
GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw GameDev.net

Game Programming Genesis
Part VI : Bitmapped Graphics in DirectDraw

by Joseph "Ironblayde" Farrell

Introduction

At last, the good stuff! You already know enough to make a fully functioning Windows game, but it would
have to use GDI. Today we're going to go over the DirectX implementations of everything you know how to
do using GDI, and quite a bit more. I'm going to cover loading bitmaps, using the blitter to fill a surface
with a color, and copying bitmaps like lightning, with clipping, color keys, and a host of other effects.

None of the material we'll be covering today will draw on the most recent article, so it's not necessary that
you've read it. However, the section on pixel formats was very important, and I'll allude to it from time to
time, so at least read that part. Aside from that, I assume you've read the first four articles in the series,
and have the DirectX 7 SDK. All right? Fire up your compilers, ladies and gentlemen. :)

Loading Bitmaps

Believe it or not, you already know almost everything you need to load a bitmap onto a DirectDraw surface.
How can that be? Well, the method you used under Windows GDI will work in DirectDraw as well, with only
one little change. To refresh your memory a little bit, what we did was to retrieve a handle to the bitmap
using LoadImage(), select the bitmap into a memory device context, and then use BitBlt() to copy the
image from the memory DC to another DC, which was a display device context we had gotten with a call to
GetDC(). If that destination DC was a device context to a DirectDraw surface, we'd have our DirectX bitmap
loader all done! Thankfully, the IDirectDrawSurface7 interface provides a simple function for retrieving a
device context:

HRESULT GetDC(HDC FAR *lphDC);

The return type is the same as for any DirectDraw function, and the parameter is just a pointer to an HDC
which will be initialized with the device context handle if the function succeeds. Is that cool or what? This
article just started and we can already load a bitmap onto one of our surfaces! Just remember that when
you're all done with the surface device context, you need to release it. As you've probably guessed, this is
achieved with the ReleaseDC() method of the surface interface:

HRESULT ReleaseDC(HDC hDC);

Just so you don't have to go rooting through the old articles, looking for the GDI bitmap loader, I'll show
the modified version to you here. The only difference is that instead of taking a device context as a
parameter, it takes a pointer to a DirectDraw surface. Then the function gets the device context from the
surface, uses it to copy the image, and releases the device context.

int LoadBitmapResource(LPDIRECTDRAWSURFACE7 lpdds, int xDest, int yDest, int nResID)
{
 HDC hSrcDC; // source DC - memory device context
 HDC hDestDC; // destination DC - surface device context

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (1 of 15) [5/12/2001 7:01:03 PM]

http://www.gamedev.net/
mailto:ironblayde@aeon-software.com

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

 HBITMAP hbitmap; // handle to the bitmap resource
 BITMAP bmp; // structure for bitmap info
 int nHeight, nWidth; // bitmap dimensions

 // first load the bitmap resource
 if ((hbitmap = (HBITMAP)LoadImage(hinstance, MAKEINTRESOURCE(nResID),
 IMAGE_BITMAP, 0, 0,
 LR_CREATEDIBSECTION)) == NULL)
 return(FALSE);

 // create a DC for the bitmap to use
 if ((hSrcDC = CreateCompatibleDC(NULL)) == NULL)
 return(FALSE);

 // select the bitmap into the DC
 if (SelectObject(hSrcDC, hbitmap) == NULL)
 {
 DeleteDC(hSrcDC);
 return(FALSE);
 }

 // get image dimensions
 if (GetObject(hbitmap, sizeof(BITMAP), &bmp) == 0)
 {
 DeleteDC(hSrcDC);
 return(FALSE);
 }

 nWidth = bmp.bmWidth;
 nHeight = bmp.bmHeight;

 // retrieve surface DC
 if (FAILED(lpdds->GetDC(&hDestDC)))
 {
 DeleteDC(hSrcDC);
 return(FALSE);
 }

 // copy image from one DC to the other
 if (BitBlt(hDestDC, xDest, yDest, nWidth, nHeight, hSrcDC, 0, 0,
 SRCCOPY) == NULL)
 {
 lpdds->ReleaseDC(hDestDC);
 DeleteDC(hSrcDC);
 return(FALSE);
 }

 // kill the device contexts
 lpdds->ReleaseDC(hDestDC);
 DeleteDC(hSrcDC);

 // return success
 return(TRUE);
}

This function is set to load from a resource, but you can easily modify it to load from an external file. Or
better still, you could have it try to load a resource, and if the call fails, it retries as a file. Just remember to

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (2 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

include the LR_LOADFROMFILE flag in the call to LoadImage(). The nicest thing about this function is that
BitBlt() performs all the conversions on the pixel formats. That is, you can load a 24-bit bitmap into the
memory device context, and blit it to a 16-bit surface, and all the colors will show up correctly, regardless
of whether the pixel format is 565 or 555. Convenient, hey?

