
GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

Game Programming Genesis Part II : Using Resources in Win32 Programs GameDev.net

Game Programming Genesis
Part II : Using Resources in Win32 Programs

by Joseph "Ironblayde" Farrell

Introduction

Welcome back! As you may have guessed by the title, in this article I'm going to show you how to use resources in
your Windows programs. Simply put, resources are binary data that's appended to your .EXE file after the actual
program code. Using resources is easy to learn and has a lot of advantages. It allows the developer to consolidate
a lot of data into one file, include custom icons and such things with their programs, and prevent users from
altering that data. Windows supports a large number of resource types, so I'm just going to cover the ones I think
are most convenient and easiest to learn: bitmaps, cursors, icons, menus, and string tables. After that, I'll show
you how to create a custom resource type, so you can include anything you want.

Again, all you need to understand this article is a basic understanding of the C language. C++ always helps since
Windows itself is object-oriented, but most of my code is straight C. Also, I will assume that you have read my
previous article, "Beginning Windows Programming," or have the equivalent knowledge. I use and recommend the
Microsoft Visual C++ compiler, but if you're using a different one, it's not a big deal. Ready? Here we go!

Resource Scripts

Before we get into any of the specific resource types, we need to go over the method used to tell the compiler
what resources to include, and how. This method is to use a special file called a resource script, which is simply a
text file either written by the developer or automatically generated by Visual C++, or whatever IDE you happen to
be using. Your script file should have the file extension .rc. Most of a script file is taken up by lines which define
or specify the resources to include. The simplest of these lines is used by several resource types, and looks like
this:

[identifier] [resource type] [filename]

The identifier can be one of two things: a string representing the resource, or a numeric constant that's #defined
in a header file meant to accompany the resource script file. If you use numeric constants, which is usually a good
idea, you can use the #include directive in your script file to include the header that corresponds to it. You can
also use C-style comments to make things a little easier to understand. That said, here's what a very simple
resource script file might look like:

#include "resource.h"

// icons
ICON_MAIN ICON myicon.ico

// bitmaps
IMG_TILESET1 BITMAP tileset.bmp
IMG_TILESET2 BITMAP tileset2.bmp

That's not too bad, right? There's one thing that can be confusing, though. Just by looking at my brief example,
you can't tell if ICON_MAIN and IMG_TILESET are meant to be strings or numeric constants. The file would appear
the same no matter which case were true. At compile time, your compiler will look at the identifiers you're using
and search through your header files looking for their definitions. If no matching #define statements are found,
it's assumed that you're using string identifiers.

http://www.gamedev.net/reference/articles/article1240.asp (1 of 10) [5/12/2001 6:46:23 PM]

http://www.gamedev.net/
mailto:ironblayde@aeon-software.com

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

Don't worry about the actual lines themselves just yet; I'll explain each type of entry when I get to that particular
resource. If you don't want to bother with resource scripting at all, you can just insert the resources from your IDE
(in Visual C++, go to "Resource..." under the Insert menu) and a resource script will be generated automatically. I
prefer to do it myself with good old Notepad, but don't ask me why because I can't think of a good reason. :) Now
that you know the basics of creating a resource script, let's get started on the specific resource types.

Icons and Cursors

Most of the Windows programs you use every day have their own icons built in, and now you know how it works:
they're simply resources included in the EXE file. Custom cursors that are used by those programs are also
included as resources. You've already seen an example of the script line that includes an icon resource, and the
line for cursors is very similar. Here they are:

[identifier] CURSOR [filename]
[identifier] ICON [filename]

After adding a line such as this to your script file -- make sure to include the script file in your project -- the icon
or cursor specified by [filename] will be included as a resource in your EXE file. That's all there is to it! You can
use any icon/cursor editor to generate the files you want to include. I use the one that's included in Visual C++.

