
GameDev.net - Game Programming Genesis Part X : Tips and Tricks

Game Programming Genesis Part X : Tips and Tricks GameDev.net

Game Programming Genesis
Part X : Tips and Tricks

by Joseph "Ironblayde" Farrell

Introduction

Here we are, with nine articles behind us, and only one left to go. It's unfortunate that I
won't have time to take this any further, since there a lot more things I could go over,
but we've gotten off to a good start in Windows game programming, and there are any
number of places you can go from here: input devices, sound effects and music,
scripting, the DirectX Graphics API, etc. There are lots of articles covering things like this
to be found at GameDev.Net, or there's always the DirectX documentation.

In any case, to close the series out, I'm going to show you a few little things you can use
while developing your games. A lot of these, like organizing large programs logically into
multiple source files, are going to be necessities when you start building up a full game.
For most of today's article you won't actually need knowledge of DirectX to follow along,
so don't worry if you've missed previous articles in the series. All set? Let's start with the
topic I just referred to: organizing programs.

Organizing Projects

All of the demo programs I've shown you along the way in this series have been relatively
short. The source file for the most recent one, on adding characters to your game, was
about a thousand lines long, but that includes comments and whitespace, and I use both
quite a bit. Even so, when you start putting a full game together, you'll quickly find that
putting all your code in a single source file just won't work. It's not very organized that
way. Sure, you can use Visual C++ to search for functions pretty quickly, but it's still
much better to have your program logically broken up so you can find things when you
need them. Also, it's nice to be able to jump from one function to another just by
switching documents, or to compare code from two documents side by side.

Organizing a program in C++ is easy: if each class has its own source and header files,
you'll always be able to find what you're looking for. For C programs it's not so well-
defined, so you should just do your best to group functions which serve similar purposes
together. To give you an example, I'll show you what my source files for Terran look like.
There are quite a few, but it makes it easy for me to know where everything is.

http://www.gamedev.net/reference/articles/article1352.asp (1 of 12) [5/12/2001 6:58:08 PM]

http://www.gamedev.net/
mailto:ironblayde@aeon-software.com
http://www.gamedev.net/

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

audio.cpp This file contains all functions needed for loading and playing sound
effects and music.

battle.cpp These functions handle the details of the battle system, including the
code that makes battle decisions for enemies.

chars.cpp
This contains everything pertaining to character handling, such as
movement and animation, keeping NPCs sorted, and locating characters
on the map.

directx.cpp
All the code that actually makes changes to DirectX interfaces is here,
mostly for initialization and shutdown, but also for things like restoring
and reloading lost surfaces.

game.cpp The very general framework for each major game state is contained
here.

graphics.cpp Any function which renders graphics to a surface, be it fading or
fireballs, maps or text boxes, is found here.

input.cpp This file detects and reads input devices, and combines the relevant
information into a small input structure used by the rest of the game.

items.cpp
Item functions such as buying, selling, using, transferring, or discarding
items are here, along with anything else needed to manage character
inventories.

magic.cpp
Spells are managed from here, both the learning and the casting of
them. Graphical output is done in graphics.cpp, but this file is
responsible for setting up those effects.

maps.cpp This wraps up anything map-related: loading maps and collision data,
performing collision detection, and launching scripts linked to the map.

menus.cpp This file allows the user to navigate through any menu in the game, and
sends commands to the rest of the game as necessary.

scripts.cpp
Here is where the scripting language extensions are set up, and
specialized script functions are located. The general script loader and
parser are in a library I wrote; I'll get to that later.

stats.cpp These functions manage character statistics: computing those that are
constantly changing, updating main stats at level increases, and so on.

stdafx.cpp This is the precompiled header Visual C++ sets up for you when you
create a simple project.

terran.cpp
Probably the simplest one, this one just has variable declarations,
WinMain() and WindowProc(), plus some functions for loading game
data which are called only once, at startup.

terranrs.rc Terran's resource script, it contains a few icons, several audio files, and
an enormous string table.

http://www.gamedev.net/reference/articles/article1352.asp (2 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

text.cpp Anything text-related, such as generating lists or loading dialogue, is
done here.