If you want to manipulate the actual bitmap data manually instead of simply using a function to copy, you
have two options. First, you can use a modified version of the function above, and use the bmBits member
of the BITMAP structure, which is an LPVOID pointing to the bits making up the image. Second, if you really
want to have control of how the load is performed, you can write a function that opens the file and reads it
in manually, using standard file I/O functions. To do that, you need to know the structure of a bitmap file.
I'm not going to go through developing the whole function, since we already have the functionality we
need, but I'll show you everything you need to do so.

The Bitmap File Format

The nice thing about writing a bitmap loader is that there are Win32 structures designed to hold the bitmap
headers, so loading all the header info as simple as making a few calls to fread(). First up in a bitmap file
is the bitmap file header, which contains general information about the bitmap. Not surprisingly, the
structure that holds this header is called BITMAPFILEHEADER. Here's what it looks like:

typedef struct tagBITMAPFILEHEADER { // bmfh
 WORD bfType; // file type - must be "BM" for bitmap
 DWORD bfSize; // size in bytes of the bitmap file
 WORD bfReserved1; // must be zero
 WORD bfReserved2; // must be zero
 DWORD bfOffBits; // offset in bytes from the BITMAPFILEHEADER
 // structure to the bitmap bits
} BITMAPFILEHEADER;

I'm not going to detail all the members; I've commented the structure to give you an idea of what
everything is. Just use a call to fread() to read this in, and check the bfType member to make sure it is
equal to the characters "BM" to ensure you're dealing with a valid bitmap. After that, there's another
header file to read, called the info header. It contains image data like the dimensions, compression type,
etc. Here's the structure:

typedef struct tagBITMAPINFOHEADER{ // bmih
 DWORD biSize; // number of bytes required by the structure
 LONG biWidth; // width of the image in pixels
 LONG biHeight; // height of the image in pixels
 WORD biPlanes; // number of planes for target device - must be 1
 WORD biBitCount; // bits per pixel - 1, 4, 8, 16, 24, or 32
 DWORD biCompression; // type of compression - BI_RGB for uncompressed
 DWORD biSizeImage; // size in bytes of the image
 LONG biXPelsPerMeter; // horizontal resolution in pixels per meter
 LONG biYPelsPerMeter; // vertical resolution in pixels per meter
 DWORD biClrUsed; // number of colors used
 DWORD biClrImportant; // number of colors that are important
} BITMAPINFOHEADER;

A few of the fields need some explanation. First, a note on compression. Most bitmaps that you'll be dealing
with will be uncompressed. The most common type of compression for bitmaps is run-length encoding
(RLE), but this is only used for 4-bit or 8-bit images, in which case the biCompression member will be

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (3 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

BI_RLE4 or BI_RLE8, respectively. I'm not going to go into run-length encoding, but it's a fairly
straightforward method of compression, so it's not too hard to deal with if you come across it.

Second, biClrUsed and biClrImportant will usually be set to zero in high-color bitmaps, so don't worry
about them too much. The biSizeImage field may also be set to zero in some BI_RGB uncompressed
bitmaps. Finally, the resolution fields are also unimportant for our purposes. Mainly the only things you're
interested in from this structure are the width, height, and color depth of the image.

After you've read in the info header, if the bitmap has eight bits per pixel or less, it is palettized, and the
palette information immediately follows the info header. The palette information, however, is not stored in
PALETTEENTRY structures, but rather in RGBQUAD structures. An RGBQUAD looks like this:

typedef struct tagRGBQUAD { // rgbq
 BYTE rgbBlue;
 BYTE rgbGreen;
 BYTE rgbRed;
 BYTE rgbReserved;
} RGBQUAD;

Don't ask me why the red, green, and blue intensities are stored in reverse order, but they are. Just read in
the RGBQUADs, and transfer the data into an array full of PALETTEENTRYs to create a DirectDraw palette with.
Remember to set the peFlags member of each PALETTEENTRY to PC_NOCOLLAPSE as you do so.

After the palette, or immediately following the info header if there is no palette, you'll find the actual image
bits. You'll probably want to simply create a pointer and allocate enough memory to it to hold the image
data, and then read it in. Just to be clear, I'll show you the code for doing this, assuming the info header is
stored in a BITMAPINFOHEADER structure called info, and your file pointer is called fptr:

UCHAR* buffer = (UCHAR*)malloc(info.biSizeImage);
fread(buffer, sizeof(UCHAR), info.biSizeImage, fptr);

Just remember that Microsoft warns that biSizeImage may be set to zero in some cases, so check it before
running code like the above. If it is set to zero, you'll have to calculate the size of the image by figuring out
how many pixels comprise the image, and how many bytes are required for each pixel.

