniq | grep -v sh | more

This takes the output of ps, sorts it into alphabetical order, extracts processes using uniq, uses grep -v
sh to remove the process named sh, and finally displays it paginated on the screen.

As you can see, this is a much more elegant solution than a string of separate commands, each with its
own temporary file. There is, however, one thing to be wary of here: If you have a string of commands,
the output file is created or written to immediately as the set of commands is created, so never use the
same filename twice in a string of commands. If you try to do something like the following:

cat mydata.txt | sort | uniq | > mydata.txt

you will end up with an empty file, because you will overwrite the mydata.txt file before you read it.

The Shell as a Programming Language
Now that we’ve seen some basic shell operations, it’s time to move on to scripts. There are two ways of
writing shell programs. You can type a sequence of commands and allow the shell to execute them inter-
actively, or you can store those commands in a file that you can then invoke as a program.

Interactive Programs
Just typing the shell script on the command line is a quick and easy way of trying out small code frag-
ments and is very useful while you are learning or just testing things out.
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Suppose we have a large number of C files and we wish to examine the files that contain the string
POSIX. Rather than search using the grep command for the string in the files and then list the files indi-
vidually, we could perform the whole operation in an interactive script like this:

$ for file in *
> do
> if grep -l POSIX $file
> then
> more $file
> fi
> done
posix
This is a file with POSIX in it - treat it well
$

Note how the normal $ shell prompt changes to a > when you type shell commands. You can type away,
letting the shell decide when you’re finished, and the script will execute immediately.

In this example, the grep command prints the files it finds containing POSIX and then more prints the
contents of the file to the screen. Finally, the shell prompt returns. Note also that we’ve called the shell
variable that deals with each of the files to self-document the script. We could equally well have used i,
but file is more meaningful for humans to read.

The shell also performs wildcard expansion (often referred to as “globbing”). You are almost certainly
aware of the use of * as a wildcard to match a string of characters. What you may not know is that you
can request single-character wildcards using ?, while [set] allows any of a number of single characters to
be checked. [^set] negates the set—that is, it includes anything but the set you’ve specified. Brace expan-
sion using {} (available on some shells, including bash) allows you to group arbitrary strings together in
a set that the shell will expand. For example,

$ ls my_{finger,toe}s

will list the files my_fingers and my_toes. We’ve used the shell to check every file in the current direc-
tory. We will come back to these rules for matching patterns near the end of the chapter when we look in
more detail at grep and the power of regular expressions.

Experienced UNIX users would probably perform this simple operation in a much more efficient way,
perhaps with a command such as

$ more `grep -l POSIX *`

or the synonymous construction

$ more $(grep -l POSIX *)

Also,

$ grep -l POSIX * | more

will output the name of the file whose contents contained the string POSIX. In this script, we see the
shell making use of other commands, such as grep and more, to do the hard work. The shell is simply
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allowing us to glue several existing commands together in new and powerful ways. We will see wild-
card expansion used many times in the following scripts and will look at the whole area of expansion in
more detail when we look at regular expressions in the section on the grep command.

Going through this long rigmarole every time we want to execute a sequence of commands is a bore. We
need to store the commands in a file, conventionally referred to as a shell script, so we can execute them
whenever we like.

Creating a Script
First, using any text editor you need to create a file containing the commands, create a file called first
that looks like this:

#!/bin/sh

# first
# This file looks through all the files in the current
# directory for the string POSIX, and then prints the names of
# those files to the standard output.

for file in *
do

if grep -q POSIX $file 
then

echo $file 
fi

done

exit 0

Comments start with a # and continue to the end of a line. Conventionally, though, # is usually kept in
the first column. Having made such a sweeping statement, we next note that the first line, #!/bin/sh, is
a special form of comment; the #! characters tell the system that the argument that follows on the line is
the program to be used to execute this file. In this case, /bin/sh is the default shell program.

Note the absolute path specified in the comment. It may be wise to keep this shorter than 32 characters,
for backwards compatibility, because some older UNIX versions can only use this limited number of
characters when using #!, although Linux generally does not have this limitation. 

Since the script is essentially treated as standard input to the shell (something prepared earlier), it can
contain any Linux commands referenced by your PATH environment variable.

The exit command ensures that the script returns a sensible exit code (more on this later in the chapter).
This is rarely checked when programs are run interactively, but if you want to invoke this script from
another script and check whether it succeeded, returning an appropriate exit code is very important.
Even if you never intend to allow your script to be invoked from another, you should still exit with a
reasonable code. Go on and have faith in the usefulness of your script: Assume it may need to be reused
as part of another script one day.

A zero denotes success in shell programming. Since the script as it stands can’t detect any failures, we
always return success. We’ll come back to the reasons for using a zero exit code for success later in the
chapter, when we look at the exit command in more detail.
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Notice that we have not used any filename extension, or suffix, on this example; Linux, and UNIX in
general, rarely makes use of the filename extension to determine the type of a file. We could have used
.sh or added a different extension if we wished, but the shell doesn’t care. Most preinstalled scripts will
not have any filename extension, and the best way to check if they are scripts or not is to use the file
command, for example, file first or file /bin/bash. Use whatever convention is applicable where
you work, or suits you.

Making a Script Executable
Now that we have our script file, we can run it in two ways. The simpler way is to invoke the shell with
the name of the script file as a parameter, thus:

$ /bin/sh first

This should work, but it would be much better if we could simply invoke the script by typing its name,
giving it the respectability of other Linux commands.

We do this by changing the file mode to make the file executable for all users using the chmod command:

$ chmod +x first

We can then execute it using the command

$ first

You may get an error saying the command wasn’t found. This is almost certainly because the shell envi-
ronment variable PATH isn’t set to look in the current directory for commands to execute. To change this,
either type PATH=$PATH:. on the command line or edit your .bash_profile file to add this command
to the end of the file; then log out and log back in again. Alternatively, type ./first in the directory con-
taining the script, to give the shell the full relative path to the file.

Specifying the path prepended with ./ does have one other advantage: It ensures that you don’t acci-
dentally execute another command on the system with the same name as your script file.

You shouldn’t change the PATH variable like this for the superuser. It’s a security
loophole, because the system administrator logged in as root can be tricked into
invoking a fake version of a standard command. One of the authors admits to doing
this once, just to prove a point to the system administrator about security, of course!
It’s a slight risk on ordinary accounts to include the current directory in the path, so
if you are particularly concerned, just get into the habit of prepending ./ to all com-
mands that are in the local directory.

Of course, this isn’t the only way to use chmod to make a file executable. Use man
chmod to find out more about octal arguments and other options.
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Once you’re confident that your script is executing properly, you can move it to a more appropriate loca-
tion than the current directory. If the command is just for yourself, you could create a bin directory in
your home directory and add that to your path. If you want the script to be executable by others, you
could use /usr/local/bin or another system directory as a convenient location for adding new pro-
grams. If you don’t have root permissions on your system, you could ask the system administrator to
copy your file for you, although you may have to convince them of its worth first. To prevent other users
from changing the script, perhaps accidentally, you should remove write access from it. The sequence of
commands for the administrator to set ownership and permissions would be something like this:

# cp first /usr/local/bin
# chown root /usr/local/bin/first
# chgrp root /usr/local/bin/first
# chmod 755 /usr/local/bin/first

Notice that, rather than altering a specific part of the permission flags, we use the absolute form of the
chmod here because we know exactly what permissions we require.

If you prefer, you can use the rather longer, but perhaps more obvious, form of the chmod command,
which would be

# chmod u=rwx,go=rx /usr/local/bin/first

Check the manual page of chmod for more details.

Shell Syntax
Now that we’ve seen an example of a simple shell program, it’s time to look in greater depth at the pro-
gramming power of the shell. The shell is quite an easy programming language to learn, not least because
it’s easy to test small program fragments interactively before combining them into bigger scripts. We can
use the bash shell to write quite large, structured programs. In the next few sections, we’ll cover

❑ Variables: strings, numbers, environments, and parameters 

❑ Conditions: shell Booleans

❑ Program control: if, elif, for, while, until, case

❑ Lists

❑ Functions

❑ Commands built into the shell

❑ Getting the result of a command

❑ Here documents

In Linux you can delete a file if you have write permission on the directory that con-
tains it. To be safe, you should ensure that only the superuser can write to directories
containing files that you want to keep safe. This makes sense because a directory is
just another file, and having write permission to a directory file allows users to add
and remove names.
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Variables
We don’t usually declare variables in the shell before using them. Instead, we create them by simply using
them (for example, when we assign an initial value to them). By default, all variables are considered and
stored as strings, even when they are assigned numeric values. The shell and some utilities will convert
numeric strings to their values in order to operate on them as required. Linux is a case-sensitive system,
so the shell considers the variable foo to be different from Foo and both to be different from FOO.

Within the shell we can access the contents of a variable by preceding its name with a $. Whenever we
extract the contents of a variable, we must give the variable a preceding $. When we assign a value to a
variable, we just use the name of the variable, which is created dynamically if necessary. An easy way of
checking the contents of a variable is to echo it to the terminal, preceding its name with a $.

On the command line, we can see this in action when we set and check various values of the variable
salutation:

$ salutation=Hello
$ echo $salutation
Hello
$ salutation=”Yes Dear”
$ echo $salutation
Yes Dear
$ salutation=7+5
$ echo $salutation
7+5

We can assign user input to a variable by using the read command. This takes one parameter, the name
of the variable to be read into, and then waits for the user to enter some text. The read normally com-
pletes when the user presses Enter. When reading a variable from the terminal, we don’t usually need
the quote marks:

$ read salutation
Wie geht’s?
$ echo $salutation
Wie geht’s?

Quoting
Before we move on, we need to be clear about one feature of the shell: the use of quotes.

Normally, parameters in scripts are separated by whitespace characters (e.g., a space, a tab, or a newline
character). If you want a parameter to contain one or more whitespace characters, you must quote the
parameter.

Note how a string must be delimited by quote marks if it contains spaces. Also note
that there must be no spaces on either side of the equals sign.

28

Chapter 2

b544977 Ch02.qxd  12/1/03  8:55 AM  Page 28



The behavior of variables such as $foo inside quotes depends on the type of quotes you use. If you
enclose a $ variable expression in double quotes, it’s replaced with its value when the line is executed.
If you enclose it in single quotes, no substitution takes place. You can also remove the special meaning
of the $ symbol by prefacing it with a \.

Usually, strings are enclosed in double quotes, which protects variables from being separated by white
space, but allows $ expansion to take place.

Try It Out—Variables
This example shows the effect of quotes on the output of a variable:

#!/bin/sh

myvar=”Hi there”

echo $myvar
echo “$myvar”
echo ‘$myvar’
echo \$myvar

echo Enter some text
read myvar

echo ‘$myvar’ now equals $myvar
exit 0

This gives the output:

Hi there
Hi there
$myvar
$myvar
Enter some text
Hello World
$myvar now equals Hello World

How It Works
The variable myvar is created and assigned the string Hi there. The contents of the variable are dis-
played with the echo command, showing how prefacing the variable with a $ character expands the
contents of the variable. We see that using double quotes doesn’t affect the substitution of the variable,
while single quotes and the backslash do. We also use the read command to get a string from the user.

Environment Variables
When a shell script starts, some variables are initialized from values in the environment. These are nor-
mally capitalized to distinguish them from user-defined (shell) variables in scripts, which are conven-
tionally lowercase. The variables created will depend on your personal configuration. Many are listed in
the manual pages, but the principal ones are listed in the following table.
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Environment Variable Description

$HOME The home directory of the current user.

$PATH A colon-separated list of directories to search for commands.

$PS1 A command prompt, frequently $, but in bash you can use some
more complex values; for example, the string [\u@\h \W]$ is a
popular default that tells you the user, machine name, and current
directory, as well as giving a $ prompt.

$PS2 A secondary prompt, used when prompting for additional input;
usually >. 

$IFS An input field separator; a list of characters that are used to sepa-
rate words when the shell is reading input, usually space, tab, and
newline characters.

$0 The name of the shell script.

$# The number of parameters passed.

$$ The process ID of the shell script, often used inside a script for
generating unique temporary filenames; for example /tmp/tmp-
file_$$.

Parameter Variables
If your script is invoked with parameters, some additional variables are created. Even if no parameters
are passed, the preceding environment variable $# still exists but has a value of 0.

The parameter variables are listed in the following table.

Parameter Variable Description

$1, $2, ... The parameters given to the script.

$* A list of all the parameters, in a single variable, separated by the first
character in the environment variable IFS.

$@ A subtle variation on $*; it doesn’t use the IFS environment variable,
so parameters may be run together if IFS is empty.

If you want to check out how the program works in a different environment by run-
ning the env <command>, try looking at the env manual pages. Also, we’ll show
you later in the chapter how to set environment variables in subshells using the
export command.
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It’s easy to see the difference between $@ and $* by trying them out:

$ IFS=’’
$ set foo bar bam
$ echo “$@”
foo bar bam 
$ echo “$*”
foobarbam 
$ unset IFS
$ echo “$*”
foo bar bam

As you can see, within double quotes, $@ expands the positional parameters as separate fields, regard-
less of the IFS value. In general, if you want access to the parameters, $@ is the sensible choice.

In addition to printing the contents of variables using the echo command, we can also read them by
using the read command.

Try It Out—Parameter and Environment Variables
The following script demonstrates some simple variable manipulation. Once you’ve typed the script and
saved it as try_var, don’t forget to make it executable with chmod +x try_var.

#!/bin/sh

salutation=”Hello”
echo $salutation
echo “The program $0 is now running”
echo “The second parameter was $2”
echo “The first parameter was $1”
echo “The parameter list was $*”
echo “The user’s home directory is $HOME”

echo “Please enter a new greeting”
read salutation

echo $salutation
echo “The script is now complete”
exit 0

If we run this script, we get the following output:

$ ./try_var foo bar baz
Hello
The program ./try_var is now running
The second parameter was bar
The first parameter was foo
The parameter list was foo bar baz
The user’s home directory is /home/rick
Please enter a new greeting
Sire
Sire
The script is now complete
$
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How It Works
This script creates the variable salutation, displays its contents, and then shows how various parame-
ter variables and the environment variable $HOME already exist and have appropriate values.

We’ll return to parameter substitution in more detail later in the chapter.

Conditions
Fundamental to all programming languages is the ability to test conditions and perform different actions
based on those decisions. Before we talk about that, though, we’ll look at the conditional constructs that
we can use in shell scripts and then look at the control structures that use them.

A shell script can test the exit code of any command that can be invoked from the command line, includ-
ing the scripts that you have written yourself. That’s why it’s important to always include an exit com-
mand at the end of any scripts that you write.

The test, or [, Command
In practice, most scripts make extensive use of the [or test command, the shell’s Boolean check. On most
systems, the [ and test commands are synonymous, except that when the [ command is used, a trailing
] is also used just for readability. Having a [ command might seem a little odd, but within the code it
does make the syntax of commands look simple, neat, and more like other programming languages.

# ls -l /usr/bin/[
lrwxrwxrwx    1 root     root            4 Oct 13 10:46 /usr/bin/[ -> test

We’ll introduce the test command using one of the simplest conditions: checking to see if a file exists.
The command for this is test -f <filename>, so within a script we can write

if test -f fred.c
then
...

fi

These commands call an external program in some older UNIX shells, but they tend
to be built in to more modern ones. We’ll come back to this when we look at com-
mands in a later section.

Since the test command is infrequently used outside shell scripts, many Linux users
who have never written shell scripts try to write simple programs and call them test.
If such a program doesn’t work, it’s probably conflicting with the shell’s test com-
mand. To find out whether your system has an external command of a given name,
try something like which test, to check which test command is getting executed,
or use ./test to ensure you execute the script in the current directory.
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We can also write it like this:

if [ -f fred.c ]
then
...

fi

The test command’s exit code (whether the condition is satisfied) determines whether the conditional
code is run.

Note that you must put spaces between the [ braces and the condition being checked. You can remember
this by remembering that [ is just the same as writing test, and you would always leave a space after the
test command.

If you prefer putting then on the same line as if, you must add a semicolon to separate the test from the
then:

if [ -f fred.c ]; then
...

fi

The condition types that you can use with the test command fall into three types: string comparison,
arithmetic comparison, and file conditionals. The following three tables describe these condition types.

String Comparison Result

string1 = string2 True if the strings are equal.

string1 != string2 True if the strings are not equal.

-n string True if the string is not null.

-z string True if the string is null (an empty string).

Arithmetic Comparison Result

expression1 -eq expression2 True if the expressions are equal.

expression1 -ne expression2 True if the expressions are not equal.

expression1 -gt expression2 True if expression1 is greater than expression2.

expression1 -ge expression2 True if expression1 is greater than or equal to
expression2.

expression1 -lt expression2 True if expression1 is less than expression2.

expression1 -le expression2 True if expression1 is less than or equal to
expression2.

! expression True if the expression is false, and vice versa.
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File Conditional Result

-d file True if the file is a directory.

-e file True if the file exists. Note that, historically, the -e option has not
been portable, so -f is usually used.

-f file True if the file is a regular file.

-g file True if set-group-id is set on file.

-r file True if the file is readable.

-s file True if the file has nonzero size.

-u file True if set-user-id is set on file.

-w file True if the file is writable.

-x file True if the file is executable.

We’re getting ahead of ourselves slightly, but following is an example of how we would test the state of
the file /bin/bash, just so you can see what these look like in use:

#!/bin/sh

if [ -f /bin/bash ]
then

echo “file /bin/bash exists”
fi

if [ -d /bin/bash ]
then

echo “/bin/bash is a directory”
else

echo “/bin/bash is NOT a directory”
fi

Before the test can be true, all the file conditional tests require that the file also exists. This list contains
just the more commonly used options to the test command, so for a complete list refer to the manual
entry. If you’re using bash, where test is built in, use the help test command to get more details.
We’ll use some of these options later in the chapter.

Now that we know about conditions, we can look at the control structures that use them.

You may be wondering what the set-group-id and set-user-id (also known as set-gid
and set-uid) bits are. The set-uid bit gives a program the permissions of its owner,
rather than its user, while the set-gid bit gives a program the permissions of its
group. The bits are set with chmod, using the s and g options. Remember that set-gid
and set-uid flags have no effect when set on shell scripts.
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Control Structures
The shell has a set of control structures, and once again they’re very similar to other programming 
languages.

if
The if statement is very simple: It tests the result of a command and then conditionally executes a
group of statements:

if condition
then

statements
else

statements
fi

Try It Out—Using the if Command
A common use for if is to ask a question and then make a decision based on the answer:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [ $timeofday = “yes” ]; then
echo “Good morning”

else
echo “Good afternoon”

fi

exit 0

This would give the following output:

Is it morning? Please answer yes or no
yes
Good morning
$

This script uses the [ command to test the contents of the variable timeofday. The result is evaluated by
the if command, which then allows different lines of code to be executed.

Notice that we use extra white space to indent the statements inside the if. This is
just a convenience for the human reader; the shell ignores the additional white space.

In the following sections, the statements are the series of commands to perform
when, while, or until the condition is fulfilled.

35

Shell Programming

b544977 Ch02.qxd  12/1/03  8:55 AM  Page 35



elif
Unfortunately, there are several problems with this very simple script. It will take any answer except yes
as meaning no. We can prevent this by using the elif construct, which allows us to add a second condi-
tion to be checked when the else portion of the if is executed.

Try It Out—Doing Further Checks with an elif
We can modify our previous script so that we report an error message if the user types in anything other
than yes or no. We do this by replacing the else with elif and then adding another condition.

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [ $timeofday = “yes” ]
then

echo “Good morning”

elif [ $timeofday = “no” ]; then
echo “Good afternoon”

else
echo “Sorry, $timeofday not recognized. Enter yes or no”
exit 1

fi

exit 0

How It Works
This is quite similar to the previous example, but now the elif command tests the variable again if the
first if condition is not true. If neither of the tests is successful, an error message is printed and the
script exits with the value 1, which the caller can use in a calling program to check if the script was suc-
cessful.

A Problem with Variables
This fixes the most obvious defect, but a more subtle problem is lurking. Let’s try this new script, but
just press Enter (or Return on some keyboards) rather than answering the question. We’ll get this error
message:

[: =: unary operator expected

What went wrong? The problem is in the first if clause. When the variable timeofday was tested, it
consisted of a blank string. So the if clause looks like

if [ = “yes” ]

which isn’t a valid condition. To avoid this, we must use quotes around the variable:

if [ “$timeofday” = “yes” ]
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An empty variable then gives us the valid test:

if [ “” = “yes” ]

Our new script is 

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [ “$timeofday” = “yes” ]
then

echo “Good morning”
elif [ “$timeofday” = “no” ]; then

echo “Good afternoon”
else

echo “Sorry, $timeofday not recognized. Enter yes or no”
exit 1

fi

exit 0

which is safe against a user just pressing Enter in answer to the question.

for
We use the for construct to loop through a range of values, which can be any set of strings. They could
be simply listed in the program or, more commonly, the result of a shell expansion of filenames.

The syntax is simply

for variable in values
do

statements
done

If you want the echo command to delete the trailing new line, the most portable
choice is to use the printf command (see the “printf” section later in this chapter)
rather than the echo command. Some shells use echo –e, but that’s not supported
on all systems. bash allows echo -n to suppress the new line, so if you are confi-
dent your script needs to work only on bash, you can use that syntax.

echo -n “Is it morning? Please answer yes or no: “

Note that we need to leave an extra space before the closing quotes so that there is a
gap before the user-typed response, which looks neater.
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Try It Out—for Loop with Fixed Strings
The values are normally strings, so we can write

#!/bin/sh

for foo in bar fud 43
do

echo $foo
done
exit 0

We get the following output:

bar
fud
43

How It Works
This example creates the variable foo and assigns it a different value each time around the for loop.
Since the shell considers all variables to contain strings by default, it’s just as valid to use the string 43 as
the string fud.

Try It Out—for Loop with Wildcard Expansion
As we said earlier, it’s common to use the for loop with a shell expansion for filenames. By this we
mean using a wildcard for the string value and letting the shell fill out all the values at run time.

We’ve already seen this in our original example, first. The script used shell expansion, the * expanding
to the names of all the files in the current directory. Each of these in turn is used as the variable $i inside
the for loop. 

Let’s quickly look at another wildcard expansion. Imagine that you want to print all the script files start-
ing with the letter f in the current directory, and you know that all your scripts end in .sh. You could do
it like this:

#!/bin/sh

for file in $(ls f*.sh); do
lpr $file

done
exit 0

What would happen if you changed the first line from for foo in bar fud 43
to for foo in “bar fud 43”? Remember that adding the quotes tells the shell
to consider everything between them as a single string. This is one way of getting
spaces to be stored in a variable.
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How It Works
This illustrates the use of the $(command) syntax, which we’ll review in more detail later (in the section
on command execution). Basically, the parameter list for the for command is provided by the output of
the command enclosed in the $() sequence. 

The shell expands f*.sh to give the names of all the files matching this pattern.

while
Since all shell values are considered strings by default, the for loop is good for looping through a series
of strings, but is a little awkward to use for executing commands a fixed number of times.

Look how tedious a script becomes if we want to loop through twenty values using a for loop:

#!/bin/sh

for foo in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
do

echo “here we go again”
done
exit 0

Even with wildcard expansion, you might be in a situation where you just don’t know how many times
you’ll need to loop. In that case, we can use a while loop, which has the following syntax:

while condition do
statements

done

For example, here is a rather poor password-checking program:

#!/bin/sh

echo “Enter password”
read trythis

while [ “$trythis” != “secret” ]; do
echo “Sorry, try again”
read trythis

done
exit 0

Remember that all expansion of variables in shell scripts is done when the script is
executed, never when it’s written. So syntax errors in variable declarations are found
only at execution time, as we saw earlier when we were quoting empty variables.
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An example of the output from this script is:

Enter password
password
Sorry, try again
secret
$ 

Clearly, this isn’t a very secure way of asking for a password, but it does serve to illustrate the while
statement. The statements between do and done will be continuously executed until the condition is no
longer true. In this case, we’re checking that the value of trythis isn’t equal to secret. The loop will
continue until $trythis equals secret. We then continue executing the script at the statement immedi-
ately following the done.

Try It Out—Here We Go Again, Again
By combining the while construct with arithmetic substitution, we can execute a command a fixed num-
ber of times. This is less cumbersome than the for loop we saw earlier.

#!/bin/sh

foo=1

while [ “$foo” -le 20 ]
do

echo “Here we go again”
foo=$(($foo+1))

done

exit 0

How It Works
This script uses the [ command to test the value of foo against the value 20 and executes the loop body
if it’s smaller or equal. Inside the while loop, the syntax (($foo+1)) is used to perform arithmetic eval-
uation of the expression inside the braces, so foo is incremented each time around the loop.

Since foo can never be the empty string, we don’t need to protect it with double quotes when testing its
value. We do this only because it’s a good habit to get into.

Note that the $(( )) construct was a ksh invention that has since been included in
the X/Open specification. Older shells will use expr instead, which we’ll come
across later in the chapter. However, this is slower and more resource-intensive; you
should use the $(( )) form of the command where available. bash supports the
$(( )) form, so we will generally use that.
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until
The until statement has the following syntax: 

until condition
do

statements
done

This is very similar to the while loop, but with the condition test reversed. In other words, the loop con-
tinues until the condition becomes true, not while the condition is true.

The until statement fits naturally when we want to keep looping until something happens. As an
example, we can set up an alarm that works when another user, whose login name we pass on the 
command line, logs on:

#!/bin/sh

until who | grep “$1” > /dev/null
do

sleep 60
done

# now ring the bell and announce the expected user.

echo -e \\a  
echo “**** $1 has just logged in ****”

exit 0

case
The case construct is a little more complex than those we have encountered so far. Its syntax is

case variable in
pattern [ | pattern] ...) statements;;
pattern [ | pattern] ...) statements;;
...

esac

This may look a little intimidating, but the case construct allows us to match the contents of a variable
against patterns in quite a sophisticated way and then allows execution of different statements, depend-
ing on which pattern was matched. 

Notice that each pattern line is terminated with double semicolons (;;). You can put multiple statements
between each pattern and the next, so a double semicolon is needed to mark where one statement ends
and the next pattern begins.

The ability to match multiple patterns and then execute multiple related statements makes the case con-
struct a good way of dealing with user input. The best way to see how case works is with an example.
We’ll develop it over three Try It Out examples, improving the pattern matching each time.
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Try It Out—Case I: User Input
We can write a new version of our input-testing script and, using the case construct, make it a little
more selective and forgiving of unexpected input.

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “$timeofday” in
yes)  echo “Good Morning”;;
no )  echo “Good Afternoon”;;
y  )  echo “Good Morning”;;
n  )  echo “Good Afternoon”;;
*  )  echo “Sorry, answer not recognized”;;

esac

exit 0

How It Works
When the case statement is executing, it takes the contents of timeofday and compares it to each string
in turn. As soon as a string matches the input, the case command executes the code following the ) and
finishes.

The case command performs normal expansion on the strings that it’s using for comparison. You can
therefore specify part of a string followed by the * wildcard. Using a single * will match all possible
strings, so we always put one after the other matching strings to make sure the case statement ends
with some default action if no other strings are matched. This is possible because the case statement
compares against each string in turn. It doesn’t look for a best match, just the first match. The default
condition often turns out to be the impossible condition, so using * can help in debugging scripts.

Try It Out—Case II: Putting Patterns Together
The preceding case construction is clearly more elegant than the multiple if statement version, but by
putting the patterns together, we can make a much cleaner version:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

Be careful with the case construct if you are using wild cards such as ‘*’ in the pattern.
The problem is that the first matching pattern will be taken, even if a later pattern
matches more exactly.
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case “$timeofday” in
yes | y | Yes | YES )      echo “Good Morning”;;
n* | N* )                  echo “Good Afternoon”;;
* )                        echo “Sorry, answer not recognized”;;

esac

exit 0

How It Works
In this script, we used multiple strings in each entry of the case so that case tests several different
strings for each possible statement. This makes the script both shorter and, with practice, easier to read.
We also show how the * wildcard can be used, although this may match unintended patterns. For exam-
ple, if the user enters never, this will be matched by n* and Good Afternoon will be displayed, which
isn’t the intended behavior. Note also that the * wildcard expression doesn’t work within quotes.

Try It Out—Case IIl: Executing Multiple Statements
Finally, to make the script reusable, we need to have a different exit value when the default pattern is
used. We also add a set construct to show this in action:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “$timeofday” in
yes | y | Yes | YES )

echo “Good Morning”
echo “Up bright and early this morning”
;;

[nN]*)
echo “Good Afternoon”
;;

*)
echo “Sorry, answer not recognized”
echo “Please answer yes or no”
exit 1
;;

esac

exit 0

How It Works
To show a different way of pattern matching, we change the way in which the no case is matched. We
also show how multiple statements can be executed for each pattern in the case statement. Notice that
we’re careful to put the most explicit matches first and the most general match last. This is important
because the case will execute the first match it finds, not the best match. If we put the *) first, it would
always be matched, regardless of what was input.
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Note that the ;; before esac is optional. Unlike C programming, where leaving out a break is poor
programming practice, leaving out the final ;; is no problem if the last case is the default because no
other cases will be considered.

To make the case matching more powerful, we could use something like this:

[yY] | [Yy][Ee][Ss] )

This restricts the permitted letters while allowing a variety of answers and gives more control than the *
wildcard.

Lists
Sometimes we want to connect commands in a series. For instance, we may want several different condi-
tions to be met before we execute a statement like

if [ -f this_file ]; then
if [ -f that_file ]; then

if [ -f the_other_file ]; then
echo “All files present, and correct”

fi
fi

fi

or you might want at least one of a series of conditions to be true:

if [ -f this_file ]; then
foo=”True”

elif [ -f that_file ]; then
foo=”True”

elif [ -f the_other_file ]; then
foo=”True”

else
foo=”False”

fi
if [ “$foo” = “True” ]; then

echo “One of the files exists”
fi 

Although these can be implemented using multiple if statements, you can see that the results are awk-
ward. The shell has a special pair of constructs for dealing with lists of commands: the AND list and the
OR list. These are often used together, but we’ll review their syntax separately.

The AND List
The AND list construct allows us to execute a series of commands, executing the next command only if
all the previous commands have succeeded. The syntax is

statement1 && statement2 && statement3 && ...
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Starting at the left, each statement is executed and, if it returns true, the next statement to the right is
executed. This continues until a statement returns false, after which no more statements in the list are
executed. The && tests the condition of the preceding command.

Each statement is executed independently, allowing us to mix many different commands in a single list
as the following script shows. The AND list as a whole succeeds if all commands are executed success-
fully, but it fails otherwise.

Try It Out—AND Lists
In the following script, we touch file_one (to check whether it exists and create it if it doesn’t) and
then remove file_two. Then the AND list tests for the existence of each of the files and echoes some
text in between.

#!/bin/sh

touch file_one
rm -f file_two

if [ -f file_one ] && echo “hello” && [ -f file_two ] && echo “ there”
then

echo “in if”
else

echo “in else”
fi

exit 0

Try the script and you’ll get the following result:

hello
in else

How It Works
The touch and rm commands ensure that the files in the current directory are in a known state. The &&
list then executes the [ -f file_one ] statement, which succeeds because we just made sure that the
file existed. Because the previous statement succeeded, the echo command is executed. This also suc-
ceeds (echo always returns true). The third test, [ -f file_two ] is executed. It fails because the file
doesn’t exist. Because the last command failed, the final echo statement isn’t executed. The result of the
&& list is false because one of the commands in the list failed, so the if statement executes its else
condition.

The OR List
The OR list construct allows us to execute a series of commands until one succeeds, then not execute any
more. The syntax is

statement1 || statement2 || statement3 || ...
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Starting at the left, each statement is executed. If it returns false, the next statement to the right is exe-
cuted. This continues until a statement returns true, when no more statements are executed.

The || list is very similar to the && list, except that the rules for executing the next statement are that the
previous statement must fail.

Try It Out—OR Lists
Copy the previous example and change the shaded lines in the following listing:

#!/bin/sh

rm -f file_one

if [ -f file_one ] || echo “hello” || echo “ there” 
then

echo “in if”
else

echo “in else”
fi

exit 0

This will give you the output

hello
in if

How It Works
The first two lines simply set up the files for the rest of the script. The first command, [ -f file_one
], fails because the file doesn’t exist. The echo statement is then executed. Surprise, surprise, this returns
true, and no more commands in the || list are executed. The if succeeds because one of the commands
in the || list (the echo) was true.

The result of both of these constructs is the result of the last statement to be executed.

These list-type constructs execute in a similar way to those in C when multiple conditions are being
tested. Only the minimum number of statements is executed to determine the result. Statements that
can’t affect the result are not executed. This is commonly referred to as short circuit evaluation.

Combining these two constructs is a logician’s heaven. Try out:

[ -f file_one ] && command for true || command for false

This will execute the first command if the test succeeds and the second command otherwise. It’s always
best to experiment with these more unusual lists, and in general you should use braces to force the order
of evaluation.

46

Chapter 2

b544977 Ch02.qxd  12/1/03  8:55 AM  Page 46



Statement Blocks
If you want to use multiple statements in a place where only one is allowed, such as in an AND or OR
list, you can do so by enclosing them in braces {} to make a statement block. For example, in the appli-
cation presented later in this chapter, you’ll see the following code:

get_confirm && {
grep -v “$cdcatnum” $tracks_file > $temp_file
cat $temp_file > $tracks_file
echo
add_record_tracks

}

Functions
You can define functions in the shell and, if you write shell scripts of any size, you’ll want to use them to
structure your code.

As an alternative, you could break a large script into lots of smaller scripts, each of which performs a
small task. This has some drawbacks: Executing a second script from within a script is much slower
than executing a function. It’s more difficult to pass back results, and there can be a very large number
of small scripts. You should consider the smallest part of your script that sensibly stands alone and use
that as your measure of when to break a large script into a collection of smaller ones.

If you’re appalled at the idea of using the shell for large programs, remember that the FSF autoconf
program and several Linux package installation programs are shell scripts. You can always guarantee
that a basic shell will be on a Linux system. In general, Linux and UNIX systems can’t even boot with-
out /bin/sh, never mind allowing users to log in, so you can be certain that your script will have a
shell available to interpret it on a huge range of UNIX and Linux systems.

To define a shell function, we simply write its name followed by empty parentheses and enclose the
statements in braces:

function_name () {
statements

}

Try It Out—A Simple Function
Let’s start with a really simple function:

#!/bin/sh

foo() {
echo “Function foo is executing”

}

echo “script starting”
foo
echo “script ended”

exit 0
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Running the script will show

script starting
Function foo is executing
script ending

How It Works
This script starts executing at the top, so nothing is different there. But when it finds the foo() { con-
struct, it knows that a function called foo is being defined. It stores the fact that foo refers to a function
and continues executing after the matching }. When the single line foo is executed, the shell knows to
execute the previously defined function. When this function completes, execution resumes at the line
after the call to foo.

You must always define a function before you can invoke it, a little like the Pascal style of function defi-
nition before invocation, except that there are no forward declarations in the shell. This isn’t a problem,
because all scripts start executing at the top, so simply putting all the functions before the first call of any
function will always cause all functions to be defined before they can be invoked.

When a function is invoked, the positional parameters to the script, $*, $@, $#, $1, $2, and so on are
replaced by the parameters to the function. That’s how you read the parameters passed to the function.
When the function finishes, they are restored to their previous values.

We can make functions return numeric values using the return command. The usual way to make func-
tions return strings is for the function to store the string in a variable, which can then be used after the
function finishes. Alternatively, you can echo a string and catch the result, like this.

foo () { echo JAY;}

...

result=”$(foo)”

Note that you can declare local variables within shell functions by using the local keyword. The vari-
able is then only in scope within the function. Otherwise, the function can access the other shell vari-
ables that are essentially global in scope. If a local variable has the same name as a global variable, it
overlays that variable, but only within the function. For example, we can make the following changes to
the preceding script to see this in action:

#!/bin/sh

sample_text=”global variable”

foo() {

local sample_text=”local variable”
echo “Function foo is executing”

Some older shells may not restore the value of positional parameters after functions
execute. It’s wise not to rely on this behavior if you want your scripts to be portable.
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echo $sample_text
}

echo “script starting”

echo $sample_text

foo

echo “script ended” 

echo $sample_text

exit 0

In the absence of a return command specifying a return value, a function returns the exit status of the
last command executed.

Try It Out—Returning a Value
In the next script, my_name, we show how parameters to a function are passed and how functions can
return a true or false result. You call this script with a parameter of the name you want to use in the
question.

1. After the shell header, we define the function yes_or_no:

#!/bin/sh

yes_or_no() {
echo “Is your name $* ?”
while true
do

echo -n “Enter yes or no: “
read x
case “$x” in

y | yes ) return 0;;
n | no )  return 1;;
* )       echo “Answer yes or no”

esac
done

}

2. Then the main part of the program begins:

echo “Original parameters are $*”

if yes_or_no “$1”
then

echo “Hi $1, nice name”
else

echo “Never mind”
fi
exit 0
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Typical output from this script might be:

$ ./my_name Rick Neil
Original parameters are Rick Neil
Is your name Rick ?
Enter yes or no: yes
Hi Rick, nice name
$

How It Works
As the script executes, the function yes_or_no is defined but not yet executed. In the if statement, the
script executes the function yes_or_no, passing the rest of the line as parameters to the function after
substituting the $1 with the first parameter to the original script, Rick. The function uses these parame-
ters, which are now stored in the positional parameters $1, $2, and so on, and returns a value to the
caller. Depending on the return value, the if construct executes the appropriate statement.

As we’ve seen, the shell has a rich set of control structures and conditional statements. We need to learn
some of the commands that are built into the shell; then we’ll be ready to tackle a real programming
problem with no compiler in sight!

Commands
You can execute two types of commands from inside a shell script. There are “normal” commands that you
could also execute from the command prompt (called external commands), and there are “built-in” com-
mands (called internal commands) that we mentioned earlier. Built-in commands are implemented internally
to the shell and can’t be invoked as external programs. Most internal commands are, however, also pro-
vided as standalone programs—this requirement is part of the POSIX specification. It generally doesn’t
matter if the command is internal or external, except that internal commands execute more efficiently.

Here we’ll cover only the main commands, both internal and external, that we use when we’re program-
ming scripts. As a Linux user, you probably know many other commands that are valid at the command
prompt. Always remember that you can use any of these in a script in addition to the built-in commands
we present here.

break
We use this for escaping from an enclosing for, while, or until loop before the controlling condition
has been met. You can give break an additional numeric parameter, which is the number of loops to
break out of. This can make scripts very hard to read, so we don’t suggest you use it. By default, break
escapes a single level.

#!/bin/sh

rm -rf fred*
echo > fred1
echo > fred2
mkdir fred3
echo > fred4

50

Chapter 2

b544977 Ch02.qxd  12/1/03  8:55 AM  Page 50



for file in fred*
do

if [ -d “$file” ]; then
break;

fi
done

echo first directory starting fred was $file

rm -rf fred*
exit 0

The : Command
The colon command is a null command. It’s occasionally useful to simplify the logic of conditions, being
an alias for true. Since it’s built-in, : runs faster than true, though its output is also much less readable.

You may see it used as a condition for while loops; while : implements an infinite loop in place of the
more common while true.

The : construct is also useful in the conditional setting of variables. For example,

: ${var:=value}

Without the :, the shell would try to evaluate $var as a command.

#!/bin/sh

rm -f fred
if [ -f fred ]; then

:
else

echo file fred did not exist
fi

exit 0

continue
Rather like the C statement of the same name, this command makes the enclosing for, while, or until
loop continue at the next iteration, with the loop variable taking the next value in the list.

#!/bin/sh

rm -rf fred*
echo > fred1

In some, mostly older shell scripts, you may see the colon used at the start of a line
to introduce a comment, but modern scripts should always use # to start a comment
line because this executes more efficiently.
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echo > fred2
mkdir fred3
echo > fred4

for file in fred*
do

if [ -d “$file” ]; then
echo “skipping directory $file”

continue
fi
echo file is $file

done

rm -rf fred*
exit 0

continue can take the enclosing loop number at which to resume as an optional parameter so that you
can partially jump out of nested loops. This parameter is rarely used, as it often makes scripts much
harder to understand. For example,

for x in 1 2 3
do

echo before $x
continue 1
echo after $x

done

The output will be

before 1
before 2
before 3

The . Command
The dot (.) command executes the command in the current shell:

. ./shell_script

Normally, when a script executes an external command or script, a new environment (a subshell) is cre-
ated, the command is executed in the new environment, and the environment is then discarded apart
from the exit code that is returned to the parent shell. But the external source and the dot command (two
more synonyms) run the commands listed in a script in the same shell that called the script.

This means that normally any changes to environment variables that the command makes are lost. The
dot command, on the other hand, allows the executed command to change the current environment.
This is often useful when you use a script as a wrapper to set up your environment for the later execu-
tion of some other command. For example, if you’re working on several different projects at the same
time, you may find you need to invoke commands with different parameters, perhaps to invoke an older
version of the compiler for maintaining an old program.
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In shell scripts, the dot command works a little like the #include directive in C or C++. Though it doesn’t
literally include the script, it does execute the command in the current context, so you can use it to incor-
porate variable and function definitions into a script.

Try It Out—The Dot Command
In the following example, we use the dot command on the command line, but we can just as well use it
within a script.

1. Suppose we have two files containing the environment settings for two different development
environments. To set the environment for the old, classic commands, classic_set, we could
use

#!/bin/sh

version=classic
PATH=/usr/local/old_bin:/usr/bin:/bin:.
PS1=”classic> “

2. For the new commands we use latest_set:

#!/bin/sh

version=latest
PATH=/usr/local/new_bin:/usr/bin:/bin:.
PS1=” latest version> “

We can set the environment by using these scripts in conjunction with the dot command, as in the fol-
lowing sample session:

$ . ./classic_set
classic> echo $version
classic
classic> . latest_set
latest version> echo $version
latest
latest version> 

echo
Despite the X/Open exhortation to use the printf command in modern shells, we’ve been following
common practice by using the echo command to output a string followed by a newline character. 

A common problem is how to suppress the newline character. Unfortunately, different versions of UNIX
have implemented different solutions. The common method in Linux is to use

echo -n “string to output”

but you’ll often come across

echo -e “string to output\c”

53

Shell Programming

b544977 Ch02.qxd  12/1/03  8:55 AM  Page 53



The second option, echo -e, makes sure that the interpretation of backslashed escape characters, such
as \t for tab and \n for carriage returns, is enabled. It’s usually set by default. See the manual pages for
details.

eval
The eval command allows you to evaluate arguments. It’s built into the shell and doesn’t normally exist
as a separate command. It’s probably best demonstrated with a short example borrowed from the
X/Open specification itself:

foo=10
x=foo
y=’$’$x
echo $y

This gives the output $foo. However,

foo=10
x=foo
eval y=’$’$x
echo $y

gives the output 10. Thus, eval is a bit like an extra $: It gives you the value of the value of a variable.

The eval command is very useful, allowing code to be generated and run on the fly. It does complicate
script debugging, but it can let you do things that are otherwise difficult or even impossible.

exec
The exec command has two different uses. Its typical use is to replace the current shell with a different
program. For example,

exec wall “Thanks for all the fish”

in a script will replace the current shell with the wall command. No lines in the script after the exec
will be processed, because the shell that was executing the script no longer exists.

The second use of exec is to modify the current file descriptors:

exec 3< afile

This causes file descriptor three to be opened for reading from file afile. It’s rarely used.

If you need a portable way to remove the trailing newline, you can use the external
tr command to get rid of it, but it will execute somewhat more slowly. If you need
portability to UNIX systems, it’s generally better to stick to printf if you need to
lose the newline. If your scripts need to work only on Linux and bash, echo -n
should be fine.
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exit n
The exit command causes the script to exit with exit code n. If you use it at the command prompt of
any interactive shell, it will log you out. If you allow your script to exit without specifying an exit status,
the status of the last command executed in the script will be used as the return value. It’s always good
practice to supply an exit code.

In shell script programming, exit code 0 is success and codes 1 through 125 inclusive are error codes that
can be used by scripts. The remaining values have reserved meanings:

Exit Code Description

126 The file was not executable.

127 A command was not found.

128 and above A signal occurred.

Using zero as success may seem a little unusual to many C or C++ programmers. The big advantage in
scripts is that they allow us to use 125 user-defined error codes without the need for a global error code
variable.

Here’s a simple example that returns success if a file called .profile exists in the current directory:

#!/bin/sh

if [ -f .profile ]; then
exit 0

fi

exit 1

If you’re a glutton for punishment, or at least for terse scripts, you can rewrite this script using the com-
bined AND and OR list we saw earlier, all on one line:

[ -f .profile ] && exit 0 || exit 1

export
The export command makes the variable named as its parameter available in subshells. By default,
variables created in a shell are not available in further (sub)shells invoked from that shell. The export
command creates an environment variable from its parameter that can be seen by other scripts and pro-
grams invoked from the current program. More technically, the exported variables form the environ-
ment variables in any child processes derived from the shell. This is best illustrated with an example of
two scripts, export1 and export2.
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Try It Out—Exporting Variables
1. We list export2 first:

#!/bin/sh

echo “$foo”
echo “$bar”

2. Now for export1. At the end of this script, we invoke export2:

#!/bin/sh

foo=”The first meta-syntactic variable”
export bar=”The second meta-syntactic variable”

export2

If we run these, we get

$ export1

The second meta-syntactic variable
$

The first blank line occurs because the variable foo was not available in export2, so $foo evaluated to
nothing; echoing a null variable gives a newline.

Once a variable has been exported from a shell, it’s exported to any scripts invoked from that shell and
also to any shell they invoke in turn and so on. If the script export2 called another script, it would also
have the value of bar available to it.

expr
The expr command evaluates its arguments as an expression. It’s most commonly used for simple arith-
metic in the following form:

x=`expr $x + 1`

The `` (back-tick) characters make x take the result of executing the command expr $x + 1. We could
also write it using the syntax $( ) rather than back ticks, like this: 

x=$(expr $x + 1)

We’ll mention more about command substitution later in the chapter.

The commands set -a or set -allexport will export all variables thereafter.
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The expr command is powerful and can perform many expression evaluations. The principal ones are in
the following table:

Expression Evaluation Description

expr1 | expr2 expr1 if expr1 is nonzero, otherwise expr2

expr1 & expr2 Zero if either expression is zero, otherwise expr1

expr1 = expr2 Equal

expr1 > expr2 Greater than

expr1 >= expr2 Greater than or equal to

expr1 < expr2 Less than

expr1 <= expr2 Less than or equal to

expr1 != expr2 Not equal

expr1 + expr2 Addition

expr1 - expr2 Subtraction

expr1 * expr2 Multiplication

expr1 / expr2 Integer division

expr1 % expr2 Integer modulo

In newer scripts, the use of expr is normally replaced with the more efficient $((...)) syntax, which
we discuss later in the chapter.

printf
The printf command is available only in more recent shells. X/Open suggests that we should use it in
preference to echo for generating formatted output.

The syntax is

printf “format string” parameter1 parameter2 ...

The format string is very similar to that used in C or C++, with some restrictions. Principally, floating
point isn’t supported, because all arithmetic in the shell is performed as integers. The format string con-
sists of any combination of literal characters, escape sequences, and conversion specifiers. All characters
in the format string other than % and \ appear literally in the output.

The following escape sequences are supported:

Escape Sequence Description

\\ Backslash character

\a Alert (ring the bell or beep)

Table continued on following page
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Escape Sequence Description

\b Backspace character

\f Form feed character

\n Newline character

\r Carriage return

\t Tab character

\v Vertical tab character

\ooo The single character with octal value ooo

The conversion specifier is quite complex, so we’ll list only the common usage here. More details can be
found in the bash online manual or in the printf pages from section 3 of the online manual (man 3
printf). The conversion specifier consists of a % character, followed by a conversion character. The prin-
cipal conversions are as follows:

Conversion Specifier Description

d Output a decimal number.

c Output a character.

s Output a string.

% Output the % character.

The format string is then used to interpret the remaining parameters and output the result. For example,

$ printf “%s\n” hello
hello
$ printf “%s %d\t%s” “Hi There” 15 people
Hi There 15   people

Notice how we must use “ “ to protect the Hi There string and make it a single parameter.

return
The return command causes functions to return. We mentioned this when we looked at functions ear-
lier. return takes a single numeric parameter that is available to the script calling the function. If no
parameter is specified, return defaults to the exit code of the last command.

set
The set command sets the parameter variables for the shell. It can be a useful way of using fields in
commands that output space-separated values.
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Suppose we want to use the name of the current month in a shell script. The system provides a date
command, which contains the month as a string, but we need to separate it from the other fields. We can
do this using a combination of the set command and the $(...) construct to execute the date com-
mand and return the result (which we’ll look at in more detail very soon). The date command output
has the month string as its second parameter:

#!/bin/sh

echo the date is $(date)
set $(date)
echo The month is $2

exit 0

This program sets the parameter list to the date command’s output and then uses the positional param-
eter $2 to get at the month.

Notice that we used the date command as a simple example to show how to extract positional parameters.
Since the date command is sensitive to the language local, in reality we would have extracted the name of
the month using date +%B. The date command has many other formatting options; see the manual page
for more details.

We can also use the set command to control the way the shell executes by passing it parameters.
The most commonly used form of the command is set -x, which makes a script display a trace of its
currently executing command. We discuss set and more of its options when we look at debugging,
later on in the chapter.

shift
The shift command moves all the parameter variables down by one, so that $2 becomes $1, $3 becomes
$2, and so on. The previous value of $1 is discarded, while $0 remains unchanged. If a numerical parame-
ter is specified in the call to shift, the parameters will move that many spaces. The other variables $*,
$@, and $# are also modified in line with the new arrangement of parameter variables.

shift is often useful for scanning through parameters, and if your script requires 10 or more parameters,
you’ll need shift to access the tenth and beyond.

Just as an example, we can scan through all the positional parameters like this:

#!/bin/sh

while [ “$1” != “” ]; do
echo “$1”
shift

done

exit 0
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trap
The trap command is used for specifying the actions to take on receipt of signals, which we’ll meet in
more detail later in the book. A common use is to tidy up a script when it is interrupted. Historically,
shells always used numbers for the signals, but new scripts should use names taken from the #include
file signal.h, with the SIG prefix omitted. To see the signal numbers and associated names, you can
just type trap -l at a command prompt.

The trap command is passed the action to take, followed by the signal name (or names) to trap on.

trap command signal

Remember that the scripts are normally interpreted from top to bottom, so you must specify the trap
command before the part of the script you wish to protect.

To reset a trap condition to the default, simply specify the command as -. To ignore a signal, set the com-
mand to the empty string ‘’. A trap command with no parameters prints out the current list of traps
and actions.

The following table lists the more important signals covered by the X/Open standard that can be caught
(with the conventional signal number in parentheses). More details can be found under in the signal
manual pages in section 7 of the online manual (man 7 signal).

Signal Description

HUP (1) Hang up; usually sent when a terminal goes off line, or a user logs out

INT (2) Interrupt; usually sent by pressing Ctrl+C

QUIT (3) Quit; usually sent by pressing Ctrl+\

ABRT (6) Abort; usually sent on some serious execution error

ALRM (14) Alarm; usually used for handling timeouts

TERM (15) Terminate; usually sent by the system when it’s shutting down 

Try It Out—Trapping Signals
The following script demonstrates some simple signal handling:

#!/bin/sh

trap ‘rm -f /tmp/my_tmp_file_$$’ INT
echo creating file /tmp/my_tmp_file_$$
date > /tmp/my_tmp_file_$$

For those not familiar with signals, they are events sent asynchronously to a program.
By default, they normally cause the program to terminate.
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echo “press interrupt (CTRL-C) to interrupt ....”
while [ -f /tmp/my_tmp_file_$$ ]; do

echo File exists
sleep 1

done
echo The file no longer exists

trap INT
echo creating file /tmp/my_tmp_file_$$
date >  /tmp/my_tmp_file_$$

echo “press interrupt (control-C) to interrupt ....”
while [ -f /tmp/my_tmp_file_$$ ]; do

echo File exists
sleep 1

done

echo we never get here
exit 0

If we run this script, pressing Ctrl+C (or whatever your interrupt keys are) in each of the loops, we get
the following output:

creating file /tmp/my_tmp_file_141
press interrupt (CTRL-C) to interrupt ....
File exists
File exists
File exists
File exists
The file no longer exists
creating file /tmp/my_tmp_file_141
press interrupt (CTRL-C) to interrupt ....
File exists
File exists
File exists
File exists

How It Works
This script uses the trap command to arrange for the command rm -f /tmp/my_tmp_file_$$ to be
executed when an INT (interrupt) signal occurs. The script then enters a while loop that continues while
the file exists. When the user presses Ctrl+C, the statement rm -f /tmp/my_tmp_file_$$ is executed,
and then the while loop resumes. Since the file has now been deleted, the first while loop terminates
normally.

The script then uses the trap command again, this time to specify that no command be executed when
an INT signal occurs. It then recreates the file and loops inside the second while statement. When the
user presses Ctrl+C this time, there is no statement configured to execute, so the default behavior occurs,
which is to immediately terminate the script. Since the script terminates immediately, the final echo and
exit statements are never executed.
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unset
The unset command removes variables or functions from the environment. It can’t do this to read-only
variables defined by the shell itself, such as IFS. It’s not often used.

The following script writes Hello World once and a newline the second time:

#!/bin/sh

foo=”Hello World”
echo $foo

unset foo
echo $foo

Two More Useful Commands and Regular Expressions
Before we see how we can put this new knowledge of shell programming to use, let’s look at a couple of
other very useful commands, which, although not part of the shell, are often useful when writing shell
programs. Along the way we will also be looking at regular expressions, a pattern-matching feature that
crops up all over Linux and its associated programs.

The find Command
The first command we will look at is find. This command, which we use to search for files, is extremely
useful, but newcomers to Linux often find it a little tricky to use, not least because it takes options, tests,
and action-type arguments, and the results of one argument can affect the processing of subsequent
arguments.

Before we delve into the options, tests, and arguments, let’s look at a very simple example for the file
wish on our local machine. We do this as root to ensure that we have permissions to search the whole
machine:

# find / -name wish -print
/usr/bin/wish
#

As you can probably guess, this says “search starting at / for a file named wish and then print out the
name of the file.” Easy, wasn’t it?

However, it did take quite a while to run, and the disk on a Windows machine on the network rattled
away as well. The Linux machine mounts (using SAMBA) a chunk of the Windows machine’s file sys-
tem. It seems like that might have been searched as well, even though we knew the file we were looking
for would be on the Linux machine.

Writing foo= would have a very similar effect, but not identical, to unset in the
preceding program. Writing foo= has the effect of setting foo to null, but foo
still exists. Using unset foo has the effect of removing the variable foo from the
environment.
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This is where the first of the options comes in. If we specify -mount, we can tell find not to search
mounted directories:

# find / -mount -name wish -print
/usr/bin/wish
#

We still find the file, but without searching other mounted file systems.

The full syntax for the find command is:

find [path] [options] [tests] [actions]

The path part is nice and easy: We can use either an absolute path, such as /bin, or a relative path, such
as .. If we need to, we can also specify multiple paths, for example find /var /home.

There are several options; the main ones are as follows:

Option Meaning

-depth Search the contents of a directory before looking at the directory itself.

-follow Follow symbolic links.

-maxdepths N Search at most N levels of directory when searching.

-mount (or -xdev) Don’t search directories on other file systems.

Now for the tests. There are a large number of tests that can be given to find, and each test returns
either true or false. When find is working, it considers each file it finds in turn and applies each test,
in the order they were defined, on that file. If a test returns false, find stops considering the file it is
currently looking at and moves on; if the test returns true, find will process the next test or action on
the current file. The tests we list in the following table are just the most common; consult the manual
pages for the extensive list of possible tests you can apply using find.

Test Meaning

-atime N The file was last accessed N days ago.

-mtime N The file was last modified N days ago.

-name pattern The name of the file, excluding any path, matches the pattern pro-
vided. To ensure that the pattern is passed to find, and not evalu-
ated by the shell immediately, the pattern must always be in quotes.

-newer otherfile The file is newer than the file otherfile.

-type C The file is of type C, where C can be of a particular type; the most
common are “d” for a directory and “f” for a regular file. For other
types consult the manual pages.

-user username The file is owned by the user with the given name.
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We can also combine tests using operators. Most have two forms: a short form and a longer form:

Operator, Short Form Operator, Long Form Meaning

! -not Invert the test. 

-a -and Both tests must be true.

-o -or Either test must be true.

We can force the precedence of tests and operators by using parentheses. Since these have a special
meaning to the shell, we also have to quote the braces using a backslash. In addition, if we use a pattern
for the filename, we must use quotes so that the name is not expanded by the shell but passed directly to
the find command. So if we wanted to write the test “newer than file X or called a name that starts with
an underscore” we would write the following test:

\(-newer X -o -name “_*” \)

We will present an example just after the next “How it Works” section.

Try It Out—find with Tests
Let’s try searching in the current directory for files modified more recently than the file while2:

$ find . -newer while2 -print
.
./elif3
./words.txt
./words2.txt
./_trap
$

That looks good, except that we also find the current directory, which we didn’t want; we were inter-
ested only in regular files. So we add an additional test, -type f:

$ find . -newer while2 -type f -print
./elif3
./words.txt
./words2.txt
./_trap
$

How It Works
How did it work? We specified that find should search in the current directory (.), for files newer than
the file while2 (-newer while2) and that, if that test passed, then to also test that the file was a regular
file (-type f). Finally, we used the action we already met, -print, just to confirm which files we had
found.

Now let’s also find files that either start with an underscore or are newer than the file while2, but must
in either case be regular files. This will show us how to combine tests using parentheses:
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$ find .  \( -name “_*” -or -newer while2 \) -type f -print
./elif3
./words.txt
./words2.txt
./_break
./_if
./_set
./_shift
./_trap
./_unset
./_until
$

See, that wasn’t so hard, was it? We had to escape the parentheses so that they were not processed by the
shell and also quote the * so that it was passed directly into find as well.

Now that we can reliably search for files, let’s look at the actions we can perform when we find a file
matching our specification. Again, this is just a list of the most common actions; the manual page has the
full set.

Action Meaning

-exec command Execute a command. This is one of the most common actions See the
explanation following this table for how parameters may be passed to
the command.

-ok command Like -exec, except that it prompts for user confirmation of each file on
which it will carry out the command before executing the command.

-print Prints out the name of the file.

-ls Uses the command ls -dils on the current file.

The -exec and -ok commands take subsequent parameters on the line as part of their parameters, until
terminated with a \; sequence. The magic string {} is a special type of parameter to an -exec or -ok
command and is replaced with the full path to the current file.

That explanation is perhaps not so easy to understand, but an example should make things clearer.

Let’s see a simpler example, using a nice safe command like ls:

$ find . -newer while2 -type f -exec ls -l {} \;
-rwxr-xr-x    1 rick     rick          275 Feb  8 17:07 ./elif3
-rwxr-xr-x    1 rick     rick          336 Feb  8 16:52 ./words.txt
-rwxr-xr-x    1 rick     rick         1274 Feb  8 16:52 ./words2.txt
-rwxr-xr-x    1 rick     rick          504 Feb  8 18:43 ./_trap
$

As you can see, the find command is extremely useful; it just takes a little practice to use it well.
However, that practice will pay dividends, so do experiment with the find command.
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The grep Command
The second very useful command we are going to look at is grep, an unusual name that stands for General
Regular Expression Parser. We use find to search our system for files, but we use grep to search files for
strings. Indeed, it’s quite common to have grep as a command passed after -exec when using find.

The grep command takes options, a pattern to match, and files to search in:

grep [options] PATTERN [FILES]

If no filenames are given, it searches standard input.

Let’s start by looking at the principal options to grep. Again we will list only the principal options here;
see the manual pages for the full list.

Option Meaning

-c Rather than printing matching lines, print a count of the number of lines that match.

-E Turn on extended expressions.

-h Suppress the normal prefixing of each output line with the name of the file it was
found in.

-i Ignore case.

-l List the names of the files with matching lines; don’t output the actual matched line.

-v Invert the matching pattern to select nonmatching lines rather than matching lines.

Try It Out—Basic grep Usage
Let’s look at grep in action with some simple matches:

$ grep in words.txt
When shall we three meet again.  In thunder, lightning, or in rain?
I come, Graymalkin!
$ grep -c in words.txt words2.txt
words.txt:2
words2.txt:14
$ grep -c -v in words.txt words2.txt
words.txt:9
words2.txt:16
$

How It Works
The first example uses no options; it simply searches for the string “in” in the file words.txt and prints
out any lines that match. The filename isn’t printed because we are searching on just a single file.

The second example counts the number of matching lines in two different files. In this case, the file
names are printed out.

Finally, we use the -v option to invert the search and count lines in the two files that don’t match.

66

Chapter 2

b544977 Ch02.qxd  12/1/03  8:55 AM  Page 66



Regular Expressions
As we have seen, the basic usage of grep is very easy to master. Now it’s time to look at the basics of reg-
ular expressions, which allow you to do more sophisticated matching. As was mentioned earlier in the
chapter, regular expressions are used in Linux and many other Open Source languages. You can use them
in the vi editor and in writing Perl scripts, with the basic principles common wherever they appear.

During the use of regular expressions, certain characters are processed in a special way. The most fre-
quently used are as follows:

Character Meaning

^ Anchor to the beginning of a line.

$ Anchor to the end of a line.

. Any single character.

[ ] The square braces contain a range of characters, any one of which may be
matched, such as a range of characters like a-e or an inverted range by
preceding the range with a ^ symbol.

If you want to use any of these characters as “normal” characters, precede them with a \. So if you
wanted to look for a literal “$” character, you would simply use \$.

There are also some useful special match patterns that can be used in square braces:

Match Pattern Meaning

[:alnum:] Alphanumeric characters

[:alpha:] Letters

[:ascii:] ASCII characters

[:blank:] Space or tab

[:cntrl:] ASCII control characters

[:digit:] Digits

[:graph:] Noncontrol, nonspace characters

[:lower:] Lowercase letters

[:print:] Printable characters

[:punct:] Punctuation characters

[:space:] Whitespace characters, including vertical tab

[:upper:] Uppercase letters

[:xdigit:] Hexadecimal digits
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In addition, if the -E for extended matching is also specified, other characters that control the completion
of matching may follow the regular expression. With grep it is also necessary to precede these characters
with a \.

Option Meaning

? Match is optional but may be matched at most once.

* Must be matched zero or more times.

+ Must be matched one or more times.

{n} Must be matched n times.

{n,} Must be matched n or more times.

{n,m} Must be matched between n or m times inclusive.

That all looks a little complex, but if we take it in stages, you will see it’s not as complex as it perhaps
looks at first sight. The easiest way to get the hang of regular expressions is simply to try a few.

Try It Out—Regular Expressions
Let’s start by looking for lines that end with the letter e. You can probably guess we need to use the spe-
cial character $:

$ grep  e$ words2.txt
Art thou not, fatal vision, sensible
I see thee yet, in form as palpable
Nature seems dead, and wicked dreams abuse
$

As you can see, this finds lines that end in the letter e. 

Now suppose we want to find words that end with the letter a. To do this, we need to use the special
match characters in braces. In this case, we will use [[:blank:]], which tests for a space or a tab:

$ grep a[[:blank:]] words2.txt
Is this a dagger which I see before me,
A dagger of the mind, a false creation,
Moves like a ghost. Thou sure and firm-set earth,
$

Now let’s look for three-letter words that start with Th. In this case, we need both [[:space:]] to
delimit the end of the word and . to match a single additional character:

$ grep Th.[[:space:]] words2.txt
The handle toward my hand? Come, let me clutch thee.
The curtain’d sleep; witchcraft celebrates
Thy very stones prate of my whereabout,
$
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Finally, let’s use the extended grep mode to search for lowercase words that are exactly 10 characters
long. We do this by specifying a range of characters to match a to z, and a repetition of 10 matches:

$ grep -E [a-z]\{10\} words2.txt
Proceeding from the heat-oppressed brain?
And such an instrument I was to use.
The curtain’d sleep; witchcraft celebrates
Thy very stones prate of my whereabout,
$

We have only really had chance to touch on the more important parts of regular expressions here. As
with most things in Linux, there is a lot more documentation out there to help you discover more details,
but the best way of learning about regular expressions is to experiment.

Command Execution
When we’re writing scripts, we often need to capture the result of a command’s execution for use in the
shell script; that is, we want to execute a command and put the output of the command into a variable.
We can do this by using the $(command) syntax that we introduced in the earlier set command exam-
ple. There is also an older form, `command`, that is still in common usage.

All new scripts should use the $(...) form, which was introduced to avoid some rather complex rules
covering the use of the characters $, `, and \ inside the back-quoted command. If a backtick is used within
the `...` construct, it must be escaped with a \ character. These relatively obscure characters often con-
fuse programmers, and sometimes even experienced shell programmers are forced to experiment to get the
quoting correct in backticked commands.

The result of the $(command) is simply the output from the command. Note that this isn’t the return 
status of the command but of the string output. For example,

#!/bin/sh

echo The current directory is $PWD
echo The current users are $(who)

exit 0

Since the current directory is a shell environment variable, the first line doesn’t need to use this command
execution construct. The result of who, however, does need this construct if it is to be available to the script.

If we want to get the result into a variable, we can just assign it in the usual way:

whoisthere=$(who)
echo $whoisthere

Note that with the older form of the command execution, the backtick, or backquote
(`), is used, not the single quote (‘) that we used in earlier shell quoting (to protect
against variable expansion). Use this form for shell scripts only when you need
them to be very portable.
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The ability to put the result of a command into a script variable is very powerful, as it makes it easy to
use existing commands in scripts and capture their output. If you ever find yourself trying to convert a
set of parameters that are the output of a command on standard output and capture them as arguments
for a program, you may well find the command xargs can do it for you. Look in the manual pages for
further details.

A problem sometimes arises when the command we want to invoke outputs some white space before
the text we want, or more output than we require. In such a case, we can use the set command as we
have already shown.

Arithmetic Expansion
We’ve already used the expr command, which allows simple arithmetic commands to be processed, but
this is quite slow to execute because a new shell is invoked to process the expr command.

A newer and better alternative is $((...)) expansion. By enclosing the expression we wish to evaluate
in $((...)), we can perform simple arithmetic much more efficiently:

#!/bin/sh

x=0
while [ “$x” -ne 10 ]; do

echo $x
x=$(($x+1))

done

exit 0

Parameter Expansion
We’ve seen the simplest form of parameter assignment and expansion, where we write

foo=fred
echo $foo

A problem occurs when we want to append extra characters to the end of a variable. Suppose we want
to write a short script to process files called 1_tmp and 2_tmp. We could try

#!/bin/sh

for i in 1 2
do

my_secret_process $i_tmp
done

Notice that this is subtly different from the x=$( .... ) command. The double
parentheses are used for arithmetic substitution. The single parentheses form that
we saw earlier is used for executing commands and grabbing the output.
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But on each loop, we’ll get

my_secret_process: too few arguments

What went wrong?

The problem is that the shell tried to substitute the value of the variable $i_tmp, which doesn’t exist.
The shell doesn’t consider this an error; it just substitutes nothing, so no parameters at all were passed to
my_secret_process. To protect the expansion of the $i part of the variable, we need to enclose the i in
braces like this:

#!/bin/sh

for i in 1 2
do

my_secret_process ${i}_tmp
done

On each loop, the value of i is substituted for ${i} to give the actual file names. We’ve substituted the
value of the parameter into a string.

We can perform many parameter substitutions in the shell. Often, these provide an elegant solution to
many parameter-processing problems.

The common ones are in the following table:

Parameter Expansion Description

${param:-default} If param is null, set it to the value of default.

${#param} Gives the length of param.

${param%word} From the end, removes the smallest part of param that matches
word and returns the rest.

${param%%word} From the end, removes the longest part of param that matches
word and returns the rest.

${param#word} From the beginning, removes the smallest part of param that
matches word and returns the rest.

${param##word} From the beginning, removes the longest part of param that
matches word and returns the rest.

These substitutions are often useful when you’re working with strings. The last four, which remove
parts of strings, are especially useful for processing filenames and paths, as the following example
shows.
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Try It Out—Parameter Processing
Each portion of the following script illustrates the parameter-matching operators:

#!/bin/sh

unset foo
echo ${foo:-bar}

foo=fud
echo ${foo:-bar}

foo=/usr/bin/X11/startx
echo ${foo#*/}
echo ${foo##*/}

bar=/usr/local/etc/local/networks
echo ${bar%local*}
echo ${bar%%local*}

exit 0

This gives the following output:

bar
fud
usr/bin/X11/startx
startx
/usr/local/etc
/usr

How It Works
The first statement, ${foo:-bar}, gives the value bar, because foo had no value when the statement
was executed. The variable foo is unchanged as it remains unset.

The {foo#*/} statement matches and removes only the left / (remember * matches zero or more char-
acters). The {foo##*/} matches and removes as much as possible, so it removes the rightmost / and all
the characters before it.

${foo:=bar}, however, would set the variable to $foo. This string operator checks
that foo exists and isn’t null. If it isn’t null, it returns its value, but otherwise it sets
foo to bar and returns that instead.

${foo:?bar} will print foo: bar and abort the command if foo doesn’t exist or is
set to null.

Lastly, ${foo:+bar} returns bar if foo exists and isn’t null.

What a set of choices!
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The {bar%local*} statement matches characters from the right until the first occurrence of local (fol-
lowed by any number of characters) is matched, but the {bar%%local*} matches as many characters as
possible from the right until it finds the leftmost local.

Since both UNIX and Linux are based heavily round the idea of filters, the result of one operation must
often be redirected manually. Let’s say you want to convert a GIF file into a JPEG file using the cjpeg
program.

$ cjpeg image.gif > image.jpg

Sometimes you may want to perform this type of operation on a large number of files. How do you
automate the redirection? It’s as easy as this:

#!/bin/sh

for image in  *.gif
do 

cjpeg $image > ${image%%gif}jpg
done

This script, giftojpeg, creates a JPEG file for each GIF file in the current directory. 

Here Documents
One special way of passing input to a command from a shell script is to use a here document. This docu-
ment allows a command to execute as though it were reading from a file or the keyboard, whereas in fact
it’s getting input from the script.

A here document starts with the leader <<, followed by a special sequence of characters that will be
repeated at the end of the document. << is the shell’s label redirector, which in this case forces the com-
mand input to be the here document. This special sequence acts as a marker to tell the shell where the
here document ends. The marker sequence must not appear in the lines to be passed to the command,
so it’s best to make them memorable and fairly unusual.

Try It Out—Using Here Documents
The simplest example is simply to feed input to the cat command:

#!/bin/sh

cat <<!FUNKY!
hello
this is a here
document
!FUNKY!

This gives the output:

hello
this is a here
document
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Here documents might seem a rather curious feature, but they’re very powerful because they allow us to
invoke an interactive program such as an editor and feed it some predefined input. However, they’re
more commonly used for outputting large amounts of text from inside a script, as we saw previously,
and avoiding having to use echo statements for each line. We’ve used ! marks on each side of the identi-
fier to ensure that there’s no confusion.

If we wish to process several lines in a file in a predetermined way, we could use the ed line editor and
feed it commands from a here document in a shell script.

Try It Out—Another Use for a Here Document
1. Let’s start with a file called a_text_file that contains

That is line 1
That is line 2
That is line 3
That is line 4

2. We can edit this file using a combination of a here document and the ed editor:

#!/bin/sh

ed a_text_file <<!FunkyStuff!
3
d
.,\$s/is/was/
w
q
!FunkyStuff!

exit 0

If we run this script, the file now contains:

That is line 1
That is line 2
That was line 4

How It Works
The shell script simply invokes the ed editor and passes to it the commands that it needs to move to
the third line, delete the line, and then replace it with what was in the current line (because line 3 was
deleted, the current line is now what was the last line). These ed commands are taken from the lines in
the script that form the here document—the lines between the markers !FunkyStuff!.

Notice the \ inside the here document to protect the $ from shell expansion. The \
escapes the $, so the shell knows not to try to expand $s/is/was/ to its value,
which of course it doesn’t have. Instead, the shell passes the text \$ as $, which can
then be interpreted by the ed editor.
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Debugging Scripts
Debugging shell scripts is usually quite easy, but there are no specific tools to help. In this section we’ll
quickly summarize the common methods.

When an error occurs, the shell will normally print out the line number of the line containing the error. If
the error isn’t immediately apparent, we can add some extra echo statements to display the contents of
variables and test code fragments by simply typing them into the shell interactively.

Since scripts are interpreted, there’s no compilation overhead in modifying and retrying a script. The
main way to trace more complicated errors is to set various shell options. To do this, you can either use
command line options after invoking the shell or use the set command. We summarize the options in
the following table.

Command Line Option set Option Description

sh -n <script> set -o noexec Checks for syntax errors only; 
set -n doesn’t execute commands.

sh -v <script> set -o verbose Echoes commands before 
set -v running them.

sh -x <script> set -o xtrace Echoes commands after processing
set -x on the command line.

set -o nounset Gives an error message when an
set -u undefined variable is used.

You can set the set option flags on, using -o, and off, using +o, and likewise for the abbreviated versions.
You can achieve a simple execution trace by using the xtrace option. For an initial check, you can use
the command line option, but for finer debugging, you can put the xtrace flags (setting an execution
trace on and off) inside the script around the problem code. The execution trace causes the shell to print
each line in the script, with variables expanded, before executing the line.

Use the following command to turn xtrace on:

set -o xtrace

And use the following command to turn xtrace off again: 

set +o xtrace

The level of expansion is denoted (by default) by the number of + signs at the start of each line. You can
change the + to something more meaningful by setting the PS4 shell variable in your shell configuration
file.

In the shell, you can also find out the program state wherever it exits by trapping the EXIT signal with a
line something like the following placed at the start of the script:

trap ‘echo Exiting: critical variable = $critical_variable’ EXIT
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Going Graphical—The Dialog Utility
Before we finish discussing shell scripts, there is one more feature, which, although it is not strictly part
of the shell, is generally useful only from shell programs, so we will cover it here.

If you know that your script will only ever need to run on the Linux console, there is a rather neat way
to brighten up your scripts using a utility command called dialog. This command uses text mode
graphics and color, but it still looks pleasantly graphically oriented.

The whole idea of dialog is beautifully simple—a single program with a variety of parameters and
options that allows you to display various types of graphical boxes, ranging from simple Yes/No boxes
to input boxes and even menu selections. The utility generally returns when the user has made some
sort of input, and the result can be found either from the exit status or if text was entered by retrieving
the standard error stream.

Before we move on to more detail, let’s look at a very simple use of dialog in operation. We can use
dialog directly from the command line, which is great for prototyping, so let’s create a simple message
box to display the traditional first program:

dialog --msgbox “Hello World” 9 18

On the screen appears a graphical information box, complete with OK dialog (see Figure 2-3).

Figure 2-3

Now that we have seen how easy dialog is, let’s look at the possibilities in more detail.
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The principal types of dialogs we can create are in the following table:

Type Option Used to Meaning
Create Type

Check boxes --checklist Allows you to display a list of items, each of which
may be individually selected.

Info boxes --infobox A simple display in a box that returns immediately,
without clearing the screen.

Input boxes --inputbox Allows the user to type in text.

Menu boxes --menu Allow the user to pick a single item from a list.

Message boxes --msgbox Displays a message to the user with an OK button
when they wish to continue.

Radio selection boxes --radiolist Allows the user to select an option from a list.

Text boxes --textbox Allows you to display a file in a scrolling box.

Yes/No boxes --yesno Allows you to ask a question, to which the user
can select either yes or no.

There are some additional dialog box types available (for example, a gauge and a password-entry box).
If you want to know more about the more unusual dialog types, details can be found, as ever, in the
online manual pages.

To get the output of any type of box that allows textual input, or selections, you have to capture the stan-
dard error stream, usually by directing it to a temporary file, which you can then process afterward. To
get the result of Yes/No type questions, just look at the exit code, which, like all well-behaved programs,
returns 0 for success (i.e., a “yes” section) or 1 for failure.

All dialog types have various additional parameters to control, such as the size and shape of the dialog
presented. We will list the different parameters required for each type first, and then we will demonstrate
some of them on the command line. Finally, we’ll write a simple program to combine several dialogs into
a single program.

Dialog Type Parameters

--checklist text height width list-height [tag text status] ...

--infobox text height width

--inputbox text height width [initial string]

--menu text height width menu-height [tag item ] ...

--msgbox text height width

--radiolist text height width list-height [tag text status] ...

--textbox filename height width

--yesno text height width
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In addition, all the dialog types take several options. We will not list them all here, except to mention
two: --title, which allows you to specify a title for the box, and --clear, which is used on its own for
clearing the screen. As ever, check the manual page for the full list of options.

Try It Out—Using the dialog Utility
Let’s leap straight in with a nice complex example. Once you understand this example, all the others will
be easy! This example will create a checklist-type box, with a title Check me and the instructions Pick
Numbers. The checklist box will be 15 characters high by 25 characters wide, and each option will
occupy 3 characters of height. Last, but not least, we list the options to be displayed, along with a default
on/off selection.

dialog --title “Check me” --checklist “Pick Numbers” 15 25 3 1 “one” “off” 2 “two”
“on” 3 “three” “off”

Figure 2-4 shows the result onscreen.

Figure 2-4

How It Works
In this example, the --checklist parameter tells us we are to create a checklist-type dialog. We use the
--title option to set the title to Check me, and the next parameter is the prompt message of Pick
Numbers.

We then move on to set the size of the dialog. It will be 15 lines high by 25 characters wide, and 3 lines
will be used for the menu. It’s not a perfect sizing, but it does allow you to see how things are laid out.
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The options look a little tricky, but all you have to remember is that each menu item has three values:

❑ Bullet number

❑ Text

❑ Status

So the first item has a number of 1, and text display of “one” and is set to “off”. We then start on the
next menu item, which is 2, “two” and selected. This continues until you run out of menu items.

Easy, wasn’t it? Just try some out on the command line and see how easy it is to use.

In order to put this together in a program, we need to be able to access the results of the user input. This
is quite easy; we simply redirect the standard error stream for text input, or check the environment vari-
able $?, which you will recall is the exit status of the previous command.

Try It Out
Let’s look at a simple program called questions, which takes note of user responses.

#!/bin/sh

# Ask some questions and collect the answer

dialog --title “Questionnaire” --msgbox “Welcome to my simple survey” 9 18

We start off by displaying a simple dialog box to tell the user what is happening. You don’t need to get
the result or obtain any user input, so this is nice and simple.

dialog --title “Confirm” --yesno “Are you willing to take part?”  9 18
if [ $? != 0 ]; then

dialog --infobox “Thank you anyway” 5 20
sleep 2
dialog --clear
exit 0

fi

Now we ask the user if he or she wants to proceed, using a simple yes/no dialog box. We use the environ-
ment variable $? to check if the user selected yes (result code 0) or not. If they didn’t want to proceed, we
use a simple infobox that requires no user input before exiting.

dialog --title “Questionnaire” --inputbox “Please enter your name” 9 30 2>_1.txt
Q_NAME=$(cat _1.txt)

We now ask the user his name, using an input box. We redirect the standard error stream, 2, into a tempo-
rary file, _1.txt, which we can then process into the variable QNAME.

dialog --menu “$Q_NAME, what music do you like best?” 15 30 4 1 “Classical” 2
“Jazz” 3 “Country” 4 “Other” 2>_1.txt
Q_MUSIC=$(cat _1.txt)
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Here we show the menu item with four different options. Again we redirect the standard error stream
and load it into a variable.

if [ “$Q_MUSIC” == “1” ]; then
dialog --msgbox “Good choice!” 12 25

fi

If the user selects menu option 1, this will be stored in the temporary file _1.txt, which we have
grabbed in to the variable Q_MUSIC so that we can test the result.

sleep 5
dialog --clear
exit 0

Finally, we clear the last dialog box and exit the program.

Figure 2-5 shows is what it looks like onscreen.

Figure 2-5

Now you have a way, providing you need to use only the Linux console, of writing simple GUI pro-
grams from a shell script.

Putting It All Together
Now that we’ve seen the main features of the shell as a programming language, it’s time to write an
example program to put some of what we have learned to use.
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Throughout this book, we’re going to be building a CD database application to show the techniques
we’ve been learning. We start with a shell script, but pretty soon we’ll do it again in C, add a database,
and so on. Let’s start.

Requirements
Suppose we have an extensive CD collection. To make our lives easier, we’re going to design and imple-
ment a program for managing CDs. An electronic catalogue seems an ideal project to implement as we
learn about programming Linux.

We want, at least initially, to store some basic information about each CD, such as the label, type of
music, and artist or composer. We would also like to store some simple track information.

We want to be able to search on any of the “per CD” items, but not on any of the track details.

To make the miniapplication complete, we would also like to be able to enter, update, and delete any of
the information from within the application.

Design
The three requirements—updating, searching, and displaying the data—suggest that a simple menu will
be adequate. All the data we need to store is textual and, assuming our CD collection isn’t too big, we
have no need for a complex database, so some simple text files will do. Storing information in text files
will keep our application simple, and if our requirements change, it’s almost always easier to manipu-
late a text file than any other sort of file. As a last resort, we could even use an editor to manually enter
and delete data, rather than write a program to do it.

We need to make an important design decision about our data storage: Will a single file suffice and, if so,
what format should it have? Most of the information we expect to store occurs only once per CD (we’ll
skip lightly over the fact that some CDs contain the work of many composers or artists), except track
information. Just about all CDs have more than one track.

Should we fix a limit on the number of tracks we can store per CD? That seems rather an arbitrary and
unnecessary restriction, so let’s reject that idea right away!

If we allow a flexible number of tracks, we have three options: 

❑ Use a single file, with one line for the “title” type information and then n lines for the track
information for that CD.

❑ Put all the information for each CD on a single line, allowing the line to continue until no more
track information needs to be stored.

❑ Separate the title information from the track information and use a different file for each.

Only the third option allows us to easily fix the format of the files, which we’ll need to do if we ever
wish to convert our database into a relational form (more on this in Chapter 7), so that’s the option we’ll
choose.
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The next decision is what to put in the files.

Initially, for each CD title, we’ll choose to store

❑ The CD catalog number

❑ The title

❑ The type (classical, rock, pop, jazz, etc.)

❑ The composer or artist

For the tracks, we’ll store simply

❑ Track number

❑ Track name

In order to join the two files, we must relate the track information to the rest of the CD information. To do
this, we’ll use the CD catalog number. Since this is unique for each CD, it will appear only once in the titles
file and once per track in the tracks file.

Let’s look at an example titles file:

Catalog Title Type Composer

CD123 Cool sax Jazz Bix

CD234 Classic violin Classical Bach

CD345 Hits99 Pop Various

Its corresponding tracks file will look like this:

Catalog Track No. Title

CD123 1 Some jazz

CD123 2 More jazz

CD345 1 Dizzy

CD234 1 Sonata in D minor

The two files join using the Catalog field. Remember, there are normally multiple rows in the tracks file
for a single entry in the titles file.

The last thing we need to decide is how to separate the entries. Fixed-width fields are normal in a rela-
tional database, but are not always the most convenient. Another common method is a comma, which
we’ll use here (i.e., a comma-separated variable, or CSV, file).
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In the following Try It Out section, just so you don’t get totally lost, we’ll be using the following functions:

get_return()
get_confirm()
set_menu_choice()
insert_title()
insert_track()
add_record_tracks()
add_records()
find_cd()
update_cd()
count_cds()
remove_records()
list_tracks()

Try It Out—A CD Application
1. First in our sample script is, as always, a line ensuring that it’s executed as a shell script, fol-

lowed by some copyright information:

#!/bin/sh

# Very simple example shell script for managing a CD collection.
# Copyright (C) 1996-2003 Wrox Press.

# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your
# option) any later version.

# This program is distributed in the hopes that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.

# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.
# 675 Mass Ave, Cambridge, MA 02139, USA.

2. The first thing to do is to ensure that some global variables that we’ll be using throughout the
script are set up. We set the title and track files and a temporary file. We also trap Ctrl+C, so that
our temporary file will be removed if the user interrupts the script.

menu_choice=””
current_cd=””
title_file=”title.cdb”
tracks_file=”tracks.cdb”
temp_file=/tmp/cdb.$$
trap ‘rm -f $temp_file’ EXIT

3. Now we define our functions, so that the script, executing from the top line, can find all the
function definitions before we attempt to call any of them for the first time. To avoid rewriting
the same code in several places, the first two functions are simple utilities.
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get_return() {
echo -e “Press return \c”
read x
return 0

}

get_confirm() {
echo -e “Are you sure? \c”
while true
do

read x
case “$x” in

y | yes | Y | Yes | YES ) 
return 0;;

n | no  | N | No  | NO ) 
echo 
echo “Cancelled”
return 1;;

*) echo “Please enter yes or no” ;;
esac

done
}

4. Here we come to the main menu function, set_menu_choice. The contents of the menu vary
dynamically, with extra options being added if a CD entry has been selected.

set_menu_choice() {
clear
echo “Options :-”
echo
echo “   a) Add new CD”
echo “   f) Find CD”
echo “   c) Count the CDs and tracks in the catalog”
if [ “$cdcatnum” != “” ]; then

echo “   l) List tracks on $cdtitle”
echo “   r) Remove $cdtitle”
echo “   u) Update track information for $cdtitle”

fi
echo “   q) Quit”
echo
echo -e “Please enter choice then press return \c”
read menu_choice
return

}

5. Here are two more very short functions, insert_title and insert_track, for adding to
the database files. Though some people hate one-liners like these, they help make other func-
tions clearer.

Note that echo -e may not be portable to some shells.
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They are followed by the larger add_record_track function that uses them. This function
uses pattern matching to ensure that no commas are entered (since we’re using commas as a
field separator) and also arithmetic operations to increment the current track number as tracks
are entered.

insert_title() {
echo $* >> $title_file
return

}

insert_track() {
echo $* >> $tracks_file
return

}

add_record_tracks() {
echo “Enter track information for this CD”
echo “When no more tracks enter q”
cdtrack=1
cdttitle=””
while [ “$cdttitle” != “q” ]
do

echo -e “Track $cdtrack, track title? \c”
read tmp
cdttitle=${tmp%%,*}
if [ “$tmp” != “$cdttitle” ]; then

echo “Sorry, no commas allowed”
continue

fi
if [ -n “$cdttitle” ] ; then

if [ “$cdttitle” != “q” ]; then
insert_track $cdcatnum,$cdtrack,$cdttitle

fi
else

cdtrack=$((cdtrack-1))
fi

cdtrack=$((cdtrack+1))
done

}

6. The add_records function allows entry of the main CD information for a new CD.

add_records() {
# Prompt for the initial information

echo -e “Enter catalog name \c”
read tmp
cdcatnum=${tmp%%,*}

echo -e “Enter title \c”
read tmp
cdtitle=${tmp%%,*}

echo -e “Enter type \c”
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read tmp
cdtype=${tmp%%,*}

echo -e “Enter artist/composer \c”
read tmp
cdac=${tmp%%,*}

# Check that they want to enter the information

echo About to add new entry
echo “$cdcatnum $cdtitle $cdtype $cdac”

# If confirmed then append it to the titles file

if get_confirm ; then
insert_title $cdcatnum,$cdtitle,$cdtype,$cdac
add_record_tracks

else
remove_records

fi 

return
}

7. The find_cd function searches for the catalog name text in the CD title file, using the grep
command. We need to know how many times the string was found, but grep returns a value
telling us only if it matched zero times or many. To get around this, we store the output in a file,
which will have one line per match, then count the lines in the file.

The word count command, wc, has white space in its output, separating the number of lines,
words, and characters in the file. We use the $(wc -l $temp_file) notation to extract the
first parameter from the output in order to set the linesfound variable. If we wanted another,
later parameter, we would use the set command to set the shell’s parameter variables to the
command output.

We change the IFS (Internal Field Separator) to a comma so we can separate the comma-delimited
fields. An alternative command is cut.

find_cd() {
if [ “$1” = “n” ]; then

asklist=n
else

asklist=y
fi
cdcatnum=””
echo -e “Enter a string to search for in the CD titles \c”
read searchstr
if [ “$searchstr” = “” ]; then

return 0
fi

grep “$searchstr” $title_file > $temp_file

set $(wc -l $temp_file)
linesfound=$l
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case “$linesfound” in
0)    echo “Sorry, nothing found”

get_return
return 0
;;

1)    ;;
2)    echo “Sorry, not unique.”

echo “Found the following”
cat $temp_file
get_return
return 0

esac

IFS=”,”
read cdcatnum cdtitle cdtype cdac < $temp_file
IFS=” “

if [ -z “$cdcatnum” ]; then
echo “Sorry, could not extract catalog field from $temp_file”
get_return 
return 0

fi

echo
echo Catalog number: $cdcatnum
echo Title: $cdtitle
echo Type: $cdtype
echo Artist/Composer: $cdac
echo
get_return

if [ “$asklist” = “y” ]; then
echo -e “View tracks for this CD? \c”

read x
if [ “$x” = “y” ]; then

echo
list_tracks
echo

fi
fi
return 1

}

8. update_cd allows us to re-enter information for a CD. Notice that we search (using grep)
for lines that start (^) with the $cdcatnum followed by a , and that we need to wrap the
expansion of $cdcatnum in {} so we can search for a , with no whitespace between it and the
catalogue number. This function also uses {} to enclose multiple statements to be executed if
get_confirm returns true.

update_cd() {
if [ -z “$cdcatnum” ]; then

echo “You must select a CD first”
find_cd n

fi
if [ -n “$cdcatnum” ]; then
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echo “Current tracks are :-”
list_tracks
echo
echo “This will re-enter the tracks for $cdtitle”
get_confirm && {

grep -v “^${cdcatnum},” $tracks_file > $temp_file
mv $temp_file $tracks_file
echo
add_record_tracks

}
fi
return

}

9. count_cds gives us a quick count of the contents of our database.

count_cds() {
set $(wc -l $title_file)
num_titles=$l
set $(wc -l $tracks_file)
num_tracks=$l
echo found $num_titles CDs, with a total of $num_tracks tracks
get_return
return

}

10. remove_records strips entries from the database files, using grep -v to remove all match-
ing strings. Notice we must use a temporary file.

If we tried to do this,

grep -v “^$cdcatnum” > $title_file

the $title_file would be set to empty by the > output redirection before grep had the
chance to execute, so grep would read from an empty file.

remove_records() {
if [ -z “$cdcatnum” ]; then

echo You must select a CD first
find_cd n

fi
if [ -n “$cdcatnum” ]; then

echo “You are about to delete $cdtitle”
get_confirm && {

grep -v “^${cdcatnum},” $title_file > $temp_file
mv $temp_file $title_file
grep -v “^${cdcatnum},” $tracks_file > $temp_file
mv $temp_file $tracks_file
cdcatnum=””
echo Entry removed

}
get_return

fi
return

}
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11. list_tracks again uses grep to extract the lines we want, cut to access the fields we want,
and then more to provide a paginated output. If you consider how many lines of C code it
would take to reimplement these 20-odd lines of code, you’ll appreciate how powerful a tool
the shell can be.

list_tracks() {
if [ “$cdcatnum” = “” ]; then

echo no CD selected yet
return

else
grep “^${cdcatnum},” $tracks_file > $temp_file
num_tracks=$(wc -l $temp_file)
if [ “$num_tracks” = “0” ]; then

echo no tracks found for $cdtitle
else { 

echo
echo “$cdtitle :-”
echo 
cut -f 2- -d , $temp_file 
echo 

} | ${PAGER:-more}
fi

fi
get_return
return

}

12. Now that all the functions have been defined, we can enter the main routine. The first few lines
simply get the files into a known state; then we call the menu function, set_menu_choice,
and act on the output.

When quit is selected, we delete the temporary file, write a message, and exit with a successful
completion condition.

rm -f $temp_file
if [ ! -f $title_file ]; then

touch $title_file
fi
if [ ! -f $tracks_file ]; then

touch $tracks_file
fi

# Now the application proper

clear
echo
echo
echo “Mini CD manager”
sleep 1

quit=n
while [ “$quit” != “y” ];
do

set_menu_choice
case “$menu_choice” in

a) add_records;;
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r) remove_records;;
f) find_cd y;;
u) update_cd;;
c) count_cds;;
l) list_tracks;;
b) 

echo
more $title_file
echo
get_return;;

q | Q ) quit=y;;
*) echo “Sorry, choice not recognized”;;

esac
done

#Tidy up and leave

rm -f $temp_file
echo “Finished”
exit 0

Notes on the Application
The trap command at the start of the script is intended to trap the user’s pressing of Ctrl+C. This may
be either the EXIT or the INT signal, depending on the terminal setup.

There are other ways of implementing the menu selection, notably the select construct in bash and ksh
(which, isn’t, however, specified in X/Open). This construct is a dedicated menu choice selector. Check it
out if your script can afford to be slightly less portable. Multiline information given to users could also
make use of here documents.

You might have noticed that there’s no validation of the primary key when a new record is started; the
new code just ignores the subsequent titles with the same code, but incorporates their tracks into the first
title’s listing:

1 First CD Track 1
2 First CD Track 2
1 Another CD
2 With the same CD key

We’ll leave this and other improvements to your imagination and creativity, as you can modify the code
under the terms of the GPL.

Summary
In this chapter, we’ve seen that the shell is a powerful programming language in its own right. Its ability
to call other programs easily and then process their output makes the shell an ideal tool for tasks involv-
ing the processing of text and files.

Next time you need a small utility program, consider whether you can solve your problem by combining
some of the many Linux commands with a shell script. You’ll be surprised just how many utility programs
you can write without a compiler.
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3
Working with Files

In this chapter, we’ll be looking at Linux files and directories and how to manipulate them. We’ll
learn how to create files, open them, read, write, and close them. We’ll also learn how programs
can manipulate directories (to create, scan, and delete them, for example). After the last chapter’s
diversion into shells, we now start programming in C.

Before proceeding to the way Linux handles file I/O, we’ll review the concepts associated with
files, directories, and devices. To manipulate files and directories, we need to make system calls
(the UNIX and Linux parallel of the Windows API), but there also exists a whole range of library
functions, the standard I/O library (stdio), to make file handling more efficient.

We’ll spend the majority of the chapter detailing the various calls to handle files and directories.
So this chapter will cover

❑ Files and devices

❑ System calls

❑ Library functions

❑ Low-level file access

❑ Managing files

❑ The standard I/O library

❑ Formatted input and output

❑ File and directory maintenance

❑ Scanning directories

❑ Errors

❑ The /proc file system

❑ Advanced topics: fcntl and mmap
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Linux File Structure
“Why,” you may be asking, “are we covering file structure? I know about that already.” Well, as with
UNIX, files in the Linux environment are particularly important, as they provide a simple and consistent
interface to the operating system services and devices. In Linux, everything is a file. Well, almost!

This means that, in general, programs can use disk files, serial ports, printers, and other devices in
exactly the same way they would use a file. We’ll cover some exceptions, such as network connections,
in Chapter 15, but mainly you need to use only five basic functions: open, close, read, write, and
ioctl.

Directories, too, are special sorts of files. In modern UNIX versions, including Linux, even the superuser
may not write to them directly. All users ordinarily use the high-level opendir/readdir interface to
read directories without needing to know the system-specific details of directory implementation. We’ll
return to special directory functions later in this chapter.

Really, almost everything is represented as a file under Linux, or can be made available via special files.
Even though there are, by necessity, subtle differences from the conventional files we know and love, the
general principle still holds. Let’s look at the special cases we’ve mentioned so far.

Directories
As well as its contents, a file has a name and some properties, or “administrative information”; that is, the
file’s creation/modification date and its permissions. The properties are stored in the file’s inode, a special
block of data in the file system that also contains the length of the file and where on the disk it’s stored.
The system uses the number of the file’s inode; the directory structure just names the file for our benefit.

A directory is a file that holds the inode numbers and names of other files. Each directory entry is a link
to a file’s inode; remove the filename and you remove the link. (You can see the inode number for a file
by using ln –i.) Using the ln command, you can make links to the same file in different directories. If
the number of links to a file (the number after the permissions in ls -l) reaches zero, the inode and the
data it references are no longer in use and are marked as free.

Files are arranged in directories, which may also contain subdirectories. These form the familiar file sys-
tem hierarchy. A user, say neil, usually has his files stored in a “home” directory, perhaps /home/neil,
with subdirectories for e-mail, business letters, utility programs, and so on. Note that many command
shells for UNIX and Linux have an excellent notation for getting straight to your home directory: the
tilde ~. For another user, type ~user. As you know, home directories for each user are usually subdirecto-
ries of a higher-level directory created specifically for this purpose, in this case /home. 

Note that the standard library functions unfortunately do not understand the tilde notation in file name
parameters.

The /home directory is itself a subdirectory of the root directory, /, which sits at the top of the hierarchy
and contains all of the system’s files in subdirectories. The root directory normally includes /bin for sys-
tem programs (`binaries’), /etc for system configuration files, and /lib for system libraries. Files that
represent physical devices and provide the interface to those devices are conventionally found in a direc-
tory called /dev. See Figure 3-1 for an example of part of a typical Linux hierarchy. More information on
the Linux file system layout is available in the Linux File System Standard, or you can check out man
hier for a description of the directory hierarchy.
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Figure 3-1

Files and Devices
Even hardware devices are very often represented (mapped) by files. For example, as the superuser, you
mount a CD-ROM drive as a file:

# mount -t iso9660 /dev/hdc /mnt/cdrom
# cd /mnt/cdrom

which takes the CD-ROM device (loaded as /dev/hdc during boot-up) and mounts its current contents
as the file structure beneath /mnt/cdrom. You then move around within the CD-ROM’s directories just
as normal, except, of course, that the contents are read-only.

Three important device files found in both UNIX and Linux are /dev/console, /dev/tty, and
/dev/null.

/dev/console
This device represents the system console. Error messages and diagnostics are often sent to this device.
Each UNIX system has a designated terminal or screen to receive console messages. At one time, it might
have been a dedicated printing terminal. On modern workstations, and on Linux, it’s usually the `active’
virtual console, while under X, it will be a special console window on the screen.

/dev/tty
The special file /dev/tty is an alias (logical device) for the controlling terminal (keyboard and screen,
or window) of a process, if it has one. For instance, processes running from cron won’t have a control-
ling terminal, and therefore won’t be able to open /dev/tty.

Where it can be used, /dev/tty allows a program to write directly to the user, without regard to which
pseudo-terminal or hardware terminal the user is using. It is useful when the standard output has been
redirected. One example is the command ls –R | more, where the program more has to prompt the
user for each new page of output. We’ll see more of /dev/tty in Chapter 5.

Note that while there’s only one /dev/console device, there are effectively many different physical
devices accessed through /dev/tty.

programsletters

neil

/

rick

homedevbin

mail
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/dev/null
This is the null device. All output written to this device is discarded. An immediate end of file is
returned when the device is read, and it can be used as a source of empty files by using the cp com-
mand. Unwanted output is often redirected to /dev/null.

$ echo do not want to see this >/dev/null
$ cp /dev/null empty_file

Other devices found in /dev include hard and floppy disks, communications ports, tape drives,
CD-ROMs, sound cards, and some devices representing the system’s internal state. There’s even a
/dev/zero, which acts as a source of null bytes to create files of zeros. You need superuser permissions
to access some of these devices; normal users can’t write programs to directly access low-level devices
like hard disks. The names of the device files may vary from system to system. Linux distributions usu-
ally have applications that run as superuser to manage the devices that would be otherwise inaccessible,
for example, mount for user-mountable file systems.

Devices are classified as either character devices or block devices. The difference refers to the fact that some
devices need to be accessed a block at a time. Typically, the only block devices are those that support
some type of random access file system, like hard disks.

In this chapter, we concentrate on disk files and directories. We’ll cover another device, the user’s termi-
nal, in Chapter 5.

System Calls and Device Drivers
We can access and control files and devices using a small number of functions. These functions, known
as system calls, are provided by UNIX (and Linux) directly, and are the interface to the operating system
itself.

At the heart of the operating system, the kernel, are a number of device drivers. These are a collection of
low-level interfaces for controlling system hardware, which we will cover in detail in Chapter 18. For
example, there will be a device driver for a tape drive, which knows how to start the tape, wind it for-
ward and backward, read and write to it, and so on. It will also know that tapes have to be written to
in blocks of a certain size. Because tapes are sequential in nature, the driver can’t access tape blocks
directly, but must wind the tape to the right place.

Similarly, a low-level hard disk device driver will only write whole numbers of disk sectors at a time,
but will be able to access any desired disk block directly, because the disk is a random access device.

To provide a similar interface, device drivers encapsulate all of the hardware-dependent features.
Idiosyncratic features of the hardware are usually available through ioctl.

Another way of creating empty files is to use the touch <filename> command,
which changes the modification time of a file or creates a new file if none exists
with the given name. It won’t empty it of its contents, though.
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Device files in /dev are used in the same way; they can be opened, read, written, and closed. For exam-
ple, the same open call used to access a regular file is used to access a user terminal, a printer, or a tape
drive.

The low-level functions used to access the device drivers, the system calls, include:

❑ open: Open a file or device

❑ read: Read from an open file or device

❑ write: Write to a file or device

❑ close: Close the file or device

❑ ioctl: Pass control information to a device driver

The ioctl system call is used to provide some necessary hardware-specific control (as opposed to regu-
lar input and output), so its use varies from device to device. For example, a call to ioctl can be used to
rewind a tape drive or set the flow control characteristics of a serial port. For this reason, ioctl isn’t
necessarily portable from machine to machine. In addition, each driver defines its own set of ioctl
commands.

These and other system calls are usually documented in section 2 of the manual pages. Prototypes provid-
ing the parameter lists and function return types for system calls, and associated #defines of constants,
are provided in include files. The particular ones required for each system call will be included with the
descriptions of individual calls.

Library Functions
The problem with using low-level system calls directly for input and output is that they can be very inef-
ficient. Why? Well:

❑ There’s a performance penalty in making a system call. System calls are therefore expensive
compared to function calls because Linux has to switch from running your program code to exe-
cuting its own kernel code and back again. It’s a good idea to keep the number of system calls
used in a program to a minimum and get each call to do as much work as possible, for example,
by reading and writing large amounts of data rather than a single character at a time.

❑ The hardware has limitations that can impose restrictions on the size of data blocks that can be
read or written by the low-level system call at any one time. For example, tape drives often have
a block size, say 10k, to which they can write. So, if you attempt to write an amount that is not
an exact multiple of 10k, the drive will still advance the tape to the next 10k block, leaving gaps
on the tape.

To provide a higher-level interface to devices and disk files, a Linux distribution, like UNIX, provides a
number of standard libraries. These are collections of functions that you can include in your own programs
to handle these problems. A good example is the standard I/O library that provides buffered output. You
can effectively write data blocks of varying sizes, and the library functions arrange for the low-level system
calls to be provided with full blocks as the data is made available. This dramatically reduces the system call
overhead. 
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Library functions are usually documented in section 3 of the manual pages and often have a standard
include file associated with them, such as stdio.h for the standard I/O library.

To summarize the discussion of the last few sections, Figure 3-2 illustrates the Linux system, showing
where the various file functions exist relative to the user, the device drivers, the kernel, and the hardware.

Figure 3-2

Low-Level File Access
Each running program, called a process, has a number of file descriptors associated with it. These are
small integers that you can use to access open files or devices. How many of these are available will vary
depending on how the system has been configured. When a program starts, it usually has three of these
descriptors already opened. These are:

❑ 0: Standard input

❑ 1: Standard output

❑ 2: Standard error

You can associate other file descriptors with files and devices by using the open system call, which we’ll
discuss shortly. The file descriptors that are automatically opened, however, already allow us to create
some simple programs using write.

write
The write system call arranges for the first nbytes bytes from buf to be written to the file associated
with the file descriptor fildes. It returns the number of bytes actually written. This may be less than
nbytes if there has been an error in the file descriptor or if the underlying device driver is sensitive to
block size. If the function returns 0, it means no data was written; if it returns -1, there has been an error
in the write call, and the error will be specified in the errno global variable. 

User program
User Space

Calls

Library

System calls

Kernel
Kernel Space

Device Drivers

Hardware
Devices
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Here’s the syntax:

#include <unistd.h>

size_t write(int fildes, const void *buf, size_t nbytes);

With this knowledge, let’s write our first program, simple_write.c:

#include <unistd.h>
#include <stdlib.h>

int main()
{

if ((write(1, “Here is some data\n”, 18)) != 18)
write(2, “A write error has occurred on file descriptor 1\n”,46);

exit(0);
}

This program simply prints a message to the standard output. When a program exits, all open file
descriptors are automatically closed, so we don’t need to close them explicitly. This won’t be the case,
however, when we’re dealing with buffered output.

$ simple_write
Here is some data
$ 

A point worth noting again is that write might report that it wrote fewer bytes than you asked it to.
This is not necessarily an error. In your programs, you will need to check errno to detect errors and call
write to write any remaining data.

read
The read system call reads up to nbytes bytes of data from the file associated with the file descriptor
fildes and places them in the data area buf. It returns the number of data bytes actually read, which
may be less than the number requested. If a read call returns 0, it had nothing to read; it reached the end
of the file. Again, an error on the call will cause it to return – 1.

#include <unistd.h>

size_t read(int fildes, void *buf, size_t nbytes);

All the examples in this chapter assume that you have the current directory in your
PATH and that, consequently, you’re not running them while you’re a superuser. If
you do not have the current directory in your PATH (an essential superuser precau-
tion), you can run the program specifying the directory explicitly like this:

$ ./simple_write
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This program, simple_read.c, copies the first 128 bytes of the standard input to the standard output. It
copies all of the input if there are fewer than 128 bytes.

#include <unistd.h>
#include <stdlib.h>

int main()
{

char buffer[128];
int nread;

nread = read(0, buffer, 128);
if (nread == -1)

write(2, “A read error has occurred\n”, 26);

if ((write(1,buffer,nread)) != nread)
write(2, “A write error has occurred\n”,27);

exit(0);
}

If we run the program, we should see the following:

$ echo hello there | simple_read
hello there
$ simple_read < draft1.txt
Files
In this chapter we will be looking at files and directories and how to manipulate
them. We will learn how to create files, o$

In the first execution, we create some input for the program using echo, which is piped to our program.
In the second execution, we redirect input from a file. In this case, we see the first part of the file
draft1.txt appearing on the standard output.

Note how the next shell prompt appears at the end of the last line of output because, in this example, the
128 bytes don’t form a whole number of lines.

open
To create a new file descriptor, we need to use the open system call. 

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

int open(const char *path, int oflags); 
int open(const char *path, int oflags, mode_t mode);

Strictly speaking, we don’t need to include sys/types.h and sys/stat.h to use open on
POSIX systems, but they may be necessary on some UNIX systems.
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In simple terms, open establishes an access path to a file or device. If successful, it returns a file descrip-
tor that can be used in read, write, and other system calls. The file descriptor is unique and isn’t shared
by any other processes that may be running. If two programs have a file open at the same time, they
maintain distinct file descriptors. If they both write to the file, they will continue to write where they left
off. Their data isn’t interleaved, but one will overwrite the other. Each keeps its own idea of how far into
the file (the offset) it has read or written. We can prevent unwanted clashes of this sort by using file lock-
ing, which we’ll look at in Chapter 7.

The name of the file or device to be opened is passed as a parameter, path; the oflags parameter is
used to specify actions to be taken on opening the file.

The oflags are specified as a combination of a mandatory file access mode and other optional modes.
The open call must specify one of the following file access modes:

Mode Description

O_RDONLY Open for read-only

O_WRONLY Open for write-only

O_RDWR Open for reading and writing

The call may also include a combination (using a bitwise OR) of the following optional modes in the
oflags parameter:

❑ O_APPEND: Place written data at the end of the file.

❑ O_TRUNC: Set the length of the file to zero, discarding existing contents.

❑ O_CREAT: Creates the file, if necessary, with permissions given in mode.

❑ O_EXCL: Used with O_CREAT, ensures that the caller creates the file. The open is atomic; that is,
it’s performed with just one function call. This protects against two programs creating the file at
the same time. If the file already exists, open will fail.

Other possible values for oflags are documented in the open manual page, which can be found in 
section 2 of the manual pages (use man 2 open).

open returns the new file descriptor (always a nonnegative integer) if successful, or -1 if it fails, at which
time open also sets the global variable errno to indicate the reason for the failure. We’ll look at errno
more closely in a later section. The new file descriptor is always the lowest-numbered unused descriptor,
a feature that can be quite useful in some circumstances. For example, if a program closes its standard
output and then calls open again, the file descriptor 1 will be reused and the standard output will have
been effectively redirected to a different file or device. 

There is also a creat call standardized by POSIX, but it is not often used. creat doesn’t only create
the file, as one might expect, but also opens it—it’s equivalent to calling open with oflags equal to
O_CREAT|O_WRONLY|O_TRUNC.
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Initial Permissions
When we create a file using the O_CREAT flag with open, we must use the three-parameter form. mode,
the third parameter, is made from a bitwise OR of the flags defined in the header file sys/stat.h.
These are:

❑ S_IRUSR: Read permission, owner

❑ S_IWUSR: Write permission, owner

❑ S_IXUSR: Execute permission, owner

❑ S_IRGRP: Read permission, group

❑ S_IWGRP: Write permission, group

❑ S_IXGRP: Execute permission, group

❑ S_IROTH: Read permission, others

❑ S_IWOTH: Write permission, others

❑ S_IXOTH: Execute permission, others

For example,

open (“myfile”, O_CREAT, S_IRUSR|S_IXOTH);

has the effect of creating a file called myfile, with read permission for the owner and execute permis-
sion for others, and only those permissions.

$ ls -ls myfile
0 -r———-x   1 neil     software        0 Sep 22 08:11 myfile*

There are a couple of factors that may affect the file permissions. Firstly, the permissions specified are
used only if the file is being created. Secondly, the user mask (specified by the shell’s umask command)
affects the created file’s permissions. The mode value given in the open call is ANDed, with the inverse
of the user mask value at run time. For example, if the user mask is set to 001 and the S_IXOTH mode
flag is specified, the file won’t be created with “other” execute permission because the user mask speci-
fies that “other” execute permission isn’t to be provided. The flags in the open and creat calls are, in
fact, requests to set permissions. Whether or not the requested permissions are set depends on the run-
time value of umask.

umask
The umask is a system variable that encodes a mask for file permissions to be used when a file is cre-
ated. You can change the variable by executing the umask command to supply a new value. The value
is a three-digit octal value. Each digit is the result of ANDing values from 1, 2, or 4; the meanings are
shown in the following table. The separate digits refer to “user,” “group,” and “other” permissions,
respectively. 
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Digit Value Meaning

1 0 No user permissions are to be disallowed.

4 User read permission is disallowed.

2 User write permission is disallowed.

1 User execute permission is disallowed.

2 0 No group permissions are to be disallowed.

4 Group read permission is disallowed.

2 Group write permission is disallowed.

1 Group execute permission is disallowed.

3 0 No other permissions are to be disallowed.

4 Other read permission is disallowed.

2 Other write permission is disallowed.

1 Other execute permission is disallowed.

For example, to block “group” write and execute, and “other” write, the umask would be

Digit Value

1 0

2 2

1

3 2

Values for each digit are ANDed together; so digit 2 will have 2 & 1, giving 3. The resulting umask is 032.

When we create a file via an open or creat call, the mode parameter is compared with the umask. Any
bit setting in the mode parameter that is also set in the umask is removed. The end result is that users can
set up their environment to say “Don’t create any files with (say) write permission for others, even if the
program creating the file requests that permission.” This doesn’t prevent a program or user from subse-
quently using the chmod command (or chmod system call in a program) to add other write permissions,
but it does help protect users by saving them from having to check and set permissions on all new files.

close
We use close to terminate the association between a file descriptor, fildes, and its file. The file
descriptor becomes available for reuse. It returns 0 if successful and -1 on error. 

#include <unistd.h>

int close(int fildes);
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Note that it can be important to check the return result from close. Some file systems, particularly
networked ones, may not report an error writing to a file until the file is closed, as data may not have
been confirmed as written when writes are performed.

The number of files that any one running program may have open at once is limited. The limit, defined
by the constant OPEN_MAX in limits.h, varies from system to system, but POSIX requires that it be at
least 16. This limit may itself be subject to local system-wide limits.

ioctl
ioctl is a bit of a ragbag of things. It provides an interface for controlling the behavior of devices and their
descriptors and configuring underlying services. Terminals, file descriptors, sockets, and even tape drives
may have ioctl calls defined for them and you need to refer to the specific device’s man page for details.
POSIX defines only ioctl for streams, which are beyond the scope of this book. Here’s the syntax:

#include <unistd.h>

int ioctl(int fildes, int cmd, ...);

ioctl performs the function indicated by cmd on the object referenced by the descriptor fildes. It may
take an optional third argument, depending on the functions supported by a particular device.

Try It Out—A File Copy Program
We now know enough about the open, read, and write system calls to write a low-level program,
copy_system.c, to copy one file to another, character by character. 

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()
{

char c; 
int in, out;

in = open(“file.in”, O_RDONLY); 
out = open(“file.out”, O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
while(read(in,&c,1) == 1)

write(out,&c,1);

exit(0);
}

We’ll do this in a number of ways during this chapter to compare the efficiency of
each method. For brevity, we’ll assume that the input file exists and the output file
does not, and that all reads and writes succeed. Of course, in real-life programs, we
would check that these assumptions are valid!
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Note that the #include <unistd.h> line must come first, as it defines flags regarding POSIX
compliance that may affect other include files.

First, we will need to make a test input file, say 1 Mb in size, and name it file.in.

Running the program will give something like the following:

$ TIMEFORMAT=”” time copy_system
4.67user 146.90system 2:32.57elapsed 99%CPU
...
$ ls -ls file.in file.out
1029 -rw-r—-r-   1 neil     users     1048576 Sep 17 10:46 file.in
1029 -rw———-   1 neil     users     1048576 Sep 17 10:51 file.out

Here we use the time facility to measure how long the program takes to run. The TIMEFORMAT vari-
able is used on Linux to override the default POSIX output format of time, which does not include the
CPU usage. We can see that for this fairly old system, the 1-Mb input file, file.in, was successfully
copied to file.out, which was created with read/write permissions for owner only. However, the copy
took two-and-a-half minutes and consumed virtually all the CPU time. It was this slow because it had to
make over 2 million system calls.

In recent years, Linux has seen great strides in its system call and file system performance. By compari-
son, a similar test using a 2.4 kernel completed in a little under 5 seconds.

$ TIMEFORMAT=”” time copy_system
1.07user 3.50system 0:04.77elapsed 95%CPU 
...

We can improve matters by copying in larger blocks. Take a look at this modified program,
copy_block.c, which copies the files in 1k blocks, again using system calls:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()
{

char block[1024]; 
int in, out; 
int nread;

in = open(“file.in”, O_RDONLY); 
out = open(“file.out”, O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);

while((nread = read(in,block,sizeof(block))) > 0)
write(out,block,nread);

exit(0);
}
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Now try the program, first removing the old output file:

$ rm file.out
$ TIMEFORMAT=”” time copy_block
0.00user 0.01system 0:00.01elapsed 62%CPU
...

Now the program takes a hundredth of a second, as it requires only around 2,000 system calls. Of
course, these times are very system-dependent, but they do show that system calls have a measurable
overhead, so it’s worth optimizing their use.

Other System Calls for Managing Files
There are a number of other system calls that operate on these low-level file descriptors. These allow a
program to control how a file is used and to return status information. 

lseek
The lseek system call sets the read/write pointer of a file descriptor, fildes; that is, we can use it to set
where in the file the next read or write will occur. We can set the pointer to an absolute location in the
file or to a position relative to the current position or the end of file. 

#include <unistd.h>
#include <sys/types.h>

off_t lseek(int fildes, off_t offset, int whence);

The offset parameter is used to specify the position, and the whence parameter specifies how the offset
is used. whence can be one of the following:

❑ SEEK_SET: offset is an absolute position

❑ SEEK_CUR: offset is relative to the current position

❑ SEEK_END: offset is relative to the end of the file

lseek returns the offset measured in bytes from the beginning of the file that the file pointer is set to,
or -1 on failure. The type off_t, used for the offset in seek operations, is an implementation-dependent
type defined in sys/types.h.

fstat, stat, and lstat
The fstat system call returns status information about the file associated with an open file descriptor.
The information is written to a structure, buf, the address of which is passed as a parameter. 

Here’s the syntax:

#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
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int fstat(int fildes, struct stat *buf);
int stat(const char *path, struct stat *buf);
int lstat(const char *path, struct stat *buf);

Note that the inclusion of sys/types.h is optional, but we recommend it when using system calls,
as some of their definitions use aliases for standard types that may change one day.

The related functions stat and lstat return status information for a named file. They produce the
same results, except when the file is a symbolic link. lstat returns information about the link itself,
while stat returns information about the file to which the link refers.

The members of the structure, stat, may vary between UNIX-like systems, but will include those in the
following table:

stat Member Description

st_mode File permissions and file-type information

st_ino The inode associated with the file

st_dev The device the file resides on

st_uid The user identity of the file owner

st_gid The group identity of the file owner

st_atime The time of last access

st_ctime The time of last change to permissions, owner, group, or content

st_mtime The time of last modification to contents

st_nlink The number of hard links to the file

The st_mode flags returned in the stat structure also have a number of associated macros defined in
the header file sys/stat.h. These macros include names for permission and file-type flags and some
masks to help with testing for specific types and permissions.

The permissions flags are the same as for the preceding open system call. File-type flags include

❑ S_IFBLK: Entry is a block special device

❑ S_IFDIR: Entry is a directory

❑ S_IFCHR: Entry is a character special device

❑ S_IFIFO: Entry is a FIFO (named pipe)

❑ S_IFREG: Entry is a regular file

❑ S_IFLNK: Entry is a symbolic link
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Other mode flags include

❑ S_ISUID: Entry has setUID on execution

❑ S_ISGID: Entry has setGID on execution

Masks to interpret the st_mode flags include

❑ S_IFMT: File type

❑ S_IRWXU: User read/write/execute permissions

❑ S_IRWXG: Group read/write/execute permissions

❑ S_IRWXO: Others’ read/write/execute permissions

There are some macros defined to help with determining file types. These just compare suitably masked
mode flags with a suitable device-type flag. These include

❑ S_ISBLK: Test for block special file

❑ S_ISCHR: Test for character special file

❑ S_ISDIR: Test for directory

❑ S_ISFIFO: Test for FIFO

❑ S_ISREG: Test for regular file

❑ S_ISLNK: Test for symbolic link

For example, to test that a file doesn’t represent a directory and has execute permission set for the owner
but no other permissions, we can use the following test:

struct stat statbuf;
mode_t modes;

stat(“filename”,&statbuf);
modes = statbuf.st_mode;

if(!S_ISDIR(modes) && (modes & S_IRWXU) == S_IXUSR)
...

dup and dup2
The dup system calls provide a way of duplicating a file descriptor, giving us two or more different
descriptors that access the same file. These might be used for reading and writing to different locations in
the file. The dup system call duplicates a file descriptor, fildes, returning a new descriptor. The dup2
system call effectively copies one file descriptor to another by specifying the descriptor to use for the copy. 
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Here’s the syntax:

#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

These calls can also be useful when you’re using multiple processes communicating via pipes. We discuss
the dup system in more depth in Chapter 13.

The Standard I/O Library
The standard I/O library and its header file, stdio.h, provide a versatile interface to low-level I/O 
system calls. The library, now part of ANSI standard C, whereas the system calls we met earlier are not,
provides many sophisticated functions for formatting output and scanning input. It also takes care of
the buffering requirements for devices.

In many ways, you use this library in the same way that you use low-level file descriptors. You need to
open a file to establish an access path. This returns a value that is used as a parameter to other I/O
library functions. The equivalent of the low-level file descriptor is called a stream and is implemented
as a pointer to a structure, a FILE *.

Don’t confuse these file streams with either C++ iostreams or with the STREAMS paradigm of inter-
process communication introduced in AT&T UNIX System V Release 3, which is beyond the scope of
this book. For more information on STREAMS, check out the X/Open spec (at http://www.open
group.org) and the AT&T STREAMS Programming Guide that accompanies System V.

Three file streams are automatically opened when a program is started. They are stdin, stdout, and
stderr. These are declared in stdio.h and represent the standard input, output, and error output,
respectively, which correspond to the low-level file descriptors 0, 1, and 2.

In this next section, we’ll look at

❑ fopen, fclose

❑ fread, fwrite

❑ fflush 

❑ fseek 

❑ fgetc, getc, getchar

❑ fputc, putc, putchar

❑ fgets, gets

❑ printf, fprintf, and sprintf

❑ scanf, fscanf, and sscanf
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fopen
The fopen library function is the analog of the low-level open system call. You use it mainly for files and
terminal input and output. Where you need explicit control over devices, you’re better off with the low-
level system calls, as they eliminate potentially undesirable side effects from libraries, like input/output
buffering.

Here’s the syntax:

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

fopen opens the file named by the filename parameter and associates a stream with it. The mode
parameter specifies how the file is to be opened. It’s one of the following strings:

❑ “r” or “rb”: Open for reading only

❑ “w” or “wb”: Open for writing, truncate to zero length

❑ “a” or “ab”: Open for writing, append to end of file

❑ “r+” or “rb+” or “r+b”: Open for update (reading and writing)

❑ “w+” or “wb+” or “w+b”: Open for update, truncate to zero length

❑ “a+” or “ab+” or “a+b”: Open for update, append to end of file

The b indicates that the file is a binary file rather than a text file. 

If successful, fopen returns a non-null FILE * pointer. If it fails, it returns the value NULL, defined in
stdio.h.

fread
The fread library function is used to read data from a file stream. Data is read into a data buffer given
by ptr from the stream, stream. Both fread and fwrite deal with data records. These are specified by
a record size, size, and a count, nitems, of records to transfer. It returns the number of items (rather
than the number of bytes) successfully read into the data buffer. At the end of a file, fewer than nitems
may be returned, including zero. 

Note that, unlike MS-DOS, UNIX and Linux do not make a distinction between text
and binary files. Unix and Linux treat all files exactly the same, effectively as binary
files. It’s also important to note that the mode parameter must be a string, and not a
character. Always use “r,” and never `r.’
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Here’s the syntax:

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

As with all of the standard I/O functions that write to a buffer, it’s the programmer’s responsibility to
allocate the space for the data and check for errors. See ferror and feof later in this chapter.

fwrite
The fwrite library call has a similar interface to fread. It takes data records from the specified data
buffer and writes them to the output stream. It returns the number of records successfully written.

Here’s the syntax:

#include <stdio.h>

size_t fwrite (const void *ptr, size_t size, size_t nitems, FILE *stream);

fclose
The fclose library function closes the specified stream, causing any unwritten data to be written. It’s
important to use fclose because the stdio library will buffer data. If the program needs to be sure that
data has been completely written, it should call fclose. Note, however, that fclose is called automati-
cally on all file streams that are still open when a program ends normally, but then, of course, you do not
get a chance to check for errors reported by fclose. The number of available streams is limited, in the
same way that file descriptors are limited. The actual limit is FOPEN_MAX, which is defined in stdio.h,
and is always at least eight.

Here’s the syntax:

#include <stdio.h>

int fclose(FILE *stream);

fflush
The fflush library function causes all outstanding data on a file stream to be written immediately. You
can use this to ensure that, for example, an interactive prompt has been sent to a terminal before any
attempt to read a response. It’s also useful for ensuring that important data has been committed to disk

Note that fread and fwrite are not recommended for use with structured data.
Part of the problem is that files written with fwrite are potentially nonportable
between different machines.
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before continuing. You can sometimes use it when you’re debugging a program to make sure that the
program is writing data and not hanging. Note that an implied flush operation is carried out when
fclose is called, so you don’t need to call fflush before fclose.

Here’s the syntax:

#include <stdio.h>

int fflush(FILE *stream);

fseek
The fseek function is the file stream equivalent of the lseek system call. It sets the position in the
stream for the next read or write on that stream. The meaning and values of the offset and whence
parameters are the same as those we gave previously for lseek. However, where lseek returns an
off_t, fseek returns an integer: 0 if it succeeds, -1 if it fails, with errno set to indicate the error. So
much for standardization!

Here’s the syntax:

#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

fgetc, getc, and getchar
The fgetc function returns the next byte, as a character, from a file stream. When it reaches the end of
the file or there is an error, it returns EOF. You must use ferror or feof to distinguish the two cases.

Here’s the syntax:

#include <stdio.h>

int fgetc(FILE *stream);
int getc(FILE *stream);
int getchar();

The getc function is equivalent to fgetc, except that it may be implemented as a macro, in which case
the stream argument must not have side effects (i.e., it can’t affect variables that are neither local nor
passed to the functions as parameters). Also, you can’t then use the address of getc as a function pointer.

The getchar function is equivalent to getc(stdin) and reads the next character from the standard
input.

fputc, putc, and putchar
The fputc function writes a character to an output file stream. It returns the value it has written, or EOF
on failure.
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#include <stdio.h>

int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

As with fgetc/getc, the function putc is equivalent to fputc, but it may be implemented as a macro.
The GNU C compiler does this, and you can see the definitions in the stdio.h header file.

The putchar function is equivalent to putc(c,stdout), writing a single character to the standard out-
put. Note that putchar takes and getchar returns characters as ints, not char. This allows the end of
file (EOF) indicator to take the value – 1 outside the range of character numbers codes.

fgets and gets
The fgets function reads a string from an input file stream. It writes characters to the string pointed to
by s until a newline is encountered, n-1 characters have been transferred, or the end of file is reached,
whichever occurs first. Any newline encountered is transferred to the receiving string and a terminating
null byte, \0, is added. Only a maximum of n-1 characters are transferred in any one call because the
null byte must be added to finish the string and make up the n bytes.

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);
char *gets(char *s);

When it successfully completes, fgets returns a pointer to the string s. If the stream is at the end of a
file, it sets the EOF indicator for the stream and fgets returns a null pointer. If a read error occurs, fgets
returns a null pointer and sets errno to indicate the type of error.

The gets function is similar to fgets, except that it reads from the standard input and discards any
newline encountered. It adds a trailing null byte to the receiving string. 

Formatted Input and Output
There are a number of library functions for producing output in a controlled fashion that you may be
familiar with if you’ve programmed in C. These functions include printf and friends for printing values
to a file stream and scanf and others for reading values from a file stream.

Note that gets doesn’t limit the number of characters that can be transferred so it
could overrun its transfer buffer. Consequently, you should avoid using it and use
fgets instead. Many security issues on the Internet can be traced back to functions
in programs that are made to overflow a buffer of some sort or another. This is one
such function, so be careful!
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printf, fprintf, and sprintf
The printf family of functions format and output a variable number of arguments of different types.
The way each is represented in the output stream is controlled by the format parameter, which is a
string that contains ordinary characters to be printed and codes, called conversion specifiers, that indicate
how and where the remaining arguments are to be printed.

#include <stdio.h>

int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);

The printf function produces its output on the standard output. The fprintf function produces its
output on a specified stream. The sprintf function writes its output and a terminating null character
into the string s passed as a parameter. This string must be large enough to contain all of the output.
There are other members of the printf family that deal with their arguments in different ways. See the
printf manual page for more details.

Ordinary characters are passed unchanged into the output. Conversion specifiers cause printf to fetch
and format additional arguments passed as parameters. They always start with a % character. Here’s a
simple example,

printf(“Some numbers: %d, %d, and %d\n”, 1, 2, 3);

which produces, on the standard output:

Some numbers: 1, 2, and 3

To print a % character, we need to use %%, so that it doesn’t get confused with a conversion specifier.

Here are some of the most commonly used conversion specifiers:

❑ %d, %i: Print an integer in decimal

❑ %o, %x: Print an integer in octal, hexadecimal

❑ %c: Print a character

❑ %s: Print a string

❑ %f: Print a floating point (single precision) number

❑ %e: Print a double precision number, in fixed format

❑ %g: Print a double in a general format

It’s very important that the number and type of the arguments passed to printf match the conversion
specifiers in the format string. An optional size specifier is used to indicate the type of integer argu-
ments. This is either h, for example %hd, to indicate a short int, or l, for example %ld, to indicate a
long int. Some compilers can check these printf statements, but they aren’t infallible. If you are using
the GNU compiler gcc, then –Wformat does this.
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Here’s another example:

char initial = ‘A’;
char *surname = “Matthew”;
double age = 14.5;

printf(“Hello Miss %c %s, aged %g\n”, initial, surname, age);

This produces

Hello Miss A Matthew, aged 14.5

You can gain greater control over the way items are printed by using field specifiers. These extend the
conversion specifiers to include control over the spacing of the output. A common use is to set the num-
ber of decimal places for a floating point number or to set the amount of space around a string.

Field specifiers are given as numbers immediately after the % character in a conversion specifier. The fol-
lowing table contains some more examples of conversion specifiers and resulting output. To make things
a little clearer, we’ll use vertical bars to show the limits of the output.

Format Argument |           Output           |

%10s “Hello” |          Hello|

%-10s “Hello” |Hello          |

%10d 1234 |           1234|

%-10d 1234 |1234           |

%010d 1234 |0000001234     |

%10.4f 12.34 |        12.3400|

%*s 10,”Hello” |          Hello|

All of these examples have been printed in a field width of 10 characters. Note that a negative field
width means that the item is written left-justified within the field. A variable field width is indicated by
using an asterisk (*). In this case, the next argument is used for the width. A leading zero indicates the
item is written with leading zeros. According to the POSIX specification, printf doesn’t truncate fields;
rather it expands the field to fit. So, for example, if we try to print a string longer than the field, the field
grows:

Format Argument |            Output          |

%10s “HelloTherePeeps” |HelloTherePeeps|

The printf functions return an integer, the number of characters written. This doesn’t include the ter-
minating null in the case of sprintf. On error, these functions return a negative value and set errno.
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scanf, fscanf, and sscanf
The scanf family of functions works in a way similar to the printf group, except that these functions
read items from a stream and place values into variables at the addresses they’re passed as pointer
parameters. They use a format string to control the input conversion in the same way, and many of the
conversion specifiers are the same.

#include <stdio.h>

int scanf(const char *format, ...); 
int fscanf(FILE *stream, const char *format, ...); 
int sscanf(const char *s, const char *format, ...);

It’s very important that the variables used to hold the values scanned in by the scanf functions are of
the correct type and that they match the format string precisely. If they don’t, your memory could be cor-
rupted and your program could crash. There won’t be any compiler errors, but if you’re lucky, you
might get a warning!

The format string for scanf and friends contains both ordinary characters and conversion specifiers, as for
printf. However, the ordinary characters are used to specify characters that must be present in the input.

Here is a simple example:

int num;
scanf(“Hello %d”, &num);

This call to scanf will succeed only if the next five characters on the standard input match “Hello”.
Then, if the next characters form a recognizable decimal number, the number will be read and the value
assigned to the variable num. A space in the format string is used to ignore all whitespace (spaces, tabs,
form feeds, and newlines) in the input between conversion specifiers. This means that the call to scanf
will succeed and place 1234 into the variable num given either of the following inputs:

Hello     1234
Hello1234

Whitespace is also usually ignored in the input when a conversion begins. This means that a format
string of %d will keep reading the input, skipping over spaces and newlines until a sequence of digits is
found. If the expected characters are not present, the conversion fails and scanf returns. 

Other conversion specifiers are

❑ %d: Scan a decimal integer

❑ %o, %x: Scan an octal, hexadecimal integer

This can lead to problems if you are not careful; an infinite loop can occur in your
program if you leave a nondigit character in the input while scanning for integers.
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❑ %f, %e, %g: Scan a floating point number

❑ %c: Scan a character (whitespace not skipped)

❑ %s: Scan a string

❑ %[]: Scan a set of characters (see below)

❑ %%: Scan a % character

Like printf, scanf conversion specifiers may also have a field width to limit the amount of input con-
sumed. A size specifier (either h for short or l for long) indicates whether the receiving argument is
shorter or longer than the default. This means that %hd indicates a short int, %ld a long int, and
%lg a double precision floating point number. 

A specifier beginning with an asterisk indicates that the item is to be ignored. This means that the infor-
mation is not stored and therefore does not need a variable to receive it.

We use the %c specifier to read a single character in the input. This doesn’t skip initial whitespace 
characters.

We use the %s specifier to scan strings, but we must take care. It skips leading whitespace, but stops at
the first whitespace character in the string; so, we’re better using it for reading words rather than general
strings. Also, without a field-width specifier, there’s no limit to the length of string it might read, so the
receiving string must be sufficient to hold the longest string in the input stream. It’s better to use a field
specifier, or a combination of fgets and sscanf, to read in a line of input and scan it. This will prevent
possible buffer overflows that could be exploited by a malicious user.

We use the %[] specifier to read a string composed of characters from a set. The format %[A-Z] will read
a string of capital letters. If the first character in the set is a caret, ^, the specifier reads a string that con-
sists of characters not in the set. So, to read a string with spaces in it, but stopping at the first comma,
we can use %[^,].

Given the input line,

Hello, 1234, 5.678, X, string to the end of the line

this call to scanf will correctly scan four items:

char s[256];
int n;
float f;
char c;

scanf(“Hello,%d,%g, %c, %[^\n]”, &n,&f,&c,s);

The scanf functions return the number of items successfully read, which will be zero if the first item
fails. If the end of the input is reached before the first item is matched, EOF is returned. If a read error
occurs on the file stream, the stream error flag will be set and the error variable, errno, will be set to
indicate the type of error. See the “Stream Errors” section later in this chapter for more details.
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In general, scanf and friends are not highly regarded; this is for three reasons:

❑ Traditionally, the implementations have been buggy.

❑ They’re inflexible to use.

❑ They lead to code where it’s very difficult to work out what is being parsed.

Try to use other functions, like fread or fgets, to read input lines and the string functions to break the
input into the items you need.

Other Stream Functions
There are a number of other stdio library functions that uses either stream parameters or the standard
streams stdin, stdout, stderr:

❑ fgetpos: Get the current position in a file stream.

❑ fsetpos: Set the current position in a file stream.

❑ ftell: Return the current file offset in a stream.

❑ rewind: Reset the file position in a stream.

❑ freopen: Reuse a file stream.

❑ setvbuf: Set the buffering scheme for a stream.

❑ remove: Equivalent to unlink unless the path parameter is a directory, in which case it’s
equivalent to rmdir.

These are all library functions documented in section 3 of the manual pages.

You can use the file stream functions to reimplement the file copy program, using library functions
instead. Take a look at copy_stdio.c.

Try It Out—Another File Copy Program
This program is very similar to earlier versions, but the character-by-character copy is accomplished
using calls to the functions referenced in stdio.h:

#include <stdio.h>
#include <stdlib.h>

int main()
{

int c;
FILE *in, *out;

in = fopen(“file.in”,”r”);
out = fopen(“file.out”,”w”);
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while((c = fgetc(in)) != EOF)
fputc(c,out);

exit(0);
}

Running this program as before, we get

$ TIMEFORMAT=”” time copy_stdio
0.29user 0.02system 0:00.35elapsed 87%CPU 
...

This time, the program runs in 0.35 seconds, not as fast as the low-level block version, but a great deal
better than the other single-character-at-a-time version. This is because the stdio library maintains an
internal buffer within the FILE structure and the low-level system calls are made only when the buffer
fills. Feel free to experiment with testing line-by-line and block stdio copying code to see how they per-
form relative to the three examples we’ve tested here.

Stream Errors
To indicate an error, many stdio library functions return out-of-range values, such as null pointers or
the constant EOF. In these cases, the error is indicated in the external variable errno:

#include <errno.h>

extern int errno;

You can also interrogate the state of a file stream to determine whether an error has occurred, or the end
of file has been reached.

#include <stdio.h>

int ferror(FILE *stream);
int feof(FILE *stream);
void clearerr(FILE *stream);

The ferror function tests the error indicator for a stream and returns nonzero if it’s set, but zero otherwise.

The feof function tests the end-of-file indicator within a stream and returns nonzero if it is set, zero oth-
erwise. Use it like this:

if(feof(some_stream))
/* We’re at the end */

Note that many functions may change the value of errno. Its value is valid only
when a function has failed. You should inspect it immediately after a function has
indicated failure. You should always copy it into another variable before using it,
because printing functions, such as fprintf, might alter errno themselves.
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The clearerr function clears the end-of-file and error indicators for the stream to which stream points.
It has no return value and no errors are defined. You can use it to recover from error conditions on
streams. One example might be to resume writing to a stream after a “disk full” error has been resolved.

Streams and File Descriptors
Each file stream is associated with a low-level file descriptor. You can mix low-level input and output
operations with higher-level stream operations, but this is generally unwise, as the effects of buffering
can be difficult to predict.

#include <stdio.h>

int fileno(FILE *stream);
FILE *fdopen(int fildes, const char *mode);

We can determine which low-level file descriptor is being used for a file stream by calling the fileno
function. It returns the file descriptor for a given stream, or -1 on failure. This function can be useful if
you need low-level access to an open stream, for example, to call fstat on it.

We can create a new file stream based on an already-opened file descriptor by calling the fdopen func-
tion. Essentially, this function provides stdio buffers around an already-open file descriptor, which
might be an easier way to explain it.

The fdopen function operates in the same way as the fopen function, but instead of a filename it takes a
low-level file descriptor. This can be useful if we have used open to create a file, perhaps to get fine con-
trol over the permissions, but want to use a stream for writing to it. The mode parameter is the same as
for the fopen function and must be compatible with the file access modes established when the file was
originally opened. fdopen returns the new file stream or NULL on failure.

File and Directory Maintenance
The standard libraries and system calls provide complete control over the creation and maintenance of
files and directories.

chmod
You can change the permissions on a file or directory using the chmod system call. This forms the basis
of the chmod shell program.

Here’s the syntax:

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

The file specified by path is changed to have the permissions given by mode. The modes are specified as
in the open system call, a bitwise OR of required permissions. Unless the program has been given appro-
priate privileges, only the owner of the file or a superuser can change its permissions.
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chown
A superuser can change the owner of a file using the chown system call.

#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

The call uses the numeric values of the user and group IDs (culled from getuid and getgid calls) and a
constant that can restrict who can change file ownership. The owner and group of a file are changed if
the appropriate privileges are set.

POSIX actually allows systems where non-superusers can change file ownerships. All “proper” POSIX
systems won’t allow this, but, strictly speaking, it’s an extension (for FIPS 151-2). The kinds of systems
we’ll be dealing with in this book conform to the XSI (X/Open System Interface) specification and do
enforce ownership rules.

unlink, link, and symlink
We can remove a file using unlink.

The unlink system call removes the directory entry for a file and decrements the link count for it. It
returns 0 if the unlinking was successful, -1 on an error. You must have write and execute permissions in
the directory where the file has its directory entry for this call to function.

#include <unistd.h>

int unlink(const char *path);
int link(const char *path1, const char *path2); 
int symlink(const char *path1, const char *path2);

If the count reaches zero and no process has the file open, the file is deleted. In actual fact, the directory
entry is always removed, but the file’s space will not be recovered until the last process (if any) closes it.
The rm program uses this call. Additional links represent alternative names for a file, normally created
by the ln program. We can create new links to a file programmatically by using the link system call.

Creating a file with open and then calling unlink on it is a trick some programmers use to create tran-
sient files. These files are available to the program only while they are open; they will effectively be auto-
matically deleted when the program exits and the file is closed.

The link system call creates a new link to an existing file, path1. The new directory entry is specified by
path2. We can create symbolic links using the symlink system call in a similar fashion. Note that sym-
bolic links to a file do not prevent the file from being effectively deleted as normal (hard) links do.

mkdir and rmdir
We can create and remove directories using the mkdir and rmdir system calls.

#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);
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The mkdir system call is used for creating directories and is the equivalent of the mkdir program. mkdir
makes a new directory with path as its name. The directory permissions are passed in the parameter
mode and are given as in the O_CREAT option of the open system call and, again, subject to umask.

#include <unistd.h>

int rmdir(const char *path);

The rmdir system call removes directories, but only if they are empty. The rmdir program uses this sys-
tem call to do its job.

chdir and getcwd
A program can navigate directories in much the same way as a user moves around the file system. As we
use the cd command in the shell to change directory, so a program can use the chdir system call.

#include <unistd.h>

int chdir(const char *path);

A program can determine its current working directory by calling the getcwd function.

#include <unistd.h>

char *getcwd(char *buf, size_t size);

The getcwd function writes the name of the current directory into the given buffer, buf. It returns null
if the directory name would exceed the size of the buffer (an ERANGE error), given as the parameter
size. It returns buf on success.

Scanning Directories
A common problem on Linux systems is scanning directories, that is, determining the files that reside in
a particular directory. In shell programs, it’s easy—just let the shell expand a wildcard expression. In the
past, different UNIX variants have allowed programmatic access to the low-level file system structure.
We can still open a directory as a regular file and directly read the directory entries, but different file sys-
tem structures and implementations have made this approach nonportable. A standard suite of library
functions has now been developed that makes directory scanning much simpler.

The directory functions are declared in a header file dirent.h. They use a structure, DIR, as a basis for
directory manipulation. A pointer to this structure, called a directory stream (a DIR *), acts in much the
same way as a file steam (FILE *) does for regular file manipulation. Directory entries themselves are

getcwd may also return NULL if the directory is removed (EINVAL) or permissions
changed (EACCESS) while the program is running.
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returned in dirent structures, also declared in dirent.h, as one should never alter the fields in the DIR
structure directly.

We’ll review these functions:

❑ opendir, closedir

❑ readdir

❑ telldir

❑ seekdir

opendir
The opendir function opens a directory and establishes a directory stream. If successful, it returns a
pointer to a DIR structure to be used for reading directory entries.

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);

opendir returns a null pointer on failure. Note that a directory stream uses a low-level file descriptor to
access the directory itself, so opendir could fail with too many open files.

readdir
The readdir function returns a pointer to a structure detailing the next directory entry in the directory
stream dirp. Successive calls to readdir return further directory entries. On error, and at the end of the
directory, readdir returns NULL. POSIX-compliant systems leave errno unchanged when returning
NULL at end of directory and set it when an error occurs.

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dirp);

Note that readdir scanning isn’t guaranteed to list all the files (and subdirectories) in a directory if
there are other processes creating and deleting files in the directory at the same time.

The dirent structure containing directory entry details includes the following entries:

❑ ino_t d_ino: The inode of the file

❑ char  d_name[]: The name of the file

To determine further details of a file in a directory, we need to make a call to stat, which we covered
earlier in this chapter.
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telldir
The telldir function returns a value that records the current position in a directory stream. You can use
this in subsequent calls to seekdir to reset a directory scan to the current position.

#include <sys/types.h>
#include <dirent.h>

long int telldir(DIR *dirp);

seekdir
The seekdir function sets the directory entry pointer in the directory stream given by dirp. The value
of loc, used to set the position, should have been obtained from a prior call to telldir.

#include <sys/types.h>
#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

closedir
The closedir function closes a directory stream and frees up the resources associated with it. It returns
0 on success and 1if there is an error.

#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

In the next program, printdir.c, we put together a lot of the file manipulation functions to create a
simple directory listing. Each file in a directory is listed on a line by itself. Each subdirectory has its
name followed by a slash and the files listed in it are indented by four spaces.

The program changes directory into the subdirectories so that the files it finds have usable names, that is,
they can be passed directly to opendir. The program will fail on very deeply nested directory structures
because there’s a limit on the allowed number of open directory streams.

We could, of course, make it more general by taking a command line argument to specify the start 
point. Check out the Linux source code of such utilities as ls and find for ideas on a more general
implementation.

Try It Out—A Directory-Scanning Program
1. We start with the appropriate headers and then a function, printdir, which prints out the

current directory. It will recurse for subdirectories using the depth parameter for indentation.

#include <unistd.h>
#include <stdio.h>
#include <dirent.h>
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#include <string.h>
#include <sys/stat.h>
#include <stdlib.h>

void printdir(char *dir, int depth)
{

DIR *dp;
struct dirent *entry;
struct stat statbuf;

if((dp = opendir(dir)) == NULL) {
fprintf(stderr,”cannot open directory: %s\n”, dir);
return;

}
chdir(dir);
while((entry = readdir(dp)) != NULL) {

lstat(entry->d_name,&statbuf);
if(S_ISDIR(statbuf.st_mode)) {

/* Found a directory, but ignore . and .. */
if(strcmp(“.”,entry->d_name) == 0 || 

strcmp(“..”,entry->d_name) == 0)
continue;

printf(“%*s%s/\n”,depth,””,entry->d_name);
/* Recurse at a new indent level */
printdir(entry->d_name,depth+4);

}
else printf(“%*s%s\n”,depth,””,entry->d_name);

}
chdir(“..”);
closedir(dp);

}

2. Now we move onto the main function:

int main()
{

printf(“Directory scan of /home:\n”);
printdir(“/home”,0);
printf(“done.\n”);

exit(0);
}

The program produces output like this (edited for brevity):

$ printdir
Directory scan of /home:
neil/

.Xdefaults

.Xmodmap

.Xresources

.bash_history

.bashrc

.kde/
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share/
apps/

konqueror/
dirtree/

public_html.desktop
toolbar/
bookmarks.xml
konq_history

kdisplay/
color-schemes/

BLP3/
Gnu_Public_License
chapter04/

argopt.c
args.c

chapter03/
file.out
mmap.c
printdir    

done.

How It Works
Most of the action is within the printdir function, so that’s where we’ll look. After some initial error
checking using opendir to see that the directory exists, printdir makes a call to chdir to the directory
specified. While the entries returned by readdir aren’t null, the program checks to see whether the
entry is a directory. If it isn’t, it prints the file entry with indentation depth.

If the entry is a directory, we meet a little bit of recursion. After the . and .. entries (the current and par-
ent directories) have been ignored, the printdir function calls itself and goes through the same process
again. How does it get out of these loops? Once the while loop has finished, the call chdir(“..”) takes
it back up the directory tree and the previous listing can continue. Calling closedir(dp) makes sure
that the number of open directory streams isn’t higher than it needs to be.

For a brief taste of the discussion of the Linux environment in Chapter 4, let’s look at one way we can make
the program more general. The program is limited because it’s specific to the directory /home/neil. With
the following changes to main, we could turn it into a more useful directory browser: 

int main(int argc, char* argv[])
{

char *topdir = “.”;
if (argc >= 2)

topdir=argv[1];

printf(“Directory scan of %s\n”,topdir);
printdir(topdir,0);
printf(“done.\n”);

exit(0);
}
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We’ve changed three lines and added five, but now it’s a general-purpose utility with an optional
parameter of the directory name, which defaults to the current directory. You can run it using the follow-
ing command:

$ printdir2 /usr/local | more

The output will be paged so that the user can page through the output. Hence, the user has quite a con-
venient little general-purpose directory tree browser. With very little effort, you could add space usage
statistics, limit depth of display, and so on.

Errors
As we’ve seen, many of the system calls and functions described in this chapter can fail for a number of
reasons. When they do, they indicate the reason for their failure by setting the value of the external variable
errno. Many different libraries use this variable as a standard way to report problems. It bears repeating
that the program must inspect the errno variable immediately after the function giving problems because
it may be overwritten by the next function called, even if that function itself doesn’t fail.

The values and meanings of the errors are listed in the header file errno.h. They include

❑ EPERM: Operation not permitted

❑ ENOENT: No such file or directory

❑ EINTR: Interrupted system call

❑ EIO: I/O Error

❑ EBUSY: Device or resource busy

❑ EEXIST: File exists

❑ EINVAL: Invalid argument

❑ EMFILE: Too many open files

❑ ENODEV: No such device

❑ EISDIR: Is a directory

❑ ENOTDIR: Isn’t a directory

There are a couple of useful functions for reporting errors when they occur: strerror and perror.

strerror
The strerror function maps an error number into a string describing the type of error that has
occurred. This can be useful for logging error conditions.

Here’s the syntax:

#include <string.h>

char *strerror(int errnum);
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perror
The perror function also maps the current error, as reported in errno, into a string and prints it on
the standard error stream. It’s preceded by the message given in the string s (if not null), followed by
a colon and a space. 

Here’s the syntax:

#include <stdio.h>

void perror(const char *s);

For example,

perror(“program”);

might give the following on the standard error output:

program: Too many open files

The /proc File System
Earlier in the chapter we mentioned that Linux treats most things as files and that there are entries in the
file system for hardware devices. These /dev files are used to access hardware in a specific way using
low-level system calls. 

The software drivers that control hardware can often be configured in certain ways, or are capable of
reporting information. For example, a hard disk controller may be configured to use a particular DMA
mode. A network card might be able to report whether it has negotiated a high-speed, duplex connection. 

Utilities for communicating with device drivers have been common in the past. For example, hdparm is
used to configure some disk parameters and ifconfig can report network statistics. In recent years,
there has been a trend toward providing a more consistent way of accessing driver information, and,
in fact, to extend this to include communication with various elements of the Linux kernel.

Linux provides a special file system, procfs, that is usually made available as the directory /proc. It
contains many special files that allow higher-level access to driver and kernel information. Applications
can read and write these files to get information and set parameters as long as they are running with the
correct access permissions.

The files that appear in /proc will vary from system to system, and more are included with each Linux
release as more drivers and facilities support the procfs file system. Here, we will look at some of the
more common files and briefly consider their use.

A directory listing of /proc on the computer being used to write this chapter shows the following
entries:

1/     1377/  1771/  951/       cpuinfo      modules
10/    1401/  1777/  961/       devices      mounts@
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1007/  1414/  1778/  966/       dma          mtrr
1023/  1457/  2/     968/       driver/      net/
1053/  1460/  3/     969/       execdomains  partitions
1056/  1463/  385/   970/       fb           pci
1059/  1465/  388/   971/       filesystems  scsi/
1061/  1476/  4/     974/       fs/          self@
1071/  1477/  424/   975/       ide/         slabinfo
1077/  1479/  4775/  976/       interrupts   splash
1079/  1480/  4850/  977/       iomem        stat
1080/  1482/  496/   978/       ioports      swaps
1082/  1484/  5/     979/       irq/         sys/
1086/  1486/  535/   980/       isapnp       sysvipc/
1090/  1491/  6/     982/       kcore        tty/
1093/  1494/  625/   983/       kmsg         uptime
1095/  1495/  7/     999/       ksyms        version
1096/  1496/  75/    apm        loadavg      video/
1100/  1502/  8/     asound/    locks
1101/  1503/  884/   buddyinfo  lvm/
1104/  1545/  905/   bus/       mdstat
1118/  1546/  917/   cmdline    meminfo
1119/  1770/  932/   config.gz  misc

In many cases, the files can just be read and will give status information. For example, /proc/cpuinfo
gives details of the processors available:

$ cat /proc/cpuinfo
processor       : 0
vendor_id       : GenuineIntel
cpu family      : 6
model           : 6
model name      : Celeron (Mendocino)
stepping        : 0
cpu MHz         : 451.028
cache size      : 128 KB
fdiv_bug        : no
hlt_bug         : no
f00f_bug        : no
coma_bug        : no
fpu             : yes
fpu_exception   : yes
cpuid level     : 2
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 sep mtrr pge mca cmov pat
pse36 mmx fxsr
bogomips        : 897.84

Similarly, /proc/meminfo and /proc/version give information about memory usage and kernel 
version, respectively.

$ cat /proc/meminfo
total:    used:    free:      shared: buffers:  cached:

Mem:  527392768 240873472 286519296        0  8331264 134004736
Swap: 139788288         0 139788288
MemTotal:       515032 kB
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MemFree:        279804 kB
MemShared:           0 kB
Buffers:          8136 kB
Cached:         130864 kB
SwapCached:          0 kB
Active:         101208 kB
Inactive:       106056 kB
HighTotal:           0 kB
HighFree:            0 kB
LowTotal:       515032 kB
LowFree:        279804 kB
SwapTotal:      136512 kB
SwapFree:       136512 kB
BigFree:             0 kB
$ cat /proc/version
Linux version 2.4.19-4GB (root@Pentium.suse.de) (gcc version 3.2) #1 Wed Nov 27
00:56:40 UTC 2002

The information given by these files is generated each time the file is read. So rereading the meminfo file
at a later time will give up-to-the-second results.

More information from specific kernel functions can be found in subdirectories of /proc. For example,
you can get network socket usage statistics from /proc/net/sockstat:

$ cat /proc/net/sockstat
sockets: used 246
TCP: inuse 20 orphan 0 tw 0 alloc 22 mem 11
UDP: inuse 3
RAW: inuse 0
FRAG: inuse 0 memory 0

Some of the /proc entries can be written to as well as read. For example, the total number of files that all
running programs can open at the same time is a Linux kernel parameter. The current value can be read
at /proc/sys/fs/file-max:

$ cat /proc/sys/fs/file-max
52428

Here the value is set to 52,428. If we need to increase this value, we can do so by writing to the same file.
We may need to do this if we are running a specialist application suite—such as database systems that
use many tables—that needs to open many files at once.

To increase the system-wide file handle limit to 60,000, we can simply write the new limit to the file-
max file:

# echo 60000 >/proc/sys/fs/file-max

Writing /proc files requires superuser access. Care needs to be taken when writing
/proc files; it’s possible to cause severe problems by writing inappropriate values.

128

Chapter 3

b544977 Ch03.qxd  12/1/03  8:55 AM  Page 128



Now, when we reread the file, we see the new value:

$ cat /proc/sys/fs/file-max
60000

The subdirectories of /proc that have numeric names are used to provide access to information about
running programs. We will learn more about how programs are executed as processes in Chapter 11.

For now, just notice that each process has a unique identifier: a number between 1 and about 32,000. The
ps command provides a list of currently running processes. For example, as this chapter is being written:

neil@beast:~/BLP3/chapter03> ps
PID TTY          TIME CMD

1104 pts/1    00:00:00 bash
1503 pts/2    00:00:01 bash
1771 pts/4    00:00:00 bash
4991 pts/2    00:00:01 emacs
4994 pts/2    00:00:00 ps

neil@beast:~/BLP3/chapter03>

Here, we can see several terminal sessions running the bash shell and an edit session running the Emacs
text editor. We can get more details about the Emacs session by looking in /proc.

The process identifier for Emacs here is given as 4991, so we need to look in /proc/4991 for details
about it:

$ ls -l /proc/4991
total 0
-r--r--r--    1 neil     users  0 2003-02-09 12:45 cmdline
lrwxrwxrwx    1 neil     users  0 2003-02-09 12:45 cwd -> /home/neil/BLP3/chapter03
-r--------    1 neil     users  0 2003-02-09 12:45 environ
lrwxrwxrwx    1 neil     users  0 2003-02-09 12:45 exe -> /usr/bin/emacs
dr-x------    2 neil     users  0 2003-02-09 12:45 fd
-rw-------    1 neil     users  0 2003-02-09 12:45 mapped_base
-r--r--r--    1 neil     users  0 2003-02-09 12:45 maps
-rw-------    1 neil     users  0 2003-02-09 12:45 mem
-r--r--r--    1 neil     users  0 2003-02-09 12:45 mounts
lrwxrwxrwx    1 neil     users  0 2003-02-09 12:45 root -> /
-r--r--r--    1 neil     users  0 2003-02-09 12:45 stat
-r--r--r--    1 neil     users  0 2003-02-09 12:45 statm
-r--r--r--    1 neil     users  0 2003-02-09 12:45 status

Here, we can see various special files that can tell us what is happening with this process. 

We can tell that the program /usr/bin/emacs is running and that its current working directory is
/home/neil/BLP3/chapter03. It is possible to read the other files in this directory to see the command
line used to start it as well as the shell environment it has. The cmdline and environ files provide this
information as a series of null-terminated strings, so we need to take care when viewing them. We will
discuss the Linux environment in depth in Chapter 4.

$ od -c /proc/4991/cmdline
0000000   e   m   a   c   s  \0   d   r   a   f   t   2   .   t   x   t
0000020  \0
0000021
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Here, we can see that Emacs was started with the command line emacs draft2.txt.

The fd subdirectory provides information about the open file descriptors in use by the process. This
information can be useful in determining how many files a program has open at one time. There is one
entry per open descriptor; the name matches the number of the descriptor. In this case, we can see that
Emacs has open descriptors 0, 1, and 2, as we might expect. These are the standard input, output, and
error descriptors. Although it is editing a file at the moment, it is not kept open by this process, and
therefore, does not show here.

$ ls /proc/4991/fd
0  1  2

Advanced Topics: fcntl and mmap
Here, we’ll cover a couple of topics that you might like to skip because they’re seldom used. Having said
that, we’ve put them here for your reference because they can provide simple solutions to some tricky
problems.

fcntl
The fcntl system call provides further ways to manipulate low-level file descriptors.

#include <fcntl.h>

int fcntl(int fildes, int cmd);
int fcntl(int fildes, int cmd, long arg);

You can perform several miscellaneous operations on open file descriptors with the fcntl system call,
including duplicating them, getting and setting file descriptor flags, getting and setting file status flags,
and managing advisory file locking.

The various operations are selected by different values of the command parameter cmd, as defined in
fcntl.h. Depending on the command chosen, the system call will require a third parameter, arg:

❑ fcntl(fildes, F_DUPFD, newfd): This call returns a new file descriptor with a numeri-
cal value equal to or greater than the integer newfd. The new descriptor is a copy of the
descriptor fildes. Depending on the number of open files and the value of newfd, this can
be effectively the same as dup(fildes).

❑ fcntl(fildes, F_GETFD): This call returns the file descriptor flags as defined in fcntl.h.
These include FD_CLOEXEC, which determines whether the file descriptor is closed after a suc-
cessful call to one of the exec family of system calls.

❑ fcntl(fildes, F_SETFD, flags): This call is used to set the file descriptor flags, usually
just FD_CLOEXEC.
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❑ fcntl(fildes, F_GETFL) and fcntl(fildes, F_SETFL, flags): These calls are used,
respectively, to get and set the file status flags and access modes. You can extract the file access
modes by using the mask O_ACCMODE defined in fcntl.h. Other flags include those passed in
a third argument to open when used with O_CREAT. Note that you can’t set all flags. In particu-
lar, you can’t set file permissions using fcntl.

You can also implement advisory file locking via fcntl. Refer to section 2 of the manual pages for more
information, or see Chapter 7, where we discuss file locking.

mmap
UNIX provides a useful facility that allows programs to share memory, and the good news is that it’s
been included in versions 2.0 and later of the Linux kernel. The mmap (for memory map) function sets up
a segment of memory that can be read or written by two or more programs. Changes made by one pro-
gram are seen by the others. 

You can use the same facility to manipulate files. You can make the entire contents of a disk file look like
an array in memory. If the file consists of records that can be described by C structures, you can update
the file using structure array accesses.

This is made possible by the use of virtual memory segments that have special permissions set. Reading
from and writing to the segment causes the operating system to read and write the appropriate part of
the disk file.

The mmap function creates a pointer to a region of memory associated with the contents of the file
accessed through an open file descriptor.

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

You can alter the start of the file data that is accessed by the shared segment by passing the off parame-
ter. The open file descriptor is passed as fildes. The amount of data that can be accessed (i.e., the
length of the memory segment) is set via the len parameter.

You can use the addr parameter to request a particular memory address. If it’s zero, the resulting pointer
is allocated automatically. This is the recommended usage, as it is difficult to be portable otherwise; sys-
tems vary as to the available address ranges.

The prot parameter is used to set access permissions for the memory segment. This is a bitwise OR of
the following constant values:

❑ PROT_READ: The segment can be read

❑ PROT_WRITE: The segment can be written

❑ PROT_EXEC: The segment can be executed

❑ PROT_NONE: The segment can’t be accessed
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The flags parameter controls how changes made to the segment by the program are reflected elsewhere.

MAP_PRIVATE The segment is private, changes are local

MAP_SHARED The segment changes are made in the file

MAP_FIXED The segment must be at the given address, addr

The msync function causes the changes in part or all of the memory segment to be written back to (or
read from) the mapped file. 

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags); 

The part of the segment to be updated is given by the passed start address, addr, and length, len. The
flags parameter controls how the update should be performed.

MS_ASYNC Perform asynchronous writes

MS_SYNC Perform synchronous writes

MS_INVALIDATE Read data back in from the file

The munmap function releases the memory segment.

#include <sys/mman.h>

int munmap(void *addr, size_t len);

The following program, mmap_eg.c, shows a file of structures being updated using mmap and array-style
accesses. Linux kernels before 2.0 don’t fully support this use of mmap. The program does work correctly
on Sun Solaris and other systems.

Try It Out—Using mmap
1. We start by defining a RECORD structure and then create NRECORDS versions, each recording

their number. These are appended to the file records.dat.

#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdlib.h>

typedef struct {
int integer;
char string[24];

} RECORD;
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#define NRECORDS (100)

int main()
{

RECORD record, *mapped;
int i, f;
FILE *fp;

fp = fopen(“records.dat”,”w+”);
for(i=0; i<NRECORDS; i++) {

record.integer = i;
sprintf(record.string,”RECORD-%d”,i);
fwrite(&record,sizeof(record),1,fp);

}
fclose(fp);

2. We now change the integer value of record 43 to 143 and write this to the 43rd record’s string:

fp = fopen(“records.dat”,”r+”);
fseek(fp,43*sizeof(record),SEEK_SET);
fread(&record,sizeof(record),1,fp);

record.integer = 143;
sprintf(record.string,”RECORD-%d”,record.integer);

fseek(fp,43*sizeof(record),SEEK_SET);
fwrite(&record,sizeof(record),1,fp);
fclose(fp);

3. We now map the records into memory and access the 43rd record in order to change the integer
to 243 (and update the record string), again using memory mapping:

f = open(“records.dat”,O_RDWR);
mapped = (RECORD *)mmap(0, NRECORDS*sizeof(record), 

PROT_READ|PROT_WRITE, MAP_SHARED, f, 0);

mapped[43].integer = 243;
sprintf(mapped[43].string,”RECORD-%d”,mapped[43].integer);

msync((void *)mapped, NRECORDS*sizeof(record), MS_ASYNC);
munmap((void *)mapped, NRECORDS*sizeof(record));
close(f);

exit(0);
}

In Chapter 13, we’ll meet another shared memory facility: System V shared memory.
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Summary
In this chapter, we’ve seen how Linux provides direct access to files and devices. We’ve seen how library
functions build upon these low-level functions to provide flexible solutions to programming problems. As
a result, we’ve been able to write a fairly powerful directory-scanning routine in just a few lines of code.

We’ve also learned enough about file and directory handling to convert the fledgling CD application
that we created at the end of Chapter 2 to a C program using a more structured file-based solution. At
this stage, however, we can add no new functionality to the program, so we’ll postpone our rewrite until
we’ve learned how to handle the screen and keyboard, which are the subjects of the next two chapters.
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4
The Linux Environment

When we write a program for Linux (or UNIX and UNIX-like systems), we have to take into account
that the program will run in a multitasking environment. This means that there will be multiple pro-
grams running at the same time and sharing machine resources such as memory, disk space, and
CPU cycles. There may even be several instances of the same program running at the same time. It’s
important that these programs don’t interfere with one another, are aware of their surroundings, and
can act appropriately to avoid conflicts such as trying to write the same file at the same time as
another program.

In this chapter, we will consider the environment in which programs operate, how they can use
that environment to gain information about operating conditions, and how users of the programs
can alter their behavior. In particular, we’ll be looking at

❑ Passing arguments to programs

❑ Environment variables

❑ Finding out what the time is

❑ Temporary files

❑ Getting information about the user and the host computer

❑ Causing and configuring log messages

❑ Discovering the limits imposed by the system

Program Arguments
When a Linux or UNIX program written in C runs, it starts at the function main. For these programs,
main is declared as

int main(int argc, char *argv[])

where argc is a count of the program arguments and argv is an array of character strings repre-
senting the arguments themselves.
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You might also see C programs for Linux simply declaring main as 

main()

This will still work, as the return type will default to int and formal parameters that are not used in a
function need not be declared. argc and argv are still there, but if you don’t declare them, you can’t use
them.

Whenever the operating system starts a new program, the parameters argc and argv are set up and
passed to main. These parameters are usually supplied by another program, very often the shell that has
requested that the operating system start the new program. The shell takes the command line that it’s
given, breaks it up into individual words, and uses these for the argv array. Remember that a Linux
shell normally performs wild card expansion of filename arguments before argc and argv are set,
whereas the MS-DOS shell expects programs to accept arguments with wild cards and perform their
own wild card expansion.

For example, if we give the shell the following command,

$ myprog left right ‘and center’

the program myprog will start at main with parameters:

argc: 4
argv: {“myprog”, “left”, “right”, “and center”}

Note that the argument count includes the name of the program itself and the argv array contains the
program name as its first element, argv[0]. Because we used quotes in the shell command, the fourth
argument consists of a string containing spaces.

You’ll be familiar with all of this if you’ve programmed in ISO/ANSI C. The arguments to main corre-
spond to the positional parameters in shell scripts, $0, $1, and so on. While ISO/ANSI C states that main
must return int, the X/Open specification contains the explicit declaration given above.

Command line arguments are useful for passing information to programs. For example, we could use
them in a database application to pass the name of the database we wish to use, which would allow us
to use the same program on more than one database. Many utility programs also use command line
arguments to change their behavior or to set options. You would usually set these so-called flags, or
switches, using command line arguments that begin with a dash. For example, the sort program takes
a switch to reverse the normal sort order:

$ sort -r file

Command line options are very common and using them consistently will be a real help to those who
use your program. In the past, each utility program adopted its own approach to command line options,
which led to some confusion. For example, take a look at the way these commands take parameters:

$ tar cvfB /tmp/file.tar 1024
$ dd if=/dev/fd0 of=/tmp/file.dd bs=18k
$ ls -lstr
$ ls -l -s -t -r
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All command line switches should start with a dash and consist of a single letter or number. Options
that take no further argument can be grouped together behind one dash. So, the two ls examples shown
here do follow the guidelines. Each option should be followed by any value it requires as a separate
argument. The dd example breaks this rule by using multi-character options that do not start with
dashes (if=/dev/fdo); and the tar example separates options and their values completely!

Another little foible of some programs is to make the option +x (for example) perform the opposite func-
tion to -x.

As you can probably tell, remembering the order and meaning of all these program options is difficult
enough without having to cope with idiosyncratic formats. Often, the only recourse is to use an -h (help)
option or a man page if the programmer has provided one. As we’ll show you a bit later in this chapter,
getopt provides a neat solution to these problems. For the moment, though, let’s just look at dealing
with program arguments as they are passed.

Try It Out—Program Arguments
Here’s a program, args.c, that examines its own arguments:

#include <stdio.h>

int main(int argc, char *argv[])
{

int arg;

for(arg = 0; arg < argc; arg++) {
if(argv[arg][0] == ‘-’)

printf(“option: %s\n”, argv[arg]+1);
else

printf(“argument %d: %s\n”, arg, argv[arg]);
}
exit(0);

}

When we run this program, it just prints out its arguments and detects options. The intention is that the
program takes a string argument and an optional filename argument introduced by a -f option. Other
options might also be defined

$ ./args -i -lr ‘hi there’ -f fred.c
argument 0: args
option: i
option: lr
argument 3: hi there
option: f
argument 5: fred.c

How It Works
The program simply uses the argument count, argc, to set up a loop to examine all of the program argu-
ments. It detects options by looking for an initial dash.

In this example, if we intended the options -l and -r to be available, we’ve missed the fact that the -lr
perhaps ought to be treated the same as -l -r.
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The X/Open specification defines a standard usage for command line options (the Utility Syntax
Guidelines) as well as a standard programming interface for providing command line switches in 
C programs: the getopt function.

getopt
To help us adhere to these guidelines, Linux gives us the getopt facility, which supports the use of
options with and without values and is simple to use.

#include <unistd.h>

int getopt(int argc, char *const argv[], const char *optstring); 
extern char *optarg; 
extern int optind, opterr, optopt;

The getopt function takes the argc and argv parameters as passed to the program’s main function and
an options specifier string that tells getopt what options are defined for the program and whether they
have associated values. The optstring is simply a list of characters, each representing a single character
option. If a character is followed by a colon, it indicates that the option has an associated value that will
be taken as the next argument. The getopts command in bash performs a very similar function.

For example, the following call would be used to handle our preceding example 

getopt(argc, argv, “if:lr”);

It allows for simple options -i, -l , -r, and -f, followed by a filename argument. Calling the command
with the same parameters but in a different order will alter the behavior. Try it out when we get to the
sample code in the next “Try It Out” section in this chapter.

The return result for getopt is the next option character found in the argv array (if there is one). We call
getopt repeatedly to get each option in turn. It has the following behavior:

❑ If the option takes a value, that value is pointed to by the external variable optarg.

❑ getopt returns -1 when there are no more options to process.  A special argument, ––, will
cause getopt to stop scanning for options.

❑ It returns ? if there is an unrecognized option, which it stores in the external variable optopt.

❑ If an option requires a value (such as -f in our example) and no value is given, getopt
returns.

The external variable, optind, is set to the index of the next argument to process. getopt uses it to
remember how far it’s got. Programs would rarely need to set this variable. When all the option argu-
ments have been processed, optind indicates where the remaining arguments can be found at the end
of the argv array.