So hopefully that will give you an idea how to keep source files organized. I also have a
large header file called stdafx.h, which contains declarations for a bunch of structure
types, function prototypes, extern statements for global variables, and about five
hundred million #define statements. If you haven't seen it before, the extern keyword
allows other source files to access a global variable that's been declared in a different
source file. It's just a qualifier that goes on the front of a variable declaration, like this:

extern int bImageLock;
extern STATE sGameState;

By including these extern statements in a header file, you can just include the header file
at the top of every source file, and you'll have access to all your globals. The other thing
to make sure you do with header files is to avoid including things like type declarations
multiple times. For this, you use the #if and #endif directives. The way it's usually done
is to check if a certain constant has been defined. If not, define it, then include all the
stuff you need. That way, the next time that block of code is encountered, the constant
has already been defined, so your declarations are only included once. For example:

#if !defined(_GAME_HEADER_001_INCLUDED)
#define _GAME_HEADER_001_INCLUDED

// ... constant declarations and such go here...

#endif

There are a lot of blocks like this inside the main Windows headers, which is why using
#define WIN32_LEAN_AND_MEAN can keep a lot of unnecessary code out of your project
builds. Most things you'll put in header files should only be included once, and so should
be inside a #if block. But including external variables with extern should be included in
every source file, so be sure to keep those statements outside of your #if block.

One last thing on this: if you're using Visual C++, you can also use a single line of code
that reads #pragma once to accomplish the same thing. This line specifies that the
header in which it is located should only be included one time in a build. Most #pragma
directives are compiler-specific, though, so you'll need to use #if..#endif if you're not
using Visual C++, or if you may work with your code on a different compiler one day.

Creating Libraries

http://www.gamedev.net/reference/articles/article1352.asp (3 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

When you've got a fairly lengthy bit of code that gets used pretty often, it's often
convenient to build a library out of it rather than having to cut and paste code every time
you want to use it. A good example of this is initialization code for DirectX. Do you really
want to go through all that clip list crap every time you want to create a DirectDraw
clipper? Me neither. So I wrote a large set of initialization functions, and dropped them all
into a library that gets used in just about every DirectX program I write. Being able to set
up a surface, a clipper, a game controller, a DirectMusic interface, etc. in a single function
call is pretty convenient.

Building a static library is very easy. When you go to create a project in Visual C++, just
select "Win32 Static Library." The only difference between creating a static library and
creating any other Windows program is that a library is just a collection of functions. You
don't execute it by itself, so it doesn't need a WinMain() or anything like that. Just write
as many functions as you want in as many source files as you like, and they compile into
a single .lib file you can include in your projects. The other thing you'll need to write is a
header file for the library that contains things like constants or data types used in the
library.

Terran uses two libraries of my own in addition to the standard DirectX libraries. The first
one, adxl.lib, is my general-purpose library. It contains all kinds of nice functions for
Win32 and DirectX, as well as loaders for different image and audio file formats. The
other, aeonscript.lib, is my general scripting engine. It contains the code for loading
and parsing scripts that contain general functionality like variable assignments and
equations, if statements, loops, image loads, calling other scripts, and so on. Specialized
functions for things like moving NPCs can be easily added to the scripting engine by any
program that uses this library.

Re-using code will save you a lot of time when you get into large projects, so you might
as well start now! Take a look at the programs you've been writing and see what kind of
things you're using over and over. Those functions might serve you better in a library.
Anyway, let's move away from organization now and take a look at some things you can
add to the program code itself.

Runtime Log Files

How many times have you fired up your game program, anxious to see how your newest
additions are working out, only to see a black screen or have the program crash on you?
If you said "never," you're either a god or a liar. And since gods have no need to read
these articles, that makes you a liar. :) Tracking down logic errors is no fun, so you need
anything you can get that will help you locate problems. The Visual C++ debugger is a
great tool for this, and log files are another. A log file is simply a text file generated by a
program while it's running that tells the results of various function calls, the states of
variables at certain points, or anything else you care to throw in there. Here's an
example, a little snippet of Terran's log file:

http://www.gamedev.net/reference/articles/article1352.asp (4 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

DIRECTDRAW
DirectDraw interface created.
Fullscreen cooperation level set.
 --Message Received: WM_DISPLAYCHANGE
Resolution 640x480x16 set.
Surfaces created successfully in system memory.
Pixel format is 5.6.5 (16-bit).
DirectDraw clipper created.
Clipper attached to back buffer.