Including the resources doesn't do a whole lot for your program, though, because you don't know how to use them
yet! To get an idea for how icon and cursor resources are utilized in a program, let's revisit the window class we
developed in the last article:

WNDCLASSEX sampleClass; // declare structure variable

sampleClass.cbSize = sizeof(WNDCLASSEX); // always use this!
sampleClass.style = CS_DBLCLKS | CS_OWNDC |
 CS_HREDRAW | CS_VREDRAW; // standard settings
sampleClass.lpfnWndProc = MsgHandler; // message handler function
sampleClass.cbClsExtra = 0; // extra class info, not used
sampleClass.cbWndExtra = 0; // extra window info, not used
sampleClass.hInstance = hinstance; // parameter passed to WinMain()
sampleClass.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Windows logo
sampleClass.hCursor = LoadCursor(NULL, IDC_ARROW); // standard cursor
sampleClass.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); // a simple black brush
sampleClass.lpszMenuName = NULL; // no menu
sampleClass.lpszClassName = "Sample Class" // class name
sampleClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // Windows logo again

You remember this, don't you? The hIcon field specifies the icon to be used to represent the program, and the
hIconSm field is the icon used on the Start Menu and the window's title bar. The hCursor field sets the cursor to be
used when the mouse is within the boundaries of the window you create. I promised you we'd take a look at the
functions used to fill these fields a little more closely, so here are their prototypes:

HICON LoadIcon(
 HINSTANCE hInstance, // handle to application instance
 LPCTSTR lpIconName // icon-name string or icon resource identifier
);

HCURSOR LoadCursor(
 HINSTANCE hInstance, // handle to application instance

http://www.gamedev.net/reference/articles/article1240.asp (2 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

 LPCTSTR lpCursorName // name string or cursor resource identifier
);

The return type is a handle to the cursor you're loading. The parameters are very straightforward:

HINSTANCE hInstance: This is a handle to the instance of your application. To load resources from your program,
just pass the HINSTANCE that is passed to your WinMain() function when the program is executed. To use standard
Windows resources like we did in the window class above, set this to NULL.

LPCTSTR lpIconName, lpCursorName: This is a string identifier that identifies the resource you want to load. If
your script file refers to resources by string, simply pass the string. But if you're using numeric constants, the
Windows header files include a macro that changes an integer to a form compatible with this parameter called
MAKEINTRESOURCE().

As an example, let's look at the line that sets the icon to represent the program. Suppose your resource script file
looks like this:

#include "resource.h"

ICON_MAIN ICON myicon.ico
CURSOR_ARROW CURSOR arrow.cur

If the identifiers ICON_MAIN and CURSOR_ARROW do not have matching #define statements somewhere in
resource.h, then you would pass the corresponding string to the appropriate resource-loading function, like this:

sampleClass.hIcon = LoadIcon(hinstance, "ICON_MAIN");

Now let's say that resource.h contains a few #define directives:

#define ICON_MAIN 1000
#define CURSOR_ARROW 2000

Now you have to use the MAKEINTRESOURCE() macro to turn the numerical identifier into something of type
LPCTSTR. This gives you a little more ease of flexibility in loading resources. Any of the following calls would be
correct:

sampleClass.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE(ICON_MAIN));

 or...
sampleClass.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE(1000));

 or...
int ident = 1000;
sampleClass.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE(ident));

That's about all you need to know about including icons and cursors in your programs, but I'll mention one more
thing while we're on the topic. If you want to set a cursor sometime other than at the beginning of the program,
there's a simple Windows function you can use to accomplish this:

HCURSOR SetCursor(HCURSOR hCursor);

http://www.gamedev.net/reference/articles/article1240.asp (3 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

The one parameter is the handle you get by calling LoadCursor(), and the handle that is returned is a handle to
the previous cursor. If no previous cursor was set, the return value is NULL. Relatively painless, wouldn't you say?
Let's move on to something a bit more interesting.

Bitmaps

Including bitmap resources is probably the easiest way to add images to your program. Bitmaps are native to
Windows and so there are functions included to deal with loading and manipulating them, but remember, if you
include too many, you'll end up with an enormous .EXE file. In any case, you include bitmaps in your resource
script file in basically the same way you handle icons and cursors:

[identifier] BITMAP [filename]

There is a function called LoadBitmap() that is analagous to LoadCursor() and LoadIcon(); it is used to retrieve
a handle to a bitmap, but since I haven't talked about graphics yet, I won't describe this function here. You can
probably guess exactly how it works, but once you have a handle to a bitmap, what would you do with it? More to
come on that in the future, don't worry! For now, I just wanted to show you how to include a bitmap resource.
Now let's look at something you can use right away.