Some versions of getopt will stop at the first non-option argument, returning -1 and setting optind.
Others, such as those provided with Linux, can process options wherever they occur in the program argu-
ments. Note that, in this case, getopt effectively rewrites the argv array so that all of the non-option
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arguments are presented together, starting at argv[optind]. For the GNU version of getopt, this behav-
ior is controlled by the POSIXLY_CORRECT environment variable. If set, getopt will stop at the first non-
option argument. Additionally, some getopt implementations print error messages for unknown options.
Note that the POSIX specification says that, if the opterr variable is non-zero, getopt will print an error
message to stderr.

Try It Out—getopt
Let’s use getopt for our example and call the new program argopt.c:

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{

int opt;

while((opt = getopt(argc, argv, “if:lr”)) != -1) {
switch(opt) {
case ‘i’:
case ‘l’:
case ‘r’:

printf(“option: %c\n”, opt);
break;

case ‘f’:
printf(“filename: %s\n”, optarg);
break;

case ‘:’:
printf(“option needs a value\n”);
break;

case ‘?’:
printf(“unknown option: %c\n”, optopt);
break;

}
}
for(; optind < argc; optind++)

printf(“argument: %s\n”, argv[optind]);
exit(0);

}

Now, when we run the program, we see that all the command line arguments are handled automatically:

$ ./argopt -i -lr ‘hi there’ -f fred.c -q
option: i
option: l
option: r
filename: fred.c
argopt: invalid option-—q
unknown option: q
argument: hi there
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How It Works
The program repeatedly calls getopt to process option arguments until none remain, at which point
getopt returns -1. The appropriate action is taken for each option, including dealing with unknown
options and missing values. Depending on your version of getopt, you might see slightly different out-
put from that shown above—especially error messages—but the meaning will be clear.

Once all options have been processed, the program simply prints out the remaining arguments as before,
but starting from optind.

getopt_long
Many Linux applications also accept arguments that are more meaningful than the single character
options we used in the last example. The GNU C library contains a version of getopt called
getopt_long that accepts so-called long arguments that are introduced with a double dash. 

We can use getopt_long to create a new version of our example program that can be invoked using
long equivalents of our options like this:

$ ./longopt —initialize —list ‘hi there’  —file fred.c -q
option: i
option: l
filename: fred.c
./longopt: invalid option — q
unknown option: q
argument: hi there

In fact, both the new long options and the original single character options can be mixed. As long as they
remain distinguishable, long options also may be abbreviated. Long options that take an argument can
be given as a single argument in the form –-option=value, as follows

$ ./longopt —init –l —file=fred.c ‘hi there’
option: i
option: l
filename: fred.c
argument: hi there

The new program, longopt.c, is shown below with changes required from argopt.c to support the
long options highlighted.

#include <stdio.h>
#include <unistd.h>

#define _GNU_SOURCE
#include <getopt.h>

int main(int argc, char *argv[])
{

int opt;
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struct option longopts[] = {
{“initialize”, 0, NULL, ‘i’},
{“file”, 1, NULL, ‘f’},
{“list”, 0, NULL, ‘l’},
{“restart”, 0, NULL, ‘r’},
{0,0,0,0}};

while((opt = getopt_long(argc, argv, “if:lr”, longopts, NULL)) != -1) {
switch(opt) {
case ‘i’:
case ‘l’:
case ‘r’:

printf(“option: %c\n”, opt);
break;

case ‘f’:
printf(“filename: %s\n”, optarg);
break;

case ‘:’:
printf(“option needs a value\n”);
break;

case ‘?’:
printf(“unknown option: %c\n”, optopt);
break;

}
}
for(; optind < argc; optind++)

printf(“argument: %s\n”, argv[optind]);
exit(0);

}

How It Works
The getopt_long function takes two additional parameters over getopt. The first of these is an array
of structures that describes the long options and tells getopt_long how to handle them. The second
additional parameter is a pointer to a variable that can be used like a long option version of optind; for
each long option recognized, its index in the long options array can be written into this variable. In our
example, we do not need this information, so we use NULL as the second additional parameter.

The long options array consists of a number of structures of type struct option, each of which describes
the desired behavior of a long option. The array must end with a structure containing all zeros.

The long option structure is defined in getopt.h and must be included with the constant _GNU_SOURCE,
defined to enable the getopt_long functionality.

struct option {
const char *name;
int has_arg;
int *flag;
int val;

};
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The members of the structure are

name The name of the long option. Abbreviations will be accepted as long as they
cannot be confused with other options.

has_arg Whether this option takes an argument. Set to 0 for options that do not take an
argument, 1 for options that must have a value, and 2 for those that have an
optional argument.

flag Set to NULL to have getopt_long return the value given in val when this
option is found. Otherwise, getopt_long returns 0 and writes the value of
val into the variable pointed to by flag.

val The value getopt_long is to return for this option.

For other options associated with the GNU extensions to getopt and related functions, refer to the
getopt manual page.

Environment Variables
We discussed environment variables in Chapter 2. These are variables that can be used to control the
behavior of shell scripts and other programs. You can also use them to configure the user’s environment.
For example, each user has an environment variable, HOME, that defines his home directory, the default
starting place for his or her session. As we’ve seen, we can examine environment variables from the shell
prompt:

$ echo $HOME
/home/neil

You can also use the shell’s set command to list all of the environment variables.

The UNIX specification defines many standard environment variables used for a variety of purposes,
including terminal type, default editors, time zones, and so on. A C program may gain access to environ-
ment variables using the putenv and getenv functions.

#include <stdlib.h>

char *getenv(const char *name);
int putenv(const char *string);

The environment consists of strings of the form name=value. The getenv function searches the environ-
ment for a string with the given name and returns the value associated with that name. It will return null
if the requested variable doesn’t exist. If the variable exists but has no value, getenv succeeds with a string,
the first byte of which is null. The string returned by getenv, and held in static storage provided by
getenv, mustn’t be overwritten by the application, as it will by any subsequent calls to getenv.

The putenv function takes a string of the form name=value and adds it to the current environment.
It will fail and return -1 if it can’t extend the environment due to lack of available memory. When this
happens, the error variable errno will be set to ENOMEM.
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Let’s write a program to print out the value of any environment variable we choose. We’ll also arrange
to set the value if we give the program a second argument.

Try It Out—getenv and putenv
1. The first few lines after the declaration of main ensure that the program, environ.c, has been

called correctly:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

char *var, *value;

if(argc == 1 || argc > 3) {
fprintf(stderr,”usage: environ var [value]\n”);
exit(1);

}

2. That done, we fetch the value of the variable from the environment, using getenv:

var = argv[1];
value = getenv(var);
if(value)

printf(“Variable %s has value %s\n”, var, value);
else

printf(“Variable %s has no value\n”, var);

3. Next, we check whether the program was called with a second argument. If it was, we set the
variable to the value of that argument by constructing a string of the form name=value and
then calling putenv:

if(argc == 3) {
char *string;
value = argv[2];
string = malloc(strlen(var)+strlen(value)+2);
if(!string) {

fprintf(stderr,”out of memory\n”);
exit(1);

}
strcpy(string,var);
strcat(string,”=”);
strcat(string,value);
printf(“Calling putenv with: %s\n”,string);
if(putenv(string) != 0) {

fprintf(stderr,”putenv failed\n”);
free(string);
exit(1);

}
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4. Finally, we discover the new value of the variable by calling getenv once again:

value = getenv(var);
if(value)

printf(“New value of %s is %s\n”, var, value);
else

printf(“New value of %s is null??\n”, var);
}
exit(0);

}

When we run this program, we can see and set environment variables:

$ ./environ HOME
Variable HOME has value /home/neil
$ ./environ FRED
Variable FRED has no value
$ ./environ FRED hello
Variable FRED has no value
Calling putenv with: FRED=hello
New value of FRED is hello
$ ./environ FRED
Variable FRED has no value

Notice that the environment is local only to the program. Changes that we make within the program are
not reflected outside it because variable values are not propagated from the child process (our program)
to the parent (the shell).

Use of Environment Variables
Programs often use environment variables to alter the way they work. Users can set the values of these
environment variables either in their default environment, via a .profile file read by their login shell,
using a shell-specific startup (rc) file, or by specifying variables on the shell command line. For example:

$ ./environ FRED
Variable FRED has no value
$ FRED=hello ./environ FRED
Variable FRED has value hello

The shell takes initial variable assignments as temporary changes to environment variables. In the sec-
ond example above, the program environ runs in an environment where the variable FRED has a value.

For instance, in a future version of our CD database application, we could change an environment vari-
able, say CDDB, to indicate the database to use. Each user could then specify his or her own default value
or use a shell command to set it on a run-by-run basis:

$ CDDB=mycds; export CDDB
$ cdapp

or

$ CDDB=mycds cdapp
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The environ Variable
As we’ve seen, the program environment is made up of strings of the form name=value. This array of
strings is made available to programs directly via the environ variable, which is declared as

#include <stdlib.h>

extern char **environ;

Try It Out—environ
Here’s a program, showenv.c, that uses the environ variable to print out the environment variables:

#include <stdlib.h>
#include <stdio.h>

extern char **environ;

int main()
{

char **env = environ;

while(*env) {
printf(“%s\n”,*env);
env++;

}
exit(0);

}

When we run this program on a Linux system, we get something like the following output, which has
been abbreviated a little. The number, order of appearance, and values of these variables depend on the
operating system version, the command shell being used, and the user settings in force at the time the
program is run.

$ ./showenv
HOSTNAME=tilde.provider.com
LOGNAME=neil
MAIL=/var/spool/mail/neil
TERM=console
HOSTTYPE=i386
PATH=/usr/local/bin:/bin:/usr/bin:
HOME=/usr/neil
LS_OPTIONS=—8bit—color=tty -F -T 0

Environment variables are a mixed blessing and you should use them with care.
They are more ‘hidden’ to the user than command line options and, as such, this can
make debugging harder. In a sense, environment variables are like global variables
in that they may alter the behavior of a program, giving unexpected results.
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SHELL=/bin/bash
PS1=\h:\w\$ 
PS2=> 
OSTYPE=Linux

How It Works
This program iterates through the environ variable, a null-terminated array of strings, to print out the
whole environment.

Time and Date
Often it can be useful for a program to be able to determine the time and date. It may wish to log the
length of time it is run, or it may need to change the way it behaves at certain times. For example, a
game might refuse to run during working hours, or a backup scheduling program might want to wait
until the early hours before starting an automatic backup.

UNIX systems all use the same starting point for times and dates: midnight GMT on January 1, 1970.
This is the”start of the UNIX epoch” and Linux is no exception. All times in a Linux system are measured
as seconds since then. This is similar to the way MS-DOS handles times, except that the MS-DOS epoch
started in 1980. Other systems use other epoch start times.

Times are handled using a defined type, a time_t. This is an integer type intended to be large enough
to contain dates and times in seconds. On Linux systems, it’s a long integer and is defined, together
with functions for manipulating time values, in the header file time.h.

#include <time.h>

time_t time(time_t *tloc);

You can find the low-level time value by calling the time function, which returns the number of seconds
since the start of the epoch. It will also write the returned value to a location pointed to by tloc, if this
isn’t a null pointer.

Try It Out—time
Here’s a simple program, envtime.c, to demonstrate the time function:

#include <time.h>
#include <stdio.h>
#include <unistd.h>

int main()
{

Never assume that times are 32 bits. On UNIX and Linux systems using a 32-bit
time_t type, the time will “rollover” in the year 2038. By that time, we hope that
systems have moved to using a time_t; that is, larger than 32 bits.
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int i;
time_t the_time;

for(i = 1; i <= 10; i++) {
the_time = time((time_t *)0);
printf(“The time is %ld\n”, the_time);
sleep(2);

}
exit(0);

}

When we run this program, it prints the low-level time value every two seconds for 20 seconds.

$ ./envtime
The time is 1044695820
The time is 1044695822
The time is 1044695824
The time is 1044695826
The time is 1044695828
The time is 1044695830
The time is 1044695832
The time is 1044695834
The time is 1044695836
The time is 1044695838

How It Works
The program calls time with a null pointer argument, which returns the time and date as a number of
seconds. The program sleeps for two seconds and repeats the call to time for a total of ten times.

Using the time and date as a number of seconds since the start of 1970 can be useful for measuring how
long something takes to happen. We could consider simply subtracting the values we get from two calls to
time. However, in its deliberations, the ISO/ANSI C standard committee didn’t specify that the time_t
type be used to measure arbitrary time intervals in seconds, so they invented a function, difftime, which
will calculate the difference in seconds between two time_t values and return it as a double:

#include <time.h>

double difftime(time_t time1, time_t time2);

The difftime function calculates the difference between two time values and returns the value time1-
time2 as a floating-point number. For Linux, the return value from time is a number of seconds and can
be manipulated, but for the ultimate in portability you should use difftime.

To present the time and date in a more meaningful way (to humans), we need to convert the time value
into a recognizable time and date. There are standard functions to help with this.

The function gmtime breaks down a low-level time value into a structure containing more usual fields:

#include <time.h>

struct tm *gmtime(const time_t timeval);
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The structure tm is defined to contain at least the following members:

tm Member Description

int tm_sec Seconds, 0-61

int tm_min Minutes, 0-59

int tm_hour Hours, 0-23

int tm_mday Day in the month, 1-31

int tm_mon Month in the year, 0-11(January= 0)

int tm_year Years since 1900

int tm_wday) Day in the week, 0-6. (Sunday = 0)

int tm_yday Day in the year, 0-365

int tm_isdst Daylight savings in effect

The range for tm_sec allows for the occasional leap second or double leap second.

Try It Out—gmtime
Here’s a program, gmtime.c, which prints out the current time and date using the tm structure and
gmtime:

#include <time.h>
#include <stdio.h>

int main()
{

struct tm *tm_ptr;
time_t the_time;

(void) time(&the_time);
tm_ptr = gmtime(&the_time);

printf(“Raw time is %ld\n”, the_time);
printf(“gmtime gives:\n”);
printf(“date: %02d/%02d/%02d\n”, 

tm_ptr->tm_year, tm_ptr->tm_mon+1, tm_ptr->tm_mday);
printf(“time: %02d:%02d:%02d\n”,

tm_ptr->tm_hour, tm_ptr->tm_min, tm_ptr->tm_sec);
exit(0);

}

When we run this program, we get a good approximation of the time and date:

$ ./gmtime; date
Raw time is 1044696004
gmtime gives:
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date: 103/02/08
time: 09:20:04
Sat Feb  8 09:20:04 GMT 2003

How It Works
The program calls time to get the low-level time value and then calls gmtime to convert this into a struc-
ture with useful time and date values. It prints these out using printf. Strictly speaking, we shouldn’t
print the raw time value in this way because it isn’t guaranteed to be a long type on all systems. We ran
the date command immediately after gmtime to compare its output.

However, we have a little problem here. If you’re running this program in a time zone other than
Greenwich Mean Time, or if your local daylight savings time is in effect, you’ll notice that the time
(and possibly date) is incorrect. This is because gmtime returns the time as GMT (now known as
Coordinated Universal Time, or UTC). Linux and UNIX do this so that all programs and systems across
the world are synchronized. Files created at the same moment in different time zones will appear to
have the same creation time. To see the local time, we need to use the function localtime instead.

#include <time.h>

struct tm *localtime(const time_t *timeval);

The localtime function is identical to gmtime, except that it returns a structure containing values
adjusted for local time zone and daylight savings. If you try the gmtime program again, but use local-
time in place of gmtime, you should see a correct time and date reported.

To convert a broken-down tm structure into a raw time_t value, we can use the function mktime:

#include <time.h>

time_t mktime(struct tm *timeptr);

mktime will return -1 if the structure can’t be represented as a time_t value.

For “friendly,” as opposed to machine, time, and date output provided by the date program, we can use
the functions asctime and ctime:

#include <time.h>

char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timeval);

The asctime function returns a string that represents the time and date given by the tm structure
timeptr. The string returned has a format similar to

Sun Jun  6 12:30:34 1999\n\0

It’s always a fixed format, 26 characters long. The function ctime is equivalent to calling

asctime(localtime(timeval))

It takes a raw time value and converts it to a more readable local time.
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Try It Out—ctime
Let’s see ctime in action, using the following code:

#include <time.h>
#include <stdio.h>

int main()
{

time_t timeval;

(void)time(&timeval);
printf(“The date is: %s”, ctime(&timeval));
exit(0);

}

Compile and run the surprisingly named ctime.c and you should see

$ ./ctime
The date is: Sat Feb  8 09:21:17 2003

How It Works
The ctime.c program calls time to get the low-level time value and lets ctime do all the hard work,
converting it to a readable string, which it then prints.

To gain more control of the exact formatting of time and date strings, Linux and modern UNIX-like sys-
tems provide the strftime function. This is rather like a sprintf for dates and times and works in a
similar way:

#include <time.h>

size_t strftime(char *s, size_t maxsize, const char *format, struct tm *timeptr);

The strftime function formats the time and date represented by the tm structure pointed to by
timeptr and places the result in the string s. This string is specified as (at least) maxsize characters
long. The format string is used to control the characters written to the string. Like printf, it contains
ordinary characters that will be transferred to the string and conversion specifiers for formatting time
and date elements. The conversion specifiers include

Conversion Specifier Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time

%d Day of the month, 01-31
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Conversion Specifier Description

%H Hour, 00-23

%I Hour in 12-hour clock, 01-12

%j Day of the year, 001-366

%m Month of the year, 01-12

%M Minutes, 00-59

%p a.m. or p.m.

%S Seconds, 00-61

%u Day in the week, 1-7 (1 = Monday)

%U Week in the year, 01-53 (Sunday is the first day of the week.)

%V Week in the year, 01-53 (Monday is the first day of the week.)

%w Day in the week, 0-6 (0 = Sunday)

%x Date in local format

%X Time in local format

%y Year number less 1900

%Y Year

%Z Time zone name

%% A % character

So, the usual date as given by the date program corresponds to a strftime format string of

“%a %b %d %H:%M:%S %Y”

To help with reading dates, we can use the strptime function, which takes a string representing a date
and time and creates a tm structure representing the same date and time:

#include <time.h>

char *strptime(const char *buf, const char *format, struct tm *timeptr);

The format string is constructed in exactly the same way as the format string for strftime. strptime
acts in a similar way to sscanf in that it scans a string, looking for identifiable fields, and writes them
into variables. Here it’s the members of a tm structure that are filled in according to the format string.
However, the conversion specifiers for strptime are a little more relaxed than those for strftime
because strptime will allow both abbreviated and full names for days and months. Either representation
will match a %a specifier in strptime. Also, where strftime always uses leading zeros on numbers less
than 10, strptime regards them as optional.
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strptime returns a pointer to the character following the last one consumed in the conversion process.
If it encounters characters that can’t be converted, the conversion simply stops at that point. The calling
program needs to check that enough of the passed string has been consumed to ensure that meaningful
values are written to the tm structure. 

Try It Out—strftime and strptime
Have a look at the selection of conversion specifiers used in the following program:

#include <time.h>
#include <stdio.h>

int main()
{

struct tm *tm_ptr, timestruct;
time_t the_time;
char buf[256];
char *result;

(void) time(&the_time);
tm_ptr = localtime(&the_time);
strftime(buf, 256, “%A %d %B, %I:%S %p”, tm_ptr);

printf(“strftime gives: %s\n”, buf);

strcpy(buf,”Sat 26 July 2003, 17:53 will do fine”);

printf(“calling strptime with: %s\n”, buf);
tm_ptr = &timestruct;

result = strptime(buf,”%a %d %b %Y, %R”, tm_ptr);
printf(“strptime consumed up to: %s\n”, result);

printf(“strptime gives:\n”);
printf(“date: %02d/%02d/%02d\n”, 

tm_ptr->tm_year % 100, tm_ptr->tm_mon+1, tm_ptr->tm_mday);
printf(“time: %02d:%02d\n”,

tm_ptr->tm_hour, tm_ptr->tm_min);
exit(0);

}

When we compile and run this program, strftime.c, we get

$ ./strftime
strftime gives: Sunday 06 June, 11:55 AM
calling strptime with: Sat 26 July 2003, 17:53 will do fine
strptime consumed up to:  will do fine
strptime gives:
date: 03/07/26
time: 17:53
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How It Works
The strftime program obtains the current local time by calling time and localtime. It then converts
it to a readable form by calling strftime with an appropriate formatting argument. To demonstrate the
use of strptime, the program sets up a string containing a date and time, then calls strptime to extract
the raw time and date values, and prints them. The conversion specifier %R is a shortcut for %H:%M in
strptime.

It’s important to note that strptime needs an accurate format string to successfully scan a date.
Typically, it won’t accurately scan dates read from users unless the format is very much restricted.

It is possible that you will find the compiler issuing a warning when you compile strftime.c. This is
because the GNU library does not by default declare strptime. The fix for this is to explicitly request
X/Open standard features by adding the following line before including time.h:

#define _XOPEN_SOURCE

Temporary Files
Often, programs will need to make use of temporary storage in the form of files. These might hold inter-
mediate results of a computation or represent backup copies of files made before critical operations. For
example, a database application could use a temporary file when deleting records. The file collects the
database entries that need to be retained, and then, at the end of the process, the temporary file becomes
the new database and the original is deleted.

This popular use of temporary files has a hidden disadvantage. You must take care to ensure that the
applications choose a unique filename to use for the temporary file. If this doesn’t happen, because
Linux is a multitasking system, another program could choose the same name and the two will interfere
with each other.

A unique filename can be generated by the tmpnam function:

#include <stdio.h>

char *tmpnam(char *s);

The tmpnam function returns a valid filename that isn’t the same as any existing file. If the string s isn’t
null, the filename will also be written to it. Further calls to tmpnam will overwrite the static storage
used for return values, so it’s essential to use a string parameter if tmpnam is to be called many times.
The string is assumed to be at least L_tmpnam characters long. tmpnam can be called up to TMP_MAX
times in a single program, and it will generate a different filename each time.

If the temporary file is to be used immediately, you can name it and open it at the same time using the
tmpfile function. This is important because another program could create a file with the same name as
that returned by tmpnam. The tmpfile function avoids this problem altogether:

#include <stdio.h>

FILE *tmpfile(void);
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The tmpfile function returns a stream pointer that refers to a unique temporary file. The file is opened
for reading and writing (via fopen with w+), and it will be automatically deleted when all references to
the file are closed. 

tmpfile returns a null pointer and sets errno on error.

Try It Out—tmpnam and tmpfile
Let’s see these two functions in action:

#include <stdio.h>

int main()
{

char tmpname[L_tmpnam];
char *filename; 
FILE *tmpfp;

filename = tmpnam(tmpname);

printf(“Temporary file name is: %s\n”, filename);
tmpfp = tmpfile();
if(tmpfp)

printf(“Opened a temporary file OK\n”);
else

perror(“tmpfile”);
exit(0);

}

When we compile and run this program, tmpnam.c, we can see the unique filename generated by tmpnam:

$ ./tmpnam
Temporary file name is: /tmp/file2S64zc
Opened a temporary file OK

How It Works
The program calls tmpnam to generate a unique filename for a temporary file. If we wanted to use it, we
would have to open it quickly to minimize the risk that another program would open a file with the
same name. The tmpfile call creates and opens a temporary file at the same time, thus avoiding this
risk. In fact, the GNU C compiler may give a warning about the use of tmpnam when compiling a pro-
gram that uses it.

Older versions of UNIX have another way to generate temporary filenames using the functions mktemp
and mkstemp. These are supported by Linux and are similar to tmpnam, except that you can specify a
template for the temporary filename, which gives you a little more control over their location and name:

#include <stdlib.h>

char *mktemp(char *template);
int mkstemp(char *template);
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The mktemp function creates a unique filename from the given template. The template argument must
be a string with six trailing X characters. The mktemp function replaces these X characters with a unique
combination of valid filename characters. It returns a pointer to the generated string or a null pointer if it
couldn’t generate a unique name.

The mkstemp function is similar to tmpfile in that it creates and opens a temporary file. The filename is
generated in the same way as mktemp, but the returned result is an open, low-level file descriptor. 

In general, you should use the “create and open” functions tmpfile and mkstemp rather than tmpnam
and mktemp.

User Information
All Linux programs, with the notable exception of init, are started by other programs or users. We’ll learn
more about how running programs, or processes, interact in Chapter 11. Users most often start programs
from a shell that responds to their commands. We’ve seen that a program can determine a great deal about
its environment by examining environment variables and reading the system clock. A program can also
find out information about the person using it.

When a user logs into a Linux system, he or she has a username and password. Once these have been
validated, the user is presented with a shell. Internally, the user also has a unique user identifier known
as a UID. Each program that Linux runs is run on behalf of a user and has an associated UID.

You can set up programs to run as if a different user had started them. When a program has its UID per-
mission set, it will run as if started by the owner of the executable file. When the su command is executed,
the program runs as if it had been started by the superuser. It then validates the user’s access, changes the
UID to that of the target account, and executes that account’s login shell. This also allows a program to be
run as if a different user had started it and is often used by system administrators to perform maintenance
tasks.

Since the UID is key to the user’s identity, let’s start with that.

The UID has its own type—uid_t—defined in sys/types.h. It’s normally a small integer. Some are
predefined by the system; others are created by the system administrator when new users are made
known to the system. Normally, users usually have UID values larger than 100.

#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void);
char *getlogin(void);

The getuid function returns the UID with which the program is associated. This is usually the UID of
the user who started the program.

The getlogin function returns the login name associated with the current user.
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The system file /etc/passwd contains a database dealing with user accounts. It consists of lines, one per
user, that contain the username, encrypted password, user identifier (UID), group identifier (GID), full
name, home directory, and default shell. Here’s an example line:

neil:zBqxfqedfpk:500:100:Neil Matthew:/home/neil:/bin/bash

If we write a program that determines the UID of the user who started it, we could extend it to look in the
password file to find out the user’s login name and full name. We don’t recommend this because modern
UNIX-like systems are moving away from using simple password files to improve system security. Many
systems, including Linux, have the option to use shadow password files that don’t contain any useful
encrypted password information at all (this is often held in /etc/shadow, a file that ordinary users can-
not read). For this reason, a number of functions have been defined to provide a standard and effective
programming interface to this user information:

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwuid(uid_t uid);
struct passwd *getpwnam(const char *name);

The password database structure, passwd, defined in pwd.h includes the following members:

passwd Member Description

char *pw_name The user’s login name

uid_t pw_uid The UID number

gid_t pw_gid The GID number

char *pw_dir The user’s home directory

char *pw_gecos The user’s full name

char *pw_shell The user’s default shell

Some UNIX systems may use a different name for the field for the user’s full name: on some systems, it’s
pw_gecos, as on Linux, and on others, it’s pw_comment. This means that we can’t recommend its use.

The getpwuid and getpwnam functions both return a pointer to a passwd structure corresponding to a
user. The user is identified by UID for getpwuid and by login name for getpwnam. They both return a
null pointer and set errno on error.

Try It Out—User Information
Here’s a program, user.c, which extracts some user information from the password database:

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <unistd.h>
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int main()
{

uid_t uid;
gid_t gid;

struct passwd *pw;
uid = getuid();
gid = getgid();

printf(“User is %s\n”, getlogin());

printf(“User IDs: uid=%d, gid=%d\n”, uid, gid);

pw = getpwuid(uid);
printf(“UID passwd entry:\n name=%s, uid=%d, gid=%d, home=%s, shell=%s\n”,

pw->pw_name, pw->pw_uid, pw->pw_gid, pw->pw_dir, pw->pw_shell);

pw = getpwnam(“root”);
printf(“root passwd entry:\n”);
printf(“name=%s, uid=%d, gid=%d, home=%s, shell=%s\n”,

pw->pw_name, pw->pw_uid, pw->pw_gid, pw->pw_dir, pw->pw_shell);
exit(0);

}

It gives the following output, which may differ in minor respects between versions of Linux and UNIX:

$ ./user
User is neil
User IDs: uid=500, gid=100
UID passwd entry:
name=neil, uid=500, gid=100, home=/home/neil, shell=/bin/bash

root passwd entry:
name=root, uid=0, gid=0, home=/root, shell=/bin/bash 

How It Works
This program calls getuid to obtain the UID of the current user. This UID is used in getpwuid to obtain
detailed password file information. As an alternative, we show how the username root can be given to
getpwnam to obtain user information.

If you take a look at the Linux source code, you can see another example of using getuid in the id
command.

To scan all the password file information, we can use the getpwent function. This fetches successive file
entries:

#include <pwd.h>
#include <sys/types.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);
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The getpwent function returns each user information entry in turn. When none remain, it returns a null
pointer. We can use the endpwent function to terminate processing once sufficient entries have been
scanned. The setpwent function resets the position in the password file to the start so that a new scan
can be started with the next call to getpwent. These functions operate in a similar way to the directory
scanning functions opendir, readdir, and closedir that we discussed in Chapter 3.

User and group identifiers (effective and actual) can be obtained by other, less commonly used functions:

#include <sys/types.h>
#include <unistd.h>

uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);
int setuid(uid_t uid);
int setgid(gid_t gid);

You should refer to the system manual pages for details on group identifiers and effective user identi-
fiers, although you’ll probably find that you won’t need to manipulate these at all. 

Host Information
Just as it can determine information about the user, a program can also establish some details about the com-
puter on which it’s running. The uname(1) command provides such information. uname(2) also exists as a
system call to provide the same information within a C program—check it out using man 2 uname.

Host information can be useful in a number of situations. We might wish to customize a program’s
behavior, depending on the name of the machine it’s running on in a network, say, a student’s machine
or an administrator’s. For licensing purposes, we might wish to restrict a program to running on one
machine only. All this means that we need a way to establish which machine the program is running on.

If the system has networking components installed, we can obtain its network name very easily with the
gethostname function:

#include <unistd.h>

int gethostname(char *name, size_t namelen);

The gethostname function writes the machine’s network name into the string name. This string is
assumed to be at least namelen characters long. gethostname returns 0 if successful and -1 otherwise.

You can obtain more detailed information about the host computer from the uname system call:

#include <sys/utsname.h>

int uname(struct utsname *name);

Only the superuser may call setuid and setgid.
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The uname function writes host information into the structure pointed to by the name parameter. The
utsname structure, defined in sys/utsname.h, must contain at least these members:

utsname Member Description

char sysname[] The operating system name

char nodename[] The host name

char release[] The release level of the system

char version[] The version number of the system

char machine[] The hardware type

uname returns a nonnegative integer on success, -1 otherwise, with errno set to indicate any error.

Try It Out—Host Information
Here’s a program, hostget.c, which extracts some host computer information:

#include <sys/utsname.h>
#include <unistd.h>
#include <stdio.h>

int main()
{

char computer[256];
struct utsname uts;

if(gethostname(computer, 255) != 0 || uname(&uts) < 0) {
fprintf(stderr, “Could not get host information\n”);
exit(1);

}

printf(“Computer host name is %s\n”, computer);
printf(“System is %s on %s hardware\n”, uts.sysname, uts.machine);
printf(“Nodename is %s\n”, uts.nodename);
printf(“Version is %s, %s\n”, uts.release, uts.version);
exit(0);

}

It gives the following Linux-specific output. If your machine is networked, you may see an extended
host name that includes the network:

$ ./hostget
Computer host name is beast
System is Linux on i686 hardware
Nodename is beast
Version is 2.4.19-4GB, #1 Wed Nov 27 00:56:40 UTC 2002 
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How It Works
This program calls gethostname to obtain the network name of the host computer. In the preceding
examples, it gets the name tilde. More detailed information about this Intel Pentium-II-based Linux
computer is returned by the call to uname. Note that the format of the strings returned by uname is
implementation-dependent; in the example, the version string contains the date that the kernel was 
compiled.

For another example of the use of the uname function, have a look at the Linux source code for the
uname command, which uses it.

A unique identifier for each host computer may be available from the gethostid function:

#include <unistd.h>

long gethostid(void);

The gethostid function is intended to return a unique value for the host computer. License managers
use this to ensure that software programs can run only on machines that hold valid licenses. On Sun
workstations, it returns a number that is set in non-volatile memory when the computer is built, and so,
is unique to the system hardware. 

Other systems, such as Linux, return a value based on the Internet address of the machine, which isn’t
usually secure enough to be used for licensing.

Logging
Many applications need to record their activities. System programs very often will write messages to the
console, or a log file. These messages might indicate errors, warnings, or more general information about
the state of the system. For example, the su program might record the fact that a user has tried and
failed to gain superuser privileges.

Very often, these log messages are recorded in system files in a directory made available for that purpose.
This might be /usr/adm or /var/log. On a typical Linux installation, the file /var/log/messages
contains all system messages, /var/log/mail contains other log messages from the mail system, and
/var/log/debug may contain debug messages. You can check your system’s configuration in the
/etc/syslog.conf file. 

Here are some sample log messages:

Feb  8 08:38:37 beast kernel: klogd 1.4.1, log source = /proc/kmsg started.
Feb  8 08:38:37 beast kernel: Inspecting /boot/System.map-2.4.19-4GB
Feb  8 08:38:37 beast kernel: Loaded 20716 symbols from /boot/System.map-
2.4.19-4GB.
Feb  8 08:38:37 beast kernel: Symbols match kernel version 2.4.19.
Feb  8 08:38:37 beast kernel: Loaded 372 symbols from 17 modules.

Feb  8 08:38:37 beast kernel: Linux Tulip driver version 0.9.15-pre11 (May 11,
2002)
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Feb  8 08:38:37 beast kernel: PCI: Found IRQ 5 for device 00:0d.0
Feb  8 08:38:37 beast kernel: eth0: ADMtek Comet rev 17 at 0xe400,
00:04:5A:5F:46:52, IRQ 5.

... 
Feb  8 08:39:20 beast /usr/sbin/cron[932]: (CRON) STARTUP (fork ok) 
Feb  8 09:50:35 beast su: (to root) neil on /dev/pts/4

Here, we can see the sort of messages that are logged. The first few are reported by the Linux kernel
itself as it boots and detects installed hardware. The task scheduler, cron, reports that it’s starting up.
Finally, the su program reports a superuser account access by user neil.

You may require superuser privilege to view log messages.

Some UNIX systems don’t provide a readable messages file in this way, but do provide the administra-
tor with tools to read a database of system events. Refer to your system documentation for details.

Even though the format and storage of system messages may vary, the method of producing the mes-
sages is standard. The UNIX specification provides an interface for all programs to produce logging
messages using the syslog function:

#include <syslog.h>

void syslog(int priority, const char *message, arguments...);

The syslog function sends a logging message to the logging facility. Each message has a priority
argument that is a bitwise OR of a severity level and a facility value. The severity level controls how the
log message is acted upon and the facility value records the originator of the message.

Facility values (from syslog.h) include LOG_USER, used to indicate that the message has come from a
user application, (the default), and LOG_LOCAL0, LOG_LOCAL1, up to LOG_LOCAL7, which can be
assigned meanings by the local administrator.

The severity levels in descending order of priority are

Priority Level Description

LOG_EMERG An emergency situation

LOG_ALERT High-priority problem, such as database corruption

LOG_CRIT Critical error, such as hardware failure

LOG_ERR Errors

LOG_WARNING Warning

LOG_NOTICE Special conditions requiring attention

LOG_INFO Informational messages

LOG_DEBUG Debug messages
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Depending on system configuration, LOG_EMERG messages might be broadcast to all users, LOG_ALERT
messages might be mailed to the administrator, LOG_DEBUG messages might be ignored, and the others
written to a messages file. We can write a program that uses the logging facility simply by calling syslog
when we wish to create a log message.

The log message created by syslog consists of a message header and a message body. The header is cre-
ated from the facility indicator and the date and time. The message body is created from the message
parameter to syslog, which acts like a printf format string. Further arguments to syslog are used
according to printf style conversion specifiers in the message string. Additionally, the specifier %m may
be used to insert the error message string associated with the current value of the error variable, errno.
This can be useful for logging error messages.

Try It Out—syslog
In this program, we try to open a nonexistent file:

#include <syslog.h>
#include <stdio.h>

int main()
{

FILE *f;

f = fopen(“not_here”,”r”);
if(!f)

syslog(LOG_ERR|LOG_USER,”oops - %m\n”);
exit(0);

}

When we compile and run this program, syslog.c, we see no output, but the file /var/log/messages
now contains the following line at the end:

Feb  8 09:59:14 beast syslog: oops - No such file or directory 

How It Works
In this program, we try to open a file that doesn’t exist. When this fails, we call syslog to record the fact
in the system logs.

Notice that the log message doesn’t indicate which program called the log facility; it just records the fact
that syslog was called with a message. The %m conversion specifier has been replaced by a description
of the error, in this case, that the file couldn’t be found. This is more useful than just reporting the raw
error number.

Other functions used to alter the behavior of logging facilities are also defined in syslog.h. These are:

#include <syslog.h>

void closelog(void);
void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);
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We can alter the way that our log messages are presented by calling the openlog function. This allows
us to set up a string, ident, which will be pre-pended to our log messages. We can use this to indicate
which program is creating the message. The facility parameter records a default facility value to be
used for future calls to syslog. The default is LOG_USER. The logopt parameter configures the behavior
of future calls to syslog. It’s a bitwise OR of zero or more of the following:

logopt Parameter Description

LOG_PID Includes the process identifier, a unique number allocated to each
process by the system, in the messages.

LOG_CONS Sends messages to the console if they can’t be logged.

LOG_ODELAY Opens the log facility at first call to .

LOG_NDELAY Opens the log facility immediately, rather than at first log.

The openlog function will allocate and open a file descriptor that will be used for writing to the logging
facility. You can close this by calling the closelog function. Note that you don’t need to call openlog
before calling syslog because syslog will open the logging facility itself if required.

We can control the priority level of our log messages by setting a log mask using setlogmask. All future
calls to syslog with priority levels not set in the log mask will be rejected, so you could, for example,
use this to turn off LOG_DEBUG messages without having to alter the body of the program.

We can create the mask for log messages using LOG_MASK(priority), which creates a mask consisting
of just one priority level, or LOG_UPTO(priority), which creates a mask consisting of all priorities up to
and including the specified priority. 

Try It Out—logmask
In this example, we’ll see logmask in action:

#include <syslog.h>
#include <stdio.h>
#include <unistd.h>

int main()
{

int logmask;

openlog(“logmask”, LOG_PID|LOG_CONS, LOG_USER);
syslog(LOG_INFO,”informative message, pid = %d”, getpid());
syslog(LOG_DEBUG,”debug message, should appear”);
logmask = setlogmask(LOG_UPTO(LOG_NOTICE));
syslog(LOG_DEBUG,”debug message, should not appear”);
exit(0);

}
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This logmask.c program produces no output, but on a typical Linux system, toward the end of
/var/log/messages, we should see the following line:

Feb  8 10:00:50 beast logmask[1833]: informative message, pid = 1833

The file that is configured to receive debug log entries (depending on logging configuration, this is often
the file /var/log/debug or sometimes /var/log/messages) should contain the following line:

Feb  8 10:00:50 beast logmask[1833]: debug message, should appear

How It Works
The program initializes the logging facility with its name, logmask, and requests that log messages con-
tain the process identifier. The informative message is logged to /var/log/messages, and the debug
message to /var/log/debug. The second debug message doesn’t appear because we call setlogmask
to ignore all messages with a priority below LOG_NOTICE. (Note that this may not work on early Linux
kernels.)

If your installation does not have debug message logging enabled, or it is configured differently, you
may not see the debug messages appear. To enable all debug messages, add the following line to the end
of /etc/syslog.conf and reboot. (You could also just send a hang-up signal to the syslogd process.)
However, be sure to check your system documentation for the exact configuration details.

*.debug     /var/log/debug

logmask.c uses the getpid function, which is defined along with the closely related getppid as follows

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

The functions return the process and parent process identifiers of the calling process. For more informa-
tion on PIDs, see Chapter 11.

Resources and Limits
Programs running on a Linux system are subject to resource limitations. These might be physical limits
imposed by hardware (such as memory), limits imposed by system policies (for example, allowed CPU
time), or implementation limits (such as the size of an integer or the maximum number of characters
allowed in a filename). The UNIX specification defines some of these limits that can be determined by
an application. See Chapter 7 for a further discussion of limits and the consequences of breaking them.
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The header file limits.h defines many manifest constants that represent the constraints imposed by the
operating system. These include

Limit Constant What They’re For

NAME_MAX The maximum number of characters in a filename

CHAR_BIT The number of bits in a char value

CHAR_MAX The maximum char value

INT_MAX The maximum int value

There will be many others that may be of use to an application, so you should refer to your installation’s
header files. 

Note that NAME_MAX is file-system specific. For more portable code, you should use the pathconf
function. Refer to the manual pages on pathconf for more information.

The header file sys/resource.h provides definitions for resource operations. These include functions
for determining and setting limits on a program’s allowed size, execution priority, and file resources:

#include <sys/resource.h>

int getpriority(int which, id_t who); 
int setpriority(int which, id_t who, int priority); 
int getrlimit(int resource, struct rlimit *r_limit); 
int setrlimit(int resource, const struct rlimit *r_limit); 
int getrusage(int who, struct rusage *r_usage);

id_t is an integral type used for user and group identifiers. The rusage structure, defined in
sys/resource.h, is used to determine how much CPU time has been used by the current program.
It must contain at least these members:

rusage Member Description

struct timeval ru_utime The user time used

struct timeval ru_stime The system time used

The timeval structure is defined in sys/time.h and contains fields tv_sec and tv_usec, representing
seconds and microseconds, respectively. 

CPU time consumed by a program is separated into user time (the time that the program itself has con-
sumed executing its own instructions) and system time (the CPU time consumed by the operating system
on the program’s behalf; that is, the time spent in system calls performing input and output or other sys-
tem functions).
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The getrusage function writes CPU time information to the rusage structure pointed to by the param-
eter r_usage. The who parameter can be one of the following constants:

who Constant Description

RUSAGE_SELF Returns usage information about current program only.

RUSAGE_CHILDREN Includes usage information of child processes as well.

We discuss child processes and task priorities in Chapter 11, but for completeness, we’ll cover their impli-
cations for system resources here. For now, it’s enough to say that each program that’s running has a pri-
ority associated with it, and that higher priority programs are allocated more of the available CPU time. 

Ordinary users are only able to reduce the priorities of their programs, not increase them.

Applications can determine and alter their (and others’) priority with the getpriority and setprior-
ity functions. The process to be examined or changed by the priority functions can be identified either
by process identifier, group identifier, or user. The which parameter specifies how the who parameter is
to be treated.

which Parameter Description

PRIO_PROCESS who is a process identifier.

PRIO_PGRP who is a process group.

PRIO_USER who is a user identifier.

So, to determine the priority of the current process, we might call

priority = getpriority(PRIO_PROCESS, getpid());

The setpriority function allows a new priority to be set, if possible.

The default priority is 0. Positive priorities are used for background tasks that run when no other higher
priority task is ready to run. Negative priorities cause a program to run more frequently, taking a larger
share of the available CPU time. The range of valid priorities is -20 to +20. This is often confusing
because the higher the numerical value, the lower the execution precedence.

getpriority returns a valid priority if successful or a -1 with errno set on error. Because -1 is itself a
valid priority, errno should be set to zero before calling getpriority and checked that it’s still zero on
return. setpriority returns 0 if successful, -1 otherwise.

Limits on system resources can be read and set by getrlimit and setrlimit. Both of these
functions make use of a general purpose structure, rlimit, to describe resource limits. It’s defined
in sys/resource.h and has the following members:
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rlimit Member Description

rlim_t rlim_cur The current, soft limit

rlim_t rlim_max The hard limit

The defined type rlim_t is an integral type used to describe resource levels. Typically, the soft limit is
an advisory limit that shouldn’t be exceeded; doing so may cause library functions to return errors. The
hard limit, if exceeded, may cause the system to attempt to terminate the program by sending a signal to
it. Examples would be the signal SIGXCPU on exceeding the CPU time limit and the signal SIGSEGV on
exceeding a data size limit. A program may set its own soft limits to any value less than the hard limit. It
may reduce its hard limit. Only a program running with superuser privileges may increase a hard limit.

There are a number of system resources that can be limited. These are specified by the resource param-
eter of the rlimit functions and are defined in sys/resource.h as

resource Parameter Description

RLIMIT_CORE The core dump file size limit, in bytes

RLIMIT_CPU The CPU time limit, in seconds

RLIMIT_DATA The data () segment limit, in bytes

RLIMIT_FSIZE The file size limit, in bytes

RLIMIT_NOFILE The limit on the number of open files

RLIMIT_STACK The limit on stack size, in bytes

RLIMIT_AS The limit on address space (stack and data), in bytes

The following “Try It Out” shows a program, limits.c, that simulates a typical application. It also sets
and breaks a resource limit.

Try It Out—Resource Limits
1. Make the includes for all the functions we’re going to be using in this program:

#include <sys/types.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdio.h>
#include <math.h>

2. The void function writes a string to a temporary file 10,000 times and then performs some
arithmetic to generate load on the CPU:

void work()
{

FILE *f;
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int i;
double x = 4.5;

f = tmpfile();
for(i = 0; i < 10000; i++) {

fprintf(f,”Do some output\n”);
if(ferror(f)) {

fprintf(stderr,”Error writing to temporary file\n”);
exit(1);

}
}
for(i = 0; i < 1000000; i++)

x = log(x*x + 3.21);
}

3. The main function calls work and then uses the getrusage function to discover how much
CPU time it has used. It displays this information on screen:

int main()
{

struct rusage r_usage;
struct rlimit r_limit;
int priority;

work();
getrusage(RUSAGE_SELF, &r_usage);

printf(“CPU usage: User = %ld.%06ld, System = %ld.%06ld\n”,
r_usage.ru_utime.tv_sec, r_usage.ru_utime.tv_usec,
r_usage.ru_stime.tv_sec, r_usage.ru_stime.tv_usec);

4. Next, it calls getpriority and getrlimit to find out its current priority and file size limits,
respectively:

priority = getpriority(PRIO_PROCESS, getpid());
printf(“Current priority = %d\n”, priority);

getrlimit(RLIMIT_FSIZE, &r_limit);
printf(“Current FSIZE limit: soft = %ld, hard = %ld\n”,

r_limit.rlim_cur, r_limit.rlim_max);

5. Finally, we set a file size limit using setrlimit and call work again, which fails because it
attempts to create too large a file:

r_limit.rlim_cur = 2048;
r_limit.rlim_max = 4096;
printf(“Setting a 2K file size limit\n”);
setrlimit(RLIMIT_FSIZE, &r_limit);

work();
exit(0);

}
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When we run this program, we can see how much CPU resource is being consumed and the default pri-
ority at which the program is running. Once a file size limit has been set, the program can’t write more
than 2,048 bytes to a temporary file.

$ cc -o limits limits.c -lm
$ ./limits
CPU usage: User = 0.980000, System = 0.010000
Current priority = 0
Current FSIZE limit: soft = -1, hard = -1
Setting a 2K file size limit
File size limit exceeded

We can change the program priority by starting it with the nice command. Here, we see the priority
changes to +10 and, as a result, it takes longer to execute the program:

$ nice ./limits
CPU usage: User = 1.000000, System = 0.000000
Current priority = 10
Current FSIZE limit: soft = -1, hard = -1
Setting a 2K file size limit
File size limit exceeded 

How It Works
The limits program calls the work function to simulate the actions of a typical program. It performs
some calculations and produces some output, in this case, about 150K to a temporary file. It calls the
resource functions to discover its priority and file size limits. In this case, the file size limits are unset,
allowing us to create as large a file as we like (disk space permitting). The program then sets its file size
limit to just 2K and again tries to perform some work. This time, the work function fails as it can’t create
such a large temporary file.

Limits may also be placed on a program running under a particular shell with the bash ulimit command.

In this example, the error message ‘Error writing to temporary file’ may not be printed as we
might expect. This is because some systems (such as Linux 2.2 and later) terminate our program when
the resource limit is exceeded. It does this by sending a signal, SIGXFSZ. We will learn more about sig-
nals and how to use them in Chapter 11. Other POSIX-compliant systems may simply cause the function
that exceeds the limit to return an error.

Summary
In this chapter, we’ve looked at the Linux environment and examined the conditions under which pro-
grams run. We’ve covered command line arguments and environment variables, both of which can be
used to alter a program’s default behavior and provide useful program options.

We’ve seen how a program can make use of library functions to manipulate date and time values and
obtain information about itself and the user and the computer on which it’s running.

Linux programs typically have to share precious resources, so we also looked at how those resources can
be determined and managed.
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5
Terminals

In this chapter, let’s consider the improvements we might like to make to our basic application
from Chapter 2. Perhaps the most obvious failing is the user interface; it’s functional, but not very
elegant. Here, we’ll look at how to take more control of the user’s terminal; that is, both keyboard
input and screen output. More than this, though, we’ll learn how to “guarantee” that the programs
we write can get input from the user, even in the presence of input redirection, and ensure that the
output goes to the right place on the screen. 

Though the reimplemented CD database application won’t see the light of day until the end of
Chapter 7, we’ll do much of the groundwork for that chapter here. Chapter 6 is on curses, which is
not some ancient malediction, but rather a library of functions that provide a higher level of code to
control the terminal screen display. Along the way, we’ll examine a little more of the thinking of the
early UNIX meisters by introducing you to some philosophy of Linux and UNIX and the concept of
terminal input and output. The low-level access presented here might be just what you’re looking
for. Most of what we will cover applies equally well to programs running in a console window, such
as KDE’s Konsole, GNOME’s gnome-terminal, or the standard X11 xterm.

Specifically, in this chapter, we’ll learn about

❑ Reading and writing to the terminal

❑ Terminal drivers and the General Terminal Interface

❑ termios

❑ Terminal output and terminfo

❑ Detecting keystrokes

Reading from and Writing to the Terminal
In Chapter 3, we learned that when a program is invoked from the command prompt, the shell
arranges for the standard input and output streams to be connected to our program. We should be
able to interact with the user simply by using the getchar and printf routines to read and write
these default streams.
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Let’s try to rewrite our menu routines in C, using just those two routines, calling it menu1.c.

Try It Out—Menu Routines in C
1. Start with the following lines, which define the array to be used as a menu, and prototype the

getchoice function:

#include <stdio.h>

char *menu[] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

};

int getchoice(char *greet, char *choices[]);

2. The main function calls getchoice with the sample menu, menu:

int main()
{

int choice = 0;

do
{

choice = getchoice(“Please select an action”, menu);
printf(“You have chosen: %c\n”, choice);

} while(choice != ‘q’);
exit(0);

}

3. Now for the important code: the function that both prints the menu and reads the user’s input:

int getchoice(char *greet, char *choices[])
{

int chosen = 0;
int selected;
char **option;

do {
printf(“Choice: %s\n”,greet);
option = choices;
while(*option) {

printf(“%s\n”,*option);
option++;

}
selected = getchar();
option = choices;
while(*option) {

if(selected == *option[0]) {
chosen = 1;
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break;
}
option++;

}
if(!chosen) {

printf(“Incorrect choice, select again\n”);
}

} while(!chosen);
return selected;

}

How It Works
getchoice prints the program introduction greet and the sample menu choices and asks the user to
choose the initial character. The program then loops until getchar returns a character that matches the
first letter of one of the option array’s entries.

When we compile and run this program, we discover that it doesn’t behave as we expected. Here’s some
terminal dialogue to demonstrate the problem:

$ ./menu1
Choice: Please select an action
a - add new record
d - delete record
q - quit
a
You have chosen: a
Choice: Please select an action
a - add new record
d - delete record
q - quit
Incorrect choice, select again
Choice: Please select an action
a - add new record
d - delete record
q - quit
q
You have chosen: q
$

Here, the user had to enter A/Enter/Q/Enter to make selections. There seem to be at least two problems:
The most serious problem is that we are getting Incorrect choice after every correct choice. Plus, we
still have to press Enter (or the Return key) before our program reads our input.

Canonical versus Non-Canonical Modes
The two problems are closely related. By default, terminal input is not made available to a program until
the user presses Enter. In most cases, this is a benefit because it allows the user to correct typing mistakes
using Backspace or Delete. Only when they’re happy with what they see on the screen do they press
Enter to make the input available to the program.

This behavior is called canonical, or standard, mode. All the input is processed in terms of lines. Until a
line of input is complete (usually when the user presses Enter), the terminal interface manages all the
key presses, including Backspace, and no characters may be read by the application.
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The opposite of this is non-canonical mode, where the application has much greater control over the pro-
cessing of input characters. We’ll come back to these two modes again a little later.

Among other things, the Linux terminal handler likes translating interrupt characters to signals and can
automatically perform Backspace and Delete processing for you, so you don’t have to reimplement it in
each program you write. We’ll find out more about signals in Chapter 11.

So, what’s happening in our program? Well, Linux is saving the input until the user presses Enter, then
passing both the choice character and the subsequent Enter to the program. So, each time you enter a menu
choice, the program calls getchar, processes the character, then calls getchar again, which immediately
returns with the Enter character.

The character the program actually sees isn’t an ASCII carriage return, CR (decimal 13, hex 0D), but a line
feed, LF (decimal 10, hex 0A). This is because, internally, Linux (like UNIX) always uses a line feed to
end lines of text; that is, UNIX uses a line feed alone to mean a newline, where other systems, such as
MS-DOS, use a carriage return and a line feed together as a pair. If the input or output device also sends
or requires a carriage return, the Linux terminal processing takes care of it. This might seem a little
strange if you’re used to MS-DOS or other environments, but one of the very considerable benefits is
that there is no real difference between text and binary files on Linux. Only when you input or output
to a terminal or some printers and plotters are carriage returns processed.

We can correct the major deficiency in our menu routine simply by ignoring the additional line feed
character with some code such as this:

do {
selected = getchar();

} while(selected == ‘\n’);

This solves the immediate problem. We’ll return to the second problem of needing to press Enter, and a
more elegant solution to the line feed handling later.

Handling Redirected Output
It’s very common for Linux programs, even interactive ones, to have their input or output redirected,
either to files or other programs. Let’s see how our program behaves when we redirect its output to a
file:

$ menu1 > file
a
q
$

We could regard this as successful because the output has been redirected to a file rather than the termi-
nal. However, there are cases where we want to prevent this from happening, or where we want to sepa-
rate prompts that we want the user to see from other output that can be redirected safely.

We can tell whether the standard output has been redirected by finding out if the low-level file descrip-
tor is associated with a terminal. The isatty system call does this. We simply pass it a valid file descrip-
tor and it tests to see if that is currently connected to a terminal.
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#include <unistd.h>

int isatty(int fd);

The isatty system call returns 1 if the open file descriptor, fd, is connected to a terminal and 0 otherwise.

In our program, we are using file streams, but isatty operates only on file descriptors. To provide the
necessary conversion, we need to combine the isatty call with the fileno routine that we discussed in
Chapter 3.

What are we going to do if stdout has been redirected? Just quitting isn’t good enough because the user
has no way of knowing why the program failed to run. Printing a message on stdout won’t help either
because it must have been redirected away from the terminal. One solution is to write to stderr, which
isn’t redirected by the shell > file command.

Try It Out—Checking for Output Redirection
Using the program menu1.c we created in the last “Try It Out” section, make a new include, change
the main function to the following, and call the new file menu2.c.

#include <unistd.h>
...

int main()
{

int choice = 0;

if(!isatty(fileno(stdout))) {
fprintf(stderr,”You are not a terminal!\n”);
exit(1);

}
do {

choice = getchoice(“Please select an action”, menu);
printf(“You have chosen: %c\n”, choice);

} while(choice != ‘q’);
exit(0);

}

Now look at the following sample output:

$ menu2
Choice: Please select an action
a - add new record
d - delete record
q - quit
q
You have chosen: q
$ menu2 > file
You are not a terminal!
$
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How It Works
The new section of code uses the isatty function to test whether the standard output is connected to
a terminal and halts execution if it isn’t. This is the same test the shell uses to decide whether to offer
prompts. It’s possible, and quite common, to redirect both stdout and stderr away from the terminal.
We can direct the error stream to a different file like this:

$ menu2 >file 2>file.error
$

Or combine the two output streams into a single file like this:

$ menu2 >file 2>&1
$

(If you’re not familiar with output redirection, take another look at Chapter 2, where we explain this
syntax in more detail.) In this case, you’ll need to send a message to the console.

Talking to the Terminal
If we need to prevent the parts of our program that interact with the user from being redirected, but still
allow it to happen to other input or output, we need to separate the interaction from stdout and stderr.
We can do this by reading and writing directly to the terminal. Since Linux is inherently a multiuser sys-
tem, usually with many terminals either directly connected or connected across a network, how can we
discover the correct terminal to use?

Fortunately, Linux and UNIX make things easy for us by providing a special device, /dev/tty, which is
always the current terminal, or login session. Since Linux treats everything as a file, we can use normal
file operations to read and write to /dev/tty.

Let’s modify our choice program so that we can pass parameters to the getchoice routine, to provide
better control over the output. We’re up to menu3.c.

Try It Out—Using /dev/tty
Load up menu2.c and change the code to the following, so that input and output come from and are
directed to /dev/tty:

#include <stdio.h>
#include <unistd.h>

char *menu[] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

};

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);

int main()
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{
int choice = 0;

FILE *input;
FILE *output;

if(!isatty(fileno(stdout))) {

fprintf(stderr,”You are not a terminal, OK.\n”);
}

input = fopen(“/dev/tty”, “r”);
output = fopen(“/dev/tty”, “w”);
if(!input || !output) {

fprintf(stderr,”Unable to open /dev/tty\n”);
exit(1);

}
do {

choice = getchoice(“Please select an action”, menu, input, output);
printf(“You have chosen: %c\n”, choice);

} while(choice != ‘q’);
exit(0);

}

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{

int chosen = 0;
int selected;
char **option;

do {

fprintf(out,”Choice: %s\n”,greet);
option = choices;
while(*option) {

fprintf(out,”%s\n”,*option);
option++;

}

do {
selected = fgetc(in);

} while(selected == ‘\n’);
option = choices;
while(*option) {

if(selected == *option[0]) {
chosen = 1;
break;

}
option++;

}
if(!chosen) {

fprintf(out,”Incorrect choice, select again\n”);
}

} while(!chosen);
return selected;

}
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Now, when we run the program with the output redirected, we can still see the prompts and the normal
program output is separated.

$ menu3 > file
You are not a terminal, OK.
Choice: Please select an action
a - add new record
d - delete record
q - quit
d
Choice: Please select an action
a - add new record
d - delete record
q - quit
q
$ cat file
You have chosen: d
You have chosen: q

The Terminal Driver and the General
Terminal Interface

Sometimes a program needs much finer control over the terminal than can be achieved using simple file
operations. Linux provides a set of interfaces that allow us to control the behavior of the terminal driver,
giving us much greater control of the processing of terminal input and output.

Overview
As Figure 5-1 shows, we can control the terminal through a set of function calls (the General Terminal
Interface, or GTI) separate from those used for reading and writing. This keeps the data (read/write)
interface very clean while still allowing detailed control over the terminal behavior. That’s not to say that
the terminal I/O interface is clean—it’s got to deal with a wide variety of different hardware.

Figure 5-1

User program

Control
interface

read/write
interface

Terminal Driver
in the Kernel
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In UNIX terminology, the control interface sets a “line discipline” that allows a program considerable
flexibility in specifying the behavior of the terminal driver.

The main features that we can control are

❑ Line editing: Choose whether to allow Backspace for editing.

❑ Buffering: Choose whether to read characters immediately, or read them after a configurable
delay. 

❑ Echo: Allows us to control echoing, such as when reading passwords.

❑ CR/LF: Determine mapping for input and output: what happens when you print a \n.

❑ Line speeds: Rarely used on a PC console, these speeds are very important for modems and ter-
minals on serial lines.

Hardware Model
Before we look at the General Terminal Interface in detail, it’s very important that we understand the
hardware model that it’s intended to drive.

The conceptual arrangement shown in Figure 5-2 (and for some UNIX sites, it will physically be like
this) is to have a UNIX machine connected via a serial port to a modem and then via a telephone line
and another modem to a remote terminal. In fact, this is just the kind of setup used by some small
Internet service providers. It’s a distant relative of the client/server paradigm, used when the program
ran on a mainframe and users worked at dumb terminals.

Figure 5-2

UNIX Kernel

Serial Hardware

Application

read/write
interface

control
interface

Data and control lines Data and control lines
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If you’re working on a PC running Linux, this may seem like an overly complex model. However, as
both of the authors have modems, we can, if we choose, use a terminal emulation program like minicom
to run a remote logon session on each other’s machines just like this, using a pair of modems and a tele-
phone line.

The advantage of using such a hardware model is that most real-world situations will form a subset of
this, the most complex case. Supporting them will be much easier than if the model had omitted such
functionality.

The termios Structure
termios is the standard interface specified by POSIX and is similar to the System V interface termio.
The terminal interface is controlled by setting values in a structure of type termios and using a small
set of function calls. Both are defined in the header file termios.h.

The values that can be manipulated to affect the terminal are grouped into various modes:

❑ Input

❑ Output

❑ Control

❑ Local

❑ Special control characters

A minimum termios structure is typically declared as follows (although the X/Open specification
allows additional fields to be included).

#include <termios.h>
struct termios {

tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t     c_cc[NCCS];

};

The member names correspond with the five parameter types listed in the previous list.

Programs that use the function calls defined in termios.h will need to be linked
with an appropriate function library. This will normally be the curses library, so
when compiling the examples in this chapter, you’ll need to add -lcurses to the
end of the compiler command line. On some older Linux systems, the curses
library is provided by a version known as “new curses,” or ncurses. In these cases,
the library name and link argument become and -lncurses, respectively.
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We can initialize a termios structure for the terminal by calling the function tcgetattr, which has the
following prototype:

#include <termios.h>

int tcgetattr(int fd, struct termios *termios_p);

This call writes the current values of the terminal interface variables into the structure pointed to
by termios_p. If these values are then altered, we can reconfigure the terminal interface with the 
tcsetattr function as follows

#include <termios.h>

int tcsetattr(int fd, int actions, const struct termios *termios_p);

The actions field for tcsetattr controls how any changes are applied. The three possibilities are

❑ TCSANOW: Changes values immediately.

❑ TCSADRAIN: Changes values when current output is complete.

❑ TCSAFLUSH: Changes values when current output is complete, but discards any input 
currently available and not yet returned in a read call.

We’ll now look more closely at the modes and related function calls. Some of the detail of the modes is
rather specialized and rarely used, so we’ll  cover only the main features here. If you need to know
more, you should consult your local man pages or a copy of the POSIX or X/Open specification.

The most important mode to take in on your first read is the local mode. The canonical and non-canonical
modes are the solution to the second of our problems in the first application. We can instruct the program
to wait for a line of input or pounce on input as soon as it is typed.

Input Modes
The input modes control how input (characters received by the terminal driver at a serial port or keyboard)
is processed before being passed on to the program. We control them by setting flags in the c_iflag mem-
ber of the termios structure. All the flags are defined as macros and can be combined with a bitwise OR.
This is the case for all the terminal modes.

The macros that can be used for c_iflag are

❑ BRKINT: Generate an interrupt when a break condition is detected on the line

❑ IGNBRK: Ignore break conditions on the line

Note that it’s very important for programs to restore terminal settings to the values
they had before the program started. It’s always the responsibility of a program to
initially save and restore these settings when it finishes.
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❑ ICRNL: Convert a received carriage return to a newline

❑ IGNCR: Ignore received carriage returns

❑ INLCR: Convert received newlines to carriage returns

❑ IGNPAR: Ignore characters with parity errors

❑ INPCK: Perform parity checking on received characters

❑ PARMRK: Mark parity errors

❑ ISTRIP: Strip (set to seven bits) all incoming characters

❑ IXOFF: Enable software flow control on input

❑ IXON: Enable software flow control on output

You won’t need to change the input modes very often, as the default values are usually the most suit-
able, so we won’t discuss them further here.

Output Modes
These modes control how output characters are processed; that is, how characters sent from a program
are processed before being transmitted to the serial port or screen. As you might expect, many of these
are counterparts of the input modes. Several additional flags exist, which are mainly concerned with
allowing for slow terminals that require time to process characters such as carriage returns. Almost all of
these are either redundant (as terminals get faster) or better handled using the terminfo database of ter-
minal capabilities, which we’ll use later in this chapter.

We control output modes by setting flags in the c_oflag member of the termios structure. The macros
that we can use in c_oflag are

❑ OPOST: Turn on output processing

❑ ONLCR: Convert any output newline to a carriage return/line feed pair

❑ OCRNL: Convert any output carriage return to a newline

❑ ONOCR: No carriage return output in column 0

❑ ONLRET: A newline also does a carriage return

❑ OFILL: Send fill characters to provide delays

❑ OFDEL: Use DEL as a fill character, rather then NULL

❑ NLDLY: Newline delay selection

❑ CRDLY: Carriage return delay selection

❑ TABDLY: Tab delay selection

If neither BRKINT nor IGNBRK is set, a break condition on the line is read as a
NULL (0x00) character.
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❑ BSDLY: Backspace delay selection

❑ VTDLY: Vertical tab delay selection

❑ FFDLY: Form feed delay selection

The output modes are also not commonly used, so we won’t consider them further here.

Control Modes
These modes control the hardware characteristics of the terminal. We specify control modes by setting
flags in the c_cflag member of the termios structure, which has the following macros:

❑ CLOCAL: Ignore any modem status lines.

❑ CREAD: Enable the receipt of characters.

❑ CS5: Use five bits in sent or received characters.

❑ CS6: Use six bits in sent or received characters.

❑ CS7: Use seven bits in sent or received characters.

❑ CS8: Use eight bits in sent or received characters.

❑ CSTOPB: Use two stop bits per character, rather than one.

❑ HUPCL: Hang up modem on close.

❑ PARENB: Enable parity generation and detection.

❑ PARODD: Use odd parity rather than even parity.

The control modes are used mainly when the serial line is connected to a modem, although they may be
used when talking to a terminal. Normally, it’s easier to change your terminal’s configuration than to
change the default line behavior by using the control modes of termios.

Local Modes
These modes control various characteristics of the terminal. We specify local modes by setting flags in
the c_lflag member of the termios structure, with the following macros:

❑ ECHO: Enable local echoing of input characters

❑ ECHOE: Perform a Backspace, Space, Backspace combination on receiving ERASE

If HUPCL is set, when the terminal driver detects that the last file descriptor referring
to the terminal has been closed, it will set the modem control lines to “hang-up”
the line.

If OPOST is not set, all the other flags are ignored.
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❑ ECHOK: Perform erase line on the KILL character

❑ ECHONL: Echo newline characters

❑ ICANON: Enable canonical input processing (see the following)

❑ IEXTEN: Enable implementation specific functions

❑ ISIG: Enable signals

❑ NOFLSH: Disable flush on queue

❑ TOSTOP: Send background processes a signal on write attempts

The two most important flags here are ECHO, which allows you to suppress the echoing of typed charac-
ters, and ICANON, which switches the terminal between two very distinct modes of processing received
characters. If the ICANON flag is set, the line is said to be in canonical mode; if not, the line is in non-
canonical mode.

Special Control Characters
These are a collection of characters, like Ctrl-C, acted upon in special ways when the user types them.
The c_cc array member of the termios structure contains the characters mapped to each of the sup-
ported functions. The position of each character (its index into the array) is defined by a macro, but
there’s no limitation that they must be control characters.

The c_cc array is used in two very different ways, depending on whether the terminal is set to canonical
mode (i.e., the setting of the ICANON flag in the c_lflag member of termios).

It’s important to realize that there is some overlap in the way the array index values are used for the two
different modes. Because of this, you should never mix values from these two modes.

For canonical mode, the array indices are

❑ VEOF: EOF character

❑ VEOL: EOL character

❑ VERASE: ERASE character

❑ VINTR: INTR character

❑ VKILL: KILL character

❑ VQUIT: QUIT character

❑ VSUSP: SUSP character

❑ VSTART: START character

❑ VSTOP: STOP character

For non-canonical mode, the array indices are

❑ VINTR: INTR character

❑ VMIN: MIN value

184

Chapter 5

b544977 Ch05.qxd  12/1/03  8:55 AM  Page 184



❑ VQUIT: QUIT character

❑ VSUSP: SUSP character

❑ VTIME: TIME value

❑ VSTART: START character

❑ VSTOP: STOP character

Characters
Since the special characters and non-canonical MIN and TIME values are so important for more advanced
input character processing, we explain them in some detail here.

Character Description

INTR Causes the terminal driver to send a SIGINT signal to processes connected
to the terminal. We discuss signals in more detail in Chapter 11.

QUIT Causes the terminal driver to send a SIGQUIT signal to processes connected
to the terminal.

ERASE Causes the terminal driver to delete the last character on the line.

KILL Causes the terminal driver to delete the entire line.

EOF Causes the terminal driver to pass all characters on the line to the application
reading input. If the line is empty, a read call will return zero characters as
though a read had been attempted at the end of a file.

EOL Acts as a line terminator in addition to the more usual newline character.

SUSP Causes the terminal driver to send a SIGSUSP signal to processes connected
to the terminal. If your UNIX supports job control, the current application
will be suspended.

STOP Acts to “flow off;” that is, prevent further output to the terminal. It’s used to
support XON/XOFF flow control and is usually set to the ASCII XOFF char-
acter, Ctrl+S.

START Restarts output after a STOP character, often the ASCII XON character.

The TIME and MIN Values
The values of TIME and MIN are used only in non-canonical mode and act together to control the reading
of input. Together, they control what happens when a program attempts to read a file descriptor associ-
ated with a terminal.

There are four cases:

❑ MIN = 0 and TIME = 0:  In this case, a read will always return immediately. If some charac-
ters are available, they will be returned; if none are available, read will return zero and no
characters will have been read.
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❑ MIN = 0 and TIME > 0: In this case, the read will return when any character is available to
be read or when TIME tenths of a second have elapsed. If no character was read because the
timer expired, read will return zero. Otherwise, it will return the number of characters read.

❑ MIN > 0 and TIME = 0: In this case, the read will wait until MIN characters can be read
and then return that number of characters. Zero is returned on end of file.

❑ MIN > 0 and TIME > 0: This is the most complex case. When read is called, it waits for a
character to be received. When the first character is received, and every subsequent time
a character is received, an inter-character timer is started (or restarted if it was already run-
ning). The read will return when either MIN characters can be read or the inter-character
time of TIME tenths of a second expires. This can be useful for telling the difference between a 
single press of the Escape key and the start of a function key escape sequence. Be aware,
though, that network communications or high processor loads neatly erase such fine timing
information.

By setting non-canonical mode and using the MIN and TIME values, programs can perform character-by-
character processing of input.

Accessing Terminal Modes from the Shell
If you want to see the termios settings that are being used while you’re using the shell, you can get a
list using the command:

$ stty -a

On our Linux systems, which have some extensions to the standard termios, the output is

speed 38400 baud; rows 44; columns 109; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>; eol2 =
<undef>; start = ^Q; stop = ^S;
susp = ^Z; rprnt = ^R; werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff -
iuclc -ixany -imaxbel
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt echoctl
echoke

Among other things, we can see that the EOF character is Ctrl+D and that echoing is enabled. When
you’re experimenting with terminal control, it’s very easy to get the terminal left in a nonstandard state,
which makes using it very difficult. There are several ways out of this difficulty.

The first method is, if your version of stty supports it, to use the command

$ stty sane

If you have lost the mapping of the carriage return key to the newline character (which terminates the
line), you may need to enter stty sane, but rather than press Enter, press Ctrl+J (which is the newline
character).
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The second method is to use the stty -g command to write the current stty setting in a form ready to
reread. On the command line, you can use

$ stty -g > save_stty
..
<experiment with settings>
..
$ stty $(cat save_stty)

You still may need to use Ctrl+J rather than Enter for the final stty command. You can use the same
technique in a shell script:

save_stty=”$(stty -g)”
<alter stty settings>
stty $save_stty

If you’re really stuck, the third method is to go to a different terminal, use the ps command to find the shell
you have made unusable, and then use kill HUP <process id> to force the shell to terminate. Since
stty parameters are always reset before a logon prompt is issued, you should be able to log in normally.

Setting Terminal Modes from the Command Prompt
We can also use the stty command to set the terminal modes directly from the command prompt.

To set a mode in which our shell script could perform single character reads, we need to turn off canoni-
cal mode and set MIN to 1 and TIME to 0. The command is

$ stty -icanon min 1 time 0

Now that the terminal is set to read characters immediately, you can try to run our first program,
menu1, again. You should find it works as originally intended.

We also could improve our attempt to check for a password (Chapter 2) by turning echoing off before we
prompt for the password. The command to do this is

$ stty -echo

Remember to use stty echo to turn echoing back on after you try this!

Terminal Speed
The final function served by the termios structure is manipulating the line speed. No members are defined
for terminal speed; instead, it’s set by function calls. Input and output speeds are handled separately.

The four call prototypes are

#include <termios.h>

speed_t cfgetispeed(const struct termios *);
speed_t cfgetospeed(const struct termios *);
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int cfsetispeed(struct termios *, speed_t speed);
int cfsetospeed(struct termios *, speed_t speed);

Notice that these act on a termios structure, not directly on a port. This means that to set a new speed,
you must read the current settings with tcgetattr, set the speed using one of the above calls, and then
write the termios structure back using tcsetattr. Only after the call to tcsetattr will the line speed
be changed.

Various values are allowed for speed in the function calls above, but the most important are

❑ B0: Hang up the terminal

❑ B1200: 1200 baud

❑ B2400: 2400 baud

❑ B9600: 9600 baud

❑ B19200: 19200 baud

❑ B38400: 38400 baud

There are no speeds greater than 38400 defined by the standard and no standard method of supporting
serial ports at speeds greater than this.

Additional Functions
There are a small number of additional functions for the control of terminals. These work directly on file
descriptors, without needing to get and set termios structures. Their definitions are

#include <termios.h>

int tcdrain(int fd);
int tcflow(int fd, int flowtype);
int tcflush(int fd, int in_out_selector);

The functions have the following purposes:

❑ tcdrain causes the calling program to wait until all queued output has been sent.

❑ tcflow is used to suspend or restart output.

❑ tcflush can be used to flush input, output, or both.

Some systems, including Linux, define B57600, B115200, and B230400 for select-
ing faster speeds. If you’re using an earlier version of Linux and these constants are
unavailable, you can use the command setserial to obtain nonstandard speeds of
57600 and 115200. In this case, these speeds will be used when B38400 is selected.
Both of these methods are nonportable, so be careful when you’re using them.
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Now that we’ve covered the rather large subject of the termios structure, let’s look at a few practical
examples. Possibly the simplest is the disabling of echo to read a password. We do this by turning off
the ECHO flag.

Try It Out—A Password Program with termios
1. Our password program, password.c, begins with the following definitions:

#include <termios.h>
#include <stdio.h>

#define PASSWORD_LEN 8

int main()
{

struct termios initialrsettings, newrsettings;
char password[PASSWORD_LEN + 1];

2. Next, add a line to get the current settings from the standard input and copy them into the
termios structure that we created previously.

tcgetattr(fileno(stdin), &initialrsettings);

3. Make a copy of the original settings to replace them at the end. Turn off the ECHO flag on the
newrsettings and ask the user for their password:

newrsettings = initialrsettings;
newrsettings.c_lflag &= ~ECHO;

printf(“Enter password: “);

4. Next, set the terminal attributes to newrsettings and read in the password. Lastly, reset the
terminal attributes to their original setting and print the password to render all the previous
effort useless.

if(tcsetattr(fileno(stdin), TCSAFLUSH, &newrsettings) != 0) {
fprintf(stderr,”Could not set attributes\n”);

}
else {

fgets(password, PASSWORD_LEN, stdin);
tcsetattr(fileno(stdin), TCSANOW, &initialrsettings);
fprintf(stdout, “\nYou entered %s\n”, password);

}
exit(0);

}

How It Works
$ ./password
Enter password:
You entered hello
$
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In this example, the word hello is typed but not echoed at the Enter password: prompt. No output is
produced until the user presses Enter.

We’re careful to change only the flags we need to change, using the construct X &= ~FLAG (which clears
the bit defined by FLAG in the variable X). If needed, we could use X |= FLAG to set a single bit defined
by FLAG, although this wasn’t necessary in the example above.

When we’re setting the attributes, we use TCSAFLUSH to discard any typeahead, characters users enter
before the program is ready to read them. This is a good way of encouraging users not to start typing
their password until echo has been turned off. We also restore the previous setting before our program
terminates.

Another common use of the termios structure is to put the terminal into a state where we can read each
character as it is typed. We do this by turning off canonical mode and using the MIN and TIME settings.

Try It Out—Reading Each Character
1. Using our new knowledge, we can make changes to our menu program. The following code bears

much resemblance to password.c, but needs to be inserted into menu3.c to make our new pro-
gram, menu4.c. For a start, we must include a new header file at the top of the program:

#include <stdio.h>
#include <unistd.h>

#include <termios.h>

2. Then we need to declare a couple of new variables in the main function:

int choice = 0;
FILE *input;
FILE *output;

struct termios initial_settings, new_settings;

3. We need to change the terminal’s characteristics before we call the getchoice function, so
that’s where we place these lines:

fprintf(stderr, “Unable to open /dev/tty\n”);
exit(1);

}

tcgetattr(fileno(input),&initial_settings);
new_settings = initial_settings;
new_settings.c_lflag &= ~ICANON;
new_settings.c_lflag &= ~ECHO;
new_settings.c_cc[VMIN] = 1;
new_settings.c_cc[VTIME] = 0;
if(tcsetattr(fileno(input), TCSANOW, &new_settings) != 0) {

fprintf(stderr,”could not set attributes\n”);
}

4. We should also return the settings to their original values before exiting

do {
choice = getchoice(“Please select an action”, menu, input, output);
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printf(“You have chosen: %c\n”, choice);
} while (choice != ‘q’);

tcsetattr(fileno(input),TCSANOW,&initial_settings);
exit(0);

}

5. We need to check against carriage returns \r now that we’re in non-canonical mode, because
the default mapping of CR to LF is no longer being performed.

do {
selected = fgetc(in);

} while (selected == ‘\n’ || selected == ‘\r’);

6. Unfortunately, if the user now types Ctrl+C at our program, the program will terminate. We can
disable processing of these special characters by clearing the ISIG flag in the local modes. Add
the following line to main.

new_settings.c_lflag &= ~ISIG;

If we put these changes into our menu program, we now get an immediate response and the character
we type isn’t echoed

$ ./menu4
Choice: Please select an action
a - add new record
d - delete record
q - quit
You have chosen: a
Choice: Please select an action
a - add new record
d - delete record
q - quit
You have chosen: q
$

If we type Ctrl+C, it’s passed directly to the program and treated as an incorrect choice.

Terminal Output
Using the termios structure, we have control over keyboard input, but it would be good to have the
same level of control over the way a program’s output is presented on the screen. We used printf at the
beginning of the chapter to output characters to the screen, but with no way of placing the output at a
particular position on the screen.

Terminal Type
Many UNIX systems are used with terminals, although in many cases today, the “terminal” may actually
be a PC running a terminal program.  Historically, there have been a very large number of hardware ter-
minals from different manufacturers. Although they nearly all use escape sequences (a string of characters
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starting with the escape character) to provide control over the position of the cursor and other attributes,
such as bold and blinking, they are generally not very well standardized in the way they do this. Some
older terminals also have different scrolling capabilities that may or may not erase when backspace is
sent, and so on.

This variety of hardware terminals would be a major problem for programmers wishing to write soft-
ware that controls the screen and runs on many terminal types. For example, an ANSI terminal uses the
sequence Escape+[+A to move the cursor up one line. An ADM-3a terminal (very common some years
ago) uses the single control character Ctrl+K.

Writing a program that can deal with the many different types of terminals that might be connected to a
UNIX system would seem to be an extremely daunting task. The program would need different source
code for each type of terminal.

Not surprisingly, there is a solution in a package known as terminfo. Instead of each program having
to cater for every sort of terminal, the program looks up a database of terminal types to get the correct
information. In most modern UNIX systems, including Linux, this has been integrated with another
package called curses, which we will learn about in the next chapter.

On Linux, we may have to use the implementation of curses known as ncurses, and include
ncurses.h to provide prototypes for our terminfo functions. The terminfo functions themselves are
declared in their own header file, term.h. Or at least that used to be the case. With newer Linux ver-
sions, there’s a blurring of the line between terminfo and ncurses to the point where many programs
requiring terminfo functions must also include the ncurses header file. To confuse matters further,
recent Linux distributions also provide a standard curses header file and library to be more compatible
with UNIX programs. On these distributions we recommend using curses.h and –lcurses.

Identify Your Terminal Type
The Linux environment contains a variable, TERM, which is set to the type of terminal being used. It’s
usually set automatically by the system at logon time. The system administrator may set a default termi-
nal type for each of the directly connected terminals and may arrange for remote, networked users to be
prompted for a terminal type. The value of TERM can be negotiated via telnet and is passed by rlogin.

A user can query the shell to discover the system’s idea of the terminal he or she is using.

$ echo $TERM
xterm
$

There is an ANSI standard set of escape sequences (mostly based on the sequences
used in the Digital Equipment Corporation VT series terminals, but not identical).
Many software terminal programs provide an emulation of a standard hardware ter-
minal, often VT100, VT220, or ANSI, and sometimes others as well.
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In this case, the shell is being run from a program called xterm, a terminal emulator for the X Window
System, or a program that provides similar functionality such as KDE’s Konsole or GNOME’s gnome-
terminal.

The terminfo package contains a database of capabilities and escape sequences for a large number of
terminals and provides a uniform programming interface for using them. A single program can then be
written that will take advantage of future terminals as the database is extended, rather than each appli-
cation having to provide support for the many different terminals.

The terminfo capabilities are described by attributes. These are stored in a set of compiled terminfo
files, which are conventionally found in /usr/lib/terminfo or /usr/share/terminfo. For each ter-
minal (and many printers, which can also be specified in terminfo) there’s a file that defines its capabil-
ities and how its features can be accessed. To avoid creating a very large directory, the actual files are
stored in subdirectories, where the subdirectory name is simply the first letter of the terminal type. Thus,
the VT100 definition is found in ...terminfo/v/vt100.

terminfo files are written one per terminal type in a source format that is (just about!) readable, then
compiled using the tic command into a more compact and efficient format for use by application pro-
grams. Curiously, the X/Open specification refers to source and compiled format definitions, but fails
to mention the tic command for actually getting from source to compiled formats. You can use the
infocmp program to print a readable version of a compiled terminfo entry.

Here’s an example terminfo file for the VT100 terminal:

$ infocmp vt100
vt100|vt100-am|dec vt100 (w/advanced video),
am, mir, msgr, xenl, xon,
cols#80, it#8, lines#24, vt#3,
acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=^G, blink=\E[5m$<2>, bold=\E[1m$<2>,
clear=\E[H\E[J$<50>, cr=\r, csr=\E[%i%p1%d;%p2%dr,
cub=\E[%p1%dD, cub1=\b, cud=\E[%p1%dB, cud1=\n,
cuf=\E[%p1%dC, cuf1=\E[C$<2>,
cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%p1%dA,
cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>,
el1=\E[1K$<3>, enacs=\E(B\E)0, home=\E[H, ht=\t,
hts=\EH, ind=\n, ka1=\EOq, ka3=\EOs, kb2=\EOr, kbs=\b,
kc1=\EOp, kc3=\EOn, kcub1=\EOD, kcud1=\EOB,
kcuf1=\EOC, kcuu1=\EOA, kent=\EOM, kf0=\EOy, kf1=\EOP,
kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
rev=\E[7m$<2>, ri=\EM$<5>, rmacs=^O, rmkx=\E[?1l\E>,
rmso=\E[m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h, sc=\E7,
sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p1%p3%|%t;7%;%?%p4%t;5%;m%?%p9%t^N%e^O%;,
sgr0=\E[m^O$<2>, smacs=^N, smkx=\E[?1h\E=,
smso=\E[1;7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

Each terminfo definition consists of three types of entry. Each entry is called a capname and defines a
terminal capability.
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Boolean capabilities simply indicate whether a terminal supports a particular feature. For example, the
Boolean capability xon is present if the terminal supports XON/XOFF flow control. 

Numeric capabilities define sizes, such as lines, the number of lines on the screen, and cols, the num-
ber of columns on the screen. The actual number is separated from the capability name by a # character.
To define a terminal as having 80 columns and 24 lines, we would write cols#80, lines#24.

String capabilities are slightly more complex. They are used for two distinct types of capability: defining
output strings needed to access terminal features and defining the input strings that will be received
when the user presses certain keys, normally function keys or special keys on the numeric keypad. Some
string capabilities are quite simple, such as el, which is “erase to end of line.”. On a VT100 terminal, the
escape sequence needed to do this is Esc+[+K. This is written el=\E[K in terminfo source format.

Special keys are defined in a similar way. For example, the F1 function key on a VT100 sends the
sequence Esc+O+P. This is defined as kf1=\EOP.

Things get slightly more complicated where the escape sequence needs some parameters. Most terminals
can move the cursor to a specified row and column location. It’s clearly impractical to have a different
capability for each possible cursor location, so a generic capability string is used, with parameters defin-
ing the values to be inserted when the stings are used. For example, a VT100 terminal uses the sequence
Esc+[+<row>+;+<col>+H to move the cursor to a specified location. In terminfo source format, this is
written with the rather intimidating cup=\E[%i%p1%d;%p2%dH$<5>.

This means

❑ \E: Send Escape

❑ [: Send the [ character

❑ %i: Increment the arguments

❑ %p1: Put the first argument on the stack

❑ %d: Output the number on the stack as a decimal number

❑ ;: Send the ; character

❑ %p2: Put the second argument on the stack

❑ %d: Output the number on the stack as a decimal number

❑ H: Send the H character

This seems more complex than it might be, but allows for the parameters to be in a fixed order, indepen-
dent of which order the terminal expects them to appear in the final escape sequence. The %i to increment
the arguments is required because standard cursor addressing is specified as starting from (0,0) at the top
left of the screen, but the VT100 addresses this location as (1,1). The final $<5> indicates that a delay equiv-
alent to five character output times is required to allow the terminal to process the cursor movement.
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Using terminfo Capabilities
Now that we know how to define terminal capabilities, we need to learn how to access them. When
we’re using terminfo, the first thing we need to do is set up the terminal type by calling setupterm.
This will initialize a TERMINAL structure for the current terminal type. We’ll then be able to ask for capa-
bilities for the terminal and use its facilities. We do this with the setupterm call like this:

#include <term.h>

int setupterm(char *term, int fd, int *errret);

The setupterm library function sets the current terminal type to that specified by the parameter term.
If term is a null pointer, the TERM environment variable will be used. An open file descriptor to be used
for writing to the terminal must be passed as fd. The function outcome is stored in the integer variable
pointed to by errret, if this isn’t a null pointer. The value written will be

❑ –1: No terminfo database

❑ 0: No matching entry in terminfo database

❑ 1: Success

The setupterm function returns the constant OK if it succeeds and ERR if it fails. If errret is set to a null
pointer, setupterm will print a diagnostic message and exit the program if it fails, as in this example:

#include <stdio.h>
#include <term.h>
#include <ncurses.h>

int main()
{

setupterm(“unlisted”,fileno(stdout),(int *)0);
printf(“Done.\n”);
exit(0);

}

We could define many, many capabilities, but, fortunately, most UNIX and Linux
systems come with most terminals predefined. If you need to add a new terminal,
you’ll find the complete capability list in the terminfo manual page. A good start-
ing point is usually to locate a terminal that is similar to your new terminal and
define the new terminal as a variation on the existing terminal or to work through
the capabilities one at a time, updating them where required.

The standard reference outside the man pages is the Termcap and Terminfo by John
Strang, Linda Mui, and Tim O’Reilly (O’Reilly).
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The output from running this program on your system may not be exactly that given here, but the mean-
ing should be clear enough. Done. isn’t printed, because setupterm caused the program to exit when it
failed.

$ cc -o badterm badterm.c -I/usr/include/ncurses -lncurses
$ badterm
‘unlisted’: unknown terminal type.
$

Notice the compilation line in the example: On this Linux system, the ncurses header file is in the direc-
tory /usr/include/ncurses, so we have to specifically instruct the compiler to look there with the -I
option. Some Linux systems have arranged for the ncurses library to be available in the standard loca-
tions. On these systems, we can simply include curses.h, and specify –lcurses for the library.

For our menu choice function, we would like to be able to clear the screen, move the cursor around the
screen, and write at different locations on the screen. Once we’ve called setupterm, we can access the
terminfo capabilities with three function calls, one for each of the capability types:

#include <term.h>

int tigetflag(char *capname);
int tigetnum(char *capname);
char *tigetstr(char *capname);

The functions tigetflag, tigetnum, and tigetstr return the value of Boolean, numeric, and string
terminfo capabilities, respectively. On failure (for example, if the capability isn’t present), tigetflag
returns -1, tigetnum returns -2, and tigetstr returns (char *)-1.

Let’s use the terminfo database to find out the size of the terminal by retrieving the cols and lines
capabilities with this program, sizeterm.c:

#include <stdio.h>
#include <term.h>
#include <ncurses.h>

int main()
{

int nrows, ncolumns;

setupterm(NULL, fileno(stdout), (int *)0);
nrows = tigetnum(“lines”);
ncolumns = tigetnum(“cols”);
printf(“This terminal has %d columns and %d rows\n”, ncolumns, nrows);
exit(0);

}
$ echo $TERM
vt100
$ sizeterm
This terminal has 80 columns and 24 rows
$
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If we run the program inside a window on a workstation, we’ll get answers that reflect the current win-
dow’s size:

$ echo $TERM
xterm
$ sizeterm
This terminal has 88 columns and 40 rows
$

If we use tigetstr to retrieve the cursor motion capability (cup) of the xterm terminal type, we get a
parameterized answer: \E[%p1%d;%p2%dH.

This capability requires two parameters: a row and column to move the cursor to. Both coordinates are
measured starting at zero from the top left corner of the screen.

We can substitute the parameters in a capability with actual values using the tparm function. Up to nine
parameters can be substituted and a usable escape sequence is returned.

#include <term.h>

char *tparm(char *cap, long p1, long p2, ..., long p9);

Once we’ve constructed the terminal escape sequence with tparm, we must send it to the terminal. To
process this properly, you shouldn’t send the string to the terminal with printf. Instead, use one of the
special functions provided that correctly process any required delays while the terminal completes an
operation. These functions are

#include <term.h>

int putp(char *const str);
int tputs(char *const str, int affcnt, int (*putfunc)(int));

On success, putp returns OK; on failure, it returns ERR. The putp function takes the terminal control
string and sends it to stdout.

So, to move to row 5, column 30 of the screen, we can use a block of code like this:

char *cursor;
char *esc_sequence;
cursor = tigetstr(“cup”);
esc_sequence = tparm(cursor,5,30);
putp(esc_sequence);

The tputs function is provided for those situations when the terminal isn’t accessed via stdout and
allows you to specify the function to be used for outputting the characters. It returns the result of the user-
specified function putfunc. The affcnt parameter is intended to indicate the number of lines affected by
the change. It’s normally set to 1. The function used to output the string must have the same parameters
and return type as the putchar function. Indeed, putp(string) is equivalent to the call tputs(string,
1, putchar). We’ll see tputs used with a user-specified output function in the next example.
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Be aware that some older Linux distributions define the final parameter of the tputs function as int
(*putfunc)(char), which would oblige us to alter the definition of the char_to_terminal function
in our next “Try It Out” section.

We’re almost ready to add screen handling to our menu choice function. The only thing left to do is to
clear the screen simply by using clear. Some terminals don’t support the clear capability, which
leaves the cursor at the top left corner of the screen. In this case, we can position the cursor at the top left
corner and use the “delete to end of display” command, ed.

Putting all this information together, we’ll write the final version of our sample menu program, screen-
menu.c, where we “paint” the options on the screen for the user to pick a valid one.

Try It Out—Total Terminal Control
We can rewrite the getchoice function from menu4.c to give us total terminal control. In this listing, the
main function has been omitted because it isn’t changed. Other differences from menu4.c are highlighted.

#include <stdio.h>
#include <unistd.h>
#include <termios.h>

#include <term.h>
#include <curses.h>

static FILE *output_stream = (FILE *)0;

char *menu[] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

};

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);

int char_to_terminal(int char_to_write);

int main()
{
...
}

If you consult the manual pages for information on tparm and terminal capabilities,
you may come across the tgoto function. The reason we haven’t used this function,
when it apparently offers an easier solution to moving the cursor, is that the X/Open
specification (Single UNIX Specification Version 2) does not include them as of the
1997 edition. We therefore recommend that you don’t use any of these functions in
new programs.
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int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{

int chosen = 0;
int selected;
int screenrow, screencol = 10;

char **option;
char *cursor, *clear;

output_stream = out;

setupterm(NULL,fileno(out), (int *)0);
cursor = tigetstr(“cup”);
clear = tigetstr(“clear”);

screenrow = 4;
tputs(clear, 1, (int *) char_to_terminal);
tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out, “Choice: %s, greet);
screenrow += 2;
option = choices;
while(*option) {

tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out,”%s”, *option);
screenrow++;
option++;

}
fprintf(out, “\n”);

do {
fflush(out);
selected = fgetc(in);
option = choices;
while(*option) {

if(selected == *option[0]) {
chosen = 1;
break;

}
option++;

}
if(!chosen) {

tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out,”Incorrect choice, select again\n”);

}
} while(!chosen);
tputs(clear, 1, char_to_terminal);
return selected;

}

int char_to_terminal(int char_to_write)
{

if (output_stream) putc(char_to_write, output_stream);
return 0;

}

199

Terminals

b544977 Ch05.qxd  12/1/03  8:55 AM  Page 199



How It Works
The rewritten getchoice function implements the same menu as in previous examples, but the output
routines are modified to make use of the terminfo capabilities. If you want to see the You have cho-
sen: message for more than a moment before the screen is cleared, ready for the next selection, add a
call to sleep in the main function:

do {
choice = getchoice(“Please select an action”, menu, input, output);
printf(“\nYou have chosen: %c\n”, choice);

sleep(1);
} while (choice != ‘q’);

The last function in this program, char_to_terminal, includes a call to the putc function, which we
mentioned in Chapter 3.

To round off this chapter, we’ll look at a quick example of how to detect keystrokes.

Detecting Keystrokes
People who have programmed MS-DOS often look for the Linux equivalent of the kbhit function,
which detects whether a key has been pressed without actually reading it. Unfortunately, they fail to
find it, since there’s no direct equivalent. UNIX programmers don’t notice the omission because UNIX is
normally programmed in such a way that programs should rarely, if ever, busy-wait on an event. Since
this is the normal use for kbhit, it’s rarely missed on UNIX and Linux.

However, when you’re porting programs from MS-DOS, it’s often convenient to emulate kbhit, which
you can do using the non-canonical input mode.

Try It Out—Your Very Own kbhit 
1. We begin with the standard headings and declare a couple of structures for the terminal settings.

peek_character is used in the test of whether a key has been pressed. Then we prototype the
functions we’ll be using later.

#include <stdio.h>
#include <termios.h>
#include <term.h>
#include <curses.h>
#include <unistd.h>
static struct termios initial_settings, new_settings;
static int peek_character = -1;
void init_keyboard();
void close_keyboard();
int kbhit();
int readch();
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2. The main function calls init_keyboard to configure the terminal, then loops once a second,
calling kbhit each time it does. If the key hit is q, close_keyboard returns the behavior to
normal and the program exits.

int main()
{

int ch = 0;

init_keyboard();
while(ch != ‘q’) {

printf(“looping\n”);
sleep(1);
if(kbhit()) {

ch = readch();
printf(“you hit %c\n”,ch);

}
}

close_keyboard();
exit(0);

}

3. init_keyboard and close_keyboard configure the terminal at the start and end of the
program.

void init_keyboard()
{

tcgetattr(0,&initial_settings);
new_settings = initial_settings;
new_settings.c_lflag &= ~ICANON;
new_settings.c_lflag &= ~ECHO;
new_settings.c_lflag &= ~ISIG;
new_settings.c_cc[VMIN] = 1;
new_settings.c_cc[VTIME] = 0;
tcsetattr(0, TCSANOW, &new_settings);

}
void close_keyboard()
{

tcsetattr(0, TCSANOW, &initial_settings);
}

4. Now for the function that checks for the keyboard hit:

int kbhit()
{

char ch;
int nread;

if(peek_character != -1)
return 1;

new_settings.c_cc[VMIN]=0;
tcsetattr(0, TCSANOW, &new_settings);
nread = read(0,&ch,1);
new_settings.c_cc[VMIN]=1;
tcsetattr(0, TCSANOW, &new_settings);

201

Terminals

b544977 Ch05.qxd  12/1/03  8:55 AM  Page 201



if(nread == 1) {
peek_character = ch;
return 1;

}
return 0;

}

5. The character pressed is read by the next function, readch, which then resets peek_charac-
ter to –1 for the next loop.

int readch()
{

char ch;

if(peek_character != -1) {
ch = peek_character;
peek_character = -1;
return ch;

}
read(0,&ch,1);
return ch;

}

When we run the program, we get

$ ./kbhit
looping
looping
looping
you hit h
looping
looping
looping
you hit d
looping
you hit q
$

How It Works
The terminal is configured in init_keyboard to read one character before returning (MIN=1, TIME=0).
kbhit changes this behavior to check for input and return immediately (MIN=0, TIME=0) and then
restores the original settings before exiting.

Notice that we have to read the character that has been pressed but that we store it locally, ready for
returning when it’s required.

Virtual Consoles
Linux provides a feature called virtual consoles. A number of terminal devices are available, all of which
share the PC’s screen, keyboard, and mouse. Typically, a Linux installation will be configured for 12 of
these virtual consoles.
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The virtual consoles are made available through the character devices /dev/ttyN where N is a number,
starting at 1.

If you use a text login for your Linux system, you will be presented with a login prompt once Linux is
up and running. You then log in using a username and password. The device that you are using at this
point is the first virtual console, the terminal device /dev/tty1.

Using who and ps, we can see who is logged in and the shell and programs being executed on this vir-
tual console:

$ who
neil     tty1     Mar  8 18:27
$ ps -e

PID TTY          TIME CMD
1092 tty1     00:00:00 login
1414 tty1     00:00:00 bash
1431 tty1     00:00:00 emacs

Here, we can see in this cut-down output that user neil is logged in and running Emacs on the PC con-
sole device /dev/tty1.

Linux will normally start a getty process running on the first six virtual consoles so that it is possible to
log in six times using the same screen, keyboard, and mouse. We can see these processes with ps:

$ ps -e
PID TTY          TIME CMD

1092 tty1     00:00:00 login
1093 tty2     00:00:00 mingetty
1094 tty3     00:00:00 mingetty
1095 tty4     00:00:00 mingetty
1096 tty5     00:00:00 mingetty
1097 tty6     00:00:00 mingetty

Here, we can see the SuSE default getty program, mingetty, running on five further virtual consoles,
waiting for a user to log in.

We can switch between virtual consoles using a special key combination: Ctrl+Alt+F<N> where N is the
number of the virtual console we wish to switch to. So, to switch to the second virtual console, we would
press Alt+Ctrl+F2, and Ctrl+Alt+F1 to return to the first console. (When switching from text logins
rather than graphical logins, the combination Ctrl+F<N> also works.)

If Linux starts a graphical login, either by startx or via a display manager such as xdm, the X Window
System will start up using the first free virtual console, normally /dev/tty7. When using the X Window
System, you can switch out to a text console with Ctrl+Alt+F<N> and back with Ctrl+Alt+F7.

It is possible to run more than one X session on Linux. If you do this, for example, with

$ startx — :1

Linux will start the X server on the next free virtual console, in this case, /dev/tty8, and it is then possi-
ble to switch between them with Ctrl+Alt+F8 and Ctrl+Alt+F7.
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In all other respects, the virtual consoles behave as a terminal, as described in this chapter. If a process
has the correct permissions, the virtual consoles may be opened, read from, and written to in the same
way as a normal terminal.

Pseudo Terminals
Many UNIX-like systems, including Linux, have a feature called pseudo-terminals. These are devices
that behave much like the terminals we have been using in this chapter, except that they have no associ-
ated hardware. They can be used to provide a terminal-like interface to other programs. 

For example, using pseudo-terminals, it is possible to make two chess programs play each other, despite
the fact that the programs themselves were designed to interact with a human player at a terminal. An
application acting as an intermediary passes one program’s moves to the other and vice versa. It uses
pseudo-terminals to fool the programs into behaving normally without a terminal being present.

Pseudo-terminals were at one time implemented in a system-specific manner, if at all. They have now
been incorporated into the Single UNIX Specification as UNIX98 Pseudo-Terminals or PTYs.

Summary
In this chapter, we’ve learned about three different aspects of controlling the terminal. In the first part of
the chapter, we learned about detecting redirection and how to talk directly to a terminal even when the
standard file descriptors have been redirected. We covered the hardware model for terminals and a little
of their history. We then learned about the General Terminal Interface and the termios structure that
provides detailed control over Linux terminal handling. We also saw how to use the terminfo database
and related functions to manage screen output in a terminal-independent fashion, and we looked at
immediately detecting keystrokes. Finally, we discussed Linux virtual consoles and pseudo-terminals.

204

Chapter 5

b544977 Ch05.qxd  12/1/03  8:55 AM  Page 204



6
Managing Text-Based
Screens with curses

In Chapter 5, we saw how to obtain much finer control over the input of characters and how to
provide character output in a terminal-independent way. The problem with using the general ter-
minal interface (GTI, or termios) and manipulating escape sequences with tparm and its related
functions is that it requires a lot of lower-level code. For many programs, a higher-level interface
would be more desirable. We would like to be able to simply draw on the screen and use a library
of functions to take care of terminal dependencies automatically.

In this chapter, you’ll learn about just such a library, the curses library. The curses standard is
important as a halfway house between simple “line-based” programs and the fully graphical (and
generally harder to program) X Window System programs, such as GTK/GNOME and Qt/KDE.
Linux does have the svgalib, but that is not a UNIX standard library, so is not generally available in
other UNIX-like operating systems. The curses library is used in many full-screen applications as
a reasonably easy and terminal-independent way to write full-screen, albeit character-based, pro-
grams. It’s almost always easier to write such programs with curses than to use escape sequences
directly. curses can also manage the keyboard, providing an easy-to-use, nonblocking character
input mode.

You may find that a few of the examples in this chapter don’t always display on the plain Linux
console exactly as you expect. There are occasions when the combination of the curses library
and the terminal definition of the console get slightly out of step and the effect is usually some
slightly odd layouts when using curses. However, you should find that if you use the X Window
System, and use an xterm window to display the output, things should display as you expect.

In this chapter, we’ll cover

❑ Using the curses library

❑ The concepts of curses

❑ Basic input and output control

❑ Multiple windows
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❑ Keypad

❑ Color

We will finish by reimplementing the CD Collection program in C, summarizing what you’ve learned so far.

Compiling with curses
The curses library takes its name from its ability to optimize the movement of the cursor and minimize
the updates needed on a screen, and hence, the number of characters that need to be sent to a text-based
terminal. Although the number of characters output is much less important than it was in the days of
dumb terminals and low-speed modems, the curses library survives as a useful addition to the pro-
grammer’s toolkit.

Since curses is a library, to use it we must include a header file, function declarations, and macros from
an appropriate system library. There have been several different implementations of curses. The origi-
nal version appeared in BSD UNIX and was then incorporated into the System V flavors of UNIX, before
being standardized by X/Open. Linux uses ncurses (“new curses”), a freeware emulation of System V
Release 4.0 curses that was developed on Linux. This implementation is highly portable to other UNIX
versions, although there are a few nonportable additional features included. There are even versions of
curses for MS-DOS and Windows. If you find that the curses library bundled with your flavor of UNIX
doesn’t support some features, we suggest you try to obtain a copy of ncurses as an alternative; Linux
users will almost certainly find they have ncurses already installed for them.

When you’re compiling curses programs, you must include the header file curses.h, and link against
the curses library with -lcurses. On many Linux systems, the curses include and library files are
just links to the ncurses equivalents.

You can check how your curses is setup by executing a ls –l /usr/include/curses.h command
to look at the header files and a ls –l /usr/lib/lib*curses* command to check the library files.
If you find that the curses files are links to ncurses files, then (using #gcc), you should be able to com-
pile the files in this chapter using a command such as

$ gcc program.c -o program -lcurses

If, however, your curses setup is not automatically using ncurses, you may have to explicitly force the
use of ncurses by including ncurses.h, rather than curses.h, and by executing a compile command
such as this.

$ gcc -I/usr/include/ncurses program.c -o program -lncurses

The X/Open specification defines two levels of curses: base and extended.
Extended curses contains a somewhat motley crew of additional routines, includ-
ing a range of functions for handling multicolumn characters and color manipula-
tion routines. Apart from using color later in this chapter, we will be sticking mostly
to the base functions.
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where the -I option specifies the directory in which to search for the header file. The Makefile in the
downloadable code assumes your setup uses curses by default, so you will have to change it or com-
pile it by hand if this is not the case on your system.

If you’re unsure how curses is set up on your system, refer to the manual pages for ncurses, or look
for other online documentation; a common location is under /usr/share/doc/, where you may find a
curses or ncurses directory, often with a version number appended. 

Concepts
The curses routines work on screens, windows, and subwindows. A screen is the device (usually a ter-
minal screen, but it could also be an xterm screen) to which we are writing. It occupies all the available
display on that device. Of course, if it’s a terminal window inside an X window, the screen is simply
all the character positions available inside the terminal window. There is always at least one curses
window, stdscr, that is the same size as the physical screen. You can create additional windows that
are smaller than the screen. Windows can overlap each other and have many subwindows, but each 
subwindow must always be contained inside its parent window.

The curses library maintains two data structures that act like a map of the terminal screen, stdscr, and
curscr.

stdscr, the more important of the two data structures, is updated when curses functions produce out-
put. The stdscr data structure is the “standard screen.” It acts in much the same way as stdout, the stan-
dard output, does for the stdio library. It’s the default output window in curses programs. The curscr
structure is similar, but holds what the displayed screen actually looks like at the current moment. Output
written to stdscr doesn’t appear on the screen until the program calls refresh, when the curses library
compares the contents of stdscr (what the screen should look like) with the second structure curscr
(what the screen currently looks like). curses then uses the differences between these two structures to
update the screen.

Some curses programs need to know that curses maintains a stdscr structure, which is required 
as a parameter to a few curses functions. However, the actual stdscr structure is implementation-
dependent and should never be accessed directly. curses programs should never need to use the
curscr structure.

Thus, the process for the output of characters in a curses program is

1. Use curses functions to update a logical screen.

2. Ask curses to update the physical screen with refresh.

The advantage of a two-level approach, in addition to being much easier to program, is that curses
screen updates are very efficient and, although this isn’t so important on a console screen, it makes a
considerable difference if you’re running your program over a slow serial or modem link. 

A curses program will make many calls to logical screen output functions, possibly moving the cursor
all over the screen to get to the right position for writing text and drawing lines and boxes. At some
stage, the user will need to see all of this output. When this happens, typically during a call to refresh,
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curses will calculate the optimum way of making the physical screen correspond to the logical screen.
By using appropriate terminal capabilities and by optimizing cursor motions, curses will often be able
to update the screen with far fewer characters being output than if all the screen writes had happened
immediately.

The layout of the logical screen is a character array, arranged by lines and columns with the screen posi-
tion (0,0) at the top left-hand corner, as shown in Figure 6-1.

Figure 6-1

All the curses functions use coordinates with the y value (lines) before the x (columns) value. Each
position holds not only the character for that screen location, but also its attributes. The attributes that
can be displayed depend on the physical terminal’s capabilities, but usually at least bold and underline
are available. On Linux consoles, we usually also have reverse video and even color, which we will get
to later in the chapter.

Since the curses library needs to create and destroy some temporary data structures, all curses programs
must initialize the library before use and then allow curses to restore settings after use. This is done with a
pair of function calls: initscr and endwin. 

Try It Out—A Simple curses Program
Let’s write a very simple curses program, screen1.c, to show these and other basic function calls in
action. We’ll then describe the function prototypes.

(LINES, COLUMNS)

(0,0)
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1. We add  the curses.h header file and in the main function we make calls to initialize and
reset the curses library.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main() {
initscr();

...

endwin();
exit(EXIT_SUCCESS);

}

2. In between, we add code to move the cursor to the point (5,15) on the logical screen, print
“Hello World,” and refresh the actual screen. Lastly, we use the call sleep(2) to suspend the
program for two seconds so that we can see the output before the program ends.

move(5, 15);
printw(“%s”, “Hello World”);
refresh();

sleep(2);

While the program is running, we see “Hello World” in the top-left quadrant of an otherwise blank
screen, as shown in Figure 6-2.

Figure 6-2
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Initialization and Termination
As we’ve already seen, all curses programs must start with initscr and end with endwin. Here are
their header file definitions:

#include <curses.h>

WINDOW *initscr(void);
int endwin(void);

The initscr function should only be called once in each program. The initscr function returns a
pointer to the stdscr structure if it succeeds. If it fails, it simply prints a diagnostic error message and
causes the program to exit.

The endwin function returns OK on success and ERR on failure. You can call endwin to leave curses and
then later resume curses operation by calling clearok(stdscr, 1) and refresh. This effectively
makes curses forget what the physical screen looks like and forces it to perform a complete redisplay.

Output to the Screen
There are several basic functions provided for updating the screen. These are

#include <curses.h>

int addch(const chtype char_to_add);
int addchstr(chtype *const string_to_add);
int printw(char *format, ...);
int refresh(void);
int box(WINDOW *win_ptr, chtype vertical_char, chtype horizontal_char); 
int insch(chtype char_to_insert);
int insertln(void); 
int delch(void); 
int deleteln(void); 
int beep(void); 
int flash(void);

curses has its own character type, chtype, which may have more bits than a standard char. In the
standard Linux version of ncurses, chtype is actually a typedef for unsigned long. 

The add... functions add the character or string specified at the current location. The printw function
formats a string in the same way as printf and adds it to the current location. The refresh function
causes the physical screen to be updated, returning OK on success and ERR if an error occurred. The box
function allows you to draw a box around a window. 

In standard curses, you may only use “normal” characters for the vertical and hori-
zontal line characters. In extended curses, though, you can use the two defines
ACS_VLINE and ACS_HLINE for a better-looking box. For this, your terminal needs
to support line-drawing characters. Generally, these will work better in an xterm
window than on the standard console, but support tends to be patchy, so we suggest
you avoid them if portability is important.
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The insch function inserts a character, moving existing characters right, though what will happen at the
end of a line isn’t specified and will depend on the terminal you’re using. insertln inserts a blank line,
moving existing lines down by one. The two delete functions are analogous to the two insert functions.

To make a sound, we can call beep. A very small number of terminals are unable to make any sound, so
some curses setups will cause the screen to flash when beep is called. If you work in a busy office, where
beeps can come from any number of machines, we might find you prefer this. As you might expect,
flash causes the screen to flash, but if this isn’t possible, it tries to make a sound on the terminal.

Reading from the Screen
We can read characters from the screen, although this facility isn’t commonly used because normally it’s
easier to keep track of what was written. If you need it, it’s done with the following functions.

#include <curses.h>

chtype inch(void);
int instr(char *string);
int innstr(char *string, int number_of_characters);

The inch function should always be available, but the instr and innstr functions are not always sup-
ported. The inch function returns a character and its attribute information from the current screen location
of the cursor. Notice that inch doesn’t return a character, but a chtype, while instr and innstr write to
arrays of chars.

Clearing the Screen
There are four principal ways of clearing an area of the screen. These are

#include <curses.h>

int erase(void);
int clear(void);
int clrtobot(void);
int clrtoeol(void);

The erase function writes blanks to every screen location. The clear function, like erase, clears the
screen, but forces a screen redisplay by also calling clearok. clearok enforces a clear screen sequence
and redisplay when the next refresh is called.

The clear function usually uses a terminal command that erases the entire screen, rather than simply
attempting to erase any currently nonblank screen locations. This makes the clear function a reliable
way of completely erasing the screen. The combination of clear followed by refresh can provide a
useful redraw command.

clrtobot clears the screen from the cursor position onward to the end of the screen, and clrtoeol
clears from the cursor position to the end of the line the cursor is on.
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Moving the Cursor
A single function is provided for moving the cursor, with an additional command for controlling where
curses leaves the cursor after screen updates:

#include <curses.h>

int move(int new_y, int new_x); 
int leaveok(WINDOW *window_ptr, bool leave_flag);

The move function simply moves the logical cursor position to the specified location. Remember that the
screen coordinates are specified with (0,0) as the top left-hand corner of the screen. In most versions of
curses, the two extern integers LINES and COLUMNS contain the physical screen size and can be used
to determine the maximum allowed values for new_y and new_x. Calling move won’t, in itself, cause the
physical cursor to move. It only changes the location on the logical screen at which the next output will
appear. If you want the screen cursor to move immediately after calling move, follow it with a call to
refresh.

The leaveok function sets a flag that controls where curses leaves the physical cursor after a screen
update. By default, the flag is false and, after a refresh, the hardware cursor will be left in the same
position on the screen as the logical cursor. If the flag is set to true, the hardware cursor may be left 
randomly, anywhere on the screen. Generally, the default option is preferred to ensure the cursor is left
in a sensible location.

Character Attributes
Each curses character can have certain attributes that control how it’s displayed on the screen, assum-
ing that the display hardware can support the requested attribute. The defined attributes are A_BLINK,
A_BOLD, A_DIM, A_REVERSE, A_STANDOUT, and A_UNDERLINE. You can use these functions to set
attributes singly or collectively.

#include <curses.h>

int attron(chtype attribute);
int attroff(chtype attribute);
int attrset(chtype attribute);
int standout(void);
int standend(void);

The attrset function sets the curses attributes, attron and attroff turn on and off specified
attributes without disturbing others, while standout and standend provide a more generic empha-
sized, or “stand out” mode. This is commonly mapped to reverse video on most terminals.

Try It Out—Moving, Inserting, and Attributes
Now that we know more about managing the screen, we can try out a more complex example,
moveadd.c. For the purposes of this example, we’ll include several calls to refresh and sleep, to
enable you to see what the screen looks like at each stage. Normally, curses programs would refresh 
the screen as little as possible because it’s not a very efficient operation. The code is slightly contrived
for the purposes of illustration. 
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1. We include some header files, define some character arrays and a pointer to those arrays, and
then initialize the curses structures.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main() 
{

const char witch_one[] = “ First Witch  “;
const char witch_two[] = “ Second Witch “;
const char *scan_ptr;

initscr();

2. Now for the three initial sets of text that appear at intervals on the screen—note the on and off
flagging of text attributes.

move(5, 15);
attron(A_BOLD);
printw(“%s”, “Macbeth”);
attroff(A_BOLD);
refresh();
sleep(1);

move(8, 15);
attron(A_STANDOUT);
printw(“%s”, “Thunder and Lightning”);
attroff(A_STANDOUT);
refresh();
sleep(1);

move(10, 10);
printw(“%s”, “When shall we three meet again”);
move(11, 23);
printw(“%s”, “In thunder, lightning, or in rain ?”);
move(13, 10);
printw(“%s”, “When the hurlyburly’s done,”);
move(14,23);
printw(“%s”, “When the battle’s lost and won.”);
refresh();
sleep(1);

3. The actors are identified and their names are inserted a character at a time. 

attron(A_DIM);
scan_ptr = witch_one + strlen(witch_one) - 1;
while(scan_ptr != witch_one) {

move(10,10);
insch(*scan_ptr—);

}
scan_ptr = witch_two + strlen(witch_two) - 1;
while (scan_ptr != witch_two) {

move(13, 10);
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insch(*scan_ptr—); 
}
attroff(A_DIM);
refresh();
sleep(1); 

4. Finally, we move the cursor to the bottom-right of the screen and then tidy up an exit.

move(LINES - 1, COLS - 1);

refresh();
sleep(1);

endwin();
exit(EXIT_SUCCESS);

}

When we run this program, the final screen looks like Figure 6-3.

Figure 6-3

The screenshot doesn’t convey the full effect very well, nor does it show the cursor, which was parked at
the bottom right-hand corner.

You may find that xterm is a more reliable medium for accurately displaying curses programs than the
raw console.

The Keyboard
As well as providing an easier interface to controlling the screen, curses also provides an easier method
for controlling the keyboard.
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Keyboard Modes
The keyboard reading routines are controlled by modes. The functions that set the modes are:

#include <curses.h>

int echo(void);
int noecho(void);
int cbreak(void);
int nocbreak(void);
int raw(void);
int noraw(void);

The two echo functions simply turn the echoing of typed characters on and off. The remaining four
function calls control how characters typed on the terminal are made available to the curses program.

To explain cbreak, we need to understand the default input mode. When a curses program starts by
calling initscr, the input mode is set to what is termed cooked mode. This means that all processing is
done on a line-by-line basis; that is, input is only available after the user has pressed Enter (or the Return
key on some keyboards). Keyboard special characters are enabled, so typing the appropriate key
sequences can generate a signal in the program. Flow control, if the terminal is running from a terminal,
is also enabled. By calling cbreak, a program may set the input mode to cbreak mode where characters
are available to the program immediately after they are typed, rather than being buffered up and only
made available to the program when Enter is pressed. As in cooked mode, keyboard special characters
are enabled, but simple keys, like Backspace, are passed directly to the program to be processed, so if
you want the Backspace key to function as expected, you have to program it yourself.

A call to raw turns off special character processing, so it becomes impossible to generate signals or flow
control by typing special character sequences. Calling nocbreak sets the input mode back to cooked
mode, but leaves special character processing unchanged; calling noraw restores both cooked mode and
special character handling.

Keyboard Input
Reading the keyboard is very simple. The principal functions are

#include <curses.h>

int getch(void);
int getstr(char *string);
int getnstr(char *string, int number_of_characters); 
int scanw(char *format, ...);

These act in a very similar way to their non-curses equivalents getchar, gets, and scanf. Note that
getstr provides no way of limiting the string length returned, so you should use it only with great cau-
tion. If your version of curses supports getnstr, which allows you to limit the number of characters
read, you should use it in preference to getstr. This is very similar to the behavior of gets and fgets
that we saw in Chapter 3.

Here’s a short example program, ipmode.c, to show how to handle the keyboard.
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Try It Out—Keyboard Modes and Input
1. First, we set up the program and the initial curses calls.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>
#include <string.h>

#define PW_LEN 25
#define NAME_LEN 256

int main() {
char name[NAME_LEN];
char password[PW_LEN];
char *real_password = “xyzzy”;
int i = 0;

initscr();

move(5, 10);
printw(“%s”, “Please login:”);

move(7, 10);
printw(“%s”, “User name: “);
getstr(name);

move(9, 10);  
printw(“%s”, “Password: “);
refresh();

2. When the user enters his password, we need to stop the password being echoed to the screen.
Then we check the password against xyzzy.

cbreak();
noecho();

memset(password, ‘\0’, sizeof(password));  
while (i < PW_LEN) {

password[i] = getch();
move(9, 20 + i); 
addch(‘*’);
refresh();
if (password[i] == ‘\n’) break;
if (strcmp(password, real_password) == 0) break;
i++;

}

3. Finally, we re-enable the keyboard echo and print out success or failure.

echo();
nocbreak();

move(11, 10);
if (strcmp(password, real_password) == 0) printw(“%s”, “Correct”);
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else printw(“%s”, “Wrong”);
refresh();

endwin();
exit(EXIT_SUCCESS);

}

How It Works
Having stopped the echoing of keyboard input and set the input mode to cbreak, we set up a region of
memory ready for the password. Each character of the password entered is processed immediately and a
* is shown at the next position on the screen. We need to refresh the screen each time. Then we compare
the two strings, entered and real passwords, using strcmp.

Windows
Until now, we have used the terminal as a full-screen output medium. This is often sufficient for small
and simple programs, but the curses library goes a long way beyond that. We can display multiple
windows of different sizes concurrently on the physical screen. Many of the functions in this section are
only supported by what X/Open terms extended curses. However, since they are supported by
ncurses, there should be little problem in them being made available on most platforms. We’re now
going to move on and use multiple windows. We’re also going to see how the commands we have used
so far are generalized to the multiple window scenario.

The WINDOW Structure
Although we have mentioned stdscr, the standard screen, we have so far had little need to use it, since
almost all of the functions that we’ve discussed so far assume that they’re working on stdscr and it
does not need to be passed as a parameter.

The stdscr is just a special case of the WINDOW structure, like stdout is a special case of a file stream.
The WINDOW structure is normally declared in curses.h and while it can be instructive to examine it, pro-
grams should never access it directly, since the structure can and does change between implementations.

We can create and destroy windows using the newwin and delwin calls:

#include <curses.h>

WINDOW *newwin(int num_of_lines, int num_of_cols, int start_y, int start_x);
int delwin(WINDOW *window_to_delete);

The newwin function creates a new window, with a screen location of (start_y,start_x) and with the
specified number of lines and columns. It returns a pointer to the new window, or null if the creation
failed. If you want the new window to have its bottom right-hand corner in the bottom right-hand corner

If you’re using a very old version of the curses library, you may need to make an
additional refresh call before the getstr call. In ncurses, calling getstr will
refresh the screen automatically.
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of the screen, you can give the number of lines or columns as zero. All windows must fit within the cur-
rent screen, so newwin will fail if any part of the new window would fall outside the screen area. The new
window created by newwin is completely independent of all existing windows. By default, it will be
placed on top of any existing windows, hiding (but not changing) their contents.

The delwin function deletes a window previously created by newwin. Since memory has probably been
allocated when newwin was called, you should always delete windows when they are no longer
required. Take care never to try and delete curses’ own windows, stdscr and curscr!

Having created a new window, how do we write to it? The answer is that almost all the functions that
you’ve seen so far have generalized versions that operate on specified windows, and, for convenience,
these also include cursor motion.

Generalized Functions
We’ve already used the addch and printw functions for adding characters to the screen. Along with many
other functions, these can be prefixed, either with a w for window, mv for move, or mvw for move and win-
dow. If you look in the curses header file for most implementations of curses, you’ll find that many of
the functions we’ve used so far are simply macros (#defines) that call these more general functions.

When the w prefix is added, an additional WINDOW pointer must be pre-pended to the argument list.
When the mv prefix is added, two additional parameters, a y and an x location, must be pre-pended.
These specify the location where the operation will be performed. The y and x are relative to the win-
dow rather than the screen, (0,0) being the top left of the window.

When the mvw prefix is added, three additional parameters, a WINDOW pointer and both y and x values
must be passed. Confusingly, the WINDOW pointer always comes before the screen coordinates, even
though the prefix might suggest the y and x come first.

As an example, here is the full set of prototypes for just the addch and printw sets of functions.

#include <curses.h>

int addch(const chtype char); 
int waddch(WINDOW *window_pointer, const chtype char) 
int mvaddch(int y, int x, const chtype char); 
int mvwaddch(WINDOW *window_pointer, int y, int x, const chtype char);
int printw(char *format, ...); 
int wprintw(WINDOW *window_pointer, char *format, ...); 
int mvprintw(int y, int x, char *format, ...); 
int mvwprintw(WINDOW *window_pointer, int y, int x, char *format, ...);

Many other functions, such as inch, also have move and window variants available.

Moving and Updating a Window
These commands allow us to move and redraw windows.

#include <curses.h>

int mvwin(WINDOW *window_to_move, int new_y, int new_x);
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int wrefresh(WINDOW *window_ptr); 
int wclear(WINDOW *window_ptr); 
int werase(WINDOW *window_ptr); 
int touchwin(WINDOW *window_ptr); 
int scrollok(WINDOW *window_ptr, bool scroll_flag); 
int scroll(WINDOW *window_ptr);

The mvwin function moves a window on the screen. Since all parts of a window must fit within the screen
area, mvwin will fail if you attempt to move a window so that any part of it falls outside the screen area.

The wrefresh, wclear, and werase functions are simply generalizations of the functions we met ear-
lier; they just take a WINDOW pointer so that they can refer to a specific window, rather than stdscr.

The touchwin function is rather special. It informs the curses library that the contents of the window
pointed to by its parameter have been changed. This means that curses will always redraw that win-
dow next time wrefresh is called, even if you haven’t actually changed the contents of the window.
This function is often useful for arranging which window to display when you have several overlapping
windows stacked on the screen.

The two scroll functions control scrolling of a window. The scrollok function, when passed a Boolean
true (usually nonzero) allows a window to scroll. By default, windows can’t scroll. The scroll func-
tion simply scrolls the window up one line. Some curses implementations also have a wsctl function
that also takes a number of lines to scroll, which may be a negative number. We’ll return to scrolling a 
little later in the chapter.

Try It Out—Multiple Windows
Now that we know how to manage more than a single window, let’s put these new functions to work in
a program, multiw1.c. For the sake of brevity, error checking is omitted.

1. As usual, let’s get our definitions sorted first:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
{

WINDOW *new_window_ptr;
WINDOW *popup_window_ptr;
int x_loop;
int y_loop;
char a_letter = ‘a’;

initscr();

2. Then we fill the base window with characters, refreshing the actual screen once the logical
screen has been filled.

move(5, 5);
printw(“%s”, “Testing multiple windows”);
refresh();
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for (y_loop = 0; y_loop < LINES - 1; y_loop++) {
for (x_loop = 0; x_loop < COLS - 1; x_loop++) {

mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter > ‘z’) a_letter = ‘a’;

}
}

/* Update the screen */
refresh();
sleep(2);

3. Now we create a new 10 x 20 window and add some text to it before drawing it on the screen.

new_window_ptr = newwin(10, 20, 5, 5);
mvwprintw(new_window_ptr, 2, 2, “%s”, “Hello World”);
mvwprintw(new_window_ptr, 5, 2, “%s”, 

“Notice how very long lines wrap inside the window”);
wrefresh(new_window_ptr);
sleep(2);

4. We now change the contents of the background window and, when we refresh the screen, the
window pointed to by new_window_ptr is obscured.

a_letter = ‘0’;
for (y_loop = 0; y_loop < LINES -1; y_loop++) {

for (x_loop = 0; x_loop < COLS - 1; x_loop++) {
mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter > ‘9’)

a_letter = ‘0’;
}

}

refresh();
sleep(2);

5. If we make a call to refresh the new window, nothing will change, because we haven’t changed
the new window.

wrefresh(new_window_ptr);
sleep(2);

6. But if we touch the window first and trick curses into thinking that the window has been
changed, the next call to wrefresh will bring the new window to the front again.

touchwin(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
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7. Next, we add another overlapping window with a box around it.

popup_window_ptr = newwin(10, 20, 8, 8);
box(popup_window_ptr, ‘|’, ‘-’);
mvwprintw(popup_window_ptr, 5, 2, “%s”, “Pop Up Window!”);
wrefresh(popup_window_ptr);
sleep(2);

8. Then we fiddle with the new and pop-up windows before clearing and deleting them.

touchwin(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
wclear(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
delwin(new_window_ptr);
touchwin(popup_window_ptr);
wrefresh(popup_window_ptr);
sleep(2);
delwin(popup_window_ptr);
touchwin(stdscr);
refresh();
sleep(2);
endwin();
exit(EXIT_SUCCESS);

}

Unfortunately, it’s not practical to show you this running in the book, but Figure 6-4 shows a screenshot
after the first pop-up window has been drawn.

Figure 6-4

221

Managing Text-Based Screens with curses

b544977 Ch06.qxd  12/1/03  8:56 AM  Page 221



After the background has been changed and a pop-up window has been drawn, we see the display
shown in Figure 6-5.

Figure 6-5

As you can see from the example code, you need to be quite careful about refreshing windows to ensure
that they appear on the screen in the correct order. If you ask curses to refresh a window, it doesn’t store
any information about the hierarchy of windows. To ensure that curses draws the windows in the correct
order, you must refresh them in the correct order. One way of doing this is to store all the pointers to your
windows in an array or list, which you maintain in the order they should appear on the screen.

Optimizing Screen Refreshes
As we saw in the example in the previous section, refreshing multiple windows can be a little tricky, but
not overly onerous. However, a potentially more serious problem arises when the terminal to be
updated is on a slow link. Fortunately, this is now a rare problem, but handling it is so easy that we will
show you just for the sake of completeness.

The aim is to minimize the number of characters drawn on the screen, since, on slow links, screen draws
can be uncomfortably slow. curses provides a special way of doing this, with a pair of functions:
wnoutrefresh and doupdate.

#include <curses.h>

int wnoutrefresh(WINDOW *window_ptr);
int doupdate(void);

The wnoutrefresh function determines which characters would need sending to the screen, but doesn’t
actually send them. The doupdate function actually sends the changes to the terminal. If you simply call
wnoutrefresh, followed immediately by doupdate, the effect is the same as calling wrefresh.
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However, if you wish to redraw a stack of windows, you can call wnoutrefresh on each window (in
the correct order, of course) and then call doupdate only after the last wnoutrefresh. This allows
curses to perform its screen update calculations on each window in turn and only then output the
updated screen. This almost always allows curses to minimize the number of characters that needs
to be sent.

Subwindows
Now that we’ve looked at multiple windows, we can look at a special case of multiple windows, called
subwindows. We create and destroy subwindows with these calls:

#include <curses.h>

WINDOW *subwin(WINDOW *parent, int num_of_lines, int num_of_cols, 
int start_y, int start_x); 

int delwin(WINDOW *window_to_delete);

The subwin function has almost the same parameter list as newwin and subwindows are deleted in just
the same way as other windows with a delwin call. Just like new windows, we can use the range of mvw
functions to write to subwindows. Indeed, most of the time, subwindows behave in a very similar fash-
ion to new windows, with one very important exception: Subwindows don’t themselves store a separate
set of screen characters; they share the same character storage space as the parent window specified
when the subwindow is created. This means that any changes made in a subwindow are also made in
the underlying parent window, so when a subwindow is deleted, the screen doesn’t change.

At first sight, subwindows seem like a pointless exercise. Why not just make the changes to the parent
window? The main use for subwindows is to provide a clean way of scrolling parts of another window.
The need to scroll a small subsection of the screen is surprisingly common when writing a curses pro-
gram. By making this a subwindow and then scrolling the subwindow, we achieve the desired result.

Try It Out—Subwindows
1. First, the initial code section of subscl.c initializes the base window display with some text.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main() 

{
WINDOW *sub_window_ptr;
int x_loop;
int y_loop;

One restriction imposed by using subwindows is that the application should call
touchwin on the parent window before refreshing the screen.
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int counter;
char a_letter = ‘1’;
initscr();

for (x_loop = 0; x_loop < COLS - 1; x_loop++) {
for (y_loop = 0; y_loop < LINES - 1; y_loop++) {

mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter > ‘9’) a_letter = ‘1’;

}
}      if (a_letter > ‘Z’) a_letter = ‘A’;

2. We now create the new scrolling subwindow and, as advised, we must “touch” the parent win-
dow before refreshing the screen.

sub_window_ptr = subwin(stdscr, 10, 20, 10, 10);
scrollok(sub_window_ptr, 1);

touchwin(stdscr);
refresh();
sleep(1);

3. Then we erase the contents of the subwindow, print text to it, and refresh it. The scrolling text is
achieved by a loop.

werase(sub_window_ptr);
mvwprintw(sub_window_ptr, 2, 0, “%s”, “This window will now scroll”);
wrefresh(sub_window_ptr);
sleep(1);

for (counter = 1; counter < 10; counter++) {
wprintw(sub_window_ptr, “%s”, “This text is both wrapping and \

scrolling.”);
wrefresh(sub_window_ptr);
sleep(1);

}

4. Having finished this loop, we delete the subwindow. Then we refresh the base screen.

delwin(sub_window_ptr);

touchwin(stdscr);
refresh();
sleep(1);

endwin();
exit(EXIT_SUCCESS);

}

Toward the end of the program, we see the output shown in Figure 6-6.
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Figure 6-6

How It Works
After arranging for the sub_window_ptr to point to the result of the subwin call, we make the subwin-
dow scrollable. Even after the subwindow has been deleted and the base window (strdcr) is refreshed,
the text on the screen remains the same. This is because the subwindow was actually updating the char-
acter data for stdscr.

The Keypad
You’ve already seen some of the facilities that curses provides for handling the keyboard. Many key-
boards have, at the very least, cursor keys and function keys. Many also have a keypad and other keys,
such as Insert and Home.

Decoding these keys is a difficult problem on most terminals because they normally send a string of
characters, starting with the escape character. Not only does the application have the problem of distin-
guishing between a single press of the Escape key and a string of characters caused by pressing a func-
tion key, but it must also cope with different terminals using different sequences for the same logical key.

Fortunately, curses provides an elegant facility for managing function keys. For each terminal, the
sequence sent by each of its function keys is stored, normally in a terminfo structure, and the include
file curses.h has a set of defines prefixed by KEY_ that define the logical keys.

The translation between the sequences and logical keys is disabled when curses starts and has to be
turned on by the keypad function. If the call succeeds, it returns OK, otherwise ERR.
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#include <curses.h>

int keypad(WINDOW *window_ptr, bool keypad_on);

Once keypad mode has been enabled by calling keypad with keypad_on set to true, curses takes over
the processing of key sequences so that reading the keyboard may now not only return the key that was
pressed, but also one of the KEY_ defines for logical keys.

There are three slight restrictions when using keypad mode:

❑ The recognition of escape sequences is timing-dependent and many network protocols will
group characters into packets (leading to improper recognition of escape sequences), or separate
them (leading to function key sequences being recognized as Escape and individual characters).
This behavior is worst over WANs and other busy links. The only workaround is to try to pro-
gram terminals to send single, unique characters for each function key that you want to use,
although this limits the number of control characters.

❑ In order for curses to separate a press of the Escape key from a keyboard sequence starting
with Escape, it must wait for a brief period of time. Sometimes, a very slight delay on process-
ing of the Escape key can be noticed once keypad mode has been enabled. 

❑ curses can’t process nonunique escape sequences. If your terminal has two different keys that
can send the same sequence, curses will simply not process that sequence, since it can’t tell
which logical key it should return.

Try It Out—Using the Keypad
Here’s a short program, keypad.c, showing how the keypad mode can be used. When you run this pro-
gram, try pressing Escape and notice the slight delay while the program waits to see if the Escape is sim-
ply the start of an escape sequence or a single key press.

1. Having initialized the program and the curses library, we set the keypad mode TRUE.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

#define LOCAL_ESCAPE_KEY    27

int main() 
{

int key;

initscr();
crmode();
keypad(stdscr, TRUE);

In our opinion, having escape sequences for some keys and also putting an Escape
key on the keyboard (heavily used for cancels) was a most unfortunate design deci-
sion, but one that we must accept and manage as best we can.
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2. Next, we must turn echo off to prevent the cursor from being moved when some cursor keys are
pressed. The screen is cleared and some text displayed. The program waits for each key stroke
and, unless it’s Q, or produces an error, the key is printed. If the key strokes match one of the
terminal’s keypad sequences, that is printed instead.

noecho(); 
clear();
mvprintw(5, 5, “Key pad demonstration. Press ‘q’ to quit”);
move(7, 5);
refresh();
key = getch();

while(key != ERR && key != ‘q’) {
move(7, 5);
clrtoeol();

if ((key >= ‘A’ && key <= ‘Z’) ||
(key >= ‘a’ && key <= ‘z’)) {
printw(“Key was %c”, (char)key);

}
else {

switch(key) {
case LOCAL_ESCAPE_KEY: printw(“%s”, “Escape key”); break;
case KEY_END: printw(“%s”, “END key”); break;
case KEY_BEG: printw(“%s”, “BEGINNING key”); break;
case KEY_RIGHT: printw(“%s”, “RIGHT key”); break;
case KEY_LEFT: printw(“%s”, “LEFT key”); break;
case KEY_UP: printw(“%s”, “UP key”); break;
case KEY_DOWN: printw(“%s”, “DOWN key”); break;
default: printw(“Unmatched - %d”, key); break;
} /* switch */

} /* else */

refresh();
key = getch();

} /* while */

endwin();
exit(EXIT_SUCCESS);

}

Color
Originally, very few “dumb” terminals supported color, so most early versions of curses had no sup-
port for it. Now, color is expected and is supported in ncurses and most other modern curses imple-
mentations. Unfortunately the “dumb screen” origins of curses has influenced the API, and curses
uses color in a very restricted way, reflecting the poor capabilities of early color terminals.

Each character cell on the screen can be written in one of a number of different colors, against one of a
number of different colored backgrounds. For example, we can write text in green on a red background.
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Color support in curses is slightly unusual in that the color for a character isn’t defined independently
of its background. We must define the foreground and background colors of a character as a pair, called,
not surprisingly, a color pair.

Before you can use color capability in curses, you must check that the current terminal supports
color and then initialize the curses color routines. For this, use a pair of routines: has_colors and
start_color.

#include <curses.h>

bool has_colors(void);
int start_color(void);

The has_colors routine returns true if color is supported. You should then call start_color, which
returns OK if color has been initialized successfully. Once start_color has been called and the colors
initialized, the variable COLOR_PAIRS is set to the maximum number of color pairs that the terminal can
support. A limit of 64 color pairs is common. The variable COLORS defines the maximum number of col-
ors available, which is often as few as eight. Internally, numbers from 0 to act as a unique ID for each of
the colors available.

Before you can use colors as attributes, you must initialize the color pairs that you wish to use. You do
this with the init_pair function. Color attributes are accessed with the COLOR_PAIR function.

#include <curses.h>

int init_pair(short pair_number, short foreground, short background); 
int COLOR_PAIR(int pair_number); 
int pair_content(short pair_number, short *foreground, short *background);

curses.h usually defines some basic colors, starting with COLOR_. An additional function, pair_
content, allows previously defined color-pair information to be retrieved.

To define color pair number 1 to be red on green, we would use

init_pair(1, COLOR_RED, COLOR_GREEN);

We can then access this color pair as an attribute, using COLOR_PAIR like this:

wattron(window_ptr, COLOR_PAIR(1));

This would set future additions to the screen to be red on a green background.

Since a COLOR_PAIR is an attribute, we can combine it with other attributes. On a PC, we can often
access screen high-intensity colors by combining the COLOR_PAIR attribute with the additional attribute
A_BOLD, by using a bitwise OR of the attributes:

wattron(window_ptr, COLOR_PAIR(1) | A_BOLD);

Let’s check these functions in an example, color.c.
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Try It Out—-Colors
1. First, we check whether the program’s display terminal supports color. If it does, we start the

color display.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <curses.h>

int main() 
{

int i;

initscr();

if (!has_colors()) {
endwin();
fprintf(stderr, “Error - no color support on this terminal\n”);
exit(1);

}

if (start_color() != OK) {
endwin();
fprintf(stderr, “Error - could not initialize colors\n”);
exit(2);

}

2. We can now print out the allowed number of colors and color pairs. We create seven color pairs
and display them one at a time. 

clear();
mvprintw(5, 5, “There are %d COLORS, and %d COLOR_PAIRS available”, 

COLORS, COLOR_PAIRS);
refresh();

init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_RED, COLOR_GREEN);
init_pair(3, COLOR_GREEN, COLOR_RED);
init_pair(4, COLOR_YELLOW, COLOR_BLUE);
init_pair(5, COLOR_BLACK, COLOR_WHITE);
init_pair(6, COLOR_MAGENTA, COLOR_BLUE);
init_pair(7, COLOR_CYAN, COLOR_WHITE);

for (i = 1; i <= 7; i++) {
attroff(A_BOLD);
attrset(COLOR_PAIR(i));
mvprintw(5 + i, 5, “Color pair %d”, i);
attrset(COLOR_PAIR(i) | A_BOLD);
mvprintw(5 + i, 25, “Bold color pair %d”, i);
refresh();
sleep(1);

}
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endwin();
exit(EXIT_SUCCESS);

}

This example gives the output shown in Figure 6-7.

Figure 6-7

Redefining Colors
As a left over from early dumb terminals that could display very few colors at any one time, but allowed
the active color set to be configured, curses allows color redefinition with the init_color function.

#include <curses.h>

int init_color(short color_number, short red, short green, short blue);

This allows an existing color (in the range 0 to COLORS) to be redefined with new intensity values in the
range 0 to 1,000. This is a little like defining color values for GIF format image files.

Pads
When you’re writing more advanced curses programs, it’s sometimes easier to build a logical screen
and then output all or part of it to the physical screen later. Occasionally, it’s also better to have a logical
screen that is actually bigger than the physical screen and to display only part of the logical screen at any
one time.
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It’s not easy for us to do this with the curses functions that we’ve met so far, since all windows must be
no larger than the physical screen. curses does provide a special data structure, a pad, for manipulating
logical screen information that doesn’t fit within a normal window.

A pad structure is very similar to a WINDOW structure, and all the curses routines that write to windows
can also be used on pads. However, pads do have their own routines for creation and refreshing.

We create pads in much the same way that we create normal windows:

#include <curses.h>

WINDOW *newpad(int number_of_lines, int number_of_columns);

Note that the return value is a pointer to a WINDOW structure, the same as newwin. Pads are deleted with
delwin, just like windows.

Pads do have different routines for refreshing. Since a pad isn’t confined to a particular screen location,
we must specify the region of the pad we wish to put on the screen and also the location it should
occupy on the screen. We do this with the prefresh function:

#include <curses.h>

int prefresh(WINDOW *pad_ptr, int pad_row, int pad_column,
int screen_row_min, int screen_col_min,
int screen_row_max, int screen_col_max);

This causes an area of the pad, starting at (pad_row, pad_column) to be written to the screen in the
region defined by (screen_row_min, screen_col_min) to (screen_row_max, screen_col_max).

An additional routine, pnoutrefresh, is also provided. It acts in the same way as wnoutrefresh, for
more efficient screen updates.

Let’s check these out with a quick program, pad.c.

Try It Out—Using a Pad
1. At the start of this program, we initialize the pad structure and then create a pad, which returns

a pointer to that pad. We add characters to fill the pad structure (which is 50 characters wider
and longer than the terminal display).

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main() 
{

WINDOW *pad_ptr;
int x, y;
int pad_lines;
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int pad_cols;
char disp_char;

initscr();
pad_lines = LINES + 50;
pad_cols = COLS + 50;
pad_ptr = newpad(pad_lines, pad_cols);
disp_char = ‘a’;

for (x = 0; x < pad_lines; x++) {
for (y = 0; y < pad_cols; y++) {

mvwaddch(pad_ptr, x, y, disp_char);
if (disp_char == ‘z’) disp_char = ‘a’;
else disp_char++;

}
}

2. We can now draw different areas of the pad on the screen at different locations before quitting.

prefresh(pad_ptr, 5, 7, 2, 2, 9, 9);
sleep(1);
prefresh(pad_ptr, LINES + 5, COLS + 7, 5, 5, 21, 19);
sleep(1);
delwin(pad_ptr);
endwin();
exit(EXIT_SUCCESS);

}

Running the program, you should see something like Figure 6-8.

Figure 6-8
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The CD Collection Application
Now that you’ve learned about the facilities that curses has to offer, we can develop our sample appli-
cation. Here’s a version written in C using the curses library. It offers some advantages in that the infor-
mation is more clearly displayed on the screen and a scrolling window is used for track listings.

The whole application is eight pages long, so we’ve split it up into sections and functions within each
section. You can get the full source code from the Wrox Web site. As with all the programs in this book,
it’s under the GNU Public License.

Looking at the code, there are several distinct sections that form the “Try It Out” headings. The code
conventions used here are slightly different from most of the rest of the book; here, code foreground is
used only to show where other application functions are called.

Try It Out—A New CD Collection Application
1. First, we include all those header files and then some global constants.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <curses.h>

#define MAX_STRING 80         /* Longest allowed response       */
#define MAX_ENTRY 1024        /* Longest allowed database entry */

#define MESSAGE_LINE 6          /* Misc. messages on this line    */
#define ERROR_LINE   22         /* Line to use for errors         */
#define Q_LINE       20         /* Line for questions             */
#define PROMPT_LINE  18         /* Line for prompting on          */

2. Next, we need some global variables. The variable current_cd is used to store the current CD
title with which we are working. It’s initialized so that the first character is null to indicate “no
CD selected.” The \0 is strictly unnecessary, but it ensures the variable is initialized, which is
generally a good thing. The variable current_cat will be used to record the catalog number
of the current CD.

static char current_cd[MAX_STRING] = “\0”;
static char current_cat[MAX_STRING];

We’ve written this version of the CD database application using the information
presented in earlier chapters. It’s derived from the original shell script presented in
Chapter 2. It hasn’t been redesigned for the C implementation, so you can still see
many features of the shell original in this version.

There are some significant limitations with this implementation that we will resolve
in later revisions. 
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3. Some filenames are now declared. These files are fixed in this version to keep things simple, as
is the temporary filename. This could cause a problem if the program is run by two users in the
same directory.

const char *title_file = “title.cdb”;
const char *tracks_file = “tracks.cdb”;
const char *temp_file = “cdb.tmp”;

4. Now, finally, we get on to the function prototypes.

void clear_all_screen(void);
void get_return(void);
int get_confirm(void);
int getchoice(char *greet, char *choices[]);
void draw_menu(char *options[], int highlight, 

int start_row, int start_col);
void insert_title(char *cdtitle);
void get_string(char *string);
void add_record(void);
void count_cds(void);
void find_cd(void);
void list_tracks(void);
void remove_tracks(void);
void remove_cd(void);
void update_cd(void);

5. Before we look at their implementation, we need some structures (actually, an array of menu
options) for the menus. The first character is the one to return when the choice is selected; the
remaining text is to be displayed. The extended menu is displayed when a CD is currently
selected.

char *main_menu[] =
{

“add new CD”,
“find CD”,
“count CDs and tracks in the catalog”,
“quit”,
0,

};

char *extended_menu[] =
{

“add new CD”,
“find CD”,
“count CDs and tracks in the catalog”,
“list tracks on current CD”,

A better way to obtain database file names would be either by program arguments
or from environment variables. We also need an improved method of generating a
unique temporary filename, for which we could use the POSIX tmpnam function.
We’ll address many of these issues in later versions.
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“remove current CD”,
“update track information”,
“quit”,
0,

};

That finishes the initialization. Now we move on to the program functions, but first we need to summa-
rize the interrelations of these functions, all 16 of them. They split into functions that

❑ Draw the menu

❑ Add CDs to the database

❑ Retrieve and display CD data

See Figure 6-9 for a visual representation.

Figure 6-9

Try It Out—Looking at main
main allows us to make selections from the menu until we select quit.

int main()
{

int choice;
initscr();
do {

choice = getchoice(“Options:”, 
current_cd[0] ? extended_menu : main_menu);

switch (choice) {
case ‘q’:

break;
case ‘a’:

MAIN

GET_CHOICE ADD_RECORD

DRAW_MENU INSERT_TITLE GET_RETURN REMOVE_TRACKS

GET_CONFIRM

COUNT_CDS

GET_STRING

FIND_CD

CLEAR_ALL_SCREEN

LIST_TRACKS REMOVE_CD UPDATE_CD
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add_record();
break;

case ‘c’:

count_cds();
break;

case ‘f’:

find_cd();
break;

case ‘l’:

list_tracks();
break;

case ‘r’:

remove_cd();
break;

case ‘u’:

update_cd();
break;

}
} while (choice != ‘q’);
endwin();
exit(EXIT_SUCCESS);

}

Let’s now look at the detail of the functions associated with the three program subsections. First, we look
at the three functions that relate to the program’s user interface.

Try It Out—The Menu
1. The getchoice function called by main is the principal function in this section. getchoice

is passed greet, an introduction, and choices, which points either to the main or the
extended menu (depending on whether a CD has been selected). You can see this in the preced-
ing main function.

int getchoice(char *greet, char *choices[])
{

static int selected_row = 0;
int max_row = 0;
int start_screenrow = MESSAGE_LINE, start_screencol = 10;
char **option;
int selected;
int key = 0;

option = choices;
while (*option) {

max_row++;
option++;

}
/* protect against menu getting shorter when CD deleted */

if (selected_row >= max_row)
selected_row = 0;

clear_all_screen();
mvprintw(start_screenrow - 2, start_screencol, greet);
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keypad(stdscr, TRUE);
cbreak();
noecho();
key = 0;
while (key != ‘q’ && key != KEY_ENTER && key != ‘\n’) {

if (key == KEY_UP) {
if (selected_row == 0)

selected_row = max_row - 1;
else

selected_row—;
}
if (key == KEY_DOWN) {

if (selected_row == (max_row - 1))
selected_row = 0;

else
selected_row++;

}
selected = *choices[selected_row];

draw_menu(choices, selected_row, start_screenrow,
start_screencol);

key = getch();
}
keypad(stdscr, FALSE);
nocbreak();
echo();

if (key == ‘q’)
selected = ‘q’;

return (selected);
}

2. Note how there are two more local functions called from within getchoice:
clear_all_screen and draw_menu. We’ll look at draw_menu first:

void draw_menu(char *options[], int current_highlight, 
int start_row, int start_col)

{
int current_row = 0;
char **option_ptr;
char *txt_ptr;
option_ptr = options;
while (*option_ptr) {

if (current_row == current_highlight) attron(A_STANDOUT);
txt_ptr = options[current_row];
txt_ptr++;
mvprintw(start_row + current_row, start_col, “%s”, txt_ptr);
if (current_row == current_highlight) attroff(A_STANDOUT);
current_row++;
option_ptr++;

}

mvprintw(start_row + current_row + 3, start_col, 
“Move highlight then press Return “);

refresh();
}

237

Managing Text-Based Screens with curses

b544977 Ch06.qxd  12/1/03  8:56 AM  Page 237



3. clear_all_screen, which, surprisingly enough, clears the screen and rewrites the title. If a
CD is selected, its information is displayed.

void clear_all_screen()
{

clear();
mvprintw(2, 20, “%s”, “CD Database Application”);
if (current_cd[0]) {

mvprintw(ERROR_LINE, 0, “Current CD: %s: %s\n”, 
current_cat, current_cd);

}
refresh();

}

Now we look at the functions that add to or update the CD database. The functions called from main are
add_record, update_cd, and remove_cd. This function makes several calls to functions that will be
defined in the next few sections.

Try It Out—Database File Manipulation
1. First, how do we add a new CD record to the database?

void add_record()
{

char catalog_number[MAX_STRING];
char cd_title[MAX_STRING];
char cd_type[MAX_STRING];
char cd_artist[MAX_STRING];
char cd_entry[MAX_STRING];

int screenrow = MESSAGE_LINE;
int screencol = 10;

clear_all_screen();
mvprintw(screenrow, screencol, “Enter new CD details”);
screenrow += 2;

mvprintw(screenrow, screencol, “Catalog Number: “);

get_string(catalog_number);
screenrow++;

mvprintw(screenrow, screencol, “      CD Title: “);

get_string(cd_title);
screenrow++;

mvprintw(screenrow, screencol, “       CD Type: “);

get_string(cd_type);
screenrow++;

mvprintw(screenrow, screencol, “        Artist: “);

get_string(cd_artist);
screenrow++;
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mvprintw(PROMPT_LINE-2, 5, “About to add this new entry:”);
sprintf(cd_entry, “%s,%s,%s,%s”, 

catalog_number, cd_title, cd_type, cd_artist);
mvprintw(PROMPT_LINE, 5, “%s”, cd_entry);
refresh();
move(PROMPT_LINE, 0);

if (get_confirm()) {
insert_title(cd_entry);
strcpy(current_cd, cd_title);
strcpy(current_cat, catalog_number);

}
}

2. get_string prompts for and reads in a string at the current screen position. It also deletes
any trailing newline.

void get_string(char *string)
{

int len;

wgetnstr(stdscr, string, MAX_STRING);
len = strlen(string);
if (len > 0 && string[len - 1] == ‘\n’)

string[len - 1] = ‘\0’;
}

3. get_confirm prompts and reads user confirmation. It reads the user’s input string and
checks the first character for Y or y. If it finds any other character, it gives no confirmation.

int get_confirm()
{

int confirmed = 0;
char first_char;

mvprintw(Q_LINE, 5, “Are you sure? “);
clrtoeol();
refresh();

cbreak();
first_char = getch();
if (first_char == ‘Y’ || first_char == ‘y’) {

confirmed = 1;
}
nocbreak();

if (!confirmed) {
mvprintw(Q_LINE, 1, “    Cancelled”);
clrtoeol();
refresh();
sleep(1);

}
return confirmed;

}
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4. Lastly, we look at insert_title. This adds a title to the CD database by appending the title
string to the end of the titles file.

void insert_title(char *cdtitle)
{

FILE *fp = fopen(title_file, “a”);
if (!fp) {

mvprintw(ERROR_LINE, 0, “cannot open CD titles database”);
} else {

fprintf(fp, “%s\n”, cdtitle);
fclose(fp);

}
}

5. On to the other file manipulation functions called by main. We start with update_cd. This
function uses a scrolling, boxed subwindow and needs some constants, which we define glob-
ally, because they will be needed later for the list_tracks function. These are

#define BOXED_LINES    11
#define BOXED_ROWS     60
#define BOX_LINE_POS   8
#define BOX_ROW_POS    2

update_cd allows the user to re-enter the tracks for the current CD. Having deleted the previous
tracks record, it prompts for new information.

void update_cd()
{

FILE *tracks_fp;
char track_name[MAX_STRING];
int len;
int track = 1;
int screen_line = 1;
WINDOW *box_window_ptr;
WINDOW *sub_window_ptr;

clear_all_screen();
mvprintw(PROMPT_LINE, 0, “Re-entering tracks for CD. “);

if (!get_confirm())
return;

move(PROMPT_LINE, 0);
clrtoeol();

remove_tracks();

mvprintw(MESSAGE_LINE, 0, “Enter a blank line to finish”);

tracks_fp = fopen(tracks_file, “a”);

We’ll continue the listing in just a moment; here, we want to take a brief intermission to highlight how
we enter the information in a scrolling, boxed window. The trick is to set up a subwindow, draw a box
around the edge, and then add a new scrolling subwindow just inside the boxed subwindow.
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box_window_ptr = subwin(stdscr, BOXED_LINES + 2, BOXED_ROWS + 2,
BOX_LINE_POS - 1, BOX_ROW_POS - 1);

if (!box_window_ptr)
return;

box(box_window_ptr, ACS_VLINE, ACS_HLINE);

sub_window_ptr = subwin(stdscr, BOXED_LINES, BOXED_ROWS,
BOX_LINE_POS, BOX_ROW_POS);

if (!sub_window_ptr)
return;

scrollok(sub_window_ptr, TRUE);
werase(sub_window_ptr);
touchwin(stdscr);

do {
mvwprintw(sub_window_ptr, screen_line++, BOX_ROW_POS + 2, 

“Track %d: “, track);
clrtoeol();
refresh();
wgetnstr(sub_window_ptr, track_name, MAX_STRING);
len = strlen(track_name);
if (len > 0 && track_name[len - 1] == ‘\n’)

track_name[len - 1] = ‘\0’;
if (*track_name)
fprintf(tracks_fp, “%s,%d,%s\n”, current_cat, track, track_name);

track++;
if (screen_line > BOXED_LINES - 1) {

/* time to start scrolling */
scroll(sub_window_ptr);
screen_line—;

}
} while (*track_name);
delwin(sub_window_ptr);

fclose(tracks_fp);
}

6. The last function called from main is remove_cd.

void remove_cd()
{

FILE *titles_fp, *temp_fp;
char entry[MAX_ENTRY];
int cat_length;

if (current_cd[0] == ‘\0’)
return;

clear_all_screen();
mvprintw(PROMPT_LINE, 0, “About to remove CD %s: %s. “, 

current_cat, current_cd);

if (!get_confirm())
return;

cat_length = strlen(current_cat);
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/* Copy the titles file to a temporary, ignoring this CD */
titles_fp = fopen(title_file, “r”);
temp_fp = fopen(temp_file, “w”);

while (fgets(entry, MAX_ENTRY, titles_fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current_cat, entry, cat_length) != 0)

fputs(entry, temp_fp);
}
fclose(titles_fp);
fclose(temp_fp);

/* Delete the titles file, and rename the temporary file */
unlink(title_file);
rename(temp_file, title_file);

/* Now do the same for the tracks file */
remove_tracks();

/* Reset current CD to ‘None’ */
current_cd[0] = ‘\0’;

}

7. We now need only to list remove_tracks, the function that deletes the tracks from the current
CD. It’s called by both update_cd and remove_cd.

void remove_tracks()
{

FILE *tracks_fp, *temp_fp;
char entry[MAX_ENTRY];
int cat_length;

if (current_cd[0] == ‘\0’)
return;

cat_length = strlen(current_cat);

tracks_fp = fopen(tracks_file, “r”);
if (tracks_fp == (FILE *)NULL) return;
temp_fp = fopen(temp_file, “w”);

while (fgets(entry, MAX_ENTRY, tracks_fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current_cat, entry, cat_length) != 0)

fputs(entry, temp_fp);
}
fclose(tracks_fp);
fclose(temp_fp);

/* Delete the tracks file, and rename the temporary file */
unlink(tracks_file);
rename(temp_file, tracks_file);

}
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Try It Out—Querying the CD Database
1. Essential to all acquisitive hobbies is the knowledge of how many you own of whatever you col-

lect. The next function performs this function admirably; it scans the database, counting titles
and tracks.

void count_cds()
{

FILE *titles_fp, *tracks_fp;
char entry[MAX_ENTRY];
int titles = 0;
int tracks = 0;

titles_fp = fopen(title_file, “r”);
if (titles_fp) {

while (fgets(entry, MAX_ENTRY, titles_fp))
titles++;

fclose(titles_fp);
}
tracks_fp = fopen(tracks_file, “r”);
if (tracks_fp) {

while (fgets(entry, MAX_ENTRY, tracks_fp))
tracks++;

fclose(tracks_fp);
}
mvprintw(ERROR_LINE, 0, 

“Database contains %d titles, with a total of %d tracks.”,
titles, tracks);

get_return();
}

2. You’ve lost the sleeve notes from your favorite CD, but don’t worry! Having carefully typed the
details across, you can now find the track listing using find_cd. It prompts for a substring to
match in the database and sets the global variable current_cd to the CD title found.

void find_cd()
{

char match[MAX_STRING], entry[MAX_ENTRY];
FILE *titles_fp;
int count = 0;
char *found, *title, *catalog;

mvprintw(Q_LINE, 0, “Enter a string to search for in CD titles: “);

get_string(match);

titles_fp = fopen(title_file, “r”);
if (titles_fp) {

while (fgets(entry, MAX_ENTRY, titles_fp)) {

/* Skip past catalog number */
catalog = entry;
if (found == strstr(catalog, “,”)) {

*found = ‘\0’;
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title = found + 1;

/* Zap the next comma in the entry to reduce it to 
title only */

if (found == strstr(title, “,”)) {
*found = ‘\0’;

/* Now see if the match substring is present */
if (found == strstr(title, match)) {

count++;
strcpy(current_cd, title);
strcpy(current_cat, catalog);

}
}

}
}
fclose(titles_fp);

}
if (count != 1) {

if (count == 0) {
mvprintw(ERROR_LINE, 0, “Sorry, no matching CD found. “);

}
if (count > 1) {

mvprintw(ERROR_LINE, 0, 
“Sorry, match is ambiguous: %d CDs found. “, count);

}
current_cd[0] = ‘\0’;

get_return();
}

}

Though catalog points at a larger array than current_cat and could conceivably over-
write memory, the check in fgets prevents this.

3. Lastly, we need to be able to list the selected CD’s tracks on the screen. We make use of the
#defines for the subwindows used in update_cd in the last section.

void list_tracks()
{

FILE *tracks_fp;
char entry[MAX_ENTRY];
int cat_length;
int lines_op = 0;
WINDOW *track_pad_ptr;
int tracks = 0;
int key;
int first_line = 0;

if (current_cd[0] == ‘\0’) {
mvprintw(ERROR_LINE, 0, “You must select a CD first. “);

get_return();
return;

}
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clear_all_screen();
cat_length = strlen(current_cat);

/* First count the number of tracks for the current CD */
tracks_fp = fopen(tracks_file, “r”);
if (!tracks_fp)

return;
while (fgets(entry, MAX_ENTRY, tracks_fp)) {

if (strncmp(current_cat, entry, cat_length) == 0)
tracks++;

}
fclose(tracks_fp);

/* Make a new pad, ensure that even if there is only a single
track the PAD is large enough so the later prefresh() is always
valid. */

track_pad_ptr = newpad(tracks + 1 + BOXED_LINES, BOXED_ROWS + 1);
if (!track_pad_ptr)

return;

tracks_fp = fopen(tracks_file, “r”);
if (!tracks_fp)

return;

mvprintw(4, 0, “CD Track Listing\n”);

/* write the track information into the pad */
while (fgets(entry, MAX_ENTRY, tracks_fp)) {

/* Compare catalog number and output rest of entry */
if (strncmp(current_cat, entry, cat_length) == 0) {

mvwprintw(track_pad_ptr, lines_op++, 0, “%s”, 
entry + cat_length + 1);

}
}
fclose(tracks_fp);

if (lines_op > BOXED_LINES) {
mvprintw(MESSAGE_LINE, 0, 

“Cursor keys to scroll, RETURN or q to exit”);
} else {

mvprintw(MESSAGE_LINE, 0, “RETURN or q to exit”);
}
wrefresh(stdscr);
keypad(stdscr, TRUE);
cbreak();
noecho();
key = 0;
while (key != ‘q’ && key != KEY_ENTER && key != ‘\n’) {

if (key == KEY_UP) {
if (first_line > 0)

first_line—;
}
if (key == KEY_DOWN) {
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if (first_line + BOXED_LINES + 1 < tracks)
first_line++;

}

/* now draw the appropriate part of the pad on the screen */
prefresh(track_pad_ptr, first_line, 0,

BOX_LINE_POS, BOX_ROW_POS,
BOX_LINE_POS + BOXED_LINES, BOX_ROW_POS + BOXED_ROWS);

key = getch();
}

delwin(track_pad_ptr);
keypad(stdscr, FALSE);
nocbreak();
echo();

}

4. The last two functions call get_return, which prompts for and reads a carriage return, ignor-
ing other characters:

void get_return()
{

int ch;
mvprintw(23, 0, “%s”, “ Press return “);
refresh();
while ((ch = getchar()) != ‘\n’ && ch != EOF);

}

If you run this program, you should see something like Figure 6-10.

Figure 6-10
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Summary
In this chapter, we have explored the curses library. curses provides a good way for text-based pro-
grams to control the screen and read the keyboard. Although curses doesn’t offer as much control as
the general terminal interface (GTI) and direct terminfo access, it’s considerably easier to use. If you’re
writing a full-screen, text-based application, you should consider using the curses library to manage
the screen and keyboard for you.
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7
Data Management

In earlier chapters, we touched on the subject of resource limits. In this chapter, we’re going to
look first at ways of managing your resource allocation, then at ways of dealing with files that are
accessed by many users more or less simultaneously, and lastly at one tool provided in Linux sys-
tems for overcoming the limitations of flat files as a data storage medium.

We can summarize these topics as three ways of managing data:

❑ Dynamic memory management: what to do and what Linux won’t let you do

❑ File locking: cooperative locking, locking regions of shared files, and avoiding deadlocks

❑ The dbm database: a basic, non-SQL-based database library featured in most Linux 
systems

Managing Memory
On all computer systems memory is a scarce resource. No matter how much memory is available,
it never seems to be enough. It doesn’t seem so long ago that being able to address even a single
megabyte of memory was considered more than anyone would ever need, but now numbers like
512MB of RAM are commonplace as minimum requirements.

From the earliest versions of the operating system, UNIX-style operating systems have had a very
clean approach to managing memory that Linux, because it implements the X/Open specification,
has inherited. Linux applications, except for a few specialized embedded applications, are never
permitted to access physical memory directly. It might appear so to the application, but what the
application is seeing is a carefully controlled illusion.

Linux provides applications with a clean view of a huge directly addressable memory space.
Additionally, it provides protection so that different applications are protected from each other,
and it allows applications to apparently access more memory than is physically present in the
machine, provided the machine is at least well configured and has sufficient swap space.
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Simple Memory Allocation
We allocate memory using the malloc call in the standard C library.

#include <stdlib.h>

void *malloc(size_t size);

Notice that Linux (following the X/Open specification) differs from some UNIX implementations by
not requiring a special malloc.h include file. Note also that the size parameter that specifies the
number of bytes to allocate isn’t a simple int, although it’s usually an unsigned integer type.

We can allocate a great deal of memory on most Linux systems. Let’s start with a very simple program,
but one that would defeat old MS-DOS-based programs, because they cannot access memory outside the
base 640k memory map of PCs.

Try It Out—Simple Memory Allocation
Type the following program, memory1.c: 

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A_MEGABYTE (1024 * 1024)

int main()
{

char *some_memory;
int  megabyte = A_MEGABYTE;
int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(megabyte);
if (some_memory != NULL) {

sprintf(some_memory, “Hello World\n”);
printf(“%s”, some_memory);
exit_code = EXIT_SUCCESS;

}
exit(exit_code);

}

When we run this program, it gives us the following output:

$ ./memory1
Hello World

How It Works
This program asks the malloc library to give it a pointer to a megabyte of memory. We check to ensure
that malloc was successful and then use some of the memory to show that it exists. When you run the
program, you should see Hello World printed out, showing that malloc did indeed return the
megabyte of usable memory. We don’t check that all of the megabyte is present; we have to put some
trust in the malloc code!
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Notice that because malloc returns a void * pointer, we cast the result to the char * that we need.
The malloc function is guaranteed to return memory that is aligned so that it can be cast to a pointer
of any type.

The simple reason is that most current Linux systems use 32-bit integers and use 32-bit pointers for point-
ing to memory, which allows you to specify up to 4 gigabytes. This ability to address directly with a 32-bit
pointer, without needing segment registers or other tricks, is termed a flat 32-bit memory model. This model
is also used in Windows XP and Windows 9x/Me for 32-bit applications. You shouldn’t rely on integers
being 32-bit, however, as there are also an increasing number of 64-bit versions of Linux in use.

Allocating Lots of Memory
Now that we’ve seen Linux exceed the limitations of the MS-DOS memory model, let’s give it a more
difficult problem. The next program will ask to allocate somewhat more memory than is physically pre-
sent in the machine, so we might expect malloc to start failing somewhere a little short of the actual
amount of memory present, because the kernel and all the other running processes will be using some
memory.

Try It Out—Asking for All Physical Memory
With memory2.c, we’re going to ask for more than the machine’s memory. You may need to adjust the
define PHY_MEM_MEGS depending on your physical machine:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A_MEGABYTE (1024 * 1024)
#define PHY_MEM_MEGS 256 /* Adjust this number as required */

int main()
{

char *some_memory;
size_t  size_to_allocate = A_MEGABYTE;
int  megs_obtained = 0;

while (megs_obtained < (PHY_MEM_MEGS * 2)) {
some_memory = (char *)malloc(size_to_allocate);
if (some_memory != NULL) {

megs_obtained++;
sprintf(some_memory, “Hello World”);
printf(“%s - now allocated %d Megabytes\n”, some_memory,

megs_obtained);
}
else {

exit(EXIT_FAILURE);
}

}
exit(EXIT_SUCCESS);

}
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The output, somewhat abbreviated, is

$ ./memory2
Hello World - now allocated 1 Megabytes
Hello World - now allocated 2 Megabytes
...
Hello World - now allocated 511 Megabytes
Hello World - now allocated 512 Megabytes

How It Works
The program is very similar to the previous example. It simply loops, asking for more and more memory.
The surprise is that it works at all, because we appear to have created a program that uses every single byte
of physical memory on the author’s machine. Notice that we use the size_t type for our call to malloc.

The other interesting feature is that, at least on this machine, it ran the program in the blink of an eye. So
not only have we apparently used up all the memory, but we’ve done it very quickly indeed.

Let’s investigate further and see just how much memory we can allocate on this machine with memory3.c.
Since it’s now clear that Linux can do some very clever things with requests for memory, we’ll allocate
memory just 1k at a time and write to each block that we obtain.

Try It Out—Available Memory
This is memory3.c. By its very nature, it’s extremely system-unfriendly and could affect a multiuser
machine quite seriously. If you’re at all concerned about the risk, it’s better not to run it at all; it won’t
harm your understanding if you don’t.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define ONE_K (1024)

int main()
{

char *some_memory;
int  size_to_allocate = ONE_K;
int  megs_obtained = 0;
int  ks_obtained = 0;

while (1) {
for (ks_obtained = 0; ks_obtained < 1024; ks_obtained++) {

some_memory = (char *)malloc(size_to_allocate);
if (some_memory == NULL) exit(EXIT_FAILURE);
sprintf(some_memory, “Hello World”);

}
megs_obtained++;
printf(“Now allocated %d Megabytes\n”, megs_obtained);

}
exit(EXIT_SUCCESS);

}
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This time, the output, again abbreviated, is

$ ./memory3
Now allocated 1 Megabytes
...
Now allocated 377 Megabytes
Now allocated 378 Megabytes
Out of Memory: Killed process 2365
Killed

and then the program ends. It also takes quite a few seconds to run, visibly slows down around the same
number as the physical memory in the machine, and exercises the hard disk quite noticeably. However,
the program has allocated more memory than this author physically has in his machine at the time of
writing. Finally the system protects itself from this rather aggressive program and kills it. On some sys-
tems it may simply exit quietly when malloc fails.