This, obviously, is one of the blocks of text generated during initialization of the game.
Something like this can help you see exactly which function call is failing, or what setting
is coming out not as you'd expect. When I first released a demo of Terran, some people
said that the fading wasn't working properly. Thankfully they send back this log file, and I
was able to see immediately that it would always fail when the pixel format was 5.5.5, so
I knew right where to look for the bug. Another thing you can use log files for is
outputting information about the user's computer. If things are running slowly for
someone, it's possible that their machine doesn't accelerate some feature of DirectDraw
that your machine does. Things like that are easy to spot when you can look at a log file
for reference.

There are two basic ways to create a log file. One is to just open a file at the beginning of
the program, write all your information with sprintf() statements during the game's
run, and close the file at the end. The other way is to write a function that does that
every time you want to log something. I prefer the latter, because if the program
crashes, it's better not to have left the file open. That approach also makes it possible to
easily enable or disable logging while the program is running, or add extra features
instead of just a straight write. Here's an example of the logging function that I use:

BOOL ADXL_LogText(char *lpszText, ...)
{
 // only do this if logging is enabled
 if (bLogEnabled)
 {
 va_list argList;
 FILE *pFile;

 // initialize variable argument list
 va_start(argList, lpszText);

 // open the log file for append
 if ((pFile = fopen("log.txt", "a+")) == NULL)
 return(FALSE);

 // write the text and a newline
 vfprintf(pFile, lpszText, argList);

http://www.gamedev.net/reference/articles/article1352.asp (5 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

 putc('\n', pFile);

 // close the file
 fclose(pFile);
 va_end(argList);
 }

 // return success
 return(TRUE);
}

Chances are you haven't written a function with an arbitrary number of parameters
before, so I'll explain briefly. The elipsis (...) in the function header says that after
lpszText, any number of additional arguments may follow, of any data type. To handle
something like that, you need the va_list data type, and the va_start and va_end
macros. The "va" presumably stands for "variable arguments." Anyway, the va_list type
is just a pointer to a list of arguments. You need to create one in any function that
receives a variable number of arguments. The va_start macro initializes a list of type
va_list, and takes the list, and the previous argument as parameters. The va_end
macro simply resets the argument list pointer to NULL.

Finally, the other bit of syntax to notice in the log function is the use of the vfprintf()
function, which is the version of fprintf() that is designed for use with variable
argument lists. There are also vsprintf() and vprintf() functions that function
similarly if you ever need them.

The variable bLogEnabled that you see near the top is set by the other logging function I
use, which simply enables the log file. It's a pretty straightforward one:

int ADXL_EnableLog()
{
 FILE* pFile;

 // enable log
 bLogEnabled = TRUE;

 // clear the file contents
 if ((pFile = fopen("log.txt", "wb")) == NULL)
 return(FALSE);

 // close it up and return success
 fclose(pFile);
 return(TRUE);
}

http://www.gamedev.net/reference/articles/article1352.asp (6 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

The bLogEnabled variable is just a global variable within my ADXL library, where these
functions are coming from. The variable initially is set to FALSE, so that nothing gets
logged until after you call ADXL_EnableLog(). It's nice to have it set up this way, because
then if you want to distribute a version of your program that doesn't generate a huge log
file, you can just remove one line, instead of searching through your code to remove all
the calls to the logging function.

Protecting Image Data

Suppose you've got a great new game project going, but it needs a ton of images -- say
15MB worth. How can you make it so that the end user can't change your images to
whatever they want? You could include all your images as resources... but then your .EXE
would be enormous, and wasting a lot of memory space. The only other option is to
include them as external files, but then people can just open them up in any image editor
and change them, right? Well, there are a few things you can do with this.

The first one is obvious: make up an image file format. This can be a good bit of work,
though, since you have to come up with a fully descriptive header that won't be so easy
for people to figure out at a glance, then decide on some method of filtering and
compression to store the image data. There are plenty of compression libraries out there
that you can use, like zlib, but there's one other way to go.

