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Preface
Overview

This book aims to provide a gentle introduction to functional programming. It is based on the premises that functional
programming provides pedagogic insights into many aspects of computing and offers practical techniques for general
problem solving.

The approach taken is to start with pure A calculus, Alonzo Church’s elegent but simple formalism for computation,
and add syntactic layers for function definitions, booleans, integers, recursion, types, characters, lists and strings to
build a highish level functional notation. Along the way, a variety of topics are discussed including arithmetic, linear
list and binary tree processing, and alternative evaluation strategies. Finally, functional programming in Standard ML
and COMMON LISP, using techniques devel oped throughout the book, are explored.

The material is presented sequentialy. Each chapter depends on previous chapters. Within chapters, substantial useis
made of worked examples. Each chapter ends with exercises which are based directly on ideas and techniques from
that chapter. Specimen answers are included at the end of the book.

Reader ship

This book is intended for people who have taken a first course in an imperative programming language like Pascal,
FORTRAN or C and have written programs using arrays and sub-programs. There are no mathematical prerequisites
and no prior experience with functional programming is required.

The material from this book has been taught to third year undergraduate Computer Science students and to post
graduate Knowledge Based Systems M Sc students.

Approach

This book does not try to present functional programming as a complete paradigm for computing. Thus, there is no
material on the formal semantics of functional languages or on transformation and implementation techniques. These
topics are ably covered in other books. By analogy, one does not buy a book on COBOL programming in anticipation
of chapters on COBOL’ s denotational semantics or on how to write COBOL compilers.

However, a number of topics which might deserve more thorough treatment are ommited or skimmed. In particular,
there might be more discussion of types and typing schemes, especially abstract data types and polymorphic typing,
which are barely mentioned here. | feel that these really deserve a book to themselves but hope that their coverage is
adequate for what is primarily an introductory text. There is no mention of mutual recursion which is conceptually
simple but technically rather fiddly to present. Finally, there is no discussion of assignment in afunctional context.

Within the book, the A calculus is the primary vehicle for developing functional programming. | was trained in a
tradition which saw A calculus as a solid base for understanding computing and my own teaching experience confirms
this. Many books on functional programming cover the A calculus but the presentation tends to be relatively brief and
theoretically oriented. In my experience, students whose first language is imperative find functions, substitution and
recursion conceptually difficult. Consequently, | have given afair amount of spaceto arelatively informal treatment of
these topics and include many worked examples. Functional afficionados may find this somewhat tedious. However,
thisis an introductory text.

The functional notation developed in the book does not correspond to any one implemented language. One of the
book’s objectives is to explore different approaches within functional programming and no single language
encompasses these. In particular, no language offers different reduction strategies.

The final chapters consider functional programming in Standard ML and COMMON LISP. Standard ML is amodern
functional language with succinct syntax and semantics based on sound theoretical principles. It is a pleasing
language to program in and its useis increasing within education and research. SML’s main pedagogic disadvantageis
that it lacks normal order reduction and so the low-level A calculus representations discussed in earlier chapters cannot
befully investigated in it.



LISP was one of the earliest languages with an approximation to a functional subset. It has a significant loyal
following, particularly in the Artificial Intelligence community, and is programmed using many functional techniques.
Here, COMMON LISP was chosen as a widely used modern LISP. Like SML, it lacks normal order reduction. Unlike
SML, it combines minimal syntax with baroque semantics, having grown piecemeal since the late 1950's.
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1. INTRODUCTION

1.1. Introduction

Functional programming is an approach to programming based on function calls as the primary programming
construct. It provides practical approachesto problem solving in general and insights into many aspects of computing.
In particular, with its roots in the theory of computing, it forms a bridge between forma methods in computing and
their application.

In this chapter we are going to look at how functional programming differs from traditional imperative programming.
We will then consider functional programming's origins in the theory of computing and survey its relevance to
contemporary computing theory and practise. Finally, we will discuss the role of the A (lambda) calculus as a basis for
functional programming.

T UNIX isatrademark of Bell Laboratories.



1.2. Names and valuesin programming

Some of the simplest computing machines are electronic calculators. These are used to carry out arithmetic
calculations with numbers. The main limitation to a calculator is that there is no way of generalising a calculation so
that it can be used again and again with different values. Thus, to carry out the same calculation with different values,
the whole calculation has to be re-entered each time.

Programming languages provide names to stand for arbitrary values. We write a program using names to stand for
values in general. We then run the program with the names taking on particular values from the input. The program
does not have to change to be used with different values: we simply change the values in the input and the computer
system makes sure that they are associated with the right names in the program.

As we will see, the main difference between imperative programming languages, like Pasca, FORTRAN and

COBOL, and functional programming languages, like SML and Miranda, lies in the rules governing the association of
names and values.

1.3. Names and values in imper ative and functional languages

Traditional programming languages are based around the idea of a variable as a changeable association between a
name and values. These languages are said to be imper ative because they consist of sequences of commands:

<commandl> ;

<command2> ;
<command3> ;

Typicaly, each command consists of an assignment which changes a variables value. This involves working out the
value of an expression and associating the result with a name:
<nanme> : = <expression>

In a program, each command’s expression may refer to other variables whose values may have been changed by
preceding commands. This enables values to be passed from command to command.

Functional languages are based on structured function calls. A functional program is an expression consisting of a
function call which calls other functions in turn:

<functionl>(<function2>(<function3> ... ) ... ))

Thus, each function receives values from and passes new values back to the calling function. This is known as
function composition or nesting.

In imperative languages, commands may change the value associated with a name by a previous command so each
name may be and usually will be associated with different values while aprogram is running.

In imperative languages, the same name may be associated with different values.

In functional languages, names are only introduced as the formal parameters of functions and given values by function
calls with actual parameters. Once aformal parameter is associated with an actual parameter value thereis no way for
it to be associated with a new value. There is no concept of a command which changes the value associated with a
name through assignment. Thus, there is no concept of a command sequence or command repetition to enable
successive changes to val ues associated with names.

In functional languages, a nameisonly ever associated with one value.



1.4. Execution order in imperative and functional languages

In imperative languages, the order in which commands are carried out is usually crucial. Values are passed from
command to command by references to common variables and one command may change a variable's value before
that variable is used in the next command. Thus, if the order in which commands are carried out is changed then the
behaviour of the whole program may change.

For example, in the program fragment to swap X and Y:

X

T
X:=Y;
Y T

T'svalue depends on X s value, X' s vaue depends on Y's value and Y’ s value depends on T’ s value. Thus, any change
in the sequence compl etely changes what happens. For example:

X:=Y;
T:=X;
Y =T
sets Xto Y and:
T:=X;
Y =T,
X:=Y
setsYto X.

Of course, not all command sequences have fixed execution orders. If the commands expressions do not refer to each
others' names then the order does not matter. However, most programs depend on the precise sequencing of
commands.

I mper ative languages have fixed execution orders.

In functiona languages, function calls cannot change the values associated with common names. Hence, the order in
which nested function calls are carried out does not matter because function calls cannot interact with each other.

For example, suppose we write functions in a Pascalish style:

FUNCTI ON F( X, Y, Z: I NTEGER) : | NTEGER ;

BEGAN ... END
FUNCTI ON A(P: | NTEGER) : | NTEGER ;
BEGAN ... END
FUNCTI ON B(Q | NTEGER) : | NTEGER ;
BEGAN ... END
FUNCTI ON C(R: | NTEGER) : | NTEGER ;
BEGAN ... END

In afunctional language, in the function call:

F(A(D), B(D), (D)

the order in which A(D), B(D) and C( D) are carried out does not matter because the functions A, B and C cannot
change their common actual parameter D.

In functional languages, thereisno necessary execution order.



Of course, functional programs must be executed in some order - all programs are - but the order does not affect the
final result. Aswe shall see, this execution order independenceis one of the strengths of functional languages and has
led to their usein awide variety of formal and practical applications.

1.5. Repetition in imperative and functional languages

In imperative languages, commands may change the values associated with a names by previous commands so a new
name is not necessarily introduced for each new command. Thus, in order to carry out several commands several
times, those commands need not be duplicated. Instead, the same commands are repeated. Hence, each name may be
and usually will be associated with different values while a program is running.

For example, in order to find the sum of the N elements of array A we do not write:

SUML : = Al1] ;
SUwe = SUML + Al 2] ;
SUMB := SUM2 + Al 3] ;

Instead of creating N new SUMs and refering to each element of A explicitly we write aloop that reuses one name for
the sum, say SUM and another that indicates successive array elements, say | :

Il :=0 ;
SUM:= 0 ;
WH LE | < N DO
BEGA N
| =1 +1;
SUM := SUM + Al ]
END

In imperative languages, new values may be associated with the same name through command repetition.

In functional languages, because the same names cannot be reused with different values, nested function calls are used
to create new versions of the names for new values. Similarly, because command repetition cannot be used to change
the values associated with names, recursive function calls are used to repeatedly creste new versions of names
associated with new values. Here, afunction calsitself to create new versions of its formal parameters which are then
bound to new actual parameter values.

For example, we might write afunction in a Pascalish style to sum an array:
FUNCTI ON SUM A: ARRAY [1..N] OF INTEGER; |, N: | NTEGER): | NTEGER;
BEG N
IF 1 > N THEN
SUM:= 0
ELSE

SUM:= A[I] + SUMA, I +1, N
END

Thus, for the function call:
SUM B, 1, M

the sum is found through successive recursive callsto SUM
B[1] + SUMB,2, M =

B[1] + B[2] + SUMB, 3, M



B[1] + B[2] + ... + B[M + SUMB, M1, M
B[1] + B[2] + ... + BfIM + O

Here, each recursive call to SUM creates new local versions of A, | and N, and the previous versions become
inaccessable. At the end of each recursive call, the new local variables are lost, the partia sum is returned to the
previous call and the previous local variables come back into use.

In functional languages, new values ar e associated with new namesthrough recursive function call nesting.

1.6. Data structuresin functional languages

In imperative languages, array elements and record fields are changed by successive assignments. In functional
languages, because there is no assignment, sub-structures in data structures cannot be changed one at atime. Instead, it
is necessary to write down awhole structure with explicit changes to the appropriate sub-structure.

Functional languages provide explicit representationsfor data structures.

Functional languages do not provide arrays because without assignment there is no easy way to access an arbitrary
element. Certainly, writing out an entire array with a change to one element would be ludicrously unwieldy. Instead
nested data structures like lists are provided. These are based on recursive notations where operations on a whole
structure are described in terms of recursive operations on sub-structures. The representations for nested data
structures are often very similar to the nested function call notation. Indeed, in LISP the same representation is used
for functions and data structures.

This ability to represent entire data structures has a number of advantages. It provides a standard format for displaying
structures which greatly simplifies program debugging and final output as there is no need to write specia printing
sub-programs for each distinct type of structure. It also provides a standard format for storing data structures which
can remove the need to write special file 1/0 sub-programs for distinct types of structure.

A related difference lies in the absence of global structures in functional languages. In imperative languages, if a
program manipulates single distinct data structures then it is usual to declare them as globals at the top level of a
program. Their sub-structures may then be accessed and modified directly through assignment within sub-programs
without passing them as parameters.

In functional languages, because there is no assignment, it is not possible to change independently sub-structures of
global structures. Instead, entire data structures are passed explicitly as actual parameters to functions for sub-
structure changes and the entire changed structure is then passed back again to the calling function. This means that
function calls in a functional program are larger than their equivalents in an imperative program because of these
additional parameters. However, it has the advantage of ensuring that structure manipulation by functions is always
explicit in the function definitions and calls. This makesit easier to see the flow of datain programs.

1.7. Functions as values

In many imperative languages, sub-programs may be passed as actual parameters to other sub-programs but it is rare
for an imperative language to alow sub-programs to be passed back as results. In functional languages, functions may
construct new functions and pass them on to other functions.

Functional languages allow functions to be treated as values.

For example, the following contrived, illegal, Pascalish function returns an arithmetic function depending on its
parameter:

TYPE OPTYPE = (ADD, SUB, MULT, QUOT) ;



FUNCTI ON ARI TH( OP: OPTYPE) : FUNCTI ON,;

FUNCTI ON SUM X, Y: | NTEGER) : | NTEGER, BEG N SUM : = X+Y END;
FUNCTI ON DI FF( X, Y: I NTEGER) : | NTEGER, BEG N DI FF : = X-Y END;
FUNCTI ON TI MES( X, Y: | NTEGER) : | NTEGER, BEG N TI MES : = X*Y END;
FUNCTI ON DI VIDE( X, Y: I NTEGER) : I NTEGER, BEG N DIVIDE : = X DIV Y END;
BEGA N
CASE OP OF
ADD: ARI TH : = SUM
SUB: ARI TH : = DI FF;
MULT: ARITH : = TI MES;
QUOT: ARITH : = DI VI DE;
END
END
Thus:
ARI TH( ADD)

returns the FUNCTI ON:
SuMm
and:
ARl TH( SUB)
returns the FUNCTI ON
DI FF
and so on. Thus, we might add two numbers with:
ARI TH( ADD) ( 3, 4)

and so on. This is illegal in many imperative languages because it is not possible to construct functions of type
‘function’.

As we shall see, the ability to manipulate functions as values gives functional languages substantia power and
flexibility.

1.8. Origins of functional languages

Functional programming has its roots in mathematical logic. Informal logical systems have been in use for over 2000
years but the first modern formalisations were by Hamilton, De Morgan and Boole in the mid 19th century. Within
their work we now distinguish the propositional and the predicate calculus.

The propositional calculusisasystem witht r ue and f al se asbasic valuesand withand, or, not andsoonas
basic operations. Names are used to stand for arbitrary truth values. Within propositional calculus it is possible to
prove whether or not an arbitrary expression is a theorem, always true, by starting with axioms, elementary
expressions which are aways true, and applying rules of inference to construct new theorems from axioms and
existing theorems. Propositional calculus provides a foundation for more powerfull logical systems. It is aso used to
describe digital electronics where on and off signals are represented ast r ue and f al se, and electronic circuits are
represented as logical expressions.

The predicate cal culus extends propositional calculus to enable expressions involving non-logical values like numbers
or sets or strings. Thisisthrough the introduction of predicatesto generaliselogical expressions to describe properties
of non-logical vaues, and functions to generalise operations on non-logical values. It aso introduces the idea of



quantifiers to describe properties of sequences of values, for example all of a sequence having a property, universal
quantification, or one of a sequence having a property, existential quantification. Additional axioms and rules of
inference are provided for quantified expressions.

Predicate calculus may be applied to different problem areas through the development of appropriate predicates,
functions, axioms and rules of inference. For example, number theoretic predicate calculus is used to reason about
numbers. Functions are provided for arithmetic and predicates are provided for comparing numbers. Predicate calculus
also formsthe basis of logic programming in languages like Prolog and of expert systems based on logical inference.

Note that within the propositional and predicate calculi, associations between names and values are unchanging and
expressions have no necessary evaluation order.

The late 19th century also saw Peano’ s development of aformal system for number theory. Thisintroduced numbers
in terms of 0 and the successor function, so any number is that number of successors of 0. Proofsin the system were
based on aform of induction which is akin to recursion.

At the turn of the century, Russell and Whitehead attempted to derive mathematical truth directly from logical truth in
their "Principia Mathematica." They were, in effect, trying to construct a logical description for mathematics.
Subsequently, the German mathematician Hilbert proposed a 'Program’ to demonstrate that 'Principia redly did
describe totally mathematics. He required proof that the ' Principia descripton of mathematics was consistent, did not
alow any contradictions to be proved, and complete, allowed every true statement of number theory to be proved.
Alas, in 1931, Godel showed that any system powerful enough to describe arithmetic was necessarily incomplete.

However, Hilbert's 'Program’ had promoted vigorous investigation into the theory of computability, to try to
develop forma systems to describe computations in general. In 1936, three distinct formal approaches to
computability were proposed: Turing’'s Turing machines, Kleene's recursive function theory (based on work of
Hilbert's from 1925) and Church’s A calculus. Each is well defined in terms of a simple set of primitive operations
and asimple set of rulesfor structuring operations. Most important, each has a proof theory.

All the above approaches have been shown formally to be equivalent to each other and also to generalised von
Neumann machines - digital computers. This implies that a result from one system will have equivalent results in
equivalent systems and that any system may be used to model any other system. In particular, any results will apply
to digital computer languages and any may be used to describe computer languages. Contrariwise, computer languages
may be used to describe and hence implement any of these systems. Church hypothesised that all descriptions of
computability are equivalent. While Church’s thesis cannot be proved formally, every subsequent description of
computability has been proved to be equivalent to existing descriptions.

An important difference between Turing machines, and recursive functions and A calculus is that the Turing machine
approach concentrated on computation as mechanised symbol manipulation based on assignment and time ordered
evaluation. Recursive function theory and A calculus emphasised computation as structured function application. They
both are evaluation order independent.

Turing demonstrated that it is impossible to tell whether or not an arbitrary Turing machine will halt - the halting
problem is unsolvable This also applies to the A calculus and recursive function theory, so there is no way of telling
if evaluation of an arbitrary A expression or recursive function call will ever terminate. However, Church and Rosser
showed for the A calculus that if different evaluation orders do terminate then the results will be the same. They aso
showed that one particular evaluation order is more likely to lead to termination than any other. This has important
implications for computing because it may be more efficient to carry out some parts of a program in one order and
other parts in another. In particular, if alanguage is evauation order independent then it may be possible to carry out
program partsin parallel.

Today, A calculus and recursive function theory are the backbones of functional programming but they have wider
applications throughout computing.
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1.9. Computing and theory of computing

The development of electronic digital computers in the 1940s and 1950s led to the introduction of high level
languages to simplify programming. Computability theory had a direct impact on programming language design. For
example, ALGOL 60, an early general purpose high level language and an ancestor of Pascal, had recursion and the A
calculus based call by name parameter passing mechanism

As computer use exploded in the 1960s, there was renewed interest in the application of formal ideas about
computability to practical computing. In 1963, McCarthy proposed a mathematical basis for computation which was
influenced by A calculus and recursive function theory. This culminated in the LISP(LISt Processing) programming
language. LISP is a very simple language based on recursive functions manipulating lists of words and numbers.
Variables are not typed so there are no restrictions on which values may be associated with names. There is no
necessary distinction between programs and data - a LISP program is a list. This makes it easy for programs to
manipulate programs. LISP was one of the first programming languages with a rigorous definition but it is not a pure
functional language and contains imperative as well as functional elements. It has had alot of influence on functional
language design and functional programming techniques. At present, LISP is used mainly within the Artificial
Intelligence community but there is growing industrial interest in it. McCarthy aso introduced techniques for proving
recursive function based programs.

In the mid 1960s, Landin and Strachey both proposed the use of the A calculus to model imperative languages.
Landin's approach was based on an operational description of the A calculus defined in terms of an abstract
interpreter for it - the SECD machine. Having described the A calculus, Landin then used it to construct an abstract
interpreter for ALGOL 60. (McCarthy had also used an abstract interpreter to describe LI1SP). This approach formed
the basis of the Vienna Definition Language(VDL) which was used to define IBM’s PL/1. The SECD machine has
been adapted to implement many functional languages on digital computers. Landin also developed the pure
functional language |SWIM which influenced later languages.

Strachey’ s approach was to construct descriptions of imperative languages using a notation based on A calculus so that
every imperative language construct would have an equivalent function denotation. This approach was strengthened
by Scott’s lattice theor etic description for A calculus. Currently, denotational semantics and its derivatives are used to
give formal definitions of programming languages. Functional languages are closely related to A calculus based
semantic languages.