How It Works
The application’s allocated memory is managed by the Linux kernel. Each time the program asks for
memory or tries to read or write to memory that it has allocated, the Linux kernel takes charge and
decides how to handle the request.

Initially, the kernel was simply able to use free physical memory to satisfy the application’s request for
memory, but once physical memory was full, it started using what’s called swap space. On Linux, this is a
separate disk area allocated when the system was installed. If you’re familiar with Windows, the Linux
swap space acts a little like the hidden Windows swap file. However, unlike Windows, there are no local
heap, global heap, or discardable memory segments to worry about in code—the Linux kernel does all
the management for you.

The kernel moves data and program code between physical memory and the swap space so that each
time you read or write memory, the data always appears to have been in physical memory, wherever it
was actually located before you attempted to access it.

In more technical terms, Linux implements a demand paged virtual memory system. All memory seen
by user programs is virtual; that is, it doesn’t actually exist at the physical address the program uses.
Linux divides all memory into pages, commonly 4096 bytes per page. When a program tries to access
memory, a virtual to physical translation is made, although how this is implemented and the time it
takes depend on the particular hardware you’re using. When the access is to memory that isn’t physi-
cally resident, there is a page fault and control is passed to the kernel.

The Linux kernel checks the address being accessed and, if it’s a legal address for that program, determines
which page of physical memory to make available. It then either allocates it, if it has never been written
before, or, if it has been stored on the disk in the swap space, reads the memory page containing the data
into physical memory (possibly moving an existing page out to disk). Then, after mapping the virtual
memory address to match the physical address, it allows the user program to continue. Linux applications
don’t need to worry about this activity because the implementation is all hidden in the kernel.

Eventually, when the application exhausts both the physical memory and the swap space, or when the
maximum stack size is exceeded, the kernel finally refuses the request for further memory and may pre-
emptively terminate the program. 
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So what does this mean to the application programmer? Basically, it’s all good news. Linux is very good
at managing memory and will allow applications to use very large amounts of memory and even very
large single blocks of memory. However, you must remember that allocating two blocks of memory
won’t result in a single continuously addressable block of memory. What you get is what you ask for:
two separate blocks of memory.

So does this apparently limitless supply of memory, followed by pre-emptive killing of the process,
mean that there’s no point in checking the return from malloc? Definitely not. One of the most common
problems in C programs using dynamically allocated memory is to write beyond the end of an allocated
block. When this happens, the program may not terminate immediately, but you have probably over-
written some data used internally by the malloc library routines.

Usually, the result is that future calls to malloc may fail, not because there’s no memory to allocate,
but because the memory structures have been corrupted. These problems can be quite difficult to track
down and, in programs, the sooner the error is detected, the better the chances of tracking down the
cause. In Chapter 10, on debugging and optimizing, we’ll discuss some tools that can help you track
down memory problems.

Abusing Memory
Suppose we try to do “bad” things with memory. Let’s allocate some memory and then attempt to write
past the end, in memory4.c.

Try It Out—Abuse Your Memory

#include <stdlib.h>

#define ONE_K (1024)

int main()
{

char *some_memory;
char *scan_ptr;

some_memory = (char *)malloc(ONE_K);
if (some_memory == NULL) exit(EXIT_FAILURE);

scan_ptr = some_memory;
while(1) {

*scan_ptr = ‘\0’;
scan_ptr++;

}
exit(EXIT_SUCCESS);

}

This  “killing the process” behavior is different from early versions of Linux and
many other flavors of UNIX, where malloc simply fails. It’s termed the “out of
memory (OOM) killer,” and although it may seem rather drastic, it is in fact a good
compromise between letting processes allocate memory rapidly and efficiently and
the Linux kernel protect itself from a total lack of resources, which is a serious issue.
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The output is simply

$ /memory4
Segmentation fault (core dumped)

How It Works
The Linux memory management system has protected the rest of the system from this abuse of memory.
To ensure that one badly behaved program (this one) can’t damage any other programs, Linux has ter-
minated it.

Each running program on a Linux system sees its own memory map, which is different from every other
program’s. Only the operating system knows how physical memory is arranged and not only manages it
for user programs, but also protects user programs from each other.

The Null Pointer
Unlike MS-DOS, but more like newer flavors of Windows, modern Linux systems are very protective
about writing or reading from the address referred to by a null pointer, although the actual behavior is
implementation-specific.

Try It Out—Accessing a Null Pointer
Let’s find out what happens when we access a null pointer in memory5a.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{

char *some_memory = (char *)0;

printf(“A read from null %s\n”, some_memory);
sprintf(some_memory, “A write to null\n”); 
exit(EXIT_SUCCESS);

}

The output is

$ ./memory5a
A read from null (null)
Segmentation fault(core dumped)

How It Works
The first printf attempts to print out a string obtained from a null pointer; then the sprintf attempts to
write to a null pointer. In this case, Linux (in the guise of the GNU “C” library) has been forgiving about
the read and has simply given us a  “magic” string containing the characters ( n u l l ) \0. It hasn’t been
so forgiving about the write and has terminated the program. This can sometimes be helpful in tracking
down program bugs.
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If we try this again, but this time don’t use the GNU “C” library, we discover that reading from location
zero is not permitted. Here is memory5b.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{

char z = *(const char *)0;
printf(“I read from location zero\n”);

exit(EXIT_SUCCESS);
}

The output is

$ ./memory5b
Segmentation fault(core dumped)

How It Works
This time we attempt to read directly from location zero. There is no GNU libc library between us and
the kernel this time, and our program is terminated. You should note that some versions of UNIX do
permit reading from location zero, but Linux doesn’t.

Freeing Memory
Up to now, we’ve been simply allocating memory and then hoping that, when the program ends, the
memory we’ve used hasn’t been lost. Fortunately, the Linux memory management system is quite capa-
ble of reliably ensuring that memory is returned to the system when a program ends. However, most
programs don’t simply want to allocate some memory, use it for a short period, and then exit. A much
more common use is dynamically using memory as required. 

Programs that use memory on a dynamic basis should always release unused memory back to the malloc
memory manager using the free call. This allows separate blocks to be remerged and allows the malloc
library to look after memory, rather than having the application manage it. If a running program (process)
uses and then frees memory, that free memory remains allocated to the process. However, if it’s not being
used, the Linux memory manager will be able to page it out from physical memory to swap space, where it
has little impact on the use of resources.

#include <stdlib.h>

void free(void *ptr_to memory);

A call to free should be made only with a pointer to memory allocated by a call to malloc, calloc, or
realloc. We’ll meet calloc and realloc very shortly.
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Try It Out—Freeing Memory
This program’s called memory6.c:

#include <stdlib.h>

#define ONE_K (1024)

int main()
{

char *some_memory;
int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(ONE_K);
if (some_memory != NULL) {

free(some_memory);
exit_code = EXIT_SUCCESS;

}
exit(exit_code);

}

How It Works
This program simply shows how to call free with a pointer to some previously allocated memory.

Other Memory Allocation Functions
Two other memory allocation functions  are not used as often as malloc and free: calloc and realloc.
The prototypes are

#include <stdlib.h>

void *calloc(size_t number_of_elements, size_t element_size); 
void *realloc(void *existing_memory, size_t new_size);

Although calloc allocates memory that can be freed with free, it has somewhat different parameters:
It allocates memory for an array of structures and requires the number of elements and the size of each
element as its parameters. The allocated memory is filled with zeros, and if calloc is successful, a
pointer to the first element is returned. Like malloc, subsequent calls are not guaranteed to return con-
tiguous space, so you can’t enlarge an array created by calloc by simply calling calloc again and
expecting the second call to return memory appended to that returned by the first call.

Remember that once you’ve called free on a block of memory, it no longer belongs
to the process. It’s not being managed by the malloc library. Never try to read or
write memory after calling free on it.
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The realloc function changes the size of a block of memory that has been previously allocated. It’s
passed a pointer to some memory previously allocated by malloc, calloc, or realloc and resizes it
up or down as requested. The realloc function may have to move data around to achieve this, so it’s
important to ensure that once memory has been realloced, you always use the new pointer and never
try to access the memory using pointers set up before realloc was called.

Another problem to watch out for is that realloc returns a null pointer if it has been unable to resize
the memory. This means that, in some applications, you should avoid writing code like this:

my_ptr = malloc(BLOCK_SIZE);
....
my_ptr = realloc(my_ptr, BLOCK_SIZE * 10);

If realloc fails, it will return a null pointer; my_ptr will point to null; and the original memory allocated
with malloc can no longer be accessed via my_ptr. It may, therefore, be to your advantage to request the
new memory first with malloc and then copy data from the old block to the new block using memcpy
before freeing the old block. On error, this would allow the application to retain access to the data stored
in the original block of memory, perhaps while arranging a clean termination of the program.

File Locking
File locking is a very important part of multiuser, multitasking operating systems. Programs frequently
need to share data, usually through files, and it’s very important that those programs have some way of
establishing control of a file. The file can then be updated in a safe fashion, or a second program can stop
itself from trying to read a file that is in a transient state while another program is writing to it.

Linux has several features that you can use for file locking. The simplest method is a technique to create
lock files in an atomic way, so that nothing else can happen while the lock is being created. This gives a
program a method of creating files that are guaranteed to be unique and could not have been simultane-
ously created by a different program.

The second method is more advanced; it allows programs to lock parts of a file for exclusive access.
There are two different ways of achieving this second form of locking. We’ll look at only one in detail,
since the second is very similar—it just has a slightly different programming interface.

Creating Lock Files
Many applications just need to be able to create a lock file for a resource. Other programs can then check
the file to see whether they are permitted to access the resource.

Usually, these lock files are in a special place with a name that relates to the resource being controlled.
For example, when a modem is in use, Linux creates a lock file, often using a directory in the
/usr/spool or /var/spool directory. 

Remember that lock files act only as indicators; programs need to cooperate to use them. They are
termed advisory locks as opposed to mandatory locks, where the system will enforce the lock behavior.
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To create a file to use as a lock indicator, we use the open system call defined in fcntl.h (which we met
in an earlier chapter) with the O_CREAT and O_EXCL flags set. This allows us to check that the file doesn’t
already exist and then create it in a single, atomic operation.

Try It Out—Creating a Lock File
Let’s see this in action with lock1.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

int main()
{

int file_desc;
int save_errno;

file_desc = open(“/tmp/LCK.test”, O_RDWR | O_CREAT | O_EXCL, 0444);
if (file_desc == -1) {

save_errno = errno;
printf(“Open failed with error %d\n”, save_errno);

}
else {

printf(“Open succeeded\n”);
}
exit(EXIT_SUCCESS);

}

The first time we run the program, the output is

$ lock1
Open succeeded

but the next time we try, we get

$ lock1
Open failed with error 17

How It Works
The program calls open to create a file called /tmp/LCK.test, using the O_CREAT and O_EXCL flags. The
first time we run the program, the file doesn’t exist, so the open call is successful. Subsequent invocations
of the program fail because the file already exists. To get the program to succeed again, we’ll have to
remove the lock file.

On Linux systems at least, error 17 refers to EEXIST, an error that is used to indicate that a file already
exists. Error numbers are defined in the header file errno.h or more commonly by files included by it.
In this case, the definition, actually in /usr/include/asm/errno.h, reads

#define EEXIST          17      /* File exists */
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This is an appropriate error for an open(O_CREAT | O_EXCL) failure.

If a program simply needs a resource exclusively for a short period of its execution, often termed a criti-
cal section, it should create the lock file before entering the critical section and use unlink to delete it
afterward, when it exits the critical section.

We can demonstrate how programs can cooperate with this locking mechanism by writing a sample pro-
gram and running two copies of it at the same time. We’re going to use the getpid call, which we saw in
Chapter 4; it returns the process identifier, a unique number for each currently executing program.

Try It Out—Cooperative Lock Files
1. Here’s the source of our test program: lock2.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

const char *lock_file = “/tmp/LCK.test2”;

int main()
{

int file_desc;
int tries = 10;

while (tries—) {
file_desc = open(lock_file, O_RDWR | O_CREAT | O_EXCL, 0444);
if (file_desc == -1) {

printf(“%d - Lock already present\n”, getpid());
sleep(3);

}
else {

2. The critical section starts here:

printf(“%d - I have exclusive access\n”, getpid());
sleep(1);
(void)close(file_desc);
(void)unlink(lock_file);

3. And it ends here:

sleep(2);
}

}
exit(EXIT_SUCCESS);

}

To run the program, we should first use this command to ensure that the lock file doesn’t exist:

$ rm -f /tmp/LCK.test2
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Then we run two copies of the program by using this command:

$ ./lock2 & ./lock2

This starts a copy of lock2 in the background and a second copy running in the foreground. This is the
output that we get:

1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present

The preceding example shows how the two invocations of the same program are cooperating. If you try
this, you’ll almost certainly see different process identifiers in the output, but the program behavior will
be the same.

How It Works
For the purposes of demonstration, we make the program loop 10 times using the while loop. The pro-
gram then tries to access the critical resource by creating a unique lock file, /tmp/LCK.test2. If this fails
because the file already exists, the program waits for a short time and tries again. If it succeeds, it can
then have access to the resource and, in the part marked “critical section,” can carry out whatever pro-
cessing is required with exclusive access.

Since this is just a demonstration, we wait for only a short period. When the program has finished with the
resource, it releases the lock by deleting the lock file. It can then carry out some other processing (just the
sleep function in this case) before trying to reacquire the lock. The lock file acts as a binary semaphore,
giving each program a yes or no answer to the question, “Can I use the resource?” You will learn more
about semaphores in Chapter 14.

It’s important to realize that this is a cooperative arrangement and that we must
write the programs correctly for it to work. A program failing to create the lock file
can’t simply delete the file and try again. It might then be able to create the lock file,
but the other program that created the lock file has no way of knowing that it no
longer has exclusive access to the resource. 
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Locking Regions
Creating lock files is fine for controlling exclusive access to resources such as serial ports, but it isn’t so
good for access to large shared files. Suppose you have a large file that is written by one program, but
updated by many different programs simultaneously. This might occur if a program is logging some
data that is obtained continuously over a long period and is being processed by several other programs.
The processing programs can’t wait for the logging program to finish—it runs continuously—so they
need some way of cooperating to provide simultaneous access to the same file.

We can accommodate this situation by locking regions of the file so that a particular section of the file is
locked, but other programs may access other parts of the file. This is called file-segment, or file-region, lock-
ing. Linux has (at least) two ways to do this: using the fcntl system call and using the lockf call. We’ll
look primarily at the fcntl interface because that is the most commonly used interface. lockf is reason-
ably similar, and, on Linux, is normally just an alternative interface to fcntl. However, the fcntl and
lockf locking mechanisms do not work together: They use different underlying implementations, so
you should never mix the two types of call; stick to one or the other.

We met the fcntl call in Chapter 3. Its definition is

#include <fcntl.h>

int fcntl(int fildes, int command, ...);

fcntl operates on open file descriptors and, depending on the command parameter, can perform differ-
ent tasks. The three that we’re interested in for file locking are

❑ F_GETLK

❑ F_SETLK

❑ F_SETLKW

When we use these, the third argument must be a pointer to a struct flock, so the prototype is effec-
tively this:

int fcntl(int fildes, int command, struct flock *flock_structure);

The flock (file lock) structure is implementation-dependent, but it will contain at least the following
members:

❑ short l_type;

❑ short l_whence;

❑ off_t l_start;

❑ off_t l_len;

❑ pid_t l_pid;

The l_type member takes one of several values, also defined in fcntl.h. These are in the following
table:
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Value Description

F_RDLCK A shared (or “read”) lock. Many different processes can have a shared lock on
the same (or overlapping) regions of the file. If any process has a shared lock
then, no process will be able to get an exclusive lock on that region. In order to
obtain a shared lock, the file must have been opened with read or read/write
access.

F_UNLCK Unlock; used for clearing locks.

F_WRLCK An exclusive (or “write”) lock. Only a single process may have an exclusive
lock on any particular region of a file. Once a process has such a lock, no other
process will be able to get any sort of lock on the region. To obtain an exclu-
sive lock, the file must have been opened with write or read/write access.

The l_whence members define a region—a contiguous set of bytes—in a file. The l_whence must be
one of SEEK_SET, SEEK_CUR, SEEK_END (from unistd.h). These correspond to the start, current posi-
tion, and end of a file, respectively. l_whence defines the offset to which l_start, the first byte in the
region, is relative. Normally, this would be SEEK_SET, so l_start is counted from the beginning of the
file. The l_len parameter defines the number of bytes in the region.

The l_pid parameter is used for reporting the process holding a lock; see the F_GETLK description that
follows.

Each byte in a file can have only a single type of lock on it at any one time and may be locked for shared
access, locked for exclusive access, or unlocked.

There are quite a few combinations of commands and options to the fcntl call, so let’s look at each of
them in turn.

The F_GETLK Command
The first command is F_GETLK. It gets locking information about the file that fildes (the first parame-
ter) has open. It doesn’t attempt to lock the file. The calling process passes information about the type of
lock it might wish to create, and fcntl used with the F_GETLK command returns any information that
would prevent the lock from occurring.

The values used in the flock structure are in the following table:

Value Description

l_type Either F_RDLCK for a shared (read-only) lock or F_WRLCK for an exclusive
(write) lock

l_whence One of SEEK_SET, SEEK_CUR, SEEK_END LCK

l_start The start byte of the file region of interest

l_len The number of bytes in the file region of interest

l_pid The identifier of the process with the lock
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A process may use the F_GETLK call to determine the current state of locks on a region of a file. It should
set up the flock structure to indicate the type of lock it may require and define the region it’s interested
in. The fcntl call returns a value other than -1 if it’s successful. If the file already has locks that would
prevent a lock request from succeeding, it overwrites the flock structure with the relevant information.
If the lock will succeed, the flock structure is unchanged. If the F_GETLK call is unable to obtain the
information, it returns -1 to indicate failure.

If the F_GETLK call is successful (i.e., it returns a value other than -1), the calling application must check
the contents of the flock structure to determine whether it was modified. Since the l_pid value is set to
the locking process (if one was found), this is a convenient field to check to determine if the flock struc-
ture has been changed.

The F_SETLK Command
This command attempts to lock or unlock part of the file referenced by fildes. The values used in the
flock structure (and different from those used by F_GETLK) are as follows:

Value Description

l_type Either F_RDLCK for a read-only or shared lock or F_WRLCK for an l_type.
Either F_RDLCK for a read-only, or shared, lock; F_WRLCK for an exclusive, a
write,exclusive or a write lock; and F_UNLCK to unlock a region.

l_pid Unused.

If the lock is successful, fcntl returns a value other than -1; on failure, -1 is returned. The function will
always return immediately.

The F_SETLKW Command
The F_SETLKW command is the same as the F_SETLK command above, except that if it can’t obtain the
lock, the call will wait until it can. Once this call has started waiting, it will return only when the lock
can be obtained or a signal occurs. We’ll discuss signals in Chapter 11.

All locks held by a program on a file are automatically cleared when the relevant file descriptor is closed.
This will also happen automatically when the program finishes.

Use of read and write with Locking
When you’re using locking on regions of a file, it’s very important to use the lower-level read and
write calls to access the data in the file, rather than the higher-level fread and fwrite. This is neces-
sary because fread and fwrite perform buffering of data read or written inside the library, so execut-
ing an fread call to read the first 100 bytes of a file may (in fact, almost certainly will) read more than
100 bytes and buffer the additional data inside the library. If the program then uses fread to read the
next 100 bytes, it will actually read data already buffered inside the library and not allow a low-level
read to pull more data from the file.

To see why this is a problem, consider two programs that wish to update the same file. Suppose the file
consists of 200 bytes of data, all zeros. The first program starts first and obtains a write lock on the first
100 bytes of the file. It then uses fread to read in those 100 bytes. However, as we saw in an earlier
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chapter, fread will read ahead by up to BUFSIZ bytes at a time, so it actually reads the entire file into
memory, but only passes the first 100 bytes back to the program.

The second program then starts. It obtains a write lock on the second 100 bytes of the program. This is
successful because the first program locked only the first 100 bytes. The second program writes twos to
bytes 100 to 199, closes the file, unlocks it, and exits. The first program then locks the second 100 bytes of
the file and calls fread to read them in. Because that data was buffered, what the program actually sees
is 100 bytes of zeros, not the 100 twos that actually exist in the file. This problem doesn’t occur when
we’re using read and write.

That description of file locking may seem a complex, but it’s actually more difficult to describe than it is
to use. 

Try It Out—Locking a File with fcntl
Let’s look at an example of how file locking works: lock3.c. To try out locking, we need two programs:
one to do the locking and one to test. The first program does the locking.

1. Start with the includes and variable declarations:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = “/tmp/test_lock”;

int main()
{

int file_desc;
int byte_count;
char *byte_to_write = “A”;
struct flock region_1;
struct flock region_2;
int res;

2. Open a file descriptor:

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
if (!file_desc) {

fprintf(stderr, “Unable to open %s for read/write\n”, test_file);
exit(EXIT_FAILURE);

}

3. Put some data in the file:

for(byte_count = 0; byte_count < 100; byte_count++) {
(void)write(file_desc, byte_to_write, 1);

}

4. Set up region 1 with a shared lock, from bytes 10 to 30:

region_1.l_type = F_RDLCK;
region_1.l_whence = SEEK_SET;
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region_1.l_start = 10;
region_1.l_len = 20; 

5. Set up region 2 with an exclusive lock, from bytes 40 to 50:

region_2.l_type = F_WRLCK;
region_2.l_whence = SEEK_SET;
region_2.l_start = 40;
region_2.l_len = 10;

6. Now lock the file:

printf(“Process %d locking file\n”, getpid());
res = fcntl(file_desc, F_SETLK, &region_1);
if (res == -1) fprintf(stderr, “Failed to lock region 1\n”);
res = fcntl(file_desc, F_SETLK, &region_2);
if (res == -1) fprintf(stderr, “Failed to lock region 2\n”);    

7. Then wait for a while:

sleep(60);

printf(“Process %d closing file\n”, getpid());
close(file_desc);
exit(EXIT_SUCCESS);

}

How It Works
The program first creates a file, opens it for both reading and writing, and then fills the file with data.
It then sets up two regions: the first from bytes 10 to 30, for a shared (read) lock, and the second from
bytes 40 to 50 for an exclusive (write) lock. It then calls fcntl to lock the two regions and waits for a
minute before closing the file and exiting.

Figure 7-1 shows the situation with locks when the program starts to wait.

Figure 7-1

F_RDLCK

F_WRLCK

shared lock

exclusive lock

100

50

40

30

10

0

266

Chapter 7

b544977 Ch07.qxd  12/1/03  8:56 AM  Page 266



On its own, this program isn’t very useful. We need a second program to test the locks, lock4.c.

Try It Out—Testing Locks on a File
Let’s write a program that tests the different sorts of locks that we might need on different regions of a file.

1. As usual, begin with the includes and declarations:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = “/tmp/test_lock”;
#define SIZE_TO_TRY 5

void show_lock_info(struct flock *to_show);

int main()
{

int file_desc;
int res;
struct flock region_to_test;
int start_byte;

2. Open a file descriptor:

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
if (!file_desc) {

fprintf(stderr, “Unable to open %s for read/write”, test_file);
exit(EXIT_FAILURE);

}

for (start_byte = 0; start_byte < 99; start_byte += SIZE_TO_TRY) {

3. Set up the region we wish to test:

region_to_test.l_type = F_WRLCK;
region_to_test.l_whence = SEEK_SET;
region_to_test.l_start = start_byte;
region_to_test.l_len = SIZE_TO_TRY;
region_to_test.l_pid = -1;

printf(“Testing F_WRLCK on region from %d to %d\n”, 
start_byte, start_byte + SIZE_TO_TRY);

4. Now test the lock on the file:

res = fcntl(file_desc, F_GETLK, &region_to_test);
if (res == -1) {

fprintf(stderr, “F_GETLK failed\n”);
exit(EXIT_FAILURE);

}
if (region_to_test.l_pid != -1) {

printf(“Lock would fail. F_GETLK returned:\n”);
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show_lock_info(&region_to_test);
}
else {

printf(“F_WRLCK - Lock would succeed\n”);
}

5. Now repeat the test with a shared (read) lock. Set up the region you wish to test again:

region_to_test.l_type = F_RDLCK;
region_to_test.l_whence = SEEK_SET;
region_to_test.l_start = start_byte;
region_to_test.l_len = SIZE_TO_TRY;
region_to_test.l_pid = -1;
printf(“Testing F_RDLCK on region from %d to %d\n”, 

start_byte, start_byte + SIZE_TO_TRY);

6. Test the lock on the file again:

res = fcntl(file_desc, F_GETLK, &region_to_test);
if (res == -1) {

fprintf(stderr, “F_GETLK failed\n”);
exit(EXIT_FAILURE);

}
if (region_to_test.l_pid != -1) {

printf(“Lock would fail. F_GETLK returned:\n”);
show_lock_info(&region_to_test);

}
else {

printf(“F_RDLCK - Lock would succeed\n”);
}

}
close(file_desc);
exit(EXIT_SUCCESS);

}

void show_lock_info(struct flock *to_show) {
printf(“\tl_type %d, “, to_show->l_type);
printf(“l_whence %d, “, to_show->l_whence);
printf(“l_start %d, “, (int)to_show->l_start);
printf(“l_len %d, “, (int)to_show->l_len);
printf(“l_pid %d\n”, to_show->l_pid);

}

To test locking, we first need to run the lock3 program; then we run the lock4 program to test the locked
file. We do this by executing the lock3 program in the background, with the following command:

$ ./lock3 &
$ process 1534 locking file

The command prompt returns because lock3 is running in the background, and we then immediately
run the lock4 program with the following command:

$ ./lock4
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The output we get, with some omissions for brevity, is

Testing F_WRLOCK on region from 0 to 5
F_WRLCK - Lock would succeed
Testing F_RDLOCK on region from 0 to 5
F_RDLCK - Lock would succeed
...
Testing F_WRLOCK on region from 10 to 15
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 10 to 15
F_RDLCK - Lock would succeed
Testing F_WRLOCK on region from 15 to 20
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 15 to 20
F_RDLCK - Lock would succeed
...
Testing F_WRLOCK on region from 25 to 30
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 25 to 30
F_RDLCK - Lock would succeed
...
Testing F_WRLOCK on region from 40 to 45
Lock would fail. F_GETLK returned:
l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534 
Testing F_RDLOCK on region from 40 to 45 
Lock would fail. F_GETLK returned:
l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534
...
Testing F_RDLOCK on region from 95 to 100
F_RDLCK - Lock would succeed

How It Works
For each group of five bytes in the file, lock4 sets up a region structure to test for locks on the file,
which it then uses to see if the region can be either write or read locked. The returned information
shows the region bytes, offset from byte zero, that would cause the lock request to fail. Since the l_pid
part of the returned structure contains the process identifier of the program that currently has the file
locked, the program sets it to -1 (an invalid value) then checks whether it has been changed when the
fcntl call returns. If the region isn’t currently locked, l_pid will be unchanged.

To understand the output, we need to look in the include file fcntl.h (normally /usr/include/
fcntl.h) to find that an l_type of 1 is from the definition of F_WRLCK as 1, and an l_type of 0 is from
the definition of F_RDLCK as 0. Thus, an l_type of 1 tells us that the lock would fail because of an exist-
ing write lock and an l_type of 0 is caused by an existing read lock. On the regions of the file that
lock3 has not locked, both shared and exclusive locks will succeed.

From bytes 10 to 30, we can see that it would be possible to have a shared lock, because the existing lock
from the lock3 program is a shared, not an exclusive, lock. On the region from bytes 40 to 50, both types
of lock will fail because lock3 has an exclusive (F_WRLCK) lock on this region.
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Competing Locks
Now that we’ve seen how to test for existing locks on a file, let’s see what happens when two programs
compete for locks on the same section of the file. We’ll use our lock3 program for locking the file in the
first place and a new program to try to lock it again. To complete the example, we’ll also add some calls
for unlocking.

Try It Out—Competing Locks
Here’s a program, lock5.c, that tries to lock regions of a file that are already locked, rather than testing
the lock status of different parts of the file.

1. After the #includes and declarations, open a file descriptor:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = “/tmp/test_lock”;

int main()
{

int file_desc;
struct flock region_to_lock;
int res;

file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
if (!file_desc) {

fprintf(stderr, “Unable to open %s for read/write\n”, test_file);
exit(EXIT_FAILURE);

}

2. The remainder of the program specifies different regions of the file and tries different locking
operations on them:

region_to_lock.l_type = F_RDLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 10;
region_to_lock.l_len = 5;
printf(“Process %d, trying F_RDLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start, (int)(region_to_lock.l_start +
region_to_lock.l_len));

res = fcntl(file_desc, F_SETLK, &region_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock region\n”, getpid());
}

region_to_lock.l_type = F_UNLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 10;
region_to_lock.l_len = 5;
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printf(“Process %d, trying F_UNLCK, region %d to %d\n”, getpid(),
(int)region_to_lock.l_start,

(int)(region_to_lock.l_start +
region_to_lock.l_len));

res = fcntl(file_desc, F_SETLK, &region_to_lock);
if (res == -1) {

printf(“Process %d - failed to unlock region\n”, getpid());
} else {

printf(“Process %d - unlocked region\n”, getpid());
}

region_to_lock.l_type = F_UNLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 0;
region_to_lock.l_len = 50;
printf(“Process %d, trying F_UNLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start + 

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLK, &region_to_lock);
if (res == -1) {

printf(“Process %d - failed to unlock region\n”, getpid());
} else {

printf(“Process %d - unlocked region\n”, getpid());
}

region_to_lock.l_type = F_WRLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 16;
region_to_lock.l_len = 5;
printf(“Process %d, trying F_WRLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start +

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLK, &region_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock on region\n”, getpid());
}

region_to_lock.l_type = F_RDLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 40;
region_to_lock.l_len = 10;
printf(“Process %d, trying F_RDLCK, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start + 

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLK, &region_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock on region\n”, getpid());
}
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region_to_lock.l_type = F_WRLCK;
region_to_lock.l_whence = SEEK_SET;
region_to_lock.l_start = 16;
region_to_lock.l_len = 5;
printf(“Process %d, trying F_WRLCK with wait, region %d to %d\n”, getpid(),

(int)region_to_lock.l_start,
(int)(region_to_lock.l_start +

region_to_lock.l_len));
res = fcntl(file_desc, F_SETLKW, &region_to_lock);
if (res == -1) {

printf(“Process %d - failed to lock region\n”, getpid());
} else {

printf(“Process %d - obtained lock on region\n”, getpid());
}

printf(“Process %d ending\n”, getpid());
close(file_desc);
exit(EXIT_SUCCESS);

}

If we first run our lock3 program in the background, then immediately run this new program,

$ ./lock3 &
$ process 1845 locking file
$ ./lock5

the output we get is

Process 227 locking file
Process 228, trying F_RDLCK, region 10 to 15
Process 228 - obtained lock on region
Process 228, trying F_UNLCK, region 10 to 15
Process 228 - unlocked region
Process 228, trying F_UNLCK, region 0 to 50
Process 228 - unlocked region
Process 228, trying F_WRLCK, region 16 to 21
Process 228 - failed to lock on region
Process 228, trying F_RDLCK, region 40 to 50
Process 228 - failed to lock on region
Process 228, trying F_WRLCK with wait, region 16 to 21
Process 227 closing file
Process 228 - obtained lock on region
Process 228 ending

How It Works
First, the program attempts to lock a region from bytes 10 to 15 with a shared lock. This region is already
locked with a shared lock, but simultaneous shared locks are allowed and the lock is successful.

It then unlocks (its own) shared lock on the region, which is also successful. The program then attempts
to unlock the first 50 bytes of the file, even though it doesn’t have any locks set. This is also successful
because, even though this program had no locks in the first place, the final result of the unlock request is
that there are no locks held by this program in the first 50 bytes.
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Next, the program attempts to lock the region from bytes 16 to 21 with an exclusive lock. This region is
also already locked with a shared lock, so this time the new lock fails, because an exclusive lock could
not be created.

After that, the program attempts a shared lock on the region from bytes 40 to 50. This region is already
locked with an exclusive lock, so again the lock fails.

Finally, the program again attempts to obtain an exclusive lock on the region from bytes 16 to 21, but this
time it uses the F_SETLCKW command to wait until it can obtain a lock. There is then a long pause in the
output until the lock3 program, which has already locked the region, closes the file, thus releasing all
the locks it had acquired. The lock5 program resumes execution, successfully locking the region, before
it also exits.

Other Lock Commands
There is a second method of locking files: the lockf function. This also operates using file descriptors. 
It has the prototype

#include <unistd.h>

int lockf(int fildes, int function, off_t size_to_lock);

It can take the following function values:

❑ F_ULOCK: Unlock

❑ F_LOCK: Lock exclusively

❑ F_TLOCK: Test and lock exclusively

❑ F_TEST: Test for locks by other processes

The size_to_lock parameter is the number of bytes to operate on, from the current offset in the file.

lockf has a simpler interface than the fcntl interface, principally because it has rather less functional-
ity and flexibility. To use the function, you must seek the start of the region you wish to lock and then
call it with the number of bytes to lock.

Like the fcntl method of file locking, all locks are only advisory; they won’t actually prevent reading
from or writing to the file. It’s the responsibility of programs to check for locks. The effect of mixing
fcntl locks and lockf locks is undefined, so you must decide which type of locking you wish to use
and stick to it.

Deadlocks
No discussion of locking would be complete without a mention of the dangers of deadlocks. Suppose
two programs wish to update the same file. They both need to update byte 1 and byte 2 at the same time.
Program A chooses to update byte 2, then byte 1. Program B tries to update byte 1 first, then byte 2.
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Both programs start at the same time. Program A locks byte 2 and program B locks byte 1. Program A
tries for a lock on byte 1. Since this is already locked by program B, program A waits. Program B tries for
a lock on byte 2. Since this is locked by program A, Program B too waits.

This situation, when neither program is able to proceed, is called a deadlock, or deadly embrace. It is a com-
mon problem with database applications in which many users are frequently trying to access the same
data. Most commercial relational databases detect deadlocks and break them automatically; the Linux
kernel doesn’t. Some external intervention, perhaps forcibly terminating one of the programs, is required
to sort out the resulting mess.

Programmers must be wary of this situation. When you have multiple programs waiting for locks, you
need to be very careful to consider if a deadlock could occur. In this example it’s quite easy to avoid: Both
programs should simply lock the bytes they require in the same order, or use a larger region to lock.

We don’t have the space to consider the difficulties of concurrent programs here. If you’re interested in
reading further, you might like to consider obtaining a copy of Principles of Concurrent and Distrib-
uted Programming by M. Ben-Ari (Prentice Hall, ISBN 013711821X).

Databases
We’ve seen how to use files for storing data, so why should we want to use a database? Quite simply,
there are some circumstances where the features of a database provide a better way to solve the problem.
Using a database is better than storing files for two reasons:

❑ You can store data records that vary in size, which can be a little difficult to implement using
flat, unstructured files. 

❑ Databases store and retrieve data using an index. The big advantage is that this index need not
be a simple record number, which would be quite easy to implement in a flat file, but an arbi-
trary string.

The dbm Database
All versions of Linux, and most flavors of UNIX, come with a basic, but very efficient, data storage set of
routines called the dbm database. The dbm database is excellent for storing indexed data that is relatively
static. Some database purists would probably argue that dbm isn’t a database at all, simply an indexed
file storage system. The X/Open specification, however, refers to dbm as a database, so we’ll continue to
refer to it as such in this book.

Introduction to dbm
In spite of the rise of free relational databases, such as MySQL and PostgreSQL, the dbm database con-
tinues to play an important role in Linux. Distributions that use RPM, such as RedHat and SuSE, use
dbm as the underlying storage for installed package information. The Open Source implementation of
LDAP, Open LDAP, can also use dbm as a storage mechanism. The advantage of dbm is that it is easier
to build into a distributed binary because no separate server is installed, and there is little danger of the
underlying libraries not being installed.
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The dbm database lets you store data structures of variable size, using an index, and then retrieve the
structure either using the index or simply sequentially scanning the database. The dbm database is best
used for data that is accessed frequently, but updated rarely, because it tends to be rather slow to create
entries but quick to retrieve them.

At this point, we come to a minor problem: Over the years, there have been several variations of the dbm
database with slightly different APIs and features. There is the original dbm set, the “new” dbm set, called
ndbm, and the GNU implementation, gdbm. The GNU implementation can also emulate the older dbm and
ndbm interfaces, but natively has a significantly different interface than the other implementations.
Different Linux distributions ship with different versions of the dbm libraries, although the most common
choice is to ship with the gdbm library, but installed such that it can emulate the other two interface types.

Here we are going to concentrate on the ndbm interface because that is the one standardized by X/OPEN
and because it is somewhat simpler to use than the raw gdbm implementation.

Getting dbm
If you are interested in other implementations of dbm, there is a BSD-licensed version that can be found
either at ftp://ftp.cs.berkeley.edu/ucb/4bsd/ or from http://www.openbsd.org. Sleepycat
Software (http://www.sleepycat.com) has an Open Source product, The Berkeley Database, which
also supports the dbm/ndbm historic interfaces. The GNU version can be found on http://www.gnu.org.

Troubleshooting and Reinstalling dbm
This chapter has been written assuming you have an X/OPEN compatible version of dbm installed. If

you have trouble compiling these examples—either because the ndbm.h header file is not present,
because the compiler complains that dbm is undefined, or the link stage of compiling the program fails—
try installing an updated version of the GNU version of the dbm libraries.

The easiest way to check what version you have is to look for the include files gdbm.h, ndbm.h, and
dbm.h. You may find that the latter two are in a subdirectory such as /usr/include/gdbm, which is a
clue that the underlying implementation is gdbm, but the compatible libraries have been already
installed for you. If you can’t find an ndbm.h file anywhere on your system, you can always install the
GNU gdbm interface yourself. First, make yourself a temporary directory. Then go to the http://
www.gnu.org site and search for the latest version of the gdbm library. It will probably be in a file called
something like gdbm_?_?_tar.gz. Download the file to your temporary directory and extract the files
using ‘tar zxvf <filename>’. Then read the README file, which will tell you how to compile and
install the library. Generally you first run a ./configure command that checks how your system is con-
figured, and then you run make to compile the programs. Finally, you run make install and make
install-compat to install both the basic files and the additional compatibility files. You may need root
permissions to run the install step, and it’s often a good idea to use the -n option to make first (e.g., make
–n install), to check what it’s going to do.

You should now have an X/OPEN compatible version of ndbm, normally in the /usr/local part of
your system. Your compiler setup may not search these locations by default, in which case you need
to add to the gcc command the -I/usr/local/include option to search for headers and the
-L/usr/local/lib option to search for libraries:

$ gcc -I/usr/local/include program.c -L/usr/local/lib -o program -lgdbm
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If your system came with the ndbm.h file already, but in a subdirectory of /usr/include, such as
/usr/include/gdbm, you may need to add -I/usr/include/gdbm to the compile line:

$ gcc -I/usr/include/gdbm program.c -o program -lgdbm

The dbm Routines
Like curses, which we discussed in the Chapter 6, the dbm facility consists of a header file and a library
that must be linked when the program is compiled. The library is called simply dbm, so we link it by
adding the option -ldbm (or occasionally -lgdbm) to the compilation line. The header file is ndbm.h. 

The reason for the n prefix is that there have been several predecessors to the dbm library, so the n simply
separates this new dbm include file from any older versions that may survive.

Before we can attempt to explain each of these functions, it’s important to understand what the dbm
database is trying to achieve. Once we understand this, we’ll be in a much better position to understand
how to use the dbm functions.

The dbm database’s basic element is a block of data to store, coupled with a companion block of data that
acts as a key for retrieving that data. Each dbm database must have a unique key for each block of data to
be stored. There’s no restriction on either the keys or the data, nor are any errors defined for using data
or keys that are too large. The specification allows an implementation to limit the size of the key/data
pair to be 1023 bytes, but generally there is no limit, because implementations have been more flexible
than they were required to be. The key value acts as an index into the data stored.

To manipulate these blocks as data, the ndbm.h include file defines a new type called datum. The exact
content of this type is implementation-dependent, but it must have at least the following members:

void *dptr;
size_t dsize

datum will be a type defined by typedef. Also declared in the ndbm.h file is a type definition for dbm,
which is a structure used for accessing the database, much like a FILE is used for accessing files. The
internals of the dbm type are implementation-dependent and should never be used.

To reference a block of data when we’re using the dbm library, we must declare a datum, set dptr to
point to the start of the data, and set dsize to contain its size. Both the data to store and the index used
to access it are always referenced by a datum type.

The dbm type is best thought of as analogous to a FILE type. When we open a dbm database, two physi-
cal files are created, one with a .pag extension and one with a .dir extension. A single dbm pointer is
returned, which is used to access these two files as a pair. The files should never be read or written to
directly, as they are intended to be accessed only via the dbm routines.

If you are using the gdbm library natively, the two files have been merged and only a
single new file gets created.
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If you’re familiar with SQL databases, you’ll notice that there are no table or column structures associ-
ated with a dbm database. These structures are unnecessary because dbm neither imposes a fixed size on
each item of data to be stored nor requires internal structure to the data. The dbm library works on blocks
of unstructured binary data.

dbm Access Functions
Now that we’ve introduced the basis on which the dbm library works, we can take a look at the functions
in detail. The prototypes for the main dbm functions are

#include <ndbm.h>

DBM *dbm_open(const char *filename, int file_open_flags, mode_t file_mode);
int dbm_store(DBM *database_descriptor, datum key, datum content, int store_mode);
datum dbm_fetch(DBM *database_descriptor, datum key);
void dbm_close(DBM *database_descriptor);

dbm_open
This function is used to open existing databases and can be used to create new databases. The filename
argument is a base filename, without a .dir or .pag extension.

The remaining parameters are the same as the second and third parameters to the open function, which
you met in Chapter 3. We can use the same #defines. The second argument controls whether the
database can be read from, written to, or both. If you are creating a new database, the flags must be
binary ORed with O_CREAT to allow the files to be created. The third argument specifies the initial per-
missions of the files that will be created.

dbm_open returns a pointer to a DBM type. This is used in all subsequent accesses of the database.
On failure, a (DBM *)0 is returned.

dbm_store
We use this function for entering data into the database. As we mentioned earlier, all data must be stored
with a unique index. To define the data we wish to store and the index used to refer to it, we must set up
two datum types: one to refer to the index and one for the actual data. The final parameter, store_mode,
controls what happens if an attempt is made to store some data using a key that already exists. If it’s set
to dbm_insert, the store fails and dbm_store returns 1. If it’s set to dbm_replace, the new data over-
writes the existing data and dbm_store returns 0. dbm_store will return negative numbers on other
errors.

dbm_fetch
The dbm_fetch routine is used for retrieving data from the database. It takes a dbm pointer, as returned
from a previous call to dbm_open, and a datum type, which must be set up to point to a key. A datum
type is returned. If the data relating to the key used was found in the database, the returned datum
structure will have dptr and dsize values set up to refer to the returned data. If the key was not found,
the dptr will be set to null.
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dbm_close
This routine closes a database opened with dbm_open and must be passed a dbm pointer returned from a
previous call to dbm_open.

Try It Out—A Simple dbm Database
Now that we’ve learned the basic functions of the dbm database, we know enough to write our first dbm
program: dbm1.c. In this program, we’ll use a structure called test_data.

1. First of all, here are its #include files, #defines, the main function, and the declaration of
the test_data structure:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <ndbm.h>
#include <string.h>

#define TEST_DB_FILE “/tmp/dbm1_test”
#define ITEMS_USED 3

struct test_data {
char misc_chars[15];
int  any_integer;
char more_chars[21];

};

int main()
{

2. Within main, we set up the items_to_store and items_received structures, the key
string, and datum types:

struct test_data items_to_store[ITEMS_USED];
struct test_data item_retrieved;

char key_to_use[20];
int i, result;

datum key_datum;
datum data_datum;

DBM *dbm_ptr;

It’s important to remember that dbm_fetch is returning only a datum containing a
pointer to the data. The actual data may still be held in local storage space inside the
dbm library and should be copied into program variables before any further dbm
functions are called.
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3. Having declared a pointer to a dbm type structure, we now open our test database for reading
and writing, creating it if necessary:

dbm_ptr = dbm_open(TEST_DB_FILE, O_RDWR | O_CREAT, 0666);
if (!dbm_ptr) {

fprintf(stderr, “Failed to open database\n”);
exit(EXIT_FAILURE);

}

4. Now we add some data to the items_to_store structure:

memset(items_to_store, ‘\0’, sizeof(items_to_store));
strcpy(items_to_store[0].misc_chars, “First!”);
items_to_store[0].any_integer = 47;
strcpy(items_to_store[0].more_chars, “foo”);

strcpy(items_to_store[1].misc_chars, “bar”);
items_to_store[1].any_integer = 13;
strcpy(items_to_store[1].more_chars, “unlucky?”);

strcpy(items_to_store[2].misc_chars, “Third”);
items_to_store[2].any_integer = 3;
strcpy(items_to_store[2].more_chars, “baz”);

5. For each entry, we need to build a key for future referencing. This is the first letter of each string
and the integer. This key is then identified with the key_datum, while the data_datum refers
to the items_to_store entry. Then we store the data in the database.

for (i = 0; i < ITEMS_USED; i++) {
sprintf(key_to_use, “%c%c%d”,

items_to_store[i].misc_chars[0],
items_to_store[i].more_chars[0],
items_to_store[i].any_integer);

key_datum.dptr = (void *)key_to_use;
key_datum.dsize = strlen(key_to_use);
data_datum.dptr = (void *)&items_to_store[i];
data_datum.dsize = sizeof(struct test_data);

result = dbm_store(dbm_ptr, key_datum, data_datum, DBM_REPLACE);
if (result != 0) {

fprintf(stderr, “dbm_store failed on key %s\n”, key_to_use);
exit(2);

}
}

6. Next we see if we can retrieve this new data and, finally, we must close the database:

sprintf(key_to_use, “bu%d”, 13);
key_datum.dptr = key_to_use;
key_datum.dsize = strlen(key_to_use);
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data_datum = dbm_fetch(dbm_ptr, key_datum);
if (data_datum.dptr) {

printf(“Data retrieved\n”);
memcpy(&item_retrieved, data_datum.dptr, data_datum.dsize);
printf(“Retrieved item - %s %d %s\n”,

item_retrieved.misc_chars,
item_retrieved.any_integer,
item_retrieved.more_chars);

}
else {

printf(“No data found for key %s\n”, key_to_use);
}
dbm_close(dbm_ptr);
exit(EXIT_SUCCESS);

}

When we compile and run the program, the output is simply

$ gcc -o dbm1 -I/usr/include/gdbm dbm1.c -lgdbm
$ ./dbm1
Data retrieved
Retrieved item - bar 13 unlucky?

This is the output you’ll get if you have gdbm installed in compatible mode. If this fails to compile, you
may need to install the GNU gdbm library compatibility files, as described earlier, and/or specify addi-
tional directories when you compile, thus:

$ gcc –I/usr/local/include –L/usr/local/lib -o dbm1 dbm1.c –ldbm

If this still fails, try replacing the –ldbm part of the command with –lgdbm, thus:

$ gcc –I/usr/local/include –L/usr/local/lib -o dbm1 dbm1.c –lgdbm

How It Works
First, we open the database, creating it if necessary. We then fill in three members of items_to_store
that we are using as test data. For each of these three members we create an index key. To keep it simple,
we use the first characters of each of the two strings, plus the integer stored.

We then set up two datum structures, one for the key and one for the data to store. Having stored the
three items in the database, we construct a new key and set up a datum structure to point at it. We then
use this key to retrieve data from the database. We check for success by making sure that the dptr in the
returned datum isn’t null. Provided it isn’t, we can then copy the retrieved data (which may be stored
internally within the dbm library) into our own structure, being careful to use the size dbm_fetch has
returned (if we didn’t do this and were using variable-sized data, we could attempt to copy nonexistent
data). Finally, we print out the retrieved data to show it was retrieved correctly.

Additional dbm Functions
Now that we’ve seen the principal dbm functions, we can cover the few remaining functions that are
used with dbm:
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int dbm_delete(DBM *database_descriptor, datum key);
int dbm_error(DBM *database_descriptor);
int dbm_clearerr(DBM *database_descriptor);
datum dbm_firstkey(DBM *database_descriptor);
datum dbm_nextkey(DBM *database_descriptor);

dbm_delete
The dbm_delete function is used to delete entries from the database. It takes a key datum just like
dbm_fetch but, rather than retrieving the data, it deletes the data. It returns 0 on success.

dbm_error
The dbm_error function simply tests whether an error has occurred in the database, returning 0 if there
is none.

dbm_clearerr
The dbm_clearerr clears any error condition flag that may be set in the database.

dbm_firstkey and dbm_nextkey
These routines are normally used as a pair to scan through all the keys of all the items in a database.
The loop structure required is

DBM *db_ptr;
datum key;

for(key = dbm_firstkey(db_ptr); key.dptr; key = dbm_nextkey(db_ptr));

Try It Out—Retrieving and Deleting
We’ll now amend dbm1.c with some of these new functions. Have a look at dbm2.c.

1. Make a copy of dbm1.c and open it for editing. Edit the #define TEST_DB_FILE line:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <ndbm.h>
#include <string.h>

#define TEST_DB_FILE “/tmp/dbm2_test”
#define ITEMS_USED 3

2. Then the only change we need to make is in the retrieval section:

/* now try to delete some data */
sprintf(key_to_use, “bu%d”, 13);
key_datum.dptr = key_to_use;
key_datum.dsize = strlen(key_to_use);
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if (dbm_delete(dbm_ptr, key_datum) == 0) {
printf(“Data with key %s deleted\n”, key_to_use);

}
else {

printf(“Nothing deleted for key %s\n”, key_to_use);
}
for (key_datum = dbm_firstkey(dbm_ptr); 

key_datum.dptr; 
key_datum = dbm_nextkey(dbm_ptr)) {

data_datum = dbm_fetch(dbm_ptr, key_datum);
if (data_datum.dptr) {

printf(“Data retrieved\n”);
memcpy(&item_retrieved, data_datum.dptr, data_datum.dsize);
printf(“Retrieved item - %s %d %s\n”,

item_retrieved.misc_chars,
item_retrieved.any_integer,
item_retrieved.more_chars);

}
else {

printf(“No data found for key %s\n”, key_to_use);
}

}

The output is

$ ./dbm2
Data with key bu13 deleted
Data retrieved
Retrieved item - Third 3 baz
Data retrieved
Retrieved item - First! 47 foo

How It Works
The first part of this program is identical to the previous example, simply storing some data in the
database. We then build a key to match the second item and delete it from the database.

The program then uses dbm_firstkey and dbm_nextkey to access each key in the database in turn,
retrieving the data. Notice that the data isn’t retrieved in order: No retrieval order is implied in the key
order; it’s simply a way of scanning all the entries.

The CD Application
Now that we’ve learned about the environment and about managing data, it’s time to update the appli-
cation. The dbm database seems well suited to storing our CD information, so we’ll use that as the basis
for our new implementation.
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Updating the Design
Since this update will involve a significant rewrite, now would be a good time to look at our design 
decisions to see if they need revising. Using comma-separated variable files to store the information,
although it gave an easy implementation in the shell, has turned out to be very restrictive. A lot of CD
titles and tracks turn out to have commas in them. Since we can discard this method of separation
entirely using dbm, that’s one element of the design that we will change.

The split of the information between title and tracks, using a separate file for each, seems to have been a
good decision, so we’ll stick to the same logical arrangement.

Both the previous implementations have, to some extent, mixed the data access parts of the application
with the user interface parts, not least because it was all implemented in a single file. In this implementa-
tion, we’ll use a header file to describe the data and the routines to access it and split the user interface
and data manipulation into separate files.

Although we could keep the curses implementation of the user interface, we’ll return to a simple line-
based system. This will keep the user interface part of the application small and simple and allow us to
concentrate on the other implementation aspects.

Although we can’t use SQL with dbm code, we can express our new database in more formal terms using
SQL terminology. Don’t worry if you’re not familiar with SQL; we will explain the definitions. We will
see more SQL in Chapter 8. In code, the table can be described as follows:

CREATE TABLE cdc_entry (
catalog CHAR(30) PRIMARY KEY REFERENCES cdt_entry(catalog),
title     CHAR(70),
type      CHAR(30),
artist    CHAR(70)

);

CREATE TABLE cdt_entry (
catalog CHAR(30) REFERENCES cdc_entry(catalog),
track_no  INTEGER,
track_txt CHAR(70),
PRIMARY KEY(catalog, track_no)

);

This very succinct description tells us the names and sizes of the fields. For the cdc_entry table, it tells
us that there’s a unique catalog column for every entry. For the cdt_entry table, it tells us that the track
number can’t be zero and that the combination of catalog and track_no columns is unique.

The CD Database Application Using dbm
We’re now going to reimplement our application using the dbm database to store the information we
need, with the files cd_data.h, app_ui.c, and cd_access.c.

We also rewrite the user interface as a command line program. Later in the book, we’ll be reusing the
database interface and parts of the user interface as we explore implementing our application using dif-
ferent client/server mechanisms and, finally, as an application that can be accessed across a network
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using a Web browser. Converting the interface to a simpler line-driven interface makes it easier for us to
focus on the important parts of the application, rather than on the interface.

You’ll see the database header file cd_data.h and functions from the file cd_access.c reused several
times in later chapters.

Try It Out—cd_data.h
We start here with the header file, to define the structure of our data and the routines that we’ll use to
access it.

1. This is the data structure definition for the CD database. It defines structures and sizes for the
two tables that compose the database. We start by defining some sizes for the fields that we’ll
use and two structures: one for the catalog entry and one for the track entry.

/* The catalog table */
#define CAT_CAT_LEN       30
#define CAT_TITLE_LEN     70
#define CAT_TYPE_LEN      30
#define CAT_ARTIST_LEN    70

typedef struct {
char catalog[CAT_CAT_LEN + 1];
char title[CAT_TITLE_LEN + 1];
char type[CAT_TYPE_LEN + 1];
char artist[CAT_ARTIST_LEN + 1];

} cdc_entry;

/* The tracks table, one entry per track */
#define TRACK_CAT_LEN     CAT_CAT_LEN
#define TRACK_TTEXT_LEN   70

typedef struct {
char catalog[TRACK_CAT_LEN + 1];
int  track_no;
char track_txt[TRACK_TTEXT_LEN + 1];

} cdt_entry;

2. Now that we have some data structures, we can define some access routines that we’ll need.
Functions with cdc_ are for catalog entries; functions with cdt_ are for track entries.

/* Initialization and termination functions */
int database_initialize(const int new_database);
void database_close(void);

/* two for simple data retrieval */
cdc_entry get_cdc_entry(const char *cd_catalog_ptr);
cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no);

Notice that some of the functions return data structures. We can indicate the failure
of these functions by forcing the contents of the structure to be empty.
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/* two for data addition */
int add_cdc_entry(const cdc_entry entry_to_add);
int add_cdt_entry(const cdt_entry entry_to_add);

/* two for data deletion */
int del_cdc_entry(const char *cd_catalog_ptr);
int del_cdt_entry(const char *cd_catalog_ptr, const int track_no);

/* one search function */
cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr);

Try It Out—app_ui.c
We now move on to the user interface. This gives us a (relatively) simple program with which to access
our database functions. We’ll implement the interface in a separate file.

1. As usual, we start with some header files:

#define _XOPEN_SOURCE

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#include “cd_data.h”

#define TMP_STRING_LEN 125 /* this number must be larger than the biggest
single string in any database structure */

2. We make our menu options typedefs. This is in preference to using #defined constants, as it
allows the compiler to check the types of the menu option variables.

typedef enum {
mo_invalid,
mo_add_cat,
mo_add_tracks,
mo_del_cat,
mo_find_cat,
mo_list_cat_tracks,
mo_del_tracks,
mo_count_entries,
mo_exit

} menu_options;

3. Now we write the prototypes for the local functions. Remember that the prototypes for actually
accessing the database were included in cd_data.h.

static int command_mode(int argc, char *argv[]);
static void announce(void);
static menu_options show_menu(const cdc_entry *current_cdc);
static int get_confirm(const char *question);
static int enter_new_cat_entry(cdc_entry *entry_to_update);
static void enter_new_track_entries(const cdc_entry *entry_to_add_to);

285

Data Management

b544977 Ch07.qxd  12/1/03  8:56 AM  Page 285



static void del_cat_entry(const cdc_entry *entry_to_delete);
static void del_track_entries(const cdc_entry *entry_to_delete);
static cdc_entry find_cat(void);
static void list_tracks(const cdc_entry *entry_to_use);
static void count_all_entries(void);
static void display_cdc(const cdc_entry *cdc_to_show);
static void display_cdt(const cdt_entry *cdt_to_show);
static void strip_return(char *string_to_strip);

4. Finally, we get to main. This starts by ensuring that the current_cdc_entry, which we use
to keep track of the currently selected CD catalog entry, is initialized. We also parse the com-
mand line, announce what program is being run, and initialize the database.

void main(int argc, char *argv[])
{

menu_options current_option;
cdc_entry current_cdc_entry;
int command_result;

memset(&current_cdc_entry, ‘\0’, sizeof(current_cdc_entry));

if (argc > 1) {
command_result = command_mode(argc, argv);
exit(command_result);

}

announce();

if (!database_initialize(0)) {
fprintf(stderr, “Sorry, unable to initialize database\n”);
fprintf(stderr, “To create a new database use %s -i\n”, argv[0]);
exit(EXIT_FAILURE);

}

5. We’re now ready to process user input. We sit in a loop, asking for a menu choice and processing
it, until the user selects the exit option. Notice that we pass the current_cdc_entry structure
to the show_menu function. We do this to allow the menu choices to change if a catalog entry is
currently selected.

while(current_option != mo_exit) {
current_option = show_menu(&current_cdc_entry);

switch(current_option) {
case mo_add_cat:

if (enter_new_cat_entry(&current_cdc_entry)) {
if (!add_cdc_entry(current_cdc_entry)) {

fprintf(stderr, “Failed to add new entry\n”);
memset(&current_cdc_entry, ‘\0’, 

sizeof(current_cdc_entry));
}

}
break;

case mo_add_tracks:
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enter_new_track_entries(&current_cdc_entry);
break;

case mo_del_cat:
del_cat_entry(&current_cdc_entry);
break;

case mo_find_cat:
current_cdc_entry = find_cat();
break;

case mo_list_cat_tracks:
list_tracks(&current_cdc_entry);
break;

case mo_del_tracks:
del_track_entries(&current_cdc_entry);
break;

case mo_count_entries:
count_all_entries();
break;

case mo_exit:
break;

case mo_invalid:
break;

default:
break;

} /* switch */
} /* while */

6. When the main loop exits, we close the database and exit back to the environment. The welcom-
ing sentence is printed by the announce function:

database_close();
exit(EXIT_SUCCESS);

} /* main */

static void announce(void)
{

printf(“\n\nWelcome to the demonstration CD catalog database \
program\n”);

}

7. Here we implement the show_menu function. This function checks whether a current catalog
entry is selected, using the first character of the catalog name. More options are available if a
catalog entry is selected.

static menu_options show_menu(const cdc_entry *cdc_selected)
{

char tmp_str[TMP_STRING_LEN + 1];
menu_options option_chosen = mo_invalid;

Note that numbers are now used to select menu items, rather than the initial letters
we used in the previous two examples.
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while (option_chosen == mo_invalid) {
if (cdc_selected->catalog[0]) {

printf(“\n\nCurrent entry: “);
printf(“%s, %s, %s, %s\n”, cdc_selected->catalog,

cdc_selected->title,
cdc_selected->type,
cdc_selected->artist);

printf(“\n”);
printf(“1 - add new CD\n”);
printf(“2 - search for a CD\n”);
printf(“3 - count the CDs and tracks in the database\n”);
printf(“4 - re-enter tracks for current CD\n”);
printf(“5 - delete this CD, and all its tracks\n”);
printf(“6 - list tracks for this CD\n”);
printf(“q - quit\n”);
printf(“\nOption: “);
fgets(tmp_str, TMP_STRING_LEN, stdin);

switch(tmp_str[0]) {
case ‘1’: option_chosen = mo_add_cat; break;
case ‘2’: option_chosen = mo_find_cat; break;
case ‘3’: option_chosen = mo_count_entries; break;
case ‘4’: option_chosen = mo_add_tracks; break;
case ‘5’: option_chosen = mo_del_cat; break;
case ‘6’: option_chosen = mo_list_cat_tracks; break;
case ‘q’: option_chosen = mo_exit; break;

}
}
else {

printf(“\n\n”);
printf(“1 - add new CD\n”);
printf(“2 - search for a CD\n”);
printf(“3 - count the CDs and tracks in the database\n”);
printf(“q - quit\n”);
printf(“\nOption: “);
fgets(tmp_str, TMP_STRING_LEN, stdin);
switch(tmp_str[0]) {

case ‘1’: option_chosen = mo_add_cat; break;
case ‘2’: option_chosen = mo_find_cat; break;
case ‘3’: option_chosen = mo_count_entries; break;
case ‘q’: option_chosen = mo_exit; break;

}
}

} /* while */
return(option_chosen);

}

8. There are several places where we wish to ask the user if he is sure about what he requested.
Rather than have several places in the code asking the question, we extract the code as a separate
function, get_confirm:

static int get_confirm(const char *question)
{

char tmp_str[TMP_STRING_LEN + 1];
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printf(“%s”, question);
fgets(tmp_str, TMP_STRING_LEN, stdin);
if (tmp_str[0] == ‘Y’ || tmp_str[0] == ‘y’) {

return(1);
}
return(0);

}

9. The function enter_new_cat_entry allows the user to enter a new catalog entry. We don’t
want to store the linefeed that fgets returns, so we strip it off. 

static int enter_new_cat_entry(cdc_entry *entry_to_update)
{

cdc_entry new_entry;
char tmp_str[TMP_STRING_LEN + 1];

memset(&new_entry, ‘\0’, sizeof(new_entry));

printf(“Enter catalog entry: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.catalog, tmp_str, CAT_CAT_LEN - 1);

printf(“Enter title: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.title, tmp_str, CAT_TITLE_LEN - 1);

printf(“Enter type: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.type, tmp_str, CAT_TYPE_LEN - 1);

printf(“Enter artist: “);
(void)fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
strncpy(new_entry.artist, tmp_str, CAT_ARTIST_LEN - 1);

printf(“\nNew catalog entry entry is :-\n”);
display_cdc(&new_entry);
if (get_confirm(“Add this entry ?”)) {

memcpy(entry_to_update, &new_entry, sizeof(new_entry));
return(1);

}
return(0);

}

Notice that we don’t use the gets function, because we have no way of checking for
an overflow of the buffer. Always avoid the gets function!
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10. We now come to the function for entering the track information: enter_new_track_
entries. This is slightly more complex than the catalog entry function because we allow
an existing track entry to be left alone.

static void enter_new_track_entries(const cdc_entry *entry_to_add_to)
{

cdt_entry new_track, existing_track;
char tmp_str[TMP_STRING_LEN + 1];
int track_no = 1;
if (entry_to_add_to->catalog[0] == ‘\0’) return;

printf(“\nUpdating tracks for %s\n”, entry_to_add_to->catalog);
printf(“Press return to leave existing description unchanged,\n”);
printf(“ a single d to delete this and remaining tracks,\n”);
printf(“ or new track description\n”);

while(1) {

11. First, we must check whether a track already exists with the current track number. Depending
on what we find, we change the prompt.

memset(&new_track, ‘\0’, sizeof(new_track));
existing_track = get_cdt_entry(entry_to_add_to->catalog, 

track_no);
if (existing_track.catalog[0]) {

printf(“\tTrack %d: %s\n”, track_no, 
existing_track.track_txt);

printf(“\tNew text: “);
}
else {

printf(“\tTrack %d description: “, track_no);
}
fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);

12. If there was no existing entry for this track and the user hasn’t added one, we assume that there
are no more tracks to be added.

if (strlen(tmp_str) == 0) {
if (existing_track.catalog[0] == ‘\0’) {

/* no existing entry, so finished adding */
break;

}
else {

/* leave existing entry, jump to next track */
track_no++;
continue;

}
}
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13. If the user enters a single d character, this deletes the current and any higher-numbered tracks.
The del_cdt_entry function will return false if it can’t find a track to delete.

if ((strlen(tmp_str) == 1) && tmp_str[0] == ‘d’) {
/* delete this and remaining tracks */

while (del_cdt_entry(entry_to_add_to->catalog, track_no)) {
track_no++;

}
break;

}

14. Here we get to the code for adding a new track, or updating an existing one. We construct the
cdt_entry structure new_track, then call the database function add_cdt_entry to add it
to the database.

strncpy(new_track.track_txt, tmp_str, TRACK_TTEXT_LEN - 1);
strcpy(new_track.catalog, entry_to_add_to->catalog);
new_track.track_no = track_no;
if (!add_cdt_entry(new_track)) {

fprintf(stderr, “Failed to add new track\n”);
break;

}
track_no++;

} /* while */
}

15. The function del_cat_entry deletes a catalog entry. We never allow tracks for a nonexistent
catalog entry to exist.

static void del_cat_entry(const cdc_entry *entry_to_delete)
{

int track_no = 1;
int delete_ok;

display_cdc(entry_to_delete);
if (get_confirm(“Delete this entry and all it’s tracks? “)) {

do {
delete_ok = del_cdt_entry(entry_to_delete->catalog, 

track_no);
track_no++;

} while(delete_ok);

if (!del_cdc_entry(entry_to_delete->catalog)) {
fprintf(stderr, “Failed to delete entry\n”);

}
}

}
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16. The next function is a utility for deleting all the tracks for a catalog:

static void del_track_entries(const cdc_entry *entry_to_delete)
{

int track_no = 1;
int delete_ok;

display_cdc(entry_to_delete);
if (get_confirm(“Delete tracks for this entry? “)) {

do {
delete_ok = del_cdt_entry(entry_to_delete->catalog, track_no);
track_no++;

} while(delete_ok);
}

}

17. Next, we create a very simple catalog search facility. We allow the user to enter a string, then
check for catalog entries that contain the string. Since there could be multiple entries that match,
we simply offer the user each match in turn:

static cdc_entry find_cat(void)
{

cdc_entry item_found;
char tmp_str[TMP_STRING_LEN + 1];
int first_call = 1;
int any_entry_found = 0;
int string_ok;
int entry_selected = 0;

do {
string_ok = 1;
printf(“Enter string to search for in catalog entry: “);
fgets(tmp_str, TMP_STRING_LEN, stdin);
strip_return(tmp_str);
if (strlen(tmp_str) > CAT_CAT_LEN) {

fprintf(stderr, “Sorry, string too long, maximum %d \
characters\n”, CAT_CAT_LEN);

string_ok = 0;
}

} while (!string_ok);

while (!entry_selected) {
item_found = search_cdc_entry(tmp_str, &first_call);
if (item_found.catalog[0] != ‘\0’) {

any_entry_found = 1;
printf(“\n”);
display_cdc(&item_found);
if (get_confirm(“This entry? “)) {

entry_selected = 1;
}

}
else {

if (any_entry_found) printf(“Sorry, no more matches found\n”);
else printf(“Sorry, nothing found\n”);
break;
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}
}
return(item_found);

}

18. list_tracks is a utility function that prints out all the tracks for a given catalog entry:

static void list_tracks(const cdc_entry *entry_to_use)
{

int track_no = 1;
cdt_entry entry_found;

display_cdc(entry_to_use);
printf(“\nTracks\n”);
do {

entry_found = get_cdt_entry(entry_to_use->catalog, 
track_no);

if (entry_found.catalog[0]) {
display_cdt(&entry_found);
track_no++;

}
} while(entry_found.catalog[0]);
(void)get_confirm(“Press return”);

} /* list_tracks */

19. The count_all_entries function counts all the tracks:

static void count_all_entries(void)
{

int cd_entries_found = 0;
int track_entries_found = 0;
cdc_entry cdc_found;
cdt_entry cdt_found;
int track_no = 1;
int first_time = 1;
char *search_string = “”;

do {
cdc_found = search_cdc_entry(search_string, &first_time);
if (cdc_found.catalog[0]) {

cd_entries_found++;
track_no = 1;
do {

cdt_found = get_cdt_entry(cdc_found.catalog, track_no);
if (cdt_found.catalog[0]) {

track_entries_found++;
track_no++;

}
} while (cdt_found.catalog[0]);

}
} while (cdc_found.catalog[0]);

printf(“Found %d CDs, with a total of %d tracks\n”, cd_entries_found, 
track_entries_found);

(void)get_confirm(“Press return”);
}
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20. Now we have display_cdc, a utility for displaying a catalog entry,

static void display_cdc(const cdc_entry *cdc_to_show)
{

printf(“Catalog: %s\n”, cdc_to_show->catalog);
printf(“\ttitle: %s\n”, cdc_to_show->title);
printf(“\ttype: %s\n”, cdc_to_show->type);
printf(“\tartist: %s\n”, cdc_to_show->artist);

}

and display_cdt, for displaying a single track entry:

static void display_cdt(const cdt_entry *cdt_to_show)
{

printf(“%d: %s\n”, cdt_to_show->track_no, cdt_to_show->track_txt);
}

21. The utility function strip_return removes a trailing linefeed character from a string.
Remember that Linux, like UNIX, uses a single linefeed to indicate end of line:

static void strip_return(char *string_to_strip)
{

int len;

len = strlen(string_to_strip);
if (string_to_strip[len - 1] == ‘\n’) string_to_strip[len - 1] = ‘\0’;

}

22. command_mode is a function for parsing the command line arguments. The getopt function
is a good way of ensuring that our program accepts arguments conforming to the standard
Linux conventions.

static int command_mode(int argc, char *argv[])
{

int c;
int result = EXIT_SUCCESS;
char *prog_name = argv[0];

/* these externals used by getopt */
extern char *optarg;
extern optind, opterr, optopt;

while ((c = getopt(argc, argv, “:i”)) != -1) {
switch(c) {

case ‘i’:
if (!database_initialize(1)) {

result = EXIT_FAILURE;
fprintf(stderr, “Failed to initialize database\n”);

}
break;

case ‘:’:
case ‘?’:
default:
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fprintf(stderr, “Usage: %s [-i]\n”, prog_name);
result = EXIT_FAILURE;
break;

} /* switch */
} /* while */
return(result);

}

Try It Out—cd_access.c
Now we come to the functions that access the dbm database.

1. As usual, we start with some #include files. We then use some #defines for specifying the
files that we’ll use for storing the data.

#define _XOPEN_SOURCE

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <ndbm.h>

#include “cd_data.h”

#define CDC_FILE_BASE “cdc_data”
#define CDT_FILE_BASE “cdt_data”
#define CDC_FILE_DIR  “cdc_data.dir”
#define CDC_FILE_PAG  “cdc_data.pag”
#define CDT_FILE_DIR “cdt_data.dir”
#define CDT_FILE_PAG “cdt_data.pag”

2. We use these two file scope variables to keep track of the current database:

static DBM *cdc_dbm_ptr = NULL;
static DBM *cdt_dbm_ptr = NULL;

3. By default, the database_initialize function opens an existing database, but by passing
a nonzero (i.e., true) parameter, new_database, we can force it to create a new (empty)
database, effectively removing any existing database. If the database is successfully initialized,
the two database pointers are also initialized, indicating that a database is open.

int database_initialize(const int new_database)
{

int open_mode = O_CREAT | O_RDWR;

/* If any existing database is open then close it */
if (cdc_dbm_ptr) dbm_close(cdc_dbm_ptr);
if (cdt_dbm_ptr) dbm_close(cdt_dbm_ptr);

if (new_database) {
/* delete the old files */
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(void) unlink(CDC_FILE_PAG);
(void) unlink(CDC_FILE_DIR);
(void) unlink(CDT_FILE_PAG);
(void) unlink(CDT_FILE_DIR);

}

/* Open some new files, creating them if required */
cdc_dbm_ptr = dbm_open(CDC_FILE_BASE, open_mode, 0644);
cdt_dbm_ptr = dbm_open(CDT_FILE_BASE, open_mode, 0644);
if (!cdc_dbm_ptr || !cdt_dbm_ptr) {

fprintf(stderr, “Unable to create database\n”);
cdc_dbm_ptr = cdt_dbm_ptr = NULL;
return (0);

}
return (1);

}

4. database_close simply closes the database if it was open and sets the two database pointers
to null to indicate that no database is currently open.

void database_close(void)
{

if (cdc_dbm_ptr) dbm_close(cdc_dbm_ptr);
if (cdt_dbm_ptr) dbm_close(cdt_dbm_ptr);

cdc_dbm_ptr = cdt_dbm_ptr = NULL;
}

5. Next, we have a function that retrieves a single catalog entry, when passed a pointer pointing to
a catalog text string. If the entry isn’t found, the returned data has an empty catalog field.

cdc_entry get_cdc_entry(const char *cd_catalog_ptr)
{

cdc_entry entry_to_return;
char entry_to_find[CAT_CAT_LEN + 1];
datum local_data_datum;
datum local_key_datum;

memset(&entry_to_return, ‘\0’, sizeof(entry_to_return));

6. We start with some sanity checks, to ensure that a database is open and that we were passed
reasonable parameters—that is, the search key contains only the valid string and nulls.

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
if (!cd_catalog_ptr) return (entry_to_return);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);

memset(&entry_to_find, ‘\0’, sizeof(entry_to_find));
strcpy(entry_to_find, cd_catalog_ptr);

7. We set up the datum structure the dbm functions require, then use dbm_fetch to retrieve
the data. If no data was retrieved, we return the empty entry_to_return structure that
we initialized earlier.
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local_key_datum.dptr = (void *) entry_to_find;
local_key_datum.dsize = sizeof(entry_to_find);

memset(&local_data_datum, ‘\0’, sizeof(local_data_datum));
local_data_datum = dbm_fetch(cdc_dbm_ptr, local_key_datum);
if (local_data_datum.dptr) {

memcpy(&entry_to_return, (char *)local_data_datum.dptr, 
local_data_datum.dsize);

}
return (entry_to_return);

} /* get_cdc_entry */

8. We’d better be able to get a single track entry as well, which is what the next function does, in
the same fashion as get_cdc_entry, but with a pointer pointing to a catalog string and a
track number as parameters.

cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

cdt_entry entry_to_return;
char entry_to_find[CAT_CAT_LEN + 10];
datum local_data_datum;
datum local_key_datum;

memset(&entry_to_return, ‘\0’, sizeof(entry_to_return));

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
if (!cd_catalog_ptr) return (entry_to_return);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);
/* set up the search key, which is a composite key of catalog entry

and track number */
memset(&entry_to_find, ‘\0’, sizeof(entry_to_find));
sprintf(entry_to_find, “%s %d”, cd_catalog_ptr, track_no);

local_key_datum.dptr = (void *) entry_to_find;
local_key_datum.dsize = sizeof(entry_to_find);

memset(&local_data_datum, ‘\0’, sizeof(local_data_datum));
local_data_datum = dbm_fetch(cdt_dbm_ptr, local_key_datum);
if (local_data_datum.dptr) {

memcpy(&entry_to_return, (char *) local_data_datum.dptr, 
local_data_datum.dsize);

}
return (entry_to_return);

}

9. The next function, add_cdc_entry, adds a new catalog entry:

int add_cdc_entry(const cdc_entry entry_to_add)
{

char key_to_add[CAT_CAT_LEN + 1];
datum local_data_datum;
datum local_key_datum;
int result;
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/* check database initialized and parameters valid */
if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(entry_to_add.catalog) >= CAT_CAT_LEN) return (0);

/* ensure the search key contains only the valid string and nulls */
memset(&key_to_add, ‘\0’, sizeof(key_to_add));
strcpy(key_to_add, entry_to_add.catalog);

local_key_datum.dptr = (void *) key_to_add;
local_key_datum.dsize = sizeof(key_to_add);
local_data_datum.dptr = (void *) &entry_to_add;
local_data_datum.dsize = sizeof(entry_to_add);

result = dbm_store(cdc_dbm_ptr, local_key_datum, local_data_datum,
DBM_REPLACE);

/* dbm_store() uses 0 for success */
if (result == 0) return (1);
return (0);

}

10. add_cdt_entry adds a new track entry. The access key is the catalog string and track number
acting as a composite.

int add_cdt_entry(const cdt_entry entry_to_add)
{

char key_to_add[CAT_CAT_LEN + 10];
datum local_data_datum;
datum local_key_datum;
int result;

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(entry_to_add.catalog) >= CAT_CAT_LEN) return (0);

memset(&key_to_add, ‘\0’, sizeof(key_to_add));
sprintf(key_to_add, “%s %d”, entry_to_add.catalog, 

entry_to_add.track_no);

local_key_datum.dptr = (void *) key_to_add;
local_key_datum.dsize = sizeof(key_to_add);
local_data_datum.dptr = (void *) &entry_to_add;
local_data_datum.dsize = sizeof(entry_to_add);

result = dbm_store(cdt_dbm_ptr, local_key_datum, local_data_datum, 
DBM_REPLACE);

/* dbm_store() uses 0 for success and -ve numbers for errors */
if (result == 0)

return (1);
return (0);

}
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11. If we can add things, we’d better be able to delete them, too. This function deletes catalog entries:

int del_cdc_entry(const char *cd_catalog_ptr)
{

char key_to_del[CAT_CAT_LEN + 1];
datum local_key_datum;
int result;

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (0);

memset(&key_to_del, ‘\0’, sizeof(key_to_del));
strcpy(key_to_del, cd_catalog_ptr);

local_key_datum.dptr = (void *) key_to_del;
local_key_datum.dsize = sizeof(key_to_del);

result = dbm_delete(cdc_dbm_ptr, local_key_datum);

/* dbm_delete() uses 0 for success */
if (result == 0) return (1);
return (0);

}

12. Here’s the equivalent function for deleting a track. Remember that the track key is a composite
index of both the catalog entry string and the track number.

int del_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

char key_to_del[CAT_CAT_LEN + 10];
datum local_key_datum;
int result;

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (0);

memset(&key_to_del, ‘\0’, sizeof(key_to_del));
sprintf(key_to_del, “%s %d”, cd_catalog_ptr, track_no);

local_key_datum.dptr = (void *) key_to_del;
local_key_datum.dsize = sizeof(key_to_del);

result = dbm_delete(cdt_dbm_ptr, local_key_datum);

/* dbm_delete() uses 0 for success */
if (result == 0) return (1);
return (0);

}

13. Last but not least, we have a simple search function. It’s not very sophisticated, but it does
demonstrate how we can scan through dbm entries without knowing the keys in advance.

Since we don’t know in advance how many entries there might be, we implement this function
to return a single entry on each call. If nothing is found, the entry will be empty. To scan the
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whole database, we start by calling this function with a pointer to an integer,
*first_call_ptr, which should be 1 the first time the function is called. This function then
knows it should start searching at the start of the database. On subsequent calls, the variable is
0 and the function resumes searching after the last entry it found.

When we wish to restart our search, probably with a different catalog entry, we must again call
this function with *first_call_ptr set to true, which reinitializes the search.

Between calls, the function maintains some internal state information. This hides the complexity
of continuing a search from the client and preserves the “secrecy” of how the search function is
implemented.

If the search text points to a null character, all entries are considered to match.

cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr)
{

static int local_first_call = 1;
cdc_entry entry_to_return;
datum local_data_datum;
static datum local_key_datum;    /* notice this must be static */

memset(&entry_to_return, ‘\0’, sizeof(entry_to_return));

14. As usual, we start with sanity checks:

if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
if (!cd_catalog_ptr || !first_call_ptr) return (entry_to_return);
if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);

/* protect against never passing *first_call_ptr true */
if (local_first_call) {

local_first_call = 0;
*first_call_ptr = 1;

}

15. If this function has been called with *first_call_ptr set to true, we need to start (or
restart) searching from the beginning of the database. If *first_call_ptr isn’t true, we
simply move on to the next key in the database:

if (*first_call_ptr) {
*first_call_ptr = 0;
local_key_datum = dbm_firstkey(cdc_dbm_ptr);

}
else {

local_key_datum = dbm_nextkey(cdc_dbm_ptr);
}

do {
if (local_key_datum.dptr != NULL) {

/* an entry was found */
local_data_datum = dbm_fetch(cdc_dbm_ptr, local_key_datum);
if (local_data_datum.dptr) {

memcpy(&entry_to_return, (char *) local_data_datum.dptr,
local_data_datum.dsize);
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16. Our search facility is a very simple check to see whether the search string occurs in the current
catalog entry.

/* check if search string occurs in the entry */
if (!strstr(entry_to_return.catalog, cd_catalog_ptr)) 

{
memset(&entry_to_return, ‘\0’, 

sizeof(entry_to_return));
local_key_datum = dbm_nextkey(cdc_dbm_ptr);

}
}

}
} while (local_key_datum.dptr &&

local_data_datum.dptr &&
(entry_to_return.catalog[0] == ‘\0’));

return (entry_to_return);
} /* search_cdc_entry */

We’re now in a position to be able to put everything together with this makefile. Don’t worry about it
too much right now, because we’ll be looking at how it works in the next chapter. For the time being,
type it and save it as Makefile.

all:    application

INCLUDE=/usr/include/gdbm
LIBS=gdbm
CFLAGS=

app_ui.o: app_ui.c cd_data.h
gcc $(CFLAGS) -c app_ui.c

access.o: access.c cd_data.h
gcc $(CFLAGS) -I$(INCLUDE) -c access.c

application:    app_ui.o access.o
gcc $(CFLAGS) -o application app_ui.o access.o -l$(LIBS)

clean:
rm -f application *.o

nodbmfiles:
rm -f *.dir *.pag

Remember that you may need to replace LIBS= and INCLUDE=, depending on your system configuration.

To compile your new CD application, type this at the prompt:

$ make

If all has gone well, the application executable will be compiled and placed in the current directory.
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Summary
In this chapter, we’ve learned about three aspects of data management. First, we’ve learned about the
Linux memory system and how simple it is to use, even though the internal implementation of demand
paged virtual memory is quite involved. We’ve also found how it protects both the operating system
and other programs from attempts at illegal memory access.

We then moved on to look at how file locking allows multiple programs to cooperate in their access to
data. We looked first at a simple binary semaphore scheme and then at a more complex situation where
we lock different parts of a file for either shared or exclusive access. Next we looked at the dbm library
and its ability to store and efficiently retrieve arbitrary blocks of data using a very flexible indexing
arrangement.

Finally, we redesigned and reimplemented our example CD database application to use the dbm library
as its data storage technique.
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8
MySQL

Now that we’ve explored some basic data management using flat files and then the simple
but very quick dbm, we’re ready to move on to a more full-featured data tool: the RDBMS,
or Relational Database Management System.

The two best-known open-source RDBMS applications are PostgreSQL and MySQL. PostgreSQL
can be used for free in all cases and MySQL is free for many uses, although a license fee is required
in some circumstances. Commercial products in the same vein are Oracle, Informix, Sybase, and
DB2, which run on multiple platforms. The Windows-only Microsoft SQL Server is another entry
into this market. All these packages have their particular strengths; but for reasons of space, and a
commitment to Open Source software, this book will focus exclusively on MySQL.

MySQL has origins going back to about 1984, but it has been commercially developed and managed
under the auspices of MySQL AB for several years now. Because MySQL is Open Source, its terms
of use are often confused with those of other Open Source projects. It’s worth pointing out, then,
that while many uses can be GPL’ed, many cannot. 

If you need an Open Source database; the terms for using MySQL under the GPL are not accept-
able, and if you don’t wish to purchase a commercial license, then the licensing terms for using
PostgreSQL are, at the time of writing, much less restrictive. PostgreSQL is currently also slightly
ahead of MySQL in terms of functionality, so we you may wish to consider PostgreSQL as an alter-
native. You can find details at www.postgresql.org.

In this chapter, we’ll be covering the following MySQL topics:

❑ Installing MySQL and manually or automatically starting the server

❑ The administrative commands necessary to work with MySQL

❑ The API for interfacing your C programs with MySQL databases 

❑ Creating a relational database that we can use for our CD database application using C
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Installation
Whatever your preferred flavor of Linux, it’s likely that it came with a version of MySQL. Slackware,
Red Hat, SuSE, and Debian all include it in their current versions. This will provide the easiest way to
get up and running with MySQL quickly. If your distribution does not provide a MySQL package, or if
you want to get the most current release, you can download either binary or source packages from the
MySQL website at www.mysql.com.

Generally, your distribution’s MySQL package will include some startup scripts to use with init.d.
In other cases, you will need to explicitly tell MySQL that you want it to start automatically. With Red
Hat Linux 9, for example, look under Server Settings➪Services and check that the mysqld service is
started. (Note that the MySQL service will appear in this list only if the package is installed.)

Precompiled Packages
If for any reason you need to download MySQL rather than using a bundled version, RPMs offer the easi-
est way to obtain and install the software. The RPM packages are broken down into a number of different
packages, four of which are important to this chapter.

❑ The main server package, with a name like MySQL-server-<version>.<architecture>.
rpm. This contains the precompiled binaries, documentation in the form of manual pages,
and some support files for internationalization. At this writing, the package 4.0.14 is named
MySQL-server-4.0.14.i386.rpm.

❑ The client package, with a name like MySQL-client-<version>.<architecture>.rpm.
This package contains the basic MySQL client that allows you to interact with the server in a
command line fashion in real time, issuing queries and such while maintaining an open static
connection. Several other peripheral clients for quick stateless access to MySQL are also
included. These programs generally serve to simplify some the more mundane administrative
tasks associated with maintaining the MySQL server.

❑ The shared component package, with a name like MySQL-shared-<version>.
<architecture>.rpm, which contains shared libraries used by some external clients.

❑ The development package, with a name something like MySQL-devel-<version>.
<architecture>.rpm. As developers, we are naturally particularly interested in the 
additional headers and library files included for developing applications that communicate
with the MySQL server.

You may also see some “Max” and “Debug” packages available. The Max package contains additional
features, such as support for more unusual storage files types. For the purposes of this chapter, and
indeed most development or production uses, you will not need the Max packages. The Debug packages
have been compiled with additional debugging code and information; hopefully you will not need such
low-level debugging! Don’t use the Debug versions for production use; the performance is degraded by
the additional debug support.

For developing MySQL applications you should install all four of these packages on your system, either
using a GUI tool or the rpm command directly. In general, simply download the four RPM files to an
otherwise empty directory and then execute the following command as the superuser:

rpm -i *.rpm
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You can find more details about the RPM package format in Chapter 9.

During the MySQL installation, the install scripts automatically create an initial database for you. You
will also have an init.d script (normally in /etc/rc.d/init.d) named mysqld or mysql that is used
to start and stop the server. Generally, the easiest way to find the database files on your specific distribu-
tion is to locate this script in your init.d directory and have a look through it. Standard paths and
defines are located near the beginning of the script, and it’s very easy to see where files have been
located. For example, on our binary installation of Red Hat RPMs the data directory is set to
/var/lib/mysql. 

After installation, you can either start the server manually as root using /etc/rc.d/init.d/mysql
start (or an equivalent for your distribution) or use symbolic links to the script in /etc/rc.d/init.d/
to ensure that MySQL starts automatically in run levels 3 and 5 and that it is stopped in run levels 0, 1,
and 6:

# ln -s /etc/rc.d/init.d/mysql /etc/rc.d/rc0.d/K97mysql
# ln -s /etc/rc.d/init.d/mysql /etc/rc.d/rc1.d/K97mysql
# ln -s /etc/rc.d/init.d/mysql /etc/rc.d/rc6.d/K97mysql
# ln -s /etc/rc.d/init.d/mysql /etc/rc.d/rc3.d/S97mysql
# ln -s /etc/rc.d/init.d/mysql /etc/rc.d/rc5.d/S97mysql

You may wish to adjust the exact numbers used on your system to keep them unique, although this isn’t
strictly necessary.

You may be using a system that has the chkconfig command, which offers a simpler way to set the run
levels in which a service runs. For example, to set the MySQL server to run in run levels 3 and 4, you
must first add mysql as a chkconfig-managed service, like this:

chkconfig —add mysql

Now we set the service to be “on” in levels 3 and 5,

chkconfig —level 35 mysql on

and “off” in the other levels:

chkconfig —level 01246 mysql off

To confirm that your configuration has been changed correctly, we can list the run levels where a service
will run as follows:

# chkconfig  —list mysql
mysql           0:off   1:off   2:off   3:on    4:off   5:on   6:off

If you have chkconfig, we suggest you use this method rather than directly creating symbolic links,
as it is less prone to error. However, the script you use must have been written to support chkconfig;
for more details, see the online manual for chkconfig.

The MySQL installation also creates the user “mysql,” which by default is the user name that the MySQL
server daemon runs as. 
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Once you have started the server, you should be able to check that it is running by looking for the
mysqld process as follows:

$ ps -el | grep mysqld

If you see one or more mysqld processes running, the server has been started. If not, you can get it
started by running the mysql script (in init.d) as the mysql user, with the argument start. Red Hat
installs a program (safe_mysqld) called from the init.d script to perform the change of user for you
automatically, so you can run /etc/rc.d/init.d/mysql start directly as root. Otherwise, use the
following command:

# su - mysql

$ /etc/rc.d/init.d/mysql start

Alternatively, you can use the GUI Services control panel shown in Figure 8-1 (the redhat-config-
services command on the command line will also invoke this GUI utility on Red Hat distributions) to
start the server.

Figure 8-1

Post-Install Configuration
Assuming everything went correctly, MySQL is now installed and started with a common default set of
options. Let’s test that assumption:

$ mysql -u root mysql

If you get a “Welcome to the MySQL monitor” message and then a mysql> prompt, we know the server
is running. Of course, now anyone can connect to it and have administrator privileges, but we’ll address
that shortly. Try typing \s to get some additional information on your server. When you’ve seen enough,
type quit to exit the monitor.
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You can also check the status of a running server with the mysqladmin command:

$ mysqladmin -u root version

An appropriate response will serve not only to confirm that the server is running but also to give you
the version number; at the rate features are being added to MySQL, this could be quite handy.

If the server won’t start or you can’t connect to the database once it does start, see the next section to
troubleshoot your installation.

OK, remember that gaping security hole a few paragraphs back? Let’s go plug it up. Once we’ve tight-
ened down the MySQL root user permissions such as allowing only a local root login to MySQL, we can
add only the users and permissions that are absolutely necessary to the function of our application. Don’t
let yourself be confused by the name of the root user in a MySQL installation. There is no relationship
between the MySQL root and the system root, or superuser. The MySQL installation is not protected by
your system root password. Any user with an account can log in to it.

Any number of ways will suffice to set a root password, most easily using the command

$ mysqladmin -u root password newpassword

This will set an initial password of newpassword. 

This method poses a problem, however, in that the clear text password will be left behind in your shell
history and could have been seen by someone using the ps command while your command was execut-
ing. A better bet will be to use the MySQL monitor again, this time to send some SQL that will change
your password.

$ mysql -u root
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 4

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> SET password=PASSWORD(‘secretpassword’);
Query OK, 0 rows affected (0.15 sec)

Pick, of course, a password known only to yourself, not the example “secretpassword” that we used 
previously to show you where your own password needs to be entered. Now let’s have a look at the 
permissions table to verify that a password has been set:

mysql> SELECT user, host, password FROM mysql.user;
+------+-----------+------------------+
| user | host      | password         |
+------+-----------+------------------+
| root | localhost | 2dxf8e9c23age6ed |
| root | gw1       |                  |
|      | localhost |                  |
|      | gw1       |                  |
+------+-----------+------------------+
4 rows in set (0.07 sec)

mysql>
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Observe that we have created a password for root only when connecting from the localhost. MySQL
can store distinct privileges not only for users, but also for connection classes based on host name. Also
notice that we terminate our SQL commands with a semicolon (;). This is not, strictly speaking, part of
the actual SQL command; it is used to tell the MySQL client program that we are ready for our SQL
statement to be executed.

The next step in securing our installation will be to get rid of those unnecessary users that MySQL
installed by default. The following command will remove all nonroot users from the permissions table:

mysql> DELETE FROM mysql.user WHERE user != ‘root’;
Query OK, 2 rows affected (0.11 sec)

The next command deletes any login from a host other than localhost:

mysql> DELETE FROM mysql.user WHERE host != ‘localhost’;
Query OK, 1 row affected (0.06 sec)

Last, use the following command to check that there are no stray logins:

mysql> SELECT user, host, password FROM mysql.user;
+------+-----------+------------------+
| user | host      | password         |
+------+-----------+------------------+
| root | localhost | 2dxf8e9c23age6ed |
+------+-----------+------------------+
1 row in set (0.11 sec)

mysql>exit

As you can see from the preceding output, we now have a single login that can connect from only
localhost. 

Now for the moment of truth: Can we still log in using the password we set? Notice that this time we
give the -p parameter, which tells MySQL that it must prompt for a password:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 7

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>

We now have a running version of MySQL that is locked down so that only the root user, with a pass-
word we have set, may connect to the database server, and that the root user may connect from only the
local machine.

Our next step is to add back in the user, or users, we require. As with a Linux system, it’s a bad idea to
use the root account to log in to MySQL unless it’s absolutely necessary, so you should create an every-
day user for normal use.
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As we hinted earlier, we can create users with different connect permissions from different machines; in
particular we have allowed the root user to connect from only the local machine as a security measure.
For the purposes of this chapter, we are going to create a new user, rick, with fairly wide-ranging per-
missions. rick will be able to connect in three different ways:

❑ He can connect from the local host.

❑ He can connect from any machine with IP addresses in the range 192.168.0.0 ➪ 192.168.0.255.

❑ He can connect from any machine in the wiley.com domain.

The easiest way of doing this in a secure manner is to create three different users with three different
connection origins. They could, if we wanted, even have three different passwords, depending on where
they connect from.

We create users and assign them privileges by using the grant command. Here we create the user with
the three different connection origins we listed above. The IDENTIFIED BY is slightly odd syntax for set-
ting an initial password. Notice the way quotes are used; it’s important to use the single quote characters
exactly as shown or we will not create the users exactly as we intended.

Connect to MySQL as the root user and then perform the following sequence: 

1. Create a local login for rick:

mysql> GRANT ALL ON *.* TO rick@localhost IDENTIFIED BY ‘secretpassword’;
Query OK, 0 rows affected (0.33 sec)

2. Then we create a login from anywhere on the class C subnet of 192.168.0. Notice that we must
use single quotes to protect the IP range:

mysql> GRANT ALL ON *.* TO rick@’192.168.0.0/255.255.255.0’ IDENTIFIED BY
‘secretpassword’;
Query OK, 0 rows affected (0.00 sec)

3. Finally, we create a login so that rick can log on from any machine in the wiley.com domain
(again notice the single quotes):

mysql> GRANT ALL ON *.* TO rick@’%.wiley.com’ IDENTIFIED BY ‘secretpassword’;
Query OK, 0 rows affected (0.00 sec)

4. We can now look again at the user table to doublecheck the entries:

mysql> SELECT user, host, password FROM mysql.user;
+------+---------------------------+------------------+
| user | host                      | password         |
+------+---------------------------+------------------+
| root | localhost                 | 2dxf8e8c17ade6ed |
| rick | localhost                 | 3742g6348q8378d9 |
| rick | %.wiley.com               | 3742g6348q8378d9 |
| rick | 192.168.0.0/255.255.255.0 | 3742g6348q8378d9 |
+------+---------------------------+------------------+
4 rows in set (0.06 sec)

mysql>
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Naturally, you need to adjust the above commands and passwords to suit your local configuration. You
will notice we used a GRANT ALL ON *.* command, which as you probably surmised gave user rick
pretty widespread permissions. That’s fine for a power user but won’t work for creating more restricted
users. We discuss the grant command in more detail in the “Creating Users, and Giving Them
Permissions” section in this chapter, where, among other things, we show you how to create a more
restricted user.

Now that we have MySQL up and running (if not, see the next section) and have a nonroot user created
ready to do some work with, we’ll first discuss troubleshooting after installation and then go back
briefly and take a lightning tour through the essentials of MySQL database administration.

Post-Installation Troubleshooting
If the connection failed when you used mysql, check that the server process is running using the system
ps command. If you can’t find it in the list, try launching mysql_safed –log. This should write a file to
MySQL’s log directory with some additional information.

It’s also possible that the server is running; but simply refusing your connection. The next item to check,
in that case, will be the presence of a database, in particular the default MySQL permissions database.
By default, the mysql_install_db script puts these in <MySQL Install Dir>/var; but if you’ve
installed from someone else’s package, these defaults may have changed. Check the MySQL init script,
or read through mysql_install_db for some clues. Once you find the database directory, verify that it
contains at least a default permissions database (called mysql) and that the server daemon is using this
location as specified in my.cnf.

If you’re still not connecting, make sure the server is stopped, manually delete the contents of the
database directory, and then rerun the mysql_install_db script. Restart the server and try connecting
again. In the unlikely event you are still not getting anywhere, refer to the MySQL documentation, either
with your distribution or on the MySQL Web site (probably more current) to explore some of the more
esoteric possibilities.

MySQL Administration
A handful of the utility programs included with the MySQL distribution facilitate administration. The
most commonly used of these is the mysqladmin program. We’ll cover this utility and the others in the
following section.

Commands
All of the commands except mysqlshow take three standard parameters:

-u username By default mysql will attempt to use the same MySQL username
as your current Linux user name. Use the -u parameter to specify
a different user name.

-p [password] If -p is given but the password is omitted, the password is prompted
for. If the -p parameter is not present, MySQL commands assume no
password is needed.
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-h host Used to connect to a server on a different host (can always be omitted
for local servers).

Again, we recommend you avoid putting a password on the command line, as it can be seen by the ps
command.

myisamchk
The myisamchk utility is designed to check and repair any data tables using the default MYISAM table
format natively supported by MySQL. Normally, myisamchk should be run as the mysql user created at
installation from the directory in which the tables reside. In order to check a database, do su mysql,
change into the directory name corresponding to the name of the database; and run myisamchk with one
or more of the options suggested by the following table. For example,

myisamchk –e -r *.MYI

-c Check the table for errors.

-e Perform an extended check.

-r Recover (correct) errors found.

Again, for more information, we can invoke myisamchk with no parameters and look through the exten-
sive help message.

mysql
This is the principal, and the only fully interactive, MySQL command line tool. Nearly every administra-
tive or user-level task can be performed here. You can start mysql from the command line; then by adding
a final parameter, a database name, you can bypass the use <database> command from within the
monitor. For example, to start the monitor as user rick having password bar and using database foo:

$ mysql -u rick -pbar foo

It’s normally better form and more secure to not pass an argument to –p this way; rather, let the program
prompt you so that your entry is hidden. Do mysql –help | less to page through a list of other com-
mand line options for the mysql monitor.

If you start MySQL without specifying a database, you can use the use <databasename> option from
within MySQL to select one, as you can see from the list of commands in the nearby table.

Alternatively, you can run mysql in a noninteractive mode by bundling commands into an input file and
reading it in from the command line.

$ mysql -u rick -pbar foo < sqlcommands.sql

Once mysql has read and processed your commands, it will return to the command prompt.

While the mysql client is connected to the server, a number of specific commands in addition to the 
standard SQL92 set are supported, as shown in the following table:
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Command Alternative Shortform Meaning

help or ? \h or \? Displays a list of commands.

edit \e Edit the command. The editor used is
determined by the environment vari-
able $EDITOR.

exit or quit \q Exit the MySQL client.

go \g Execute the command.

source <filename> \. Execute SQL from the given file.

status \s Display server status information.

system <command> \! Execute a system command.

tee <filename> \T Append a copy of all output to the
given filename.

use <database> \u Use the given database.

SQL92 is the currently used version of the ANSI SQL standard. Its purpose is to create uniformity for
how SQL databases work, facilitating interoperability and communication among different database
products.

mysqladmin
This utility is the principal tool for quick MySQL database administration. In addition to the usual
parameters, the following commands are supported:

create <database_name> Create a new database.

drop <database_name> Delete a database.

password <new_password> Change a password (as we saw earlier).

reload Reload the grant tables that control permissions.

status Provide the status of the server.

shutdown Shut down the server.

variables Show the variables that control MySQL operation and
their current values. 

version Provide the version number of the server and how long it
has been running.

Invoke mysqladmin without any parameters to see the full list of options from the command prompt.
You’ll want to use | less.
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mysqlbug
With a little luck, you’ll never have the opportunity to use this. As the name implies, this tool creates a
bug report for mailing to the maintainers of MySQL. Before sending it off, you may wish to edit the gen-
erated file to provide additional information that may be useful to the developers.

This is an extremely useful utility that allows you to dump a partial or an entire database to a single file
as a set of SQL commands that can be read back into MySQL or even another SQL RDBMS. It takes as a
parameter the standard user and password info as well as database and table names. The additional
options in the following table greatly extend its utility:

—add-drop-table Add SQL commands to the output file to drop (delete) any tables
before the commands to create them.

-e Use extended insert syntax. This is nonstandard SQL, but if you
are dumping a large amount of data, then this will help your
database dump to reload much more quickly when you try to
reload it into MySQL.

-t Dump only the data from tables, not the information to create
tables.

-d Dump only the table structure, not the actual data.

By default, mysqldump sends its data to standard output, so you’ll want to redirect this to a file.

This utility is handy for migrating data or quick backups, and thanks to the client server implementation
of MySQL it can even be used for a nice remote backup implementation:

$ mysqldump -u rick -p rick > rick.dump

The resulting file, which on our system has only a single table in the rick database, looks like this:

— MySQL dump 8.22
—
— Host: localhost    Database: rick
—————————————————————————————
—
— Table structure for table ‘children’
—
CREATE TABLE children (

childno int(11) DEFAULT ‘0’ NOT NULL auto_increment,
fname varchar(30),
age int(11),
PRIMARY KEY (childno)

);

—
— Dumping data for table ‘children’
—
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INSERT INTO children VALUES (1,’Jenny’,17);
INSERT INTO children VALUES (2,’Andrew’,13);
INSERT INTO children VALUES (3,’Gavin’,4);
INSERT INTO children VALUES (4,’Duncan’,2);
INSERT INTO children VALUES (5,’Emma’,0);
INSERT INTO children VALUES (6,’Alex’,11);
INSERT INTO children VALUES (7,’Adrian’,5);

mysqlimport
The mysqlimport command is the equally useful cousin of mysqldump. Using mysqlimport, you can
read in large quantities of data from an input file. The only command-specific parameters required are a
filename and a database. Generally, you’ll be reading in a file created by mysqldump; but it’s possible to
manually create a file that can be read by mysqlimport as well.

It’s also possible to perform SQL commands from a text file by simply running mysql with input redi-
rected from a file, as we mentioned earlier.

mysqlshow
This little utility can provide quick information about your MySQL installation and its component
databases.

❑ With no parameters, it lists all available databases.

❑ With a database as a parameter, it lists the tables in that database.

❑ With both a database and a table name, it lists the columns in that table.

❑ With a database, table, and column, it lists the details of the specified column. 

Creating Users and Giving Them Permissions
As a MySQL administrator, one of your most common tasks will be user maintenance. Before you try
using a wrench on your users (a tempting possibility on the best of days), we mean adding and remov-
ing users from MySQL and managing their privileges. Starting with MySQL 3.22, users are managed
with the grant and revoke commands from within the MySQL monitor—a task considerably less
daunting than editing the privilege tables directly as was necessary in previous versions.

grant
The MySQL grant command closely, though not exactly, follows SQL92. The general format is

grant <privilege> on <object> to <user> [identified by user-password] [with grant];

There are several privilege values that can be granted, shown in the following table:

alter Alter tables and indexes.

create Create databases and tables.

delete Delete data from the database.
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drop Remove databases and tables.

index Manage indexes.

insert Add data to the database.

select Retrieve data.

update Modify data.

all All the above.

There are also several special administration privileges, but these do not concern us here.

The object on which you grant these privileges is identified as

databasename.tablename

and in the best Unix tradition, * is the anything-goes operator so that database.* means every object in
the database.

If the specified user already exists, privileges are edited to reflect your changes. If no such user exists,
the user is created with the specified privileges. You should specify user and host in the same command
to get the full flexibility of the MySQL permission scheme.

In SQL syntax, the special character % stands for the wildcard character, much the same as * in a shell
environment. You can, of course, issue separate commands for each desired privilege set; but if, for exam-
ple, you want to grant access to user rick from any host in the domain, you could describe rick as

rick@’%.docbox.co.uk’

Any use of the wildcard character must be enclosed in quotes to set it off from any literal text.

You can also use IP/Netmask notation (N.N.N.N/M.M.M.M) to set a network address for access control.

Just as we earlier used rick@’192.168.0.0/255.255.255.0’ to grant access to rick from any local
network computer, we can specify rick@’192.168.0.1’ to limit rick’s access to a single workstation
or specify rick@’192.0.0.0/255.0.0.0’ to broaden the scope to include any machine in the 192 class
A network.

As one more example, 

mysql> grant all on foo.* to rick@’%’ identified by ‘bar’;

will create a user rick, with full permissions on the database foo, to connect from any machine with an
initial password of bar.

If the database foo does not yet exist, then the user rick will now have permissions to create it using
the create database SQL command.

The identified by clause is optional; but it’s a good idea to set the password each time to ensure there
is never a hole in your security.
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Typically, the with grant option is used only to create a secondary administrative user; however, it can
be used to allow a newly created user to confer the privileges granted to her on other users. Always use
with grant judiciously.

revoke
Naturally, the administrator that giveth also taketh away, and the administrator can do so with the
revoke command:

revoke a privilege on an object from a user;

using much the same format as the grant command. For example,

revoke insert on foo.* from rick@’%’;

The revoke command, however, does not delete users. If you wish to completely remove a user, don’t
simply modify their privileges, but use revoke to remove their privileges. Then you can completely
remove them from the user table with

mysql> use mysql
mysql> DELETE FROM user WHERE user = “rick”
mysql> FLUSH PRIVILEGES;

In declining to specify a host, we ensure that we get rid of every instance of the MySQL user that we
want removed.

Understand that delete is not part of the same concept as grant and revoke. It’s SQL syntax
that happens to be necessary as a result of the way MySQL handles permissions. Notice that the use
command is not necessary with grant and revoke, as MySQL knows in these instances you want
manipulate the permissions tables.

mysql> use mysql
mysql> DELETE FROM user WHERE user = “rick”
mysql> FLUSH PRIVILEGES;

Passwords
If you want to specify passwords for existing users who do not already have them, or you wish to
change your own or somebody else’s password, you’ll need to connect to the MySQL server as the root
user, select the mysql database, and then

mysql> select host, user, password from user; 

You should get a list like this:

+-----------+----------+------------------+
| host      | user     | password         |
+-----------+----------+------------------+ 
| localhost | root     | 67457e226a1a15bd |
| localhost | foo      |                  |
+-----------+----------+------------------+ 
2 rows in set (0.00 sec)
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Say you want to assign the password bar to user foo; you can do so like this:

mysql> UPDATE user SET password = password(‘bar’) WHERE user = ‘foo’;

Display the relevant columns in the user table again:

mysql> SELECT host, user, password FROM user; 
+-----------+----------+------------------+
| host      | user     | password         |
+-----------+----------+------------------+ 
| localhost | root     | 65457e236g1a1wbq |
| localhost | foo      | 7c9e0a41222752fa |
+-----------+----------+------------------+ 
2 rows in set (0.00 sec)
mysql>

Sure enough, the user foo now has a password.

In MySQL 4.1 the password scheme has been updated. However, you can still set a password using the
old algorithm for backward compatibility with the function OLD_PASSWORD(‘password to set’).
This implementation is still a little ragged, but it should become more reliable as updated versions are
released.

Creating a Database
Let’s start with a database called rick. You may recall that we’ve already created a user with the same
name.

mysql> GRANT ALL ON *.* TO rick@localhost IDENTIFIED BY ‘secretpassword’;

Let’s test that privilege set by logging in as rick and creating the database:

mysql> quit
Bye
$ mysql –u rick -p
Enter password:
...
mysql> CREATE DATABASE rick;

Now we’ll tell MySQL we want to use our new database:

mysql> use rick

Now we can populate this database with the tables and information we want. On future logins, we can
specify the database on the command line, bypassing the need for the use command:

$ mysql –u rick -p rick

We will then automatically change to use the database rick.
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Data Types
So now we have a running MySQL server, a secure login for our user, and a database ready to use.
What’s next? Well, now we need to create some tables with columns to store our data. Before we can do
that, however, we need to know about the data types that MySQL supports.

MySQL data types are fairly standard, so we will just run briefly though the main types here. As always,
the MySQL manual on the MySQL Web site discusses this in more detail.

Boolean
A Boolean column can be defined using the keyword BOOL. As you would expect, it can hold TRUE and
FALSE values. It may also hold the special database “unknown” value NULL.

Character
A variety of character types are available and are shown in the following table. The first three are stan-
dard and the remaining three specific to MySQL. We suggest you stick to the standard types if practical.

Definition Meaning

CHAR A single character.

CHAR(N) A character string on exactly N characters, which will be padded with
space characters if necessary. Limited to 255 characters.

VARCHAR(N) A variable-length array of N characters. Limited to 255 characters.

TINYTEXT Similar to VARCHAR(N).

MEDIUMTEXT A text string of up to 65,535 characters.

LONGTEXT A text string of up to 232–1 characters.

Number
The number types are broken down into integer and floating point number types, as shown in the fol-
lowing table:

Definition Type Meaning

TINYINT Integer An 8-bit data type.

SMALLINT Integer A 16-bit data type.

MEDIUMINT Integer A 24-bit data type.

INT Integer A 32-bit data type. This is a standard type, and a good
general purpose choice.

BIGINT Integer A 64-bit signed data type.

FLOAT(P) Floating A floating point number with at least P digits of 
precision.
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Definition Type Meaning

DOUBLE(D, N) Floating A signed double-precision floating point number, with
D digits and N decimal places.

NUMERIC(P, S) Floating A real number with a total of P digits, with S of the
digits after the decimal place. Unlike DOUBLE, this is
an exact number, so it is better for storing currency, but
less efficiently processed.

DECIMAL(P, S) Floating A synonym for NUMERIC.

In general, we suggest you stick to INT, DOUBLE, and NUMERIC types, as these are closest to the standard
SQL types. The other types are nonstandard and may not be available in other database systems if you
find you need to move your data at some point in the future.

Temporal
Four temporal data types are available, shown in the following table:

Definition Meaning

DATE Stores dates between January 1, 1000, and December 31, 9999.

TIME Stores times between –838:59:59 and 838:59:59.

TIMESTAMP Stores a timestamp between January 1, 1970, and the year 2037.

DATETIME Stores dates between January 1, 1000, and the last second of December 31, 9999.

Creating a Table
Now that we have our database server running, know how to assign user permissions, and know how to
create a database and some basic database types, we can move on to creating tables.

A database table is simply a sequence of rows, each of which consists of a fixed set of columns. It’s rather
like a spreadsheet, except that each row must have exactly the same number and type of columns, and
each row must, in some way, be different from all other rows in the table.

A database can, within reason, contain pretty much an unlimited number of tables. However, very few
databases need more than 100 tables, and for most small systems 10 or 20 tables usually suffice. 

The full SQL syntax for creating database objects, known as DDL (data definition language), is too 
complex to go into fully in one chapter; the full details can be found in the documentation section of
the MySQL Web site.

The basic syntax for creating a table is

CREATE TABLE <table_name> (
column type [NULL | NOT NULL] [AUTO_INCREMENT] [PRIMARY KEY]
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[, ... ]
[, PRIMARY KEY ( column [, ... ] ) ]
)

You can discard tables using the DROP TABLE syntax, which is very simple:

DROP TABLE <table_name>

For now, there are just a small number of additional keywords we need to know to get up to speed with
creating tables, shown in the following table:

Keyword Meaning

AUTO_INCREMENT This special keyword tells MySQL that, whenever you write a NULL
into this column, it should automatically fill in the column data using
an automatically allocated incrementing number. This is an
immensely useful feature; it allows us to use MySQL to automatically
assign unique numbers to rows in our tables. In other databases this
functionality is often provided by a serial type, or is managed more
explicitly with a sequence.

NULL A special database value that is normally used to mean “not known,”
but can also be used to mean “not relevant.” For example, if you are
filling in a table with employee details, you might have a column for
e-mail address, but perhaps some employees don’t have a company
e-mail address. In this case, you would store a NULL against the e-mail
address for that employee to show that the information was not rele-
vant to that particular person. The syntax NOT NULL means that this
column cannot store a NULL value, and it can be useful to prevent
columns from holding NULL values if, for example, the value must
always be known, such as an employee’s last name.

PRIMARY KEY Indicates that the data for this column will be unique and different in
every row in this table. Each table can have just a single primary key.

It’s much easier to see table creation in practice than to look at the base syntax, so let’s do that now by
creating a table called children that will store a unique number for each child, a first name, and an age.
We’ll make the child number a primary key:

CREATE table children (
childno INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
fname VARCHAR(30),
age INTEGER

);

Notice that, unlike most programming languages, the column name (childno) comes before the column
type (INTEGER).
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We can also use a syntax that defines the primary key separately from the column; here’s a session that
shows the alternative syntax:

mysql> use rick
Database changed
mysql> CREATE table children (

-> childno INTEGER AUTO_INCREMENT NOT NULL,
-> fname varchar(30),
-> age INTEGER,
-> PRIMARY KEY(childno)
-> );

Query OK, 0 rows affected (0.04 sec)
mysql>

Notice how we can write the SQL across several lines, and MySQL uses the -> prompt to show we are
on a continuation line. Also notice, as mentioned earlier, we terminate the SQL with a semicolon to indi-
cate we have finished and are ready for the database to process the request.

If you make a mistake, MySQL should allow you to scroll backward through previous commands, edit
them, and re-enter them by simply pressing Enter.

Now we have a table to which we can add some data. We do this with the INSERT SQL command. Since
we defined the childno column as an AUTO_INCREMENT column, we don’t give any data from that col-
umn; we simply allow MySQL to allocate a unique number.

We can check whether the data was stored successfully by SELECTing the data from the table:

mysql> INSERT INTO children(fname, age) VALUES(“Jenny”, 17);
Query OK, 1 row affected (0.07 sec)

mysql> INSERT INTO children(fname, age) VALUES(“Andrew”, 13);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT childno, fname, age FROM children;
+---------+--------+------+
| childno | fname  | age  |
+---------+--------+------+
|       1 | Jenny  |   17 |
|       2 | Andrew |   13 |
+---------+--------+------+
2 rows in set (0.06 sec)

mysql>

Rather than explicitly list the columns we wanted to select, we could just have used an asterisk (*) for
the columns, which will list all columns in the named table. In production code you should always
explicitly name the column you wish to select for interactive use, but an asterisk is sometimes conve-
nient during development because it saves typing and the need to remember exact column names.

We don’t have space in this chapter to go into full details of SQL, much less database design. For more
information see www.mysql.com.
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Graphical Tools
Manipulating tables and data on the command line is all well and good, but these days many people
prefer graphical tools.

MySQL has had a graphical tool known as MySQLGUI for some time. This tool is still available from the
MySQL Web site, but development is now concentrated on an alternative tool, the MySQL Control Center,
or MySQLCC. The MySQL Control Center is a very useful all-around tool, and one well worth installing.

We strongly suggest you look at MySQLCC; it’s a powerful, stable, and easy-to-use graphical interface for
MySQL that is available precompiled for both Linux and Windows (even the source code is available if
you want it). It allows you to both administer a MySQL server and execute SQL through a GUI interface.

If a MySQLCC is not available on your Linux distribution, you can download a copy from the MySQL
Web site and follow the simple installation instructions. Alternatively, you can manage your copy of
MySQL running on your Linux server directly from MySQLCC running on a Windows desktop. They
look and run almost identically.

The first time you run MySQLCC, you will be presented with a blank Control Center window, with an
empty Console Manager, as shown in Figure 8-2. Hovering the mouse over the first icon on the toolbar
reveals that this is the icon for creating a new connection.

Figure 8-2
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When you click this button, you will be asked for some basic details in an additional popup window (see
Figure 8-3).

Figure 8-3

If you want to manage your server remotely from a Windows PC, then configuration is almost identical,
except that you need to enter a host name or IP address in the Host Name field, as shown in Figure 8-4.

Figure 8-4
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All the information you need to provide is the name to identify the connection (which can be anything
you choose), the host name, the user name, and the password. All other values are filled in by default for
you. Then click the Test button, which will tell you the connection is okay.

Then click Add to add this connection to the list. The name gw1 (or whatever you chose—gw1 just 
happens to be the name of the machine the server is running on) should be displayed in the list of
MySQL servers, and by clicking it you should be able to drop down more information, as you can see
in Figure 8-5.

Figure 8-5

If you explore the database section, you can see the tables, and by right-clicking a table, you can edit the
table definition or the data in the table, as you can see in Figure 8-6.
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Figure 8-6

You can also edit users and their permissions, execute SQL, look at connections to the database, and do
many other things.

Accessing MySQL Data from C
Now that we have the rudiments of MySQL out of the way, let’s explore how to access it from our own
application, rather than using mysqlcc or the basic mysql client.

MySQL can be accessed from many different languages. We know of

❑ C

❑ C++

❑ Java
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❑ Perl

❑ Python

❑ REXX

❑ Tcl

❑ PHP

An ODBC drive is also available for accessing MySQL from Windows-native applications such as
Access; and there is even an ODBC driver for Linux, although little reason exists to use it.

In this chapter, we’ll limit ourselves to the C interface because that is the primary focus of this book and
because the same libraries facilitate connection by a number of other languages.

Connection Routines
The two steps involved in connecting to a MySQL database from C are

❑ Initializing a connection handle structure

❑ Physically making the connection

First, we’ll use mysql_init to initialize our connection handle:

MYSQL *mysql_init(MYSQL *);

Normally you pass NULL to the routine, and a pointer to a newly allocated connection handle structure is
returned. If you pass an existing structure, it will be reinitialized. On error, NULL is returned.

So far, we’ve simply allocated and initialized a structure. We still need to offer the parameters for a con-
nection using mysql_real_connect:

MYSQL *mysql_real_connect(MYSQL *connection,
const char *server_host,
const char *sql_user_name,
const char *sql_password,
const char *db_name,
unsigned int port_number,
const char *unix_socket_name, 
unsigned int flags);

The connection pointer has to identify a structure already initialized using mysql_init. The parameters
are fairly self-explanatory; however, it should be noted that the server_host can take a host name or an
IP address. If connecting only to the local machine, we can optimize the connection type by specifying
simply localhost here.

sql_user_name and sql_password are exactly what they sound like. If the login name is NULL, then
the login ID of the current Linux user is assumed. If the password is NULL, you will be able to access data
only on the server that’s accessible without a password. The password is encrypted before being sent
across the network.
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The port_number and unix_socket_name should be 0 and NULL, respectively, unless you have
changed the defaults in your MySQL installation. They will default to appropriate values.

Finally, the flag parameter allows you to OR together some bit-pattern defines, allowing you to alter cer-
tain features of the protocol being used. None of these are relevant to this introductory chapter; all are fully
documented in the manual.

If we are unable to connect, NULL is returned. Using mysql_error can provide helpful information.

When you are finished with the connection, normally at program termination, call mysql_close like this:

void mysql_close(MYSQL *connection);

This will shut down the connection. If the connection was set up by mysql_init, the structure will be
freed. The pointer will become invalid and cannot be used again. It is wasteful of resources to leave an
unneeded connection open; but there’s additional overhead associated with reopening a connection, so
use your judgment about when to use these options.

The mysql_options routine (which can be called only between mysql_init and mysql_real_
connect) allows us to set some options:

int mysql_options(MYSQL *connection, enum option_to_set,
const char *argument);

Because mysql_options is capable of setting only one option at a time, it must be called once for each
option you would like to set. You can use it as many times as necessary so long as all uses appear
between mysql_init and mysql_real_connect. Not all of the options are of the char type, which
must be cast as const char *.  We have a look at the three most common options in the following
table. As always, the extensive online manual lists them all.

enum Option Actual Argument Type Meaning

MYSQL_OPT_ const unsigned int * The number of seconds to wait 
CONNECT_TIMEOUT before timing out a connection.

MYSQL_OPT_COMPRESS None, use NULL Use compression on the network
connection.

MYSQL_INIT_COMMAND const char * Command to send each time a
connection is established.

A successful call returns zero. Because this is just for setting flags, failure always means that an invalid
option has been used.

To set the connection timeout to seven seconds, we use a fragment of code such as this:

unsigned int timeout = 7;
...
connection = mysql_init(NULL);
ret = mysql_options(connection, MYSQL_OPT_CONNECT_TIMEOUT, (const char *)&timeout);
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if (ret) {
/* Handle error */
...

}

connection = mysql_real_connect(connection ...

Now that you’ve learned how to set up and close your connection, let’s try a short program just to test
things.

Let’s start by creating our database and an example table within it. We could do this from the command
line, or if you prefer, use mysqlgcc.

$ mysql -u rick -psecret
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 12 to server version: 4.0.12

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> create database foo;
Query OK, 1 row affected (0.00 sec)

mysql> use foo;
Database changed
mysql> exit

We have now created our new database. Rather than type a lot of table creation and population commands
directly into the mysql command line, which is somewhat prone to error and not very productive if you
ever need to type it again, we will create a file with the commands we need in it.

This file is create_children.sql:

— 
— Create the table children
— 

CREATE TABLE children (
childno int(11) DEFAULT ‘0’ NOT NULL auto_increment,
fname varchar(30),
age int(11),
PRIMARY KEY (childno)

);

—
—  Populate the table ‘children’
—

INSERT INTO children VALUES (1,’Jenny’,17);
INSERT INTO children VALUES (2,’Andrew’,13);
INSERT INTO children VALUES (3,’Gavin’,4);
INSERT INTO children VALUES (4,’Duncan’,2);
INSERT INTO children VALUES (5,’Emma’,0);
INSERT INTO children VALUES (6,’Alex’,11);
INSERT INTO children VALUES (7,’Adrian’,5);
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We can now sign back on to MySQL, selecting the database foo, and execute this file:

$ mysql -u rick -psecret foo
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 15 to server version: 4.0.12

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> \. create_children.sql
Query OK, 0 rows affected (0.01 sec)

Query OK, 1 row affected (0.00 sec)

We have removed the many duplicate lines of output as the rows are created in the database. Now that
we have a user, a database, and a table with some data stored in it, it’s time to see how we can access the
data from code.

This is connect1.c, which connects to a server on the local machine, as user rick with password bar,
to the database called foo.

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

int main(int argc, char *argv[]) {
MYSQL *conn_ptr;

conn_ptr = mysql_init(NULL);
if (!conn_ptr) {

fprintf(stderr, “mysql_init failed\n”);
return EXIT_FAILURE;

}

conn_ptr = mysql_real_connect(conn_ptr, “localhost”, “rick”, “bar”,
“foo”, 0, NULL, 0);

if (conn_ptr) {
printf(“Connection success\n”);

} else {
printf(“Connection failed\n”);

}

mysql_close(conn_ptr);

return EXIT_SUCCESS;
}

Let’s compile our program and see how we did. You may need to add both the include path and a library
path, as well as specifying that the file needs linking with the library module mysqlclient. On some sys-
tems you may also need -lz, to link the compression library. On our system, the required compile line is

$ gcc -I/usr/include/mysql connect1.c -L/usr/lib/mysql -lmysqlclient -lz -o
connect1
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You may find a simpler line, such as the one that follows, works on newer distributions such as Red Hat
Linux 9 and later.

$ gcc -I/usr/include/mysql connect1.c -lmysqlclient -o connect1

When we run it, we simply get a message saying the connection succeeded:

$ ./connect1
Connection success
$

In Chapter 9, we show you how to build a makefile to automate this connection.

As you can see, getting a connection to a MySQL database is very easy.

Error Handling
Before we move on to more sophisticated programs, it’s useful to have a look at how MySQL handles
errors. MySQL uses a number of return codes reported by the connection handle structure. The two
must-have routines are

unsigned int mysql_errno(MYSQL *connection);

and

char *mysql_error(MYSQL *connection);

We can retrieve the error code, generally any nonzero value, by calling mysql_errno and passing the
connection structure. Zero is returned if the error code has not been set. Because the code is updated
each time a call is made to the library, we can retrieve the error code only for the last command executed,
with the exception of these two error routines, which do not cause the error code to be updated.

The return value actually is the error code, and these values are defined in either the errmsg.h include
file or mysqld_error.h. Both of these can be found in the MySQL include directory. The first reports
on client-side errors, and the second focuses on server-specific errors.

If you prefer a textual error message, you can call mysql_error, which provides a meaningful text mes-
sage instead. The message text is written to some internal static memory space, so you need to copy it
elsewhere if you want to save the error text.

We can add some rudimentary error handling to our code in order to see this all in action. You probably
have already noticed, however, that we are likely to experience a problem since mysql_real_connect
returns a NULL pointer on failure, depriving us of an error code. If we make the connection handle a
variable, then we can still get at it should mysql_real_connect fail.

Here is connect2.c, which illustrates how we use the connection structure when it isn’t dynamically
allocated, and also how we might write some basic error-handling code. The changes are highlighted:

#include <stdlib.h>
#include <stdio.h>
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#include “mysql.h”

int main(int argc, char *argv[]) {

MYSQL my_connection;

mysql_init(&my_connection);  
if (mysql_real_connect(&my_connection, “localhost”, “rick”, 

“secret”, “foo”, 0, NULL, 0)) {
printf(“Connection success\n”);
mysql_close(&my_connection);

} else {
fprintf(stderr, “Connection failed\n”);

if (mysql_errno(&my_connection)) {
fprintf(stderr, “Connection error %d: %s\n”, mysql_errno(&my_connection),

mysql_error(&my_connection));
}

}

return EXIT_SUCCESS;
}

We could have solved our problem quite simply by avoiding overwriting our connection pointer with
the return result if mysql_real_connect failed. Still, this is a nice example of the other way of using
connection structures. We can force an error by choosing an incorrect user or password, and we will still
get an error code similar to that offered by the mysql tool.

$ ./connect2
Connection failed
Connection error 1045: Access denied for user: ‘rick@localhost’ (Using
password: YES)
$

Executing SQL Statements
Now that we can connect to our database and correctly handle errors, let’s put our program to some real
work. The primary API function for executing SQL statements is aptly named:

int mysql_query(MYSQL *connection, const char *query)

Not too difficult, is it? This routine takes the connection structure pointer and hopefully some valid SQL
as a text string (with no terminating semicolon as in the mysql tool). A zero is returned if we are success-
ful. A second routine, mysql_real_query, can be used if binary data is called for; but in this chapter
we’ll be using only mysql_query.

SQL Statements That Return No Data
For the sake of simplicity, let’s start by looking at some SQL statements that do not return any data:
UPDATE, DELETE, and INSERT.
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Another important function that we will introduce at this point checks the number of rows affected by
our query:

my_ulonglong mysql_affected_rows(MYSQL *connection);

The first thing you are likely to notice about this function is the very unusual data type returned. An
unsigned type is used for reasons of portability. When you are using printf, it’s recommended that this
be cast as unsigned long with a format of %lu. This function returns the number of rows affected by the
previously issued UPDATE, INSERT, or DELETE query. The return value that MySQL uses may catch you
unprepared if you have worked with other SQL databases. MySQL returns the number of rows modified
by an update, whereas many other databases would consider a record updated simply because it
matches any WHERE clause.

In general for the mysql_ functions, a return of 0 indicates no rows affected and a positive number is the
actual result, typically the number of rows affected by the statement.

So let’s add some code to connect2.c in order to insert a new row into our table; we’ll call this new
program insert1.c Observe that the wrapping shown is a physical page limitation; you would not
normally use a line break in your actual SQL statement.

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

int main(int argc, char *argv[]) {
MYSQL my_connection;

int res;

mysql_init(&my_connection);  
if (mysql_real_connect(&my_connection, “localhost”, 

“rick”, “secret”, “foo”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “INSERT INTO children(fname, age)
VALUES(‘Ann’, 3)”);

if (!res) {
printf(“Inserted %lu rows\n”, 

(unsigned long)mysql_affected_rows(&my_connection));
} else {

fprintf(stderr, “Insert error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

}

mysql_close(&my_connection);
} else {

fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Connection error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
}

332

Chapter 8

b544977 Ch08.qxd  12/1/03  8:56 AM  Page 332



}

return EXIT_SUCCESS;
}

Not surprisingly, one row is inserted.

Now let’s change the code to include an UPDATE, rather than INSERT, and see how affected rows are
reported.

mysql_errno(&my_connection), mysql_error(&my_connection));
}

}

res = mysql_query(&my_connection, “UPDATE children SET AGE = 4 
WHERE fname = ‘Ann’”);

if (!res) {
printf(“Updated %lu rows\n”, 

(unsigned long)mysql_affected_rows(&my_connection));
} else {

fprintf(stderr, “Update error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

}

We’ll call this program update1.c. It attempts to set the age of all children called Ann to 4.

Now suppose our children table has data in it, like this:

+---------+--------+------+
| childno | fname  | age  |
+---------+--------+------+
|       1 | Jenny  |   17 |
|       2 | Andrew |   13 |
|       3 | Gavin  |    4 |
|       4 | Duncan |    2 |
|       5 | Emma   |    1 |
|       6 | Alex   |   11 |
|       7 | Adrian |    5 |
|       8 | Ann    |    3 |
|       9 | Ann    |    4 |
|      10 | Ann    |    3 |
|      11 | Ann    |    4 |
+---------+--------+------+

Notice that there are four children matching the name Ann. If we execute update1, we might reasonably
expect the number of affected rows to be four, the number of rows mandated by our WHERE clause. As
you will see, however, the program reports a change of only two rows because those were the only rows
that actually required a change to the data. We can opt for more traditional reporting by using the
CLIENT_FOUND_ROWS flag to mysql_real_connect.

if (mysql_real_connect(&my_connection, “localhost”, 
“rick”, “secret”, “foo”, 0, NULL, CLIENT_FOUND_ROWS)) {
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If we reset the data in our database, then run the program with this modification, it reports the number
of affected rows as four.

The function mysql_affected_rows has one last oddity, which appears when we delete data from the
database. If we delete data with a WHERE clause, then mysql_affected_rows returns the number of
rows deleted, as we would expect. However, if there is no WHERE clause on a DELETE statement, then all
rows in the table will be deleted, but number of rows affected is reported by the program as zero. This is
because MySQL optimizes the deletion of all rows, rather than performing many single-row deletions.
This behavior is not affected by the CLIENT_FOUND_ROWS option flag.

Discovering What You Inserted
There is a small but crucial aspect of inserting data. Remember we mentioned the AUTO_INCREMENT
type of column, where MySQL automatically assigned IDs for you? This feature is extremely useful, 
particularly when you have several users.

Take a look at that table definition again:

CREATE TABLE children (
childno INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
fname VARCHAR(30),
age INTEGER

);

As you can see, we have made the childno column an AUTO_INCREMENT field. That’s all very well, but
once we have inserted a row, how do we know which number was allocated for the child whose name
we just inserted?

We could execute a SELECT statement, to retrieve the data, searching on the child’s name, but this is
very inefficient, and not guaranteed to be unique—suppose we had two children with the same name?
Because discovering the value of an AUTO_INCREMENT column is such a common problem, MySQL pro-
vides a special solution in the form of the LAST_INSERT_ID() function. 

Whenever MySQL inserts a data value into an AUTO_INCREMENT column, it keeps track, on a per-user
basis, of the last value it assigned. User programs can recover this value by simply SELECTing the rather
special function LAST_INSERT_ID(), which acts a little like a pseudo column.

Try It Out
mysql> INSERT INTO children(fname, age) VALUES(‘Tom’, 13);
Query OK, 1 row affected (0.06 sec)
mysql> SELECT LAST_INSERT_ID();
+------------------+
| last_insert_id() |
+------------------+
|                4 |
+------------------+
1 row in set (0.01 sec)
mysql> INSERT INTO children(fname, age) VALUES(‘Harry’, 17);
Query OK, 1 row affected (0.02 sec)

334

Chapter 8

b544977 Ch08.qxd  12/1/03  8:56 AM  Page 334



mysql> SELECT LAST_INSERT_ID();
+------------------+
| last_insert_id() |
+------------------+
|                5 |
+------------------+
1 row in set (0.00 sec)
mysql>

How It Works
Each time we inserted a row, MySQL allocated a new id column value and kept track of it so we could
retrieve it using LAST_INSERT_ID().

If you want to experiment to see that the number returned is indeed unique to your session, open a differ-
ent session and insert another row. In the original session re-execute the SELECT LAST_INSERT_ID();
statement. You will see the number hasn’t changed because the number returned is the last number
inserted by the current session. However, if you do SELECT * FROM children, you should see that the
other session has indeed inserted data.

Try It Out
Let’s modify our insert1.c program to see how this works in C. We will call this modified program
insert2.c

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

int main(int argc, char *argv[]) {
MYSQL my_connection;

MYSQL_RES *res_ptr;
MYSQL_ROW sqlrow;
int res;

mysql_init(&my_connection);  
if (mysql_real_connect(&my_connection, “localhost”, 

“rick”, “bar”, “rick”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “INSERT INTO children(fname, age)
VALUES(‘Robert’, 7)”);

if (!res) {
printf(“Inserted %lu rows\n”, (unsigned

long)mysql_affected_rows(&my_connection));
} else {

fprintf(stderr, “Insert error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

}
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res = mysql_query(&my_connection, “SELECT LAST_INSERT_ID()”);

if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

while ((sqlrow = mysql_fetch_row(res_ptr))) {
printf(“We inserted childno %s\n”, sqlrow[0]);

}
mysql_free_result(res_ptr);

}
}

mysql_close(&my_connection);
} else {

fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Connection error %d: %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
}

}

return EXIT_SUCCESS;
}

The key changes are highlighted. Here is the output:

$ gcc -I/usr/include/mysql insert2.c -L/usr/lib/mysql -lmysqlclient -lz -o insert2
$ ./insert2
Connection success
Inserted 1 rows
We inserted childno 6
$ ./insert2
Connection success
Inserted 1 rows
We inserted childno 7

How It Works
After we inserted a row, we retrieved the allocated ID using the LAST_INSERT_ID() function just like
a normal SELECT statement. We then used mysql_use_result(), which we will explain shortly, to
retrieve the data from the SELECT statement we executed and print it out. Don’t worry too much about
the mechanics of retrieving the value just now; all will be explained in the next few pages.

Statements That Return Data
The most common use of SQL, of course, is retrieving rather than inserting or updating data. Data is
retrieved with the SELECT statement. 
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MySQL also supports SHOW, DESCRIBE, and EXPLAIN SQL statements for returning results,
but we’re not going to be considering these here. As usual, the manual contains explanations of these
statements. 

Retrieving data into our C application will typically involve four steps:

❑ Issue the query.

❑ Retrieve the data.

❑ Process the data.

❑ Tidy up if necessary.

Just as we did with our INSERT and DELETE statements, we’ll use mysql_query to send the SQL. Next
we’ll retrieve the data using either mysql_store_result or mysql_use_result, depending on how
we want the data retrieved. Next we’ll use a sequence of mysql_fetch_row calls to process the data.
Finally, we’ll use mysql_free_result to clear the memory we used for our query.

The difference between mysql_use_result and mysql_store_result basically amounts to whether
we want to get our data back a row at a time, or get the whole result set in one go. The latter is more
appropriate in circumstances where you anticipate a smaller result set.

Functions for All-At-Once Data Retrieval
We can retrieve all the data from a SELECT (or other statement that returns data), in a single call, using
mysql_store_result:

MYSQL_RES *mysql_store_result(MYSQL *connection);

Clearly, we want to use this function after a successful call to mysql_query. The function will store all
the data returned in the client immediately. It returns a pointer to a new structure called a result set
structure, or NULL if the statement failed.

Upon success, we’ll next call mysql_num_rows to get the number of records returned, which we hope
will be a positive number but may be 0 if no rows were returned.

my_ulonglong mysql_num_rows(MYSQL_RES *result);

This takes the result structure returned from mysql_store_result and returns the number of rows in
that result set. Providing mysql_store_result succeeded, mysql_num_rows will always succeed.

This combination of functions is an easy way to retrieve the data we need. At this point, all data is local
to the client and we no longer have to concern ourselves with the possibility of network or database
errors. By getting the number of rows returned, we’ll facilitate the coding that is to come.

If we happen to be working with a particularly large dataset, it will be better to retrieve smaller, more
manageable chunks of information. This will return control to the application more quickly and is an
unselfish way to use network resources. We’ll explore this idea in more depth later, when we cover
mysql_use_result.
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Now that we have the data, we can process it using mysql_fetch_row and move around in the dataset
using mysql_data_seek, mysql_row_seek, and mysql_row_tell. Let’s take a look at these functions.

❑ mysql_fetch_row: This function pulls a single row out of the result structure we got using
mysql_store_result and puts it in a row structure. NULL is returned when the data runs
out or if an error occurs.We will come back to processing the data in this row structure in the
next section.

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result);

❑ mysql_data_seek: This function allows you to jump about in the result set, setting the row
that will be returned by the next mysql_fetch row operation. The offset value is a row num-
ber, and it must be in the range zero to one less than the number of rows in the result set.
Passing zero will cause the first row to be returned on the next call to mysql_fetch_row.

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset);

❑ The function mysql_row_tell returns an offset value, indicating the current position in the
result set. It is not a row number, and you can’t use it with mysql_data_seek.

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result);

However, you can use it with

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset);

which moves the current position in the result set and returns the previous position.

This pair of functions is most useful for moving between known points in the result set. Be careful not
to confuse the offset value used by row_tell and row_seek with the row_number used by
data_seek. Your results will be unpredictable.

❑ When you’ve done everything you need to do with your data, you must explicitly use
mysql_free_result, which allows the MySQL library to clean up after itself.

void mysql_free_result(MYSQL_RES *result);

When you’ve finished with a result set you must always call this function to allow the MySQL
library to tidy up the objects it has allocated.

Retrieving the Data
Now we can write our first data-retrieval application. We want to select all records where age is greater
than 5. We don’t how to process this data yet, so we’ll start by simply retrieving it.. The important 
section, where we retrieve a result set and loop through the retrieved data, is highlighted. This is
select1.c:

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”
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MYSQL my_connection;
MYSQL_RES *res_ptr;
MYSQL_ROW sqlrow;

int main(int argc, char *argv[]) {
int res;

mysql_init(&my_connection);  
if (mysql_real_connect(&my_connection, “localhost”, “rick”, 

“secret”, “foo”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “SELECT childno, fname, 
age FROM children WHERE age > 5”);

if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

} else {

res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {
printf(“Retrieved %lu rows\n”, (unsigned long)mysql_num_rows(res_ptr));
while ((sqlrow = mysql_fetch_row(res_ptr))) {

printf(“Fetched data...\n”);
}
if (mysql_errno(&my_connection)) {

fprintf(stderr, “Retrive error: %s\n”, mysql_error(&my_connection)); 
}

}
mysql_free_result(res_ptr);

}
mysql_close(&my_connection);

} else {
fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {

fprintf(stderr, “Connection error %d: %s\n”,
mysql_errno(&my_connection), mysql_error(&my_connection));

}
}

return EXIT_SUCCESS;
}

Retrieving the Data One Row at a Time
To retrieve the data row by row, which is what we really want to do, we’ll rely on mysql_use_result
rather than mysql_store_result.

MYSQL_RES *mysql_use_result(MYSQL *connection);

Like the mysql_store_result function, mysql_use_result returns NULL on error; if successful, it
returns a pointer to a result set object. However, it differs in that hasn’t retrieved any data into the result
set that it initialized.
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So what’s the impact of calling mysql_use_result versus mysql_store_result? There are substan-
tial resource management benefits to the former; but it can’t be used with mysql_data_seek,
mysql_row_seek, or mysql_row_tell, and the utility of mysql_num_rows is limited by the fact that
it won’t actually fire until all the data has been retrieved.

We’ve also increased our latency, as each row request has to go across the network and the results sent
back the same way. Another possibility is that the network connection could fail in mid-operation, leav-
ing us with incomplete data at best and a mess of some degree at worst.

None of this diminishes in any way, however, the benefits alluded to earlier: a better-balanced network
load and less storage overhead for possibly very large data sets.

Changing select1.c into select2.c, which will use the mysql_use_result method, is easy, so we
just show the changed section here with shaded changed lines:

if (res) {
printf(“SELECT error: %s\n”, mysql_error(&my_connection));

} else {

res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

while ((sqlrow = mysql_fetch_row(res_ptr))) {
printf(“Fetched data...\n”);

}
if (mysql_errno(&my_connection)) {

printf(“Retrive error: %s\n”, mysql_error(&my_connection));
}

}
mysql_free_result(res_ptr);

}

Observe that we still can’t get a row count until our last result is retrieved. However, by checking for
errors early and often, we’ve made the move to mysql_use_result much easier to apply. Coding in
this way can save a lot of headache on subsequent modifications to the application.

Processing Returned Data
As much as we’ve accomplished, our data still hasn’t done much for us, has it? Time to remedy that.
MySQL, like most SQL databases, gives us back two sorts of data:

❑ The retrieved information from the table, namely the column data

❑ Data about the data, so-called metadata, such as column names and types

Let’s first focus on getting the data itself into a usable form.

You must use mysql_fetch_row repeatedly until all the data has been retrieved
in order to actually get at the data. If you don’t get all the data from mysql_
use_result, subsequent efforts to get at the data may be corrupted.
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The mysql_field_count function provides some basic information about a query result. It takes our
connection object and returns the number of fields (columns) in the result set:

unsigned int mysql_field_count(MYSQL *connection);

In a more generic way, we can use mysql_field_count for other things, such as determining why 
a call to mysql_store_result failed. For example, if mysql_store_result returns NULL, but
mysql_field_count returns a positive number, we can hint at a retrieval error. However, if
mysql_field_count returns a 0, there were no columns to retrieve, which would explain the failure
to store the result. It’s reasonable to expect that you will know how many columns are supposed to
be returned by a particular query. This function is most useful, therefore, in generic query-processing
components or any situation where queries are constructed on the fly.

In code written for older versions of MySQL, you may see mysql_num_fields being used. This
could take either a connection structure or a result structure pointer and return the number of columns.

If we lay aside concerns about formatting, then we already know how to print out the data right away.
We’ll add the simple display_row function to our select2.c program.

Notice that we have made the connection, result, and row information returned from mysql_fetch_
row all global to simplify the example. In production code we would not recommend this.

Here is our very simple routine for printing out the data:

void display_row() {
unsigned int field_count;

field_count = 0;
while (field_count < mysql_field_count(&my_connection)) {

printf(“%s “, sqlrow[field_count]);
field_count++;

}
printf(“\n”);

}

Append it to select2.c and add a declaration and a function call:

void display_row();

int main(int argc, char *argv[]) {
int res;

mysql_init(&my_connection);  
if (mysql_real_connect(&my_connection, “localhost”, “rick”, 

“bar”, “rick”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “SELECT childno, fname, 
age FROM children WHERE age > 5”);

if (res) {
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printf(“SELECT error: %s\n”, mysql_error(&my_connection));
} else {

res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

while ((sqlrow = mysql_fetch_row(res_ptr))) {
printf(“Fetched data...\n”);
display_row();

}
}

}

Now save the finished product as select3.c. Finally, compile and run select3 as follows:

$ gcc –I/usr/include/mysql select3.c –L/usr/lib/mysql –lmysqlclient -lz –o select3
$ ./select3
Connection success
Fetched data...
1 Jenny 17 
Fetched data...
2 Andrew 13 
$

So our program is working, even if its output is not aesthetically pleasing. But we’ve failed to account
for possible NULL values in the result. If we wish to print out more neatly formatted (perhaps tabular)
data, we’ll need both the data and the metadata returned by MySQL. We can simultaneously retrieve
both the metadata and the data into a new structure using mysql_fetch_field:

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result);

You need to call this function repeatedly until a NULL is returned, which will signal the end of the data.
Then we can use the pointer to the field structure data to get information about the column. The struc-
ture of MYSQL_FIELD is defined in mysql.h, as shown in the following table.

Field in MYSQL_FIELD Structure Meaning

char *name; The name of the column, as a string.

char *table; The name of the table from which the column came.
This tends to be more useful where a query uses multi-
ple tables. Beware that a calculated value in the result,
such as MAX, will have an empty string for the table
name.

char *def; If you call the mysql_list_fields (which we are
not covering here), this will contain the default value
of the column.

enum enum_field_types type; Type of the column. See the explanation immediately
following this table.

unsigned int length; The width of the column, as specified when the table
was defined.
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Field in MYSQL_FIELD Structure Meaning

unsigned int max_length; If you used mysql_store_result, then this 
contains the length in bytes of the longest column
value retrieved. It is not set if you used mysql_
use_result.

unsigned int flags; Flags tell you about the definition of the column, not
about the data found. The common flags have obvious
meanings and are NOT_NULL_FLAG, PRI_KEY_FLAG,
UNSIGNED_FLAG, AUTO_INCREMENT_FLAG, and
BINARY_FLAG. The full list can be found in the
MySQL documentation.

unsigned int decimals; The number of digits after the decimal place. Valid
only for numeric fields.

Column types are quite extensive. The full list can be found in mysql_com.h and in the documentation.
The common ones are

FIELD_TYPE_DECIMAL
FIELD_TYPE_LONG
FIELD_TYPE_STRING
FIELD_TYPE_VAR_STRING

One particularly useful defined macro is IS_NUM, which returns true if the type of the field is numeric,
like this:

if (IS_NUM(myslq_field_ptr->type)) printf(“Numeric type field\n”);

Before we update our program, we should mention one extra function:

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, 
MYSQL_FIELD_OFFSET offset);

We can use this to override the current field number that is internally incremented for each call to
mysql_fetch_field. If we pass an offset of zero, we’ll jump back to the first column.

Now that we have the information, we need to make our select program show all the additional data
available concerning a given column.

This is select4.c; we reproduce the entire program here so that you can get a complete example to
look at. Notice that it does not attempt an extensive analysis of the column types; it just demonstrates
the principles required.

#include <stdlib.h>
#include <stdio.h>

#include “mysql.h”

MYSQL my_connection;
MYSQL_RES *res_ptr;
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MYSQL_ROW sqlrow;

void display_header();
void display_row();

int main(int argc, char *argv[]) {
int res;
int first_row = 1;

mysql_init(&my_connection);  
if (mysql_real_connect(&my_connection, “localhost”, “rick”, 

“bar”, “rick”, 0, NULL, 0)) {
printf(“Connection success\n”);

res = mysql_query(&my_connection, “SELECT childno, fname, 
age FROM children WHERE age > 5”);

if (res) {
fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

display_header();
while ((sqlrow = mysql_fetch_row(res_ptr))) {

if (first_row) {
display_header();
first_row = 0;

}
display_row();

}
if (mysql_errno(&my_connection)) {
fprintf(stderr, “Retrive error: %s\n”,

mysql_error(&my_connection));
}

}
mysql_free_result(res_ptr);

}
mysql_close(&my_connection);

} else {
fprintf(stderr, “Connection failed\n”);
if (mysql_errno(&my_connection)) {

fprintf(stderr, “Connection error %d: %s\n”,
mysql_errno(&my_connection),
mysql_error(&my_connection));

}
}

return EXIT_SUCCESS;
}
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void display_header() {
MYSQL_FIELD *field_ptr;

printf(“Column details:\n”);
while ((field_ptr = mysql_fetch_field(res_ptr)) != NULL) {

printf(“\t Name: %s\n”, field_ptr->name);
printf(“\t Type: “);
if (IS_NUM(field_ptr->type)) {

printf(“Numeric field\n”);
} else {

switch(field_ptr->type) {
case FIELD_TYPE_VAR_STRING:

printf(“VARCHAR\n”);
break;
case FIELD_TYPE_LONG: 

printf(“LONG\n”);
break;
default:

printf(“Type is %d, check in mysql_com.h\n”, field_ptr->type);
} /* switch */

} /* else */

printf(“\t Max width %ld\n”, field_ptr->length);
if (field_ptr->flags & AUTO_INCREMENT_FLAG) 

printf(“\t Auto increments\n”);
printf(“\n”);

} /* while */
}

void display_row() {
unsigned int field_count;

field_count = 0;
while (field_count < mysql_field_count(&my_connection)) {

if (sqlrow[field_count]) printf(“%s “, sqlrow[field_count]);
else printf(“NULL”);
field_count++;

}
printf(“\n”);

}

When we compile and run this program, the output we get is

$ ./select4
Connection success
Column details:

Name: childno
Type: Numeric field
Max width 11
Auto increments
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Name: fname
Type: VARCHAR
Max width 30

Name: age
Type: Numeric field
Max width 11

Column details:
1 Jenny 17
2 Andrew 13 
$

It’s still not very pretty; but it illustrates nicely how we can process both raw data and the metadata that
allows us to work more efficiently with our data.

There are other functions that allow you to retrieve arrays of fields and jump between columns.
Generally all you need are the routines shown here; the interested reader can find more information
in the MySQL manual.

Miscellaneous Functions
There are some additional API functions, shown in the following table, that we recommend you investi-
gate. Generally, what’s been discussed so far is enough for a functional program; however, you should
find this partial listing useful.

API Call Example What It Does 

mysql_get_ char *mysql_get_ Returns version information about the 
client_info client_info(void); library that the client is using.

mysql_get_ char *mysql_get_host_ Returns server connection information.
host_info info(MYSQL *connection);

mysql_get_ char *mysql_get_server_ Returns information about the server
server_info info(MYSQL *connection); that you are currently connected to.

mysql_info char *mysql_info(MYSQL Returns information about the most 
*connection);. recently executed query, but works for

only a few query types—generally
INSERT and UPDATE statements. 
Otherwise returns NULL.

mysql_ int mysql_select_db Changes the default database to the 
select_db (MYSQL *connection, one given as a parameter, provided 

const char *dbname); that the user has appropriate permis-
sions. On success, zero is returned.

mysql_ int mysql_shutdown If you have appropriate permissions, 
shutdown (MYSQL *connection); shuts down the database server you

are connected to. On success, zero is
returned.
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The CD Database Application
We are now going to see how we might create a simple database to store information about your CDs
and then write some code to access that data. We are going to keep things very simple, so that it’s rea-
sonably easy to understand. In particular, we are going to stick to just three database tables with a very
simple relationship among them. 

We start by creating a new database to use and then make it the current database:

mysql> create database blpcd;
Query OK, 1 row affected (0.00 sec)

mysql> use blpcd
Connection id:    10
Current database: blpcd

mysql>

Now we’re ready to design and create the tables you need.

This example will be slightly more sophisticated than before, in that we’ll separate three distinct elements
of a CD: the artist (or group), the main catalog entry, and the tracks. If you think about a CD collection
and what elements it comprises, you realize that each CD is composed of a number of different tracks,
but different CDs are related to each other in many ways: by the performer or group, by the company
that produced it, by the music style portrayed, and so on.

We could make our database quite complex, attempting to store all these different elements in a flexible
way; however, we will restrict ourselves to just the two most important relationships.

First, each CD is composed of a variable number of tracks, so we will store the track data in a table sepa-
rate from the other CD data. Second, each artist (or band) will often have more than one album, so it
would be useful to store the details of the artist once and then separately retrieve all the CDs the artist
has made. We will not attempt to break down bands into different artists who may themselves have
made solo albums, or deal with compilation CDs—we are trying to keep this simple!

We will keep the relationships quite simple as well—each artist (which might be the name of a band) will
have produced one or more CDs and each CD will be composed of one or more tracks. The relationships
are illustrated in Figure 8-7.

Figure 8-7

Artist

CD

Track
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Creating the Tables
Now we need to determine the actual structure of the tables. We’ll start with the main table—the CD
table—which stores most of the information. We will need to store a CD ID, a catalog number, a title,
and perhaps some of our own notes. We will also need an ID number from the artist table to tell us
which artist made the album.

The artist table is quite simple; we will just store an artist name and a unique artist ID number. The track
table is also very simple; we just need a CD ID to tell us which CD the track relates to, a track number,
and the title of the track.

The CD table first:

CREATE TABLE cd (
id INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
title VARCHAR(70) NOT NULL,
artist_id INTEGER NOT NULL,
catalogue VARCHAR(30) NOT NULL,
notes VARCHAR(100) 

);

This creates a table called cd with the following columns:

❑ An id column, containing an integer that autoincrements and is the primary key for the table

❑ A title up to 70 characters long

❑ artist_id, an integer that we will use in our artist table

❑ A catalogue number of up to 30 characters 

❑ Up to 100 characters of notes

Notice that only the notes column may be NULL; all the others must have values.

Now the artist table:

CREATE TABLE artist (
id INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL

);

Again we have an id column and one other column for the artist name.

348

Chapter 8

b544977 Ch08.qxd  12/1/03  8:56 AM  Page 348



Finally, the track table:

CREATE TABLE track (
cd_id INTEGER NOT NULL,
track_id INTEGER NOT NULL,
title VARCHAR(70),
PRIMARY KEY(cd_id, track_id)

);

Notice that this time we declare the primary key rather differently. The track table is unusual in that the
ID for each CD will appear several times, and the ID for any given track, say track one, will also appear
several times for different CDs. However, the combination of the two will always be unique, so we
declare our primary key to be a combination of the two columns. This is called a composite key, because
it comprises more than one column taken in combination.

Store this SQL in a file called create_table.sql, save it in the current directory, and then go ahead and
create a database and then these tables in it. The sample script provided also drops these tables if they
already exist.

$ mysql -u rick -p
Enter password:
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 50
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> use blpcd;
Database changed
mysql> \. create_tables.sql
Query OK, 0 rows affected (0.04 sec)

Query OK, 0 rows affected (0.10 sec)

Query OK, 0 rows affected (0.00 sec)

mysql>

Notice that we use the \. command to take input from the create_tables.sql file as input. If this is
the first time you have run the script and you are using the version downloaded from the Web site, you
may see some errors about “Unknown table XXX,” as the provided script starts by deleting any pre-
existing tables. This means we can use the script, regardless of any existing tables of the same name.

We could just have well have created the tables by executing the SQL inside MySQLCC or by using the
edit functionality in MySQLCC. We can go back into MySQLCC and see the database and tables we have
created:

Do you notice the two key symbols against the cd_id and track_id columns in Figure 8-8? This shows
us that they are both contributing to the composite primary key. Allowing the track title to be NULL
allows for the uncommon but not unseen occurrence of a CD track that has no title.
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Figure 8-8

Adding Some Data
Now we need to add some data. The best way of checking any database design is to add some sample
data and check that it all works.

We will just show a sample of the test import data here, as it’s not critical to understanding what is 
happening because all the imports are basically similar—they just load different tables. There are two
important points to note here:

❑ The script deletes any existing data to ensure the script starts from a clean position.

❑ Insert values into the ID fields rather than allowing the AUTO_INCREMENT to take place. It’s
safer to do this here because the different inserts need to know which values have been used to
ensure that the data relationships are all correct, so it’s better to force the values, rather than
allow the AUTO_INCREMENT function to automatically allocate values.

This file is called insert_data.sql and can be executed using the \. command we saw before. 
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--- Delete existing data
delete from track;
delete from cd;
delete from artist;

— Now the data inserts

--- First the artist (or group) tables
insert into artist(id, name) values(1, ‘Pink Floyd’);
insert into artist(id, name) values(2, ‘Genesis’);
insert into artist(id, name) values(3, ‘Einaudi’);
insert into artist(id, name) values(4, ‘Melanie C’);

--- Then the cd table
insert into cd(id, title, artist_id, catalogue) values(1, ‘Dark Side of the Moon’,
1, ‘B000024D4P’);
insert into cd(id, title, artist_id, catalogue) values(2, ‘Wish You Were Here’, 1,
‘B000024D4S’);
insert into cd(id, title, artist_id, catalogue) values(3, ‘A Trick of the Tail’, 2,
‘B000024EXM’);
insert into cd(id, title, artist_id, catalogue) values(4, ‘Selling England By the
Pound’, 2, ‘B000024E9M’);
insert into cd(id, title, artist_id, catalogue) values(5, ‘I Giorni’, 3,
‘B000071WEV’);
insert into cd(id, title, artist_id, catalogue) values(6, ‘Northern Star’, 4,
‘B00004YMST’);

--- populate the tracks
insert into track(cd_id, track_id, title) values(1, 1, ‘Speak to me’);
insert into track(cd_id, track_id, title) values(1, 2, ‘Breathe’);

and the rest of the tracks for this album, and then the next album:

insert into track(cd_id, track_id, title) values(2, 1, ‘Shine on you crazy
diamond’);
insert into track(cd_id, track_id, title) values(2, 2, ‘Welcome to the machine’);
insert into track(cd_id, track_id, title) values(2, 3, ‘Have a cigar’);
insert into track(cd_id, track_id, title) values(2, 4, ‘Wish you were here’);
insert into track(cd_id, track_id, title) values(2, 5, ‘Shine on you crazy diamond
pt.2’);

and so on . . .

insert into track(cd_id, track_id, title) values(4, 1, ‘Melodia Africana (part
1)’);
insert into track(cd_id, track_id, title) values(4, 2, ‘I due fiumi’);
insert into track(cd_id, track_id, title) values(4, 3, ‘In un\’altra vita’);

. . . until the final tracks:

insert into track(cd_id, track_id, title) values(6, 11, ‘Closer’);
insert into track(cd_id, track_id, title) values(6, 12, ‘Feel The Sun’);
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Next save this in pop_tables.sql and execute it from the mysql prompt using the \. command, as before.

Notice that in cd 4 (I Giorni) track 3, the track is “In un’altra vita” with an apostrophe. To insert this into
the database we must use a backslash (\) to quote the apostrophe.

Try It Out
Now would be a good time to check that your data is looking reasonable. We can use the mysql command
line client and some SQL to check that the data is looking reasonable. We start by selecting the first two
tracks from every album in our database:

SELECT artist.name, cd.title AS “CD Title”, track.track_id, track.title AS
“Track” FROM artist, cd, track WHERE artist.id = cd.artist_id AND track.cd_id
= cd.id AND track.track_id < 3

If we try this in MySQLCC, you can see that the data looks fine, as shown in Figure 8-9.

Figure 8-9

How It Works
The SQL looks complex, but it’s not so bad if you take it a piece at a time.

Ignoring the AS parts of the SELECT command for a moment, the first part is simply this:

SELECT artist.name, cd.title, track.track_id, track.title 

This simply tells us which columns we want displayed, using the notation tablename.column name.
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The AS parts of the SELECT statement, SELECT artist.name, cd.title AS “CD Title”,
track.track_id, and track.title AS “Track”, simply rename the columns in the displayed out-
put. Hence the header column for title from the cd table (cd.title) is named “CD Title,”, and the
track.track.id column is titled “Track.” This use of AS gives us more user-friendly output. You
would almost never use these names when calling SQL from another language, but AS is a useful clause
for working with SQL on the command line.

The next section is also straightforward; it tells the server the name of the tables we are using:

FROM artist, cd, track

The WHERE clause is the slightly tricky part:

WHERE artist.id = cd.artist_id AND track.cd_id = cd.id AND track.track_id < 3

The first part tells the server that the ID in the artist’s table is the same number as the artist_id in the
cd column. Remember that we store the artist’s name only once and use an ID to refer to it in the CD
table. The next section, track.cd_id = cd.id, does the same for the tables track and cd, telling the
server that the track table’s cd_id column is the same as the id column in the cd table. The third section,
track.track_id < 3, cuts down the amount of data returned so that we get only tracks 1 and 2 from
each CD. Last, but not least, we join these three conditions together using AND because we want all
three conditions to be true.

Accessing the Application Data from C
We are not going to write a complete application with a GUI in this chapter; rather, we are going to con-
centrate on writing an interface file to allow us to access our data from C in reasonably simple fashion.
A common problem in writing code like this is the unknown number of results that can be returned and
how to pass them between the client code and the code that accesses the database. In this application, to
keep it simple and focus on the database interface—which is the important part of the code—we are
going to use fixed-size structures. In a real application this may not be acceptable. A common solution,
which also helps the network traffic, is to always retrieve the data one row at a time, as we saw earlier
in the chapter with the functions mysql_use_result and mysql_fetch_row.

Interface Definition
Start with a header file that defines your structures and functions, named app_mysql.h:

First, some structures:

/* A simplistic structure to represent the current CD, excluding the track
information */
struct current_cd_st {

int artist_id;
int cd_id;
char artist_name[100];
char title[100];
char catalogue[100];

};

/* A simplistic track details structure */
struct current_tracks_st {

int cd_id;
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char track[20][100];
};

#define MAX_CD_RESULT 10
struct cd_search_st {

int cd_id[MAX_CD_RESULT];
};

Now a pair of functions for connecting and disconnecting from the database:

/* Database backend functions */
int  database_start(char *name, char *password);
void database_end();

Now we turn to the functions for manipulating the data. Notice that there are no functions for creating
or deleting artists. We are going to implement this behind the scenes, creating artist entries as required
and then deleting them when they are no longer in use by any album.

/* Functions for adding a CD */
int add_cd(char *artist, char *title, char *catalogue, int *cd_id);
int add_tracks(struct current_tracks_st *tracks);
/* Functions for finding and retrieving a CD */
int find_cds(char *search_str, struct cd_search_st *results);
int get_cd(int cd_id, struct current_cd_st *dest);
int get_cd_tracks(int cd_id, struct current_tracks_st *dest);
/* Function for deleting items */
int delete_cd(int cd_id);

We have made our search function fairly general: We pass a string and it searches for that string in the
artist, title, or catalogue entries.

Test Application Interface
Before we implement our interface, we’re going to write some code to use it. This might seem a little
odd, but often it is a good way of understanding how the interface should behave in detail, before we
settle down to implement it.

This is app_test.c. First some includes and structs:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include “app_mysql.h”

int main() {
struct current_cd_st cd;
struct cd_search_st cd_res;
struct current_tracks_st ct;
int cd_id;
int res, i;

The first thing our application must always do is initialize a database connection, providing a valid user
name and password:
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database_start(“rick”, “foobar”);

Then we test adding a CD:

res = add_cd(“Mahler”, “Symphony No 1”, “4596102”, &cd_id);  
printf(“Result of adding a cd was %d, cd_id is %d\n”, res, cd_id);

memset(&ct, 0, sizeof(ct));
ct.cd_id = cd_id;
strcpy(ct.track[0], “Langsam Schleppend”);
strcpy(ct.track[1], “Kraftig bewegt”);
strcpy(ct.track[2], “Feierlich und gemessen”);
strcpy(ct.track[3], “Sturmisch bewegt”);
add_tracks(&ct);

Now search for the CD and retrieve information from the first CD found:

res = find_cds(“Symphony”, &cd_res);
printf(“Found %d cds, first has ID %d\n”, res, cd_res.cd_id[0]);

res = get_cd(cd_res.cd_id[0], &cd);
printf(“get_cd returned %d\n”, res);

memset(&ct, 0, sizeof(ct));
res = get_cd_tracks(cd_res.cd_id[0], &ct);
printf(“get_cd_tracks returned %d\n”, res);  
printf(“Title: %s\n”, cd.title);
i = 0;
while (i < res) {

printf(“\ttrack %d is %s\n”, i, ct.track[i]);
i++;

}

Finally, we delete the CD:

res = delete_cd(cd_res.cd_id[0]);
printf(“Delete_cd returned %d\n”, res);

Then we disconnect and exit:

database_end();

return EXIT_SUCCESS;

}

Implementing the Interface
Now comes the harder part: implementing the interface we specified. This is all in the file app_mysql.c.

We start with some basic includes, the global connection structure we will need, and a flag, dbconnected,
that we will use to ensure applications don’t try to access data unless they have a connection. We also use an
internal function, get_artist_id, to improve the structure of our code.
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#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include “mysql.h”
#include “app_mysql.h”

static MYSQL my_connection;
static int dbconnected = 0;

static int get_artist_id(char *artist);

Getting a connection to the database is very simple, as we saw earlier in the chapter, and disconnecting
again even easier:

int database_start(char *name, char *pwd) {

if (dbconnected) return 1;

mysql_init(&my_connection);
if (!mysql_real_connect(&my_connection, “localhost”, name, pwd, “blpcd”, 0,

NULL, 0)) {
fprintf(stderr, “Database connection failure: %d, %s\n”,

mysql_errno(&my_connection), mysql_error(&my_connection));
return 0;

}
dbconnected = 1;
return 1;

} /* database start */

void database_end() {
if (dbconnected) mysql_close(&my_connection);
dbconnected = 0;

} /* database_end */

Now the real work begins, with the function add_cd. We’ll give you some declarations first as well as a
sanity check to ensure that we’re connected to the database. We will see this in all the externally accessi-
ble functions we write.

Remember we said that we would take care of artist names automatically:

int add_cd(char *artist, char *title, char *catalogue, int *cd_id) {

MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char is[100];
char es[100];
int artist_id = -1;
int new_cd_id = -1;

if (!dbconnected) return 0;
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The next thing we do is to check if the artist already exists; if not, we create one. This is all taken care of
in the function get_artist_id, which we will see shortly.

artist_id = get_artist_id(artist);

Now having got an artist_id, we can insert the main CD record. Notice that we use
mysql_escape_string to protect any special characters in the title of the CD.

mysql_escape_string(es, title, strlen(title));
sprintf(is, “INSERT INTO cd(title, artist_id, catalogue) VALUES(‘%s’, %d, ‘%s’)”,

es, artist_id, catalogue);
res = mysql_query(&my_connection, is);
if (res) {

fprintf(stderr, “Insert error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

return 0;
}

When we come to add the tracks for this CD, we will need to know the ID that was used when the CD
record was inserted. We made the field an auto-increment field, so the database has automatically
assigned an ID for us, but we need to explicitly retrieve the value. We do this with the special function
LAST_INSERT_ID, as we saw earlier in the chapter:

res = mysql_query(&my_connection, “SELECT LAST_INSERT_ID()”);
if (res) {

printf(“SELECT error: %s\n”, mysql_error(&my_connection));
return 0;

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

if ((mysqlrow = mysql_fetch_row(res_ptr))) {
sscanf(mysqlrow[0], “%d”, &new_cd_id);
}
mysql_free_result(res_ptr);

}

We don’t need to worry about other clients inserting CDs at the same time and the IDs becoming messed
up; MySQL keeps track of the ID assigned on a per-client connection basis, so even if another application
inserted a CD before we retrieved the ID, we would still get the ID corresponding to our row, not the
row inserted by the other application.