The other thing you can do is to either expand an existing file format, or assign meaning
to some bytes in an image header that are either reserved or not currently used. As a
couple examples, the .BMP file header has two reserved fields that must be set to zero for
a standard bitmap, and the .PNG file structure is based on "chunks" and is expandable, so
you can add your own fields. Now, what good is this? The idea is to use these extra
storage locations to hold some sort of image "key" which is calculated in a manner known
only to you, based on the image data. Ideally, you should have it set up so that if the
image data changes, the key will also change. That way, when you load an image from
your game, you can look at the image data and calculate the key value. If the calculated
key is different from the one stored in the image file, you know the user's been
tampering with your image, and you can spit out an angry error message.

The only question is, how do you decide on a method for generating a key? Let's try a
few things. How about using the width plus the height of the image? That's no good,
because if people were to change the image, chances are that they would not alter the
dimensions, only the contents. So, how about the image file size in bytes? That's OK for
some things, but for uncompressed file formats like .BMP, the file size won't change
unless the color depth or image dimensions change, neither of which is likely. A better
idea would be to do something like this. While you're displaying the image, you have to
go through every pixel anyway... so while you're doing that, you might as well add up the
total values for red, green, and blue as you go. Or just one of the three would be OK.

http://www.gamedev.net/reference/articles/article1352.asp (7 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

Let's say you do it for green. At the end, you'll have a very large number which is the
combined intensity for green from every pixel in the image. Now just because you can,
raise that value to the 10/9 power, multiply by 3, and add 1331. Why? Because nobody
would guess to do that particular operation.

Key choices like that are much better because they will almost certainly be affected no
matter what the user does to the image. There are a few things to watch out for, though.
For instance, in my last example, a very large image might give you an overflow when
you calculated the key. You can combat that by making sure the original key never gets
too high. For example, as you're adding up the green values, you can do the addition
modulo 216 so that when you're done, you have a lot of room to work with. If you're
working with an integer key, then you need to make sure you don't narrow the range too
much. For example, if your key involves something like taking a fifth root of your initial
calculation, then a very high key value can change quite a bit, and still have the fifth root
evaluate the same when you're working with integers. Floating-point keys don't have that
fault.

Other possible choices for keys would be things like how much each pixel differs from the
one immediately to the right of it, in terms of any one of the color channels. Calculate all
those values and add them up. For compressed image file formats like .PNG, you have
even more choices. You can look at how each row compresses, and form a key based on
the ratio of the compression of each row to the row beneath it. In any case, you can
simply store the key within the image header, or make up a new section of the image file
in which to store data. You can even generate multiple keys to make it that much harder
to figure out. Users will probably be able to see your image files if you take this approach,
since you're still using a standard image file format, but it's not easy to change them
without the game program realizing it.

If you're interested in working with other image file formats, check out wotsit.org for as
much information as you could ever want on more file formats than you ever knew
existed. :) I'd highly recommend looking into using .PNG for games. It supports high-
color modes, unlike .GIF, and uses a lossless compression algorithm, unlike .JPG. In
fact, .PNG's compression is so good that for artistic-type images (as opposed to
photorealistic ones), .PNG will often compress as good as, if not a good deal better than
.JPG will. The .JPG format wins hands-down for photorealistic images, but that's
generally not what you'll be using for games, at least not at this point, so it's better to
have something using lossless compression.

Introduction to Scripting

I've talked about scripting engines so much in this series and yet never got around to
explaining how exactly it works. Plus I've gotten a lot of E-mails from people wanting to
know this stuff, so I thought I'd give you a bit of an overview here. Obviously I can't

http://www.gamedev.net/reference/articles/article1352.asp (8 of 12) [5/12/2001 6:58:08 PM]

http://www.wotsit.org/

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

come anywhere close to completely covering this since this is only a small part of a single
article, but hopefully it will give you an idea for a framework you can build on.

To implement a scripting engine in your game, you'll need to do three things. First, you
have to design the language. Second, you have to write a "compiler" that turns text
scripts into some sort of code, so that users can't look at your scripts and know how to
change them to do what they want. Third, you have to write the interpreter that loads
and executes script files.