Since LISP many partially and fully functional languages have been developed. For example, POP-2 was devel oped
in Edinburgh University by Popplestone & Burstall in 1971 as an updated LISP with a modern syntax and a pure
functional subset. It has led to POP11 and and to POPLOG which combines POP11 and Prolog. SASL, developed by
Turner at St Andrews University in 1974, is based strongly on A calculus. Its offspring include KRC and Miranda,
both from the University of Kent. Miranda is used as a general purpose language in research and teaching. Hope was
developed by Burstall at Edinburgh University in 1980 and is used as the programming language for the ALICE
parale computer. ML was developed by Milner at Edinburgh University in 1979 as a language for the computer
assisted proof system LCF. Standard ML is now used as a general purpose functional language. Like LISP, it has
imperative extensions.

Interest in functional languages was increased by a paper by Backus in 1977. He claimed that computing was
restricted by the structure of digital computers and imperative languages, and proposed the use of Functional
Programming(FP) systems for program development. FP systems are very simple, consisting of basic atomic objects
and operations, and rules for structuring them. They depend strongly on the use of functions which manipulate other
functions as values. They have solid theoretical foundations and are well suited to program proof and refinement. They
also have al the time order independence properties that we considered above. FP systems have somewhat tortuous
syntax and are not as easy to use as other functional languages. However, Backhus' paper has been very influentia in
motivating the broader use of functional languages.

In addition to the development of functional languages, there is considerable research into formal descriptions of
programming languages using techniques related to A calculus and recursive function theory. This is both theoretical,
to develop and extend formalisms and proof systems, and practical, to form the basis of programming methodol ogies
and language implementations. Major areas where computing theory has practical applications include the precise
specification of programs, the development of prototypes from specifications and the verification that implementations
correspond to specifications. For example, the Vienna Development Method(VDM), Z and OBJ approaches to
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program specification all use functional notations and functional language implementations are used for prototyping.
Proof techniques related to recursive function theory, for example constructive type theory, are used to verify
programs and to construct correct programs from specifications.

1.10. A calculus

The A calculus is a suprisingly simple yet powerful system. It is based on function abstraction, to generalise
expressions through the introduction of names, and function application, to evaluate generalised expressions by
giving names particular values.

The A calculus has a number of properties which suit it well for describing programming languages. First of all,
abstraction and application are al that are needed to develop representations for arbitrary programming language
constructs. Thus, A calculus can be treated as a universal machine code for programming languages. In particular,
because the A calculus is evaluation order independent it can be used to describe and investigate the implications of
different evaluation orders in different programming languages. Furthermore, there are well developed proof
techniques for the A calculus and these can be applied to A calculus language descriptions of other languages. Finally,
because the lambda calculus is very simple it is relatively easy to implement. Thus a A calculus description of
language can be used as a prototype and run on aA calculusimplementation to try the language out.

1.11. Summary of rest of book

In this book we are going to use A calculus to explore functional programming. Pure A calculus does not ook much
like a programming language. Indeed, all it provides are names, function abstraction and function application.
However, it is straightforward to develop new language constructs from this basis. Here we will use A calculus to
construct step by step a compact, general purpose functional programming notation.

In chapter 2, we will look at the pure A calculus, examine its syntax and evaluation rules, and develop functions for
representing pairs of objects. These will be used as building blocks in subsequent chapters. We will aso introduce
simplified notations for A expressions and for function definitions.

In chapter 3, we will develop representations for boolean values and operations, numbers and conditional expressions.

In chapter 4, we will develop representations for recursive functions and use them to construct arithmetic operations.

In chapter 5, we will discuss types and introduce typed representations for boolean values, numbers and characters.
Wewill also introduce notations for case definitions of functions.

In chapter 6, we will develop representations for lists and ook at linear list processing.

In chapter 7, we will extend linear list processing techniques to composite values and look at nested structures like
trees.

In chapter 8, we will discuss different evaluation orders and termination.

In chapter 9, we will look at functional programming in Standard ML using the techniques developed in earlier
chapters.

In chapter 10, we will look at functional programming in LI1SP using the techniques developed in earlier chapters.

1.12. Notations

In this book, different typefaces are used for different purposes.
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Textisin Times Roman. New termsand important conceptsarein bold Times Roman.
Programs and definitions are in Courier.
Greek letters are used in naming A calculus concepts:
a - dpha
B - beta
A - lambda
n - eta
Syntactic constructs are defined using BNF rules. Each rule has arule name consisting of one or more words within
angle brackets < and >. A rule associates its name with a rule body consisting of a sequence of symbols and rule
names. If there are different possible rule bodies for the same rule then they are separated by | s.
For example, binary numbers are based on the digits 1 and O:
<digit>::=1] 0

and a binary number may be either asingle digit or adigit followed by a number:

<binary> ::= <digit>| <digit> <binary>

1.13. Summary

In this chapter we have discussed the differences between imperative and functional programming and seen that:

. imperative languages are based on assignment sequences whereas functional langugaes are based on nested
function calls
. in imperative languages, the same name may be associated with several values whereas in functional languages

anameis only associated with one value

. imperative languages have fixed evaluation orders whereas functional languages need not

. in imperative languages, new values may be associated with the same name through command repetition
whereas in functional languages new names are associated with new values through recursive function call
nesting

. functional languages provide explicit data structure representations
. in functional languages, functions are values
We have also seen that:

. functional languages originate in mathematical logic and the theory of computing, in recursive function theory
and A calculus

2.LAMBDA CALCULUS

2.1. Introduction

In this chapter we are going to meet the A calculus, which will be used as a basis for functional programming in the
rest of the book.
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To begin with, we will briefly discuss abstraction as generalisation through the introduction of names in expressions
and speciaisation through the replacement of names with values. We will also consider the role of abstraction in
programming languages.

Next we will take an overview of the A calculus as a system for abstractions based on functions and function
applications. We will discuss informally the rules for constructing and evaluating A expressions in some detail.

We will introduce a notation for defining named functions and look at how functions may be constructed from other
functions.

We will then consider functions for manipulating pairs of values. These will be used as building blocks in subseguent
chapters to add syntax for booleans, numbers, types and liststo A calculus.

Lastly, we will take a dlightly more formal look at A expression evaluation.

2.2. Abstraction

Abstraction is central to problem solving and programming. It involves generalisation from concrete instances of a
problem so that a general solution may be formulated. A general, abstract, solution may then be used in turn to solve
particular, concrete instances of the problem.

The simplest way to specify an instance of a problem is in terms of particular concrete operations on particular
concrete objects. Abstraction is based on the use of names to stand for concrete objects and operations to generalise
the instances. A generalised instance may subsequently be turned into a particular instance by replacing the names
with new concrete objects and operations.

We will try to get afedl for abstraction through a somewhat contrived example. Consider buying 9 items at 10 pence
each. Thetota costis:

10*9

Here we are carrying out the concrete operation of mul ti pl i cati on on the concrete values 10 and 9. Now
consider buying 11 items at 10 pence each. The total cost is:

10*11
Here we are carrying out the concrete operation of mul ti pl i cat i on onthe concretevalues10 and 11.
We can see that as the number of items changes so the formula for the total cost changes at the place where the
number of items appears. We can abstract over the number of items in the formula by introducing a name to stand
for ageneral number of items, say i t ens:

10*i temns
We might make this abstraction explicit by preceding the formula with the name used for abstraction:

REPLACE items I N 10*itens

Here, we have abstracted over an operand in the formula. To evaluate this abstraction we need to supply a value for
the name. For example, for 84 items:

REPLACE items WTH 84 I N 10*itens
which gives:

10*84
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We have made a function from a formula by replacing an object with a name and identifying the name that we used.
We have then evaluated the function by replacing the name in the formula with a new object and evaluating the
resulting formula.

Let us use abstraction again to generalise our example further. Suppose the cost of items goes up to 11 pence. Now
the total cost of itemsis:

REPLACE itenms IN 11*itens
Suppose the cost of items dropsto 9 pence. Now the total cost of itemsis:
REPLACE itenms I N 9*itens
Because the cost changes, we could also introduce a name to stand for the cost in general, say cost :

REPLACE cost IN
REPLACE itens I N cost*itens

Here we have abstracted over two operands in the formula. To evaluate the abstraction we need to supply two values.
For example, 12 items at 32 pence will have total cost:

REPLACE cost WTH 32 IN
REPLACE itens WTH 12 IN cost*itens

whichis:

REPLACE items WTH 12 I N 32*itens
whichis:

32*12
For example, 25 items at 15 pence will have total cost:

REPLACE cost WTH 15 IN
REPLACE itens WTH 25 IN cost*itens

whichis:

REPLACE items WTH 25 IN 15*itens
whichis:

15* 25

Suppose we how want to solve a different problem. We are given the total cost and the number of items and we want
to find out how much each item costs. For example, if 12 items cost 144 pence then each item costs:

144/ 12
If 15 items cost 45 pence then each item costs:
45/ 12
Ingeneral, if i t ens items cost cost pence then each item costs:

REPLACE cost IN
REPLACE itens I N cost/itens
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Now, compare this with the formulafor finding a total cost:

REPLACE cost IN
REPLACE itens I N cost*itens

They are the same except for the operation/ in finding the cost of each item and * in finding the cost of all items. We
have two instances of a problem involving applying an operation to two operands. We could generalise these instances
by introducing a name, say op, where the operation is used:

REPLACE op IN
REPLACE cost IN
REPLACE itenms I N cost op itens

Now, finding the total cost will require the replacement of the operation name with the concreterrul ti pl i cati on
operation:

REPLACE op WTH * IN
REPLACE cost IN
REPLACE itenms I N cost op itens

whichis:

REPLACE cost IN
REPLACE itens IN cost * itens

Similarly, finding the cost of each item will require the replacement of the operation name with the concrete
di vi si on operation:

REPLACE op WTH / IN
REPLACE cost [N
REPLACE item I N cost op itens

whichis:

REPLACE cost IN
REPLACE itens IN cost / itens

Abstraction is based on generalisation through the introduction of a nameto replace a value and specialisation
through thereplacement of a name with another value.

Note that care must be taken with generalisation and replacement to ensure that names are replaced by objects of
appropriate types. For example, in the above examples, the operand names must be replaced by numbers and the
operator name must be replaced by an operation with two number arguments. We will look at this in slightly more
detail in chapter 5.

2.3. Abstraction in programming languages

Abstraction lies at the heart of al programming languages. In imperative languages, variables as name/value
associations are abstractions for computer memory locations based on specific address/value associations. The
particular address for avariableisirrelevant so long as the name/value association is consistent. Indeed, on a computer
with memory management, a variable will correspond to many different concrete locations as a program'’s data space
is swapped in and out of different physical memory areas. The compiler and the run time system make sure that
variables are implemented as consistent, concrete locations.

Where there are abstractions there are mechanisms for introducing them and for specialising them. For example, in
Pascal, variables are introduced with declarations and given values by statements for use in subsegquent statements.
Variables are then used as abstractions for memory addresses on the left of assignment statements or in READ
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statements, and as abstractions for values in expressions on the right of assignment statements or in WRI TE
statements.

Abstractions may be subject to further abstraction. Thisis the basis of hierarchica program design methodol ogies and
modularity. For example, Pascal procedures are abstractions for sequences of statements, named by procedure
declarations, and functions are abstractions for expressions, named by function declarations. Procedures and functions
declare formal parameters which identify the names used to abstract in statement sequences and expressions. Simple,
array and record variable formal parameters are abstractions for simple, array and record variables in statements and
expressions. Procedure and function formal parameters are abstractions for procedures and functionsin statements and
expressions. Actual parameters specialise procedures and functions. Procedure calls with actual parameters invoke
sequences of statements with formal parameters replaced by actual parameters. Similarly, function calls with actual
parameters eval uate expressions with formal parameters replaced by actual parameters.

Programming languages may be characterised and compared in terms of the abstraction mechanisms they provide.
Consider, for example, Pascal and BASIC. Pasca has distinct | NTEGER and REAL variables as abstractions for
integer and real numbers whereas BASIC just has numeric variables which abstract over both. Pascal aso has CHAR
variables as abstractions for single letters. Both Pascal and BASIC have arrays which are abstractions for sequences of
variables of the same type. BASIC has string variables as abstractions for letter sequences whereas in Pascal an array
of CHARs is used. Pascal also has records as abstractions for sequences of variables of differing types. Pascal has
procedures and functions as statement and expression abstractions. Furthermore, procedure and function formal
parameters abstract over procedures and functions within procedures and functions. The original BASIC only had
functions as expression abstractions and did not alow function forma parameters to abstract over functions in
expressions.

In subsequent chapters we will see how abstraction may be used to define many aspects of programming languages.

2.4. A calculus

The A calculus was devised by Alonzo Church in the 1930's as a model for computability and has subsequently been
central to contemporary computer science. It is avery simple but very powerful language based on pure abstraction.
It can be used to formalise all aspects of programming languages and programming and is particularly suited for use as
a‘machine code’ for functional languages and functional programming.

In the rest of this chapter we are going to look at how A calculus expressions are written and manipulated. This may
seem a bit digointed at first: it is hard to introduce al of a new topic simultaneously and so some details will be rather
sketchy to begin with.

We are going to build up a set of useful functions bit by bit. The functions we introduce in this chapter to illustrate

various aspects of A calculus will be used as building blocks in later chapters. Each example may assume previous
examples and so it isimportant that you work through the material slowly and consistently.

2.5. A expressions

The A calculusis a system for manipulating A expressions. A A expression may be a name to identify an abstraction
point, afunction to introduce an abstraction or afunction application to specialise an abstraction:

<expression> ::= <name> | <function> | <application>
A name may be any sequence of non-blank characters, for example:

fred legs-11 19th_nervous_breakdown 33 + -->
A A function is an abstraction over aA expression and has the form:

<function> ::= A<nane>. <body>
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where
<body> ::= <expression>
for example:
Ax.x Afirst.Asecond.first Af.Aa.(f a)
The A precedes and introduces a name used for abstraction. The name is called the function’s bound variable and is
like a forma parameter in a Pascal function declaration. The . separates the name from the expression in which

abstraction with that name takes place. This expression is called the function’s body.

Notice that the body expression may be any A expression including another function. Thisis far more general than, for
example, Pascal which does not allow functionsto return functions as values.

Note that functions do not have names! For example, in Pascal, the function name is always used to refer to the
function’s definition.

A function application has the form:
<application> ::= (<function expression> <argument expressi on>)
where

<function expression> ::
<ar gunment expression> ::

<expr essi on>
<expr essi on>

for example:
(Ax. x Aa. Ab. b)

A function application specialises an abstraction by providing a value for the name. The function expression contains
the abstraction to be specialised with the argument expression.

In a function application, aso known as a bound pair, the function expression is said to be applied to the argument
expression. This is like a function call in Pascal where the argument expression corresponds to the actual parameter.
The crucia differenceis that in Pascal the function name is used in the function call and the implementation picks up
the corresponding definition. The A calculus is far more genera and alows function definitions to appear directly in
function calls.
There are two approaches to evaluating function applications. For both, the function expression is evaluated to return
a function. Next, all occurences of the function’s bound variable in the function’s body expression are replaced by
either

the value of the argument expression
or

the unevaluated argument expression

Finally, the function body expression is then evaluated.

The first approach is called applicative order and is like Pascal ‘call by value': the actual parameter expression is
evauated before being passed to the formal parameter.

The second approach is called normal order and islike ‘call by name' in ALGOL 60: the actual parameter expression
is not evaluated before being passed to the formal parameter.
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As we will see, normal order is more powerful than applicative order but may be less efficient. For the moment, all
function applications will be evaluated in normal order.

The syntax allows a single name as a A expression but in general we will restrict single names to the bodies of
functions. This is so that we can avoid having to consider names as objects in their own right, like LISP or Prolog

literals for example, as it complicates the presentation. We will discuss this further later on.

Wewill now look at avariety of ssimple A functions.

2.6. ldentity function

Consider the function:
AX. X

Thisistheidentity function which returns whatever argument it is applied to. Its bound variableis:
X

and its body expression is the name:
X

When it is used as the function expression in a function application the bound variable x will be replaced by the
argument expression in the body expression x giving the original argument expression.

Suppose the identity function is applied to itself:
(AX. X AX.X)

Thisis afunction application with:
AX. X

as the function expression and:
AX. X

as the argument expression.

When this application is evaluated, the bound variable:
X

for the function expression:
AX. X

is replaced by the argument expression:
AX. X

in the body expression:

X
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giving:
AX. X

An identity operation always leaves its argument unchanged. In arithmetic, adding or subtracting O are identity
operations. For any number <nunber >:

<nunber >
<nunber >

<nunber> + 0 =
<nunber> - 0 =

Multiplying or dividing by 1 are also identity opeartions:

<nunber >
<nunber >

<nunber> * 1
<nunber> / 1

Theidentity function is an identity operation for A functions.

We could equally well have used different names for the bound variable, for example:
Aa. a

or:

Ayi bbl e. yi bbl e

to define other versions of the identity function. We will consider naming in more detail later but note just now that we
can consistently change names.

2.7. Self application function

Consider the rather odd function:
As. (s s)

which appliesits argument to its argument. The bound variableis:
s

and the body expression is the function application:
(s s)

which has the name:
s

as function expression and the same name:
s

as argument expression.

Let us apply the identity function to it:
(AX.x As. (s s))

In this application, the function expression is:
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AX. X
and the argument expression is:
As. (s s)

When this application is evaluated, the function expression bound variable;

X
is replaced by the argument:
As. (s s)

in the function expression body:
X

giving:
As. (s s)

which is the original argument.

Let us apply this self application function to the identity function:
(As. (s s) Ax.X)

Here, the function expression is:
As. (s s)

and the argument expression is:
AX. X

When this application is evaluated, the function expression bound variable;
s

is replaced by the argument:
AX. X

in the function expression body:
(s s)

giving anew application:
(AX. x AX.X)

with function expression:
AX. X

and argument expression:
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AX. X
Thisis now evaluated as above giving the final value:
AX. X
Consider the application of the self application function to itself:
(As. (s s) As.(s s))
This application has function expression:
As. (s s)
and argument expression:
As. (s s)

To evaluate it, the function expression bound variable:

s
is replaced by the argument:
As. (s s)

in the function expression body:
(s s)
giving anew application:
(As. (s s) As.(s s))
with function expression:
As. (s s)
and argument expression:
As. (s s)

which is then evaluated. The function expression bound variable:

s
is replaced by the argument:
As. (s s)

in the function expression body:
(s s)
giving the new application:

(As. (s s) As.(s s))
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which is then evaluated...
Each application evaluates to the original application so this application never terminates!
We will use aversion of this self application function to construct recursive functions in chapter 4. Here, we will note

that not all expression evaluations terminate. In fact, as we will see in chapter 8, there is no way of telling whether or
not an expression evaluation will ever terminate!

2.8. Function application function
Consider the function:
Afunc. Aarg. (func arg)
This has bound variable:
func
and the body expression is another function:
Aarg. (func arg)
which has bound variable:
arg
and afunction application:
(func arg)
as body expression. Thisin turn has the name:
func
as function expression and the name:
arg
as argument expression.

When used, the whole function returns a second function which then applys the first function’ s argument to the second
function’s argument. For example, let us use it to apply the identity function to the self application function:

((AMunc. Aarg. (func arg) Ax.X) As.(s s))

In this example of an application, the function expression isitself an application:
(Afunc. Aarg. (func arg) Ax.Xx)

which must be evaluated first. The bound variable:
func

is replaced by the argument:

AX. X
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in the body:
Aarg. (func arg)
giving:
Aarg. (Ax. x arg)
which is anew function which applies the identity function to its argument. The origina expression is now:
(Aarg. (Ax.x arg) As.(s s))
and so the bound variable:
arg
is replaced by the argument:
As. (s s)
in the body:
(Ax.x arg)
giving:
(AX.x As. (s s))
which is now evaluated as above. The bound variable:
X
is replaced by the argument:
As. (s s)
in the body
X
giving:

As. (s s)

2.9. Introducing new syntax

As our A expressions become more elaborate they become harder to work with. To simplify working with A
expressions and to construct a higher level functional language we will alow the use of more concise notations. For
example, in this and subsequent chapters we will introduce named function definitions, infix operations, an | F style
conditional expression and so on. This addition of higher level layers to alanguage is known as syntactic sugaring
because the representation of the language is changed but the underlying meaning stays the same.