String Tables

The string table is one of my favorite resource types. It's exactly what you're thinking: a giant table full of strings.
There are any number of purposes for using a string table. You can use it to store data filenames, character
dialogue for a game, message-box text, text for menus that are generated by the program, anything you want.
Creating a string table in your script file is easy. Here's what it looks like:

STRINGTABLE
{
// entries go here
}

An entry in a string table consists of a number to identify the string, followed by a comma, then the string itself,
enclosed in double quotation marks. The strings in a string table can include escape sequences like \n or \t. Note
that the string table itself does not have an identifier, so each program you write can include only one string table.
A simple string table might look something like this:

// program information
STRINGTABLE
{
1, "3D Space Game v1.0"
2, "Written by The Masked Coder"
3, "(C) 2000 WienerDog Software"
}

To load a string from your program's string table, you use the -- you guessed it -- LoadString() function. Here is
its prototype:

int LoadString(

http://www.gamedev.net/reference/articles/article1240.asp (4 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

 HINSTANCE hInstance, // handle to module containing string resource
 UINT uID, // resource identifier
 LPTSTR lpBuffer, // pointer to buffer for resource
 int nBufferMax // size of buffer
);

The integer returned by the function is the number of characters, excluding the terminating null character, that
were successfully copied into the buffer. This corresponds to the length of the string. If you load a blank string, or
if the function fails, the return value is 0. Take a look at the parameters:

HINSTANCE hInstance: Once again, this is the instance of your application.

UINT uID: This is the number that identifies the particular string you want to load.

LPTSTR lpBuffer: This is a pointer to the location you want the string copied to.

int nBufferMax: This is the size of the buffer in bytes. If the string to be loaded is longer than the buffer can
hold, the string is truncated and null-terminated.

For example, to load WienerDog Software's copyright message, the following code would be used:

char buffer[80];
LoadString(hinstance, 3, buffer, sizeof(buffer));

Even though the declaration of a string table in your script file has to use numbers and not identifiers, I usually
#define a number of string table constants in one of my header files when using a string table. For instance, to
accompany the string table above, I might have a line like:

#define ST_WIENERDOGCOPYRIGHT 3

Your code will be much easier to read if you have LoadString() calls that use readable constants for the uID
parameter, rather than just having the index numbers. This doesn't mean you should have a constant for every
string table entry; that would take ages if you have a large string table. Usually I like to use one #define per
"section" of the string table. For instance, ST_FILENAMES for the first index where filenames are stored,
ST_DIALOGUE for the first index of the character dialog strings, etc.

Menus

This is the last type of Windows resource I'll go over, and it's also one of the most useful. Menu resources are used
to define the menu bar that would appear underneath the title bar of your application, and are loaded during the
definition of the window class. Looking back, in the window class we developed during the last article, there was a
line that looked like this:

sampleClass.lpszMenuName = NULL;

If you're creating a windowed application, chances are that you'll want to have a menu bar of some sort. This is
done using the menu resource. The script file entry for this one can get a little complicated, but here is its most
basic form:

http://www.gamedev.net/reference/articles/article1240.asp (5 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

[identifier] MENU
{
 POPUP [menu name]
 {
 MENUITEM [item name], [identifier]
 }
}

The identifier is what you're used to: either a string or a numeric constant that is used to refer to the menu. Within
the MENU brackets, there can be one or more POPUP menus, each of which represent a pull-down menu, whose
name is given by [menu name]. Within the POPUP brackets, there can be one or more MENUITEMs, each of which
represents a final menu selection, with a name given by [item name] and an identifier that must be a numeric
constant. Within the menu and item names, if you want that option to be accessible by a keyboard shortcut, you
precede the letter of the shortcut with the ampersand (&). For instance, if you want to create a File menu
accessible by pressing Alt+F, the menu name should be &File. Menu and item names should be enclosed in
double quotation marks. With that, here is an example of a simple menu resource:

MAIN_MENU MENU
{
 POPUP "&File"
 {
 MENUITEM "&New", MENUID_NEW
 MENUITEM "&Open...", MENUID_OPEN
 MENUITEM "&Save", MENUID_SAVE
 MENUITEM "Save &As...", MENUID_SAVEAS
 MENUITEM "E&xit", MENUID_EXIT
 }
 POPUP "&Help"
 {
 MENUITEM "&Contents", MENUID_CONTENTS
 MENUITEM "&Index...", MENUID_INDEX
 MENUITEM "&About", MENUID_ABOUT
 }
}

You can also create submenus by including one POPUP inside of another, specify menu items as being initially
grayed or checked, or do several other more advanced things, but I'm not going to go into that here. To obtain a
handle to a menu resource, use the LoadMenu() function whose prototype is shown here:

HMENU LoadMenu(
 HINSTANCE hInstance, // handle to application instance
 LPCTSTR lpMenuName // menu name string or menu-resource identifier
);