Writing your own bitmap loader isn't too bad, but if you want to avoid it, you can always use the code we
developed back in the GDI article and modified at the beginning of this one. Now that that's over with, let's
get into what DirectDraw's all about: using the blitter!

Using the Blitter

The blitter is a part of the video card hardware that is used for manipulating bitmap data. You can also use
it to do color fills, as we'll see in a minute, and any number of other cool tricks if the hardware supports
them. Having easy access to hardware acceleration is one of the best parts about DirectX. Also, remember
that most of the things we'll be doing will be taken care of in the HEL if there's no hardware support. There
are some things that don't have counterparts in the HEL though, which is why you have to be careful to
always check whether your calls succeed or not.

There are two main functions for accessing the blitter in DirectDraw: Blt() and BltFast(). Both are
methods of the IDirectDrawSurface7 interface. The difference is that BltFast() doesn't do clipping,
scaling, or any of the other interesting things that Blt() does. The advantage is about a 10% speed

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (4 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

increase over Blt() if the HEL is being used. If hardware acceleration is supported, though -- and it almost
always is for blitting operations -- there is no speed difference for average blits, so I use Blt() for just
about everything. Let's take a look at it:

HRESULT Blt(
 LPRECT lpDestRect,
 LPDIRECTDRAWSURFACE7 lpDDSrcSurface,
 LPRECT lpSrcRect,
 DWORD dwFlags,
 LPDDBLTFX lpDDBltFx
);

Because Blt() can do all sorts of special effects, as evidenced by that last parameter, it's got a few long
lists of flags associated with it. I'll show you what I've found to be the most useful ones. Also, note that
when you're blitting from one surface to another, you call the Blt() method of the destination surface, not
the source surface. All right? Here are the function's parameters:

LPRECT lpDestRect: This is the destination RECT to blit to. If it differs in size from the source RECT, Blt()
will automatically scale the image in the source RECT to fit the destination RECT! If the destination is the
entire surface, you can set this to NULL.

LPDIRECTDRAWSURFACE7 lpDDSrcSurface: This is the source surface of the blit. If you're using the blitter to
do a color fill on the destination surface, you can set this parameter to NULL.

LPRECT lpSrcRect: This is the source RECT to blit from. If you mean to blit the entire contents of the
surface, set this to NULL.

DWORD dwFlags: There's a huge list of flags for this parameter, which can be logically combined with the |
operator. Quite a few of them have to do with Direct3D stuff (like alpha information), so I'll show you a
partial list here.

DDBLT_ASYNC
Performs the blit asynchronously through the FIFO (first in, first out) in the
order received. If no room is available in the FIFO hardware, the call fails, so be
careful using this one.

DDBLT_COLORFILL
Fills the destination rectangle with the color denoted in the dwFillColor
member of the DDBLTFX structure.

DDBLT_DDFX Uses the dwDDFX member of the DDBLTFX structure to specify effects used for
the blit.

DDBLT_DDROPS Uses the dwDDROPS member of the DDBLTFX structure to specify raster
operations (ROPs) that are not part of the Win32 API.

DDBLT_KEYDEST Uses the color key associated with the destination surface.

DDCLT_KEYDESTOVERRIDE Uses the dckDestColorKey member of the DDBLTFX structure as the color key
for the destination surface.

DDBLT_KEYSRC Uses the color key associated with the source surface.

DDCLT_KEYSRCOVERRIDE Uses the dckDestColorKey member of the DDBLTFX structure as the color key
for the source surface.

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (5 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

DDBLT_ROP Uses the dwROP member of the DDBLTFX structure for the ROP for the blit. These
ROPs are those defined in the Win32 API.

DDBLT_ROTATIONANGLE Uses the dwRotationAngle member of the DDBLTFX structure as the rotation
angle (specified in hundreths of a degree) for the surface.

DDBLT_WAIT
Waits for the blitter to be available instead of returning an error, if the blitter
was drawing at the time this blit was called. The function returns when the blit
is complete, or another error occurs.