We will introduce new syntax for commonly used constructs through substitution rules. The application of these rules
won't involve making choices. Their use will lead to pure A exprtessions after a finite number of steps involving
simple substitutions. This is to ensure that we can always ‘compile’ completely a higher level representation into A
calculus before evaluation. Then we only need to refer to our original simple A calculus rules for evaluation. In this
way we won't need to modify or augment the A calculus itself and, should we need to, we can rely on the existing
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theoriesfor A calculus without devel oping them further.

Furthermore, we are going to use A calculus as an time order independent language to investigate time ordering. Thus,
our substitution rules should aso be time order independent. Otherwise, different substitution orders might lead to
different substitutions being made and these might result in expressions with different meanings. The simplest way to
ensure time order independence is to insist that all substitutions be made statically or be capable of being made
statically. We can then apply them to produce pure A calculus before evaluation starts.

We won't always actually make all substitutions before evaluation as this would lead to pages and pages of

incomprehensible A expressions for large higher level expressions. We will insist, however, that making all
substitutions befor e evaluation always remains a possibility.

2.10. Notation for naming functions and application reduction
It isahbit tedious writing functions out over and over again. We will now name functions using:
def <name> = <function>
to define a name/function association.
For example, we could name the functions we looked at in the previous sections:
def identity = AX.X
def self_apply = As. (s s)
def apply = Afunc.Aarg. (func arg)
Now we can just use the <name> in expressions to stand for the <f unct i on>.
Strictly speaking, all defined names in an expression should be replaced by their definitions before the expression is
evauated. However, for now we will only replace a name by its associated function when the name is the function
expression of an application. We will use the notation:
(<nane> <argument>) == (<function> <argunent >)

to indicate the replacement of a<nane> by its associated <f unct i on>.

Formally, the replacement of a bound variable with an argument in a function body is called B reduction (beta
reduction). In future, instead of spelling out each 3 reduction blow by blow we will introduce the notation:

(<function> <argunent>) => <expression>
to mean that the <expr essi on> results from the application of the<f unct i on> to the <ar gunment >.

When we have seen a sequence of reductions before or we are familiar with the functions involved we will omit the
reductions and write:

= ... =

to show where they should be.

2.11. Functions from functions



We can use the self application function to build versions of other functions.

with the same effect as the identity function:
def identity2 =
Let us apply this to the identity function:

(identity2 identity) ==
(M. ((apply identity) x)
((apply identity) identity)
((Afunc. Aarg. (func arg)
(Aarg. (identity arg)
(identity identity) => ..

identity

identity)

=>

identity)

identity)

=>
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AX. ((apply identity) x)

=>

identity)

=>

Let usshow thati dentity andi denti t y2 areequivalent. Suppose:

<ar gument >

stands for any expression. Then:

(identity2 <argument>)

(AX. ((apply identity) x) <argument>)

((apply identity) <argunent
(identity <argunent>)

<ar gument >

= ...

>)

= ...

>

soidentityandidentity2 havethe same effect.

=>

=>

For example, let us define a function

We can use the function application function to define a function with the same effect as the function application

function itself. Suppose:
<function>
isany function. Then:

(apply <function>)

(Af.ra. (f a) <function>) =>
Aa. (<function> a)
Applying this to any argument:

<ar gument >

we get:
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(Aa. (<function> a) <argunent>) =>
(<function> <argunent >)

which is the application of the original function to the argument. Using appl y adds a layer of B reduction to an
application.

We can aso use the function application function dightly differently to define a function with the same effect as the
self application function:

def self_apply2 = As. ((apply s) s)
Let us apply this to the identity function:
(sel f_apply2 identity) ==

(As. ((apply s) s) identity) =>

((apply identity) identity) => ... =>
(identity identity) => ... =>
identity

In general, applying sel f _appl y2 to any argument:
<ar gument >
gives:
(sel f _appl y2 <argunent>) ==
(As. ((apply s) s) <argunent>) =>
((apply <argument>) <argunent>) => ... =>
(<argument > <ar gunent >)

sosel f _appl y andsel f _appl y2 have the same effect.

2.12. Argument selection and argument pairing functions
We are now going to look at functions for selecting arguments in nested function applications. We will use these
functions agreat deal later on to model boolean logic, integer arithmetic and list data structures.
2.12.1. Selecting thefirst of two arguments
Consider the function:
def select first = Afirst.Asecond. first
This function has bound variable:

first
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and body:
Asecond. first

When applied to an argument, it returns a new function which when applied to another argument returns the first
argument. For example:

((select_first identity) apply) ==
((Mirst.Asecond.first identity) apply) =>
(Asecond.identity apply) =>
identity

In general, applying sel ect _fi r st to arbitrary arguments:
<ar gunent 1>

and:
<ar gunent 2>

returns the first argument:
((select_first <argument1>) <argunent2>) ==
((Afirst.Asecond. first <argument1>) <argunent2>) =>
(Asecond. <ar gunent 1> <ar guenent 2>) =>

<ar gument 1>

2.12.2. Selecting the second of two arguments
Consider the function:

def select_second = Afirst. Asecond. second
This function has bound variable:

first
and body:

Asecond. second

which is another version of the identity function. When applied to an argument sel ect _second returns a new
function which when applied to another argument returns the other argument. For example:

((sel ect _second identity) apply) ==
((Mirst.Asecond. second identity) apply) =>

(Asecond. second apply) =>

apply
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The first argument i dentity was lost because the bound variable first does not appear in the body
Asecond. second.
In general, applying sel ect _second to arbitrary arguments:
<ar gunment 1>
and:
<ar gunent 2>
returns the second arguemt:
((sel ect _second <argunent 1>) <argument 2>) ==
((Afirst.Asecond. second <argument 1>) <argument 2>) =>
(oecond. second <argument 2>) =>
<ar gunent 2>
We can show that sel ect _second applied to anything returnsaversion of i dent i ty. Asbefore, we will use:
<ar gunent >
to stand for an arbitrary expression, so:
(sel ect _second <argunent>) ==
(Afirst.Asecond. second <argunent>) =>
Asecond. second
If second isreplaced by x then:
Asecond. second
becomes:
AX. X
Noticethat sel ect _first appliedtoi dentity returnsaversionof sel ect _second:
(select_first identity) ==
(AMfirst.Asecond.first identity) =>
Asecond.identity ==
Asecond. AX. X
If second isreplaced by f i r st and x by second then this becomes:

AMirst. Asecond. second
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2.12.3. Making pairs from two arguments
Consider the function:
def make_pair = Afirst.Asecond. AMfunc. ((func first) second)
with bound variable:
first
and body:
Asecond. Afunc. ((func first) second)

This function applies argument f unc to argument f i r st to build a new function which may be applied to argument
second. Notethat argumentsfi r st and second are used before argument f unc to build afunction:

Afunc. ((func first) second)

Now, if this function is applied to sel ect _first then argument first is returned and if it is applied to
sel ect _second then argument second isreturned.

For example:
((make_pair identity) apply) ==

((AMfirst.Asecond. Afunc. ((func first) second)
identity) apply) =>

(Asecond. AMfunc. ((func identity) second) apply) =>
AMunc. ((func identity) apply)

Now, if thisfunctionisappliedtosel ect _first:
(AMfunc. ((func identity) apply) select first) ==
((select first identity) apply) ==
((Mirst.Asecond.first identity) apply) =>
(Asecond.identity apply) =>
identity

andif itisappliedtosel ect _second:
(AMfunc. ((func identity) apply) select_second) ==
((sel ect _second identity) apply) ==
((Mirst.Asecond. second identity) apply) =>

(Asecond. second apply) =>

apply
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In general, applying make_pai r to arbitrary arguments:

and

gives:

<ar gument 1>

<ar gunment 2>

((make_pair <argunment1>) <argument2>) ==
((Afirst.Asecond. AMfunc. ((func first) second)) <argument1>) <argunent2>) =>
(Asecond. AMfunc. ((func <argunent1>) second) <argument2>) =>

Afunc. ((func <argunent1>) <argunent2>)

Thereafter, applying thisfunctionto sel ect _fi r st returnsthe first argument:

(Afunc. ((func <argunent1>) <argunent2>) select first) =>
((select_first <argument1>) <argunent2>) ==

((Afirst.A second.first <argument1>) <argunment2>) =>
(Asecond. <argunent 1> <ar gunment 2>) =>

<ar gument 1>

and applying this function to sel ect _second returns the second argument:

2.13.

(Afunc. ((func <argunent 1>) <argunent 2>) sel ect _second) =>
((sel ect _second <argunent 1>) <argunent 2>) ==

((Mirst.A second. second <argunent 1>) <argunent2>) =>
(Asecond. second <argunent2>) =>

<ar gunment 2>

Free and bound variables

We are now going to consider how we ensure that arguments are substituted correctly for bound variables in function
bodies. If al the bound variables for functions in an expression have distinct names then there is no problem.

For example, in:

(M. (f Ax.X) As.(s s))

there are three functions. The first has bound variable f , the second has bound variable x and the third has bound
variables. Thus:

(M. (f AX.x) As.(s s)) =>

(As. (s s) Ax.x) =>



-31-

(AX. X AX.Xx) =>
AX. X
Itis possible, however, for bound variablesin different functions to have the same name. Consider:
(M. (f AM.f) As. (s s))
This should give the same result as the previous expression. Here, the bound variable f should be replaced by:
As. (s s)
Note that we should replace thefirst f in:
(f AM.f)
but not thef in the body of:
AL f

This is a new function with a new bound variable which just happens to have the same name as a previous bound
variable.

To clarify this we need to be more specific about how bound variables relate to variables in function bodies. For an
arbitrary function:

A<name>. <body>

the bound variable <nanme> may correspond to occurrences of <name> in <body> and nowhere else. Formally, the
scope of the bound variable <name> is<body>.

For example, in:
AML.As. (f (s s))
the bound variablef isin scopein:

As. (f (s s))

(AMf.Ag.Aa. (f (g a)) Ag.(g9 9))

the leftmost bound variablef isin scopein:
Ag. Aa. (f (g a))

and nowhere else. Similarly, the rightmost bound variable g isin scopein:
(9 9)

and nowhere else.

Note that we have said may correspond. This is because the re-use of a name may ater a bound variable's scope, as
wewill see.

Now we can introduce the idea of a variable being bound or freein an expression. A variable is said to be bound to
occurrences in the body of a function for which it is the bound variable provided no other functions within the body
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introduce the same bound variable. Otherwiseit is said to be free.

Thus, in the expression:
AX. X

the variable x is bound but in the expression:
X

thevariablex isfree. In:
ML (F Ax.x)

thevariablef isbound but in the expression:
(f Ax.Xx)

thevariablef isfree.

In general, for afunction:

A<name>. <body>

<name> refers to the same variable throughout <body> except where another function has <nane> as its bound
variable. References to <nane> in the new function’s body then correspond to the new bound variable and not the

old.

In formal terms, all the free occurrences of <name> in <body> are references to the same bound variable <name>
introduced by the origina function. <nane> isin scopein <body> wherever it may occur free; that is except where

another function introducesit in in anew scope.
For example, in the body of:

AML(F ML)
whichis:

(f Af.T)

the first f is free so it corresponds to the original bound variable f but subsequent f s are bound and so are distinct
from the original bound variable. The outer f isin scope except in the scope of theinner f .

In the body of:

Ag. ((g Ah.(h (g Ah.(h Ag.(h 9))))) 9)
whichis:

(g Ah.(h (g Ah.(h Ag.(h g))))) 9

the first, second and last occurrences of g occur free so they correspond to the outer bound variableg. The third and
fourth gs are bound and so are distinct from the original g. The outer g isin scope in the body except in the scope of

theinner g.

Let ustighten up our definitions. A variableis bound in an expression if:



i)

-33-

the expression is an application:
(<function> <argunent >)
and the variable isbound in <f unct i on> or <ar gunent >
For example, convi ct isbound in:
(Aconvi ct.convict fugitive)
andin:
(Aprison. prison Aconvict.convict)
the expression is afunction:
A<name>. <body>
and either the variable’'snameis <name> or it isbound in <body>.
For example, pri soner isboundin:
Aprisoner. (nunber6 prisoner)
andin:

Aprison. Aprisoner. (prison prisoner)

Similarly, avariableisfreein an expression if:

i)

i)

the expression is asingle name:
<nane>
and the variable’ snameis <name>
For example, t r uant isfreein:
t ruant
the expression is an application:
(<function> <argunent >)
and the variableisfreein <f unct i on> orin <ar gunent >
For example, escaper isfreein:
(Apri soner. prisoner escaper)
andin:
(escaper Ajailor.jailor)
the expression is afunction:

A<name>. <body>
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and the variable’ snameis not <namne> and the variableisfreein <body>.
For example, f ugi ti ve isfreein:
Aprison. (prison fugitive)
andin:
Ashort. Asharp. Ashock. fugitive
Note that a variable may be bound and freein different places in the same expression.
We can now define 3 reduction more formally. In general, for the 3 reduction of an application:
(A<nane>. <body> <ar gunent >)

we replace all free occurrences of <nanme> in <body> with <ar gunent >. This ensuresthat only those occurrences
of <name> which actually correspond to the bound variable are replaced.

For example, in:
(M. (f AM.f) As. (s s))
thefirst occurrence of f in the body:
(f AM.f)
isfree so it gets replaced:
(As. (s s) AM.f) =>
(M. f A f) =
AL f

In subsequent examples we will use distinct bound variables.

2.14. Name clashes and a conversion
We have restricted the use of names in expressions to the bodies of functions. This may be restated as the requirement
that there be no free variablesin aA expression. Without this restriction names become objectsin their own right. This
eases data representation: atomic objects may be represented directly as names and structured sequences of objects as
nested applications using names. However, it also makes reduction much more complicated.
For example consider the function application function:

def apply = Afunc.Aarg. (func arg)
Consider:

((apply arg) boing) ==

((Afunc. Aarg. (func arg) arg) boing)
Here, ar g is used both as a function bound variable name and as a free variable name in the leftmost application.

These are two distinct uses: the bound variable will be replaced by (3 reduction but the free variable stays the same.
However, if we carry out 3 reduction literally:
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((Afunc. Aarg. (func arg) arg) boing) =>
(Aarg. (arg arg) boing) =>
(boi ng boi ng)

which was not intended at all. The argument ar g has been substituted in the scope of the bound variable ar g and
appears to create a new occurrence of that bound variable.

We can avoid this using consistent renaming. Here we might replace the bound variable ar g in the function with, say,
argl:

((Afunc. Aargl. (func argl) arg) boing) =>

(Aargl. (arg argl) boing) =>

(arg boing)
A name clash arises when a 3 reduction places an expression with afree variable in the scope of a bound variable with
the same name as the free variable. Consistent renaming, which is known as a conversion (alpha conversion),
removes the name clash. For afunction:

A<nanel>. <body>
the name <nanel1> and all free occurrences of <namel> in <body> may be replaced by a new name <nane2>
provided <nane2> is not the name of a free variable in A<nanel1>. <body>. Note that replacement includes the
name at:

A<nanmel>

In subsequent examples we will avoid name clashes.

2.15. Simplification through etareduction
Consider an expression of the form:
A<name>. ( <expr essi on> <nane>)

This is a bit like the function application function above after application to a function expression only. This is
equivalent to:

<expr essi on>
because the application of this expression to an arbitrary argument:
<ar gunent >
gives:
(A<nane>. (<expressi on> <name>) <argunent>) =>
(<expressi on> <ar gunent >)
This simplification of:

A<name>. ( <expr essi on> <nane>)
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<expr essi on>

is called n reduction (eta reduction). We will useit in later chaptersto simplify expressions.

2.16. Summary

In this chapter we have:

considered abstraction and its role in programming languages, and the A calculus as a language based on pure
abstraction

met the A calculus syntax and analysed the structure of some simple expressions

met hormal order 3 reduction and reduced some simple expressions, noting that not al reductions terminate
introduced notations for defining functions and simplifying familiar reduction sequences

seen that functions may be constructed from other functions

met functions for constructing pairs of values and selecting from them

formalised normal order 3 reduction in terms of substitution for free variables

met a conversion asaway of removing name clashes in expressions

met n reduction as away of simplifying expressions

Some of these topics are summarised below.

L ambda calculus syntax

<expression> ::= <name> | <function> | <application>

<name> ::= non- bl ank character sequence

<function> ::= A <nanme> . <body>
<body> ::= <expression>

<application> ::= ( <function expressi on> <argument expression> )
<function expression> ::= <expression>
<argument expression> ::= <expression>

Freevariables

i)
i)

i)

<nane> isfreein <nane>.

<name> isfreein A<nanel>. <body>
if <namel> isnot <nane>
and <nane> isfreein <body>.

<nane>isfreein (<function expressi on> <argument expressi on>)
if <name>isfreein<f uncti on expressi on>
or <nane> isfreein <ar gunent expressi on>.
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Bound variables
i) <nanme> isbound in A<nanel>. <body>
if <nane>is<nanmel>
or <namne> ishound in <body>.
ii) <nane>isboundin(<function expressi on> <argument expression>)
if <name>isboundin<functi on expressi on>
or <nane>ishound in <ar gunent expressi on>.
Normal order B reduction
For (<function expressi on> <argunent expressi on>)
i) normal order 3 reduce<f uncti on expressi on>to<functi on val ue>
ii) if<function val ue>isA<nane>. <body>
then replace all free occurences of <nane> in <body> with <ar gument expr essi on>
and normal order (3 reduce the new <body>
or
iii) if <function val ue>isnotafunction
then normal order  reduce<ar gunent expressi on>to<argunment val ue>

and return ( <f uncti on val ue> <ar gunment val ue>)

Normal order reduction notation

=> - normal order 3 reduction
=> ... => - multiple normal order (3 reduction
Definitions

def <name> = <expression>
Replace all subsequent occurences of <namne> with <expr essi on> before evaluation.
Replacement notation
== - defined name replacement
a conversion
Torename<nanel> as<nane2>in A<nanel>. <body>
if <name2> isnot freein A<nanel>. <body>
then replace all free occurences of <nanel> in <body> with <nanme2>
and replace<nanmel>in A. <nanmel>
n reduction

(A<nane>. (<expressi on> <name>) <argunent>) =>

<expressi on> <ar gument >
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2.17. Exercises

1)

2)

3

4)

5)

Analyse each of the following lambda expressions to clarify its structure. If the expression is afunction, identify
the bound variable and the body expression, and then analyse the body expression. If the expression is an
application, identify the function and argument expressions, and then analyse the function and argument
expressions:

i) Aa.(a Ab. (b a))

ii) A AY.AzZ. ((z x) (z vy))

iii) (AM.Ag.(Ah.(g h) f) Ap.Aqg.p)

iv) AMMee Afi.Afo.AMfum (fum (fo (fi fee)))
V) (Ap. (AQ.p AX. (X pP)) A.A.(] 1))

Evaluate the following lambda expressions:

i) ((AX.AY. (Y X) Ap.AQ.p) Ai.i)

i) (((AX.AY. Az . ((x y) z) AM.Aa. (f a)) Ai.i) Aj.j)
iii) (Ah.((Aa. Af.(f a) h) h) Af.(f f))

iv) ((Ap.-Aq.(p g) (Ax.x Aa.Ab.a)) Ak.k)

V) (C(AM.Ag. AX. (f (g X)) As. (s s)) Aa.Ab.b) Ax.Ay.x)

For each of the following pairs, show that function a) is equivalent to the function resulting from expression
b) by applying both to arbitrary arguments:

i) a) identity
b) (apply (apply identity))
ii) a) apply
b) Ax.Ay. (((make_pair x) y) identity)
iii) a) identity
b) (self_apply (self_apply sel ect_second))

Define a function:
def make_triplet = ...

which is like make_pai r but constructs a triplet from a sequence of three arguments so that any one of the
arguments may be selected by the subsequent application of atriplet to a selector function.

