
GameDev.net - Game Programming 101 Part I

Game Programming 101 Part I GameDev.net

Game Programming 101 Part I
by Bruno Sousa

Introduction

Here it is! My first tutorial to be officially published by GameDev.net (yes, I’m very
proud). I wrote some other small tutorials for game programming beginners about
several topics, but instead I decided to group them all and make a series of tutorials from
the very beginning of a game to the publishing phase. I doubt with the games you’ll learn
to develop here you’ll get rich, but with a little imagination and hard work maybe you can
even get some of them in bundle packs (and I don’t even ask for your money J).

For those who don’t know me, my name is Bruno Sousa (or Akura on the Internet) and
you can probably find me in #Gamedev chat.

I first thought of doing this series by starting with a simple game (Pong) and developing
it with your help, but I decided to make this series infinite; that is, every time I get some
free time I’ll write the next tutorial. Since I’m still in school and trying to get into the
industry my schedule isn’t that good, but I’ll try to do my best. As long as I have time
(and GameDev.net doesn’t mind by ramblings) I'll keep writing these tutorials.

The only thing required for this series is that you have a basic knowledge of C and C++.
The reason why I just don’t use one or the other is I like to merge them, since parts are
easier using C and others are easier using C++. If you don’t know one of these languages
but know the other you’ll have no problem grasping these tutorials, but even so, if you’re
stuck mail me at magick_pt@geocities.com and I’ll do my best to help you out.

Also, I’m not the master of it all nor do I intend to be (for the time being). I’m as human
as you so I can also make mistakes. If anyone notices an error or bug please tell me.

With all that said, let’s start.

The very beginning

As you well know by now, any game developer that wants to have a future should know
at least the basics of DirectX. Sure there are other options like OpenGL for graphics or
the new OpenAL for audio, but at the present moment the industry standard is DirectX
and so, that is what we are going to use. You’ll need a compiler that is capable of
generating Win32 executables (this series will feature Visual C++ 6.0, but you can use

http://www.gamedev.net/reference/articles/article1031.asp (1 of 8) [5/12/2001 5:43:33 PM]

http://www.gamedev.net/
mailto:akura@crosswinds.net
mailto:akura@crosswinds.net

GameDev.net - Game Programming 101 Part I

any other compiler) and you will also need the DirectX SDK (we’ll use version 7.0 since it
is the most current version of it). You can download or order the DirectX SDK at the
Microsoft DirectX SDK homepage.

Also I presume that you already
know how to compile a normal Win32
program with your compiler and use
external libraries. Since DirectX need
a little bit of preparation before use
let me describe the process if you’re
using Visual C++. First go to the Tool
menu, then Options, and choose the
tab Directories. In the Show
directories for combo box choose
Include files and add a new directory.
Specify the directory where you
installed the DirectX SDK and the
include directory (if you have
installed the SDK to C:\DXSDK the
path should be C:\DXSDK\include). After adding the directory move it to the top of the
list so when the compiler searches for the DirectX files it will use those in the directory
you installed to and not the one that came with the compiler (which contains older
DirectX headers). Then select Library files in the Show directories for combo box and do
the same thing as above but replacing \include with \lib. You are now set to use the
DirectX SDK. You will still need to manually add the libraries to your project but we’ll take
care of that in the next section.

The first game we’ll develop will be a Pong clone. You can take many approaches to

http://www.gamedev.net/reference/articles/article1031.asp (2 of 8) [5/12/2001 5:43:33 PM]

http://www.microsoft.com/directx

GameDev.net - Game Programming 101 Part I

develop a game, the one that will be presented here is the one I like, but if you prefer
working in another manner (like first code the wrappers and then design, etc) it’s your
call. I stick with this one because I got used to it during my apprentice time.

The approach I take to program any game is given below:

● Design the complete game
● Develop all the wrappers, engine, tools needed for the game
● Start the development process with test beds
● Merge of all test beds to create a complete game
● Test and correct bugs
● Polish off
● Make lots of publicity about it

These are the steps I prefer to use to develop my games; if you have your own, fine stick
with it.

Also a note: the term test bed usually refers to using a pencil and paper, toys, and/or
programs to test an idea. I use the term test bed as part of a feature or engine, like text
output, scrolling functions, and the save/load mechanism. I prefer to develop these
features in a of separate program and then integrate it with the game. This system is also
known as the tier system, I call it test bed - the important thing is that even though
names differ the concepts are the same.

The first design

When I started to develop games I never designed. It was boring and I didn’t like it (and
still don’t like to do it) and since I knew the game in my head I would have no problem
programming it. Well, I was completely wrong. Designing a game will make us think of all
the irrelevant aspects of the game that we only remember after doing those 500 lines of
code to realise you need to change the structures and with that, the last weekend's work
is going to the Recycle Bin. Even though Pong is a relatively a simple game, we will still
make a small design document just to have the basic game worked out on paper, not just
in our heads. Again, if you have your own design templates you don’t have to use mine. I
like designing like this because it is more natural for me to think of a game like this. This
model works well for a team of 1-2 programmers for a relatively simple project; for more
a complicated game another type of design document is recommended since it will have
to be divided in parts and all. check GameDev.net's design section for some tutorials how
to make your own design documents.

Introduction

This is a small introduction to the game. It’s a short description to give someone an idea
of what the game is

http://www.gamedev.net/reference/articles/article1031.asp (3 of 8) [5/12/2001 5:43:33 PM]

http://www.gamedev.net/reference/design/

GameDev.net - Game Programming 101 Part I

Ping is a Pong clone for the Windows platform using DirectX for graphics and input. The
player has control of a space ship where he enters a playfield to play against another
player (human or computer controlled) and tries to make the ball pass the goal area.