I almost always use DDBLT_WAIT. The color key flags are also important; we'll get to them in just a bit.
Now, though, here's the last parameter to Blt():

LPDDBLTFX lpDDBltFx: A pointer to a DDBLTFX structure, which can contain all sorts of special effects
information. If no effects are specified using this structure, you can pass NULL. Let's take a look at the
structure. I'm warning you, it's massive!

typedef struct _DDBLTFX{
 DWORD dwSize;
 DWORD dwDDFX;
 DWORD dwROP;
 DWORD dwDDROP;
 DWORD dwRotationAngle;
 DWORD dwZBufferOpCode;
 DWORD dwZBufferLow;
 DWORD dwZBufferHigh;
 DWORD dwZBufferBaseDest;
 DWORD dwZDestConstBitDepth;
 union {
 DWORD dwZDestConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferDest;
 };
 DWORD dwZSrcConstBitDepth;
 union {
 DWORD dwZSrcConst;
 LPDIRECTDRAWSURFACE lpDDSZBufferSrc;
 };
 DWORD dwAlphaEdgeBlendBitDepth;
 DWORD dwAlphaEdgeBlend;
 DWORD dwReserved;
 DWORD dwAlphaDestConstBitDepth;
 union {
 DWORD dwAlphaDestConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaDest;
 };
 DWORD dwAlphaSrcConstBitDepth;
 union {
 DWORD dwAlphaSrcConst;
 LPDIRECTDRAWSURFACE lpDDSAlphaSrc;
 };
 union {
 DWORD dwFillColor;
 DWORD dwFillDepth;
 DWORD dwFillPixel;

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (6 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

 LPDIRECTDRAWSURFACE lpDDSPattern;
 };
 DDCOLORKEY ddckDestColorkey;
 DDCOLORKEY ddckSrcColorkey;
} DDBLTFX, FAR* LPDDBLTFX;

If I went through this whole structure, we'd all be standing in line for our AARP cards by the time I got
finished. So I'll just go over the important ones. Thankfully, most of this structure is for z-buffers and alpha
information, which don't concern us. It makes my job a little easier. :)

DWORD dwSize: Like all DirectX structures, this member has to be set to the size of the structure when you
initialize it.

DWORD dwDDFX: These are kinds of effects that can be applied to the blit. The list isn't too long, don't worry.

DDBLTFX_ARITHSTRETCHY The blit uses arithmetic stretching along the y-axis.

DDBLTFX_MIRRORLEFTRIGHT The blit mirrors the surface from left to right.

DDBLTFX_MIRRORUPDOWN The blit mirrors the surface from top to bottom.

DDBLTFX_NOTEARING Schedules the blit to avoid tearing.

DDBLTFX_ROTATE180 Rotates the surface 180 degrees clockwise during the blit.

DDBLTFX_ROTATE270 Rotates the surface 270 degrees clockwise during the blit.

DDBLTFX_ROTATE90 Rotates the surface 90 degrees clockwise during the blit.

The only one that might need some explanation is DDBLTFX_NOTEARING. Tearing is what can happen when
you blit a surface out of sync with the vertical blank. If you blit to the entire primary surface while it's being
drawn, you can see the top half of the old frame along with the bottom half of your updated frame. In my
experience, this has almost never been a problem. On with the DDBLTFX structure...

DWORD dwROP: You use this flag to specify Win32 raster operations, like those that can be used with the GDI
functions BitBlt() and StretchBlt(). Most of them have to do with combining source and destination
images using Boolean operators. You can call IDirectDraw7::GetCaps() to retrieve a list of supported
raster ops, among other things.

DWORD dwRotationAngle: This is an angle by which to rotate the bitmap, specified in hundredths of a
degree. This is pretty cool, but unfortunately, rotation is only supported in the HAL, which means that if the
user's video card doesn't support accelerated rotation, it won't work at all. Hardware support for this is not
too common, either, so the bottom line is that you shouldn't use this in a program you're going to
distribute. If you really need rotation, you'll have to write your own code for it. Doing that is a topic for
another entire tutorial, though, so we'll just pass it by for now. But note that rotations by multiples of
ninety degrees are easy, so using DDBLTFX_ROTATE90, etc. instead of using dwRotationAngle will work no
matter how lousy the user's video card is.

DWORD dwFillColor: When you're using the blitter to perform a color fill, you must set the color to be used
in this parameter.

DDCOLORKEY ddckDestColorKey, ddckSrcColorKey: Specify these members when you want to use a
destination or source color key other than the one specified for the surface involved. These guys are
important, but we can't talk about them just yet because we haven't covered color keys. It's coming soon

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (7 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

enough...