Define selector functions:
def triplet_first = ...
def triplet_second = ...

def triplet_third = ...

which will select the first, second or third item from atriplet respectively.

Show that:

make_triplet <iteml> <itenmR2> <itenB> triplet_first => ... => <iteml>
make_triplet <iteml> <itenR> <itenB> triplet_second => ... => <iten>
make_triplet <iteml> <itenmR2> <itenB> triplet_third => ... => <itenB>

for the arbitrary arguments:
<itenl> <itenk> <itenB>

Analyse each of the following lambda expressions to identify its free and bound variables, and those in its sub-
expressions:
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i) AX.AY. (AX.y Ay. X)

i)  AX. (X (Ay. (AX.x y) X))
iii) Aa.(Ab.a Ab.(Aa.a b))
iv) (Afree.bound Abound. (AMfree.free bound))

v)  Ap.Ag. (Ar.(p (Ag. (Ap.(r )))) (g p))

6) Removeany name clashesin the expressionsin exercise 5 above.

3. CONDITIONS, BOOLEANSAND INTEGERS

3.1. Introduction
In this chapter we are going to start to add layersto the A calculus to develop a higher level functional notation.

First of all we will use the pair functions from chapter 1 to represent conditional expressions with truth valuest r ue
andf al se. Wewill then use these to devel op boolean operationslikenot , and and or .

Next we will use the pair functions to represent natural numbers in terms of the value zer o and the successor
function.

Finally, we will introduce notations for simplifying function definitions and A expressions, and for an ‘if .. then ...
else’ form of conditional expression.

For the moment we will be looking at untyped representations of truth values and functions. We will develop typed
representationsin chapter 5.

3.2. Truth values and conditional expression
Boolean logic is based on the truth values TRUE and FAL SE with logical operations NOT, AND, ORand so on.

We are going to represent TRUE by sel ect _first and FALSE by sel ect _second, and use a version of
make_pai r to build logical operations. To motivate this, consider the C conditional expression:

<condi ti on>?<expr essi on>: <expr essi on>

If the<condi ti on> is TRUE then the first <expr essi on> is selected for evaluation and if the <condi t i on> is
FAL SE then the second <expr essi on> is selected for evaluation.

For example, to set max to the greater of x and y:
max = X>y?X:y
or to set absx to the absolute value of x:
absx = x<07?-x: X
We can model a conditional expression using aversion of the make pair function:
def cond = Ael.Ae2.Ac.((c el) e2)
Consider cond applied to the arbitrary expressions <expr essi onl> and <expr essi on2>:

((cond <expressionl>) <expression2>) ==
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((Ael.Ae2. Ac.((c el) e2) <expressionl>) <expression2>) =>
(Ae2.Ac. ((c <expressionl>) e2) <expression2>) =>
Ac. ((c <expressionl>) <expression2>)

Now, if thisfunctionisappliedtosel ect _first:
(Ac. ((c <expressionl>) <expression2>) select first) =>
((sel ect _first <expressionl>) <expression2>) => ... =>
<expressi onl>

andif itisappliedtosel ect _second:
(Ac. ((c <expressionl>) <expression2>) select_second) =>
((sel ect _second <expressi onl>) <expression2>) => ... =>
<expr essi on2>

Notice that the <condi t i on> isthe last argument for cond, not thefirst.

Now, we will use the conditional expression and cond function with:
def true = select _first
def fal se = sel ect_second

to model some of the logical operators.

3.3.NOT
NOT is aunary operator of the form:
NOT <oper and>

which we will describe through atruth table with X standing for the single operand:

FALSE | TRUE
TRUE | FALSE

Note that if the operand is TRUE then the answer is FALSE and if the operand is FALSE then the answer is TRUE.
Thus NOT could be written using an conditional expression as:

X ? FALSE : TRUE

We can describe this using selectors so if the operand is TRUE then FALSE is selected and if the operand is FALSE
then TRUE is selected. This suggests using:

def not = Ax.(((cond false) true) x)

Simplifying the inner body gives:
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(((cond false) true) x) ==
(((Ael.Ae2.Xc. ((c el) e2) false) true)
((Ae2.Xc. ((c false) e2) true) x) =>
(Ac.((c false) true) x) =>

((x false) true)

so we will use:

def not = Ax.((x false) true)

Let ustry:
NOT TRUE
as:
(not true) ==

and:

(Ax. ((x false) true) true) =>

((true false) true) ==
((AMfirst.Asecond.first false) true) =>
(Asecond. fal se true) =>

fal se

NOT FALSE

(not false) ==

((Ax. ((x false) true) false) =>

((false false) true) ==

((Afirst.Asecond. second fal se) true) =>

(Asecond. second true) =>

true

which correspond to the truth table.

3.4. AND

AND is a binary operator of the form:

X)

=>
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<oper and> AND <oper and>

which we will describe with atruth table with X standing for the left operand and Y standing for the right operand:

FALSE | FALSE | FALSE
FALSE | TRUE | FALSE
TRUE | FALSE | FALSE
TRUE | TRUE | TRUE

Note that if the left operand is TRUE then the final value depends on the right operand and if the left operand is
FALSE then the final value is FALSE so AND could be modelled using the conditional expression as:

X ? Y : FALSE

Using selectors, if the left operand is TRUE then select the right operand and if the left operand is FALSE then select
FALSE, sowewill define AND as:

def and = Ax.Ay.(((cond y) false) x)
Simplifying the inner body gives:
(((cond y) false) x) ==
(((Ael.re2.Ac.((c el) e2) y) false) x) =>
((re2.Xc.((c y) e2) false) x) =>
(Ac.((c y) false) x) =>
((x y) false)
so we will now use:
def and = Ax.Ay. ((x y) false)
For example, we could write:

TRUE AND FALSE

((and true) false) ==

((AX.Ay. ((x y) false) true) false) =>
(Ay.((true y) false) false) =>

((true false) false) ==
((Mirst.Asecond.first false) false) =>
(Asecond. fal se false) =>

fal se



-43 -

3.5.0R
CRisabinary operator of the form:
<oper and> OR <oper and>

which we will again describe with atruth table using X for the left operand and Y for the right operand:

FALSE | FALSE | FALSE
FALSE | TRUE | TRUE
TRUE | FALSE | TRUE
TRUE | TRUE | TRUE

Note that if the first operand is TRUE then the final value is TRUE and otherwise the final value is the second operand,
so we could describe this using the conditional expression as:

X ? TRUE : Y

Using selectors, if the first operand is TRUE then select TRUE and if the first operand is FAL SE then select the second
operand:

def or = AX.Ay. (((cond true) y) x)
Simplifying the inner body:
(((cond true) y) x) ==
(((Ael.re2.hc.((c el) e2) true) y) x) =>
((Ae2.Ac.((c true) e2) y) x) =>
(Ac.((c true) y) x) =>
((x true) vy)
Now we will use:
def or = AX.Ay. ((x true) vy)
For example, we could write:

FALSE OR TRUE

((or false) true) ==
((AX.AY. ((x true) y) false) true) =>
(Ay.((false true) y) true) =>

((false true) true) =>
((Afirst.Asecond. second true) true) =>

(Asecond. second true) =>
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true

3.6. Natural numbers

We tend to take numbers for granted in programming but we now have to consider how to represent them explicitly.
Our approach will be based on the ability to define natural number s - non-negative integers - as successor s of zer o:

1 = successor of 0

2 = successor of 1
= successor of successor of 0

3 = successor of 2
= successor of successor of 1
= successor of successor of successor of 0

€tc.

Thus, the definition of an arbitrary integer will be that number of successors of zero. We need to find afunction zer o
to represent zero and a successor function succ so that we can define:

(succ zero)

def one

def two (succ one)

def three = (succ two)

and so on.
Note that:

two == (succ (succ zero))

three == (succ (succ one)) == (succ (succ (succ zero)))
and so on.

There are avariety of ways of representing zer o and succ. We will use:

def zero identity

def succ An.As. ((s false) n)

so eachtime succ is applied to anumber n it builds a pair function with f al se first and the original nhumber second.
For example:

one ==
(succ zero) ==

(An.As. ((s false) n) zero) =>
As. ((s fal se) zero)

Similarly:
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two ==
(succ one) ==
(An.As. ((s false) n) one) =>
As. ((s false) one) ==
As. ((s false) As.((s false) zero))
and:
three ==
(succ two) ==
(An.As.((s false) n) two) =>
As. ((s false) tw) ==
As. ((s false) As.((s false) one) ==
As. ((s false) As.((s false) As.((s false) zero)))
This representation enables the definition of a unary function i szer o which returnst r ue if its argument is zer o
and f al se otherwise. Remember that a number is a function with an argument which may be used as a selector. For
an arbitrary number:
As. ((s false) <number>)
if theargument is settosel ect _first thenf al se will be selected:
(As. ((s fal se) <nunmber>) select first) =>
((select _first fal se) <nunber>) ==
((Afirst.Asecond.first false) <nunber>) =>
(Asecond. fal se <nunber>) =>
fal se

If zer o, which istheidentity function, is appliedto sel ect _fi rst thensel ect _fi r st, whichisthe same as
t r ue by definition, will be returned:

(zero select_first) ==
(Ax.x select_first) =>
select _first ==
true

This suggests using:

def iszero = An.(n select_first)
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Notice that i szer o applies the number to the selector rather than the selector to the number. This is because our
number representation models numbers as functions with selector arguments.

We can now define the predecessor function pr ed so that:

(pred one) => ... => zero

(pred two) => ... => one

(pred three) => ... => two
and so on.

For our number representation, pr ed should strip off alayer of nesting from an arbitrary number:
As. ((s fal se) <nunmber>)
and return the;
<nunber >
Thissuggestsusing sel ect _second because:
(As. ((s fal se) <number>) sel ect_second) =>
((sel ect _second fal se) <number>) ==
((AMirst.Asecond. second fal se) <nunmber>) =>
(Asecond. second <nunber>) =>
<nunber >
so we might define afirst version of pr ed as:
def predl = An.(n sel ect _second)
However, thereis a problem with zer o aswe only have positive integers. Let ustry our present pr ed1 with zer o:
(predl zero) ==
(An.(n sel ect_second) zero) =>
(zero sel ect _second) ==
(Ax.x sel ect _second) =>
sel ect _second ==
fal se
which is not a representation of a number.

We could define the predecessor of zer o to be zer o and check numbers to see if they are zer o before returning
their predecessor, using:

<nunber> = zero ? zero : predecessor of <number>
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def pred = An.(((cond zero) (predl n)) (iszero n))
Simplifying the body gives:
(((cond zero) (predl n)) (iszero n)) ==
(((Ael.re2.Ac.((c el) e2) zero) (predl n)) (iszero n)) =>
((Ae2.Ac.((c zero) e2) (predl n)) (iszero n)) =>
(Ac.((c zero) (predl n)) (iszero n)) =>
(((iszero n) zero) (predl n))
Substituting for pr ed1 and simplifying gives:
(((iszero n) zero) (An.(n select_second) n)) ==
(((iszero n) zero) (n select_second)) ==
so now we will use:
def pred = An. (((iszero n) zero) (n select_second))

Alternatively, we might say that the predecessor of zer o is undefined. We won't look at how to handle undefined
values here.

When we use pr ed we will have to be careful to check for azer o argument.

3.7. Smplified notations

By now you will have noticed that manipulating A expressions involves lots of brackets. Aswell as being tedious and
fiddley, it is a mgjor source of mistakes due to unmatched or mismatched brackets. To simplify things, we will allow
brackets to be omitted when it is clear what is intended. In general, for the application of afunction <f unct i on> to
N arguments we will allow:

<function> <argunent 1> <argument2> ... <argument N>
instead of:
(...((<function> <argument1>) <argunent2>) ... <argunentN>)

so in afunction application, a function is applied first to the nearest argument to the right. If an argument isitself a
function application then the brackets must stay. There must also be brackets round function body applications. For
example, we could re-write pr ed as:

def pred = An.((iszero n) n (n select_second))

We can also simplify name/function association definitions by dropping the A and . , and moving the bound variable
to the | eft of the = so:

def <names> = A<nane>. <expressi on>

where <nanes> isone or more <namnme>s becomes;
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def <names> <name> = <expressi on>

We can now re-write all our definitions:

1
x

def identity x

def self_apply s = s s

def apply func Aarg. (func arg)
and hence:
def apply func arg = func arg
def select first first = Asecond.first
and hence:
def select first first second = first
def select_second first = Asecond. second
and hence:
def select_second first second = second
def make_pair el = Ae2.Ac.(c el e2)
and hence:
def make_pair el e2 = Ac.(c el e2)
and hence:
def nake_pair el e2 ¢ = c el e2
def cond el e2 ¢ = c el e2
def true first second = first
def false first second = second
def not x = x false true
def and x y = x y fal se
def or x y = x true y
For some functions there are standard equivalent notations. Thus, it isusual to write:
cond <true choice> <fal se choi ce> <condi tion>
inanif ... then ... else ... form. Wewill use
i f <condition>

t hen <true choice>
el se <fal se choice>
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For example, we could re-write pr ed’ s definition as:
def pred n =
if iszero n
then zero
el se n sel ect_second
Similarly, using our conditional derivation of booleans, we could rewrite not as:
def not x =
if x
then fal se
el se true
and and as:
def and x y =
if x
then y
el se fal se
and or as.
def or x y =
if x
then true
elsey

3.8. Summary
In this chapter we have:

. developed representations for conditional expressions and truth values, and used them to develop boolean
operations

. developed arepresentation for natural numbers based on zero and the successor function

. introduced notations for removing brackets from expressions, simplifying function definitions and an ‘if .. then
... else ...’ form of conditional expression

Some of these topics are summarised below.
Removing brackets
( ... ((<function> <argunent1>) <argument2>) ... <argumentN>) ==
<function> <argunent 1> <argument2> ... <argument N>
Simplifying function definitions
def <names> = A<name>. <expressi on> ==
def <names> <name> = <expressi on>

if ...then ... else....
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if <condition>
t hen <true choice>
el se <fal se choice> ==

cond <true choi ce> <fal se choi ce> <condition>

3.9. Exercises

1

2)

3

The boolean operationi npl i cat i on is defined by the following truth table:

X | Y | XIMPLIESY
....... e
FALSE | FALSE | TRUE
FALSE | TRUE | TRUE
TRUE | FALSE | FALSE
TRUE | TRUE | TRUE

Define alambda calculus representation for i npl i cati on:
def inmplies = Ax.Ay...
Show that the definition satisfies the truth table for all boolean valuesof x andy .

The boolean operation equi val ence is defined by the following truth table:

X | Y | XEQUVY
....... L
FALSE | FALSE| TRUE
FALSE | TRUE | FALSE
TRUE | FALSE | FALSE
TRUE | TRUE | TRUE

Define alambda cal culus representation for equi val ence:
def equiv = AX.Ay. ..
Show that the definition satisfies the truth table for all boolean valuesof x andy .

For each of the following pairs, show that functions a) and b) are equivalent for all boolean values of their
arguments:

i) a) AX.Ay.(and (not x) (not y))
b) Ax.Ay.(not (or x y))

ii) a) inplies

b) Ax.Ay.(inplies (not y) (not x))
iii) a) not

b) Ax.(not (not (not x)))

iv) a) inplies
b) Ax.Ay.(not (and x (not y)))

V) a) equiv
b) Ax.Ay.(and (inmplies x y) (inplies y X))
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4)  Show that:
AX. (succ (pred x))
and:
AX. (pred (succ x))

are equivalent for arbitrary non-zero integer arguments. Explain why they are not equivalent for a zero
argument.

4. Recursion and arithmetic

4.1. Introduction
In this chapter we are going to look at how recursion is used for repetition in functional programming.

To begin with, we will see that our existing definition notation cannot be used to introduce recursion because it leads
to infinite substitution sequences. We will then see that this can be overcome through absraction in individual
functions.

Next, we will discuss the introduction of recursion using a general purpose construct based on function self
application.

Finally, we will look at the use of recursion to build awide variety of arithmetic operations.

4.2. Repetition, iteration and recursion

Repetition involves doing the same thing zero or more times. It is useful to distinguish bounded repetition, where
something is carried out a fixed number of times, from the more general unbounded iteration, where something is
carried out until some condition is met. Thus, for bounded repetition the number of repetitions is known in advance
whereas for unbounded repetition it is not.

It is important to relate the form of repetition to the structure of the item to be processed. Bounded repetition is used
where a linear sequence of objects of known length is to be processed, for example to process each element of an
array. Here, the object sequence can be related to a consecutive range of values. For example, arrays have addresses
which are linear sequences of integers.

Unbounded repetition is used where a nested sequence of objects is to be processed and the number of layers of
nesting is unkown. For example, afiling system might consist of a nested hierarchy of directories and files. Processing
such afiling system involves starting at the root directory and then processing the files and sub-directories. Processing
the sub-directories involves processing their files and sub-directories, and so on. In general, the depth of directory
nesting is unknown. For unbounded repetition, processing ends when the end of the nesting is reached. For example,
processing afiling system ends when all thefiles at every level of directory nesting have been processed.

Bounded repetition is a weaker form of unbounded repetition. Carrying out something a fixed number of timesis the
same as carrying it out until the last item in a sequence has been dealt with.

In imperative languages repetition is based primarily on iterative constructs for repeatedly carrying out structured
assignment sequences. For example, in Pascal, FOR statements provide bounded iteration over arange of integers and
VHI LE or REPEAT statements provide unbounded iteration until a condition is met. Here, repetition involves
repeatedly inspecting and changing variablesin common memory.
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In functional languages, programs are based on structured nested function calls. Repetition requires such nesting to be
continued until some condition is met. There is no concept of a changing shared memory. Instead, each function
passes its result to the next in the function call nesting. Repetition involves deciding whether or not to carry out
another layer of function call nesting with the same nested sequence of function calls.

RBpetition in functional programming is based on recursion: the definition of something in terms of itself. The
nested function call sequence which is to be repeated is given aname. If some condition is met within the sequence
then that name is invoked to repeat the nested function call sequence within itself. The condition often checks whether
or not the end of alinear or nested object sequence has been reached.

Let us compare iteration and recursion through another contrived example. Suppose we want to eat some sweets. |f
we know that there are N sweets then we might write an iterative algorithm as:

EAT N = FOR COUNT := N DOANTO 1 DO
gobbl e a sweet
or:
EAT N = COUNT := N
VWHI LE COUNT > 0 DO
BEG N

gobbl e a sweet
COUNT := COUNT - 1
END

For example, for 3 sweets we would:
EAT 3 sweets =>

gobbl e a sweet and
gobbl e a sweet and
gobbl e a sweet and
stop

An equivalent recursive algorithm would be;

EAT N=I1F N > 0 THEN
BEG N
gobbl e a sweet
EAT N-1
END

For example, for 3 sweets we would:
EAT 3 sweets =>

gobbl e a sweet and
EAT 2 sweets =>

gobbl e a sweet and
gobbl e a sweet and
EAT 1 sweet =>

gobbl e a sweet and
gobbl e a sweet and
gobbl e a sweet and
EAT O sweets =>
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gobbl e a sweet and
gobbl e a sweet and
gobbl e a sweet and
stop

Note that eating sweets iteratively involves gobbling 1 sweet N times whereas eating sweets recursively involves
gobbling 1 sweet and then eating the remaining N- 1 sweets recursively.