Last, but not least, we set the ID of the newly added row and return success or failure:

*cd_id = new_cd_id;
if (new_cd_id != -1) return 1;
return 0;

}
} /* add_cd */
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Now let’s look at the implementation of get_artist_id; the process is very similar to inserting a CD
record:

/* Find or create and artist_id for the given string */
static int get_artist_id(char *artist) {

MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[100];
char is[100];
char es[100];
int artist_id = -1;

/* Does it already exist? */
mysql_escape_string(es, artist, strlen(artist));
sprintf(qs, “SELECT id FROM artist WHERE name = ‘%s’”, es);

res = mysql_query(&my_connection, qs);
if (res) {

fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));
} else {

res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {

if (mysql_num_rows(res_ptr) > 0) {
if (mysqlrow = mysql_fetch_row(res_ptr)) {

sscanf(mysqlrow[0], “%d”, &artist_id);
}

}
mysql_free_result(res_ptr);

}
}
if (artist_id != -1) return artist_id;

sprintf(is, “INSERT INTO artist(name) VALUES(‘%s’)”, es);
res = mysql_query(&my_connection, is);
if (res) {

fprintf(stderr, “Insert error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

return 0;
}
res = mysql_query(&my_connection, “SELECT LAST_INSERT_ID()”);
if (res) {

printf(“SELECT error: %s\n”, mysql_error(&my_connection));
return 0;

} else {
res_ptr = mysql_use_result(&my_connection);
if (res_ptr) {

if ((mysqlrow = mysql_fetch_row(res_ptr))) {
sscanf(mysqlrow[0], “%d”, &artist_id);

}
mysql_free_result(res_ptr);

}
}
return artist_id;

} /* get_artist_id */
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Now we move on to adding the track information for our CD. Again we protect against special charac-
ters in the track titles:

int add_tracks(struct current_tracks_st *tracks) {

int res;
char is[100];
char es[100];
int i;

if (!dbconnected) return 0;

i = 0;
while (tracks->track[i][0]) {

mysql_escape_string(es, tracks->track[i], strlen(tracks->track[i]));
sprintf(is, “INSERT INTO track(cd_id, track_id, title) VALUES(%d, %d, ‘%s’)”,

tracks->cd_id, i + 1, es);
res = mysql_query(&my_connection, is);
if (res) {

fprintf(stderr, “Insert error %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

return 0;
}
i++;

}
return 1;

} /* add_tracks */

Now we move on to retrieving information about a CD, given a CD ID value. We will use a database join to
retrieve the artist ID at the same time as we retrieve the CD information. This is generally good practice:
Databases are good at knowing how to perform complex queries efficiently, so never write application code
to do work that you could simply have asked the database to do by passing it SQL. Chances are that you
can save yourself effort, by not writing extra code, and have your application execute more efficiently, by
allowing the database to do as much of the hard work as possible.

int get_cd(int cd_id, struct current_cd_st *dest) {
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[100];

if (!dbconnected) return 0;
memset(dest, 0, sizeof(*dest));
dest->artist_id = -1;

sprintf(qs, “SELECT artist.id, cd.id, artist.name, cd.title, cd.catalogue FROM
artist, cd WHERE artist.id = cd.artist_id and cd.id = %d”, cd_id);

res = mysql_query(&my_connection, qs);
if (res) {

fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));
} else {
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res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {

if (mysql_num_rows(res_ptr) > 0) {
if (mysqlrow = mysql_fetch_row(res_ptr)) {

sscanf(mysqlrow[0], “%d”, &dest->artist_id);
sscanf(mysqlrow[1], “%d”, &dest->cd_id);
strcpy(dest->artist_name, mysqlrow[2]);
strcpy(dest->title, mysqlrow[3]);
strcpy(dest->catalogue, mysqlrow[4]);

}
}
mysql_free_result(res_ptr);

}
}
if (dest->artist_id != -1) return 1;
return 0;

} /* get_cd */

Now we implement the retrieval of track information. Notice that we specify an ORDER BY clause in our
SQL to ensure that tracks are returned in a sensible order. Again, this allows the database to do the work,
which it will do much more efficiently than if we retrieved the rows in any order and then wrote our
own code to sort them.

int get_cd_tracks(int cd_id, struct current_tracks_st *dest) {
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[100];
int i = 0, num_tracks = 0;

if (!dbconnected) return 0;
memset(dest, 0, sizeof(*dest));
dest->cd_id = -1;

sprintf(qs, “SELECT track_id, title FROM track WHERE track.cd_id = %d ORDER BY
track_id”, cd_id);

res = mysql_query(&my_connection, qs);
if (res) {

fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));
} else {

res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {

if ((num_tracks = mysql_num_rows(res_ptr)) > 0) {
while (mysqlrow = mysql_fetch_row(res_ptr)) {

strcpy(dest->track[i], mysqlrow[1]);
i++;

}
dest->cd_id = cd_id;

}
mysql_free_result(res_ptr);

}
}
return num_tracks;

} /* get_cd_tracks */

360

Chapter 8

b544977 Ch08.qxd  12/1/03  8:56 AM  Page 360



So far, we have added and retrieved information about CDs; now it’s time to search for CDs. We kept
our interface simple by limiting the number of results that could be returned, but we still want our 
function to tell us how many rows there were, even if that’s more results than we can retrieve. 

int find_cds(char *search_str, struct cd_search_st *dest) {
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

int res;
char qs[500];
int i = 0;
char ss[100];
int num_rows;

if (!dbconnected) return 0;

Now we clear the result structure and protect against special characters in the query string:

memset(dest, -1, sizeof(*dest));
mysql_escape_string(ss, search_str, strlen(search_str));

Next we build a query string. Notice the need to use rather a lot of % characters; this is because % is both
the character we need to insert in the SQL to match any string and also a special character to sprintf.

sprintf(qs, “SELECT DISTINCT artist.id, cd.id FROM artist, cd WHERE artist.id =
cd.artist_id and (artist.name LIKE ‘%%%s%%’ OR cd.title LIKE ‘%%%s%%’ OR
cd.catalogue LIKE ‘%%%s%%’)”, ss, ss, ss);

Now we can execute the query:

res = mysql_query(&my_connection, qs);
if (res) {

fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));
} else {

res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {

num_rows = mysql_num_rows(res_ptr);
if ( num_rows > 0) {

while ((mysqlrow = mysql_fetch_row(res_ptr)) && i < MAX_CD_RESULT) {
sscanf(mysqlrow[1], “%d”, &dest->cd_id[i]);
i++;

}
}
mysql_free_result(res_ptr);

}
}
return num_rows;

} /* find_cds */

Last, but not least, we implement a way of deleting CDs. In line with our policy of managing artist
entries silently, we will delete the artist for this CD if no other CDs exist that have the same artist string.
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Curiously, SQL has no way of expressing deletes from multiple tables, so we must delete from each table
in turn.

int delete_cd(int cd_id) {

int res;
char qs[100];
int artist_id, num_rows;
MYSQL_RES *res_ptr;
MYSQL_ROW mysqlrow;

if (!dbconnected) return 0;

artist_id = -1;
sprintf(qs, “SELECT artist_id FROM cd WHERE id = ‘%d’”, cd_id);
res = mysql_query(&my_connection, qs);
if (res) {

fprintf(stderr, “SELECT error: %s\n”, mysql_error(&my_connection));
} else {

res_ptr = mysql_store_result(&my_connection);
if (res_ptr) {

num_rows = mysql_num_rows(res_ptr);
if (num_rows == 1) {

/* Artist not used by any other CDs */
mysqlrow = mysql_fetch_row(res_ptr);
sscanf(mysqlrow[0], “%d”, &artist_id);

}
}

}

sprintf(qs, “DELETE FROM track WHERE cd_id = ‘%d’”, cd_id);
res = mysql_query(&my_connection, qs);
if (res) {

fprintf(stderr, “Delete error (track) %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

return 0;
}

sprintf(qs, “DELETE FROM cd WHERE id = ‘%d’”, cd_id);
res = mysql_query(&my_connection, qs);
if (res) {

fprintf(stderr, “Delete error (cd) %d: %s\n”, mysql_errno(&my_connection),
mysql_error(&my_connection));

return 0;
}

if (artist_id != -1) {
/* artist entry is now unrelated to any CDs, delete it */
sprintf(qs, “DELETE FROM artist WHERE id = ‘%d’”, artist_id);
res = mysql_query(&my_connection, qs);
if (res) {
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fprintf(stderr, “Delete error (artist) %d: %s\n”,
mysql_errno(&my_connection), mysql_error(&my_connection));

}
}

return 1;

} /* delete_cd */

That completes our code.

For the sake of completeness, we add a makefile to make your life easier. You may need to adjust the
include path depending on how MySQL is installed on your system.

all:  app

app: app_mysql.c app_test.c app_mysql.h
gcc -g -o app -I/usr/include/mysql app_mysql.c app_test.c –lmysqlclient

In later chapters, we will see this interface being used with a real GUI. For now, if you want to watch the
database changing as the code executes, we suggest you step through the code in the gdb debugger in
one window while watching the database data change in another. If you use MySQLCC, remember that
you will need to refresh the data displays to see the data change.

Summary
In this chapter, we’ve looked briefly at MySQL. More experienced users, while likely to be pleased by its
speedy performance, may feel disappointed by its limited feature set. MySQL is, on balance, a great
database tool with minimal system requirements and an excellent tolerance for high query volumes.

You’ve learned the basics of installing MySQL and looked at the basic administration of a MYSQL
database using the client utilities. We examined its C API, one of several languages that can be used with
MySQL. You’ve also learned some SQL in the process.

We hope this chapter has encouraged you to try using an SQL-based database for your data, and also to
find out more about these powerful database management tools.

As a reminder, the main resource for MySQL is the MySQL home page at www.mysql.com. For more
information on MySQL, check out MySQL, 2nd Edition, by Paul DuBois (Sams Publishing).
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9
Development Tools

In this chapter, we’ll look at some of the tools available for developing programs on Linux systems,
some of which are also available for UNIX. In addition to the obvious necessities of compilers and
debuggers, Linux provides a set of tools, each of which does a single job, and allows the developer
to combine these tools in new and innovative ways. This is part of the UNIX philosophy Linux has
inherited. Here, we’ll look at a few of the more important tools and see some examples of their
being used to solve problems, including

❑ The make command and makefiles

❑ Source code control using RCS and CVS

❑ Writing a manual page

❑ Distributing software using patch and tar

❑ Development environments

Problems of Multiple Source Files
When they’re writing small programs, many people simply rebuild their application after edits
by recompiling all the files. However, with larger programs, some problems with this simple
approach become apparent. The time for the edit-compile-test cycle will grow. Even the most
patient programmer will want to avoid recompiling all the files when only one file has been
changed.

A potentially much more difficult problem arises when multiple header files are created and
included in different source files. Suppose we have header files a.h, b.h, and c.h, and C source
files main.c, 2.c, and 3.c. (We hope that you choose better names than these for real projects!)
We could have the situation following situation.

/* main.c */
#include “a.h”
...
/* 2.c */
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#include “a.h”
#include “b.h”
...
/* 3.c */
#include “b.h”
#include “c.h”
...

If the programmer changes c.h, the files main.c and 2.c don’t need to be recompiled, since they don’t
depend on this header file. The file 3.c does depend on c.h and should therefore be recompiled if c.h is
changed. However, if b.h was changed and the programmer forgot to recompile 2.c, the resulting pro-
gram might no longer function correctly.

The make utility can solve both of these problems by ensuring that all the files affected by changes are
recompiled when necessary. 

The make Command and Makefiles
Although, as we shall see, the make command has a lot of built-in knowledge, it can’t know how to build
your application all by itself. You must provide a file that tells make how your application is constructed.
This file is called the makefile.

The makefile most often resides in the same directory as the other source files for the project. You can
have many different makefiles on your machine at any one time. Indeed, if you have a large project, you
may choose to manage it using separate makefiles for different parts of the project.

The combination of the make command and a makefile provides a very powerful tool for managing pro-
jects. It’s often used not only to control the compilation of source code, but also to prepare manual pages
and to install the application into a target directory.

The Syntax of Makefiles
A makefile consists of a set of dependencies and rules. A dependency has a target (a file to be created) and
a set of source files upon which it is dependent. The rules describe how to create the target from the
dependent files. Typically, the target is a single executable file.

The makefile is read by the make command, which determines the target file or files that are to be made
and then compares the dates and times of the source files to decide which rules need to be invoked to
construct the target. Often, other intermediate targets have to be created before the final target can be
made. The make command uses the makefile to determine the order in which the targets have to be
made and the correct sequence of rules to invoke.

The make command is not used only to compile programs. It can be used whenever
you produce output files from several input files. Other uses include document pro-
cessing (such as with troff or TeX).
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Options and Parameters to make
The make program itself has several options. The three most commonly used are

❑ -k, which tells make to keep going when an error is found, rather than stopping as soon as the
first problem is detected. You can use this, for example, to find out in one go which source files
fail to compile.

❑ -n, which tells make to print out what it would have done without actually doing it.

❑ -f <filename>, which allows you to tell make which file to use as its makefile. If you don’t
use this option, make looks first for a file called makefile in the current directory. If that 
doesn’t exist, it looks for a file called Makefile. By convention, many Linux programmers use
Makefile. This allows the makefile to appear first in a directory listing of a directory filled
with lowercase-named files.

To tell make to build a particular target, which is usually an executable file, you can pass the target name
to make as a parameter. If you don’t, make will try to make the first target listed in the makefile. Many
programmers specify all as the first target in their makefile and then list the other targets as being
dependencies for all. This convention makes it clear which target the makefile should attempt to build
by default when no target is specified. We suggest you stick to this convention.

Dependencies
The dependencies specify how each file in the final application relates to the source files. In our program-
ming example shown earlier in the chapter, we might specify dependencies that say our final application
requires (depends on) main.o, 2.o, and 3.o; and likewise for main.o (main.c and a.h); 2.o (2.c, a.h,
and b.h); and 3.o (3.c, b.h, and c.h). Thus main.o is affected by changes to main.c and a.h, and it
needs to be recreated by recompiling main.c if either of these two files changes.

In a makefile, we write these rules by writing the name of the target, a colon, spaces or tabs, and then a
space- or tab-separated list of files that are used to create the target file. The dependency list for our
example is

myapp: main.o 2.o 3.o
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

This says that myapp depends on main.o, 2.o, and 3.o, main.o depends on main.c and a.h, and so on.

This set of dependencies gives a hierarchy showing how the source files relate to one other. We can see
quite easily that, if b.h changes, then we need to revise both 2.o and 3.o, and since 2.o and 3.o will
have changed, we also need to rebuild myapp.

If we wish to make several files, then we can use the phony target all. Suppose our application consisted
of both the binary file myapp and a manual page, myapp.1. We could specify this with the line

all: myapp myapp.1

Again, if we don’t specify an all target, make simply creates the first target it finds in the makefile.
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Rules
The second part of the makefile specifies the rules that describe how to create a target. In our example in
the previous section, what command should be used after the make command has determined that 2.o
needs rebuilding? It may be that simply using gcc -c 2.c is sufficient (and, as we’ll see later, make does
indeed know many default rules), but what if we needed to specify an include directory, or set the sym-
bolic information option for later debugging? We can do this by specifying explicit rules in the makefile.

Try It Out—A Simple Makefile
Most rules consist of a simple command that could have been typed on the command line. For our
example, we will create our first makefile, Makefile1:

myapp: main.o 2.o 3.o
gcc -o myapp main.o 2.o 3.o

main.o: main.c a.h
gcc -c main.c

2.o: 2.c a.h b.h
gcc -c 2.c

3.o: 3.c b.h c.h
gcc -c 3.c

We invoke the make command with the -f option because our makefile doesn’t have either of the usual
default names of makefile or Makefile. If we invoke this code in a directory containing no source
code, we get this message:

$ make -f Makefile1
make: *** No rule to make target ‘main.c’, needed by ‘main.o’.  Stop.
$

The make command has assumed that the first target in the makefile, myapp, is the file that we wish to
create. It has then looked at the other dependencies and, in particular, has determined that a file called
main.c is needed. Since we haven’t created this file yet and the makefile does not say how it might be
created, make has reported an error. Let’s create the source files and try again. Since we’re not interested
in the result, these files can be very simple. The header files are actually empty, so we can create them
with touch.

$ touch a.h
$ touch b.h
$ touch c.h

At this point, we have to clue you in to a very strange and unfortunate syntax of
makefiles: the difference between a space and a tab. All rules must be on lines that
start with a tab; a space won’t do. Since several spaces and a tab look much the same
and because almost everywhere else in Linux programming there’s little distinction
between spaces and tabs, this can cause problems. Also, a space at the end of a line in
the makefile may cause a make command to fail. However, it’s an accident of history
and there are far too many makefiles in existence to contemplate changing it now, so
take care! Fortunately, it’s usually reasonably obvious when the make command isn’t
working because a tab is missing.
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main.c contains main, which calls function_two and function_three. The other two files define
function_two and function_three. The source files have #include lines for the appropriate head-
ers, so they appear to be dependent on the contents of the included headers. It’s not much of an applica-
tion, but here are the listings:

/* main.c */
#include <stdlib.h>
#include “a.h”
extern void function_two();
extern void function_three();
int main()
{

function_two();
function_three();
exit (EXIT_SUCCESS);

}
/* 2.c */
#include “a.h”
#include “b.h”
void function_two() {
}
/* 3.c */
#include “b.h”
#include “c.h”
void function_three() {
}

Now let’s try make again:

$ make -f Makefile1
gcc -c main.c
gcc -c 2.c
gcc -c 3.c
gcc -o myapp main.o 2.o 3.o
$

This is a successful make.

How It Works
The make command has processed the dependencies section of the makefile and determined the files
that need to be created and in which order. Even though we listed how to create myapp first, make has
determined the correct order for creating the files. It has then invoked the appropriate commands we
gave it in the rules section for creating those files. The make command displays the commands as it exe-
cutes them. We can now test our makefile to see whether it handles changes to the file b.h correctly.

$ touch b.h
$ make -f Makefile1
gcc -c 2.c
gcc -c 3.c
gcc -o myapp main.o 2.o 3.o
$ 
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The make command has read our makefile, determined the minimum number of commands required to
rebuild myapp, and carried them out in the correct order. Let’s see what happens if we delete an object file:

$ rm 2.o
$ make -f Makefile1
gcc -c 2.c
gcc -o myapp main.o 2.o 3.o
$

Again, make correctly determines the actions required.

Comments in a Makefile
A comment in a makefile starts with # and continues to the end of the line. As in C source files, com-
ments in a makefile can help both the author and others to understand what was intended when the file
was written.

Macros in a Makefile
Even if this was all there was to make and makefiles, they would be powerful tools for managing multi-
ple source file projects. However, they would also tend to be large and inflexible for projects consisting
of a very large number of files. Makefiles therefore allow us to use macros so that we can write them in a
more generalized form.

We define a macro in a makefile by writing MACRONAME=value, then accessing the value of MACRONAME
by writing either $(MACRONAME) or ${MACRONAME}. Some versions of make may also accept $MACRON-
AME. We can set the value of a macro to blank (which expands to nothing) by leaving the rest of the line
after the = blank.

Macros are often used in makefiles for options to the compiler. Often, while an application is being
developed, it will be compiled with no optimization, but with debugging information included. For a
release version the opposite is usually needed: a small binary with no debugging information that runs
as fast as possible.

Another problem with Makefile1 is that it assumes the compiler is called gcc. On other UNIX systems,
we might be using cc or c89. If we ever wanted to take our makefile to a different version of UNIX, or
even if we obtained a different compiler to use on our existing system, we would have to change several
lines of our makefile to make it work. Macros are a good way of collecting all these system-dependent
parts, making it easy to change them.

Macros are normally defined inside the makefile itself, but they can be specified by calling make with the
macro definition, for example, make CC=c89. Command line definitions like this override defines in the
makefile. When used outside makefiles, macro definitions must be passed as a single argument, so either
avoid spaces or use quotes like this: make “CC = c89”.

Try It Out—A Makefile with Macros
Here’s a revised version of our makefile, Makefile2, using some macros:

all: myapp
# Which compiler
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CC = gcc
# Where are include files kept
INCLUDE = .
# Options for development
CFLAGS = -g -Wall -ansi
# Options for release
# CFLAGS = -O -Wall -ansi
myapp: main.o 2.o 3.o

$(CC) -o myapp main.o 2.o 3.o
main.o: main.c a.h

$(CC) -I$(INCLUDE) $(CFLAGS) -c main.c
2.o: 2.c a.h b.h

$(CC) -I$(INCLUDE) $(CFLAGS) -c 2.c
3.o: 3.c b.h c.h

$(CC) -I$(INCLUDE) $(CFLAGS) -c 3.c

If we delete our old installation and create a new one with this new makefile, we get

$ rm *.o myapp
$ make -f Makefile2
gcc -I. -g -Wall -ansi -c main.c
gcc -I. -g -Wall -ansi -c 2.c
gcc -I. -g -Wall -ansi -c 3.c
gcc -o myapp main.o 2.o 3.o
$

How It Works
The make program replaces the $(CC), $(CFLAGS), and $(INCLUDE) with the appropriate definition,
rather like the C compiler does with #define. Now if we want to change the compile command, we
need to change only a single line of the makefile.

In fact, make has several special internal macros that you can use to make makefiles even more succinct.
We list the more common ones in the following table; you will see them in use in later examples. Each of
these macros is only expanded just before it’s used, so the meaning of the macro may vary as the make-
file progresses. In fact, these macros would be of very little use if they didn’t work this way.

$? List of prerequisites changed more recently than the current target

$@ Name of the current target

$< Name of the current prerequisite

$* Name of the current prerequisite, without any suffix

There are two other useful special characters you may see in makefile, preceding the command:

❑ - tells make to ignore any errors. For example, if you wanted to make a directory but wished to
ignore any errors, perhaps because the directory might already exist, you just precede mkdir
with a minus sign. We will see - in use a bit later in this chapter.

❑ @ tells make not to print the command to standard output before executing it. This character is
handy if you  want to use echo to display some instructions.
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Multiple Targets
It’s often useful to make more than a single target file, or to collect several groups of commands into a
single place. We can extend our makefile to do this. Let’s add a “clean” option that removes unwanted
objects and an “install” option that moves the finished application to a different directory.

Try It Out—Multiple Targets
Here’s the next version of the makefile, Makefile3.

all: myapp
# Which compiler
CC = gcc

# Where to install
INSTDIR = /usr/local/bin
# Where are include files kept
INCLUDE = .
# Options for development
CFLAGS = -g -Wall -ansi
# Options for release
# CFLAGS = -O -Wall -ansi
myapp: main.o 2.o 3.o

$(CC) -o myapp main.o 2.o 3.o
main.o: main.c a.h

$(CC) -I$(INCLUDE) $(CFLAGS) -c main.c
2.o: 2.c a.h b.h

$(CC) -I$(INCLUDE) $(CFLAGS) -c 2.c
3.o: 3.c b.h c.h

$(CC) -I$(INCLUDE) $(CFLAGS) -c 3.c

clean:
-rm main.o 2.o 3.o

install: myapp
@if [ -d $(INSTDIR) ]; \

then \
cp myapp $(INSTDIR);\
chmod a+x $(INSTDIR)/myapp;\
chmod og-w $(INSTDIR)/myapp;\
echo “Installed in $(INSTDIR)”;\

else \
echo “Sorry, $(INSTDIR) does not exist”;\

fi

There are several things to notice in this makefile. First, the special target all still specifies only myapp
as a target. Thus, when we execute make without specifying a target, the default behavior is to build the
target myapp.

The next important point concerns the two additional targets, clean and install. The clean target
uses the rm command to remove the objects. The command starts with -, which tells make to ignore the
result of the command, so make clean will succeed even if there are no objects and the rm command
returns an error. The rules for making the target “clean” don’t specify clean as depending on anything;
the rest of the line after clean: is blank. Thus the target is always considered out of date, and its rule is
always executed if clean is specified as a target.
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The install target is dependent on myapp, so make knows that it must create myapp before carrying out
other commands for making install. The rules for making install consist of some shell script com-
mands. Since make invokes a shell for executing rules and uses a new shell for each rule, we must add
backslashes so that all the script commands are on one logical line and are all passed together to a single
invocation of the shell for execution. This command starts with an @ sign, which tells make not to print
the command on standard output before executing the rule.

The install target executes several commands one after the other to install the application in its final
resting place. It does not check that each command succeeds before executing the next. If it was very
important that subsequent commands executed only if the previous one had succeeded, then we could
have written the commands joined by &&, like this:

@if [ -d $(INSTDIR) ]; \
then \
cp myapp $(INSTDIR) &&\
chmod a+x $(INSTDIR)/myapp && \
chmod og-w $(INSTDIR/myapp && \
echo “Installed in $(INSTDIR)” ;\

else \
echo “Sorry, $(INSTDIR) does not exist” ; false ; \

fi

As you may remember from the Chapter 2, this is an “and” command to the shell and has the effect that
each subsequent command gets executed only if the previous one succeeded. Here we don’t care too
much about whether ensuring previous commands succeeded, so we stick to the simpler form.

You may not have permission as an ordinary user to install new commands in /usr/local/bin. You can
either change the makefile to use a different install directory, change permissions on this directory, or change
user (with the su command) to root before invoking make install.

$ rm *.o myapp
$ make -f Makefile3
gcc -I. -g -Wall -ansi -c main.c
gcc -I. -g -Wall -ansi -c 2.c
gcc -I. -g -Wall -ansi -c 3.c
gcc -o myapp main.o 2.o 3.o
$ make -f Makefile3
make: Nothing to be done for ‘all’.
$ rm myapp
$ make -f Makefile3 install
gcc -o myapp main.o 2.o 3.o
Installed in /usr/local/bin
$ make -f Makefile3 clean
rm main.o 2.o 3.o
$

How It Works
First we delete myapp and all the objects. The make command on its own uses the target all, which
causes myapp to be built. Next we run make again, but because myapp is up to date, make does nothing.
We then delete the file myapp and do a make install. This recreates the binary and copies it to the
install directory. Finally, we run make clean, which deletes the objects.

373

Development Tools

b544977 Ch09.qxd  12/1/03  8:56 AM  Page 373



Built-in Rules
So far, we’ve specified in the makefile exactly how to perform each step of the process. In fact, make has
a large number of built-in rules that can significantly simplify makefiles, particularly if we have many
source files. Let’s create foo.c, a traditional Hello World program.

#include <stdlib.h>
#include <stdio.h>
int main()
{

printf(“Hello World\n”);
exit(EXIT_SUCCESS);

}

Without specifying a makefile, we’ll try to compile it using make.

$ make foo
cc     foo.c   -o foo
$

As we can see, make knows how to invoke the compiler, although, in this case, it chose cc rather than
gcc (on Linux this is okay, as cc is usually a link to gcc). Sometimes, these built-in rules are referred to
as inference rules. The default rules use macros, so by specifying some new values for the macros we can
change the default behavior.

$ rm foo
$ make CC=gcc CFLAGS=”-Wall -g” foo
gcc -Wall -g    foo.c   -o foo
$

We can ask make to print its built-in rules with the -p option. There are far too many built-in rules to list
them all here, but here’s a short extract from the output of make -p for the GNU version of make, show-
ing part of the rules:

OUTPUT_OPTION = -o $@
COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c
%.o: %.c
#  commands to execute (built-in):

$(COMPILE.c) $(OUTPUT_OPTION) $<

We can now simplify our makefile to take account of these built-in rules by taking out the rules for making
objects and just specifying the dependencies, so the relevant section of the makefile reads simply

main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

You can find this version in the downloadable code as Makefile4.
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Suffix and Pattern Rules
The built-in rules that we’ve seen work by using suffixes (similar to Windows and MS-DOS filename
extensions), so that when it’s given a file with one ending, make knows which rule can be used to create
a file with a different ending. The most common rule here is the one used to create a file ending in .o
from a file ending in .c. The rule is to use the compiler to compile but not to link the source file.

Sometimes we need to be able to create new rules. The authors used to work on source files that needed
to be compiled by several different compilers: two under MS-DOS and gcc under Linux. To keep one of
the MS-DOS compilers happy, the source files, which were C++ rather than C, needed to be named with
a suffix of .cpp. Unfortunately, the version of make being used with Linux at the time didn’t have a
built-in rule for compiling .cpp files. (It did have a rule for .cc, a more common C++ file extension
under UNIX.)

Thus either a rule had to be specified for each individual source file, or we needed to teach make a new
rule for creating objects from files with the extension .cpp. Given that there we are rather a large num-
ber of source files in this project, specifying a new rule saved a lot of typing and also made adding new
source files to the project much easier.

To add a new suffix rule, we first add a line to the makefile telling make about the new suffix; we can
then write a rule using this new suffix. make uses the special syntax

.<old_suffix>.<new_suffix>:

to define a general rule for creating files with the new suffix from files with the same base name but the
old suffix.

Here’s a fragment of our makefile with a new general rule for converting .cpp files to .o files: 

.SUFFIXES:      .cpp

.cpp.o:
$(CC) -xc++ $(CFLAGS) -I$(INCLUDE) -c $< 

The special dependency .cpp.o: tells make that the rules that follow are for translating from a file with
a suffix of .cpp to a file with a suffix of .o. We use special macro names when we write this dependency
because we don’t yet know the actual names of the files that we’ll be translating. To understand this rule,
you simply need to remember that $< is expanded to the starting filename (with the old suffix). Notice
that we tell make how to get only from a .cpp to a .o file; make already knows how to get from an object
file to a binary executable file.

When we invoke make, it uses our new rule to get from bar.cpp to bar.o, then uses its built-in rules to
get from the .o to an executable file. The extra -xc++ flag is to tell gcc that this is a C++ source file.

These days make knows how to deal with C++ source files with .cpp extensions, but the technique is a
useful one when transforming from one kind of file to another.

More recent versions of make include an alternative syntax for achieving the same effect, and more
besides. For example, pattern rules use a wildcard syntax for matching filenames rather than relying on
filename extensions alone.
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The pattern rule equivalent for the .cpp rule example above would be 

%.cpp: %o
$(CC) -xc++ $(CFLAGS) -I$(INCLUDE) -c $< 

Managing Libraries with make
When you’re working on larger projects, it’s often convenient to manage several compilation products
using a library. Libraries are files, conventionally with the extension .a (for archive), that contain a collec-
tion of object files. The make command has a special syntax for dealing with libraries that makes them
very easy to manage.

The syntax is lib(file.o), which means the object file file.o, as stored in the library lib.a. The make
command has a built-in rule for managing libraries that is usually equivalent to something like this:

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o

The macros $(AR) and $(ARFLAGS) normally default to the command ar and the options rv, respec-
tively. The rather terse syntax tells make that to get from a .c file to a .a library it must apply two
rules:

❑ The first rule says that it must compile the source file and generate an object. 

❑ The second rule says to use the ar command to revise the library, adding the new object file.

So, if we have a library fud, containing the file bas.o, in the first rule $< is replaced by bas.c. In the
second rule $@ is replaced by the library fud.a and $* is replaced by the name bas.

Try It Out—Managing a Library
In practice, the rules for managing libraries are quite simple to use. Let’s change our application so that
the files 2.o and 3.o are kept in a library called mylib.a. Our makefile needs very few changes, and
Makefile5 looks like this.

all: myapp
# Which compiler
CC = gcc
# Where to install
INSTDIR = /usr/local/bin
# Where are include files kept
INCLUDE = .
# Options for development
CFLAGS = -g -Wall -ansi
# Options for release
# CFLAGS = -O -Wall -ansi
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# Local Libraries
MYLIB = mylib.a
myapp: main.o $(MYLIB)

$(CC) -o myapp main.o $(MYLIB)
$(MYLIB): $(MYLIB)(2.o) $(MYLIB)(3.o)
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h
clean:

-rm main.o 2.o 3.o $(MYLIB)
install: myapp

@if [ -d $(INSTDIR) ]; \
then \

cp myapp $(INSTDIR);\
chmod a+x $(INSTDIR)/myapp;\
chmod og-w $(INSTDIR)/myapp;\
echo “Installed in $(INSTDIR)”;\

else \
echo “Sorry, $(INSTDIR) does not exist”;\

fi

Notice how we allow the default rules to do most of the work. Now let’s test our new version of the
makefile.

$ rm -f myapp *.o mylib.a
$ make -f Makefile5
gcc -g -Wall -ansi   -c -o main.o main.c
gcc -g -Wall -ansi   -c -o 2.o 2.c
ar rv mylib.a 2.o
a - 2.o
gcc -g -Wall -ansi   -c -o 3.o 3.c
ar rv mylib.a 3.o
a - 3.o
gcc -o myapp main.o mylib.a
$ touch c.h
$ make -f Makefile5
gcc -g -Wall -ansi   -c -o 3.o 3.c
ar rv mylib.a 3.o
r - 3.o
gcc -o myapp main.o mylib.a
$

How It Works
We first delete all the objects and the library and allow make to build myapp, which it does by compiling
and creating the library before linking main.o with the library to create myapp. We then test the depen-
dency rule for 3.o, which tells make that, if c.h changes, then 3.c must be recompiled. It does this cor-
rectly, compiling 3.c and updating the library before relinking to create a new myapp executable file.
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Advanced Topic: Makefiles and Subdirectories
If you’re working on a large project, it’s sometimes convenient to split some files that compose a library
away from the main files and store them in a subdirectory. There are two ways of doing this with make. 

First, you can have a second makefile in the subdirectory to compile the files, store them in a library, and
then copy the library up a level into the main directory. The main makefile in the higher-level directory
then has a rule for making the library, which invokes the second makefile like this:

mylib.a:
(cd mylibdirectory;$(MAKE))

This says that you must always try to make mylib.a. When make invokes the rule for building the
library, it changes into the subdirectory mylibdirectory and then invokes a new make command to
manage the library. Since a new shell is invoked for this, the program using the makefile doesn’t execute
the cd. However, the shell invoked to carry out the rule to build the library is in a different directory. The
brackets ensure that it’s all processed by a single shell.

The second way is to use some additional macros in a single makefile. The extra macros are generated by
appending a D for directory or an F for filename to those macros we’ve already discussed. We could then
override the built-in .c.o suffix rule with

.c.o:
$(CC) $(CFLAGS) -c $(@D)/$(<F) -o $(@D)/$(@F)

for compiling files in a subdirectory and leaving the objects in the subdirectory. We then update the
library in the current directory with a dependency and rule something like this:

mylib.a:   mydir/2.o mydir/3.o
ar -rv mylib.a $?

You need to decide which approach you prefer for your own project. Many projects simply avoid having
subdirectories, but this can lead to a source directory with a ridiculous number of files in it. As you can
see from the preceding brief overview, you can use make with subdirectories with only slightly increased
complexity.

GNU make and gcc
If you’re using GNU make and the GNU gcc compiler, there are two interesting extra options:

❑ The first is the -jN (“jobs”) option to make. This allows make to execute N commands at the
same time. Where several different parts of the project can be compiled independently, make
will invoke several rules simultaneously. Depending on your system configuration, this can give
a significant improvement in the time to recompile. If you have many source files, it may be
worth trying this option. In general, smaller numbers such as -j3 are a good starting point.
If you share your computer with other users, use this option with care. Other users may not
appreciate your starting large numbers of processes every time you compile!
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❑ The other useful addition is the -MM option to gcc. This produces a dependency list in a
form suitable for make. On a project with a significant number of source files, each including
different combinations of header files, it can be quite difficult (but very important) to get the
dependencies correct. If you make every source file depend on every header file, sometimes
you’ll compile files unnecessarily. If, on the other hand, you omit some dependencies, the 
problem is even worse because you’re now failing to compile files that need recompiling.

Try It Out—gcc -MM
Let’s use the -MM option to gcc to generate a dependency list for our example project:

$ gcc -MM main.c 2.c 3.c
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h
$

How It Works
The gcc compiler simply outputs the required dependency lines in a format ready for insertion into a
makefile. All we have to do is save the output into a temporary file and then insert it into the makefile
for a perfect set of dependency rules. There are no excuses for getting your dependencies wrong if you
have a copy of gcc!

If you really feel confident about makefiles, you might try using the makedepend tool, which performs
a function similar to the -MM option but actually appends the dependencies at the end of the specified
makefile.

Before we leave the topic of makefiles, it’s perhaps worth pointing out that you don’t have to confine
yourself to using makefiles to compile code or create libraries. You can use them to automate any task
where there is a sequence of commands that get you from some sort of input file to an output file. A typi-
cal “non compiler” use might be for calling AWK or sed to process some files, or even generating manual
pages. You can automate just about any file manipulation, just as long as make can work out, from the
date and time information on the files, which ones have changed.

Source Code Control
If you move beyond simple projects, particularly if more than one person is working on the project, it
becomes important to manage changes to source files properly to avoid conflicting changes and to track
changes that have been made.

There are three widely used UNIX systems for managing source files: 

❑ RCS (Revision Control System)

❑ CVS (Concurrent Version System

❑ SCCS (Source Code Control System)
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The RCS utilities, along with their sources, are available from the Free Software Foundation. SCCS was
introduced by AT&T in the System V versions of UNIX and is now incorporated in the X/Open standard.
CVS, which is more advanced than SCCS or RCS, is fast becoming the tool of choice for collaborative,
Internet-based developments.

In this chapter, we’ll focus on RCS and CVS and briefly compare the RCS commands with the SCCS
commands.

RCS
The RCS system comprises a number of commands for managing source files. It works by tracking a
source file as it’s changed by maintaining a single file with a list of changes in sufficient detail to recreate
any previous version. It also allows you to store comments associated with every change, which can be
very useful if you’re looking back through the history of changes to a file.

As a project progresses, you can log each major change or bug fix you make to a source file separately
and store comments against each change. This can be very useful for reviewing the changes made to a
file, checking where bugs were fixed and occasionally, perhaps, where bugs were introduced!

As the RCS saves only the changes between versions, it’s also very space efficient. The system also
allows us to retrieve previous revisions in case of an accidental deletion.

The rcs Command
We’ll start with an initial version of the file we wish to manage. In this case, we’ll use important.c,
which starts life as a copy of foo.c with the following comment at the beginning:

/*
This is an important file for managing this project.
It implements the canonical “Hello World” program.

*/

The first task is to initialize RCS control over the file, using the rcs command. The command rcs -i ini-
tializes the RCS control file.

$ rcs -i important.c
RCS file: important.c,v
enter description, terminated with single ‘.’ or end of file:
NOTE: This is NOT the log message!
>> This is an important demonstration file
>> .
done
$

We’re allowed multiple comment lines. We terminate the prompting with a single . on a line by itself, or
by typing the end of file character, usually Ctrl+D.

After this command, rcs has created a new read-only file with a ,v extension:

$ ls -l
-rw-r--r--    1 neil     users         226 2003-02-15 10:35 important.c
-r--r--r--    1 neil     users         105 2003-02-15 10:37 important.c,v 
$
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If you prefer to keep your RCS files in a separate directory, simply create a subdirectory called RCS before
you use rcs for the first time. All the rcs commands will automatically use the RCS subdirectory for
rcs files.

The ci Command
We can now check in our file, using the ci command to store the current version.

$ ci important.c
important.c,v  <--  important.c
initial revision: 1.1
done
$

If we had forgotten to do rcs -i first, RCS would have asked for a description of the file. One of the
advantages of RCS over SCCS is this more relaxed approach to human error. If we now look at the direc-
tory, we’ll see that important.c has been deleted.

$ ls -l
-r--r--r--    1 neil     users         444 2003-02-15 10:39 important.c,v 
$

The file contents and control information are all are stored in the RCS file: important.c,v.

The co Command
If we wish to change the file, we must first “check out” the file. If we just want to read the file, we can
use co to recreate the current version of the file and change the permissions to make it read-only. If we
wish to edit it, we must lock the file with co -l. The reason for this is that, in a team project, it’s impor-
tant to ensure that only one person at a time is modifying a given file, which is why only one copy of a
given version of a file has write permission. When a file is checked out with write permission, the RCS
file becomes locked. Let’s lock out a copy of the file

$ co -l important.c
important.c,v  -->  important.c
revision 1.1 (locked)
done
$

and look at the directory:

$ ls -l
-rw-r--r--    1 neil     users         226 2003-02-15 10:40 important.c
-r--r--r--    1 neil     users         454 2003-02-15 10:40 important.c,v 
$

There’s now a file for us to edit to put in our new changes. Let’s do some edits, store the new version,
and use the ci command again to store the changes. The output section of important.c is now

printf(“Hello World\n”);
printf(“This is an extra line added later\n”);
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We use ci like this:

$ ci important.c
important.c,v  <--  important.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ‘.’ or end of file:
>> Added an extra line to be printed out.
>> .
done
$

We’ve now stored the revised version of the file. If we look at the directory, we see that important.c
has again been removed.

$ ls -l
-r--r--r--    1 neil     users         636 2003-02-15 10:42 important.c,v
$

The rlog Command
It’s often useful to look at a summary of changes to a file. We can do this with the rlog command.

$ rlog important.c
RCS file: important.c,v
RCS file: important.c,v
Working file: important.c
head: 1.2
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 2;     selected revisions: 2
description:
This is an important demonstration file
——————————————
revision 1.2
date: 2003/02/15 10:42:35;  author: neil;  state: Exp;  lines: +1 -0
Added an extra line to be printed out.
——————————————
revision 1.1
date: 2003/02/15 10:39:45;  author: neil;  state: Exp;
Initial revision
=============================================================================
$

To check in the file and retain the lock so that the user can continue to work on it,
you should call ci with its -l option. The file is automatically checked out again to
the same user.
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The first part gives us a description of the file and the options that rcs is using. The rlog command
then lists the revisions of the file, most recent first, along with the text we entered when we checked in
the revision. lines: +1 –0 in revision 1.2 tells us that one line was added and none were deleted.

If we now want the first version of the file back, we can ask co for it by specifying the revision we
require.

$ co -r1.1 important.c
important.c,v  -->  important.c
revision 1.1
done
$

ci also has a -r option, which forces the version number to a specified value. For example,

ci -r2 important.c

would check in important.c as version 2.1. Both RCS and SCCS default to using 1 as the first minor
version number.

The rcsdiff Command
If we just want to know what was changed between two revisions, we can use the rcsdiff command.

$ rcsdiff -r1.1 -r1.2 important.c
===================================================================
RCS file: important.c,v
retrieving revision 1.1
retrieving revision 1.2
diff -r1.1 -r1.2
11a12
>     printf(“This is an extra line added later\n”);
$

This tells us that a single line was inserted after the original line 11.

Identifying Revisions
The RCS system can use some special strings (macros) inside the source file to help track the changes.
The most common two macros are $RCSfile$ and $Id$. The macro $RCSfile$ is expanded to the
name of the file and $Id$ expands to a string identifying the revision. Consult the manual pages for a
full list of the special strings supported. The macros are expanded whenever a file revision is checked
out and updated automatically when a revision is checked in.

Let’s change our file for a third time and add some of these macros.

$ co -l important.c
important.c,v  -->  important.c
revision 1.2 (locked)
done
$
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We edit the file and it now looks like this:

/*
This is an important file for managing this project.
It implements the canonical “Hello World” program.
Filename: $RCSfile$

*/
#include <stdlib.h>
#include <stdio.h>
static char *RCSinfo = “$Id$”;
int main() {

printf(“Hello World\n”);
printf(“This is an extra line added later\n”);
printf(“This file is under RCS control. It’s ID is\n%s\n”, RCSinfo);
exit(EXIT_SUCCESS);

}

Let’s check in this revision and see how RCS manages the special strings:

$ ci important.c
important.c,v  <--  important.c
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single ‘.’ or end of file:
>> Added $RCSfile$ and $Id$ strings
>> .
done
$

If we look in the directory, we find only the RCS file:

$ ls -l
-r--r--r--    1 neil     users         912 2003-02-15 10:46 important.c,v
$

If we check out (with the co command) and examine the current version of the source file, we can see
the macros that have been expanded.

/*
This is an important file for managing this project.
It implements the canonical “Hello World” program.
Filename: $RCSfile: important.c,v $

*/
#include <stdlib.h>
#include <stdio.h>
static char *RCSinfo = “$Id: important.c,v 1.3 2003/02/15 10:46:07 neil Exp $”;
int main() {

printf(“Hello World\n”);
printf(“This is an extra line added later\n”);
printf(“This file is under RCS control. It’s ID is\n%s\n”, RCSinfo);
exit(EXIT_SUCCESS);

}
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Try It Out—GNU make with RCS
GNU make already has some built-in rules for managing RCS files. We will now see how make deals
with a missing source file.

$ rm -f important.c
$ make important
co  important.c,v important.c
important.c,v  -->  important.c
revision 1.3
done
cc    -c important.c -o important.o
cc   important.o   -o important
rm important.o important.c
$

How It Works
make has a default rule that to make a file with no extension you can compile a file of the same name but
with a .c extension. A second default rule allows make to create important.c from important.c,v by
using RCS. Since no file called important.c exists, make has created the .c file by checking out the latest
revision with co. After compiling, it tidied up by deleting the file important.c.

The ident Command
We can use the ident command to find the version of a file that contains a $Id$ string. Since we stored
the string in a variable, it also appears in the resulting executable. You may find that if you include special
strings but never access them in the code, some compilers will optimize them away. You can normally get
around this problem by adding some dummy accesses to the string, although as compilers get better this
is becoming more difficult!

Try It Out—ident
$ important
Hello World
This is an extra line added later
This file is under RCS control.  Its ID is
$Id: important.c,v 1.3 2003/02/15 10:46:07 neil Exp $
$ ident important
important:

$Id: important.c,v 1.3 2003/02/15 10:46:07 neil Exp $
$

How It Works
By executing the program, we show the string has been incorporated into the executable. Then we show
how the ident command can extract $Id$ strings from an executable file.

This technique of using RCS and $Id$ strings that appear in executables can be a very powerful tool for
checking which version of a file a customer is reporting a problem in. You can also use RCS (or SCCS) as
part of a project-tracking facility to track problems being reported and how they are fixed. If you’re selling
software, or even giving it away, it’s very important to know what was changed between different releases.
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If you’d like more information, the rcsintro page in the manual gives a thorough introduction to the
RCS system, in addition to the standard RCS pages. There are also manual pages for the individual com-
mands ci, co, and so on.

SCCS
SCCS offers facilities very similar to RCS. The advantage of SCCS is that it’s specified in X/Open, so all
branded versions of UNIX should support it. On a more practical level, RCS is very portable and can be
freely distributed. So if you have a UNIX-like system, whether it’s X/Open conformant or not, you
should be able to obtain and install RCS for it. For this reason we don’t describe SCCS further here,
except to provide a brief command comparison for those moving between the two systems.

Comparing RCS and SCCS
It’s difficult to provide a direct comparison of commands between the two systems, so the following
table should only be considered as a quick pointer. The commands listed here don’t take the same
options to perform the same tasks. If you have to use SCCS, you’ll need to find the appropriate options,
but at least you’ll know where to start looking.

RCS SCCS

rcs admin

ci delta

co get

rcsdiff sccsdiff

ident what

In addition to those listed previously, the SCCS sccs command has some crossover with the rcs and co
commands in RCS. For example, sccs edit and sccs create are equivalent to co -l, and rcs -i,
respectively.

CVS
An alternative to using RCS to manage changes to files is CVS, which stands for Concurrent Versions
System. CVS is becoming more popular, probably because it has one distinct advantage over RCS: It’s
practical to use CVS over the Internet, not just on a shared local directory like RCS. CVS also allows for
parallel development; that is, many programmers can work on the same file at once, whereas RCS allows
only one user to work on one particular file at a time. CVS commands resemble RCS commands, because
CVS was initially developed as a front end to RCS.

Since it can work across a network in a flexible way, CVS is suitable for use if the only network linking the
developers is the Internet. Many Linux and GNU projects are using CVS to help the different developers
coordinate their work. In general, the way that you use CVS on a remote set of files is almost identical to
how you would use it on a local set.

386

Chapter 9

b544977 Ch09.qxd  12/1/03  8:56 AM  Page 386



In this chapter, we will look briefly at the basics of CVS, so that you can get started with local reposito-
ries and understand how to get a copy of the latest sources of a project when the CVS server is on the
Internet. More information is in the CVS manual, written by Per Cederqvist et. al., copyright Signum
Support AB, but distributed under the terms of the GNU General Public License and available on many
Web sites, where you will also find FAQ files and various other helpful files.

First we need to create a repository where CVS will store both its control files and the master copies of
files that it is managing. A repository has a tree structure, so you can use a single repository to store not
just a whole directory structure for a single project, but many projects in the same repository. However,
you can use separate repositories for separate unrelated projects as well. In the following sections we’ll
see how to tell CVS which repository to use.

Using CVS Locally
Let’s start by creating a repository. To keep it simple, this will be a local repository, and because we will
be using only one, a convenient place to put it is somewhere in /usr/local. On most Linux distribu-
tions all normal users are members of the group users, so we use this as the group of the repository so
that all users can access it.

As superuser, create a directory for the repository:

# mkdir /usr/local/repository
# chgrp users /usr/local/repository
# chmod g+w /usr/local/repository

As a normal user again, initialize it as a CVS repository. You will need to have obtained write access to
/usr/local/repository to do this.

$ cvs -d /usr/local/repository init

The -d option tells CVS where we want the repository to be created.

Now that the repository has been created, we can store our initial versions of the project in CVS.
However, at this point we can save ourselves some typing. All cvs commands have two ways of looking
for the CVS directory. First, they look for a -d <path> on the command line (as we used with the init
command); if the –d option is not present, it looks for an environment variable CVSROOT. Rather than use
the -d option all the time, we will set up this environment variable. This is the command to use if you
use bash as your shell:

$ export CVSROOT=/usr/local/repository

First we change to the directory where the project is; then we tell CVS to import all the files in the direc-
tory. As far as CVS concerned, a project is any collection of related files and directories. Typically this
will include all the files necessary to create an application. The term import means to bring files under
CVS control and copy them into the CVS repository.

$ cd cvs-sp
$ ls –l
-rw-r--r--    1 neil     users          68 2003-02-15 11:07 Makefile
-rw-r--r--    1 neil     users         109 2003-02-15 11:04 hello.c
$ cvs import -m”Initial version of Simple Project” wrox/chap9-cvs wrox start
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This bit of magic tells CVS to import all the files in the current directory and gives it a log message.

The wrox/chap9-cvs option tells CVS where, relative to the root of the CVS tree, to store the new pro-
ject. Remember that CVS can store multiple projects in the same repository if you wish. The option wrox
is a vendor tag used to identify the supplier of the initial version of files being imported, and start is a
release tag. Release tags can be used to identify, as a group, sets of related files, such as those that make
up a particular release of an application. CVS responds with

N wrox/chap9-cvs/hello.c
N wrox/chap9-cvs/Makefile
No conflicts created by this import

telling us that it imported two files correctly.

Now is a good time to check that we can retrieve our files from CVS. Let’s just create a junk directory
and check our files back out again to make sure all is well.

$ mkdir junk
$ cd junk
$ cvs checkout wrox/chap9-cvs

We give CVS the same path as when we checked the files in. CVS creates a directory wrox/chap9-cvs
in the current directory and puts the files there for us.

Now we are ready to make some changes to our project. Let’s edit hello.c and make a minor change.
Let’s just add a line:

printf(“Have a nice day\n”);

Then recompile and run the program to check all is well.

We can ask CVS what has been changed in the project. We don’t have to tell CVS which file we are inter-
ested in; it can work on a whole directory at a time:

$ cvs diff

CVS responds with

cvs diff: Diffing .
Index: hello.c
===================================================================
RCS file: /usr/local/repository/wrox/chap9-cvs/hello.c,v
retrieving revision 1.1.1.1
diff -r1.1.1.1 hello.c
6a7
>     printf(“Have a nice day\n”);

We are happy with our change, so let’s commit it to CVS.

388

Chapter 9

b544977 Ch09.qxd  12/1/03  8:56 AM  Page 388



When you commit a change with CVS, it will start an editor to allow you to enter a log message. You
may want to set the environment variable CVSEDITOR to force a particular editor before you run the
commit command.

$ cvs commit

CVS responds by telling us what it is checking.

cvs commit: Examining .
Checking in hello.c;
/usr/local/repository/wrox/chap9-cvs/hello.c,v  <--  hello.c
new revision: 1.2; previous revision: 1.1
done

Now we can ask CVS about changes to the project since we first checked it in. We ask for a set of differ-
ences since revision 1.1 (the initial version) on project wrox/chap9-cvs.

$ cvs rdiff -r1.1 wrox/chap9-cvs

CVS tells us the details:

cvs rdiff: Diffing wrox/chap9-cvs
Index: wrox/chap9-cvs/hello.c
diff -c wrox/chap9-cvs/hello.c:1.1 wrox/chap9-cvs/hello.c:1.2
*** wrox/chap9-cvs/hello.c:1.1  Sat Feb 15 11:08:33 2003
—- wrox/chap9-cvs/hello.c      Sat Feb 15 11:15:07 2003
***************
*** 4,8 ****
—- 4,9 ——

int main()
{

printf(“Hello World\n”);
+     printf(“Have a nice day\n”);

exit (EXIT_SUCCESS);
}

Suppose you have had a copy of code out of CVS for awhile in a local directory and want to refresh files
in your local directory that others have changed but that you have not edited. CVS can do this for you
using the update command. Move to the top part of the path, in this case to the directory containing
wrox, and execute the following command:

$ cvs update -Pd wrox/chap9-cvs

CVS will refresh files for you, extracting from the repository files that others have changed but that you
have not and putting them in your local directory. Of course, some of the changes might be incompatible
with your changes, but that is a problem you will have to work on. CVS is good, but it can’t perform
magic!

You can see by now that using CVS is very like using RCS. However, there is one very important differ-
ence, that we haven’t mentioned yet—the ability to operate over a network without using a mounted file
system.
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Accessing CVS over a Network
We told CVS where the repository was by either using a -d option to each command or setting the 
CVSROOT environment variable. If we want to operate over a network, we simply use a more advanced
syntax for this parameter. For example, at the time of writing, the GNOME (GNU Network Object
Model Environment, a popular open source graphical desktop system) development sources are all
accessible on the Internet using CVS. You need only specify where the appropriate CVS repository is
by pre-pending some network information to the front of the path specifier.

For example, at the time of writing you can point CVS at the GNOME source CVS repository by setting
CVSROOT to :pserver:anonymous@anoncvs.gnome.org:/cvs/gnome. This tells CVS that the reposi-
tory is using password authentication (pserver), and is on the server anoncvs.gnome.org.

Before we can access the sources, we need to do a login, like this.

$ cvs login

Press Enter when prompted for the password.

We are now ready to use cvs commands, much as though we were working on a local repository, with
one minor exception—we add the -z3 option to all cvs commands to force compression, saving net-
work bandwidth.

If we want to fetch the ORBit sources, for example, the command is

$ cvs -z3 checkout ORBit

If we want to set our own repository to be accessible over the network, then we need to start a CVS
server on our machine. This can be done by starting it via inetd. We simply add a line to
/etc/inetd.conf and restart inetd. The line we need is

2401 stream tcp nowait root /usr/bin/cvs cvs –b /usr/bin –-allow-root =
/usr/local/repository pserver

This instructs inetd to automatically start a CVS session to clients connecting on port 2401, the standard
CVS server port. For more information on starting network services via inetd, see the manual pages for
inetd and inetd.conf.

In this brief section, we have barely had room to scratch the surface of the facilities of CVS. If you want
to use CVS seriously, we strongly urge you to set up a local repository to experiment on, get the exten-
sive CVS documentation, and have fun! Remember, this is open source, so if you ever get seriously stuck
about what the code is doing, or (unlikely, but possible!) think you have found a bug, you can always get
the source code and have a look for yourself. The CVs home page is at http://www.cvshome.org/.

gCVS
Probably the best user interface for CVS on Linux is gCVS, available from http://wincvs.org. It is based
on the GNOME libraries and requires the programming language Tcl to be installed. Tcl is commonly avail-
able with Linux distributions.
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gCVS allows a respository to be created and managed, including remote access to network-based 
repositories.

Figure 9-1 shows the history of our simple application being displayed by gCVS.

Figure 9-1

BitKeeper
BitKeeper is a source code management tool from BitMover Inc. This is a commercial product that is
being used by the Linux kernel developers to manage the many thousands of lines of code that make up
the core of Linux. BitMover offer a “free use” license for BitKeeper for anyone working on free software
projects. More details are available from http://www.bitkeeper.com. 

Writing a Manual Page
If you’re writing a new command as part of a task, you should create a manual page to go with it. As
you’ve probably noticed, the layout of most manual pages follows a closely set pattern, which is of this
form:
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❑ Header

❑ Name

❑ Synopsis

❑ Description

❑ Options

❑ Files

❑ See also

❑ Bugs

You can leave out sections that aren’t relevant. An “Author” section also often appears toward the bot-
tom of Linux manual pages.

UNIX manual pages are formatted with a utility called nroff, or on most Linux systems the GNU pro-
ject’s equivalent, groff. Both of these are developments of an earlier roff, or run-off, command. The
input to nroff or groff is plain text, except that at first glance the syntax looks impenetrably difficult.
Don’t panic! As with UNIX programming, where the easiest way of writing a new program is to start
with an existing program and adapt it, so it is with manual pages.

It’s beyond the scope of this book to explain in detail the many options, commands, and macros that the
groff (or nroff) command can use. Rather, we present a simple template that you can borrow and
adapt for your own pages.

Here’s the source of a simple manual page for our application.

.TH MYAPP 1

.SH NAME
Myapp \- A simple demonstration application that does very little.
.SH SYNOPSIS
.B myapp 
[\-option ...]
.SH DESCRIPTION
.PP 
\fImyapp\fP is a complete application that does nothing useful.
.PP
It was written for demonstration purposes.
.SH OPTIONS
.PP
It doesn’t have any, but let’s pretend, to make this template complete:
.TP
.BI \-option 
If there was an option, it would not be -option.
.SH RESOURCES
.PP
myapp uses almost no resources.
.SH DIAGNOSTICS
The program shouldn’t output anything, so if you find it doing so there’s
probably something wrong. The return value is zero.
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.SH SEE ALSO
The only other program we know with this this little functionality is the
ubiquitous hello world application.
.SH COPYRIGHT
myapp is Copyright (c) 2003 Wrox Press.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA.
.SH BUGS
There probably are some, but we don’t know what they are yet.
.SH AUTHORS
Neil Matthew and Rick Stones

As you can see, macros are introduced with a period (.) at the start of the line and tend to be abbrevi-
ated. The 1 at the end of the top line is the section of the manual in which the command appears. Since
commands appear in section 1, that is where we place our new application.

You should be able to generate your own manual pages by modifying this one and inspecting the source
for others. You might also take a look at the Linux Man Page mini-HowTo, written by Jens Schweikhardt
as part of the Linux Documentation Project archives at http://www.tldp.org/.

Now that we have the source to the manual page, we can process it with groff. The groff command
commonly produces ASCII text (-Tascii) or PostScript (-Tps) output. We tell groff it’s a manual page
using the -man option, which causes special manual page macro definitions to be loaded.

$ groff -Tascii -man myapp.1

This gives the output

MYAPP(1)                                                 MYAPP(1)
NAME

Myapp  - A simple demonstration application that does very
little.

SYNOPSIS
myapp [-option ...]

DESCRIPTION
myapp is a complete application that does nothing useful.

It was written for demonstration purposes.

OPTIONS
It doesn’t have any, but let’s pretend, to make this tem-
plate complete:
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-option
If there was an option, it would not be -option.

RESOURCES
myapp uses almost no resources.

DIAGNOSTICS
The program shouldn’t output anything, so if you find  it
doing so there’s probably something wrong. The return
value is zero.

SEE ALSO
The only other program we know with this this little func-
tionality is the ubiquitous Hello World application.

COPYRIGHT
myapp is Copyright (c) 2003 Wrox Press.
This  program  is  free  software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License  as  published  by  the  Free Software Foundation;
either version 2 of the License, or (at your  option)  any
later version.
This  program  is  distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty  of  MERCHANTABILITY  or FITNESS FOR A PARTICULAR
PURPOSE.  See the GNU  General  Public  License  for  more
details.

1

MYAPP(1)                                                 MYAPP(1)

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software  Foundation,  Inc.,  59  Temple Place - Suite 330
Boston, MA 02111-1307, USA

BUGS
There probably are some, but we don’t know what  they  are
yet, nor do we particularly care ;-)

AUTHORS
Neil Matthew and Rick Stones

Now that we’ve tested our manual page, we need to install the source for it. The man command that
shows manual pages uses the MANPATH environment variable to search for manual pages. We can either
put our new page in a directory for local manual pages or store it directly in the system /usr/man/man1
directory.

The first time someone asks for this manual page, the man command will automatically format and 
display it. Some versions of man can automatically generate and store preformatted (and possibly com-
pressed) ASCII text versions of manual pages to speed up subsequent requests for the same page.
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Distributing Software
The main problem with program distribution is ensuring that all the files are included and are of exactly
the right version. Fortunately, the Internet programming community has evolved a very robust set of
methods that go a long way toward removing the problems. These methods include

❑ Packaging all component files into a single package file using standard tools available on all
Unix machines

❑ Controlled version numbering of packages

❑ A file-naming convention that includes the version number in the package file so that users can
easily see which version they are dealing with

❑ Use of subdirectories in the package to ensure that, when files are extracted from the package file,
they are placed in a separate directory so there’s no confusion about what’s included in the pack-
age and what isn’t

The evolution of these methods has meant that programs can be easily and reliably distributed. The ease
with which a program can be installed is another matter, because that depends on the program and the
system on which it’s being installed, but at least you can be sure that you have the right component files.

The patch Program
When programs have been distributed, it’s almost inevitable that users will discover bugs or that the
author will want to issue enhancements and updates. When authors distribute programs as binaries,
they often simply ship new binaries. Sometimes (all too often), vendors simply release a new version of
the program, often with an obscure revision reference and little information about what has changed.

On the other hand, distributing your software as source code is an excellent idea because it allows peo-
ple to see how you have implemented things and how you have used features. It also allows people to
check exactly what programs are doing and to reuse parts of the source code (providing they comply
with the licensing agreement).

However, with the source of the Linux kernel weighing in at tens of megabytes of compressed source
code, shipping an updated set of kernel sources would involve considerable resources, when, in fact,
probably only a small percentage of the source has changed between each release.

Fortunately, there is a utility program for solving this problem: patch. It was written by Larry Wall, who
also wrote the Perl programming language. The patch command allows you to distribute just the differ-
ences between the two versions so that anyone with version 1 of a file and a difference file for version 1
to version 2 can use the patch command to generate version 2 for themselves.

If we start with version 1 of a file,

This is file one
line 2
line 3
there is no line 4, this is line 5
line 6
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and then produce version 2,

This is file two
line 2
line 3
line 4
line 5
line 6
a new line 8

we can create a difference listing with the diff command:

$ diff file1.c file2.c > diffs

The diffs file contains

1c1
< This is file one
—
> This is file two
4c4,5
< there is no line 4, this is line 5
—
> line 4
> line 5
5a7
> a new line 8

This is actually a set of editor commands for changing one file into another. Suppose we have file1.c
and the diffs file. We can update our file using patch as follows:

$ patch file1.c diffs
Hmm...  Looks like a normal diff to me...
Patching file file1.c using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 4.
Hunk #3 succeeded at 7.
done
$

The patch command has now changed file1.c to be the same as file2.c.

patch has an extra trick: the ability to unpatch. Suppose we decide we don’t like the changes and want
our original file1.c back. No problem; just use patch again, using the -R (reverse patch) option.

$ patch -R file1.c diffs
Hmm...  Looks like a normal diff to me...
Patching file file1.c using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 4.
Hunk #3 succeeded at 6.
done
$
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file1.c is returned to its original state.

The patch command has several other options, but is generally very good at deciding from its input
what you’re trying to do and then simply “doing the right thing.” If patch ever fails, it creates a file
with the .rej extension containing the parts that couldn’t be patched.

When you’re dealing with software patches, it’s a good idea to use the diff -c option, which produces
a “context diff.” This provides a number of lines before and after each change so that patch can verify
that the context matches before applying the patch. The patch is also easier to read.

Other Distribution Utilities
Linux programs and sources are commonly distributed in a file whose name contains the version num-
ber, with an extension of .tar.gz or .tgz. These are gzipped TAR (tape archive) files, also known as
“tarballs.” If you’re using normal tar, you must process these files in two steps. Let’s create a gzip file
of our application.

$ tar cvf myapp-1.0.tar main.c 2.c 3.c *.h myapp.1 Makefile5
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile5
$

We now have a TAR file.

$ ls -l *.tar
-rw-r--r--    1 neil     users       10240 2003-02-15 11:31 myapp-1.0.tar
$

We can make this smaller using the compression program gzip.

$ gzip myapp-1.0.tar
$ ls -l *.gz
-rw-r--r--    1 neil     users        1668 2003-02-15 11:31 myapp-1.0.tar.gz
$

As you can see, the result is a very impressive reduction in size. This .tar.gz may then be renamed to a
simple .tgz extension.

$ mv myapp-1.0.tar.gz myapp_v1.tgz

If you find and fix a bug in a program, it’s easier, more precise, and more polite to
send the author a patch rather than just a description of the fix.
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This practice of renaming files to end with a dot and three characters seems to be a concession to Windows
software, which, unlike Linux and UNIX, is heavily dependent on the correct extension being present. To
get our file back, we decompress and extract them from the tar file again.

$ mv myapp_v1.tgz myapp-1.0.tar.gz
$ gzip -d myapp-1.0.tar.gz
$ tar xvf myapp-1.0.tar
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile5
$

With GNU’s version of tar, things are even easier—we can create the compressed archive in a single step.

$ tar zcvf myapp_v1.tgz main.c 2.c 3.c *.h myapp.1 Makefile5
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile5
$

We can also decompress it just as easily:

$ tar zxvf myapp_v1.tgz
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile5
$

If you want to know the contents of the archive without actually extracting them, you should call the
tar program with the slightly different option tar ztvf.

We’ve been using tar for the examples above without describing the options any more than absolutely
necessary. We’ll now take a quick look at the command and a few of its more popular options. As you
can see from our examples, the basic syntax is

tar [options] [list of files]
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The first item in the list is the target, and although we’ve been dealing with files, it could just as well be
a device. The other items in the list are added to a new or existing archive, depending on the options.
The list can also include directories, in which case all subdirectories are included in the file by default.
If you’re extracting files, there’s no need to specify names because full paths are preserved by tar.

In this section, we’ve used combinations of six different options:

❑ c: Creates a new archive.

❑ f: Specifies that the target is a file rather than a device.

❑ t: Lists the contents of an archive without actually extracting them.

❑ v (verbose): tar displays messages as it goes.

❑ x: Extracts file from an archive.

❑ z: Filters the archive through gzip from within GNU tar.

There are many more options to tar that allow finer control over the operation of the command and the
archives it creates. Refer to the tar manual pages for more information.

RPM Packages
The RPM Package Manager, or RPM (don’t you just love recursive abbreviations?), started life as the
packaging format for Red Hat Linux (and was originally known as the Red Hat Package Manager). Since
then, RPM has grown to be the accepted package format for many other Linux distributions, including
SuSE Linux. RPM has also been adopted as the official package file format by the Linux Standards Base,
or LSB, at www.linuxbase.org.

The main advantages of RPM include

❑ It is used everywhere. Just about every Linux distribution can at least install RPM packages or
uses RPM as its native packaging format. RPM has been ported to a number of other operating
systems as well.

❑ It allows you to install packages with a single command. You can also install packages automat-
ically, as RPM was designed for unattended usage. You can remove a package or upgrade a
package with a single command as well.

❑ You have only a single file to deal with. An RPM package is stored in a single file, making it
much easier to transport a package from one system to another.

❑ RPM automatically handles dependency checks. The RPM system includes a database of all the
packages you have installed, along with what each package provides to your system and infor-
mation about each package’s requirements.

❑ RPM packages are designed to be built from pristine sources, allowing you to reproduce a build.
RPM supports Linux tools such as patch for applying changes to program source code during
the build process.
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Working with RPM Package Files
Each RPM package is stored in a file with a .rpm extension. Package files usually follow a naming con-
vention with the following structure:

name-version-release.architecture.rpm

With this structure, the name holds a generic name for the package, such as mysql for the MySQL database,
or make for the make build tool. The version holds the version number of the software, such as version
3.23.54a of MySQL. The release holds a number that specifies which release of the RPM of that version of
the software is contained in the file. This is important because RPM packages are built by a set of instruc-
tions (covered in the “Creating an RPM Spec File” section a bit later in this chapter). The release number
allows you to track changes to the build instructions.

The architecture holds a specifier for the program architecture, such as i386 for an Intel-based system. For
compiled programs this is very important, because an executable created for a SPARC processor will likely
not run on an Intel processor, for example. The architecture can be generic, such as sparc for a SPARC pro-
cessor, or specific, such as sparcv9 for a v9 SPARC or athlon for an AMD Athlon chip. Unless you over-
ride it, the RPM system will prevent you from installing packages built for a different architecture.

The architecture can also hold special values of noarch for packages that are not specific to a particular
architecture, such as documentation files, Java programs, or Perl modules, and src for a source RPM.
Source RPMs contain the files and build instructions to build a binary RPM package. Most RPM pack-
ages you will find for downloading are prebuilt for a particular architecture, which adds to the conve-
nience. You can find thousands of Linux programs prebuilt and ready to install as RPM packages. This
saves you the hassle of compiling. 

In addition, some packages are so dependent on particular versions that it is far easier to download the
prebuilt package than it is to test all the components by hand. For example, 802.11b wireless networking
packages come prebuilt for specific kernel patch levels for specific distributions of Linux, such as kernel-
wlan-ng-modules-rh9.18-0.2.0-7-athlon.rpm, which contains kernel modules for Red Hat 9.0 with
a 2.4.20-18 kernel on an AMD Athlon processor system.

Installing RPM Packages
To install an RPM package, run the rpm command. The format is simple:

rpm -Uhv name-version-release.architecture.rpm

For example,

$ rpm -Uhv mysql-server-3.32.54a-11.i386.rpm

This command installs (or upgrades if needed) the package mysql-server, for an Intel x86 architecture
system.

The rpm command provides for most user interactions with the RPM system. You can query if a package
is installed with a command such as the following:

$ rpm -qa mysql-server
mysql-server-3.32.54a-11
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Building RPM Packages
To build an RPM package, run the rpmbuild command. The process is relatively straightforward.
We need to

❑ Gather the software you want to package.

❑ Create the spec file that describes how to build the package.

❑ Build the package with the rpmbuild command.

As RPM creation can be very complex, we will stick to a simple example in this chapter, one that should
be enough to distribute a reasonable application as source or binary. We will leave to the interested
reader the more esoteric options and support for packages derived via patches. Check out the manual
page for the rpm program, or the RPM HOWTO (usually found in /usr/doc) for more information.
Also, check out the Red Hat RPM Guide by Eric Foster-Johnson (Red Hat Press/Wiley). 

The following sections follow the three steps above for our trivial application, myapp.

Gathering the Software
The first step in building an RPM package is gathering the software you want to package. In most cases,
you will have the application source code, a build file such as a makefile, and perhaps an online manual
page.

The easiest way to gather this software together is to bundle these files into a tarball. Name the tarball
with the application name and version number, such as myapp-1.0.tar.gz.

We can modify our earlier makefile to add a new target to bundle the files into a tarball. The makefile
follows.

all: myapp
# Which compiler
CC = gcc

# Where are include files kept
INCLUDE = .

# Options for development
CFLAGS = -g -Wall -ansi
# Options for release
# CFLAGS = -O -Wall -ansi
# Local Libraries
MYLIB = mylib.a
myapp: main.o $(MYLIB)

$(CC) -o myapp main.o $(MYLIB)

$(MYLIB): $(MYLIB)(2.o) $(MYLIB)(3.o)
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h
clean:

-rm main.o 2.o 3.o $(MYLIB)
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dist: myapp-1.0.tar.gz

myapp-1.0.tar.gz: myapp myapp.1
-rm -rf myapp-1.0
mkdir myapp-1.0
cp *.c *.h *.1 Makefile myapp-1.0
tar zcvf $@ myapp-1.0

The myapp-1.0.tar.gz target in the makefile builds a tarball of the sources for our trivial example
application. We added a dist target that calls the same commands for simplicity. Run the following
command to make the bundle:

$ make dist

We then need to copy the file myapp-1.0.tar.gz to the RPM SOURCES directory, typically
/usr/src/redhat/SOURCES on a Red Hat Linux system. For example,

$ cp myapp-1.0.tar.gz /usr/src/redhat/SOURCES

The RPM system expects the sources to be located in the SOURCES directory as a tarball. (There are other
options; this is the simplest.) SOURCES is just one of the directories expected by the RPM system.

The RPM system expects the five directories in this table:

RPM Directory Usage

BUILD The rpmbuild command builds software in this directory.

RPMS The rpmbuild command stores the binary RPMs it creates in this
directory.

SOURCES You should put the sources for the application in this directory.

SPECS You should place the spec file for each RPM you plan to make in this
directory, although this is not necessary.

SRPMS The rpmbuild command places source RPMs in this directory.

The RPMS directory usually has a number of architecture-specific subdirectories, such as the following
(on an Intel x86 architecture system):

$ ls RPMS
athlon
i386
i486
i586
i686
noarch

By default, Red Hat Linux systems expect RPMs to be built in the /usr/src/redhat directory. 
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This directory is specific to Red Hat Linux. Other Linux distributions will use other directories, such as
/usr/src/packages.

Once we have gathered the sources for your RPM package, the next step is to create a spec file, the file
that describes to the rpmbuild command exactly how to build our package.

Creating an RPM Spec File
Creating a spec file can be daunting, given that the RPM system supports thousands of options. Luckily,
the RPM system provides reasonable defaults for most options. You can follow the simple example in
this section, which should suffice for most packages you will build. In addition, you can copy com-
mands from other spec files.

Good sources for spec file examples are other RPM packages. Look at source RPMs, which are stored
in files ending in .src.rpm. Install these RPMs and look through the spec files. You should find
more complicated examples than you will ever need. Interesting spec files include those for anonftp,
telnet, vnc, and sendmail.

In addition, the designers of the RPM system wisely decided not to try to replace common build tools
such as make or configure. The RPM system contains many shorthand features to take advantage of
makefiles and configure scripts.

In this example, we will create a spec file for the simple myapp application. Name your spec file
myapp.spec. Start the spec file with a set of definitions of the name, version number, and other 
information about your package. For example,

Vendor:           Wrox Press
Distribution:     Any
Name:             myapp
Version:          1.0
Release:          1
Packager:         neil@provider.com
License:          Copyright 2003 by Wrox Press
Group:            Applications/Media

This section of an RPM spec file is often called a preamble. In our preamble, the most important settings
are the Name, Version, and Release. This example sets the name to myapp, the version number to 1.0,
and the release of the RPM package at 1, our first attempt at making an RPM package. 

The Group setting is used to help graphical installation programs sort the thousands of Linux applica-
tions by type. The Distribution is important if you build a package just for one Linux distribution,
such as Red Hat or SuSE Linux.

Adding comments to your spec file is a good idea. Like shell scripts and makefiles, the rpmbuild com-
mand treats any line starting with a # character as a comment. For example,

# This line is a comment.
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To help users decide whether to install your package, provide a Summary and a %description (note the
inconsistency in the RPM syntax, with a percent sign before description). For example, we can describe
our package as follows:

Summary:          Trivial application
%description
MyApp Trivial Application
A trivial application used to demonstrate development tools.
This version pretends it requires MySQL at or above 3.23.
Authors: Neil Matthew and Richard Stones

The %description section can take up multiple lines (and normally should).

The spec file can contain dependency information, both what your package provides and what your
package depends on. (You can also define what the source package depends on, such as special header
files necessary for compiling.)

The Provides setting defines what capabilities your system provides. For example,

Provides:         goodness

This example states that our package provides the imaginary capability called goodness. The RPM sys-
tem will also automatically add a Provides entry for the name of the package, myapp in our case. The
Provides settings are useful for multiple packages that may provide the same thing. For example, the
Apache Web server package provides the capability webserver. Other packages, such as Thy, may also
provide the same capability. (To help deal with conflicting packages, RPM allows you to specify
Conflicts and Obsoletes information as well.)

The most important dependency information, though, is the Requires settings. You can state all the
packages your package requires for operation. For example, a Web server requires networking and secu-
rity packages. In our example, we define a requirement for the MySQL database, at version 3.23 or
higher. The syntax for this follows:

Requires:         mysql >= 3.23

If you only want to require the MySQL database, at any version, you can use a setting like the following:

Requires:         mysql

RPM will prevent users from installing packages if the required packages are not also installed. (Users
can override this behavior, though.)

The RPM system will automatically add dependencies such as /bin/sh for shell scripts, the Perl inter-
preter for Perl scripts, and any shared libraries (.so files) your application calls. Each release of the RPM
system adds more smarts to the automatic dependency checks.

After you have defined the requirements, you need to define the sources that make up your application.
For most applications, you can simply copy the following setting:

source:           %{name}-%{version}.tar.gz
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The %{name} syntax refers to an RPM macro, in this case, the name of the package. Since we previously
set the name to myapp, the rpmbuild command will expand %{name} to myapp, and similarly expand
%{version} to 1.0, making for a file named myapp-1.0.tar.gz. The rpmbuild command will look for
this file in the SOURCES directory described previously.

Our example sets up a Buildroot, which defines a staging area to test the installation. You can copy the
following for your packages:

Buildroot:        %{_tmppath}/%{name}-%{version}-root

Once a Buildroot is set up, install your applications to the Buildroot directory. You can use the handy
variable $RPM_BUILD_ROOT, which is defined for all the shell scripts in the spec file.

After defining all these settings about the package, the next step is to define how to build the package.
There are four main sections for building: %prep, %build, %install, and %clean.

As the name implies, the %prep section is for preparing to build. In most cases, you can run the %setup
macro, shown here with a -q parameter to set it to quiet mode:

%prep
%setup -q

The %build section builds your application. In most cases, you can use a simple make command. For
example,

%build
make

This is one way that the RPM system takes advantage of the work you’ve already done in creating your
makefile.

The %install section installs your application, any manual pages, and any support files. You can often
use the RPM macro %makeinstall, which calls the install target of the makefile. In our case, though,
we can manually install the files to show more RPM macros:

%install
mkdir -p $RPM_BUILD_ROOT%{_bindir}
mkdir -p $RPM_BUILD_ROOT%{_mandir}
install -m755 myapp $RPM_BUILD_ROOT%{_bindir}/myapp
install -m755 myapp.1 $RPM_BUILD_ROOT%{_mandir}/myapp.1

This example creates the directories for the files, if needed, and then installs the myapp executable and
myapp.1 manual page. The $RPM_BUILD_ROOT environment variable holds the Buildroot location set
previously. The %{_bindir} and %{_mandir} macros expand to the current binary directory and man-
ual page directory, respectively.

If you use a configure script to create the makefile, all the various directories get set properly into your
makefile. In most cases, you will not need to set up all the installation commands manually in the spec
file as shown in the previous example.
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The %clean target cleans up the files created by the rpmbuild command. For example,

%clean
rm -rf $RPM_BUILD_ROOT

After specifying how to build the package, you need to define all the files that will be installed. RPM is
very rigid on this; it has to be rigid so that it can properly track every file from every package. The
%files section names the files to include in the package. In our case, we have only two files to distribute
in the binary package: the myapp executable and myapp.1 manual page. For example,

%files
%{_bindir}/myapp
%{_mandir}/myapp.1

The RPM system can run scripts before and after your package is installed. For example, if your package
is a daemon process, you probably need to modify the system initialization scripts to start your daemon.
Do that with a %post script. A simple example that merely sends an e-mail message follows: 

%post
mail root -s “myapp installed - please register” </dev/null

Look for examples in server RPM spec files.

The complete spec file for our trivial application follows:

#
# spec file for package myapp (Version 1.0)
#
Vendor:           Wrox Press
Distribution:     Any
Name:             myapp
Version:          1.0
Release:          1
Packager:         neil@provider.com
License:          Copyright 2003 by Wrox Press
Group:            Applications/Media

Provides:         goodness
Requires:         mysql >= 3.23

Buildroot:        %{_tmppath}/%{name}-%{version}-root
source:           %{name}-%{version}.tar.gz

Summary:          Trivial application
%description
MyApp Trivial Application
A trivial application used to demonstrate development tools.
This version pretends it requires MySQL at or above 3.23.
Authors: Neil Matthew and Richard Stones
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%prep
%setup -q

%build
make

%install
mkdir -p $RPM_BUILD_ROOT%{_bindir}
mkdir -p $RPM_BUILD_ROOT%{_mandir}
install -m755 myapp $RPM_BUILD_ROOT%{_bindir}/myapp
install -m755 myapp.1 $RPM_BUILD_ROOT%{_mandir}/myapp.1

%clean
rm -rf $RPM_BUILD_ROOT

%post
mail root -s “myapp installed - please register” </dev/null

%files
%{_bindir}/myapp
%{_mandir}/myapp.1

We are now ready to build the RPM package.

Building an RPM Package with rpmbuild
Build packages with the rpmbuild command, which uses the following syntax:

rpmbuild -bBuildStage spec_file

The -b option tells rpmbuild to build an RPM. The extra BuildStage option is a special code that tells the
rpmbuild command how far to go when building. We list the options in the following table.

Option Usage

-ba Build all, both a binary and source RPM.

-bb Build a binary RPM.

-bc Build (compile) the program but do not make the full RPM.

-bp Prepare for building a binary RPM.

-bi Create a binary RPM and install it.

-bl Check the listing of files for the RPM.

-bs Build a source RPM only.

Older versions of the RPM system used the rpm command to build packages in place of the rpmbuild
command. With the more recent RPM releases, though, the rpm command will no longer build RPM
packages. You must use the rpmbuild command.
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To build both a binary and a source RPM, use the -ba option. The source RPM allows you to recreate the
binary RPM.

The following shows the output from building our package:

$ rpmbuild -ba myapp.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.71108
+ umask 022
+ cd /usr/src/redhat/BUILD
+ LANG=C
+ export LANG
+ cd /usr/src/redhat/BUILD
+ rm -rf myapp-1.0
+ /usr/bin/gzip -dc /usr/src/redhat/SOURCES/myapp-1.0.tar.gz
+ tar -xf -
+ STATUS=0
+ ‘[‘ 0 -ne 0 ‘]’
+ cd myapp-1.0
++ /usr/bin/id -u
+ ‘[‘ 0 = 0 ‘]’
+ /bin/chown -Rhf root .
++ /usr/bin/id -u
+ ‘[‘ 0 = 0 ‘]’
+ /bin/chgrp -Rhf root .
+ /bin/chmod -Rf a+rX,g-w,o-w .
+ exit 0
Executing(%build): /bin/sh -e /var/tmp/rpm-tmp.43788
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd myapp-1.0
+ LANG=C
+ export LANG
+ make
gcc -g -Wall -ansi   -c -o main.o main.c
gcc -g -Wall -ansi   -c -o 2.o 2.c
ar rv mylib.a 2.o
a - 2.o
gcc -g -Wall -ansi   -c -o 3.o 3.c
ar rv mylib.a 3.o
a - 3.o
gcc -o myapp main.o mylib.a
+ exit 0
Executing(%install): /bin/sh -e /var/tmp/rpm-tmp.90688
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd myapp-1.0
+ LANG=C
+ export LANG
+ mkdir -p /var/tmp/myapp-1.0-root/usr/bin
+ mkdir -p /var/tmp/myapp-1.0-root/usr/share/man
+ install -m755 myapp /var/tmp/myapp-1.0-root/usr/bin/myapp
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+ install -m755 myapp.1 /var/tmp/myapp-1.0-root/usr/share/man/myapp.1
+ /usr/lib/rpm/find-debuginfo.sh /usr/src/redhat/BUILD/myapp-1.0
extracting debug info from /var/tmp/myapp-1.0-root/usr/bin/myapp
1 block
+ /usr/lib/rpm/redhat/brp-compress
+ /usr/lib/rpm/redhat/brp-strip /usr/bin/strip
+ /usr/lib/rpm/redhat/brp-strip-static-archive /usr/bin/strip
+ /usr/lib/rpm/redhat/brp-strip-comment-note /usr/bin/strip /usr/bin/objdump
Processing files: myapp-1.0-1
Provides: goodness
Requires(interp): /bin/sh
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1
rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Requires(post): /bin/sh
Requires: libc.so.6 libc.so.6(GLIBC_2.0) mysql >= 3.23
Processing files: myapp-debuginfo-1.0-1
Requires(rpmlib): rpmlib(CompressedFileNames) <= 3.0.4-1
rpmlib(PayloadFilesHavePrefix) <= 4.0-1
Checking for unpackaged file(s): /usr/lib/rpm/check-files /var/tmp/myapp-1.0-root
Wrote: /usr/src/redhat/SRPMS/myapp-1.0-1.src.rpm
Wrote: /usr/src/redhat/RPMS/i386/myapp-1.0-1.i386.rpm
Wrote: /usr/src/redhat/RPMS/i386/myapp-debuginfo-1.0-1.i386.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.17422
+ umask 022
+ cd /usr/src/redhat/BUILD
+ cd myapp-1.0
+ rm -rf /var/tmp/myapp-1.0-root
+ exit 0

When the build is complete, you should see two packages: the binary RPM in the RPMS directory, under
an architecture subdirectory such as RPMS/i386, and a source RPM in SRPMS.

The binary RPM filename will appear something like the following:

myapp-1.0-1.i386.rpm

The architecture on your system may be different.

The source RPM filename will appear as follows:

myapp-1.0-1.src.rpm

You need to install packages as the superuser. You do not have to build packages as
root, so long as you have write access to the RPM directories, typically /usr/src/
redhat. Normally, you should not create RPM packages as root, since a spec file
could have commands that may damage your system.
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Other Package Formats
Although RPM is fast becoming the most popular way of distributing applications in a way that allows
the user to control their installation, and deinstallation, there are competing packages out there. Some
software is still distributed as gzipped tar files (tgz). Typically the installation steps consist of unpack-
ing the archive into a temporary directory and running a script to perform the actual installation. 

The Debian Linux distributions (and some others) support another package format, similar in function-
ality to RPM, called dpkg. The dpkg utility on Debian unpacks and installs package files that usually
have a .deb extension. If you need to distribute an application using .deb file packages, it is possible to
convert an RPM package to dpkg format using a utility called Alien. More details on Alien can be found
at http://kitenet.net/programs/alien/.

Development Environments
Almost all of the tools we have looked at so far in this chapter are essentially command line tools.
Developers that have experience with Windows will no doubt have some experience with integrated
development environments, or IDEs for short. IDEs are graphical environments that typically bring
together some or all of the tools needed to create, debug, and run an application. Usually, they provide
at least an editor, a file browser, and a method of running the application and capturing the output.
More complete environments add support for generating source code files from templates for certain
types of application, integration with a source code control system, and automatic documentation.

In this chapter, we will mention a few of the IDEs available for Linux today. These environments are
under active development, with the most advanced of them beginning to rival the quality of commercial
offerings.

xwpe
Way back in 1993 Fred Kruse developed a character-based file manager and text editor. It was small,
easy to use, and colorful. Its style mimicked the MS-DOS tools of the day. Many programmers appreci-
ated its speed and low demand on precious computer resources.

Called “Window Editor,” and invoked as we, the editor is able to edit multiple files at once, search for
text, automatically indent source code, and print it. Later developments added support for executing
and debugging programs from within the editor. This version became the Window Programming
Environment (wpe). Both we and wpe run on Linux, either using a character mode console or inside a
color xterm under the X Window System. Versions that run under X11 are also available as xwe and xwpe
respectively. These versions retain all the function key–driven user interface of the originals.

Figure 9-2 shows xwpe stepping through the execution of a simple program. As you can see, the editor
uses color to highlight the syntax of the C source code and the current state of execution.

Today, XWPE is being developed by Identical Software. You can find more details and download a 
version for Linux at http://www.identicalsoftware.com/xwpe/.
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Figure 9-2

C-Forge
C-Forge is a commercial graphical IDE for C and C++ programs from Codeforge. There are a number of
versions available for Linux, including a freeware one, which has limited but still useful functionality.

C-Forge will generate a suitable makefile for projects and supports revision control using CVS so that
projects developed with it can be readily and easily maintained. Figure 9-3 shows a C-Forge project
under construction. You can download the free version of C-Forge from http://www.codeforge.com/.
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Figure 9-3

KDevelop
KDevelop is an IDE for C and C++ programs. It includes particular support for the creation of applica-
tions to run under the K Desktop Environment (KDE), one of the two main graphical user interfaces on
Linux today. It can also be used for other project types, including simple C programs.

KDevelop is free software released under the terms of the GNU General Public License (GPL) and is
available with many Linux distributions. The latest version can be downloaded from http://www.
kdevelop.org. Projects created with KDevelop by default follow the standard for GNU projects. 
For example, they will use the autoconf utility to generate makefiles that are tailored to the environ-
ment for which they are being built. This means that the project is ready to be distributed as source
code that stands a good chance of being able to be compiled on other systems.
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KDevelop projects also contain templates for documentation, the GPL license text, and generic installation
instructions. The number of files that are generated when making a new KDevelop project can be daunt-
ing, but should be familiar to anyone who has downloaded and compiled a typical GPL application.

There is support with KDevelop for CVS source code control, and applications can be both edited and
debugged without leaving the environment. Figures 9-4 and 9-5 show the default KDevelop C applica-
tion (yet another Hello World! program) being edited and executed.

Figure 9-4
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Figure 9-5

Other Environments
There are many other editors and IDEs either available for Linux or under development.  The following
table’s list of links is not intended to be complete, but some of the developments may prove to be 
interesting.

Enivronment Type Product URL

gbuilder An IDE for GNOME http://gbuilder.sourceforge.net/

Anjuta An IDE for GNOME http://anjuta.sourceforge.net/ 

Klint An IDE for KDE http://klint.sourceforge.net/

QtEZ An IDE for KDE http://projects.uid0.sk/
qtez/index.php

RHIDE A text mode IDE http://www.rhide.com/

CRiSP A commercial http://www.crisp.com/ 
programmer’s editor

SlickEdit A commercial multi- http://www.slickedit.com/
language code editor
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Enivronment Type Product URL

Kylix A commercial IDE for http://www.borland.com/kylix
C++ and Delphi

Eclipse Java-based tool http://www.eclipse.org 
platform and IDE

Summary
In this chapter, we’ve seen just a few of the Linux tools that make development and distribution of pro-
grams manageable. First, and perhaps most important, we used make and makefiles to manage multiple
source files. We then looked at source code control with RCS and CVS, which lets us track changes as we
develop our code. We then covered program distribution with patch, tar with gzip, and RPM pack-
ages. Finally, we took a look at some of the tools that make the edit-run-debug cycle of development a
little easier, the IDEs.
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10
Debugging

Every significant piece of software will contain defects, typically two to five per 100 lines of code.
These mistakes lead to programs and libraries that don’t perform as required, often causing a pro-
gram to behave differently than it’s supposed to. Bug tracking, identification, and removal can
consume a large amount of a programmer’s time during software development.

In this chapter, we’ll look at software defects and consider some tools and techniques for tracking
down specific instances of erroneous behavior. This isn’t the same as testing (the task of verifying
the program’s operation in all possible conditions), although testing and debugging are, of course,
related, and many bugs are discovered during the testing process.

Topics we’ll cover include

❑ Types of errors

❑ General debugging techniques

❑ Debugging with GDB and other tools

❑ Assertions

❑ Memory use debugging

Types of Errors
A bug usually arises from one of a small number of causes, each of which suggests a method of
detection and removal:

❑ Specification Errors: If a program is incorrectly specified, it will inevitably fail to perform
as required. Even the best programmer in the world can sometimes write the wrong pro-
gram. Before you start programming (or designing), make sure that you know and under-
stand clearly what your program needs to do. You can detect and remove many (if not all)
specification errors by reviewing the requirements and agreeing that they are correct with
those who will use the program.
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❑ Design Errors: Programs of any size need to be designed before they’re created. It’s not usually
enough to sit down at a computer keyboard, type source code directly, and expect the program
to work the first time. Take time to think about how you will construct the program, what data
structures you’ll need, and how they will be used. Try to work out the details in advance,
because it can save many rewrites later on.

❑ Coding Errors: Of course, everyone makes typing errors. Creating the source code from your
design is an imperfect process. This is where many bugs will creep in. When you’re faced with a
bug in a program, don’t overlook the possibility of simply rereading the source code or asking
someone else to. It’s surprising just how many bugs you can detect and remove by talking
through the implementation with someone else.

Try executing the core of the program on paper, a process sometimes called dry running. For the
most important routines, write down the values of inputs and calculate the outputs step by step.
You don’t always have to use a computer to debug, and sometimes it can be the computer caus-
ing the problems. Even the people who write libraries, compilers, and operating systems make
mistakes! On the other hand, don’t be too quick to blame the tools; it is more likely that there’s a
bug in a new program than in the compiler.

General Debugging Techniques
There are several distinct approaches to debugging and testing a typical Linux program. We generally
run the program and see what happens. If it doesn’t work, we need to decide what to do about it. We
can change the program and try again (code inspection, trial and error), we can try to gain more infor-
mation about what’s happening inside the program (instrumentation), or we can inspect the program
operation directly (controlled execution). The five stages of debugging are

❑ Testing: Finding out what defects or bugs exist

❑ Stabilization: Making the bugs reproducable

❑ Localization: Identifying the line(s) of code responsible

❑ Correction: Fixing the code

❑ Verification: Making sure the fix works

A Program with Bugs
Let’s look at an example program that contains bugs. During the course of this chapter, we’ll try to debug
it. The program was written during the development of a larger software system. Its purpose is to test a
single function, sort, which is intended to implement a bubble sort algorithm on an array of structures of

Languages with compilers, such as C, have an advantage here in that syntax errors
can be caught at compile time, whereas interpreted languages such as the Linux shell
might detect syntax errors only when you try to run the program. If the problem is
with error-handling code, it might not be easy to spot in testing.
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type item. The items are sorted in ascending order of the member, key. The program calls sort on a sam-
ple array to test it. In the real world we would never seek to use this particular sort of algorithm, as it’s far
too inefficient. We have used it here because it is short, relatively simple to understand, and also easy to
get wrong. In fact, the standard C library has a function that performs the desired task already called
qsort.

Unfortunately, the code is not very readable, there are no comments, and the original programmer isn’t
available. We’ll have to struggle with it on our own, starting from the basic routine debug1.c.

/*   1  */  typedef struct {
/*   2  */      char *data;
/*   3  */      int key;
/*   4  */  } item;
/*   5  */  
/*   6  */  item array[] = {
/*   7  */      {“bill”, 3},
/*   8  */      {“neil”, 4},
/*   9  */      {“john”, 2},
/*  10  */      {“rick”, 5},
/*  11  */      {“alex”, 1},
/*  12  */  };
/*  13  */  
/*  14  */  sort(a,n)
/*  15  */  item *a; 
/*  16  */  { 
/*  17  */      int i = 0, j = 0;
/*  18  */      int s = 1;
/*  19  */  
/*  20  */      for(; i < n && s != 0; i++) {
/*  21  */              s = 0;
/*  22  */              for(j = 0; j < n; j++) {
/*  23  */                      if(a[j].key > a[j+1].key) {
/*  24  */                              item t = a[j];
/*  25  */                              a[j] = a[j+1];
/*  26  */                              a[j+1] = t;
/*  27  */                              s++;
/*  28  */                      }
/*  29  */              }
/*  30  */              n--;
/*  31  */      }
/*  32  */  }
/*  33  */  
/*  34  */  main()
/*  35  */  {
/*  36  */      sort(array,5);
/*  37  */  }

Let’s try to compile this program:

$ cc -o debug1 debug1.c

It compiles successfully, with no reported errors or warnings.
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Before we run this program, we’ll add some code to print out the result. Otherwise, we won’t know
whether the program has worked. We will add some additional lines to display the array after it’s been
sorted. We call the new version debug2.c.

/*  34  */  main()
/*  35  */  {

/*  36  */          int i;
/*  37  */          sort(array,5); 
/*  38  */          for(i = 0; i < 5; i++)
/*  39  */                  printf(“array[%d] = {%s, %d}\n”,
/*  40  */                          i, array[i].data, array[i].key);
/*  41  */  }

This additional code isn’t strictly part of the programmer’s remit. We’ve had to put it in just for testing.
We’ll have to be very careful that we don’t introduce further bugs in our test code. Now compile again
and, this time, run the program.

$ cc -o debug2 debug2.c
$ ./debug2

What happens when you do this will depend on your flavor of Linux (or UNIX) and on how it’s set up.
On one of the authors’ systems, we got

array[0] = {john, 2}
array[1] = {alex, 1}
array[2] = {(null), -1}
array[3] = {bill, 3}
array[4] = {neil, 4}

But on the other author’s system (running a different Linux kernel), we got

Segmentation fault

On your Linux system, you may see either of these outputs or a different result entirely. We expected
to see

array[0] = {alex, 1}
array[1] = {john, 2}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

Clearly there’s a serious problem with this code. If it runs at all, it’s failing to sort the array correctly, and
if it’s being terminated with a segmentation fault, the operating system is sending a signal to the pro-
gram saying that it has detected an illegal memory access and is prematurely terminating the program
to prevent memory from being corrupted.

The ability of the operating system to detect illegal memory access depends on its hardware configura-
tion and some subtleties of its memory management implementation. On most systems, the memory
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allocated to the program by the operating system is larger than the memory actually being used. If the
illegal memory access occurs in this region of memory, the hardware may not be able to detect the illegal
access. This is why not all versions of Linux and UNIX will generate a segmentation violation.

When you’re tracking down array access problems, it’s often a good idea to increase the size of array ele-
ments, as this increases the size of the error. If we read a single byte beyond the end of an array of bytes,
we may get away with it, as the memory allocated to the program will be rounded up to an operating
system–specific boundary, possibly as much as 8K.

If we increase the array element size, in this case by changing the item member data to be an array of
4,096 characters, any access to a nonexistent array element will probably be to a memory location
beyond that allocated. Each element of the array is 4K in size, so the memory we use incorrectly will be
0–4K off the end.

If we do this, calling the result debug3.c, we get a segmentation fault on both the authors’ flavors of
Linux.

/*   2  */      char data[4096];
$ cc -o debug3 debug3.c
$ ./debug3
Segmentation fault (core dumped)

It’s possible that some flavors of Linux or UNIX still won’t produce a segmentation fault. When the
ANSI C standard states that the behavior is undefined, it truly does allow the program to do anything.
It certainly looks like we have written a nonconforming C program here, and a nonconforming C pro-
gram may exhibit very strange behavior! As we will see, the fault does turn out to fall into the category
of undefined behavior.

Code Inspection
As we mentioned earlier, it’s often a good idea to reread your program when it fails to run as expected.
For the purposes of this chapter, let’s assume that the code has been reviewed and that obvious faults
have been dealt with.

There are tools that you can use to help with code reviews, the compiler being an obvious one. It will tell
you if you have any syntax errors in your program.

Code inspection is also a term for the more formal process of a group of developers
tracing through a few hundred lines of code in detail, but the scale really doesn’t
matter; it’s still code inspection and it’s still a very useful technique.

Some library functions, such as printf, will also prevent illegal accesses in some
special circumstances, such as using a null pointer.
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We’ll mention other tools, lint and Splint, a little later. Like the compiler, they analyze source code
and report on code that might be incorrect.

Instrumentation
Instrumentation is the adding of code to a program for the purpose of collecting more information about
the behavior of the program as it runs. It’s very common to add printf calls, as we have done in our
example, to print out the values of variables at different stages in a program’s execution. We could use-
fully add several printf calls, but we should be aware that the process entails an additional edit and
compile whenever the program is changed, and of course, we will need to remove the code when the
bugs are fixed.

There are two instrumentation techniques that can help here. The first uses the C preprocessor to selec-
tively include instrumentation code so that we only need to recompile the program to include or exclude
debugging code. We can do this quite simply with constructs such as

#ifdef DEBUG
printf(“variable x has value = %d\n”, x);

#endif

We can compile the program with the compiler flag -DDEBUG to define the DEBUG symbol and include
the extra code or without to exclude it. We can make more sophisticated use of a numeric debug macro,
like this:

#define BASIC_DEBUG 1
#define EXTRA_DEBUG 2
#define SUPER_DEBUG 4

#if (DEBUG & EXTRA_DEBUG)
printf...

#endif

In this case, we must always define the DEBUG macro, but we can set it to represent a set of debug infor-
mation, or a level of detail. The compiler flag -DDEBUG=5 would, in this case, enable BASIC_DEBUG and
SUPER_DEBUG, but not EXTRA_DEBUG. The flag -DDEBUG=0 would disable all debug information.
Alternatively, including the following lines eliminates the need to specify DEBUG on the command line
in the case where no debugging is required:

Some compilers also have options to raise warnings on dubious practices, such as
failing to initialize variables and using assignments in conditions. For example, the
GNU compiler can be run with these options:

gcc -Wall -pedantic –ansi

They enable many warnings and additional checks for conformance to C standards.
We recommend that you get into the habit of using these options, Wall especially.
It can generate helpful information when tracking down program faults.
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#ifndef DEBUG
#define DEBUG 0
#endif

Several macros defined by the C preprocessor can help with debug information. These are macros that
expand to give information about the current compilation.

Macro Description

__LINE__ A decimal constant representing the current line number

__FILE__ A string representing the current file name

__DATE__ A string of the form “Mmm dd yyyy”, the current date

__TIME__ A string of the form “hh:mm:ss”, the current time

Note that these symbols are prefixed and suffixed by two underscores. This is common for standard pre-
processor symbols, and you should take care to avoid choosing symbols that might clash. The term current
in the above descriptions refers to the point at which the preprocessing is being performed, that is, the time
and date the compiler was run and the file processed.

Try It Out—Debug Information
Here’s a program, cinfo.c, that prints information about its compilation date and time if debugging is
enabled.

#include <stdio.h>

int main()
{
#ifdef DEBUG

printf(“Compiled: “ __DATE__ “ at “ __TIME__ “\n”);
printf(“This is line %d of file %s\n”, __LINE__, __FILE__);

#endif
printf(“hello world\n”);
exit(0);

}

When we compile this program with debug enabled (using -DDEBUG), we see the compilation information.

$ cc -o cinfo -DDEBUG cinfo.c
$ ./cinfo
Compiled: Mar  1 2003 at 18:17:32
This is line 7 of file cinfo.c
hello world 
$
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How It Works
The C preprocessor part of the compiler keeps track of the current line and file when it’s compiling.
It substitutes the current (compile time) values of these variables whenever it encounters the symbols
__LINE__ and __FILE__. The date and time of compilation are made available similarly. Since
__DATE__ and __TIME__ are strings, we can concatenate them with format strings for printf
because ANSI C specifies that adjacent strings be treated as one.

Debugging without Recompiling
Before we move on, it’s worth mentioning that there’s a way of using the printf function to help with
debugging without using the #ifdef DEBUG technique, which requires a program to be recompiled
before it can be used.

The method is to add a global variable as a debug flag, allow a -d option at the command line, which
allows the user to switch debugging on even after the program has been released, and add a debug log-
ging function. Now you can intersperse things like this in the program code:

if (debug) {
sprintf(msg, ...)
write_debug(msg)

}

You should write debug output to stderr, or, if this isn’t practical because of the nature of the program,
use the logging facilities provided by the syslog function.

If you add traces like this to solve problems during development, just leave the code in there. Provided
you use a small amount of care, this can be quite safe. The benefit comes when the program has been
released; if users encounter a problem, they can run it with debugging on and diagnose the errors for
you. Instead of reporting that the program gave the message segmentation fault, they can also report
exactly what the program was doing at the time, not just what the user was doing. The difference can be
immense.

There is obviously a downside to this approach; the program is larger than it needs to be. In most cases,
this is more an apparent problem than a real one. The program will probably be 20 percent or 30 percent
larger, but in most cases this doesn’t have any real impact on performance. Poor performance comes
from increasing size by orders of magnitude, not by a mere doubling.

Controlled Execution
Let’s get back to the example program. We have a bug. We can modify the program by adding additional
code to print out the values of variables as the program runs, or we can use a debugger to control the
program’s execution and view its state as execution proceeds.

There are a number of debuggers available on commercial UNIX systems, depending on the vendor.
Common ones are adb, sdb, and dbx. The more sophisticated ones allow us to look at the state of the
program in some detail at a source code level. This is true of sdb, dbx, and also of the GNU debugger,
gdb, which can be used with Linux. There also exist “front ends” to gdb, which make it more user-
friendly; xxgdb, tgdb, and ddd are such programs. Some IDEs, such as the ones we saw in Chapter 9,
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also provide debugging facilities or a front end to gdb. The Emacs editor also has a facility (gdb-mode)
that allows you to run gdb on your program, set breakpoints, and see which line in the source code is
being executed.

To prepare a program for debugging, you need to compile it with one or more special compiler options.
These options instruct the compiler to include extra debugging information into the program. This infor-
mation includes symbols and line numbers—information the debugger can use to show the user where
in the source code execution has reached.

The -g flag is the usual one used to compile a program for debugging. We must use it for compiling
each source file that needs to be debugged and also for the linker, so that special versions of the standard
C library can be used to provide debug support in library functions. The compiler program will pass the
flag to the linker automatically. Debugging can be used with libraries that aren’t compiled for the pur-
pose, but with less flexibility.

Debug information can make the executable many (up to ten) times larger. Even though the executable
may be larger (and take up more disk space) the amount of memory the program needs to run is effec-
tively the same. It is usually a good idea to remove debug information before you release your programs,
but only after they have been debugged.

Debugging with gdb
We’ll use the GNU debugger, gdb, to debug this program. It’s a very capable debugger that is freely
available and can be used on many UNIX platforms. It’s also the default debugger on Linux systems.
gdb has been ported to many other platforms and can be used to debug embedded real-time systems.

Starting gdb
Let’s recompile our example program for debugging and start gdb.

$ cc -g -o debug3 debug3.c
$ gdb debug3
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB.  Type “show warranty” for details.
This GDB was configured as “i586-suse-linux”...
(gdb) 

gdb has extensive online help and the complete manual is available as a set of files that can be viewed
with the info program, or from within Emacs.

You can remove debug information from an executable file without recompiling by
running strip <file>.
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(gdb) help
List of classes of commands:

aliases — Aliases of other commands
breakpoints — Making program stop at certain points
data — Examining data
files — Specifying and examining files
internals — Maintenance commands
obscure — Obscure features
running — Running the program
stack — Examining the stack
status — Status inquiries
support — Support facilities
tracepoints — Tracing of program execution without stopping the program
user-defined — User-defined commands

Type “help” followed by a class name for a list of commands in that class.
Type “help” followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous. 
(gdb)

gdb is itself a text-based application, but it does provide a few short cuts to help with repetitive tasks.
Many versions have command-line editing with a history so that you can scroll back and execute the
same command again (try using the cursor keys). All versions support an “empty command”; hitting
Enter executes the last command again. This is especially useful when stepping through a program line
by line with the step or next commands.

Running a Program
You can execute the program with the run command. Any arguments that you give to the run command
are passed to the program as its arguments. In this case, we don’t need any arguments.

We’ll assume here that your system, like both the authors’, is now generating a segmentation fault. If it
isn’t, read on. You’ll find out what to do when one of your own programs does generate a segmentation
violation. If you’re not getting a segmentation violation, but want to work though this example as you
read the book, you can pick up the program again at debug4.c, when the first of the memory access
problems has been fixed.

(gdb) run
Starting program: /home/neil/BLP3/chapter10/debug3

Program received signal SIGSEGV, Segmentation fault.
0x080483c0 in sort (a=0x8049580, n=5) at debug3.c:23
23      /*  23  */                      if(a[j].key > a[j+1].key) {
(gdb)

The program runs incorrectly as before. When the program faults, gdb shows us the reason and the loca-
tion. We can now investigate the underlying cause of the problem.
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Depending on your kernel, C library, and compiler version, you may see the program fault at a slightly
different place, for example, on line 25, when array items are exchanged, rather than line 23, when array
item keys are compared. If this is the case, you’ll see something like

Program received signal SIGSEGV, Segmentation fault.
0x8000613 in sort (a=0x8001764, n=5) at debug3.c:25
25      /*  25  */                              a[j] = a[j+1];

You should still be able to follow the gdb sample session that follows. 

Stack Trace
The program has been halted in the sort function at line 23 of the source file debug3.c. If we hadn’t
compiled the program with additional debug information (cc -g), we wouldn’t be able to see where the
program had failed, nor would we be able to use variable names to examine data.

We can see how we got to this position by using the backtrace command.

(gdb) backtrace
#0  0x080483c0 in sort (a=0x8049580, n=5) at debug3.c:23
#1  0x0804849b in main () at debug3.c:37
#2  0x400414f2 in __libc_start_main () from /lib/libc.so.6 
(gdb)

This is a very simple program, and the trace is short because we haven’t called many functions from within
other functions. You can see that sort was called from main at line 37 of the same file, debug3.c. Usually,
the problem is much more complex and we use backtrace to discover the route we took to the error posi-
tion. This can be very useful when debugging functions that are called from many different places.

The backtrace command may be abbreviated bt, and, for compatibility with other debuggers, the
where command has the same function.

Examining Variables
The information printed by gdb when it stopped the program and in the stack trace shows us the values
of function arguments. 

The sort function was called with a parameter, a, that has the value 0x8049580. This is the address of
the array. It will typically be different on different systems, depending on the compiler used and the
operating system.

The offending line, 23, is a comparison of one array element with another.

/*  23  */                      if(a[j].key > a[j+1].key) {

We can use the debugger to examine the contents of function parameters, local variables, and global
data. The print command shows us the contents of variables and other expressions.

(gdb) print j
$1 = 4
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Here we can see that the local variable j has the value 4. Any values reported by gdb commands like
this are kept for future use in pseudo variables. Here the variable $1 is assigned the value 4 in case we
need it later. Subsequent commands will store their results as $2, $3, and so on. 

The fact that j has the value 4 means that the program has attempted to execute the statement

if(a[4].key > a[4+1].key)

The array that we have passed to sort, array, has only five elements, which will be indexed 0 through
4. So this statement reads from the nonexistent array[5]. The loop variable j has taken an incorrect
value.

If you are working through this example and your program faulted at line 25, your system detected a
read past the end of the array only when it got to exchanging elements, executing

/*  25  */                              a[j] = a[j+1];

which, with j set to 4, results in

a[4] = a[4+1];

We can take a look at the elements of the passed array by using an expression with print. With gdb, we
can use almost any legal C expression to print the value of variables, array elements, and pointers.

(gdb) print a[3]
$2 = {data = “alex”, ‘\000’ <repeats 4091 times>, key = 1} 
(gdb)

gdb keeps the results of commands in pseudo variables, $<number>. The last result is always $, and the
one before that is $$. This allows one result to be used in another command. For example,

(gdb) print j
$3 = 4
(gdb) print a[$-1].key
$4 = 1

Listing the Program
We can view the source code of the program from within gdb by using the list command. This prints
out a portion of the code around the current position. Subsequent uses of list will print out more. You
can also give list a line number or function name as an argument and it will show the code at that
position.

(gdb) list
18      /*  18  */      int s = 1;
19      /*  19  */  
20      /*  20  */      for(; i < n && s != 0; i++) {
21      /*  21  */              s = 0;
22      /*  22  */              for(j = 0; j < n; j++) {
23      /*  23  */                      if(a[j].key > a[j+1].key) {
24      /*  24  */                              item t = a[j];
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25      /*  25  */                              a[j] = a[j+1];
26      /*  26  */                              a[j+1] = t;
27      /*  27  */                              s++; 
(gdb)

We can see that on line 22 that the loop is set to execute while the variable j is less than n. In this case, n
is 5, so j will have the final value of 4, which is one too far. A value of 4 causes a comparison of a[4]
with a[5] and possibly a swap. One solution to this particular problem is to correct the loop termination
condition to be j < n-1.

Let’s make that change, call the new program debug4.c, recompile, and try again.

/*  22  */          for(j = 0; j < n-1; j++) {

$ cc -g -o debug4 debug4.c
$ ./debug4
array[0] = {john, 2}
array[1] = {alex, 1}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

The program still doesn’t work, as it has printed an incorrectly sorted list. Let’s use gdb to step through
the program as it runs.

Setting Breakpoints
To find out where the program is failing, we need to be able to see what it’s doing as it runs. We can stop
the program at any point by setting breakpoints. These cause the program to stop and return control to
the debugger. We’ll be able to inspect variables and then allow the program to continue.

There are two loops in the sort function. The outer loop, with loop variable i, is run once for each ele-
ment in the array. The inner loop swaps the element with those further down the list. This has the effect
of bubbling up the smaller elements to the top. After each run of the outer loop, the largest element
should have made its way to the bottom. We can confirm this by stopping the program at the outer loop
and examining the state of the array.

A number of commands are used for setting breakpoints. These are listed by gdb with help breakpoint:

(gdb) help breakpoint
Making program stop at certain points.

List of commands:

awatch — Set a watchpoint for an expression
break — Set breakpoint at specified line or function
catch — Set catchpoints to catch events
clear — Clear breakpoint at specified line or function
commands — Set commands to be executed when a breakpoint is hit
condition — Specify breakpoint number N to break only if COND is true
delete — Delete some breakpoints or auto-display expressions
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disable — Disable some breakpoints
enable — Enable some breakpoints
hbreak — Set a hardware assisted breakpoint
ignore — Set ignore-count of breakpoint number N to COUNT
rbreak — Set a breakpoint for all functions matching REGEXP
rwatch — Set a read watchpoint for an expression
tbreak — Set a temporary breakpoint
tcatch — Set temporary catchpoints to catch events
thbreak — Set a temporary hardware assisted breakpoint
watch — Set a watchpoint for an expression

Type “help” followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

Let’s set a breakpoint at line 20 and run the program:

$ gdb debug4
(gdb) break 20
Breakpoint 1 at 0x804835d: file debug4.c, line 20.
(gdb) run
Starting program: /home/neil/BLP3/chapter10/debug4

Breakpoint 1, sort (a=0x8049580, n=5) at debug4.c:20
20      /*  20  */      for(; i < n && s != 0; i++) {

We can print out the array value and then allow the program to continue with the cont command.
This allows the program to run until it hits the next breakpoint, in this case, until it executes line 20
again. We can have many breakpoints active at any time.

(gdb) print array[0]
$1 = {data = “bill”, ‘\000’ <repeats 4091 times>, key = 3}

To print a number of consecutive items, we can use the construction @<number> to cause gdb to print a
number of array elements. To print all five elements of array, we can use

(gdb) print array[0]@5
$2 = {{data = “bill”, ‘\000’ <repeats 4091 times>, key = 3}, {

data = “neil”, ‘\000’ <repeats 4091 times>, key = 4}, {
data = “john”, ‘\000’ <repeats 4091 times>, key = 2}, {
data = “rick”, ‘\000’ <repeats 4091 times>, key = 5}, {
data = “alex”, ‘\000’ <repeats 4091 times>, key = 1}}

Note that the output has been tidied up slightly to make it easier to read. Because this is the first time
through the loop, the array is unchanged. When we allow the program to continue, we see successive
alterations to array as execution proceeds:

(gdb) cont
Continuing.

Breakpoint 1, sort (a=0x8049580, n=4) at debug4.c:20
20      /*  20  */      for(; i < n && s != 0; i++) {
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(gdb) print array[0]@5
$3 = {{data = “bill”, ‘\000’ <repeats 4091 times>, key = 3}, {

data = “john”, ‘\000’ <repeats 4091 times>, key = 2}, {
data = “neil”, ‘\000’ <repeats 4091 times>, key = 4}, {
data = “alex”, ‘\000’ <repeats 4091 times>, key = 1}, {
data = “rick”, ‘\000’ <repeats 4091 times>, key = 5}}

(gdb)

We can use the display command to set gdb to display the array automatically whenever the program
stops at a breakpoint:

(gdb) display array[0]@5
1: array[0] @ 5 = {{data = “bill”, ‘\000’ <repeats 4091 times>, key = 3}, {

data = “john”, ‘\000’ <repeats 4091 times>, key = 2}, {
data = “neil”, ‘\000’ <repeats 4091 times>, key = 4}, {
data = “alex”, ‘\000’ <repeats 4091 times>, key = 1}, {
data = “rick”, ‘\000’ <repeats 4091 times>, key = 5}}

Furthermore, we can change the breakpoint so that, instead of stopping the program, it simply displays
the data we have requested and carries on. To do this, we use the commands command. This allows us to
specify what debugger commands to execute when a breakpoint is hit. Since we have already specified a
display, we need only set the breakpoint command to continue execution.

(gdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just “end”.
> cont
> end

Now when we allow the program to continue, it runs to completion, printing the value of the array each
time around the outer loop.

(gdb) cont
Continuing.

Breakpoint 1, sort (a=0x8049684, n=3) at debug4.c:20
20      /*  20  */      for(; i < n && s != 0; i++) {
1: array[0] @ 5 = {{data = “john”, ‘\000’ <repeats 4091 times>, key = 2}, {

data = “bill”, ‘\000’ <repeats 4091 times>, key = 3}, {
data = “alex”, ‘\000’ <repeats 4091 times>, key = 1}, {
data = “neil”, ‘\000’ <repeats 4091 times>, key = 4}, {
data = “rick”, ‘\000’ <repeats 4091 times>, key = 5}}

Breakpoint 1, sort (a=0x8049684, n=2) at debug4.c:20
20      /*  20  */      for(; i < n && s != 0; i++) {
1: array[0] @ 5 = {{data = “john”, ‘\000’ <repeats 4091 times>, key = 2}, {

data = “alex”, ‘\000’ <repeats 4091 times>, key = 1}, {
data = “bill”, ‘\000’ <repeats 4091 times>, key = 3}, {
data = “neil”, ‘\000’ <repeats 4091 times>, key = 4}, {
data = “rick”, ‘\000’ <repeats 4091 times>, key = 5}}

array[0] = {john, 2}
array[1] = {alex, 1}
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array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

Program exited with code 044.
(gdb)

gdb reports that the program exits with an unusual exit code. This is because the program itself doesn’t
call exit and doesn’t return a value from main. The exit code is effectively meaningless in this case, and
a meaningful one ought to be provided by a call to exit.

The program doesn’t seem to execute the outer loop as many times as we expected. We can see that the
value of the parameter, n, used in the loop termination condition is reducing at each breakpoint. This
means that the loop won’t execute enough times. The culprit is the decrement of n on line 30:

/*  30  */              n--;

This is an attempt to optimize the program by taking advantage of the fact that at the end of each outer
loop the largest element of array will be at the bottom, and so there is less left to sort. But, as we’ve
seen, this interferes with the outer loop and causes problems. The simplest fix (though there are others)
is to delete the offending line. Let’s test whether this change will fix the problem by using the debugger
to apply a patch.

Patching with the Debugger
We’ve already seen that we can use the debugger to set breakpoints and examine the value of variables.
By using a breakpoint with actions, we can try out a fix, called a patch, before changing the source code
and recompiling. In this case, we need to break the program on line 30 and increment the variable n.
Then, when line 30 is executed, the value will be unchanged.

Let’s restart the program from the beginning. First, we must delete our breakpoint and display. We can
see what breakpoints and displays we have enabled using the info command:

(gdb) info display
Auto-display expressions now in effect:
Num Enb Expression
1:   y  array[0] @ 5
(gdb) info break
Num Type           Disp Enb Address    What
1   breakpoint     keep y   0x0804835d in sort at debug4.c:20

breakpoint already hit 4 times
cont 

We can either disable these or delete them entirely. If we disable them, we retain the option to re-enable
them at a later time if we need to:

(gdb) disable break 1
(gdb) disable display 1
(gdb) break 30
Breakpoint 2 at 0x8048462: file debug4.c, line 30. 
(gdb) commands 2
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Type commands for when breakpoint 2 is hit, one per line.
End with a line saying just “end”.
>set variable n = n+1
>cont
>end
(gdb) run
Starting program: /home/neil/BLP3/chapter10/debug4

Breakpoint 2, sort (a=0x8049580, n=5) at debug4.c:30
30      /*  30  */              n--;

Breakpoint 2, sort (a=0x8049580, n=5) at debug4.c:30
30      /*  30  */              n--;

Breakpoint 2, sort (a=0x8049580, n=5) at debug4.c:30
30      /*  30  */              n--;

Breakpoint 2, sort (a=0x8049580, n=5) at debug4.c:30
30      /*  30  */              n--;

Breakpoint 2, sort (a=0x8049580, n=5) at debug4.c:30
30      /*  30  */              n--;
array[0] = {alex, 1}
array[1] = {john, 2}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

Program exited with code 044. 
(gdb)

The program runs to completion and prints the correct result. We can now make the change and move
on to test it with more data.

Learning More about gdb
The GNU debugger is an exceptionally powerful tool that can provide a lot of information about the
internal state of executing programs. On systems that support a facility called hardware breakpoints, you
can use gdb to monitor changes to variables in real time. Hardware breakpoints are a feature of some
CPUs; these processors are able to stop automatically if certain conditions arise, typically a memory
access in a given region. Alternatively, gdb can watch expressions. This means that, with a performance
penalty, gdb can stop a program when an expression takes a particular value, regardless of where in the
program the calculation took place.

Breakpoints can be set with counts and conditions so that they trigger only after a fixed number of times
or when a condition is met.

gdb is also able to attach itself to programs that are already running. This can be very useful when
you’re debugging client/server systems, as you can debug a misbehaving server process as it runs with-
out having to stop and restart it. You can compile programs with, for example, gcc -O -g to get the
benefit of optimization and debug information. The downside is that optimization may reorder code
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a bit, so, as you single-step through code, you may find yourself jumping around to achieve the same
effect as intended by the original source code.

You can also use gdb to debug programs that have crashed. Linux and UNIX will often produce a core
dump in a file called core when a program fails. This is an image of the program’s memory and will
contain the values of global variables at the time of the failure. You can use gdb to work out where the
program was when it crashed. Check out the gdb manual page for more details.

gdb is available under the terms of the GNU Public License and most UNIX systems can support it.
We strongly recommend that you get to know it.

More Debugging Tools
Apart from out-and-out debuggers such as gdb, Linux systems typically provide a number of other tools
that you can use to aid the debugging process. Some of these provide static information about a program;
others provide a dynamic analysis.

Static analysis provides information from the program source code only. Programs such as ctags,
cxref, and cflow work with the source files and provide useful information about function calling
and location.

Dynamic analysis provides information about how a program behaves during execution. Programs such
as prof and gprof provide information about which functions have been executed and for how long.

Let’s take a look at some of these tools and their output. Not all of these tools will be available on all sys-
tems, although many of them have freely available versions.

Lint: Removing the Fluff from Your Programs
Original UNIX systems provided a utility called lint. It was essentially the front end of a C compiler
with added tests designed to apply some common sense and produce warnings. It would detect cases
where variables were used before being set and where function arguments were not used, among other
things.

More modern C compilers can, at a cost to compile-time performance, produce similar warnings. lint
itself has been overtaken by the standardization of C. Because the tool was based on an early C compiler,
it doesn’t cope at all well with ANSI syntax. There are some commercial versions of lint available for
UNIX and at least one on the Internet for Linux, called splint. This used to be known as LClint, part of
a project at MIT to produce tools for formal specifications. A lint-like tool, splint can provide useful
code review comments. splint can be found at http://www.splint.org.

Here’s an edited sample output from splint running on an early version of the example program that
we debugged earlier:

neil@beast:~/BLP3/chapter10> splint -strict debug0.c
Splint 3.0.1.6 --- 27 Mar 2002

debug0.c:14:22: Old style function declaration
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Function definition is in old style syntax. Standard prototype syntax is
preferred. (Use -oldstyle to inhibit warning)

debug0.c: (in function sort)
debug0.c:20:31: Variable s used before definition

An rvalue is used that may not be initialized to a value on some execution
path. (Use -usedef to inhibit warning)

debug0.c:20:23: Left operand of & is not unsigned value (boolean):
i < n & s != 0

An operand to a bitwise operator is not an unsigned values.  This may have
unexpected results depending on the signed representations. (Use
-bitwisesigned to inhibit warning)

debug0.c:20:23: Test expression for for not boolean, type unsigned int:
i < n & s != 0

Test expression type is not boolean or int. (Use -predboolint to inhibit
warning)

debug0.c:20:23: Operands of & are non-integer (boolean) (in post loop test):
i < n & s != 0

A primitive operation does not type check strictly. (Use -strictops to
inhibit warning)

debug0.c:32:14: Path with no return in function declared to return int
There is a path through a function declared to return a value on which there
is no return statement. This means the execution may fall through without
returning a meaningful result to the caller. (Use -noret to inhibit warning)

debug0.c:34:13: Function main declared without parameter list
A function declaration does not have a parameter list. (Use -noparams to
inhibit warning)

debug0.c: (in function main)
debug0.c:36:17: Return value (type int) ignored: sort(array, 5)

Result returned by function call is not used. If this is intended, can cast
result to (void) to eliminate message. (Use -retvalint to inhibit warning)

debug0.c:37:14: Path with no return in function declared to return int
debug0.c:14:13: Function exported but not used outside debug0: sort

debug0.c:15:17: Definition of sort

Finished checking --- 22 code warnings 
$

The utility complains about old-style (non-ANSI) function declarations and inconsistencies between
function return types and the values they do (or do not) return. These don’t affect the operation of the
program, but ought to be addressed.

It has also detected two real bugs in the following code fragment:

/*  18  */      int s;
/*  19  */  
/*  20  */      for(; i < n & s != 0; i++) {
/*  21  */              s = 0;

The splint tool has determined that the variable s is used on line 20, but hasn’t been initialized and
that the operator & has been used in place of the more usual &&. In this case, the operator precedence
alters the meaning of the test and is a problem for the program.
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Both of these errors were fixed in a code review before debugging started. Although this example is a 
little contrived for the purposes of demonstration, these are errors that regularly crop up in real world
programs.

Function Call Tools
Three utilities—ctags, cxref, and cflow—form part of the X/Open specification and therefore must be
present on UNIX-branded systems with software development capabilities. 

ctags
The ctags program creates an index of functions. For each function, you get a list of the places it’s used,
like the index of a book.

ctags [-a] [-f filename] sourcefile sourcefile ...
ctags -x sourcefile sourcefile ...

By default, ctags creates a file, called tags, in the current directory, which contains, for each function
declared in any of the input source files, lines of the form

announce        app_ui.c        /^static void announce(void) /

Each line in the file consists of a function name, the file it’s declared in, and a regular expression that can
be used to find the function definition within the file. Some editors such as Emacs can use files of this
kind to help navigate through source code.

Alternatively, by using the -x option to ctags (if available in your version), you can produce lines of a
similar form on the standard output:

find_cat         403 app_ui.c         static cdc_entry find_cat(

You can redirect the output to a different file by using the option -f filename and append it to an
existing file by specifying the -a option.

cxref
The cxref program analyzes C source code and produces a cross-reference. It shows where each symbol
(variable, #define, and function) is mentioned in the program. It produces a sorted list with each sym-
bol’s definition location marked with an asterisk, as shown here:

SYMBOL                 FILE     FUNCTION       LINE

BASENID                prog.c       —          *12  *96  124  126  146  156  166
BINSIZE                prog.c       —          *30  197  198  199  206

These utilities and others mentioned in this chapter may not be present in your
Linux distribution. If not, you might like to search for implementations on the
Internet. A good place to start (for Linux distributions that support the RPM package
format) is http://rufus.w3.org/linux/RPM.
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BUFMAX                prog.c       —          *44   45   90
BUFSIZ  /usr/include/stdio.h       —           *4

EOF  /usr/include/stdio.h       —          *27
argc                prog.c       —           36

prog.c      main        *37   61   81
argv                prog.c       —           36

prog.c      main        *38   61
calldata                prog.c       —           *5

prog.c      main         64  188
calls                prog.c       —          *19

prog.c      main         54

On the author’s machine, the preceding output was generated in the source directory of an application,
with the command

$ cxref *.c *.h

but the exact syntax varies from version to version. Consult the documentation for your system or the
man pages for more information on whether cxref is available and how to use it.

cflow
The cflow program prints a function call tree, a diagram that shows which function calls which others, and
which functions are called by them, and so on. It can be useful to find out the structure of a program to
understand how it operates and to see what impact changes to a function will have. Some versions of
cflow can operate on object files as well as source code. Refer to the manual page for details of operation.

Here’s some sample output taken from a version of cflow (cflow-2.0) that is available on the Internet
and maintained by Marty Leisner:

1       file_ungetc {prcc.c 997}
2       main {prcc.c 70}
3               getopt {}
4               show_all_lists {prcc.c 1070}
5                       display_list {prcc.c 1056}
6                               printf {}
7                       exit {}
8               exit {}
9               usage {prcc.c 59}
10                      fprintf {}
11                      exit {}

This sample tells us that main calls (among others) show_all_lists and that show_all_lists in turn
calls display_list, which itself calls printf.

One option to this version of cflow is -i, which produces an inverted flow graph. For each function, cflow
lists the other functions that make a call to it. It sounds complicated, but it really isn’t. Here’s a sample.

19      display_list {prcc.c 1056}
20              show_all_lists {prcc.c 1070}
21      exit {}
22              main {prcc.c 70}
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23              show_all_lists {prcc.c 1070}
24              usage {prcc.c 59}
...
74      printf {}
75              display_list {prcc.c 1056}
76              maketag {prcc.c 487}
77      show_all_lists {prcc.c 1070}
78              main {prcc.c 70}
...
99      usage {prcc.c 59}
100             main {prcc.c 70}

This shows us that the functions that call exit, for example, are main, show_all_lists, and usage.

Execution Profiling with prof/gprof
A technique that is often useful when you’re trying to track down performance problems with a program
is execution profiling. Normally supported by special compiler options and ancillary programs, a profile of
a program shows where it’s spending its time.

The prof program (and its GNU equivalent, gprof) prints a report from an execution trace file that is
produced when a profiled program is run. A profiled executable is created by specifying the –p flag (for
prof) or -pg flag (for gprof) to the compiler:

$ cc -pg -o program program.c

The program is linked with a special version of the C library and is changed to include monitoring code.
This may vary with specific systems, but is commonly achieved by arranging for the program to be
interrupted frequently and the execution location to be recorded. The monitor data is written to a file in
the current directory, mon.out (gmon.out for gprof).

$ ./program
$ ls -ls

2 -rw-r--r--   1 neil     users        1294 Feb  4 11:48 gmon.out

The prof/gprof program reads this monitoring data and produces a report. Refer to the manual pages
for detail on program options. Here is some (abbreviated) gprof output as an example:

cumulative   self      self     total          
time    seconds   seconds    calls  ms/call  ms/call               name
18.5       0.10      0.10     8664     0.01     0.03        _doscan [4]
18.5       0.20      0.10                                   mcount (60)
14.8       0.28      0.08    43320     0.00     0.00        _number [5]
9.3       0.33      0.05     8664     0.01     0.01    _format_arg [6]
7.4       0.37      0.04   112632     0.00     0.00        _ungetc [8]
7.4       0.41      0.04     8757     0.00     0.00       _memccpy [9]
7.4       0.45      0.04        1    40.00   390.02          _main [2]
3.7       0.47      0.02       53     0.38     0.38         _read [12]
3.7       0.49      0.02                                    w4str [10]
1.9       0.50      0.01    26034     0.00     0.00       _strlen [16]
1.9       0.51      0.01     8664     0.00     0.00       strncmp [17]
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Assertions
While it’s common to introduce debug code such as printf calls, possibly by conditional compilation,
during the development of a program, it’s sometimes impractical to leave these messages in a delivered
system. However, it’s often the case that problems occur during the program operation that are related
to incorrect assumptions rather than coding errors. These are events that “can’t happen.” For example, a
function may be written with the understanding that its input parameters will be within a certain range.
If it’s passed incorrect data, it might invalidate the whole system.

For these cases, where the internal logic of the system needs to be confirmed, X/Open provides the
assert macro that can be used to test that an assumption is correct and halt the program if not.

#include <assert.h>

void assert(int expression)

The assert macro evaluates the expression and, if it’s nonzero, writes some diagnostic information to
the standard error and calls abort to end the program.

The header file assert.h defines the macro depending on the definition of NDEBUG. If NDEBUG is
defined when the header file is processed, assert is defined to be essentially nothing. This means that
you can turn off assertions at compile time by compiling with -DNDEBUG or by including the line

#define NDEBUG

in each source file before including assert.h.

This method of use is one problem with assert. If you use assert during testing, but turn it off for
production code, your production code could have less safety checking than when you are testing it.
Leaving assertions enabled in production code is not normally an option—would you like your code to
present a customer with the unfriendly error assert failed and a stopped program? You may consider
it better to write your own error trapping routine that still checks the assertion but doesn’t need to be
completely disabled in production code.

You must also be careful that there are no side effects in the assert expression. For example, if you use a
function call with a side effect, the effect won’t happen in the production code if assertions are removed.

Try It Out—assert
Here’s a program, assert.c, that defines a function that must take a positive value. It protects against
the possibility of a bad argument by using an assertion.

After including the assert.h header file and a “square root” function that checks that the parameter is
positive, we can then write the main function:

#include <stdio.h>
#include <math.h>
#include <assert.h>

double my_sqrt(double x)
{
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assert(x >= 0.0);
return sqrt(x);

}

int main()
{

printf(“sqrt +2 = %g\n”, my_sqrt(2.0)); 
printf(“sqrt -2 = %g\n”, my_sqrt(-2.0));
exit(0);

}

Now when we run the program, we see an assertion violation when we pass an illegal value. The exact
format of the assertion failure message will vary from system to system.

$ cc -o assert assert.c -lm
$ ./assert
sqrt +2 = 1.41421
assert: assert.c:7: my_sqrt: Assertion `x >= 0.0’ failed.
Aborted 
$

How It Works
When we try to call the function my_sqrt with a negative number, the assertion fails. The assert macro
provides the file and line number where the assertion violation occurred, as well as the condition that
failed. The program terminates with an abort trap. This is the result of assert calling abort.

If we recompile the program with -DNDEBUG, the assertion is compiled out and we get a mathematical
error when we call the sqrt function from my_sqrt.

$ cc -o assert -DNDEBUG assert.c -lm
$ ./assert
sqrt +2 = 1.41421
Floating point exception
$

Some more recent mathematics library versions will return a NaN (Not a Number) value indicating an
invalid result.

sqrt –2 = nan

Memory Debugging
One area that is a rich source of bugs that are difficult to track down is dynamic memory allocation.
If you write a program that uses malloc and free to allocate memory, it’s important that you keep
good track of the blocks you allocate and make sure that you don’t use a block that you’ve freed up.

Typically, memory blocks are allocated by malloc and assigned to pointer variables. If the pointer variable
is changed and there are no other pointers pointing to the memory block, it will become inaccessible. This
is a memory leak and it causes your program to grow in size. If you leak a lot of memory, your system will
eventually slow down and run out of memory.
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If you write beyond the end of an allocated block (or before the beginning of a block), you’ll very likely
corrupt the data structures used by the malloc library to keep track of allocations. In this case, at some
future time, a call to malloc, or even free, will cause a segmentation violation and your program will
crash. Tracking down the precise point at which the fault occurred can be very difficult, as it may have
happened a long time before the event that caused the crash.

Unsurprisingly, there are tools, commercial and free, that can help with these two problem types. There
are, for example, many different versions of malloc and free, some of which contain additional code to
check on allocations and deallocations to try to cater for the cases where a block is freed twice and some
other types of misuse.

ElectricFence
The ElectricFence library was developed by Bruce Perens and is available as an optional component in
some Linux distributions such as RedHat and can be readily found on the Internet. It attempts to use the
virtual memory facilities of Linux to protect the memory used by malloc and free to halt the program
at the point of memory corruption.

Try It Out—ElectricFence
Here’s a program, efence.c, that allocates a memory block with malloc and then writes beyond the
end of the block. Let’s see what happens.

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *ptr = (char *) malloc(1024);
ptr[0] = 0;

/* Now write beyond the block */
ptr[1024] = 0;
exit(0);

}

When we compile and run the program, we see no untoward behavior. However, it’s likely that the malloc
memory area has sustained some corruption and we would eventually run into trouble.

$ cc -o efence efence.c
$ ./efence
$

However, if we take exactly the same program and link with the ElectricFence library, libefence.a, we
get an immediate response.

$ cc -o efence efence.c -lefence
$ ./efence

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>
Segmentation fault
$
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Running under the debugger pinpoints the problem:

$ cc -g -o efence efence.c -lefence
$ gdb efence
(gdb) run

Starting program: /home/neil/BLP3/chapter10/efence
[New Thread 1024 (LWP 1869)]

Electric Fence 2.2.0 Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 1024 (LWP 1869)]
0x080484ad in main () at efence.c:10
10          ptr[1024] = 0; 
(gdb)

How It Works
ElectricFence replaces malloc and associated functions with versions that use virtual memory features
of the computer’s processor to protect against illegal memory access. When such an access occurs, a seg-
mentation violation signal is raised and the program halts.

valgrind
valgrind is a tool that is capable of detecting many of the problems that we have discussed. In particular,
it can detect array access errors and memory leaks. It may not be included with your Linux distributions
but can be found at http://developer.kde.org/~sewardj.

Programs do not even need to be recompiled to use valgrind, and you can even debug the memory
accesses of a running program. It is well worth a look; it has been used on major developments, includ-
ing KDE version 3.

Try It Out—valgrind
Here’s a program, checker.c, that allocates some memory, reads a location beyond the limit of that
memory, writes beyond the end of it, and then makes it inaccessible.

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *ptr = (char *) malloc(1024);
char ch;

/* Uninitialized read */
ch = ptr[1024];

/* Write beyond the block */
ptr[1024] = 0;
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/* Orphan the block */
ptr = 0;
exit(0);

}

To use valgrind, we simply have to run the valgrind command passing options that we would like to
check, followed by the program to run with its arguments (if any).

When we run our program with valgrind, we see many problems diagnosed:

$ valgrind --leak-check=yes -v ./checker
==3436== valgrind-1.0.4, a memory error detector for x86 GNU/Linux.
==3436== Copyright (C) 2000-2002, and GNU GPL’d, by Julian Seward.
==3436== Estimated CPU clock rate is 452 MHz
==3436== For more details, rerun with: -v
==3436==
==3436== Invalid read of size 1
==3436==    at 0x8048397: main (checker.c:10)
==3436==    by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436==    by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436==    Address 0x42AD1424 is 0 bytes after a block of size 1024 alloc’d
==3436==    at 0x4003CA75: malloc (vg_clientfuncs.c:100)
==3436==    by 0x8048389: main (checker.c:6)
==3436==    by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436==    by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436==
==3436== Invalid write of size 1
==3436==    at 0x80483A4: main (checker.c:13)
==3436==    by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436==    by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436==    Address 0x42AD1424 is 0 bytes after a block of size 1024 alloc’d
==3436==    at 0x4003CA75: malloc (vg_clientfuncs.c:100)
==3436==    by 0x8048389: main (checker.c:6)
==3436==    by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436==    by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
==3436==
==3436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==3436== malloc/free: in use at exit: 1024 bytes in 1 blocks.
==3436== malloc/free: 1 allocs, 0 frees, 1024 bytes allocated.
==3436== For counts of detected errors, rerun with: -v
==3436== searching for pointers to 1 not-freed blocks.
==3436== checked 3468724 bytes.
==3436==
==3436== definitely lost: 1024 bytes in 1 blocks.
==3436== possibly lost:   0 bytes in 0 blocks.
==3436== still reachable: 0 bytes in 0 blocks.
==3436==
==3436== 1024 bytes in 1 blocks are definitely lost in loss record 1 of 1
==3436==    at 0x4003CA75: malloc (vg_clientfuncs.c:100)
==3436==    by 0x8048389: main (checker.c:6)
==3436==    by 0x402574F2: __libc_start_main (in /lib/libc.so.6)
==3436==    by 0x80482D1: exit@@GLIBC_2.0 (in /home/neil/BLP3/chapter10/checker)
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==3436==
==3436== LEAK SUMMARY:
==3436==    definitely lost: 1024 bytes in 1 blocks.
==3436==    possibly lost:   0 bytes in 0 blocks.
==3436==    still reachable: 0 bytes in 0 blocks.
==3436== Reachable blocks (those to which a pointer was found) are not shown.
==3436== To see them, rerun with: --show-reachable=yes
==3436== $

Here we can see that the bad reads and writes have been caught and the memory blocks concerned are
given along with the place they were allocated. We can use the debugger to break the program at the
point of the error.

There are many options to valgrind, including the suppression of certain types of error and memory-
leak detection. To detect our example leak, we must use one of the options that are passed to valgrind.
To check for memory leaks when the program ends, we need to specify --leak-check=yes. You can get
a list of options with valgrind --help.

How It Works
Our program is executed under the control of valgrind, which intercepts various actions our program
takes and performs many checks—including memory accesses. If the access concerns an allocated mem-
ory block and is illegal, valgrind prints a message. At the end of the program, a garbage collection rou-
tine is run that determines if any memory blocks have been allocated but not freed. These orphaned
blocks are reported.

Summary
In this chapter, we’ve looked at some debugging tools and techniques. Linux provides some powerful
aids to help with removing defects from programs. We eliminated some bugs from a program using gdb
and looked at some static analysis tools such as cflow and splint. Finally, we looked at problems that
arise when we use dynamically allocated memory and some utilities that can help diagnose them, such
as ElectricFence and valgrind. 

The utility programs discussed in this chapter have mostly been made available on FTP servers on the
Internet. The authors concerned may, in some cases, retain copyright. Many of the utilities were taken
from the Linux archive http://www.ibiblio.org/pub/Linux and we expect that new versions will
be found there as they are released.
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11
Processes and Signals

Processes and signals form a fundamental part of the Linux operating environment. They control
almost all activities performed by Linux and all other UNIX-like computer systems. An understand-
ing of how Linux and UNIX manage processes will hold any systems programmer, applications
programmer, or system administrator in good stead.

In this chapter, we’ll look at how processes are handled in the Linux environment and how to find
out exactly what the computer is doing at any given time. We’ll also see how to start and stop other
processes from within our own programs, how to make processes send and receive messages, and
how to avoid zombies. In particular, we’ll learn about

❑ Process structure, type, and scheduling

❑ Starting new processes in different ways

❑ Parent, child, and zombie processes

❑ What signals are and how to use them

What Is a Process?
The Single UNIX Specification, Version 2 (UNIX98) and its predecessor Version 1 (UNIX95),
defines a process as “an address space with one or more threads executing within that address
space, and the required system resources for those threads.” We will look at threads in Chapter 12.
For now, we will regard a process as just a program that is running.

A multitasking operating system such as Linux lets many programs run at once. Each instance of a
running program constitutes a process. This is especially evident with a windowing system such
as the X Window System (often simply called X). Like Windows, X provides a graphical user inter-
face that allows many applications to be run at once. Each application can display one or more
windows.
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As a multiuser system, Linux allows many users to access the system at the same time. Each user can
run many programs, or even many instances of the same program, at the same time. The system itself
runs other programs to manage system resources and control user access.

As we saw in Chapter 4, a program—or process—that is running consists of program code, data, vari-
ables (occupying system memory), open files (file descriptors), and an environment. Typically, a Linux
system will share code and system libraries among processes so that there’s only one copy of the code in
memory at any one time.

Process Structure
Let’s have a look at how a couple of processes might be arranged within the operating system. If two
users, neil and rick, both run the grep program at the same time to look for different strings in differ-
ent files, the processes being used might look like Figure 11-1.

Figure 11-1

If we run the ps command, described as follows, the output will look something like this:

$ ps -af
UID     PID   PPID  C  STIME  TTY   TIME      CMD
rick    101   96    0  18:24  tty2  00:00:00  grep pid_t /usr/include/sys/*.h
neil    102   92    0  18:24  tty4  00:00:00  grep XOPEN /usr/include/features.h

Each process is allocated a unique number, called a process identifier or PID. This is usually a positive
integer between 2 and 32,768. When a process is started, the next unused number in sequence is chosen
and the numbers restart at 2 so that they wrap around. The number 1 is typically reserved for the special
init process, which manages other processes. We will come back to init shortly. Here we see that the
two processes started by neil and rick have been allocated the identifiers 101 and 102.

The program code that will be executed by the grep command is stored in a disk file. Normally, a Linux
process can’t write to the memory area used to hold the program code, so the code is loaded into memory
as read-only. We saw in Figure 11-1 that, although this area can’t be written to, it can safely be shared.

PID 101

code

data
s = "kirk"

library

grep code

c library

files

trek.txt

$ grep kirk trek.txt

neil

PID 102

code

data
s = "troi"

library

files

nextgen.doc

$ grep troi nextgen.doc

rick
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The system libraries can also be shared. Thus, there need be only one copy of printf, for example, in
memory, even if many running programs call it. This is a more sophisticated, but similar, scheme to the
way dynamic link libraries (DLLs) work in Windows.

As we can see in the preceding diagram, an additional benefit is that the disk file containing the exe-
cutable program grep is smaller because it doesn’t contain shared library code. This might not seem
much for a single program, but extracting the common routines for (say) the standard C library saves a
significant amount of space over a whole operating system.

Of course, not everything that a program needs to run can be shared. For example, the variables that it
uses are distinct for each process. In this example, we see that the search string passed to the grep com-
mand appears as a variable, s, in the data space of each process. These are separate and usually can’t be
read by other processes. The files that are being used in the two grep commands are also different; the
processes have their own set of file descriptors used for file access.

Additionally, a process has its own stack space, used for local variables in functions and for controlling
function calls and returns. It also has its own environment space, containing environment variables that
may be established solely for this process to use, as we saw when we looked at putenv and getenv in
Chapter 4. A process must also maintain its own program counter, a record of where it has got to in its
execution, which is the execution thread. In the next chapter we will see that when we use threads, pro-
cesses can have more than one thread of execution.

On many Linux systems, and some UNIX systems, there is a special set of “files” in a directory called
/proc. These are special in that rather than being true files they allow you to “look inside” processes
while they are running as if they were files in directories. We took a brief look at the /proc file system
back in Chapter 3.

Finally, because Linux, like UNIX, has a virtual memory system that pages code and data out to an area
of the hard disk, many more processes can be managed than would fit into the physical memory.

The Process Table
The Linux process table is like a data structure describing all of the processes that are currently loaded
with, for example, their PID, status, and command string, the sort of information output by ps. The
operating system manages processes using their PIDs, and they are used as an index into the process
table. The table is of limited size, so the number of processes a system will support is limited. Early
UNIX systems were limited to 256 processes. More modern implementations have relaxed this restric-
tion considerably and may be limited only by the memory available to construct a process table entry.

Viewing Processes
The ps command shows the processes we’re running, the process another user is running, or all the pro-
cesses on the system. Here is some sample output:

$ ps -af
UID        PID  PPID  C STIME TTY          TIME CMD
root       433   425  0 18:12 tty1     00:00:00 [bash]
rick       445   426  0 18:12 tty2     00:00:00 -bash
rick       456   427  0 18:12 tty3     00:00:00 [bash]
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root       467   433  0 18:12 tty1     00:00:00 sh /usr/X11R6/bin/startx
root       474   467  0 18:12 tty1     00:00:00 xinit /etc/X11/xinit/xinitrc -- 
root       478   474  0 18:12 tty1     00:00:00 /usr/bin/gnome-session
root       487     1  0 18:12 tty1     00:00:00 gnome-smproxy --sm-client-id def
root       493     1  0 18:12 tty1     00:00:01 [enlightenment]
root       506     1  0 18:12 tty1     00:00:03 panel --sm-client-id default8
root       508     1  0 18:12 tty1     00:00:00 xscreensaver -no-splash -timeout
root       510     1  0 18:12 tty1     00:00:01 gmc --sm-client-id default10
root       512     1  0 18:12 tty1     00:00:01 gnome-help-browser --sm-client-i
root       649   445  0 18:24 tty2     00:00:00 su
root       653   649  0 18:24 tty2     00:00:00 bash
neil       655   428  0 18:24 tty4     00:00:00 -bash
root       713     1  2 18:27 tty1     00:00:00 gnome-terminal
root       715   713  0 18:28 tty1     00:00:00 gnome-pty-helper
root       717   716 13 18:28 pts/0    00:00:01 emacs
root       718   653  0 18:28 tty2     00:00:00 ps –af

This shows information about many processes, including the processes involved with the Emacs editor
under X on a Linux system. For example, the TTY column shows which terminal the process was started
from, TIME gives the CPU time used so far, and the CMD column shows the command used to start the
process. Let’s take a closer look at some of these.

neil       655   428  0 18:24 tty4     00:00:00 –bash

The initial login was performed on virtual console number 4. This is just the console on this machine.
The shell program that is running is the Linux default, bash.

root       467   433  0 18:12 tty1     00:00:00 sh /usr/X11R6/bin/startx

The X Window System was started by the command startx. This is a shell script that starts the X server
and runs some initial X programs.

root       717   716 13 18:28 pts/0    00:00:01 emacs

This process represents a window in X running Emacs. It was started by the window manager in response
to a request for a new window. A new pseudo terminal, pts/0, has been assigned for the shell to read
from and write to.

root       512     1  0 18:12 tty1     00:00:01 gnome-help-browser --sm-client-i

This is the GNOME help browser started by the window manager.

By default, the ps program shows only processes that maintain a connection with a terminal, a console,
a serial line, or a pseudo terminal. Other processes run without needing to communicate with a user on
a terminal. These are typically system processes that Linux uses to manage shared resources. We can use
ps to see all such processes using the -a option and to get “full” information with -f. 

The exact syntax for the ps command and the format of the output may vary slightly from system to
system. Refer to the manual for more details on the options and output format of ps.
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System Processes
Here are some of the other processes running on this Linux system. The output has been abbreviated for
clarity.

$ ps -ax
PID TTY      STAT   TIME COMMAND

1 ?        S      0:05 init
2 ?        SW     0:00 [keventd]
3 ?        SW     0:00 [kapmd]
4 ?        SWN    0:00 [ksoftirqd_CPU0]
5 ?        SW     0:00 [kswapd]
6 ?        SW     0:00 [bdflush]
7 ?        SW     0:00 [kupdated]
8 ?        SW     0:00 [kinoded]

10 ?        SW     0:00 [mdrecoveryd]
75 ?        SW<    0:00 [lvm-mpd]

503 ?        S      0:00 /sbin/syslogd -a /var/lib/dhcp/dev/log
506 ?        S      0:00 /sbin/klogd -c 1 -2
542 ?        SW     0:00 [khubd]
614 ?        S      0:00 /sbin/portmap
653 ?        S      0:00 /usr/sbin/sshd
730 ?        S      0:00 /sbin/dhcpcd -H -D -N -Y -t 999999 -h beast eth0
744 ?        S      0:00 /usr/sbin/cupsd

1004 ?        S      0:00 /usr/lib/postfix/master
1021 ?        S      0:00 pickup -l -t fifo -u
1022 ?        S      0:00 qmgr -l -t fifo -u
1037 ?        S      0:00 /usr/sbin/atd
1055 ?        S      0:00 /usr/sbin/cron
1071 ?        S      0:00 /usr/sbin/nscd
1084 ?        S      0:00 /usr/sbin/nscd
1094 tty1     S      0:00 /sbin/mingetty --noclear tty1
1095 tty2     S      0:00 /sbin/mingetty tty2
1096 tty3     S      0:00 /sbin/mingetty tty3
1097 tty4     S      0:00 /sbin/mingetty tty4
1098 tty5     S      0:00 /sbin/mingetty tty5
1099 tty6     S      0:00 /sbin/mingetty tty6
1102 ?        S      0:00 /usr/X11R6/bin/xdm
1106 ?        S      0:02 /usr/X11R6/bin/X :0 vt07 -auth /var/lib/xdm/authdir/a
1108 ?        S      0:00 -:0
1124 ?        S      0:00 /usr/X11R6/bin/xconsole -notify -nostdin -verbose -ex
1155 ?        S      0:00 -192.168.0.25:0
1168 ?        S      0:00 /bin/sh /usr/X11R6/bin/kde
1259 pts/2    S      0:00 /bin/bash
1262 pts/1    S      0:00 /bin/bash
1273 pts/2    S      0:00 su -
1274 pts/2    S      0:00 -bash
1313 pts/1    S      0:00 emacs
1321 ?        S      0:02 kdeinit: khelpcenter
1329 ?        S      0:02 kdeinit: konqueror --silent
1357 pts/2    R      0:00 ps -ax

Here we can see one very important process indeed.

1  ?  S     0:05 init
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In general, each process is started by another process known as its parent process. A process so started is
known as a child process. When Linux starts, it runs a single program, the prime ancestor and process
number 1, init. This is, if you like, the operating system process manager and the grandparent of all pro-
cesses. Other system processes we’ll meet soon are started by init or by other processes started by init.

One such example is the login procedure. init starts the getty program once for each serial terminal or
dial in modem that we can use to log in. These are shown in the ps output like this:

1095 tty2     S      0:00 /sbin/mingetty tty2

The getty processes wait for activity at the terminal, prompt the user with the familiar login prompt,
and then pass control to the login program, which sets up the user environment and finally starts a shell.
When the user shell exits, init starts another getty process.

You can see that the ability to start new processes and to wait for them to finish is fundamental to the
system. We’ll see later in this chapter how to perform the same tasks from within our own programs
with the system calls fork, exec, and wait.

Process Scheduling
One further ps output example is the entry for the ps command itself:

1357 pts/2    R      0:00 ps -ax

This indicates that process 1357 is in a run state (R) and is executing the command ps -ax. Thus the pro-
cess is described in its own output! The status indicator shows only that the program is ready to run, not
necessarily that it’s actually running. On a single processor computer, only one process can run at a time,
while others wait their turn. These turns, known as time slices, are quite short and give the impression
that programs are running at the same time. The R just shows that the program is not waiting for other
processes to finish or waiting for input or output to complete. That is why you may see two such pro-
cesses listed in ps output. (Another commonly seen process marked as running is the X display server.)

The Linux kernel uses a process scheduler to decide which process will receive the next time slice. It does
this using the process priority (we discussed priorities back in Chapter 4). Processes with a high priority
get to run more often, while others, such as low-priority background tasks, run less frequently. With
Linux, processes can’t overrun their allocated time slice. They are pre-emptively multitasked so that they
are suspended and resumed without their cooperation. Older systems, such as Windows 3.x, generally
require processes to yield explicitly so that others may resume. 

In a multitasking system such as Linux where several programs are likely to be competing for the same
resource, programs that perform short bursts of work and pause for input are considered better behaved
than those that hog the processor by continually calculating some value or continually querying the sys-
tem to see if new input is available. Well behaved programs are termed nice programs, and in a sense
this “niceness” can be measured. The operating system determines the priority of a process based on a
“nice” value, which defaults to 0, and on the behavior of the program. Programs that run for long peri-
ods without pausing generally get lower priorities. Programs that pause while, for example, waiting for
input get rewarded. This helps keep a program that interacts with the user responsive; while it is wait-
ing for some input from the user, the system increases its priority, so that when it’s ready to resume, it
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has a high priority. We can set the process nice value using nice and adjust it using renice. The nice
command increases the nice value of a process by 10, giving it a lower priority. We can view the nice val-
ues of active processes using the –l or –f (for long output) option to ps. The value we are interested in is
shown in the NI (nice) column.

$ ps -l
F S   UID   PID  PPID  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD

000 S   500  1259  1254  0  75   0 -   710 wait4  pts/2    00:00:00 bash
000 S   500  1262  1251  0  75   0 -   714 wait4  pts/1    00:00:00 bash
000 S   500  1313  1262  0  75   0 -  2762 schedu pts/1    00:00:00 emacs
000 S   500  1362  1262  2  80   0 -   789 schedu pts/1    00:00:00 oclock
000 R   500  1363  1262  0  81   0 -   782 -      pts/1    00:00:00 ps

Here we can see that the oclock program is running (as process 1362) with a default nice value. If it had
been started with the command

$ nice oclock &

it would have been allocated a nice value of +10. If we adjust this value with the command

$ renice 10 1362
1362: old priority 0, new priority 10

the clock program will run less often. We can see the modified nice value with ps again:

F S   UID   PID  PPID  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD
000 S   500  1259  1254  0  75   0 -   710 wait4  pts/2    00:00:00 bash
000 S   500  1262  1251  0  75   0 -   714 wait4  pts/1    00:00:00 bash
000 S   500  1313  1262  0  75   0 -  2762 schedu pts/1    00:00:00 emacs
000 S   500  1362  1262  0  90  10 -   789 schedu pts/1    00:00:00 oclock
000 R   500  1365  1262  0  81   0 -   782 -      pts/1    00:00:00 ps

The status column now also contains N to indicate that the nice value has changed from the default.
The PPID field of ps output indicates the parent process ID, the PID of either the process that caused
this process to start or, if that process is no longer running, init (PID 1).

The Linux scheduler decides which process it will allow to run on the basis of priority. Exact implementa-
tions vary, of course, but higher priority processes run more often. In some cases, low priority processes
don’t run at all if higher priority processes are ready to run.

Starting New Processes
We can cause a program to run from inside another program and thereby create a new process by using
the system library function.

#include <stdlib.h>

int system (const char *string);
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The system function runs the command passed to it as a string and waits for it to complete. The command
is executed as if the command

$ sh -c string

has been given to a shell. system returns 127 if a shell can’t be started to run the command and -1 if
another error occurs. Otherwise, system returns the exit code of the command.

Try It Out—system
We can use system to write a program to run ps for us. While this is not tremendously useful in and of
itself, we’ll see how to develop this technique in later examples. We also don’t check that the system call
actually worked for the sake of simplicity in the example.

#include <stdlib.h>
#include <stdio.h>

int main()
{

printf(“Running ps with system\n”);
system(“ps -ax”);
printf(“Done.\n”);
exit(0);

}

When we compile and run this program, system1.c, we get the following:

$ ./system1
Running ps with system

PID TTY      STAT   TIME COMMAND
1 ?        S      0:05 init
2 ?        SW     0:00 [keventd]

...

1262 pts/1    S      0:00 /bin/bash
1273 pts/2    S      0:00 su -
1274 pts/2    S      0:00 -bash
1463 pts/1    S      0:00 oclock -transparent -geometry 135x135-10+40
1465 pts/1    S      0:01 emacs Makefile
1480 pts/1    S      0:00 ./system1
1481 pts/1    R      0:00 ps -ax

Done.

Because the system function uses a shell to start the desired program, we could put it in the background
by changing the function call in system1.c to the following:

system(“ps -ax &”);

When we compile and run this version of the program, we get

$ ./system2
Running ps with system

PID TTY      STAT   TIME COMMAND
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1 ?        S      0:05 init
2 ?        SW     0:00 [keventd]

...
Done.
$  1246 ?        S      0:00 kdeinit: klipper -icon klipper -miniicon klipper
1274 pts/2    S      0:00 -bash
1463 pts/1    S      0:00 oclock -transparent -geometry 135x135-10+40
1465 pts/1    S      0:01 emacs Makefile
1484 pts/1    R      0:00 ps -ax

How It Works
In the first example, the program calls system with the string “ps -ax”, which executes the ps pro-
gram. Our program returns from the call to system when the ps command has finished. The system
function can be quite useful but is also limited. Because our program has to wait until the process started
by the call to system finishes, we can’t get on with other tasks.

In the second example, the call to system returns as soon as the shell command finishes. Because it’s a
request to run a program in the background, the shell returns as soon as the ps program is started, just
as would happen if we had typed

$ ps -ax &

at a shell prompt. The system1 program then prints Done. and exits before the ps command has had a
chance to finish all of its output. The ps output continues to produce output after system1 exits. This
kind of process behavior can be quite confusing for users. To make good use of processes, we need finer
control over their actions. Let’s look at a lower-level interface to process creation, exec.

Replacing a Process Image
There is a whole family of related functions grouped under the exec heading. They differ in the way
that they start processes and present program arguments. An exec function replaces the current process
with a new process specified by the path or file argument.

#include <unistd.h>

char **environ;

int execl(const char *path, const char *arg0, ...,  (char *)0);
int execlp(const char *file, const char *arg0, ...,  (char *)0);
int execle(const char *path, const char *arg0, ...,  (char *)0, char *const
envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);

In general, using system is a far from ideal way to start other processes, because it
invokes the desired program using a shell. This is both inefficient, because a shell is
started before the program is started, and also quite dependent on the installation
for the shell and environment that are used. In the next section, we see a much better
way of invoking programs, which should almost always be used in preference to the
system call.
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These functions belong to two types. execl, execlp, and execle take a variable number of arguments
ending with a null pointer. execv and execvp have as their second argument an array of strings. In both
cases, the new program starts with the given arguments appearing in the argv array passed to main.
These functions are usually implemented using execve, though there is no requirement for it to be done
this way.

The functions with names suffixed with a p differ in that they will search the PATH environment variable
to find the new program executable file. If the executable isn’t on the path, an absolute file name, includ-
ing directories, will need to be passed to the function as a parameter.

The global variable environ is available to pass a value for the new program environment.
Alternatively, an additional argument to the functions execle and execve is available for passing an
array of strings to be used as the new program environment.

If we wish to use an exec function to start the ps program, we can choose from among the six exec family
functions, as shown in the calls in the code fragment that follows:

#include <unistd.h>

/* Example of an argument list */
/* Note that we need a program name for argv[0] */
char *const ps_argv[] =

{“ps”, “-ax”, 0};

/* Example environment, not terribly useful */
char *const ps_envp[] =

{“PATH=/bin:/usr/bin”, “TERM=console”, 0};

/* Possible calls to exec functions */
execl(“/bin/ps”, “ps”, “-ax”, 0);            /* assumes ps is in /bin */
execlp(“ps”, “ps”, “-ax”, 0);               /* assumes /bin is in PATH */
execle(“/bin/ps”, “ps”, “-ax”, 0, ps_envp); /* passes own environment */

execv(“/bin/ps”, ps_argv);
execvp(“ps”, ps_argv);
execve(“/bin/ps”, ps_argv, ps_envp);

Try It Out—execlp
Let’s modify our example to use an execlp call.

#include <unistd.h>
#include <stdio.h>

int main()
{

printf(“Running ps with execlp\n”);
execlp(“ps”, “ps”, “-ax”, 0);
printf(“Done.\n”);
exit(0);

}
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When we run this program, pexec.c, we get the usual ps output, but no Done. message at all. Note
also that there is no reference to a process called pexec in the output.

$ ./pexec
Running ps with execlp

PID TTY      STAT   TIME COMMAND
1 ?        S      0:05 init
2 ?        SW     0:00 [keventd]

...
1262 pts/1    S      0:00 /bin/bash
1273 pts/2    S      0:00 su -
1274 pts/2    S      0:00 -bash
1463 pts/1    S      0:00 oclock -transparent -geometry 135x135-10+40
1465 pts/1    S      0:01 emacs Makefile
1514 pts/1    R      0:00 ps –ax

How It Works
The program prints its first message and then calls execlp, which searches the directories given by the
PATH environment variable for a program called ps. It then executes this program in place of our pexec
program, starting it as if we had given the shell command

$ ps -ax

When ps finishes, we get a new shell prompt. We don’t return to pexec, so the second message doesn’t
get printed. The PID of the new process is the same as the original, as are the parent PID and nice value.
In effect, all that has happened is that the running program has started to execute new code from a new
executable file specified in the call to exec.

There is a limit on the combined size of the argument list and environment for a process started by exec
functions. This is given by ARG_MAX and on Linux systems is 128 kilobytes. Other systems may set a more
reduced limit that can lead to problems. The POSIX specification indicates that ARG_MAX should be at
least 4,096 bytes.

The exec functions generally don’t return unless an error occurs, in which case the error variable errno
is set and the exec function returns -1.

The new process started by exec inherits many features from the original. In particular, open file
descriptors remain open in the new process unless their “close on exec flag” has been set (refer to the
fcntl system call in Chapter 3 for more details). Any open directory streams in the original process
are closed.

Duplicating a Process Image
To use processes to perform more than one function at a time, we can either use threads, covered in
Chapter 12, or create an entirely separate process from within a program, as init does, rather than
replace the current thread of execution, as in the exec case.

We can create a new process by calling fork. This system call duplicates the current process, creating a
new entry in the process table with many of the same attributes as the current process. The new process
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is almost identical to the original, executing the same code but with its own data space, environment,
and file descriptors. Combined with the exec functions, fork is all we need to create new processes.

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

As you can see in Figure 11-2, the call to fork in the parent returns the PID of the new child process.
The new process continues to execute just like the original, with the exception that in the child process
the call to fork returns 0. This allows both the parent and child to determine which is which.

Figure 11-2

If fork fails, it returns -1. This is commonly due to a limit on the number of child processes that a par-
ent may have (CHILD_MAX), in which case errno will be set to EAGAIN. If there is not enough space for
an entry in the process table, or not enough virtual memory, the errno variable will be set to ENOMEM.

A typical code fragment using fork is

pid_t new_pid;

new_pid = fork();

switch(new_pid) {
case -1 :     /* Error */

break;
case 0 :      /* We are child */

break;
default :     /* We are parent */

break;
}

Original
process

continues

Fork()

Initial process

Returns a
new PID

New
process

Returns
zero
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Try It Out—fork
Let’s look at a simple example, fork1.c.

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main()
{

pid_t pid;
char *message;
int n;

printf(“fork program starting\n”);
pid = fork();
switch(pid) 
{
case -1:

perror(“fork failed”);
exit(1);

case 0:
message = “This is the child”;
n = 5;
break;

default:
message = “This is the parent”;
n = 3;
break;

}

for(; n > 0; n--) {
puts(message);
sleep(1);

}
exit(0);

}

This program runs as two processes. A child is created (born?) and prints a message five times. The orig-
inal process (the parent) prints a message only three times. The parent process finishes before the child
has printed all of its messages, so the next shell prompt appears mixed in with the output.

$ ./fork1
fork program starting
This is the parent
This is the child
This is the parent
This is the child
This is the parent
This is the child
$ This is the child
This is the child
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How It Works
When fork is called, this program divides into two separate processes. The parent process is identified
by a nonzero return from fork and is used to set a number of messages to print, each separated by one
second.

Waiting for a Process
When we start a child process with fork, it takes on a life of its own and runs independently. Sometimes,
we would like to find out when a child process has finished. For example, in the previous program, the
parent finishes ahead of the child and we get some messy output as the child continues to run. We can
arrange for the parent process to wait until the child finishes before continuing by calling wait.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *stat_loc);

The wait system call causes a parent process to pause until one of its child processes is stopped. The call
returns the PID of the child process. This will normally be a child process that has terminated. The status
information allows the parent process to determine the exit status of the child process, that is, the value
returned from main or passed to exit. If stat_loc is not a null pointer, the status information will be
written to the location to which it points.

We can interpret the status information using macros defined in sys/wait.h. These include

Macro Definition

WIFEXITED(stat_val) Nonzero if the child is terminated normally.

WEXITSTATUS(stat_val) If WIFEXITED is nonzero, this returns child exit code.

WIFSIGNALED(stat_val) Nonzero if the child is terminated on an uncaught signal.

WTERMSIG(stat_val) If WIFSIGNALED is nonzero, this returns a signal number.

WIFSTOPPED(stat_val) Nonzero if the child has stopped.

WSTOPSIG(stat_val) If WIFSTOPPED is nonzero, this returns a signal number.

Try It Out—wait
Let’s modify our program slightly so we can wait for and examine the child process exit status. Call the
new program wait.c.

#include <sys/types.h>

#include <sys/wait.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
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pid_t pid;
char *message;
int n;

int exit_code;

printf(“fork program starting\n”);
pid = fork();
switch(pid)
{

case -1:
perror(“fork failed”);
exit(1);

case 0:
message = “This is the child”;
n = 5;

exit_code = 37;
break;

default:
message = “This is the parent”;
n = 3;

exit_code = 0;
break;

}

for(; n > 0; n--) {
puts(message);
sleep(1);

}

This section of the program waits for the child process to finish.

if (pid != 0) {
int stat_val;
pid_t child_pid;

child_pid = wait(&stat_val);

printf(“Child has finished: PID = %d\n”, child_pid);
if(WIFEXITED(stat_val))

printf(“Child exited with code %d\n”, WEXITSTATUS(stat_val));
else

printf(“Child terminated abnormally\n”);
}
exit(exit_code);

}

When we run this program, we see the parent wait for the child.

$ ./wait
fork program starting
This is the child
This is the parent
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This is the parent
This is the child
This is the parent
This is the child
This is the child
This is the child
Child has finished: PID = 1582
Child exited with code 37
$

How It Works
The parent process, which got a nonzero return from the fork call, uses the wait system call to suspend
its own execution until status information becomes available for a child process. This happens when the
child calls exit; we gave it an exit code of 37. The parent then continues, determines that the child ter-
minated normally by testing the return value of the wait call, and extracts the exit code from the status
information.

Zombie Processes
Using fork to create processes can be very useful, but you must keep track of child processes. When a
child process terminates, an association with its parent survives until the parent in turn either terminates
normally or calls wait. The child process entry in the process table is therefore not freed up immediately.
Although no longer active, the child process is still in the system because its exit code needs to be stored
in case the parent subsequently calls wait. It becomes what is known as defunct, or a zombie process.

We can see a zombie process being created if we change the number of messages in the fork example
program. If the child prints fewer messages than the parent, it will finish first and will exist as a zombie
until the parent has finished.

Try It Out—Zombies
fork2.c is the same as fork1.c, except that the number of messages printed by the child and parent
processes is reversed. Here are the relevant lines of code:

switch(pid)
{
case -1:

perror(“fork failed”);
exit(1);

case 0:
message = “This is the child”;

n = 3;
break;

default:
message = “This is the parent”;

n = 5;
break;

}
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How It Works
If we run the preceding program with ./fork2 & and then call the ps program after the child has fin-
ished but before the parent has finished, we’ll see a line such as this. (Some systems may say <zombie>
rather than <defunct>.)

$ ps –al

F S   UID   PID  PPID  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD
004 S     0  1273  1259  0  75   0 -   589 wait4  pts/2    00:00:00 su
000 S     0  1274  1273  0  75   0 -   731 schedu pts/2    00:00:00 bash
000 S   500  1463  1262  0  75   0 -   788 schedu pts/1    00:00:00 oclock
000 S   500  1465  1262  0  75   0 -  2569 schedu pts/1    00:00:01 emacs
000 S   500  1603  1262  0  75   0 -   313 schedu pts/1    00:00:00 fork2

003 Z   500  1604  1603  0  75   0 -     0 do_exi pts/1    00:00:00 fork2 <defunct>
000 R   500  1605  1262  0  81   0 -   781 -      pts/1    00:00:00 ps

If the parent then terminates abnormally, the child process automatically gets the process with PID 1
(init) as parent. The child process is now a zombie that is no longer running but has been inherited by
init because of the abnormal termination of the parent process. The zombie will remain in the process
table until collected by the init process. The bigger the table, the slower this procedure. You need to
avoid zombie processes, as they consume resources until init cleans them up.

There’s another system call that you can use to wait for child processes. It’s called waitpid, and you can
use it to wait for a specific process to terminate.

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

The pid argument specifies the PID of a particular child process to wait for. If it’s -1, waitpid will
return information for any child process. Like wait, it will write status information to the location
pointed to by stat_loc, if that is not a null pointer. The options argument allows us to modify the
behavior of waitpid. The most useful option is WNOHANG, which prevents the call to waitpid from sus-
pending execution of the caller. You can use it to find out whether any child processes have terminated
and, if not, to continue. Other options are the same as for wait.

So, if we wanted to have a parent process regularly check whether a specific child process has terminated,
we could use the call

waitpid(child_pid, (int *) 0, WNOHANG);

This will return zero if the child has not terminated or stopped, or child_pid if it has. waitpid will
return -1 on error and set errno. This can happen if there are no child processes (errno set to ECHILD),
if the call is interrupted by a signal (EINTR), or if the option argument is invalid (EINVAL).
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Input and Output Redirection
We can use our knowledge of processes to alter the behavior of programs by exploiting the fact that
open file descriptors are preserved across calls to fork and exec. The next example involves a filter pro-
gram—a program that reads from its standard input and writes to its standard output, performing some
useful transformation as it does so.