That about does it for the immediately useful members of the DDBLTFX structure, which means you now
have enough information to go ahead and start blitting images! If it's all rather confusing at this point,
don't worry, it will become second nature once you use it a couple of times. Let's look at an example or
two. Suppose you have a back buffer called lpddsBack, and you want to blit its contents to the primary
surface. Here's the call:

lpddsPrimary->Blt(NULL, lpddsBack, NULL, DDBLT_WAIT, NULL);

How easy is that? To refresh your memory a bit, the first and third parameters are the destination and
source RECTs for the blit, respectively. Since I have specified NULL for each, the entire surface is copied.
Now, let's say you have a tile that's 16x16 in size in an offscreen surface called lpddsTileset, and you
want to blit it to the back buffer, scaling it up to 32x32. Here's what you might do:

RECT dest, src;
SetRect(&src, 0, 0, 16, 16); // the coordinates of the tile
SetRect(&dest, 0, 0, 32, 32); // where you want it to end up on the back buffer
lpddsBack->Blt(&dest, lpddsTileset, &src, DDBLT_WAIT, NULL);

The only difference between this example and the last one is that we've specified the coordinates to be
used in the blit. Since the two RECTs are of different sizes, Blt() scales the image appropriately. Finally, to
illustrate using the DDBLTFX structure, let's do a color fill. Suppose you're in 16-bit color, with a 565 pixel
format, and you want to fill your back buffer with blue. This is all you need:

DDBLTFX fx;
INIT_DXSTRUCT(fx); // zero out the structure and set dwSize
fx.dwFillColor = RGB_16BIT565(0, 0, 31); // set fill color to blue
lpddsBack->Blt(NULL, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, &fx);

Note that since there is no source surface involved, the second parameter is set to NULL. Got it? All right,
let's take a look at the alternative blitting function, BltFast(). It's basically a stripped-down version of
Blt(), so we don't need to spend nearly as much time on it.

HRESULT BltFast(
 DWORD dwX,
 DWORD dwY,
 LPDIRECTDRAWSURFACE7 lpDDSrcSurface,
 LPRECT lpSrcRect,
 DWORD dwTrans
);

As you can see, it's very similar to Blt(). This is also a member function of the IDirectDrawSurface7
interface, and should be called as a method of the destination surface. Let's have a look at the parameters:

DWORD dwX, dwY: Here's a difference between Blt() and BltFast(). BltFast() uses these x- and y-
coordinates to specify the destination of the blit, rather than a RECT. This is because you can't do scaling
with BltFast().

LPDIRECTDRAWSURFACE7 lpDDSrcSurface: This is the source surface, just like before.

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (8 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

LPRECT lpSrcRect: This is also what we used in Blt(), the source RECT for the blit.

DWORD dwTrans: This parameter takes one or more of the flags listed below, and specifies the type of
transfer to perform. The list is very simple; there are only four possible values you can use.

DDBLTFAST_DESTCOLORKEY Specifies a transparent blit that uses the destination's color key.

DDBLTFAST_NOCOLORKEY Specifies a normal copy blit with no transparency.

DDBLTFAST_SRCCOLORKEY Specifies a transparent blit that uses the source's color key.

DDBLTFAST_WAIT
Waits for the blitter to be available instead of returning an error, if the blitter
was drawing at the time this blit was called. The function returns when the blit
is complete, or another error occurs.

That's it! BltFast() supports color keys, and that's about it. Just as a quick demonstration, let's look at
how you would do the first example I gave above with BltFast(). Here's how you would copy your entire
back buffer onto the primary surface:

lpddsPrimary->BltFast(0, 0, lpddsBack, NULL, DDBLTFAST_WAIT);

Now that you're an expert on using the blitter, there are a few things we can cover that are very useful in
any DirectDraw program: color keys and clipping. Since you've seen a million different flags concerning
color keys in some way and are probably wondering how to make use of them, let's cover that first.

Color Keys

A color key is a method of blitting one image onto another whereby not all of the pixels are copied. For
instance, let's say you have a character sprite you want to blit onto a background image. Chances are that
your hero isn't shaped precisely like a rectangle (unless your game is a celebration of "modern art"), so
copying the RECT that encloses him is going to produce some unwanted effects. Take a look at this example
picture from Terran to see what I mean:

Now this isn't really the way the game is drawn. In reality, the characters are blitted to the display before
the background has finished being drawn, so that things like the tops of trees can obscure the player if he's
standing behind them. But that's unimportant for our purposes here; we'll get to it in the next article. The
important point is that without color keying, all of your non-rectangular images like this character would
have boxes around them.

