
GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

Game Programming Genesis Part I : Beginning Windows Programming GameDev.net

Game Programming Genesis
Part I : Beginning Windows Programming

by Joseph "Ironblayde" Farrell

Introduction

The purpose of this article is to introduce the very basics of Windows programming. By its end, you should
be able to put together a working, albeit simple Windows program. All that is required is a basic
knowledge of C. I rarely use C++ extensions in my code. However, since Windows itself is object-
oriented, a little knowledge about classes never hurt anyone. If you're not familiar with it, don't worry,
you won't need anything complicated, so you should be able to pick up what you need as you go. All of
the code examples included have been tested using the Microsoft Visual C++ 6.0 compiler. If you don't
have a Win32 C/C++ compiler, this is the one to get. That said, let's get started!

Setting Up

The two header files that contain most of the Windows functions you'll need are windows.h and
windowsx.h. Make sure you include both in your programs. Aside from that, you'll just be using the
standard C headers, like stdio.h, conio.h, and so on. Aside from that, there's one line of code you'll see
at the beginning of many Windows programs:

#define WIN32_LEAN_AND_MEAN

Besides having a cool sound to it, this line excludes some MFC stuff from the Windows header files, to
speed up your build time a little bit. Since you're not likely to be using MFC for games programming, it's
probably a good idea to use this most of the time. If you've never seen this type of statement before -- a
#define directive followed by only a name -- it has to do with something called conditional compilation.
Take a look at this example:

#ifdef DEBUG_MODE
 printf("Debug mode is active!");
#endif

If the program containing this code has a line in the beginning that reads #define DEBUG_MODE, then the
printf() statement will be compiled. Otherwise, it will be left out. This is a useful way to enable or
disable code within your program that helps you track down any logic errors you might have. In the case
of WIN32_LEAN_AND_MEAN, its definition is used to remove rarely-used components of the Windows header
files. Got it? Good. On to the code...

The WinMain() function

Just as all DOS-based C programs begin execution with the main() function, Windows programs begin
with the WinMain() function. A basic, empty WinMain() function looks something like this:

http://www.gamedev.net/reference/articles/article1229.asp (1 of 13) [5/12/2001 6:45:42 PM]

http://www.gamedev.net/
mailto:ironblayde@aeon-software.com

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 return(0);
}

For a function that does nothing but return a value, it's sure got a lot of unfamiliar stuff in it! First things
first; what's the deal with the WINAPI declarator? This is an example of what's known as a calling
convention. It affects such things as the way parameters are passed to the function, which function
performs stack cleanup, and a few other things that you never really see. A function with the WINAPI
calling convention passes parameters left-to-right, as opposed to the default right-to-left order. Unless
you're going to be using assembly language with your programs, you don't need to know all the details of
how calling conventions work, only that WinMain() must have the WINAPI convention specified.

Next, let's take a look at the four parameters that the function receives:

HINSTANCE hinstance: This is a handle to the instance of your application. Basically, these are like
pointers that are used to keep track of all the applications that are running at any given time. Many
Windows functions take the instance of your application as a parameter, so it knows which application to
apply the action to.

HINSTANCE hPrevInstance: You don't need to worry about this parameter, as it's now obsolete. In older
versions of Windows, this would be a handle to the instance of the application that called your application.
The only reason it's included anymore is for backwards compatibility. You'll see a few more things like that
as you go on with Windows programming.

LPSTR lpCmdLine: This is a pointer to a string containing the command-line parameters used when the
program was invoked. Note that there is no parameter specifying the number of command-line
parameters, so you'll need to determine that yourself.

int nCmdShow: This integer indicates how the main window should be opened. You don't need to do
anything with this if you don't want to. It takes values given by constants beginning with SW_. Some
examples are SW_SHOWNORMAL for the default method, SW_MAXIMIZE or SW_MINIMIZE for maximizing or
minimizing windows, etc.

That's about it for WinMain()'s parameters. Often, the only one that will be of any consequence is
hinstance. Before we go on to actually displaying a window, something needs to be said about the way
Microsoft names variables.