Try It Out—Redirection
Here’s a very simple filter program, upper.c, that reads input and converts it to uppercase.

#include <stdio.h>
#include <ctype.h>

int main()
{

int ch;
while((ch = getchar()) != EOF) {

putchar(toupper(ch));
}
exit(0);

}

When we run the program, it does what we expect:

$ ./upper
hello THERE
HELLO THERE
^D
$

We can, of course, use it to convert a file to uppercase by using the shell redirection

$ cat file.txt
this is the file, file.txt, it is all lower case.
$ ./upper < file.txt
THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

What if we want to use this filter from within another program? This program, useupper.c, accepts a
file name as an argument and will respond with an error if called incorrectly.

#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

char *filename;

if (argc != 2) {
fprintf(stderr, “usage: useupper file\n”);
exit(1);

}

filename = argv[1];
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We reopen the standard input, again checking for any errors as we do so, and then use execl to call upper.

if(!freopen(filename, “r”, stdin)) {
fprintf(stderr, “could not redirect stdin from file %s\n”, filename);
exit(2);

}

execl(“./upper”, “upper”, 0);

Don’t forget that execl replaces the current process; if there is no error, the remaining lines are not 
executed.

perror(“could not exec ./upper”);
exit(3);

}

How It Works
When we run this program, we can give it a file to convert to uppercase. The job is done by the program
upper, which doesn’t handle file-name arguments. Note that we don’t require the source code for
upper; we can run any executable program in this way:

$ ./useupper file.txt
THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

The useupper program uses freopen to close the standard input and associate the file stream stdin
with the file given as a program argument. It then calls execl to replace the running process code with
that of the upper program. Because open file descriptors are preserved across the call to execl, the
upper program runs exactly as it would have under the shell command:

$ upper < file.txt

Threads
Linux processes can cooperate, can send each other messages, and can interrupt one another. They can
even arrange to share segments of memory between themselves, but they are essentially separate entities
within the operating system. They do not readily share variables.

There is a class of process known as a thread that is available in many UNIX and Linux systems. While
threads can be difficult to program, they can be of great value in some applications, such as multi-
threaded database servers. Programming threads on Linux (and UNIX generally) is not as common as
using multiple processes, because Linux processes are quite lightweight, and programming multiple
cooperation processes is much easier than programming threads. Threads are covered in Chapter 12.

Signals
A signal is an event generated by the UNIX and Linux systems in response to some condition, upon
receipt of which a process may in turn take some action. We use the term “raise” to indicate the genera-
tion of a signal, and the term “catch” to indicate the receipt of a signal. Signals are raised by some error
conditions, such as memory segment violations, floating-point processor errors, or illegal instructions.
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They are generated by the shell and terminal handlers to cause interrupts and can also be explicitly sent
from one process to another as a way of passing information or modifying behavior. In all these cases,
the programming interface is the same. Signals can be raised, caught and acted upon, or (for some at
least) ignored. 

Signal names are defined by including the header file signal.h. They all begin with “SIG” and include
those listed in the following table.

Signal Name Description

SIGABORT *Process abort

SIGALRM Alarm clock

SIGFPE *Floating-point exception

SIGHUP Hangup

SIGILL *Illegal instruction

SIGINT Terminal interrupt

SIGKILL Kill (can’t be caught or ignored)

SIGPIPE Write on a pipe with no reader

SIGQUIT Terminal quit

SIGSEGV *Invalid memory segment access

SIGTERM Termination

SIGUSR1 User-defined signal 1

SIGUSR2 User-defined signal 2

*Implementation-dependent actions may also be taken.

If a process receives one of these signals without first arranging to catch it, the process will be termi-
nated immediately. Usually, a core dump file is created. This file, called core and placed in the current
directory, is an image of the process that can be useful in debugging.

Additional signals include those in the following table.

Signal Name Description

SIGCHLD Child process has stopped or exited.

SIGCONT Continue executing, if stopped.

SIGSTOP Stop executing. (Can’t be caught or ignored.)

SIGTSTP Terminal stop signal.

SIGTTIN Background process trying to read.

SIGTTOU Background process trying to write.
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SIGCHLD can be useful for managing child processes. It’s ignored by default. The remaining signals
cause the process receiving them to stop, except for SIGCONT, which causes the process to resume. They
are used by shell programs for job control and are rarely used by user programs.

We’ll look at the first group of signals in a little more detail later. For now, it’s enough to know that if the
shell and terminal driver are configured normally, typing the interrupt character (often Ctrl+C) at the
keyboard will result in the SIGINT signal being sent to the foreground process, that is, the program cur-
rently running. This will cause the program to terminate unless it has arranged to catch the signal. 

If we want to send a signal to a process other than the current foreground task, we use the kill command.
This takes an optional signal number or name, and the PID (usually found using the ps command) to send
the signal to. For example, to send a “hangup” signal to a shell running on a different terminal with PID
512, we would use the command

kill –HUP 512

A useful variant of the kill command is killall, which allows us to send a signal to all processes run-
ning a specified command. Not all versions of UNIX support it, though Linux generally does. This is
useful when you do not know the PID, or when you want to send a signal to several different processes
executing the same command. A common use is to tell the inetd program to reread its configuration
options. To do this we can use the command

killall –HUP inetd

Programs can handle signals using the signal library function.

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

This rather complex declaration says that signal is a function that takes two parameters, sig and func.
The signal to be caught or ignored is given as argument sig. The function to be called when the speci-
fied signal is received is given as func. This function must be one that takes a single int argument (the
signal received) and is of type void. The signal function itself returns a function of the same type, which
is the previous value of the function set up to handle this signal, or one of these two special values:

SIG_IGN Ignore the signal.

SIG_DFL Restore default behavior.

An example should make things clear. Let’s write a program, ctrlc.c, that reacts to typing Ctrl+C by
printing an appropriate message rather than terminating. Pressing Ctrl+C a second time will end the
program.

Try It Out—Signal Handling
The function ouch reacts to the signal that is passed in the parameter sig. This function will be called
when a signal occurs. It prints a message and then resets the signal handling for SIGINT (by default,
generated by typing Ctrl+C) back to the default behavior.

465

Processes and Signals

b544977 Ch11.qxd  12/1/03  8:56 AM  Page 465



#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ouch(int sig)
{

printf(“OUCH! - I got signal %d\n”, sig);
(void) signal(SIGINT, SIG_DFL);

}

The main function has to intercept the SIGINT signal generated when we type Ctrl+C. For the rest of the
time, it just sits in an infinite loop, printing a message once a second.

int main()
{

(void) signal(SIGINT, ouch);

while(1) {
printf(“Hello World!\n”);
sleep(1);

}
}

Typing Ctrl+C for the first time causes the program to react and then continue. When we type Ctrl+C
again, the program ends because the behavior of SIGINT has returned to the default behavior of causing
the program to exit.

$ ./ctrlc1
Hello World!
Hello World!
Hello World!
Hello World!
^C
OUCH! - I got signal 2
Hello World!
Hello World!
Hello World!
Hello World!
^C
$

As you can see from this example, the signal handling function takes a single integer parameter, the signal
number that caused the function to be called. This can be useful if the same function is used to handle more
than one signal. Here we print out the value of SIGINT, which on this system happens to have the value 2.
You shouldn’t rely on traditional numeric values for signals; always use signal names in new programs.

It is not safe to call all functions, such as printf, from within a signal handler.
A useful technique is to use a signal handler to set a flag and then check that flag
from the main program and print a message if required. Toward the end of the chap-
ter, you will find a list of calls that can safely be made inside signal handlers.
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How It Works
The program arranges for the function ouch to be called when we give the SIGINT signal by typing
Ctrl+C. After the interrupt function ouch has completed, the program carries on, but the signal action is
restored to the default. (Different versions of UNIX, particularly those derived from Berkley UNIX, have
historically had subtly different signal behaviors. If you want the default action to a signal restored after
it has occurred, it’s always best to code it that way specifically.) When it receives a second SIGINT signal,
the program takes the default action, which is to terminate the program.

If we wished to retain the signal handler and continue to react to Ctrl+C, we would need to re-establish
it by calling signal again. This leads to a short time when the signal is not handled, from the start of the
interrupt function to just before the signal handler is re-established. It’s possible for a second signal to be
received in this time and terminate the program against our wishes. 

The signal function returns the previous value of the signal handler for the specified signal if there is
one, or SIG_ERR otherwise, in which case, errno will be set to a positive value. errno will be set to
EINVAL if an invalid signal is specified or an attempt is made to handle a signal that may not be caught
or ignored, such as SIGKILL.

Sending Signals
A process may send a signal to another process, including itself, by calling kill. The call will fail if the
program doesn’t have permission to send the signal, often because the target process is owned by
another user. This is the program equivalent of the shell command of the same name.

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

The kill function sends the specified signal, sig, to the process whose identifier is given by pid. It returns
0 on success. To send a signal, the sending process must have permission to do so. Normally, this means
that both processes must have the same user ID (that is, you can send a signal only to one of your own pro-
cesses, although the superuser may send signals to any process).

kill will fail, return -1, and set errno if the signal given is not a valid one (errno set to EINVAL), if it
doesn’t have permission (EPERM), or if the specified process doesn’t exist (ESRCH).

Signals provide us with a useful alarm clock facility. The alarm function call can be used by a process to
schedule a SIGALRM signal at some time in the future.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

We don’t recommend that you use the signal interface. We include it here because
you will find it in many older programs. We’ll see sigaction, a more cleanly
defined and reliable interface later, which you should use in all new programs.
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The alarm call schedules the delivery of a SIGALRM signal in seconds seconds. In fact, the alarm will be
delivered shortly after that, due to processing delays and scheduling uncertainties. A value of 0 will can-
cel any outstanding alarm request. Calling alarm before the signal is received will cause the alarm to be
rescheduled. Each process can have only one outstanding alarm. alarm returns the number of seconds
left before any outstanding alarm call would be sent, or -1 if the call fails.

To see how alarm works, we can simulate its effect by using fork, sleep, and signal. A program
could start a new process for the sole purpose of sending a signal at some time later.

Try It Out—An Alarm Clock
In alarm.c, the first function, ding, simulates an alarm clock.

#include <sys/types.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>

static int alarm_fired = 0;

void ding(int sig)
{
alarm_fired = 1;

}

In main, we tell the child process to wait for five seconds before sending a SIGALRM signal to its parent.

int main()
{
pid_t pid;

printf(“alarm application starting\n”);

pid = fork();
switch(pid) {
case -1:

/* Failure */
perror(“fork failed”);
exit(1);

case 0:
/* child */
sleep(5);
kill(getppid(), SIGALRM);
exit(0);

}

The parent process arranges to catch SIGALRM with a call to signal and then waits for the inevitable.

/* if we get here we are the parent process */
printf(“waiting for alarm to go off\n”);
(void) signal(SIGALRM, ding);
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pause();
if (alarm_fired) printf(“Ding!\n”);

printf(“done\n”);
exit(0);

}

When we run this program, it pauses for five seconds while it waits for the simulated alarm clock.

$ ./alarm
alarm application starting
waiting for alarm to go off
<5 second pause>
Ding!
done
$

This program introduces a new function, pause, which simply causes the program to suspend execution
until a signal occurs. When it receives a signal, any established handler is run and execution continues as
normal. It’s declared as

#include <unistd.h>

int pause(void);

and returns -1 (if the next received signal doesn’t cause the program to terminate) with errno set to
EINTR when interrupted by a signal. It is more common to use sigsuspend when waiting for signals,
which we will discuss a bit later in the chapter.

How It Works
The alarm clock simulation program starts a new process via fork. This child process sleeps for five sec-
onds and then sends a SIGALRM to its parent. The parent arranges to catch SIGALRM and then pauses
until a signal is received. We do not call printf in the signal handler directly; rather, we set a flag and
then check the flag afterward.

Using signals and suspending execution is an important part of Linux programming. It means that a
program need not necessarily run all the time. Rather than run in a loop continually checking whether
an event has occurred, it can wait for an event to happen. This is especially important in a multiuser
environment where processes share a single processor and this kind of busy wait has a large impact on
system performance. A particular problem with signals is that you never know quite “What will happen
if a signal occurs in the middle of a system call?” (The answer is a rather unsatisfactory “it depends.”) In
general, you need to worry only about “slow” system calls, such as reading from a terminal, where the
system call will return with an error if a signal occurs while it is waiting. If you start using signals in
your program, you need to be aware that some system calls could fail if a signal receives an error condi-
tion that you may not have considered before signal handling was added.

You must program your signals carefully, as there are a number of “race conditions” that can occur in
programs that use them. For example, if you intend to call pause to wait for a signal and that signal
occurs before the call to pause, your program may wait indefinitely for an event that won’t occur. These
race conditions, critical timing problems, catch many a novice programmer. Always check signal code
very carefully.
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A Robust Signals Interface
We’ve covered raising and catching signals using signal and friends in some depth, because they are
very common in older UNIX programs. However, the X/Open and UNIX specifications recommend a
newer programming interface for signals that is more robust: sigaction.

#include <signal.h>

int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);

The sigaction structure, used to define the actions to be taken on receipt of the signal specified by sig,
is defined in signal.h and has at least the following members:

void (*) (int) sa_handler    /*  function, SIG_DFL or SIG_IGN
sigset_t sa_mask             /*  signals to block in sa_handler
int sa_flags                 /*  signal action modifiers

The sigaction function sets the action associated with the signal sig. If oact is not null, sigaction
writes the previous signal action to the location it refers to. If act is null, this is all sigaction does.
If act isn’t null, the action for the specified signal is set.

As with signal, sigaction returns 0 if successful and -1 if not. The error variable errno will be set to
EINVAL if the specified signal is invalid or if an attempt is made to catch or ignore a signal that can’t be
caught or ignored.

Within the sigaction structure pointed to by the argument act, sa_handler is a pointer to a function
called when signal sig is received. This is much like the function func we saw earlier passed to signal.
We can use the special values SIG_IGN and SIG_DFL in the sa_handler field to indicate that the signal
is to be ignored or the action is to be restored to its default, respectively.

The sa_mask field specifies a set of signals to be added to the process’s signal mask before the sa_handler
function is called. These are the set of signals that are blocked and won’t be delivered to the process. This
prevents the case we saw earlier where a signal is received before its handler has run to completion. Using
the sa_mask field can eliminate this race condition.

However, signals caught with handlers set by sigaction are by default not reset, and the sa_flags
field must be set to contain the value SA_RESETHAND if we wish to obtain the behavior we saw earlier
with signal. Before we look in any more detail at sigaction, let’s rewrite the program ctrlc.c, using
sigaction instead of signal.

Try It Out—sigaction
Make the changes that follow so that SIGINT is intercepted by sigaction. We will call the new program
ctrlc2.c.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ouch(int sig)
{
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printf(“OUCH! - I got signal %d\n”, sig);
}

int main()
{

struct sigaction act;

act.sa_handler = ouch;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;

sigaction(SIGINT, &act, 0);

while(1) {
printf(“Hello World!\n”);
sleep(1);

}
}

When we run this version of the program, we always get a message when we type Ctrl+C because SIGINT
is handled repeatedly by sigaction. To terminate the program, we have to type Ctrl+-\, which generates
the SIGQUIT signal by default.

$ ./ctrlc2
Hello World!
Hello World!
Hello World!
^C
OUCH! - I got signal 2
Hello World!
Hello World!
^C
OUCH! - I got signal 2
Hello World!
Hello World!
^\
Quit
$

How It Works
The program calls sigaction instead of signal to set the signal handler for Ctrl+C (SIGINT) to the
function ouch. It first has to set up a sigaction structure that contains the handler, a signal mask, and
flags. In this case, we don’t need any flags, and an empty signal mask is created with the new function,
sigemptyset.

After running this program, you will find a file called core has been created. You can safely delete it.

Signal Sets
The header file signal.h defines the type sigset_t and functions used to manipulate sets of signals.
These sets are used in sigaction and other functions to modify process behavior on receipt of signals.
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#include <signal.h>

int sigaddset(sigset_t *set, int signo);
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigdelset(sigset_t *set, int signo);

These functions perform the operations suggested by their names. sigemptyset initializes a signal set
to be empty. sigfillset initializes a signal set to contain all defined signals. sigaddset and
sigdelset add and delete a specified signal (signo) from a signal set. They all return 0 if successful
and -1 with errno set on error. The only error defined is EINVAL if the specified signal is invalid.

The function sigismember determines whether the given signal is a member of a signal set. It returns 1
if the signal is a member of the set, 0 if it isn’t, and -1 with errno set to EINVAL if the signal is invalid.

#include <signal.h>

int sigismember(sigset_t *set, int signo);

The process signal mask is set or examined by calling the function sigprocmask. This signal mask is the
set of signals that are currently blocked and will therefore not be received by the current process.

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

sigprocmask can change the process signal mask in a number of ways according to the how argument.
New values for the signal mask are passed in the argument set if it isn’t null, and the previous signal
mask will be written to the signal set oset.

The how argument can be one of the following:

SIG_BLOCK The signals in set are added to the signal mask. 

SIG_SETMASK The signal mask is set from set. 

SIG_UNBLOCK The signals in set are removed from the signal mask.

If the set argument is a null pointer, the value of how is not used and the only purpose of the call is to
fetch the value of the current signal mask into oset.

If it completes successfully, sigprocmask returns 0, or it returns -1 if the how parameter is invalid, in
which case errno will be set to EINVAL.

If a signal is blocked by a process, it won’t be delivered, but will remain pending. A program can deter-
mine which of its blocked signals are pending by calling the function sigpending.

#include <signal.h>

int sigpending(sigset_t *set);
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This writes a set of signals that are blocked from delivery and are pending into the signal set pointed to
by set. It returns 0 if successful, otherwise, -1 with errno set to indicate the error. This function can be
useful when a program needs to handle signals and to control when the handling function is called.

A process can suspend execution until the delivery of one of a set of signals by calling sigsuspend. This
is a more general form of the pause function we met earlier.

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

The sigsuspend function replaces the process signal mask with the signal set given by sigmask and
then suspends execution. It will resume after the execution of a signal handling function. If the received
signal terminates the program, sigsuspend will never return. If a received signal doesn’t terminate the
program, sigsuspend returns -1 with errno set to EINTR.

sigaction Flags
The sa_flags field of the sigaction structure used in sigaction may contain the following values to
modify signal behavior:

SA_NOCLDSTOP Don’t generate SIGCHLD when child processes stop.

SA_RESETHAND Reset signal action to SIG_DFL on receipt.

SA_RESTART Restart interruptible functions rather than error with EINTR.

SA_NODEFER Don’t add the signal to the signal mask when caught.

The SA_RESETHAND flag can be used to automatically clear a signal function when a signal is caught,
as we saw before.

Many system calls that a program uses are interruptible; that is, when they receive a signal they will
return with an error and errno will be set to EINTR to indicate that the function returned due to a signal.
This behavior requires extra care by an application using signals. If SA_RESTART is set in the sa_flags
field in a call to sigaction, a function that might otherwise be interrupted by a signal will instead be
restarted once the signal handling function has been executed.

Ordinarily, when a signal handling function is being executed, the signal received is added to the pro-
cess signal mask for the duration of the handling function. This prevents a subsequent occurrence of the
same signal, causing the signal handling function to run again. If the function is not re-entrant, having it
called by another occurrence of a signal before it finishes handling the first may cause problems. If, how-
ever, the SA_NODEFER flag is set, the signal mask is not altered when it receives this signal.

A signal-handling function could be interrupted in the middle and called again by something else. When
you come back to the first call, it’s vital that it still operates correctly. It’s not just recursive (calling itself),
but re-entrant (can be entered and executed again without problems). Interrupt service routines in the
kernel that deal with more than one device at a time need to be re-entrant, as a higher priority interrupt
might “get in” during the execution of the same code.
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Functions that are safe to call inside a signal handler, those guaranteed by the X/Open specification
either to be re-entrant or not to raise signals themselves, are listed as follows.

access alarm cfgetispeed cfgetospeed

cfsetispeed cfsetospeed chdir chmod

chown close creat dup2

dup execle execve _exit

fcntl fork fstat getegid

geteuid getgid getgroups getpgrp

getpid getppid getuid kill

link lseek mkdir mkfifo

open pathconf pause pipe

read rename rmdir setgid

setpgid setsid setuid sigaction

sigaddset sigdelset sigemptyset sigfillset

sigismember signal sigpending sigprocmask

sigsuspend sleep stat sysconf

tcdrain tcflow tcflush tcgetattr

tcgetpgrp tcsendbreak tcsetattr tcsetpgrp

time times umask uname

unlink utime wait waitpid

write

Common Signal Reference
In this section, we list the signals that Linux and UNIX programs typically need with their default
behaviors.

The default action for the signals in the following table is abnormal termination of the process with all
the consequences of _exit (which is like exit but performs no cleanup before returning to the kernel).
However, the status is made available to wait, and waitpid indicates abnormal termination by the
specified signal.

All functions not listed in the following table should be considered unsafe with
respect to signals.
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Signal Name Description

SIGALRM Generated by the timer set by the alarm function.

SIGHUP Sent to the controlling process by a disconnecting terminal, or by the 
controlling process on termination to each foreground process.

SIGINT Typically raised from the terminal by typing Ctrl+C or the configured inter-
rupt character.

SIGKILL Typically used from the shell to forcibly terminate an errant process, as this
signal can’t be caught or ignored.

SIGPIPE Generated by an attempt to write to a pipe with no associated reader.

SIGTERM Sent as a request for a process to finish. Used by UNIX when shutting down to
request that system services stop. This is the default signal sent from the kill
command.

SIGUSR1, May be used by processes to communicate with each other, possibly to cause
SIGUSR2 them to report status information.

By default, the signals in the next table also cause abnormal termination. Additionally, implementation-
dependent actions, such as creation of a core file, may occur.

Signal Name Description

SIGFPE Generated by a floating-point arithmetic exception.

SIGILL An illegal instruction has been executed by the processor. Usually caused by a
corrupt program or invalid shared memory module.

SIGQUIT Typically raised from the terminal by typing Ctrl+\ or the configured quit 
character.

SIGSEGV A segmentation violation, usually caused by reading or writing at an illegal
location in memory either by exceeding array bounds or dereferencing an
invalid pointer. Overwriting a local array variable and corrupting the stack can
cause a SIGSEGV to be raised when a function returns to an illegal address.

A process is suspended by default on receipt of one of the signals in the following table.

Signal Name Description

SIGSTOP Stop executing (can’t be caught or ignored).

SIGTSTP Terminal stop signal, often raised by typing Ctrl+Z.

SIGTTIN, Used by the shell to indicate that background jobs have stopped because they 
SIGTTOU need to read from the terminal or produce output.
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SIGCONT restarts a stopped process and is ignored if received by a process that is not stopped. The
SIGCHLD signal is ignored by default.

Signal Name Description

SIGCONT Continue executing, if stopped.

SIGCHLD Raised when a child process stops or exits.

Summary
In this chapter, we have seen how processes are a fundamental part of the Linux operating system. We
have learned how they can be started, terminated, and viewed and how we can use them to solve pro-
gramming problems. We’ve also taken a look at signals, events that can be used to control the actions of
running programs. We have seen that all Linux processes, down to and including init, use the same set
of system calls available to any programmer.
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12
POSIX Threads

In Chapter 11, we saw how processes are handled in Linux (and indeed in UNIX). These multi-
processing features have long been a feature of UNIX-like operating systems. Sometimes the over-
head cost of creating a new process with fork is considered too great. In this case, it would be very
useful to make a single program do two things at once, or at least to appear to do so. Alternatively,
you might want two or more things to happen at the same time in a closely coupled way. That’s
where threads come in.

In this chapter, we are going to look at

❑ Creating new threads within a process

❑ Synchronizing data access between threads in a single process

❑ Modifying the attributes of a thread

❑ Controlling one thread from another in the same process

What Is a Thread?
Multiple strands of execution in a single program are called threads. A more precise definition is that
a thread is a sequence of control within a process. All the programs we have seen so far have exe-
cuted as a single process, although, like many other operating systems, Linux is quite capable of run-
ning multiple processes simultaneously. Indeed, all processes have at least one thread of execution.
All the processes that we have seen so far in this book have had just one thread of execution.

It’s important to be clear about the difference between the fork system call and the creation of new
threads. When a process executes a fork call, a new copy of the process is created with its own vari-
ables and its own PID. This new process is scheduled independently, and (in general) executes
almost independently of the process that created it. When we create a new thread in a process, the
new thread of execution gets its own stack (and hence local variables) but shares global variables,
file descriptors, signal handlers, and its current directory state with the process that created it.
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The concept of threads has been around for some time, but until the IEEE POSIX committee published
some standards, they had not been widely available in UNIX-like operating systems, and the implemen-
tations that did exist tended to vary between different vendors. With the advent of the POSIX 1003.1c
specification, all that changed; threads are not only better standardized, but are also available on most
Linux distributions.

Linux first acquired thread support around 1996, with a library often referred to as “LinuxThreads.”
This was very close to the POSIX standard (indeed, for many purposes the differences are not noticeable)
and it was a significant step forward that enabled Linux programmers to use threads for the first time.
However, there where slight discrepancies between the Linux implementation and the POSIX standard,
most notably with regard to signal handling. These limitations were imposed not so much by the library
implementation, but more by the limitations of the underlying support from the Linux kernel.

Various projects looked at how the thread support on Linux might be improved, not just to clear up the
slight discrepancies between the POSIX standard and the Linux implementation, but also to improve per-
formance and remove any unnecessary restrictions. Much work centered on how user-level threads should
map to kernel-level threads. The two principal projects were New Generation POSIX Threads (NGPT) and
Native POSIX Thread Library (NPTL). Both projects had to make changes to the Linux kernel to support
the new libraries, and both offered significant performance improvements over the older Linux threads.

In 2002, the NGPT team announced that they did not wish to split the community and would cease
adding new features to NGPT, but would continue to work on thread support in Linux, effectively
throwing their weight behind the NPTL effort. Thus, it seems clear that NPTL will become the new stan-
dard for threads on Linux, and the first mainstream release of NPTL occurred with Red Hat Linux 9.
Some interesting background information on NPTL can be found in a paper titled “The Native POSIX
Thread Library for Linux” by Ulrich Drepper and Ingo Molnar, which, at the time of this book’s writing,
can be found at http://www.redhat.com/partners/pdf/POSIX_Linux_Threading.pdf.

Most of the code in this chapter should work with any of the thread libraries, since it is based on the
POSIX standard that is common across all the thread libraries. However, you will see some slight differ-
ences if you are not using NPTL, particularly if you use ps to look at the examples while they are run-
ning. With the older LinuxThreads library, you will generally see multiple processes, usually one more
than you have threads executing; with NPTL, you should see just a single program, even though it has
many threads internally.

Advantages and Drawbacks of Threads
Creating a new thread has some distinct advantages over creating a new process in certain circumstances.
The overhead cost of creating a new thread is significantly less than that of creating a new process (though
Linux is particularly efficient at creating new processes compared with some other operating systems).

Following are some examples of the uses of threads:

❑ Sometimes it is very useful to make a program appear to do two things at once. The classic
example is to perform a real-time word count on a document while still editing the text. One
thread can manage the user’s input and perform editing. The other, which can see the same doc-
ument content, can continuously update a word count variable. The first thread (or even a third
one) can use this shared variable to keep the user informed. Another example is a multithreaded
database server where an apparent single process serves multiple clients, improving the overall
data throughput by servicing some requests while blocking others, waiting for disk activity.
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For a database server, this apparent multitasking is quite hard to do efficiently in different pro-
cesses, because the requirements for locking and data consistency cause the different processes
to be very tightly coupled. This can be done much more easily with multiple threads than with
multiple processes.

❑ The performance of an application that mixes input, calculation and output may be improved
by running these as three separate threads. While the input or output thread is waiting for a
connection, one of the other threads can continue. Thus, while any application can ultimately do
only one thing at a time, threads enable an application to do something useful while it waits for
such things as connections. A server application processing multiple network connects may also
be a natural fit for a multithreaded program.

❑ In general, switching between threads requires the operating system to do much less work than
switching between processes. Thus, multiple threads are much less demanding on resources
thanmultiple processes, and it is more practical to run programs that logically require many
threads of execution on single processor systems. That said, the design difficulties of writing a
multithreaded program are significant and should not be taken lightly.

Threads also have drawbacks:

❑ Writing multithreaded programs requires very careful design. The potential for introducing subtle
timing faults, or faults caused by the unintentional sharing of variables in a multithreaded pro-
gram is considerable. Alan Cox (the Linux guru who wrote the forward to this book) has com-
mented that threads are also known as “how to shoot yourself in both feet at once.”

❑ Debugging a multithreaded program is much harder than debugging a single-threaded one,
because the interactions between the threads are very hard to control. 

❑ A program that splits a large calculation into two and runs the two parts as different threads will
not necessarily run more quickly on a single processor machine, as there are only so many CPU
cycles to be had, though if nothing else is trying to execute and you have multiple processors or a
hyperthreaded CPU, a multiple thread approach may offer benefits.

A First Threads Program
There is a whole set of library calls associated with threads, most of whose names start with pthread_.
To use these library calls, we must define the macro _REENTRANT, include the file pthread.h, and link
with the threads library using -lpthread.

When the original UNIX and POSIX library routines were designed, it was assumed that there would be
only a single thread of execution in any process. An obvious example is errno, the variable used for
retrieving error information after a call fails. In a multithreaded program there would, by default, be
only one errno variable shared between all the threads. The variable could easily be updated by a call
in one thread before a different thread has been able to retrieve a previous error code. Similar problems
exist with functions, such as fputs, that normally use a single global area for buffering output.

We need routines known as re-entrant routines. Re-entrant code can be called more than once, whether by
different threads or by nested invocations in some way, and still function correctly. Thus, the re-entrant
section of code usually must use local variables only in such a way that each and every call to the code
gets its own unique copy of the data.
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In multithreaded programs, we tell the compiler that we need this feature by defining the _REENTRANT
macro before any #include lines in our program. This does three things for us, and does them so ele-
gantly that usually we don’t even need to know what was done:

❑ Some functions get prototypes for a re-entrant safe equivalent. These are normally the same
function name, but with _r appended so that, for example, gethostbyname is changed to
gethostbyname_r. 

❑ Some stdio.h functions that are normally implemented as macros become proper re-entrant
safe functions. 

❑ The variable errno, from errno.h, is changed to call a function, which can determine the real
errno value in a multithread safe way.

Including the file pthread.h provides us with other definitions and prototypes that we will need in our
code, much like stdio.h for standard input and output routines. Finally, we need to ensure that we
include the appropriate thread header file and link with the appropriate threads library that implements
the pthread functions. We will look in more detail at compiling our program in the “Try It Out” section
immediately following this section. 

pthread_create creates a new thread, much as fork creates a new process.

#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr, void
*(*start_routine)(void *), void *arg);

This may look imposing, but it is actually quite easy to use. The first argument is a pointer to pthread_t.
When a thread is created, an identifier is written to the variable to which this pointer points. This identi-
fier enables us to refer to the thread. The next argument sets the thread attributes. You do not usually need
any special attributes, and you can simply pass NULL as this argument. Later in the chapter we will see
how to use these attributes. The final two arguments tell the thread the function that it is to start executing
and the arguments that are to be passed to this function.

void *(*start_routine)(void *)

The preceding line simply says that we must pass the address of a function taking a pointer to void as a
parameter and the function will return a pointer to void. Thus, we can pass any type of single argument
and return a pointer to any type. Using fork causes execution to continue in the same location with a
different return code, whereas using a new thread explicitly provides a pointer to a function where the
new thread should start executing.

The return value is 0 for success or an error number if anything goes wrong. The manual pages have
details of error conditions for this and other functions used in this chapter.

pthread_create, like most pthread_ functions, is among the few UNIX func-
tions that do not follow the convention of using –1 for errors. Unless you are very
sure, it’s always safest to double check the manual before checking the error code.
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When a thread terminates, it calls the pthread_exit function, much as a process calls exit when it 
terminates. This function terminates the calling thread, returning a pointer to an object. Never use it
to return a pointer to a local variable, because the variable will cease to exist when the thread does so,
causing a serious bug. pthread_exit is declared as follows:

#include <pthread.h>

void pthread_exit(void *retval);

pthread_join is the thread equivalent of wait that processes use to collect child processes. This func-
tion is declared as follows:

#include <pthread.h>

int pthread_join(pthread_t th, void **thread_return);

The first parameter is the thread for which to wait, the identifier that pthread_create filled in for us.
The second argument is a pointer to a pointer that itself points to the return value from the thread. Like
pthread_create, this function returns zero for success and an error code on failure.

Try It Out—A Simple Threaded Program
This program creates a single extra thread, shows that it is sharing variables with the original thread,
and gets the new thread to return a result to the original thread. Multithreaded programs don’t get much
simpler than this! Here is thread1.c:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

char message[] = “Hello World”;

int main() {
int res;
pthread_t a_thread;
void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function, (void *)message);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
printf(“Waiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}
printf(“Thread joined, it returned %s\n”, (char *)thread_result);
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printf(“Message is now %s\n”, message);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
printf(“thread_function is running. Argument was %s\n”, (char *)arg);
sleep(3);
strcpy(message, “Bye!”);
pthread_exit(“Thank you for the CPU time”);

}

1. To compile this, first we need to ensure that _REENTRANT is defined. On a few systems, we
may also need to define _POSIX_C_SOURCE, but normally this will not be necessary.

2. Now we must ensure that the appropriate thread library is linked. Depending on your system,
NPTL may or may not be the default, or on older systems, may not even be available or usable,
depending on the kernel version. Fortunately, most of the code in this chapter is independent
of the exact thread library used. On the authors’ systems, checking the standard /usr/
include/pthread.h file shows that it is entitled Linuxthreads, with a copyright date of
1996, so it is quite clearly the older library. To get the new NPTL we had to install an additional
RPM that provided additional include files under /usr/include/nptl and additional
libraries under /usr/lib/nptl. 

3. Having identified and installed the appropriate files, we can now compile and link our program
like this:

$ cc -D_REENTRANT -I/usr/include/nptl thread1.c –o thread1 -L/usr/lib/nptl -lpthread

If you have both sets of include files and libraries installed, you may want to consider renaming the
older ones to be certain you are using the correct set. If NPTL is the default on your system, you almost
certainly don’t need the –I and –L options. The code in this chapter tries to stick closely to the stan-
dard, and hopefully you will be able to run it on any Linux system with good support for threads.

4. When you run this program, you should see

$ ./thread1
Waiting for thread to finish...
thread_function is running. Argument was Hello World
Thread joined, it returned Thank you for the CPU time
Message is now Bye!

It’s worth spending a little time on understanding this program, as we will be using it as the basis for
most of the examples in this chapter.

How It Works
We declare a prototype for the function that the thread will call when we create it.

void *thread_function(void *arg);

As required by pthread_create, it takes a pointer to void as its only argument and returns a pointer to
void. We will come to the definition (and the implementation) of this function in a moment.
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In main, we declare some variables and then call pthread_create to start running our new thread.

pthread_t a_thread;
void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function, (void *)message);

We pass the address of a pthread_t object that we can use to refer to the thread afterward. We don’t
wish to modify the default thread attributes, so we pass NULL as the second parameter. The final two
parameters are the function to call and a parameter to pass to it.

If the call succeeds, two threads will now be running. The original thread (main) continues and executes
the code after pthread_create, and a new thread starts executing in our imaginatively named
thread_function.

The original thread checks that the new thread has started and then calls pthread_join.

res = pthread_join(a_thread, &thread_result);

Here we pass the identifier of the thread that we are waiting to join and a pointer to a result. This func-
tion will wait until the other thread terminates before it returns. It then prints the return value from the
thread and the contents of a variable, and exits.

The new thread starts executing and thread_function prints out its arguments, sleeps for a short
period, updates global variables, and then exits, returning a string to the main thread. The new thread
writes to the same array, message, to which the original thread has access. This would not be so if we
had called fork rather than pthread_create.

Simultaneous Execution
Next we are going to write a program that checks that the execution of two threads occurs simultane-
ously (still, of course, on a single processor system, because the CPU is being cleverly switched between
the threads). Since we haven’t yet met any of the thread synchronization functions we need to do this
efficiently, it will be a very inefficient program that does what is known as a polling between the two
threads. Again, we will make use of the fact that everything except local function variables are shared
between the different threads in a process.

Try It Out—Simultaneous Execution of Two Threads
The program we’ll create in this section, thread2.c, is created by slightly modifying thread1.c. We
add an extra file scope variable to test which thread is running:

int run_now = 1;

We will set run_now to 1 when the main function is executing and to 2 when our new thread is executing.
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In the main function, after the creation of the new thread, we add the following code:

int print_count1 = 0;

while(print_count1++ < 20) {
if (run_now == 1) {

printf(“1”);
run_now = 2;

}
else {

sleep(1);
}

}

If run_now is 1, we print “1” and set it to 2. Otherwise, we sleep briefly and check the value again.
We are waiting for the value to change to 1 by checking over and over again. This is called a busy wait,
although we have slowed it down by sleeping for a second between checks. We’ll see a better way to
do this later in the chapter.

In thread_function, where our new thread is executing, we do much the same but with the values
reversed.

int print_count2 = 0;

while(print_count2++ < 20) {
if (run_now == 2) {

printf(“2”);
run_now = 1;

}
else {

sleep(1);
}

}

We have also removed the parameter passing and return value passing because we are no longer inter-
ested in them.

When we run the program, we see the following output. (You may find that it takes a few seconds for
the program to produce output.)

$ cc -D_REENTRANT thread3.c -o thread2 -lpthread
$ ./thread2
12121212121212121212
Waiting for thread to finish...
Thread joined

How It Works
Each thread tells the other one to run by setting the run_now variable and then waits till the other thread
has changed its value before running again. This shows that execution passes between the two threads
automatically and again illustrates the point that both threads are sharing the run_now variable.
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Synchronization
In the previous section, we saw that both threads execute together, but our method of switching between
them was clumsy and very inefficient. Fortunately, there is a set functions specifically designed to give
us better ways to control the execution of threads and access to critical sections of code.

We will look at two basic methods here: semaphores, which act as gatekeepers around a piece of code, and
mutexes, which act as a mutual exclusion (hence the name mutex) device to protect sections of code. Both
of these methods are similar; indeed, one can be implemented in terms of the other. However, there are
some cases where the semantics of the problem suggest that one is more expressive than the other. For
example, controlling access to some shared memory, which only one thread can access at a time, would
most naturally involve a mutex. However, controlling access to a set of identical objects as a whole, such
as giving one telephone line out of a set of five available lines to a thread, suits a counting semaphore
better. Which one you choose depends on personal preference and the most appropriate mechanism for
your program.

Synchronization with Semaphores
There are two sets of interface functions for semaphores: One is taken from POSIX Realtime Extensions
and used for threads, and the other is known as System V semaphores, which are commonly used for
process synchronization. (We will discuss the second type in a later chapter.) The two are not guaranteed
to be interchangeable and, although very similar, use different function calls.

In this section we are going to look at the simplest type of semaphore, a binary semaphore that takes
only values 0 or 1. There is also a more general semaphore, a counting semaphore that takes a wider
range of values. Normally, semaphores are used to protect a piece of code so that only one thread of exe-
cution can run it at any one time. For this job a binary semaphore is needed. Occasionally, we want to
permit a limited number of threads to execute a given piece of code; for this we would use a counting
semaphore. As counting semaphores are much less common, we won’t consider them further here
except to say that they are just a logical extension of a binary semaphore and that the actual function
calls needed are identical.

The semaphore functions do not start with pthread_, as most thread-specific functions do, but with
sem_. There are four basic semaphore functions used in threads. They are all quite simple.

A semaphore is created with the sem_init function, which is declared as follows:

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

This function initializes a semaphore object pointed to by sem, sets its sharing option (which we will dis-
cuss more in a moment), and gives it an initial integer value. The pshared parameter controls the type
of semaphore. If the value of pshared is 0, then the semaphore is local to the current process. Otherwise,
the semaphore may be shared between processes. Here we are interested only in semaphores that are not
shared between processes. At the time of writing, Linux doesn’t support this sharing, and passing a
nonzero value for pshared will cause the call to fail.
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The next pair of functions controls the value of the semaphore and is declared as follows:

#include <semaphore.h>

int sem_wait(sem_t * sem);

int sem_post(sem_t * sem);

These both take a pointer to the semaphore object initialized by a call to sem_init.

The sem_post function atomically increases the value of the semaphore by 1. Atomically here means that
if two threads simultaneously try to increase the value of a single semaphore by 1, they do not interfere
with each other, as might happen if two programs read, increment, and write a value to a file at the same
time. The semaphore will always be correctly increased in value by 2, since two threads tried to change it.

The sem_wait function atomically decreases the value of the semaphore by one, but always waits until
the semaphore has a nonzero count first. Thus, if you call sem_wait on a semaphore with a value of 2,
the thread will continue executing but the semaphore will be decreased to 1. If sem_wait is called on a
semaphore with a value of 0, the function will wait until some other thread has incremented the value
so that it is no longer 0. If two threads are both waiting in sem_wait for the same semaphore to become
nonzero and it is incremented once by a third process, only one of the two waiting processes will get to
decrement the semaphore and continue; the other will remain waiting.

This atomic “test and set” ability in a single function is what makes semaphores so valuable. There is
another semaphore function, sem_trywait, that is the nonblocking partner of sem_wait. We don’t dis-
cuss it further here, but you can find more details in the manual pages.

The last semaphore function is sem_destroy. This function tidies up the semaphore when we have 
finished with it. It is declared as follows:

#include <semaphore.h>

int sem_destroy(sem_t * sem);

Again, this function takes a pointer to a semaphore and tidies up any resources that it may have. If you
attempt to destroy a semaphore for which some thread is waiting, you will get an error.

Like most Linux functions, these functions all return 0 on success.

Try It Out—A Thread Semaphore
This code, thread3.c, is also based on thread1.c. Since a lot has changed, we will present it in full.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>

void *thread_function(void *arg);
sem_t bin_sem;
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#define WORK_SIZE 1024
char work_area[WORK_SIZE];

int main() {
int res;
pthread_t a_thread;
void *thread_result;

res = sem_init(&bin_sem, 0, 0);
if (res != 0) {

perror(“Semaphore initialization failed”);
exit(EXIT_FAILURE);

}
res = pthread_create(&a_thread, NULL, thread_function, NULL);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
printf(“Input some text. Enter ‘end’ to finish\n”);
while(strncmp(“end”, work_area, 3) != 0) {

fgets(work_area, WORK_SIZE, stdin);
sem_post(&bin_sem);

}
printf(“\nWaiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}
printf(“Thread joined\n”);
sem_destroy(&bin_sem);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
sem_wait(&bin_sem);
while(strncmp(“end”, work_area, 3) != 0) {

printf(“You input %d characters\n”, strlen(work_area) -1);
sem_wait(&bin_sem);

}
pthread_exit(NULL);

}

The first important change is the inclusion of semaphore.h to give us access to the semaphore func-
tions. Then we declare a semaphore and some variables and initialize the semaphore before we create 
our new thread.

sem_t bin_sem;

#define WORK_SIZE 1024
char work_area[WORK_SIZE];

int main() {
int res;
pthread_t a_thread;
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void *thread_result;
res = sem_init(&bin_sem, 0, 0);
if (res != 0) {

perror(“Semaphore initialization failed”);
exit(EXIT_FAILURE);

}

Note that we set the initial value of the semaphore to 0.

In the function main, after we have started the new thread, we read some text from the keyboard, load
our work area, and then increment the semaphore with sem_post.

printf(“Input some text. Enter ‘end’ to finish\n”);
while(strncmp(“end”, work_area, 3) != 0) {

fgets(work_area, WORK_SIZE, stdin);
sem_post(&bin_sem);

}

In the new thread, we wait for the semaphore and then count the characters from the input.

sem_wait(&bin_sem);
while(strncmp(“end”, work_area, 3) != 0) {

printf(“You input %d characters\n”, strlen(work_area) -1);
sem_wait(&bin_sem);

}

While the semaphore is set, we are waiting for keyboard input. When we have some input, we release
the semaphore, allowing the second thread to count the characters before the first thread reads the key-
board again.

Again both threads share the same work_area array. Again, we have omitted some error checking, such
as the returns from sem_wait to make the code samples more succinct and easier to follow. However, in
production code you should always check for error returns unless there is a very good reason to omit
this check.

Let’s give our program a run:

$ cc -D_REENTRANT -I/usr/include/nptl thread3.c –o thread3 -L/usr/lib/nptl -
lpthread
$./thread3
Input some text. Enter ‘end’ to finish
The Wasp Factory
You input 16 characters
Iain Banks
You input 10 characters
end

Waiting for thread to finish...
Thread joined

In threaded programs, timing faults are always hard to find, but the program seems resilient to both
quick input of text and more leisurely pauses.
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How It Works
When we initialize the semaphore, we set its value to 0. Thus, when the thread’s function starts, the call
to sem_wait blocks and waits for the semaphore to become nonzero.

In the main thread, we wait until we have some text and then increment the semaphore with sem_post,
which immediately allows the other thread to return from its sem_wait and start executing. Once it has
counted the characters, it again calls sem_wait and is blocked until the main thread again calls
sem_post to increment the semaphore.

It is easy to overlook subtle design errors that result in subtle errors. Let’s modify the program slightly to
thread4a.c to pretend that text input from the keyboard is sometimes replaced with automatically
available text. We modify the reading loop in the main to this:

printf(“Input some text. Enter ‘end’ to finish\n”);
while(strncmp(“end”, work_area, 3) != 0) {

if (strncmp(work_area, “FAST”, 4) == 0) {
sem_post(&bin_sem);
strcpy(work_area, “Wheeee...”);

} else {
fgets(work_area, WORK_SIZE, stdin);

}
sem_post(&bin_sem);

}

Now if we enter FAST, the program calls sem_post to allow the character counter to run, but immediately
updates work_area with something different.

$ cc -D_REENTRANT thread4a.c -o thread4a -lpthread
$ ./thread4a
Input some text. Enter ‘end’ to finish
Excession
You input 9 characters
FAST
You input 7 characters
You input 7 characters
You input 7 characters
end

Waiting for thread to finish...
Thread joined

The problem is that our program was relying on text input from the program taking so long that there
was time for the other thread to count the words before the main thread was ever ready to give it more
words to count. When we tried to give it two different sets of words to count in quick succession (FAST
from the keyboard and then Weeee... automatically), there was no time for the second thread to execute.
However, the semaphore had been incremented more than once, so the counter thread just kept counting
the words and decreasing the semaphore until it became zero again.

This shows just how careful you need to be with timing considerations in multithreaded programs. It’s
possible to fix the program by using an extra semaphore to make the main thread wait until the counter
thread has had the chance to finish its counting.
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Synchronization with Mutexes
The other way of synchronizing access in multithreaded programs is with mutexes, which act by allowing
the programmer to “lock” an object so that only one thread can access it. To control access to a critical sec-
tion of code you lock a mutex before entering the code section and then unlock it when you have finished.

The basic functions required to use mutexes are very similar to those needed for semaphores. They are
declared as follows:

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t
*mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex));

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

As usual, 0 is returned for success, and on failure an error code is returned, but errno is not set; you
must use the return code.

As with semaphores, they all take a pointer to a previously declared object, in this case a pthread_
mutex_t. The extra attribute parameter pthread_mutex_init allows us to provide attributes for the
mutex, which control its behavior. The attribute type by default is “fast.” This has the slight drawback
that, if your program tries to call pthread_mutex_lock on a mutex that it has already locked, the pro-
gram will block. Since the thread that holds the lock is the one that is now blocked, the mutex can never
be unlocked and the program is deadlocked. It is possible to alter the attributes of the mutex so that it
either checks for this and returns an error or acts recursively and allows multiple locks by the same
thread if there are the same number of unlocks afterward.

Setting the attribute of a mutex is beyond the scope of this book, so we will pass NULL for the attribute
pointer and use the default behavior. You can find more about changing the attributes by reading the
manual page for pthread_mutex_init.

Try It Out—A Thread Mutex
Again, this is a modification of our original thread1.c but heavily modified. This time, we will be a 
little paranoid about access to our critical variables and use a mutex to ensure they are ever accessed
by only one thread at any one time. To keep the example code easy to read, we have omitted some error
checking on the returns from mutex lock and unlock. In production code, we would check these return
values. Here is the new program, thread4.c:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>
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void *thread_function(void *arg);
pthread_mutex_t work_mutex; /* protects both work_area and time_to_exit */

#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;

int main() {
int res;
pthread_t a_thread;
void *thread_result;
res = pthread_mutex_init(&work_mutex, NULL);
if (res != 0) {

perror(“Mutex initialization failed”);
exit(EXIT_FAILURE);

}
res = pthread_create(&a_thread, NULL, thread_function, NULL);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
pthread_mutex_lock(&work_mutex);
printf(“Input some text. Enter ‘end’ to finish\n”);
while(!time_to_exit) {

fgets(work_area, WORK_SIZE, stdin);
pthread_mutex_unlock(&work_mutex);
while(1) {

pthread_mutex_lock(&work_mutex);
if (work_area[0] != ‘\0’) {

pthread_mutex_unlock(&work_mutex);
sleep(1);

}
else {

break;
}

}
}
pthread_mutex_unlock(&work_mutex);
printf(“\nWaiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}
printf(“Thread joined\n”);
pthread_mutex_destroy(&work_mutex);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
sleep(1);
pthread_mutex_lock(&work_mutex);
while(strncmp(“end”, work_area, 3) != 0) {

printf(“You input %d characters\n”, strlen(work_area) -1);
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work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);
while (work_area[0] == ‘\0’ ) {

pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);

}
}
time_to_exit = 1;
work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);
pthread_exit(0);

}

$ cc -D_REENTRANT -I/usr/include/nptl thread4.c –o thread4 -L/usr/lib/nptl -
lpthread
$ ./thread4
Input some text. Enter ‘end’ to finish
Whit
You input 4 characters
The Crow Road
You input 13 characters
end

Waiting for thread to finish...
Thread joined

How It Works
We start by declaring a mutex, our work area, and this time, an additional variable: time_to_exit.

pthread_mutex_t work_mutex; /* protects both work_area and time_to_exit */

#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;

Then we initialize the mutex.

res = pthread_mutex_init(&work_mutex, NULL);
if (res != 0) {

perror(“Mutex initialization failed”);
exit(EXIT_FAILURE);

}

Next we start the new thread. Here is the code that executes in the thread function:

pthread_mutex_lock(&work_mutex);
while(strncmp(“end”, work_area, 3) != 0) {

printf(“You input %d characters\n”, strlen(work_area) -1);
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work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);
while (work_area[0] == ‘\0’ ) {

pthread_mutex_unlock(&work_mutex);
sleep(1);
pthread_mutex_lock(&work_mutex);

}
}
time_to_exit = 1;
work_area[0] = ‘\0’;
pthread_mutex_unlock(&work_mutex);

First, the new thread tries to lock the mutex. If it’s already locked, the call will block until it is released.
Once we have access, we check to see whether we are being requested to exit. If we are requested to exit,
we simply set time_to_exit, zap the first character of the work area, and exit.

If we don’t want to exit, we count the characters and then zap the first character to a null. We use the
first character being null as a way of telling the reader program that we have finished the counting. We
then unlock the mutex and wait for the main thread to run. Periodically, we attempt to lock the mutex
and, when we succeed, check whether the main thread has given us any more work to do. If it hasn’t, we
unlock the mutex and wait some more. If it has, we count the characters and go round the loop again.

Here is the main thread.

pthread_mutex_lock(&work_mutex);
printf(“Input some text. Enter ‘end’ to finish\n”);
while(!time_to_exit) {

fgets(work_area, WORK_SIZE, stdin);
pthread_mutex_unlock(&work_mutex);
while(1) {

pthread_mutex_lock(&work_mutex);
if (work_area[0] != ‘\0’) {

pthread_mutex_unlock(&work_mutex);
sleep(1);

}
else {

break;
}

}
}
pthread_mutex_unlock(&work_mutex);

This is quite similar. We lock the work area so that we can read text into it and then unlock it to allow the
other thread access to count the words. Periodically, we relock the mutex, check whether the words have
been counted (work_area[0] set to a null), and release the mutex if we need to wait longer. As we noted
earlier, this kind of polling for an answer is generally not good programming practice, and in the real
world, we would probably have used a semaphore to avoid this. However, the code served its purpose
as an example.
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Thread Attributes
When we first looked at threads, we did not discuss the question of thread attributes. We will now do so.
There are quite a few attributes of threads that you can control. However, here we are only going to look
at those that you are most likely to need. Details of the others can be found in the manual pages.

In all of our previous examples, we had to resynchronize our threads using pthread_join before allow-
ing the program to exit. We needed to do this if we wanted to allow one thread to return data to the
thread that created it. Sometimes we neither need the second thread to return information to the main
thread nor want the main thread to wait for it. 

Suppose that we create a second thread to spool a backup copy of a data file that is being edited while
the main thread continues to service the user. When the backup has finished, the second thread can just
terminate. There is no need for it to rejoin the main thread.

We can create threads that behave like this. They are called detached threads, and we create them by modi-
fying the thread attributes or by calling pthread_detach. Since we want to demonstrate attributes, we
will use the former method here.

The most important function that we need is pthread_attr_init, which initializes a thread attribute
object.

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

Once again, 0 is returned for success and an error code is returned on failure.

There is also a destroy function: pthread_attr_destroy. Its purpose is to allow clean destruction of the
attribute object. Once the object has been destroyed, it cannot be used again until it has been reinitialized.

When we have a thread attribute object initialized, there are many additional functions that we can call
to set different attribute behaviors. We will list the main ones here but look closely at only two:

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);

int pthread_attr_setschedparam(pthread_attr_t *attr, const struct sched_param
*param);

int pthread_attr_getschedparam(const pthread_attr_t *attr, struct sched_param
*param);

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inherit);
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int pthread_attr_getinheritsched(const pthread_attr_t *attr, int *inherit);

int pthread_attr_setscope(pthread_attr_t *attr, int scope);

int pthread_attr_getscope(const pthread_attr_t *attr, int *scope);

int pthread_attr_setstacksize(pthread_attr_t *attr, int scope);

int pthread_attr_getstacksize(const pthread_attr_t *attr, int *scope);

As you can see, there are quite a few attributes you can use, but fortunately you will generally get by
without ever having to use most of these. 

❑ detachedstate: This attribute allows us to avoid the need for threads to rejoin. As with
most of these _set functions, it takes a pointer to the attribute and a flag to determine the
state required. The two possible flag values for pthread_attr_setdetachstate are
PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_DETACHED. By default, the attribute
will have value PTHREAD_CREATE_JOINABLE so that we can allow the two threads to join. If
the state is set to PTHREAD_CREATE_DETACHED, you cannot call pthread_join to recover
the exit state of another thread.

❑ schedpolicy: This controls how threads are scheduled. The options are SCHED_OTHER,
SCHED_RP, and SCHED_FIFO. By default, the attribute is SCHED_OTHER. The other two types
of scheduling are available only to processes running with superuser permissions, as they both
have real-time scheduling but with slightly different behavior. SCHED_RR uses a round-robin
scheduling scheme, and SCHED_FIFO uses a “first in, first out” policy. Discussion of these is
beyond the scope of this book.

❑ schedparam: This is a partner to schedpolicy and allows control over the scheduling of
threads running with schedule policy SCHED_OTHER. We will have a look at an example of this
a bit later in the chapter.

❑ inheritsched: This attribute takes two possible values: PTHREAD_EXPLICIT_SCHED and
PTHREAD_INHERIT_SCHED. By default, the value is PTHREAD_EXPLICIT_SCHED, which
means scheduling is explicitly set by the attributes. By setting it to PTHREAD_INHERIT_SCHED,
a new thread will instead use the parameters that its creator thread was using.

❑ scope: This attribute controls how the scheduling of a thread is calculated. Since Linux currently
supports only the value PTHREAD_SCOPE_SYSTEM, we will not look at this further here.

❑ stacksize: This attribute controls the thread creation stack size, set in bytes. This is part of the
“optional” section of the specification and is supported only on implementations where
_POSIX_THREAD_ATTR_STACKSIZE is defined. Linux implements threads with a large
amount of stack by default, so the feature is generally redundant on Linux.

Try It Out—Setting the Detached State Attribute
For our detached thread example, thread5.c, we create a thread attribute, set it to be detached, and
then create a thread using the attribute. Now when the child thread has finished, it calls pthread_exit
in the normal way. This time, however, the originating thread no longer waits for the thread that it cre-
ated to rejoin. We use a simple thread_finished flag to allow the main thread to detect whether the
child has finished and to show that the threads are still sharing variables.
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#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

char message[] = “Hello World”;
int thread_finished = 0;

int main() {
int res;
pthread_t a_thread;

pthread_attr_t thread_attr;

res = pthread_attr_init(&thread_attr);
if (res != 0) {

perror(“Attribute creation failed”);
exit(EXIT_FAILURE);

}
res = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
if (res != 0) {

perror(“Setting detached attribute failed”);
exit(EXIT_FAILURE);

}
res = pthread_create(&a_thread, &thread_attr, thread_function, (void

*)message);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
(void)pthread_attr_destroy(&thread_attr);
while(!thread_finished) {

printf(“Waiting for thread to say it’s finished...\n”);
sleep(1);

}
printf(“Other thread finished, bye!\n”);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
printf(“thread_function is running. Argument was %s\n”, (char *)arg);
sleep(4);
printf(“Second thread setting finished flag, and exiting now\n”);
thread_finished = 1;
pthread_exit(NULL);

}

There are no surprises in the output:

$ ./thread5
Waiting for thread to say it’s finished...
thread_function is running. Argument was Hello World
Waiting for thread to say it’s finished...
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Waiting for thread to say it’s finished...
Waiting for thread to say it’s finished...
Second thread setting finished flag, and exiting now
Other thread finished, bye!

As you can see, setting the detached state allowed the secondary thread to complete independently,
without the originating thread needing to wait for it.

How It Works
The two important sections of code are

pthread_attr_t thread_attr;

res = pthread_attr_init(&thread_attr);
if (res != 0) {

perror(“Attribute creation failed”);
exit(EXIT_FAILURE);

}

which declares a thread attribute and initializes it, and

res = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
if (res != 0) {

perror(“Setting detached attribute failed”);
exit(EXIT_FAILURE);

}

which sets the attribute values to have the detached state.

The other slight differences are creating the thread, passing the address of the attributes,

res = pthread_create(&a_thread, &thread_attr, thread_function, (void
*)message);

and, for completeness, destroying the attributes when we have used them:

pthread_attr_destroy(&thread_attr);

Thread Attributes—Scheduling
Let’s take a look at a second thread attribute we might wish to change: scheduling. Changing the schedul-
ing attribute is very similar to setting the detached state, but there are two more functions that we can use
to find the available priority levels, sched_get_priority_max and sched_get_priority_min.

Try It Out—Scheduling
Since this thread6.c is very similar to the previous example, we’ll just look at the differences.

1. First, we need some additional variables:

int max_priority;
int min_priority;
struct sched_param scheduling_value;
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2. After we have set the detached attribute, we set the scheduling policy.

res = pthread_attr_setschedpolicy(&thread_attr, SCHED_OTHER);
if (res != 0) {

perror(“Setting scheduling policy failed”);
exit(EXIT_FAILURE);

}

3. Next we find the range of priorities that are allowed:

max_priority = sched_get_priority_max(SCHED_OTHER);
min_priority = sched_get_priority_min(SCHED_OTHER);

4. and set one:

scheduling_value.sched_priority = min_priority;
res = pthread_attr_setschedparam(&thread_attr, &scheduling_value);
if (res != 0) {

perror(“Setting scheduling priority failed”);
exit(EXIT_FAILURE);

}

How It Works
This is very similar to setting a detached state attribute, except that we set the scheduling policy instead.

Canceling a Thread
Sometimes, we want one thread to be able to ask another thread to terminate, rather like sending it a 
signal. There is a way to do this with threads, and, in parallel with signal handling, threads get a way
of modifying how they behave when they are asked to terminate.

Let’s look first at the function to request a thread to terminate:

#include <pthread.h>

int pthread_cancel(pthread_t thread);

This is pretty straightforward: Given a thread identifier, we can request that it be canceled. On the
receiving end of the cancel request, things are slightly more complicated, but not much. A thread can set
its cancel state using pthread_setcancelstate.

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);

The first parameter is either PTHREAD_CANCEL_ENABLE, which allows it to receive cancel requests, or
PTHREAD_CANCEL_DISABLE, which causes them to be ignored. The oldstate pointer allows the previ-
ous state to be retrieved. If you are not interested, you can simply pass NULL. If cancel requests are
accepted, there is a second level of control the thread can take, the cancel type, which is set with
pthread_setcanceltype.
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#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);

The type can take one of two values, PTHREAD_CANCEL_ASYNCHRONOUS, which causes cancellation
requests to be acted upon immediately, and PTHREAD_CANCEL_DEFERRED, which makes cancellation
requests wait until the thread executes one of these functions: pthread_join, pthread_cond_wait,
pthread_cond_timedwait, pthread_testcancel, sem_wait, or sigwait.

We have not seen all of these calls in this chapter, as not all are generally needed. As ever, more details
can be found in the manual pages.

Again, the oldtype allows the previous state to be retrieved, or a NULL can be passed if you are not
interested in knowing the previous state. By default, threads start with the cancellation state
PTHREAD_CANCEL_ENABLE and the cancellation type PTHREAD_CANCEL_DEFERRED.

Try It Out—Canceling a Thread
Our program thread7.c is derived, yet again, from thread1.c. This time, the main thread sends a cancel
request to the thread that it has created.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

int main() {
int res;
pthread_t a_thread;
void *thread_result;

res = pthread_create(&a_thread, NULL, thread_function, NULL);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}

sleep(3);
printf(“Canceling thread...\n”);
res = pthread_cancel(a_thread);
if (res != 0) {

According to the POSIX standard, other system calls that may block, such as read,
wait, and so on, should also be cancellation points. At the time of this writing, Linux
does not yet support all of these being cancellation points. However, some experi-
mentation suggests that some blocked calls such as sleep do allow cancellation to
take place. To be on the safe side, you may wish to add some pthread_testcancel
calls in code that you expect to be canceled.

499

POSIX Threads

b544977 Ch12.qxd  12/1/03  8:56 AM  Page 499



perror(“Thread cancelation failed”);
exit(EXIT_FAILURE);

}
printf(“Waiting for thread to finish...\n”);
res = pthread_join(a_thread, &thread_result);
if (res != 0) {

perror(“Thread join failed”);
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
int i, res;
res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
if (res != 0) {

perror(“Thread pthread_setcancelstate failed”);
exit(EXIT_FAILURE);

}
res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
if (res != 0) {

perror(“Thread pthread_setcanceltype failed”);
exit(EXIT_FAILURE);

}
printf(“thread_function is running\n”);
for(i = 0; i < 10; i++) {

printf(“Thread is still running (%d)...\n”, i);
sleep(1);

}
pthread_exit(0);

}

When we run this, we get the following output, showing that the thread is canceled:

$ ./thread7
thread_function is running
Thread is still running (0)...
Thread is still running (1)...
Thread is still running (2)...
Canceling thread...
Waiting for thread to finish...
$

How It Works
After the new thread has been created in the usual way, the main thread sleeps (to allow the new thread
some time to get started) and then issues a cancel request.

sleep(3);
printf(“Cancelling thread...\n”);
res = pthread_cancel(a_thread);
if (res != 0) {

perror(“Thread cancelation failed”);
exit(EXIT_FAILURE);

}
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In the created thread, we first set the cancel state to allow canceling.

res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
if (res != 0) {

perror(“Thread pthread_setcancelstate failed”);
exit(EXIT_FAILURE);

}

Then we set the cancel type to be deferred.

res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
if (res != 0) {

perror(“Thread pthread_setcanceltype failed”);
exit(EXIT_FAILURE);

}

Finally, the thread waits around to be canceled.

for(i = 0; i < 10; i++) {
printf(“Thread is still running (%d)...\n”, i);
sleep(1);

}

Threads in Abundance
Up until now, we have always had the normal thread of execution of a program create just one other
thread. However, we don’t want you to think that you can create only one extra thread. 

Try It Out—Many Threads
For our final example in this chapter, thread8.c, we show how to create several threads in the same

program and then collect them again in an order different from that in which they were started.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

#define NUM_THREADS 6

void *thread_function(void *arg);

int main() {
int res;
pthread_t a_thread[NUM_THREADS];
void *thread_result;
int lots_of_threads;

for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
res = pthread_create(&(a_thread[lots_of_threads]), NULL, thread_function,

(void *)&lots_of_threads);
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if (res != 0) {
perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
sleep(1);

}
printf(“Waiting for threads to finish...\n”);
for(lots_of_threads = NUM_THREADS - 1; lots_of_threads >= 0; lots_of_threads—)

{
res = pthread_join(a_thread[lots_of_threads], &thread_result);
if (res == 0) {

printf(“Picked up a thread\n”);
}
else {

perror(“pthread_join failed”);
}

}
printf(“All done\n”);
exit(EXIT_SUCCESS);

}

void *thread_function(void *arg) {
int my_number = *(int *)arg;
int rand_num;

printf(“thread_function is running. Argument was %d\n”, my_number);
rand_num=1+(int)(9.0*rand()/(RAND_MAX+1.0));
sleep(rand_num);
printf(“Bye from %d\n”, my_number);
pthread_exit(NULL);

}

When we run this program, we get

$ ./thread8
thread_function is running. Argument was 0
thread_function is running. Argument was 1
thread_function is running. Argument was 2
thread_function is running. Argument was 3
thread_function is running. Argument was 4
Bye from 1
thread_function is running. Argument was 5
Waiting for threads to finish...
Bye from 5
Picked up a thread
Bye from 0
Bye from 2
Bye from 3
Bye from 4
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread
All done
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As you can see, we created many threads and allowed them to finish out of sequence. There is a subtle
bug in this program that makes itself evident if you remove the call to sleep from the loop that starts
the threads. We have included it to show you just how careful you need to be when writing programs
that use threads. Can you spot it? We’ll explain in the following “How It Works” section.

How It Works
This time we create an array of thread IDs:

pthread_t a_thread[NUM_THREADS];

and loop around creating several threads:

for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
res = pthread_create(&(a_thread[lots_of_threads]), NULL,

thread_function, (void *)&lots_of_threads);
if (res != 0) {

perror(“Thread creation failed”);
exit(EXIT_FAILURE);

}
sleep(1);

}

The threads themselves then wait for a random time before exiting:

void *thread_function(void *arg) {
int my_number = *(int *)arg;
int rand_num;

printf(“thread_function is running. Argument was %d\n”, my_number);
rand_num=1+(int)(9.0*rand()/(RAND_MAX+1.0));
sleep(rand_num);
printf(“Bye from %d\n”, my_number);
pthread_exit(NULL);

}

While in the main (original) thread, we wait to pick them up, but not in the order in which we created
them.

for(lots_of_threads = NUM_THREADS - 1; lots_of_threads >= 0; lots_of_threads—)
{

res = pthread_join(a_thread[lots_of_threads], &thread_result);
if (res == 0) {

printf(“Picked up a thread\n”);
}
else {

perror(“pthread_join failed”);
}

}

If you try to run the program with no sleep, you might see some strange effects, including some
threads being started with the same argument. Did you spot why this could happen? The threads are
being started using a local variable for the argument to the thread function. This variable is updated in
the loop. The offending lines are
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for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
res = pthread_create(&(a_thread[lots_of_threads]), NULL, 

thread_function, (void *)&lots_of_threads);

If the main thread runs fast enough, it might alter the argument (lots_of_threads) for some of the
threads. Behavior like this arises when not enough care is taken with shared variables and multiple exe-
cution paths. We did warn you that programming threads required careful attention to design! To correct
the problem, we need to pass the value directly like this:

res = pthread_create(&(a_thread[lots_of_threads]), NULL, thread_function, (void
*)lots_of_threads);

and of course change thread_function:

void *thread_function(void *arg) {
int my_number = (int)arg;

Summary
In this chapter, we have seen how to create several threads of execution inside a process, where each
thread shares file scope variables. We then looked at the two ways that threads can control access to 
critical code and data, using both semaphores and mutexes. After that, we moved to controlling the
attributes of threads and, in particular, how we could separate them from the main thread so that it no
longer had to wait for threads that it had created to complete. After a quick look at how one thread can
request another to finish and at how the receiving thread can manage such requests, we presented an
example of a program with many simultaneous threads executing.

We haven’t had the space to cover every last function call and nuance associated with threads, but you
should now have sufficient understanding to start writing your own programs with threads and to
investigate the more esoteric aspects of threads by reading the manual pages.
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13
Inter-Process

Communication: Pipes

In Chapter 11, we saw a very simple way of sending messages between two processes using signals.
We created notification events that could be used to provoke a response, but the information trans-
ferred was limited to a signal number. 

In this chapter, we’ll be looking at pipes, which allow more useful data to be exchanged between
processes. By the end of the chapter, we’ll be using our newfound knowledge to reimplement the
running CD database program as a very simple client/server application. 

We’ll cover the following topics in this chapter:

❑ The definition of a pipe

❑ Process pipes

❑ Pipe calls

❑ Parent and child processes

❑ Named pipes: FIFOs

❑ Client/server considerations

What Is a Pipe?
We use the term pipe when we connect a data flow from one process to another. Generally we
attach, or pipe, the output of one process to the input of another.

Most Linux users will already be familiar with the idea of linking shell commands together, so
that the output of one process is fed straight to the input of another. For shell commands, this is
entered as

cmd1 | cmd2

b544977 Ch13.qxd  12/1/03  8:56 AM  Page 505



The shell arranges the standard input and output of the two commands, so that

❑ The standard input to cmd1 comes from the terminal keyboard.

❑ The standard output from cmd1 is fed to cmd2 as its standard input.

❑ The standard output from cmd2 is connected to the terminal screen.

What the shell has done, in effect, is reconnect the standard input and output streams so that data flows
from the keyboard input through the two commands and is then output to the screen. See Figure 13-1 for
a visual representation of this process.

Figure 13-1

In this chapter, we’ll see how to achieve this effect in a program and how we can use pipes to connect
multiple processes to allow us to implement a simple client/server system.

Process Pipes
Perhaps the simplest way of passing data between two programs is with the popen and pclose func-
tions. These have the following prototypes:

#include <stdio.h>

FILE *popen(const char *command, const char *open_mode);
int pclose(FILE *stream_to_close);

popen
The popen function allows a program to invoke another program as a new process and either pass data
to it or receive data from it. The command string is the name of the program to run, together with any
parameters. open_mode must be either “r” or “w”.

If the open_mode is “r”, output from the invoked program is made available to the invoking program
and can be read from the file stream FILE * returned by popen, using the usual stdio library functions
for reading (for example, fread). However, if open_mode is “w”, the program can send data to the
invoked command with calls to fwrite. The invoked program can then read the data on its standard
input. Normally, the program being invoked won’t be aware that it’s reading data from another process;
it simply reads its standard input stream and acts on it.

Standard output

Pipe

Standard Input

Cmd 1 Cmd 2
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A to popen must specify either “r” or “w”; no other option is supported in a standard implementation
of popen. This means that we can’t invoke another program and both read and write to it. On failure,
popen returns a null pointer. If you want bidirectional communication using pipes, then the normal
solution is to use two pipes, one for data flow in each direction.

pclose
When the process started with popen has finished, we can close the file stream associated with it using
pclose. The pclose call will return only when the process started with popen finishes. If it’s still run-
ning when pclose is called, the pclose call will wait for the process to finish.

The pclose call normally returns the exit code of the process whose file stream it is closing. If the invok-
ing process has executed a wait statement before calling pclose, the exit status will be lost and pclose
will return -1, with errno set to ECHILD.

Try It Out—Reading Output from an External Program
Let’s try a simple popen and pclose example, popen1.c. We’ll use popen in a program to access infor-
mation from uname. The uname -a command prints system information, including the machine type,
the OS name, version and release, and the machine’s network name.

Having initialized the program, we open the pipe to uname, making it readable and setting read_fp to
point to the output. At the end, the pipe pointed to by read_fp is closed.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;
memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“uname -a”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
if (chars_read > 0) {

printf(“Output was:-\n%s\n”, buffer);
}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When we run this program on one of the authors’ machines, we get

$ ./popen1
Output was:-
Linux gw1 2.4.20-8 #1 Thu Mar 13 17:54:28 EST 2003 i686 i686 i386 GNU/Linux
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How It Works
The program uses the popen call to invoke the uname command with the -a parameter. It then uses the
returned file stream to read data up to BUFSIZ characters (as this is a #define from stdio.h) and then
prints it out so it appears on the screen. Since we’ve captured the output of uname inside a program, it’s
available for processing.

Sending Output to popen
Now that we’ve seen an example of capturing output from an external program, let’s look at sending
output to an external program. Here’s a program, popen2.c, that pipes data to another. Here, we’ll use
od (octal dump).

Try It Out—Sending Output to an External Program
Have a look at the following code; you can even type it if you like.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{

FILE *write_fp;
char buffer[BUFSIZ + 1];

sprintf(buffer, “Once upon a time, there was...\n”);
write_fp = popen(“od -c”, “w”);
if (write_fp != NULL) {

fwrite(buffer, sizeof(char), strlen(buffer), write_fp);
pclose(write_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When we run this program, we get the following output:

$ ./popen2
0000000   O   n   c   e       u   p   o   n       a       t   i   m   e
0000020   ,       t   h   e   r   e       w   a   s   .   .   .  \n
0000037

How It Works
The program uses popen with the parameter “w” to start the od -c command, so that it can send data to
that command. It then sends a string which the od -c command receives and processes; the od -c com-
mand then prints the result of the processing on its standard output.

From the command line, we can get the same output with the command

$ echo “Once upon a time, there was...” | od -c
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Passing More Data
The mechanism that we’ve used so far simply sent or received all the data in a single fread or fwrite.
Sometimes we may want to send the data in smaller pieces, or perhaps we may not know the size of the
output. To avoid having to declare a very large buffer, we can just use multiple fread or fwrite calls
and process the data in parts.

Here’s a program, popen3.c, that reads all of the data from a pipe.

Try It Out—Reading Larger Amounts of Data from a Pipe
In this program, we read data from an invoked ps -alx process. There’s no way to know in advance
how much output there will be, so we must allow for multiple reads of the pipe.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;

memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“ps -ax”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
while (chars_read > 0) {

buffer[chars_read – 1] = ‘\0’;
printf(“Reading:-\n %s\n”, buffer);
chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

The output we get, edited for brevity, is

$ ./popen3
Reading:-

PID TTY STAT  TIME COMMAND
1  ?  S     0:04 init
2  ?  SW    0:00 [kflushd]
3  ?  SW    0:00 [kpiod]
4  ?  SW    0:00 [kswapd]
5  ?  SW<   0:00 [mdrecoveryd]

...
240 tty2 S    0:02 emacs draft1.txt

Reading:-
368 tty1 S    0:00 ./popen3
369 tty1 R    0:00 ps -ax
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How It Works
The program uses popen with an “r” parameter in a similar fashion to popen1.c. This time, it continues
reading from the file stream until there is no more data available. Notice that, although the ps command
takes some time to execute, Linux arranges the process scheduling so that both programs run when they
can. If the reader process, popen3, has no input data, it’s suspended until some becomes available. If the
writer process, ps, produces more output than can be buffered, it’s suspended until the reader has con-
sumed some of the data. 

In this example, you may not see Reading:- output a second time. This will be the case if BUFSIZ is
greater than the length of the ps command output. Some (mostly more recent) Linux systems set BUFSIZ
as high as 8,192 or even higher.

How popen Is Implemented
The popen call runs the program you requested by first invoking the shell, sh, passing it the command
string as an argument. This has two effects, one good and the other not so good.

In Linux (as in all UNIX-like systems), all parameter expansion is done by the shell, so invoking the shell to
parse the command string before the program is invoked allows any shell expansion, such as determining
what files ‘*.c’ actually refers to, to be done before the program starts. This is often quite useful, and it
allows complex shell commands to be started with popen. Other process creation functions, such as execl,
can be much more complex to invoke, because the calling process has to perform its own shell expansion.

The unfortunate effect of using the shell is that for every call to popen, a shell is invoked along with the
requested program. Each call to popen then results in two extra processes being started, which makes
the popen function a little expensive in terms of system resources and invocation of the target command
slower than it might otherwise have been.

Here’s a program, popen4.c, that we can use to demonstrate the behavior of popen. We can count the
lines in all the popen example source files by cating the files and then piping the output to wc -l,
which counts the number of lines. On the command line, the equivalent command is

$ cat popen*.c | wc -l

Actually, wc -l popen*.c is easier to type and much more efficient, but the example serves to
illustrate the principle.

Try It Out—popen Starts a Shell
This program uses exactly the preceding command, but through popen so that it can read the result:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

FILE *read_fp;
char buffer[BUFSIZ + 1];
int chars_read;
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memset(buffer, ‘\0’, sizeof(buffer));
read_fp = popen(“cat popen*.c | wc -l”, “r”);
if (read_fp != NULL) {

chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
while (chars_read > 0) {

buffer[chars_read – 1] = ‘\0’;
printf(“Reading:-\n %s\n”, buffer);
chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);

}
pclose(read_fp);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When we run this program, the output is

$ ./popen4
Reading:-
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How It Works
The program shows that the shell is being invoked to expand popen*.c to the list of all files starting
popen and ending in .c and also to process the pipe (|) symbol and feed the output from cat into wc.
We invoke the shell, the cat program, and wc and cause an output redirection, all in a single popen call.
The program that invokes the command sees only the final output.

The Pipe Call
We’ve seen the high-level popen function, but we’ll now move on to look at the lower-level pipe func-
tion. This function provides a means of passing data between two programs, without the overhead of
invoking a shell to interpret the requested command. It also gives us more control over the reading and
writing of data.

The pipe function has the following prototype:

#include <unistd.h>

int pipe(int file_descriptor[2]);

pipe is passed (a pointer to) an array of two integer file descriptors. It fills the array with two new file
descriptors and returns a zero. On failure, it returns -1 and sets errno to indicate the reason for failure.
Errors defined in the Linux manual page (section 2 of the manual) are

❑ EMFILE: Too many file descriptors are in use by the process.

❑ ENFILE: The system file table is full.

❑ EFAULT: The file descriptor is not valid.
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The two file descriptors returned are connected in a special way. Any data written to file_descrip-
tor[1] can be read back from file_descriptor[0]. The data is processed in a first in, first out basis,
usually abbreviated to FIFO. This means that if you write the bytes 1, 2, 3 to file_descriptor[1],
reading from file_descriptor[0] will produce 1, 2, 3. This is different from a stack, which operates
on a last in, first out basis, usually abbreviated to LIFO.

Here’s a program, pipe1.c, that uses pipe to create a pipe.

Try It Out—The pipe Function
Type the following code. Note the file_pipes pointer, which is passed to the pipe function as a
parameter.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
data_processed = write(file_pipes[1], some_data, strlen(some_data));
printf(“Wrote %d bytes\n”, data_processed);
data_processed = read(file_pipes[0], buffer, BUFSIZ);
printf(“Read %d bytes: %s\n”, data_processed, buffer);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

When we run this program, the output is

$ ./pipe1
Wrote 3 bytes
Read 3 bytes: 123

It’s important to realize that these are file descriptors, not file streams, so we must
use the lower-level read and write calls to access the data, rather than fread and
fwrite.
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How It Works
The program creates a pipe using the two file descriptors file_pipes[]. It then writes data into the
pipe using the file descriptor file_pipes[1] and reads it back from file_pipes[0]. Notice that the
pipe has some internal buffering that stores the data in between the calls to write and read.

You should be aware that the effect of trying to write using file_descriptor[0], or read using
file_descriptor[1], is undefined, so the behavior could be very strange and may change without
warning. On the authors’ systems, such calls fail with a –1 return value, which at least ensures that it’s
easy to catch this mistake.

At first glance, this example of a pipe doesn’t seem to offer us anything that we couldn’t have done with
a simple file. The real advantage of pipes comes when you wish to pass data between two processes. As
we saw in the Chapter 12, when a program creates a new process using the fork call, file descriptors
that were previously open remain open. By creating a pipe in the original process and then forking to
create a new process, we can pass data from one process to the other down the pipe.

Try It Out—Pipes across a fork
1. This is pipe2.c. It starts rather like the first example, up until we make the call to fork.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];
pid_t fork_result;

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == -1) {

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

2. We’ve made sure the fork worked, so if fork_result equals zero, we’re in the child process:

if (fork_result == 0) {
data_processed = read(file_pipes[0], buffer, BUFSIZ);
printf(“Read %d bytes: %s\n”, data_processed, buffer);
exit(EXIT_SUCCESS);

}
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3. Otherwise, we must be in the parent process:

else {
data_processed = write(file_pipes[1], some_data,

strlen(some_data));
printf(“Wrote %d bytes\n”, data_processed);

}
}
exit(EXIT_SUCCESS);

}

When we run this program, the output is, as before,

$ ./pipe2
Wrote 3 bytes
Read 3 bytes: 123

You may find that in practice the command prompt reappears before the last part of the output, but we
have tidied the output here to make it easier to read.

How It Works
First, the program creates a pipe with the pipe call. It then uses the fork call to create a new process.
If the fork was successful, the parent writes data into the pipe, while the child reads data from the pipe.
Both parent and child exit after a single write and read. If the parent exits before the child you might
see the shell prompt between the two outputs.

Although the program is superficially very similar to the first pipe example, we’ve taken a big step for-
ward by being able to use separate processes for the reading and writing, as we illustrate in Figure 13-2.

Figure 13-2

Parent and Child Processes
The next logical step in our investigation of the pipe call is to allow the child process to be a different
program from its parent, rather than just a different process running the same program. We do this using
the exec call. One difficulty is that the new execed process needs to know which file descriptor to
access. In our previous example, this wasn’t a problem because the child had access to its copy of the
file_pipes data. After an exec call, this will no longer be the case, as the old process has been replaced
by the new child process. We can get around this by passing the file descriptor (which is, after all, just a
number) as a parameter to the newly execed program.

Parent
process

file_pipes[1] file_pipes[0]

Child
processPipe
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To show how this works, we need two programs. The first is the data producer. It creates the pipe and
then invokes the child, the data consumer.

Try It Out—Pipes and exec
1. For the first program, we adapt pipe2.c to pipe3.c. The lines that we’ve changed are shown

shaded:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
char buffer[BUFSIZ + 1];
pid_t fork_result;

memset(buffer, ‘\0’, sizeof(buffer));

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == (pid_t)-1) {

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

if (fork_result == 0) {

sprintf(buffer, “%d”, file_pipes[0]);
(void)execl(“pipe4”, “pipe4”, buffer, (char *)0);
exit(EXIT_FAILURE);

}
else {

data_processed = write(file_pipes[1], some_data,
strlen(some_data));

printf(“%d - wrote %d bytes\n”, getpid(), data_processed);
}

}
exit(EXIT_SUCCESS);

}

2. The consumer program, pipe4.c, which reads the data, is much simpler: 

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

int data_processed;
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char buffer[BUFSIZ + 1];
int file_descriptor;

memset(buffer, ‘\0’, sizeof(buffer));
sscanf(argv[1], “%d”, &file_descriptor);
data_processed = read(file_descriptor, buffer, BUFSIZ);

printf(“%d - read %d bytes: %s\n”, getpid(), data_processed, buffer);
exit(EXIT_SUCCESS);

}

Remembering that pipe3 invokes the pipe4 program for us, we get the following output when we run
pipe3:

$ ./pipe3
980 - wrote 3 bytes
981 - read 3 bytes: 123

How It Works
The pipe3 program starts like the previous example, using the pipe call to create a pipe and then using
the fork call to create a new process. It then uses sprintf to store the “read” file descriptor number of
the pipe in a buffer that will form an argument of pipe4.

A call to execl is used to invoke the pipe4 program. The arguments to execl are

❑ The program to invoke

❑ argv[0], which takes the program name

❑ argv[1], which contains the file descriptor number we want the program to read from

❑ (char *)0, which terminates the parameters

The pipe4 program extracts the file descriptor number from the argument string and then reads from
that file descriptor to obtain the data.

Reading Closed Pipes
Before we move on, we need to look a little more carefully at the file descriptors that are open. Up to this
point we have allowed the reading process simply to read some data and then exit, assuming that Linux
will clean up the files as part of the process termination.

Most programs that read data from the standard input do so differently than the examples we’ve seen so
far. They don’t usually know how much data they have to read, so they will normally loop—reading
data, processing it, and then reading more data until there’s no more data to read.

A read call will normally block; that is, it will cause the process to wait until data becomes available. If
the other end of the pipe has been closed, then no process has the pipe open for writing, and the read
blocks. Since this isn’t very helpful, a read on a pipe that isn’t open for writing returns zero rather than
blocking. This allows the reading process to detect the pipe equivalent of end of file and act appropriately.
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Notice that this isn’t the same as reading an invalid file descriptor, which read considers an error and
indicates by returning –1.

If we use a pipe across a fork call, there are two different file descriptors that we can use to write to the
pipe: one in the parent and one in the child. We must close the write file descriptors of the pipe in both
parent and child processes before the pipe is considered closed and a read call on the pipe will fail. We’ll
see an example of this later when we return to this subject in more detail to look at the O_NONBLOCK flag
and FIFOs.

Pipes Used as Standard Input and Output
Now that we know how to make a read on an empty pipe fail, we can look at a much cleaner method of
connecting two processes with a pipe. We arrange for one of the pipe file descriptors to have a known
value, usually the standard input, 0, or the standard output, 1. This is slightly more complex to set up in
the parent, but it allows the child program to be much simpler.

The one big advantage is that we can invoke standard programs, ones that don’t expect a file descriptor
as a parameter. In order to do this, we need to use the dup function, which we met in Chapter 3. There
are two closely related versions of dup that have the following prototypes:

#include <unistd.h>

int dup(int file_descriptor);
int dup2(int file_descriptor_one, int file_descriptor_two);

The purpose of the dup call is to open a new file descriptor, a little like the open call. The difference is
that the new file descriptor created by dup refers to the same file (or pipe) as an existing file descriptor.
In the case of dup, the new file descriptor is always the lowest number available, while in the case of
dup2 it’s the same as, or the first available descriptor greater than, the parameter
file_descriptor_two.

So how does dup help us in passing data between processes? The trick is knowing that the standard
input file descriptor is always 0 and that dup always returns a new file descriptor using the lowest avail-
able number. By first closing file descriptor 0 and then calling dup, the new file descriptor will have the
number 0. Since the new descriptor is a duplicate of an existing one, standard input will have been
changed to access the file or pipe whose file descriptor we passed to dup. We will have created two file
descriptors that refer to the same file or pipe, and one of them will be the standard input.

File Descriptor Manipulation by close and dup
The easiest way to understand what happens when we close file descriptor 0, and then call dup, is to
look at how the state of the first four file descriptors changes during the sequence. This is shown in the
following table:

We can get the same effect as dup and dup2 by using the more general fcntl call,
with a command F_DUPFD. Having said that, the dup call is easier to use because it’s
tailored specifically to the needs of creating duplicate file descriptors. It’s also very
commonly used, so you’ll find it more frequently in existing programs than fcntl
and F_DUPFD.
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File Descriptor Initially After close of After dup
Number File Descriptor 0

0 Standard input {closed} Pipe file descriptor

1 Standard output Standard output Standard output

2 Standard error Standard error Standard error

3 Pipe file descriptor _ipe file descriptor Pipe file descriptor

Try It Out—Pipes and dup
Let’s return to our previous example, but this time we’ll arrange for the child program to have its stdin
file descriptor replaced with the read end of the pipe we create. We’ll also do some tidying up of file
descriptors so the child program can correctly detect the end of the data in the pipe. As usual, we’ll omit
some error checking for the sake of brevity.

Modify pipe3.c to pipe5.c using the following code:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{

int data_processed;
int file_pipes[2];
const char some_data[] = “123”;
(pid_t) fork_result;

if (pipe(file_pipes) == 0) {
fork_result = fork();
if (fork_result == (pid_t)-1) {

fprintf(stderr, “Fork failure”);
exit(EXIT_FAILURE);

}

if (fork_result == (pid_t)0) {

close(0);
dup(file_pipes[0]);
close(file_pipes[0]);
close(file_pipes[1]);

execlp(“od”, “od”, “-c”, (char *)0);
exit(EXIT_FAILURE);

}
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else {

close(file_pipes[0]);
data_processed = write(file_pipes[1], some_data,

strlen(some_data));
close(file_pipes[1]);
printf(“%d - wrote %d bytes\n”, (int)getpid(), data_processed);

}
}
exit(EXIT_SUCCESS);

}

The output from this program is

$ ./pipe5
1239 - wrote 3 bytes
0000000   1   2   3
0000003

How It Works
As before, the program creates a pipe and then forks, creating a child process. At this point, both the par-
ent and child have file descriptors that access the pipe, one each for reading and writing, so there are
four open file descriptors in total.

Let’s look at the child process first. The child closes its standard input with close(0) and then calls
dup(file_pipes[0]). This duplicates the file descriptor associated with the read end of the pipe as
file descriptor 0, the standard input. The child then closes the original file descriptor for reading from the
pipe, file_pipes[0]. Since the child will never write to the pipe, it also closes the write file descriptor
associated with the pipe, file_pipes[1]. It now has a single file descriptor associated with the pipe:
file descriptor 0, its standard input. 

The child can then use exec to invoke any program that reads standard input. In this case, we use the od
command. The od command will wait for data to be available to it as if it were waiting for input from a
user terminal. In fact, without some special code to explicitly detect the difference, it won’t know that
the input is from a pipe rather than a terminal.

The parent starts by closing the read end of the pipe file_pipes[0], since it will never read the pipe.
It then writes data to the pipe. When all the data has been written, the parent closes the write end of the
pipe and exits. Since there are now no file descriptors open that could write to the pipe, the od program
will be able to read the three bytes written to the pipe, but subsequent reads will then return 0 bytes,
indicating an end of file. When the read returns 0, the od program exits. This is analogous to running the
od command on a terminal, then pressing Ctrl+D to send end of file to the od command.

Figure 13-3 shows the sequence after the call to the pipe, Figure 13-4 shows the sequence after the call to
the fork, and Figure 13-5 represents the program when it’s ready to transfer data.
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Figure 13-3

Figure 13-4

Figure 13-5

Named Pipes: FIFOs
So far, we have only been able to pass data between related programs, that is, programs that have been
started from a common ancestor process. Often this isn’t very convenient, as we would like unrelated
processes to be able to exchange data. 

We do this with FIFOs, often referred to as named pipes. A named pipe is a special type of file (remember
that everything in Linux is a file!) that exists as a name in the file system but behaves like the unnamed
pipes that we’ve met already.
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We can create named pipes from the command line and from within a program. Historically, the com-
mand line program for creating them was mknod:

$ mknod filename p

However, the mknod command is not in the X/Open command list, so it may not be available on all
UNIX-like systems. The preferred command line method is to use

$ mkfifo filename

Some older versions of UNIX only had the mknod command. X/Open Issue 4 Version 2 has the
mknod function call, but not the command line program. Linux, friendly as ever, supplies both mknod
and mkfifo.

From inside a program, we can use two different calls:

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *filename, mode_t mode);
int mknod(const char *filename, mode_t mode | S_IFIFO, (dev_t) 0);

Like the mknod command, you can use the mknod function for making many special types of files. Using
a dev_t value of 0 and ORing the file access mode with S_IFIFO is the only portable use of this function
that creates a named pipe. We’ll use the simpler mkfifo function in our examples.

Try It Out—Creating a Named Pipe
For fifo1.c, just type the following code:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

int main()
{

int res = mkfifo(“/tmp/my_fifo”, 0777);
if (res == 0) printf(“FIFO created\n”);
exit(EXIT_SUCCESS);

}

We can look for the pipe with 

$ ls -lF /tmp/my_fifo
prwxr-xr-x   1 rick     users           0 July 10 14:55 /tmp/my_fifo|

Notice that the first character of output is a p, indicating a pipe. The | symbol at the end is added by the
ls command’s -F option and also indicates a pipe.
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How It Works
The program uses the mkfifo function to create a special file. Although we ask for a mode of 0777, this
is altered by the user mask (umask) setting (in this case 022), just as in normal file creation, so the result-
ing file has mode 755. If your umask is set differently, for example to 0002, you will see different permis-
sions on the created file.

We can remove the FIFO just like a conventional file by using the rm command, or from within a program
by using the unlink system call.

Accessing a FIFO
One very useful feature of named pipes is that, because they appear in the file system, we can use them
in commands where we would normally use a filename. Before we do more programming using the
FIFO file we’ve created, we can investigate the behavior of our FIFO file using normal file commands.

Try It Out—Accessing a FIFO File
1. First, let’s try reading the (empty) FIFO:

$ cat < /tmp/my_fifo

2. Now try writing to the FIFO. You will have to use a different terminal because the first com-
mand will now be hanging, waiting for some data to appear in the FIFO.

$ echo “sdsdfasdf” > /tmp/my_fifo

You will see the output appear from the cat command. If you don’t send any data down the
FIFO, the cat command will hang until you interrupt it, conventionally with Ctrl+C.

3. We can do both at once by putting the first command in the background:

$ cat < /tmp/my_fifo &
[1] 1316
$ echo “sdsdfasdf” > /tmp/my_fifo
sdsdfasdf

[1]+  Done                    cat </tmp/my_fifo
$

How It Works
Since there was no data in the FIFO, the cat and echo programs block, waiting for some data to arrive
and some other process to read the data, respectively.

Looking at the third stage, the cat process is initially blocked in the background. When echo makes
some data available, the cat command reads the data and prints it to the standard output. Notice that
the cat program then exits without waiting for more data. It doesn’t block because the pipe will have
been closed when the second command putting data in the FIFO completed, so calls to read in the cat
program will return 0 bytes, indicating the end of file.
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Now that we’ve seen how the FIFO behaves when we access it using command line programs, let’s look
in more detail at the program interface, which allows us more control over how reads and writes
behave when we’re accessing a FIFO.

Opening a FIFO with open
The main restriction on opening FIFOs is that a program may not open a FIFO for reading and writing
with the mode O_RDWR. If a program does this, the result is undefined. This is quite a sensible restriction
since, normally, we use a FIFO only for passing data in a single direction, so we have no need for an
O_RDWR mode. A process would read its own output back from a pipe if it were opened read/write.

If we do wish to pass data in both directions between programs, it’s much better to use either a pair of
FIFOs or pipes, one for each direction, or (unusually) explicitly change the direction of the data flow by
closing and reopening the FIFO. We’ll return to bidirectional data exchange using FIFOs later in the
chapter.

The other difference between opening a FIFO and a regular file is the use of the open_flag (the second
parameter to open) with the option O_NONBLOCK. Using this open mode not only changes how the open
call is processed, but also changes how read and write requests are processed on the returned file
descriptor.

There are four legal combinations of O_RDONLY, O_WRONLY, and the O_NONBLOCK flag. We’ll consider
each in turn.

open(const char *path, O_RDONLY);

In this case, the open call will block; it will not return until a process opens the same FIFO for writing.
This is like the first preceding cat example. 

open(const char *path, O_RDONLY | O_NONBLOCK);

The open call will now succeed and return immediately, even if the FIFO has not been opened for writ-
ing by any process.

open(const char *path, O_WRONLY);

In this case, the open call will block until a process opens the same FIFO for reading.

open(const char *path, O_WRONLY | O_NONBLOCK);

Unlike a pipe created with the pipe call, a FIFO exists as a named file, not as an
open file descriptor, and it must be opened before it can be read from or written to.
You open and close a FIFO using the same open and close functions that we saw
used earlier for files, with some additional functionality. The open call is passed the
path name of the FIFO, rather than that of a regular file.
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This will always return immediately, but if no process has the FIFO open for reading, open will return
an error, –1, and the FIFO won’t be opened. If a process does have the FIFO open for reading, the file
descriptor returned can be used for writing to the FIFO.

Notice the asymmetry between the use of O_NONBLOCK with O_RDONLY and O_WRONLY, in that a
nonblocking open for writing fails if no process has the pipe open for reading, but a nonblocking read
doesn’t fail. The behavior of the close call isn’t affected by the O_NONBLOCK flag.

Try It Out—Opening FIFO Files
Let’s look at how we can use the behavior of open with the O_NONBLOCK flag to synchronize two pro-
cesses. Rather than use a number of example programs, we’ll write a single test program, fifo2.c, that
allows us to investigate the behavior of FIFOs by passing in different parameters.

1. Let’s start with the header files, a #define, and the check that the correct number of command
line arguments has been supplied:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”

int main(int argc, char *argv[])
{

int res;
int open_mode = 0;

if (argc < 2) {
fprintf(stderr, “Usage: %s <some combination of\

O_RDONLY O_WRONLY O_NONBLOCK>\n”, *argv);
exit(EXIT_FAILURE);

}

2. Assuming that the program passed the test, we now set the value of open_mode from those
arguments:

argv++;
if (strncmp(*argv, “O_RDONLY”, 8) == 0) open_mode |= O_RDONLY;
if (strncmp(*argv, “O_WRONLY”, 8) == 0) open_mode |= O_WRONLY;
if (strncmp(*argv, “O_NONBLOCK”, 10) == 0) open_mode |= O_NONBLOCK;
argv++;
if (*argv) {

if (strncmp(*argv, “O_RDONLY”, 8) == 0) open_mode |= O_RDONLY;
if (strncmp(*argv, “O_WRONLY”, 8) == 0) open_mode |= O_WRONLY;
if (strncmp(*argv, “O_NONBLOCK”, 10) == 0) open_mode |= O_NONBLOCK;

}
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3. We now check whether the FIFO exists, and we create it if necessary. Then the FIFO is opened and
output given to that effect while the program catches forty winks. Last of all, the FIFO is closed.

if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);
if (res != 0) {

fprintf(stderr, “Could not create fifo %s\n”, FIFO_NAME);
exit(EXIT_FAILURE);

}
}

printf(“Process %d opening FIFO\n”, getpid());
res = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), res);
sleep(5);
if (res != -1) (void)close(res);
printf(“Process %d finished\n”, getpid());
exit(EXIT_SUCCESS);

}

How It Works
This program allows us to specify on the command line the combinations of O_RDONLY, O_WRONLY, and
O_NONBLOCK that we wish to use. It does this by comparing known strings with command line parame-
ters and setting (with |=) the appropriate flag if the string matches. The program uses the access func-
tion to check whether the FIFO file already exists and will create it if required.

We never destroy the FIFO, because we have no way of telling if another program already has the FIFO
in use. 

O_RDONLY and O_WRONLY with No O_NONBLOCK
We now have our test program, so let’s try out a couple of combinations; notice that we put the file pro-
gram in the background:

$ ./fifo2 O_RDONLY &
[1] 152
Process 152 opening FIFO
$ ./fifo2 O_WRONLY
Process 153 opening FIFO
Process 152 result 3
Process 153 result 3
Process 152 finished
Process 153 finished

This is probably the most common use of named pipes. It allows the reader process to start and wait in
the open call and then allows both programs to continue when the second program opens the FIFO.
Notice that both the reader and writer processes have synchronized at the open call.

When a Linux process is blocked, it doesn’t consume CPU resources, so this method
of process synchronization is very CPU-efficient.
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O_RDONLY with O_NONBLOCK and O_WRONLY
This time, the reader process executes the open call and continues immediately, even though no writer
process is present. The writer also immediately continues past the open call, since the FIFO is already
open for reading.

$ ./fifo2 O_RDONLY O_NONBLOCK &
[1] 160
Process 160 opening FIFO
$ ./fifo2 O_WRONLY
Process 161 opening FIFO
Process 160 result 3
Process 161 result 3
Process 160 finished
Process 161 finished
[1]+  Done                    fifo2 O_RDONLY O_NONBLOCK

These two examples are probably the most common combinations of open modes. Feel free to use the
example program to experiment with some other combinations.

Reading and Writing FIFOs
Using the O_NONBLOCK mode affects how read and write calls behave on FIFOs.

A read on an empty blocking FIFO (i.e., one not opened with O_NONBLOCK) will wait until some data
can be read. Conversely, a read on a nonblocking FIFO with no data will return 0 bytes.

A write on a full blocking FIFO will wait until the data can be written. A write on a FIFO that can’t
accept all of the bytes being written will either: 

❑ Fail, if the request is for PIPE_BUF bytes or less and the data can’t be written.

❑ Write part of the data, if the request is for more than PIPE_BUF bytes, returning the number of
bytes actually written, which could be 0.

The size of a FIFO is an important consideration. There is a system-imposed limit on how much data can
be “in” a FIFO at any one time. This is the #define PIPE_BUF, usually found in limits.h. On Linux
and many other UNIX-like systems, this is commonly 4,096 bytes, but it could be as low as 512 bytes on
some systems. The system guarantees that writes of PIPE_BUF or fewer bytes on a FIFO that has been
opened O_WRONLY (i.e., blocking) will either write all or none of the bytes.

Although this limit is not very important in the simple case of a single FIFO writer and a single FIFO
reader, it’s quite common to use a single FIFO to allow many different programs to send requests to a
single FIFO reader. If several different programs try to write to the FIFO at the same time, it’s usually
vital that the blocks of data from different programs don’t get interleaved—that is, each write must be
“atomic.” How do you do this?

Well, if you ensure that all your write requests are to a blocking FIFO and are less than PIPE_BUF bytes
in size, the system will ensure that data never gets interleaved. In general, it’s a good idea to restrict the
data transferred via a FIFO to blocks of PIPE_BUF bytes, unless you’re using only a single-writer and a
single-reader process.
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Try It Out—Inter-Process Communication with FIFOs
To show how unrelated processes can communicate using named pipes, we need two separate programs,
fifo3.c and fifo4.c.

1. The first program is our producer program. It creates the pipe if required, then writes data to it
as quickly as possible.

Note that, for illustration purposes, we don’t mind what the data is, so we don’t bother to initialize a buffer.
In both listings, shaded lines show the changes from fifo2.c, with all the command line argument code
removed.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>

#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”

#define BUFFER_SIZE PIPE_BUF
#define TEN_MEG (1024 * 1024 * 10)

int main()
{

int pipe_fd;
int res;
int open_mode = O_WRONLY;

int bytes_sent = 0;
char buffer[BUFFER_SIZE + 1];

if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);
if (res != 0) {

fprintf(stderr, “Could not create fifo %s\n”, FIFO_NAME);
exit(EXIT_FAILURE);

}
}

printf(“Process %d opening FIFO O_WRONLY\n”, getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), pipe_fd);

if (pipe_fd != -1) {
while(bytes_sent < TEN_MEG) {

res = write(pipe_fd, buffer, BUFFER_SIZE);
if (res == -1) {

fprintf(stderr, “Write error on pipe\n”);
exit(EXIT_FAILURE);

}
bytes_sent += res;
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}
(void)close(pipe_fd); 

}
else {

exit(EXIT_FAILURE);        
}

printf(“Process %d finished\n”, getpid());
exit(EXIT_SUCCESS);

}

2. Our second program, the consumer, is much simpler. It reads and discards data from the FIFO.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>

#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME “/tmp/my_fifo”

#define BUFFER_SIZE PIPE_BUF

int main()
{

int pipe_fd;
int res;

int open_mode = O_RDONLY;
char buffer[BUFFER_SIZE + 1];
int bytes_read = 0;

memset(buffer, ‘\0’, sizeof(buffer));

printf(“Process %d opening FIFO O_RDONLY\n”, getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf(“Process %d result %d\n”, getpid(), pipe_fd);

if (pipe_fd != -1) {
do {

res = read(pipe_fd, buffer, BUFFER_SIZE);
bytes_read += res;

} while (res > 0);
(void)close(pipe_fd);

}
else {

exit(EXIT_FAILURE);
}

printf(“Process %d finished, %d bytes read\n”, getpid(), bytes_read);
exit(EXIT_SUCCESS);

}
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When we run these programs at the same time, using the time command to time the reader, the output
we get (with some tidying for clarity) is

$ ./fifo3 &
[1] 375
Process 375 opening FIFO O_WRONLY
$ time ./fifo4
Process 377 opening FIFO O_RDONLY
Process 375 result 3
Process 377 result 3
Process 375 finished
Process 377 finished, 10485760 bytes read

real    0m0.053s
user    0m0.020s
sys     0m0.040s

[1]+  Done                    fifo3

How It Works
Both programs use the FIFO in blocking mode. We start fifo3 (the writer/producer) first, which blocks,
waiting for a reader to open the FIFO. When fifo4 (the consumer) is started, the writer is then unblocked
and starts writing data to the pipe. At the same time, the reader starts reading data from the pipe.

The output from the time command shows us that it took the reader well under one-tenth of a second to
run, reading 10 megabytes of data in the process. This shows us that pipes, at least as implemented in
the author’s version of Linux, can be an efficient way of transferring data between programs.

Advanced Topic: Client/Server Using FIFOs
For our final look at FIFOs, let’s consider how we might build a very simple client/server application
using named pipes. We want to have a single server process that accepts requests, processes them, and
returns the resulting data to the requesting party: the client.

We want to allow multiple client processes to send data to the server. In the interests of simplicity, we’ll
assume that the data to be processed can be broken into blocks, each smaller than PIPE_BUF bytes. Of
course, we could implement this system in many ways, but we’ll consider only one method as an illus-
tration of how named pipes can be used.

Since the server will process only one block of information at a time, it seems logical to have a single
FIFO that is read by the server and written to by each of the clients. By opening the FIFO in blocking
mode, the server and the clients will be automatically blocked as required.

Returning the processed data to the clients is slightly more difficult. We need to arrange a second pipe,
one per client, for the returned data. By passing the process identifier (PID) of the client in the original
data sent to the server, both parties can use this to generate the unique name for the return pipe.

Linux arranges the scheduling of the two processes so that they both run when they
can and are blocked when they can’t. Thus, the writer is blocked when the pipe is
full, and the reader is blocked when the pipe is empty.
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Try It Out—An Example Client/Server Application
1. First, we need a header file, client.h, that defines the data common to both client and server

programs. It also includes the required system headers, for convenience.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define SERVER_FIFO_NAME “/tmp/serv_fifo”
#define CLIENT_FIFO_NAME “/tmp/cli_%d_fifo”

#define BUFFER_SIZE 20

struct data_to_pass_st {
pid_t  client_pid;
char   some_data[BUFFER_SIZE - 1];

};

2. Now for the server program, server.c. In this section, we create and then open the server
pipe. It’s set to be read-only, with blocking. After sleeping (for demonstration purposes), the
server reads in any data from the client, which has the data_to_pass_st structure.

#include “client.h”
#include <ctype.h>

int main()
{

int server_fifo_fd, client_fifo_fd;
struct data_to_pass_st my_data;
int read_res;
char client_fifo[256];
char *tmp_char_ptr;

mkfifo(SERVER_FIFO_NAME, 0777);
server_fifo_fd = open(SERVER_FIFO_NAME, O_RDONLY);
if (server_fifo_fd == -1) {

fprintf(stderr, “Server fifo failure\n”);
exit(EXIT_FAILURE);

}

sleep(10); /* lets clients queue for demo purposes */

do {
read_res = read(server_fifo_fd, &my_data, sizeof(my_data));
if (read_res > 0) {
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3. In this next stage, we perform some processing on the data just read from the client: We convert
all the characters in some_data to uppercase and combine the CLIENT_FIFO_NAME with the
received client_pid.

tmp_char_ptr = my_data.some_data;
while (*tmp_char_ptr) {

*tmp_char_ptr = toupper(*tmp_char_ptr);
tmp_char_ptr++;

}
sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);

4. Then we send the processed data back, opening the client pipe in write-only, blocking mode.
Finally, we shut down the server FIFO by closing the file and then unlinking the FIFO.

client_fifo_fd = open(client_fifo, O_WRONLY);
if (client_fifo_fd != -1) {

write(client_fifo_fd, &my_data, sizeof(my_data));
close(client_fifo_fd);

}
}

} while (read_res > 0);
close(server_fifo_fd);
unlink(SERVER_FIFO_NAME);
exit(EXIT_SUCCESS);

}

5. Here’s the client, client.c. The first part of this program opens the server FIFO, if it already
exists, as a file. It then gets its own process ID, which forms some of the data that will be sent to
the server. The client FIFO is created, ready for the next section.

#include “client.h”
#include <ctype.h>

int main()
{

int server_fifo_fd, client_fifo_fd;
struct data_to_pass_st my_data;
int times_to_send;
char client_fifo[256];

server_fifo_fd = open(SERVER_FIFO_NAME, O_WRONLY);
if (server_fifo_fd == -1) {

fprintf(stderr, “Sorry, no server\n”);
exit(EXIT_FAILURE);

}

my_data.client_pid = getpid();
sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);
if (mkfifo(client_fifo, 0777) == -1) {

fprintf(stderr, “Sorry, can’t make %s\n”, client_fifo);
exit(EXIT_FAILURE);

}
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6. For each of the five loops, the client data is sent to the server. Then the client FIFO is opened
(read-only, blocking mode) and the data read back. Finally, the server FIFO is closed and the
client FIFO removed from memory.

for (times_to_send = 0; times_to_send < 5; times_to_send++) {
sprintf(my_data.some_data, “Hello from %d”, my_data.client_pid); 
printf(“%d sent %s, “, my_data.client_pid, my_data.some_data);
write(server_fifo_fd, &my_data, sizeof(my_data));
client_fifo_fd = open(client_fifo, O_RDONLY);
if (client_fifo_fd != -1) {

if (read(client_fifo_fd, &my_data, sizeof(my_data)) > 0) {
printf(“received: %s\n”, my_data.some_data);

}
close(client_fifo_fd);

}
}
close(server_fifo_fd);
unlink(client_fifo);
exit(EXIT_SUCCESS);

}

To test this application, we need to run a single copy of the server and several clients. To get them all
started at close to the same time, we use the following shell commands:

$ server &
$ for i in 1 2 3 4 5
do
client &
done
$

This starts one server process and five client processes. The output from the clients, edited for brevity,
looks like this:

531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532
529 sent Hello from 529, received: HELLO FROM 529
530 sent Hello from 530, received: HELLO FROM 530
531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532

As you can see, different client requests are being interleaved and each client is getting the suitably pro-
cessed data returned to it. Note that the interleaving is random and the order in which client requests are
received will vary between machines and possibly between runs on the same machine.

How It Works
Now we’ll (hopefully!) explain the sequence of client and server operations as they interact, something
that we haven’t covered so far.

The server creates its FIFO in read-only mode and blocks. This it does until the first client connects by
opening the same FIFO for writing. At that point, the server process is unblocked and the sleep is exe-
cuted, so the writes from the clients queue up. (In a real application, the sleep would be removed; we’re
only using it to demonstrate the correct operation of our program with multiple simultaneous clients.)
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In the meantime, after the client has opened the server FIFO, it creates its own uniquely named FIFO for
reading data back from the server. Only then does the client write data to the server (blocking if the pipe
is full or the server’s still sleeping) and then blocks on a read of its own FIFO, waiting for the reply.

On receiving the data from the client, the server processes it, opens the client pipe for writing, and writes
the data back, which unblocks the client. When the client is unblocked, it can read from its pipe the data
written to it by the server.

The whole process repeats until the last client closes the server pipe, causing the server’s read to fail
(returning 0) because no process has the server pipe open for writing. If this were a real server process
that needed to wait for further clients, we would need to modify it to either

❑ Open a file descriptor to its own server pipe, so read always blocks rather than returning 0.

❑ Close and reopen the server pipe when read returns 0 bytes, so the server process blocks in the
open waiting for a client, just as it did when it first started.

Both of these techniques are illustrated in the rewrite of the CD database application to use named pipes.

The CD Database Application
Now that we’ve seen how we can use named pipes to implement a simple client/server system, we can
revisit our CD database application and convert it accordingly. We’ll also incorporate some signal han-
dling to allow us to perform some tidy-up actions when the process is interrupted. We will use the ear-
lier dbm version with just a command line interface to see the code as straightforwardly as possible.

Before we get to look in detail at this new version, let’s compile the application. If you have the source
code from the Web site, use the makefile to compile it to server and client programs.

Typing server -i allows the program to initialize a new CD database.

Needless to say, the client won’t run unless the server is up and running. Here’s the makefile to show
how the programs fit together.

all:     server client

CC=cc
CFLAGS= -pedantic -Wall

# For debugging un-comment the next line
# DFLAGS=-DDEBUG_TRACE=1 -g

# Where, and which version, of dbm are we using.
# This assumes gdbm is pre-installed in a standard place, but we are
# going to use the gdbm compatibility routines, that make it emulate ndbm.
# We do this because ndbm is the ‘most standard’ of the dbm versions.
# Depending on your distribution, these may need changing.
DBM_INC_PATH=/usr/include/gdbm
DBM_LIB_PATH=/usr/lib
DBM_LIB_FILE=gdbm
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.c.o:
$(CC) $(CFLAGS) -I$(DBM_INC_PATH) $(DFLAGS) -c $<

app_ui.o: app_ui.c cd_data.h
cd_dbm.o: cd_dbm.c cd_data.h
client_f.o: clientif.c cd_data.h cliserv.h
pipe_imp.o: pipe_imp.c cd_data.h cliserv.h
server.o: server.c cd_data.h cliserv.h

client: app_ui.o clientif.o pipe_imp.o
$(CC) -o client  $(DFLAGS) app_ui.o clientif.o pipe_imp.o

server: server.o cd_dbm.o pipe_imp.o
$(CC) -o server -L$(DBM_LIB_PATH) $(DFLAGS) server.o cd_dbm.o pipe_imp.o -

l$(DBM_LIB_FILE)

clean:
rm -f server client_app *.o *~

Aims
Our aim is to split the part of the application that deals with the database away from the user interface part
of the application. We also wish to run a single-server process, but allow many simultaneous clients. We also
wish to minimize changes to the existing code. Wherever possible, we’ll leave existing code unchanged.

To keep things simple, we also want to be able to create (and delete) pipes within the application, so
there’s no need for a system administrator to create named pipes before we can use them.

It’s also important to ensure that we never “busy wait,” wasting CPU time, for an event. As we’ve seen,
Linux allows us to block, waiting for events without using significant resources. We should use the
blocking nature of pipes to ensure that we use the CPU efficiently. After all, the server could, in theory,
wait for many hours for a request to arrive.

Implementation
In the earlier, single-process version of the application that we saw in Chapter 7, we used a set of data
access routines for manipulating the data. These were

int database_initialize(const int new_database);
void database_close(void);
cdc_entry get_cdc_entry(const char *cd_catalog_ptr);
cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no);
int add_cdc_entry(const cdc_entry entry_to_add);
int add_cdt_entry(const cdt_entry entry_to_add);
int del_cdc_entry(const char *cd_catalog_ptr);
int del_cdt_entry(const char *cd_catalog_ptr, const int track_no);
cdc_entry search_cdc_entry(const char *cd_catalog_ptr,

int *first_call_ptr);

These functions provide a convenient place to make a clean separation between client and server. 
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In the single-process implementation, we can view the application as having two parts, even though it
was compiled as a single program, as shown in Figure 13-6.

Figure 13-6

In the client-server implementation, we want to logically insert some named pipes and supporting code
between the two major parts of the application. Figure 13-7 shows the structure we need.

Figure 13-7

In our implementation, we choose to put both the client and server interface routines in the same file,
pipe_imp.c. This keeps all the code that depends on the use of named pipes for the client/server
implementation in a single file. The formatting and packaging of the data being passed is kept separate
from the routines that implement the named pipes. We end up with more source files, but a better logical
division between them. The calling structure in the application is illustrated in Figure 13-8.

Connecting pipe(s)

User Interface Database access

Client Server

Client Interface Server Interface

Data access
routines

User Interface Database access
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Figure 13-8

The files app_ui.c, client_if.c, and pipe_imp.c are compiled and linked together to give a client pro-
gram. The files cd_dbm.c, server.c, and pipe_imp.c are compiled and linked together to give a server
program. A header file, cliserv.h, acts as a common definitions header file to tie the two together.

The files app_ui.c and cd_dbm.c have only very minor changes, principally to allow for the split into
two programs. Since the application is now quite large and a significant proportion of the code is
unchanged from that previously seen, we show here only the files cliserv.h, client_if.c, and
pipe_imp.c.

First we’ll look at cliserv.h. This file defines the client/server interface. It’s required by both client
and server implementations. 

Try It Out—The Header File, cliserv.h
1. Following are the required #include headers:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

Some parts of this file are dependent on the specific client/server implementation,
in this case named pipes. We’ll be changing to a different client/server model at the
end of the Chapter 14.

Connecting pipe(s)

Client Server

pipe_imp.c pipe_imp.c

client_if.c server.c

app_ui.c cd_dbm.c
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2. We then define the named pipes. We use one pipe for the server and one pipe for each client.
Since there may be multiple clients, the client incorporates a process ID into the name to ensure
that its pipe is unique:

#define SERVER_PIPE “/tmp/server_pipe”
#define CLIENT_PIPE “/tmp/client_%d_pipe”

#define ERR_TEXT_LEN 80

3. We implement the commands as enumerated types, rather than #defines. 

This is a good way of allowing the compiler to do more type checking and also helps in debugging the
application, as many debuggers are able to show the name of enumerated constants, but not the name
defined by a #define directive.

The first typedef gives the type of request being sent to the server; the second gives the server
response to the client.

typedef enum {
s_create_new_database = 0,
s_get_cdc_entry,
s_get_cdt_entry,
s_add_cdc_entry,
s_add_cdt_entry,
s_del_cdc_entry,
s_del_cdt_entry,
s_find_cdc_entry

} client_request_e;

typedef enum {
r_success = 0,
r_failure,
r_find_no_more

} server_response_e;

4. Next we declare a structure that will form the message passed in both directions between the
two processes. 

typedef struct {
pid_t               client_pid;
client_request_e    request;
server_response_e   response;
cdc_entry           cdc_entry_data;
cdt_entry           cdt_entry_data;
char                error_text[ERR_TEXT_LEN + 1];

} message_db_t;

Since we don’t actually need to return both a cdc_entry and cdt_entry in the
same response, we could have combined them in a union. However, for simplicity
we keep them separate. This also makes the code easier to maintain.
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5. Finally, we get to the pipe interface functions that perform data transfer, implemented in
pipe_imp.c. These divide into server- and client-side functions, in the first and second blocks,
respectively:

int server_starting(void);
void server_ending(void);
int read_request_from_client(message_db_t *rec_ptr);
int start_resp_to_client(const message_db_t mess_to_send);
int send_resp_to_client(const message_db_t mess_to_send);
void end_resp_to_client(void);

int client_starting(void);
void client_ending(void);
int send_mess_to_server(message_db_t mess_to_send);
int start_resp_from_server(void);
int read_resp_from_server(message_db_t *rec_ptr);
void end_resp_from_server(void);

We split the rest of the discussion into the client interface functions and details of the server- and client-
side functions found in pipe_imp.c, and we’ll look at the source code as necessary.

Client Interface Functions
Now we look at client_if.c. This provides “fake” versions of the database access routines. These
encode the request in a message_db_t structure and then use the routines in pipe_imp.c to transfer
the request to the server. This allows us to make minimal changes to the original app_ui.c.

Try It Out—The Client’s Interpreter
1. This file implements the nine database functions prototyped in cd_data.h. It does so by pass-

ing requests to the server and then returning the server response from the function, acting as an
intermediary. The file starts with #include files and constants:

#define _POSIX_SOURCE

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#include “cd_data.h”
#include “cliserv.h”

2. The static variable mypid reduces the number of calls to getpid that would otherwise be
required. We use a local function, read_one_response, to eliminate duplicated code:

static pid_t mypid;

static int read_one_response(message_db_t *rec_ptr);
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3. The database_initialize and close routines are still called, but are now used, respec-
tively, for initializing the client side of the pipes interface and for removing redundant named
pipes when the client exits.

int database_initialize(const int new_database)
{

if (!client_starting()) return(0);
mypid = getpid();
return(1);

} /* database_initialize */

void database_close(void) {
client_ending();

}

4. The get_cdc_entry routine is called to get a catalog entry from the database, given a CD cat-
alog title. Here we encode the request in a message_db_t structure and pass it to the server.
We then read the response back into a different message_db_t structure. If an entry is found,
it’s included inside the message_db_t structure as a cdc_entry structure, so we pass back
the appropriate part of the structure:

cdc_entry get_cdc_entry(const char *cd_catalog_ptr)
{

cdc_entry ret_val;
message_db_t mess_send;
message_db_t mess_ret;

ret_val.catalog[0] = ‘\0’;
mess_send.client_pid = mypid;
mess_send.request = s_get_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
ret_val = mess_ret.cdc_entry_data;

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(ret_val);

}

5. Here’s the source for the function read_one_response that we use to avoid duplicating code:

static int read_one_response(message_db_t *rec_ptr) {

int return_code = 0;
if (!rec_ptr) return(0);
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if (start_resp_from_server()) {
if (read_resp_from_server(rec_ptr)) {

return_code = 1;
}
end_resp_from_server();

}
return(return_code);

}

6. The other get_xxx, del_xxx and add_xxx routines are implemented in a similar way to
the get_cdc_entry function and are reproduced here for completeness. First, the function for
retrieving CD tracks:

cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

cdt_entry ret_val;
message_db_t mess_send;
message_db_t mess_ret;

ret_val.catalog[0] = ‘\0’;
mess_send.client_pid = mypid;
mess_send.request = s_get_cdt_entry;
strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
mess_send.cdt_entry_data.track_no = track_no;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
ret_val = mess_ret.cdt_entry_data;

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(ret_val);

}

7. Next, two functions for adding data, first to the catalog and then to the tracks database:

int add_cdc_entry(const cdc_entry entry_to_add)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_add_cdc_entry;
mess_send.cdc_entry_data = entry_to_add;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {
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if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

int add_cdt_entry(const cdt_entry entry_to_add)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_add_cdt_entry;
mess_send.cdt_entry_data = entry_to_add;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

8. Last, two functions for data deletion:

int del_cdc_entry(const char *cd_catalog_ptr)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_del_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
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fprintf(stderr, “%s”, mess_ret.error_text);
}

} else {
fprintf(stderr, “Server failed to respond\n”);

}
} else {

fprintf(stderr, “Server not accepting requests\n”);
}
return(0);

}

int del_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{

message_db_t mess_send;
message_db_t mess_ret;

mess_send.client_pid = mypid;
mess_send.request = s_del_cdt_entry;
strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
mess_send.cdt_entry_data.track_no = track_no;

if (send_mess_to_server(mess_send)) {
if (read_one_response(&mess_ret)) {

if (mess_ret.response == r_success) {
return(1);

} else {
fprintf(stderr, “%s”, mess_ret.error_text);

}
} else {

fprintf(stderr, “Server failed to respond\n”);
}

} else {
fprintf(stderr, “Server not accepting requests\n”);

}
return(0);

}

Searching the Database
The function for the search on the CD key is more complex. The user of this function expects to call it
once to start a search. We catered to this expectation in Chapter 7 by setting *first_call_ptr to true
on this first call and the function then to return the first match. On subsequent calls to the search func-
tion, *first_call_ptr is false and further matches are returned, one per call. 

Now that we’ve split the application across two processes, we can no longer allow the search to proceed
one entry at a time in the server, because a different client may request a different search from the server
while our search is in progress. We can’t make the server side store the context (how far the search has
gotten) for each client search separately, since the client side can simply stop searching part of the way
through a search, when a user finds the CD they are looking for or if the client “falls over.”

We can either change the way the search is performed or, as we have chosen here, hide the complexity in
the interface routine. What we’ve done is to arrange for the server to return all the possible matches to a
search and then store them in a temporary file until the client requests them. 
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Try It Out—Searching
1. This function looks more complicated than it is because it calls three pipe functions that we’ll be

looking at in the next section: send_mess_to_server, start_resp_from_server, and
read_resp_from_server.

cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr)
{

message_db_t mess_send;
message_db_t mess_ret;

static FILE *work_file = (FILE *)0;
static int entries_matching = 0;
cdc_entry ret_val;

ret_val.catalog[0] = ‘\0’;

if (!work_file && (*first_call_ptr == 0)) return(ret_val);

2. Here’s the first call to search, that is, with *first_call_ptr set to true. It’s set to false
immediately, in case we forget. A work_file is created and the client message structure 
initialized.

if (*first_call_ptr) {
*first_call_ptr = 0;
if (work_file) fclose(work_file);
work_file = tmpfile();
if (!work_file) return(ret_val);

mess_send.client_pid = mypid;
mess_send.request = s_find_cdc_entry;
strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

3. Next, there’s this three-deep condition test, which makes calls to functions in pipe_imp.c.
If the message is successfully sent to the server, the client waits for the server’s response.
While reads from the server are successful, the search matches are returned to the client’s
work_file and the entries_matching counter is incremented.

if (send_mess_to_server(mess_send)) {
if (start_resp_from_server()) {

while (read_resp_from_server(&mess_ret)) {
if (mess_ret.response == r_success) {

fwrite(&mess_ret.cdc_entry_data, sizeof(cdc_entry), 1, work_file);
entries_matching++;

} else {
break;

}
} /* while */

} else {
fprintf(stderr, “Server not responding\n”);

}
} else {

fprintf(stderr, “Server not accepting requests\n”);
}
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4. The next test checks whether the search had any luck. Then the fseek call sets the work_file
to the next place for data to be written.

if (entries_matching == 0) {
fclose(work_file);
work_file = (FILE *)0;
return(ret_val);

}      
(void)fseek(work_file, 0L, SEEK_SET);

5. If this is not the first call to the search function with this particular search term, the code checks
whether there are any matches left. Finally, the next matching entry is read to the ret_val
structure. The previous checks guarantee that a matching entry exists.

} else {
/* not *first_call_ptr */

if (entries_matching == 0) {
fclose(work_file);
work_file = (FILE *)0;            
return(ret_val);

}
}

fread(&ret_val, sizeof(cdc_entry), 1, work_file);    
entries_matching—;

return(ret_val);
}

The Server Interface
Just as the client side has an interface to the app_ui.c program, so the server side needs a program to
control the (renamed) cd_access.c, now cd_dbm.c. The server’s main function is listed here.

Try It Out—server.c
1. We start by declaring some global variables, a prototype for the process_command function,

and a signal-catcher function to ensure a clean exit.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
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#include “cd_data.h”
#include “cliserv.h”
int save_errno;
static int server_running = 1;

static void process_command(const message_db_t mess_command);

void catch_signals()
{

server_running = 0;
}

2. Now we come to the main function. After checking that the signal-catching routines are all
right, the program checks to see whether you passed -i on the command line. If you did, it will
create a new database. If the call to the database_initialize routine in cd_dbm.c fails,
an error message is shown. If all is well and the server is running, any requests from the client
are fed to the process_command function, which we’ll show you in a moment.

int main(int argc, char *argv[]) {
struct sigaction new_action, old_action;
message_db_t mess_command;
int database_init_type = 0;

new_action.sa_handler = catch_signals;
sigemptyset(&new_action.sa_mask);
new_action.sa_flags = 0;
if ((sigaction(SIGINT, &new_action, &old_action) != 0) ||

(sigaction(SIGHUP, &new_action, &old_action) != 0) ||
(sigaction(SIGTERM, &new_action, &old_action) != 0)) {
fprintf(stderr, “Server startup error, signal catching failed\n”);
exit(EXIT_FAILURE);

}    

if (argc > 1) {
argv++;
if (strncmp(“-i”, *argv, 2) == 0) database_init_type = 1;

}
if (!database_initialize(database_init_type)) {

fprintf(stderr, “Server error:-\
could not initialize database\n”);

exit(EXIT_FAILURE);
}

if (!server_starting()) exit(EXIT_FAILURE);

while(server_running) {
if (read_request_from_client(&mess_command)) {

process_command(mess_command);
} else {

if(server_running) fprintf(stderr, “Server ended - can not \
read pipe\n”);
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server_running = 0;
}

} /* while */
server_ending();
exit(EXIT_SUCCESS);

}

3. Any client messages are fed to the process_command function, where they are fed into a
case statement that makes the appropriate calls to cd_dbm.c.

static void process_command(const message_db_t comm)
{

message_db_t resp;
int first_time = 1;

resp = comm; /* copy command back, then change resp as required */

if (!start_resp_to_client(resp)) {
fprintf(stderr, “Server Warning:-\

start_resp_to_client %d failed\n”, resp.client_pid);
return;

}

resp.response = r_success;
memset(resp.error_text, ‘\0’, sizeof(resp.error_text));
save_errno = 0;

switch(resp.request) {
case s_create_new_database:

if (!database_initialize(1)) resp.response = r_failure;
break;

case s_get_cdc_entry:
resp.cdc_entry_data = 

get_cdc_entry(comm.cdc_entry_data.catalog);
break;

case s_get_cdt_entry:
resp.cdt_entry_data = 

get_cdt_entry(comm.cdt_entry_data.catalog, 
comm.cdt_entry_data.track_no);

break;
case s_add_cdc_entry:

if (!add_cdc_entry(comm.cdc_entry_data)) resp.response = 
r_failure;

break;
case s_add_cdt_entry:

if (!add_cdt_entry(comm.cdt_entry_data)) resp.response = 
r_failure;

break;            
case s_del_cdc_entry:
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if (!del_cdc_entry(comm.cdc_entry_data.catalog)) resp.response
= r_failure;

break;            
case s_del_cdt_entry:

if (!del_cdt_entry(comm.cdt_entry_data.catalog, 
comm.cdt_entry_data.track_no)) resp.response = r_failure;

break;
case s_find_cdc_entry:

do {
resp.cdc_entry_data =

search_cdc_entry(comm.cdc_entry_data.catalog,
&first_time);

if (resp.cdc_entry_data.catalog[0] != 0) {
resp.response = r_success;
if (!send_resp_to_client(resp)) {

fprintf(stderr, “Server Warning:-\
failed to respond to %d\n”, resp.client_pid);

break;
}

} else {
resp.response = r_find_no_more;

}
} while (resp.response == r_success);

break;
default:

resp.response = r_failure;
break;

} /* switch */

sprintf(resp.error_text, “Command failed:\n\t%s\n”, 
strerror(save_errno));

if (!send_resp_to_client(resp)) {
fprintf(stderr, “Server Warning:-\

failed to respond to %d\n”, resp.client_pid);
}

end_resp_to_client();
return;

}

Before we look at the actual pipe implementation, let’s discuss the sequence of events that needs to occur
to pass data between the client and server processes. Figure 13-9 shows both client and server processes
starting and how both parties loop while processing commands and responses.

In this implementation, the situation is slightly more difficult, since, for a search request, the client
passes a single command to the server and then expects to receive one or more responses from the
server. This leads to some additional complexity, mainly in the client.
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Figure 13-9

The Pipe
Here’s the pipes implementation file, pipe_imp.c, which has both the client- and server-side functions. 

As we saw in Chapter 10, the symbol DEBUG_TRACE can be defined to show the
sequence of calls as the client and server processes pass messages between each other.
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Try It Out—Pipes Implementation Header
1. First the #includes:

#include “cd_data.h”
#include “cliserv.h”

2. We also define some values that we need in different functions within the file:

static int server_fd = -1;
static pid_t mypid = 0;
static char client_pipe_name[PATH_MAX + 1] = {‘\0’};
static int client_fd = -1;
static int client_write_fd = -1;

Server-Side Functions
Next, we need to look at the server-side functions. The following Try It Out section shows the functions
that open and close the named pipe and read messages from the clients. The second Try It Out shows
the code that opens, sends, and closes the client pipes based on the process ID the client includes in its
message.

Try It Out—Server Functions
1. The server_starting routine creates the named pipe from which the server will read com-

mands. It then opens that pipe for reading. This open will block until a client opens the pipe for
writing. We use a blocking mode so that the server can perform blocking reads on the pipe
while waiting for commands to be sent to it.

int server_starting(void)
{

#if DEBUG_TRACE    
printf(“%d :- server_starting()\n”,  getpid());

#endif

unlink(SERVER_PIPE);
if (mkfifo(SERVER_PIPE, 0777) == -1) {

fprintf(stderr, “Server startup error, no FIFO created\n”);
return(0);

}

if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == -1) {
if (errno == EINTR) return(0);
fprintf(stderr, “Server startup error, no FIFO opened\n”);
return(0);

}
return(1);

}
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2. When the server ends, it removes the named pipe so that clients can detect that no server is 
running.

void server_ending(void)
{

#if DEBUG_TRACE    
printf(“%d :- server_ending()\n”,  getpid());

#endif

(void)close(server_fd);
(void)unlink(SERVER_PIPE);

}

3. The read_request_from_client function shown in the following example will block
reading in the server pipe until a client writes a message into it:

int read_request_from_client(message_db_t *rec_ptr)
{

int return_code = 0;
int read_bytes;

#if DEBUG_TRACE    
printf(“%d :- read_request_from_client()\n”,  getpid());

#endif

if (server_fd != -1) {
read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr)); 

...

}
return(return_code);

}

4. In the special case where no clients have the pipe open for writing, the read will return 0; that
is, it detects an EOF. Then the server closes the pipe and opens it again, so that it blocks until a
client also opens the pipe. This is just the same as when the server first starts; we have reinitial-
ized the server. Insert this code into the preceding function:

if (read_bytes == 0) {
(void)close(server_fd);
if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == -1) {

if (errno != EINTR) {
fprintf(stderr, “Server error, FIFO open failed\n”);

}
return(0);

}
read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr));

}
if (read_bytes == sizeof(*rec_ptr)) return_code = 1;

The server is a single process that may be serving many clients simultaneously. Since each client uses a
different pipe to receive its responses, the server needs to write to a different pipe to send responses to
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different clients. Since file descriptors are a limited resource, the server opens a client pipe for writing
only when it has data to send.

We split the opening, writing, and closing of the client pipe into three separate functions. We need to do
this when we’re returning multiple results to a search, so we can open the pipe once, write many
responses, and close it again.

Try It Out—Plumbing the Pipes
1. First we open the client pipe:

int start_resp_to_client(const message_db_t mess_to_send)
{

#if DEBUG_TRACE
printf(“%d :- start_resp_to_client()\n”, getpid());

#endif

(void)sprintf(client_pipe_name, CLIENT_PIPE, mess_to_send.client_pid);
if ((client_fd = open(client_pipe_name, O_WRONLY)) == -1) return(0);
return(1);

}

2. The messages are all sent using calls to this function. We’ll look at the corresponding client-side
functions that field the message in just a bit.

int send_resp_to_client(const message_db_t mess_to_send)
{

int write_bytes;

#if DEBUG_TRACE
printf(“%d :- send_resp_to_client()\n”, getpid());

#endif

if (client_fd == -1) return(0);
write_bytes = write(client_fd, &mess_to_send, sizeof(mess_to_send));
if (write_bytes != sizeof(mess_to_send)) return(0);
return(1);

}

3. Finally, we close the client pipe:

void end_resp_to_client(void)
{

#if DEBUG_TRACE
printf(“%d :- end_resp_to_client()\n”,  getpid());

#endif

if (client_fd != -1) {
(void)close(client_fd);
client_fd = -1;

}
}
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Client-Side Functions
Complementing the server are the client functions in pipe_imp.c. They are very similar to the server-
side functions, except for the worryingly named send_mess_to_server function.

Try It Out—Client Functions
1. After checking that a server is accessible, the client_starting function initializes the client-

side pipe:

int client_starting(void)
{

#if DEBUG_TRACE
printf(“%d :- client_starting\n”,  getpid());

#endif

mypid = getpid();
if ((server_fd = open(SERVER_PIPE, O_WRONLY)) == -1) {

fprintf(stderr, “Server not running\n”);
return(0);

}

(void)sprintf(client_pipe_name, CLIENT_PIPE, mypid);
(void)unlink(client_pipe_name);
if (mkfifo(client_pipe_name, 0777) == -1) {

fprintf(stderr, “Unable to create client pipe %s\n”, 
client_pipe_name);

return(0);
}
return(1);

}

2. The client_ending function closes file descriptors and deletes the now-redundant named
pipe:

void client_ending(void)
{

#if DEBUG_TRACE    
printf(“%d :- client_ending()\n”,  getpid()); 

#endif

if (client_write_fd != -1) (void)close(client_write_fd);
if (client_fd != -1) (void)close(client_fd);
if (server_fd != -1) (void)close(server_fd);
(void)unlink(client_pipe_name);

}

3. The send_mess_to_server function passes the request through the server pipe:

int send_mess_to_server(message_db_t mess_to_send)
{

int write_bytes;

#if DEBUG_TRACE    
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printf(“%d :- send_mess_to_server()\n”,  getpid());
#endif

if (server_fd == -1) return(0);
mess_to_send.client_pid = mypid;
write_bytes = write(server_fd, &mess_to_send, sizeof(mess_to_send));
if (write_bytes != sizeof(mess_to_send)) return(0);
return(1);

}

As with the server-side functions we saw earlier, the client gets results back from the server using three
functions, to cater to multiple search results.

Try It Out—Getting Server Results
1. This client function starts to listen for the server response. It opens a client pipe as read-only

and then reopens this pipe’s file as write-only. We’ll see why a bit later in the section.

int start_resp_from_server(void)
{

#if DEBUG_TRACE    
printf(“%d :- start_resp_from_server()\n”,  getpid());    

#endif

if (client_pipe_name[0] == ‘\0’) return(0);
if (client_fd != -1) return(1);

client_fd = open(client_pipe_name, O_RDONLY);
if (client_fd != -1) {

client_write_fd = open(client_pipe_name, O_WRONLY);
if (client_write_fd != -1) return(1);
(void)close(client_fd);
client_fd = -1;

}
return(0);

}

2. Here’s the main read from the server that gets the matching database entries:

int read_resp_from_server(message_db_t *rec_ptr)
{

int read_bytes;
int return_code = 0;

#if DEBUG_TRACE    
printf(“%d :- read_resp_from_server()\n”,  getpid());    

#endif

if (!rec_ptr) return(0);
if (client_fd == -1) return(0);

read_bytes = read(client_fd, rec_ptr, sizeof(*rec_ptr));
if (read_bytes == sizeof(*rec_ptr)) return_code = 1;
return(return_code);

}
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3. And finally, here’s the client function that marks the end of the server response:

void end_resp_from_server(void)
{

#if DEBUG_TRACE    
printf(“%d :- end_resp_from_server()\n”,  getpid());        

#endif

/* This function is empty in the pipe implementation */
}

How It Works
The second, additional open of the client pipe for writing in start_resp_from_server

client_write_fd = open(client_pipe_name, O_WRONLY); 

is used to prevent a race condition when the server needs to respond to several requests from the client
in quick succession.

To explain this a little more, consider the following sequence of events:

1. The client writes a request to the server.

2. The server reads the request, opens the client pipe and sends the response back, but is sus-
pended before it gets as far as closing the client pipe.

3. The client opens its pipe for reading, reads the first response and closes its pipe.

4. The client then sends a new command and opens the client pipe for reading.

5. The server then resumes running, closing its end of the client pipe.

Unfortunately, at this point the client is trying to read the pipe, looking for a response to its next request,
but the read will return with 0 bytes because no process has the client pipe open for writing.

By allowing the client to open its pipe for both reading and writing, thus removing the need for repeat-
edly reopening the pipe, we avoid this race condition. Note that the client never writes to the pipe, so
there’s no danger of reading erroneous data.

Application Summary
We’ve now separated our CD database application into a client and a server, enabling us to develop the
user interface and the underlying database technology independently. We can see that a well-defined
database interface allows each major element of the application to make the best use of computer
resources. If we took things a little further, we could change the pipes implementation to a networked
one and use a dedicated database server machine. We’ll learn more about networking in Chapter 15.
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Summary
In this chapter, we’ve looked at passing data between processes using pipes. First, we looked at
unnamed pipes, created with the popen or the pipe call, and discussed how, using a pipe and the dup
call, we can pass data from one program to the standard input of another. We then looked at named
pipes and saw how we can pass data between unrelated programs. Finally, we implemented a simple
client/server example, using FIFOs to give us not only process synchronization, but also bidirectional
data flow.
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14
Semaphores, Shared

Memory, and Message
Queues

In this chapter, we are going to discuss a set of inter-process communication facilities that were
introduced in the AT&T System V.2 release of UNIX. Since all these facilities appeared in the same
release and have a similar programmatic interface, they are often referred to as the IPC (Inter-
Process Communication) facilities, or more commonly System V IPC. As we’ve already seen, they
are by no means the only way of communicating between processes, but the expression System V
IPC is usually used to refer to these specific facilities.

We will cover the following topics in this chapter:

❑ Semaphores, for managing access to resources

❑ Shared memory, for highly efficient data sharing between programs

❑ Messaging, for an easy way of passing data between programs

Semaphores
When we write programs that use threads operating in multiuser systems, multiprocessing systems,
or a combination of the two, we often discover that we have critical sections of code, where we need
to ensure that a single process (or a single thread of execution) has exclusive access to a resource.

Semaphores have a complex programming interface. Fortunately, we can easily provide ourselves
with a much-simplified interface that is sufficient for most semaphore-programming problems.

In our first example application in Chapter 7—using dbm to access a database—the data could be
corrupted if multiple programs tried to update the database at exactly the same time. There’s no
trouble with two different programs asking different users to enter data for the database; the only
potential problem is in the parts of the code that update the database. These sections of code,
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which actually perform data updates and need to execute exclusively, are called critical sections.
Frequently they are just a few lines of code from much larger programs.

To prevent problems caused by more than one program simultaneously accessing a shared resource, we
need a way of generating and using a token that grants access to only one thread of execution in a criti-
cal section at a time. We saw briefly in Chapter 12 some thread-specific ways we could use a mutex or
semaphores to control access to critical sections in a threaded program. In this chapter, we return to the
topic of semaphores, but look more generally at how they are used between different processes.

It’s surprisingly difficult to write general-purpose code that ensures that one program has exclusive
access to a particular resource, although there’s a solution known as Dekker’s Algorithm. Unfortunately,
this algorithm relies on a “busy wait,” or “spin lock,” where a process runs continuously, waiting for a
memory location to be changed. In a multitasking environment such as Linux, this is an undesirable
waste of CPU resources. The situation is much easier if hardware support, generally in the form of spe-
cific CPU instructions, is available to support exclusive access. An example of hardware support would
be an instruction to access and increment a register in an atomic way, such that no other instruction (not
even an interrupt) could occur between the read/increment/write operations.

One possible solution that we’ve already seen is to create files using the O_EXCL flag with the open func-
tion, which provides atomic file creation. This allows a single process to succeed in obtaining a token:
the newly created file. This method is fine for simple problems, but rather messy and very inefficient for
more complex examples.

An important step forward in this area of concurrent programming occurred when Dijkstra introduced
the concept of the semaphore. As discussed in Chapter 12, a semaphore is a special variable that takes
only whole positive numbers and upon which only two operations are allowed: wait and signal. Since
“wait” and “signal” already have special meanings in Linux and UNIX programming, we’ll use the orig-
inal notation:

❑ P(semaphore variable) for wait

❑ V(semaphore variable) for signal

These letters come from the Dutch words for wait (passeren: to pass, as in a checkpoint before the critical
section) and signal (vrijgeven: to give or release, as in giving up control of the critical section). You may
also come across the terms “up” and “down” used in relation to semaphores, taken from the use of sig-
naling flags.

Semaphore Definition
The simplest semaphore is a variable that can take only the values 0 and 1, a binary semaphore. This is the
most common form. Semaphores that can take many positive values are called general semaphores. For the
remainder of this chapter, we’ll concentrate on binary semaphores.

The semaphore functions used with threads that we saw in Chapter 12 are not the
more general ones we will discuss in this chapter, so be careful not to confuse the
two types.
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The definitions of P and V are surprisingly simple. Suppose we have a semaphore variable sv. The two
operations are then defined as follows:

P(sv) If sv is greater than zero, decrement sv. If sv is zero, suspend execution of this
process.

V(sv) If some other process has been suspended waiting for sv, make it resume execu-
tion. If no process is suspended waiting for sv, increment sv.

Another way of thinking about semaphores is that the semaphore variable, sv, is true when the critical
section is available, is decremented by P(sv) so it’s false when the critical section is busy, and is incre-
mented by V(sv) when the critical section is again available. Be aware that simply having a normal vari-
able that you decrement and increment is not good enough, because you can’t express in C, C++, or
almost any conventional programming language the need to make a single, atomic operation of the test
to see whether the variable is true, and if so change the variable to make it false. This is what makes
the semaphore operations special.

A Theoretical Example
We can see how this works with a simple theoretical example. Suppose we have two processes proc1
and proc2, both of which need exclusive access to a database at some point in their execution. We define
a single binary semaphore, sv, that starts with the value 1 and can be accessed by both processes. Both
processes then need to perform the same processing to access the critical section of code; indeed, the two
processes could simply be different invocations of the same program.

The two processes share the sv semaphore variable. Once one process has executed P(sv), it has obtained
the semaphore and can enter the critical section. The second process is prevented from entering the critical
section because, when it attempts to execute P(sv), it’s made to wait until the first process has left the
critical section and executed V(sv) to release the semaphore.

The required pseudocode is

semaphore sv = 1;

loop forever {
P(sv);
critical code section;
V(sv);
noncritical code section;

}

The code is surprisingly simple because the definition of the P and V operations is very powerful. Figure
14-1 shows a diagram showing how the P and V operations act as a gate into critical sections of code.
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Figure 14-1

Linux Semaphore Facilities
Now that we’ve seen what semaphores are and how they work in theory, we can look at how the fea-
tures are implemented in Linux. The interface is rather elaborate and offers far more facilities than are
generally required. All the Linux semaphore functions operate on arrays of general semaphores rather
than a single binary semaphore. At first sight, this just seems to make things more complicated, but in
complex cases where a process needs to lock multiple resources, the ability to operate on an array of
semaphores is a big advantage. In this chapter, we will concentrate on using single semaphores, since
in most cases that’s all you will need to use. 

The semaphore function definitions are

#include <sys/sem.h>

int semctl(int sem_id, int sem_num, int command, ...);
int semget(key_t key, int num_sems, int sem_flags);
int semop(int sem_id, struct sembuf *sem_ops, size_t num_sem_ops);

As we work through each function in turn, remember that these functions were designed to work for
arrays of semaphore values, which makes their operation significantly more complex than would have
been required for a single semaphore.

In practice, the #include files sys/types.h and sys/ipc.h are usually required
to be included before sys/sem.h in order get some of the #defines you need for
particular operations. There are, however, a few cases where they won’t be necessary.

Process A thread
of execution

Process B thread
of execution

Only a single
thread can enter
the critical
section at any
one time

Non-critical section
of process A

Non-critical section
of process B

P semaphore operation

Critical
section

V semaphore operation
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Notice that key acts very much like a filename in that it represents a resource that programs may use
and cooperate in using if they agree on a common name. Similarly, the identifier returned by semget
and used by the other shared memory functions is very much like the FILE * file stream returned by
fopen in that it’s a value used by the process to access the shared file. And, just as with files, different
processes will have different semaphore identifiers, though they refer to the same semaphore. This use
of a key and identifiers is common to all of the IPC facilities discussed here, although each facility uses
independent keys and identifiers.

semget
The semget function creates a new semaphore or obtains the semaphore key of an existing semaphore.

int semget(key_t key, int num_sems, int sem_flags);

The first parameter, key, is an integral value used to allow unrelated processes to access the same
semaphore. All semaphores are accessed indirectly by the program supplying a key, for which the sys-
tem then generates a semaphore identifier. The semaphore key is used only with semget. All other
semaphore functions use the semaphore identifier returned from semget.

There is a special semaphore key value, IPC_PRIVATE (usually 0), that is intended to create a semaphore
that only the creating process could access. This rarely has any useful purpose, which is fortunate, because
on some Linux systems the manual pages list as a bug the fact that IPC_PRIVATE may not prevent other
processes from accessing the semaphore.

The num_sems parameter is the number of semaphores required. This is almost always 1.

The sem_flags parameter is a set of flags, very much like the flags to the open function. The lower nine
bits are the permissions for the semaphore, which behave like file permissions. In addition, these can
be bitwise ORed with the value IPC_CREAT to create a new semaphore. It’s not an error to have the
IPC_CREAT flag set and give the key of an existing semaphore. The IPC_CREAT flag is silently ignored if
it is not required. We can use IPC_CREAT and IPC_EXCL together to ensure that we obtain a new, unique
semaphore. It will return an error if the semaphore already exists.

The semget function returns a positive (nonzero) value on success; this is the semaphore identifier used
in the other semaphore functions. On error, it returns –1.

semop
The function semop is used for changing the value of the semaphore:

int semop(int sem_id, struct sembuf *sem_ops, size_t num_sem_ops);

The first parameter, sem_id, is the semaphore identifier, as returned from semget. The second parameter,
sem_ops, is a pointer to an array of structures, each of which will have at least the following members:

struct sembuf {
short sem_num;
short sem_op;
short sem_flg;

}
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The first member, sem_num, is the semaphore number, usually 0 unless you’re working with an array of
semaphores. The sem_op member is the value by which the semaphore should be changed. (You can
change a semaphore by amounts other than 1.) In general, only two values are used, –1, which is our P
operation to wait for a semaphore to become available, and +1, which is our V operation to signal that a
semaphore is now available.

The final member, sem_flg, is usually set to SEM_UNDO. This causes the operating system to track the
changes made to the semaphore by the current process and, if the process terminates without releasing the
semaphore, allows the operating system to automatically release the semaphore if it was held by this pro-
cess. It’s good practice to set sem_flg to SEM_UNDO, unless you specifically require different behavior. If
you do decide you need a value other than SEM_UNDO, it’s important to be consistent, or you can get very
confused as to whether the kernel is attempting to “tidy up” your semaphores when your process exits.

All actions called for by semop are taken together to avoid a race condition implied by the use of multi-
ple semaphores. You can find full details of the processing of semop in the manual pages.

semctl
The semctl function allows direct control of semaphore information:

int semctl(int sem_id, int sem_num, int command, ...);

The first parameter, sem_id, is a semaphore identifier, obtained from semget. The sem_num parameter is
the semaphore number. You use this when you’re working with arrays of semaphores. Usually, this is 0,
the first and only semaphore. The command parameter is the action to take, and a fourth parameter, if
present, is a union semun, which according to the X/OPEN specification, must have at least the follow-
ing members:

union semun {
int val;
struct semid_ds *buf;
unsigned short *array;

}

Many versions of Linux have a definition of the semun union in a header file (usually sem.h), though
X/Open does say that you have to declare your own. If you do find that you need to declare your own,
check the manual pages for semctl to see if there is a definition given. If there is, we suggest you use
exactly the definition given in your manual, even if it differs from that above. 

There are many different possible values of command allowed for semctl. Only the two that we describe
here are commonly used. For full details of the semctl function, you should consult the manual page.

The two common values of command are

❑ SETVAL: Used for initializing a semaphore to a known value. The value required is passed as
the val member of the union semun. This is required to set the semaphore up before it’s used
for the first time.

❑ IPC_RMID: Used for deleting a semaphore identifier when it’s no longer required.

The semctl function returns different values depending on the command parameter. For SETVAL and
IPC_RMID it returns 0 for success and –1 on error.
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Using Semaphores
As you can see from the previous section’s descriptions, semaphore operations can be rather complex.
This is most unfortunate, since programming multiple processes or threads with critical sections is quite
a difficult problem on its own and having a complex programming interface simply adds to the intellec-
tual burden.

Fortunately, we can solve most problems that require semaphores using only a single binary semaphore,
the simplest type. In our example, we’ll use the full programming interface to create a much simpler P
and V type interface for a binary semaphore. We’ll then use this much simpler interface to demonstrate
how semaphores function.

To experiment with semaphores, we’ll use a single program, sem1.c, that we can invoke several times.
We’ll use an optional parameter to specify whether the program is responsible for creating and destroy-
ing the semaphore.

We use the output of two different characters to indicate entering and leaving the critical section. The
program invoked with a parameter prints an X on entering and exiting its critical section. Other invoca-
tions of the program print an O on entering and exiting their critical sections. Since only one process
should be able to enter its critical section at any given time, all X and O characters should appear in pairs.

Try It Out—Semaphores
1. After the #includes, the function prototypes, and the global variable, we come to the main

function. There the semaphore is created with a call to semget, which returns the semaphore
ID. If the program is the first to be called (i.e., it’s called with a parameter and argc > 1),
a call is made to set_semvalue to initialize the semaphore and op_char is set to X.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#include “semun.h”

static int set_semvalue(void);
static void del_semvalue(void);
static int semaphore_p(void);
static int semaphore_v(void);

static int sem_id;

int main(int argc, char *argv[])
{

int i;
int pause_time;
char op_char = ‘O’;

srand((unsigned int)getpid());
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sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);

if (argc > 1) {
if (!set_semvalue()) {

fprintf(stderr, “Failed to initialize semaphore\n”);
exit(EXIT_FAILURE);

}
op_char = ‘X’;
sleep(2);

}

2. Then we have a loop that enters and leaves the critical section 10 times. There we first make a
call to semaphore_p, which sets the semaphore to wait as this program is about to enter the
critical section.

for(i = 0; i < 10; i++) {        

if (!semaphore_p()) exit(EXIT_FAILURE);
printf(“%c”, op_char);fflush(stdout);
pause_time = rand() % 3;
sleep(pause_time);
printf(“%c”, op_char);fflush(stdout);

3. After the critical section, we call semaphore_v, setting the semaphore as available, before
going through the for loop again after a random wait. After the loop, the call to del_sem-
value is made to clean up the code.

if (!semaphore_v()) exit(EXIT_FAILURE);

pause_time = rand() % 2;
sleep(pause_time);

}    

printf(“\n%d - finished\n”, getpid());

if (argc > 1) {    
sleep(10);
del_semvalue();

}

exit(EXIT_SUCCESS);
}

4. The function set_semvalue initializes the semaphore using the SETVAL command in a 
semctl call. We need to do this before we can use the semaphore:

static int set_semvalue(void)
{

union semun sem_union;

sem_union.val = 1;
if (semctl(sem_id, 0, SETVAL, sem_union) == -1) return(0);
return(1);

}
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5. The del_semvalue function has almost the same form, except that the call to semctl uses
the command IPC_RMID to remove the semaphore’s ID:

static void del_semvalue(void)
{

union semun sem_union;

if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, “Failed to delete semaphore\n”);

}

6. semaphore_p changes the semaphore by –1 (waiting):

static int semaphore_p(void)
{

struct sembuf sem_b;

sem_b.sem_num = 0;
sem_b.sem_op = -1; /* P() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1) {

fprintf(stderr, “semaphore_p failed\n”);
return(0);

}
return(1);

}

7. semaphore_v is similar except for setting the sem_op part of the sembuf structure to 1, so that
the semaphore becomes available.

static int semaphore_v(void)
{

struct sembuf sem_b;

sem_b.sem_num = 0;
sem_b.sem_op = 1; /* V() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1) {

fprintf(stderr, “semaphore_v failed\n”);
return(0);

}
return(1);

}

Notice that this simple program allows only a single binary semaphore per program, although we could
extend it to pass the semaphore variable if we need more semaphores. Normally, a single binary
semaphore is sufficient.

We can test our program by invoking it several times. The first time, we pass a parameter to tell the 
program that it’s responsible for creating and deleting the semaphore. The other invocations have no
parameter.
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Here’s some sample output, with two invocations of the program:

$ ./sem1 1 &
[1] 1082
$ ./sem1
OOXXOOXXOOXXOOXXOOXXOOOOXXOOXXOOXXOOXXXX
1083 - finished
1082 - finished
$

As you can see, the Os and Xs are properly paired, indicating that the critical section is being correctly
processed. If this doesn’t work on your particular system, you may have to use the command stty
–tostop before invoking the program to ensure that the background program generating tty output
does not cause a signal to be generated.

How It Works
The program starts by obtaining a semaphore identity from the (arbitrary) key that we’ve chosen using
the semget function. The IPC_CREAT flag causes the semaphore to be created if one is required.

If the program has a parameter, it’s responsible for initializing the semaphore, which it does with our
function set_semvalue, a simplified interface to the more general semctl function. It also uses the
presence of the parameter to determine which character it should print out. The sleep simply allows us
some time to invoke other copies of the program before this copy gets to execute too many times around
its loop. We use srand and rand to introduce some pseudo-random timing into the program.

The program then loops 10 times, with pseudo-random waits in its critical and noncritical sections.
The critical section is guarded by calls to our semaphore_p and semaphore_v functions, which are 
simplified interfaces to the more general semop function.

Before it deletes the semaphore, the program that was invoked with a parameter then waits to allow
other invocations to complete. If the semaphore isn’t deleted, it will continue to exist in the system even
though no programs are using it. In real programs, it’s very important to ensure you don’t unintention-
ally leave semaphores around after execution. It may cause problems next time you run the program,
and semaphores are a limited resource that you must conserve.

Shared Memory
Shared memory is the second of the three IPC facilities. It allows two unrelated processes to access the
same logical memory. Shared memory is a very efficient way of transferring data between two running
processes. Although the X/Open standard doesn’t require it, it’s probable that most implementations of
shared memory arrange for the memory being shared between different processes to be the same physical
memory.

Shared memory provides an efficient way of sharing and passing data between multiple processes. Since
it provides no synchronization facilities, we usually need to use some other mechanism to synchronize
access to the shared memory. Typically, we might use shared memory to provide efficient access to large
areas of memory and pass small messages to synchronize access to that memory.

566

Chapter 14

b544977 Ch14.qxd  12/1/03  8:56 AM  Page 566



Shared memory is a special range of addresses that is created by IPC for one process and appears in the
address space of that process. Other processes can then “attach” the same shared memory segment into
their own address space. All processes can access the memory locations just as if the memory had been
allocated by malloc. If one process writes to the shared memory, the changes immediately become visible
to any other process that has access to the same shared memory.

By itself, shared memory doesn’t provide any synchronization facilities. There are no automatic facilities
to prevent a second process from starting to read the shared memory before the first process has finished
writing to it. It’s the responsibility of the programmer to synchronize access. Figure 14-2 shows an illus-
tration of how shared memory works.

Figure 14-2

The arrows show the mapping of the logical address space of each process to the physical memory avail-
able. In practice, the situation is more complex because the available memory actually consists of a mix
of physical memory and memory pages that have been swapped out to disk.

Logical address space
for process A

Logical address space
for process B

Physical memory

Shared
Memory
Shared
Memory
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The functions for shared memory resemble those for semaphores:

#include <sys/shm.h>

void *shmat(int shm_id, const void *shm_addr, int shmflg);
int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
int shmdt(const void *shm_addr);
int shmget(key_t key, size_t size, int shmflg);

As with semaphores, the include files sys/types.h and sys/ipc.h are normally also required before
shm.h is included.

shmget
We create shared memory using the shmget function:

int shmget(key_t key, size_t size, int shmflg);

As with semaphores, the program provides key, which effectively names the shared memory segment,
and the shmget function returns a shared memory identifier that is used in subsequent shared memory
functions. There’s a special key value, IPC_PRIVATE, that creates shared memory private to the process.
You wouldn’t normally use this value, and, as with semaphores, you may find the private shared mem-
ory is not actually private on many Linux systems.

The second parameter, size, specifies the amount of memory required in bytes.

The third parameter, shmflg, consists of nine permission flags that are used in the same way as the mode
flags for creating files. A special bit defined by IPC_CREAT must be bitwise ORed with the permissions to
create a new shared memory segment. It’s not an error to have the IPC_CREAT flag set and pass the key of
an existing shared memory segment. The IPC_CREAT flag is silently ignored if it is not required.

The permission flags are very useful with shared memory because they allow a process to create shared
memory that can be written by processes owned by the creator of the shared memory but only read by
processes that other users have created. We can use this to provide efficient read-only access to data by
placing it in shared memory without the risk of its being changed by other users.

If the shared memory is successfully created, shmget returns a nonnegative integer, the shared memory
identifier. On failure, it returns –1.

shmat
When we first create a shared memory segment, it’s not accessible by any process. To enable access to the
shared memory, we must attach it to the address space of a process. We do this with the shmat function:

void *shmat(int shm_id, const void *shm_addr, int shmflg);

The first parameter, shm_id, is the shared memory identifier returned from shmget.

The second parameter, shm_addr, is the address at which the shared memory is to be attached to the
current process. This should almost always be a null pointer, which allows the system to choose the
address at which the memory appears.
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The third parameter, shmflg, is a set of bitwise flags. The two possible values are SHM_RND, which, in
conjunction with shm_addr, controls the address at which the shared memory is attached, and
SHM_RDONLY, which makes the attached memory read-only. It’s very rare to need to control the address
at which shared memory is attached; you should normally allow the system to choose an address for
you, as doing otherwise will make the application highly hardware-dependent.

If the shmat call is successful, it returns a pointer to the first byte of shared memory. On failure –1 is
returned.

The shared memory will have read or write access depending on the owner (the creator of the shared
memory), the permissions, and the owner of the current process. Permissions on shared memory are
similar to the permissions on files.

An exception to this rule arises if shmflg & SHM_RDONLY is true. Then the shared memory won’t be
writable, even if permissions would have allowed write access.

shmdt
The shmdt function detaches the shared memory from the current process. It takes a pointer to the address
returned by shmat. On success, it returns 0, on error –1. Note that detaching the shared memory doesn’t
delete it; it just makes that memory unavailable to the current process.

shmctl
The control functions for shared memory are (thankfully) somewhat simpler than the more complex
ones for semaphores:

int shmctl(int shm_id, int command, struct shmid_ds *buf);

The shmid_ds structure has at least the following members:

struct shmid_ds {
uid_t shm_perm.uid;
uid_t shm_perm.gid;
mode_t shm_perm.mode;

}

The first parameter, shm_id, is the identifier returned from shmget.

The second parameter, command, is the action to take. It can take three values:

Command Description

IPC_STAT Sets the data in the shmid_ds structure to reflect the values associated
with the shared memory.

IPC_SET Sets the values associated with the shared memory to those provided in the
shmid_ds data structure, if the process has permission to do so.

IPC_RMID Deletes the shared memory segment.
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The third parameter, buf, is a pointer to structure containing the modes and permissions for the shared
memory.

On success, it returns 0, on failure, –1. X/Open doesn’t specify what happens if you attempt to delete a
shared memory segment while it’s attached. Generally, a shared memory segment that is attached but
deleted continues to function until it has been detached from the last process. However, because this
behavior isn’t specified, it’s best not to rely on it.

Try It Out—Shared Memory
Now that we’ve seen the shared memory functions, we can write some code to use them. We’ll write a
pair of programs, shm1.c and shm2.c. The first (the consumer) will create a shared memory segment
and then display any data that is written into it. The second (the producer) will attach to an existing
shared memory segment and allow us to enter data into that segment.

1. First, we create a common header file to describe the shared memory we wish to pass around.
We call this shm_com.h.

#define TEXT_SZ 2048

struct shared_use_st {
int written_by_you;
char some_text[TEXT_SZ];

};

This defines a structure to use in both the consumer and producer programs. We use an int flag
written_by_you to tell the consumer when data has been written to the rest of the structure
and arbitrarily decide that we need to transfer up to 2k of text.

2. Our first program is for a consumer. After the headers the shared memory segment (the size of our
shared memory structure) is created with a call to shmget, with the IPC_CREAT bit specified:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include “shm_com.h”

int main()
{

int running = 1;
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
int shmid;

srand((unsigned int)getpid());    

shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);
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if (shmid == -1) {
fprintf(stderr, “shmget failed\n”);
exit(EXIT_FAILURE);

}

3. We now make the shared memory accessible to the program:

shared_memory = shmat(shmid, (void *)0, 0);
if (shared_memory == (void *)-1) {

fprintf(stderr, “shmat failed\n”);
exit(EXIT_FAILURE);

}

printf(“Memory attached at %X\n”, (int)shared_memory);

4. The next portion of the program assigns the shared_memory segment to shared_stuff,
which then prints out any text in written_by_you. The loop continues until end is found in
written_by_you. The call to sleep forces the consumer to sit in its critical section, which
makes the producer wait.

shared_stuff = (struct shared_use_st *)shared_memory;
shared_stuff->written_by_you = 0;
while(running) {

if (shared_stuff->written_by_you) {
printf(“You wrote: %s”, shared_stuff->some_text);
sleep( rand() % 4 ); /* make the other process wait for us ! */
shared_stuff->written_by_you = 0;
if (strncmp(shared_stuff->some_text, “end”, 3) == 0) {

running = 0;
}

}
}

5. Finally, the shared memory is detached and then deleted:

if (shmdt(shared_memory) == -1) {
fprintf(stderr, “shmdt failed\n”);
exit(EXIT_FAILURE);

}

if (shmctl(shmid, IPC_RMID, 0) == -1) {
fprintf(stderr, “shmctl(IPC_RMID) failed\n”);
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

6. Our second program, shm2.c, is the producer; it allows us to enter data for consumers. It’s
very similar to shm1.c and looks like this:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
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#include <string.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include “shm_com.h”

int main()
{

int running = 1;
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
char buffer[BUFSIZ];
int shmid;

shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);

if (shmid == -1) {
fprintf(stderr, “shmget failed\n”);
exit(EXIT_FAILURE);

}
shared_memory = shmat(shmid, (void *)0, 0);
if (shared_memory == (void *)-1) {

fprintf(stderr, “shmat failed\n”);
exit(EXIT_FAILURE);

}

printf(“Memory attached at %X\n”, (int)shared_memory);

shared_stuff = (struct shared_use_st *)shared_memory;
while(running) {

while(shared_stuff->written_by_you == 1) {
sleep(1);            
printf(“waiting for client...\n”);

}
printf(“Enter some text: “);
fgets(buffer, BUFSIZ, stdin);

strncpy(shared_stuff->some_text, buffer, TEXT_SZ);
shared_stuff->written_by_you = 1;

if (strncmp(buffer, “end”, 3) == 0) {
running = 0;

}
}

if (shmdt(shared_memory) == -1) {
fprintf(stderr, “shmdt failed\n”);
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}
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When we run these programs, we get sample output such as this:

$ ./shm1 &
[1] 294
Memory attached at 40017000
$ ./shm2
Memory attached at 40017000
Enter some text: hello
You wrote: hello
waiting for client...
waiting for client...
Enter some text: Linux!
You wrote: Linux!
waiting for client...
waiting for client...
waiting for client...
Enter some text: end
You wrote: end
$

How It Works
The first program, shm1, creates the shared memory segment and then attaches it to its address space. We
impose a structure, shared_use_st on the first part of the shared memory. This has a flag, written_
by_you, that is set when data is available. When this flag is set, the program reads the text, prints it out,
and clears the flag to show it has read the data. We use the special string, end, to allow a clean exit from
the loop. The program then detaches the shared memory segment and deletes it.

The second program, shm2, gets and attaches the same shared memory segment, since it uses the same
key, 1234. It then prompts the user to enter some text. If the flag written_by_you is set, shm2 knows
that the client process hasn’t yet read the previous data and waits for it. When the other process clears
this flag, shm2 writes the new data and sets the flag. It also uses the magic string end to terminate and
detach the shared memory segment.

Notice that we had to provide our own, rather crude synchronization flag, written_by_you, which
involves a very inefficient busy wait (by continuously looping). In real programs we would have passed
a message, either using a pipe or IPC messages (which we’ll discuss shortly), generated a signal, or used
a semaphore to provide synchronization between the reading and writing parts of the application.

Message Queues
We’ll now take a look at the third and final System V IPC facility: message queues. In many ways, message
queues are like named pipes, but without the complexity associated with opening and closing the pipe.
However, using messages doesn’t get us away from the problems that we have with named pipes, such
as blocking on full pipes.

Message queues provide a reasonably easy and efficient way of passing data between two unrelated pro-
cesses. They have the advantage over named pipes that the message queue exists independently of both
the sending and receiving processes, which removes some of the difficulties that occur in synchronizing
the opening and closing of named pipes.
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Message queues provide a way of sending a block of data from one process to another. Additionally,
each block of data is considered to have a type, and a receiving process may receive blocks of data hav-
ing different type values independently. The good news is that we can almost totally avoid the synchro-
nization and blocking problems of named pipes by sending messages. Even better, we can “look ahead”
for messages that are urgent in some way. The bad news is that, just like pipes, there’s a maximum size
limit imposed on each block of data and also a limit on the maximum total size of all blocks on all
queues throughout the system.

While stating that these limits are imposed, the X/Open specification offers no way of discovering what
the limits are, except that exceeding them is a valid reason for some message queue functions to fail. Linux
does have two defines, MSGMAX and MSGMNB, which define the maximum size in bytes of an individual
message and the maximum size of a queue, respectively. These macros may be different or, for that matter,
not even present on other systems.