Minimum specifications

You can probably neglect this part of the design document, but I put it here because it is
an important point in a more complete design document

Pentium 166
16 Megabytes RAM
3 megabytes free of disk space
DirectX compatible video card
Windows 95, 98 or 2000

Rules of the game

This section generally is featured in a Gameplay section of the design document. For such
a small game it can be a separate section of its own

The rules for Ping are very easy and straightforward. The objective of the game is to
score a goal, and to do this, the player needs to make the ball pass the goal line of the
adversary while trying not to let the ball pass its own. Each spaceship can only move in
the vertical direction within the bounds of the playfield.

Menus

This section should be divided into subsections for the sake of comprehension. Again, for
such a simple game, it can all be described in one or two paragraphs

The main menu will have 4 options: New game, High score, Credits, and Quit. An image
of a Ping game is shown in the background.

● The New game option takes the game to another menu where the player chooses
the difficulty level and a single player or two player game of Ping. After the
selection the player is taken to the actual game.

● The High score option will show the high score table.
● The Credits option will show a scrolling credits text with all the credits for the

game.
● The Quit option will ask the player if he or she really wants to quit and based on

the response it will quit or not.

http://www.gamedev.net/reference/articles/article1031.asp (4 of 8) [5/12/2001 5:43:33 PM]

GameDev.net - Game Programming 101 Part I

The Ingame menu will feature only 3 options: Continue game, Restart game, and Forfeit
game, and will also serve to pause the game. The Ingame menu will appear in a box on
top of the game screen.

● The Continue game option will return the player to the game.
● The Restart game option will restart the game with the present options.
● The Forfeit game option will end the game and take the player to the main menu.

Graphics

All the graphics of Ping will be from SpriteLib. All the backgrounds will be done in a paint
program or will feature some kind of demo effect like a space field or plasma.

Graphical engine

Usually this is a separate section of the design document

Ping will feature a really basic graphical engine. It has to be able to load images from
disk, blit from surfaces to other surfaces and handle smooth movement.

The text functions will be done using GDI (Graphics Device Interface). Even though this is
not the fastest option it will suit the basic text output needs of Ping.

Controls

Usually the player has the choice to set his own controls, and here the actions supported
by the controls are described

Controlling the spaceships in Ping is pretty easy. The first player has two keys, Up and
Down, to move the spaceship up and down. When present, the second player will use A
and D for the same purpose.

Artificial Intelligence

For larger projects I like to also make a separate design document for artificial
intelligence, but Ping doesn’t need one

Ping will feature 4 difficulty settings, Easy, Normal, Hard, and You’re nuts.

The computer controlled ship will calculate the collision point where the ball should hit the
ship and move there, the accuracy of the calculation is determined by the difficulty
settings, which add a randomness in the tracking algorithm according to the difficulty.

http://www.gamedev.net/reference/articles/article1031.asp (5 of 8) [5/12/2001 5:43:33 PM]

http://www.arifeldman.com/free/spritelib.html

GameDev.net - Game Programming 101 Part I

Schedule

This is where usually the most problems occur. Almost no one can exactly make an exact
schedule for a game, but it should feature the time for each part that must be developed

Even though Ping needs a schedule as any other game should, I’m not making one
because I’m only devoting time to it when possible. Since developing the game and
writing these tutorials is more time consuming than just programming the game I chose
not to have a schedule.

And this is the end of our design document. It’s not the best design document but it will
help us out a little when developing Ping.

Setting things up

We are not actually going to start programming anything now. It is best to start by
setting all things up so that in the next tutorial we don’t have to worry about annoying
little details.

Again, all steps covered here are using Visual C++. If you have another compiler please
look in your documentation on how to set it up to compile DirectX programs.

First we need to create a Project. Go to the File
menu, then select New and choose Win32
Application. Enter the name Ping in the Project name
text box. Click Ok.

http://www.gamedev.net/reference/articles/article1031.asp (6 of 8) [5/12/2001 5:43:33 PM]

GameDev.net - Game Programming 101 Part I

Now we need to add the DirectX libraries to the
project. Go to the Project menu and select
Settings. Choose the Link tab and in
Object/library modules text box add dxguid.lib
ddraw.lib dinput.lib.

http://www.gamedev.net/reference/articles/article1031.asp (7 of 8) [5/12/2001 5:43:33 PM]

GameDev.net - Game Programming 101 Part I

Conclusion

In this first part of this series you learned mainly how to design a simple game and how
to set up Visual C++ for your future DirectX projects. In the next tutorial we’ll get into
DirectDraw (graphics component of DirectX) and if we have time DirectInput (input
component of DirectX). We will also have a basic introduction to Win32 programming.

Any thoughts, ideas, suggestions, error correction, or if you just want to talk about your
dog, mail me at magick_pt@geocities.com.

Until then, stay well and don’t forget to watch Scooby Doo.

Discuss this article in the forums

© 1999-2001 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Send us an e-mail!

http://www.gamedev.net/reference/articles/article1031.asp (8 of 8) [5/12/2001 5:43:33 PM]

mailto:magick_pt@geocities.com
http://www.gamedev.net/community/forums/topic.asp?key=featart&uid=1031&forum_id=35&Topic_Title=Game+Programming+101+Part+I
http://www.gamedev.net/legal/legal.htm#copyright
http://www.gamedev.net/legal/legal.htm#privacy
mailto:webmaster@gamedev.net

	gamedev.net
	GameDev.net - Game Programming 101 Part I