Hungarian Notation

Microsoft uses a standardized way of naming variables, functions, constants, and classes that is known as
Hungarian notation. You've already seen an example of this in the WinMain() function. The Hungarian
notation for variable names consists of several prefixes which reveal the variable's data type. These are
the prefixes used:

b BOOL (int)

http://www.gamedev.net/reference/articles/article1229.asp (2 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

by BYTE or UCHAR (unsigned char)

c char

cx, cy short (usually lengths; c stands for "count")

dw DWORD (unsigned long)

fn Function pointer

h Handle (like a pointer, used for Windows objects)

i int

l LONG (long int)

lp Long pointer (32-bit)

msg Message (we'll cover this later)

n number (short or int)

s String

sz, str Null-terminated ("ASCIIZ") string

w WORD or UINT (unsigned int)

x, y short (usually coordinates)

In addition, variable names consisting of more than one word have each word capitalized, with no
underscores. For instance, a pointer to an area of memory used for player data might be called
lpPlayerData. This standard notation is often helpful in understanding code. For instance, in the
WinMain() function discussed above, without seeing the function header, Hungarian notation tells you that
hinstance and hPrevInstance are handles, lpCmdLine is a 32-bit pointer, and nCmdShow is an integer.

Function naming under Hungarian notation follows the same rules as variables, minus the prefixes. In
other words, the first letter is capitalized, and the first letter of subsequent words in the function name are
capitalized as well. An example might be ShowCharacterStats().

The rule for naming constants is that all capital letters are used, and underscores often separate words
within a constant's name, or separate a prefix from a constant's name. The constant
WIN32_LEAN_AND_MEAN is an example. One thing you'll see often in Windows is that constants are often
prefixed by an abbreviation of the function with which they are meant to be used. For example, the
constants SW_SHOWNORMAL, SW_MAXIMIZE, and SW_MINIMIZE, which I mentioned briefly earlier, have the
SW_ prefix because they are meant to be used as arguments to a function called ShowWindow().

Finally, classes are named in the same manner as functions, except with a capital C preceding the name,
so an example class for a vehicle in a racing game might be CVehicle.

You don't have to use this naming convention in your programs, but you should be familiar with it,
because all Microsoft products follow these guidelines. It is rather convenient if you can convince yourself
to start using it. I'm still working on that. Anyway, moving on...

Messages

When you were programming in DOS, you didn't need to worry about other programs that might be
running, because DOS is not a multitasking OS. When programming in Windows, however, you must take

http://www.gamedev.net/reference/articles/article1229.asp (3 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

this into consideration. For this and other reasons, Windows uses what are called messages to
communicate with applications and tell them what's going on. Messages serve a variety of purposes. They
tell an application when its window is being resized, moved, or closed. They signal to a program that it is
about to be closed. They inform a program when part of its window must be refreshed. They can be used
to track mouse movement and button presses. The list goes on. In any case, your Windows program must
be able to handle these messages.

The way this is done is through the use of a special type of function called a callback function. Callback
functions are functions which you don't actually call from your code; rather, certain events cause them to
be called. You create such a function by using the CALLBACK calling convention, much like the WINAPI
convention is used for WinMain(). I'm going to leave this topic for a minute, though, because before you
can process messages for your window, you have to be able to create the window in the first place.

Window Classes

Here's where it helps to know a little about C++, because the first thing you must do to create a window
is to create a window class. The class contains all the information about the window such as what icon it
uses, the menu attached to it (if any), etc. In just about every Windows program you create, you'll need
to create a window class to meet your needs. In order to do this, you need to fill out a WNDCLASSEX
structure. The "EX" part of the name stands for "extended," as there is an older version of this structure
called WNDCLASS. We'll be using the extended version. Here's what it looks like:

typedef struct _WNDCLASSEX {
 UINT cbSize;
 UINT style;
 WNDPROC lpfnWndProc;
 int cbClsExtra;
 int cbWndExtra;
 HANDLE hInstance;
 HICON hIcon;
 HCURSOR hCursor;
 HBRUSH hbrBackground;
 LPCTSTR lpszMenuName;
 LPCTSTR lpszClassName;
 HICON hIconSm;
} WNDCLASSEX;

This structure has quite a few members to it, and you must set them all in order to create your window
class. It's not so bad, though. Let's run through a brief description of all the fields.