The message queue function definitions are

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);
int msgget(key_t key, int msgflg);
int msgrcv(int msqid, void *msg_ptr, size_t msg_sz, long int msgtype, int msgflg);
int msgsnd(int msqid, const void *msg_ptr, size_t msg_sz, int msgflg);

As with semaphores and shared memory, the include files sys/types.h and sys/ipc.h are normally
also required.

msgget
We create and access a message queue using the msgget function:

int msgget(key_t key, int msgflg);

The program must provide a key value that, as with other IPC facilities, names a particular message queue.
The special value IPC_PRIVATE creates a private queue, which in theory is accessible only by the current
process. As with semaphores and messages, on some Linux systems the message queue may not actually
be private. Since a private queue has very little purpose, that’s not a significant problem. As before, the sec-
ond parameter, msgflg, consists of nine permission flags. A special bit defined by IPC_CREAT must be bit-
wise ORed with the permissions to create a new message queue. It’s not an error to set the IPC_CREAT flag
and give the key of an existing message queue. The IPC_CREAT flag is silently ignored if the message
queue already exists.

The msgget function returns a positive number, the queue identifier, on success or –1 on failure.

msgsnd
The msgsnd function allows us to add a message to a message queue:

int msgsnd(int msqid, const void *msg_ptr, size_t msg_sz, int msgflg);
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The structure of the message is constrained in two ways. First, it must be smaller than the system limit,
and second, it must start with a long int, which will be used as a message type in the receive function.
When you’re using messages, it’s best to define your message structure something like this:

struct my_message {
long int message_type;
/* The data you wish to transfer */

}

Since the message_type is used in message reception, you can’t simply ignore it. You must declare your
data structure to include it, and it’s also wise to initialize it, so that it contains a known value.

The first parameter, msqid, is the message queue identifier returned from a msgget function.

The second parameter, msg_ptr, is a pointer to the message to be sent, which must start with a long
int type as described previously.

The third parameter, msg_sz, is the size of the message pointed to by msg_ptr. This size must not
include the long int message type.

The fourth parameter, msgflg, controls what happens if either the current message queue is full or the
systemwide limit on queued messages has been reached. If msgflg has the IPC_NOWAIT flag set, the
function will return immediately without sending the message and the return value will be –1. If the
msgflg has the IPC_NOWAIT flag clear, the sending process will be suspended, waiting for space to
become available in the queue.

On success, the function returns 0, on failure –1. If the call is successful, a copy of the message data has
been taken and placed on the message queue.

msgrcv
The msgrcv function retrieves messages from a message queue:

int msgrcv(int msqid, void *msg_ptr, size_t msg_sz, long int msgtype, int msgflg);

The first parameter, msqid, is the message queue identifier returned from a msgget function.

The second parameter, msg_ptr, is a pointer to the message to be received, which must start with a long
int type as described above in the msgsnd function.

The third parameter, msg_sz, is the size of the message pointed to by msg_ptr, not including the long
int message type.

The fourth parameter, msgtype, is a long int, which allows a simple form of reception priority to be
implemented. If msgtype has the value 0, the first available message in the queue is retrieved. If it’s
greater than zero, the first message with the same message type is retrieved. If it’s less than zero, the first
message that has a type the same as or less than the absolute value of msgtype is retrieved.

This sounds more complicated than it actually is in practice. If you simply want to retrieve messages in
the order in which they were sent, set msgtype to 0. If you want to retrieve only messages with a specific
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message type, set msgtype equal to that value. If you want to receive messages with a type of n or
smaller, set msgtype to -n.

The fifth parameter, msgflg, controls what happens when no message of the appropriate type is waiting
to be received. If the IPC_NOWAIT flag in msgflg is set, the call will return immediately with a return
value of –1. If the IPC_NOWAIT flag of msgflg is clear, the process will be suspended, waiting for an
appropriate type of message to arrive.

On success, msgrcv returns the number of bytes placed in the receive buffer, the message is copied into the
user-allocated buffer pointed to by msg_ptr, and the data is deleted from the message queue. It returns –1
on error.

msgctl
The final message queue function is msgctl, which is very similar to that of the control function for
shared memory.

int msgctl(int msqid, int command, struct msqid_ds *buf);

The msqid_ds structure has at least the following members:

struct msqid_ds {
uid_t  msg_perm.uid;
uid_t  msg_perm.gid
mode_t msg_perm.mode;

}

The first parameter, msqid, is the identifier returned from msgget.

The second parameter, command, is the action to take. It can take three values:

Command Description

IPC_STAT Sets the data in the msqid_ds structure to reflect the values associated
with the message queue.

IPC_SET If the process has permission to do so, this sets the values associated with
the message queue to those provided in the msqid_ds data structure.

IPC_RMID Deletes the message queue.

0 is returned on success, –1 on failure. If a message queue is deleted while a process is waiting in a
msgsnd or msgrcv function, the send or receive function will fail.

Try It Out—Message Queues
Now that we’ve seen the definitions for message queues, we can see how they work in practice. As before,
we’ll write two programs: msg1.c to receive and msg2.c to send. We’ll allow either program to create the
message queue, but use the receiver to delete it after it receives the last message.
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1. Here’s the receiver program:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

struct my_msg_st {
long int my_msg_type;
char some_text[BUFSIZ];

};

int main()
{

int running = 1;
int msgid;
struct my_msg_st some_data;
long int msg_to_receive = 0;

2. First, we set up the message queue:

msgid = msgget((key_t)1234, 0666 | IPC_CREAT);

if (msgid == -1) {
fprintf(stderr, “msgget failed with error: %d\n”, errno);
exit(EXIT_FAILURE);

}

3. Then the messages are retrieved from the queue until an end message is encountered. Finally,
the message queue is deleted:

while(running) {
if (msgrcv(msgid, (void *)&some_data, BUFSIZ,

msg_to_receive, 0) == -1) {
fprintf(stderr, “msgrcv failed with error: %d\n”, errno);
exit(EXIT_FAILURE);

}
printf(“You wrote: %s”, some_data.some_text);
if (strncmp(some_data.some_text, “end”, 3) == 0) {

running = 0;
}

}

if (msgctl(msgid, IPC_RMID, 0) == -1) {
fprintf(stderr, “msgctl(IPC_RMID) failed\n”);
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}
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4. The sender program is very similar to msg1.c. In the main setup, delete the msg_to_receive
declaration, and replace it with buffer[BUFSIZ]. Remove the message queue delete, and make
the following changes to the running loop. We now have a call to msgsnd to send the entered
text to the queue.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAX_TEXT 512

struct my_msg_st {
long int my_msg_type;
char some_text[MAX_TEXT];

};

int main()
{

int running = 1;
struct my_msg_st some_data;
int msgid;

char buffer[BUFSIZ];

msgid = msgget((key_t)1234, 0666 | IPC_CREAT);

if (msgid == -1) {
fprintf(stderr, “msgget failed with error: %d\n”, errno);
exit(EXIT_FAILURE);

}

while(running) {

printf(“Enter some text: “);
fgets(buffer, BUFSIZ, stdin);
some_data.my_msg_type = 1;
strcpy(some_data.some_text, buffer);

if (msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == -1) {
fprintf(stderr, “msgsnd failed\n”);
exit(EXIT_FAILURE);

}
if (strncmp(buffer, “end”, 3) == 0) {

running = 0;
}

}

exit(EXIT_SUCCESS);
}
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Unlike in the pipes example, there’s no need for the processes to provide their own synchronization
method. This is a significant advantage of messages over pipes.

Providing there’s room in the message queue, the sender can create the queue, put some data into the queue,
and then exit before the receiver even starts. We’ll run the sender, msg2, first. Here’s some sample output:

$ ./msg2
Enter some text: hello
Enter some text: How are you today?
Enter some text: end
$ ./msg1
You wrote: hello
You wrote: How are you today?
You wrote: end
$

How It Works
The sender program creates a message queue with msgget; then it adds messages to the queue with
msgsnd. The receiver obtains the message queue identifier with msgget and then receives messages
until the special text end is received. It then tidies up by deleting the message queue with msgctl.

The CD Database Application
We’re now in a position to modify our CD database application to use the IPC facilities that we’ve seen
in this chapter.

We could use many different combinations of the three IPC facilities, but because the information we
need to pass is quite small, it’s sensible to implement the passing of requests and responses directly
using message queues.

If the amounts of data that we needed to pass were large, we could have considered passing the actual
data in shared memory and using either semaphores or messages to pass a “token” to inform the other
process that data was available in shared memory.

The message queue interface removes the problem that we had in Chapter 11, where we needed both
processes to have the pipe open while data was passed. Using message queues allows one process to put
messages in the queue, even if that process is currently the only user of the queue.

The only significant decision we need to make is how to return answers to clients. A simple choice would
be to have one queue for the server and one queue for each client. If there were a large number of simulta-
neous clients, this could cause problems by requiring a large number of message queues. By using the
message ID field in the message, we can allow all the clients to use a single queue and “address” response
messages to particular client processes by using the client process ID in the message. Each client can then
retrieve messages addressed only to itself, leaving messages for other clients in the queue.

To convert our CD application to use IPC facilities, we need to replace only the file pipe_imp.c from
the code accompanying Chapter 13. In the following pages, we’ll describe the principal sections of the
replacement file, ipc_imp.c.
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Try It Out—Revising the Server Functions
1. First, we include the appropriate headers, declare some message queue keys, and define a struc-

ture to hold our message data:

#include “cd_data.h”
#include “cliserv.h”

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define SERVER_MQUEUE 1234
#define CLIENT_MQUEUE 4321

struct msg_passed {
long int msg_key; /* used for client pid */
message_db_t real_message;

};

2. Two variables with file scope hold the two queue identifiers returned from the msgget function:

static int serv_qid = -1;
static int cli_qid = -1;

3. We make the server responsible for creating both message queues:

int server_starting()
{

#if DEBUG_TRACE
printf(“%d :- server_starting()\n”,  getpid());

#endif

serv_qid = msgget((key_t)SERVER_MQUEUE, 0666 | IPC_CREAT);
if (serv_qid == -1) return(0);

cli_qid = msgget((key_t)CLIENT_MQUEUE, 0666 | IPC_CREAT);
if (cli_qid == -1) return(0);

return(1);
}

4. The server is also responsible for tidying up if it ever exits. When the server ends, we set our
file-scope variables to illegal values. This will catch any bugs if the server attempts to send mes-
sages after it has called server_ending.

void server_ending()
{

#if DEBUG_TRACE
printf(“%d :- server_ending()\n”,  getpid());

#endif

(void)msgctl(serv_qid, IPC_RMID, 0);
(void)msgctl(cli_qid, IPC_RMID, 0);
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serv_qid = -1;
cli_qid = -1;

}

5. The server read function reads a message of any type (that is, from any client) from the queue,
and it returns the data part (ignoring the type) of the message.

int read_request_from_client(message_db_t *rec_ptr)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- read_request_from_client()\n”,  getpid());
#endif

if (msgrcv(serv_qid, (void *)&my_msg, sizeof(*rec_ptr), 0, 0) == -1) {
return(0);

}
*rec_ptr = my_msg.real_message;
return(1);

}

6. Sending a response uses the client process ID that was stored in the request to address the message:

int send_resp_to_client(const message_db_t mess_to_send)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- send_resp_to_client()\n”,  getpid());
#endif

my_msg.real_message = mess_to_send;
my_msg.msg_key = mess_to_send.client_pid;

if (msgsnd(cli_qid, (void *)&my_msg, sizeof(mess_to_send), 0) == -1) {
return(0);

}
return(1);

}

Try It Out—Revising the Client Functions
1. When the client starts, it needs to find the server and client queue identifiers. The client doesn’t

create the queues. This function will fail if the server isn’t running, as the message queues won’t
exist.

int client_starting()
{

#if DEBUG_TRACE
printf(“%d :- client_starting\n”,  getpid());

#endif

serv_qid = msgget((key_t)SERVER_MQUEUE, 0666);
if (serv_qid == -1) return(0);
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cli_qid = msgget((key_t)CLIENT_MQUEUE, 0666);
if (cli_qid == -1) return(0);
return(1);

}

2. As with the server, when the client ends, we set our file-scope variables to illegal values.
This will catch any bugs where the client attempts to send messages after it has called
client_ending.

void client_ending()
{

#if DEBUG_TRACE
printf(“%d :- client_ending()\n”,  getpid());

#endif

serv_qid = -1;
cli_qid = -1;

}

3. To send a message to the server, we store the data inside our structure. Notice that we must set
the message key. As 0 is an illegal value for the key, leaving the key undefined would mean that it
takes an (apparently) random value, so this function could occasionally fail if the value happens
to be 0.

int send_mess_to_server(message_db_t mess_to_send)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- send_mess_to_server()\n”,  getpid());
#endif

my_msg.real_message = mess_to_send;
my_msg.msg_key = mess_to_send.client_pid;

if (msgsnd(serv_qid, (void *)&my_msg, sizeof(mess_to_send), 0) == -1) {
perror(“Message send failed”);
return(0);

}
return(1);

}

4. When the client retrieves a message from the server, it uses its process ID to receive only messages
addressed to itself, ignoring any messages for other clients.

int read_resp_from_server(message_db_t *rec_ptr)
{

struct msg_passed my_msg;
#if DEBUG_TRACE

printf(“%d :- read_resp_from_server()\n”,  getpid());
#endif

if (msgrcv(cli_qid, (void *)&my_msg, sizeof(*rec_ptr), getpid(), 0) == -1) {
return(0);

}
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*rec_ptr = my_msg.real_message;
return(1);

}

5. To retain complete compatibility with pipe_imp.c, we need to define an extra four functions.
In our new program, however, the functions are empty. The operations they implemented when
using pipes are simply not needed anymore.

int start_resp_to_client(const message_db_t mess_to_send)
{

return(1);
}

void end_resp_to_client(void)
{
}

int start_resp_from_server(void)
{

return(1);
}

void end_resp_from_server(void)
{
}

The conversion of the application to message queues illustrates the power of IPC message queues. We
require fewer functions, and even those we do need are much smaller than they were previously.

IPC Status Commands
Although they’re not required for X/Open compliance, most Linux systems provide a set of commands
that allow command line access to IPC information, and to tidy up stray IPC facilities. These are the
ipcs and ipcrm commands, which are very useful when you’re developing programs.

One of the irritations of the IPC facilities is that a poorly written program, or a program that fails for
some reason, can leave its IPC resources (such as data in a message queue) loitering on the system long
after the program completes. This can cause a new invocation of the program to fail, because the pro-
gram expects to start with a clean system, but actually finds some leftover resource. The status (ipcs)
and remove (ipcrm) commands provide a way of checking and tidying up IPC facilities.

Semaphores
To examine the state of semaphores on the system, use the ipcs -s command. If any semaphores are
present, the output will have this form:

$ ./ipcs -s
——— Semaphore Arrays ————
semid     owner     perms     nsems     status
768       rick      666       1
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You can use the ipcrm command to remove any semaphores accidentally left by programs. To delete the
preceding semaphore, the command (on Linux) is

$ ./ipcrm -s 768

Some older Linux systems used to use a slightly different syntax:

$ ./ipcrm sem 768

but that style is now deprecated. Check the manual pages for your system to see which format is valid
on your particular system.

Shared Memory
Like semaphores, many systems provide command line programs for accessing the details of shared
memory. These are ipcs -m and ipcrm -m <id> (or ipcrm shm <id>).

Here’s some sample output from ipcs -m:

$ ipcs -m

——— Shared Memory Segments ————
shmid     owner     perms     bytes     nattch    status
384       rick      666       4096      2

This shows a single shared memory segment of 4 kB attached by two processes.

The ipcrm -m <id> command allows shared memory to be removed. This is sometimes useful when a
program has failed to tidy up shared memory.

Message Queues
For message queues the commands are ipcs -q and ipcrm -q <id> (or ipcrm msg <id>).

Here’s some sample output from ipcs -q:

$ ipcs -q

——— Message Queues ————
msqid     owner     perms     used-bytes  messages
384       rick      666       2048        2

This shows two messages, with a total size of 2,048 bytes in a message queue.

The ipcrm -q <id> command allows a message queue to be removed.
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Summary
In this chapter, we’ve looked at the three inter-process communication facilities that first became widely
available in UNIX System V.2 and have been available in Linux from the early versions. These facilities
are semaphores, shared memory, and message queues. We’ve seen the sophisticated functionality that
they offer and how, once these functions are understood, they offer a powerful solution to many inter-
process communication requirements.
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15
Sockets

In this chapter, we’ll look at yet another method of process communication, but one with a crucial
difference from those we’ve discussed in Chapters 13 and 14. Until now, all the facilities we’ve dis-
cussed have relied on shared resources on a single computer system. The resource varies; it can be
file system space, shared physical memory, or message queues, but only processes running on a
single machine can use them.

The Berkeley versions of UNIX introduced a new communication tool, the socket interface, which is
an extension of the concept of a pipe, which we covered in Chapter 13. Socket interfaces are avail-
able on Linux. You can use sockets in much the same way as pipes, but they include communication
across a network of computers. A process on one machine can use sockets to communicate with a
process on another, which allows for client/server systems that are distributed across a network.
Sockets may also be used between processes on the same machine.

Also, the sockets interface has been made available for Windows via a publicly available specifica-
tion called Windows Sockets, or WinSock. Windows socket services are provided by a Winsock.dll
system file. Thus, Windows programs can communicate across a network to Linux and UNIX com-
puters and vice versa providing client/server systems. Although the programming interface for
WinSock isn’t quite the same as UNIX sockets, it still has sockets as its basis.

We can’t cover the extensive Linux networking capabilities in a single chapter, so you’ll find here a
description of the principal programmatic networking interfaces. These should allow you to write
your own network programs. Specifically, we’ll look at the following:

❑ How a socket connection operates

❑ Socket attributes, addresses, and communications

❑ Network information and the Internet daemon (inetd)

❑ Clients and servers
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What Is a Socket?
A socket is a communication mechanism that allows client/server systems to be developed either locally,
on a single machine, or across networks. Linux functions such as printing and network utilities such as
rlogin and ftp usually use sockets to communicate.

Sockets are created and used differently from pipes because they make a clear distinction between client
and server. The socket mechanism can implement multiple clients attached to a single server.

Socket Connections
You can think of socket connections as telephone calls into a busy building. A call comes into an organi-
zation and is answered by a receptionist who puts the call through to the correct department (the server
process) and from there to the right person (the server socket). Each incoming call (client) is routed to an
appropriate end point and the intervening operators are free to deal with further calls. Before you look
at the way socket connections are established in Linux systems, you need to understand how they oper-
ate for socket applications that maintain a connection.

First of all, a server application creates a socket, which like a file descriptor is a resource assigned to the
server process and that process alone. The server creates it using the system call socket, and it can’t be
shared with other processes.

Next, the server process gives the socket a name. Local sockets are given a filename in the Linux file sys-
tem, often to be found in /tmp or /usr/tmp. For network sockets, the filename will be a service identi-
fier (port number/access point) relevant to the particular network to which the clients can connect. This
identifier allows Linux to route incoming connections specifying a particular port number to the correct
server process. A socket is named using the system call bind. The server process then waits for a client
to connect to the named socket. The system call, listen, creates a queue for incoming connections. The
server can accept them using the system call accept.

When the server calls accept, a new socket is created that is distinct from the named socket. This new
socket is used solely for communication with this particular client. The named socket remains for further
connections from other clients. If the server is written appropriately, it can take advantage of multiple
connections. For a simple server, further clients wait on the listen queue until the server is ready again.

The client side of a socket-based system is more straightforward. The client creates an unnamed socket
by calling socket. It then calls connect to establish a connection with the server by using the server’s
named socket as an address.

Once established, sockets can be used like low-level file descriptors, providing two-way data 
communications.

Try It Out—A Simple Local Client
Here’s an example of a very simple socket client program, client1.c. It creates an unnamed socket and
connects it to a server socket called server_socket. We’ll cover the details of the socket system call a
little later, after we’ve discussed some addressing issues.
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1. Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <unistd.h>

int main()
{

int sockfd;
int len;
struct sockaddr_un address;
int result;
char ch = ‘A’;

2. Create a socket for the client.

sockfd = socket(AF_UNIX, SOCK_STREAM, 0);

3. Name the socket as agreed with the server.

address.sun_family = AF_UNIX;
strcpy(address.sun_path, “server_socket”);
len = sizeof(address);

4. Connect our socket to the server’s socket.

result = connect(sockfd, (struct sockaddr *)&address, len);

if(result == -1) {
perror(“oops: client1”);
exit(1);

}

5. You can now read and write via sockfd.

write(sockfd, &ch, 1);
read(sockfd, &ch, 1);
printf(“char from server = %c\n”, ch);
close(sockfd);
exit(0);

}

This program fails when you run it because you haven’t yet created the server-side named socket. (The
exact error message may differ from system to system.)

$ ./client1
oops: client1: Connection refused
$
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Try It Out—A Simple Local Server
Here’s a very simple server program, server1.c, that accepts connections from our client. It creates the
server socket, binds it to a name, creates a listen queue, and accepts connections.

1. Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <unistd.h>

int main()
{

int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_un server_address;
struct sockaddr_un client_address;

2. Remove any old sockets and create an unnamed socket for the server.

unlink(“server_socket”);
server_sockfd = socket(AF_UNIX, SOCK_STREAM, 0);

3. Name the socket.

server_address.sun_family = AF_UNIX;
strcpy(server_address.sun_path, “server_socket”);
server_len = sizeof(server_address);
bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

4. Create a connection queue and wait for clients.

listen(server_sockfd, 5);
while(1) {

char ch;

printf(“server waiting\n”);

5. Accept a connection.

client_len = sizeof(client_address);
client_sockfd = accept(server_sockfd, 

(struct sockaddr *)&client_address, &client_len);

6. Read and write to client on client_sockfd.

read(client_sockfd, &ch, 1);
ch++;
write(client_sockfd, &ch, 1);
close(client_sockfd);

}
}
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The server program in this example can serve only one client at a time. It just reads a character from the
client, increments it, and writes it back. In more sophisticated systems, where the server has to perform
more work on the client’s behalf, this wouldn’t be acceptable, as other clients would be unable to con-
nect until the server had finished. You’ll see a couple of ways to allow multiple connections later.

When you run the server program, it creates a socket and waits for connections. If you start it in the
background so that it runs independently, you can then start clients in the foreground.

$ server1 &
[1] 1094
$ server waiting

As it waits for connections, the server prints a message. In the preceding example, the server waits for a
file system socket and you can see it with the normal ls command.

Remember that it’s polite to remove a socket when you’ve finished with it, even if the program terminates
abnormally via a signal.

$ ls -lF server_socket
srwxr-xr-x    1 neil     users           0 2003-06-21 13:42 server_socket=

The device type is “socket,” shown by the s at the front of the permission and the = at the end. The socket
has been created just as an ordinary file would be, with permissions modified by the current umask. If you
use the ps command, you can see the server running in the background. It’s shown sleeping (STAT is S)
and is therefore not consuming CPU resources.

$ ps lx
F   UID   PID  PPID PRI  NI   VSZ  RSS WCHAN  STAT TTY        TIME COMMAND
0   500  3165  2154  15   0  1344  280 schedu S    pts/1      0:00 ./server1

Now, when you run the client program, you are successful in connecting to the server. Since the server
socket exists, you can connect to it and communicate with the server.

$ ./client1
server waiting
char from server = B
$

The output from the server and the client get mixed on our terminal, but you can see that the server has
received a character from the client, incremented it, and returned it. The server then continues and waits
for the next client. If you run several clients together, they will be served in sequence, although the out-
put you see may be more mixed up.

$ ./client1 & ./client1 & ./client1 &
[2] 1106
[3] 1107
[4] 1108
server waiting
char from server = B
server waiting
char from server = B
server waiting
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char from server = B
server waiting
[2]   Done                    client1
[3]-  Done                    client1
[4]+  Done                    client1
$ 

Socket Attributes
To fully understand the system calls used in this example, you need to learn a little about UNIX 
networking.

Sockets are characterized by three attributes: domain, type, and protocol. They also have an address used
as their name. The formats of the addresses vary depending on the domain, also known as the protocol
family. Each protocol family can use one or more address families to define the address format.

Socket Domains
Domains specify the network medium that the socket communication will use. The most common socket
domain is AF_INET, which refers to Internet networking that’s used on many Linux local area networks
and, of course, the Internet itself. The underlying protocol, Internet Protocol (IP), which only has one address
family, imposes a particular way of specifying computers on a network. This is called the IP address. 

Although names almost always refer to networked machines on the Internet, these are translated into
lower-level IP addresses. An example IP address is 192.168.1.99. All IP addresses are represented by four
numbers, each less than 256, a so-called dotted quad. When a client connects across a network via sockets,
it needs the IP address of the server computer. 

There may be several services available at the server computer. A client can address a particular service
on a networked machine by using an IP port. A port is identified within the system by assigning a
unique 16-bit integer and externally by the combination of IP address and port number. The sockets are
communication end points that must be bound to ports before communication is possible.

Servers wait for connections on particular ports. Well-known services have allocated port numbers that
are used by all Linux and UNIX machines. These are usually, but not always, numbers less than 1024.
Examples are the printer spooler (515), rlogin (513), ftp (21), and httpd (80). The last of these is the
server for the World Wide Web (WWW). Usually, port numbers less than 1024 are reserved for system
services and may only be served by processes with superuser privileges. X/Open defines a constant in
netdb.h, IPPORT_RESERVED, to stand for the highest reserved port number.

Because there is a standard set of port numbers for standard services, computers can easily connect
to each other without having to establish the correct port. Local services may use nonstandard port
addresses. The domain in our first example is the UNIX file system domain, AF_UNIX, which can be
used by sockets based on a single computer that perhaps isn’t networked. When this is so, the underly-
ing protocol is file input/output and the addresses are absolute filenames. The address that you used for
the server socket was server_socket, which you saw appear in the current directory when you ran the
server application.

Other domains that might be used include AF_ISO for networks based on ISO standard protocols and
AF_XNS for the Xerox Network System. We won’t cover these here. 
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Socket Types
A socket domain may have a number of different ways of communicating, each of which might have 
different characteristics. This isn’t an issue with AF_UNIX domain sockets, which provide a reliable two-
way communication path. In networked domains, however, you need to be aware of the characteristics
of the underlying network.

Internet protocols provide two distinct levels of service: streams and datagrams. 

Stream Sockets
Stream sockets (in some ways similar to standard input/output streams) provide a connection that is a
sequenced and reliable two-way byte stream. Thus, data sent is guaranteed not to be lost, duplicated, or
reordered without an indication that an error has occurred. Large messages are fragmented, transmitted,
and reassembled. This is like a file stream, as it accepts large amounts of data and writes it to the low-
level disk in smaller blocks. Stream sockets have predictable behavior.

Stream sockets, specified by the type SOCK_STREAM, are implemented in the AF_INET domain by
TCP/IP connections. They are also the usual type in the AF_UNIX domain. We’ll concentrate on
SOCK_STREAM sockets in this chapter because they are more commonly used in programming network
applications.

Datagram Sockets
In contrast, a datagram socket, specified by the type SOCK_DGRAM, doesn’t establish and maintain a con-
nection. There is also a limit on the size of a datagram that can be sent. It’s transmitted as a single net-
work message that may get lost, duplicated, or arrive out of sequence—ahead of datagrams sent after it.

Datagram sockets are implemented in the AF_INET domain by UDP/IP connections and provide an
unsequenced, unreliable service. However, they are relatively inexpensive in terms of resources, since
network connections need not be maintained. They’re fast because there is no associated connection
setup time. UDP stands for User Datagram Protocol.

Datagrams are useful for “single-shot” inquiries to information services, for providing regular status
information, or for performing low-priority logging. They have the advantage that the death of a server
doesn’t necessarily require a client restart. Because datagram-based servers usually retain no connection
information, they can be stopped and restarted without unduly disturbing their clients.

For now, we leave the topic of datagrams; see the “Datagrams” section near the end of this chapter for
more information on datagrams.

TCP/IP stands for Transmission Control Protocol/Internet Protocol. IP is the low-level
protocol for packets that provides routing through the network from one computer to
another. TCP provides sequencing, flow control, and retransmission to ensure that
large data transfers arrive with all of the data present and correct or with an appropri-
ate error condition reported.
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Socket Protocols
Where the underlying transport mechanism allows for more than one protocol to provide the requested
socket type, you can select a specific protocol for a socket. In this chapter, we’ll concentrate on UNIX net-
work and file system sockets, which don’t require you to choose a protocol other than the default.

Creating a Socket
The socket system call creates a socket and returns a descriptor that can be used for accessing the
socket. 

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The socket created is one end point of a communication channel. The domain parameter specifies the
address family, the type parameter specifies the type of communication to be used with this socket, and
protocol specifies the protocol to be employed. 

Domains include the following:

AF_UNIX UNIX internal (file system sockets)

AF_INET ARPA Internet protocols (UNIX network sockets)

AF_ISO ISO standard protocols

AF_NS Xerox Network Systems protocols

AF_IPX Novell IPX protocol

AF_APPLETALK Appletalk DDS

The most common socket domains are AF_UNIX, which is used for local sockets implemented via the
UNIX and Linux file systems, and AF_INET, which is used for UNIX network sockets. The AF_INET
sockets may be used by programs communicating across a TCP/IP network including the Internet. The
Windows Winsock interface also provides access to this socket domain.

The socket parameter type specifies the communication characteristics to be used for the new socket.
Possible values include SOCK_STREAM and SOCK_DGRAM.

SOCK_STREAM is a sequenced, reliable, connection-based two-way byte stream. For an AF_INET domain
socket, this is provided by default by a TCP connection that is established between the two end points of
the stream socket when it’s connected. Data may be passed in both directions along the socket connec-
tion. The TCP protocols include facilities to fragment and reassemble long messages and to retransmit
any parts that may be lost in the network.

SOCK_DGRAM is a datagram service. You can use this socket to send messages of a fixed (usually small) max-
imum size, but there’s no guarantee that the message will be delivered or that messages won’t be reordered
in the network. For AF_INET sockets, this type of communication is provided by UDP datagrams.
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The protocol used for communication is usually determined by the socket type and domain. There is
normally no choice. The protocol parameter is used where there is a choice. 0 selects the default proto-
col, which we’ll use in all our examples.

The socket system call returns a descriptor that is in many ways similar to a low-level file descriptor.
When the socket has been connected to another end-point socket, you may use the read and write sys-
tem calls with the descriptor to send and receive data on the socket. The close system call is used to
end a socket connection.

Socket Addresses
Each socket domain requires its own address format. For an AF_UNIX socket, the address is described by
a structure, sockaddr_un, defined in the sys/un.h include file.

struct sockaddr_un {
sa_family_t   sun_family;    /* AF_UNIX */
char          sun_path[];    /* pathname */

};

So that addresses of different types may be passed to the socket-handling system calls, each address for-
mat is described by a similar structure that begins with a field (in this case, sun_family) that specifies
the address type (the socket domain). In the AF_UNIX domain, the address is specified by a filename in
the sun_path field of the structure.

On current Linux systems, the type sa_family_t, defined by X/Open as being declared in sys/un.h, is
taken to be a short. Also, the pathname specified in sun_path is limited in size (Linux specifies 108
characters; others may use a manifest constant such as UNIX_MAX_PATH). Because address structures
may vary in size, many socket calls require or provide as an output a length to be used for copying the
particular address structure.

In the AF_INET domain, the address is specified using a structure called sockaddr_in, defined in
netinet/in.h, which contains at least these members:

struct sockaddr_in {
short int             sin_family;  /* AF_INET */
unsigned short int    sin_port;    /* Port number */
struct in_addr        sin_addr;    /* Internet address */

};

The IP address structure, in_addr, is defined as follows:

struct in_addr {
unsigned long int     s_addr;

};

The four bytes of an IP address constitute a single 32-bit value. An AF_INET socket is fully described by
its domain, IP address, and port number. From an application’s point of view, all sockets act like file
descriptors and are addressed by a unique integer value.
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Naming a Socket
To make a socket (as created by a call to socket) available for use by other processes, a server program
needs to give the socket a name. Thus, AF_UNIX sockets are associated with a file system pathname, as
you saw in the server1 example. AF_INET sockets are associated with an IP port number.

#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address, size_t address_len);

The bind system call assigns the address specified in the parameter, address, to the unnamed socket
associated with the file descriptor socket. The length of the address structure is passed as address_len.

The length and format of the address depend on the address family. A particular address structure
pointer will need to be cast to the generic address type (struct sockaddr *) in the call to bind.

On successful completion, bind returns 0. If it fails, it returns -1 and sets errno to one of the following.

EBADF The file descriptor is invalid.

ENOTSOCK The file descriptor doesn’t refer to a socket.

EINVAL The file descriptor refers to an already-named socket.

EADDRNOTAVAIL The address is unavailable.

EADDRINUSE The address has a socket bound to it already.

There are some more values for AF_UNIX sockets:

EACCESS Can’t create the file system name due to permissions.

ENOTDIR, ENAMETOOLONG Indicates a poor choice of filename.

Creating a Socket Queue
To accept incoming connections on a socket, a server program must create a queue to store pending
requests. It does this using the listen system call.

#include <sys/socket.h>

int listen(int socket, int backlog);

A Linux system may limit the maximum number of pending connections that may be held in a queue.
Subject to this maximum, listen sets the queue length to backlog. Incoming connections up to this
queue length are held pending on the socket; further connections will be refused and the client’s connec-
tion will fail. This mechanism is provided by listen to allow incoming connections to be held pending
while a server program is busy dealing with a previous client. A value of 5 for backlog is very common.

The listen function will return 0 on success or -1 on error. Errors include EBADF, EINVAL, and ENOTSOCK,
as for the bind system call.
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Accepting Connections
Once a server program has created and named a socket, it can wait for connections to be made to the
socket by using the accept system call.

#include <sys/socket.h>

int accept(int socket, struct sockaddr *address, size_t *address_len);

The accept system call returns when a client program attempts to connect to the socket specified by the
parameter socket. The client is the first pending connection from that socket’s queue. The accept func-
tion creates a new socket to communicate with the client and returns its descriptor. The new socket will
have the same type as the server listen socket.

The socket must have previously been named by a call to bind and had a connection queue allocated
by listen. The address of the calling client will be placed in the sockaddr structure pointed to by
address. A null pointer may be used here if the client address isn’t of interest.

The address_len parameter specifies the length of the client structure. If the client address is longer
than this value, it will be truncated. Before calling accept, address_len must be set to the expected
address length. On return, address_len will be set to the actual length of the calling client’s address
structure.

If there are no connections pending on the socket’s queue, accept will block (so that the program won’t
continue) until a client makes a connection. You may change this behavior by using the O_NONBLOCK flag
on the socket file descriptor, using the fcntl function like this:

int flags = fcntl(socket, F_GETFL, 0);

fcntl(socket, F_SETFL, O_NONBLOCK|flags); 

The accept function returns a new socket file descriptor when there is a client connection pending or -1
on error. Possible errors are similar to those for bind and listen, with the addition of EWOULDBLOCK,
where O_NONBLOCK has been specified and there are no pending connections. The error EINTR will occur
if the process is interrupted while blocked in accept.

Requesting Connections
Client programs connect to servers by establishing a connection between an unnamed socket and the
server listen socket. They do this by calling connect.

#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address, size_t address_len);

The socket specified by the parameter socket is connected to the server socket specified by the parame-
ter address, which is of length address_len. The socket must be a valid file descriptor obtained by a
call to socket.
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If it succeeds, connect returns 0, and -1 is returned on error. Possible errors this time include the 
following:

EBADF An invalid file descriptor was passed in socket.

EALREADY A connection is already in progress for this socket.

ETIMEDOUT A connection timeout has occurred.

ECONNREFUSED The requested connection was refused by the server.

If the connection can’t be set up immediately, connect will block for an unspecified timeout period.
Once this timeout has expired, the connection will be aborted and connect will fail. However, if the call
to connect is interrupted by a signal that is handled, the connect call will fail (with errno set to
EINTR), but the connection attempt won’t be aborted but rather will be set up asynchronously.

As with accept, the blocking nature of connect may be altered by setting the O_NONBLOCK flag on the
file descriptor. In this case, if the connection can’t be made immediately, connect will fail with errno
set to EINPROGRESS and the connection will be made asynchronously.

While asynchronous connections can be tricky to handle, you can use a call to select on the socket file
descriptor to indicate that the socket is ready for writing. We’ll cover select later in this chapter.

Closing a Socket
You can terminate a socket connection at the server and client by calling close, just as you would for
low-level file descriptors. You should always close the socket at both ends. For the server, you should do
this when read returns zero, but the close call could block if the socket has untransmitted data, is of a
connection-oriented type, and has the SOCK_LINGER option set. You’ll learn about setting socket options
later in this chapter.

Socket Communications
Now that we have covered the basic system calls associated with sockets, we can take a closer look at the
example programs. We’ll try to convert them to use a network socket rather than a file system socket.
The file system socket has the disadvantage that, unless the author uses an absolute pathname, it’s cre-
ated in the server program’s current directory. To make it more generally useful, you need to create it in
a globally accessible directory (such as /tmp) that is agreed between the server and its clients. For net-
work sockets, you need only choose an unused port number.

For our example, we’ll choose port number 9734. This is an arbitrary choice that avoids the standard ser-
vices (we can’t use port numbers below 1024 as they are reserved for system use). Other port numbers
are often listed, with the services provided on them, in the system file /etc/services. When you’re
writing socket-based applications, always choose a port number not listed in this configuration file.

Be aware that there is a deliberate error in the programs client2.c and server2.c
that we will fix in client3.c and server3.c. Please do not use the code from
client2.c and server2.c in your own programs. 
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We’ll run our client and server across a local network, but network sockets are not only useful on a local
area network; any machine with an Internet connection (even a modem dial-up) can use network sockets
to communicate with others. You can even use a network-based program on a stand-alone UNIX com-
puter because a UNIX computer is usually configured to use a loopback network that contains only
itself. For illustration purposes, we’ll use this loopback network, which can also be useful for debugging
network applications as it eliminates any external network problems.

The loopback network consists of a single computer, conventionally called localhost, with a standard
IP address of 127.0.0.1. This is the local machine. You’ll find its address listed in the network hosts file,
/etc/hosts, with the names and addresses of other hosts on shared networks.

Each network with which a computer communicates has a hardware interface associated with it. A com-
puter may have different network names on each network and certainly will have different IP addresses.
For example, Neil’s machine tilde has three network interfaces and therefore three addresses. These
are recorded in /etc/hosts as follows:

127.0.0.1      localhost             # Loopback
192.168.1.1    tilde.localnet        # Local, private Ethernet
158.152.X.X    tilde.demon.co.uk     # Modem dial-up

The first is the simple loopback network, the second is a local area network accessed via an Ethernet
adapter, and the third is the modem link to an Internet service provider. You can write a network socket-
based program to communicate with servers accessed via any of these interfaces without alteration.

Try It Out—Network Client
Here’s a modified client program, client2.c, to connect to a network socket via the loopback network.
It contains a subtle bug concerned with hardware dependency, but we’ll discuss that later in this chapter.

1. Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>

#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

int main()
{

int sockfd;
int len;

struct sockaddr_in address;
int result;
char ch = ‘A’;

2. Create a socket for the client.

sockfd = socket(AF_INET, SOCK_STREAM, 0);
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3. Name the socket, as agreed with the server.

address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr(“127.0.0.1”);
address.sin_port = 9734;
len = sizeof(address);

The rest of this program is the same as client1.c from earlier in this chapter. When you run this version,
it fails to connect because there isn’t a server running on port 9734 on this machine.

$ ./client2
oops: client2: Connection refused
$

How It Works
The client program used the sockaddr_in structure from the include file netinet/in.h to specify an
AF_INET address. It tries to connect to a server on the host with IP address 127.0.0.1. It uses a function,
inet_addr, to convert the text representation of an IP address into a form suitable for socket addressing.
The manual page for inet has more information on other address translation functions.

Try It Out—Network Server
You also need to modify the server program to wait for connections on your chosen port number. Here’s
a modified server: server2.c.

1. Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>

#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

int main()
{

int server_sockfd, client_sockfd;
int server_len, client_len;

struct sockaddr_in server_address;
struct sockaddr_in client_address;

2. Create an unnamed socket for the server.

server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

3. Name the socket.

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = inet_addr(“127.0.0.1”);
server_address.sin_port = 9734;
server_len = sizeof(server_address);
bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

From here on, the listing follows server1.c exactly.
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How It Works
The server program creates an AF_INET domain socket and arranges to accept connections on it. The
socket is bound to your chosen port. The address specified determines which computers are allowed to
connect. By specifying the loopback address, as in the client program, you are restricting communica-
tions to the local machine.

If you want to allow the server to communicate with remote clients, you must specify a set of IP addresses
that you are willing to allow. You can use the special value, INADDR_ANY, to specify that you’ll accept con-
nections from all of the interfaces your computer may have. If you chose to, you could distinguish between
different network interfaces to separate, for example, internal Local Area Network and external Wide Area
Network connections. INADDR_ANY is a 32-bit integer value that you could use in the sin_addr.s_addr
field of the address structure. However, you have a problem to resolve first.

Host and Network Byte Ordering
When I run these versions of the server and client programs on my computer, an Intel processor–based
Linux machine, I can see the network connections by using the netstat command. This command will
also be available on most UNIX systems configured for networking. It shows the client/server connec-
tion waiting to close down. The connection closes down after a small timeout. (Again, the exact output
may vary among different versions of Linux.)

$ server2 &
[4] 1225
$ server waiting
client2
server waiting
char from server = B
$ netstat
Active Internet connections
Proto Recv-Q Send-Q Local Address   Foreign Address  (State)       User
tcp        1      0 localhost:1574  localhost:1174   TIME_WAIT     root

You can see the port numbers that have been assigned to the connection between the server and the
client. The local address shows the server, and the foreign address is the remote client. (Even though it’s
on the same machine, it’s still connected over a network.) To ensure that all sockets are distinct, these
client ports are typically different from the server listen socket and unique to the computer.

However, the local address (the server socket) is given as 1574 (or you may see mvel-lm as a service
name), but we chose the port 9734. Why are they different? The answer is that port numbers and
addresses are communicated over socket interfaces as binary numbers. Different computers use different
byte ordering for integers. For example, an Intel processor stores the 32-bit integer as four consecutive
bytes in memory in the order 1-2-3-4, where 1 is the most significant byte. Motorola processors would
store the integer in the byte order 4-3-2-1. If the memory used for integers were simply copied byte-by-
byte, the two different computers would not be able to agree on integer values.

Before you try out further examples in this book, be sure to terminate running exam-
ple server programs, as they will compete to accept connections from clients and
you’ll see confusing results. You can kill them all with the following command:

killall server1 server2 server3 server4 server5
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To enable computers of different types to agree on values for multibyte integers transmitted over a net-
work, you need to define a network ordering. Client and server programs must convert their internal
integer representation to the network ordering before transmission. They do this by using functions
defined in netinet/in.h.

These are

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int netshort);

These functions convert 16-bit and 32-bit integers between native host format and the standard network
ordering. Their names are abbreviations for conversions—for example, “host to network, long” (htonl)
and “host to network, short” (htons). For computers where the native ordering is the same as network
ordering, these represent null operations.

To ensure correct byte ordering of the 16-bit port number, your server and client need to apply these
functions to the port address. The change to server3.c is

server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(9734);

You don’t need to convert the function call, inet_addr(“127.0.0.1”), because inet_addr is defined
to produce a result in network order. The change to client3.c is

address.sin_port = htons(9734);

The server has also been changed to allow connections from any IP address by using INADDR_ANY.

Now, when you run server3 and client3, you see the correct port being used for the local connection.

$ netstat
Active Internet connections
Proto Recv-Q Send-Q Local Address   Foreign Address   (State)       User
tcp        1      0 localhost:9734  localhost:1175    TIME_WAIT     root

Remember that if you’re using a computer that has the same native and network byte ordering, you
won’t see any difference. It’s still important to always use the conversion functions to allow correct
operation with clients and servers on computers with a different architecture.

Network Information
So far, your client and server programs have had addresses and port numbers compiled into them. For a
more general server and client program, you can use network information functions to determine
addresses and ports to use.
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If you have permission to do so, you can add your server to the list of known services in /etc/services,
which assigns a name to port numbers so that clients can use symbolic services rather than numbers.

Similarly, given a computer’s name, you can determine the IP address by calling host database functions
that resolve addresses for you. They do this by consulting network configuration files, such as
/etc/hosts, or network information services, such as NIS (Network Information Services, formerly
known as Yellow Pages) and DNS (Domain Name Service).

Host database functions are declared in the interface header file netdb.h.

#include <netdb.h>

struct hostent *gethostbyaddr(const void *addr, size_t len, int type);
struct hostent *gethostbyname(const char *name);

The structure returned by these functions must contain at least these members:

struct hostent {
char *h_name;         /* name of the host */
char **h_aliases;     /* list of aliases (nicknames) */
int h_addrtype;       /* address type */
int h_length;         /* length in bytes of the address */
char **h_addr_list    /* list of address (network order) */

};

If there is no database entry for the specified host or address, the information functions return a null
pointer.

Similarly, information concerning services and associated port numbers is available through some ser-
vice information functions.

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

The proto parameter specifies the protocol to be used to connect to the service, either “tcp” for
SOCK_STREAM TCP connections or “udp” for SOCK_DGRAM UDP datagrams.

The structure servent contains at least these members:

struct servent {
char *s_name;        /* name of the service */
char **s_aliases;    /* list of aliases (alternative names) */
int s_port;          /* The IP port number */
char *s_proto;       /* The service type, usually “tcp” or “udp” */

};

You can gather host database information about a computer by calling gethostbyname and printing the
results. Note that the address list needs to be cast to the appropriate address type and converted from net-
work ordering to a printable string using the inet_ntoa conversion, which has the following definition:
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#include <arpa/inet.h>

char *inet_ntoa(struct in_addr in)

The function converts an Internet host address to a string in dotted quad format. It returns -1 on error,
but POSIX doesn’t define any errors. The other new function you use is gethostname.

#include <unistd.h>

int gethostname(char *name, int namelength);

This function writes the name of the current host into the string given by name. The hostname will be
null-terminated. The argument namelength indicates the length of the string name, and the returned
hostname will be truncated if it’s too long to fit. gethostname returns 0 on success and -1 on error, but
again no errors are defined in POSIX.

Try It Out—Network Information
This program, getname.c, gets information about a host computer.

1. As usual, make the appropriate includes and declare the variables.

#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

char *host, **names, **addrs;
struct hostent *hostinfo;

2. Set the host to the argument supplied with the getname call, or by default to the user’s
machine.

if(argc == 1) {
char myname[256];
gethostname(myname, 255);
host = myname;

}
else

host = argv[1];

3. Call gethostbyname and report an error if no information is found.

hostinfo = gethostbyname(host);
if(!hostinfo) {

fprintf(stderr, “cannot get info for host: %s\n”, host);
exit(1);

}
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4. Display the hostname and any aliases that it may have.

printf(“results for host %s:\n”, host);
printf(“Name: %s\n”, hostinfo -> h_name);
printf(“Aliases:”);
names = hostinfo -> h_aliases;
while(*names) {

printf(“ %s”, *names);
names++;

}
printf(“\n”);

5. Warn and exit if the host in question isn’t an IP host.

if(hostinfo -> h_addrtype != AF_INET) {
fprintf(stderr, “not an IP host!\n”);
exit(1);

}

6. Otherwise, display the IP address(es).

addrs = hostinfo -> h_addr_list;
while(*addrs) {

printf(“ %s”, inet_ntoa(*(struct in_addr *)*addrs));
addrs++;

}
printf(“\n”);
exit(0);

}

Alternatively, you could use the function gethostbyaddr to determine which host has a given IP
address. You might use this in a server to find out where the client is calling from.

How It Works
The getname program calls gethostbyname to extract the host information from the host database.
It prints out the hostname, its aliases (other names the computer is known by), and the IP addresses
that the host uses on its network interfaces. When I ran the example, specifying tilde gave the two
interfaces: Ethernet and modem.

$ ./getname tilde
results for host tilde:
Name: tilde.localnet
Aliases: tilde
192.168.1.1 158.152.x.x

When we use the hostname, localhost, the loopback network is given.

$ ./getname localhost
results for host localhost:
Name: localhost
Aliases:
127.0.0.1
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We can now modify our client to connect to any named host. Instead of connecting to our example
server, we’ll connect to a standard service so that we can also demonstrate extracting the port number.

Most UNIX and some Linux systems make their system time and date available as a standard service
called daytime. Clients may connect to this service to discover the server’s idea of the current time and
date. Here’s a client program, getdate.c, that does just that.

Try It Out—Connecting to a Standard Service
1. Start with the usual includes and declarations.

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{

char *host;
int sockfd;
int len, result;
struct sockaddr_in address;
struct hostent *hostinfo;
struct servent *servinfo;
char buffer[128];

if(argc == 1)
host = “localhost”;

else
host = argv[1];

2. Find the host address and report an error if none is found.

hostinfo = gethostbyname(host);
if(!hostinfo) {

fprintf(stderr, “no host: %s\n”, host);
exit(1);

}

3. Check that the daytime service exists on the host.

servinfo = getservbyname(“daytime”, “tcp”);
if(!servinfo) {

fprintf(stderr,”no daytime service\n”);
exit(1);

}
printf(“daytime port is %d\n”, ntohs(servinfo -> s_port));
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4. Create a socket.

sockfd = socket(AF_INET, SOCK_STREAM, 0);

5. Construct the address for use with connect.

address.sin_family = AF_INET;
address.sin_port = servinfo -> s_port;
address.sin_addr = *(struct in_addr *)*hostinfo -> h_addr_list;
len = sizeof(address);

6. Then connect and get the information.

result = connect(sockfd, (struct sockaddr *)&address, len);
if(result == -1) {

perror(“oops: getdate”);
exit(1);

}

result = read(sockfd, buffer, sizeof(buffer));
buffer[result] = ‘\0’;
printf(“read %d bytes: %s”, result, buffer);

close(sockfd);
exit(0);

}

You can use getdate to get the time of day from any known host.

$ ./getdate localhost
daytime port is 13
read 26 bytes: 21 JUN 2003 14:18:18 BST
$

If you receive an error message such as

oops: getdate: Connection refused

or

oops: getdate: No such file or directory

it may be because the computer you are connecting to has not enabled the daytime service. This is the
default behavior in recent Linux systems. In the next section, you will see how to enable this and other
services. 
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How It Works
When you run this program, you can specify a host to connect to. The daytime service port number is
determined from the network database function getservbyname, which returns information about net-
work services in a similar way to host information. The program getdate tries to connect to the address
given first in the list of alternate addresses for the specified host. If successful, it reads the information
returned by the daytime service, a character string representing the UNIX time and date.

The Internet Daemon (inetd)
UNIX systems providing a number of network services often do so by way of a super-server. This pro-
gram (the Internet daemon, inetd) listens for connections on many port addresses at once. When a
client connects to a service, the inetd program runs the appropriate server. This cuts down on the need
for servers to be running all the time; they can be started by inetd as required. Here’s an extract from
the inetd configuration file, /etc/inetd.conf, which is used to decide which servers to run:

#
# <service_name> <sock_type> <proto> <flags> <user> <server_path> <args>
#
# Echo, discard, daytime, and chargen are used primarily for testing.
#
daytime    stream    tcp    nowait    root    internal
daytime    dgram    udp    wait    root    internal
#
# These are standard services.
#
ftp     stream    tcp    nowait    root    /usr/sbin/tcpd    /usr/sbin/wu.ftpd
telnet  stream    tcp    nowait    root    /usr/sbin/tcpd    /usr/sbin/in.telnetd
#
# End of inetd.conf.

The daytime service that our getdate program connects to is actually handled by inetd itself (marked
as internal) and is available using both SOCK_STREAM (tcp) and SOCK_DGRAM (udp) sockets. 

The ftp file transfer service is available only via SOCK_STREAM sockets and is provided by an external
program, in this case wu.ftpd, which inetd will start when a client connects to the ftp port. 

If your system is running inetd, you can change the services provided by editing /etc/inetd.conf
(a # at the start of a line indicates that the line is a comment) and restarting the inetd process. This can
be done by sending it a hang-up signal using kill.  To make this easier, some systems are configured so
that inetd writes its process ID to a file. Alternatively, killall can be used:

# killall –HUP inetd

Linux systems typically run a replacement to inetd called xinetd and provide a more user-friendly
way of configuring services. To allow our time-of-day client to connect, enable the daytime service
using the tools provided on your Linux system. On SuSE Linux the services may be configured from the
SuSE Control Center as shown in Figure 15-1. Red Hat Linux has a similar configuration interface. Here,
the daytime service is being enabled for both TCP and UDP queries. 
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Figure 15-1

Socket Options
There are many options that you can use to control the behavior of socket connections—too many to
detail here. The setsockopt function is used to manipulate options.

#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name, 
const void *option_value, size_t option_len);

You can set options at various levels in the protocol hierarchy. To set options at the socket level, you
must set level to SOL_SOCKET. To set options at the underlying protocol level (TCP, UDP, etc.), set
level to the number of the protocol (from either the header file netinet/in.h or as obtained by the
function getprotobyname).

The option_name parameter selects an option to set; the option_value parameter is an arbitrary value
of length option_len bytes passed unchanged to the underlying protocol handler.
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Socket level options defined in sys/socket.h include the following:

SO_DEBUG Turn on debugging information.

SO_KEEPALIVE Keep connections active with periodic transmissions.

SO_LINGER Complete transmission before close.

SO_DEBUG and SO_KEEPALIVE take an integer option_value used to turn the option on (1) or off (0).
SO_LINGER requires a linger structure defined in sys/socket.h to define the state of the option and
the linger interval.

setsockopt returns 0 if successful, -1 otherwise. The manual pages describe further options and errors.

Multiple Clients
So far in this chapter, you’ve seen how you can use sockets to implement client/server systems both
locally and across networks. Once established, socket connections behave like low-level open file
descriptors and in many ways like bi-directional pipes.

You might need to consider the case of multiple, simultaneous clients connecting to a server. You’ve seen
that when a server program accepts a new connection from a client, a new socket is created and the original
listen socket remains available for further connections. If the server doesn’t immediately accept further con-
nections, they will be held pending in a queue. 

The fact that the original socket is still available and that sockets behave as file descriptors gives us a
method of serving multiple clients at the same time. If the server calls fork to create a second copy of itself,
the open socket will be inherited by the new child process. It can then communicate with the connecting
client while the main server continues to accept further client connections. This is, in fact, a fairly easy
change to make to your server program, which is shown in the following “Try It Out” section.

Since you’re creating child processes but not waiting for them to complete, you must arrange for the
server to ignore SIGCHLD signals to prevent zombie processes.

Try It Out—A Server for Multiple Clients
1. This program, server4.c, begins in similar vein to our last server, with the notable addition

of an include for the signal.h header file. The variables and the procedure of creating and
naming a socket are the same.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>

#include <signal.h>
#include <unistd.h>

int main()
{
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int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_in server_address;
struct sockaddr_in client_address;

server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(9734);
server_len = sizeof(server_address);
bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

2. Create a connection queue, ignore child exit details, and wait for clients.

listen(server_sockfd, 5);

signal(SIGCHLD, SIG_IGN);

while(1) {
char ch;

printf(“server waiting\n”);

3. Accept connection.

client_len = sizeof(client_address);
client_sockfd = accept(server_sockfd, 

(struct sockaddr *)&client_address, &client_len);

4. Fork to create a process for this client and perform a test to see whether you’re the parent or the
child.

if(fork() == 0) {

5. If you’re the child, you can now read/write to the client on client_sockfd. The five-second
delay is just for this demonstration.

read(client_sockfd, &ch, 1);
sleep(5);
ch++;
write(client_sockfd, &ch, 1);
close(client_sockfd);
exit(0);

}

6. Otherwise, you must be the parent and your work for this client is finished.

else {
close(client_sockfd);

}
}

}
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We have inserted a five-second delay in the processing of the client’s request to simulate server calcula-
tion or database access. If we had done this with the previous server, each run of client3 would have
taken five seconds. With the new server, we can handle multiple client3 programs concurrently, with
an overall elapsed time of just over five seconds.

$ ./server4&
[7] 1571
$server waiting
./client3 & ./client3 & ./client3 & ps -ax
[8] 1572
[9] 1573
[10] 1574
server waiting
server waiting
server waiting
PID TTY STAT  TIME COMMAND
1557 pp0 S     0:00 ./server4
1572 pp0 S     0:00 ./client3
1573 pp0 S     0:00 ./client3
1574 pp0 S     0:00 ./client3
1575 pp0 R     0:00 ps -ax
1576 pp0 S     0:00 ./server4
1577 pp0 S     0:00 ./server4
1578 pp0 S     0:00 ./server4

$ char from server = B
char from server = B
char from server = B
ps -ax
PID TTY STAT  TIME COMMAND
1557 pp0 S     0:00 ./server4
1580 pp0 R     0:00 ps -ax

[8]   Done                    ./client3
[9]-  Done                    ./client3
[10]+  Done                    ./client3
$

How It Works
The server program now creates a new child process to handle each client, so you see several server
waiting messages as the main program continues to wait for new connections. The ps output (edited
here) shows the main server4 process, PID 1557, waiting for new clients while the three client3 pro-
cesses are being served by three children of the server. After a five-second pause, all of the clients get
their results and finish. The child server processes exit to leave just the main server alone again.

The server program uses fork to handle multiple clients. In a database application, this may not be the
best solution, since the server program may be quite large and there is still the problem of coordinating
database accesses from multiple server copies. In fact, what you really need is a way for a single server
to handle multiple clients without blocking and waiting on client requests to arrive. The solution to this
problem involves handling multiple open file descriptors at once and isn’t limited to socket applications.
Enter select.
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select
Quite often when you’re writing Linux applications, you may need to examine the state of a number of
inputs to determine the next action to take. For example, a communication program such as a terminal
emulator needs to read the keyboard and the serial port effectively at the same time. In a single-user 
system, it might be acceptable to run in a “busy wait” loop, repeatedly scanning the input for data and
reading it if it arrives. This behavior is expensive in terms of CPU time.

The select system call allows a program to wait for input to arrive (or output to complete) on a number
of low-level file descriptors at once. This means that the terminal emulator program can block until there
is something to do. Similarly, a server can deal with multiple clients by waiting for a request on many
open sockets at the same time.

The select function operates on data structures, fd_set, that are sets of open file descriptors. A number
of macros are defined for manipulating these sets:

#include <sys/types.h>
#include <sys/time.h>

void FD_ZERO(fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);

As suggested by their names, FD_ZERO initializes an fd_set to the empty set, FD_SET and FD_CLR set
and clear elements of the set corresponding to the file descriptor passed as fd, and FD_ISSET returns
nonzero if the file descriptor referred to by fd is an element of the fd_set pointed to by fdset. The
maximum number of file descriptors in an fd_set structure is given by the constant FD_SETSIZE.

The select function can also use a timeout value to prevent indefinite blocking. The timeout value is
given using a struct timeval. This structure, defined in sys/time.h, has the following members:

struct timeval {
time_t    tv_sec;     /* seconds */
long      tv_usec;    /* microseconds */

}

The time_t type is defined in sys/types.h as an integral type.

The select system call has the following prototype:

#include <sys/types.h>
#include <sys/time.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct
timeval *timeout);

A call to select is used to test whether any one of a set of file descriptors is ready for reading or writing
or has an error condition pending and will optionally block until one is ready.
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The nfds argument specifies the number of file descriptors to be tested, and descriptors from 0 to nfds-
1 are considered. Each of the three descriptor sets may be a null pointer, in which case the associated test
isn’t carried out.

The select function will return if any of the descriptors in the readfds set are ready for reading, if any
in the writefds set are ready for writing, or if any in errorfds have an error condition. If none of these
conditions apply, select will return after an interval specified by timeout. If the timeout parameter is
a null pointer and there is no activity on the sockets, the call will block forever.

When select returns, the descriptor sets will have been modified to indicate which descriptors are
ready for reading or writing or have errors. You should use FD_ISSET to test them, to determine the
descriptor(s) needing attention. You can modify the timeout value to indicate the time remaining until
the next timeout, but this behavior isn’t specified by X/Open. In the case of a timeout occurring, all
descriptor sets will be empty.

The select call returns the total number of descriptors in the modified sets. It returns –1 on failure, set-
ting errno to describe the error. Possible errors are EBADF for invalid descriptors, EINTR for return due
to interrupt, and EINVAL for bad values for nfds or timeout.

Try It Out—select
Here is a program, select.c, to illustrate the use of select. We’ll see and discuss a more complete
example a little later. This program reads the keyboard (standard input—file descriptor 0) with a timeout
of 2.5 seconds. It reads the keyboard only when input is ready. It’s quite straightforward to extend it to
include other descriptors, such as serial lines or pipes and sockets, depending on the application.

1. Begin as usual with the includes and declarations and then initialize inputs to handle input
from the keyboard.

#include <sys/types.h>
#include <sys/time.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>

int main()
{

char buffer[128];
int result, nread;

Although Linux modifies the structure pointed to by timeout to indicate the time
remaining, most versions of UNIX do not. Much existing code that uses the select
function initializes a timeval structure and then continues to use it without ever
reinitializing the contents. On Linux, this code may operate incorrectly because
Linux is modifying the timeval structure every time a timeout occurs. If you’re
writing or porting code that uses the select function, you should watch out for this
difference and always reinitialize the timeout. Note that both behaviors are correct;
they’re just different!
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fd_set inputs, testfds;
struct timeval timeout;

FD_ZERO(&inputs);
FD_SET(0,&inputs);

2. Wait for input on stdin for a maximum of 2.5 seconds.

while(1) {
testfds = inputs;
timeout.tv_sec = 2;
timeout.tv_usec = 500000;

result = select(FD_SETSIZE, &testfds, (fd_set *)NULL, (fd_set *)NULL,
&timeout);

3. After this time, test result. If there has been no input, the program loops again. If there has
been an error, the program exits.

switch(result) {
case 0:

printf(“timeout\n”);
break;

case -1:
perror(“select”);
exit(1);

4. If, during the wait, you have some action on the file descriptor, read the input on stdin and
echo it whenever an <end of line> character is received, until that input is Ctrl+D.

default:
if(FD_ISSET(0,&testfds)) {

ioctl(0,FIONREAD,&nread);
if(nread == 0) {

printf(“keyboard done\n”);
exit(0);

}
nread = read(0,buffer,nread);
buffer[nread] = 0;
printf(“read %d from keyboard: %s”, nread, buffer);

}
break;

}
}

}

When you run this program, it prints timeout every two and a half seconds. If you type at the key-
board, it reads the standard input and reports what was typed. With most shells, the input will be sent to
the program when the user presses the Enter (or in some cases Return) key or keys in a control sequence,
so your program will print the input whenever you press Enter. Note that the Enter key itself is read and
processed like any other character (try this by not pressing Enter, but a number of characters followed by
Ctrl+D).

615

Sockets

b544977 Ch15.qxd  12/1/03  8:57 AM  Page 615



$ ./select
timeout
hello
read 6 from keyboard: hello
fred
read 5 from keyboard: fred
timeout
^D
keyboard done
$

How It Works
The program uses the select call to examine the state of the standard input. By arranging a timeout
value, the program resumes every 2.5 seconds to print a timeout message. This is indicated by select
returning zero. On end of file, the standard input descriptor is flagged as ready for input, but there are
no characters to be read.

Multiple Clients
Our simple server program can benefit by using select to handle multiple clients simultaneously, with-
out resorting to child processes. For real applications using this technique, you must take care that you
do not make other clients wait too long while you deal with the first to connect.

The server can use select on both the listen socket and the clients’ connection sockets at the same time.
Once activity has been indicated, you can use FD_ISSET to cycle through all the possible file descriptors
to discover which one the activity is on.

If the listen socket is ready for input, this will mean that a client is attempting to connect and you can
call accept without risk of blocking. If a client descriptor is indicated ready, this means that there’s a
client request pending that you can read and deal with. A read of zero bytes will indicate that a client
process has ended and you can close the socket and remove it from your descriptor set.

Try It Out—An Improved Multiple Client/Server
1. For our final example, server5.c, we include the sys/time.h and sys/ioctl.h headers

instead of signal.h in our last program and declare some extra variables to deal with
select.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <unistd.h>

int main()
{
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int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_in server_address;
struct sockaddr_in client_address;
int result;
fd_set readfds, testfds;

2. Create and name a socket for the server.

server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

server_address.sin_family = AF_INET;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(9734);
server_len = sizeof(server_address);

bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

3. Create a connection queue and initialize readfds to handle input from server_sockfd.

listen(server_sockfd, 5);

FD_ZERO(&readfds);
FD_SET(server_sockfd, &readfds);

4. Now wait for clients and requests. Since you have passed a null pointer as the timeout param-
eter, no timeout will occur. The program will exit and report an error if select returns a value
less than 1.

while(1) {
char ch;
int fd;
int nread;

testfds = readfds;

printf(“server waiting\n”);
result = select(FD_SETSIZE, &testfds, (fd_set *)0, 

(fd_set *)0, (struct timeval *) 0);

if(result < 1) {
perror(“server5”);
exit(1);

}

5. Once you know you’ve got activity, you can find which descriptor it’s on by checking each in
turn using FD_ISSET.

for(fd = 0; fd < FD_SETSIZE; fd++) {
if(FD_ISSET(fd,&testfds)) {
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6. If the activity is on server_sockfd, it must be a request for a new connection, and you add
the associated client_sockfd to the descriptor set.

if(fd == server_sockfd) {
client_len = sizeof(client_address);
client_sockfd = accept(server_sockfd, 

(struct sockaddr *)&client_address, &client_len);
FD_SET(client_sockfd, &readfds);
printf(“adding client on fd %d\n”, client_sockfd);

}

7. If it isn’t the server, it must be client activity. If close is received, the client has gone away, and you
remove it from the descriptor set. Otherwise, you “serve” the client as in the previous examples.

else {
ioctl(fd, FIONREAD, &nread);

if(nread == 0) {
close(fd);
FD_CLR(fd, &readfds);
printf(“removing client on fd %d\n”, fd);

}

else {
read(fd, &ch, 1);
sleep(5);
printf(“serving client on fd %d\n”, fd);
ch++;
write(fd, &ch, 1);

}
}

}
}

}
}

When you run this version of the server, it deals with multiple clients sequentially in a single process.

$ ./server5 &
[7] 1670
$ server waiting
./client3 & ./client3 & ./client3 & ps -ax
[8] 1671
[9] 1672
[10] 1673
adding client on fd 4

In a real-world program, it would be advisable to include a variable holding the
largest fd number connected (not necessarily the most recent fd number connected).
This would prevent looping through potentially thousands of fds that aren’t even
connected and couldn’t possibly be ready for reading. We’ve omitted it here simply
for brevity’s sake and to make the code simpler.
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server waiting
adding client on fd 5
server waiting
adding client on fd 6
server waiting
PID TTY STAT  TIME COMMAND
1670 pp0 S     0:00 ./server5
1671 pp0 S     0:00 ./client3
1672 pp0 S     0:00 ./client3
1673 pp0 S     0:00 ./client3
1674 pp0 R     0:00 ps -ax

$ serving client on fd 4
server waiting
char from server = B
serving client on fd 5
char from server = B
serving client on fd 6
server waiting
removing client on fd 4
removing client on fd 5
server waiting
char from server = B
removing client on fd 6
server waiting

[8]   Done                    ./client3
[9]-  Done                    ./client3
[10]+  Done                    ./client3
$

To complete the analogy at the start of the chapter, the following table shows the parallels between
socket connections and a telephone exchange.

Telephone Network Sockets

Call company on 555-0828 Connect to IP address 127.0.0.1.

Call answered by reception Connection established to remote host.

Ask for finance department Route using specified port (9734).

Call answered by finance administration Server returns from select.

Call put through to free account manager Server calls accept, creating new socket on 
extension 456.

Datagrams
In this chapter, we have concentrated on programming applications that maintain connections to their
clients. We have used connection-oriented TCP socket connections for this. There are cases where the
overhead of establishing and maintaining a socket connection is unnecessary. 
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The daytime service we used in getdate.c earlier provides a good example. We create a socket, make a
connection, read a single response, and close the connection. That’s a lot of operations just to get the date.

The daytime service is also available by UDP using datagrams. To use it, you send a single datagram to
the service and get a single datagram containing the date and time in response. It’s simple.

Services provided by UDP are typically used where a client needs to make a short query of a server and
expects a single short response. If the cost in terms of processing time is low enough, the server is able to
provide this service by dealing with requests from clients one at a time, allowing the operating system to
hold incoming requests in a queue. This simplifies the coding of the server.

Since UDP is not a guaranteed service, however, you may find that your datagram or your response goes
missing. So if the data is important to you, you would need to code your UDP clients carefully to check
for errors and retry if necessary. In practice, on a local area network, UDP datagrams are very reliable.

To access a service provided by UDP, you need to use the socket and close system calls as before, but
rather than using read and write on the socket, you use two datagram-specific system calls, sendto
and recvfrom.

Here’s a modified version of getdate.c that gets the date via a UDP datagram service. Changes from
the earlier version are highlighted.

/*  Start with the usual includes and declarations.  */

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{

char *host;
int sockfd;
int len, result;
struct sockaddr_in address;
struct hostent *hostinfo;
struct servent *servinfo;
char buffer[128];

if(argc == 1)
host = “localhost”;

else
host = argv[1];

/*  Find the host address and report an error if none is found.  */

hostinfo = gethostbyname(host);
if(!hostinfo) {

fprintf(stderr, “no host: %s\n”, host);
exit(1);

}

/*  Check that the daytime service exists on the host.  */
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servinfo = getservbyname(“daytime”, “udp”);
if(!servinfo) {

fprintf(stderr,”no daytime service\n”);
exit(1);

}
printf(“daytime port is %d\n”, ntohs(servinfo -> s_port));

/*  Create a UDP socket.  */

sockfd = socket(AF_INET, SOCK_DGRAM, 0);

/*  Construct the address for use with sendto/recvfrom...  */

address.sin_family = AF_INET;
address.sin_port = servinfo -> s_port;
address.sin_addr = *(struct in_addr *)*hostinfo -> h_addr_list;
len = sizeof(address);

result = sendto(sockfd, buffer, 1, 0, (struct sockaddr *)&address, len);
result = recvfrom(sockfd, buffer, sizeof(buffer), 0, 

(struct sockaddr *)&address, &len);
buffer[result] = ‘\0’;
printf(“read %d bytes: %s”, result, buffer);

close(sockfd);
exit(0);

}

As you can see, the changes required are very small. You find the daytime service with getservbyname
as before, but you specify the datagram service by requesting the UDP protocol. You create a datagram
socket using socket with a SOCK_DGRAM parameter. You set up the destination address as before, but now
you have to send a datagram rather than just read from the socket.

Because you are not making an explicit connection to services provided by UDP, you have to have some
way of letting the server know that you want to receive a response. In this case, you send a datagram
(here you send a single byte from the buffer you are going to receive the response into) to the service,
and it responds with the date and time.

The sendto system call sends a datagram from a buffer on a socket using a socket address and address
length. Its prototype is essentially

int sendto(int sockfd, void *buffer, size_t len, int flags, 
struct sockaddr *to, socklen_t tolen);

In normal use, the flags parameter can be kept zero.

The recvfrom system call waits on a socket for a datagram from a specified address and receives it into
a buffer. Its prototype is essentially

int recvfrom(int sockfd, void *buffer, size_t len, int flags, 
struct sockaddr *from, socklen_t *fromlen);
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Again, in normal use, the flags parameter can be kept zero.

To keep the example short, we have omitted error handling. Both sendto and recvfrom will return –1 if
an error occurs and will set errno appropriately. Possible errors include the following:

EBADF An invalid file descriptor was passed.

EINTR A signal occurred.

Unless the socket is set nonblocking using fcntl (as you saw for accepting TCP connections earlier), the
recvfrom call will block indefinitely. The socket can, however, be used with select and a timeout to
determine whether any data has arrived in the same way that you have seen with the connection-based
servers earlier. Alternatively, an alarm clock signal can be used to interrupt a receive operation (see
Chapter 11).

Summary
In this chapter, we’ve covered another method of inter-process communication: sockets. These allow you
to develop true distributed client/server applications to run across networks. We briefly covered some
of the host database information functions and how Linux handles standard system services with the
Internet daemon. We developed a number of client/server example programs that demonstrate network-
ing and handling multiple clients.

Finally, you learned about the select system call that allows a program to be advised of input and out-
put activity on several open file descriptors and sockets at once.
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16
Programming GNOME 

Using GTK+

So far in this book, we’ve covered the major topics in Linux programming that deal with complex,
under-the-hood stuff. Now it’s time to breathe some life into our applications and look at how to
add a Graphical User Interface (GUI) to them. In this chapter and Chapter 17, we’re going to look
at the second of the two most popular GUI libraries for Linux: KDE/Qt.  

All GUI libraries in Linux sit on top of the underlying windowing system called the X Window
System (or more commonly X11 or just X), so before we delve into GNOME/GTK+ details we’ll
provide an overview of how X operates and help you understand how the various layers of the
windowing system fit together to create what we call the desktop.

In this chapter, we’ll cover

❑ The X Window System

❑ An introduction to GNOME/GTK+

❑ GTK+ Widgets

❑ GNOME Widgets and Menus

❑ Dialogs

❑ CD Database GUI using GNOME/GTK+

Introducing X
If you’ve ever used a desktop windowing system on Linux, then you’ve most likely used XFree86,
which is the Open Source, freely distributable clone of the X Window System that almost all Linux
distributions are shipped with. The Linux desktop does not begin and end with X, however. In
truth, the desktop in Linux is a rather nebulous thing, with no single project or group releasing a
definitive version. A modern installation contains a myriad of libraries, utilities, and applications
that collectively are called “the desktop.”
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X has a long and illustrious history, having been originally developed at MIT in the early 1980s. X was
developed to provide a unified windowing system for the high-end scientific workstations of the day,
which were hugely expensive, number-crunching beasts. 

As the 1990s came and hardware prices dropped, X was ported by enthusiasts to run on inexpensive
home PCs, a project that became known as XFree86 (PC processors made by Intel and other companies
are known as x86 processors), and it is the descendents of XFree86 that are distributed today with Linux. 

The X Window System is separated into hardware-level and application-level components known as the
X Server and the X Client. These components communicate using the aptly named X Protocol. In the fol-
lowing sections, we’ll look at each of these in turn.

X Server
The X server runs on the user’s local machine and is the part that performs the low-level operation of
drawing the graphics on screen. Since the X server talks directly to the graphics card, we must use an X
server specific to our graphics card, and it must be configured with appropriate resolution, refresh rate,
color depth, and so on. The configuration file is named XFree86Config which in the past usually had to
be manually edited to get X working properly. Thankfully, modern Linux distributions autodetect the
correct settings, saving users time and a great deal of head scratching! 

The X server listens for user input via the mouse and keyboard and relays keyboard presses and mouse
clicks to the X client. These messages are called events; they form a key element of GUI programming.
We’ll be looking at events and their logical GTK+ extension, signals, in detail later in this chapter. 

X Client
An X client is any program that uses the X Window System as a GUI. Examples are xterm, xcalc, and a
more advanced application, like Abiword. An X client typically waits for user events sent by the X server
and responds by sending redraw messages back to the server. 

The X client need not be on the same machine as the X server.

X Protocol
The X client and X server communicate using the X Protocol, which enables the Client and Server to be
separated over a network. For instance, you can run an X client application from a remote computer on
the Internet or over an encrypted Virtual Private Network (VPN).

Xlib
Xlib is the library used indirectly by an X client to generate the X Protocol messages. It provides a very
low-level API to allow the client to draw very basic elements on the X server and to respond to the sim-
plest of inputs. We must emphasize that Xlib is a very low level—to create something even as simple as a
menu using Xlib is an incredibly laborious process that needs hundreds of lines of code. 

A GUI programmer cannot sensibly program directly with Xlib. We need an API that makes GUI ele-
ments such as menus, buttons, and drop-down lists easy and simple to create. In a nutshell, this is the
role of the toolkit.
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Toolkits
A toolkit is a GUI library that X clients utilize to greatly simplify the creation of windows, menus, buttons,
and so on. Using a toolkit, we can create buttons, menus, frames, and the like with single function calls.
The generic term for GUI elements such as these is widgets, a universal term you’ll find in all modern GUI
libraries.

There are dozens of toolkits for X to choose from, each with their defining strengths and weaknesses.
Which one we choose is an important design decision for our application, and some of the factors we
should consider are

❑ Who are you targeting with your application? Will your users have the toolkit libraries installed?

❑ Does the toolkit have a port for other popular operating systems?

❑ What software license does the toolkit use, and is it compatible with your intended use? 

❑ Does the toolkit support your programming language?

❑ Does the toolkit have a modern look and feel?

Historically, the most popular toolkits were Motif, OpenLook, and Xt, but these have been largely
superceded by the technically superior GTK+ and Qt toolkits that form the basis of the GNOME and
KDE desktops, respectively. 

Window Managers
The final piece in the X puzzle is the window manager, which is responsible for positioning windows
onscreen. Window managers often support separate “workspaces” that divide the desktop, increasing the
area with which you can interact. The window manager is also responsible for adding decoration around
each window, which usually consists of a frame and title bar with maximize, minimize, and close icons.

Other Ways to GUI—Platform-Independent Windowing APIs 
It’s worth mentioning other ways to create GUIs that are not specific to Linux—there are languages that
have native GUI support that function under Linux. 

❑ The Java Language supports programming GUIs using the Swing and older AWT APIs. The
look and feel of Java GUIs isn’t to everybody’s taste, and on older machines the interface can
feel clunky and unresponsive. A great advantage of Java is that once you’ve compiled your Java
code, it runs unchanged on any platform with a Java Virtual Machine, which includes Linux,
Windows, MacOS, and mobile devices. See http://java.sun.com for more information.

❑ Tcl/Tk is a scripting language that is excellent for rapid development of GUIs and works with X,
Windows, and MacOS. Great for rapid prototyping or for small utilities where you want the sim-
plicity and maintainability of a script. You can find all the details at http://tcl.tk.

With the platform independence that these languages bring there is a price to pay. Sharing information
with native applications—for instance, using “drag and drop”—is difficult, and saving configuration
usually has to be done in a proprietary rather than the desktop standard way. Sometimes vendors of
Java software cheat by shipping with platform-specific extensions to get around these sorts of problems.
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Introducing GTK+
Now that you’ve looked at the X Window System, it’s time to look at the GTK+ Toolkit. GTK+ started
out life as part of the popular image manipulation program The GIMP, which is how GTK derives its
name (The Gimp ToolKit). The GIMP programmers clearly had great foresight in making GTK+ a project
in its own right since it has grown and developed into one of the most powerful and popular toolkits
around.  The homepage of the GTK+ project is http://www.gtk.org.

Although GTK+ is a GNU project like The GIMP, it is released under the terms of the more liberal LGPL
(Lesser General Public License) that permits software (including closed source proprietary software) to
be written using GTK+ without payment of fees, royalties, or other restrictions. The freedom offered by
the GTK+ license is in contrast to its competitor Qt (the subject of the next chapter), whose GPL license
prohibits commercial software from being developed using Qt.     

GTK+ is written entirely in C, and the majority of GTK+ software is also written in C. Fortunately there
are a number of language bindings that allow you to use GTK+ in your preferred language, be it C++,
Python, PHP, Ruby, Perl, or even Java.

GLib Type System
If you’ve ever browsed through GTK+ code, you may have wondered why you saw a lot of C data types
prefixed with the letter g, such as gint, gchar, gshort, as well as unfamiliar types such as gint32 and
gpointer. This is because GTK+ is based on a C portability library called GLib that defines these types
to aid in cross-platform development.

GLib aids cross platform development by providing a standard set of replacement data types, functions,
and macros to handle memory management and common tasks. These types, functions, and macros
mean that as GTK+ programmers we can be confident that our code will port reliably to other platforms
and architectures.

GLib also defines some convenient constants:

#include <glib/gmacros.h>

#define FALSE  0
#define TRUE  !FALSE

The GLib additional data types are essentially those that are replacements for the standard C types (for
consistency and readability) and those that guarantee byte length across all platforms.

❑ gint, guint, gchar, guchar, glong, gulong, gfloat, gdouble are simple replacements
for the standard C types for consistency

❑ gpointer is synonymous with (void *)

To recap, GTK+ is a library that greatly simplifies the creation of Graphical User
Interfaces (GUIs) by providing a set of ready-made components called widgets that
we bolt together with easy-to-use function calls to our application logic.
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❑ gboolean is useful for representing boolean values and is a wrapper for int

❑ gint8, guint8, gint16, guint16, gint32, guint32 are signed and unsigned types with a
guaranteed byte length

Usefully, using GLib is almost transparent. GLib is used extensively in GTK+, so if you have a working
GTK+ setup, you’ll find GLib installed. When programming with GTK+ we don’t even need to explicitly
include the glib.h header file, as we’ll see later in the chapter.

GTK+ Object System
Anybody who has experimented with GUI programming before will probably understand when we
write that GUI libraries strongly lend themselves to the paradigm of object-oriented (OO) programming;
so much so that all modern Toolkits are written in an object-oriented fashion, including GTK+.

Despite GTK+ being written purely in C, it supports objects and OO programming through the GObject
library. This library supports object inheritance and polymorphism using macros.

Let’s look at an example of inheritance and polymorphism by looking at the GtkWindow object hierarchy
taken from the GTK+ API documentation:

GObject
+——GtkObject

+——GtkWidget
+——GtkContainer

+——GtkBin
+——GtkWindow

This list of objects tells you that GtkWindow is a child of GtkBin, and therefore any function you can call
with a GtkBin can be called with GtkWindow. Similarly, GtkWindow inherits from GtkContainer, which
inherits from GtkWidget. 

As a matter of convenience, all widget creation functions return a GtkWidget type. For example:

GtkWidget*  gtk_window_new   (GtkWindowType type);

Suppose we create a GtkWindow, and want to pass the returned value to a function that expects a
GtkContainer such as gtk_container_add:

void gtk_container_add  (GtkContainer *container, GtkWidget *widget);

We use the GTK_CONTAINER macro to cast between a GtkWidget and GtkContainer:

GtkWidget * window = gtk_window_new(GTK GTK_WINDOW_TOPLEVEL);
gtk_container_add(GTK_CONTAINER(window), awidget);

You’ll see the meaning of these functions later but observe now using the macro. Macros exist for every
conceivable cast.

Don’t worry if all this is meaningless; you don’t need to understand OO programming in any detail to
come to grips with GNOME/GTK+. In fact, it’s a painless way to learn the ideas and benefits behind
OO programming while still in the comfort zone of C.
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Introducing GNOME
GNOME is the name given to a project started in 1997 by programmers working on the GNU Image
Manipulation Program (The GIMP) to create a unified desktop for Linux. There was a general consensus
that adoption of Linux as a desktop platform was being held back by the lack of a coherent strategy. At
that time, the Linux desktop resembled the Wild West, with no overall standards or agreed-upon prac-
tices and an “anything goes” programmer mentality. With no overarching group controlling things such
as desktop menus, a consistent look and feel, documentation, translation, and so on, the newbie experi-
ence on the desktop was at best confusing and at worst unusable.

The GNOME team set out to create a desktop for Linux licensed entirely under the GPL, developing 
utilities and configuration programs in a uniform and consistent style while promoting standards for
inter-application communication, printing, session-management, and best-practices in GUI application
programming.

The results of their efforts are clear for all to see—GNOME is the basis of the default Red Hat Linux
desktop (see Figure 16-1). 

Figure 16-1
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GNOME originally stood for the GNU Network Object Model Environment—this reflects one of the early
goals, which was to introduce an object framework to Linux like the Microsoft OLE, so that you could
embed, for example, a spreadsheet in a word processor document. Now the design goals have moved on,
and what we know as GNOME refers to the complete desktop environment, which consists of a panel for
launching apps, a suite of programs and utilities, programming libraries, and developer support features.

Before we start programming, we need to make sure we’ve got all the libraries installed.

Installing the GNOME/GTK+ Development Libraries
The complete GNOME desktop with its standard applications and the GNOME/GTK+ development
libraries stretches over more than 60 RPMs; as a result, installing GNOME from scratch either manually
or from source code is a daunting prospect. Thankfully, modern Linux distributions have excellent pack-
age management utilities that make installing GNOME/GTK+ and the development libraries a breeze.

In Red Hat Linux 8 onward, open the Package Management tool by clicking the Main Menu button (a big
red hat in the lower left) and choose System Settings ➪ Add/Remove Applications. When the
Package Management tool appears (see Figure 16-2), make sure that the GNOME Software Development
checkbox is checked. 

Figure 16-2

The default desktop in Red Hat 8 onward is Red Hat’s own GNOME/KDE hybrid
desktop that aims to bridge the look-and-feel gap between GNOME and KDE.
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For distributions that use RPMS, you should have at least the following RPMS installed: 

gtk2-2.2.1-4.rpm
gtk2-engines-1.1.8-5.rpm
gtk2-devel-2.2.1-4.rpm
libgnome-2.2.0.1-8.rpm
libgnomeui-2.2.0.1-5.rpm
libgnome-devel-2.2.0.1-8.rpm
libgnomeui-devel-2.2.0.1-5.rpm

In Debian, you can use apt-get to install the GNOME/GTK+ packages from various mirrors—follow
the links from http://www.gnome.org for details.

To check that everything is installed properly, try running pkg-config on the command line:

$ pkg-config

pkg-config is a handy utility for finding out how GTK+ and GNOME are configured on your system.
Note that pkg-config supercedes the gtk-config utility that comes with GTK+ 1.x 

Also try out the GTK+ demo application that shows off all the widgets in their finery (see Figure 16-3):

$gtk-demo

Figure 16-3

In this chapter, we will be working with GNOME/GTK+ 2, so make sure your instal-
lation contains the version 2.x libraries.
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Try it Out—A Plain GtkWindow
Let’s start programming GTK+ with the simplest of GUI programs: displaying a window. We’ll see the
GTK+ libraries in action, and see how much functionality we get from surprisingly little code.

1. Type this program and call it gtk1.c:

#include <gtk/gtk.h>

int main (int argc, char *argv[])
{
GtkWidget *window;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_widget_show(window);
gtk_main ();

return 0;
}

2. To compile gtk1.c type:

$ gcc gtk1.c –o gtk1 `pkg-config —cflags —libs gtk+-2.0`

Take care to type backticks, not apostrophes—remember that backticks are instructions to the shell to
execute and append the output of the enclosed command.

When we run this program with the following command, your window should pop up (see Figure 16-4).

$ ./gtk1

Figure 16-4

Note that we can move, resize, minimize, and maximize the window.

How It Works
We include the necessary GTK+ and related library headers (including GLib) with a single #include
<gtk/gtk.h> statement. Next, we declare the window to be a pointer to a GtkWidget. 
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Next, to initialize the GTK+ libraries, we must make a call to gtk_init passing in the command line
arguments argc and argv. This gives GTK+ a chance to parse any command line parameters it needs to
know about. Note that we must always initialize GTK+ in this way before calling any GTK+ functions. 

The core of the example is the call we make to gtk_window_new. The prototype is 

GtkWidget*  gtk_window_new   (GtkWindowType type);

Type can take one of two values depending on the purpose of the window.

❑ GTK_WINDOW_TOPLEVEL: A standard framed window

❑ GTK_WINDOW_POPUP: A frameless window suitable for dialog boxes

We’ll almost always use GTK_WINDOW_TOPLEVEL, as there are far more convenient ways of creating
dialogs, as you’ll see later.

The call to gtk_window_new sets up the window in memory, so we have a chance to populate it with
widgets, resize it, change the window title, and so forth, before actually displaying it on screen. To make
the window actually appear on screen, we call gtk_widget_show

gtk_widget_show(window);

Conveniently, this takes a GtkWidget pointer, so we simply pass in the reference to our window.

The final call we make is to gtk_main. This key function starts up the interactivity process by passing
control to GTK+ and doesn’t return until a call to gtk_main_quit is made. As you can see, in gtk1.c
this never happens, so the application doesn’t end even after the window is closed.  Try this out by click-
ing on the close icon and seeing that the command prompt doesn’t return. We’ll rectify this after we’ve
learned about signals and callbacks in the next section. 

Events, Signals, and Callbacks
All GUI libraries have one thing in common: Some mechanism must exist to execute code in response to
a user action. A command line program has the luxury of halting execution to wait for input and can
then use something like a switch statement to branch execution based on the input. This approach is
impractical with a GUI application because the application must continually respond to user input; for
example, it needs to continually update areas of the window.

Modern windowing systems have systems of events and event listeners that address this problem. The
idea is that each user input, usually from the mouse or keyboard, triggers an event. A keyboard press
would trigger a “keyboard event,” for example. Code is then written to listen for these events and to
execute when such an event is triggered.  

As we saw earlier, the X Window System emits these events, but they aren’t much help to us as a GTK+
programmer, as they’re very low level. When a mouse button is clicked, X emits an event that contains
the coordinates of the pointer—what we really need to know is when a user activates a widget.
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Accordingly, GTK+ has its own system of events and event listeners, known as signals and callbacks.
They’re very easy to use because you can use a very useful feature of C, a pointer to a function, to set the
signal handler. 

First some definitions: A GTK+ signal is emitted by a GtkObject when something such as user input
occurs. A function that is connected to a signal, and therefore called whenever that signal is emitted, is
known as a callback function. 

Note that a GTK+ signal is quite separate from a UNIX signal, discussed in Chapter 11.

As a GTK+ programmer, all you need to worry about is writing and connecting callback functions, since
the signal-emitting code is internal to the particular widget.

The callback function prototype is typically like this

void a_callback_function ( GtkWidget *widget, gpointer user_data);

We are passed two parameters, the first a pointer to the widget that emitted the signal and the second an
arbitrary pointer that we pick ourselves when we connect the callback. We can use this pointer for any
purpose.

Connecting the callback is just as simple. We simply call g_signal_connect and pass in the widget,
signal name as a string, callback function pointer, and our arbitrary pointer.

gulong g_signal_connect(gpointer *object, const gchar *name, GCallback func,
gpointer  user_data );

One point worthy of noting—there are no restrictions in connecting callbacks. You can have multiple sig-
nals to a single callback function, and multiple callback functions connected to a single signal. You can
see in detail the signals that each widget emits by reading the GTK+ API documentation.

We’ll try out g_signal_connect in our next example.

Try It Out—A Callback Function
In gtk2.c, we’ll add a button to our window and attach the button’s “clicked” signal to our callback
function to print a short message.

#include <gtk/gtk.h>
#include <stdio.h>

static int count = 0;

void button_clicked ( GtkWidget *button, gpointer data)

Prior to GTK+ 2, the function to connect callback functions was gtk_signal_
connect. This function has been replaced by g_signal_connect and should
not be used in new code. 
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{
printf(“%s pressed %d time(s) \n”, (char *) data, ++count);

}

int main (int argc, char *argv[])
{

GtkWidget *window;
GtkWidget *button;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
button = gtk_button_new_with_label(“Hello World!”);
gtk_container_add(GTK_CONTAINER(window), button);

g_signal_connect(GTK_OBJECT (button), “clicked”, 
GTK_SIGNAL_FUNC (button_clicked), 
“Button 1”);

gtk_widget_show(button);
gtk_widget_show(window);

gtk_main ();

return 0;
}  

When running this program, you’ll get a window with a button. Each time you click the button, it prints
out a short message (see Figure 16-5).

Figure 16-5

How It Works
We’ve introduced two new features in gtk2.c: a GtkButton and a callback function. A GtkButton is a
simple button widget that can contain text, in this case “Hello World,” and emits a signal called “clicked”
whenever the button is pressed with the mouse. 
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The callback function button_clicked is connected to the “clicked” signal of the button widget using
the g_signal_connect function:

g_signal_connect(GTK_OBJECT (app), “clicked”, 
GTK_SIGNAL_FUNC (button_clicked), 
“Button 1”);

Note that the name of the button—”Button 1”—is passed as user data to the callback function. 

The rest of the additional code deals with the button widget, which is created in the same way as the
window—a call to a gtk_button_new_with_label function—and gtk_widget_show makes it visible.

To place the button on the window, we call gtk_container_add. This simple function places a
GtkWidget inside a GtkContainer and takes the container and widget as arguments.

void gtk_container_add  (GtkContainer *container, GtkWidget *widget);

As we saw before, GtkWindow is a child of GtkContainer, so we can cast our window object to a
GtkContainer type using the GTK_CONTAINER macro:

gtk_container_add(GTK_CONTAINER(window), button);

gtk_container_add is great for placing a single widget inside a container, but more often we’ll need to
arrange several widgets in various positions in a window to create a decent interface. GTK+ has special
widgets just for this purpose, called Box or Container widgets. 

Packing Box Widgets
The layout of a GUI is of key importance to its usability and one of the hardest things to get right. The
real difficulty with arranging widgets is that you can’t rely on all users to have the same screen resolu-
tion, or to have the same window size, theme, font, or color scheme. What might be a pleasing interface
on one system might be impossible to read on another. 

To create a GUI that appears uniform on all systems, you need to avoid placing widgets using absolute
coordinates and instead use a more flexible system of layout. GTK+ has box widgets for this purpose. 

Box widgets are invisible widgets whose job it is to contain other widgets and control their layout. To
control the size of the individual widgets contained inside the box widget, we specify rules instead of
coordinates. Since box widgets contain any GtkWidget, and a GtkBox is itself a GtkWidget, we can nest
box widgets inside one another to create complex layouts.

There are two main subclasses of GtkBox:

❑ GtkHBox is a single row horizontal packing box widget.

❑ GtkVBox is a single column vertical packing box widget.
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When the packing boxes are created, you should specify two parameters, homogeneous and spacing:

GtkWidget*  gtk_hbox_new (gboolean homogeneous, gint spacing);
GtkWidget*  gtk_vbox_new (gboolean homogeneous, gint spacing);

These parameters control layout for all of the widgets in that particular packing box. homogeneous is a
boolean that, when set to TRUE, forces contained widgets to occupy equal space, regardless of individ-
ual size. spacing sets the gap between widgets in pixels.

Once you’ve created the packing box, add widgets using gtk_box_pack_start and
gtk_box_pack_end functions. 

void gtk_box_pack_start (GtkBox *box, GtkWidget *child, 
gboolean expand, gboolean fill, 
guint padding);

void gtk_box_pack_end (GtkBox *box, GtkWidget *child, 
gboolean expand, gboolean fill, 
guint padding);

gtk_box_pack_start adds widgets to the left side of a GtkHbox and to the bottom of a GtkVBox; con-
versely gtk_box_pack_end from the right and top. Their parameters control the spacing and format of
each widget within the packing box.

Parameter Description

GtkBox *box The packing box to be filled.

GtkWidget *child The widget to be placed in the packing box.

gboolean expand If TRUE, this widget fills all available space shared between the
other widgets with this flag also set to TRUE.

gboolean fill If TRUE, this widget will fill the space allocated to it, rather than
use it as padding around the edges. Only valid when expand is
TRUE.

Guint padding Padding size in pixels around widget.

Let’s take a look at these packing box widgets now and create a more complex user interface, showing
off nested packing boxes.

Try It Out—Widget Container Layout
In this example, we’ll lay out some simple GtkLabel widgets using GtkHBox and GtkVBox. Label 
widgets are simple widgets that are useful for displaying short amounts of text. We call this program
container.c.

#include <gtk/gtk.h>

void closeApp ( GtkWidget *window, gpointer data)
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{
gtk_main_quit();

}

int main (int argc, char *argv[])
{

GtkWidget *window;
GtkWidget *label1, *label2, *label3;
GtkWidget *hbox;
GtkWidget *vbox;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

gtk_window_set_title(GTK_WINDOW(window), “The Window Title”);
gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk_window_set_default_size(GTK_WINDOW(window), 300, 200);

g_signal_connect ( GTK_OBJECT (window), “destroy”, 
GTK_SIGNAL_FUNC ( closeApp), NULL);

label1 = gtk_label_new(“Label 1”);
label2 = gtk_label_new(“Label 2”);
label3 = gtk_label_new(“Label 3”);

hbox = gtk_hbox_new ( TRUE, 5 );
vbox = gtk_vbox_new ( FALSE, 10);

gtk_box_pack_start(GTK_BOX(vbox), label1, TRUE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(vbox), label2, TRUE, FALSE, 5);

gtk_box_pack_start(GTK_BOX(hbox), vbox, FALSE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(hbox), label3, FALSE, FALSE, 5);

gtk_container_add(GTK_CONTAINER(window), hbox);
gtk_widget_show_all(window);
gtk_main ();

return 0;
}  

When we run this program, we see the layout of label widgets in our window (see Figure 16-6).

Figure 16-6
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How It Works
We create two packing box widgets, hbox and vbox. We fill vbox with label1 and label2 using
gtk_box_pack_start, so label2 appears at the bottom because it is added after label1. Next vbox
itself is added to hbox along with label3. 

hbox is finally added to the window and is shown on screen using gtk_widget_show_all.

The packing box layout is understood best with a diagram, as shown in Figure 16-7.

Figure 16-7

Now that we’ve looked at widgets, signals, callbacks, and container widgets, we’ve covered the essen-
tials of GTK+. Becoming a knowledgeable GTK+ programmer involves understanding how best to use
the available widgets.

GTK+ Widgets
In this section, we’ll look at the API of the common GTK+ widgets we use most often in our applications. 

GtkWindow
GtkWindow is the basic element of all GTK+ applications. We’ve used it so far to hold our widgets.

GtkWidget
+——GtkContainer

+——GtkBin
+——GtkWindow

There are dozens of GtkWindow API calls, but here are the functions worthy of special attention.

GtkWidget* gtk_window_new (GtkWindowType type);
void gtk_window_set_title  (GtkWindow *window, const gchar *title);
void gtk_window_set_position (GtkWindow *window, GtkWindowPosition position);
void gtk_window_set_default_size (GtkWindow *window, gint width, gint height);
void gtk_window_resize (GtkWindow *window, gint width, gint height);

Label1

Label3

Label2

vbox
hbox

window
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void gtk_window_set_resizable (GtkWindow *window, gboolean resizable);
void gtk_window_present (GtkWindow *window);
void gtk_window_maximize (GtkWindow *window);
void gtk_window_unmaximize (GtkWindow *window);

As we’ve just seen, gtk_window_new creates a new, empty window in memory. The window title is
unset, and the size and screen position of the window are undefined. We will normally populate the
window with widgets and set up a menu and toolbar before making the window visible onscreen with
a call to gtk_widget_show

The gtk_window_set_title function changes the text of the title bar by informing the window manager
of the request. 

Note that because it is the window manager, not GTK+, that is responsible for painting the window
surround, the font, color, and size of the text are dependent on your choice of window manager. 

gtk_window_set_position controls the position of the initial placement on screen. The position
parameter can take five values.

Position Parameter Description

GTK_WIN_POS_NONE The window is placed at the discretion of the 
window manager.

GTK_WIN_POS_CENTER The window is positioned centrally on screen.

GTK_WIN_POS_MOUSE The window is positioned at the mouse pointer.

GTK_WIN_POS_CENTER_ALWAYS Keep the window centered regardless of size.

GTK_WIN_POS_CENTER_ON_PARENT Sets the window centrally on its parent (useful for
dialog boxes).

gtk_window_set_default_size sets the size of the window on screen in GTK+ drawing units.
Explicitly setting the size of the window ensures that the contents of the window aren’t obscured or hid-
den. To force a resize of the window once it’s onscreen, we can use gtk_window_resize. By default, the
user is able to resize the window by dragging the frame in the usual way. To prevent this, we can call
gtk_window_set_resizeable set to FALSE.

To ensure that our window is on screen and visible to the user—that is,  not minimized or hidden—
gtk_window_present fits the bill. gtk_window_present is useful for dialog boxes to make sure
they’re not minimized when we need some user input. Alternatively, to force maximizing and minimiz-
ing we have gtk_window_maximize and gtk_window_minimize.

GtkEntry
The GtkEntry widget is a single-line text entry widget that is commonly used to enter simple textual
information, for example an e-mail address, a username, or a hostname. There are API calls that enable
us to set as well as read the entered text, set the maximum number of allowed characters, and set other
things to control the positioning and selection of the text.
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GtkWidget
+——GtkEntry

GtkEntry can be set to display asterisks (or any other user-definable character) in place of the literal
typed characters, which can be very useful for entering passwords when we don’t want anybody to lean
over our shoulder and read the text.

We’ll describe the most useful GtkEntry functions:

GtkWidget*  gtk_entry_new                   (void);
GtkWidget*  gtk_entry_new_with_max_length   (gint max);
void  gtk_entry_set_max_length      (GtkEntry *entry, gint max);
G_CONST_RETURN gchar* gtk_entry_get_text    (GtkEntry *entry);
void  gtk_entry_set_text            (GtkEntry *entry, const gchar *text);
void  gtk_entry_append_text         (GtkEntry *entry, const gchar *text);
void  gtk_entry_prepend_text        (GtkEntry *entry, const gchar *text);
void  gtk_entry_set_visibility      (GtkEntry *entry, gboolean visible);
void  gtk_entry_set_invisible_char  (GtkEntry *entry, gchar invch);
void  gtk_entry_set_editable        (GtkEntry *entry, gboolean editable);

We can create a GtkEntry with either gtk_entry_new, or with a fixed maximum length of input text
with gtk_entry_new_with_max_length. Restricting the input to a certain length saves us the effort
of validating the input length and possibly having to inform the user that the text is too long.

To get the contents of the GtkEntry, we call gtk_entry_get_text, which returns a const char
pointer internal to the GtkEntry (G_CONST_RETURN is a GLib-defined macro). If we wish to modify the
text, or pass it to a function that might modify it, we must copy the string using, for example, strcpy.

We can manually set and modify the contents of the GtkEntry using the _set_text, _append_text,
and _modify_text functions. Note that these take const pointers.

To use GtkEntry as a password entry box that displays asterisks in place of characters, we use
gtk_entry_set_visibilility passing FALSE as the visible parameter. The invisible character can be
changed using gtk_entry_set_invisible_char to suit our requirements. 

Try It Out—Username and Password Entry
Now that we’ve seen the GtkEntry functions, let’s show them in action with a short program. entry.c
will create a username and password entry window and compare the entered password with a secret
password.

1. First we define the secret password, cunningly chosen to be secret.

#include <gtk/gtk.h>
#include <stdio.h>
#include <string.h>

const char * password = “secret”;
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2. We have two callback functions that are called when the window is destroyed and the Ok button
is clicked.

void closeApp ( GtkWidget *window, gpointer data)
{

gtk_main_quit();
}

void button_clicked (GtkWidget *button, gpointer data)
{

const char *password_text = gtk_entry_get_text(GTK_ENTRY((GtkWidget *) data));

if (strcmp(password_text, password) == 0)
printf(“Access granted!\n”);

else
printf(“Access denied!\n”);

}

3. In main, the interface is created and laid out, and the callbacks connected. We use hbox and
vbox container widgets to lay out the label and entry widgets. 

int main (int argc, char *argv[])
{

GtkWidget *window;
GtkWidget *username_label, *password_label;
GtkWidget *username_entry, *password_entry;
GtkWidget *ok_button;
GtkWidget *hbox1, *hbox2;
GtkWidget *vbox;

gtk_init(&argc, &argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_title(GTK_WINDOW(window), “GtkEntryBox”);
gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk_window_set_default_size(GTK_WINDOW(window), 200, 200);

g_signal_connect ( GTK_OBJECT (window), “destroy”, 
GTK_SIGNAL_FUNC ( closeApp), NULL);

username_label = gtk_label_new(“Login:”);
password_label = gtk_label_new(“Password:”);

username_entry = gtk_entry_new();
password_entry = gtk_entry_new();
gtk_entry_set_visibility(GTK_ENTRY (password_entry), FALSE);

ok_button = gtk_button_new_with_label(“Ok”);

g_signal_connect (GTK_OBJECT (ok_button), “clicked”, 
GTK_SIGNAL_FUNC(button_clicked), password_entry);

641

Programming GNOME Using GTK+

b544977 Ch16.qxd  12/1/03  8:57 AM  Page 641



hbox1 = gtk_hbox_new ( TRUE, 5 );
hbox2 = gtk_hbox_new ( TRUE, 5 );

vbox = gtk_vbox_new ( FALSE, 10);

gtk_box_pack_start(GTK_BOX(hbox1), username_label, TRUE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(hbox1), username_entry, TRUE, FALSE, 5);

gtk_box_pack_start(GTK_BOX(hbox2), password_label, TRUE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(hbox2), password_entry, TRUE, FALSE, 5);

gtk_box_pack_start(GTK_BOX(vbox), hbox1, FALSE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(vbox), hbox2, FALSE, FALSE, 5);
gtk_box_pack_start(GTK_BOX(vbox), ok_button, FALSE, FALSE, 5);

gtk_container_add(GTK_CONTAINER(window), vbox);

gtk_widget_show_all(window);
gtk_main ();

return 0;
}  

When we run this program, we get a window that appears as in Figure 16-8.

Figure 16-8

How It Works
The program creates two GtkEntry widgets, username_entry and password_entry, and sets pass-
word_entry with a visibility of FALSE to hide our entered password. It then creates a GtkButton with
which we connect the “clicked” signal to the button_clicked callback function.

Once in the callback function, the program retrieves the entered password and compares it to the secret
password, printing the appropriate message.
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Notice that we have repeated gtk_box_pack_start statements to add the widgets to their containers.
To reduce this repeated code, we’ll define a helper function in later examples.

GtkSpinButton
Sometimes we’ll want the user to enter a numeric value such as a maximum speed or length of device, and
in these situations, a GtkSpinButton is ideal. GtkSpinButton restricts a user to entering numeric charac-
ters only, and we can set the range for allowed values between a lower and upper bound. The widget also
provides up and down arrows so we can “spin” the value using only the mouse for convenience. 

GtkWidget
+——GtkEntry

+——GtkSpinButton

Again, the API is straightforward, and we’ll list the most commonly used calls.

GtkWidget* gtk_spin_button_new (GtkAdjustment *adjustment, gdouble climb_rate, 
guint digits);

GtkWidget* gtk_spin_button_new_with_range (gdouble min, gdouble max, gdouble step);
void gtk_spin_button_set_digits (GtkSpinButton *spin_button, guint digits);
void gtk_spin_button_set_increments (GtkSpinButton *spin_button, gdouble step,

gdouble page);
void gtk_spin_button_set_range (GtkSpinButton *spin_button, gdouble min, 

gdouble max);
gdouble gtk_spin_button_get_value (GtkSpinButton *spin_button);
gint gtk_spin_button_get_value_as_int (GtkSpinButton *spin_button);
void gtk_spin_button_set_value (GtkSpinButton *spin_button, gdouble value);

To create a GtkSpinButton using gtk_spin_button_new, we first need to create a GtkAdjustment
object. A GtkAdjustment widget is an abstract object that contains logic to deal with controlling
bounded values. GtdAdjustment is also used in other widgets, such as GtkHScale and GtkVScale. 

To create a GtkAdjustment, we pass in an initial value, lower and upper bounds, and increment sizes.

GtkObject* gtk_adjustment_new (gdouble value, gdouble lower, gdouble upper,
gdouble step_increment, gdouble page_increment,
gdouble page_size);

The values of step_increment and page_increment set the size of minor and major size increments. In
the case of GtkSpinButton, the step_increment sets how much the value changes when the arrows are
clicked. page_increment and page_size are not important when used with GtkSpinButton widgets.

climb_rate, the second parameter of gtk_spin_button_new, controls how quickly the values “spin”
when you press and hold the arrow buttons. Finally, digits sets the precision of the widget, so a digit
of 3 would set the spin button to display 0.00.

gtk_spin_button_new_with_range is a convenience method that creates a GtkAdjustment for us.
We simply pass in the lower bound, upper bound, and step rate.

Reading the current value is easy with gtk_spin_button_get_value, and if we want an integer value,
we can use gtk_spin_button_get_value_as_int. 
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Try It Out—GtkSpinButton
We’ll now see a GtkSpinButton in action with a short example.

#include <gtk/gtk.h>

void closeApp ( GtkWidget *window, gpointer data)
{

gtk_main_quit();
}

int main (int argc, char *argv[])
{

GtkWidget *window;
GtkWidget *spinbutton;
GtkObject *adjustment;

gtk_init (&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size ( GTK_WINDOW(window), 300, 200);
g_signal_connect ( GTK_OBJECT (window), “destroy”,

GTK_SIGNAL_FUNC ( closeApp), NULL);

adjustment = gtk_adjustment_new(100.0, 50.0, 150.0, 0.5, 0.05, 0.05); 
spinbutton = gtk_spin_button_new(GTK_ADJUSTMENT(adjustment), 0.01, 2);

gtk_container_add(GTK_CONTAINER(window), spinbutton);
gtk_widget_show_all(window);
gtk_main ();

return 0;
}

When we run this program, we get a spin button bounded between 50 and 100 (see Figure 16-9).

Figure 16-9

GtkButton
We’ve already seen GtkButton in action, but there are more button widgets descended from GtkButton
that have slightly more functionality and deserve a mention.

GtkButton
+——GtkToggleButton

+——GtkCheckButton
+——GtkRadioButton
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As you can see from the widget hierarchy, GtkToggleButton is descended directly from GtkButton,
GtkCheckButton from GtkToggleButton and similarly with GtkRadioButton, each child widget spe-
cializing in purpose.

GtkToggleButton
GtkToggleButton is identical to a GtkButton except in one important regard: GtkToggleButton pos-
sesses state. That is, it can be on or off. When the user clicks a GtkToggleButton, it emits the “clicked”
signal in the usual manner and changes (or “toggles”) its state. 

The API for GtkToggleButton is very straightforward:

GtkWidget* gtk_toggle_button_new (void);
GtkWidget* gtk_toggle_button_new_with_label (const gchar *label);
gboolean gtk_toggle_button_get_active (GtkToggleButton *toggle_button);
void gtk_toggle_button_set_active (GtkToggleButton *toggle_button, 

gboolean is_active);

The interesting functions are gtk_toggle_button_get_active and gtk_toggle_button_set_
active, which we call to read and set the state of the toggle button. An activity of TRUE indicates the
GtkToggleButton is “on.”

GtkCheckButton
GtkCheckButton is a GtkToggleButton in disguise. Instead of the boring, rectangular blob of
GtkToggleButton, GtkCheckButton appears as an exciting checkbox with text at the side. There are
no functional differences.

GtkWidget* gtk_check_button_new (void);
GtkWidget* gtk_check_button_new_with_label (const gchar *label);

GtkRadioButton
This next button is rather different, as it can be grouped with other buttons of the same type.
GtkRadioButton is one of those buttons that allows you to select only one option at a time from a
group of options. The name comes from old-style radios that have mechanical buttons that pop back
out when you press in another button.

GtkWidget* gtk_radio_button_new (GSList *group);
GtkWidget* gtk_radio_button_new_from_widget (GtkRadioButton *group);
GtkWidget* gtk_radio_button_new_with_label (GSList *group, const gchar *label);
void gtk_radio_button_set_group (GtkRadioButton *radio_button, GSList *group);
GSList* gtk_radio_button_get_group (GtkRadioButton *radio_button);

The RadioButton group is represented in a GLib list object, called a GSList. To place radio buttons
in a group, we can create a GSList and pass it to each button using gtk_radio_button_new and
gtk_radio_button_get_group. There’s an easier way, however, in the shape of gtk_radio_button_
new_with_widget, which grabs the GSList out of an existing button for us. We’ll see this in action in
the next example, where we try out different GtkButtons:
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Try It Out—GtkCheckButton, GtkToggleButton, and GtkRadioButton
1. First, we declare the button pointers as global variables:

#include <gtk/gtk.h>
#include <stdio.h>

GtkWidget *togglebutton;
GtkWidget *checkbutton;
GtkWidget *radiobutton1, *radiobutton2;

void closeApp ( GtkWidget *window, gpointer data)
{

gtk_main_quit();
}

2. Here we define a helper function that packs a GtkWidget and GtkLabel into a GtkHbox
and then adds this GtkHbox into a given container widget. This helps us cut down on repeated
code.

void add_widget_with_label ( GtkContainer * box, gchar * caption, GtkWidget *
widget)
{

GtkWidget *label = gtk_label_new (caption);
GtkWidget *hbox = gtk_hbox_new (TRUE, 4);

gtk_container_add(GTK_CONTAINER (hbox), label);
gtk_container_add(GTK_CONTAINER (hbox), widget);

gtk_container_add(box, hbox);
}

3. print_active is another helper function that prints out the current state of the given
GtkToggleButton with a describing string. It is called from button_clicked, which is a
callback function attached to the clicked signal of the Ok button. Every time this button is
clicked, we get a printout of the state of the buttons.

void print_active(char * button_name, GtkToggleButton *button)
{

gboolean active = gtk_toggle_button_get_active(button);

printf(“%s is %s\n”, name, active?”active”:”not active”);
}

void button_clicked(GtkWidget *button, gpointer data)
{

print_active(“Checkbutton”, GTK_TOGGLE_BUTTON(checkbutton));
print_active(“Togglebutton”, GTK_TOGGLE_BUTTON(togglebutton));
print_active(“Radiobutton1”, GTK_TOGGLE_BUTTON(radiobutton1));
print_active(“Radiobutton2”, GTK_TOGGLE_BUTTON(radiobutton2)); 
printf(“\n”);

}
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4. In main, we create the button widgets, stack them up in a GtkVBox adding descriptive labels,
and connect the callback signal to the Ok button. 

gint main (gint argc, gchar *argv[])
{

GtkWidget *window;
GtkWidget *button;       
GtkWidget *vbox;

gtk_init (&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size(GTK_WINDOW(window), 200, 200);
g_signal_connect ( GTK_OBJECT (window), “destroy”,

GTK_SIGNAL_FUNC (closeApp), NULL);

button = gtk_button_new_with_label(“Ok”);
togglebutton = gtk_toggle_button_new_with_label(“Toggle”);
checkbutton = gtk_check_button_new(); 
radiobutton1 = gtk_radio_button_new(NULL);
radiobutton2 = gtk_radio_button_new_from_widget(GTK_RADIO_BUTTON(radiobutton1));

vbox = gtk_vbox_new (TRUE, 4); 
add_widget_with_label (GTK_CONTAINER(vbox), “ToggleButton:”, togglebutton);
add_widget_with_label (GTK_CONTAINER(vbox), “CheckButton:”, checkbutton);
add_widget_with_label (GTK_CONTAINER(vbox), “Radio 1:”, radiobutton1);
add_widget_with_label (GTK_CONTAINER(vbox), “Radio 2:”, radiobutton2);
add_widget_with_label (GTK_CONTAINER(vbox), “Button:”, button);

g_signal_connect(GTK_OBJECT(button), “clicked”, 
GTK_SIGNAL_FUNC(button_clicked), NULL);

gtk_container_add(GTK_CONTAINER(window), vbox);
gtk_widget_show_all(window);
gtk_main ();

return 0;
}

Figure 16-10 shows buttons.c in action, with the four common types of GtkButton.

Figure 16-10
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This program is a simple example of using the four types of GtkButton and shows how we can read the
state of the GtkToggleButton, GtkCheckButton, and GtkRadioButton using the single gtk_toggle_
button_get_active. This is one of the great benefits of an Object Oriented approach—because we don’t
need separate get_active functions for each type of button, we can cut down the amount of code we
need. 

GtkTreeView
Up until now, we’ve looked at some of the simple GTK+ widgets, but not all widgets are single-line input
or display devices. There are, of course, no limits to the complexity of a GtkWidget, and GtkTreeView is
a great example of a widget that encapsulates a vast amount of functionality.

GtkWidget
+——GtkContainer

+——GtkTreeView

GtkTreeView is part of a family of widgets new to GTK+ 2 that creates list and tree views of data of the
sort you find in a spreadsheet or file manager. Using GtkTreeView, we can create complex views of
data, mix text, and bitmap graphics, and even input data using GtkEntry widgets, and so forth.

The quickest way of taking GtkTreeView for a test drive is to fire up the gtk-demo application that
ships with GTK+. The demo application shows off the capability of each GTK+ widget including
GtkTreeView, which is shown in Figure 16-11.

Figure 16-11

The GtkTreeView family is made up of four components.

❑ GtkTreeView: The Tree and List View 

❑ GtkTreeViewColumn: Represents a list or tree column

❑ GtkCellRenderer: Controls drawing cells

❑ GtkTreeModel: Represents Tree and List data 
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The first three make up what is known as the View, and the last is the Model. The concept of separating
the View from the Model (often called a Model/View/Controller, or MVC, Pattern) is not particular to
GTK+, but a design increasingly favored in all programming circles. 

The key advantage of the MVC design pattern is that data can be rendered simultaneously by different
views without unnecessary duplication. For example, text editors can have split panes and edit different
parts of the document without two copies of the document in memory.

The MVC pattern is also very popular in Web programming because it makes it easy to create a Web site
that renders differently in mobile or WAP browsers than it does in desktop browsers, simply by having
separate View components optimized for each browser type.

We’ll start by looking at the Model component, of which GTK+ has two. GtkTreeStore holds multilevel
data such as a directory hierarchy, and GtkListStore is for flat data.

To create a GtkTreeStore we pass in the number of columns followed by the type of each column:

Gtkwidget *store = gtk_tree_store_new (3, G_TYPE_STRING, G_TYPE_INT,
G_TYPE_BOOLEAN);

Reading, adding, editing, and removing data from the store are done with the aid of GtkTreeIter
structures. These iterator structures point to nodes in the tree (or rows in a list) and aid us in locating
and manipulating parts of the potentially very large data structure. There are several API calls to get the
iterator object at various points in a tree, but we’ll look at the simplest, gtk_tree_store_append.

Before we can add any data to the tree store, we need an iterator to point to a new row. gtk_tree_
store_append fills in a GtkTreeIter object that represents a new row in the tree, as either a top-level
row (if we pass NULL to the third argument) or as a child row (we pass the iterator of the parent row ).

GtkTreeIter   iter;
gtk_tree_store_append (store, &iter, NULL);   

Once we have an iterator, we can populate the row using gtk_tree_store_set:

gtk_tree_store_set (store, &iter,
0, “Def Leppard”,
1, 1987,
2, TRUE,
-1);

We pass the column number and data in pairs, terminated by –1. We’ll use an enum later to make the col-
umn numbers descriptive.

To add a branch to this row (a child row), we just need an iterator for the child row that we get by calling
gtk_tree_store_append again, passing in the top-level row this time:

GtkTreeIter   child;
gtk_tree_store_append (store, &child, &iter);   

649

Programming GNOME Using GTK+

b544977 Ch16.qxd  12/1/03  8:57 AM  Page 649



You can read more about GtkTreeStore and GtkListStore functions in the API documentation, so
let’s move on and look at the GtkTreeView View component.

Creating a GtkTreeView is simplicity itself; we just pass in our GtkTreeStore or GtkListStore model
to the constructor:

GtkWidget *view = gtk_tree_view_new_with_model (GTK_TREE_MODEL (store));

It’s now a case of configuring the widget to display the data exactly as we want it. For each column we
must define a GtkCellRenderer and set the data source. We can choose to display only certain data
columns, for example, or swap the display order of columns.

GtkCellRenderer is the object that deals with drawing each cell on screen, and there are three subclasses
that deal with text cells, pixmap graphic cells, and togglebutton cells:

❑ GtkCellRendererText

❑ GtkCellRendererPixBuf

❑ GtkCellRendererToggle

We’ll use the text renderer in our View: GtkCellRendererText:

GtkCellRenderer *renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),

0,
“This is the column title”,

renderer,
“text”, 0,
NULL);

Here we create the renderer and pass it to the column insert function. This function enables us to set the
GtkCellRendererText properties in one go, passed as NULL-terminated key/value pairs. The parame-
ters are the view to a column, the column number, column title, renderer, and renderer properties. We’re
setting the “text” attribute here, passing in the column number of the data source. GtkCellRendererText
defines several other attributes, including underlining, font, size, and so forth.

Let’s see how this works in practice in the next example, where we put a GtkTreeView through its paces.

Try It Out—GtkTreeView
1. We use an enum to label the columns so we can refer to them by name. N_COLUMNS conve-

niently is the total number of columns. 

#include <gtk/gtk.h>

enum {
COLUMN_TITLE,
COLUMN_ARTIST,
COLUMN_CATALOGUE,
N_COLUMNS
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};

void closeApp ( GtkWidget *window, gpointer data)
{

gtk_main_quit();
} 

int main (int argc, char *argv[])
{

GtkWidget *window; 
GtkTreeStore *store;
GtkWidget *view;
GtkTreeIter parent_iter, child_iter;
GtkCellRenderer *renderer;

gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size ( GTK_WINDOW(window), 300, 200);
g_signal_connect ( GTK_OBJECT (window), “destroy”,

GTK_SIGNAL_FUNC ( closeApp), NULL);

2. Here we  create the tree store, passing in the number and type of each column:

store = gtk_tree_store_new (N_COLUMNS, G_TYPE_STRING,  G_TYPE_STRING,
G_TYPE_STRING);

3. The next part adds a parent and child row to the tree.

gtk_tree_store_append (store, &parent_iter, NULL); 

gtk_tree_store_set (store, &parent_iter, COLUMN_TITLE, “Dark Side of the Moon”,
COLUMN_ARTIST, “Pink Floyd”,
COLUMN_CATALOGUE, “B000024D4P”,
-1);

gtk_tree_store_append (store, &child_iter, &parent_iter);

gtk_tree_store_set (store, &child_iter, COLUMN_TITLE, “Speak to Me”,
-1);

view = gtk_tree_view_new_with_model (GTK_TREE_MODEL (store));

4. Finally, we add columns to the view, setting their data source and titles. 

renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),

COLUMN_TITLE,
“Title”, renderer,
“text”, COLUMN_TITLE,
NULL);

gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),
COLUMN_ARTIST,
“Artist”, renderer,
“text”, COLUMN_ARTIST,
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NULL);
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(view),

COLUMN_CATALOGUE,
“Catalogue”, renderer,
“text”, COLUMN_CATALOGUE,
NULL);

gtk_container_add(GTK_CONTAINER(window), view);

gtk_widget_show_all(window);
gtk_main ();

return 0;
}

We’ll use a GtkTreeView as the core of our CD application, where we’ll modify the contents of the
GtkTreeView as we query the CD database. 

We’ve finished our tour of GTK+ widgets, and now we’ll turn our attention to the other half of the story:
GNOME. We’ll see how to add menus to our application using the GNOME libraries and how the
GNOME widgets make programming for the GNOME desktop even easier. 

GNOME Widgets
GTK+ is designed to be desktop neutral; that is, GTK+ doesn’t make any assumptions that it’s running
in GNOME, or even that it’s running on Linux. The reason behind this is that GTK+ can be ported to run
on Windows or any other windowing system with relative ease. The upshot of this is that GTK+ lacks
the means to tie the program into the desktop, such as a means of saving program configuration, dis-
playing help files, or programming applets (applets are small utilities that run on the edge panels).

The GNOME libraries include GNOME widgets that extend GTK+ and replace parts of GTK+ with easier-
to-use widgets. In this section we’ll look at how to program using GNOME widgets.

Before we use the GNOME libraries, we must initialize them at the start of our programs in the same
way we did GTK+. We call gnome_program_init just as we do gtk_init for purely GTK+ programs. 

This function takes an app_id and app_version that we use to describe our program to GNOME, a
module_info that tells GNOME which library module to initialize, command line parameters, and
application properties set as a NULL-terminated list of name/value pairs.

GnomeProgram* gnome_program_init (const char *app_id, const char *app_version,
const GnomeModuleInfo *module_info,
int argc, char **argv,
const char *first_property_name,
...);

The optional property list allows us to set things such as the directory to look for bitmap graphics.
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Try It Out—A GNOME Window
Let’s look at a GNOME program now, by looking at the GNOME replacement to GtkWindow,
a GnomeApp widget.

Type in this program and call it gnome1.c:

#include <gnome.h>

int main (int argc, char *argv[])
{

GtkWidget *app;

gnome_program_init (“gnome1”, “1.0”, MODULE, argc, argv, NULL);
app = gnome_app_new (“gnome1”, “The Window Title”);
gtk_widget_show(app);
gtk_main ();

return 0;
}

To compile, we need to include the GNOME headers, so we pass libgnomeui and libgnome to 
pkg-config:

$ gcc gnome1.c –o gnome1 `pkg-config —cflags —libs libgnome-2.0 libgnomeui-2.0`

A GnomeApp widget extends GtkWindow and makes it easy to add menus, toolbars, and a status bar
along the bottom. Since it inherits from GtkWindow, we can use any GtkWindow function with a
GnomeApp widget. We’ll look at creating menus now, and we’ll add a status bar in our final example.

GNOME Menus
Creating a drop-down menu bar in GNOME is pleasantly simple. Each menu in the menu bar is repre-
sented by an array of GNOMEUIInfo structs with each element in the array corresponding to a single
menu item. For example, if we have File, Edit, and View menus, we will have three arrays describing the
contents of each menu.

Once we’ve defined each individual menu, we create the menu bar itself by referencing these arrays in
another array of GNOMEUIInfo structs.

The GNOMEUIInfo struct is a little complicated and needs to be explained.

You can use GTK+ to create menus, but GNOME provides helpful structures and
macros that make the job much easier. The online GTK+ documentation describes
how to create menus in GTK+.
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typedef struct {
GnomeUIInfoType type;
gchar const *label;
gchar const *hint;
gpointer moreinfo;
gpointer user_data;
gpointer unused_data;
GnomeUIPixmapType pixmap_type;
gconstpointer pixmap_info;
guint accelerator_key;
GdkModifierType ac_mods;
GtkWidget *widget;

} GnomeUIInfo;

The first item in the struct, type, defines the type of the menu element that follows. It can be one of 10
GnomeUIInfoTypes defined by GNOME:

GnomeUIInfoType Description

GNOME_APP_UI_ENDOFINFO Denotes that this is last menu item in the array.

GNOME_APP_UI_ITEM A normal menu item or a radio button if preceded
by a GNOME_APP_UI_RADIOITEMS entry.

GNOME_APP_UI_TOGGLEITEM A toggle button or check button menu item.

GNOME_APP_UI_RADIOITEMS A radio button group.

GNOME_APP_UI_SUBTREE Denotes this element is a submenu. Set moreinfo
to point to the submenu array.

GNOME_APP_UI_SEPARATOR Inserts a separator line in the menu.

GNOME_APP_UI_HELP Creates a help topic list for use in a Help menu.

GNOME_APP_UI_BUILDER_DATA Specifies builder data for the following entries.

GNOME_APP_UI_ITEM_CONFIGURABLE A configurable menu item.

GNOME_APP_UI_SUBTREE_STOCK Same as GNOME_APP_UI_SUBTREE except that
the label text should be looked up in the gnome-
libs catalog.

GNOME_APP_UI_INCLUDE Same as GNOME_APP_UI_SUBTREE except that
the items are included in the current menu and not
as a submenu.

The second and third members of the struct define the text of the menu item and the pop-up hint. (The
hint is shown in the status bar at the bottom of the window). 

The purpose of moreinfo depends on type. For ITEM and TOGGLEITEM, it points to the callback function
to be called when the menu item is activated. For RADIOITEMS it points to an array of GnomeUIInfo
structs that are grouped radio buttons. 
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user_data is an arbitrary pointer passed to the callback function. pixmap_type and pixmap_info
allow us to add a bitmap icon to the menu item, and accelerator_key and ac_mods help us define a
keyboard shortcut.

Finally, widget is used to internally hold the menu item widget pointer by the menu creation function.

Try It Out—GNOME Menus
Let’s try out menus with this short program. Call it menu1.c.

#include <gnome.h>

void closeApp ( GtkWidget *window, gpointer data)
{

gtk_main_quit();
}

1. We define a callback function for the menu items called item_clicked:

void item_clicked(GtkWidget *widget, gpointer user_data)
{

printf(“Item Clicked!\n”);
}

2. Next are our menu definitions. We have a submenu, top-level menu, and a menu bar array. 

static GnomeUIInfo submenu[] = {
{GNOME_APP_UI_ITEM, “SubMenu”, “SubMenu Hint”, 
GTK_SIGNAL_FUNC(item_clicked), NULL, NULL, 0, NULL, 0, 0, NULL},

{GNOME_APP_UI_ENDOFINFO, NULL, NULL, NULL, NULL, NULL, 0, NULL, 0, 0, NULL}
};

static GnomeUIInfo menu[] = {
{GNOME_APP_UI_ITEM, “Menu Item 1”, “Menu Hint”, 
NULL, NULL, NULL, 0, NULL, 0, 0, NULL},

{GNOME_APP_UI_SUBTREE, “Menu Item 2”, “Menu Hint”, submenu, 
NULL, NULL, 0, NULL, 0, 0, NULL},

{GNOME_APP_UI_ENDOFINFO, NULL, NULL, NULL, NULL, NULL, 0, NULL, 0, 0, NULL}
};

static GnomeUIInfo menubar[] = {
{GNOME_APP_UI_SUBTREE, “Toplevel Item”, NULL, menu, NULL, 
NULL, 0, NULL, 0, 0, NULL},

{GNOME_APP_UI_ENDOFINFO, NULL, NULL, NULL, NULL, NULL, 0, NULL, 0, 0, NULL} 
};

3. In main, we deal with the usual initialization and then create our GnomeApp widget and set
the menus:

int main (int argc, char *argv[])
{

GtkWidget *app;
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gnome_program_init (“gnome1”, “0.1”, LIBGNOMEUI_MODULE,
argc, argv,
GNOME_PARAM_NONE);

app = gnome_app_new(“gnome1”, “Menus, menus, menus”);

gtk_window_set_default_size ( GTK_WINDOW(app), 300, 200);
g_signal_connect ( GTK_OBJECT (app), “destroy”,

GTK_SIGNAL_FUNC ( closeApp), NULL);

gnome_app_create_menus ( GNOME_APP(app), menubar);

gtk_widget_show(app);

gtk_main();
return 0;

}

Try running menu1 and see the menu bar, submenu, and callback GNOME menu in action, as shown in
Figure 16-12.

Figure 16-12

The GnomeUIInfo struct is hardly programmer-friendly, given that it consists of 11 entries, most of which
are normally NULL or zero valued. It’s quite easy to make a mistake typing them in, and it’s difficult to tell
one field from another in a long array of items. To improve the situation, GNOME defines macros to take
out the hard work of writing the structs by hand. These macros also add icons and keyboard accelerators
for us, all for no cost. In fact, there’s rarely any reason to use anything but these macros.

There are two sets of macros, the first of which defines individual menu items. They take two parameters,
the callback function pointer, and user data.

#include <libgnomeui/libgnomeui.h>

#define     GNOMEUIINFO_MENU_OPEN_ITEM      (cb, data)
#define     GNOMEUIINFO_MENU_SAVE_ITEM      (cb, data)
#define     GNOMEUIINFO_MENU_SAVE_AS_ITEM   (cb, data)
#define     GNOMEUIINFO_MENU_PRINT_ITEM     (cb, data)
#define     GNOMEUIINFO_MENU_PRINT_SETUP_ITEM(cb, data)
#define     GNOMEUIINFO_MENU_CLOSE_ITEM     (cb, data)
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#define     GNOMEUIINFO_MENU_EXIT_ITEM      (cb, data)
#define     GNOMEUIINFO_MENU_QUIT_ITEM      (cb, data)
#define     GNOMEUIINFO_MENU_CUT_ITEM       (cb, data)
#define     GNOMEUIINFO_MENU_COPY_ITEM      (cb, data)
#define     GNOMEUIINFO_MENU_PASTE_ITEM     (cb, data)
#define     GNOMEUIINFO_MENU_SELECT_ALL_ITEM(cb, data)
... etc

And the second set is for top-level definitions to which we simply pass the array:

#define     GNOMEUIINFO_MENU_FILE_TREE      (tree)
#define     GNOMEUIINFO_MENU_EDIT_TREE      (tree)
#define     GNOMEUIINFO_MENU_VIEW_TREE      (tree)
#define     GNOMEUIINFO_MENU_SETTINGS_TREE  (tree)
#define     GNOMEUIINFO_MENU_FILES_TREE     (tree)
#define     GNOMEUIINFO_MENU_WINDOWS_TREE   (tree)
#define     GNOMEUIINFO_MENU_HELP_TREE      (tree)
#define     GNOMEUIINFO_MENU_GAME_TREE      (tree)

Try It Out—Menus with GNOME Macros
Let’s make use of these menus and see how the macros work. Make the following changes to menu1.c,
and call this menu2.c.

#include <gnome.h>

static GnomeUIInfo filemenu[] = {
GNOMEUIINFO_MENU_NEW_ITEM (“New”, “Menu Hint”, NULL, NULL ),
GNOMEUIINFO_MENU_OPEN_ITEM (NULL, NULL),
GNOMEUIINFO_MENU_SAVE_AS_ITEM (NULL, NULL),
GNOMEUIINFO_SEPARATOR,
GNOMEUIINFO_MENU_EXIT_ITEM (NULL, NULL),
GNOMEUIINFO_END

};

static GnomeUIInfo editmenu[] = {
GNOMEUIINFO_MENU_FIND_ITEM (NULL, NULL),
GNOMEUIINFO_END

};

static GnomeUIInfo menubar[] = {
GNOMEUIINFO_MENU_FILE_TREE (filemenu),
GNOMEUIINFO_MENU_EDIT_TREE (editmenu),
GNOMEUIINFO_END

};

int main (int argc, char *argv[])
{

GtkWidget *app, *toolbar;

gnome_program_init (“gnome1”, “0.1”, LIBGNOMEUI_MODULE,
argc, argv,
GNOME_PARAM_NONE);
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app = gnome_app_new(“gnome1”, “Menus, menus, menus”);
gtk_window_set_default_size ( GTK_WINDOW(app), 300, 200);
gnome_app_create_menus ( GNOME_APP(app), menubar);

gtk_widget_show(app);

gtk_main();
return 0;

}

By using the libgnomeui macros in menu2.c, we’ve significantly reduced the code we need to type and
made the menu code much more readable. The macros save us time and effort when creating menus and
make the wording, keyboard shortcuts, and icons consistent with other GNOME applications. Try to use
them in your own applications whenever you can.

Figure 16-13 shows menu3.c in action with the now standardized GNOME menu items.

Figure 16-13

Dialogs
An important part of any GUI application is interacting with and informing users of important events.
Usually, we’ll create a temporary window with Ok and Cancel buttons for this, and if the information is
important enough to require an immediate response, such as deleting a file, we’ll want to block access to
all other windows until the user has made a choice.

What we’ve described here is a dialog, and GTK+ provides special dialog widgets that are descended
from GtkWindow to make our programming job that much easier.

GtkDialog
As we can see, GtkDialog is a child of GtkWindow and therefore inherits all its functions and properties.

GtkWindow
+——GtkDialog
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GtkDialog divides the window into two areas, one for widget content and one for buttons that run
along the bottom. We can specify the buttons we want as well as other dialog settings when we create
the dialog box.

GtkWidget* gtk_dialog_new_with_buttons (const gchar *title,
GtkWindow *parent,
GtkDialogFlags flags,
const gchar *first_button_text,
...);

This function creates a dialog window complete with a title and buttons. The second parameter, parent,
should point to the main window of our application so that GTK+ can make sure the dialog stays attached
to the window and is minimized when the main window is minimized.

flags determines the combination of properties the dialog can take:

❑ GTK_DIALOG_MODAL

❑ GTK_DIALOG_DESTROY_WITH_PARENT

❑ GTK_DIALOG_NO_SEPARATOR

We can combine the flags using the bitwise OR operator; for example, (GTK_DIALOG_MODAL|GTK_
DIALOG_NO_SEPARATOR) is both a modal dialog and one with no separator line between the main 
window area and the button area.

The remaining parameters are a NULL-terminated list of buttons and corresponding response code. We’ll
see exactly what this response code means when we see gtk_dialog_run. Normally we’ll pick buttons
from the long list of stock buttons that GTK+ defines as we get ready-made icons in the buttons.

Here’s how we would create a dialog with Ok and Cancel buttons that return GTK_RESPONSE_ACCEPT
and GTK_RESPONSE_REJECT when those respective buttons are clicked:

GtkWidget *dialog = gtk_dialog_new_with_buttons (“Important question”,
parent_window,

GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL, GTK_RESPONSE_REJECT,
NULL);

We’ve chosen to have two buttons here, but there’s no limit to the number of buttons you can have in the
dialog.

Naturally, we’ll need to add content to our dialog, and for this GtkDialog contains a ready-made
GtkVBox to populate with widgets. We get a pointer directly from the object:

GtkWidget *vbox  = GTK_DIALOG(dialog)->vbox;

We use this GtkVbox in the usual way, with gtk_box_pack_start or something similar. 
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Once we’ve created a dialog box, the next step is to present it to the user and wait for a response. This
can be done in one of two ways: in a modal fashion, which blocks all input except to the dialog box, or a
nonmodal way, which treats the dialog the same as any other window. Let’s look at running a modal
dialog first.

Modal Dialog Box
A modal dialog box forces the user to respond before any other action can take place. It’s useful in situa-
tions where the user is about to do something with serious repercussions or to report errors and warning
messages.

You can make a dialog box modal by setting the GTK_DIALOG_MODAL flag and calling gtk_widget_show,
but there’s a better way. gtk_dialog_run does the hard work for us by stopping further program execu-
tion until a button is pressed. 

When the user presses a button (or the dialog is destroyed), gtk_dialog_run returns with an int result
that indicates which button the user pressed. GTK+ usefully defines an enum to describe the possible
values: 

typedef enum
{

GTK_RESPONSE_NONE = -1,
GTK_RESPONSE_REJECT = -2,
GTK_RESPONSE_ACCEPT = -3,
GTK_RESPONSE_DELETE_EVENT = -4 
GTK_RESPONSE_OK     = -5,
GTK_RESPONSE_CANCEL = -6,
GTK_RESPONSE_CLOSE  = -7,
GTK_RESPONSE_YES    = -8,
GTK_RESPONSE_NO     = -9,
GTK_RESPONSE_APPLY  = -10,
GTK_RESPONSE_HELP   = -11

} GtkResponseType;

Now we can explain the result code passed in gtk_dialog_new_with_buttons—the result code is a
GtkResponseType that gtk_dialog_run returns when that button is pressed. We get a result of
GTK_RESPONSE_NONE if the dialog is destroyed (this happens if the user clicks the close icon, for example). 

The switch construction is ideal for calling the appropriate logic: 

GtkWidget *dialog = create_dialog();
int result = gtk_dialog_run(GTK_DIALOG(dialog));

switch (result)
{

case GTK_RESPONSE_ACCEPT:
delete_file();
break;

case GTK_RESPONSE_REJECT:
do_nothing();
break;

default:
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dialog_was_cancelled ();
break;

}
gtk_widget_destroy (dialog);

That’s all there is to simple modal dialogs in GTK+. As you can see, there’s very little code involved or
effort expended. All we do at the end is tidy up with a gtk_widget_destroy.

Things aren’t so straightforward, however, when we want a nonmodal dialog box. We can’t use
gtk_dialog_run—instead we must connect callback functions to the dialog buttons. 

Nonmodal Dialogs
We’ve seen how to use gtk_dialog_run to create a modal (blocking) dialog. Nonmodal dialogs work
slightly differently, although we create them in the same way. Instead of calling gtk_dialog_run, we
connect a callback function to the GtkDialog “response” signal that is emitted when a button is clicked
or the window is destroyed.

Connecting the callback signal is done in the usual way, with the difference being that the callback func-
tion has an extra response argument that plays the same role as the return value of gtk_dialog_run.
This code snippet shows the basic use of a nonmodal dialog:

void dialog_button_clicked (GtkWidget *dialog, gint response, gpointer user_data)
{

switch (result)
{

case GTK_RESPONSE_ACCEPT:
do_stuff();
break;

case GTK_RESPONSE_REJECT:
do_nothing();
break;

default:
dialog_was_cancelled ();
break;

}
gtk_widget_destroy(dialog);
} 

int main()
{
...
GtkWidget *dialog = create_dialog();

g_signal_connect ( GTK_OBJECT (dialog), “response”, 
GTK_SIGNAL_FUNC (dialog_button_clicked), user_data );

gtk_widget_show(dialog);
... 
}     
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With nonmodal dialogs, complications can arise because the user isn’t compelled to respond instantly
and can minimize and forget about the dialog. We need to consider what to do if the user tries to open
the dialog a second time before closing the first instance. What we need to do is check if the dialog
pointer is NULL, and if not to reshow the existing dialog by calling gtk_window_present. You can see
this in action in the “CD Database Application” section near the end of this chapter.

GtkMessageDialog
For very simple dialog boxes, even GtkDialog is unnecessarily complicated.

GtkDialog
+——GtkMessageDialog

With GtkMessageDialog, we can create a message dialog box in a single line of code.

GtkWidget* gtk_message_dialog_new (GtkWindow *parent, GtkDialogFlags flags,
GtkMessageType type,
GtkButtonsType buttons,
const gchar *message_format,
...);

This function creates a dialog complete with icons, a title, and configurable buttons. The parameter type
sets the stock icon and title of the dialog according to its intended purpose; for instance, the warning
type has a warning triangle icon. There are four possible values to cover the simple dialog types we most
often come across:

❑ GTK_MESSAGE_INFO

❑ GTK_MESSAGE_WARNING

❑ GTK_MESSAGE_QUESTION

❑ GTK_MESSAGE_ERROR

With a GtkMessageDialog, we can pass a GtkButtonsType rather than list each button individually, as
described in the following table. 

GtkButtonsType Description

GTK_BUTTONS_OK An Ok button

GTK_BUTTONS_CLOSE A Close button

GTK_BUTTONS_CANCEL A Cancel button

GTK_BUTTONS_YES_NO Yes and No buttons

GTK_BUTTONS_OK_CANCEL Ok and Cancel buttons

GTK_BUTTONS_NONE No buttons
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All that remains is the text of the dialog, which we can make up from a substituted string in the same
way we do with printf. In this example, we ask the user if she is sure she wants to delete a file:

GtkWidget *dialog = gtk_message_dialog_new (main_window,
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_MESSAGE_QUESTION,
GTK_BUTTONS_YES_NO,
“Are you sure you wish to delete %s?”,
filename);

result = gtk_dialog_run (GTK_DIALOG (dialog));
gtk_widget_destroy (dialog);

This dialog appears like that in Figure 16-14.

Figure 16-14

GtkMessageDialog is the simplest way of communicating information or asking yes/no type ques-
tions. We’ll make use of them in the following section, when we put our knowledge to use by creating a
GUI for our CD application.

CD Database Application
In the previous chapters we’ve developed a CD database with MySQL and a C interface. We’ll now
show how easy it is to put a GUI front end using GNOME/GTK+, and how quickly we can develop a
rich user interface.

For the sake of brevity and clarity we’ll develop a basic, bare-bones interface that implements only a
subset of the features—we won’t allow adding of track information to CDs or deleting of CDs, for exam-
ple. We’ll try to see all of the widgets we’ve covered in this chapter in action in our application so that
we can see how we use them in a real-life situation.

The key features we’ll code are

❑ Logging on to the database from the GUI 

❑ Searching for a CD

❑ Displaying CD and track information

❑ Adding a CD to the database

❑ Creating an About window

❑ Confirming when the user wishes to quit
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We’ll divide our code into three source files that share a common header file, cdapp_gnome.h. The
source files will separate the functions that create windows and dialogs—interface generating func-
tions—from callback functions.

Try It Out—cdapp_gnome.h
We’ll look at cdapp_gnome.h and see the functions that we’ll be implementing.

1. We include the GNOME headers and the header file for the interface functions we developed in
Chapter 8.

#include <gnome.h>
#include “app_mysql.h”

2. The enum labels the columns of the GtkTreeView widget that we’ll use to display the CDs
and tracks. 

enum {
COLUMN_TITLE,
COLUMN_ARTIST,
COLUMN_CATALOGUE,
N_COLUMNS

};

3. We have three window-creation functions in interface.c:

GtkWidget *create_main_window();

GtkWidget *create_login_dialog();

GtkWidget *create_addcd_dialog();

4. Callback functions for the menu items, toolbar, dialog buttons, and search button are in 
callbacks.c:

/* Callback to quit application */
void quit_app( GtkWidget * window, gpointer data);

/* Callback useful for confirming exit before quitting */
gboolean delete_event_handler ( GtkWidget *window, GdkEvent *event, gpointer data);

/* Callback connected to ‘response’ signal of addcd dialog */
void addcd_dialog_button_clicked (GtkDialog * dialog, gint response, 

gpointer userdata);

/* Callback for menu and toolbar ‘Add CD’ button */
void on_addcd_activate (GtkWidget *widget, gpointer user_data);

/* Callback for menu ‘About’ button */
void on_about_activate (GtkWidget  *widget, gpointer user_data);

/* Callback for search button */
void on_search_button_clicked  (GtkWidget *widget, gpointer userdata);
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Try It Out—interface.c
Let’s take a look first at interface.c, where we define the windows and dialogs we use in the application:

1. First, some widget pointers that we refer to in callbacks.c and main.c:

#include “app_gnome.h”

GtkWidget *treeview;
GtkWidget *appbar;
GtkWidget *artist_entry;
GtkWidget *title_entry;
GtkWidget *catalogue_entry;
GtkWidget *username_entry;
GtkWidget *password_entry;

2. app is the main window pointer that has file scope.

static GtkWidget *app;

3. We define a helper function that adds a widget with given label text to a container.

void add_widget_with_label ( GtkContainer *box, gchar *caption, GtkWidget *widget)
{

GtkWidget *label = gtk_label_new (caption);
GtkWidget *hbox = gtk_hbox_new (TRUE, 4);

gtk_container_add(GTK_CONTAINER (hbox), label);
gtk_container_add(GTK_CONTAINER (hbox), widget);

gtk_container_add(box, hbox);
}

4. The menubar definitions use GNOMEUIINFO macros for convenience.

static GnomeUIInfo filemenu[] =
{

GNOMEUIINFO_MENU_NEW_ITEM (“_New CD”, NULL, on_addcd_activate, NULL),
GNOMEUIINFO_SEPARATOR,
GNOMEUIINFO_MENU_EXIT_ITEM (close_app, NULL),
GNOMEUIINFO_END

};

static GnomeUIInfo helpmenu[] =
{

GNOMEUIINFO_MENU_ABOUT_ITEM (on_about_activate, NULL),
GNOMEUIINFO_END

};

static GnomeUIInfo menubar[] =
{

GNOMEUIINFO_MENU_FILE_TREE (filemenu),
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GNOMEUIINFO_MENU_HELP_TREE (helpmenu),
GNOMEUIINFO_END

};

5. Here we create the main window, add menu and toolbar, set its size, center on screen, and
assemble the widgets that make up the interface. Note that the function doesn’t show the win-
dow onscreen, but returns a pointer to the window instead.

GtkWidget * create_main_window()
{

GtkWidget *toolbar;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *label;
GtkWidget *entry;
GtkWidget *search_button;
GtkWidget *scrolledwindow;
GtkCellRenderer *renderer;

app = gnome_app_new (“GnomeCD”, “CD Database”);

gtk_window_set_position ( GTK_WINDOW( app), GTK_WIN_POS_CENTER);
gtk_window_set_default_size ( GTK_WINDOW( app ), 540, 480);

gnome_app_create_menus (GNOME_APP (app), menubar);

6. We create the toolbar using GTK+ stock icons and connect the callback functions.

toolbar = gtk_toolbar_new ();
gnome_app_add_toolbar (GNOME_APP (app), GTK_TOOLBAR (toolbar), “toolbar”,

BONOBO_DOCK_ITEM_BEH_EXCLUSIVE,
BONOBO_DOCK_TOP, 1, 0, 0);

gtk_container_set_border_width (GTK_CONTAINER (toolbar), 1);
gtk_toolbar_insert_stock (GTK_TOOLBAR (toolbar),

“gtk-add”,
“Add new CD”,
NULL, GTK_SIGNAL_FUNC (on_addcd_activate), NULL, -

1);
gtk_toolbar_insert_space (GTK_TOOLBAR (toolbar), 1);
gtk_toolbar_insert_stock (GTK_TOOLBAR (toolbar),

“gtk-quit”,
“Quit the Application”,
NULL, GTK_SIGNAL_FUNC (on_quit_activate), NULL, -

1);

7. Here we create widgets that we’ll use to search for a CD.

label = gtk_label_new(“Search String:”);
entry = gtk_entry_new ();
search_button = gtk_button_new_with_label(“Search”);
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8. gtk_scrolled_window provides scrollbars to allow a widget (in this case a GtkTreeView)
to expand beyond the window size.

scrolledwindow = gtk_scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolledwindow),

GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC);

9. Next, we arrange the interface using container widgets in the usual way.

vbox = gtk_vbox_new (FALSE, 0);
hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 5);  
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, FALSE, 5); 
gtk_box_pack_start (GTK_BOX (hbox), entry, TRUE, TRUE, 6);  
gtk_box_pack_start (GTK_BOX (hbox), search_button, FALSE, FALSE, 5); 
gtk_box_pack_start (GTK_BOX (vbox), scrolledwindow, TRUE, TRUE, 0);

10. Then we create the GtkTreeView widget, add three columns, and place it in the
GtkScrolledWindow.

treeview = gtk_tree_view_new();
renderer = gtk_cell_renderer_text_new ();
gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(treeview),

COLUMN_TITLE,
“Title”, renderer,
“text”, COLUMN_TITLE,
NULL);

gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(treeview),
COLUMN_ARTIST,
“Artist”, renderer,
“text”, COLUMN_ARTIST,
NULL);

gtk_tree_view_insert_column_with_attributes (GTK_TREE_VIEW(treeview),
COLUMN_CATALOGUE,
“Catalogue”, renderer,
“text”, COLUMN_CATALOGUE,
NULL);

gtk_tree_view_set_search_column (GTK_TREE_VIEW (treeview),
COLUMN_TITLE);

gtk_container_add (GTK_CONTAINER (scrolledwindow), treeview);

11. Finally, we set the contents of the main window, add a GnomeAppbar, and connect the necessary
callbacks.

gnome_app_set_contents (GNOME_APP (app), vbox);

appbar = gnome_appbar_new (FALSE, TRUE, GNOME_PREFERENCES_NEVER);
gnome_app_set_statusbar (GNOME_APP (app), appbar);

gnome_app_install_menu_hints (GNOME_APP (app), menubar);
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g_signal_connect (GTK_OBJECT (search_button), “clicked”,
GTK_SIGNAL_FUNC (on_search_button_clicked),
entry);

g_signal_connect (GTK_OBJECT(app), “delete_event”,
GTK_SIGNAL_FUNC ( delete_event_handler ),
NULL);

g_signal_connect (GTK_OBJECT(app), “destroy”,
GTK_SIGNAL_FUNC ( quit_app ), NULL);

return app;
}

12. The next function creates a simple dialog box that enables us to add a new CD to the database. It
consists of entry boxes for the artist, title, and catalogue fields, as well as Ok and Cancel buttons. 

GtkWidget *create_addcd_dialog()
{

artist_entry = gtk_entry_new();
title_entry = gtk_entry_new();
catalogue_entry = gtk_entry_new();

GtkWidget *dialog =  gtk_dialog_new_with_buttons (“Add CD”,
app,
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_STOCK_OK,
GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL,
GTK_RESPONSE_REJECT,
NULL);

add_widget_with_label ( GTK_CONTAINER (GTK_DIALOG (dialog)->vbox),
“Artist”, artist_entry);

add_widget_with_label ( GTK_CONTAINER (GTK_DIALOG (dialog)->vbox),
“Title”, title_entry);

add_widget_with_label ( GTK_CONTAINER (GTK_DIALOG (dialog)->vbox),
“Catalogue”, catalogue_entry);

g_signal_connect ( GTK_OBJECT (dialog), “response”,
GTK_SIGNAL_FUNC (addcd_dialog_button_clicked), NULL);

return dialog;
}

13. The database requires us to log in before we query it, so this function creates a dialog to enter
the username and password.

GtkWidget *create_login_dialog()
{

GtkWidget *dialog = gtk_dialog_new_with_buttons (“Database Login”,
app,
GTK_DIALOG_MODAL,
GTK_STOCK_OK,
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GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL,
GTK_RESPONSE_REJECT,
NULL);

username_entry = gtk_entry_new();
password_entry = gtk_entry_new();

gtk_entry_set_visibility(GTK_ENTRY (password_entry), FALSE);

add_widget_with_label ( GTK_CONTAINER (GTK_DIALOG (dialog)->vbox) , “Username”,
username_entry);

add_widget_with_label ( GTK_CONTAINER (GTK_DIALOG (dialog)->vbox) , “Password”,
password_entry);

gtk_widget_show_all(GTK_WIDGET (GTK_DIALOG (dialog)->vbox));

return dialog;
}

Try It Out—callbacks.c
1. First, we need to include the header file and reference some global variables defined in inter-

face.c so that we can read and update certain widget properties.

#include “app_gnome.h”

extern GtkWidget *treeview;
extern GtkWidget *app;
extern GtkWidget *appbar;
extern GtkWidget *artist_entry;
extern GtkWidget *title_entry;
extern GtkWidget *catalogue_entry;

static GtkWidget *addcd_dialog;

2. In quit_app we call database_end to tidy up and close the database before quitting.

void quit_app( GtkWidget *window, gpointer data)
{

database_end();
gtk_main_quit();

}

3. The next function pops up a simple dialog box to confirm that we wish to exit the application,
returning the response as a gboolean.

gboolean confirm_exit()
{

gint result;
GtkWidget *dialog = gtk_message_dialog_new (NULL,

GTK_DIALOG_MODAL,
GTK_MESSAGE_QUESTION,
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GTK_BUTTONS_YES_NO,
“Are you sure you want to quit?”);

result = gtk_dialog_run (GTK_DIALOG (dialog));
gtk_widget_destroy (dialog);

return (result == GTK_RESPONSE_YES);
}

4. delete_event_handler is a callback function that we connect to the Gdk delete event
of the main window. The event is emitted when we attempt to close a window, but critically
before the GTK+ destroy signal is sent.

gboolean delete_event_handler ( GtkWidget *window, GdkEvent *event, gpointer data)
{

return !confirm_exit();
}

5. When we want to add a CD to the database, the next function is called when a button is clicked
on the add CD dialog. If we clicked on Ok, we copy the strings into a non–const char array
and pass the data in it to the MySQL interface function add_cd.

void addcd_dialog_button_clicked (GtkDialog * dialog, gint response, gpointer
userdata)
{

const gchar *artist_const;
const gchar *title_const;
const gchar *catalogue_const;
gchar artist[200];
gchar title[200];
gchar catalogue[200];
gint *cd_id;

if (response == GTK_RESPONSE_ACCEPT)
{

artist_const = gtk_entry_get_text(GTK_ENTRY (artist_entry));
title_const =  gtk_entry_get_text(GTK_ENTRY (title_entry));
catalogue_const = gtk_entry_get_text(GTK_ENTRY (catalogue_entry));

strcpy(artist, artist_const);
strcpy(title, title_const);
strcpy(catalogue, catalogue_const);

add_cd(artist, title, catalogue, cd_id);
}

addcd_dialog = NULL;
gtk_widget_destroy(GTK_WIDGET(dialog));

}
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6. This is the heart of the application: retrieving the search results and populating the
GtkTreeView.

void on_search_button_clicked  (GtkButton *button, gpointer userdata)
{

struct cd_search_st cd_res;
struct current_cd_st cd;
struct current_tracks_st ct;
gint res1, res2, res3;
gchar track_title[110];
const gchar *search_string_const;
gchar search_string[200];
gchar search_text[200];
gint i = 0, j = 0;

GtkTreeStore *tree_store;
GtkTreeIter parent_iter, child_iter;

memset(&track_title, 0, sizeof(track_title));

7. Here we get the search string from the entry widget, copy into a non-const variable, and fetch
the matching CD IDs.

search_string_const = gtk_entry_get_text(GTK_ENTRY (userdata));
strcpy (search_string, search_string_const);
res1 = find_cds(search_string, &cd_res);

8. Next we update the appbar to display a message informing the user the result of the search.

sprintf(search_text, “ Displaying %d result(s) for search string ‘ %s ‘“, 
MIN(res1, MAX_CD_RESULT), search_string);

gnome_appbar_push (GNOME_APPBAR( appbar), search_text);

9. Now we have the search results and can populate the GtkTreeStore with the results. For
each CD ID we need to fetch the corresponding current_cd_st struct that contains the title
and author of the CD and then fetch the list of its tracks. We limit the number of entries to
MAX_CD_RESULT defined in app_mysql.h to ensure we don’t overfill the GtkTreeStore.

tree_store = gtk_tree_store_new (N_COLUMNS,
G_TYPE_STRING,
G_TYPE_STRING,
G_TYPE_STRING);

while (i < res1 && i < MAX_CD_RESULT)
{

res2 = get_cd(cd_res.cd_id[i], &cd);

/* Add a new row to the model */
gtk_tree_store_append (tree_store, &parent_iter, NULL);
gtk_tree_store_set (tree_store, &parent_iter,

COLUMN_TITLE, cd.title,
COLUMN_ARTIST, cd.artist_name,
COLUMN_CATALOGUE, cd.catalogue, -1
);

671

Programming GNOME Using GTK+

b544977 Ch16.qxd  12/1/03  8:57 AM  Page 671



res3 = get_cd_tracks(cd_res.cd_id[i++], &ct);
j = 0;
/* Populate the tree with the current cd’s tracks */
while (j < res3)
{

sprintf(track_title, “ Track %d. “, j+1);
strcat(track_title, ct.track[j++]);

gtk_tree_store_append (tree_store, &child_iter, &parent_iter);
gtk_tree_store_set (tree_store, &child_iter,

COLUMN_TITLE, track_title, -1);
}

}

gtk_tree_view_set_model (GTK_TREE_VIEW (treeview), GTK_TREE_MODEL(tree_store));

}

10. The addcd dialog is nonmodal. Therefore, we check to see if it’s already active before creating
and showing it.

void on_addcd_activate (GtkMenuItem * menuitem, gpointer user_data)
{

if (addcd_dialog != NULL)
return;

addcd_dialog = create_addcd_dialog();
gtk_widget_show_all (addcd_dialog);

}

gboolean close_app ( GtkWidget * window, gpointer data)
{

gboolean exit;

if ((exit = confirm_exit()))
{

quit_app(NULL, NULL);
}
return exit;

}

11. When we click the About button, a standard GNOME about box pops up.

void on_about_activate (GtkMenuItem  * menuitem, gpointer user_data)
{

const char * authors[] = {“Wrox Press”, NULL};
GtkWidget *about = gnome_about_new (“CD Database”, “1.0”,

“(c) Wrox Press”,
“Beginning Linux Programming”,
(const char ** ) authors, NULL,
“Translators”, NULL);

gtk_widget_show(about);
}
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Try It Out—main.c
1. After the include statements, we reference username and password entry boxes from 

interface.c.

#include <stdio.h>
#include <stdlib.h>

#include “app_gnome.h”

extern GtkWidget *username_entry;
extern GtkWidget *password_entry;

gint main(gint argc, gchar *argv[])
{

GtkWidget *main_window;
GtkWidget *login_dialog; 
const char *user_const;
const char *pass_const;
gchar username[100];
gchar password[100]; 
gint result;

2. We initialize the GNOME libraries as usual, then create and display the main window and our
login dialog.

gnome_program_init (“CdDatabase”, “0.1”, LIBGNOMEUI_MODULE,
argc, argv,
GNOME_PARAM_APP_DATADIR, “”,
NULL);

main_window = create_main_window();
gtk_widget_show_all(main_window);

login_dialog = create_login_dialog();

3. We loop until the user enters a correct username-password combination. The user can quit by
clicking Cancel, in which case she is then asked to confirm the action.

while (1)
{   

result = gtk_dialog_run (GTK_DIALOG (login_dialog));

if (result != GTK_RESPONSE_ACCEPT)
{

if (confirm_exit())
return 0;

else
continue;

}
user_const = gtk_entry_get_text(GTK_ENTRY (username_entry));
pass_const = gtk_entry_get_text(GTK_ENTRY (password_entry));
strcpy(username, user_const);
strcpy(password, pass_const);

if (database_start(username, password) == TRUE)
break;
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4. If database_start fails, we display an error message and the logon dialog is shown again.

GtkWidget * error_dialog = gtk_message_dialog_new (GTK_WINDOW(main_window),
GTK_DIALOG_DESTROY_WITH_PARENT,
GTK_MESSAGE_ERROR,
GTK_BUTTONS_CLOSE,
“Could not log on! - Check Username and

Password”);
gtk_dialog_run (GTK_DIALOG (error_dialog));
gtk_widget_destroy (error_dialog);

}

gtk_widget_destroy (login_dialog);
gtk_main();

return 0;
}

5. We’ll write a makefile to compile this application.

all:  app

app: app_mysql.c callbacks.c interface.c main.c app_gnome.h app_mysql.h
gcc -o app -I/usr/include/mysql app_mysql.c callbacks.c interface.c main.c -

lmysqlclient `pkg-config —cflags —libs libgnome-2.0 libgnomeui-2.0`

clean:
rm -f app

6. Now we just use the make command to compile the CD application:

make –f Makefile

When we run app, we should get our CD application—GNOME style (see Figure 16-15)!

Figure 16-15
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Summary
In this chapter, you’ve learned about programming with the GTK+/Gnome libraries to produce profes-
sional-looking GUI applications. First, we looked at the X Window System and how toolkits fit into the
picture and then saw briefly how GTK+ works under the hood with its object system and signal/call-
back mechanism.

We then moved on to look at the API of GTK+ widgets, showing simple and more advanced examples in
action in several program listings. In looking at the GnomeApp widget, we saw how to easily create
menus using helper macros. Finally, we saw how to create modal and nonmodal dialog boxes to interact
with the user.

Last, we created a GNOME/GTK+ GUI for our CD database, enabling us to log on to the database,
search for CDs, and add CDs to the database.

In Chapter 17, we’ll look at the rival toolkit to GTK+ and learn how to program KDE using Qt.
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17
Programming KDE Using Qt

In Chapter 16, we looked at the GNOME/GTK+ GUI libraries for creating graphical user inter-
faces under X. These libraries are only half of the story; the other big player on the GUI scene in
Linux is KDE/Qt, and in this chapter we’ll look at these libraries and see how they shape up
against the competition.

Qt is written in C++, the standard language to write Qt/KDE applications in, so in this chapter
we’ll be obliged to take a diversion from our usual C and get our hands dirty with C++. You might
like to take this opportunity to refresh your memory on C++, especially reminding yourself of the
principles of derivation, encapsulation, method overloading, and virtual functions.

In this chapter, we’ll be covering

❑ An introduction to Qt 

❑ Installing Qt

❑ Getting started

❑ Signal/slot mechanism

❑ Qt widgets

❑ Dialogs

❑ Menus and toolbars with KDE

❑ Building our CD database application with KDE/Qt

Introducing KDE and Qt
KDE (K Desktop Environment) is an open source desktop environment based on the Qt GUI
library. A host of applications and utilities are part of KDE, including a complete office suite, a
Web browser, and even a fully featured IDE for programming KDE/Qt applications. Industry
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recognition of how advanced KDE’s applications are came when Apple chose to use KDE’s Web browser
as the core of an alternative Web browser for Mac OS X, called Safari, that’s faster and offers more func-
tionality than Internet Explorer for Macintosh.

The KDE project’s homepage is at http://www.kde.org, where you can find detailed information,
download KDE and KDE applications, find documentation, join mailing lists, and get other developer
information.

The latest version of KDE at the time of writing is 3.1, and as this is the version that ships with current
Linux distributions, we’ll assume you have KDE 3.1 installed.

From a programmer’s perspective, KDE offers dozens of KDE widgets, usually derived from their Qt
counterparts to provide enhancements and greater ease of use. KDE widgets offer greater integration
with the KDE desktop than we get if we use Qt alone; for example, we get session management.

Qt is a mature, cross-platform GUI toolkit written in C++. Qt is the brainchild of Trolltech, a Norwegian
company that develops, markets, and supports Qt and Qt-related software for the commercial market.
Trolltech loudly touts the cross-platform capabilities of Qt, which is undeniably impressive; Qt has
native support on Linux and Unix derivatives, Windows, Mac OS X, and even embedded platforms,
which gives Qt a great competitive advantage over its rivals. 

Trolltech currently sells the commercial versions of Qt at a prohibitively high price for the casual user or
hobbyist. Fortunately, Trolltech realizes the value in offering a zero-price version to the free software
community, and therefore they offer a Qt Free edition for Linux, Windows, and MacOS. In return for a
free version of Qt, Trolltech gets a large user install base, a large programmer community, and a high
profile for its product. 

Qt Free is licensed under the GPL, which means we can program using the Qt libraries and distribute
our own GPL software free of charge. As far as we can tell, the two main differences between Qt Free
and Qt Professional are the lack of support and the fact that you can’t use Qt software in commercial
applications. Trolltech’s Web site at http://www.trolltech.com has all the API documentation that
we need.

Installing Qt
Unless you have a particular reason to compile from source, it’s easiest to find a binary package or RPM
for your distribution. Red Hat Linux 9 ships with qt-3.1.1-6.i386.rpm, which we can install using
the following command:

$ rpm –Uvh qt-3.1.1-6.i386.rpm

We can also install it with the package manager application (see Figure 17-1).
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Figure 17-1

If you do want to download the source code and build Qt yourself, you can get the latest source from the
Trolltech FTP site at ftp://ftp.trolltech.com/qt/source/. The source package comes with exten-
sive instructions on how to compile and install Qt in the INSTALL file in the tarred package.

$ cd /usr/local
$ tar –xvzf qt-x11-free-3.2.0.tar.gz
$ ./configure
$ make

You’ll also need to add a line to /etc/ld.so.conf:

/usr/lib/qt3/lib

When Qt is properly installed, the QTDIR environment variable should be set to the Qt installation
directory. You can check that this is the case as follows:

$ echo $QTDIR
/usr/lib/qt3

Also make sure the lib directory is added to /etc/ld.so/conf.
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Then run the following command as superuser:

$ ldconfig

Let’s try out the simplest Qt program and make sure our installation is working properly.

Try It Out—QMainWindow
Type  this program and call it qt1.cpp:

#include <qapplication.h>
#include <qmainwindow.h>

int main(int argc, char **argv)
{

QApplication app(argc, argv);
QMainWindow window();
app.setMainWidget(window);
window.show();
return app.exec();

}

To compile, we’ll need to include the Qt include and lib directories:

$ g++ -o qt1 qt1.cpp –I$QTDIR/include –L$QTDIR/lib –lqt

When we run our application, we should get a Qt window (see Figure 17-2).

$ ./qt1

Figure 17-2

How It Works
Unlike GTK+, there’s no all-encompassing qt.h header file, so we must explicitly include header files
for each object we use. 

The first object we encounter is QApplication. This is the main Qt object we must construct, passing
in the command line arguments before we begin. Each Qt application must have one and only one
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QApplication object that we must create before doing anything else. QApplication deals with under-
the-hood Qt operations such as event handling, string localization, and controlling the look and feel.

There are two QApplication methods we use: setMainWidget, which sets the main widget of our
application, and exec, which starts the event loop running. exec doesn’t return until either
QApplication::quit() is called or the main widget is closed. 

QMainWindow is the Qt base window widget that has support for menus, a toolbar, and a status bar. It’ll be
featured a great deal in this chapter as you learn how to extend it and add widgets to create an interface.

We’ll now introduce the mechanism of event-driven programming and add a PushButton widget to our
application.

Signals and Slots
As we saw in Chapter 16, signals and signal handling are the primary mechanisms a GUI application
uses to respond to user input and are central features of all GUI libraries. Qt’s signal-handling mecha-
nism consists of signals and slots, which are Qt’s names for signals and callback functions in GTK+.

Note that a Qt signal is quite separate from a UNIX signal, as discussed in Chapter 11.

Let’s remind ourselves how event-driven programming works. A GUI consists of menus, toolbars, but-
tons, entry boxes, and many other GUI elements that are collectively known as widgets. When the user
interacts with a widget, for example activating a menu item or entering some text in an entry box, the
widget will emit a named signal such as clicked, text_changed, or key_pressed. We’ll usually want
to do something in response to the user’s action, such as save a document or quit the application, and
we do this by connecting a signal to a callback function or, in Qt parlance, a slot. 

Using signals and slots in Qt is rather special—Qt defines two new aptly named pseudo-keywords,
signals and slots, to identify in our code the signals and slots of the class. This is great for readability
and code maintenance, but it means we must pass our code through a separate pre-preprocessing stage
to search and replace these pseudo-keywords with additional C++ code. 

There are some restrictions to how signals and slots can be used in Qt, but these are not significantly 
limiting:

❑ Signals and slots must be member functions of a class derived from QObject.

❑ If using multiple inheritance, QObject must appear first in the class list.

❑ A Q_OBJECT statement must appear in the class declaration.

❑ Signals cannot be used in templates.

❑ Function pointers cannot be used as arguments to signals and slots.

❑ Signals and slots cannot be overridden and upgraded to public status.
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Since we need to write our signals and slots in a descendant of QObject, it is logical to create our inter-
face by extending and customizing a widget, since QWidget, the base Qt widget, is derived from
QObject. In Qt, we nearly always create our interfaces by extending widgets such as QMainWindow.