To solve this problem, we use a source color key. The source color key tells the blitter which colors not to
copy. A color key consists of two values: a lower color value, and an upper color value. When the color key
is applied to a blit, any colors lying between the two values, including the values themselves, are not
copied. There's a structure in DirectX that goes along with this, called DDCOLORKEY. Take a look:

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (9 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

typedef struct _DDCOLORKEY{
 DWORD dwColorSpaceLowValue;
 DWORD dwColorSpaceHighValue;
} DDCOLORKEY, FAR* LPDDCOLORKEY;

I just told you what the members are so there's no need to go over them further. Let me show you what
the above blit would look like with a color key activated. In Terran, I use color keys with the low and high
values both set to black. Thus, black is the only color that doesn't get copied. When this color key is applied
to the blit, this is the result:

Much better, hey? That's the look we're going for! Now before I show you how to create and use a color
key, I want to briefly mention destination color keys, although they're not often used. Whereas source color
keys define which colors are not copied, destination color keys define which colors can't be written to.
Sound weird? It is. :) Destination color keying would be used if you wanted to blit one image to a position
where it looks like it's underneath another. Suppose that for some odd reason, you wanted to draw text
boxes on your blank back buffer, and then copy the background image afterwards, but you still wanted the
text boxes to appear on top of the map. What you could do is set a destination color key to include every
color except black. Thus, the only areas on the back buffer that can be written to are those pixels which are
currently black. Take a look at this illustration to see what I mean:

Like I said, I'm not sure why you'd want to do that, but there it is. Maybe you can think up a good use for
it. If you do, be sure to let me know. :) Now that you know what color keys are, let's see how you use
them.

Setting Color Keys

There are two ways to use a color key in DirectDraw. First, you can attach one (or two, if you're using
source and destination) to a surface, and then specify the DDBLT_KEYSRC, DDBLT_KEYDEST,
DDBLTFAST_SRCCOLORKEY, or DDBLTFAST_DESTCOLORKEY flag when blitting, depending on which blit function
and what type of color key you're using. Second, you can create a color key and pass it to the blit operation
through the DDBLTFX structure. The first method is recommended if you're going to be using a color key
over and over, whereas the second method is ideal if you only want to use a certain color key once.

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (10 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

You can either attach a color key to a surface that has been created, or you can create the color key at the
same time you create the surface. I'll show you how to do both. Let's assume you're working in a 16-bit
display mode, with a 565 pixel format, and you want a source color key on your back buffer that includes
black only. If your back buffer has already been created, you simply create a DDCOLORKEY structure like we
saw before, and pass it to IDirectDrawSurface7::SetColorKey(), shown below:

HRESULT SetColorKey(
 DWORD dwFlags,
 LPDDCOLORKEY lpDDColorKey
);

Remember to test the return value of this function with the FAILED() macro when you call it, to make sure
everything happens the way you want it to. The parameters are straightforward:

DWORD dwFlags: One or more of a series of simple flags describing the color key. There are only three you'll
use:

DDCKEY_COLORSPACE Specifies that the color key describes a range of colors, not just one.

DDCKEY_DESTBLT Specifies that the color key should be used as a destination color key for blit
operations.

DDCKEY_SRCBLT Specifies that the color key should be used as a source color key for blit operations.

LPDDCOLORKEY lpDDColorKey: This is a pointer to the DDCOLORKEY structure you filled out.

And that's all there is to it. From that point on, you just specify the appropriate flag on blits which you want
to use the color key. Note that just because a surface has a color key attached to it, doesn't mean you have
to use it every time. If you specify blits with only the DDBLT_WAIT or DDBLTFAST_WAIT flag and nothing else,
any color keys will be ignored. So here's how you'd set up the color key we described earlier:

DDCOLORKEY ckey;
ckey.dwColorSpaceLowValue = RGB_16BIT565(0, 0, 0); // or we could just say '0'
ckey.dwColorSpaceHighValue = RGB_16BIT565(0, 0, 0);
if (FAILED(lpddsBack->SetColorKey(DDCKEY_SRCBLT, &ckey)))
{
 // error-handling code here
}

If you want to create a surface with the color key already specified, there are just a few things you have to
do. First, when you're specifying the valid fields of the DDSURFACEDESC2 structure, you need to include
DDSD_CKSRCBLT or DDSD_CKDESTBLT in the dwFlags member, depending on which type of color key you
want to use. Looking back at the DDSURFACEDESC2 structure, it contains two DDCOLORKEY structures. One is
called ddckCKSrcBlt, and the other is called ddckCKDestBlt. Fill out the appropriate structure, create the
surface, and you're all set! Here's the example code for an offscreen surface that's 640x480 in size.

// set up surface description structure
INIT_DXSTRUCT(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT | DDSD_CKSRCBLT;
ddsd.dwWidth = 640; // width of the surface
ddsd.dwHeight = 480; // and its height
ddsd.ddckCKSrcBlt.dwColorSpaceLowValue = RGB_16BIT(0,0,0); // color key low value

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (11 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

ddsd.ddckCKSrcBlt.dwColorSpaceHighValue = RGB_16BIT(0,0,0); // color key high value
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN; // type of surface

// now create the surface
if (FAILED(lpdd7->CreateSurface(&ddsd, &lpddsBack, NULL)))
{
 // error-handling code here
}

That wraps up color keys, so now we can cover the final topic of this article, which is clipping.