It is useful to distinguish primitive recursion where the number of repetitions is known from general recursion here
the number of repetitions is unknown. Primitive recursion is weaker than general recursion. Primitive recursion
involves a finite depth of function call nesting so it is equivalent to bounded repetition through iteration with afinite
memory. For general recursion the nesting depth is unknown so it is equivalent to unbounded repetition through
iteration with an infinite memory.

Note that imperative languages often provide repetition through recursive procedures and functions as well as through
iteration.

4.3. Recursion through definitions?

It might appear that our definition notation enables recursion and we could just use the name from the left of the
definition in the expression on the right. For example, two numbers may be added together by repeatedly incrementing
the first and decrementing the second until the secondiszer o:

def add x y =

if iszeroy

then x

el se add (succ x) (pred vy)

Thus, to add one and two, for example:

add one two => ... =>
add (succ one) (pred tw) => ... =>
add (succ (succ one)) (pred (pred tw)) => ... =>

(succ (succ one)) ==
three

However, in chapter 2 we required all hames in expressions to be replaced by their definitions before the
expression is evaluated.

In the above example:

AX. AY.
if iszeroy
then x
el se add (succ x) (pred y) ==

AX. AY.
if iszeroy
then x
el se
((AX. Ay.
if iszeroy
then x
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el se add (succ x) (pred y))
(succ x) (pred y)) ==

AX. AY.
if iszeroy
then x
el se
((AX. Ay.
if iszeroy
then x
el se
((AX. Ay.
if iszeroy
then x
el se add (succ x) (pred y))
(succ x) (pred y))
(succ x) (pred y)) == ..

Replacement will never terminate!

We want the replacement to take place a finite number of times depending on particular uses of the function with
particular arguments but, of course, there is no way of knowing what argument values are required when the function
is defined. If we did know then we could construct specific functions for specific cases rather than a general purpose

function. This was not a problem in earlier examples because we knew replacement would always be finite. For
recursion, though, we need some means of delaying the repetitive use of the function until it is actually required.

4.4. Passing a function to itself

Function use always occursin an application and may be delayed through abstraction at the point where the function is
used. For an arbitrary function, the application:

<function> <ar gunment >
is equivalent to:
A . (f <argunent>) <function>
The original function becomes the argument in a new application.
In our addition example we could introduce a new argument:
def addl f x y =
if iszeroy
then x
else f (succ x) (pred vy)
to remove recursion by abstraction at the point where recursion is required. Now we need to find an argument for
addl with the same effect as add. Of course, we cannot just pass add to addl as we end up with the non-
terminating replacement again. What is needed is to pass add1l into itself but this just pushes the problem down a
level. If wetry:
def add = addl addl

then the definition expands to:

(Af.AX. Ay.
if iszeroy
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then x
else f (succ x) (pred y)) addl =>
AX. AY.
if iszeroy
then x
el se addl (succ x) (pred y)
We havefailed to passaddl1 down far enough. In the original definition for add1, the application:
f (succ x) (pred y)
has only two arguments. Thus, after substitution:
addl (succ x) (pred vy)
has no argument corresponding to the bound variable f .
We need the effect of:
addl addl (succ x) (pred y)
so that add1 may be passed on to subsequent recursions.
Let us define an add2, thistime passing the argument for f to the argument itself as well:
def add2 f x y =
if iszeroy
then x
elsef f xvy
Asbefore, add is:
def add = add2 add2
The definition expands and evaluates as:
(Af.AX. Ay.
if iszeroy
then x
else f f (succ x) (pred y)) add2 =>
AX. AY.
if iszeroy
then x
el se add2 add2 (succ x) (pred vy)

Note that we do not strictly need to replace other occurrences of add?2 asits definition contains no referencesto itself.

Now, we have inserted two copies of add2 - one as function and another as argument - to continue recursion. Thus,
every time the recursion point is reached another copy of the whole function is passed down.

For example:
add one t ==

(AX. Ay.
if iszeroy
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then x
el se add2 add2 (succ x) (pred y)) one two => ... =>

if iszero two

then one
el se add2 add2 (succ one) (pred two) => ... =>
(Af.AX. Ay.
if iszeroy
then x
else f f (succ x) (pred y)) add2 (succ one) (pred two) => ... =>

if iszero (pred two)
then (succ one)

el se add2 add2 (succ (succ one)) (pred (pred tw)) => ... =>
(Af.AX. Ay.
if iszeroy
then x
else f f (succ x) (pred y)) add2 (succ (succ one))
(pred (pred two)) => ... =>

if iszero (pred (pred two))
then (succ (succ one))
el se add2 add2 (succ (succ (succ one)))
(pred (pred (pred two))) => ... =>
succ (succ one)) ==

t hree

4.5. Applicative or der
From now on, to simplify the presentation of some examples we will evaluate them partialy in applicative order; that
is some cases we will evaluate arguments before passing them to functions. We will indicate the applicative order
reduction of an argument with:

->
and the applicative order reduction of a sequence of arguments with:

-> ... =>
Note that argument evaluation will generally involve other reductions which won’t be shown.
We will consider the relationship between applicative and normal order evaluation in chapter 8 but note now that the
result of a terminating applicative order reduction of an expression is the same as the result of the equivalent
terminating normal order reduction. As we will see in chapter 8, the reverse is not true because there are expressions
with terminating normal order reductions but non-terminating applicative order reductions. Nonetheless, provided
eval uation terminates, applicative and normal order are equivalent.
As we will also see in chapter 8, a major source of non-termination results from our representation of conditional
expressions. It turns out that the strict applicative order evaluation of conditional expressions embodying recursive

calsin afunction body won’t terminate. Thus until chapter 8, the use of the applicative order indicators:

->
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and:
-> .. -3

will still imply the normal order evaluation of conditional expressions.

4.6. Recursion function

A more general approach to recursion is to find a constructor function to build a recursive function from a non
recursive function, with a single abstraction at the recursion point.

For example, we might define multiplication recursively. To multiply two numbers, add the first to the product of the
first and the decremented second. If the second is zero then so is the product:

def nmult x y =

if iszeroy

then zero

else add x (mult x (pred y))

For example:
mult three two => ... =>
add three (mult three (pred two)) -> ... ->
add three (add three (nult three (pred (pred tw)))) -> ... ->
add three (add three zero) -> ... ->
add three three => ... =>
Si X

We can remove self-reference by abstraction at the recursion point:
def multl f xy =
if iszeroy
then zero
else add x (f x (pred y))

We would like to have afunction r ecur si ve which will construct recursive functions from non-recursive versions,
for example:

def nult = recursive nultl
The function r ecur si ve must not only pass a copy of its argument to that argument but also ensure that self
application will continue: the copying mechanism must be passed on as well. This suggests that r ecur si ve should
be of the form:

def recursive f = f < f’ and copy>
If recursiveisappliedtonul t 1:

recursive multl ==

AL (f < f’ and copy>) multl =>
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miltl <nmultl and copy> ==
(Af.AX. Ay.
if iszeroy
then zero
else add x (f x (pred y))) <mltl and copy> =>
AX. AY.
if iszeroy
then zero
else add x (<'mult1 and copy> x (pred y))
In the body we have:
< nmultl and copy> x (pred y)
but we require:
multl <multl and copy> x (pred y)
so that:

< nmultl and copy>

gets passed on again through mul t 1’s bound variable f to the next level of recursion. Thus, the copy mechanism
must be such that:

<multl and copy> => ... =>mltl <multl and copy>
In general, from function f passedtor ecur si ve, we need:
<f' and copy> => ... = f < f’' and copy>
so the copy mechanism must be an application and that application must be self-replicating.
We know that the self-application function:
As. (s s)
will self-replicate when applied to itself but the replication never ends.
Self-application may be delayed through abstraction with the construction of a new function:
ML.oAs. (f (s s))
Here, the self-application:
(s s)

becomes an argument for f . This might, for example, be a function with a conditional expression in its body which
will only lead to the evaluation of its argument when some condition is met.

When this new function is applied to an arbitrary function, we get
AM.As. (f (s s)) <function> =>

As. (<function> (s s))
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If this function is now applied to itself:
As. (<function> (s s)) As.(<function> (s s)) =>
<function> (As. (<function> (s s)) As.(<function> (s s)))
then we have a copy mechanism which matches our requirement.
Thus, we can definer ecur si ve as.
def recursive f = As. (f (s s)) As.(f (s s))
For example, in:
def nmult = recursive nultl
the definition evaluates to:
M. (As. (f (s s)) As.(f (s s))) multl =>
As.(multl (s s)) As.(multl (s s)) =>
multl (As.(multl (s s)) As.(multl (s s))) ==
(Af.AX. Ay.
if iszeroy
then zero
else add x (f x (pred y))) (As.(multl (s s)) As.(multl (s s))) =>
AX. AY.
if iszeroy
then zero

else add x ((As.(multl (s s)) As.(multl (s s)))
x (predy))

Again, note that we don’t strictly need to replace other occurrences of mul t 1 as its definition contains no references
toitsalf.

For example, we will try:

mult three two => ... =>
(AX. Ay.

if iszeroy

then zero

else add x ((As.(multl (s s)) As.(nultl (s s)))

X (pred y))) three two => ... =>

if iszero two
then zero
el se add three ((As.(multl (s s)) As.(nultl (s s)))

three (pred two)) => ... =>

add three ((As.(nmultl (s s)) As.(nultl (s s)))
three (pred tw)) ->

add three (multl (As.(multl (s s)) As.(multl (s s)))
three (pred tw)) ==



add

add

add

add

add

add

add

add

Si X

t hree

t hree

t hree

t hree

t hree

t hree

t hree

t hree
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((AX. Ay.
if iszeroy
then zero
else add x ((As.(multl (s s)) As.(multl (s s)))
X (pred y))) three (pred two)) -> ... ->
if iszero (pred two)

then zero

el se add three ((As.(nultl (s s)) As.(nmultl (s s)))
three (pred (pred tw))) -> ... ->

(add three ((As.(multl (s s)) As.(multl (s s)))
three (pred (pred two)))) ->

(add three

(add three

(add three

(add three

three => ...

4.7. Recursion notation

The function r ecur si ve is known as a paradoxical combinator or afixed point finder, and iscalled Y in the A

calculus literature.

Rather than always defining an auxiliary function with an abstraction and then using r ecur si ve to construct a
recursive version, we will allow the defined name to appear in the defining expression but use a new definition form:

rec <nane>

This is to indicate that the occurrence of the name in the definition should be replaced using abstraction and the
paradoxical combinator should then be applied to the whole of the defining expression. For example, for addition, we

will write:

(multl (As.(rmultl (s s)) As.(multl (s s)))

three (pred (pred two)))) ==
((AX. Ay.
if iszeroy
then zero
else add x ((As.(multl (s s)) As.(multl (s s)))
X (predy))
three (pred (pred two)))) -> ... ->

if iszero (pred (pred two))
then zero
el se add three ((As.(nultl (s s)) As.(nmultl (s s)))

zZer o)

=>

= <expression>

rec add x y =
iszero y

then x
el se add (succ x) (pred vy)

if

instead of:

-> ..

three (pred (pred (pred two)))))

-> ..



-61-

def addl f x y =

if iszeroy

then x

else f (succ x) (pred vy)

def add = recursive addl
and for multiplication we will write:
rec mult xy =
if iszeroy
then zero

else add x (rmult x (pred y))

When we expand or evaluate a recursive definition we will just leave the recursive reference in place.

4.8. Arithemtic operations

We will now use recursion to define arithmetic operations for raising to a power, subtraction, equality and inequalities,
and division.

4.8.1. Power

To raise one number to the power of another number, multiply the first by the first to the power of the decremented
second. If the second is zero then the power is one:

rec power x y =
if iszeroy

then one

else mult x (power x (pred vy))

For example
power two three => ... =>
mult two
(power two (pred three)) -> ... ->
mult two
(mult two
(power two (pred (pred three)))) -> ... ->
mult two
(mult two
(mult two
(power two (pred (pred (pred three)))))) -> ... ->
mult two
(mult two
(rmult two one)) -> ... ->
mult two
(mult two two) -> ... ->

mult two four => ... =>
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ei ght

4.8.2. Subtraction

To find the difference between two numbers, find the difference between the numbers after decrementing both. The
difference between a number and zero is the number:

rec sub x y =

if iszeroy

then x

el se sub (pred x) (pred vy)

For example:
sub four two => ... =>
sub (pred four) (pred two) => ... =>
sub (pred (pred four)) (pred (pred two)) => ... =>
(pred (pred four)) => ... =>
t wo

Notice that this version of subtraction will return zero if the second number is larger than the first, for example:

sub one two => ... =>

sub (pred one) (pred two) => ... =>

sub (pred (pred one)) (pred (pred tw)) => ... =>
pred (pred one) -> ... ->

pred zero => ... =>

zero

Thisis because pr ed returns zero from decrementing zero.

This form of subtraction is known as natural subtraction.

4.8.3. Comparison

There are a number of ways of defining equality between numbers. One approach is to notice that the difference
between two equal numbers is zero. However, if we subtract a number from a smaller number we also get zero so we
need to find the absolute differ ence between them; the difference regardless of the order of comparison.

To find the absolute difference between two numbers, add the difference between the first and the second to the
difference between the second and the first:

def abs_diff x y = add (sub x y) (sub y Xx)

If they are both the same then the absol ute differences will be zero because the result of taking each from the other will
be zero. If the first is greater than the second then the absolute difference will be the first minus the second because
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the second minus the first will be zero. Similarly, if the second is greater than the first then the difference will be the
second minus the first because the first minus the second will be zero.

Thus, we can define:

def equal x y = iszero (abs_diff x y)
For example
equal two three => ... =>
iszero (abs_diff two three) -> ... ->
iszero (add (sub two three) (sub three two)) -> ... ->
iszero (add zero one) -> ... ->
iszero one => ... =>
fal se

We could equally well be explicit about the decrementing sub carries out and define equality recursively. Two
numbers are equal if both are zero, they are unequal if oneis zero or equal if decrementing both gives equal numbers:

rec equal x y =
if and (iszero x) (iszero vy)
then true
el se
if or (iszero x) (iszeroy)
then fal se
el se equal (pred x) (pred y)

For example
equal two two => ... =>
equal (pred two) (pred two) -> ... ->
equal one one => ... =>
equal (pred one) (pred one) -> ... ->
equal zero zero => ... =>
true

We can aso use subtraction to define arithmetic inequalities. For example, a number is greater than another if
subtracting the second from the first gives a non-zero resullt:

def greater x y = not (iszero (sub x y))
For example, for
3>2

we use:
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greater three two => ... =>

not (iszero (sub three tw)) -> ... ->
not (iszero one) -> ... ->

not false => ... =>

true

Similarly, anumber is greater than or equal to another if taking the first from the second gives zero:
def greater_or_equal x y = iszero (sub y x)

For example, for:

2 >=3

we use:
greater_or_equal two three => ... =>
iszero (sub three two) -> ... ->
iszero one => ... =>
fal se

4.8.4. Division

Division, like decrementation, is problematic because of zero. It is usual to define division by zero as undefined but we
do not have any way of dealing with undefined values. Let us define division by zero to be zero and remember to
check for a zero divisor. For a non-zero divisor, we count how often it can be subtracted from the dividend until the
dividend is smaller than the divisor:

rec divl x y =

if greater y x

then zero

el se succ (divl (sub x vy) vy)

def div xy =
if iszeroy
then zero
else divl x y

For example
div nine four => ... =>
divl nine four => ... =>
succ (divl (sub nine four) four)) -> ... ->
succ (divl five four) -> ... ->

succ (succ (divl (sub five four) four)) -> ... ->
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succ (succ (divl one four)) -> ... ->
succ (succ zero) -> ... ->
t wo

4.9. Summary

In this chapter we have:
. considered recursion as a means of repetition
. seen that recursion through function definitions leads to non-terminating substitution sequences

. introduced recursion by abstracting at the place where recursion takes place in a function and then passing the
function to itself

. met applicative order (3 reduction
. generalised recursion through a recursion function which substitutes a function at its own recursion points
. introduced notation for defining recursive functions
. used recursion to develop standard arithmetic operations
Some of these topics are summarised below.
Recursion by passing a function to itself
For:
def <pame> = ... (<nane> ...)
write:
def <pamel>f = ... (f f ... )
def <name> = <nanel> <nanel>
Applicative order 3 reduction
For (<function expressi on> <argunent expressi on>)
i) applicative order 3 reduce <ar gunent expressi on>to<argunent val ue>
ii)  applicative order 3 reduce<f uncti on expressi on>to<functi on val ue>
iii) if<function val ue>isA<nane>. <body>
then replace al free occurences of <name> in <body> with <ar gunment val ue> and applicative order 3
reduce the new <body>
or

iv) if<function val ue>isnotafunction
thenreturn ( <f uncti on val ue> <argunment val ue>)
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Applicative order reduction notation

-> - applicative order {3 reduction

-> ... -> - multiple applicative order (3 reduction
Recursion function

def recursive f = As. (f (s s)) As.(f (s s))

For:

def <name> = ... (<nane> ... )
write:

def <pamel>f = ... (f ... )

def <pame> = recursive <nanel>
Note that:

recursive <nanel> => ... => <panel> (recursive <nanel>)

Recur sion notation

rec <nane> = <expression using ‘<nane>' > ==

def <name> = recursive Af.<expression using ‘f’>

4.10. Exercises
1)  Thefollowing function finds the sum of the numbers between n and zer o:
def sunl f n =
if iszero n
then zero
else add n (f (pred n))
def sum = recursive sunil
Evauate:
sum three
2)  Writeafunction that finds the product of the numbers between n and one:
def prodl f n = ...
def prod = recursive prodl (*)
So that:

prod n

in lambda calculusis equivalent to:
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n*n1%*n-2=*... *1
in normal arithmetic.
Evauate:
prod three
3)  Writeafunction which finds the sum of applying afunction f un to the numbers between n and zer o:
def fun_sunl f fun n = ...
def fun_sum = recursive fun_sunil
For example, given the ‘ squaring’ function:
def sq x = mult x x
then:
fun_sum sq three
inthe A calculusis equivalent to:

02 2 2 2

+ 1 + 2= + 3
in arithmetic.

Evauate:

fun_sum doubl e three
given the ‘doubling’ function:
def double x = add x x

4)  Define afunction to find the sum of applying a function f un to the numbers between n and zer o in steps of
S:

def fun_sumstepl f fun ns = ...

def fun_sum step = recursive fun_sum stepl
so, for example:

fun_sumstep sq six two

inthe A calculusis equivalent to:

2 2 2 2

6 + 4 +2°+0

in normal arithmetic.

Evauate:

(*) There'sno escape from ‘factorial’...
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i) fun_sumstep double five two
ii) fun_sumstep double four two

5)  Definefunctionsto test whether or not a number is less than, or less than or equal to another number:
def less xy = ...
def less_or_equal xy = ...
Evauate:

i) | ess three two

ii) less two three

iii) less two two

iv) less_or_equal three two
V) | ess_or_equal two three
vi) less_or_equal two two

6) Defineafunction to find the remainder on dividing one number by another:
def nmod x y = ...
Evaluate:

i) mod three two
ii) nod two three
iii) nod three zero

5. TYPES

5.1. Introduction

In this chapter we are going to consider how types can be added to our functional notation to ensure that only
meaningful arguments are passed to functions.

To begin with, we will consider the role of types in programming in general and how types may be characterised. We
will then introduce functions for constructing and manipulating typed values, using the pair manipulation functionsto
represent typed objects as type/value pairs.

Next, we will introduce the error type for error objects which are returned after type errors. We will then develop
typed representations for booleans, numbers and characters.

Finally, we will introduce new notations to simplify function definitions through case definitions and structure
matching.