A typical class definition MyWindow.h for our GUI will look something like this:

class MyWindow : public QMainWindow
{

Q_OBJECT
public:

MyWindow();
virtual ~MyWindow();

signals:
void aSignal();

private slots:
void doSomething();

}

Our class derives from QMainWindow, which provides functionality for the main window in our applica-
tion. Similarly we’ll subclass QDialog when we want a dialog box. First is the Q_OBJECT statement that
acts as a marker for the preprocessor, followed by the usual constructor and destructor prototypes. Next
are the signal and slot definitions. 

We have one signal and one slot, both with no arguments. To emit A_Signal(), ,all we need to do is call
emit somewhere in our code:

emit aSignal();

That’s it—everything else is handled by Qt. We don’t even need an A_Signal() implementation.

To use slots, we must connect them to a signal. This is done with the appropriately named static connect
method in the QObject class:

bool QObject::connect (const QObject * sender, const char * signal, 
const QObject * receiver, const char * member) 

We simply pass in the object that owns the signal (the sender), the signal function, the object that owns
the slot (the receiver), and finally the name of the slot.

In our MyWindow example, if we wanted to connect the clicked signal of a QPushButton widget to our
doSomething slot, we’d write

connect (button, SIGNAL(clicked()), this, SLOT(doSomething()));

Note that we must use SIGNAL and SLOT macros to surround the signal and slot functions. Just as in
GTK+, we can connect any number of slots to a given signal and also connect a slot to any number of
signals by multiple connect calls. If connect fails for any reason, it returns FALSE.
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All that remains is to implement our slot, and this takes the form of an ordinary member function.

void MyWindow::doSomething()
{

// Slot code
}

Try It Out—Signals and Slots
Now that we’ve seen the principles of signals and slots, let’s put this to use with an example. We’ll
extend QMainWindow and add a button. We’ll connect the button’s clicked signal to a slot.

1. Type this class declaration, and call it ButtonWindow.h.

#include <qmainwindow.h>

class ButtonWindow : public QMainWindow
{

Q_OBJECT

public:
ButtonWindow(QWidget *parent = 0, const char *name = 0);
virtual ~ButtonWindow();

private slots:
void Clicked();

};

2. Next is the class implementation, ButtonWindow.cpp: 

#include “ButtonWindow.moc”
#include <qpushbutton.h>
#include <qapplication.h>
#include <iostream>

3. In the constructor, we set the window title, create the button, and connect the button’s clicked
signal to our slot. setCaption is a QMainWindow method that unsurprisingly sets the win-
dow title.

ButtonWindow::ButtonWindow(QWidget *parent, const char *name) 
: QMainWindow(parent, name)

{
this->setCaption(“This is the window Title”);
QPushButton *button = new QPushButton(“Click Me!”, this, “Button1”);
button->setGeometry(50,30,70,20);
connect (button, SIGNAL(clicked()), this, SLOT(Clicked()));

}
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4. Qt manages the destruction of widgets automatically, so our destructor is empty:

ButtonWindow::~ButtonWindow()
{
}

5. Next, the slot implementation:

void ButtonWindow::Clicked(void)
{

std::cout << “clicked!\n”;
}

6. Finally, in main we just create an instance of our ButtonWindow, set it as our application’s
main window, and show the window on screen.

int main(int argc, char **argv)
{

QApplication app(argc,argv);
ButtonWindow *window = new ButtonWindow();

app.setMainWidget(window);
window->show();

return app.exec();
}

7. Before we can compile this example, we need to run the preprocessor on the header file. This
preprocessor program is called the Meta Object Compiler (moc) and should be present in the Qt
package. Run moc on ButtonWindow.h, saving the output as ButtonWindow.moc:

$moc ButtonWindow.h –o ButtonWindow.moc

Now we can compile as usual, linking in the moc output:

$ g++ -o button ButtonWindow.cpp –I$QTDIR/include –L$QTDIR/lib –lqt

When we run the program, we get the example shown in Figure 17-3.

Figure 17-3
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How It Works
We’ve introduced a new widget and some new functions here, so let’s take a look at these. QPushButton
is a simple button widget that can hold a label and bitmap graphic and can be activated by the user
clicking with the mouse or using the keyboard.

The constructor of QPushButton that we use is quite simple:

QPushButton::QPushButton(const QString &text, QWidget *parent, const char* name=0 ) 

The first argument is the text of the button label, then the parent widget, and last the name of the button
used internally by Qt.

The parent parameter is common to all Qwidgets, and the parent widget controls when it is displayed
and destroyed, and various other characteristics. Passing NULL as the parent argument denotes that the
widget is top-level and creates a blank window to contain it. In our example we pass the current
ButtonWindow object using this, which adds the button to the ButtonWindow main area.

The name argument sets the name of the widget for use internally by Qt. If Qt encounters an error, then
the widget name will be printed in the error message, so it’s a good idea to choose the appropriate widget,
as it’s a great timesaver when debugging.

You might have noticed that we rather crudely added the QPushButton to the ButtonWindow by using
the parent parameter of the QPushButton constructor. We didn’t specify the positioning, size, border,
or anything like that. If we want precise control over widget layout, which is critical in creating an
attractive interface, we must use Qt’s layout objects. Let’s take a look at these now.

There are a number of ways to arrange the positioning and layout of widgets in Qt. We’ve already seen
using absolute coordinates by calling setGeometry, but this is rarely used, since the widgets don’t scale
and adjust to fit the window if it is resized.

The preferred method of arranging widgets is by using the QLayout classes or box widgets, which intel-
ligently resize, after we’ve given them hints on margins and spacing between widgets.

The key difference between the QLayout classes and box widgets is that layout objects are not widgets. 

The layout classes derive from QObject and not Qwidget, so we are constrained in how we can use
them. We cannot, for instance, make a QVBoxLayout a central widget of a QMainWindow. 

Box widgets (e.g., QHBox and QVBox), by contrast, are derived from QWidget, and therefore we can treat
them as ordinary widgets. You might well wonder why Qt has both QLayouts and QBox widgets with
duplicate functionality. Actually QBox widgets are just for convenience, and in essence wrap a QLayout
within a QWidget. QLayouts have the advantage of automatically resizing, whereas widgets must be
manually resized by calling QWidget::resizeEvent().

The QLayout subclasses QVBoxLayout and QHBoxLayout are the most popular way of creating an inter-
face, and the ones you will most often see in Qt code. 

QVBoxLayout and QHBoxLayout are invisible container objects that hold other widgets and layouts in a
vertical and a horizontal orientation, respectively. We can create arbitrarily complex arrangements of
widgets because we can nest layouts by placing a horizontal layout as an element inside a vertical lay-
out, for example.
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There are three QVBoxLayout constructors of interest (QHBoxLayout has an identical API).  

QVBoxLayout::QVBoxLayout (QWidget *parent, int margin, int spacing, const char *name)
QVBoxLayout::QVBoxLayout (QLayout *parentLayout, int spacing, const char * name)
QVBoxLayout::QVBoxLayout (int spacing, const char *name)

The parent of the QLayout can be either a widget or another QLayout. If we specify no parent, then we
can only add the layout to another QLayout later, using the addLayout method.

margin and spacing set the empty space in pixels placed around the outside of the QLayout and in
between individual widgets.

Once we’ve created our Qlayout, we add child widgets or layouts using a couple of methods:

QBoxLayout::addWidget (QWidget *widget, int stretch = 0, int alignment = 0 )
QBoxLayout::addLayout (QLayout *layout, int stretch = 0)

Try It Out—Using QBoxLayout Classes
Let’s see the QBoxLayout classes in action by arranging QLabel widgets in a QMainWindow. 

1. First, type the header file, LayoutWindow.h.

#include <qmainwindow.h>

class LayoutWindow : public QMainWindow
{

Q_OBJECT

public:
LayoutWindow(QWidget *parent = 0, const char *name = 0);
virtual ~LayoutWindow();

};

2. Now type  the implementation, LayoutWindow.cpp.

#include <qapplication.h>
#include <qlabel.h>
#include <qlayout.h>

#include “LayoutWindow.moc”

LayoutWindow::LayoutWindow(QWidget *parent, const char *name) : QMainWindow(parent,
name)
{

this->setCaption(“Layouts”);

3. We need to create a dummy QWidget to hold our QHBoxLayout because we cannot add a
QLayout directly to a QMainWindow.

QWidget *widget = new QWidget(this);
setCentralWidget(widget);
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QHBoxLayout *horizontal = new QHBoxLayout(widget, 5, 10, “horizontal”);
QVBoxLayout *vertical = new QVBoxLayout();

QLabel* label1 = new QLabel(“Top”, widget, “textLabel1” );
QLabel* label2 = new QLabel(“Bottom”, widget, “textLabel2”);
QLabel* label3 = new QLabel(“Right”, widget, “textLabel3”);

vertical->addWidget(label1);
vertical->addWidget(label2);
horizontal->addLayout(vertical);
horizontal->addWidget(label3); 
resize( 150, 100 );

}

LayoutWindow::~LayoutWindow()
{
}

int main(int argc, char **argv)
{

QApplication app(argc,argv);
LayoutWindow *window = new LayoutWindow();

app.setMainWidget(window);
window->show();

return app.exec();
}

As before, we need to run moc on the header file before compiling:

$moc LayoutWindow.h –o LayoutWindow.moc
$ g++ -o layout LayoutWindow.cpp –I$QTDIR/include –L$QTDIR/lib –lqt

When we run this program, we get our arrangement of Qlabels (see Figure 17-4). Try resizing the window
and see how the labels expand and shrink to fit the available space.

Figure 17-4

We’ve covered the basic principles of using Qt—signals and slots, moc, and layouts—so it’s time to
investigate the widgets more closely.
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Qt Widgets
There are widgets for every occasion in Qt, and looking at them all would take up the rest of the book.
In this section we’ll take a look at the common Qt widgets, including data entry widgets, buttons, combo
box, and list widgets.

QLineEdit
QLineEdit is Qt’s single-line text entry widget. We use it for inputting brief amounts of text, which we
can limit using an input mask to fit a template or, for the ultimate control, we can apply a validator func-
tion. QLineEdit has editing features, enabling us to select parts of the text, cut and paste, undo, redo,
and the like from both a user’s perspective and using the API. 

The constructors and most useful methods are

#include <qlineedit.h> 

QLineEdit::QlineEdit (QWidget *parent, const char* name = 0 )
QLineEdit::QLineEdit (const QString &contents, QWidget *parent,const char *name = 0
) 
QLineEdit::QLineEdit (const QString &contents, const QString &inputMask, 

QWidget *parent, const char *name = 0 ) 

void    setInputMask (const QString &inputMask)
void    insert (const QString &newText )
bool    isModified (void) 
void    setMaxLength (int length) 
void    setReadOnly (bool read)
void    setText (const QString &text) 
QString text (void) 
void    setEchoMode(EchoMode mode) 

In the constructors, we set the parent widget and widget name as usual with parent and name. 

An interesting property is EchoMode, which determines how the text appears in the widget.

It can take one of three values:

❑ QLineEdit::Normal: Display inputted characters (default)

❑ QLineEdit::Password: Display asterisks in place of characters

❑ QLineEdit::NoEcho: Display nothing 

We set the mode using the setEchoMode :

lineEdit->setEchoMode(QLineEdit::Password);

An enhancement introduced in Qt 3.2 is inputMask, which restricts input according to the mask rule.
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inputMask is a string made up of characters, each of which corresponds to a rule that accepts a certain
range of characters. If you’re familiar with regular expressions, then inputMask uses much the same
principle.

There are two sorts of inputMask characters: those that denote a certain character must be present, and
those that, if a character is present, restrict it to fall under the rule.

Meaning Required Character Optional Characters

ASCII A–Z, a– z A a

ASCII A– Z, a– z, 0– 9 N n

Any character X x

Numeric 0– 9 9 0

Numeric 1– 9 D d

Our inputMask is a string made up from a combination of these characters, optionally terminated by a
semicolon. There are further special characters that also have meaning:

# Plus/minus permitted but not required.

> Converts following input to uppercase.

< Converts following input to lowercase.

! Stops converting case.

\ Escape character to use special characters as separators.

All other characters in the inputMask act as separators in the QLineEdit.

Here are some examples of masks and their allowed input:

“AAAAAA-999D” Allows Athens-2004 but not Sydney-2000 or Atlanta-1996. 

“AAAAnn-99-99;” Allows March–03-12 but not May-03-12 or September-03-12.

“000.000.000.000” Allows IP address, for example, 192.168.0.1.

Try It Out—QLineEdit
Now let’s see QLineEdit in action.

1. First, the header file, LineEdit.h:

#include <qmainwindow.h>
#include <qlineedit.h>
#include <qstring.h>
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class LineEdit : public QMainWindow
{

Q_OBJECT

public:
LineEdit(QWidget *parent = 0, const char *name = 0);
QLineEdit *password_entry;

private slots:
void Clicked();

};

2. LineEdit.cpp is the now-familiar class implementation file: 

#include “LineEdit.moc”
#include <qpushbutton.h>
#include <qapplication.h>
#include <qlabel.h>
#include <qlayout.h>
#include <iostream>

LineEntry::LineEntry(QWidget *parent, const char *name) : QMainWindow(parent, name)
{

QWidget *widget = new QWidget(this);
setCentralWidget(widget);

3. We’ll use a QGridLayout to arrange the widgets. We specify the number of rows and
columns, the margin settings, and the spacing.

QGridLayout *grid = new QGridLayout(widget,3,2,10, 10,”grid”);

QLineEdit *username_entry = new QLineEdit( widget, “username_entry”);
password_entry = new QLineEdit( widget, “password_entry”);
password_entry->setEchoMode(QLineEdit::Password);

grid->addWidget(new QLabel(“Username”, widget, “userlabel”), 0, 0, 0);
grid->addWidget(new QLabel(“Password”, widget, “passwordlabel”), 1, 0, 0);

grid->addWidget(username_entry, 0,1, 0);
grid->addWidget(password_entry, 1,1, 0);

QPushButton *button = new QPushButton (“Ok”, widget, “button”);
grid->addWidget(button, 2,1,Qt::AlignRight);

resize( 350, 200 );

connect (button, SIGNAL(clicked()), this, SLOT(Clicked()));
}

void LineEntry::Clicked(void)
{

std::cout << password_entry->text() << “\n”;
}

int main(int argc, char **argv)
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{
QApplication app(argc,argv);
LineEntry *window = new LineEntry();

app.setMainWidget(window);
window->show();

return app.exec();
}

When we run this program, we get the example shown in Figure 17-5.

Figure 17-5

How It Works
We’ve created two QLineEdit widgets, made one a password entry by setting the EchoMode, and
printed its contents when we click on the PushButton. Note that we’ve introduced the QGridLayout
widget, which is very useful for laying out widgets in a grid pattern. When we add a widget to the grid,
we pass the row and column number, starting at 0, 0 for the top left cell.

Qt Buttons
Buttons widgets are ubiquitous widgets, and they vary little in appearance, usage, and API from toolkit
to toolkit. It’s no surprise that Qt offers standard PushButton, CheckBox, and RadioButton variants.

QButton—The Button Base Class
Button widgets in Qt all derive from the abstract QButton class. This class has methods to query and
toggle the on/off state of the button and to set the button’s text or pixmap.

We should never need to instantiate a QButton widget itself (don’t get confused between a QButton and
QPushButton!), so we needn’t show the constructors; however, here are the useful member functions:

#include <qbutton.h> 

virtual void QButton::setText ( const QString & )
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virtual void QButton::setPixmap ( const QPixmap & )
bool QButton::isToggleButton () const
virtual void QButton::setDown ( bool )
bool QButton::isDown () const
bool QButton::isOn () const
enum QButton::ToggleState { Off, NoChange, On }
ToggleState QButton::state () const

The isDown and isOn functions are identical in meaning. They both return TRUE if the button is pressed
or activated. 

Often, we’ll want to disable or gray out an option if it isn’t currently available. We can disable any widget
including QButtons by calling QWidget::setEnable(FALSE).

There are three subclasses of QButton that we’re interested in: 

❑ QPushButton: Simple button widget that performs some action when clicked 

❑ QCheckBox: Button widget that can toggle between on and off states to indicate some option

❑ QRadioButton: Button widget normally used in groups where only one button can be active in
a group at a time

QPushButton
QPushButton is the standard generic button that contains text such as “Ok” or “Cancel” and/or a
pixmap icon. Like all QButtons, it emits the clicked signal when it’s activated, and we’ll usually use
this to connect a slot and perform some action.

We’ve already used QPushButton in our examples, and there’s really only one other thing of interest to
say about this simplest of Qt widgets. QPushButton can be switched from a stateless button into a tog-
gle button (i.e., can be turned on or off) by calling setToggleButton. (If you recall from the last chapter,
GTK+ has separate widgets for the purpose.)

For completeness, here are the constructors and useful methods:

#include <qpushbutton.h>

QPushButton (QWidget *parent, const char *name = 0)
QPushButton (const QString &text, QWidget *parent, const char *name = 0)
QPushButton (const QIconSet &icon, const QString &text, 

QWidget *parent, const char * name = 0 )

void QPushButton::setToggleButton (bool);

QCheckBox
QCheckBox is a button that has state; that is, it can be turned on or off. The appearance of QCheckBox
depends on the current windowing style (Motif, Windows, etc.) but is usually drawn as a ticked box
with text to the right.

QCheckBox can also be set by us to be a third, in-between state that indicates “no change.” This is useful
in the rare occasions when we can’t read the state of the option the QCheckBox represents (and therefore
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set the QCheckBox on or off ourselves), but still want to give the user a chance to leave it unchanged as
well as actively set it on or off.

#include <qcheckbox.h>

QCheckBox (QWidget *parent, const char *name = 0 )
QCheckBox (const QString &text, QWidget *parent, const char *name = 0 )

bool QCheckBox::isChecked () 
void QCheckBox::setTristate ( bool y = TRUE )
bool QCheckBox::isTristate () 

QRadioButton
Radio buttons are toggle buttons used to represent exclusive choices when we can select only one option
out of a group of options presented (think back to those old car radios, where only one station button
could be pressed in at a time). QRadioButtons themselves are hardly any different from QcheckBoxes,
since the grouping and exclusivity are all handled by the QButtonGroup class, the main difference being
that radio buttons appear as round buttons rather than ticked boxes. 

QButtonGroup is a widget that makes handling groups of buttons easier by providing convenience
methods. 

#include <qbuttongroup.h>

QButtonGroup (QWidget *parent = 0, const char * name = 0 )
QButtonGroup (const QString & title, QWidget * parent = 0, const char * name = 0 )

int   insert (QButton *button, int id = -1)
void  remove (QButton *button)
int   id (QButton *button) const
int   count () const
int   selectedId () const

Using a QButtonGroup couldn’t be simpler; it even offers an optional frame around the buttons if we
use the title constructor.

We add a button to a QButtonGroup using either insert, or by specifying the QButtonGroup as the
parent widget of the button. We can specify an id with insert to uniquely identify each button in the
group. This is especially useful when querying which button is selected, as selectedId returns the id
of the selected button.

All QRadioButtons we add to the group are automatically set to be exclusive.

The QRadioButton constructors and one unique method shouldn’t be too surprising:

#include <qradiobutton.h>

QRadioButton (QWidget *parent, const char *name = 0 )
QRadioButton (const QString &text, QWidget *parent, const char *name = 0 )

bool   QRadioButton::isChecked ()
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Try It Out—QButtons
Let’s put this knowledge to some use, with a Qt buttons example.

1. Type Buttons.h:

#include <qmainwindow.h>
#include <qcheckbox.h>
#include <qbutton.h>
#include <qradiobutton.h>

class Buttons : public QMainWindow
{

Q_OBJECT

public:
Buttons(QWidget *parent = 0, const char *name = 0);

2. We’ll query the state of our buttons later in the slot function, so declare the button pointers as
private in the class definition, as well as a helper function PrintActive:

private:
void PrintActive(QButton *button);
QCheckBox *checkbox;
QRadioButton *radiobutton1, *radiobutton2;

private slots:
void Clicked();

};

3. Here’s Buttons.cpp:

#include “Buttons.moc”
#include <qbuttongroup.h>

#include <qpushbutton.h>

#include <qapplication.h>
#include <qlabel.h>
#include <qlayout.h>

#include <iostream>

Buttons::Buttons(QWidget *parent, const char *name) : QMainWindow(parent, name)
{

QWidget *widget = new QWidget(this);
setCentralWidget(widget);

QVBoxLayout *vbox = new QVBoxLayout(widget,5, 10,”vbox”);

checkbox = new QCheckBox(“CheckButton”, widget, “check”);
vbox->addWidget(checkbox);
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4. Here we create a QButtonGroup for our two radio buttons:

QButtonGroup *buttongroup = new QButtonGroup(0);

radiobutton1 = new QRadioButton(“RadioButton1”, widget, “radio1”);
buttongroup->insert(radiobutton1);
vbox->addWidget(radiobutton1);

radiobutton2 = new QRadioButton(“RadioButton2”, widget, “radio2”);
buttongroup->insert(radiobutton2);
vbox->addWidget(radiobutton2);

QPushButton *button = new QPushButton (“Ok”, widget, “button”);
vbox->addWidget(button);

resize( 350, 200 );

connect (button, SIGNAL(clicked()), this, SLOT(Clicked()));
}

5. Next is a convenience method for printing the state of the given QButton:

void Buttons::PrintActive(QButton *button)
{

if (button->isOn())
std::cout << button->name() << “ is checked\n”;

else
std::cout << button->name() << “ is not checked\n”;

}

void Buttons::Clicked(void)
{

PrintActive(checkbox);
PrintActive(radiobutton1);
PrintActive(radiobutton2);
std::cout << “\n”;

}

int main(int argc, char **argv)
{

QApplication app(argc,argv);
Buttons *window = new Buttons();

app.setMainWidget(window);
window->show();

return app.exec();
}

QComboBox
Radio buttons are an excellent way of enabling the user to select from a small number of options, say six
or fewer. When we have more than six, things start to get out of hand and it becomes increasingly so as
the number of options increases to keep the window to a sensible size. A perfect solution is to use an
entry box with drop-down menu, also known as a combo box. The options appear when we click and
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reveal the menu, and the number of options is limited only by how practical it becomes to search
through the list. 

QComboBox combines the functionality of a QLineEdit, QPushButton, and dropdown menus, enabling
the user to pick a single option from an unlimited choice of options.

A QComboBox can be either read/write or read-only; if it is read/write the user can type an alternative to
the options offered; otherwise the user is limited to select from the drop-down list.

When we create a QComboBox, we can specify whether it’s read/write or read-only as a boolean in the
constructor:

QComboBox *combo = new QComboBox(TRUE, parent, “widgetname”);

Passing TRUE sets the QComboBox to Read/Write mode. The other parameters are the usual parent wid-
get pointer and widget name. 

Like all Qt widgets, QComboBox is flexible in the way we can use it and it offers a good deal of function-
ality. We can add options individually or as a set, either as QStrings or using traditional char* format. 

To insert a single item, we call insertItem:

combo->insertItem(QString(“An Item”), 1); 

This takes a QString object and a position index.  Here, the value of 1 sets the item to be first in the list.
To add it to the end, we just pass any negative integer.

More usually we’ll add several items at a time, and for this we can use the QStrList class, or, as we do
here, as a char* array:

char* weather[] = {“Thunder”, “Lightning”, “Rain”, 0};
combo->insertStrList(weather, 3);

Again, we can specify an index for the inserted items in the list.

If the QComboBox is read/write, then values that the user types in can be automatically added to the list of
options. This is a useful time-saving feature that saves the user from repeated typing if he or she wants to
select the same typed-in value more than once. 

InsertionPolicy controls where the new entry is added in the option list:

QComboBox::AtTop Inserts the new entry as the first option in the list. 

QComboBox::AtBottom Inserts the new entry as the last option. 

QComboBox::AtCurrent Replaces the previously selected option.

QComboBox::BeforeCurrent Inserts the entry before the previously selected option.

QComboBox::AfterCurrent Inserts the entry after the previously selected option. 

QComboBox::NoInsertion New entry is not inserted into option list.
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To set the policy, we call the setInsertionPolicy method on the QComboBox:

combo->setInsertionPolicy(QComboBox::AtTop);

Let’s take a peek at the contructors and a selection of the QComboBox methods:

#include <qcombobox.h>

QComboBox (QWidget *parent = 0, const char *name = 0)
QComboBox (bool readwrite, QWidget *parent = 0, const char *name = 0)

int     count ()
void    insertStringList (const QStringList &list, int index = -1)
void    insertStrList (const QStrList &list, int index = -1)
void    insertStrList (const QStrList *list, int index = -1)
void    insertStrList (const char **strings, int numStrings = -1, int index = -1)
void    insertItem (const QString &t, int index = -1)
void    removeItem (int index)
virtual void setCurrentItem (int index)
QString currentText ()
virtual void setCurrentText (const QString &)
void    setEditable (bool)

count returns the number of options in the list. QStringList and QStrList are Qt string collection
classes we can use to add options. We can remove options using removeItem, get and set the current
option using currentText and setCurrentText, and toggle the editable state using setEditable.

QComboBox emits the textChanged(QString&) signal whenever a new option is selected, passing the
newly selected option as an argument.  

Try It Out—QComboBox
Let’s have a go at using QComboBox, and see how signals and slots with parameters work in action. We’ll
create a ComboBox class that inherits QMainWindow. It’ll have two QComboBoxes, one read/write and
one read-only, and we’ll connect to the textChanged signal to get the currently selected value each time
it changes.

For the sake of brevity, we won’t write out the ComboBox.h header file; we’ll just look at the class imple-
mentation instead.

1. The interface consists of two QComboBox widgets, one editable and the other read-only. We
populate both widgets with the same list of items:

#include “ComboBox.moc”

#include <qlayout.h>
#include <iostream>

ComboBox::ComboBox(QWidget *parent, const char *name) : QMainWindow(parent, name)
{

QWidget *widget = new QWidget(this);
setCentralWidget(widget);
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QVBoxLayout *vbox = new QVBoxLayout(widget, 5, 10,”vbox”);

QComboBox *editablecombo = new QComboBox(TRUE, widget, “editable”);
vbox->addWidget(editablecombo);
QComboBox *readonlycombo = new QComboBox(FALSE, widget, “readonly”);
vbox->addWidget(readonlycombo);

static const char* items[] = { “Macbeth”, “Twelfth Night”, “Othello”, 0 };
editablecombo->insertStrList (items);
readonlycombo->insertStrList (items);

connect (editablecombo, SIGNAL(textChanged(const QString&)),
this, SLOT(Changed(const QString&))); 

resize( 350, 200 );

}

2. This is our slot function. Note the QString parameter s that’s passed by the signal.

void ComboBox::Changed(const QString& s)
{

std::cout << s << “\n”;
}

int main(int argc, char **argv)
{

QApplication app(argc,argv);
ComboBox *window = new ComboBox();

app.setMainWidget(window);
window->show();

return app.exec();
}

You can see the newly selected options printed out on the command line in Figure 17-6.

Figure 17-6
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QListView
Lists and trees in Qt are provided by the QListView widget. QListView displays both plain lists and
hierarchical data divided into rows and columns. It’s perfect for displaying things like directory struc-
tures, as the child elements can be expanded and contracted by clicking the plus and minus boxes, just
like a file viewer.

Unlike the GTK+ ListView widget, QListView handles both the data and the view, which makes for
ease of use if not outstanding flexibility.  

With QListView, we can select rows or individual cells; then we cut and paste the data, sort by column
and have QCheckBox widgets rendered in cells. There’s a great amount of functionality built in—all we
need to do as programmers is add data and set up some formatting rules.

Creating a QListView is done in the usual fashion, specifying the parent and widget name:

QListView *view = new QListView(parent, “name”);

To set column headings, we use the aptly named addColumn method:

view->addColumn(“Left Column”, width1 ); // Fixed width
view->addColumn(“Right Column”); // Width autosizes 

The column’s width is set in pixels or, if omitted, defaults to the width of the widest element in the col-
umn. The column will then autosize as elements are added and removed.

Data is added to the QListView using a QListViewItem object to represent a row of data. All we need
do is pass the QListView and row elements to the constructor, and it’s appended to the view for us:

QListViewItem *toplevel = new QListViewItem(view, “Left Data”, “Right Data”);

The first parameter is either a QListView, as in this case, or another QListViewItem. If we pass a
QListViewItem, the row appears as the child of that QListViewItem. The tree structure is therefore
formed by passing the QListView for top-level nodes and then successive QListViewItems for the
child nodes. 

The remaining parameters are the data for each column that default to NULL if not specified.

Adding a child node is then just a case of passing in the top-level pointer. If we aren’t adding further
child nodes to a QListViewItem, we needn’t store the returned pointer:

new QListViewItem(toplevel, “Left Data”, “Right Data”); // A Child of toplevel

If we look at the QListViewItem API, we can see the methods to traverse the tree, should we wish to
modify particular rows:

#include <qlistview.h> 

virtual void    insertItem ( QListViewItem * newChild )
virtual void    setText ( int column, const QString & text )

699

Programming KDE Using Qt

b544977 Ch17.qxd  12/1/03  8:57 AM  Page 699



virtual QString text ( int column ) const
QListViewItem   *firstChild () const
QListViewItem   *nextSibling () const
QListViewItem   *parent () const
QListViewItem   *itemAbove ()
QListViewItem   *itemBelow ()

We can get the first row in the tree by calling firstChild on the QListView itself. We can then repeat-
edly call firstChild and nextSibling to return parts or the entire tree:

This code snippet prints out the first column of all the top-level nodes:

QListViewItem *child = view->firstChild();
while(child) 
{

cout << myChild->text(1) << “\n”;
myChild = myChild->nextSibling();

} 

You can find all the details about QListView, QListViewItem, and QCheckListView in the Qt API
documentation.

Try It Out—QListView
Now let’s put everything together and write a short example of a QListView widget.

We’ll skip the header file as before and see the class implementation: 

#include “ListView.moc”

ListView::ListView(QWidget *parent, const char *name) : QMainWindow(parent, name)
{

listview = new QListView(this, “listview1”);

listview->addColumn(“Artist”);
listview->addColumn(“Title”);
listview->addColumn(“Catalogue”);

listview->setRootIsDecorated(TRUE);

QListViewItem *toplevel = new QListViewItem(listview, “Avril Lavigne”, 
“Let Go”, “AVCD01”);

new QListViewItem(toplevel, “Complicated”);
new QListViewItem(toplevel, “Sk8er Boi”);

setCentralWidget(listview);
}

int main(int argc, char **argv)
{

QApplication app(argc,argv);
ListView *window = new ListView();
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app.setMainWidget(window);
window->show();

return app.exec();
}

After compiling and running the ListView example, we see the QListView widget in action as shown in
Figure 17-7.

Figure 17-7

Note how the child rows are indented with respect to their parent. The plus and minus boxes 
indicating there are hidden or collapsible rows are not present by default; here we set them with
setRootIsDecorated.

Dialogs
Up until now, we’ve been subclassing QMainWindow to create our interfaces. QMainWindow is appropri-
ate for the primary window in our application, but for short-lived dialogs, we should look at using the
QDialog widget.

Dialogs are useful whenever we want the user to input specific information for a particular task, or impart
small amounts of information to the user, such as a warning or error message. It’s preferable to subclass
QDialog for these tasks because we get convenience methods for running the dialog and purpose-
designed signals and slots to handle the user response.

As well as the usual modal and nonmodal (or modeless in Qt-speak) dialogs, Qt also offers a semimodal
dialog box. Let’s remind ourselves of the differences between modal and nonmodal, and define semi-
modal while we’re at it:

❑ Modal dialog box: Blocks input to all other windows to force the user to respond to the dialog.
Useful for grabbing an immediate response from the user and displaying critical error messages.

❑ Nonmodal dialog box: Nonblocking window that operates normally with other windows in the
application. Useful for search or input windows where we might want to copy and paste values
to and from the main window, for instance.
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❑ Semimodal dialog box: A modal dialog that does not have its own event loop. This enables 
control to be returned to the application, but to still have input blocked to anything other than
the dialog box. A semimodal dialog is useful in the rare occasions when we have a progress
meter indicate the progress of time-consuming critical operation that we want to give the
user the opportunity to cancel. Since it doesn’t have its own event loop, we must call
QApplication::processEvents periodically to update the dialog.

QDialog
QDialog is the base dialog class in Qt that provides exec and show methods for handling modal and
nonmodal dialogs, has an integral QLayout we can use, and has several signals and slots useful for
responding to button presses.

We’ll normally create a class for our dialog, inherit from QDialog, and add widgets to create the dialog
interface:

#include <qdialog.h>

MyDialog::MyDialog(QWidget *parent, const char *name) : QDialog(parent, name)
{

QHBoxLayout *hbox = new QHBoxLayout(this);

hbox->addWidget(new Qlabel(“Enter your name”)); 
hbox->addWidget(new QLineEdit());
hbox->addWidget(ok_pushbutton);
hbox->addWidget(cancel_pushbutton);

connect (ok_pushbutton, SIGNAL(clicked()), this, SLOT(accept()));
connect (cancel_pushbutton, SIGNAL(clicked()), this, SLOT(reject()));

}

Unlike with the QMainWindow, we can directly specify MyDialog as the parent of our QLayout object
without creating a dummy QWidget and using that as the parent. 

QDialog has two slots—accept and reject—that we use to indicate the dialog result. This result is
returned to us by the exec method. Normally, we’ll connect Ok and Cancel buttons to the slots, as we
do in MyDialog.

Modal Dialogs
To use our dialog as a modal dialog, we call exec, which brings up the dialog and returns either the
QDialog::Accepted or QDialog::Rejected according to which slot was activated.

MyDialog *dialog = new MyDialog(this, “mydialog”);
if (dialog->exec() == QDialog::Accepted)
{

// User clicked ‘Ok’
doSomething();

}
else 
{
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// user clicked ‘Cancel’ or dialog killed
doSomethingElse();

}
delete dialog;

The dialog is automatically hidden when the exec returns, but we still delete the object from memory. 

Note that all processing blocks when exec is called, so if there is any time-critical code in your application
then a nonmodal or semimodal dialog is more appropriate.

Nonmodal Dialogs
Nonmodal dialogs are little different from ordinary main windows, the key change being that they posi-
tion themselves over their parent window, share their taskbar entry and hide automatically when the
accept or reject slot is called.

To display a nonmodal dialog we call show as we would a QMainWindow:

MyDialog *dialog = new MyDialog(this, “mydialog”);
dialog->show();

show displays the dialog and immediately returns to continue the processing loop. To handle button
presses we need to write and connect to slots:

MyDialog::MyDialog(QWidget *parent, const char *name) : QDialog(parent, name)
{

...
connect (ok_pushbutton, SIGNAL(clicked()), this, SLOT(OkClicked()));
connect (cancel_pushbutton, SIGNAL(clicked()), this, SLOT(CancelClicked()));

}

MyDialog::OkClicked()
{

//Do some processing
}
MyDialog::CancelClicked()
{

//Do some other processing
}

The dialog is again automatically hidden when a button is pressed, as with a modal dialog.

Semimodal Dialog
To create a semimodal dialog we must set the modal flag in the QDialog constructor and use the show
method.

QDialog (QWidget *parent=0, const char *name=0, bool modal=FALSE, WFlags f=0)

The reason we didn’t set modal to TRUE with the modal dialog is that calling exec forces the dialog to be
modal regardless of this flag.
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Our dialog constructor will look something like this:

MySMDialog::MySMDialog(QWidget *parent, const char *name):QDialog(parent, name,
TRUE)
{

...
}

Once we’ve got our dialog defined, we call show as normal and then progress with our processing, peri-
odically calling QApplication::processEvents to keep the dialog updated.

MySMDialog *dialog = MySMDialog(this, “semimodal”);
dialog->show();
while (processing)
{

doSomeProcessing();
app->processEvents();
if (dialog->wasCancelled())

break;
}

We check that the dialog hasn’t been canceled before continuing processing. Note that wasCancelled
isn’t part of QDialog—we have to provide that ourselves.

Qt provides ready-made subclasses of QDialog, specialized for particular tasks such as a File selection, text
entry, progress meter, and message box. Using these widgets whenever we can saves us a lot of trouble.

QMessageBox
A QMessageBox is a modal dialog that displays a simple message with an icon and buttons. The icon
depends on the severity of the message, which can be regular information or warnings and other critical
information. 

The QMessageBox class has static methods to create and show each of these three types:

#include <qmessagebox.h>

int information (QWidget *parent, const QString &caption, const QString &text, 
int button0, int button1=0, int button2=0)

int warning     (QWidget *parent, const QString &caption, const QString &text,
int button0, int button1, int button2=0)

int critical    (QWidget *parent, const QString &caption, const QString &text,
int button0, int button1, int button2=0)

We can choose buttons from a list of stock QMessageBox buttons, which match up with the returned
value of the static methods: 

❑ QMessageBox::Ok 

❑ QMessageBox::Cancel 

❑ QMessageBox::Yes 
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❑ QMessageBox::No 

❑ QMessageBox::Abort 

❑ QMessageBox::Retry 

❑ QMessageBox::Ignore

A typical use of QMessageBox will look something like this:

int result = QMessageBox::information(this, 
“Engine Room Query”, “Do you wish to engage the HyperDrive?”,
QMessageBox::Yes | QMessageBox::Default, 
QMessageBox::No  | QMessageBox::Escape);

switch (result) {
case QMessageBox::Yes:

hyperdrive->engage();
break;

case QMessageBox::No:
// do something else
break;

}

We OR the button codes with Default and Escape to set the default actions when the Enter (or Return)
and Escape buttons are pressed on the keyboard. Figure 17-8 shows the resulting dialog.

Figure 17-8

QInputDialog
QInputDialog is useful for inputting single values from the user, which can either be text, an option
from a drop-down list, an integer, or a floating point value. The QInputDialog class has static methods
like QMessageBox that are a bit of a handful as they have many parameters, but fortunately most have
default values.

#include <qinputdialog.h>

QString getText  (const QString &caption, const QString &label, 
QLineEdit::EchoMode mode=QLineEdit::Normal, 
const QString &text=QString::null, bool * ok = 0, 
QWidget * parent = 0, const char * name = 0)
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QString getItem  (const QString &caption, const QString &label,
const QStringList &list, int current=0, bool editable=TRUE,
bool * ok=0, QWidget *parent = 0, const char *name=0)

int getInteger   (const QString &caption, const QString &label, int num=0, 
int from = -2147483647, int to = 2147483647, int step = 1,
bool * ok = 0, QWidget * parent = 0, const char * name = 0)

double getDouble (const QString &caption, const QString &label, double num = 0,
double from = -2147483647, double to = 2147483647, 
int decimals = 1, bool * ok = 0, QWidget * parent = 0, 
const char * name = 0 )

To input a line of text, we can write this:

bool result;
QString text = QInputDialog::getText(“Question”, “What is your Quest?:”,

QLineEdit::Normal,
QString::null, &result, this, “input” );

if (result) {
doSomething(text);

} else {
// user pressed cancel
}

QInputDialog is made up of a QLineEdit widget and Ok and Cancel buttons, as we see in Figure 17-9.

Figure 17-9

getText employs a QLineEdit that we can set the EchoMode of. We can specify default text or set it
empty as we do here. Every QInputDialog has Ok and Cancel buttons, and passes a bool pointer to
the method to indicate which button was pressed—result is TRUE if the user presses Ok. 

getItem offers the user a list of options through a QComboBox. 

bool result;
QStringList options;
options << “London” << “New York” << “Paris”;
QString city = QInputDialog::getItem(“Holiday”, “Please select a destination:”,

options, 1, TRUE, &result, this, “combo”);
if (result)

selectDestination(city);
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The resulting dialog is shown in Figure 17-10. 

Figure 17-10

getInteger and getDouble work in much the same way, so we won’t expand on them here.

Using qmake to Simplify Writing Makefiles
Compiling applications with both the KDE and Qt libraries becomes quite a chore since our makefile
gets ever more complicated with the need to use moc and having libraries here, there, and everywhere.
Fortunately, Qt comes with a utility called qmake to create makefiles for us.

qmake takes a .pro file as input. This file contains the very basic information that the compilation
requires, such as the sources, headers, target binary, and KDE/Qt library locations.

A typical KDE .pro file looks like this:

TARGET = app
MOC_DIR = moc
OBJECTS_DIR = obj
INCLUDEPATH = /usr/include/kde
QMAKE_LIBDIR_X11 += /usr/lib
QMAKE_LIBS_X11 += -lkdeui -lkdecore 
SOURCES = main.cpp window.cpp
HEADERS = window.h

We specify the target binary, temporary moc and object directories, the KDE library path, and the sources
and headers to build from. Note that the location of the KDE header and library files depends on your
distribution. SuSe users should set INCLUDEPATH to /opt/kde3/include and QMAKE_LIBS_X11 to
/opt/kde3/lib. 

$qmake file.pro –o Makefile

Then we can run make as normal; it’s that straightforward. For a KDE/Qt program of any complexity,
we should use qmake to simplify the build routine. 

If you’ve used Qt before, you may be familiar with tmake—an earlier (and now 
deprecated) incarnation of qmake that shipped with previous versions of Qt.
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Menus and Toolbars
As a demonstration of the power of KDE widgets, we’ve saved menus and toolbars to describe last, as
they’re a pretty good example of how the KDE libraries save us time and effort.  

Usually in GUI libraries, menu items and toolbar items are distinct elements, each with their own item
widgets. We have to create separate objects for each entry and keep track of changes; for example dis-
abling certain options individually.

The KDE programmers came up with a better solution. Instead of this detached approach, KDE defines a
KAction widget to represent an action that the application can perform. This action could be opening a
new document, saving a file, or showing a help box.

The KAction is given text, a keyboard accelerator, an icon, and a slot that’s called when the KAction is
activated.

KAction *new_file = new KAction(“New”, “filenew”, KstdAccel::key(KstdAccel::New),
this, SLOT(newFile()), this, “newaction”);

The KAction can then be plugged into a menu and toolbar without any further description:

new_file->plug(a_menu);
new_file->plug(a_toolbar);

We’ve now created a New menu and toolbar entry that calls newFile when clicked.

Now if we need to disable the KAction—say if we don’t want the user to be able to create a new file—
the call is centralized.

new_file->setEnabled(FALSE);

That’s all there is to menus and toolbars with KDE—it’s very easy indeed. Let’s look at the KAction
constructor: 

#include <kde/kaction.h>

KAction (const QString &text, const KShortcut &cut, const QObject *receiver,
const char *slot, QObject *parent, const char *name = 0) 

KDE provides us with standard KAction objects to make sure text, icons, and keyboard accelerators are
standard between KDE applications:

#include <kde/kaction.h>

KAction * openNew (const QObject *recvr, const char *slot, KActionCollection*
parent,

const char *name = 0 ) 
KAction * save ...
KAction * saveAs ...
KAction * revert ...
KAction * close ...
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KAction * print ...
etc...

Each standard action takes the same parameters: the slot receiver and function, a KactionCollection,
and the KAction name. The KActionCollection object manages the KActions in a window, and we
can get the current object using the actionCollection method of KMainWindow:

KAction *saveas = KStdAction::saveAs(this, SLOT(saveAs()), actionCollection(),
“saveas”);

Try It Out—A KDE Application with Menus and Toolbars
Let’s try using KActions in a KDE application with this next example.

1. First we start with the header file KDEMenu.h. KDEMenu is a subclass of KMainWindow, itself
a subclass of QMainWindow. KMainWindow handles session management within KDE and
has an integral toolbar and status bar.

#include <kmainwindow.h>

class KDEMenu : public KMainWindow
{

Q_OBJECT

public:
KDEMenu(const char * name = 0);

private slots:
void newFile();
void aboutApp();

};

2. In KDEMenu.cpp, we start with #include directives for the widgets we’ll be using.

#include “KDEMenu.h”

#include <kapp.h>
#include <kaction.h>
#include <kstdaccel.h>
#include <kmenubar.h>
#include <kaboutdialog.h>

3. In the constructor, we create three KAction widgets. new_file is created using a manual def-
inition and quit_action and help_action use standard KAction definitions:

KDEMenu::KDEMenu(const char *name = 0) : KMainWindow (0L, name )
{

KAction *new_file = new KAction(“New”, “filenew”, KstdAccel::key(KstdAccel::New),
this, SLOT(newFile()), this, “newaction”);

KAction *quit_action = KStdAction::quit(KApplication::kApplication(), 
SLOT(quit()), actionCollection());

KAction *help_action = KStdAction::aboutApp(this, SLOT(aboutApp()),
actionCollection());
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4. We create two top-level menus and insert them into the KApplication menuBar:

QPopupMenu *file_menu = new QPopupMenu;
QPopupMenu *help_menu = new QPopupMenu;

menuBar()->insertItem(“&File”, file_menu);
menuBar()->insertItem(“&Help”, help_menu);

5. Now we plug the actions in the menus and toolbar, inserting a separator line between
new_file and quit_action:

new_file->plug(file_menu);
file_menu->insertSeparator();
quit_action->plug(file_menu);
help_action->plug(help_menu);

new_file->plug(toolBar());
quit_action->plug(toolBar());

}

6. Finally some slot definitions: aboutApp creates a KAbout Dialog to display information about
the program. Note that the quit slot is defined as part of KApplication.

void KDEMenu::newFile()
{

// Create new File
}

void KDEMenu::aboutApp()
{

KAboutDialog *about = new KAboutDialog(this, “dialog”);
about->setAuthor(QString(“A. N. Author”), QString(“an@email.net”),

QString(“http://url.com”), QString(“work”));
about->setVersion(“1.0”);
about->show();

}

int main(int argc, char **argv)
{

KApplication app( argc, argv, “cdapp” );;
KDEMenu *window = new KDEMenu(“kdemenu”);

app.setMainWidget(window);
window->show();

return app.exec();
}

7. Next we need a menu.pro file for qmake:

TARGET  = kdemenu
MOC_DIR = moc
OBJECTS_DIR = obj
INCLUDEPATH = /usr/include/kde
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QMAKE_LIBDIR_X11 += -L$KDEDIR/lib
QMAKE_LIBS_X11 += -lkdeui -lkdecore 
SOURCES = KDEMenu.cpp
HEADERS = KDEMenu.h

8. Now we run qmake to create our Makefile, compile, and run.

$ qmake menu.prop –o Makefile
$ make
$ ./kdemenu

Figures 17-11 and 17-12 show how our menus and toolbar buttons appear in the window. 

Figure 17-11

Figure 17-12

And that’s it! We’ve finished our tour of Qt and KDE looking at the basic elements of all GUI applica-
tions, windows, layouts, buttons, dialogs, and menus. There are countless Qt and KDE widgets we
haven’t covered, from QColorDialog—a color-choosing dialog—to KHTML—a Web browser widget—
all fully documented on the Trolltech and KDE Web sites.

CD Database Application Using KDE/Qt
It’s time to turn our attention to our CD application once again, now that we can use the power of KDE/Qt
to bring it to life. We’ll follow the same layout we created in Chapter 16 and code similar functionality. 
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Let’s remind ourselves what we want our CD database application to do: 

❑ Log on to the database from the GUI 

❑ Search for a CD

❑ Display CD and track information

❑ Add a CD to the database

❑ Display an About window

Try It Out—MainWindow
We’ll start off with coding the main window of our application, which contains the search entry widget
and search result list.

1. Start by typing in MainWindow.h. Since the window contains a QLineEdit widget for search-
ing for CDs and a QListView to display the results, we need to include the qlistview.h
and qlineedit.h header files.

#include <kmainwindow.h>
#include <qlistview.h>
#include <qlineedit.h>

class MainWindow : public KMainWindow
{

Q_OBJECT

public:
MainWindow (const char *name);

public slots:
void doSearch();
void AddCd();

private:
QListView *list;
QLineEdit *search_entry;

};

2. MainWindow.cpp is the most complicated part of our program. In the constructor, we create
the main window interface and connect the necessary signals to our slots. As usual, we start off
with the #include files:

#include “MainWindow.h”
#include “AddCdDialog.h”
#include “app_mysql.h”

#include <qvbox.h>
#include <qlineedit.h>
#include <qpushbutton.h>
#include <qlabel.h>
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#include <qlistview.h>
#include <kapp.h>
#include <kmenubar.h>
#include <klocale.h>
#include <kpopupmenu.h>
#include <kstatusbar.h>
#include <kaction.h>
#include <kstdaccel.h>

#include <string.h>

MainWindow::MainWindow ( const char * name ) : KMainWindow ( 0L, name )
{

setCaption(“CD Database”);

3. Now we create our menu and toolbar entries using the KAction widget:

KAction *addcd_action = new KAction(“&Add CD”, “filenew”,
KStdAccel::key(KStdAccel::New),
this,
SLOT(AddCd()),
this);

KAction *quit_action = KStdAction::quit(KApplication::kApplication(),
SLOT(quit()), actionCollection());                        

QPopupMenu * filemenu = new QPopupMenu;
QString about = (“CD App\n\n”

“(C) 2003 Wrox Press\n”
“email@email.com\n”);

QPopupMenu *helpmenu = helpMenu(about);
menuBar()->insertItem( “&File”, filemenu);
menuBar()->insertItem(i18n(“&Help”), helpmenu);

addcd_action->plug(filemenu);
filemenu->insertSeparator();
quit_action->plug(filemenu);

addcd_action->plug(toolBar());
quit_action->plug(toolBar());

4. In the interest of variety, we’ll use QBox layout widgets instead of the usual QLayout classes.

QVBox *vbox = new QVBox (this);
QHBox *hbox = new QHBox (vbox);

QLabel *label = new QLabel(hbox);
label->setText( “Search Text:” );

search_entry = new QLineEdit ( hbox );
QPushButton *button = new QPushButton( “Search”, hbox);
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5. Next up is the QListView widget, which occupies the majority of the window area. Then we
connect the requisite signals to our doSearch slot to perform the CD database search. The
KMainWindow status bar is made visible by adding an empty message.

list = new QListView( vbox, “name”, 0L);
list->setRootIsDecorated(TRUE);
list->addColumn(“Title”);
list->addColumn(“Artist”);
list->addColumn(“Catalogue”);

connect(button, SIGNAL (clicked()), this, SLOT (doSearch()));
connect(search_entry , SIGNAL(returnPressed()), this, SLOT(doSearch()));

statusBar()->message(“”);    
setCentralWidget(vbox);
resize (300,400);

}

6. The doSearch Slot is the business end of the application. It reads the search string and fetches
all matching CDs and their tracks. The logic is identical to the GNOME/GTK+ doSearch func-
tion in Chapter 16. 

void MainWindow::doSearch()
{

cd_search_st *cd_res = new cd_search_st;
current_cd_st *cd = new current_cd_st;
struct current_tracks_st ct;
int res1, i, j, res2, res3;
char track_title[110];
char search_text[100];
char statusBar_text[200];
QListViewItem *cd_item;

strcpy(search_text, search_entry->text());

7. Fetch the matching CD ids and update the status bar to display the search results.

res1 = find_cds(search_text, cd_res);
sprintf(statusBar_text, “ Displaying %d result(s) for search string ‘ %s ‘“,

res1, search_text);
statusBar()->message(statusBar_text);

i = 0;
list->clear();

8. For each id, get the CD information, insert into the QListView, and get all tracks for this CD.

while (i < res1) {

res2 = get_cd(cd_res->cd_id[i], cd);

cd_item = new QListViewItem(list, cd->title, cd->artist_name, cd->catalogue);
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res3 = get_cd_tracks(cd_res->cd_id[i++], &ct);
j = 0;
/* Populate the tree with the current cd’s tracks */

while (j < res3) {

sprintf(track_title, “ Track %d. “, j+1);
strcat(track_title, ct.track[j++]);

new QListViewItem(cd_item, track_title);
}    

}
}

9. The AddCd slot is called when the addcd_action menu item or toolbar button is activated.

void MainWindow::AddCd()
{

AddCdDialog *dialog = new AddCdDialog(this);
dialog->show();  

}

The result is shown in Figure 17-13.

Figure 17-13

Try It Out—AddCdDialog
To add a CD to the database, we’ll need to code a dialog with the necessary fields we need to input.

1. Type  the following and call it AddCdDialog.h. Note that AddCdDialog inherits from
KDialogBase, the KDE dialog widget.

#include <kdialogbase.h>
#include <qlineedit.h>

715

Programming KDE Using Qt

b544977 Ch17.qxd  12/1/03  8:57 AM  Page 715



class AddCdDialog : public KDialogBase
{

Q_OBJECT

public:
AddCdDialog (QWidget *parent);

private:
QLineEdit *artist_entry, *title_entry, *catalogue_entry;

public slots:
void okClicked();

};

2. Next is AddCdDialog.cpp, which calls the add_cd function from the MySQL interface code
in the okClicked slot:

#include “AddCdDialog.h”
#include “app_mysql.h”

#include <qlayout.h>
#include <qlabel.h>

AddCdDialog::AddCdDialog( QWidget *parent)
: KDialogBase( parent, “AddCD”, false, “Add CD”,

KDialogBase::Ok|KDialogBase::Cancel, KDialogBase::Ok, true )
{

QWidget *widget = new QWidget(this);
setMainWidget(widget);

QGridLayout *grid = new QGridLayout(widget,3,2,10, 5,”grid”);

grid->addWidget(new QLabel(“Artist”, widget, “artistlabel”), 0, 0, 0);
grid->addWidget(new QLabel(“Title”, widget, “titlelabel”), 1, 0, 0);
grid->addWidget(new QLabel(“Catalogue”, widget, “cataloguelabel”), 2, 0, 0);

artist_entry = new QLineEdit( widget, “artist_entry”);
title_entry = new QLineEdit( widget, “title_entry”);
catalogue_entry = new QLineEdit( widget, “catalogue_entry”);

grid->addWidget(artist_entry, 0,1, 0);
grid->addWidget(title_entry, 1,1, 0);
grid->addWidget(catalogue_entry, 2,1, 0);

connect (this, SIGNAL(okClicked()), this, SLOT(okClicked()));
}

void AddCdDialog::okClicked()
{

char artist[200];
char title[200];
char catalogue[200];
int cd_id = 0;
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strcpy(artist, artist_entry->text());
strcpy(title, title_entry->text());
strcpy(catalogue, catalogue_entry->text());
add_cd(artist, title, catalogue, &cd_id);

}

Figure 17-14 shows the AddCdDialog in action.

Figure 17-14

Try It Out—LogonDialog
Of course, we can’t query the database without first logging on, so we need a simple dialog to enter our
credentials. We’ll call this class LogonDialog. (Yes, another subtle and imaginative title!)

1. First, the header file. Type this, calling it LogonDialog.h. Note that for variety this time we
inherit from QDialog rather than KDialogBase.

#include <qdialog.h>
#include <qlineedit.h>

class LogonDialog : public QDialog
{

Q_OBJECT

public:
LogonDialog (QWidget *parent = 0, const char *name = 0);
QString getUsername();
QString getPassword();

private:
QLineEdit *username_entry, *password_entry;

};

2. Rather than encapsulating the database_start call in LogonDialog.cpp, we have better
methods for the username and password. Here’s LogonDialog.cpp:
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#include “LogonDialog.h”
#include “app_mysql.h”

#include <qpushbutton.h>
#include <qlayout.h>
#include <qlabel.h>

LogonDialog::LogonDialog( QWidget *parent, const char *name): QDialog(parent, name)
{

QGridLayout *grid = new QGridLayout(this, 3, 2, 10, 5,”grid”);

grid->addWidget(new QLabel(“Username”, this, “usernamelabel”), 0, 0, 0);
grid->addWidget(new QLabel(“Password”, this, “passwordlabel”), 1, 0, 0);

username_entry = new QLineEdit( this, “username_entry”);
password_entry = new QLineEdit( this, “password_entry”);
password_entry->setEchoMode(QLineEdit::Password);

grid->addWidget(username_entry, 0, 1, 0);
grid->addWidget(password_entry, 1, 1, 0);

QPushButton *button = new QPushButton (“Ok”, this, “button”);
grid->addWidget(button, 2, 1,Qt::AlignRight);

connect (button, SIGNAL(clicked()), this, SLOT(accept()));

}

QString LogonDialog::getUsername()
{

if (username_entry == NULL)
return NULL;

return username_entry->text();
}

QString LogonDialog::getPassword()
{

if (password_entry == NULL)
return NULL;

return password_entry->text();
}

Figure 17-15 shows how the dialog will look.

Figure 17-15
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Try It Out—main.cpp
The only remaining code is the main function that we place in a separate source file, main.cpp.

1. In main.cpp, we open a LogonDialog and get a successful logon from database_start. If
logging on isn’t successful, we display a QMessageBox, or if we try to exit the LogonDialog,
we ask the user to confirm that he wants to quit.

#include “MainWindow.h”
#include “app_mysql.h”
#include “LogonDialog.h”

#include <kapp.h>
#include <qmessagebox.h>

int main( int argc, char **argv )
{

char username[100];
char password[100];

KApplication a( argc, argv, “cdapp” );

LogonDialog *dialog = new LogonDialog();

while (1)
{

if (dialog->exec() == QDialog::Accepted)
{

strcpy(username, dialog->getUsername());
strcpy(password, dialog->getPassword());

if (database_start(username, password))
break;

QMessageBox::information(0, “Title”, 
“Could not Logon: Check username and/or password”,
QMessageBox::Ok);

continue;
}
else
{

if (QMessageBox::information(0, “Title”, 
“Are you sure you want to quit?”,
QMessageBox::Yes, QMessageBox::No) 

== QMessageBox::Yes)
{

return 0;
}

}
}
delete dialog;

MainWindow *window = new MainWindow( “Cd App” );
window->resize( 600, 400 );
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a.setMainWidget( window );
window->show();

return a.exec();
}

2. All that remains is to write a .pro file to pass to qmake. Call this cdapp.pro:

TARGET = app
MOC_DIR = moc
OBJECTS_DIR = obj
INCLUDEPATH = /usr/include/kde /usr/include/mysql
QMAKE_LIBDIR_X11 += -/usr/lib  
QMAKE_LIBS_X11 += -lkdeui -lkdecore -lmysqlclient
SOURCES = MainWindow.cpp main.cpp app_mysql.cpp AddCdDialog.cpp LogonDialog.cpp
HEADERS = MainWindow.h app_mysql.h AddCdDialog.h LogonDialog.h

Note that we’ve cheated slightly and simply renamed app_mysql.c to app_mysql.cpp; there-
fore, we treat it like an ordinary C++ source file. This avoids the (minor) complication of having to link
a C object file to C++.

$ qmake cdapp.pro –o Makefile
$ make
$ ./app

If all is well, we should have a working CD database! 

You might like to try implementing the other functions in the MySQL interface, such as adding tracks to
CDs or deleting CDs, to get a closer understanding of KDE/Qt. You’ll need to create dialog boxes, new
menu entries, and toolbar entries, and you’ll have to write the underlying logic. Give it a shot! 

Summary
In this chapter, you’ve learned about using the Qt GUI library and seen KDE widgets in action. You’ve
seen that Qt is a C++ library that uses a signal/slot mechanism to implement event-driven program-
ming. We took a tour of the basic Qt widgets and wrote several example programs to demonstrate how
to use them in practice. Finally, we implemented a GUI front end to our CD application using KDE/Qt.

720

Chapter 17

b544977 Ch17.qxd  12/1/03  8:57 AM  Page 720



18
Device Drivers

Up until now, we’ve been concentrating on writing application code. We’ve looked at the libraries
available to application programmers that allow them to access hardware and devices attached to
the machine—file systems, memory, network connections, and so on. All of these libraries allow
your applications to make demands on the kernel—the core of the operating system.

To round off this book, we’re going to take a look at the kernel from the inside. In order to fulfill
those demands from applications, the kernel relies upon device drivers to talk to all the different
types of devices it might encounter. This enables the kernel to present a uniform interface to appli-
cations, regardless of the underlying technology. The file system is an obvious example; you can
use the same commands to operate on files, whether the files are stored on an IDE hard drive, a
SCSI drive, a CD-ROM, a floppy, or even a RAM disk. This shows device drivers at work.

In this chapter, we will be covering the following main topics:

❑ What device drivers are, what do they do, and how to write them

❑ Character devices and how they work

❑ Timing in the kernel

❑ Memory management as applied to peripheral devices

❑ I/O ports and how to use them to talk to your devices

❑ Block devices and how they work

❑ Debugging the kernel and kernel modules

Writing Device Drivers
Writing device code, while not necessarily more difficult than writing application code, requires
you to learn some new libraries and consider different sorts of problems than you have so far
encountered in application space. In this chapter, you’ll be writing code that forms part of the kernel
itself. It’s important to understand that, while in application space, the kernel provides a safety net
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for your mistakes; however, when you’re working in kernel space, there is no safety net. Kernel code has
the power to monopolize control of the computer, preventing any other processes from executing, so you
have to write code that doesn’t abuse that power and that behaves as a good neighbor to other processes.

In writing kernel modules for Linux, you have the immense advantage that the entire body of kernel
source code is available for you to look at, modify, and reuse in your own code. Throughout this chapter,
we’ll point you to the source code of various header files and modules for further information. It is
impossible to overemphasize the importance of the source code as a source of information, good coding
advice, and ideas.

Devices
A device can be just about any part of a computer, either directly built into the core of it or as an add-on
peripheral such as a SCSI controller, extra serial ports, a network adapter, and much more. Usually, you
are concerned with the latter when writing new device drivers, such as adding support for that flashy
new video adapter you just bought.

Device drivers are the software that control devices and export a usable interface that allows other pro-
grams to interact with a particular device. A device driver doesn’t necessarily control a physical hard-
ware peripheral. An example of this is /dev/random (which spits out random data, more on this later in
the chapter) and /dev/vcs (current virtual console). These devices have no connection to real hardware,
but they are a way of getting data from the kernel to applications and are usually named software devices.

Device drivers are a layer between the kernel and the hardware that it controls. As such, a device driver
is a very useful abstraction because it greatly simplifies the kernel: Instead of having the kernel talk to
each device itself, which would increase its size and decrease its speed, the kernel exports a well-defined
interface and leaves the task of interacting directly with devices to the individual device drivers. This
also means that the kernel proper can be (and is) written without knowledge of the various different
devices that will be developed later on, as long as they can be accommodated within the framework of
the defined models. So, for example, adding support for a new file system to the Linux kernel doesn’t
require a total rewrite and can be done relatively easily and with reuse of existing code. The file system,
for example, is split into a generic virtual file system, VFS, that the specific file systems register them-
selves with. All the major parts of the kernel are designed this way—the CD-ROM subsystem, the SCSI
layer, and others (Figure 18-1). This provides a good level of modularity and eases the development of
new device drivers. Another important aspect of device drivers is providing a consistent and familiar

In this chapter, we focus on Intel’s 80x86 architecture (or just x86). That said, the
accompanying modules have also been tested on a Compaq Alpha and so are known
to be reasonably portable. In recent years, portability has become a great focus of
kernel development, and almost all of the kernel driver API is very portable. Some
code will never be completely portable, but if nothing is stated about portability in a
section, it should work regardless of what particular machine you are working with.
Other differences exist between these two platforms and others, which we will try to
outline more extensively in the “Portability” section later in the chapter. So, while
the majority of the code in this chapter will work on other architectures, we will do
our best to clearly point out what parts are platform-dependent (mainly due to dif-
ferences in the hardware architecture) as we come across them. 
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interface to the application-level programmer. A well-written device driver allows the application pro-
grammer to treat the I/O device as a file using standard techniques. This interface design is an impor-
tant part of the design philosophy of Linux and other UNIX-like operating systems.

Figure 18-1

Device Classes
Device drivers can be split into different classes according to their behavior. The two basic types are
character- and block-oriented devices. Character devices are read byte-by-byte sequentially, and access to
them is not cached by the buffer system. Imagine how data or audio is read from a tape in a continuous
stream—this is how character devices serve data. Block devices, on the other hand, allow random access,
are read in multiples of their block size, and are accessed through the buffer cache system. In contrast to
other UNIX flavors, the Linux kernel does allow data that is not a multiple of the device block size to be
read and so that difference is purely academic.

Most device drivers are accessed through the file system; an exception is network devices that have no
file entries on Linux like on some other UNIX variants. /dev is populated with the device special files,
and its contents look almost like any other directory:

$ ls -l /dev
...
brw-rw----   1 root     disk      22,   1 May  5  1998 hdc1
crw-rw----   1 root     daemon     6,   0 May  5  1998 lp0
...
$

Two things that make device special files different from regular files are the c and b flags that classify the
device as either a character or block device, respectively. The distinction between these two types of
devices is clear in this example: It would not make any sense to allow random access to a printer, for
instance. By contrast, being able to copy a file from a disk without resorting to reading the entire hard
drive from the beginning is essential. Device special files do not have to be located in the /dev directory,
but this is tradition and keeps the system orderly. Some UNIX systems contain directories under /dev
for the disk subsystem, for example, but Linux generally just has one big, messy directory.

The numbers following the owner and group of the special file, respectively, indicate the major and minor
number of the device. The major number indicates a specific device and the minor number an instance within
the device. In the preceding example listing of /dev, hdc1 has a major number of 22 and a minor number
of 1. Major number 22 is the official number for the second IDE controller, and the IDE subsystem identifies
partitions on the master and slave device according to the minor number. In fact, you could choose any
name you wish for the special files; the kernel only cares about the type and the major number.

Virtual File System, VFS

Kernel

FATEXT2 UFS
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New special files are created with the mknod system call, which can be invoked by the utility of the same
name. The syntax for mknod is

mknod name type major minor.

So to create the above lp0 entry, you have to be root and type

# mknod /dev/lp0 c 6 0
#

Most of the arguments are self-explanatory, so we will just mention that type corresponds to the class of
the device—b for block devices and c for character devices. More information can be found in the man
page for mknod.

User and Kernel Space
The first thing to come to grips with is the difference between programming device drivers and writing
normal user space applications. Linux operates in two modes: user mode and supervisor mode. We will call
the latter kernel mode from now on because this is the descriptive explanation of what is really going on.
In this context, mode describes a change in the way the processor itself actually handles instructions and
permissions.  Intel’s x86 (x >= 3) names its execution modes Ring 0, 1, 2, and 3, with Ring 0 being the most
privileged mode and vice versa. In Linux, Ring 0 signifies kernel-mode execution and Ring 3 user-mode;
the other modes are unused. Other architectures have similar features but name their execution modes
differently. We won’t bore you with the tedious hardware details, but the gist of it is that the mode a pro-
cess operates in places certain restrictions on what it is allowed to do. Processes running in user space are,
among other things, not allowed to directly access hardware and execute certain instructions. 

When you are writing an ordinary program, you use certain functions that you take for granted, such as
printf and strcpy. These are part of the standard C library, libc, and have defined prototypes in appro-
priate header files. User space applications are (usually) linked against libc, and these symbols are
resolved at run time. Kernel modules, on the other hand, are linked against the kernel and are therefore
restricted to using the functions that it exports. A device driver built as a kernel module is not run in the
ordinary sense, and so module symbols are resolved when you attempt to load the module into the kernel.

There are several issues concerning good practice when writing kernel-level code that you should be
aware of. Following are some of the rules to live by; some are black and white, while others leave room
for interpretation:

❑ Don’t use floating-point arithmetic. The kernel does not save the processor’s floating-point
states when switching modes, so if you do this you have to save the state yourself. There is 
usually no good reason to do so.

❑ Don’t busy wait in your driver. A user space application can never completely monopolize the
CPU, but a loop spinning for a second inside the kernel will appear to hang the system during
that time and prevent any real work from being done. 

❑ Keep the code as clean and comprehensible as possible. Don’t try to be too clever. Debugging,
as we will see later, is much harder in kernel space. Drivers often need precise timing when
dealing with hardware; even adding a print statement might mess up the timing and hide an
obscure bug. 
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What Goes Where?
You will need to decide what to implement as a module and what to keep in user space. The general
consensus is that if you can code it in user space, don’t do it in kernel space! There are several reasons
why this is excellent advice. Mistakes happen, and while an error in user space might only cause a core
dump, an error in the kernel might hang the computer completely. Bloating the kernel space with unnec-
essary code is not good practice, either. Providing the necessary application hooks in a kernel module
will often yield the best result when speed or timing is not a critical issue. It will also give you the
advantage of having the standard user space libraries available to link against.

Building Modules
Compiling a kernel module is no more difficult than what you are used to with ordinary applications.
The examples that accompany this book are all supplied with makefiles for you to inspect. The basic
procedure for compiling a kernel module is something on the order of

gcc -D__KERNEL__ -D__SMP__ -DMODULE –DMODVERSIONS -I/usr/src/linux/include -Wall
-O2 -o module.o -c module.c

If you have never paid much attention to a kernel build, this may look at bit overwhelming. Most of the
above defines can be handled directly from within the module by reading the settings from the kernel.
Let’s look at what each of them does.

__KERNEL__ Not all kernel header files are used only by the kernel itself. Some user
space applications include them, but parts of them are kernel-specific and
thus need to be hidden from user space. Code that will be inserted into the
kernel has to define __KERNEL__ to see the whole thing.

__SMP__ The kernel can be compiled for either SMP (Symmetric Multi Processor,
meaning systems that have more than one CPU) or UP (Uni Processor)
machines. A module that will be inserted in an SMP kernel must define
__SMP__.

MODULE Must be defined for code that is compiled as a kernel module.

MODVERSIONS A safeguard against kernel and module incompatibilities. A more compre-
hensive explanation follows.

The rest of the gcc command line options are not kernel-specific, and you have probably seen them used
before. The -O switch tells gcc how much optimization to perform at compile time. Kernel modules
must be compiled with an optimization level of O2 or higher to use functions that are inlined by the ker-
nel, such as outb. Levels higher than O2 may work, but we don’t recommend them. All warnings are
turned on, as this is good practice for any kind of program, not just kernel modules.

/usr/src/linux is the preferred place to keep your Linux kernel tree, but it is not a requirement and
you can store it anywhere you want. The –I (include path) option given to gcc above tells it to include
this path when searching for includes. Header files that are specific to the kernel are located in the
include/ directory of the kernel tree, so when we write

#include <linux/module.h>
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we are including the file /usr/src/linux/include/linux/module.h. There are two directories of
importance inside the include/ directory, one of them being linux/ and the other asm/. The former
contains platform-independent files, while the latter is a symbolic link to asm-arch/ where arch is i386 or
alpha, for example. This link is created when configuring and building the kernel, and symbolic links to
both include directories are made to /usr/include/linux and /usr/include/asm, correspondingly.

The MODVERSIONS define is used on kernels running with function versioning. This is a measure used to
prevent modules from being loaded into an incompatible kernel, which could either cause malfunction-
ing or kernel crashes in the worst cases. When modules are compiled, they are built against the current
kernel version you are running at the time and can usually only be loaded on exactly that version. A ker-
nel running with versioning will suffix exported functions with checksum information based on the
interface that it exports. This provides a secure way of knowing that the underlying API has not changed
since the module was built. You can check whether you are running a versioned kernel by inspecting
/proc/ksyms, which contains the symbols exported on the running kernel. If the exported functions
have a suffix similar to _Rxxxxxx, versioning is enabled. This will look something like

$ cat /proc/ksyms
...
c0115728 printk_Rsmp_1b7d4074
c01d3ed0 sprintf_Rsmp_3c2c5af5
...
$

The actual function names of the above are printk and sprintf. The listing shows that we’re currently
running an SMP kernel with module versioning enabled. To be able to resolve these names, a module
must include the linux/modversions.h file.

Name space is another issue that you may not have paid particular attention to before, unless you have
worked with a big project. When developing device drivers, you should be careful about polluting the
global kernel name space. An excellent way to avoid clashes, which is adopted by the vast majority of
the kernel developers, is to prefix exported functions with the name of your driver. Still, exporting only
functions and variables that are going to be used by other drivers is another important practice.
Declaring global variables and functions static achieves this beautifully but has other side effects. Other
variables and functions are explicitly exported with the macro EXPORT_SYMBOL, which adds them to the
kernel’s global symbol table. You generally only need to worry about this if you plan on splitting your
driver across several modules or otherwise expose internals for others to use. Of course, keeping global
name space pollution to a minimum is always a good idea. The syntax is straightforward:

EXPORT_SYMBOL(name) Export the variable or function name.

EXPORT_SYMBOL_NOVERS(name) Export the variable or function name, but don’t include
module versioning even if defined.

EXPORT_NO_SYMBOLS Don’t export any symbols.

The declarations must be made outside of any functions—in an include file or at the end of the module
code, for example. The macros are defined in linux/module.h if you are curious. EXPORT_SYMTAB
must be defined prior to using any of these macros.
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Data Types
Linux runs on a lot of different architectures, some 32-bit and some 64-bit.  There are even ports of Linux
to 16-bit architectures.  Therefore, it is important not to make assumptions about the size of a given type
of variable. Linux defines standard types that have a given size on any platform.

__u8,__u16,__u32, __u64 Unsigned and signed variables between char and 64-bit 
__s8, __s16, __s32, __s64 long in size. 

If you need a specifically sized variable, use one of the preceding types. They also look much nicer in the
code and make it more readable when you browse the driver source a couple of months later. There are
also the special types that are passed to driver entry points, for example.

ssize_t schar_read(..., size_t count, loff_t *offset)

ssize_t and size_t are examples of types that serve a specific purpose within the kernel; we’ll look at
exactly what purpose later in the chapter. Usually these types are acted upon directly, and therefore you
don’t need to worry too much about the particular size. The various types are described in linux/
types.h and asm/posix_types.h, so look them up if you need a hint as to what size they are
typedefed to. When you do need to assign them to the compiler’s integral types, remember to use an
appropriate cast. gcc is quite picky about size mismatches and will warn you about possible problems.

Try It Out—A Kernel Module
Now is an excellent time to dive in and create your very first module. In keeping with past tradition,
“hello, kernel” seems like the thing to do. Don’t worry—it’s the last time we’ll revisit this bit of program-
ming history in this book.

1. Let’s start off with the following file, hello.c:

#include <linux/module.h>

#if defined(CONFIG_SMP)
#define __SMP__
#endif

#if defined(CONFIG_MODVERSIONS)
#define MODVERSIONS
#include <linux/modversions.h>
#endif

#include <linux/kernel.h>

static __init int init_module(void)
{

printk(KERN_DEBUG “Hello, kernel!\n”);
return 0;

}

static __exit void cleanup_module(void)
{

printk(KERN_DEBUG “Good-bye, kernel!\n”);
}
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The __init and __exit declarations are special kernel macros designed to tell the kernel to flag these
functions for special handling in cases where they are compiled in statically rather than included as
parts of modules. The __init declaration allows the kernel to reclaim the space used by initialization
functions, while the __exit declaration tells the kernel to just plain ignore the function altogether. If
you’re only going to write your device driver as a module, with no possibility that it will be included
statically, it is perfectly safe to leave these special declarations out. 

The kernel equivalent of printf is printk. They are similar in usage, but the latter does not support
printing of floating point. The KERN_DEBUG define given to printk sets the priority of the printed mes-
sage. The possible values are defined by linux/kernel.h as follows: 

#define KERN_EMERG       “<0>”      /* system is unusable */
#define KERN_ALERT       “<1>”      /* action must be taken immediately */
#define KERN_CRIT        “<2>”      /* critical conditions */
#define KERN_ERR         “<3>”      /* error conditions */
#define KERN_WARNING     “<4>”      /* warning conditions */
#define KERN_NOTICE      “<5>”      /* normal but significant condition */
#define KERN_INFO        “<6>”      /* informational */
#define KERN_DEBUG       “<7>”      /* debug-level messages */

So we could have written

printk(“<7> Hello, kernel!\n”);

instead, but we think you will agree that using the predefined levels makes the code easier to read. The
log-level setting controls which messages will actually be printed on the console and/or appended to
the syslog. This is controlled by syslogd and can usually be set up in /etc/syslog.conf. As it is writ-
ten, you will probably not be able to see the messages directly. Instead, they are stored in the kernel
buffer allocated for these kinds of messages. The program dmesg will show you what is currently stored
in there (lots of messages from your last boot, most likely).

Apart from printk, though, there shouldn’t be anything too unfamiliar here; we’ll look at what’s new a
bit later in the chapter. For now, let’s compile the module with this command in the directory where you
created the hello.c file:

$ gcc -D__KERNEL__ -I/usr/src/linux/include -DMODULE -Wall -O2 -c hello.c -o
hello.o
$

2. Now let’s try to insert the module into the kernel. Modules are loaded with the insmod (insert
module) command, usually found in /sbin/. You must be root to insert and remove a module,
as this would otherwise be a serious security breach if anybody were allowed to meddle with
the kernel! Make sure that you are root and try the module out:

# insmod hello.o
#

3. No error messages so far, so how do we verify that the module has been inserted successfully?
We can check the very end of the dmesg readout of the kernel buffer with this command:

# dmesg | tail 
Hello, kernel!
#
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4. We can see the message from our module there in the kernel buffer. To prove that the module is
loaded, lsmod (list modules) can be run. It lists the modules that are currently inserted.

# lsmod
Module                  Size  Used by
...
hello                    176   0  (unused)
...
#

5. Not surprisingly, hello is listed with the other modules. lsmod also lists the size and usage
count of each loaded module. We will get into usage counts a little later. For now, let’s get rid of
the hello module again. The rmmod (remove module) command will detach a module from
the kernel.

# rmmod hello
# dmesg | tail
Good-bye, kernel!
#

How It Works
A couple of new things were introduced here. linux/module.h includes another header file (among
others) called linux/config.h that contains the options selected at the kernel compile time, as
defines. This is especially convenient for us, since we can be sure that if the kernel is compiled for SMP,
CONFIG_SMP will be defined and we can define __SMP__ appropriately. The same thing goes for CON-
FIG_MODVERSIONS; if that is configured, we define MODVERSIONS and include linux/modversions.h
to gain access to the versioning information.

As we saw, a little message is printed to the kernel buffer when the module is loaded and unloaded. The two
functions we defined to perform this are the only ones needed to complete a module. init_module is called
at load time and is responsible for setting up internal data structures, initializing the hardware, and perform-
ing any other tasks that need to be done before the device is invoked for the first time. Since the above is
only a simple framework, no real work is done. Most things work both ways, and so cleanup_module
takes care of shutting down the device and releasing any resources that the device may have occupied.

And that’s it! We’ve built a module and successfully inserted it into the kernel. Now that we’ve over-
come our fear of the Linux kernel, we can get on to something a little more substantial.

Character Devices
While the hello module in the previous section is about as simple as you can get, it doesn’t really do any-
thing interesting. Once it is loaded, you cannot interact with it and it does not export any useful functions
to user space applications. As a first step beyond, let’s look at a sample framework for a character-driven
driver.

Character-driven drivers are device drivers that operate on characters (bytes) as the basic unit of input and
output. They are accessed in a sequential, nonrandom manner. Other types of device drivers are block-
driven, where a contiguous block of data is the basic unit of I/O, and packet-driven (e.g., network interface
cards), where the basic unit of I/O is a packet. Block drivers can be accessed in a random fashion while
character drivers cannot.
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Character devices have to register themselves with the kernel and provide it with the information that
enables the kernel to invoke the correct functions when applications wish to interact with the device.
register_chrdev takes care of this and is invoked with the following syntax:

int register_chrdev(unsigned int major, const char *name, struct file_operations
*fops)

The return value is negative in case of failure and is non-negative (either a positive integer or zero) on
success, which is the case with the majority of the kernel functions. Calling the function with zero as
major provides dynamic major number assignment. In this case, the device is registered with the next
available major number, and this is returned. Using dynamic assignment is not hard, but in order to
access devices you need to create the correct special files if the major has changed since the last time you
loaded the module. Because of this, we will use a series of reserved major numbers in this chapter.

Majors 42 and 120–127 are set aside for local devices and thus are not to be used by production mod-
ules. Consult Documentation/devices.txt for more information, including how to acquire an
official number if you ever need one.

The second parameter, name, is only used for registration with /proc/devices. It is simply the name
that will show up there, nothing more. The final parameter, the file operations structure, is the most
interesting. It defines how the driver communicates with the outside world—specifically, which func-
tions it handles itself and which the kernel defaults take care of. The structure is defined in linux/fs.h
and is a series of pointers to functions. This concept is used in numerous places in the kernel and pro-
vides a form of abstraction between the different layers and how they interact.

File Operations
Access to character and block devices goes through the file system, as we saw earlier in the chapter. This
is independent of the type of device—be it directly related to file systems (a hard disk driver, for exam-
ple) or totally unrelated (a parallel port driver, perhaps). Device drivers therefore need to register a set of
file operations that define the specific implementation that they offer. Below is the current file operations
structure with the prototypes defined. All of the possible function types are listed, although no one sin-
gle module will normally need to define them all. You’ll recognize the names of most of these functions
as mirroring the low-level device access functions we discussed back in Chapter 3. These functions are
actually where those low-level calls end up, once the kernel has identified the device that needs to be
contacted to fulfill that request.

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct entry *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock );
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ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area) (struct file *, unsigned long, unsigned long,
unsigned long, unsigned long)
}

Your driver can provide any combination of these functions in order to represent the functionality of its
device to the kernel. Let’s look at what the available functions are shown in the following table.

llseek llseek, or lseek as it is known in user space, changes the position
within the file structure. Specifically, file->f_pos is modified; we will
look at this later when discussing the file structure. On success, it returns
the new position, while failure is identified with a negative return value.

read read is seen from the application point of view, so read actually writes
data back to user space. The return value, if positive, is the number of
bytes read. Negative return values indicate an error.

write write feeds data to the device and is equivalent to read with respect to
return values.

readdir readdir is strictly used by file systems to look up the contents of a 
directory.

poll poll allows an application to be notified of given events from the device.
select, the equivalent in BSD UNIX, is deprecated in Linux, and poll
should be used instead.

ioctl ioctl, or I/O control, allows applications to control the behavior or get
data from the device with the ioctl system call.

mmap mmap implements memory mapping of the device’s address space to user
space. This can be used to provide direct access to an internal buffer or
peripheral device memory space.

open open is called when the device is opened by an application. This is the
only function that is default-implemented for both character and block
devices, so you can leave this undefined if you don’t need or care to know
when the device is opened.

flush flush naturally flushes the buffered data. As character devices aren’t
buffered, this entry only makes sense for block devices.

release release is called when the device is closed.

fsync fsync synchronizes the in-memory state with that on the device, writing
out all dirty data in the output buffer. It must not return until it’s finished.
This entry is also only relevant to block devices.

fasync fasync is called when an application changes the behavior with fcntl.

lock lock enables a user to lock a file—only really makes sense for file systems.

readv readv reads data from the device into a vector of buffers described by
iovec.
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writev writev is similar to readv but writes data from the buffers
described by iovec.

sendpage sendpage is used to write pages one at a time, usually in connection
with a network file system.

get_unmapped_area get_unmapped_area is used to determine which parts of your
device are not memory mapped.

A single device will probably never have to define all of the above methods. It is completely up to you to
define the operations that make sense for your device and set the others to NULL.

When the character device is registered with the kernel, its file_operations structure and name is
added to the global chrdevs array of device_struct structures where the major number indexes it.
This is called the character device switch table.

struct device_struct {
const char *name;
struct file_operations *fops;

};

So, by looking up chrdevs[YOUR_MAJOR]->fops, the kernel knows how to talk to the device and what
entry points it supports (see Figure 18-2).

Figure 18-2

A Sample Driver : schar
Let’s take a look at a sample character device driver, which we’ll call schar. This driver implements
reading and writing in its own fake way by pretending to serve data from a device that is polled at a
constant interval. The polling mechanism is managed by kernel timers, which we will explain fully in
the next section.

schar.c starts out with forwarding declarations of the functions that define our implementation of the
file_operations structure. Then we fill it out.

struct device_struct chrdevs[]

our major

Majors

"our name"

open

*name

device open function

*fops
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/* forward declarations for _fops */
static ssize_t schar_read(struct file *file, char *buf, size_t count, loff_t
*offset);
static ssize_t schar_write(struct file *file, const char *buf, size_t count, loff_t
*offset);
static unsigned int schar_poll(struct file *file, poll_table *wait);
static int schar_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg);
static int schar_mmap(struct file *file, struct vm_area_struct *vma);
static int schar_open(struct inode *inode, struct file *file);
static int schar_release(struct inode *inode, struct file *file);

static struct file_operations schar_fops = {
read:     schar_read,
write:    schar_write,
poll:     schar_poll,
ioctl:    schar_ioctl,
open:     schar_open,
release:  schar_release,

};

Some prefer the file_operations structure to appear at the beginning of the module, while others like
it at the bottom. The latter approach would spare us from putting function prototypes at the beginning
of the file. It is purely a matter of taste. Don’t worry about some of the include files; we’ll cross those
bridges along the way.

The MSG Macro
Before we dive deeper into schar’s sources, we need to introduce the MSG macro we use throughout this
chapter. It is an alternative way to print debugging statements that can prove quite handy. Instead of
sprinkling the code with ugly #ifdef statements, we put the definition of MSG in the schar.h:

#define DEBUG

#ifdef DEBUG
#define MSG(string, args...) printk(KERN_DEBUG “schar:” string, ##args)
#else
#define MSG(string, args...)
#endif

It keeps the code looking clean and prefixes every statement with the module name. You could also easily
define a bitmask of events and get finely controlled logging, if you wish. schar is very simple, so logging
everything makes sense. Undefining DEBUG would effectively make MSG a no-op. Sometimes it would be
advantageous to include even more information in the debug statement, especially for larger device
driver projects. We might want to include line and file information to quickly be able to locate a specific
message within the source. This could look something like this:

#define MSG(string, args...) printk(KERN_DEBUG \ 
“schar:__FILE__-__LINE__:” string, ##args)

It’s up to you which one you prefer; all of the modules shown in this book use the former because their
complexity does not warrant the extra information.
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Registering the Device
As with the hello module, schar naturally also has an init_module entry point. It does a lot of differ-
ent things—allocating memory, initializing timers and variables, and so on—but for the time being we
will stick to looking at the device registration.

int init_module(void)
{

int res;

if (schar_name == NULL)
schar_name = “schar”;

/* register device with kernel */
res = register_chrdev(SCHAR_MAJOR, schar_name, &schar_fops);
if (res) {

MSG(“can’t register device with kernel\n”);
;

}
return res;

}

schar_name can be passed in to the module as a parameter—we’ll see how later on. For now, we check
to see if a name has been specified and, if not, set it to a default.

SCHAR_MAJOR is defined in schar.h and is set to 42, which as we said before is one of the reserved
major numbers. It doesn’t matter what number you choose as long as it is not being used by any other
active devices. Choosing one of the reserved majors is always safe for experimenting on your own.

#define SCHAR_MAJOR    42

We could also have used dynamic assignment of majors instead. The advantage of that approach would
be that we don’t have to know anything about what majors are available. The downside, at least in this
context, is that we would have to create new device special files for using the module every time we
load it (provided that the major returned isn’t the same all the time). For this reason, we will stick to
static majors. A sample implementation of dynamic registration could be easily implemented and would
look something like this:

int major = 0, res;

res = register_chrdev(major, schar, &schar_fops);
if (res < 0) {

MSG(“can’t register device with kernel\n”);
return res;

} else {
major = res;
MSG(“device registered with major %d\n” , major);

}

All the sample devices in this chapter use static major numbers, and switching to dynamic assignment is
left as an exercise to the reader.
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After a successful call to register_chrdev, the device is registered with the kernel and the given
file operations structure is added to the character switch table. The device should also show up in
/proc/devices in the character device section.

Module Usage Count
The kernel needs to keep track of usage information for each module loaded in the system. If it didn’t,
how else would it know when it was safe to remove a module? We certainly wouldn’t want a hard disk
driver module to be removed while you were copying files to it; that would wreak havoc on the disk
and leave the file system in an unreliable state.

There are two macros that modify the usage count, MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT; the
former increments the count by one, while the latter decrements it. It is up to the driver programmer to
maintain a usage count that protects the module from being unloaded unexpectedly while at the same
time making certain that the module can be safely removed when it is unused. The kernel will only allow
unloading of modules with a usage count of zero. The MOD_IN_USE macro evaluates to the current usage
count, but it is hardly ever needed since the kernel checks it itself before attempting to remove the module.

Open and Release
The module is now loaded and sits idle on your system until someone opens the associated device.
schar_open is invoked when the device is opened by a process. Here, the module usage count is incre-
mented to prevent removal of the device while it is busy.

static int schar_open(struct inode *inode, struct file *file)
{

/* increment usage count */
MOD_INC_USE_COUNT;

This tells the kernel that the module is now being used by one more process. If a user executes an rmmod
module_name, the kernel returns -EBUSY for modules that have a usage count greater than zero (mean-
ing that they are in use). Therefore, it is the module’s own responsibility to keep the usage count up to
date. We increase the usage count by one in schar_open, which protects the module from being
unloaded while a process has it opened. When a process closes the device, we decrement the usage
count to keep it in balance.

The file argument passed to schar_open is the in-kernel description of the file descriptor returned to
applications. The file structure contains information about the mode the device is opened in. This code
snippet tests whether the device is being opened for read or not, for example.

if (file->f_mode & FMODE_READ) {
MSG(“opened for reading\n”);

...

It also includes information on where the next read should be initiated and much more. The following
parts are all that are relevant to this module (and most others, in fact):

struct file {
...
mode_t         f_mode;
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loff_t         f_pos;
unsigned int   f_flags;
...

};

f_mode is the mode the device is opened in, either for reading, writing, or both. f_flags provides more
information, some of which is relevant to device modules, such as O_NONBLOCK or O_NDELAY, for exam-
ple. These flags are the ones given to the open call from the user space application and control the
behavior of the device on read and write. You can find all the related information in asm/fcntl.h.
f_pos is the position from which the next read or write operation will be performed.

The next step in schar_open is to set up the timer; we will look at this in the next section. schar_open
ends up by printing the major and minor number of the opened device, extracted from the inode passed
to it. Right now we have no real use for this, but later on we will examine modules that use this informa-
tion to differentiate between different instances of the driver. Inodes, which we discussed in Chapter 3,
identify files on disk and in memory and contain such information as owner, access time, size, type of
file system, and much more. The stat system call gets its information by extracting it from the inode, so
running stat on a file should give you some clue as to what data the inode provides (that are relevant
outside the kernel). Look up the detailed information in linux/fs.h, and note how the file system type
is defined in the union u. Linux supports a lot of file systems!

schar_release does nothing more than decrement the usage count by 1. There is nothing else to be
done, since schar does not keep any memory malloced on a per-open basis and has no other state
information that needs to be updated.

static int schar_release(struct inode *inode, struct file *file)
{

MOD_DEC_USE_COUNT;
MSG(“schar_release\n”);
return 0;

}

Reading the Device
schar_read pretends to read data from the device—in fact, it reads it from an internal data queue—and
pass it back to user space. schar keeps a global variable that keeps track of the data queue; when data is
available, schar_pool holds the number of bytes that are in surplus. This means that if schar_read is
invoked while schar_pool is zero or negative, reading processes must be made inactive until data is
available.

static ssize_t schar_read(struct file *file, char *buf, size_t count,
loff_t *offset)

{

/* if less data than requested is here, put process to sleep */
while (count > schar_pool) {

MSG(“putting process with pid %u to sleep\n”, current->pid);
/* go to sleep, but wake up on signals */
interruptible_sleep_on(&schar_wq);
if (signal_pending(current)) {

MSG(“pid %u got signal\n”, (unsigned)current->pid);
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/* tell vfs about the signal */
return -EINTR;

}
}

/* copy the data from our buffer */
if (copy_to_user(buf, schar_buffer, count))

return -EFAULT;

schar_pool -= count;
schar_data_read += count;

MSG(“want to read %u bytes, %ld bytes in queue\n”, (unsigned)count,
schar_pool);

/* return data written */
file->f_pos += count;
return count;

}

This may seem a little daunting, but let’s take it step by step. count is the amount of data that the read-
ing process requested. If count is bigger than schar_pool, the read cannot be satisfied and we must
put the reading process on hold until the requested data is available. interruptible_sleep_on
changes the state of the process and adds it to the schar_wq wait queue. We’ll look at wait queues in a
moment; they provide a way for us to set the process reading the device to a nonrunning state and let
the scheduler select a new process for execution. The data is served from our internal buffer and copied
back to the application with the aid of copy_to_user, a concept that will also be detailed later on.

At the end of schar_read, we subtract count bytes from our pool, schar_length, and return the num-
ber of bytes read. In this case, we just return count, since we pretend to have written exactly as much
data to the application as it asked for. This works fine with dd, for example, since we can instruct it to
request exactly the number of bytes we want. Try running cp on schar later, and you will see what we
mean; on our system, cp asks for data in blocks of 4 Kb and keeps going until 0 bytes read is returned.
So you can feed schar as much as you want, and cp just keeps asking for more.

Don’t worry if a lot of schar_read doesn’t make much sense for now. We will look at each aspect of it
one at a time in the following sections.

The current Task
There are several mentions of the current macro in schar_read. It is a macro that represents the cur-
rently running process in the form of a task structure. This means that the current we act upon in
schar_read is the process that is currently reading from the device. A task structure has many elements;
the complete listing can be found in linux/sched.h, but let’s take a look at some of the fields we used
here, directly or indirectly:

struct task_struct {
volatile long state;
...
...
pid_t pid;
...

737

Device Drivers

b544977 Ch18.qxd  12/1/03  8:57 AM  Page 737



struct signal_struct *sig;
sigset_t blocked;
struct sigpending pending;
...

};

As you can see if you examine include/linux/sched.h, all the tasks in the system are linked in a dou-
bly linked list. state signifies the current state of the process (i.e., whether it is running, stopped, or cur-
rently swapping). We’ll look more at this in the discussion of wait queues. pid is self-explanatory—the
program ID of the process. sig holds information regarding any signals sent to the process, and blocked
is a mask of signals that the process itself decided to block out. Finally, sigpending holds information on
whether the process was sent an unblocked signal and is the variable checked by signal_pending. So if
signal_pending returns true, we notify the VFS and let it restart the transfer.

Wait Queues
We’re using wait queues to let the current task be put to sleep when no data is available and then wake
it up when new data is copied to schar. This frees up the system and allows it to run other processes.
The scheduler will not consider the task until we wake it up again—which we’ll do when the condition
it sleeps on has been fulfilled. As we said, this gives our kernel code considerable power over user space
applications that access it.

schar_read used this technique, and we’ll see it again later, but let’s take a more formal look at the
implementation:

struct wait_queue {
struct task_struct *task;
struct wait_queue *next;

};

There’s not much to say about the definition; it explains itself. task contains relevant state information
in the task structure about the process being put to sleep, and next is a pointer to the next entry in the
wait queue. With that in mind, it should be obvious that you can have as many processes sleeping on a
wait queue as you want. How do we put the processes to sleep?

void interruptible_sleep_on(struct wait_queue **p)
long interruptible_sleep_on_timeout(struct wait_queue **p, long timeout)

These macros put the process to sleep with a state but allow it to wake on signals. The _timeout variant
calls schedule_timeout internally and thus enables the callee to let the process wake on its own when
it expires. We’ll discuss how the timeout is specified later on when we come to timers.

void sleep_on(struct wait_queue **p)
long sleep_on_timeout(struct wait_queue **p, long timeout)

The semantics of these two are exactly the same as the preceding functions, except that the state is set to
TASK_UNINTERRUPTIBLE.

If you wish to peek more at the internals, they can be found in kernel/sched.c.

Sooner or later, a sleeping process must be brought to life, one way or another.
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wake_up_interruptible(struct wait_queue **p)
wake_up(struct wait_queue **p)

Both of these are macros that expand to __wake_up. The former wakes interruptible sleepers only, while
the latter wakes both. However, processes that were explicitly stopped (sent a SIGSTOP, for example)
will not be awakened.

schar puts readers to sleep on its wait queue, when it has no data to serve. A timer will wake them up,
as would a writer, when enough data is available to satisfy the request.

interruptible_sleep_on(&schar_wq);
if (signal_pending(current))

return -EINTR; 

This structure is seen in many places throughout the kernel; we put the current process to sleep but allow
it to wake up in case it is sent a signal. When interruptible_sleep_on returns, the process has been
awakened either by an explicit call to wake_up_interruptible or because it received a signal. If the latter
is the case, signal_pending returns 1 and we instruct the VFS to restart the read by returning –EINTR to
signify an interrupted call. If we had simply used sleep_on to put the process to sleep, it would sleep
completely uninterruptible while waiting for data, and not even a SIGKILL would annihilate it.

As mentioned before, we wake the readers in the timer handler and schar_write.

wake_up_interruptible(&schar_wq);

This wakes up all the readers sleeping on the queue. Whether that is the appropriate behavior or not
depends on the situation; we may be able to satisfy only one read, so should we wake all the readers and
let them race for the data? schar could keep a per-device-open wait queue to solve the problem. Since that
would not introduce any new concepts, that exercise is left to the interested reader. Having per-device data
is an interesting and useful concept by itself and will be demonstrated with the Iomap module later.

Writing to the Device
schar_write is much simpler by comparison, as it increments schar_pool by count and modifies
file->f_pos to signify how much data was written to the device. The reason this is so much simpler
than the read operation is that schar doesn’t care about finding something to do with the data; it’ll take
as much as we throw at it. The only thing we need to do apart from this is wake up any readers, since
there might be enough data available now to satisfy their read. The implementation looks like this:

static ssize_t schar_write(struct file *file, const char *buf,
size_t count, off_t *offset)

{
schar_pool += count;
schar_data_written += count;

/* if we were really writing - modify the file position to
reflect the amount of data written */

file->f_pos += count;
if (copy_from_user(schar_buffer, buf, count))

return -EFAULT;
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/* wake up reading processes, if any */
if (schar_pool > 0) {

wake_up_interruptible(&schar_wq);
wake_up_interruptible(&schar_poll_read);

}

MSG(“trying to write %u bytes, %ld bytes in queue now\n”,
(unsigned)count, schar_pool);

/* return data written */
return count;

}

Nonblocking Reads
Drivers that serve data should differentiate between blocking and nonblocking opens. If not enough
data is available to satisfy a request, we ordinarily put the process to sleep and wake it once enough data
is available. When the device is opened nonblocking, we should instead supply as much data as we can
and return immediately without putting the process to sleep. We achieve this by adding the following to
the schar_read function:

static ssize_t schar_read(struct file *file, char *buf, size_t count,
loff_t *offset)

...
while (count > schar_pool) {

/* if the device is opened nonblocking, satisfy what we
can of the request and don’t put the process to sleep. */

if (file->f_flags & O_NONBLOCK) {
if (schar_pool > 0) {

file->f_pos += schar_pool;
if (copy_to_user(buf, schar_buffer, schar_pool))

return -EFAULT;
count = schar_length;
schar_pool = 0;
return count;

} else {
return -EAGAIN;

}
MSG(“putting process with pid %u to sleep\n”, current->pid);
/* go to sleep, but wake up on signals */
interruptible_sleep_on(&schar_wq);
if (signal_pending(current)) {

MSG(“pid %u got signal\n”, (unsigned)current->pid);
/* tell vfs about the signal */
return -EINTR;

}
}

}
...
}

schar_read checks f_flags in order to detect with what method the device was opened. If the applica-
tion requested more data than what is currently in our pool, we return what is there, but if the pool is
empty we return -EAGAIN. This is a hint to the reading process that it should try its request again later.
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A device driver that only implements read and write is a bit boring. The file operation structure contains
many other entry points. Now let’s implement some of these in schar or at least explain why some of
them work without even writing an explicit function in the driver to handle it.

Seeking
schar does not implement its own seeking function and therefore relies on the default implementation
in the kernel. The default implementation is invoked if a NULL is registered for llseek in the file opera-
tions structure passed to register_chrdev. The kernel version can be found in fs/read_write.c as
default_llseek and provides SEEK_SET, SEEK_CUR and SEEK_END functionality. These macros, when
used with llseek, change the value of file->f_pos, the position in the file stream from which the next
byte will be read. In case you want to handle the seeking yourself—if the specific device does not sup-
port seeking relative to the end, for example—you will have to provide your own llseek implementa-
tion. This is a typical example:

loff_t own_llseek(struct file *file, loff_t offset, int mode)
{

switch (mode) {
case 0:                              /* SEEK_SET */

file->f_pos = offset;
return file->f_pos;

case 1:                              /* SEEK_CUR */
file->f_pos += offset;
return file->f_pos;

case 2:                              /* SEEK_END */
return -EINVAL;

default:                             /* cannot happen */
return -EINVAL;

}
}

If seeking does not make sense for the device at all, an llseek function will have to be defined to prevent
seeking. In that case, -ESPIPE should simply be returned, which means “illegal seek” in this respect.

loff_t own_llseek(struct file *file, loff_t offset, int mode)
{

/* illegal seek */
return –ESPIPE;

}

ioctl
Sometimes it can be useful to change or get the parameters from a running driver instead of reconfigur-
ing it and running a new compile. For some devices, this is not even an option if it is constantly in use
and thus cannot be removed from the system. ioctl is an entry point in the driver that will let you
either set or retrieve settings while it is still running.

Every device in the kernel has a (somewhat) unique ioctl base number associated with it along with
a range of commands. For example, the SCSI generic layer has ioctl base number 0x22 and the whole
subrange of 0x00–0xff assigned to it. Sometimes only a part of the subrange is used, as most devices
won’t need to support 256 commands. An ioctl command consists of an upper 16-bit base and a lower
16-bit command, and so the first SCSI generic command would be 0x2200. The ioctl base numbers are
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documented in Documentation/ioctl-number.txt, although it is not quite up-to-date as of this writ-
ing. The file also includes instructions as to how to request a suitable range for your own device. We
selected an available base number for schar—0xbb. The lower-level implementation is somewhat more
complex than that. Ignorance is bliss, but if you are really interested, look at the definitions in
asm/ioctl.h. 

Linux distinguishes between four types of ioctl function calls: direct commands, read, write, or read
and write. This is defined by the way the identifiers are written in the module. The different types are
defined as follows:

_IO(base, command) Define the selected command. No data is transferred to or from
the application issuing the ioctl. An _IO ioctl can still
return an integer as long as it is positive (and thus not inter-
preted as an error).

_IOR(base, command, A reading ioctl, as seen from the application. size is the 
size) size of the argument to be transferred back.

_IOW(base, command, A writing ioctl, as seen from the application. size is the
size) size of the argument to be transferred from user space.

_IOWR(base, command, A reading and writing ioctl. As usual, size indicates the 
size) size of the argument to be transferred back and forth.

In addition, macros are provided to check the validity of the command sent. The kernel side encoding
splits the bit field into a direction, size, and command section. The information can be extracted with the
following macros:

_IOC_DIR(command) The direction of the command, either _IOC_NONE,
_IOC_WRITE, or _IOC_READ, corresponding to the types
mentioned a bit earlier in the section. For _IOWR, the value is
_IOC_WRITE ORed with _IOC_READ.

_IOC_TYPE(command) The ioctl base number part of the field, 0xbb for schar.

_IOC_NR(command) The command part of the field.

_IOC_SIZE(command) The size of the argument, if any.

The ioctl function itself is defined in the file_operations structure supplied when registering the
module. schar.h defines the supported commands.

#define SCHAR_IOCTL_BASE             0xbb
#define SCHAR_TOGGLE_DEBUG           _IO(SCHAR_IOCTL_BASE, 0)
#define SCHAR_GET_POOL               _IOR(SCHAR_IOCTL_BASE, 1, unsigned long)
#define SCHAR_EX_TIMER_DELAY         _IOWR(SCHAR_IOCTL_BASE, 5, unsigned long)

The base number is sufficiently far away from anything else out there, so we shouldn’t get any conflicts.
These are the three different types that exist in schar. SCHAR_TOGGLE_DEBUG toggles whether debug
messages should be printed or not. No parameter is specified, hence the _IO type. SCHAR_GET_POOL
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returns the number of bytes currently residing in the pool, and finally SCHAR_EX_TIMER_DELAY sets the
number of jiffies between each timer delay and returns the old setting. Jiffies are a time measurement
within the kernel and will be covered shortly.

The schar_ioctl function consists almost solely of a switch statement supporting the different 
commands.

static int schar_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)

{
/* make sure that the command is really one of schar’s */
if (_IOC_TYPE(cmd) != SCHAR_IOCTL_BASE)

return -ENOTTY;

switch (cmd) {
case SCHAR_TOGGLE_DEBUG: {

schar_debug = !schar_debug;
return 0;

}
case SCHAR_GET_POOL: {

if (put_user(schar_pool, (unsigned long *)arg))
return -EFAULT;

break;
}
case SCHAR_EX_TIMER_DELAY: {

unsigned long tmp = schar_timer_delay;
if (!capable(CAP_SYS_ADMIN))

return -EACCES;
if (get_user(schar_timer_delay,

(unsigned long *)arg))
return -EFAULT;

if (put_user(tmp, (unsigned long *)arg))
return -EFAULT;

break;
}
default: {

MSG(“ioctl: no such command\n”);
return -ENOTTY;

}
}
/* to keep gcc happy */
return 0;

}

The implementation hopefully speaks for itself if you have used the ioctl system call before. We will
look at the two calls that we’ve not met before a little later: get_user and put_user. For now, it should
suffice to say that they copy data back and forth between user space and kernel space. The default case
catches any commands that schar does not support. -ENOTTY is the appropriate return value for unsup-
ported commands. This might seem a bit odd, since this historically meant “not a typewriter” and dates
back to the days when the only devices were TTYs. Today, this translates to “inappropriate ioctl for
device” when it is returned for an ioctl call.
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Checking User Rights
ioctls are available for use by anyone who has access to open the device. Depending on what operations
should be performed, access should not be permitted to all users. SCHAR_EX_TIMER_DELAY checks
whether the user who opened the device is the superuser, since setting too low a timeout will expire the
timer too quickly and thus effectively prevent the machine from doing any useful work. Linux has a lot of
different capability personalities defined, the most significant in this case being CAP_SYS_ADMIN. The vari-
ous CAP_ defines are located in linux/capability.h with comments regarding the operations permitted.

int capable(int cap)

The check is performed by capable, which returns 1 if the user has the particular capability and 0 other-
wise. The use of capabilities is not restricted to ioctls alone, but they are most frequently used there.

poll
poll provides a way for a process to sleep on the device waiting for a certain event to take place. This is
not to be confused with a repeated check for status, as this is not what happens here. Using the poll sys-
tem call is an efficient way of waiting for events to occur without resorting to busy looping. schar imple-
ments poll somewhat, as much as it makes sense in our case, anyway. The implementation of poll is very
simple. Since a write to schar will always succeed, we only need to test for reads. A schar_poll_read
wait queue is introduced, and if our pool of data is empty, a poll for read will sleep until data is available.

static unsigned int schar_poll(struct file *file,
poll_table *wait)

{
unsigned int mask = 0;

poll_wait(file, &schar_poll_read, wait);

/* if the pool contains data, a read will succeed */
if (schar_pool > 0)

mask |= POLLIN | POLLRDNORM;

/* a write always succeeds */
mask |= POLLOUT | POLLWRNORM;

return mask;
}

This is all it takes for schar! If schar kept an upper limit on the size of the pool, a schar_poll_write
could easily be added and a similar check could be made for POLLOUT. The header file asm/poll.h con-
tains the possible poll masks; we will cover the standard ones here.

POLLINPOLLRDNORM The device can supply data on a succeeding read without blocking.

POLLOUT The device can accept data on a succeeding write without blocking.
POLLWRNORM

POLLERR An error occurred.

If you have ever used poll for user space applications, you should be familiar with these as they are
similar when seen from the kernel.
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Try It Out—Reading and Writing to schar
Okay, we’ve covered the basics of schar. We’ll get to the timer and memory functionality soon, but
before we do, let’s try it out. You can download the source code for schar from the Wrox Press Web site
at http://www.wrox.com. You can extract the archive anywhere on your system. schar is located in
chapter18/schar.

1. The first thing we need to do is create an appropriate special file for schar. Recall from earlier
that mknod is the command that does just that. We need to create a character special file with a
major number of 42 and a minor of 0.

# mknod /dev/schar c 42 0
#

2. Go to the source of the schar module and type make inside the directory and press Enter. The
compile should complete without errors or warnings. The finished module then resides in the
same directory as schar.o. Insert the module:

# insmod schar.o
#

3. The device should now be registered with the kernel and ready to serve. Verify this by examin-
ing the /proc/devices file as explained previously or type dmesg and notice how schar
welcomes us at the end.

$ dmesg | tail -n1
schar: module loaded
$

4. Now let’s copy a file to schar and see what happens. You can choose any file you’d like, but
try a small text file if you have one handy or can create one for this purpose. It would be a good
idea to have a separate terminal window open to repeatedly run dmesg to follow schar’s out-
put. Here we list the output from dmesg below each command. If cp asks you if it’s okay to
overwrite /dev/schar, just say yes.

$ cp small_file /dev/schar
schar: opened for writing
schar: major: 42 minor: 0
schar: trying to write 4096 bytes, 4096 bytes in queue now
schar: trying to write 4096 bytes, 8192 bytes in queue now
schar: trying to write 3241 bytes, 11433 bytes in queue now
schar: release

First, we go through schar_open , which is responsible for the first two lines of output. Then
schar_write is entered, and the 11,433-byte file we copied to the device is written in chunks
of 4,096 bytes at a time. When the write has finished, schar_release is entered and the write
of the file is completed.

5. Data is now available to be read from schar, so let’s copy some of it back:

$ cp /dev/schar out_file
schar: opened for reading
schar: major: 42 minor: 0
schar: want to read 4096 bytes, 7337 bytes in queue
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schar: want to read 4096 bytes, 3241 bytes in queue
schar: putting process with pid 757 to sleep
schar: pid 757 got signal

Again, schar_open is the entry point, but this time schar_read is entered next. Data is read
in chunks of 4,096 bytes again; we can satisfy two reads of 4 Kb before the pool contains less
that what cp asks for. This is where we put the reader (cp) to sleep until more data becomes
available. We got impatient and ended the read with a Ctrl+C, which sent a signal to the pro-
cess, hence the last line of output.

It is important to note that the 4-Kb chunks we serve data in above are not a schar limit, but rather
the design of cp. We could just as well serve data in 1b or 16-Kb chunks instead.

Try It Out—ioctl
So we can write data to schar and read data back. Let’s now try and play with some of the other functions
we included.

1. Make sure that the schar module is built and loaded. Create a file called schar_ioctl.c in
the directory containing the sources to schar.

#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>

#include “schar.h”

int main(int argc, char *argv[])
{

int fd = open(“/dev/schar”, O_RDWR);

/* complain if the open failed */
if (fd == -1) {

perror(“open”);
return 1;

}

/* complain if the ioctl call failed */
if (ioctl(fd, SCHAR_TOGGLE_DEBUG) == -1) {

perror(“ioctl”);
return 2;

}

printf(“schar debug toggled\n”);

return 0;
}

2. Compile the program and execute it with the following two lines:

$ cc -o schar_ioctl schar_ioctl.c
$ ./schar_ioctl
schar debug toggled
$

746

Chapter 18

b544977 Ch18.qxd  12/1/03  8:57 AM  Page 746



3. If schar was loaded with debugging enabled (as it defaults to), it should now stop printing
informative messages about opens, reads, and such. Try the copy commands we used earlier and
check dmesg. You should see that debugging output is no longer arriving in the kernel buffer.

Module Parameters
Linux provides an easy way to add parameter options for modules, which can be supplied at module load
time with either modprobe or insmod. schar has most of its user-definable parameters set up this way. 

MODULE_PARM(variable, type)

variable is the variable parameter set, and type is a string comprising the length and type of the
parameter. They can be placed anywhere in the module outside of functions but are usually placed after
the global variable declarations near the top. Let’s look at an example from schar:

MODULE_PARM(schar_debug, “1b”);

The type string “1b” signifies that this is a byte value of length 1. The length can also be supplied with
both a minimum and maximum size; “5-10b” would then mean that schar_debug was a byte size
array with a minimum of 5 and a maximum of 10 items. If no length argument is given, a length of 1 is
assumed. Four other types are defined besides byte size.

h short

i int

l long

s string

It is also possible to supply a descriptive text of the various module parameters. This information can
be extracted with modinfo and gives the user a chance to see what parameters are supported without
diving into the actual source of the module.

MODULE_PARM_DESC(schar_debug, “Enable debugging messages”);

The preceding line is used to describe the meaning of the schar_debug variable exported prior with
MODULE_PARM declaration. Finally, a general description and author field can be filled out.

MODULE_DESCRIPTION(“Sample character driver”);
MODULE_AUTHOR(“Jens Axboe”);

modinfo supports several options that let you extract the information you need.

Try It Out—modinfo
Let’s try it out and list some of the module-parameter information stored in a compiled schar module.
Make sure that you are in the directory containing the built schar module:

$ modinfo -p schar.o
schar_name string, description “Name of device”
schar_debug byte, description “Enable debugging messages”

747

Device Drivers

b544977 Ch18.qxd  12/1/03  8:57 AM  Page 747



schar_inc int, description “Byte increase in pool per timer fire”
schar_timer_delay long, description “Timer ticks between timer fire”
schar_pool_min long, description “Timer fill pool minimum in bytes”

The –p parameter asks modinfo to print information about the parameter that the module can be fed at
load time—its name, type, and a description of the option.

proc File System Interface
The proc file system works much like a real file system in that it is mounted and reading or writing is
accomplished by using standard file utilities. The data read from a file is generated on the fly by the
module or kernel and can provide run time statistics and other relevant information. Writable files can
be used to change configuration or behavior of the driver. Adding a proc file system entry to schar
thus allows users to retrieve information from the running module without having to issue ioctl com-
mands through a program.

sysctl
The best place to register an entry is under the /proc/sys directory. Then, entries can be retrieved with
either cat, for example, or the sysctl system call. Devices should register themselves under the dev/
directory, and this is exactly what schar does: It creates a schar subdirectory and an entry called 0
inside it. The entries are defined in an array of ctl_table structures stacked on top of each other until
the chain is complete. The root (/proc/sys/dev) is set up with /proc/sys/dev/schar as a directory
entry child, and finally /proc/sys/dev/schar/0 is added. Here’s the code from schar.c:

/* sysctl entries */
static char schar_proc_string[SCHAR_MAX_SYSCTL];
static struct ctl_table_header *schar_root_header = NULL;
static int schar_read_proc(ctl_table *ctl, int write, struct file *file,

void *buffer, size_t *lenp);

static ctl_table schar_sysctl_table[] = {
{ DEV_SCHAR_ENTRY,               /* binary id */

“0”,                           /* name */
&schar_proc_string,            /* data */
SCHAR_MAX_SYSCTL,              /* max size of output */
0644,                          /* mode */
0,                             /* child - none */
&schar_read_proc },            /* set up text */

{ 0 }
};

static ctl_table schar_dir[] = {
{ DEV_SCHAR,                     /* /proc/dev/schar */

“schar”,                       /* name */
NULL,
0,
0555,
schar_sysctl_table },          /* the child */

{ 0 }
};

static ctl_table schar_root_dir[] = {
{ CTL_DEV,                       /* /proc/dev */
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“dev”,                         /* name */
NULL,
0,
0555,
schar_dir },                   /* the child */

{ 0 }
};

DEV_SCHAR_ENTRY is the binary ID used when issuing a sysctl system call and should be unique.
schar_proc_string is the data returned to reading processes and is no longer than SCHAR_MAX_SYSCTL
bytes in length. The implementation is very simple and merely consists of copying the statistics generated
to a dedicated buffer—schar_proc_string—that is generated by schar_read_proc when the read
takes place.

Once the appropriate tables have been set up, the entry is registered with the proc file system. A
ctl_table_header is returned or 0 in the unlikely scenario that no memory was available.

schar_root_header = register_sysctl_table(schar_root_dir, 0);
schar_root_dir->child->de->owner = THIS_MODULE;

The last line sets up the owner of the entry to be THIS_MODULE, which is a macro referring to, naturally
enough, this module. With this, we make an effort to protect our entry. Allowing just anyone to delete
our entry anytime they liked could lead to problems such as a kernel fault (also known as an Oops; we
will look at these in the section on debugging).

proc_dostring does the rest of the job for us, copying the data to user space and modifying the file
position. The arguments remain untouched and are simply passed along. 

return proc_dostring(ctl, write, file, buffer, lenp);

schar is not very careful with regards to proc or sysctl support in the kernel. If this was a production
module, the implementation should be protected by adding the necessary define checks, something on
the order of

#ifdef CONFIG_SYSCTL
...
#endif

around the relevant pieces of code. Otherwise, the module would fail to compile on a kernel build with-
out sysctl support, albeit that is an extremely rare scenario.

Writable Entries
The entry registered by schar only provides information to the user and as such is read-only. The mode
setup does permit writing, however, and in that case the written string is merely printed to the logs.

if (write) {
char *tmp = (char *) get_free_page(GFP_KERNEL);
MSG(“proc: someone wrote %u bytes\n”, *lenp);
if (tmp) {

if (!copy_from_user(tmp, buffer, *lenp))
MSG(“proc: %s”, tmp);
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free_page((unsigned long)tmp);
file->f_pos += *lenp;

}
return 0;

}

A write argument is passed to the registered handler indicating whether the access was for reading or
writing. In the latter case, the data is copied to us and printed.

It should not be hard to add a function to parse the input and change the configuration appropriately.
Another alternative is to create numerous entries, each holding one of schar’s configuration options
(much like the other /proc/sys entries), and thus provide the possibility of simply echoing changes
directly to the separate files. It would then even be possible to use proc_dostring for both input and
output. The sysctl abstraction does lend itself more in this direction, but learning about both should
provide you with the necessary tools to further pursue the proc file systems. Besides, it is a two-for-one
deal, since registering a sysctl table also takes care of setting up the proc file system entry.
kernel/sysctl.c is a great place to look for more information.

How schar Behaves
schar keeps an internal count of how many bytes are either in surplus or in demand in the schar_pool
variable. A negative value means that a reader is currently starved of schar_pool bytes, while a posi-
tive value signifies the opposite. Writing to the device will add the bytes written to the pool for later 
consumption. schar keeps a kernel timer running that adds SCHAR_INC bytes to schar_pool at
SCHAR_TIMER_DELAY intervals while a reader is waiting for data. A write to the device will always suc-
ceed, but if a reader requests more data than what is currently in the pool, it is added to schar’s wait
queue and woken up every time the timer handler runs. It prints relevant information to the logs, so
give it a try to get a feel for how the internals work.

schar keeps a free page of memory as an internal buffer and copies read and written data to and from
there. It serves no particular purpose other than to demonstrate how data is moved between kernel and
user space—a concept we will look at much more closely later.

While schar is useless by itself, it exposes the basic skeleton for a character-driven device driver. We
used a kernel timer to feed the pool to emulate the feel of a polled device. Polling is needed if the device
is unable to provide feedback to the driver in the form of interrupts, a concept we will look at later when
looking at interrupt-driven character drivers.

Time and Jiffies
The kernel keeps track of time passing in the global jiffies variable. You may consider this the ker-
nel’s heartbeat because for every timer tick that goes by, jiffies is incremented by one. The define HZ
controls the rate of the ticks and can be modified at your will in <asm/param.h>. 

Beware that changing this will require a recompile of existing modules (and the 
kernel, of course) and will break applications that depend on its default value. 
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Most platforms set this to 100, giving us a heartbeat rate of one every 10 milliseconds. Increasing the
value may give you better interactive performance at the expense of spending more time in the sched-
uler, but leaving it at 100 is probably a safe bet. Every now and then, discussions arise debating whether
HZ should be changed since it has stayed the same since Linux was first introduced. So far, it is not con-
clusive if increasing it will give better performance on today’s faster processors.

You might end up programming devices where you want to detect whether an operation was completed
within a given amount of time or not. Some devices do not support raising interrupts upon completion
and thus must be handled via some form of polling for status. This is usually only the case with old or
badly designed hardware; modern devices should support some kind of event notification. Busy looping
should never be considered good device driver programming practice. If you do need to resort to these
dirty measures, make sure that it only runs in the odd case (i.e., during device probing or similar
instances). In these cases, the most used construct is a variant of the following:

unsigned long timeout = jiffies + PROBE_TIMEOUT;
do {

do_command(PROBE);
stat = get_status();

} while (stat == BUSY && time_before(jiffies, timeout));

if (time_after_eq(jiffies, timeout))
printk(“operation timed out.\n”);

Now you might be wondering what the time_before and time_after_eq functions do and why we
didn’t just compare timeout and jiffies directly. Well, Linux is such a stable operating system that it
is not that unusual to have machines running a very long time between reboots. Given that jiffies is
defined to be an unsigned long, it will wrap eventually and start ticking from zero again. If timeout
wraps when jiffies and PROBE_TIMEOUT are added, a simple test of

do {
do_command(PROBE);
stat = get_status();

while (stat == BUSY && (jiffies < timeout));

would cause the loop to exit prematurely. Clearly, this isn’t intended, and keeping track of wraps our-
selves, albeit not that difficult, shouldn’t be something that the driver writer should be bothered with.
For this reason, these four macros can do the job for us safely:

time_before(jiffies, x) wrap safe jiffies < x

time_after(jiffies, x) wrap safe jiffies > x

time_before_eq(jiffies, x) wrap safe jiffies <= x

time_after_eq(jiffies, x) wrap safe jiffies >= x

The macros are not only useful when doing direct tests like the preceding, where the possibility of a
wrap is minuscule, but also when testing for much larger values in drivers where packets are queued
and then only tested for timeouts much later. That could be in a SCSI or network adapter driver code, for
example. The macros are defined in linux/timer.h.
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On the issue of portability and timeouts using jiffies, never assume that HZ equals 100. This is already
a false assumption on Alpha architectures, which define it as 1,024, and on rtLinux (Real Time Linux),
which uses 10,000. Users are free to select any value they please, and changing HZ is as easy as modify-
ing asm/param.h and recompiling. Therefore, make sure that constructs like the above define
PROBE_TIMEOUT in terms of HZ and not a tick value alone.

Small Delays
At times, you need a finer control over time than that which HZ provides. Remember that HZ is 100 on
most platforms, which will give you only an approximate resolution of 0.01 seconds. That may not seem
like much, but for most hardware this is an extremely long period of time. In case you need finer resolu-
tion, udelay can provide up to microsecond precision.

/* delay for 0.5 milliseconds */
udelay(500);

udelay uses the BogoMIPS rating calculated at boot time, and while you cannot rely on precisely
microsecond resolution, it does get fairly close. You may have wondered what the BogoMIPS rating
shown at boot means and what it is used for; it is a calibration loop run at boot that measures a loops-
per-second speed. As such, it isn’t directly related to hardware speed (hence, BogoMIPS, for bogus), but
it does provide a way to somewhat accurately offer delay operations for udelay and friends.

Timers
Kernel timers are an excellent way of keeping track of time in your driver. Instead of looping and busy
waiting for a certain amount of time to expire, you should take advantage of the available timer func-
tions. As we have seen above, timers can also be used to poll a device at a constant interval. Timers are
implemented as a doubly linked list with the following format:

struct timer_list {
struct timer_list *next;
struct timer_list *prev;
unsigned long expires;

Never use udelay for more than a millisecond or two, as this can cause overflow on
machines with high BogoMIPS ratings. In fact, be very certain that you really do
need to delay like this! If you do need to pause for longer than this, loop a specified
number of times and udelay a millisecond each time, like this:

/* delay for 10 milliseconds */
int i;
for (i = 0; i < 10; i++)

udelay(1000);

You can also use mdelay, which is a macro that does exactly that for you:

/* delay for 10 milliseconds */
mdelay(10);
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unsigned long data;
void (*function)(unsigned long);

};

You can find this definition in linux/timer.h. For the sake of simplicity, you will never have to touch
the *next and *prev pointers; in fact, you should not. The kernel uses these internally and does that for
us. The interesting parts can be found in kernel/sched.c. add_timer takes care of acquiring the nec-
essary locks and then calls internal_add_timer. This keeps the interface simple for us, and we do not
actually have to be concerned with the inner workings of internal_add_timer. The different locking
schemes will be introduced later when the issues of SMP and re-entrant code are discussed.

init_timer does exactly what the name hints at—initializes the timer for use. In reality, it merely
updates next and prev to be null pointers so that timers added twice won’t go unnoticed. This is also
the technique used in schar’s open procedure to detect whether the internal timer was already set up.
Let’s take a closer look at the code from schar that shows how timers are used in that context. The timer
is initialized as follows:

static struct timer_list schar_timer;

This code, from init_module, just prepares the timer for later use.

init_timer(&schar_timer);

schar_open then sets it up, provided that it hasn’t already been set up by another reader.

if (!timer_pending(&schar_timer)) {
schar_timer.function = &schar_timer_handler;
mod_timer(&schar_timer, SCHAR_TIMER_DELAY);

}

Most important is the timer_handler function, a reference to which is passed to schar_timer’s func-
tion value.

static void schar_timer_handler(unsigned long data)
{

/* set up timer again */
if (schar_pool < schar_pool_min) {

schar_pool += SCHAR_INC;
schar_timer.expires = jiffies + schar_timer_delay;
schar_timer.function = &schar_timer_handler;
add_timer(&schar_timer);
MSG(“setting timer up again, %ld data now\n”, schar_pool);

}

/* if the module is in use, we most likely have a reader waiting for
data. wake up any processes that are waiting for data. */

if (MOD_IN_USE && schar_pool > 0) {
wake_up_interruptible(&schar_wq);
wake_up_interruptible(&schar_poll_read);

}

return;
}
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The syntax is fairly straightforward, so we won’t explain it to death. data is not used in schar at all,
since we are only maintaining one timer with the handler. We could have added a timer for both readers
and writers and let the value of data signify either a SCHAR_READER or SCHAR_WRITER timer. There are
many other uses for data; it is passed to timer_handler as an argument so you can use it any way you
please. It is also worth noting that expires is not relative to the current time; you need to add jiffies
explicitly.

Timers are automatically deleted when they expire, but leaving them hanging after the module has been
unloaded is an excellent way to hang the kernel. This also means that you can add the timer again from
the handler itself. cleanup_module calls timer_pending to detect whether the timer has expired or
not. It returns true if the timer hasn’t fired yet and false otherwise. If the timer is still running, it is
explicitly deleted by del_timer. Strictly speaking, this isn’t really necessary since calling del_timer on
a timer that has fired does no harm. We included it here merely for the sake of covering all the related
timer functions.

If you need to update the timer to extend the timeout, mod_timer is your friend. So, instead of doing 

del_timer(&timer1);
timer1.expires = jiffies + new_value;
add_timer(&timer1);

you can do

mod_timer(&timer1, new_value);

and end up with the same result in a nicer way. If the timer had already expired by the time mod_timer
is invoked, it acts just like add_timer and merely adds the timer again.

Try It Out—The Timer Implementation in schar
schar periodically adds data to its internal pool by using a kernel timer. The interval can be adjusted
either through an ioctl call or by modifying SCHAR_TIMER_DELAY in schar.h.

The timer is added when a reader opens the device and is readded from the timer handler as long as
data is in demand.

$ cp /dev/schar out_file
schar: opened for reading
schar: major: 42 minor: 0
schar: putting process with pid 889 to sleep

schar: setting timer up again, 1024 data now
schar: putting process with pid 889 to sleep

schar: setting timer up again, 2048 data now
schar: putting process with pid 889 to sleep

schar: setting timer up again, 3072 data now
schar: putting process with pid 889 to sleep

schar: setting timer up again, 4096 data now
schar: want to read 4096 bytes, 0 bytes in queue
schar: putting process with pid 889 to sleep
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SCHAR_INC bytes of data are added to the pool each time the handler runs—1,024 in this case. Every
time the handler runs, it wakes the reading process (or processes, if you have more than one running) in
case we now have enough data to satisfy the read. When the pool contains 4,096 bytes, cp can receive
the first chunk of data and the procedure starts over again.

Giving Up the Processor
Instead of looping and waiting for a certain amount of time to expire, it may be beneficial to suspend
execution of the current process and resume later. Changing the state of the process and calling the
scheduler can accomplish this. In the listing of the Linux task structure we examined earlier, the state
field was introduced. It can be assigned to any of the following values:

TASK_RUNNING The task was selected by the scheduler the last time it ran and
is currently in a running state. This is the state of the current
process when entering the driver.

TASK_INTERRUPTIBLE The task is in a state of sleep but can be woken up by signals.

TASK_UNINTERRUPTIBLE The task is in a state of sleep, and signals cannot wake it up.
The process is probably waiting on an event to happen, and it
wouldn’t make sense to let it wake before that event occurs.

There are a few more than this, but they aren’t relevant here. Look them up in linux/sched.h if you
wish.

So before invoking the scheduler, current->state should be set to either TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE. Which one to use depends on the condition that the process is waiting for.
The latter should be used only if it wouldn’t make sense to let it wake up before what it requested is
ready, and putting it away in an uninterruptible state is the most logical choice. For most issues, that is
not the case; if you grep through the Linux sources, you will find very few places that actually use
TASK_UNINTERRUPTIBLE. One example, however, is if pages belonging to the process are being brought
in from swap; we don’t want the process to wake up until the task is completed.

A piece of code that demonstrates these principles is the following:

current->state = TASK_INTERRUPTIBLE;
schedule();

Now the process gets tugged away and the scheduler runs. But how do we know when the process
returns? If there are no other suitable processes to run, the same task will be selected to run again and
we end up at the same place almost instantly. This is where schedule_timeout enters the picture; you
call it instead of schedule, and it returns the number of jiffies left to be slept. The scheduler is guar-
anteed not to select the process for execution before the specified timeout has expired.

/* put the process away for a second */
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(HZ);
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The value signifies the number of jiffies the process should sleep before being run again. The inner
workings of schedule_timeout are rather interesting; it is implemented with the aid of a kernel timer,
and the data argument is the address of the current process. After the timer has been added, schedule_
timeout calls schedule itself. The timer function simply wakes up the process with address data. If you
are interested, look in kernel/sched.c.

Task Queues
We have looked at how timers can be used to wake up processes at a given point in the future. While
timers are handy, it could also be useful to delay work to be executed later. This becomes particularly
interesting when we deal with interrupt handling routines and bottom halves, which task queues are
very closely related to. For now, let’s stick to task queues and defer the discussion of interrupt handling
to the next section.

struct tq_struct {
struct list_head list;        /* linked list of active bh’s */
unsigned long sync;           /* must be initialized to zero*/ 
void (*routine)(void *);      /* function to call */
void *data;                   /* argument to function */

};

The declaration is from linux/tqueue.h. As usual, you do not have to touch all the fields yourself.
*next is used internally to keep the queued tasks in a linked list, and sync makes sure that a task is not
queued twice before being run. This would corrupt the linked list, so if you attempt to queue the task
twice, you will simply be ignored.

Some predefined task queues exist in the kernel, but let’s first look at declaring your own queue:

DECLARE_TASK_QUEUE(q_task);
struct tq_struct q_run = { NULL, 0, (void *)q_task_handler,

&q_task };

This is the definition of the structure in queues and is pretty much taken directly from the header file.
The only real difference is that we define our own function to be called and activate the task queue from
there. DECLARE_TASK_QUEUE is a macro that initializes the queue to NULL. q_task is where we queue
the tasks, and q_run will run q_task_handler when the task queue is being consumed. Adding a pro-
cess to the preceding queue is done with the following:

queue_task(&q_run, &q_task);

queue_task can be called numerous times, and when we are ready to execute the tasks on hold on the
queue, run_task_queue is invoked. All the tasks queued on q_task are then consumed.

run_task_queue(&q_task);

The Predefined Task Queues
We won’t talk anymore about defining your own task queues, since the kernel provides a few for us to
use and they will suffice for the most part. Therefore, you hardly ever need to handle your own.
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tq_immediate Runs as soon as possible. We’ll talk more about it in the “Interrupt
Handling” section later in this chapter.

tq_timer After each passing timer tick, tq_timer is run. This queue is the
one the kernel uses for kernel timers internally. 

tq_scheduler Runs every time the scheduler is invoked if it contains any tasks.

tq_disk Mostly used by the VFS and the block functions when dealing with
requests.

The first three queues are clearly the most interesting, and you should probably stay away from
tq_disk, since it has a very specialized purpose. If we disregard tq_disk, we have placed them in
order of how fast they will get executed after queuing (as a rule of thumb). 

When you deal with the built-in task queues, you will never have to invoke run_task_queue on your
own. Depending on which queue you use, you instead simply mark the queue after adding the task and
it will be run automatically. Before we move on to looking at how to mark the queues for execution, let’s
take a very quick look at the implementation of bottom halves in Linux.

We will look more closely at bottom halves in the section on interrupt handling, but since they are
closely related to task queues it seems appropriate to use them as an example. Basically, interrupt han-
dlers can be split into two parts—a top and bottom half. The former receives the interrupt and takes care
of immediate, basic needs such as acknowledging it to the device. The bottom half runs later and is used
to defer processing of the data received in the top half. This allows Linux to process more interrupts than
a single interrupt handler can manage on its own.

In fact, task queues are implemented as bottom halves in Linux. As the different bottom halves are
marked active, the kernel executes them with do_bottom_half from the scheduler. The kernel main-
tains a list of possible bottom halves in linux/interrupt.h. Here is a snippet:

enum {
TIMER_BH = 0
TQUEUE_BH,
...
IMMEDIATE_BH,

...
};

These are the older embedded bottom halves and are not directly available to modules since each of
them serves a specialized purpose. If you look in the header file, you will notice that there isn’t an entry
for tq_scheduler because it does not need to be marked for execution. The first thing the scheduler
does is to check whether tq_scheduler contains any tasks and execute them if it does. This also means
that this queue is run every time the scheduler is invoked, which is dependent on many factors.

tq_timer is run on every timer tick if it contains any tasks and thus does not need to be marked as
active either. This also means that tasks waiting on this queue are being run at interrupt time, which
places certain restrictions on what they can do. Functions that are being run at interrupt time must not
block or sleep, for example. This may not sound like such a hard thing to achieve, but you must also
bear in mind that the entire call path of such a function is included—so you must not call other functions
that might block.
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The last queue that should be considered for general use is tq_immediate. As the name implies, the
queue is run extremely fast. It is generally intended to be used as a way of deferring work for interrupt
handlers, and we will use it in the interrupt handling section.

void init_bh(int nr, Enable the handling of bottom half nr by function 
void (*routine)(void)) routine.

void mark_bh(int nr) Mark the appropriate bit in bh_active, which will make
the scheduler run the task queue when it is invoked.

tq_immediate is the only queue that must be explicitly marked, since its intended use is as a bottom
half. When we get to interrupt handling, some examples on how to use task queues and bottom halves
will be shown.

Memory Management
Before we deal with how to allocate memory properly in a driver, let us take a brief tour of memory
management in general and how Linux handles it. You have probably come across the term “virtual
memory” before and may have wondered just what precisely it covered. When you allocate memory in
user-space applications, you aren’t handed a private section of the RAM in your machine. While this
would be a way for an operating system to handle memory allocations, it would only allow you to run
as many applications as your memory could hold in total. Linux does not work this way; it pretends that
much more memory is available (hence, the term “virtual memory”; it isn’t actually real) and hands out
virtual addresses to applications.

The mapping between virtual and physical addresses is kept in several structures that compose the
page table. The page table consists of three levels—the page directory, the page middle directory, and
the page table entries, each of which provides an offset of the virtual address. This is the lowest level of
memory management, and the driver writer won’t usually have to deal with the page table directly (see
Figure 18-3).

Figure 18-3

1. level 2. level 3. level

Virtual to physical address translation

offset

Page
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Virtual Memory Areas
Above the page table reside the virtual memory areas. These constitute a map of contiguous virtual
memory addresses as handed out to an application. 

struct vm_area_struct {
...
unsigned long vm_start;
unsigned long vm_end;
...
pgprot_t vm_page_prot;
...
struct vm_operations_struct *vm_ops;
unsigned long vm_pgoff;
struct file *vm_file;
...

};

This is a highly snipped version of the structure; you can find it in linux/mm.h. We will cover the
members that we will actually need later on. vm_start and vm_end represent the beginning and end
of the virtual memory area, and vm_page_prot is the protection attributes assigned to it—whether it is
shared, private, executable, and so forth. vm_ops is similar to the file_operations structure used
with character and block devices and forms an analogous abstraction to operation on virtual memory
areas. Finally, vm_offset is the offset into the area, and vm_file is used in correlation with memory
mapping of files. We’ll take a much closer look at this structure when we dissect the mmap functions of
schar.

The mappings made by a specific process can be seen in /proc/<PID>/maps. Each one corresponds to a
separate vm_area_struct, and the size, span, and protection associated with the mapping can be read
from the proc entry, among other things.

Address Space
The entire addressable area of memory (4 GB on 32-bit platforms) is split into two major areas—kernel
space and user (or application) space. PAGE_OFFSET defines this split and is actually configurable in
asm/page.h. The kernel space is located above the offset, and user space is kept below. The default for
PAGE_OFFSET on the Intel platform is 0xc0000000 and thus provides the kernel with approximately 1 GB
of memory, leaving 3 GB for user space consumption. On the Intel platform, the virtual addresses seen
from the kernel are therefore a direct offset from the physical address. This isn’t always the case, and
primitives to convert between the two must thus be used. See Figure 18-4 for a visual representation of
the address space.
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Figure 18-4

Types of Memory Locations
There are three kinds of addresses you need to be aware of as a device-driver writer:

❑ Physical: This is the “real” address, the one that is used to index the memory bus on the 
motherboard.

❑ Virtual: Only the CPU and the kernel (via its page tables and TLB) know about virtual
addresses.

❑ Bus: All devices outside the CPU. On some platforms, this is identical to the physical
addresses.

Now, if you want to talk to an add-on card, you can’t hand it a virtual memory address and tell it to
transfer X number of bytes to you. The card knows absolutely nothing about what addressing scheme
the kernel and CPU have agreed upon since it does not have access to the page tables and thus can’t
make any sense of the memory address. Similarly, the kernel uses virtual addresses for everything, and
accessing bus memory varies from platform to platform. Linux therefore provides convenient macros
and functions to convert the three types of addresses back and forth.

unsigned long virt_to_phys(void *address)
void *phys_to_virt(unsigned long address)

unsigned long virt_to_bus(void *address)
void *bus_to_virt(unsigned long address)

Talking to a peripheral device requires the translation back and forth between virtual addresses (that the
kernel knows about) and bus addresses (what the devices know about). This is regardless of the type of
bus the peripheral is installed in, be it PCI, ISA, or any other. Note that jumping through the extra hoops
of converting addresses is only necessary when you explicitly need to pass a pointer to a memory area
directly to the device. This is the case with DMA transfers, for example. In other situations, you normally
read the data from device I/O memory or I/O ports.
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Getting Memory in Device Drivers
Memory is allocated in chunks of the PAGE_SIZE on the target machine. The Intel platform has a page
size of 4 Kb, whereas the Alpha architecture uses 8-Kb-sized pages, and it is not a user-configurable
option. Keep in mind that the page size varies depending on the platform. There are many ways of 
allocating memory for driver usage, the lowest-level one being a variant of

unsigned long __get_free_page Allocate exactly one page of memory.
(int gfp_mask)

gfp_mask describes priority and attributes of the page we would like to get a hold of. The most com-
monly used ones in drivers are the following:

GFP_ATOMIC Memory should be returned, if any is available, without blocking or
bringing in pages from swap.

GFP_KERNEL Memory should be returned, if any is available, but the call may
block if pages need to be swapped out.

GFP_DMA The memory returned should be below the 16MB mark and thus suit-
able as a DMA buffer. This flag is only needed on ISA peripherals, as
these cannot address more memory than 16MB.

GFP_ATOMIC must always be specified if you wish to allocate memory at interrupt time since it is guar-
anteed not to schedule out the current process if a suitable page is not available. ISA boards can only see
up to 16MB of memory, and hence you must specify GFP_DMA if you are allocating a buffer for DMA
transfers on an ISA peripheral. Depending on how much memory is installed and the level of internal
fragmentation, memory allocated with GFP_DMA may not succeed. PCI devices do not suffer under this
constraint and can use any memory returned by __get_free_page for DMA transfers. 

__get_free_page is actually just a special case of __get_free_pages.

unsigned long __get_free_pages(int gfp_mask, unsigned long order)

gfp_mask has the same meaning, but order is a new concept. Pages can only be allocated in orders of
2, so the number of pages returned is 2order. The PAGE_SHIFT define determines the software page size
and is 12 on the x86 platform (212 bytes is 4 Kb). An order of 0 returns one page of PAGE_SIZE bytes,
and so forth. The kernel keeps internal lists of the different orders up to 5, which limits the maximum
order to that amount, giving you a maximum of 25 times 4 Kb—which is equal to 128 Kb—on the x86
platform.

You may have wondered why the functions are prefixed with __; there is a perfectly good explanation
for this. They are actually faster variants of get_free_page and get_free_pages, respectively, and the
only difference lies in the fact that the __ versions don’t clear the page before returning it. If you copy
memory back to user space applications, it may be beneficial to clear the page of previous contents that
could inadvertently contain sensitive information that should not be passed to another process.
__get_free_page and friends are quicker and, if the memory allocated is only to be used internally,
clearing the pages may not be needed.
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void free_page(unsigned long addr) Free the page(s) at memory location addr. 
void free_pages(unsigned long addr, You are expected to keep track of the size of 
unsigned long order) allocated pages, since free_pages expects

you to the supply it with the order you used
when allocating the memory.

kmalloc
Allocation of memory with get_free_page and the like is a bit troublesome and places a lot of the
memory management work in the hands of the device driver. Depending on what you are aiming at
using the memory for, a page-oriented scheme might not be the most appropriate. Besides, it is not that
often that the size requirement fits perfectly into the scheme of allocating pages in orders of two of the
page size. This can lead to a lot of wasted memory. Linux provides kmalloc as an alternative, which lets
you allocate memory any size you want.

void *kmalloc(size_t size, int flags)

size is the requested amount of memory and is rounded up to the nearest multiple of the page size. The
flags parameter consists of a mask of priorities, just like with the get_free_page variants. The same
size restrictions apply: You can only get up to 128 kB at a time. Trying to allocate more will result in an
error in the log, saying “kmalloc: Size (135168) too large,” for example.

void kfree(const void *addr)

kfree will free the memory previously allocated by kmalloc. If you are used to dynamically allocating
memory in applications with malloc, you will feel right at home with kmalloc.

vmalloc
The third and final way to acquire memory is with vmalloc. While get_free_page and kmalloc both
return memory that is physically contiguous, vmalloc provides memory that is contiguous in the vir-
tual address space and thus serves a different purpose. It does so by allocating pages separately and
manipulating the page tables.

void *vmalloc(unsigned long size)
void vfree(void *addr)

vmalloc allows you to allocate much larger arrays than kmalloc, but the returned memory can only be
used from within the kernel. Regions passed to peripheral devices cannot be allocated with vmalloc
because they are not contiguous in the physical address space. Virtual memory is only usable within the
kernel/CPU context where it can be looked up in the page tables.

It is extremely important to free memory once you are done using it. The kernel does
not reap allocated pages when the module is unloaded, and this makes it the mod-
ule’s complete responsibility to do its own memory management.
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vmalloc cannot be used at interrupt time either as it may sleep, since internally kmalloc is called with-
out GFP_ATOMIC set. This should not pose a serious problem, as it would be abnormal to need more
memory than __get_free_pages can provide inside an interrupt handler.

All things considered, vmalloc is most useful for internal storage. The RAM disk module, radimo,
shown in the “Block Devices” section later in this chapter will provide an example of vmalloc usage.

Transferring Data between User and Kernel Space
Applications running on the system can only access memory below the PAGE_OFFSET mark. This ensures
that no process is allowed to overwrite memory areas managed by the kernel, which would seriously
compromise system integrity, but at the same time poses problems regarding getting data back to user
space. Processes running in the context of the kernel are allowed to access both regions of memory, but at
the same time it must be verified that the location given by the process is within its virtual memory area.

int access_ok(int type, const void *addr,
unsigned long size)

The above macro returns 1 if it is okay to access the desired memory range. The type of access (VERIFY_
READ or VERIFY_WRITE) is specified by type, the starting address by addr, and the size of the memory
region by size. Every transfer taking place to or from user space must make sure that the location given
is a valid one. The code to do so is architecture-dependent and located in asm/uaccess.h.

The actual transfer of data is done by various functions, depending on the size of the transfer. 

get_user(void *x, const Copy sizeof(addr) bytes from user space address
void *addr) addr to x.

put_user(void *x, const Copy sizeof(addr) bytes to user space to variable
void *addr) x from addr.

The type of the pointer given in addr must be known and cast if necessary, which is why there is no
need for a size argument. The implementation is quite intricate and can be found in the aforementioned
include file. Frequently they are used in implementing ioctl calls since those often copy single-value
variables back and forth.

You may have wondered why the appropriate access_ok call was not included in schar, for example.
Often the check is omitted by mistake, and the x_user functions therefore include the check. The return
value is 0 if the copy was completed and -EFAULT in case of access violation.

get_user(x, addr)

The versions prefixed with __ perform no checking. They are typically used when performing multiple
single-value copies, where performing the access check several times is redundant.

char foo[2];
...
if (access_ok(VERIFY_WRITE, arg, 2*sizeof(*arg)) {

__put_user(foo[0], arg);
__put_user(foo[1], arg+1);
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} else {
return -EFAULT;

}

This is a trivial case, but the idea behind it should be clear. A third version of the x_user family also
exists. Typically, the return value is checked and -EFAULT is returned in the case of access violation; this
leads to the introduction of the last variant.

void get_user_ret(x, addr, ret)
void put_user_ret(x, addr, ret)

The _ret versions return the value in ret for you in case of error; they don’t return any error code back
to you. This simplifies the programming of ioctls and leads to such simple code as

get_user_ret(tmp, (long *)arg, -EFAULT);

Moving More Data
Often more data needs to be copied than just single variables, and it would be very inefficient and awk-
ward to base the code on the primitives in the preceding section. Linux provides the functions needed to
transfer larger amounts of data in one go. These functions are used in schar’s read and write functions:

copy_to_user(void *to, void *from, unsigned long size)
copy_from_user(void *to, void *from, unsigned long size)

They copy size amount of bytes to and from the pointers specified. The return value is 0 in case of suc-
cess and nonzero (the amount not transferred) if access is not permitted, as copy_xx_user also calls
access_ok internally. An example of the usage can be found in schar.

if (copy_to_user(buf, schar_buffer, count))
return -EFAULT;

As with get_user, nonchecking versions also exist and are prefixed in the same manner with __. 

copy_to_user(void *to, void *from, unsigned long size)
copy_from_user(void *to, void *from, unsigned long size)

Finally, _ret variants are also available that return ret in case of access violations.

copy_to_user_ret(void *to, void *from, unsigned long size, int ret)
copy_from_user_ret(void *to, void *from, unsigned long size, int ret)

All of the preceding examples rely on being run in the context of a process. This means that using them
from interrupt handlers and timer functions, for example, is strictly prohibited. In these situations the ker-
nel functions are not working on behalf of a specific process, and there is no way to know if current is
related to you in any way. In these situations it is far more advisable to copy data to a buffer maintained
by the driver and later move the data to user space. Alternatively, as will be seen in the next section, mem-
ory mapping of device driver buffers can be implemented and solve the problems without resorting to an
extra copy.
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Simple Memory Mapping
Instead of copying data back and forth between user and kernel space incessantly, at times it is more
advantageous to simply provide the applications a way to continuously view in-device memory. The
concept is called memory mapping, and you may already have used it in applications to map entire files
and read or write to them through pointers instead of using the ordinary file-oriented read or write. If
not, Chapter 3 contains an explanation of what mmap is and how it is used in user space. In particular,
many of the arguments are explained there, and they map directly to what we are going to do here.

It is not always safe or possible to copy data directly to user space. The scheduler might schedule out the
process in question, which would be fatal from an interrupt handler, for example. One possible solution
is to maintain an internal buffer and have such functions write and read there and later copy the data to
the appropriate place. That causes additional overhead because two copies of the same data have to be
made, one to the internal buffer and an extra one to the application’s memory area. However, if the
driver implements the mmap driver entry point, a given application can directly obtain a viewpoint into
the driver buffer, and there is thus no need for a second copy.

schar_mmap is added to the file_operations structure to declare that we support this operation. Let’s
look at the schar implementation:

static int schar_mmap(struct file *file,
struct vm_area_struct *vma)

{
unsigned long size;

/* mmap flags - could be read and write, also */
MSG(“mmap: %s\n”, vma->vm_flags & VM_WRITE ? “write” : 

“read”);

/* we will not accept an offset into the page */
if(vma->vm_offset != 0) {

MSG(“mmap: offset must be 0\n”);
return -EINVAL;

}

/* schar_buffer is only one page */
size = vma->vm_end - vma->vm_start;
if (size != PAGE_SIZE) {

MSG(“mmap: wanted %lu, but PAGE_SIZE is %lu\n”,
size, PAGE_SIZE);

return -EINVAL;
}

/* remap user buffer */
if (remap_page_range(vma->vm_start,

virt_to_phys(schar_buffer),
size, vma->vm_page_prot))

return -EAGAIN;

return 0;
}
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We receive two arguments in the function—a file structure and the virtual memory area that will be
associated with the mapping. As mentioned earlier, vm_start and vm_end signify the beginning and
end of the mapping, and the total size wanted can be deduced from the difference between the two.
schar’s buffer is only one page long, which is why mappings bigger than that are rejected. vm_offset
would be the offset into the buffer. In this case, it wouldn’t make much sense to allow an offset into a
single page, and schar_mmap rejects the mapping if one was specified.

The final step is the most important one. remap_page_range updates the page tables from the 
vma->vm_start memory location with size being the total length in bytes. The physical address
is effectively mapped into the virtual address space.

remap_page_range(unsigned long from, unsigned long phys_addr,
unsigned long size, pgprot_t prot)

The return value is 0 in case of success and -ENOMEM if it failed. The prot argument specifies the protec-
tion associated with the area (MAP_SHARED for a shared area, MAP_PRIVATE for a private, etc.). schar
passes it directly from the one given to mmap in the application.

The page or pages being mapped must be locked so they won’t be considered for other use by the kernel.
Every page present in the system has an entry in the kernel tables, and we can find which page we’re using
based on the address and set the necessary attributes.

struct page *virt_to_page(void *addr) Return the page for address.

schar allocates a page of memory and calls mem_map_reserve for the page returned by the virt_to_
page function.  The page is unlocked by mem_map_unreserve and freed in cleanup_module when
the driver is unloaded. This order of operation is important, as free_page will not free a page that is
reserved. The entire page structure, along with all the different flag attributes, can be found in
linux/mm.h.

This was an example of how to access the kernel’s virtual memory from user space by making
remap_page_range do the work for us. In many cases, however, memory mapping from drivers
allows access to the buffers on peripheral devices. The next section will introduce I/O memory and,
among other things, will briefly touch upon how to do just that.

I/O Memory
The last kind of address space we are going to look at is I/O memory. This can be both ISA memory
below the 1MB boundary or high PCI memory, but we conceptually use the same access method for
both. I/O memory is not memory in the ordinary sense, but rather ports or buffers mapped into that
area. A peripheral may have a status port or onboard buffers that we would like to gain access to. The
sample module Iomap gives a demonstration of these principles and can be used to read and write or
memory-map a region of I/O memory.

Where I/O memory is mapped to depends highly on the platform in question. On the x86 platform, sim-
ple pointer dereferencing can be used to access low memory, but it is not always in the physical address
space and therefore must be remapped before we can get a hold of it. 

void *ioremap(unsigned long offset, unsigned long size)
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ioremap maps a physical memory location to a kernel pointer of the wanted size. Iomap uses it to
remap the frame buffer of a graphics adapter (the main intended use for the module) to a virtual address
we can access from within the driver. An Iomap device consists of the following:

struct Iomap {
unsigned long base;
unsigned long size;
char *ptr;

}

Where base is the starting location of the frame buffer, size is the length of the buffer, and ptr is what
ioremap returns. The base address can be determined from /proc/pci, provided you have a PCI or
AGP adapter; it is the prefetchable location listed there:

$ cat /proc/pci
PCI devices found:

Bus  1, device   0, function  0:
VGA compatible controller: NVidia Unknown device (rev 17).

Vendor id=10de. Device id=29.
Medium devsel.  Fast back-to-back capable.  IRQ 16.  Master Capable.

Latency=64.  Min Gnt=5.Max Lat=1.
Non-prefetchable 32 bit memory at 0xdf000000 [0xdf000000].
Prefetchable 32 bit memory at 0xe2000000 [0xe2000008].

Find your graphics adapter among the different PCI devices in your system and locate the memory
listed as prefetchable; as you can see, that would be 0xe2000000 on this system. Iomap can manage up to
16 different mappings all set up through ioctl commands. We’ll need this value when trying out Iomap
a little later.

Once the region has been remapped, data can be read and written to. Iomap using byte-size functions.

unsigned char *readb(void *addr)
unsigned char *writeb(unsigned char data, void *addr)

readb returns the byte read from addr, and writeb writes data to specified location. The latter also
returns what it wrote, if you need that functionality. In addition, doubleword and long versions exist.

unsigned short *readw(void *addr)
unsigned short *writew(unsigned short data, void *addr)
unsigned long *readl(void *addr)
unsigned long *writel(unsigned long data, void *addr)

If IOMAP_BYTE_WISE is defined, this is how Iomap reads and writes data. As one would expect, they are
not that fast when doing copies of the megabyte size since that is not their intended use. When
IOMAP_BYTE_WISE is not defined, Iomap utilizes other functions to copy data back and forth.

void *memcpy_fromio(void *to, const void *from, unsigned long size)
void *memcpy_toio(void *to, const void *from, unsigned long size)

They work exactly like memcpy but operate on I/O memory instead. A memset version also exists that
sets the entire region to a specific value.
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void *memset_io(void *addr, int value, unsigned long size)

Iomap’s read and write functions work basically just like schar’s, for example, so we are not going to
list them here. Data is moved between user space and the remapped I/O memory through a kernel
buffer, and the file position is incremented.

At module cleanup time, the remapped regions must be undone. The pointer returned from ioremap is
passed to iounmap to delete the mapping.

void iounmap(void *addr)

Assignment of Devices in Iomap
Iomap keeps a global array of the possible devices created, indexed by minor numbers. This is a widely
used approach to managing multiple devices and is easy to work with. The global array, iomap_dev,
holds pointers to all the potential accessed devices. In all the device entry points, the device being acted
upon is extracted from the array.

Iomap *idev = iomap_dev[MINOR(inode->i_rdev)];

In the cases where an inode is not directly passed to the function, it can be extracted from the file struc-
ture. It contains a pointer to the dentry (directory entry) associated with the file, and the inode can be
found in that structure.

Iomap *idev = iomap_dev[MINOR(file->f_dentry->d_inode->i_rdev)];

I/O Memory mmap
In addition to being read and written ordinarily, Iomap supports memory mapping of the remapped I/O
memory. The actual remapping of pages is very similar to schar, with the deviation that because actual
physical pages are not being mapped no locking needs to be done. Remember that I/O memory is not
real RAM, and thus no entries exist for it in mem_map.

remap_page_range(vma->vm_start, idev->base, size, 
vma->vm_page_prot)

As with schar, remap_page_range is the heart of iomap_mmap. It does the hard work for us in setting
up the page tables. The actual function doesn’t require much code.

The data returned by the read and write functions is in little endian format, whether
that is the native byte ordering on the target machine or not. This is the ordering
used in PCI peripherals’ configuration space, for example, and the preceding func-
tions will byte swap the data if necessary. If data needs to be converted between the
two data types, Linux includes the primitives to do so. The “Portability” section later
in the chapter gives us a closer look at that.
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static int iomap_mmap(struct file *file, struct vm_area_struct *vma)
{

Iomap *idev = iomap_dev[MINOR(file->f_dentry->d_inode->i_rdev)];
unsigned long size;

/* no such device */
if (!idev->base)

return -ENXIO;

/* size must be a multiple of PAGE_SIZE */
size = vma->vm_end - vma->vm_start;
if (size % PAGE_SIZE)

return -EINVAL;

/* remap the range */
if (remap_page_range(vma->vm_start, idev->base, size,

vma->vm_page_prot))
return -EAGAIN;

MSG(“region mmapped\n”);
return 0;

}

We start by finding the specific device in the iomap_dev array and check whether this particular device
has been set up. If it hasn’t, we return an appropriate error message. We also require that the range that
is going to be remapped is a multiple of the page size and return an error. If all is in order, we call
remap_page_range and let it do its job.

Try It Out—The Iomap Module
Iomap’s source is also included in the code download from the Wrox Web site. Go to the
modules/iomap directory, where you should find the following files:

$ ls
iomap.c    iomap.h   iomap_setup.c    Makefile

1. As the superuser, run make to build the iomap module, make two special file entries—one
with minor 0 and one with minor 1—and insert the module.

# make
# mknod /dev/iomap0 c 42 0
# mknod /dev/iomap1 c 42 1
# insmod iomap.o
iomap: module loaded

2. Now we are ready to take it for a spin. Iomap won’t do anything on its own, so we need to set
up two devices to experiment with. First, you will need to dig up the base address of the frame
buffer on your display adapter; examine /proc/pci as explained at the beginning of the “I/O
Memory” section earlier in the chapter. Recall that the address was 0xe200000 on this system.
We will need this now when creating a small program that sets up the two devices through
ioctl calls. Create a file called iomap_setup.c in the directory where the Iomap module
sources are located, or edit the existing code, containing the following:
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#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>

#include “iomap.h”

#define BASE   0xe2000000

int main(int argc, char *argv[])
{

int fd1 = open(“/dev/iomap0”, O_RDWR);
int fd2 = open(“/dev/iomap1”, O_RDWR);
Iomap dev1, dev2;

if (fd1 == -1 || fd2 == -1) {
perror(“open”);
return 1;

}

/* set up first device */
dev1.base = BASE;
dev1.size = 512 * 1024;
if (ioctl(fd1, IOMAP_SET, &dev1)) {

perror(“ioctl”);
return 2;

}

/* set up second device, offset the size of the first device */
dev2.base = BASE + dev1.size;
dev2.size = 512 * 1024;
if (ioctl(fd2, IOMAP_SET, &dev2)) {

perror(“ioctl”);
return 3;

}

return 0;
}

$ cc –Wall –o iomap_setup iomap_setup.c
$ ./iomap_setup
iomap: setting up minor 0
iomap: setup: 0xe2000000 extending 0x80000 bytes
iomap: setting up minor 1
iomap: setup: 0xe2080000 extending 0x80000 bytes

As you’d expect, you should change BASE to point to your frame buffer address!
Otherwise we might end up writing to another device in your system, which could
crash the system or render the affected device unusable. Compile and run the iomap_
setup program; this should define the two devices we are going to operate on.

770

Chapter 18

b544977 Ch18.qxd  12/1/03  8:57 AM  Page 770



3. We have now set up two devices, one mapping 0.5MB from the start of the frame buffer and the
other mapping 0.5MB from the start of the first mapping. These map directly into the graphics
memory of the display adapter, and writing to them should cause a visible distortion on your
screen. Before running the next few lines to try that out, make sure that you have X loaded and
execute the commands from within a terminal there.

$ cp /dev/iomap1 /dev/iomap0

4. Now the effects of the above command should be apparent. The region on your monitor that
corresponds to the mapping of the second device should now also appear at the top the screen,
thus creating an odd-looking X session. Continue the fun and fill the top of the monitor with
garbage by copying random data to it:

$ dd if=/dev/random of=/dev/iomap0 bs=512 count=1024

I/O Ports
I/O ports are a phenomenon only seen on some platforms such as the x86 architecture. They can be either
a status port on a peripheral device or the serial port that your mouse is connected to. Data is read and
written to ports in sizes according to its width. Other platforms, Alpha for example, don’t have real
ports but only I/O memory. On platforms like that, reading and writing to memory locations achieves
access to I/O data.

Linux supports a wide variety of functions to read and write to and from I/O ports. They are all variants
of the same flavor and differ mainly in how wide a port they talk to. Note that this section deals with
regular I/O ports, not I/O memory, which was covered earlier in the chapter. The header file to browse
for this section is asm/io.h; this is a very nasty file, so consider yourself warned!

A driver ought to verify that a given port can be used. Another driver might already have grabbed the
port we are looking for, and we do not want to wreak havoc by outputting data that might confuse the
device it handles.

int check_region(unsigned int from, unsigned long extent)

from is the port we are testing, and extent is how wide it is counted in bytes. The return value is 0 on
success or nonzero if the port is already taken. Once a proper port has been found, you can go ahead and
request it.

void request_region(unsigned int from, unsigned long extent, const char *name)
void release_region(unsigned int from, unsigned long extent)

The parameters are almost alike; name is the one that shows up in /proc/ioports and should be con-
sidered a device label along the lines with the /proc/devices entry. Ports can be 8, 16, or 32 bits wide.

u8  inb(unsigned int port)
u16 inw(unsigned int port)
u32 inl(unsigned int port)
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The usage should be clear: They all read the respective size value from a port. The return value is the
data read, and depending on the platform used, different types fill the size requirement. The functions
for writing to ports are similar.

void outb(__u8 data, unsigned int port)
void outw(__u16 data, unsigned int port)
void outl(__u32 data, unsigned int port)

Again, the typing is a bit loose because it varies from one platform to another. Typing is not the only
problem with I/O ports, as some platforms don’t have regular ports but emulate them by reading and
writing to memory locations instead. We won’t detail this any further here; your best bet is to study
some of the drivers in the kernel.

In addition, Linux provides string versions that allow you to transfer more than one datum at a time 
efficiently.

void insb(unsigned int port, void *addr, unsigned long count)
void outsb(unsigned int port, void *addr, unsigned long count)

addr is the location in memory to transfer to or from, and count is the number of units to transfer.
Similar versions exist for word- and doubleword-size transfers with the same naming convention as the
single datum functions. They are very fast and much more efficient than building a loop around the inb,
for example.

Interrupt Handling
Most real hardware does not rely on polling to control the data flow. Instead, interrupts are used to signal
the availability of data or other hardware conditions to the device driver and let it take the appropriate
action. Writing an ISR (Interrupt Service Routine) is often surrounded by mysticism, but that can only be
because people have not seen how easy it really is to do in Linux. There is nothing special about it because
Linux exports a very elegant and uncomplicated interface for registering interrupt handlers and (eventu-
ally) handling interrupts as they come in.

An interrupt is a way for a device to get the device driver’s attention and tell it that the device needs to
be serviced somehow. This could be to signal that data is available for transfer or that a previously
queued command has now completed and the device is ready for a new one.

How interrupts are handled internally by Linux is very architecture-dependent: It all depends on the
interrupt controller that the platform is equipped with. If you are interested, you can find the necessary
information in arch/<your arch>/kernel/irq.c file: arch/i386/kernel/irq.c, for example.

Some platforms do not have regular I/O ports like the x86 architecture but instead
implement them as a mapped region of regular memory. The above functions for
talking to I/O ports are also not the only variants that exist, as different platforms
have differing needs. The data returned is in little endian format, which might not
be suitable, and some big endian platforms provide variants that don’t byte swap
the result. Inspect asm/io.h from the various architecture-specific directories—
under arch in the kernel source tree—if you are curious.
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Interrupts that have no designated handler assigned to them are simply acknowledged and ignored by
Linux. You can find a listing of what handlers are installed on you system by listing the contents of
/proc/interrupts:

CPU0       CPU1
0:    1368447    1341817    IO-APIC-edge  timer
1:      47684      47510    IO-APIC-edge  keyboard
2:          0          0          XT-PIC  cascade
4:     181793     182240    IO-APIC-edge  serial
5:     130943     130053    IO-APIC-edge  soundblaster
...

This is an incomplete listing of our system right now. The leftmost column is the interrupt number, and
the next two columns represent the number of times each CPU has handled the particular interrupt. The
last two items are the interrupt type and the device that registered the handler. So, the listing above
reveals that CPU0 has handled 130,943 interrupts from the soundblaster device and CPU1 took care of
130,053. 0 is a special case—the timer interrupt (on the x86; other platforms are different)—and indicates
the number of ticks since the system was booted. The fourth column here indicates how the interrupts are
handled. This is not really important to us here, and it should suffice to know that in an SMP environment
the IO-APIC distributes the interrupts between the CPUs. XT-PIC is the standard interrupt controller.

Another file you might want to look at is /proc/stat. It contains, among other things, the total number
of interrupts that have transpired. The line of interest to us now is intr, which has the following format:
intr total irq0 irq1 irq2 ..., where total is the sum of all interrupts, irq0 the sum of inter-
rupt 0, and so forth. This file might come in handy when you are experimenting with your first interrupt-
driven driver because it also lists triggered interrupts that don’t have a handler registered that /proc/
interrupts doesn’t.

Allocating an Interrupt
Now that we have looked at the interrupt statistics gathered in /proc, let’s move on to how you can
request your own IRQ. An explanation of the parameters follows.

int request_irq(unsigned int irq,
void (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags,
const char *devname,
void *dev_id)

request_irq returns 0 on success, and failure is indicated by an appropriate negative error—most
notably, -EINVAL if the IRQ is out of range and -EBUSY if a shared handler was requested and the
irqflags do not match with an already installed handler.

irq The actual IRQ that you wish to handle.

handler(int irq, When the interrupts occurs, this is the function that gets called.
void *dev_id, This is the IRQ handler.
struct pt_regs *regs)

irqflags This controls the behavior of the interrupt. We will look more
at that later.

Table continued on following page
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devname The name that is listed in /proc/interrupts.

dev_id Helps support sharing of interrupts. It is the one that is passed
to the handler—the function passed as the second argument—
and can thus be used if you need to pass it information. The
IDE subsystem, for example, uses it to distinguish between the
master and slave that it controls per interrupt.

The irqflags parameter comprises several possible combinations:

SA_INTERRUPT A handler registered with this flag runs with all IRQs dis-
abled. Not setting it only disables the IRQ being serviced by
the handler.

SA_SHIRQ Enable the IRQ line to be shared between more than one
device. The drivers must also agree on the rest of the
irqflags mask and supply the proper dev_id, otherwise
sharing is not allowed.

SA_SAMPLE_RANDOM The Linux kernel keeps an internal entropy pool managed by
the random device. If the device being managed by the han-
dler does not interrupt at a fixed rate, it may be able to con-
tribute to the randomness of this pool and the flag should be
set. Naturally, this depends heavily on the actual hardware
being driven.

The handler being registered receives three arguments when invoked. irq can only be considered useful
if the handler manages more than one IRQ, otherwise you would already know which specific interrupt
occurred. regs contains the imagery of the CPU registers before the interrupt occurred. It is rarely useful,
but you can find the definition in asm/ptrace.h if you are curious. The second argument is dev_id,
which we already covered.

Unregistering an IRQ handler is done with free_irq. The arguments are similar to request_irq and
need no further explanation.

void free_irq(unsigned int irq, void *dev_id)

Getting an Appropriate IRQ
Before you can register a handler to use with your driver, you have to find out what IRQ to use. This is
highly hardware dependent, both in regards to the type of peripheral device and the host bus, be it ISA,
PCI, or SBUS (a host bus found on the SPARC). Regarding the former, some devices will let you read the
configuration from a status port; others you may have to probe. If you are going to write a driver for a
real piece of hardware, you need the programming specifications from the vendor; they will tell you
how to retrieve the needed information correctly.

The most prevalent bus types are ISA and PCI (at least on the x86 platform). Although efforts have been
made to partially add Plug and Play capabilities to ISA devices, ISA was invented before Plug and Play
was an issue and no real standard exists. Besides, we have probably all experienced how well that
works. PCI devices provide a clean and standardized way to retrieve configuration information without
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resorting to nasty probing and guesswork. How to handle PCI devices is beyond the scope of this book.
linux/pci.h is a good place to start if you want to deal with PCI, and, as always, plenty of examples
exist within the Linux sources. The rest of this section will deal only with legacy devices.

If the hardware allows you to retrieve the configuration directly, you will not have to do any probing
yourself. As mentioned previously, this information is located in hardware device manuals and we can’t
say anything generic about that. Linux provides interrupt detection for devices that don’t support nicer
alternatives.

unsigned long probe_irq_on(void)
int probe_irq_off(unsigned long mask)

probe_irq_on initiates the probing sequence, and probe_irq_off ends it. In between, you should put
code that will trigger an IRQ from the device, and this will then be the return value from probe_irq_off.
If more than one IRQ fired, probe_irq_off will return a negative value (in fact, corresponding to the
first triggered IRQ found, which could provide some hint). The probing sequence will typically look
something like the following:

int irq;
unsigned long foo;

/* clear dangling interrupts */
probe_irq_off(probe_irq_on());

foo = probe_irq_on();

/* this should provoke an interrupt from the device */
outb(TRIGGER_IRQ, PORT); 

irq = probe_irq_off(foo);

if (irq > 0)
printk(“irq %d detected\n”, irq);

This is a purely theoretical example of how you might detect the IRQ used. The value returned by
probe_irq_on is a mask of all interrupts already in use. The interesting part is what is returned after
the probe—hopefully the interrupt you need.

The IRQ Handler
Once you have the available IRQ that you need, you need to write a handler to deal with the device
interrupts. The job of the handler is to acknowledge the interrupt and service the device in some way.
Typically some form of data is available and should be transferred from the device, or a state change
occurred and the hardware wants to let us know about it. The handler runs either with all interrupts
enabled except its own or no interrupts enabled depending on whether SA_INTERRUPT was specified,
so any interrupts from the same device are lost until the handler has finished running. We’ll see later
how to deal with that issue.