The IDirectDrawClipper Interface

Suppose you have a graphic that you want to appear such that only half of it is on the screen. How would
you do it? If you've programmed games in DOS, you've probably done clipping the hard way. Well, in
DirectX, it's trivial! First of all, it's pretty easy to do manually, since DirectX uses RECTs for blitting, and
changing the coordinates of a RECT is much easier than figuring out which parts of the graphic's memory
should be copied, like you would have to do in DOS. But second, DirectDraw provides an entire interface to
take care of this for you, called IDirectDrawClipper.

The clipping capabilities included in DirectDraw are about as flexible as you could ask for. Not only can you
clip to any RECT area on any surface, but you can clip to multiple areas! That is, if you wanted a main
viewing window, a status bar on the side of your screen, and a text area on the lower part of the screen,
with a black divider partitioning the screen into those three areas, you could set up a DirectDraw clipper
that would clip to all three regions. How cool is that?

There are several steps involved in creating a clipper to do this kind of work for you. The first is to actually
retrieve a pointer to the IDirectDrawClipper interface. Not surprisingly, this is accomplished with a call to
IDirectDraw7::CreateClipper, as shown here:

HRESULT CreateClipper(
 DWORD dwFlags,
 LPDIRECTDRAWCLIPPER FAR *lplpDDClipper,
 IUnknown FAR *pUnkOuter
);

Before you make this call, you'll need to declare a pointer of type LPDIRECTDRAWCLIPPER, so you can pass
its address to the function. Remember to test for failure, as always. Here are the parameters:

DWORD dwFlags: Nice and easy -- this isn't used yet and should be set to 0.

LPDIRECTDRAWCLIPPER FAR *lplpDDClipper: Pass the address of your LPDIRECTDRAWCLIPPER pointer.

IUnknown FAR *pUnkOuter: You know what to do. Just say no... er, NULL. :)

Once that's out of the way and you have your interface pointer, the next thing to do is to create a clip list.
A clip list is basically a list of the RECTs you want to clip to. The structure that's used is called an RGNDATA,
and it contains enough information to define an arbitrary region, which can be made up of multiple
components. Let's look at the structure.

typedef struct _RGNDATA {

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (12 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

 RGNDATAHEADER rdh;
 char Buffer[1];
} RGNDATA;

It's not at all clear what those parameters are for, so I'll go over them in detail.

RGNDATAHEADER rdh: This is a structure nested within the RGNDATA that contains information about the
second parameter, Buffer. Its fields include things like how many areas comprise the region, what shape
those areas are, etc. We'll cover that structure in just a second.

char Buffer[1]: This isn't actually meant to be a single-valued array; it's going to be an area in memory
of arbitrary size that holds the data for the actual clipping areas. As such, instead of declaring an RGNDATA
structure, what we do is to declare a pointer to the structure, and then use malloc() to set enough
memory aside for the RGNDATAHEADER, and the clip list itself. One thing I'll mention now: RECTs in the clip
list should be ordered from top to bottom, then from left to right, and must not overlap.

I realize that this is all a little hazy right now, but all will be made clear. To that end, here's the
RGNDATAHEADER structure, which is relatively easy to understand.

typedef struct _RGNDATAHEADER {
 DWORD dwSize;
 DWORD iType;
 DWORD nCount;
 DWORD nRgnSize;
 RECT rcBound;
} RGNDATAHEADER;

DWORD dwSize: This is the size of the structure in bytes. Simply set it to sizeof(RGNDATAHEADER).

DWORD iType: This represents the shape of each of the areas which make up the region. It is included so
that it may be expanded upon later. Right now, the only valid setting for this member is RDH_RECTANGLES,
which is what we want anyway.

DWORD nCount: This is the number of rectangles that make up the region. In other words, it's the number of
RECTs you plan to use in your clip list.

DWORD nRgnSize: Set this to the size of the buffer that will be receiving the region data itself. Since we're
using RECTs, this size will be sizeof(RECT) * nCount.

RECT rcBound: This is a RECT that bounds all the rectangles in your clip list. Usually you'll set this to the
dimensions of the surface on which the clipping will occur.

Now that we've seen all of the structures involved, we can generate a clip list. First we declare an
LPRGNDATA pointer and allocate enough memory to it to hold our clip list, then simply fill out the fields of
each structure according to their descriptions above. Let's look at the simplest case, which you'll probably
use often, which is that of only a single clipping area. Furthermore, let's make it size of the whole screen, in
a 640x480 display mode. Here's the code that will get the job done.