5.2. Typesand programming

We are working with a very simple language. As we exclude single names as expressions, the only objects are
functions which take function arguments and return function results. (For the moment, we won't consider non-
terminating applications.) We have constructed functions which we can interpret as boolean values, boolean
operations, numbers, arithmetic operations and so on but particular functions have no intrinsic interpretations other
than in terms of their effects on other functions. Because functions are so general, there is no way to restrict the
application of functions to specific other functions, for example we cannot restrict *arithmetic’ functions to ‘ numeric’
operands. We can carry out function applications which are perfectly valid but have results with no relevant meaning
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within our intended interpretations.

For example, consider the effect of:
iszero true ==
An.(n select_first) true =>
true select_first ==
AMirst.Asecond.first select_first =>
Asecond. sel ect _first ==
Asecond. AMfirst. Asecond. first

This produces a perfectly good function for selecting the second argument in an application with three nested
arguments but we expecti szer o to return aboolean.

Using these functions is analogous to programming in machine code. In most CPUs, the sole objects are
undifferentiated bit patterns which have no intrinsic meanings but are interpreted in different ways by the machine
code operations applied to them. For example, different machine code instructions may treat a bit pattern as a signed
or unsigned integer, decimal or floating point number or a data or instruction address. Thus, a machine code program
may twos-complement an address or jump to a floating point number.

The single typed systems programming language BCPL, a precursor of C, is similarly free and easy. Although
representations are provided for a variety of objects, operations are used without type checks on the assumption that
their operands are appropriate. Early versions of C provided type checking but were somewhat lax when operations
were carried out on almost appropriate types, allowing indirection on integers or arithmetic on pointers, for example.

It is claimed that this ‘freedom’ from types makes languages more flexible. It does ease implementation dependent
programming where advantage is taken of particular architectural features on particular CPUs through bit or word
level manipulation but this in turn leads to a loss of portability because of gross incompatibilities between
architectures. For example, many computer memories are based on 8 bit bytes so 16 hit words require 2 bytes.
However, computers differ in the order in which these bytes are used: some put the top 8 bits in the first byte but
others put them in the second byte. Thus, programs using ‘ clever’ address arithmetic which involves knowing the byte
order won't work on some computers. ‘ Type free' programming also increases incomprehensible errors through dodgy
low-level subterfuges. For example, ‘cunning’ address manipulations to access the fields of a data structure may cause
the corruption of other fields or of a completely different data structure which is close to the requisite one in memory,
through byte mis-alignments.

5.3. Type asobjects and operations

Types are introduced into languages to control the use of operations on objects so as to ensure that only meaningful
combinations are used. Aswe saw in chapter 2, variables in programming languages are used as a primary abstraction
mechanism. In ‘typeless’ languages there are no restrictions on object/operation combinations and any variable may be
associated with any object. Here, variables just abstract over objects in general. In weskly typed languages, like LISP
and Prolog, objects are typed but variables are not. There are restrictions on object/operation combinations but not on
variable/object associations. Thus, variables do not abstract over specific types. In strongly typed languages like ML
and Pascal variables are specified as being of a specific type and have the same restrictions on use as objects of that

type.

More formally, a type specifies a class of objects and associated operations. Object classes may be defined by listing
their values, for example for booleans:

TRUE i s a bool ean
FALSE i s a bool ean
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or by specifying a base object and a means of constructing new objects from the base, for example for natura
numbers:

0 is a nunber

SUCC N is a nunber
if Nis a nunber

Thus, we can show that:
SUCC (SuccC (succ 0))
isanumber because:
0
SuUCC 0
SUCC (SuccC 0)
are al numbers.
Operations may be specified exhaustively with a case for each base value, for example for booleans, negation:

NOT TRUE = FALSE
NOT FALSE = TRUE

and conjunction:

AND FALSE FALSE = FALSE
AND FALSE TRUE = FALSE
AND TRUE FALSE = FALSE
AND TRUE TRUE = TRUE

Operations may also be specified constructively in terms of base cases for the base objects and general cases for the
constructive objects. For example for natural numbers, the predecessor function:

PRED 0 = 0
PRED (SUCC X) = X

and addition:

ADD X 0 = X
ADD X (SUCC Y) = ADD (SUCC X) Y

and subtraction:

SUB X 0 = X
SUB (SUCC X) (SUCC Y) = SUB X Y

and multiplication:

MILT X 0 = 0
MULT X (SUCC Y) = ADD X (MULT X V)

Note that we have just formalised the informal descriptions from the last chapter. We will look at the relationship
between exhaustive and case definitions, and our conditional style of definition later in this chapter.
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Sometimes it may be necessary to introduce conditions into case definitions because the form of the object definition
may not provide enough information to discriminate between cases. For example for division:

DIV X 0 = NUVBER ERROR
DIVXY=0

if (GREATER Y X)
DIV X Y = SUCC (DIV (SUB X V) Y)

if NOT (GREATER Y X)

thei f sare needed because the values rather than the structures of X and Y determine how they are to be processed.
Operations may map objects of a type to objects of the same type or to objects of another type. A common
requirement is for predicates which are used to test properties of objects and return booleans. For example for
numbers:

EQUAL 0 0 = TRUE

EQUAL (SUCC X) 0 = FALSE

EQUAL 0 (SUCC X) = FALSE

EQUAL (SUCC X) (SUCC Y) = EQUAL X Y

We are not going to give afull formal treatment of types here.

5.4. Representing typed objects

We are going to construct functions to represent typed objects. In general, an object will have a type and avalue. We
need to be able to:

i) construct an object from avalue and atype
ii)  select the value and type from an object
iii) test the type of an object
iv) handletype errors
We will represent an object as atype/value pair:
def nmake_obj type value = As. (s type val ue)
For an arbitrary object of type:
<type>
and value:
<val ue>
is represented by:
nake_obj <type> <value> => ... =>
As. (s <type> <val ue>
Thus, thetypeis selected with sel ect _first:

def type obj = obj select _first
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and the valueis selected with sel ect _second:
def val ue obj = obj sel ect_second

We will use numbers to represent types and numeric comparison to test the type:
def istype t obj = equal (type obj) t

We are going to define typed objects and operations in terms of untyped objects and operations. In general, our
approach will be:

i) check argument types

ii)  extract untyped vaues from typed arguments

iii)  carry out untyped operations on untyped values

iv)  construct typed result form untyped result

We must distinguish definitions from the subsequent uses of typed objects. When defining types we cannot avoid
using untyped operations: we have to start somewhere. Once types are defined, however, we should only manipulate

typed objects with typed operations to ensure that the type checks aren’t overridden.

In general, we will use UPPER CASE LETTERS for typed constructs and | ower case | etters for untyped
constructs.

We should show that our representation of a type satisfies the formal definition of that type but we won't do this
rigorously or religioudly.
5.5.Errors

Whenever we detect a type error we will return an appropriate error object. Such an object will have type
error_type, represented aszer o:

def error_type = zero
We need a function to construct error objects:
def MAKE ERROR = nake_obj error_type
This definition expands as.
make_obj error_type ==
Atype. Aval ue. As. (s type value) error_type =>
Aval ue. As. (s error_type val ue)

An error object’s value should indicate the sort of error the object represents. For example, for a type error the
corresponding error object might have the expected type as value.

We will define auniversal error object of typeerror _t ype:
def ERROR = MAKE_ERROR error_type

This definition expands as.
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Aval ue. As. (s error_type value) error_type =>
As. (s error_type error_type)
so the error object ERROR hastypeerror _t ype andvalueerror _type.
We can test for an object of type error by usingi st ype tolook forerror _type:
def iserror = istype error_type
soi serr or’'sdefinition expands as:
i stype error_type ==
At.Aobj. (equal (type obj) t) error_type =>
Aobj . (equal (type obj) error_type)
For example, to test that ERROR is of type error:
i serror ERROR ==
Aobj . (equal (type obj) error_type) ERROR =>
equal (type ERROR) error_type
Now:
type ERROR
expands as:
Aobj . (obj select first) ERROR =>
ERROR select _first ==

As. (s error_type error_type) select _first =>

select _first error_type error_type => ... =>
errortype

Thus:
equal (type ERROR) error_type -> ... ->
equal error_type error_type => ... =>
true

Our formal type definitions should be extended to show how error objects are accommodated. We won't do so
rigoroudly. In general, if an operation expects an argument of one type and does not receive one then it will return an
error object corresponding to the required type. Thus if an operation is passed an error object as the result of a
previous operation then the error object will not be of the required type and a new error object will be returned.
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5.6. Booleans
We will represent the boolean type asone:
def bool _type = one
Constructing a boolean type involves preceding a boolean value with bool _t ype:
def MAKE BOOL = make_obj bool _type
which expands as:
Aval ue. As. (s bool _type val ue)
We can now construct the typed booleans TRUE and FAL SE from the untyped versions by:
def TRUE = MAKE BOCOL true
which expands as:
As. (s bool _type true)
and:
def FALSE = MAKE BOOL fal se
which expands as:
As. (s bool _type false)
Aswith the error type, the test for a boolean type involves checking for bool _t ype:
def isbool = istype bool _type
This definition expands as.
Aobj . (equal (type obj) bool _type)
A boolean error object will be an error object with type bool _t ype:
def BOOL_ERROR = MAKE ERROR bool _type
which expands as:
As. (s error_type bool _type)

The typed function NOT should either return an error if the argument is not a boolean or extract the value from the
argument, use untyped not to complement it and make a new boolean from the result:

def NOT X =

i f isbool X

then MAKE_BOCL (not (value X))
el se BOOL_ERROR

Similarly, the typed function AND should either return an error if either argument is non boolean or make a new
boolean from *and’ ing the values of the arguments:
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def AND X Y =
if and (isbool X) (isbool V)
then MAKE_BOCL (and (value X) (value Y))
el se BOOL_ERROR
We will now consider how these definitions bolt together by looking at:
AND TRUE FALSE
After definition replacement and initial bound variable substitution we have:
if and (isbool TRUE) (isbool FALSE)
then MAKE_BOCL (and (val ue TRUE) (val ue FALSE))
el se BOOL_ERROR
First of al:
i sbhool TRUE ==
Aobj . (equal (type obj) bool _type) TRUE =>
equal (type TRUE) bool _type ==
equal (Aobj.(obj select_first) TRUE) bool _type ->

equal (TRUE select first) bool type ==

equal (As.(s bool _type true) select first) bool _type -> ..

equal bool _type bool _type => ... =>
true
Similarly:
i sbool FALSE => ... =>
true
Thus:
and (isbool TRUE) (isbool FALSE) -> ... ->
and true (isbool FALSE) -> ... ->
and true true => ... =>
true

We now evaluate:

MAKE BOOL (and (value TRUE) (value FALSE))
For theand:

val ue TRUE ==

Aobj . (obj sel ect _second) TRUE =>
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TRUE sel ect _second ==

As. (s bool _type true) select_second => ... =>
true
and:
value FALSE => ... =>
fal se
SO:

MAKE BOOL (and (value TRUE) (value FALSE)) ->
MAKE_BOCL (and true (value FALSE)) ->

MAKE BOOL (and true false) ->

MAKE BOOL fal se ==

Aval ue. As. (s bool _type val ue) false =>

As. (s bool _type false) ==

FALSE

5.7. Typed conditional expression
We need atyped conditional expression to handle both typed booleans and type errorsin a condition:

def COND E1 E2 C =

if isbool C
t hen

if value C
then E1

el se E2

el se BOOL_ERROR
Note that this typed conditional function will return BOOL_ ERROR if the condition is not a boolean.
We will now write:
I F <condition>
THEN <expr essi onl>
ELSE <expressi on2>
instead of:

COND <expressi onl> <expression2> <condition>

We aso need typed versions of the type testers for use with | F becausei serror andi sbool return the untyped
true orf al se instead of the typed TRUE or FALSE:

def | SERROR E = MAKE_BOOL (iserror E)
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def 1SBOOL B = MAKE_BOCL (isbool B)

5.8. Numbersand arithmetic
We will represent the number type ast wo:
def nunb_type = two
and anumber will be apair starting with nunb_t ype:
def MAKE _NUMB = rmake_obj nunb_type
MAKE_ NUMBs definition expands to:
Aval ue. As. (s nunb_type val ue)
We need an error object for arithmetic type errors:
def NUMB_ERROR = MAKE ERROR nunb_type
which expands to:
As. (s error_type nunb_type)
We aso need atype tester:
def isnumb = istype nunb_type
which expands to:
Aobj . (equal (type obj) nunb_type)
from which we can define a typed type tester:
def ISNUMB N = MAKE BOOL (isnumb N)
Next we can construct atyped zer o:
def 0 = MAKE_NUMB zero
which expands as:
As. (s numb_type zero)
We now need atyped successor function:
def SUCC N =
if isnunb N
then MAKE_NUMB (succ (value N))
el se NUMB_ERROR
to define numbers:

def 1 = SUCC O

def 2 = SUCC 1
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def 3 = SUCC 2
et c.
For example, 1 expands as:
sucC 0 => ... =>
if isnunb O
then MAKE_NUMB (succ (value N))
el se NUMB_ERROR
First of al:
i snumb ==
equal (type 0) nunb_type ==
equal (Aobj.(obj select_first) 0) nunmb_type =>

equal (0 select first) nunb_type ==

equal (As.(s nunb_type zero) select first) nunmb_type -> ...

equal nunb_type nunmb_type => ... =>
true
Thus, we next evaluate:
MAKE_NUMB (succ (value 0)) ==
MAKE _NUMB (succ (Aobj.(obj select_second) 0)) ->

MAKE _NUMB (succ (0 select_second)) ==

MAKE _NUMB (succ (As. (s nunb_type zero) select_second) -> ...

MAKE _NUMB (succ zero) ==
MAKE_NUMB one ==
Aval ue. As. (s nunb_type val ue) one =>
As. (s nunb_type one)
In general, atyped number is a pair with the untyped equivalent as value.
We can now redefine the predecessor function to return an error for zero:
def PRED N =
if isnunb N
t hen
if iszero (value N)
t hen NUMB_ERROR

el se MAKE_NUMB ((value N) sel ect _second)
el se NUMB_ERROR
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Note that we return NUVB_ ERROR for a non-number argument and a zero number argument. We could construct more
elaborate error objects to distinguish such cases but we won't pursue this further here.

Wewill need atyped test for zero:

def | SZERO N =

if isnunb N

then MAKE_BOCL (iszero (value N))
el se NUMB_ERROR

Now we can redefine the binary arithmetic operations. They all need to test that both arguments are numbers so we
will introduce an auxiliary function to do this:

def both_nunmbs X Y = and (isnunb X) (isnunmb Y)
Now for addition based on our earlier definition:

def + XY =

if both_nunmbs XY

then MAKE_NUMB (add (value X) (value Y))
el se NUMB_ERROR

and multiplication:

def * XY =

if both_nunmbs XY

then MAKE_NUMB (mult (value X) (value Y))
el se NUMB_ERROR

and division to take account of a zero divisor:

def / XY =

if both_nunmbs XY

t hen

if iszero (value Y)

t hen NUMB_ERROR

el se MAKE_NUMB (divl (value X) (value Y))
el se NUMB_ERROR

and equality:
def EQUAL X Y =
if both_nunmbs XY

then MAKE BOOL (equal (value X) (value Y))
el se NUMB_ERROR

5.9. Characters
Let us now add charactersto our types. Character values are specified exhaustively:

"0’ is a character
"1 is a character

"9’ is a character

A" is a character
"B is a character
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"Z' is a character

a' is a character
¢’ is a character
z' is a character

is a character
,’ is a character

It is useful to have orderings on sub-sequences of charactersfor lexicographic purposes:

1 0! < 1 1!
1 1! < 1 2!
1 8! < 1 9!
1 A! < 1 B!
1 B! < 1 C
1 Y! < 1 Z!
1 a! < 1 b!
1 b! < 1 C!
1 y! < 1 Z!

where the ordering relation has the usual transitive property:

X< Z
if X<Yand Y < Z

It simplifies character manipulation if thereis a uniform ordering overall. For example, in the ASCII character set:

!9!<!A!
!Z!<!a!

and most punctuation marks appear before’ 0’ in the ordering.
We will introduce a new type for characters:
def char_type = four
def CHAR ERROR = MAKE_ERROR char _type
def ischar = istype char_type
def 1 SCHAR C = MAKE_BOOL (ischar Q)
def MAKE CHAR = make_obj char_type

A character object will have type char _t ype. To provide the ordering, characters will be mapped onto the natural
numbers so the value of a character will be an untyped number. We will use the ASCII values:

def "0 = MAKE_CHAR forty_ei ght
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def '1' = MAKE_CHAR (succ (value '0"))

def '9" = MAKE _CHAR (succ (value '8"))

def A = MAKE_CHAR sixty_five

def "B = MAKE_CHAR (succ (value "A))

def *Z° = MAKE_CHAR (succ (value 'Y))

def "a = MAKE_CHAR ni nety_seven

def 'b’ = MAKE_CHAR (succ (value 'a'))

def 'z’ MAKE CHAR (succ (value 'y’'))

Now we can define character ordering:

def CHAR LESS C1 @ =

if and (ischar Cl) (ischar C2)

then MAKE BOOL (|l ess (value Cl) (value C2))
el se CHAR_ERROR

and conversion from character to number:

def ORD C =

if ischar C

then MAKE_NUMB (val ue Q)
el se CHAR_ERROR

and vice-versa:
def CHAR N =
if isnunb N
then MAKE_CHAR (val ue N)
el se NUMB_ERRCR
For example, to find* A" s numeric equivalent:

ORD'A => ... =>

MAKE_NUMB (value "A') ==

MAKE_NUMB (val ue As. (s char_type sixty_five)) -> ...

MAKE_NUMB sixty_five => ... =>
As. (numb_type sixty_five) ==

65
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Similarly, to construct a character from the number 98:
CHAR 98 => ... =>
MAKE CHAR (val ue 98) ==
MAKE CHAR (val ue As. (s nunb_type ninety eight)) -> ... ->
MAKE_CHAR ni nety_eight => ... =>
As. (char _type ninety_eight) ==
by
Because we have used numbers as character values we can base character comparison on number comparison:

def CHAR EQUAL C1 C2 =

if and (ischar Cl) (ischar C2)

then MAKE BOOL (equal (value Cl) (value C2))
el se CHAR_ERROR

5.10. Repetitive type checking

Once we have defined typed TRUE, FALSE, | SBOCL and | F we could define typed versions of all the other boolean
operations from them, for example:

def NOT X =
IF X
THEN FALSE
ELSE TRUE

def AND X Y =
I F ISBOOL Y
THEN
IF X
THEN Y
ELSE FALSE
ELSE BOOL_ERRCOR

Note that for NOT we do not need to check explicitly that X is a boolean because the | F does so anyway. In the same
way in AND we do not need to check that X is a boolean as the second | F will.

With typed boolean operations and having defined typed 0, SUCC, PRED, | SNUMB and | SZERQO, we could define
the other arithmetic operations using only typed operations, for example:

def ADD X Y =
I'F AND (I SNUMB X) (1 SNUMB Y)
THEN ANDL X Y
ELSE NUMB_ERROR

rec ADD1 X Y =

IF | SZERO Y

THEN X

ELSE ADD1 (SUCC X) (PRED Y)

Here we have defined an outer non-recursive function to check the arguments and an auxiliary recursive function to
carry out the operation without argument checks. We could avoid the explicit check that Y is a number as | SZERO
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will do so. However, for a non numeric argument, | SZERO (and thence the two | Fs) will return a BOOL_ERROR
instead of a NUVMB_ERROR.