UINT cbSize: This is the size of the structure, in bytes. You'll see this a lot, especially if you get into
DirectX. It's included so that if a structure of this type (or rather, a pointer to that structure) is passed as
a parameter to a function, the structure size can simply be looked up rather than having to be computed.
Always set it to sizeof(WNDCLASSEX).

UINT style: This is the window style, which takes constants prefixed by CS_. Furthermore, you can
combine several of these constants by using the | (bitwise OR) operator. Most times there are only four
you'll use. For the sake of keeping the length of this article down, I'll show you those four. You can always
look up the rest on your MSDN Help. You did remember to get Visual C++, didn't you?

http://www.gamedev.net/reference/articles/article1229.asp (4 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

CS_HREDRAW Specifies that the window should be redrawn if it is horizontally resized.
CS_VREDRAW Specifies that the window should be redrawn if it is vertically resized.
CS_OWNDC Allows each window to have a unique device context or DC (not covered in this article).
CS_DBLCLKS Discerns between single- and double-clicks while the mouse is in this window.

WNDPROC lpfnWndProc: A pointer to the callback function that handles messages sent to this window. If
you've never used function pointers, the address of a function is simply the function's name, without the
parenthesis afterwards.

int cbClsExtra: This is reserved for extra class info, which most programs don't need. Certainly you
won't find many uses for this when writing games, so simply set it to 0.

int cbWndExtra: Basically the same as cbClsExtra, except for extra window information. You'll almost
always be setting this one to 0 as well.

HANDLE hInstance: This is the instance of the application using the window class, which is one of the
parameters passed to WinMain(). This should be set to hinstance.

HICON hIcon: This is a handle to the icon that represents the program, and will usually be set using the
LoadIcon() function. Until you learn how to use resources in your programs, you can set this to a
generic system icon by using LoadIcon(NULL, IDI_WINLOGO). There are other IDI_ constants
representing Windows icons; you can find the list in the Help files for your compiler.

HCURSOR hCursor: This is a handle to the cursor used for the mouse while it is in your window. This is
usually set using the LoadCursor() function. Again, you can use resources to load your own custom
cursors, but until you learn that, or if you just want the standard Windows cursor, use LoadCursor(NULL,
IDC_ARROW).

HBRUSH hbrBackground: When your window receives a message that it needs to be refreshed (or
"repainted"), the least that will happen is that Windows will repaint the area with a solid color or "brush."
That brush is defined by this parameter. There are several kinds of stock brushes you can load using the
GetStockObject() function. Some of these are BLACK_BRUSH, WHITE_BRUSH, GRAY_BRUSH, etc. For now,
you're safe using GetStockObject(BLACK_BRUSH). Sorry I'm touching on all of these functions so briefly,
but I'm trying to keep the length down. I'll revisit them in future articles, I promise!

LPCTSTR lpszMenuName: If you want to create a window with pull-down menus, this parameter gives the
name of the menu to load and attach to the window. Since you don't know how to create menus yet, you
can specify no menu by setting this to NULL.

LPCSTR lpszClassName: This is simply a name by which you refer to the class. You can call it anything
you want, so use a descriptive name. You might call it "Game_Class" or something like that.

HICON hIconSm: This is a handle to the small icon used on the window's title bar and on the Start Menu
bar. You set this the same way you set hIcon -- by using the LoadIcon() function. For now, we'll use
LoadIcon(NULL, IDI_WINLOGO) for the standard Windows logo icon.