You should be used to these parameters by now. The first one is the instance of your application, and the second
is the identifier you assigned to the menu. Remember to use MAKEINTRESOURCE() if you used a numerical
constant. Now, to attach a menu to a window, you have two options. The first is to set the menu as the default for
your window class, like this:

sampleClass.lpszMenuName = LoadMenu(hinstance, MAKEINTRESOURCE(MAIN_MENU));

http://www.gamedev.net/reference/articles/article1240.asp (6 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

The second option is to leave lpszMenuName equal to NULL, and attach a menu yourself later. This can be useful if
you want to create two windows with different menus, but don't want to define two separate window classes. To
attach a menu, use the SetMenu() function:

BOOL SetMenu(
 HWND hWnd, // handle to window
 HMENU hMenu, // handle to menu
);

The return value is TRUE if the function succeeds, or FALSE if it fails. The parameters are pretty easy to figure out:

HWND hWnd: This is the handle to the window to which you want to attach the menu. Pass the handle that was
returned when you called CreateWindowEx().

HMENU hMenu: To identify the menu, pass the handle returned by LoadMenu(). If you pass NULL, the specified
window's menu is removed.

This resource is particularly nice because all the functionality of the menu is defined by that simple scripting. But
what happens when the user selects a menu option? The answer is that Windows sends a WM_COMMAND message
informing the program that it must take action. Let's pay a visit to our message-handling function and see if we
can't figure out how to handle this.

Handling Menu Events

As you probably remember, Windows messages are handled by a special callback function usually called
WindowProc() or something similar. The simple one we wrote last time was called MsgHandler(), and its
prototype looked like this:

LRESULT CALLBACK MsgHandler(
 HWND hwnd, // window handle
 UINT msg, // the message identifier
 WPARAM wparam, // message parameters
 LPARAM lparam, // more message parameters
};

When a menu message is sent, msg will be WM_COMMAND, and the menu item that was selected will be contained in
wparam. This is why menu item identifiers can't be strings; they need to fit into the wparam parameter. More
specifically, the menu item identifier is the low word of wparam. To extract the low or high word of a 32-bit variable
type like WPARAM, LPARAM, int, etc. Windows provides macros called LOWORD() and HIWORD() that do the job. They
are shown here:

#define LOWORD(l) ((WORD) (l)) #define HIWORD(l) ((WORD) (((DWORD) (l) >> 16) & 0xFFFF))

In the case of LOWORD(), the typecast to WORD simply truncates the value to the lower 16 bits. HIWORD() shifts the
upper 16 bits to the right, then performs a logical AND with 0xFFFF just to be sure any bits above the lower 16 are
all set to zero. If you're not familiar with the >> and << operators, they are bit shifts. The << operator shifts all the
bits of a variable a number of positions to the left, and the >> operator shifts to the right. For example, suppose
you had a 16-bit variable x whose value was 244. In binary this is 0000 0000 1111 0100. The following example

http://www.gamedev.net/reference/articles/article1240.asp (7 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

shows a bit shift, and the effect on x:

short int x = 244, y;
y = x << 4;

Contents of x: 0000 0000 1111 0100
Contents of y: 0000 1111 0100 0000

Anyway, use LOWORD() to extract the low word of wparam, and you have the ID of the menu item that was
selected. So, somewhere in your MsgHandler() function, you should have something like this:

// handle menu selections
if (msg == WM_COMMAND)
{
 switch (LOWORD(wparam))
 {
 case MENUID_NEW:
 // code to handle File->New goes here
 break;
 case MENUID_OPEN:
 // code to handle File->Open goes here
 break;

 // the rest of the option handlers go here

 }

 // tell Windows you took care of it
 return(0);
}

Make sense? Good. That about wraps it up for the specific resource types I'm going to cover. There are others,
such as accelerator tables (tables full of keyboard shortcuts), HTML pages, WAV files etc. but I think these are the
most useful. Before I wrap this up, though, there's one more very powerful feature of Windows programs I'm
going to show you, and that's defining a custom resource type.