As definitions these seem satisfactory but they would be appallingly inefficient if used as the basis of an
implementation because of repetitive type checking. Consider, for example(*):

ADD 1 2
First of al in:
I'F AND (1 SNUMB 1) (1 SNUMB 2)
both:
I SNUMB 1
and:
I SNUMB 2
are checked and return booleans. Next:
AND (1 SNUMB 1) (1 SNUMB 2)
checks that both | SNUVBS return bool eans and then itself returns a boolean. Then:
I'F AND (1 SNUMB 1) (1 SNUMB 2)
checks that AND returns a boolean.
Secondly, after ADD1 is called:
I F | SZERO 2
cals:
| SZERO 2
to check that 2 isanumber and return a boolean. Next:
I F | SZERO 2
checksthat | SZEROreturns a boolean.
Now, ADDL is called recursively through:

ADD1 (SUCC 1) (PRED 2)

| F 1 SZERO ( PRED 2)

cals:

(*) This example also highlights repetitive argument evaluation due to naive normal order evaluation. We will consider different
approachesto argument evaluation in chapter 8.
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| SZERO ( PRED 2)

to check that ( PRED2) is a number and return a boolean and then:
| F 1 SZERO (PRED 2)

checksthat | SZEROreturns a boolean.

Once again, ADD1 is called recursively in:
ADD1 (SUCC (SUCC 1)) (PRED (PRED 2))

and evaluation, and type checking, continue.

5.11. Static and dynamic type checking

Clearly, thereis agreat deal of unnecessary type checking here. Arguably, we ‘know’ that the function types match so
we only need to test the outer level arguments once. This is the approach we have used above in defining typed
operations where the arguments are checked before untyped operations are carried out. But how do we ‘know’ that the
types match up? It is al very well to claim that we are using types consistently in relatively small definitions but in
developing large expressions, type mismatches will inevitably slip through, just as they do during the development of
large programs. The whole point of types was to detect such inconsistencies.

As we saw above, using untyped functions is analogous to programming in alanguage without typed variables or type
checking like machine code or BCPL. Similarly, using our fully typed functions is analogous to programming in a
language where variables are untyped but objects are checked dynamically by each operation while a program runs as
in Prolog and LI1SP.

The alternative is to introduce types into the syntax of the language and then check type consistency symbolically
before running programs. With symbolic checking, run time checks are redundant. Typing may be made explicit with
typed declarations, asin C and Pascal, or deduced from variable and operation use, asin ML and PS-algol, though in
the last two languages types may and sometimes must be specified explicitly aswell.

There are well developed theories of types which are used to define and manipulate typed objects and typed languages.
Some languages provide for user defined types in a form based on such theories. For example, ML and Miranda
provide for user defined types through abstract data types which, in effect, allow functiona abstraction over type
definitions. We won't consider these further. We will stick with defining ‘basic’ typed functions from untyped
functions and subsequently using the typed functions. What constitutes a ‘basic’ function will be as much a matter of
expediency astheory! For pure typed functions though, the excessive type checking will remain.

5.12. Infix operators

In our notation the function always precedes the arguments in a function application. This is known as prefix notation
andisused in LI SP. Most programming languages follow traditional logic and arithmetic and allow infix notation
aswell for some binary function names. These may appear between their arguments.

We will now allow the names for logical and arithmetic functions to be used asinfix operators so, for example:

<expressi onl> AND <expressi on2> == AND <expressi onl> <expressi on2>
<expressi onl> COR <expressi on2> == CR <expressi onl> <expressi on2>
<expressi onl> + <expression2> == + <expressionl> <expressi on2>
<expressi onl> - <expression2> == - <expressionl> <expression2>
<expressionl> * <expression2> == * <expressionl> <expression2>

<expressionl> / <expression2> ==/ <expressionl> <expression2>
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To simplify the presentation we won't introduce operator precedence or implicit associativity. Thus, strict bracketing
isstill required for function application arguments. For example, we write:

7+ (8* 9 ==+7(8*9) ==+7(* 809)
rather than the ambiguous:

7+8*9

Some languages allow the programmer to introduce new infix binary operators with specified precedence and
associativity. These include Algol 68, ML, POP-2 and Prolog.

5.13. Case definitions and structure matching

In this chapter we have introduced formal definitions based on the structure of the type involved. Thus, booleans are
defined by listing the values TRUE and FAL SE so boolean function definitions have explicit cases for combinations of
TRUE and FALSE. Numbers are defined in terms of 0 and the application of the successor function SUCC. Thus,
numeric functions have base cases for 0 and recursion cases for non-zero numbers.

In general, for multi-case definitions we have written:

<nanme> <nanmesl> <expressi onl>
<nane> <nanes2> = <expressi on2>

where <nanes> is a structured sequence of bound variables, constants and constructors. When a function with a
multi-case definition is applied to an argument, the argument is matched against the structured bound variable,
constant and constructor sequences to determine which case applies. When a match succeeds for a particular case, then
that case’s bound variables are associated with the corresponding argument sub-structures for subsequent use in the
case’ sright hand side expression. Thisis known as structur e matching.

In our functional notation, however, we have to use conditiona expressions explicitly to determine the structure of an
object and hence which case of a definition should be used to process it. We then use explicit selection of sub-
structures from structured arguments.

Some languages allow the direct use of case definitions and structure matching, for example Prolog, ML and Miranda.
Wewill extend our notation in asimilar manner so afunction may now take the form:

A<namesl>. <expr essi onl>
or <nanes2>. <expressi on2>
or

and a definition simplifies to:
def <name> <nanesl> = <expressionl>

or <nanme> <names2> <expressi on2>
or

For recursive functions, r ec isused in place of def .

Note that the effect of matching depends on the order in which the cases are tried. Here, we will match cases from first
to last in order. We also assume that each case is distinct from the others so at most only one match will succeed.

When a case defined function is applied to an argument, if the argument matches <nanes1> then the result is
<expr essi onl>; if the argument matches <nanes2> then theresult is<expr essi on2> and so on.
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For boolean functions, we will allow the use of the constants TRUE and FALSE in place of bound variables. In
genera, for:
def <name> <bound vari abl e> =
| F <bound vari abl e>
THEN <expr essi onl>
ELSE <expressi on2>

we will now write:

def <name> TRUE = <expressionl>
or <nane> FALSE = <expression2>

Thus, negation is defined by:

NOT TRUE = FALSE
NOT FALSE = TRUE

but written as:

def NOT X
IF X
THEN FALSE
ELSE TRUE

We will now write:

def NOT TRUE = FALSE
or NOT FALSE = TRUE

Similarly, implication is defined by:

IMPLIES TRUE Y = Y
I MPLI ES FALSE Y = TRUE

but written as:

def IMPLIES X Y =
IF X

THEN Y

ELSE TRUE

We will now write:

def IMPLIES TRUE Y =Y
or | MPLIES FALSE Y = TRUE

For numbers, we will allow the use of the constant 0 and bound variables qualified by nested SUCCs in place of bound
variables. In general, for:

rec <nane> <bound vari abl e> =

| F | SZERO <bound vari abl e>

THEN <expr essi onl>

ELSE <expression2 using (PRED <bound vari abl e>) >

we will now write:
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rec <nane> 0 = <expressionl>
or <nane> (SUCC <bound vari abl e>) = <expressi on2 using <bound vari abl e>>
Thus, the predecessor function is defined by:

PRED 0 = 0
PRED (SUCC X) = X

but written as:
def PRED X =
I F | SZERO X
THEN 0
ELSE MAKE _NUMB (pred (value X))

Wewill now write:

def PREDO = 0
or PRED (SUCC X) = X

Similarly the power function is defined by:

PONER X 0 = 1
POAER X (SUCC Y) = X*( POMER X )

but written as:
rec PONER X Y =
| F | SZERO Y
THEN 1
ELSE X*( PONER X (PRED Y))
We will now write:
rec POER X 0 = 1
or PONER X (SUCC Y) = X*(PONER X Y)
5.14. Summary
In this chapter we have:
. considered the role of typesin programming
. considered informally types as operations on objects
. introduced a representation for typed objects using type/value pairs
. developed an error type
. devel oped a boolean type with typed boolean operations

. developed typed conditional expressionsand an ‘IF ... THEN ... ELSE ...’ notation for them
. developed a number type with typed numeric operations

. developed a character type with typed character operations
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. considered repetitive type checking, and static and dynamic typing

. introduced notation for strictly bracketed infix expressions
. introduced notation for case definitions and structure matching

Some of these topics are summarised below.
IF...THEN ... ELSE ...
I F <condition>
THEN <expr essi onl>
ELSE <expression2> ==
COND <expressi onl> <expression2> <condition>
Infix operators
<expressi onl> <operator> <expresi on2> ==
<oper at or > <expressi onl> <expressi on2>
Note that strict bracketing is required for nested infix expressions.

Boolean case definition

def <name> TRUE = <expressionl>
or <nane> FALSE = <expression2> ==

def <name> <bound variabl e> =
| F <bound vari abl e>

THEN <expr essi onl>

ELSE <expressi on2>

Number case definition

rec <name> 0 = <expressionl>
or <nane> (SUCC <bound vari abl e>) =
<expression2 using ‘<bound variable> > ==

rec <nane> <bound vari abl e> =
| F | SZERO <bound vari abl e>
THEN <expr essi onl>
ELSE <expression2 using ‘ PRED <bound vari abl e>’ >

5.15. Exercises
1) Evauatefully the following expressions:

i) 1SBOOL 3
ii) |SNUMB FALSE
iii) NOT 1

iv) TRUE AND 2
v) 2 + TRUE

2)  Signed numbers might be introduced as a new type with an extra layer of ‘pairing’ so that a numbers'svalueis
preceded by a boolean to indicate whether or not the number is positive or negative:
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def signed_type = ...

def SI GN_ERROR = MAKE_ERROR si gned_t ype

def POS = TRUE

def NEG = FALSE

def MAKE SIGNED N SI GN = nake_obj signed_type (rmake_obj SIGN N)

So:

+<nunber > == MAKE_SI GNED <nunber > PCS
- <nunber > == MAKE_SI GNED <nunber > NEG

For example:

+4 == MAKE_SI GNED 4 PCS
-4 == MAKE_SI GNED 4 NEG

Note that there are two representations for O:

+0 == MAKE_SI GNED 0 PGS
-0 == MAKE_SI GNED 0 NEG

i) Define tester and selector functions for signed numbers:

def issigned N
def 1SSIGNED N

- true if Nis a signed nunber
- TRUE if Nis a signed number

def sign N = ... - N's sign as an untyped nunber
def SIGN N = ... - Ns sign as a typed nunber

def sign_value N = ... - N s value as an unsigned nunber
def VALUE N = ... - N s value as a signed numnber
def sign_iszero N= ... - trueif Nis O

Show that your functions work for representative positive and negative values, and O.

ii) Definesigned versionsof | SZERO, SUCC and PRED:
def SIGN_I SZERO N =
def SIGN_SUCC N
def SIGN_PRED N

Inn z

Show that your functions work for representative positive and negative values, and 0.
iii) Define asigned versions of ‘+':
def SIGN + XY = ...

Show that your function works for representative positive and negative values, and O.

6. LISTSAND STRINGS

6.1. Introduction
In this chapter we are going to look at the list data structure which is used to hold variable length sequences of values.

To begin with, we will discuss list construction and list element access. We will then use pair functions and the type
representation techniques to add lists to our notation.
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Next, we will develop elementary functions for manipulating linear lists and simpler list notations. We will also
introduce strings as lists of characters.

We will then introduce structure matching for list functions and look at a variety of operations on linear lists. In
imperative languages, we might use arrays in these applications.

Finally, we will consider at the use of mapping functions to generalise operations on linear lists.

6.2. Lists
Lists are general purpose data structures which are widely used within functional and logic programming. They were
brought to prominence through LISP and are now found in various forms in many languages. Lists may be used in
place of both arrays and record structures, for example to build stacks, queues and tree structures.
In this chapter, we are going to introduce lists into our functiona notation and look at using lists in problems where
arrays might be used in other languages. In chapter 7 we will look at using lists where record structures might be used
in other languages.
Lists are variable length sequences of objects. A strict approach to lists, asin ML for example, treats them as variable
length sequences of abjects of the same type. We will take the relatively lax approach of LISP and Prolog and treat
them as variable length sequences of objects of mixed type. Although this is less rigorous theoretically and makes a
formal treatment more complex it simplifies presentation and provides a more flexible structure.
Formally, alist is either empty, denoted by the unique object:

NIL is a list

or it isaconstructed pair with ahead which is any object and atail whichisalist:

CONSHT is a list
if His any object and T is a |ist

CONS is the traditional name for the list constructor, originally from LISP.
For example, from the object 3 and the list NI L we can construct the list:
CONS 3 NI L
with 3 in the head and NI L in the tail.
From the object 2 and this list we can construct the list:
CONS 2 (CONS 3 NIL)
with 1 in the head and thelist CONS 3 NI L inthetail.
From the object 1 and the previous list we can construct the list:
CONS 1 (CONS 2 (CONS 3 NIL))
with 1 inthe head and the liss CONS 2 (CONS 3 NI L)) inthetail, and so on.
Note that the tail of alist must be alist. Thus, al lists end, eventually, with the empty list.

Note that the head of a list may be any object including another list, enabling the construction of nested structures,
particularly trees.
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If the head of alist and the heads of all of its tail lists are not lists then the list is said to be linear. In LISP parlance,
an object in alist which isnot alist (or afunction) is known as an atom.
The head and tail may be selected from non-empty lists:

H
T

HEAD (CONS H T)
TAIL (CONS H T)

but head and tail selection from an empty list is not permitted:

HEAD NI L
TAIL NIL

LI ST_ERROR
LI ST_ERROR

Consider, for example, the linear list of numbers we constructed above:
CONS 1 (CONS 2 (CONs 3 NIL))
The head of thislist:

HEAD (CONS 1 (CONS 2 (CONS 3 NiL)))

1
Thetail of thislist:

TAIL (CONS 1 (CONS 2 (CONS 3 NIL)))

CONS 2 (CONS 3 NIL)
The head of the tail of thelist:

HEAD (TAIL (CONS 1 (CONS 2 (CONS 3 NIL))))

HEAD (CONS 2 (CONS 3 NIL))
whichis:

2
Thetail of thetail of thelist:

TAIL (TAIL (CONS 1 (CONS 2 (CONS 3 NIL))))

TAIL (CONS 2 (CONS 3 NIL))
whichis:

CONS 3 NIL
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The head of the tail of the tail of thislist:

HEAD (TAIL (TAIL (CONS 1 (CONS 2 (CONS 3 N L)))))

HEAD (TAIL (CONS 2 (CONS 3 NIL)))
whichis:

HEAD (CONS 3 NI L)
giving:

3
Thetail of thetail of the tail of thelist:

TAIL (TAIL (TAIL (CONS 1 (CONS 2 (CONS 3 NIL)))))

TAIL (TAIL (CONS 2 (CONS 3 NIL)))
whichis:

TAIL (CONS 3 NIL)
giving:

NI L

6.3. List representation
First we define the list type:
def list_type = three
and associated tests:
def islist = istype list_type
def ISLIST L = MAKE BOOL (islist L)
and error object:
def LIST_ERROR = MAKE_ERROR |ist_type

A list value will consist of a pair made from the list head and tail so the general form of a list object with head
<head> and tail <t ai | > will be:

As. (s listtype
As. (s <head> <tail>))

Thus, we define:
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def MAKE LI ST = make_obj listtype
def CONS HT =
if islist T
then MAKE LI ST As.(s HT)
el se LI ST_ERRCOR
For example:
CONS 1 NL => ... =>
MAKE LI ST As.(s 1 NIL) => ... =>

As. (s listtype
As. (s 1 NIL))

and:
CONS 2 (CONS 1 NIL) => ... =>
MAKE LIST As.(s 2 (CONS 1 NIL)) => ... =>
As. (s listtype
As.(s 2 (CONS 1 NIL))) => ... =>

As. (s listtype
As. (s 2 As. (s listtype
As. (s 1 NL))))
The empty list will have both head and tail setto LI ST_ERROR:
def NIL = MAKE LI ST As. (s LIST_ERROR LI ST_ERROR)

soNl Lis:

As. (s listtype
As. (s LI ST_ERROR LI ST_ERROR))

Now we can use the pair selectorsto extract the head and tail:
def HEAD L =
if islist L
then (value L) select first
el se LI ST_ERRCR
def TAIL L =
if islist L
then (value L) sel ect_second
el se LI ST_ERRCR
For example:
HEAD (CONS 1 (CONS 2 NIL)) ==
(value (CONS 1 (CONS 2 NIL))) select _first ==

(value As.(s listtype

As.(s 1 (CONS 2 NIL)))) select_first => ...
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and:

Note that both HEAD and TAI L will return LI ST_ERROR from the empty list. Thus:

and:
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As. (s 1 (CONS 2 NIL)) select_first =>
select _first 1 (CONS 2 NIL) => ... =>

1

TAIL (CONS 1 (CONS 2 NIL)) ==
(value (CONS 1 (CONS 2 NIL))) select_second ==

(value As.(s listtype

As. (s 1 (CONS 2 NIL)))) select_second

As. (s 1 (CONS 2 NIL)) select_second =>

select_second 1 (CONS 2 NIL) => ... =>

(CONS 2 NIL)

HEAD (TAIL (CONS 1 (CONS 2 NIL))) -> ... ->

HEAD (CONS 2 NIL) ==

(value (CONS 2 NIL)) select_first ==

(value As.(listtype As.(s 2 NIL))) select _first => ...
As. (s 2 NIL) select _first = ... =>

select_first 2 NNIL => ... =

2

HEAD NI L ==
(value NIL) select_first => ...=>

As. (s LI ST_ERRCR LI ST_ERROR) select_first =>

select _first LIST_ERROR LIST_ERROR => ... =>
LI ST_ERROR

TAIL NIL ==

(value NIL) select_second => ...=>

As. (s LI ST_ERROR LI ST_ERROR) sel ect_second =>

sel ect _second LI ST _ERROR LI ST ERROR => ... =>
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LI ST_ERROR
Thetest for an empty list checksfor alist with an error object in the head:
def isnil L =
if islist L
then iserror (HEAD L)
el se fal se
def ISNIL L =
if islist L
then MAKE_BOCL (iserror (HEAD L))
el se LI ST_ERRCR

We will now define avariety of elementary operations on lists.

6.4. Linear length of alist

A list is a sequence of an arbitrary number of objects. To find out how many objects are in a linear list: if the list is
empty then there are O objects:

LENGTH NIL = O
and otherwise there are 1 more than the number in the tail:
LENGTH (CONS H T) = SUCC (LENGTH T)
For example:
LENGTH (CONS 1 (CONS 2 (CONS 3 NIL))) -> ... ->
SUCC (LENGTH (CONS 2 (CONS 3 NIL))) -> ... ->
SUCC (SUCC (LENGTH (CONS 3 NIL))) -> ... ->
SUCC (SUCC (SucC (LENGTH NIL))) -> ... ->
SUCC (SuccC (succ 0))) ==
3
In our notation, thisis:
rec LENGTH L =
IF ISNIL L
THEN O

ELSE SUCC (LENGTH (TAIL L))

For example, consider:

LENGTH (CONS 1 (CONS 2 NIL)) -> ... ->
SUCC (LENGTH (TAIL (CONS 1 (CONS 2 NIL)))) -> ... ->
SUCC (LENGTH (CONS 2 NIL)) -> ... ->

SUCC (SUCC (LENGTH (TAIL (CONS 2 NIL)))) -> ... ->
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SUCC (SUCC (LENGTH NIL)) -> ... ->
succ (succ 0) ==
2

Note that the selection of the tail of the list is implicit in the case notation but must be made explicit in our current
notation.