That's it! Now that you're familiar with all the fields of the WNDCLASSEX structure, you can fill it out and

http://www.gamedev.net/reference/articles/article1229.asp (5 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

you're ready to create a window. A sample class might look like this:

WNDCLASSEX sampleClass; // declare structure variable

sampleClass.cbSize = sizeof(WNDCLASSEX); // always use this!
sampleClass.style = CS_DBLCLKS | CS_OWNDC |
 CS_HREDRAW | CS_VREDRAW; // standard settings
sampleClass.lpfnWndProc = MsgHandler; // we need to write this!
sampleClass.cbClsExtra = 0; // extra class info, not used
sampleClass.cbWndExtra = 0; // extra window info, not used
sampleClass.hInstance = hinstance; // parameter passed to WinMain()
sampleClass.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Windows logo
sampleClass.hCursor = LoadCursor(NULL, IDC_ARROW); // standard cursor
sampleClass.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); // a simple black brush
sampleClass.lpszMenuName = NULL; // no menu
sampleClass.lpszClassName = "Sample Class" // class name
sampleClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // Windows logo again

And you're all set. There is one thing I should mention, though. Notice the typecast to HBRUSH on the
result of the GetStockObject() function. This is because GetStockObject() can be used to load many
objects, not just brushes, and so it returns a variable of type HGDIOBJ, which is a bit more general. In
older versions of Visual C++, you wouldn't need the typecast, but VC++ 6.0 is more picky about
typecasting, so you'll get an error if you try to compile without it.

The last thing you need to do is register the new class with Windows so you can use it to create new
windows. This is accomplished with a simple function call to RegisterClassEx(). It only takes one
parameter: the address of your structure. So in the example listed above, you would register the class like
this:

RegisterClassEx(&sampleClass);

Now that Windows is familiar with the new class you've created, you can use it to create a window. It's
about time, hey?

Creating Windows

The good news is that all you need to create a window is a call to CreateWindowEx(). The bad news is
that this function takes a lot of parameters. You're probably getting sick of these long lists by now, but
this one isn't too bad. Here's the function prototype:

HWND CreateWindowEx(
 DWORD dwExStyle, // extended window style
 LPCTSTR lpClassName, // pointer to registered class name
 LPCTSTR lpWindowName, // pointer to window name
 DWORD dwStyle, // window style
 int x, // horizontal position of window
 int y, // vertical position of window
 int nWidth, // window width

http://www.gamedev.net/reference/articles/article1229.asp (6 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

 int nHeight, // window height
 HWND hWndParent, // handle to parent or owner window
 HMENU hMenu, // handle to menu, or child-window identifier
 HINSTANCE hInstance, // handle to application instance
 LPVOID lpParam // pointer to window-creation data
);

First things first: the return value. By now, all these crazy data types that Windows uses are probably
starting to look familiar. If not, don't worry, you'll get used to it sooner than you think. The return type is
HWND, which is a handle to a window. You'll want to store the value returned by CreateWindowEx(), as
you'll need it as a parameter for several Windows functions. Now, let's tackle that parameter list. Many
are self-explanatory.

DWORD dwExStyle: Extended window style is something you'll rarely use, so you can set this to NULL most
of the time. If you're interested, the Help files for your compiler list a ton of constants beginning with
WS_EX_ that can be used here.

LPCTSTR lpClassName: Remember when you named the class you created? Just pass that name here.

LPCTSTR lpWindowName: This is simply the text that will appear on the window's title bar.

DWORD dwStyle: The window style parameter allows you to specify what type of window you want to
create. There are a lot of constants that can be used here, beginning with WS_, and they can be combined
with the | operator. I'll list just a few of the common ones:

WS_POPUP A window that has no controls built into it.
WS_OVERLAPPED A window with simply a title bar and a border.
WS_OVERLAPPEDWINDOW A window with a title bar including all standard controls.
WS_VISIBLE Specifies that the window is initially visible.