The first part isn't too difficult since you've already seen at least one programming
language -- probably several -- so you have a good idea as to what you need in a
scripting language. You need variables, decision statements, loops, the ability to read
mathematical expressions, and functions. There are two ways to go as far as functions
are concerned. You can build functions like MoveNPC into the scripting engine itself, or
you can allow the scripting language to directly call functions which are in your game
code. The first approach is easier, but not as flexible since you're adding functions to a
scripting language that really only apply to one game. The latter approach is much better,
because it allows you to use a general scripting engine in a variety of different programs.
In addition to those, there are probably some general functions you want to add directly
to the scripting engine that can be used from any program. Image loaders are a good
example of that.

Once you've decided on what your language needs, and what the syntax is going to be,
you're ready to write the compiler, which is easily the most difficult part of doing this.
(The interpreter is actually quite straightforward.) What I do is to break all my script code
down into fixed-length instructions, much like you would see in an assembly language. If
statements and loops are replaced by branch instructions. Mathematical equations are
broken down into single operations. For example, the equation x = (a + b) * (c + d)
/ (e - f) is broken into this:

add t0, a, b
add t1, c, d
mul t0, t0, t1
sub t1, e, f
div x, t0, t1

Those simple instructions are then turned into bytecode. That seems simple at first, since
all you basically need to do is pick a number that corresponds to the opcode (add, for
example, is an opcode), and replace the word by the number, right? But there are other
concerns. In the bytecode, how do you tell whether the arguments are variables or
constants? How do you represent floating-point numbers? And just how do you translate
a mathematical formula into fixed-length instructions in the first place? Things like this
are all questions that need to be addressed before you can have a working compiler, and
they all take a bit more time to explain than I have in this article.

http://www.gamedev.net/reference/articles/article1352.asp (9 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

The final part of the scripting engine, the interpreter, is relatively easy to write. After all,
your compiler has already done the hard work of breaking down complex instructions into
small, simple components. The interpreter's job is to open a script file, find out how many
lines it contains, and then create some storage space for the script, either with an array
or a linked list, and load the script into memory. Once that's done, each line in the script
consists of an opcode number and a series of arguments. An easy way to execute the line
is to use the opcode number as an index into a function table. You then have one function
for executing each opcode. The interpreter just needs to be set up to use that function
table to call the appropriate function, and then you can go ahead and build the rest of the
interpreter, the part that actually acts on the commands, one little piece at a time. Since
most of those functions will be things like assignments, arithmetic, and branches, it's
really no problem. Things like moving NPCs are of course not trivial, but those type of
actions are part of your game program, not the scripting engine. The scripting engine is
only responsible for calling them.

For allowing your scripts to call functions already in your game program, you could give
your scripting engine a function called AddFunction(), or something similar, which
simply takes a function pointer and adds it to its opcode list. You'd also have to make a
small data file with these assignments for the interpreter to read, so it knows how to
translate those functions, but that's not a big deal either. I know this overview was very
general and doesn't give you any code towards actually getting something like this on its
feet, but hopefully it gives you some ideas.

The String Table

Remember way back in article 2, when we looked at resources, and I told you that you
could use a string table to represent all kinds of data in a game? Well I thought I'd give
you an idea as to what use you can make of a string table in an RPG. RPGs especially
benefit from something like this, since most of them end up having lots of text.

The first and most obvious use for a string table is to store narration and/or character
dialogue. Those two things together will make up a very large part of the text needed in
an RPG, and so it's important to have an organized way to store it. You could put it in a
file -- but then anyone playing your RPG would be able to change the dialogue however
they wanted. Your beautiful ending scene could become a recreation of "All your base are
belong to us," and we can't have that, can we? :) You could store the strings directly in
your scripts somehow, but then you'd have to worry about how to encode them, and
besides, it would break our plan of having short, fixed-length instructions. So what's left?
Use the string table.