The normal flow of execution is halted when an interrupt occurs; the kernel stops what it is currently
doing and invokes the appropriate handler registered. Interrupt handlers are different from the normal
driver entry points in that they run at interrupt time and as such are not running on behalf of a specific
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process. That means that the current process typically doesn’t have any relation to the driver and it
shouldn’t be touched. This also includes any access to user space, such as copying data back and forth.

Interrupt handlers should finish as soon as possible, or you may otherwise miss another interrupt from
the device. If you share the interrupt with another device, you are also preventing interrupts from there
being serviced. Although it has been mentioned before, it’s important to stress that you must not block
at interrupt time. If you do, the scheduler may be invoked and this is not allowed. It will inform you of
such an occurrence with “Scheduling in interrupt” on the console followed by an Oops. Nor are you
allowed to sleep in the handler. In general, think carefully about how you interact with the rest of the
system while running at interrupt time.

There is nothing special about interrupt handlers other than what is mentioned above, so we won’t give
detailed examples on how to write one. As with the probe example, here is a theoretical interrupt handler:

void our_intr(int irq, void *dev_id, struct pt_regs *regs)
{

int status;

printk(“received interrupt %d\n”, irq);

/* reading status from board */
inb(STATUS_PORT, status);

/* we are sharing irq, check if it was our board */
if (status & MY_IRQ_STAT)

return;

/* acknowledge IRQ */
outb(STATUS_PORT, MY_ACK_IRQ);

>transfer data from the device, if needed<

/* schedule bottom half for execution */
our_taskqueue.routine = (void *)(void *)our_bh;
our_taskqueue.data = (void *)dev_id;
queue_task(&our_taskqueue, &tq_immediate);
mark_bh(IMMEDIATE_BH);

return;
}

The first thing we do is check whether the IRQ was generated from the device the driver is managing by
reading a status from a designated port on the hardware. This is one way of handling interrupt sharing.
If the handler was controlling several instances of the same hardware device, we could have used
dev_id to differentiate between them.

Bottom Halves
The handler in the previous section introduces a new concept, bottom halves. They were mentioned
briefly earlier in the chapter, but they deserve a little more attention. Instead of doing all the work in the
actual interrupt handler, we declare a task queue and add it to the immediate queue (thus guaranteeing
very swift execution). our_bh is the bottom half for this device and will be consumed by the immediate
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queue as soon as we return from the top half (the actual interrupt handler). The top half will most likely
copy data from the device to an internal buffer and let the bottom half deal with necessary processing.

Whether keeping a separate bottom half is worth the effort depends on how much time you need to
spend in the top half and if the IRQ is shared or not. As soon as the interrupt handler returns from execu-
tion, the device IRQ reporting is enabled again. Bottom halves thus run with the device IRQ active and
thereby allow the handler to service more interrupts than it otherwise would have been able to. Bottom
halves are atomic with respect to each other, so you don’t have to worry about being re-entered. A top
half, however, can be invoked while the bottom half is still executing. If a bottom half is marked while it is
running, it will be run again as soon as possible, but marking it twice will still only make it run once.

Often, you need to share data between the two, since the bottom half is doing work for the top half. This
requires some care. We will talk more about atomicity and re-entrancy in the next few sections.

You don’t have to use tq_immediate, but it is usually the one used simply because it is the quickest. Since
the regular bottom halves are all predefined in the kernel, this is the replacement to use if you need it.

Re-entrancy
One of the more important issues with device drivers is the issue of re-entrancy. We have already dis-
cussed some of the issues loosely throughout the text but only in passing, and the issue clearly needs
more attention than that. Imagine having your driver opened by several processes at once. Often a
driver for a real device has to maintain several internal structures that are manipulated in a myriad of
places. It goes without saying that the integrity of these structures must remain intact, so how do you
make sure that two processes aren’t modifying the same structure at the same time? The issue is even
more important as SMP systems are becoming more prevalent and having two CPUs these days is not
uncommon. Linux’s 2.0 kernel solved this problem by guarding the entire kernel space with a big lock,
thus making sure that only one CPU at a time was spending time in the kernel. While this solution
worked, it didn’t scale very well as the number of CPUs increased.

During the 2.1 kernel development cycle, it became apparent that finer-grained locking was needed if
Linux was to conquer machines with more than two CPUs and do it well. So instead of having one big
lock and having processes acquire it upon entering kernel space, new locking primitives were intro-
duced. Important data structures inside the kernel are now guarded with a separate lock, and having
numerous processes executing inside the kernel is now possible. Sections of code that modify structures
that can also be modified by others at the same time are called critical sections, and this is the piece of
code we need to protect against re-entrancy.

As we mentioned earlier, a process running in kernel space can’t be pre-empted on its own, so you can
be assured that current won’t change beneath you; they have to give up execution. This was almost
true. Actually, interrupts can come in at any time and will break the current flow of execution. Of course,
there is also the issue of putting processes to sleep and explicitly calling schedule() from within the
driver; here we must also be prepared to handle the consequences of being re-entered. Does this mean
that you have to guard all variables? No, luckily only global structures share the same address space.
Variables local to a function reside in the kernel stack for that process and are thus distinct to each
accessing process.

int global;

int device_open(struct inode *inode, struct file *file)
{

777

Device Drivers

b544977 Ch18.qxd  12/1/03  8:57 AM  Page 777



int local;

printk(“pid = %d : “, current->pid);
printk(“global = 0x%p, local = 0x%p\n”, &global, &local);
...

}

The output of the preceding code in a module verifies that this is true; global variables are shared while
local variables are different copies:

pid = 909 : global = 0xc18005fc, local = 0xc08d3f2c
pid = 910 : global = 0xc18005fc, local = 0xc098df2c

While having local variables residing in the kernel stack is a relief, it also places certain constraints on
what you can fit in that space. The Linux kernel reserves approximately 7 Kb of kernel stack per process,
which should be sufficient for most needs. Some of this is reserved for interrupt handling and the like;
you should be careful not to overstep this limit. Should you need more than approximately 6 Kb, you
must allocate it dynamically.

The classic way of guarding yourself against re-entrancy was to disable interrupts globally, do your
work, and enable interrupts again. Interrupt handlers, and everything else that runs at interrupt time,
work asynchronously with your driver, and structures that are modified by these handlers need to be
protected against being changed while you are working with them.

unsigned long flags;

/* save processor flags and disable interrupts */
save_flags(flags);
cli();

_read/modify structures, critical section_

restore_flags(flags);

While this still works, it disables interrupts across all CPUs, and as such it is a slow and noncooperative
way of guarding yourself. If the target system is guaranteed to be UP (single CPU systems), this is all
you need since only one CPU can be executing kernel code. Instructions are thus guaranteed to be serial-
ized and are therefore atomic in respect to each other.

Disabling Single Interrupts
If you know that only your own interrupt handler modifies the internal structures, it can be considered
overkill to disable all interrupts in the system. All you really need is to make sure that your own handler
doesn’t run while you are mucking around with the interrupts. In this case, Linux provides functions to
disable a single IRQ line.

void disable_irq(unsigned int irq);
void disable_irq_nosync(unsigned int irq);
void enable_irq(unsigned int irq);
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The critical region can thus be placed between a disable and enable of the interrupt, and the top half
will not be invoked if the interrupt line is raised. The difference between the regular disable_irq and
the _nosync version is that the former guarantees that the specified IRQ is not running on any CPU
before returning, while the latter will disable the specified interrupt and return even if a top-half handler
is still running.

Atomicity
Instructions are said to be atomic when you know they are executed in one go (i.e., you will not be inter-
rupted until you are done). Disabling interrupts accomplishes this, as we saw above, since no one can
interrupt us in the critical section. Linux also offers atomic primitives that act on variables without the
need to lock everybody else out. They are defined in asm/atomic.h.

void atomic_add(int i, volatile atomic_t *v)
void atomic_sub(int i, volatile atomic_t *v)
void atomic_inc(volatile atomic_t *v)
void atomic_dec(volatile atomic_t *v)
int atomic_dec_and_test(volatile atomic_t *v)

As you can see, these operate on the atomic_t type, which is a structure containing only a counter
member. What it contains doesn’t really matter, since you should only access it via the atomic_x func-
tions and macros. Only then are you ensured atomicity. They are mainly used for keeping count for
semaphores but can be used any way you please. 

Atomic operations are often needed to prevent race conditions. A race exists when a process decides to
sleep on an event based on evaluating an expression nonatomically. schar does not have such a con-
struct, but it is common enough that we will give an example.

/* if device is busy, sleep */
if (device->stat & BUSY)

sleep_on(&queue);

If the test for checking whether the device is busy is not atomic, the condition may become false after the
test but before sleep_on is invoked. The process may sleep forever on the queue. Linux has some handy
bit-testing operations that are guaranteed to execute atomically.

set_bit(int nr, volatile void *addr) Set, clear, or test the bit specified in nr
clear_bit(int nr, volatile void *addr) from the bitmask at addr. 
test_bit(int nr, volatile void *addr)

The preceding device busy test could then be implemented as

/* if device is busy, sleep */
if (test_bit(BUSY, &device->stat)

sleep_on(queue);

and be completely race safe. There are several others, including test-and-set operations, defined in
asm/bitops.h.
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Protecting Critical Sections
Assuming that your modules are going to be run only on UP systems is clearly a very bad idea. Linux
provides two variants of spin locks that can be used to protect structures against manipulation. On UP
systems, this defaults to the above construct of disabling interrupts with cli, while on SMP systems
they only disable interrupts on the local CPU. The latter is sufficient as long as all the functions on your
driver acquire the same spin lock before modifying shared structures.

Basic Spin Locks
Spin locks are one of the most basic locking primitives. A process trying to enter a critical region already
protected by another process with a spin lock will “spin,” or loop, until the lock is released and can be
acquired.

The different types of spin locks can be found in asm/spinlock.h. This is also the file to inspect if you
are at all interested in how they are implemented differently in single and multiple CPU configurations.
There are two basic types implemented in Linux. The first type is

spinlock_t our_lock = SPIN_LOCK_UNLOCKED;

spin_lock(&our_lock);

and the second is

spinlock_t our_lock = SPIN_LOCK_UNLOCKED;
unsigned long flags;

spin_lock_irqsave(&our_lock, flags);

If the structures are not going to be modified at interrupt time, spin_lock is all you need. It provides
safety from modification across CPUs but doesn’t disable interrupts even on the local CPU. This makes
it faster than spin_lock_irqsave, which also provides assurance against interrupt handlers.

spin_unlock(&our_lock);
spin_unlock_irqrestore(&our_lock, flags);

These are the equivalent unlocking macros to be used when you’re done modifying structures.

There are a lot more functions in asm/spinlock.h, including macros that allow you to test whether get-
ting a lock will succeed before trying to acquire it, and others. If you need more functionality, you can
find the needed information there.

Reader and Writer Locks
The preceding spin locks provide full locking and protect the code in between from being re-entered for
any purpose. It may also be useful to further differentiate access to structures, access with the purpose
of only reading data, or write access. For this purpose, Linux provides locks that allow you to acquire
either read or write access, thus allowing multiple readers or a single writer to enter the critical region at
the same time.
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rwlock_t our_lock = RW_LOCK_UNLOCKED;
unsigned long flags;

read_lock(&our_lock);
read_lock_irqsave(&our_lock, flags);
write_lock(&our_lock);
write_lock_irqsave(&our_lock, flags);

The semantics are exactly the same as for basic spin locks, so we won’t explain them further. Unlocking
the region is provided by similar macros.

read_unlock(&our_lock);
read_unlock_irqrestore(&our_lock, flags);
write_unlock(&our_lock);
write_unlock_irqrestore(&our_lock, flags);

Now you know how to protect yourself effectively against the gruesome effects of re-entrancy with basic
spin locks and reader/writer spin locks. In a UP environment, the non-IRQ versions all expand to no-
ops (IRQ versions still disable interrupts, since they are handled as soon as they come in and therefore
still run asynchronously) so you will not lose performance there, but the behavior on SMP systems is far
more attractive than the basic cli construct.

Automated Locking
Most of the functions available to device drivers are protected internally by spin locks, courtesy of the ker-
nel, and no extra locking is thus required. An example of such was given in the “Timers” section earlier in
this chapter, where add_timer internally acquired the timer_list lock before manipulating the given
timer structure. If the timer is local to the function, no locking is needed and internal_add_timer could
be called directly. However, it is recommended to always use the “safer” variants, and this subsection is
purely added in case you were wondering why no locking was used to maintain integrity of wait queues
or timer lists in schar, for example.

Block Devices
The second class of devices covered in this book is block devices. They are entirely different creatures
than character drivers in that they don’t serve bytes of data, but entire blocks instead. While character
drivers are usually accessed directly from applications by reading and writing to them, block device
accesses go through the buffer cache in the system.

Figure 18-5 is a half-truth since only reading and writing of blocks passes through the buffer cache.
open, close, and ioctl have normal entry points, for example.

Block devices usually host file systems and can be accessed randomly by specifying which block to read
or write. This is in contrast to character drivers, which only allow sequential, nonrandom access and
thus cannot be used for providing file system storage.
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Figure 18-5

Linux does not distinguish sharply between block and character devices and even provides the same
interface for both. When we were designing the first character driver, schar, some of the elements of the
file_operations structure did not lend themselves to a character-oriented access scheme, exactly
because the same one is used for both types of devices.

radimo—A Simple RAM Disk Module
The best way to get a little familiar with the inner workings of block devices and the underlying system
they depend on is to dig in with a working example. radimo is a RAM disk driver that will host a file
system of varying size, depending on the available memory in the system.

At the heart of every block device driver is the request function that receives the read and write
requests and turns them into something that the device can comprehend. If we were to write an IDE
driver, the request function would generate commands and send them to the controller to initiate the
transfer of data in both directions. Several items, including the request function, need to be defined in a
special order at the beginning of the module. The normal order of include files applies, but the items in
the following table must be defined before <linux/blk.h> is included.

#define MAJOR_NR RADIMO_MAJOR The major number of the device. This is
mandatory.

#define DEVICE_NAME “radimo” The name of the device. This may be omit-
ted and is then set to “unknown.” Serves
no particular function other than providing
a name to be printed in case of request
errors.

#define DEVICE_ radimo_request The request function for the 
REQUEST device. Is also mandatory.

block

buffer cache

file system

Application

character

Kernel

Application
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#define DEVICE_NR (MINOR(device)) Used for partionable devices to enable 
(device) them to use the minor number for partition

selection.

#define DEVICE_ON Motorized devices can set this to the 
(device) functions related to spinning the device
#define DEVICE_OFF up and down. When a request has ended, 
(device) the block system will call the off function.

DEVICE_OFF must be defined even as just
an empty define, but DEVICE_ON can be
omitted.

#define DEVICE_ If defined, the device will not contribute 
NO_RANDOM to system entropy. This is similar to SA_

SAMPLE_RANDOM for interrupt handlers.

After having defined the preceding, linux/blk.h can be included.

Size Issues
There are two sector sizes associated with a block device: a hardware and software sector size. The for-
mer is how the data is arranged on the physical media controlled by the device, while the latter is the
arrangement within the device. By far, the majority of devices have a hardware sector size of 512 bytes,
although deviants such as MO-drives do exist and typically use 2,048-byte sector sizes.

The respective sizes are set at initialization time in global arrays indexed by major number.

#define RADIMO_HARDS_SIZE             512
#define RADIMO_BLOCK_SIZE             1024
static int radimo_hard = RADIMO_HARDS_SIZE;
static int radimo_soft = RADIMO_BLOCK_SIZE;

...

hardsect_size[RADIMO_MAJOR] = &radimo_hard;
blksize_size[RADIMO_MAJOR] = &radimo_soft;

We go with the flow and use a hardware sector size of 512 bytes. It does not really matter, since radimo
stores data in a buffer internally. The software block size can be any value, with a couple of restrictions:
It has to be equal to or bigger than the hardware sector size, a multiple of the hardware sector size, and
smaller than the PAGE_SIZE. If you neglect to set either one, 512 is assumed for the hardware sector size
and 1,024 for the block size.

In addition to the sector sizes, the total size of the device is also kept in a global array. The size argument
is given in kilobytes and lets the kernel return -ENOSPC (no space left on device) automatically.

blk_size[RADIMO_MAJOR] = &radimo_size;

If we kept several virtual devices (indexed by minor, for example) radimo_size and friends could be an
array and thus get [MAJOR][MINOR] indexing. The actual definition of the various block-related global
structures resides in drivers/block/ll_rw_blk.c and also contains comments about them.
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Registering a Block Device
Once the various defining is done, a file operations structure is set up. Since kernel 2.3.26, block devices
have used a different setup method from character devices, so things get a little trickier. The block_
device_operations structure was introduced to simplify some of the kernel internals and to make it
easier for block device driver writers to keep track of things. Many developers are still unhappy with the
block layer, and more changes are anticipated in future releases. For maximum portability, we’re going
to show both versions here and how to test the kernel version at compile time. For the remainder of the
chapter, we’re going to focus on the methods used in the 2.4 series kernel.

#if LINUX_VERSION_CODE < 0x20326
/* This gets used if the kernel version is less than 2.3.36 */
static struct file_operations radimo_fops = {

read:               block_read,            /* generic block read */
write:              block_write,           /* generic block write */
ioctl:              radimo_ioctl,
open:               radimo_open,
release:            radimo_release,
check_media_change: radimo_media_change,
revalidate:         radimo_revalidate

};
#else
/* On newer kernels, this gets used instead */
static struct block_device_operations radimo_fops = {

open:               radimo_open,
release:            radimo_release,
ioctl:              radimo_ioctl,
check_media_change: radimo_media_change,
revalidate:         radimo_revalidate,

#if LINUX_VERSION_CODE >= 0x20414
owner:              THIS_MODULE,

#endif
};
#endif

The structure sets up our communications system. There is usually no need to define our own read and
write functions as the defaults set up the request and call ll_rw_block, which queues the requests for
us to execute. The defaults can be found in fs/block_dev.c and drivers/block/ll_rw_block.c,
but you don’t really need to know the inner workings to be comfortable with block devices. We define
our own ioctl function; for a block device to function properly with the standard file system utilities,
there are some ioctl commands we have to support. We will look at them a little later. open and
release serve the same purpose as with character devices, and that just leaves radimo_media_change. 

Finally, the block device is registered much the same way as the character devices.

If you need a reference for an older version of the kernel, an older edition of this
book can probably be found in your local library, but we strongly recommend that
you upgrade your kernel instead.
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res = register_blkdev(RADIMO_MAJOR, “radimo”, &radimo_fops);
if (res) {

MSG(RADIMO_ERROR, “couldn’t register block device\n”);
return res;

}

Media Change
Whenever a block device is being mounted, the defined check_media_change function is called to detect
whether the medium has changed or not. Being a RAM disk driver, this can never be the case, but we will
play along and pretend it can happen anyway. radimo sets up an internal timer that clears our storage
every 60 seconds if the device is not busy. In addition, it invalidates any buffers that might be in the buffer
cache in the system, forcing them to be reread instead of being served from the cache. The buffers are in
fact invalidated by the VFS when we return 1 to indicate a media change, but that won’t happen until
mount time. Buffers might still be cached if the user simply copied the device raw with dd or cp.

revalidate is closely related to the media change. If a change has occurred, radimo_media_change
returns 1 to inform the VFS of the change. Next, the revalidate function is called to allow the device to
perform whatever it needs to update its internal device information. There is no need to implement a
specific revalidate function if the necessary actions can be taken in the media change function. Nor
does it matter what you return; the function is strictly called for your pleasure.

ioctl for Block Devices
Since block devices are used to host file systems, it seems only appropriate that all block devices should
accept some standard ioctl commands. We looked at implementing ioctls earlier, and you might
want to skip back if you want to have your memory refreshed. radimo implements the most common
and standard ones.

BLKFLSBUF Block flush buffers. Writes out all dirty buffers currently residing in the
buffer cache. Radimo does nothing more than call fsync to write out
dirty buffers and invalidate them.

BLKGETSIZE Block get size. Returns the size of the device in units of 1,024 bytes. The
various file system–related utilities (fsck, for instance) determine the total
size by issuing this ioctl. If the device does not support this command,
they will have to guess.

BLKSSZGET Block get sector size. Returns the software sector size of the block device.

BLKRAGET Block get read ahead. Returns the current read-ahead value for the device.

BLKRASET Block set read ahead. Sets the read-ahead value for the device.

BLKRRPART Block reread partition table. Called by fdisk when rewriting the partition
table. Radimo is not partionable and does not support this command.

The implementation is fairly straightforward so we won’t list it here. There are other standard com-
mands for block devices; find them in linux/fs.h if you are interested. radimo does not implement
any device-specific commands, but if it did they would naturally be enclosed within the same switch
statement.
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The request Function
The request function is definitely the backbone of the block device. In contrast to character devices,
which receive a stream of data, block devices process requests instead. A request is either a read or a
write, and it is the job of the request function to either retrieve or store the data sent to it on the media
it controls. Depending on the peripheral in question, the actions performed by the request function nat-
urally differs a lot.

Requests are stored in lists of structures, each of which are of the type struct request. In the 2.2 series
of stable kernels (and earlier 2.3 development kernels), the request function was stored in the blk_dev
global array. Because this method allowed for only one request queue, a new method was needed to get
multiqueue capabilities. Luckily, the people responsible for the block layer in the kernel made sure that
even though the internals were different, only minor changes needed to be made to the device drive
code. The function does not need to traverse the list itself, but instead accesses the request via the CUR-
RENT macro (not to be confused with the current process).

The definition resides in linux/blk.h. The structure of the request is as follows, with the irrelevant
(to our discussion of the block system) parts left out; the ones used by radimo will be expanded upon
further when we look at its request function next.

volatile int rq_status Status of the request, either RQ_ACTIVE or RQ_INACTIVE
(the SCSI subsystem does use more, however). The kernel
uses the status internally while finding an unused entry in
the list of requests.

kdev_t rq_dev The device the request is for. If the driver is managing sev-
eral minors, information can be extracted from here by
using the MINOR macro.

int cmd The type of request, either READ or WRITE.

int errors Can be used to maintain a per-request error status count.

unsigned long sector, The starting sector and number of sectors that we should
current_nr_sectors act upon.

char *buffer Where we should read/write the data.

struct buffer_head *bh; The buffer head associated with the request. We look a bit
more at buffer heads in the next section.

These are the details of a request. radimo stores the data in an array allocated with vmalloc at init
time and serves requests by copying the data from CURRENT->buffer back and forth as instructed. The
sectors are thus no more than an offset into the array. request functions have a somewhat peculiar for-
mat. Let’s look at radimo’s version and follow up with a few comments afterward.

void radimo_request(void)
{

unsigned long offset, total;

radimo_begin:
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INIT_REQUEST;

MSG(RADIMO_REQUEST, “%s sector %lu of %lu\n”,
CURRENT->cmd == READ ? “read” : “write”,
CURRENT->sector, 
CURRENT->current_nr_sectors);

offset = CURRENT->sector * radimo_hard;
total = CURRENT->current_nr_sectors * radimo_hard;

/* access beyond end of the device */
if (total+offset > radimo_size*1024) {

/* error in request  */
end_request(0);
goto radimo_begin;

}

MSG(RADIMO_REQUEST, “offset = %lu, total = %lu\n”, offset, total);

if (CURRENT->cmd == READ) {
memcpy(CURRENT->buffer, radimo_storage+offset, total);

} else if (CURRENT->cmd == WRITE) {
memcpy(radimo_storage+offset, CURRENT->buffer, total);

} else {
/* can’t happen */
MSG(RADIMO_ERROR, “cmd == %d is invalid\n”, CURRENT->cmd);
end_request(0);

}

/* successful */
end_request(1);

/* let INIT_REQUEST return when we are done */
goto radimo_begin; 

}

The macro INIT_REQUEST is responsible for quite a number of actions. First, it checks whether CURRENT
contains a request and returns if it does not. Then, it performs a validity check of the request (is it really
for this device?) and whether the proper locking of CURRENT->bh is in order. The first check also explains
why we continuously loop around INIT_REQUEST; when we are done, it will return for us. The offset into
our storage array is calculated by multiplying the supplied starting sector CURRENT->sector by our
hardware sector size. The total amount of data to be transferred is found in a similar way by examining
the total number of sectors that CURRENT->current_nr_sectors specifies. Data is then copied with a
simple memcpy depending on what direction CURRENT->cmd contains.

void end_request(int uptodate) Ends the CURRENT request.

An uptodate value of 1 indicates that the request was successfully fulfilled. CURRENT is then set to the
next request. If that request is also for radimo, control is handed back to us and radimo_request con-
tinues; if not, then another request function is brought to life.
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If the request cannot be fulfilled (it could be beyond the end of the device, for example), end_request
is invoked with a value of 0. This will generate an I/O error in the system logs, specifying the offending
device and the sector that caused the error. Note that we receive the request from the generic block read
and write functions only after it has already verified that the request does not exceed the boundaries. If
blk_size[RADIMO_MAJOR] is set to NULL, the simple check is bypassed when the request is created and
a read error can be provoked by accessing beyond the end of the device:

radimo: read sector 4096 of 2
end_request: I/O error, dev 2a:00 (radimo), sector 4096 

The info printed is the device major and minor numbers in hexadecimal and the DEVICE_NAME defined.

The Buffer Cache
Blocks of data written and read from block devices get cached in the buffer cache. This improves system
performance, because if a process wants to read a block of data just read or written, it can be served
directly from the buffer cache instead of issuing a new read from the media. Internally this cache is a
doubly linked list of buffer head structures indexed by a hash table. Although it initially does not look
like we touched a buffer head in radimo_request, CURRENT->buffer is merely a pointer to the data
field inside the buffer head.

If you are running radimo with RADIMO_REQUEST in the MSG mask, you can follow the requests as they
are processed by the request function. Try mounting your radimo device and then performing an ls
on the mount point. Take a look at the output of dmesg and you’ll see the read requests. Now do another
ls. You’ll notice that this time there wasn’t any read request; that’s because the buffer cache served the
request and radimo never saw it. The opposite can also be investigated; try writing some blocks to the
device and notice how they are not processed immediately. The blocks reside in the buffer cache for
some time before being flushed to the device. Even if radimo did not copy the data sent to it to internal
storage, the device would be fully functional while the buffers still resided in the cache. The RAM disk
module that comes with the kernel (drivers/block/rd.c) uses this principle. Rd does nothing to
maintain internal storage, but instead marks the used buffers as locked and thus ensures that they stay
in the buffer cache and are not put on the freelist.

The buffer head structure can be found in linux/fs.h. Going into details would be beyond the scope of
this book, but let’s take a look at the state flags since they are accessed indirectly by a couple of functions
in radimo.

BH_Uptodate The data residing in the buffer is up-to-date with that on disk.

BH_Dirty Data in the buffer has been modified and must be written out to disk.

BH_Lock Buffer has been locked and cannot be put on the freelist.
BH_Protected

BH_Req Unset if the buffer was invalidated.

invalidate_buffers is called when we wish to remove all references to the buffers associated with
radimo from the buffer cache. It clears all but BH_Lock, and the buffers are then free to be reused. 
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Try It Out—radimo
radimo is the final module included in the source code download. It’s located, naturally, in the mod-
ules/radimo directory. As usual, you will need to compile and insert the module and create a corre-
sponding special file before we can interact with the device.

# make
# mknod /dev/radimo b 42 0
# insmod radimo.o
radimo: loaded
radimo: sector size of 512, block size of 1024, total size = 2048Kb

The options printed can all be specified at load time by supplying the appropriate parameters to
insmod. Browse back to the beginning of the radimo section and find them or use modinfo to dig them
out. The defaults will do fine for this session.

Now that the module is loaded, we are ready to create a file system on the device. Any type will do, but
we’ll use ext2 in this example.

# mke2fs /dev/radimo
# dmesg | tail -n1
radimo: ioctl: BLKGETSIZE

Since we implemented the BLKGETSIZE ioctl call in radimo, mke2fs can obtain the complete size of
the device on its own. Now you can mount the file system and copy files to and from it just like you
would on an ordinary hard drive.

# mount –t ext2 /dev/radimo /mnt/radimo
# cp /vmlinuz /mnt/radimo

There should be nothing new in that concept. umount the device and leave it alone for 60 seconds, which
is the length of our RADIMO_TIMER_DELAY defined in radimo.h, to test the media change mechanism.
Now try mounting it again.

# umount /dev/radimo; sleep 60
# mount –t ext2 /dev/radimo /mnt/radimo
mount: wrong fs type, bad option, bad superblock on /dev/radimo,

or too many mounted file systems 
# dmesg
radimo: media has changed
VFS: Disk change detected on device radimo(42,0)
radimo: revalidate

On the last mount, our timer handler has run and set media_changed to 1. This causes radimo_media_
change to return 1 to the VFS indicating a media change; VFS prints a message confirming this and then
invokes radimo_revalidate to let the device do any handling it might need to perform on a disk
change. The end result is that the mount fails.
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Going Further
This section was meant only as a short introduction to block devices, mainly the request function with
related structures and ioctl calls. radimo is a very simple driver and as such does not demonstrate
how block device drivers handle a real hardware peripheral. Actual hardware typically relies on inter-
rupts to control the flow of data, and in those cases the request function cannot indicate whether the
request completed successfully or not right away. The interrupt handler normally deals with this when
the device has signaled the outcome of the operation. There are myriad examples of interrupt-driven
block drivers in the kernel for you to study if you need to.

As block devices are used to host file systems, they normally support partition-based access. Linux offers
generic partition support defined in the partition and gendisk structure defined in linux/genhd.h.
The implementation can be found in gendisk.c in drivers/block where various drivers that utilize the
support are also located. Adding partition support to radimo should not pose any significant problems
and would be a good exercise in getting familiar with the generic disk subsystem. That is left as an exer-
cise to the reader.

Most block devices in the kernel belong to a specific class, such as SCSI, IDE, or even CD-ROM drivers.
While these can be considered ordinary block devices, Linux offers special interfaces for these that
should be utilized. The readily available examples in the kernel along with the obtainable documenta-
tion found in Documentation/ or the Linux Documentation Project are an invaluable resource in this
situation.

Debugging
Device drivers are no different from regular programs; they are almost never bug-free.

Kernel-level code does not segmentation fault in the ordinary sense and produce nice core dumps for you
to examine, so doing postmortem debugging on device drivers is very different from regular debugging.
Some people might tell you that the human mind is the best debugger there is, and they are right. In this
case, all we can do is go back to the source and work through it step-by-step. The great thing about Linux
is that you have the entire source code available—use it. Using a debugger can be invaluable, but make
sure you end up fixing the real bug and not just adding a Band-Aid or hiding the real problem.

Oops Tracing
One technique that is essential to master is Oops tracing. Most kernel bugs manifest themselves as NULL
pointer dereferences, and depending on where they happen, the kernel can often continue running. This
is much like a segmentation fault in applications, but it does not generate a core file. The layout of Oops
is highly processor-specific, and the rest of this section will look at how the x86 version looks. The proce-
dure for decoding the dump is basically the same for other platforms, and the information provided in
this section will therefore be useful on non-x86 architectures as well. Now let’s dive into an Oops.

Unable to handle kernel paging request at virtual address 01380083
current >tss.cr3 = 06704000, %cr3 = 06704000
*pde = 00000000
Oops: 0000
CPU:    1
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EIP:    0010:[<c0144040>]
EFLAGS: 00010202
eax: c0144000   ebx: 01380083   ecx: 00000005   edx: c64e8550
esi: c64e9c20   edi: c5f17f84   ebp: 00000000   esp: c5f17f3c
ds: 0018   es: 0018   ss: 0018
Process bash (pid: 390, process nr: 32, stackpage=c5f17000)
Stack: c5f17f84 c64e859c c64e859c fffffffe c012dfaf c64e8550 c64e9c20     

c5f17f84 00000000 c60dd004 00000001 c012e17a c64e9620 c5f17f84
c60dd000 c60dd000 c5f16000 bffff6b0 c60dd002 00000002 000006b3
c012e26c c60dd000 c64e9620 

Call Trace: [<c012dfaf>] [<c012e17a>] [<c012e26c>] [<c012c232>] [<c0108be4>] 
Code: 66 83 3b 00 74 4e 31 c9 8b 74 24 20 66 8b 4b 02 3b 4e 44 75 

If this the first time you have come across an Oops, it might look at bit intimidating. It contains a dump
of the processor registers at the time of the fault, a stack trace, a back trace of the function calls, and a
listing of the machine code that caused the Oops. This information is useless if we can’t map the
addresses shown to actual function names. The tool ksymoops does this for us, among other things. It is
conveniently located in the scripts/ksymoops subdirectory of your kernel sources. Running the pre-
ceding Oops through ksymoops will yield something like the text opposite.

Unable to handle kernel paging request at virtual address 01380083
current >tss.cr3 = 06704000, %cr3 = 06704000
*pde = 00000000
Oops: 0000
CPU:    1
EIP:    0010:[<c0144040>]
EFLAGS: 00010202
eax: c0144000   ebx: 01380083   ecx: 00000005   edx: c64e8550
esi: c64e9c20   edi: c5f17f84   ebp: 00000000   esp: c5f17f3c
ds: 0018   es: 0018   ss: 0018
Process bash (pid: 390, process nr: 32, stackpage=c5f17000)
Stack: c5f17f84 c64e859c c64e859c fffffffe c012dfaf c64e8550 c64e9c20

c5f17f84 00000000 c60dd004 00000001 c012e17a c64e9620 c5f17f84
c60dd000 c60dd000 c5f16000 bffff6b0 c60dd002 00000002 000006b3
c012e26c c60dd000 c64e9620 

Call Trace: [<c012dfaf>] [<c012e17a>] [<c012e26c>] [<c012c232>] [<c0108be4>] 
Code: 66 83 3b 00 74 4e 31 c9 8b 74 24 20 66 8b 4b 02 3b 4e 44 75 

>>EIP: c0144040 <proc_lookup+4c/e0>
Trace: c012dfaf <real_lookup+4b/74>
Trace: c012e17a <lookup_dentry+126/1f0>
Trace: c012e26c <__namei+28/58>
Trace: c012c232 <sys_newstat+2a/8c>
Trace: c0108be4 <system_call+34/38>
Code:  c0144040 <proc_lookup+4c/e0>            00000000 <_EIP>:
Code:  c0144040 <proc_lookup+4c/e0>               0:    66 83 3b 00     cmpw
$0x0,(%ebx)
Code:  c0144044 <proc_lookup+50/e0>               4:    74 4e           je     54
<_EIP+0x54> c0144094 <proc_lookup+a0/e0>
Code:  c0144046 <proc_lookup+52/e0>               6:    31 c9           xorl
%ecx,%ecx
Code:  c0144048 <proc_lookup+54/e0>               8:    8b 74 24 20     movl
0x20(%esp,1),%esi
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Code:  c014404c <proc_lookup+58/e0>               c:    66 8b 4b 02     movw
0x2(%ebx),%cx
Code:  c0144050 <proc_lookup+5c/e0>              10:    3b 4e 44        cmpl
0x44(%esi),%ecx
Code:  c0144053 <proc_lookup+5f/e0>              13:    75 00           jne    15
<_EIP+0x15> c0144055 <proc_lookup+61/e0>

For ksymoops to resolve the addresses to function names, it needs the appropriate system map for the
running kernel. During the kernel building process, an updated file is placed in the root of your kernel
source directory, usually /usr/src/linux/System.map. However, the file contains only entries for the
files that are compiled in because it cannot possibly know the memory location where a particular mod-
ule will be loaded later. Getting the location of modularized code can be accomplished at load time by
telling insmod to do so by adding the -m parameter. Exported symbols also show up in /proc/ksyms.

The call trace of this particular Oops goes from system_call through the listed functions and ends up
in proc_lookup where the fault occurred. The trace lists functions according to the following format.

<function_name+offset/length>

The “offset” indicates where in the function the jump was made, and “length” is the total length. The
offending code is listed disassembled. At offset 0x4c into proc_lookup, a compare was made against
the ebx register, and looking at the register dumps shows that it contains an invalid address. Now we
need to locate the file that contains the function in question and find out what could be causing this. In
this case, it seems reasonable that proc_lookup would be a part of the proc file system, and indeed the
function is listed in fs/proc/root.c. The makefile in the kernel allows you to run a make fs/proc/
root.s and get an assembler listing containing debugging information. Open root.s in an editor, and
find proc_lookup and the offending operation, along with a line number in root.c. In this particular
case, the dentry pointer passed to proc_lookup was completely bogus.

That was the easy part. Now you have to find out how on earth that could have happened. It might be a
valid thing to do, and in that case a check should probably be added. However, it is far more plausible
that the driver being created is at fault. In this case, the Oops occurred while we were testing the proc
implementation in schar. The problem was that while someone was accessing the proc entry, the mod-
ule was removed, and the directory entry associated with it was freed. The next time the entry was
looked up, the dentry passed was no longer valid. schar was fixed to increment its module usage count
when the proc entry was busy and the problem was solved.

Debugging Modules
Unfortunately it is not possible to single-step kernel code like ordinary applications, at least not right out
of the box. The best way to go about debugging your own modules is to strategically add printk state-
ments in troublesome areas and work your way down from there. Beware that obscure bugs may be hid-
den by a simple printk statement, either because it changes the timing or the alignment of data slightly.
But try it and see what happens. If it hangs, find out where and print critical variables. An Oops can be
decoded using the techniques demonstrated above, and ksymoops includes /proc/ksyms by default
and can thus also decode any functions exported by the modules loaded. During development, it is
advisable to export all possible functions and variables to make sure that ksymoops will catch them. The
section on integrated debugging will explore further options.
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The Magic Key
The most unfortunate bugs are the ones that crash the system completely. In these situations, the magic
Sys Rq key, or System Attention Key (SAK), can be of great assistance. This handy feature was added
during the 2.1 kernel development cycle, and you can enable the option when configuring the kernel. It
doesn’t add any overhead to normal system operation and might be the only way to resolve a complete
hang, so whether you are doing kernel development or not, always leave it enabled. You activate the dif-
ferent commands by pressing Alt+Sys Rq and a command key. The different commands are documented
in Documentation/sysrq.txt; here we will examine the p command. So go ahead and press Alt+Sys
Rq+P:

SysRq: Show Regs

EIP: 0010:[<c0107cd0>] EFLAGS: 00003246
EAX: 0000001f EBX: c022a000 ECX: c022a000 EDX: c0255378
ESI: c0255300 EDI: c0106000 EBP: 000000a0 DS: 0018 ES: 0018
CR0: 8005003b CR2: 4000b000 CR3: 00101000

This is a listing of the processor state, complete with flags and registers. EIP, the instruction pointer,
shows where the kernel is currently executing, so you need to look up this value in the symbol map for
your kernel. The closest matches for our kernel are

c0107c8c T cpu_idle
c0107ce4 T sys_idle

which reveals that the kernel was currently executing cpu_idle. If a driver gets stuck in an endless
loop, Alt+Sys Rq+P will tell you exactly where, assuming that the scheduler is still running. The system
might also be completely hung, and in that case the Alt+Sys Rq+P cannot help you.

Kernel Debugger—kdb
There is a way to debug a running kernel safely that has minimal impact on normal system operation.
It does require patching of the kernel for the x86 platform, however, as the features are not yet included
there—although they might be in the future. Some of the other platforms provide similar features 
without the need to patch the kernel. Snoop around in the kernel configuration or search the Internet,
if necessary. 

As of this writing, the kdb project is maintained by SGI, so you can try searching their Web site to find
a kdb kernel patch that is compatible with the kernel you are running.

The debugger can be invoked in different places. At boot, you can pass the kdb parameter to LILO, and
the debugger will be started as soon as possible. During system operation, the debugger can be entered
manually by pressing the Pause key and is invoked automatically when an Oops occurs. From within
the debugger, you can inspect and modify CPU registers and process variables, single-step execution,
set breakpoints, and much more.

The patch comes with quite a few man pages explaining how to use it so we won’t go into detail here.
The debugger is fairly simple to use, although it is not as pleasant to work with as gdb and does not 
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provide the same degree of functionality. This is to be expected for a built-in debugger, but having said
that, it still is a very handy tool. Entering the debugger, setting a breakpoint, and then having the debug-
ger automatically invoked when it is reached provide an excellent way to single-step your module with-
out affecting general system performance that much.

Remote Debugging
After Chapter 9, you’re familiar with gdb and how to use it with ordinary applications. With the kgdb
kernel patches, a running kernel can be debugged over a serial line from gdb just like any other pro-
gram. This approach requires two machines—a master, where the controlling gdb is run from, and a
slave being debugged. A null-modem cable connects the two machines, and it is probably a good idea to
test the connection with Minicom or a similar terminal program to make sure that the link is fully func-
tional and reliable.

After having patched the kernel on the slave, recompiled, and rebooted, the machine runs just like
before until an accompanying debug script is invoked. A breakpoint is defined in the kernel, and upon
executing the script, the slave is halted and control passed to the master. From there, you can use gdb
like you are used to; the slave machine is resumed with “continue” and can be stopped with Ctrl+C
again or when it hits a breakpoint.

The kdb patches also offer serial line debugging, but if you have two machines set up, using the kgdb
patches offers the advantage of providing the interface through the vastly more powerful gdb. Whether
you need that extra functionality or not is up to you.

General Notes on Debugging
While the various ways to debug the kernel differ in one way or another, they all have some points in
common. Generally, you will have to be very careful with breakpoints. If you are using an integrated
debugger, setting breakpoints in some of the keyboard handling is not a very good idea (for obvious rea-
sons)—likewise with debugging via a network connection and enabling a breakpoint in the driver or
somewhere in the network stack. It might work and it might not, but be prepared to hit the big red
switch and enjoy a cup of coffee while fsck runs! Some drivers rely on precise timing and single step-
ping; those will probably not work either. This also applies to interrupt and timer handlers. Be prepared
to handle crashes until you get the hang of kernel debugging and know where not to place breakpoints.

In our experience, having a dedicated machine for testing and debugging provides the most flexible
solution. It does not have to be an expensive solution either; we have an old 486 hooked up to our main
workstation that boots over the network and mounts its root file system through NFS. The test machine
contains nothing more than a motherboard with little RAM, a network adapter, floppy, and a cheap
graphics adapter. The development is kept on the workstation while trial runs and debugging are done
on the test machine alone. If it happens to crash, a reboot takes only about half a minute with no file sys-
tem check necessary, and we can keep editing sources undisturbed on the workstation. Hook up a serial
cable and remote debugging the test machine is a cinch.
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Portability
The device driver created should naturally run on as many platforms as possible. Luckily the exposed
API is very portable, and the problems that arise are mainly due to platform differences. Most of the
portability issues have been mentioned in the sections where most of the problems arise. This section
will look a little more closely at some of these and introduce a few others.

Data Types
The brief “Data Types” section near the beginning of the chapter listed the __uXX and __sXX data types.
It is always a good idea to use these when a specific size of variable is needed, since there is no guaran-
tee that a long is the same size on all platforms, for example.

Endianess
Platforms like the Intel x86 or Alpha use little-endian byte orientation, which means that the most and
least significant byte values are swapped. Power PC and SPARC CPUs are some of the big-endian plat-
forms that Linux runs on, however, and they store the data in that order. This is how C views the world
and what is most easily read by humans. In most cases, you do not need to worry about the target endi-
aness, but if you are building or retrieving data with a specific orientation, converting between the two
will be needed. For big endian, __BIG_ENDIAN_BITFIELD is defined and __LITTLE_ENDIAN_BITFIELD
for little-endian platforms, so the relevant code can be placed inside define checks.

#if defined( __LITTLE_ENDIAN_BITFIELD)
byteval = x >> 8;

#else
byteval = x & 0xff;

#endif

Linux also provides primitives to ease the conversion of variables. These are defined in linux/byte-
order/generic.h and come in many different flavors. Some of the most common (for Intel, at least)
are the following:

unsigned long cpu_to_be32 Convert the variable x from the CPU native ordering
(unsigned long x) to big endian.
unsigned short cpu_to_be16
(unsigned short x)

unsigned long be32_to_cpu Convert big-endian variable x to CPU native
(unsigned long x) ordering.
unsigned short be16_to_cpu
(unsigned short x)

There are numerous other functions to satisfy the conversion of 16-, 32-, and 64-bit variables to either
type of byte ordering; they can all be found in the aforementioned include file.
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Alignment
A piece of data is said to be properly aligned when it resides at a memory address that a processor can
access in an efficient manner. It is dependent on the type of the processor under which conditions that it
considers data to be unaligned and what happens when it is accessed; the consequences are either a
slowdown in execution for the architecture that allows unaligned access or failure for one that does not.

get_unaligned(ptr) Access unaligned data.
put_unaligned(val, ptr)

If you need to access data that is known to be misaligned, use the above macros. They are defined in
<asm/unaligned.h>. For the architectures that directly support unaligned access, they expand to gen-
eral pointer dereferencing. 

Other possible portability problems have been mentioned throughout the text where they belong, and
you should not encounter any that were not listed either here or there. Portable code is beautiful code,
so keep it that way!

Anatomy of the Kernel Source
We hope you’ve enjoyed your introduction to kernel programming. The road is steep and rocky, and one
of the largest obstacles is knowing where to find that specific piece in the kernel you need to understand.
We’ve tried to give pointers to the most important aspects, but this is no substitute for reading the only
up-to-date and most complete documentation there is—the kernel source itself. If you find a need for
information not provided here, point yourself toward the kernel source and grep like you’ve never
grepped before. You’ll find what you need.

Since writing about the Linux kernel is writing about a moving target, whenever you encouter a differ-
ence between the kernel and what is written here, trust the kernel. That is the beauty and the glory of
Open Souce projects—that the source is always there, free for you to browse at will. Some of the kernel
developers are extremely gifted programmers, and looking over their examples is always time well
spent, even if you have no intention of ever writing your own device driver. 

With this chapter, the examples in the kernel source, and the technical documentation for your device,
you should be able to get started on your very own device driver, and perhaps even finally be able to
hook up that old eight-inch floppy drive you’ve got in the garage. How to find media for it is “an exer-
cise left for the student.”

Figure 18-6 shows you a view of the Linux kernel “from 30,000 feet.” We have omitted large parts, but
this is the basic structure of the kernel. You are encouraged to go look for yourself.

796

Chapter 18

b544977 Ch18.qxd  12/1/03  8:57 AM  Page 796



Figure 18-6

Summary
In this chapter, we looked at the basic anatomy of a device driver. We looked at how character devices
register themselves with the kernel, how they use a file_operations structure to define what opera-
tions and access methods they support, and how to implement basic character device drivers as mod-
ules. We then looked at some of the visible entry points the driver provides besides just read and write
and how the kernel provides defaults for those we choose not to implement.

linux
 arch (architecture dependent code)
 drivers
  block (block devices)
  cdrom (generic drivers and uniform layer)
  char (character devices)
  macintosh
  misc (mostly parallel port)
  net (network drivers)
  pci (PCI subsystem)
  sbus (SBUS subsystem (SPARC))
  scsi (drivers and sound subsystem)
  sound (drivers and sound subsystem)
  video (mostly framebuffer drivers)
 fs (vfs and all other file systems)
 include
  asm (symlink to appropriate platform, e.g. asm-alpha)
  linux
 init (where it all begins)
 ipc (Inter Process Communication)
 kernel
 lib (string functions, et al)
 mm (the memory management subsystem)
 modules
 net (the network subsystem)
 scripts (various useful tools)
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Next up was ioctls—I/O controls—and how they are implemented, followed by a brief introduction to
the /proc file system and sysctl entries. Interspersed in strategic locations throughout the chapter we
found information on timing, queues, interrupt handling, and a few other common device driver tasks.
We rounded out the chapter with an overview of block device drivers, kernel Oops tracing, and a few
notes on portability.
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19
Standards for Linux

Linux started as just a kernel. Unfortunately, a kernel on its own is not very useful; programs are
needed for logging in, managing files, compiling new programs, and so forth. To make a useful
system, tools were added from the GNU project. These were clones of familiar programs available
on the UNIX and UNIX-like systems around at the time. Making Linux look and feel like UNIX set
the first standards for Linux, providing a familiar environment for C programmers.

Different UNIX (and later Linux) vendors added proprietary extensions to the commands and util-
ities they made available, and the layout of the file systems they used varied slightly. It became
difficult to create applications that would work on more than one system. Even worse, a program-
mer could not even rely on system facilities being provided in the same way or configuration files
being maintained in the same place.

It was clear that some standardization was needed to prevent the UNIX systems from fragmenting,
and some excellent UNIX standardization work is now in place.

Over time not only have these standards moved forward, but Linux itself has been enhanced at an
impressive speed by the community. As Linux has progressed, it, and the GCC compiler collection,
has not only tracked the relevant standards rather well, but has also defined new standards as
existing standards have been found to be insufficient.

In this final chapter, we are going to look at these standards, pointing out areas that you should
be aware of if you want not only to write applications that work on your Linux systems through
upgrades, but also to create code that will be portable to other Linux distributions, and maybe
even other UNIX-style systems, so that you can share your programs with others.

In particular, we will be looking at

❑ The C programming language standard

❑ The UNIX standards, particularly the POSIX standard developed by the IEEE and the
Single UNIX Specification developed by the Open Group

❑ Work by the Free Standards Group, particularly the Linux Standard Base, which defines a
standard Linux file system layout
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A good starting place for standards relating to Linux is the Free Standards Group, whose Web site can be
found at http://www.freestandards.org.

We are not going to look in detail at the contents of the standards; many of them are as long as this book.
We are going to point out the key standards you should know about, give you a little historic back-
ground on how those standards arose, and help you decide which standards you might find helpful
when writing your own programs.

The C Programming Language
The programming language C is the de facto language for programming Linux, so in order to write
portable C programs for Linux, it’s worth understanding a little of its origins, how it has changed, and,
most important, how to check that your program is conforming correctly to standards.

A Brief History Lesson
For those not enamored of history, don’t worry; since this book is about programming, not history, we
will keep this discussion very brief.

The C programming language dates from around 1970 and was based, in part, on the earlier program-
ming language BCPL and extensions to the “B” language B. Dennis M. Ritchie wrote a reference manual
for the language in 1974, and C was used as the basis for a rewrite of the UNIX kernel on a PDP-11 around
the same time. In 1978 Brian W. Kernighan and Ritchie wrote the classic reference book for the language,
The C Programming Language, which, updated for changes to the C language, is still in print today.

The language became very popular very quickly, influenced no doubt in part by the rapid growth in the
popularity of UNIX, but also by its own power and clean syntax. The C language syntax continued to
evolve by consensus, but as it diverged further and further from the language described in the original
book, it became clear that a standard that was both consistent with current usage, and more precise, was
needed.

In 1983 ANSI established the X3J11 standards committee to develop a clean and concise definition of the
language. Along the way they made some minor additions to the language, particularly giving it the
very welcome ability to declare the type of parameters, but in general the committee simply clarified
and rationalized the existing definition of what constituted common usage of the language. The stan-
dard was finally published in 1989 as the ANSI standard Programming Language C, X3.159-1989, or
more briefly C89, or sometimes C90. (This later became an ISO standard, ISO/IEC 9899:1990,
Programming Languages—C. The two standards are technically identical.)

As with most standards, publication did not end the work of the committee, which continued work on
clarifying minor discrepancies found in the specification, and in 1993 started work on the next version of
the standard, dubbed C9X. The committee also published minor corrections and updates to the current
standard in 1994, 1995, and 1996.

The new edition of the standard just made it into the 1990s, and officially become the C99 standard;
it was adopted by ISO as ISO/IEC 9899:1999. More information can be found at http://www.x3.org/
incits/tc_home/j11.htm.
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The GNU Compiler Collection
After developing the Emacs editor (yes, we love Emacs), the GNU project’s next major accomplishment,
as discussed in Chapter 1, was a completely free C compiler, gcc, with the first official version released
in 1987.

Originally, gcc was the GNU C Compiler, but since the same basic compiler framework now supports C,
C++, Object-C, FORTRAN, Java, and ADA, the definition has been adjusted to the more appropriate
GNU Compiler Collection.

gcc has always been, and looks set to remain, the standard compiler for Linux, and C or C++ the 
primary language for writing programs on Linux. The gcc home page can be found at http://
gcc.gnu.org/. 

The GNU C compiler has always been good at accurately tracking the developing C standard, although
it does allow some extensions, and there are inevitably slight delays, as with almost all compilers,
between the standard’s becoming available and compilers that exactly implement that specification.
Occasionally the opposite happens, and gcc anticipates that a standard will change slightly, which can
also be quite confusing. gcc has a number of command line and other options that allow you to specify
the version of C standard you wish gcc to conform to, as well as other options to control just how per-
snickety you would like the compiler to be.

gcc Options
Now that we know a little of the background of the C standard, we can look at the options the gcc com-
piler gives us for ensuring that the C (or C++) we write conforms accurately to the language standard.
There are three ways we can ensure our C code is both in conformity with standards and clean: options
that control the version of the standard we intend to be compatible with, defines to control header files,
and warning options that invoke more stringent checking of the code.

gcc has a huge range of options, and we will look here only at the options we consider most important.
The full list of options can be found on the gcc manual pages. We also look briefly at some additional
#define options that can be used; these must normally be set in your source code before any #include
lines or defined on the gcc command line. You might wonder why so many options are required for
selecting the standard to use, rather than simply a flag that says enforce the current standard. The reason
is that many older programs rely on the historic behavior of the compiler and would require significant
reworking to update them to the latest standards. Rarely, if ever, do we want a compiler update to start
breaking working code. As the standards change, it’s important to be able to work against a defined
standard, even if that is not always the very latest version of the standard.

Even if you are just writing a small program for personal use, when maybe conforming to standards
doesn’t seem that important, it can often be worth turning on more of gcc’s warnings, to let the compiler
find a mistake in your code before you even run the program. This is always more efficient than step-
ping through code in the debugger wondering where the problem might be. The compiler has many
options that go well beyond simple checking for conformance to standards, such as the ability to spot
code that does conform to the standard but may have dubious semantics. For example, there may be an
order of execution that will allow a variable to be accessed before it is initialized.
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If you do need to write code for other people to use, then—having selected the level of standards com-
pliance and compiler warning you think appropriate—it’s very important to put in that extra bit of effort
to ensure that your code compiles with no warnings at all. If you allow some warnings to appear and
make it a habit just to ignore them, then one day a more serious warning will appear that you may miss.
If your code always compiles completely clean, a new warning will be obvious. Clean compiling code is
a good habit to get into.

Compiler Options for Standards Tracking
These options are passed to gcc on the command line; we show only the most important options here.

❑ -ansi: This is the most important standards option, and tells the compiler to work to the C89
standard of the language.  It turns off certain gcc extensions that are incompatible with the stan-
dard and also defines the macro __STRICT_ANSI__, which turns off some gcc extensions in
header files that are incompatible with the standard. Later versions of the compiler may change
the language standard targeted.

❑ -std=: This option allows more fine-grained control of the standard in use by supplying a
parameter that sets the exact standard required. The main options are

❑ c89 or iso9899:1990 supports the more common c89 standard.

❑ c99 or iso9899:1999 supports the latest c99 standard, although as of gcc 3.3 support is not
yet complete.

❑ gnu89 supports the c89 standard, but allows GNU extensions and some c99 features as well.

Define Options for Standard Tracking
These are constants (#defines) that can either be set by options on the compiler command line or, alter-
natively, as definitions in the source code. We generally suggest using the compiler command line for
these options.

❑ __STRICT_ANSI__: Force the use of ISO standard C.

❑ _POSIX_C_SOURCE=2: Turn on features defined by the IEEE Std 1003.1 and 1003.2 standards.
We will mention these standards again later in this chapter.

❑ _BSD_SOURCE: This enables BSD-type features.

❑ _GNU_SOURCE: Allows a wide range of features, including GNU extensions.

❑ _RE-ENTRANT: As we saw in Chapter 12, this ensures that functions are made re-entrant, and
is required for programs using threads.

Compiler Options for Warnings
These options are passed to the compiler on the command line. Again we just list the main options; a full
list can be found in the gcc manual pages.

❑ -pedantic: This is the most powerful compiler option for checking clean C code. Apart from
turning on the option to check for standard conformant C, it also turns off some traditional C
constructs that are not permitted by the standard, and disables all the GNU extensions to the
standard. This is the option to use if you want your C code to be as portable as possible. The
downside is that the compiler is very fussy indeed about your code being clean, and sometimes
it can require you to think very carefully in order to get rid of the last few warnings.
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❑ -Wformat: Checks that the arguments types to the printf family of functions are correct. 

❑ -Wparentheses: Checks that parentheses are always provided, even in some circumstances
where they are not needed. This is quite a useful option for checking that initialization of com-
plex structures is as intended.

❑ -Wswitch-default: Checks that all switch statements have a default case, which is generally
good coding practice.

❑ -Wunused: Checks a variety of cases such as static functions declared but never defined, unused
parameters, and discarded results.

❑ -Wall: Turns on most of gcc’s warnings, including all of the preceding -W options (it does not
select -pedantic) and is a good way to keep your code clean.

There are many, many more warning options; see the gcc Web pages for the full details. In general we
would suggest you use –Wall; it’s a good compromise between checking for good quality code and hav-
ing the compiler generate so many trivial warnings it becomes a serious impediment to keeping the
number of warnings from the compiler to zero.

Interfaces and the LSB
We are now going to move up a level from the raw C code and look at the interfaces (system functions)
provided by the operating system. This level of standardization has various components: the functions
provided by libraries and the system calls provided by the underlying operating system. In both of these
there are two levels of detail: which interfaces are present and the definition of what an interface does.

The definitive document in this area for Linux is The Linux Standards Base (LSB), which can be found at
http://www.linuxbase.org.

There is a list of distributions that have passed the certification to say they conform, which can be found
at http://www.opengroup.org/lsb/cert/cert_prodlist.tpl. Both the Red Hat and SuSE Linux
distributions we have used in the writing of this book are listed as certified, as are many other distribu-
tions of Linux.

This specification covers a number of areas, but also refers to some external standards for particular
interface definitions. The areas covered by the LSB are

❑ Object formats for binary compatibility

❑ Dynamic linking standards

❑ Standard libraries, both base libraries and the X Window System libraries

❑ The shell and other command line programs

❑ The execution environment, including users and groups

❑ System initialization and run levels

In this chapter, we are really only interested in the standard libraries, users, and system initialization, so
those are the areas we will look at here.
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LSB Standard Libraries
The Linux Standard Base defines the interfaces that must be present in two ways. For some functions,
primarily those that are implemented by the GNU C library or tend to be Linux-only standards, it
defines the interface and its behavior. For other interfaces, mostly those that come from Linux being
UNIX-like, the specification simply states that a particular interface must be present and must behave
as defined by another standard, usually that of the Common Application Environment (CAE) or more
commonly The Single UNIX Specification, which is available from The Open Group, http://www.open
group.org. Some parts are available (currently registration is required) on the Web at http://www.
unix.org/online.html.

Unfortunately, the underlying standards for Linux, the UNIX standards, have a rather complex past, and
rather too many standards to choose from, although mostly the various versions of the standards are
closely compatible.

A Brief History Lesson
UNIX started in the late 1960s at AT&T Bell Laboratories, when Ken Thompson and Dennis Ritchie
wrote an operating system, originally intended only for their personal use, that they called Unics. The
name somehow changed into UNIX. AT&T allowed universities to have the source code for their own
research, and UNIX quickly became extremely popular because of its very clean design and powerful
concept. The fact that the source code was available must also have been a significant incentive because
it allowed people to make changes and experiment.

The BSD operating system was a variant that came out of work done at the University of California at
Berkeley, where a lot of work was being done on networking. 

When AT&T started to make UNIX commercial, which occurred mostly around the mid 1980s, it termed
its releases UNIX System, and the most popular was UNIX System V.

Many other variants also appeared, far too numerous to list here, all of which had slight differences
from and additions to the base standards, as companies have tried to add value by making proprietary
extensions. 

Things started to get really complicated when AT&T sold its UNIX business to Novell, which, in 1994,
decided to exit the UNIX business. Novell sold the UNIX business in two parts: the trademark and spec-
ification to X/OPEN Company (now The Open Group) and the source code to SCO. 

In 1988 the IEEE (http://www.ieee.org) issued the first of a set of standards: the POSIX, or 1003, 
standards, which were intended to be a definitive portable interface specification for computer environ-
ments. Although it’s a good and well-defined standard, POSIX is also very much a core specification
and is quite limited in scope. 

In 1994 the X/OPEN Company, a vendor-neutral organization, produced a much larger set of specifica-
tions, the X/OPEN CAE, or Common Applications Environment, which is a superset of the IEEE POSIX
standards and is technically identical to it in many areas. The X/OPEN company later merged with the
OSF to found The Open Group; its home page is at http://www.opengroup.org/. The CAE standard
was updated and released in 2002 as The Single UNIX Specification, Version 3, available from The Open
Group.

It is this specification to which the Linux standards base most frequently refers.

804

Chapter 19

b544977 Ch19.qxd  12/1/03  8:57 AM  Page 804



Using the LSB Standard for Libraries
That’s enough about history of the standards, what does this mean for people writing C (or C++) programs
that they want to be portable?

First you should check that the library function you are using is listed in the LSB specification. If it isn’t
there, you may well be doing something that is not going to port easily, and you should look for a stan-
dard way of performing whatever you are trying to achieve. You might like to try the apropos Linux
command, which searches the online manual pages for appropriate references.

Second, and more difficult, is to check that the function behavior you are using is part of the specifica-
tion, and you are not relying on behavior that is not specified. You may have to refer to the Single UNIX
Specification to do this if the function usage is not defined by the LSB.

A particularly good place to check for undefined or possibly erroneous behavior is the online Linux
manuals. Many of the pages have a BUGS section, which is an invaluable source of information about
where a particular call in Linux may not perfectly implement the standards or where there are known
defects or oddities in behavior.

LSB Users and Groups
This section of the specification is nice and brief, and very easy to understand. Following are a few of the
specifications:

❑ It tells us never to read files like /etc/password directly, but to always use the standard
library calls such as getpwent. 

❑ It tells us that there must be a user called root in the root group, and that root is an administra-
tive user with full privileges. We also discover that there are a number of optional user and
group names that should never be used by standard applications; they are intended for use by
distributions. 

❑ It warns us that only user IDs from 500 and up should be used by real users; the lower numbers
are reserved.

Generally, that is about all most Linux programmers need to know about the standards for users.

LSB System Initialization 
The area of system initialization has always, at least to us, been an annoyance of subtle differences
between distributions. 

Linux has inherited from UNIX-like operating systems the idea of run levels that define the services that
are running at any time. For Linux, the usual definitions are given in the following table.

Run Level Used for

0 Halt. Used as a logical state to change to when the system is shut down.

1 Single user mode, directories other than / may not be mounted, and network-
ing will not be enabled. It is normally used for system maintenance.

Table continued on following page
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Run Level Used for

2 Multiuser mode; however, networking is not enabled.

3 Normal multiuser mode with networking, using a text mode login screen.

4 Reserved.

5 Normal multiuser mode with networking, using an xdm type graphical login
screen.

6 A pseudo-level used for rebooting.

The LSB lists these levels but doesn’t require them to be used, although they are very common.

Accompanying these run levels is a set of initialization scripts used to start, stop, and restart services.
Previously these have lived in various locations under /etc, often /etc/init.d or /etc/rc.d/init.d.
This variation was often a source of confusion, as people who changed distributions could no longer find
the initialization scripts where they expected to find them, and install programs failed while trying to put
initialization scripts in the wrong directory.

The LSB 1.3 defines the location of these initialization scripts as /etc/init.d, though it does allow this
to be a link to a different location; indeed, on Red Hat 9 this directory is a link to the directory /etc/
rc.d/init.d, which was the traditional Red Hat location in many earlier versions.

Each script in /etc/init.d has a name that relates to the service it provides. As this is a common
namespace that all services on Linux must share, it’s important that names are unique. For example, life
would get difficult if both MySQL and PostgreSQL decided to call their scripts “database.” To avoid this
conflict there is—you guessed it—another set of standards. This is “The Linux Assigned Names And
Numbers Authority” (LANANA), which can be found at http://www.lanana.org/. Fortunately, you
need to know very little about it except that they keep a list of registered names for scripts, and thereby
make life easier for users of Linux systems.

An initialization script must take a parameter that controls what it should do. The defined parameters
are as follows:

Parameter Meaning

start Start (or restart) the service.

stop Stop the service.

restart Restart the service; this is commonly implemented as simply a stop followed
by a start of the service.

reload This should reset the service, reloading any parameters, without actually
stopping the service. Not all services can support this option, so this parame-
ter may not be accepted by all scripts, or may be accepted but have no effect.

force-reload This attempts to cause a reload if the service supports it, but if not, it does a
restart.
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Parameter Meaning

status This prints a textual message about the status of the service and returns a status
code that can be used to determine the status of the service.

All commands return 0 on success, or an error code indicating the reason for failure. In the case of status,
0 is returned if the service is running; all other codes indicate the service is not running for some reason.

The Filesystem Hierarchy Standard
The last of the standards we are going to look at in this chapter is the Filesystem Hierarchy Standard
(FHS), which can be found at http://www.pathname.com/fhs/. 

The purpose of this standard is to define standard places in the Linux file system, so that developers and
users alike can have reasonable expectations of where to find things. Long-time users of the various UNIX-
like operating systems have long bemoaned the subtle differences between the way file systems are laid
out, and the FHS provides a way for Linux distributions to avoid going down the same fragmented path.

The arrangement of files in a Linux system may seem at first to be a semi-arbitrary arrangement of files
and directories, based on historic practice. To an extent that’s true, but over the years the layout has
evolved for good reasons into the hierarchy we see today. The general idea is to separate files and direc-
tories into three groups:

❑ Files and directories that are unique to a particular system running Linux, such as start-up
scripts and configuration files

❑ Files and directories that are read-only and may be shared between systems running Linux,
such as application executables

❑ Directories that are read/write, but may be shared between systems running Linux or other
operating systems, such as user home directories

In this book, we are not overly interested in sharing files among different versions of Linux, although,
where a network of Linux machines is in use, it can be an excellent way of ensuring that only a single
copy of the key program directories exists, and of sharing that among many machines. This is particu-
larly useful for diskless workstations.

The top-level structure is defined by FHS to have several mandatory subdirectories and a small number
of optional directories, as in the following table.

Directory Required? Use

/bin Y Important system binary files.

/boot Y Files required to boot the system.

/dev Y Devices.

/etc Y System configuration files.

Table continued on following page
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Directory Required? Use

/home N Directories for user files.

/lib Y Standard libraries.

/mnt Y A convenient point to temporarily mount devices, such as
CD-ROMs and flash memory sticks.

/opt Y Additional application software.

/root N Files for the root user.

/sbin Y Important system binary files which are required during
system startup.

/tmp Y Temporary files.

/usr Y A secondary hierarchy. Traditionally user files were also
stored here, but that is now considered bad practice, and
/usr should not be writable by ordinary users.

/var Y Variable data, such as log files.

In addition, there can be other directories starting with lib, although this is not common. You will also
usually see a /lost+found directory (for file system recovery by fsck) and a /proc directory, which is
a pseudo file system, providing a mapping into the current running system. The /proc file system is
mentioned by the current version of FHS standard, but is not required to be present. Details of the /proc
system are generally beyond the scope of this book, though we took a brief tour in Chapter 4. 

We will look briefly at the purposes of each of the standard subdirectories of the / (root) directory.

/bin
This contains binary files that can be used both by the root user and ordinary users, but are essential to
operation in single-user mode, when some other directory structures may not be mounted. For example,
core commands such as cat and ls would normally be found in here, as will sh.

/boot
This directory is used for files required during booting of the Linux system. It is frequently quite small,
less than 100 MB, and often a separate partition. This is handy on PC-based systems, where there are 
frequently BIOS limitations on the active partition, requiring it to be in the first 2 G or 4 G of the disk.
Having this as a separate partition allows more flexibility when deciding how to lay out the rest of the
disk partitions.

/dev
This contains the special device files that map to hardware. For example, /dev/hda will be mapped to
the first IDE disk.
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/etc
This contains configuration files. Historically some binaries could also be found in here, but that is no
longer true on most Linux systems. The best-known file in the /etc directory is probably passwd, which
contains information on users. Other useful files are fstab, listing mount options; hosts, listing IP to
host name mappings, and the httpd directory, which contains configuration for the Apache server.

/home
This is a directory for user files. Normally each user will have a single directory under this directory
with the same name as their login, and this will be their default login directory. For example, after log-
ging in, the user rick will almost certainly find himself in the /home/rick directory.

/lib
This contains essential shared libraries and kernel modules, specifically those that will be required while
the system is booting or in single user mode.

/mnt
This is simply a convenient place for mounting additional file systems temporarily. Normally there will
be subdirectories for the different devices, such as /cdrom and /floppy. 

/opt
This is a directory for software vendors to use when adding software applications. By convention, distri-
butions generally don’t use it for software they distribute as part of the standard distribution, but leave
it free for third-party vendors to use. Generally, vendors will create a subdirectory with their name, and
then further subdirectories such as /bin and /lib for files specific to their application.

By convention, most Open Source Linux packages use /usr/local for installation.

/root
This is for files used by the root user. It is not in the /home directory part of the tree, because that may
not be mounted in single-user mode.

/sbin
This is used for commands normally used only by the system administrator, and required while the sys-
tem is booting or in single user mode. Commands such as fsck, halt, and swapon live here.

/tmp
This is used for temporary files. It is usually, but not always, cleared when the system is booted. 
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/usr
This is a rather complex secondary file system, generally containing all the system-type commands and
libraries not required during system booting or in single user mode. It has many subdirectories, such as
/bin, /lib, /X11R6 and /local.

In the early days, UNIX also had subdirectories for logs, mail spooling, and the like. These have all now
been removed from the usr directory and placed in the var directory. This has the advantage that /usr
can now be a mountable file system, and in particular can be mounted read-only most of the time. When
/usr is mounted read-only, it can be shared to other systems across a network and is less vulnerable to
corruption should the system stop in an uncontrolled manner, perhaps because the power failed. 

/var
This contains data that changes frequently, such as spool files for printing, application log files, and
mail-spooling directories. 

Further Reading about Standards
There are, of course, many more things to consider if you want to write, and deploy, a fully portable
Linux application. 

Do you want to localize your application so that it works with different languages and locales? Even if
you stick to English, there are still the issues of currency, number separators, date formats, and many
other considerations. There are, you guessed it, people working on those standards; you can see their
work at http://www.openi18n.org/.

Another consideration is what options, library versions, and so forth the target system has installed.
Fortunately, this problem is getting less acute, largely thanks to the standardization work we have looked
at in this chapter, but it can still be a difficult problem. There are a pair of GNU tools which help consider-
ably with this problem: autoconf and automake. Although you may not have used them directly, you
have almost certainly seen the benefits of them when installing software from source, when you typed
./configure; make. 

The use of these tools is beyond the scope of this book, but you can find more about them on the GNU Web
pages http://www.gnu.org/software/autoconf/ and http://www.gnu.org/software/automake.

Summary
In this final chapter, we have looked briefly at some of the many standards that are helping to make
Linux an easier platform to program for, and ensure that the many different distributions of Linux con-
form to some basic standards. Conforming to standards helps to make life easier for us, its programmers
and users, and we urge you use the standards and to encourage others to do so.
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&& (ampersands) for AND list construct, 44–45
* (asterisk)

parameter variable ($*), 30
for variable field width with printf function, 113
as wildcard for character strings, 24

@ (at sign) in parameter variable ($@), 30
` (backtick) with expr command, 56
{ } (braces)

expansion by shell, 24, 71
in function definitions, 47
as magic string for find actions, 65
parameter-matching operators with, 71–73
for statement blocks, 47

[ ] (brackets)
for pattern matching, 24
in regular expressions, 67
test command ([), 32–34, 40

^ (caret) in regular expressions, 67
: (colon)

as null command, 51
as PATH variable separator, 6

$ (dollar sign)
$ (command) syntax, 38–39, 69–70
$ (( )) construct, 40, 57, 70
accessing variable contents, 28
environment variable ($$), 30
parameter variable ($@), 30
in regular expressions, 67
as shell prompt, 24
for shell script parameter variables, 30

. (dot)
for fixing program name and directory (./), 7
shell command, 52–53

> (greater than symbol)
append operator (>), 22
for redirecting output, 21–22
as shell prompt, 24

< (less than symbol)
for here documents (<<), 73
for redirecting input, 22

# (number symbol)
for comments in RPM spec files, 403
for comments in shell scripts, 25
environment variable ($#), 30

( ) (parentheses)
$ (command) syntax, 38–39, 69–70
$ (( )) construct, 40, 57, 70

| | (pipe symbols) for OR list construct, 45–46. 
See also pipes

? (question mark) as single-character wildcard, 24
“ (quotation marks)

in shell programming, 28–29
with variables, 28–29

;; (semicolons) separating case construct 
patterns, 41

/ (slash) for fixing program name and directory 
(./), 7

~ (tilde) home directory notation, 92
0 (zero)

environment variable ($0), 30
exit code in shell programming, 25, 55
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.a files. See static libraries
accept system call, 597
add... functions (curses library), 211
add_cd function

KDE/Qt example, 715–716
MySQL example, 355, 356–357

add_cdc_entry function, 297–298
addcd_dialog_button_clicked function, 670
add_cdt_entry function

client/server system using FIFOs, 541
dbm database example, 291, 298

add_record function, 238–239
add_records function, 85–86
add_record_tracks function, 85
addresses, socket, 595
add_tracks function, 359
add_widget_with_label function, 665
alarm clock facility, signals for, 467–469
alarm.c program, 468–469
allocating memory. See memory management
ampersands (&&) for AND list construct, 44–45
AND list construct, 44–45
announce function, 287
ANSI standard set of escape sequences, 192
a.out file as compiler output default, 8
append operator (>), 22
application directories, 8
app_mysql.h header file (MySQL), 353–354
app_test.c program, 354–355
app_ui.c (dbm user interface)
add_cdt_entry function, 291
announce function, 287
command_mode function, 294–295
count_all_entries function, 293
del_cat_entry function, 291
del_track_entries function, 292
display_cdc function, 294
display_cdt function, 294
enter_new_cat_entry function, 289
enter_new_track_entries function, 290–291
find_cat function, 292–293
function prototypes, 285–286
get_confirm function, 288–289
header files, 285
list_tracks function, 293
main routine, 286
menu options typedefs, 285

show_menu function, 287–288
strip_return function, 294
while loop for processing user input, 286–287

architecture of RPM packages, 400
archives. See static libraries
argc parameter of main function
getopt function and, 138
overview, 135, 136

args.c program, 137
arguments of programs. See program arguments
argv parameter of main function
getopt function and, 138–139
overview, 135, 136

arithmetic comparison, test command using, 33
arithmetic expansion or substitution
$ (( )) construct for, 40, 57, 70
expr command for, 56–57, 70
while construct with, 40

ASCII format, 2–3
asctime function, 149
assert macro for testing assumptions, 439–440
assert.c program, 439–440
asterisk (*)

parameter variable ($*), 30
for variable field width with printf function, 113
as wildcard for character strings, 24

at sign (@) in parameter variable ($@), 30
attroff function (curses library), 212
attron function (curses library), 212
attrset function (curses library), 212
AUTO_INCREMENT keyword (MySQL), 320

B
Backspace processing by terminal handler, 174
backtick (`) with expr command, 56
backtrace command (GNU debugger), 427
bash shell

checking version, 20
downloading, 20
other shells versus, 21
as standard Linux shell, 19
usage in this book, 19

beep function (curses library), 211
Bell Laboratories (UNIX developers), 1
/bin directory, 6, 808
binary semaphores, 485, 558. See also semaphores
bind system call, 596
BitKeeper (BitMover Inc.), 391
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block devices
b flags for special files, 723
character devices versus, 94, 723, 781–782
defined, 94, 723
file operations, 730–732
overview, 781–782
special files, 723–724

block-driven device drivers
buffer cache, 788
character-driven device drivers versus, 729, 781
check_media_change function, 785
defined, 729
file operations, 730–732, 782
further information, 790
ioctl entry point, 785
radimo RAM disk module, 782–785, 789
registering the device, 784–785
request function, 782, 786–788

Boolean data types (MySQL), 318
/boot directory, 808
Bourne shell, 19, 21
box function (curses library), 210
braces ({ })

expansion by shell, 24, 71
in function definitions, 47
as magic string for find actions, 65
parameter-matching operators with, 71–73
for statement blocks, 47

brackets ([ ])
for pattern matching, 24
in regular expressions, 67
test command ([), 32–34, 40

break command
gdb (GNU debugger), 430
shell command, 50–51

breakpoints, setting with gdb, 429–432
buffer cache for block-driven device drivers, 788
bug report generation (MySQL), 313–314
button_clicked callback function, 633–635
buttons widgets (GTK+)
GtkButton, 644–645
GtkCheckButton, 645, 646–648
GtkRadioButton, 645, 646–648
GtkSpinButton, 643–644
GtkToggleButton, 645, 646–648
program example, 646–648

buttons widgets (Qt)
program example, 694–695
QButton button base class, 691–692

QCheckBox widget, 692–693
QPushButton generic button widget, 692
QRadioButton widget, 693–694

byte ordering functions for sockets, 601–602

C
C compiler. See also gcc (GNU C compiler)
a.out file as default output, 8
-I flag, 9
POSIX standard and names for, 6
usage in this book, 7

C interface for MySQL data. See also CD database
application (MySQL example)

closing a connection, 327
connection routines, 326–330
create_children.sql file, 328–329
creating a database and table, 328
display_row function, 341
error handling, 330–331
executing SQL statements that return data, 336–340
executing SQL statements that return no data,

331–336
initializing a connection handle structure, 326
inserting a new row in a table, 332–333
miscellaneous functions, 346
mysql_affected_rows function, 332, 334
mysql_close routine, 327
mysql_data_seek function, 338
mysql_fetch_field function, 342–343
mysql_fetch_row function, 338
mysql_field_count function, 341
mysql_free_result function, 338
mysql_init routine, 326
mysql_options routine, 327–328
mysql_real_connect routine, 326–327, 333–334
mysql_row_seek function, 338
mysql_row_tell function, 338
mysql_store_result function, 337, 340
mysql_use_result function, 339–340
populating a table from a file, 328–329
processing returned data, 340–346
retrieving data all-at-once, 337–339
retrieving data one row at a time, 339–340
setting up a connection, 326–328
tracking insertions, 334–335
updating a table, 333–334

C language
C99 standard, 800
as common Linux programming language, 5, 800
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C language (continued)
history, 800
knowledge needed for this book, 5

C preprocessor instrumentation, 422–424
C shell, 21
c89 (C compiler), 6
callback functions (GTK+)
button_clicked, 633–635
CD database application, 669–672
g_signal_connect function for connecting to, 633
overview, 633
prototype, 633

callbacks.c program, 669–672
calloc function, 257
canceling threads, 498–501
canonical mode, 173
caret (^) in regular expressions, 67
carriage return (CR), 174, 191
case construct

double semicolons terminating pattern lines, 41
input-testing example, 42
multiple patterns with, 42–43
multiple statements executed by, 43–44
syntax, 41
wildcards with, 42–43

case, variables and, 28, 29
cat command, here documents with, 73
cbreak function (curses library), 215
cc. See C compiler
c_cc array member of termios interface, 184–185
c_cflag member of termios interface, 183
CD database application (client/server system 

using FIFOs)
add_cdt_entry function, 541
aims, 534
client_ending function, 552
client_if.c client interface functions, 538–544
client’s interpreter, 538–542
client-side functions, 552–554
client_starting function, 552
cliserv.h header file, 536–538
compiling, 533–534
database_close function, 539
database_initialize function, 539
defining named pipes, 537
del_cdc_entry function, 541–542
del_cdt_entry function, 542
end_resp_from_server function, 554
end_resp_to_client function, 551

get_cdc_entry function, 539, 540–541
get_cdt_entry function, 540
implementation, 534–536
mypid static variable, 538
overview, 533–534
pipe_imp.c pipes implementation file, 548–554
process_command function, 545, 546–547
read_one_response function, 540
read_request_from_client function, 550
read_resp_from_server function, 553
search_cdc_entry function, 543–544
searching the database, 542–544
send_mess_to_server function, 552–553
send_resp_to_client function, 551
server.c server interface, 544–548
server_ending function, 550
server-side functions, 549–551
server_starting function, 549
single-process implementation versus, 534–535
start_resp_from_ server function, 553
start_resp_to_client function, 551
summary, 554

CD database application (curses library example)
adding CDs to the database, 238–242
add_record function, 238–239
clear_all_screen function, 238
count_cds function, 243
drawing the menu, 236–238
draw_menu function, 237
filename declarations, 234
find_cd function, 243–244
function prototypes, 234
getchoice function, 236–237
get_confirm function, 239
get_return function, 246
get_string function, 239
global constants, 233
global variables, 233
header files, 233
insert_title function, 240
list_tracks function, 244–246
main function, 235–236
menu structures, 234–235
overview, 233
remove_cd function, 241–242
remove_tracks function, 242
retrieving and displaying CD data, 243–246
update_cd function, 240–241
visual representation of functions, 235
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CD database application (dbm database example)
add_cdc_entry function, 297–298
add_cdt_entry function, 291, 298
announce function, 287
app_ui.c user interface, 285–295
cd_access.c access functions, 295–301
cd_data.h header file, 284–285
command_mode function, 294–295
count_all_entries function, 293
database_close function, 296
database_initialize function, 295–296
del_cat_entry function, 291
del_cdc_entry function, 299
del_cdt_entry function, 299
del_track_entries function, 292
display_cdc function, 294
display_cdt function, 294
enter_new_cat_entry function, 289
enter_new_track_entries function, 290–291
find_cat function, 292–293
function prototypes, 285–286
get_cdc_entry function, 296–297
get_cdt_entry function, 297
get_confirm function, 288–289
header files, 285
list_tracks function, 293
main routine, 286
menu options typedefs, 285
overview, 283–284
search_cdc_entry function, 299–301
show_menu function, 287–288
SQL terminology for tables, 283
strip_return function, 294
suitability, 282
updating the design, 283
while loop for processing user input, 286–287

CD database application (GNOME/GTK+ example)
addcd_dialog_button_clicked function, 670
add_widget_with_label function, 665
callbacks.c program, 669–672
cdapp_gnome.h header file, 664
confirm_exit function, 669–670
create_addcd_dialog function, 668
create_login_dialog function, 668–669
delete_event_handler function, 670
features, 663
gtk_scrolled_window function, 667
initializing GNOME libraries, 673
interface.c program, 665–669

main window, 666
main.c program, 673–674
menubar definitions, 665–666
on_about_activate function, 672
on_addcd_activate function, 672
on_search_button_clicked function, 671
overview, 663–664
quit_app function, 669
toolbar, 666

CD database application (IPC facilities example)
client functions, 581–583
client_ending function, 582
client_starting function, 581–582
header files, 580
overview, 579
read_request_from_client function, 581
read_resp_from_server function, 582–583
send_mess_to_server function, 582
send_resp_to_client function, 581
server functions, 580–581
server_ending function, 580–581
server_starting function, 580
start_resp_to_client function, 583

CD database application (KDE/Qt example)
add_cd function, 715–716
AddCd slot, 715
AddCdDialog, 715–717
doSearch slot, 714
features, 712
LogonDialog, 717–718
main window, 712–715
main.cpp program, 719–720
menus and toolbars, 713
overview, 711–712
QBox layout widgets, 713
QListView widget, 714–715

CD database application (MySQL example)
accessing application data from C, 353–363
add_cd function, 355, 356–357
adding data, 350–351
add_tracks function, 359
app_mysql.h header file, 353–354
app_test.c program, 354–355
artist table, 348
CD table, 348
checking data for reasonableness, 351–352
create_table.sql file, 349
creating tables, 348–350
database creation, 347
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CD database application (MySQL example) (continued)
database_end function, 355
database_start function, 356
delete_cd function, 355, 361–363
designing tables, 347
find_cds function, 355, 361
get_artist_id function, 358
get_cd function, 359–360
get_cd_tracks function, 360
insert_data.sql file, 350–351
interface definition, 353–354
interface implementation, 355–363
overview, 347
pop_tables.sql file, 352
sample script, 349
test application interface, 354–355
track table, 348, 349

CD database application (shell programming example)
add_records function, 85–86
add_record_tracks function, 85
copyright information, 83
count_cds function, 88
design, 81–82
file formats, 82
find_cd function, 86–87
get_confirm function, 84
get_return function, 84
global variables, 83
insert_title function, 84–85
insert_track function, 84–85
list_tracks function, 89
main routine, 89–90
notes on shell programming example, 89–90
remove_records function, 88
requirements, 81
set_menu_choice function, 84
update_cd function, 87–88

cd_access.c (dbm access functions)
add_cdc_entry function, 297–298
add_cdt_entry function, 298
database_close function, 296
database_initialize function, 295–296
del_cdc_entry function, 299
del_cdt_entry function, 299
get_cdc_entry function, 296–297
get_cdt_entry function, 297
search_cdc_entry function, 299–301

cdapp_gnome.h header file, 664
cd_data.h header file, 284–285

CD-ROM device, mounting, 93
cfgetispeed function, 187–188
cfgetospeed function, 187–188
cflow function call tool, 434, 437–438
C-Forge development environment, 411–412
cfsetispeed function, 187–188
cfsetospeed function, 187–188
character attributes (curses library), 212
character data types (MySQL), 318
character devices

block devices versus, 94, 723, 781–782
c flags for special files, 723
defined, 94, 723
file operations, 730–732
kernel registration by, 730, 734–735
overview, 729–730
special files, 723–724

character-driven device drivers. See also schar

character-driven device driver
block device drivers versus, 729, 781
defined, 729
file operations, 730–732

chdir system call, 120
checker.c program, 442–444
check_media_change function, 785
child processes

defined, 450
pipe function and, 514–516

chkconfig command, 305
chmod command, 26, 27
chmod system call, 118
chown system call, 119
ci command (RCS), 381
c_iflag member of termios interface, 181–182
cinfo.c program, 423–424
classic_set environment, 53
clear function (curses library), 211
clear_all_screen function, 238
clearerr function, 118
clearing the screen using curses library, 212
c_lflag member of termios interface, 183–184
client.c program, 531–532
client1.c program, 588–589
client2.c program, 599–600
client3.c program, 602
client_ending function

client/server system using FIFOs, 552
IPC facilities example, 582
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client_if.c client interface functions
add_cdt_entry function, 541
client’s interpreter, 538–542
database_close function, 539
database_initialize function, 539
del_cdc_entry function, 541–542
del_cdt_entry function, 542
get_cdc_entry function, 539, 540–541
get_cdt_entry function, 540
mypid static variable, 538
overview, 538
read_one_response function, 540
search_cdc_entry function, 543–544
searching the database, 542–544

client/server application using FIFOs. See also CD
database application (client/server system 
using FIFOs)

client program, 531–532
header file, 530
overview, 529, 532–533
server program, 530–531

client_starting function
client/server system using FIFOs, 552
IPC facilities example, 581–582

cliserv.h header file, 536–538
close system call

defined, 95
overview, 101–102
for sockets, 598

closedir function, 122
closelog function, 162, 163
closing

directory streams, 122
file descriptor for logging, 163
file streams, 109
files or devices, 95, 101–102

clrtobot function (curses library), 211
clrtoeol function (curses library), 211
C99 standard, 800
co command (RCS), 381–382
code inspection, 421–422. See also debugging
coding errors, 418. See also debugging
c_oflag member of termios interface, 182–183
colon (:)

as null command, 51
as PATH variable separator, 6

color, curses library support for, 227–230
color.c program, 228–230
COLOR_PAIR function (curses library), 228

command line options, 136–137
command_mode function, 294–295
commands (shell)

accessing terminal modes, 186–187
arithmetic expansion, 70
break, 50–51
colon (:), 51
continue, 51–52
$ (command) syntax, 38–39, 69–70
$ (( )) construct, 40, 57, 70
dot (.), 52–53
echo, 53–54
eval, 54
exec, 54
exit, 25, 55
export, 55–56
expr, 56–57, 70
external versus internal, 50
find, 62–65
grep, 24, 66
here documents for passing inputs, 73–74
linking, 18, 23, 505–506
parameter expansion, 70–73
printf, 57–58
putting output in a variable, 69–70
regular expressions, 67–69
return, 48–50, 58
set, 21–22, 58–59
setting terminal modes, 187
shift, 59
stty, 186–187
trap, 60–61
unset, 62

commands command (GNU debugger), 431
comments

in makefiles, 370
paths specified in, 25
in shell scripts, 25
in spec file for RPM packages, 403

competing file locks, 270–273
compiler. See C compiler; gcc (GNU C compiler)
compiling. See also make command; makefiles

with debugging options, 425
Hello World program, 7
kernel modules, 725
multiple header files and, 365–366
warnings generated during, 422

compressing files for distribution, 397
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conditions in shell programming, 32–34. See also
test command ([)

confirm_exit function, 669–670
connect system call, 597–598
connect1.c program, 329–330
connect2.c program, 330–331
container.c program, 636–638
continue command, 51–52
control modes of termios interface, 183
control structures

AND list construct, 44–45
case construct, 41–44
elif construct, 36
for construct, 37–39
if statement, 35–37
OR list construct, 45–46
in shell programming, 35–44
until statement, 41
while construct, 39–40

controlled execution, 424–425
conversion specifiers

for printf command, 58
for printf functions, 112–113
for scanf functions, 114–115
for strftime function, 150–151

converting
broken-down time into time_t value, 149
GIF files to JPEG, 73

cooperative lock files, 260–261
Coordinated Universal Time (UTC), 149
copy_block.c program, 103–104
copy_from_user function, 764
copyleft, 4
copy_stdio.c program, 116–117
copy_system.c program, 102–103
copy_to_user function, 764
correction stage of debugging, 418
count_all_entries function, 293
count_cds function
curses library example, 243
shell programming example, 88

cp command, 94
CPU time, 165, 166
CR (carriage return), 174, 191
creat system call, 99
create_addcd_dialog function, 668
create_children.sql file, 328–329
create_login_dialog function, 668–669
create_table.sql file (MySQL), 349

critical sections. See also semaphores; synchronization
of threads

automated locking, 781
basic spin locks, 780
database updates as, 557–558
defined, 260
Dekker’s algorithm for, 558
file locking and, 260
reader and writer locks, 780–781

csh shell. See C shell
ctags function call tool, 434, 436
ctime function, 149, 150
ctime.c program, 150
curly braces. See braces ({ })
current directory

adding to path, 26
printing, 122–125

curscr data structure (curses library), 207
curses library. See also CD database application

(curses library example)
CD database application using, 233–246
character attributes, 212
checking setup for, 206
clearing the screen, 211
color support, 227–230
color.c program, 228–230
compiling with, 206–207
curscr data structure, 207
curses.h header file for, 206
data structures and programs, 207
generalized windows functions, 218
initialization by curses programs, 208, 210
keyboard control functions, 214–217
keypad mode, 225–227
keypad.c program, 226–227
link for termios interface, 180
logical screen, 207–208, 230–232
moveadd.c program, 212–214
moving and redrawing windows, 218–219
moving the cursor, 212
ncurses implementation, 206–207
optimizing screen refreshes for windows, 222–223
origin of name, 206
overview, 205
pad structure, 230–232
pad.c program, 231–232
reading from the screen, 211
redefining colors, 230
refresh function, 207–208
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screen control functions, 207–214, 227–230
screen update functions, 210–211
simple example, 208–209
stdscr data structure, 207, 217
subscl.c program, 223–225
subwindows functions, 223–225
termination of programs, 210
two-level process for character output, 207–208
WINDOW structure, 217–218
windows functions, 217–223
X/Open specification, 206

CVS (Concurrent Version System)
accessing over a network, 390
committing a change, 389
creating a depository, 387
editing files, 388
gCVS interface, 390–391
overview, 386–387
refreshing files, 389
retrieving files, 388
storing initial versions, 387–388
using locally, 387–389
viewing changes, 388, 389

cxref function call tool, 434, 436–437

D
data management. See dbm database; file locking;

memory management
data types

device drivers, 727
MySQL, 318–319
portability of device drivers and, 795

database_close function
client/server system using FIFOs, 539
dbm database example, 296

database_end function, 355
database_initialize function

client/server system using FIFOs, 539
dbm database example, 295–296

databases. See dbm database; MySQL
database_start function, 356
datagram sockets

connecting to a standard service, 620–622
creating, 594–595
getdate.c program, 620–622
overview, 593
UDP protocol for, 593

date command, 59

dates. See times and dates
datum type, 276
daylight savings, adjusting time for, 149
daytime service, 606–608, 620–622
dbm database. See also CD database application 

(dbm database example)
access functions, 277–280
additional functions, 280–282
blocks of data, 276
CD database application, 282–301
checking version, 275
datum type, 276
implementations, 275
linking to the library, 276
obtaining, 275
overview, 274–275
reinstalling, 275
retrieving and deleting data, 281–282
routines, 276–277
simple database program, 278–280
troubleshooting, 275–276

dbm1.c program, 278–280
dbm2.c program, 281–282
dbm_clearerr function, 281
dbm_close function, 278
dbm_delete function, 281
dbm_error function, 281
dbm_fetch function, 277–278
dbm_firstkey function, 281
dbm_nextkey function, 281
dbm_open function, 277
dbm_store function, 277
deadlocks, 273–274
DEBUG macro (C preprocessor), 422–423
debug1.c program, 418–419
debug2.c program, 420–421
debug3.c program, 421
debugging. See also debugging device drivers; errors;

specific tools and techniques
assertion violations, 439–440
C preprocessor for, 422–424
code inspection for, 421–422
commercial debuggers, 424–425
compiler warnings for, 422
controlled execution for, 424–425
device drivers, 790–794
ElectricFence library for, 441–442
error types causing bugs, 417–418
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debugging (continued)
eval command and, 54
examining variables, 427–428
execution profiling with prof and gprof, 438
function call tools for, 436–438
with gdb (GNU debugger), 425–434
global variables as debug flags, 424
instrumentation for, 422–424
with lint, 434–436
listing a program, 428–429
memory, 420–421, 440–444
patching with the debugger, 432–433
printf function for, 424
program example for, 418–421
removing debug information from executable files, 425
setting breakpoints, 429–432
shell scripts, 75
stack tracing, 427
stages of, 418
static versus dynamic analysis, 434
with valgrind, 442–444

debugging device drivers
kdb kernel debugger, 793–794
ksymoops tool for, 791–792
module debugging, 792
notes, 794
Oops tracing, 790–792
regular debugging versus, 790
remote debugging, 794
Sys Rq key or System Attention Key (SAK) for, 793

decompressing files, 398–399
Dekker’s algorithm, 558
del_cat_entry function, 291
del_cdc_entry function

client/server system using FIFOs, 541–542
dbm database example, 299

del_cdt_entry function
client/server system using FIFOs, 542
dbm database example, 299

Delete processing by terminal handler, 174
delete_cd function, 355, 361–363
delete_event_handler function, 670
deleting. See removing
del_semvalue function, 564, 565
del_track_entries function, 292
delwin function (curses library), 217, 218, 222, 231
dependencies (makefile), 366, 367
design errors, 418. See also debugging
desktop, 623

destroying. See also removing
mutexes, 490
semaphores, 486
subwindows using curses library, 223
windows using curses library, 217, 218

detachedstate attribute of threads, 495–497
detecting keystrokes, 200–202
/dev directory, 808
/dev/console device (system console), 93
development environments

C-Forge, 411–412
KDevelop, 412–414
other environments, 414–415
overview, 410
XWPE, 410–411

development tools. See also specific tools
BitKeeper, 391
CVS (Concurrent Version System), 386–391
development environments, 410–415
distributing software, 395–399
make command and makefiles, 366–379
other package formats, 410
problems of multiple source files, 365–366
RCS (Revision Control System), 380–386
RPM packages, 399–409
SCCS (Source Code Control System), 386
source code control, 379–391
writing a manual page, 391–394

/dev/hdc device (CD-ROM), 93
device drivers. See also block-driven device drivers;

devices; memory management in device drivers;
schar character-driven device driver

for block devices, 781–790
building kernel modules, 725–729
for character devices, 729–732
data types, 727
debugging, 790–794
defined, 94, 722
device classes, 723–724
device drivers and, 727
good practices, 724
handling small delays, 752
I/O ports, 771–781
issues for writing, 721–722
jiffies variable macros, 751
kernel source overview, 796–797
kernel timers, 752–755
memory management, 758–771
name space and, 726
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overview, 94, 721, 722–723
packet-driven, 729
platforms and, 722, 771, 795
portability, 795–796
predefined task queues, 756–758
suspending and resuming execution, 755–756
task queues, 756–758
terminal driver and GTI, 178–191
time and jiffies variable, 750–758
time_after function, 751
time_after_eq function, 751
time_before function, 751
time_before_eq function, 751
user space versus kernel space, 725, 763–764

devices. See also block devices; character devices;
device drivers

c and b flags for special files, 723
character versus block devices, 94, 723, 781–782
defined, 722
/dev/console (system console), 93
/dev/hdc (CD-ROM), 93
/dev/null (null device), 94
/dev/tty (controlling terminal of process), 93,

176–178
/dev/zero (null bytes), 94
as files, 93–94
special files, 723–724

/dev/null device (null device), 94
/dev/tty device (controlling terminal of process),

93, 176–178
/dev/zero device (null bytes), 94
dialog utility

check box example, 78–79
interactive survey example, 79–80
options of dialogs, 78
overview, 76
parameters of dialogs, 77
simple example, 76
types of dialogs created by, 77

dialogs (GTK+)
CD database application, 668–669
creating dialog with Ok and Cancel buttons, 659
described, 658
GtkDialog, 658–660
GtkMessageDialog, 662–663
message dialog boxes, 662–663
modal, 660–661
nonmodal, 661–662
populating with widgets, 659

dialogs (Qt)
AddCdDialog (CD database application), 715–717
LogonDialog (CD database application), 717–718
modal, 701, 702–703
nonmodal, 701, 703
overview, 701–702
QDialog dialog base class, 701–702
QInputDialog, 705–707
QMessageBox modal dialog, 704–705
semimodal, 702, 703–704

diffs command, 396
difftime function, 147
ding alarm clock function, 468
directories

for applications, 8
for building RPM packages, 402–403
changing permissions, 118
changing with chdir system call, 120
creating, 119–120
current directory on path, 26
deleting from PATH variable, 6
determining working directory, 120
FHS (Filesystem Hierarchy Standard), 807–810
as files, 92
fixing program directory, 7
for GNU compiler, 8
for header files, 8–9
home directory, 7, 92
for kernel-specific files, 725
for libraries, 9
linking to same file from different directories, 92
for lock files, 258
for log messages, 160
maintenance functions, 118–120
makefiles and subdirectories, 378
PATH variable for, 6
printing current directory, 122–125
/proc file system, 126–130
for programs, 6
for RCS files, 380
removing, 120
removing entries for files, 119
root directory (/), 92
scanning, 120–125
for scripts, 27
for sockets, 588
for system administration programs, 6
for system components and third-party applications, 6
for terminfo files, 193
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directories (continued)
typical hierarchy, 92–93
for X Window System, 8

directory streams, 121, 122
display command (GNU debugger), 431
display_cdc function, 294
display_cdt function, 294
displaying. See viewing
display_row function, 341
distributing software. See also RPM (RPM Package

Manager) packages
compressing files, 397
creating diffs files, 396
decompressing files, 398–399
methods, 395
naming conventions, 397–398
other package formats, 410
patch program for updates, 395–397
RPM packages, 399–409
TAR (tape archive) files, 397–399

distributions of Linux, 4, 803
dollar sign ($)
$ (command) syntax, 38–39, 69–70
$ (( )) construct, 40, 57, 70
accessing variable contents, 28
environment variable ($$), 30
parameter variable ($@), 30
in regular expressions, 67
as shell prompt, 24
for shell script parameter variables, 30

domains, socket, 592, 594
dot (.)

for fixing program name and directory (./), 7
shell command, 52–53

doupdate function (curses library), 222–223
downloading
bash shell, 20
dbm database, 275
gcc (GNU C compiler), 7
gCVS, 390
Qt source code, 679

dpkg utility, 410
draw_menu function, 237
drivers. See device drivers
dup and dup2 system calls
fcntl system call versus, 517
file descriptor manipulation using pipes and, 517–520
overview, 106–107, 517
prototypes, 517
syntax, 107

duplicate filenames and pipes, 23
duplicating

file descriptors, 106–107
process images, 455–458

dynamic analysis for debugging, 434
dynamic memory management. See memory 

management

E
echo command, 53–54
echo function (curses library), 215
ed editor, 74
efence.c program, 441–442
efficiency. See performance
ElectricFence library, 441–442
elif construct, 36–37
empty files, creating, 94
endianess and portability of device drivers, 795
endpwent function, 158
end_resp_from_server function, 554
end_resp_to_client function, 551
endwin function (curses library), 210
enter_new_cat_entry function, 289
enter_new_track_entries function, 290–291
entry.c program, 640–643
environ variable, 145–146
environment settings, changing, 53
environment variables. See also specific variables

caution about, 145
defined, 142
export command for, 55–56
getenv function, 142, 143–144
listing with environ variable, 145–146
overview, 29–30
principal variables, 30
putenv function, 142, 143–144
QTDIR, 679
removing with unset command, 62
script example using, 31–32
set command for exporting, 56
using, 144–145

envtime.c program, 146–147
EOF terminal control character, 184
EOL terminal control character, 184
erase function (curses library), 211
ERASE terminal control character, 184
erasing. See removing
errno variable, 117
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errors. See also debugging
C interface error handling for MySQL data, 330–331
coding errors, 418
design errors, 418
errno.h values, 125
gcc options for warnings, 802–803
lock file error messages, 259–260
perror function, 126
pipe function, 511
read errors and scanf functions, 115
redirecting messages into files, 22
socket, 596
specification errors, 417
stream errors, 117–118
strerror function, 125

escape sequences
ANSI standard set, 192
defined, 191–192
for printf command, 57–58
terminal use of, 191–192
terminfo source format, 194
termios functions for manipulating, 197–198, 205

/etc directory, 809
/etc/passwd file, 156
/etc/rc.d directory, 19
eval command, 54
exec command, 54, 65
exec functions for processes, 453–455
execlp function, 454–455
executable files

defined, 5
making scripts executable, 26–27
scripts versus, 5

execution profiling with prof and gprof, 434, 438
exit command, 25, 55
export command, 55–56
export1 script, 56
export2 script, 56
expr command, 40, 56–57, 70
external shell commands, 50. See also commands

(shell)

F
fclose function, 109
fcntl system call
dup and dup2 system calls versus, 517
F_GETLK command, 262, 263–264
flock structure, 262–263, 264
F_SETLK command, 262, 264

F_SETLKW command, 262, 264
locking regions and, 262–266
overview, 130–131
syntax, 130, 262

fdopen function, 118
feature bloat, 2
feof function, 117
ferror function, 117
fflush function, 109–110
fgetc function, 110
F_GETLK command, 262–263, 263–264
fgetpos function, 116
fgets function, 111
FHS (Filesystem Hierarchy Standard)

standard subdirectories, 808–810
top-level structure, 807–808
Web site, 807

fifo1.c program, 521–522
fifo2.c program, 524–526
fifo3.c program, 527–528, 529
fifo4.c program, 528–529
FIFOs (named pipes). See also CD database application

(client/server system using FIFOs)
accessing, 522–529
client/server application using, 529–533
creating from command line, 521
creating inside programs, 521–522
data consumer program, 528–529
data producer program, 527–528, 529
defined, 520
inter-process communication with, 527–529
message queues versus, 573
mkfifo command, 521
mknod command, 521
opening with open system call, 523–526
opening with O_RDONLY and O_NONBLOCK flags,

523, 526
opening with O_RDONLY flag alone, 523, 525
opening with O_WRONLY and O_NONBLOCK flags,

523–524, 526
opening with O_WRONLY flag alone, 523, 525
read system call and, 526
reading an empty FIFO, 522–523
size limits, 526
write system call and, 526
writing to, 522–523

file copy programs
using stdio.h function calls, 116–117
using system calls, 102–104
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file descriptors
close system call and, 101
creating with open system call, 98–99
determining if associated with terminal, 174–175
duplicating, 106–107
fcntl system call and, 130–131
file streams and, 118
fstat system call and, 104
manipulation using pipes and dup, 517–520
modifying using exec command, 54
pipe function and, 512, 516–517
read system call and, 97
setting read/write pointer, 104
write system call and, 96

file formats
converting GIF to JPEG, 73
open, as UNIX characteristic, 2–3

file locking
advisory versus mandatory locks, 258
competing locks, 270–273
cooperative lock files, 260–261
creating lock files, 258–261
critical sections and, 260
deadlocks, 273–274
directories for, 258
error 17 for lock files, 259–260
example with fcntl, 265–267
F_GETLK command, 262, 263–264
flock structure, 262–263, 264
F_SETLK command, 262, 264
F_SETLKW command, 262, 264
lockf command for, 273
locking regions, 262–264
multiuser, multitasking operating systems and, 258
read and write calls with locking, 264–269
shared files and, 262
testing locks, 267–269

file operations for devices, 730–732
file streams

associating with files, 108
closing, 109
defined, 107
errors, 117–118
file descriptors and, 118
functions, 112–116
getting characters from, 110
other streams versus, 107
reading data from, 108–109
reading strings from, 111
setting position for next read, 110
writing all data from, 109–110

writing characters to, 110–111
writing data to, 109

file structure, 92–4
filename extensions, 5
filenames. See naming conventions
fileno function, 118
file-region locking. See also file locking

example with fcntl, 265–267
F_GETLK command and, 263–264
flock structure, 262–263, 264
F_SETLK command and, 264
F_SETLKW command and, 264
overview, 262–263
read and write calls with locking, 264–269
testing locks, 267–269

files. See also directories
appending, 22
basic (low-level) functions, 92, 95, 96–107
changing owner, 119
changing permissions, 118
checking existence of, 32–33
devices as, 93–94
directories as, 92
errors, 125–126
everything in Linux as, 92
fcntl system call, 130–131
formatted input and output functions, 111–118
initial permissions, 100–101
inode, 92
linking to same file from different directories, 92
for log messages, 160
maintenance functions, 118–120
mmap function, 131–133
/proc file system, 126–130
redirecting error messages into, 22
scanning directories for, 120–125
standard I/O library (stdio.h), 107–111
temporary files, 153–155

file-segment locking. See file-region locking
Filesystem Hierarchy Standard. See FHS
filter programs, 462–463
filters, 2
find command

actions, 65
-depth option, 63
-follow option, 63
magic string parameter for actions, 65
-maxdepths option, 63
-mount option, 63
operators, 64
overview, 62–65
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simple example, 62
syntax, 63
tests, 63–65

find_cat function, 292–293
find_cd function
curses library example, 243–244
shell programming example, 86–87

find_cds function, 355, 361
finding. See find command; grep command
flags

for character and block devices, 723
command line options, 136–137
compiler, 9, 10, 12
global variables as debug flags, 424
GtkDialog dialog, 659
oflags for open system call modes, 99–100,

259–260
for opening FIFOs with open system call, 523–526
sigaction signal interface, 473–474
st_mode flags for fstat, lstat, and stat system

calls, 105–106
termios interface, 181–184

flavors (distributions) of Linux, 4, 803
flock structure
F_GETLK command and, 263
F_SETLK command and, 264
F_SETLKW command and, 264
overview, 262–263

fopen function, 108
for construct
break command with, 50–51
continue command with, 51–52
loop with fixed strings, 38
loop with wildcard expansion, 38–39
syntax, 37

fork system call
creating new threads versus, 477
duplicating a process image and, 455–458
pipe function with, 513–514, 517
waiting for a process and, 458–460
zombie processes and, 460–461

fork1.c program, 457–458
fork2.c program, 460–461
formatted input and output functions

file copy program example, 116–117
other stream functions, 116
overview, 111
printf, fprintf, and sprintf, 112–113
scanf, fscanf, and sscanf, 114–116
stream errors, 117–118
streams and file descriptors, 118

forward slash (/). See slash (/)
fprintf function, 112–113
fputc function, 110–111
fread function, 108–109, 264–265
free function, 256–257
Free Software Foundation, 3, 380
Free Standards Group Web site, 800
freeing memory, 256–257
freopen function, 116
fscanf function, 114–116
fseek function, 110
F_SETLK command, 262–263, 264
F_SETLKW command, 262–263, 264
fsetpos function, 116
fstat system call, 104–106
ftell function, 116
function call tools
cflow, 434, 437–438
ctags, 434, 436
cxref, 434, 436–437

function call tree, 437
function prototypes
curses library example, 234
dbm database example, 285–286

function versioning in kernels, 726
functions. See also libraries; shell functions; system

calls; specific functions
basic (low-level) file functions, 95, 96–107
calling in libraries, 11
in CD database application (shell version), 83
compiler resolution of references to, 9–10
declaring in libraries, 11
for file and directory maintenance, 118–120
for file operations, 730–732
for formatted input and output, 111–118
removing with unset command, 62
for scanning directories, 120–125
shell functions, 47–50
standard I/O library (stdio.h), 107–111
system calls, 94–95, 96–107
unsafe with respect to signals, 466, 474

fwrite function, 109, 264–265

G
gcc (GNU C compiler)
a.out file as default output, 8
curses library and, 206–207
dbm database with, 275–276, 280
directories for, 8
documentation, 14–15
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gcc (GNU C compiler) (continued)
GNU make command and, 378–379
Hello World program example, 7–8
homepage, 801
-I flag, 9
-L flag, 10, 12
libraries with, 9–10
-o name option, 8
obtaining, 7
options for standard tracking, 801–803
POSIX standard and, 7
shorthand notation for libraries, 10, 12
standards, 801–803
usage in this book, 7
warnings generated by, 422

gdb (GNU debugger). See also debugging
backtrace command, 427
break command, 430
command-line shortcuts, 426
commands command, 431
described, 425
display command, 431
examining variables, 427–428
further information, 433–434
info command, 432
listing a program, 428–429
manual page, 434
online help, 425–426, 429–430
patching with, 432–433
print command, 427–428, 430–431
running a program, 426–427
setting breakpoints, 429–432
starting, 425–426
where command, 427

gdbm database, 275, 276. See also dbm database
General Public License (GPL), 4
General Terminal Interface. See GTI; termios

interface
get_artist_id function, 358
getc function, 110
get_cd function, 359–360
get_cdc_entry function

client/server system using FIFOs, 539, 540–541
dbm database example, 296–297

get_cdt_entry function
client/server system using FIFOs, 540
dbm database example, 297

get_cd_tracks function, 360
getchar function, 110

getchoice function
CD database application, 236–237
final version, 198–200
prototype, 172–173

get_confirm function
curses library example, 239
dbm database example, 288–289
shell programming example, 84

getcwd system call, 120
getdate.c program, 606–608, 620–622
getenv function, 142, 143–144
get_free_page function, 761–762
gethostname function, 158, 159–160
getlogin function, 155
getname.c program, 603–605
getnstr function (curses library), 215
getopt function, 138–140
getopt_long function, 140–142
getpid function, 164
getppid function, 164
getpriority function, 166, 168
getpwent function, 157–158
getpwnam function, 156–158
getpwuid function, 156–158
get_return function
curses library example, 246
shell programming example, 84

getrlimit function, 166–167, 168
getrusage function, 166, 168
gets function, 111
getstr function (curses library), 215
get_string function, 239
getuid function, 155, 156–158
GIF files, converting to JPEG, 73
giftojpeg script, 73
The GIMP image manipulation program, 626
Glib type system, 626–627
globbing (wildcard expansion) by shell, 24
GMT (Greenwich Mean Time), 149
gmtime function, 147–148
gmtime.c program, 148–149
GNOME. See also CD database application

(GNOME/GTK+ example); GTK+ Toolkit
CD database application, 663–674
derivation of name, 629
initializing libraries, 652
installing development libraries, 629–630
menus, 653–657
overview, 628–629
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widgets, 652–653
window program, 653

gnome1.c program, 653
gnome_program_init function, 652
GNOMEUIInfo struct, 653–655, 656
GNOMEUIInfoTypes, 654
GNU C compiler. See gcc (GNU C compiler)
GNU Compiler Collection. See gcc (GNU C compiler)
GNU debugger. See gdb

GNU Project, 3–4, 275
GPL (General Public License), 4
gprof execution profiling program, 434, 438
grant command (MySQL), 314–316
greater than symbol (>)

append operator (>), 22
for redirecting output, 21–22
as shell prompt, 24

Greenwich Mean Time (GMT), 149
grep command

for header files, 9
interactive script for finding files, 24
for lines ending with letter e, 68
for lowercase words 10 characters long, 69
meaning of name, 66
options, 66
overview, 66
regular expressions, 67–69
syntax, 66
for three-letter words starting with Th, 68
for words ending with letter a, 68

groff utility for formatting manual pages, 392,
393–394

groups, umask system variable for permissions,
100–101

g_signal_connect function, 633, 635
GTI (General Terminal Interface). See also curses

library; termios interface
data interface and, 178
hardware model, 179–180
main features controlled by, 179
modes, 180
overview, 178–179
restoring settings to values before program started,

181
termios interface, 180–191

GTK+ Toolkit. See also CD database application
(GNOME/GTK+ example); GNOME; widgets
(GTK+)

callback functions, 633–635
CD database application, 663–674

container.c program, 636–638
derivation of name, 626
dialogs, 658–663
displaying a window, 631–632
entry.c program, 640–643
events and event listeners, 632–633
Glib type system, 626–627
GTK+ project homepage, 626
GtkWindow element, 638–639
installing development libraries, 629–630
object system, 627
overview, 626–627
username and password entry window, 640–643
widget container layout program, 636–638
widgets, 635–652

gtk1.c program, 631–632
gtk2.c program, 633–635
GtkBox packing box widgets

adding widgets to packing box, 636
described, 635
GtkHBox (horizontal packing box widget), 635–636
GtkVBox (vertical packing box widget), 635–636
widget container layout program, 636–638

gtk_box_pack_end function, 636
gtk_box_pack_start function, 636
GtkButton widget, 644–645
GtkCheckButton widget, 645, 646–648
gtk_container_add function, 633–635
GtkDialog dialog, 658–660
gtk_dialog_new_with_buttons function, 660
gtk_dialog_run function, 660–661
GtkEntry single-line text entry widget

creating, 640
functions, 640
overview, 639–640
username and password entry window, 640–643

gtk_entry_append_text function, 640
gtk_entry_get_text function, 640
gtk_entry_modify_text function, 640
gtk_entry_new function, 640
gtk_entry_new_with_max_length function, 640
gtk_entry_set_invisible_char function, 640
gtk_entry_set_text function, 640
gtk_entry_set_visibility function, 640
GtkMessageDialog dialog, 662–663
GtkRadioButton widget, 645, 646–648
gtk_radio_button_get_group function, 645
gtk_radio_button_new function, 645
gtk_radio_button_new_with_widget function, 645
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gtk_scrolled_window function, 667
GtkSpinButton widget, 643–644
gtk_spin_button_get_value function, 643
gtk_spin_button_get_value_with_int function,

643
gtk_spin_button_new function, 643
gtk_spin_button_new_with_range function, 643
GtkToggleButton widget, 645, 646–648
gtk_toggle_button_get_active function, 645
gtk_toggle_button_set_active function, 645
GtkTreeView widget

demo application, 648
example program, 650–652
family of widgets, 648–649
MVC design pattern, 649
using, 649–650

gtk_widget_show function, 632
GtkWindow element, 638–639
gtk_window_maximize function, 639
gtk_window_minimize function, 639
gtk_window_new function, 632, 639
gtk_window_present function, 639, 662
gtk_window_resize function, 639
gtk_window_set_default_size function, 639
gtk_window_set_position function, 639
gtk_window_set_sizeable function, 639
gtk_window_set_title function, 639
gtk_window_show function, 639

H
hardware model for GTI, 179–180
has_colors function (curses library), 228
hash sign. See number symbol (#)
header files. See also specific files

for curses library, 206
directories for, 8–9
finding with grep command, 9
multiple header file problems, 365–366
resource limits defined in, 165
for signals, 60, 464
for threads, 480

hello.c program, 7–8
help
gdb (GNU debugger) online help, 425–426,

429–430
info command for, 14, 15
man command for, 14–15

here documents, 73–74

/home directory
FHS standard, 809
in PATH variable, 7
tilde notation for, 92

HOME environment variable, 30, 142
host database functions for sockets, 603–604
hostget.c program, 159–160
hosts, getting information about, 158–160

I
ident command (RCS), 385
Identical Software’s XWPE development environment,

410–411
identifying terminal types, 192–195
IDEs. See development environments
if statement, 35–7
IFS environment variable, 30
in_addr structure, 595
inch function (curses library), 211
inetd (Internet daemon), 608
info command

for gcc documentation, 15
for gdb, 432
overview, 14

inheritsched attribute of threads, 495
init_color function (curses library), 230
initializing

connection handle structure for MySQL in C, 326
curses library, 208, 210
GNOME libraries, 652, 673
GTK+ libraries, 632
LSB system initialization standards, 805–807
RCS control file, 380
semaphores, 485
termios structure, 181

init_pair function (curses library), 228
initscr function (curses library), 210
innstr function (curses library), 211
inode of files, 92
input modes of termios interface, 181–182
insch function (curses library), 211
insert1.c program, 332–334
insert2.c program, 335–336
insert_data.sql file (MySQL), 350–351
insertln function (curses library), 211
insert_title function
curses library example, 240
shell programming example, 84–85
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insert_track function, 84–85
installing
gcc (GNU C compiler), 7
GNOME/GTK+ development libraries, 629–630
manual page source, 394
MySQL, 304–306
Qt, 678–680
reinstalling dbm database, 275
RPM packages, 400

instr function (curses library), 211
instrumentation, 422–424. See also debugging
interface.c program, 665–669
internal shell commands, 50. See also commands

(shell)
Internet daemon (inetd), 608
Internet resources
bash shell download site, 20
BitKeeper, 391
C99 standard, 800
dbm database, 275
development environments, 410, 411, 412, 414–415
Filesystem Hierarchy Standard (FHS), 807
Free Standards Group Web site, 800
function call tools, 436
gcc (GNU C compiler), 7, 801
gCVS, 390
GNU General Public License (GPL), 4
GNU Project, 4
GTK+ project homepage, 626
KDE project homepage, 678
Linux Standards Base (LSB), 803
NPTL background information, 478
Qt source code, 679
splint utility, 434
standards for Linux, 810
Trolltech Web site, 678

Inter-Process Communication facilities. See IPC facili-
ties

interrupt handling by device drivers
allocating an interrupt, 773–774
bottom halves, 776–777
disabling single interrupts, 778–779
getting an appropriate IRQ, 774–775
interrupt defined, 772
IRQ handler, 775–776
overview, 772–773
re-entrancy, 777–778

INTR terminal control character, 184
I/O library. See stdio.h (standard I/O library)

I/O ports and device drivers
atomicity, 779
automated locking, 781
basic spin locks, 780
bottom halves, 776–777
disabling single interrupts, 778–779
interrupt handling, 772–775
IRQ handler, 775–776
overview, 771–772
protecting critical sections, 780–781
reader and writer locks, 780–781
re-entrancy, 777–778

ioctl entry point
for block-driven device drivers, 785
for schar character-driven device driver, 741–743

ioctl system call, 95, 102
Iomap module

assignment of devices in, 768
I/O memory mm, 767
I/O memory mmap, 768–769
ioremap and, 766–767
prefetchable locations, 767
read and write functions, 767–768
source code, 769–770
using, 769–771

IPC (Inter-Process Communication) facilities
CD database application, 579–583
message queues, 573–579, 584
semaphores, 557–566, 583–584
shared memory, 566–573, 584
status commands, 583–584

ipcs commands, 583–584
ipmode.c program, 215–217
isatty system call, 174–175

J
Java language, GUIs and, 625
jiffies variable, 750
Joy, Bill (C shell creator), 21
JPEG files, converting GIF files to, 73

K
K Desktop Environment. See KDE
KAction widget

CD database application, 713
constructor, 708
menus and toolbars combined in, 708
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KAction widget (continued)
objects, 708–709
overview, 708
program example, 709–711

kbhit emulation program, 200–202
kdb kernel debugger, 793–794
KDE (K Desktop Environment). See also CD database

application (KDE/Qt example); Qt
KAction widget for menus and toolbars, 708–711
KDE project homepage, 678
overview, 677–678

KDevelop development environment, 412–414
kernel. See also device drivers

building modules, 725–729
device drivers and, 721, 722–723
directories, 725–726
function versioning, 726
good practices for kernel-level code, 724
kdb kernel debugger, 793–794
kernel timers, 752–755
overview, 796–797
registration by character devices, 730, 734–735
shells and, 19
source code available for, 722
user space versus kernel space, 725
writing device drivers and, 721–722

kernel mode, 724
keyboard control with curses library
ipmode.c program, 215–217
keyboard modes, 215
keypad mode, 225–227
reading the keyboard, 215

keypad function (curses library), 225–226
keypad mode (curses library), 225–227
keypad.c program, 226–227
keystrokes, detecting, 200–202
kill function

redirecting output from, 22
for sending signals, 465, 467

KILL terminal control character, 184, 185
killall function, 465
kmalloc, 762
Korn shell, 21
Kruse, Fred (we developer), 410
ksh shell. See Korn shell
ksymoops tool, 791–792

L
latest_set environment, 53
leaveok function (curses library), 212

less than symbol (<)
for here documents (<<), 73
for redirecting input, 22

LF (line feed character), 174, 191
/lib directory, 9, 809
libraries. See also shared libraries; static libraries; 

specific libraries
compiler instructions for, 9–10
defined, 9, 376
directories for, 9
documentation, 96
filename conventions, 9
installing GNOME/GTK+ development libraries,

629–630
LSB standard libraries, 804–805
managing with make command, 376–377
overview, 95–96
shared, 12–13
shorthand notation for, 10
standard I/O library (stdio.h), 107–111
static, 10–12
tilde notation and, 92
Xlib, 624

limits.c program, 167–169
limits.h header file, 165
line feed character (LF), 174, 191
link system call, 119
linking. See also pipes

to dbm library, 276
to same file from different directories, 92
shell commands, 18, 23, 505–506
to termios interface from curses library, 180

lint utility, 434–436
Linux

defined, 3
distributions, 4, 803
help, 13–15
overview, 3
programming languages available, 5
success of, 1

Linux Standards Base. See LSB
Linux terminal handler, 173–174
list command (GNU debugger), 428–429
listen system call, 596
lists

AND list construct, 44–45
OR list construct, 45–46
piping output to, 18
in shell programming, 44–46
short circuit evaluation, 46
statement blocks, 47
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list_tracks function
curses library example, 244–246
dbm database example, 293
shell programming example, 89

ln command, 92
local keyword for shell function variables, 48
local modes of termios interface, 183–184
localization stage of debugging, 418
localtime function, 149
lock1.c program, 259–260
lock2.c program, 260–261
lock3.c program, 265–266
lock4.c program, 267–269
lock5.c program, 270–273
lockf command, 273
locking files. See file locking
logging
closelog function, 162, 163
controlling priority levels with log masks, 163–164
example messages, 160–161
files and directories for messages, 160
need for, 160
openlog function, 163
setlogmask function, 162, 163
severity levels for log messages, 161
superuser privileges for viewing messages, 161
syslog function, 161–162

logical screen (curses library), 207–208, 230–232
login name, getting for current user, 155
logmask.c program, 163–164
long option structure, 141–142
loops. See also for construct; until statement;

while construct
alarm example, 41
arithmetic substitution with, 40
break command with, 50–51
continue command with, 51–52
with fixed strings, 38
password-checking example, 39–40
with wildcard expansion, 38–39

ls command, 21, 65
LSB (Linux Standards Base)

distributions certified by, 803
standard libraries, 804–805
system initialization standards, 805–807
users and groups standards, 805
Web sites, 803

lseek system call, 104
lstat system call, 104–106

M
macros
assert, for testing assumptions, 439–440
C preprocessor, for debugging, 422–424
c_cflag member of termios interface, 183
c_iflag member of termios interface, 181–182
c_lflag member of termios interface, 183–184
c_oflag member of termios interface, 182–183
fd_set structure, 613
fstat, stat, and lstat system call, 106
GNOME menu, 656–658
makefile, 370–371
RCS, 383–384
schar character-driven device driver, 733, 737
thread re-entrance, 480

magic string for find actions, 65
main function declaration in C, 135–136
main.c program, 673–674
main.cpp program, 719–720
make command. See also makefiles

GNU implementation, 378–379, 385
managing libraries, 376–377
with multiple targets, 372–373
need for, 366
options and parameters, 367
passing the target name as a parameter, 367
RCS and, 385
subdirectories and, 378
using makefile with macros, 370–371
using simple makefile, 368–370

makefiles. See also make command
built-in (inference) rules, 374
comments, 370
defined, 366
dependencies, 366, 367
macros, 370–371
Makefile1 example, 368–370
Makefile2 example, 370–371
Makefile3 example, 372–373
Makefile4 example, 374
Makefile5 example, 376–377
managing libraries, 376–377
multiple targets, 372–373
qmake utility for (Qt), 707
rules, 366, 368
simple example, 368–370
subdirectories and, 378
suffix and pattern rules, 375–376
syntax, 366
target, 366, 367
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malloc library
allocating all physical memory, 251–252
allocating available memory, 252–254
checking the return from, 254
memory debugging and, 440–441
simple memory allocation, 250–251
writing past the end of the allocated block, 254–255

man command, 14–15
manual page creation
groff utility for formatting, 392, 393–394
installing source for, 394
layout, 391–392
nroff utility for formatting, 392
simple example, 392–393

memory debugging
ElectricFence library for, 441–442
malloc library and, 440–441
operating system detection and, 420–421
valgrind tool for, 442–444

memory management. See also memory management
in device drivers

allocating all physical memory, 251–252
allocating available memory, 252–254
allocating memory that can be freed, 257
changing block size for allocated memory, 258
demand paged virtual memory system, 253
freeing memory, 256–257
memory abuse protection, 254–255
need for, 249
null pointer, 255–256
simple memory allocation, 250–251
writing past the end of the allocated block, 254–255

memory management in device drivers
address space, 759–760
allocating memory for driver usage, 761–763
bus addresses, 760
copy_from_user function, 764
copy_to_user function, 764
get_free_page function, 761–762
I/O memory, 766–771
Iomap module, 766–771
kmalloc for, 762
moving larger amounts of data, 764
physical addresses, 760
simple memory mapping, 765–766
transferring data between user and kernel space,

763–764
types of memory locations, 760
virtual addresses, 760
virtual memory areas, 759

virtual to physical address translation, 758
vmalloc for, 762–763

memory sharing, 131–134
memory1.c program, 250–251
memory2.c program, 251–252
memory3.c program, 252–254
memory4.c program, 254–255
memory5a.c program, 255
memory5b.c program, 256
memory6.c program, 257
menu routines in C

handling redirected output, 174–176
ignoring additional line feed character, 174
reading and writing directly to terminal, 176–178
reading characters when typed, 190–191
screenmenu.c program, 198–200
total terminal control, 198–200

menu1.c program
C routine, 172–173
GNOME program, 655–657

menu2.c program
C routine, 175–176
GNOME program, 657–658

menu3.c program (C routine), 176–178
menu4.c program (C routine), 190–191
menus (GNOME)

CD database application, 665–666
creating drop-down menu bar, 653–655
GNOMEUIInfo struct, 653–655, 656
GNOMEUIInfoTypes, 654
macros for, 656–658

menus (KDE). See KAction widget
message dialog boxes (GTK+), 662–663
message queues

adding a message, 574–575
control functions, 576
creating and accessing, 574
IPC status commands, 584
msg1.c program (receiver), 577, 579
msg2.c program (sender), 578–579
msgctl function, 576
msgget function, 574
msgrcv function, 575–576
msgsnd function, 574–575
named pipes versus, 573
overview, 573–574
retrieving messages, 575–576
using, 576–579

MIN values of terminal control characters, 185–186
Minix (small UNIX-like system), 3
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mkdir system call, 119–120
mkfifo command, 521
mknod command, 521
mkstemp function, 154–155
mktemp function, 154–155
mktime function, 149
mmap function, 131–133
/mnt directory, 809
modal dialogs

GTK+, 660–661
Qt, 701, 702–703

more command redirection, 22
mounting CD-ROM devices, 93
move function (curses library), 212
moveadd.c program, 212–214
MSG macro (schar driver), 733
msg1.c program, 577, 579
msg2.c program, 578–579
msync function, 132
multiple source file problems, 365–366
multitasking environment

file locking and, 258
overview, 135
processes and, 446–447

multiw1.c program, 219–222
munmap function, 132
mutexes

basic functions, 490
defined, 485
manual page, 490

mvwin function (curses library), 218–219
myapp.spec file, 403–407
myisamchk utility, 311
my_name script, 49–50
mypid static variable, 538
MySQL. See also C interface for MySQL data; CD

database application (MySQL example)
accessing data from C, 325–346
administration commands, 310–314
alternative applications, 303
app_test.c program, 354–355
AUTO_INCREMENT keyword, 320
backing up data, 313–314
bug report generation, 313–314
CD database application, 347–363
checking and repairing data tables, 311
checking data for reasonableness, 351–352
checking if server is running, 306
checking status of running server, 307
checking version, 307

connection routines for C, 326–330
creating a database, 316–317
creating a table, 319–321
creating tables, 348–350
creating users, 308–310
data types, 318–319
defining primary keys, 320, 321
development of, 303
error handling in C, 330–331
executing SQL statements that return data, 336–340
executing SQL statements that return no data,

331–336
grant command, 314–316
granting user permissions, 314–316
graphical tools, 322–325
importing data from input file, 314
inserting data in tables, 321
installing, 304–306
languages supported, 325–326
migrating data, 313–314
miscellaneous C language functions, 346
myisamchk utility, 311
mysql command line tool, 311–312
MySQL Control Center (MySQLCC), 322–325
mysqladmin utility, 312
mysqlbug utility, 313–314
mysqldump command, 313–314
MySQLGUI utility, 306, 322
mysqlimport utility, 314
mysqlshow utility, 314
NULL keyword, 320
parameters for commands, 310–311
password administration, 316–317
PostgreSQL versus, 303
post-install configuration, 306–310
post-install troubleshooting, 310
precompiled packages, 304–306
PRIMARY KEY keyword, 320
processing returned data in C, 340–346
removing nonroot users, 308
revoke command, 316
revoking user permissions, 316
run levels, 305
security setup, 307–310
setting root password, 307–308
viewing installation information, 314
viewing permissions table, 307–308

mysql command line tool, 311–312
mysqladmin utility, 312
mysql_affected_rows function, 332, 334
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mysqlbug utility, 313–314
MySQLCC (MySQL Control Center), 322–325
mysql_close routine, 327
mysqld processes, 306
mysql_data_seek function, 338
mysqldump command, 313–314
mysql_fetch_field function, 342–343
mysql_fetch_row function, 338
mysql_field_count function, 341
mysql_free_result function, 338
MySQLGUI utility, 306, 322
mysqlimport utility, 314
mysql_init routine, 326
mysql_options routine, 327–328
mysql_real_connect routine, 326–327, 333–334
mysql_row_seek function, 338
mysql_row_tell function, 338
mysqlshow utility, 314
mysql_store_result function, 337, 340
mysql_use_result function, 339–340

N
name space, 726
named pipes. See FIFOs
naming conventions

library, 9, 13
RPM package, 400
TAR file, 397–398

naming sockets, 596
Native POSIX Thread Library (NPTL), 478
ncurses implementation of curses, 206–207. See

also curses library
ndbm database, 275. See also dbm database
netstat command, 601
New Generation POSIX Threads (NGPT), 478
newline character, 53–54, 174
newpad function (curses library), 231
newwin function (curses library), 217–218
NGPT (New Generation POSIX Threads), 478
nice command, 451
niceness of processes, 450–451
nocbreak function (curses library), 215
noecho function (curses library), 215
non-canonical mode, 174
nonmodal dialogs

GTK+, 661–662
Qt, 701, 703

noraw function (curses library), 215
NPTL (Native POSIX Thread Library), 478

nroff utility for formatting manual pages, 392
null device, 94
NULL keyword (MySQL), 320
null pointer, memory management and, 255
number data types (MySQL), 318–319
number symbol (#)

for comments in RPM spec files, 403
for comments in shell scripts, 25
environment variable ($#), 30

O
object-oriented (OO) programming, 627
oflags for open system call modes, 99–100,

259–260
ok command, 65
on_about_activate function, 672
on_addcd_activate function, 672
on_search_button_clicked function, 671
OO (object-oriented) programming, 627
OOM (out of memory) killer, 254
Oops tracing, 790–792
The Open Group (UNIX administrators), 2
open system call

creating a lock file, 259–260
defined, 95
documentation, 99
file copy program example, 102–104
initial permissions, 100–101
oflags for modes, 99–100, 259–260
opening FIFOs, 523–526
overview, 98–99
return values, 99
syntax, 98

opendir function, 121
opening

directory and establishing a stream, 121
file descriptor for logging, 163
files and associating streams, 108
files or devices, 95, 98–101
low-level file descriptors, 118
reusing file streams, 116

openlog function, 163
operators

append (>), 22
find command, 64
parameter-matching, with braces, 71–73

/opt directory, 6, 809
OR list construct, 45–46
ouch signal-handling function, 465–466, 467
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out of memory (OOM) killer, 254
output modes of termios interface, 182–183
ownership, changing, 119

P
packet-driven device drivers, 729
packing box widgets (GTK+). See GtkBox packing box

widgets
pad structure (curses library), 230–232
pad.c program, 231–232
pair_content function (curses library), 228
parameter variables

script example using, 31–32
set command for, 58–59
shift command for, 59
table of, 30

parent processes
defined, 450
pipe function and, 514–516

parentheses [( )]
$ (command) syntax, 38–39, 69–70
$ (( )) construct, 40, 57, 70

passing arguments to programs. See program 
arguments

passwords
extracting information from passwd database,

156–158
getpwnam function, 156–158
getpwuid function, 156–158
MySQL password administration, 316–317
MySQL root password, 307–308
passwd database structure, 156
scanning all password information, 157–158
simple password-checking program, 39–40
termios structure for password-checking program,

189–190
turning echoing off, 187
username and password entry window, 640–643

patch program for updates, 395–397
patching with the gdb, 432–433
PATH environment variable, 6, 7, 26, 30
paths in comment lines, 25
pattern rules for makefiles, 375–376
pclose function, 506, 507
pdksh shell. See Korn shell
Perens, Bruce (ElectricFence developer), 441
performance

external versus internal shell commands and, 50
scripts within scripts and, 47
system calls and, 95

period (.). See dot (.)
permissions

changing with chmod system call, 118
granting MySQL user permissions, 314–316
initial, for file creation, 100–101
O_CREAT flag parameters for, 100
revoking MySQL user permissions, 316
umask system variable for, 100–101
viewing MySQL permissions table, 307–308

perror function, 126
pexec.c program, 454–455
PID (process identifier), 129–130, 446
pipe function

creating a pipe, 512–513
differing child and parent processes, 514–516
errors, 511
file descriptors and, 512, 516–517
fork call with, 513–514, 517
overview, 511–512
prototype, 511

pipe symbols for OR list construct (| |), 45–46. 
See also pipes

pipe1.c program, 512–513
pipe2.c program, 513–514
pipe3.c program, 515, 516
pipe4.c program, 515–516
pipe5.c program, 518–520
pipe_imp.c pipes implementation file
client_ending function, 552
client-side functions, 552–554
client_starting function, 552
end_resp_from_server function, 554
end_resp_to_client function, 551
header, 549
read_request_from_client function, 550
read_resp_from_server function, 553
send_mess_to_server function, 552–553
send_resp_to_client function, 551
server_ending function, 550
server-side functions, 549–551
server_starting function, 549
start_resp_from_ server function, 553
start_resp_to_client function, 551

pipes. See also CD database application 
(client/server system using FIFOs); 
FIFOs (named pipes); specific functions

CD database application, 533–554
creating with pipe function, 512–513
data consumer program, 515–516
data producer program, 515, 516
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pipes (continued)
defined, 505
differing child and parent processes, 514–516
duplicate filenames and, 23
exec function, 514–516
to file, 18
file descriptor manipulation, 517–520
fork call with pipe function, 513–514, 517
invoking a shell, 510–511
linking shell commands, 18, 23, 505–506
named (FIFOs), 520–533
overview, 23
pclose function, 506, 507
pipe function, 511–517
popen function, 506–511
to printer, 18
process pipes, 506–508
reading closed pipes, 516–517
reading large amounts of data, 509–510
reading output from external program, 507–508
sending output to external program, 508
as standard input and output, 517–520

platform-independent windowing APIs, 625
poll system call, 744
popen function

implementation, 510
invoking a shell, 510–511
overview, 506–507
prototype, 506
reading large amounts of data, 509–510
reading output from external program, 507–508
sending output to external program, 508

popen1.c program, 507–508
popen2.c program, 508
popen3.c program, 509–510
popen4.c program, 510–511
pop_tables.sql file (MySQL), 352
portability of device drivers, 795–796
POSIX standard

C compiler names and, 6
threads and, 478

POSIX threads. See threads
PostgreSQL RDBMS application, 303
pound sign. See number symbol (#)
prefresh function (curses library), 231
PRIMARY KEY keyword (MySQL), 320
print command
find command action, 65
GNU debugger, 427–428, 430–431

printdir function, 122–125

printf command
conversion specifiers, 58
for debugging without recompiling, 424
echo command versus, 53
escape sequences supported, 57–58
format string, 57, 58
overview, 57–58
as shell command, 57–58
syntax, 57

printf family of functions, 112–113
printf function (curses library), 207–208
printing, shell programming for, 18
printw function (curses library), 210
/proc file system

directory listing example, 126–127
numerically named subdirectories, 129–130
overview, 126
/proc/cpuinfo, 127
process identifiers, 129–130
processes and, 447
/proc/meminfo, 127–128
/proc/net/sockstat, 128
/proc/sys/fs/file-max, 128–129
/proc/version, 127–128
schar driver interface, 748–750
writing files, 128

process identifier (PID), 129–130, 446
process table, 447
process_command function, 545, 546–547
processes. See also IPC (Inter-Process Communication)

facilities; signals (UNIX); sockets; threads
child processes, 450, 514–516
defined, 96, 445–446
duplicating a process image, 455–458
exec functions, 453–455
importance of, 445
input and output redirection, 462–463
inter-process communication with FIFOs, 527–529
multiuser, multitasking operating systems and,

446–447
niceness of, 450–451
parent processes, 450, 514–516
pexec.c program, 454–455
PID (process identifier), 446
/proc file system, 126–130, 447
process structure, 446–451
process table, 447
program counters, 447
replacing a process image, 453–455
scheduling, 450–451
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sending signals to, 465, 467–471
shared libraries and, 447
shared programs and, 446–447
stack space, 447
starting new processes, 451–453
system processes, 449–450
threads as class of, 463
viewing, 447–448
wait.c program, 458–460
waiting for a process, 458–460
zombie processes, 460–461

prof execution profiling program, 434, 438
program arguments

command line options, 136–137
consistent use of, 136–137
getopt function, 138–140
getopt_long function, 140–142
in main function, 135, 136
program that examines its own arguments, 137

program counters, processes and, 447
programming languages available for Linux, 5
prompt (shell), 24, 30
protocols

socket, 593, 594, 595
X Protocol, 624

ps command
PIDs displayed by, 446
system library function for running, 452–453
viewing processes using, 447–448

PS1 and PS2 environment variables, 30
pseudo-terminals, 204
pthread_attr_init function, 494
pthread_create function, 480, 481, 483
pthread_exit function, 481
pthread.h header file, 480
pthread_join function, 481, 483
pthread_mutex_destroy function, 490
pthread_mutex_init function, 490
pthread_mutex_lock function, 490
pthread_mutex_unlock function, 490
putc function, 110–111
putchar function, 110–111
putenv function, 142, 143–144
putp function, 197

Q
QBox layout widgets, 713
QBoxLayout classes (Qt), 686–687
QButton button base class, 691–692

QCheckBox widget, 692–693
QComboBox widget

constructors, 697
inserting items, 696
InsertionPolicy, 696–697
overview, 695–696
program example, 697–698
read/write versus read-only, 696

QDialog dialog base class, 701–702
QInputDialog dialog, 705–707
QLayout classes (Qt), 685
QLineEdit single-line text entry widget

constructors, 688
EchoMode property, 688
inputMask, 688–689
overview, 688
program example, 689–691

QListView widget, 699–701, 714–715
qmake utility (Qt), 707
QMessageBox modal dialog, 704–705
QPushButton generic button widget, 692
QRadioButton widget, 693–694
Qt. See also CD database application 

(KDE/Qt example); KDE (K Desktop 
Environment); widgets (Qt)

buttons program example, 694–695
CD database application, 711–720
connecting button signal to slot, 683–686
dialogs, 701–707
downloading source code, 679
installing, 678–680
overview, 678
QBoxLayout classes, 686–687
QLayout classes, 685
qmake for writing makefiles, 707
Qt Free versus Qt Professional, 678
qt1.cpp program, 680–681
signals and slots, 681–686
simple window creation program, 680–681
Trolltech Web site, 678
widgets, 688–701

qt1.cpp program, 680–681
QTDIR environment variable, 679
question mark (?) as single-character wildcard, 24
QUIT terminal control character, 184
quit_app function, 669
quotation marks (“)

in shell programming, 28–29
with variables, 28–29
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R
radimo RAM disk module

buffer cache, 788
check_media_change function, 785
definitions, 782–783
ioctl entry point, 785
registering the device, 784–785
request function, 782, 786–788
size issues, 783
using, 789

RAM disk module. See radimo RAM disk module
raw function (curses library), 215
RCS (Revision Control System)
ci command, 381
co command, 381–382
directory for files, 380
editing files, 381–382
finding versions containing $Id$ string, 385
further information, 385
GNU make command and, 385
ident command, 385
identifying revisions, 383–384
initializing the RCS control file, 380
macros, 383–384
overview, 380
rcs command, 380–381
rcsdiff command, 383
reading files, 381
rlog command, 382–383
SCCS versus, 386
storing the current version, 381
viewing changes between two revisions, 383
viewing summary of changes, 382–383

rcs command (RCS), 380–381
rcsdiff command (RCS), 383
RDBMS application. See MySQL
read command, 28
read system call

defined, 95
FIFOs and, 526
file copy program example, 102–104
file-region locking and, 264–265
overview, 97–98
return values, 97
simple example, 98
syntax, 97

readdir function, 121
reading. See also pipes

character-driven devices, 736–737, 740–741
characters when typed on terminal, 190–191

closed pipes, 516–517
data from file streams, 108–109
default streams, 171
directly from terminal, 176–178
directories, 121
empty FIFO, 522–523
external program output, 507–508
file locking and, 264–269
from files or devices, 95, 97–98
files under RCS control, 381
from keyboard using curses library, 215
from screen using curses library, 211
strings from file streams, 111

read_one_response function, 540
read_request_from_client function

client/server system using FIFOs, 550
IPC facilities example, 581

read_resp_from_server function
client/server system using FIFOs, 553
IPC facilities example, 582–583

realloc function, 257, 258
redirection
/dev/tty device and, 93
filter program for, 462–463
of input, 22
menu routine handling redirected output, 174–176
nonclobber option, 21–22
of output, 21–22
processes and, 462–463
in shell programming, 21–22

re-entrant routines for threads, 479–480
refresh function (curses library), 207–208, 210
registering devices with the kernel

block devices, 784–785
character devices, 730, 734–735

regular expressions, 67–69. See also grep command
reinstalling dbm database, 275
remote debugging for device drivers, 794
remove function, 116
remove_cd function, 241–242
remove_records function, 88
remove_tracks function, 242
removing. See also destroying

canceling threads, 498–501
clearing the screen using curses library, 212
debug information from executable files, 425
directories, 120
directories from PATH variable, 6
files with unlink system call, 119
MySQL nonroot users, 308
pads (curses library), 231
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sockets, 591
trailing newline character, 54
variables or functions from the environment, 62
write access from shell scripts, 27

renice command, 451
replacing a process image, 453–455
request function (block-driven device drivers), 782,

786–788
resource limits

altering priorities, 166
CPU time, 165–166
defined in limits.h header file, 165
implementation limits, 164
physical limits, 164
program example, 167–169
reading for system resources, 166–167
system resources that can be limited, 167

return command, 48–50, 58
reusability

libraries of functions and, 9
as UNIX characteristic, 2, 18–19

Revision Control System. See RCS
revoke command (MySQL), 316
rewind function, 116
Ritchie, Dennis (C and UNIX developer), 5
rlimit structure, 166–167
rlog command (RCS), 382–383
rmdir system call, 120
/root directory, 92, 809
rpm command, 400
RPM (RPM Package Manager) packages. See also

spec file for RPM packages
advantages, 399
architecture, 400
binary RPM filename, 409
building with rpmbuild command, 407–409
converting to dpkg format, 410
creating the spec file, 403–407
directories for building, 402–403
gathering the software, 401–403
installing, 400
naming conventions, 400
process for building packages, 401
rpm command, 400
source RPM filename, 409
TAR files for, 401–402
version dependence, 400

rpmbuild command, 407–409
rules (makefile), 366, 368, 374, 375–376
run command (GNU debugger), 426–427

run levels (MySQL), 305
running programs from a shell, 6
rusage structure, 165, 166

S
SAK (System Attention Key) or Sys Rq key, 793
/sbin directory, 6, 809
scanf functions, 114–116
scanning directories, 120–122
SCCS (Source Code Control System), 386
schar character-driven device driver

behavior of, 750
checking user rights, 744
current macro, 737
declarations, 732–733
described, 732
init_module, 734
ioctl entry point, 741–743
llseek implementation, 741
module parameters, 747–748
module usage count, 735
MSG macro, 733
nonblocking reads, 740–741
proc file system interface, 748–750
reading and writing to, 745–746
reading the device, 736–737, 740–741
registering the device, 734–735
seeking, 741
sysctl entries, 748–749
task structure, 737–738
timer implementation, 754–755
wait queues, 738–739, 744
writing to the device, 739–740

schar_ioctl function, 743
schar_ioctl.c program, 746–747
schar_open function, 735–736
schar_poll function, 744
schar_read function, 736–737, 740–741
schar_release function, 736
schar_write function, 739–740
schedparam attribute of threads, 495, 497–498
schedpolicy attribute of threads, 495, 497–498
scheduling processes, 450–451
scope attribute of threads, 495
screen control with curses library. See also windows

(curses library)
character attributes, 212
clearing the screen, 211
color support, 227–230
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screen control with curses library (continued)
initialization, 210
logical screen, 207–208, 230–232
moveadd.c program, 212–214
moving the cursor, 212
pad structure, 230–232
reading from the screen, 211
simple example, 208–209
subwindows functions, 223–225
termination, 210
two-level approach, 207–208
updating the screen, 210–211
windows functions, 217–223

screenl.c program, 208–209
screenmenu.c program, 198–200
scripts, 5. See also shell scripts
scroll function (curses library), 219
scrollok function (curses library), 219
search_cdc_entry function

client/server system using FIFOs, 543–544
dbm database example, 299–301

searching. See find command; grep command
seekdir function, 122
select system call, 613–616
select1.c program, 338–339
select2.c program, 341–342
select3.c program, 342–343
select.c program, 614–616
semaphore_p function, 564, 565
semaphores

binary, 485, 558–559
changing value of, 561–562
controlling values of, 486, 562
creating, 485, 561
defined, 485
destroying, 486
general, 558
interface function sets, 485
introduction of, 558
IPC status commands, 583–584
Linux functions, 560–562
obtaining key from, 561
P and V notation, 558, 559
semctl function, 560, 562
sem_destroy function, 486
semget function, 560, 561
sem_init function, 485
semop function, 560, 561–562
sem_post function, 486
sem_wait function, 486

simple program example, 563–566
theoretical example, 559–560
thread synchronization using, 485–489
using, 563–566

semaphore_v function, 564, 565
sem1.c program, 563–566
semctl function, 560, 562
sem_destroy function, 486
semget function, 560, 561
semicolons (;;) separating case construct patterns, 41
semimodal dialogs (Qt), 702, 703–704
sem_init function, 485
semop function, 560, 561–562
sem_post function, 486
sem_wait function, 486
send_mess_to_server function

client/server system using FIFOs, 552–553
IPC facilities example, 582

send_resp_to_client function
client/server system using FIFOs, 551
IPC facilities example, 581

server1.c program, 590–592
server2.c program, 600–601
server3.c program, 602
server4.c program, 610–612
server5.c program, 616–619
server.c program, 530–531
server.c server interface

global variable declaration, 544–545
main function, 545–546
process_command function, 545, 546–547

server_ending function
client/server system using FIFOs, 550
IPC facilities example, 580–581

server_starting function
client/server system using FIFOs, 549
IPC facilities example, 580

set command
debug options for shell scripts, 75
exporting environment variables, 56
nonclobber option (-C), 21–22
setting parameter variables, 58–59
as shell command, 58–59
tracing script execution, 59, 75

setCaption method (Qt), 683–686
setlogmask function, 162, 163
set_menu_choice function, 84
setpriority function, 166
setpwent function, 158
setrlimit function, 166–167, 168

840

screen1.c program

c544977 Index.qxd  12/1/03  8:57 AM  Page 840



set_semvalue function, 564
setsockopt function, 609–610
setupterm function, 195–196
setvbuf function, 116
shared files, locking regions of, 262–264
shared libraries

dynamic-link libraries and, 13
filename conventions, 9, 13
overview, 12–13
processes and, 447
shorthand notation for, 10, 12
static libraries versus, 12–13
versions, 13

shared memory
control functions, 569–570
creating, 568
defined, 567
detaching, 569
enabling access, 568–569
IPC status commands, 584
overview, 566–568
shmat function, 568–569
shmctl function, 569–570
shmdt function, 569
shmget function, 568
using, 570–573

shared programs, processes and, 446–447
shell functions. See also functions

defining, 47
local variables, 48
passing parameters from scripts, 48
returning values, 48–50
simple example, 47–48

shell programming. See also CD database application
(shell programming example)

accessing terminal modes, 186–187
CD database application example, 80–90
command execution, 69–73
commands, 50–69
conditions, 32–34
control structures, 35–44
creating scripts, 25–26
debugging scripts, 75
dialog utility, 76–80
examples in Linux system, 19
functions, 47–50
here documents, 73–74
interactive programs, 23–25
lists, 44–46
making scripts executable, 26–27

pipes, 23
quotes in, 28–29
reasons for, 18
redirecting input, 22
redirecting output, 21–22
restoring termios to standard state, 186–187
shells, 19–21
statement blocks, 47
UNIX philosophy and, 18–19
variables, 28–32

shell scripts
for changing environment settings, 53
comments, 25
creating, 25–26
debugging, 75
dialog utility for, 76–80
executing, 26
killing processes from, 22
for large programs, 47
making executable, 26–27
passing inputs to commands from, 73–74
removing write access from, 27
scripts within, 47

shells. See also bash shell; shell programming; 
specific shells

defined, 19
kernel and, 19
overview, 19–21
replacing using exec command, 54
setting for users, 20
standard Linux shell, 19
Windows command prompt versus, 19

shift command, 59
shm1.c program, 570–571, 573
shm2.c program, 571–573
shmat function, 568–569
shmctl function, 569–570
shmdt function, 569
shmget function, 568
short circuit evaluation, 46
show_menu function, 287–288
sigaction signal interface

flags, 473–474
overview, 470–471

sigaddset function, 472
sigdelset function, 472
sigemptyset function, 472
sigfillset function, 472
sigismember function, 472
signal function, 465, 467
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signal.h file, 60, 464
signals (Qt)

class definition for, 682
connecting slots to, 682
emitting, 682
overview, 681
program example, 683–686
restrictions, 681
widgets for, 682

signals (UNIX)
for alarm clock facility, 467–469
alarm.c program, 468–469
common signal reference, 474–476
defined, 60, 463
functions unsafe with respect to, 466, 474
importance of, 445
important signals, 60
kill function for sending, 465, 467
killall function for sending, 465
names of common signals, 464
names versus numbers for, 60
ouch signal-handling function, 465–466, 467
overview, 463–464
processes and, 464
sending to processes, 465, 467–471
sets, 471–473
sigaction flags, 473–474
sigaction interface, 470–471
signal function, 465, 467
signal.h file, 60, 464
signal-handling program, 465–467
trap command with, 60–61
trapping the EXIT signal, 75

sigpending function, 472–473
sigprocmask function, 472
sigsuspend function, 473
simple_read.c program, 98
simple_write.c program, 97
simultaneous execution of threads, 483–484
The Single UNIX Specification, 2
single-line text entry widgets
GtkEntry (GTK+), 639–643
QLineEdit (Qt), 688–691

slash (/) for fixing program name and directory (./), 7
Sleepycat Software’s dbm database implementation,

275
slots (Qt)

class definition for, 682
connecting to signals, 682
implementing, 683

overview, 681
program example, 683–686
restrictions, 681
widgets for, 682

.so files. See shared libraries
sockaddr_in structure, 595
sockaddr_un structure, 595
socket system call, 594–595
sockets. See also datagram sockets
accept system call, 597
accepting connections, 597
addresses, 595
attributes, 592–594
bind system call, 596
close system call, 598
closing, 598
communications, 598–601
connect system call, 597–598
connecting to a standard service, 606–608
connections overview, 588
creating socket queues, 596
creating sockets, 594–595
datagram sockets, 593, 619–622
defined, 588
directories, 588
domains, 592, 594
errors, 596
getdate.c program, 606–608
getname.c program, 603–605
getting host computer information, 603–605
host and network byte ordering, 601–602
host database functions, 603–604
Internet daemon (inetd), 608
introduction of, 587
listen system call, 596
multiple clients, 610–619
naming, 596
network client, 599–600
network information, 602–610
network server, 600–601
options for controlling behavior, 609–610
protocols, 594, 595
removing, 591
requesting connections, 597–598
select system call, 613–616
select.c program, 614–616
server for multiple clients, 610–612, 616–619
setsockopt function, 609–610
simple local client, 588–589
simple local server, 590–592
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socket system call, 594–595
stream sockets, 593
telephone exchanges compared to, 619
testing file descriptors for readiness, 613–614
viewing network connections, 601
Windows Sockets (WinSock), 587

source code control. See CVS (Concurrent Version 
System); RCS (Revision Control System); 
Source Code Control System (SCCS)

Source Code Control System (SCCS), 386
spec file for RPM packages
%build section, 405
Buildroot, 405
%clean target, 406
comments, 403
defining sources, 404–405
definitions, 403
%description section, 404
%files section, 406
%install section, 405
%post script, 406
%prep section, 405
Provides setting, 404
Requires settings, 404
sources for examples, 403
Summary, 404

special control characters of termios interface
canonical mode array indices, 184
characters, 185
non-canonical mode array indices, 184–185
overview, 184
TIME and MIN values, 185–186

specification errors, 417. See also debugging
splint utility, 434
sprintf function, 112–113
SQL. See also MySQL

commercial RDBMS products, 303
for dbm database tables, 283
PostgreSQL RDBMS application, 303

square brackets. See brackets ([ ])
sscanf function, 114–116
stabilization stage of debugging, 418
stack space for processes, 447
stack tracing, 427
stacksize attribute of threads, 495
Stallman, Richard (free software pioneer), 3
standard I/O library. See stdio.h

standards for Linux
C programming language, 800
Filesystem Hierarchy Standard (FHS), 807–810

Free Standards Group Web site, 800
further information, 810
GNU Compiler Collection, 801–803
interfaces and the LSB, 803–807
need for, 799

standend function (curses library), 212
standout function (curses library), 212
START terminal control character, 184
start_color function (curses library), 228
starting
gdb (GNU debugger), 425–426
new processes, 451–453

start_resp_from_ server function, 553
start_resp_to_client function

client/server system using FIFOs, 551
IPC facilities example, 583

stat system call, 104–106
statement blocks in shell programming, 47
static analysis for debugging, 434
static libraries

calling functions in, 11
creating, 10–12
declaring functions in, 11
filename conventions, 9, 10
shared libraries versus, 12–13
shorthand notation for, 10, 12
using, 12

stderr file stream, 107
stdin file stream, 107
stdio.h (standard I/O library)
fclose function, 109
fflush function, 109–110
fgetc function, 110
fgets function, 111
file streams, 107
fopen function, 108
fputc function, 110–111
fread function, 108–109
fseek function, 110
fwrite function, 109
getc function, 110
getchar function, 110
gets function, 111
overview, 107
putc function, 110–111
putchar function, 110–111

stdout file stream, 107, 174–175
stdscr data structure (curses library), 207, 217
STOP terminal control character, 184
stream sockets, 593. See also sockets
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streams. See directory streams; file streams
strerror function, 125
strftime function, 150–153
strftime.c program, 152–153
strip function, 425
strip_return function, 294
strptime function, 151–153
stty command, 186–187
subscl.c program, 223–225
subwin function (curses library), 222
suffix rules for makefiles, 375
supervisor mode. See kernel mode
SUSP terminal control character, 184
switches. See command line options
symlink system call, 119
synchronization of threads. See also mutexes;

semaphores
mutexes method, 485, 490–493
semaphores method, 485–489

Sys Rq key or System Attention Key (SAK), 793
syslog function, 161–162
sys/resource.h header file, 165, 167
System Attention Key (SAK) or Sys Rq key, 793
system calls. See also specific functions
accept, 597
bind, 596
chdir, 120
chmod, 118
chown, 119
close, 95, 101–102, 598
connect, 597–598
creat, 99
defined, 94
documentation, 95
dup and dup2, 106–107
fcntl, 130–131, 262–266, 517
file copy program example, 102–104
fork, 455–461, 477, 513–514, 517
fstat, 104–106
getcwd, 120
initial permissions, 100–101
ioctl, 95, 102
isatty, 174–175
link, 119
listen, 596
lseek, 104
lstat, 104–106
mkdir, 119–120
open, 95, 98–101, 259–260, 523–526
performance and, 95

poll, 744
read, 95, 97–98, 264–265, 526
rmdir, 120
select, 613–616
socket, 594–595
stat, 104–106
symlink, 119
uname, 158–159
unlink, 119
write, 95, 96–97, 264–265, 526

system console device file, 93
system library function, 451–453
system processes, 449–450
system1.c program, 452, 453
system2.c program, 452–453

T
tables (MySQL), 319–321
Tanenbaum, Andy (Minix developer), 3
TAR (tape archive) files

for RPM packages, 401–402
for software distribution, 397–399, 410

task queues for device drivers, 756–758
tcdrain function, 188
tcflow function, 188
tcflush function, 188
tcgetattr function, 181, 188
Tcl/Tk scripting language, 625
TCP/IP (Transmission Control Protocol/Internet 

Protocol), 593
tcsetattr function, 181, 188
tcsh shell. See C shell
telldir function, 122
temporal data types (MySQL), 319
temporary files

naming and opening with mkstemp function, 154–155
naming and opening with tmpfile function, 153–154
naming with mktemp function, 154–155
naming with tmpnam function, 153, 154
need for, 153

TERM environment variable, 192–193
terminals. See also curses library; GTI (General 

Terminal Interface); termios interface
canonical versus non-canonical modes, 173–174
detecting keystrokes, 200–202
determining if file descriptor is associated with,

174–175
/dev/tty device, 94, 176–178
GTI (General Terminal Interface), 178–191
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identifying terminal types, 192–195
kbhit emulation program, 200–202
line speed, 187–188
pseudo-terminals, 204
querying the shell about, 192–193
reading and writing directly to, 176–178
reading characters when typed, 190–191
restoring settings to values before program started, 181
sample menu program, 172–173
setting up the terminal type, 195–196
software emulation of, 192
terminfo capabilities, 195–198
total terminal control program example, 198–200
turning echoing off, 187
types of, 191–192
virtual consoles, 202–204

terminfo package
adding new terminals, 195
attributes, 193
Boolean capabilities, 194
capnames, 193
directory for files, 193
escape sequence format, 194
numeric capabilities, 194
overview, 193–194
setting up the terminal type, 195–196
special keys, 194
string capabilities, 194
using capabilities, 195–198
VT100 file example, 193

termios interface. See also curses library
accessing terminal modes from shell, 186–187
additional functions, 188
c_cc array member, 184–186
c_cflag member, 183
c_iflag member, 181–182
c_lflag member, 183–184
c_oflag member, 182–183
control modes, 183
curses library link for, 180
defined, 180
escape sequence functions, 197–198, 205
initializing, 181
input modes, 181–182
local modes, 183–184
MIN values, 185–186
modes, 180
output modes, 182–183
password program with, 189–190
reading characters when typed, 190–191

reconfiguring terminal interface, 181
restoring to standard state, 186–187
setting terminal modes, 187
special control characters, 184–186
terminal speed, 187–188
TIME values, 185–186
turning echoing off, 187
typical declaration, 180
viewing settings, 186

test command ([). See also control structures
arithmetic comparison, 33
checking for file existence, 32–33
file conditionals, 34
for multiple conditions, 34
string comparison, 33
trailing bracket with (]), 32
while construct with, 40

testing. See also debugging
assumptions, 439–440
file locking, 267–269
stage of debugging, 418

Thompson, Ken (UNIX developer), 5
thread1.c program, 481–483
thread2.c program, 483–484
thread3.c program, 486–489
thread4.c program, 490–493
thread5.c program, 495–497
thread6.c program, 497–498
thread7.c program, 499–501
thread8.c program, 501–504
thread_function function, 483
threads

advantages and drawbacks, 478–479
attribute functions, 494–495
attributes, 494–498
canceling, 498–501
as class of processes, 463
defined, 477
fork call versus creating, 477
history, 478
library calls, 479
multiple threads, 501–504
overview, 477–478
POSIX standard and, 478
pthread_attr_init function, 494
pthread_cancel function, 498
pthread_create function, 480, 481, 483
pthread_exit function, 481
pthread.h header file, 480
pthread_join function, 481, 483
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threads (continued)
pthread_setcancelstate function, 498
pthread_setcanceltype function, 499
re-entrant routines, 479–480
scheduling, 497–498
setting the detached state attribute, 495–497
simple program example, 479–483
simultaneous execution, 483–484
synchronization with mutexes, 485, 490–493
synchronization with semaphores, 485–489
thread_function function, 483
uses for, 478–479
_REENTRANT macro, 480, 482

tigetflag function, 196, 197
tigetnum function, 196
tigetstr function, 196
tilde (~) home directory notation, 92
time function, 146–147
TIME values of terminal control characters,

185–186
time zones, adjusting time for, 149
time_after function, 751
time_after_eq function, 751
time_before function, 751
time_before_eq function, 751
times and dates. See also CPU time
asctime function, 149
converting broken-down time into time_t

value, 149
Coordinated Universal Time (UTC), 149
ctime function, 149, 150
ctime.c program, 150
current time and date, 147–149
date command, 59
difftime function, 147
envtime.c program, 146–147
“friendly” versus machine time, 149
gmtime function, 147–148
gmtime.c program, 148–149
localtime function, 149
measuring durations, 147
mktime function, 149
MySQL temporal data types, 319
starting point for dates, 146
starting point for times, 146
strftime function, 150–151, 152–153
strftime.c program, 152–153
strptime function, 151–153
time function, 146–147
time zones and daylight savings, 149

time_t type for, 146
uses for, 146

/tmp directory, 809
tmpfile function, 153–154
tmpnam.c program, 154
tmpname function, 153, 154
toolbars (KDE). See KAction widget
Torvalds, Linux (Linux developer), 3
touch command, 94
touchwin function (curses library), 219
tparm function, 197
tputs function, 197–198
tr command, 54
Transmission Control Protocol/Internet Protocol

(TCP/IP), 593
trap command

for EXIT signal, 75
important signals, 60
as shell command, 60–61
syntax, 60
trapping signals, 60–61
viewing signal numbers and names, 60

Trolltech (Qt developer), 678
troubleshooting
dbm database, 275–276
multiple source file problems, 365–366
MySQL, 310

true command, 51
try_var script, 31–32

U
UDP (User Datagram Protocol), 593
UID (user identifier), 155–158
uid_t type, 155
umask system variable, 100–101
uname function, 158, 159
uname system call, 158–159
UNIX

defined, 1
history, 2
philosophy, 2–3
The Single UNIX Specification for, 2

unlink system call, 119
unset command, 62
until statement

alarm example, 41
break command with, 50
continue command with, 51–52
syntax, 41
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update1.c program, 333
update_cd function
curses library example, 240–241
shell programming example, 87–88

upper.c program, 462–463
User Datagram Protocol (UDP), 593
user identifier (UID), 155–158
user mode, 724
users. See also permissions; UID (user identifier)

adding for MySQL, 308–310
assigning input to variables, 28
login process, 155
passwords, 156–158
programs started by, 155
removing nonroot MySQL users, 308
setting shell for, 20
umask system variable for permissions, 100–101
username and password entry window, 640–643

/usr directory, 810
/usr/bin directory, 6, 8–9
/usr/include directory, 8
/usr/lib directory, 9
/usr/lib/gcc-lib directory, 8
/usr/local directory, 8
/usr/local/bin directory, 6, 8, 27
/usr/local/opt directory, 8
/usr/sbin directory, 6
UTC (Coordinated Universal Time), 149
utilities, shell programming for, 18

V
valgrind memory debugging tool, 442–444
/var directory, 810
variables. See also environment variables; parameter

variables; specific variables
accessing contents, 28
assigning user input to, 28
assigning values to, 28
case and, 28
examining with GNU debugger, 427–428
if statement evaluating, 35–37
local variables in shell functions, 48
putting command output in, 69–70
quotes with, 28–29, 38
in shell programming, 28–32

verification stage of debugging, 418
version control. See CVS (Concurrent Version System);

RCS (Revision Control System); SCCS (Source
Code Control System)

viewing
inode number for file, 92
MySQL permissions table, 307–308
network connections for sockets, 601
processes, 447–448
signal numbers and names, 60
termios settings, 186

virtual consoles, 202–204
vmalloc, 762–763

W
wait queues for device drivers, 738–739, 744
wait.c program, 458–460
waiting for a process, 458–460
warnings, GNU C compiler options for, 802–803
wclear function (curses library), 219
we text editor, 410
Web sites. See Internet resources
werase function (curses library), 219
where command (GNU debugger), 427
while construct

arithmetic substitution with, 40
break command with, 50
CD database application, 286–287
continue command with, 51–52
need for, 39
password-checking example, 39–40
syntax, 39

white space
indenting statements using, 35
quotes for variables containing, 28–29, 38

widgets (GNOME), 652–653
widgets (GTK+)

adding to packing box, 636
GtkBox packing box widgets, 635–638
GtkButton widget, 644–645
GtkCheckButton widget, 645, 646–648
GtkEntry single-line text entry widget, 639–643
GtkRadioButton widget, 645, 646–648
GtkSpinButton widget, 643–644
GtkToggleButton widget, 645, 646–648
GtkTreeView widget, 648–652
GtkWindow element for, 638–639
populating dialogs with, 659
widget container layout program, 636–638

widgets (KDE). See KAction widget
widgets (Qt)

buttons widgets, 691–695
program example for buttons, 694–695
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widgets (Qt) (continued)
QBox layout widgets, 713
QButton button base class, 691–692
QCheckBox widget, 692–693
QComboBox widget, 695–698
QLayout classes versus, 685
QLineEdit single-line text entry widget, 688–691
QListView widget, 699–701, 714–715
QPushButton generic button widget, 692
QRadioButton widget, 693–694
wealth of, 688

wildcards
argc and argv parameters and, 136
case construct with, 42–43
expansion (globbing) by shell, 24
for loop with expansion, 38–39

windows (curses library)
extended curses required for, 217
generalized functions, 218
moving and redrawing windows, 218–219
multiw1.c program, 219–222
optimizing screen refreshes, 222–223
subscl.c program, 223–225
subwindows functions, 223–225
WINDOW structure, 217–218

Windows Sockets (WinSock), 587
wnoutrefresh function (curses library), 222–223
working directory, determining, 120
wrefresh function (curses library), 219
write access, removing from scripts, 27
write system call

defined, 95
FIFOs and, 526
file copy program example, 102–104
file-region locking and, 264–265
overview, 96–97
return values, 96
simple example, 97
syntax, 97

writing
all data from file streams, 109–110
to character-driven devices, 739–740

characters to file streams, 110–111
data to file streams, 109
default streams, 171
directly to terminal, 176–178
to FIFOs, 522–523
file locking and, 264–269
to files or devices, 95, 96–97
/proc files, 128
screen update using curses library, 210–211

X
X client, 624
X or X11. See X Window System
X Protocol, 624
X server, 624
X Window System

desktop and, 623
directory for, 8
as foundation for GUI libraries, 623
history, 624
toolkits, 625
window managers, 625
X client, 624
X Protocol, 624
X server, 624
Xlib, 624

XFree86, 8, 623. See also X Window System
Xlib, 624
X/Open specification, 206, 380
XWPE development environment (Identical Software),

410–411

Z
zero (0)

environment variable ($0), 30
exit code in shell programming, 25, 55

zombie processes, 460–461
zsh shell. See C shell
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