// first set up the pointer -- we allocate enough memory for the RGNDATAHEADER
// along with one RECT. If we were using multiple clipping area, we would have

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (13 of 15) [5/12/2001 7:01:03 PM]

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

// to allocate more memory.
LPRGNDATA lpClipList = (LPRGNDATA)malloc(sizeof(RGNDATAHEADER) + sizeof(RECT));

// this is the RECT we want to clip to: the whole display area
RECT rcClipRect = {0, 0, 640, 480};

// now fill out all the structure fields
memcpy(lpClipList->Buffer, &rcClipRect, sizeof(RECT)); // copy the actual clip region
lpClipList->rdh.dwSize = sizeof(RGNDATAHEADER); // size of header structure
lpClipList->rdh.iType = RDH_RECTANGLES; // type of clip region
lpClipList->rdh.nCount = 1; // number of clip regions
lpClipList->rdh.nRgnSize = sizeof(RECT); // size of lpClipList->Buffer
lpClipList->rdh.rcBound = rcClipRect; // the bounding RECT

Once you have a clip list, you need to set it as such with your clipper. The call you want is SetClipList(),
which is of course a method of the IDirectDrawClipper interface. Here's what it looks like:

HRESULT SetClipList(
 LPRGNDATA lpClipList,
 DWORD dwFlags
);

All you need to do is pass a pointer to the RGNDATA structure you just filled out. The dwFlags parameter is
not used, so just set it to 0. Now that the clip list is set, there's just one more step, and that's attaching the
clipper to the surface you want to do your clipping on. This requires a call to SetClipper(), which is a
method of the surface you want to attach the clipper to, not the clipper itself.

HRESULT SetClipper(LPDIRECTDRAWCLIPPER lpDDClipper);

And you know what to do with that: just pass your interface pointer and you're all set. Anytime you try to
blit to a surface that has a clipper attached to it, the clipper does all the work. So if you want to show a tile
that's half-on, half-off the screen, go ahead and blit to a RECT like {-10, -10, 6, 6}, or whatever it happens
to be. Pretty sweet, hey?

The last thing I'll say about clippers is that you should remember to free() the memory that you allocated
with malloc(), no matter what happens with your clipper. That is, if the call to SetClipList() or
SetClipper() fail for some reason, make sure you're still freeing the memory before you return an error
code or whatever you do to handle errors. You won't be needing the LPRGNDATA pointer anymore after you
use it to set the clip list, so its memory should be deallocated immediately.

Closing

That just about wraps up the series on general DirectDraw stuff! Can you believe how much we've covered
in just six articles? Congratulate yourself if you're still reading these; you've come a long way. :) To better
illustrate some of the things we've covered today, I've thrown a little demo program together for you. It
demonstrates loading a bitmap resource; using the blitter for image copying, color filling, and scaling; and
using a clipper to make it all easy. The program is available here.

There are still some things we haven't covered that didn't quite fit into the articles like I wanted them to,
like page flipping as an alternative to double-buffering, and using DirectDraw in a windowed app, but that's
all right, because we'll just pick them up as we go on.

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (14 of 15) [5/12/2001 7:01:03 PM]

http://www.gamedev.net/reference/programming/features/gpgenesis6/clipscale.zip

GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

Now that the initiation is over, I'm going to be shifting the focus of these articles off of general Windows
programming, and onto developing a tile-based RPG. Future articles will include such things as developing a
good input mechanism with DirectInput, writing a basic scripting engine, playing background sound and
music, developing utilities to help you with game design, etc. Next time, we'll take a look at developing a
simple scrolling engine for a tile-based game. It's easier than you might think!

As always, until then, feel free to send me your questions at ironblayde@aeon-software.com, or reach me
on ICQ at UIN #53210499. Practice up on the techniques we've covered so far, because you're going to
need them all. :) Later, everyone!

Copyright © 2000 by Joseph D. Farrell. All rights reserved.

Discuss this article in the forums

© 1999-2001 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Send us an e-mail!

file:///C|/Documents%20and%20Settings/Adminis...%20Bitmapped%20Graphics%20in%20DirectDraw.htm (15 of 15) [5/12/2001 7:01:03 PM]

mailto:ironblayde@aeon-software.com
mailto:ironblayde@aeon-software.com
http://www.gamedev.net/community/forums/topic.asp?key=featart&uid=1282&forum_id=35&Topic_Title=Game+Programming+Genesis+Part+VI+%3A+Bitmapped+Graphics+in+DirectDraw
http://www.gamedev.net/legal/legal.htm#copyright
http://www.gamedev.net/legal/legal.htm#privacy
mailto:webmaster@gamedev.net

	Local Disk
	GameDev.net - Game Programming Genesis Part VI : Bitmapped Graphics in DirectDraw