The WS_OVERLAPPEDWINDOW constant is actually a combination of several other constants in order to create
a standard window. Basically, you can follow these guidelines. If you want a window that can be
maximized, minimized, resized, etc., use WS_OVERLAPPEDWINDOW. If you want a window with a title bar but
which has a fixed size, use WS_OVERLAPPED. If you want a window that has no controls on it whatsoever,
use WS_POPUP. Such a window will just appear as a black rectangle originally. This is what you'll probably
use for writing fullscreen games. Also, always specify the WS_VISIBLE flag, unless for some reason you
don't want anyone to see your window, or if you want to take care of some other things first, and display
the window later.

int x, y: These are the coordinates on the screen at which the upper-left corner of the newly created
window will appear.

int nWidth, nHeight: These are, you guessed it, the width and height of the window, in pixels.

HWND hWndParent: This is a handle to the parent window of the window you're creating. This is mostly
used with controls such as checkboxes and pushbuttons. For creating a main window, set this to NULL,
which represents the Windows desktop.

http://www.gamedev.net/reference/articles/article1229.asp (7 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

HMENU hMenu: This is a handle to the menu which should be attached to the window. If you're loading a
resource menu -- after you learn how to do that -- you would use the LoadMenu() function. For a window
with no menu attached, simply set this to NULL.

HINSTANCE hInstance: This is the instance of the application; again, pass the parameter that was passed
to WinMain().

LPVOID lpParam: This is something you're not likely to use, especially for games, where only simple
windows are needed. It's used for creating things like multiple document interfaces. Just set it to NULL.

At last, we have everything we need to create a window. Here's a sample call that would get the job done:

HWND hwnd;
if (!(hwnd = CreateWindowEx(NULL, // extended style, not needed
 "Sample Class", // class identifier
 "Sample Window", // window title
 WS_POPUP | WS_VISIBLE, // parameters
 0, 0, 320, 240, // initial position, size
 NULL, // handle to parent (the desktop)
 NULL, // handle to menu (none)
 hinstance, // application instance handle
 NULL))) // who needs it?
 return(0);

This might be something you'd use for a game, because it's a popup window. Notice that I've enclosed the
CreateWindowEx() call inside an if statement. This is because if CreateWindowEx() fails, it returns NULL.
The way this statement is set up, if the window can't be created for some reason, WinMain() simply
returns and the program ends.

Now you've almost got enough to make a Windows program that creates a functional window. Almost.
Remember when we created "Sample Class," and had to provide a pointer to a message handler function?
We need to write that function before Windows will let us create anything.

Handling Messages

I've already explained some of the things messages are used for in Windows. Now I'll go over how to
make use of them. The prototype for a message handling function looks like this:

LRESULT CALLBACK MsgHandler(
 HWND hwnd, // window handle
 UINT msg, // the message identifier
 WPARAM wparam, // message parameters
 LPARAM lparam // more message parameters
};

The LRESULT type of the return value is used specfically for message processing functions like the one

http://www.gamedev.net/reference/articles/article1229.asp (8 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

we're going to write. I talked about the CALLBACK convention a little bit earlier. The parameters are very
simple:

HWND hwnd: This is the handle of the window that sent the message currently being processed.

UINT msg: This is a message identifier. The values for this parameter are constants beginning with WM_
(for "Windows message"). The number of different messages that can be sent is ridiculously high, but
here are some important ones:

WM_ACTIVATE A new window is receiving the focus.
WM_CLOSE A window is being closed.
WM_COMMAND A menu option has been selected.
WM_CREATE A window has been created.
WM_LBUTTONDBLCLK Left mouse button has been double-clicked.
WM_LBUTTONDOWN Left mouse button has been pressed.
WM_MOUSEMOVE The mouse has been moved.
WM_MOVE A window has been moved.
WM_PAINT Part of a window needs to be repainted.
WM_RBUTTONDBLCLK Right mouse button has been double-clicked.
WM_RBUTTONDOWN Right mouse button has been pressed.
WM_SIZE A window has been resized.
WM_USER Use this for whatever you want.

WPARAM wparam, LPARAM lparam: The exact use of these parameters depends on which message is being
sent, but they are used to further specify the meaning of the message.