Custom Resources

The standard Windows resources are those which have special functions for loading and handling them, but they
are not the only types you can use. Resources can be any data you want them to be! Working with custom
resources requires a little more work since you must locate and read the resource data manually, but it's not too
bad. The script file entry for a custom type follows the basic format you're already used to:

[identifier] [resource type name] [filename]

The resource type name is a string that defines your custom resource, and can be whatever you want. For the
purposes of this example, let's say you want to include a data file called p1config.dat that contains information
necessary to initialize a character in a game program. We'll call the custom resource type CHARCONFIG. With that in
mind, here's an example of what the script file entry might look like for your data file:

http://www.gamedev.net/reference/articles/article1240.asp (8 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

DATA_PLAYERINIT CHARCONFIG p1config.dat

Pretty simple, hey? Now that you've included your file, there are three steps you must take in order to retrieve a
pointer to the resource data. Each involves calling a function we haven't talked about yet, so let's go through them
one at a time. The first thing you must do is to find the resource with a call to FindResource(). Here's the
prototype:

HRSRC FindResource(
 HMODULE hModule, // module handle
 LPCTSTR lpName, // pointer to resource name
 LPCTSTR lpType // pointer to resource type
);

The return value is a handle to the resource's information block, or NULL if the function fails. The parameters are
as follows:

HMODULE hModule: The HMODULE data type is simply an HINSTANCE. Don't ask me why they felt they needed
another name for it, but you should simply pass the instance of your application. You don't even need a typecast
because the data types are exactly the same.

LPCTSTR lpName: This is the resource identifier. Remember to use MAKEINTRESOURCE() on this one if you're using
numeric constants to define your resources.

LPCTSTR lpType: This is the resource type, so pass the string you used to define your resource type. In our case,
this is CHARCONFIG.

A sample function call looks like this:

HRSRC hRsrc = FindResource(hinstance, MAKEINTRESOURCE(DATA_PLAYERINIT), "CHARCONFIG");

This is a handle to the info block the resource resides in. The next step to getting a pointer to the data is to take
this handle and pass it to LoadResource() to actually load the data. This yields a handle to the resource itself.
Here is the function prototype:

HGLOBAL LoadResource(
 HMODULE hModule, // resource-module handle
 HRSRC hResInfo // resource handle
);

The return type, HGLOBAL, is a pretty general handle type, as opposed to the other load functions we've covered,
which returned specific handle types like HBITMAP or HICON. If the function fails, this value will be NULL. The
parameters are straightforward:

HMODULE hModule: Again, simply the application instance.

HRSRC hResInfo: Pass the handle that was returned by FindResource().

Now that you have a handle to the resource, you can finally get a pointer to the data that was in the resource file

http://www.gamedev.net/reference/articles/article1240.asp (9 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

you included. This is achieved with a call to LockResource(), shown here:

LPVOID LockResource(HGLOBAL hResData);

Simply pass the handle that was returned by LoadResource(). If the return value is NULL, the function call failed.
If not, you've got your pointer! Now you're free to do whatever you like with the data. Note that the return type is
LPVOID (Windows-speak for void*), so if you want to use array notation on the pointer, you need to cast it to
something like a BYTE*. Now that we've gone through all the steps, I'll show you an example of a function you
might write to return a pointer to a specified resource:

UCHAR* LoadCustomResource(int resID)
{
 HRSRC hResInfo;
 HGLOBAL hResource;

 // first find the resource info block
 if ((hResInfo = FindResource(hinstance, MAKEINTRESOURCE(resID), "CUSTOMRESOURCETYPE"))
== NULL)
 return(NULL);

 // now get a handle to the resource
 if ((hResource = LoadResource(hinstance, hResInfo)) == NULL)
 return(NULL);

 // finally get and return a pointer to the resource
 return ((UCHAR*)LockResource(hResource));
}

Closing

Well, that about does it for resources! See, programming for Windows is fun. :) Even with all this knowledge of
resources, you're still pretty limited in what you can actually get your programs to do, so next time I'll be going
over some basic Windows GDI (Graphics Device Interface) functions, so you can start using all this stuff to put
some demo programs together. As always, send me your comments, your ideas, your death threats:

E-mail: ironblayde@aeon-software.com
ICQ: UIN #53210499

Farewell everyone, until we meet again...

Discuss this article in the forums

© 1999-2001 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Send us an e-mail!

http://www.gamedev.net/reference/articles/article1240.asp (10 of 10) [5/12/2001 6:46:23 PM]

mailto:ironblayde@aeon-software.com
http://www.gamedev.net/community/forums/topic.asp?key=featart&uid=1240&forum_id=35&Topic_Title=Game+Programming+Genesis+Part+II+%3A+Using+Resources+in+Win32+Programs
http://www.gamedev.net/legal/legal.htm#copyright
http://www.gamedev.net/legal/legal.htm#privacy
mailto:webmaster@gamedev.net

	gamedev.net
	GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