Storing dialogue this way helps your scripts in another way, too: it gives you a very easy
format for creating a function that displays text on the screen. For example, look at the
following script command:

http://www.gamedev.net/reference/articles/article1352.asp (10 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

showText 10, 10, 253, 5

This could be translated as "At screen position (10, 10), show five lines of text, beginning
with line 253 in the string table." The only problem here is that you're going to have a lot
of dialogue, but you only have one string table, so it's easy to get lost in there. There are
a couple things you can do to get around that. The first is pretty easy: just group your
text into logical sections and use a few #define statements to define where the different
sections are located, so you can get to them easily. You might have something like:

#define ST_OPENINGSCENETEXT 35
#define ST_FIRSTTOWNNPCS 253
#define ST_SECONDTOWNNPCS 428

But if you have a really big project going, that's not going to be enough. In that case,
what you might want to do is to write a utility that lets you add text to all sorts of little
partitions that you can create, so it gives the effect of having many string tables, but
then the program combines them all into one and writes the resource script for you. This
can be very convenient, and it's quite easy to do. All you need is a way to create divisions
of text, almost like a directory tree on your computer, and a way for the program to tell
you what string table index it assigns to the text you write down, so that you don't even
have to look at the string table to easily access any dialogue in the game.

Lists of items, magic spells, menu options, etc. are also good candidates for the string
table, since you can just define a constant and then use offsets to locate the relevant
data. For example, in Terran I have a constant called ST_ITEMDESCRIPTIONS which is an
index into the string table. When I want to pull up a description for an item, I just load
string number (ST_ITEMDESCRIPTIONS + nItemNumber).

The last thing you might want to use a string table for is filenames, be they for image
files, map files, scripts, or anything else. That way you can have all your filenames
together, so they are easy to find and change if you need to do so. You can again use
numeric constants to represent the filenames by acting as indices into the string table.
When my game needs to load the script for initializing a game, it calls the script loading
function with a value of SCRID_GAMEINIT, which of course just tells the loader where it
can find the filename.

Closing

And so it ends. Congratulate yourself if you've been with me since the beginning of the
series; we've come from displaying a blank window on a screen to being just about ready
to take on most of the features of a simple, albeit complete DirectX-based RPG, or
whatever other type of games you're interested in writing. I have to quit writing for
awhile, but if you want to get more info on any part of game development instead of

http://www.gamedev.net/reference/articles/article1352.asp (11 of 12) [5/12/2001 6:58:08 PM]

GameDev.net - Game Programming Genesis Part X : Tips and Tricks

striking out on your own, GameDev.Net has all the resources you need.

As for the future, I'm thinking about getting a series on scripting going once I have more
time (read: in May when classes are done with). Some people have even suggested
writing a book based on this general outline. At first I didn't know about that, but it's
starting to sound like an interesting idea. If I do something like that, it will of course be
much more detailed, and cover a myriad things I didn't get to here, like scripting engines,
responsive NPCs, tips for other game genres like basic shooters, and using DirectX 8 for
graphics so you can get hardware acceleration for things like alpha-blending. If you'd be
interested in seeing something like that, let me know, so I have an idea as to what
people would think of it.

Thanks to the many, many people who sent in positive feedback on the series; this has
gone over even better than I had hoped for! If you still have questions about anything in
these articles, as always, feel free to E-mail me at ironblayde@aeon-software.com. I'm
on ICQ less and less these days, so E-mail is your best bet. Well, happy coding,
everyone, and I'll see you later.

Copyright © 2000 by Joseph D. Farrell. All rights reserved.

Discuss this article in the forums

© 1999-2001 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Send us an e-mail!

http://www.gamedev.net/reference/articles/article1352.asp (12 of 12) [5/12/2001 6:58:08 PM]

http://www.gamedev.net/
mailto:ironblayde@aeon-software.com
mailto:ironblayde@aeon-software.com
http://www.gamedev.net/community/forums/topic.asp?key=featart&uid=1352&forum_id=35&Topic_Title=Game+Programming+Genesis+Part+X+%3A+Tips+and+Tricks
http://www.gamedev.net/legal/legal.htm#copyright
http://www.gamedev.net/legal/legal.htm#privacy
mailto:webmaster@gamedev.net

	gamedev.net
	GameDev.net - Game Programming Genesis Part X : Tips and Tricks