If you had to write code to handle every message that your window might receive, you'd probably go
insane. I know I would! Thankfully, Windows provides a default message handler. If you don't have any
special instructions for handling certain messages, you can always call DefWindowProc(). With that in
mind, here is the simplest, fully functional message handler that you could possibly write:

LRESULT CALLBACK MsgHandler(HWND hwnd, UINT msg, WPARAM wparam, LPARAM lparam)
{
 return(DefWindowProc(hwnd, msg, wparam, lparam));
}

Simple, hey? Usually you'll want to handle some of these messages yourself. In that case, you can write
your own code, and return 0 to tell the program that you've dealt with the message. Here's an example of
a message handler that calls an initialization function when the window is created, and calls the default
handler for anything else.

LRESULT CALLBACK MsgHandler(HWND hwnd, UINT msg, WPARAM wparam, LPARAM lparam)
{
 if (msg == WM_CREATE)
 {

http://www.gamedev.net/reference/articles/article1229.asp (9 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

 Initialize_Game();
 return(0);
 }

 return(DefWindowProc(hwnd, msg, wparam, lparam));
}

Your message handler will probably end up being a big switch statement to accommodate the messages
you want to handle manually, followed by a call to the default handler for everything else. Now there's
just one more thing I need to show you before everything is working smoothly, and that's how to make
sure your message handler is getting called when it has work to do.

Reading the Message Queue

Near the beginning of your program's main loop, you need to see if the message queue -- where all
pending messages are stored -- has anything waiting for you. If so, there are a few things you need to do
in order for your handler to do its job correctly. The function you need here is PeekMessage(). Here is its
prototype:

BOOL PeekMessage(
 LPMSG lpMsg, // pointer to structure for message
 HWND hWnd, // handle to window
 UINT wMsgFilterMin, // first message
 UINT wMsgFilterMax, // last message
 UINT wRemoveMsg // removal flags
);

The return type, BOOL, is really just an int, but it takes only two values: TRUE or FALSE. If a message is
waiting on the queue, the function returns TRUE. Otherwise, it returns FALSE. The parameters are pretty
straightforward:

LPMSG lpMsg: This is a pointer to a variable of type MSG. If a message is waiting, this variable will be filled
with the message information.

HWND hWnd: The handle of the window whose queue you want to check.

UINT wMsgFilterMin, wMsgFilterMax: The indices of the first and last messages in the queue to check.
Most of the time, you'll only be interested in the first message on the queue, so you would set both of
these parameters to 0.

UINT wRemoveMsg: Generally this takes only two values, PM_REMOVE or PM_NOREMOVE. Use the former if you
want to remove the message from the queue after reading it, and the latter if you want to leave the
message on the queue. Usually, if a message is waiting, you'll prepare it to be handled right away, in
which case you should use PM_REMOVE.

If a message is waiting, you need to do a few things to get your handler to kick in. Don't worry, it's only
two simple calls: one to TranslateMessage() and one to DispatchMessage(). Their prototypes are very
similar:

http://www.gamedev.net/reference/articles/article1229.asp (10 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

BOOL TranslateMessage(CONST MSG *lpmsg);
LONG DispatchMessage(CONST MSG *lpmsg);

The first call performs a bit of translation on the message, as you may have guessed, and the second call
invokes your message handler and sends it the appropriate information from the MSG structure. That's all
you need to know! With every iteration of your main loop, if a message is waiting, you call these two
functions and your MsgHandler() function takes care of the rest. Here's a code example:

if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}

No problem! Now you can write a Windows program that creates and registers a window class, and
creates a window with a valid message handler. That wasn't so bad, was it? There are just a few more
things I'd like to mention before I wrap this article up. While we're on the topic of messages, there will
come a time when you want to send messages manually. Here's how.

Sending Messages

There are actually two ways to go about doing this. You can either call PostMessage() or SendMessage().
Their prototypes are very similar:

BOOL PostMessage(
 HWND hWnd, // handle of destination window
 UINT Msg, // message to post
 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);

LRESULT SendMessage(
 HWND hWnd, // handle of destination window
 UINT Msg, // message to post
 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);

The parameters are the same as those taken by the MsgHandler() function we wrote, so I won't go over
them again. The only thing you need to know is the difference between the two functions, so I'll go over
each one briefly.

PostMessage() is used when you simply want to add a message to the queue and let your program logic
take care of it. The function returns a nonzero value (TRUE) if it succeeds, or zero (FALSE) if it fails. It
simply adds the message you specify to the queue, and returns immediately. In most cases, a call to
PostMessage() will get the job done.

http://www.gamedev.net/reference/articles/article1229.asp (11 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

SendMessage() is a bit different. Notice that it returns an LRESULT, which is used for message processing
functions. That's because SendMessage() doesn't post a message to the queue -- it translates the
message and invokes the message handler immediately, and doesn't return until the message handler has
finished processing the message. SendMessage() is used rather than PostMessage() for events of higher
priority that need to occur quickly. Use it when you want something done immediately.

Now that you know that, the topic of messages leads into the last topic I need to mention for now, and
that is a major difference between Windows programming and DOS programming.

Program Flow

In DOS, you don't need to worry about any of this message stuff. You don't need to concern yourself with
multiple programs running simultaneously. But when you're programming in Windows, these are very
important matters. As a result, your programs need to work a bit differently than they do in DOS.
Consider this bit of pseudo-code:

// main game loop
do
{
 // handle messages here

 // ...

 // update screen if necessary
 if (new_screen)
 {
 FadeOut();
 LoadNewMap();
 FadeIn();
 }

 // perform game logic
 WaitForInput();
 UpdateCharacters();
 RenderMap();

} while (game_active);

Suppose FadeOut() works like this: when the function is called, it dims the image on the screen over a
period of about a second. When the screen is totally black, the function returns. FadeIn() works in a
similar fashion. WaitForInput() simply waits until a key is pressed. Perhaps it stores the input in a global
variable somewhere. Now, in a DOS-based game, this is a perfectly acceptable way to do things. In a
Windows game, it is certainly not!

Why not? Well, what happens when new_screen becomes true? It fades the screen out, loads a map, and
fades back in. Altogether this takes about two seconds. That's two seconds during which no messages are
being processed, so the user could do something such as minimize the window, but the program will keep
running like it hasn't happened yet. This sort of thing can cause erroneous output, general protection
faults, etc. Needless to say, this is unacceptable. The WaitForInput() function is even worse, because it
suspends the flow of the program until a key is pressed during every frame. Whereas the previous

http://www.gamedev.net/reference/articles/article1229.asp (12 of 13) [5/12/2001 6:45:43 PM]

GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

example has the potential to cause trouble, this one is a near-certainty.

The bottom line is that if your game runs at 30 FPS, you need to make sure the entire main loop executes
30 times a second. Each iteration of the main loop should show only one frame, not many frames as in the
theoretical FadeOut() function in the example. When first learning Windows programming, this can be a
bit of an obstacle, because it's a different way of thinking. However, once you figure out how to set up
your program to run this way, I think you'll find it makes for a much more organized and flexible program.

Closing

That's about it for basic Windows programming. While the example we developed over the course of the
article doesn't do much except display a window, it contains the entire framework for a functional
Windows application. Next time I'll get into handling resources, which allows you to incorporate custom
icons, cursors, sounds, menus, and more -- right into your .EXE!

If you have any questions or comments about this article or anything else, feel free to contact me via E-
mail at ironblayde@aeon-software.com, or via ICQ. My UIN is 53210499. Until next time, farewell!

Discuss this article in the forums

© 1999-2001 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Send us an e-mail!

http://www.gamedev.net/reference/articles/article1229.asp (13 of 13) [5/12/2001 6:45:43 PM]

mailto:ironblayde@aeon-software.com
http://www.gamedev.net/community/forums/topic.asp?key=featart&uid=1229&forum_id=35&Topic_Title=Game+Programming+Genesis+Part+I+%3A+Beginning+Windows+Programming
http://www.gamedev.net/legal/legal.htm#copyright
http://www.gamedev.net/legal/legal.htm#privacy
mailto:webmaster@gamedev.net

	gamedev.net
	GameDev.net - Game Programming Genesis Part I : Beginning Windows Programming