6.5. Appending lists

It is often useful to build one large linear list from several smaller lists. To append two lists together so that the
second isalinear continuation of the first: if the first is empty then the result is the second:

APPEND NIL L =L

Otherwise the result is that of constructing a new list with the head of the first list as the head and the result of
appending the tail of thefirst list to the second as the tail:

APPEND (CONS HT) L = CONS H (APPEND T L)
For example, to join:

CONS 1 (CONS 2 NiL))

to:
CONS 3 (CONS 4 NIL))

to get:
CONS 1 (CONS 2 (CONS 3 (CONS 4 NiL)))

we use;
APPEND (CONS 1 (CONS 2 NIL)) (CONS 3 (CONS 4 NIL)) -> ... ->
CONS 1 (APPEND (CONS 2 NIL) (CONS 3 (CONS 4 NIL))) -> ... ->
CONS 1 (CONS 2 (APPEND NIL (CONS 3 (CONS 4 NIL)))) -> ... ->

CONS 1 (CONS 2 (CONS 3 (CONS 4 NIL)))
In our notation thisis:

rec APPEND L1 L2 =

IF ISNIL L1

THEN L2

ELSE CONS (HEAD L1) (APPEND (TAIL L1) L2)
For example, consider:

APPEND (CONS 1 (CONS 2 NIL)) (CONS 3 NIL) -> ... ->

CONS (HEAD (CONS 1 (CONS 2 NIL)))
(APPEND (TAIL (CONS 1 (CONS 2 NIL))) (CONS 3 NIL)) -> ... ->
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CONS 1 (APPEND (TAIL (CONS 1 (CONS 2 NIL))) (CONS 3 NIL)) -> ... ->
CONS 1 (APPEND (CONS 2 NIL) (CONS 3 NIL)) -> ... ->
CONS 1 (CONS (HEAD (CONS 2 NIL))

(APPEND (TAIL (CONS 2 NIL)) (CONS 3 NIL))) -=> ... ->
CONS 1 (CONS 2

(APPEND (TAIL (CONS 2 NIL)) (CONS 3 NIL))) -=> ... ->
CONS 1 (CONS 2 (APPEND NIL (CONS 3 NIL))) -> ... ->

CONS 1 (CONS 2 (CONS 3 NIL))

Note again that the implicit list head and tail selection in the case notation is replaced by explicit selection in our
current notation.

6.6. List notation

These examples illustrate how inconvenient it is to represent lists in a functional form: there is an excess of brackets
and CONSs! In LISP, alinear list may be represented as a sequence of objects within brackets with an implict NI L at
the end but this overloads the function application notation. LISP's simple, uniform notation for data and functionsis
an undoubted strength for a particular sort of programming where programs manipulate the text of other programs but
it is somewhat opaque.

We will introduce two new notations. First of al, we will follow ML and use the binary infix operator : : in place of
CONS. Thus:
<expressi onl>:: <expressi on2> == CONS <expressi onl> <expressi on2>

LISPand Prolog use. asan infix concatenation operator.
For example:
CONS 1 (CONS 2 (CONS 3 NIL)) ==
CONS 1 (CONS 2 (3::NIL)) ==
CONS 1 (2::(3::NIL)) ==
1::(2::(3::NL))

Secondly, we will adopt the notation used by ML and Prolog and represent alinear list with an implicit NI L at the end
as a sequence of objects within square brackets[ and], separated by commas:

X:: NL ==[X]
X [Y] == [XY]

For example:
CONS 1 NIL == 1::NIL == [1]
CONS 1 (CONS 2 NIL) == 1::(2::NIL) == 1::[2] ==1[1,2]

CONS 1 (CONS 2 (CONS 3 NIL)) == 1::(2::(3::NIL))) ==
1::(2::[3]) == 1::[2,3] ==1[1,2,3]
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This leads naturally to:

NlL =[]
whichisalist of no objects with animplicit NI L at the end.
For example, alist of pairs:

CONS (CONS 5 (CONS 12 NIL))

(CONS (CONS 10 (CONS 15 NIL))
(CONS (CONS 15 (CONS 23 NIL))
(CONS (CONS 20 (CONS 45 NIL))
NIL)))

becomes the compact:

[[5,12],[10, 15],[15, 23], [ 20, 45]]
As before, HEAD selects the head element:

HEAD (X::Y) = X
HEAD [ X, L] = X

For example:
HEAD [[5, 12],[ 10, 15],[15, 23],[20,45]] => ... =>
[5,12]

and TAI L selectsthetail:

TAIL (X::Y) =Y
TAIL [X L] = [L]

for example:
TAIL [[5,12],[10, 15],[15,23],[20,45]] => ... =>
[[ 10, 15],[15, 23], [ 20, 45] ]
and:
TAIL [5] => ... =>
[]

Note that constructing a list with CONS is not the sameasusing[ and] . For lists constructed with [ and ] thereis
an assumed empty list at the end. Thus:

[<first itenmp, <second itenp] ==
CONS <first itenr (CONS <second itenr N L)

We may simplify long lists made from : : by dropping intervening brackets. Thus:
<expressi onl>:: (<expressi on2>::<expressi on3>) ==

<expressi onl>:: <expressi on2>:: <expressi on3>
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For example:

1::(2::(3::(4::[1))) == L1::2::3::4::[]1 ==1[1,2,3,4]

6.7. Lists and evaluation

It is important to note that we have adopted tacitly a weaker form of 3 reduction with lists because we are not
evauating fully the expressions corresponding to list representations. A list of the form:

<expressi onl>:: <expressi on2>
is shorthand for:
CONS <expressi onl> <expressi on2>
which isafunction application and should, strictly speaking, be evaluated.
Here, we have tended to use a modified form of applicative order where we evaluate the arguments
<expressi onl> and <expr essi on2> to get values <val uel> and <val ue2> but do not then evaluate the
resulting function application:
CONS <val uel> <val ue2>
any further.
Similarly, alist of the form:
[ <expressi onl>, <expressi on2>]
has been evaluated to:
[ <val uel>, <val ue2>]
but no further even though it is equivalent to:

CONS <val uel> (CONS <val ue2> NI L)

This should be born in brain until we discuss evaluation in more detail in chapter 9.

6.8. Deletion from alist

To add a new value to an unordered list we CONS it on the front. To delete a value, we must then search the list until
wefind it. Thus, if thelist is empty then the valueis not in it so return the empty list:

DELETE X [] = []
It iscommonin list processing to return the empty list if list accessfails.
Otherwise, if the first value in the list is the required value then return the rest of thelist:
DELETE X (H::T) = Tif <equal> X H
Otherwise, join the first value onto the result of deleting the required value from the rest of the list:

DELETE X (H:: T) = H :(DELETE X T) if NOT (<equal > X H)
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Note that the comparison <equal > depends on the type of the list elements.
Suppose we are deleting from alinear list of numbers. For example, suppose we want to delete 3
fromthelist:
[1,2,3,4]
we use:
DELETE 3 [1,2,3,4] -> ... ->
CONS 1 (DELETE 3 [2,3,4]) -> ... ->
CONS 1 (CONS 2 (DELETE 3 [3,4])) -> ... ->
CONS 1 (CONS 2 [4]) -> ... ->
CONS 1 [2,4] ==
[1,2,4]
In our notation, the function becomes:
rec DELETE V L =
IFISNIL L
THEN NI L
ELSE
| F EQUAL V (HEAD L)
THEN TAIL L
ELSE (HEAD L):: (DELETE V (TAIL L))
For example, suppose we want to delete 10 from:
[5, 10, 15, 20]
we use:
DELETE 10 [5, 10, 15, 20]
(HEAD [5, 10, 15, 20] ) : : (DELETE 10 (TAIL [5,10,15,20])) -> ... ->

5:: (DELETE 10 ([ 10, 15, 20]))

5::(TAIL [10,15,20]) -> ... ->
5::[15,20] => ... =>
[ 5,15, 20]

Note again that implicit list head and tail selection in the case notation ie replaced by explicit selection in our current
notation.

6.9. List comparison

Two lists are the same if they are both empty:
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LI ST_EQUAL [] [] = TRUE
LI ST EQUAL [] (H:T)
LI ST EQUAL (H:T) []

FALSE
FALSE

Otherwise they are the same if the heads are equal and the tails are the same:

LI ST_EQUAL (HL::T1) (H2::T2) = LIST_EQUAL T1 T2

i f <equal > H1L H2

LI ST_EQUAL (HL::T1) (H2::T2) = FALSE

if NOT (<equal > H1 H2)
Notice again that the comparison operation <equal > depends on the type of the list elements.

Here, we will compare lists of numbers, for example:

LIST_EQUAL [1,2,3] [1,2,3] -> ... ->
LIST_EQUAL [2,3] [2,3] -> ... ->
LIST_EQUAL [3] [3] -> ... ->

LIST EQUAL [] [] -> ... ->

TRUE

In our notation this algortithm is:

rec LIST_EQUAL L1 L2 =
IF AND (ISNIL L1) (ISNIL L2)
THEN TRUE
ELSE
IF OR (ISNIL L1) (ISNIL L2)
THEN FALSE
ELSE
| F EQUAL (HEAD L1) (HEAD L2)
THEN LI ST_EQUAL (TAIL L1) (TAIL L2)
ELSE FALSE

For example consider:

LIST_EQUAL [1,2,3] [1,2,4] -> ... ->
{ EQUAL (HEAD [1,2,3]) (HEAD [1,2,4])) -> ... ->
EQUAL 11 -> ... ->
TRUE}
LIST _EQUAL (TAIL [1,2,3]) (TAIL [1,2,4]) -> ... ->
LIST_EQUAL [2,3] [2,4] -> ... ->
{ EQUAL (HEAD [2,3]) (HEAD [2,4])) -> ... ->
EQUAL 2 2 -> ... ->

TRUE}
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LI ST EQUAL (TAIL [2,3]) (TAIL [2,4]) -> ... ->

LIST_EQUAL [3] [4] -> ... ->
{ EQUAL (HEAD [3]) (HEAD [4])) -> ... ->
EQUAL 3 4 -> ... ->
FALSE}
FALSE
6.10. Strings

Strings are the basis of text processing in many languages. Some provide strings as a distinct type, for example
BASIC and ML. Others base strings on arrays of characters, for example Pascal and C. Here we will introduce strings
aslinear lists of characters.

We can define atest for stringness:

I SSTRING [] = TRUE
ISSTRING (H::T) = (1 SCHAR H) AND (I SSTRING T)

For example:
ISSTRING ["a’,'p’,’€e] -> ... ->

(I'SCHAR ’a’) AND
(ISSTRING ['p’,’€']) -> ... ->

(I'SCHAR ’a’) AND
((1'SCHAR ' p’) AND
(ISSTRING ['€e'])) -> ... ->

(1'SCHAR " a’) AND
((1'SCHAR ’ p’) AND
((1SCHAR ’e’) AND

(ISSTRING []))) -> ... ->

(I'SCHAR "a’') AND
((1'SCHAR " p’) AND
((1'SCHAR " e’ ) AND
TRUE) -> ... ->
TRUE
In our notation, thisfunction is:
rec | SSTRING S =
IFISNL S
THEN TRUE
ELSE AND (I SCHAR (HEAD S)) (I SSTRING (TAIL S))

We will represent a string as a sequence of characterswithin

"Here is a string!"
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In general, the string:
"<charact er> <char act er s>"

isequivaent to the list:

' <character>'::"<characters>"
For example:

"cat" ==

critat" ==

‘crita ittt ==

B M S

If we represent the empty string:

[]

then the string notation mirrors the compact list notation. For example:

" Cat "oo——
1 C! 1 a! 1 t 1 wn
1 C! 1 a! 1 t 1 [ ] e

6.11. String comparison

String comparison is atype specific version of list comparison. Two strings are the same if both are empty:

STRING EQUAL "" "" = TRUE
STRING EQUAL "" (C.:S) = FALSE
STRING EQUAL (C::S) "" = FALSE

or if the charactersin the heads are the same and the strings in the tails are the same:

STRI NG EQUAL (Cl::S1) (C2::S2) STRI NG EQUAL S1 S2

if CHAR EQUAL C1 C2

FALSE
i f NOT (CHAR EQUAL Cl C2)

STRING EQUAL (Cl::Sl) (C2::S2)

For example:
STRI NG_EQUAL "dog" "dog" ==

STRING EQUAL ("d’::"og") ("d’ ::"og") -> ... ->
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STRI NG_EQUAL "og" "og" ==

STRING EQUAL ('0’::"g") ("0 ::"g") -> ... ->
STRING EQUAL "g" "g" ==

STRING EQUAL ("g’::"") ('g::"") =-> ... ->
STRING EQUAL "" "" -> ... ->

TRUE
In our notation:

rec STRING EQUAL S1 S2 =
IF (ISNIL S1) AND (ISNIL S2)
THEN TRUE
ELSE
IF (ISNIL S1) OR (ISNIL S2)
THEN FALSE
ELSE
| F CHAR EQUAL (HEAD S1) (HEAD S2)
THEN STRING EQUAL (TAIL S1) (TAIL S2)
ELSE FALSE

Similarly, one string comes before another if its empty and the other is not:

STRING LESS "" (C: :9S)
STRING LESS (C::S) ""

TRUE
FALSE

or if the character in its head comes before the character in the others head:

STRING LESS (Cl1::Sl1) (C2::S2) = TRUE
if CHAR LESS C1 C2

or the head characters are the same and the first string’ s tail comes before the second string’ s tail:
STRING LESS (Cl::S1) (C2::S2) = (CHAR_EQUAL C1 C2) AND
(STRING_LESS S1 S2)
if NOT (CHAR_LESS C1 C2)
For example:
STRI NG _LESS "porridge" "potato" ==
STRING LESS ("p’::"orridge") ('p' ::"otato") -> ... ->

(CHAR_EQUAL 'p’ 'p') AND
(STRING_LESS "orridge" "otato") ==

(CHAR_EQUAL 'p’ 'p’) AND
(STRING LESS (o' ::"rridge") ("o ::"tato")) -> ... ->

(CHAR EQUAL 'p’ 'p') AND
((CHAR EQUAL "0’ '0’) AND
(STRING_LESS "rridge" "tato")) ==

(CHAR EQUAL 'p’ ’p’) AND
((CHAR EQUAL 0’ ’'0') AND
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(STRING LESS ('r’::"ridge") ('t’'::"ato")) -> ... ->

(CHAR EQUAL 'p’ ’p’) AND
((CHAR EQUAL 0’ ’'0') AND
TRUE)) -> ... ->

TRUE

In our notation thisis:

rec STRING LESS S1 S2 =
IF ISNIL S1
THEN NOT (ISNIL S2)
ELSE
IF ISNIL L2
THEN FALSE
ELSE
| F CHAR LESS (HEAD S1) (HEAD S2)
THEN TRUE
ELSE (CHAR EQUAL (HEAD S1) (HEAD S2)) AND
(STRING LESS1 (TAIL S1) (TAIL S2))

6.12. Numeric string to number conversion

Given a string of digits, we might wish to find the equivalent number. Note first of all that the number equivalent to a
digitisfound by taking’ 0’ svalue away from its value. For example:

value '0" => ... =>
forty_eight

SO:
sub (value '0') (value '0") -> ... ->
sub forty_eight forty_eight => ... =>
zero

Similarly:
value '1" => ... =>
forty_nine

SO:
sub (value '1') (value '0") -> ... ->
sub forty_nine forty_eight => ... =>
one

and:
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value '2" => ... =>
fifty
SO:
sub (value '2') (value '0") -> ... ->
sub fifty forty_eight => ... =>
t wo

and so on. Thus, we can define:
def digit_value d = sub (value d) (value '0")
Note also that the value of asingle digit string is the value of the digit, for example:
value of "9"
givesvalueof '9’
gives9

The value of atwo digit string is ten times the value of the first digit added to the value of the second digit, for
example:

value of "98"

gives 10*value of "9"+valueof '8

gives 90+8 = 98
The value of athree digit string is ten times the value of the first two digits added to the value of the third digit, which
is ten times ten times the value of the first digit added to the second digit, added to the value of the third digit, for
example:

value of "987"

gives 10*value of "98"+value of ' 7’

gives 10*(10*value of "9"+vaue of '8 )+vaueof ' 7’

gives 10*(10*9+8)+7 = 987

In general, the value of an N digit string is ten times the value of the first N- 1 digits added to the value of the Nth digit.
The value of an empty digit string isO.

We will implement this inside out so we can work from left to right through the string. We will keep track of the value
of the first N- 1 digits in another bound variable v. Each time we will multiply v by 10 and add in the value of the
Nth digit to get the value of v for processing the N+1 the digit. When the string is empty wereturnv. To start with,
v is0. For example:

value of "987" with O

givesvalue of "87" with 10*O+valueof 'Y

givesvaue of "7" with 10* (10* O+value of '9")+value of '8’
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givesvaue of "" with 10* (10* (10* O+value of '9")+value of '8')+value of * 7’
gives 987
Thus:

STRING VAL Vv ""

=V
STRING VAL V D:: T =

STRING VAL 10*V+(digit_value D) T
For awhole string, V starts at
0 for example:
STRING VAL 0 "321" ==
STRING VAL 0 ('3 ::"21") -> ... ->
STRING VAL 10*0+(digit_value '3) "21" -> ... ->
STRING VAL 3 "21" ==
STRING VAL 3 ("2 ::"1") -> ... ->
STRING VAL 10*3+(digit_value '2') "1" -> ... ->

STRING VAL 32 "1" ==

STRING VAL 32 ("1'::"") => ... ->
STRING VAL 32*10+(digit_value '1') "" -> ... ->
STRING VAL 321 "" -> ... ->

321

In our notation, using untyped arithmetic, the function is:

rec string_val v L =

IFISNIL L

THEN v

ELSE string_val (add (rult v ten) (digit_value (HEAD L)))
(TAIL L)

def STRING VAL S = MAKE_NUMB (string_val zero S)

For example:

STRI NG _VAL "987" ==
MAKE_NUMB (string_val zero "987") -> ... ->

MAKE_NUMB (string_val (add
(mult zero ten)
(digit_value "9))
"87") -> ... ->

MAKE NUMB (string_val (add
(mult
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(add
(mult zero ten)
(digit_value "9))
ten)
(digit_value '8))
Tty -> L. ->

MAKE_NUMB (string_val (add
(mult
(add
(mult
(add
(mult zero ten)
(digit_value "9))

ten)
(digit_value '8))
ten)
(digit_value "7))
"My -> ... ->

MAKE_NUMB (add
(mult
(add
(mult
(add
(mult zero ten)
(digit_value "9))

ten)
(digit_value '8))
ten)
(digit_value "7))
) -> ... ->

MAKE_NUMB (add
(mult
(add
(rmul't nine ten)
(digit_value '8))
ten)
(digit_value "7))
) -> ... ->

MAKE_NUMB (add
(rmul't ninety_eight ten)
(digit_value "7))
) -> ... ->

MAKE_NUMB ni ne_hundred_and_ei ghty_seven => ... =>

987

6.13. Structure matching with lists

We have been defining list functions with a base case for an empty list argument and a recursion case for a non-empty
list argument, but we have trandated them into explicit list selection. We will now extend our structure matching
notation to lists and allow cases for the empty list NI L and for bound variable lists built with : : in place of bound
variables.
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In general, for:
rec <nane> <bound vari abl e> =
IF ISNIL <bound vari abl e>
THEN <expr essi onl>
ELSE <expression2 using (HEAD <bound vari abl e>)
and (TAIL <bound vari abl e>) >
we will write:
rec <nane> [] = <expressionl>
or <nane> (<head>::<tail>) = <expression2 using <head>
and <tail >>
where <head> and <t ai | > are bound variables.

Consider the definition of the linear length of alist:

LENGTH [] = O
LENGTH (H:: T) = SUCC (LENGTH T)

which we wrote as:
rec LENGITH L =
IFISNIL L
THEN O
ELSE SUCC (LENGTH (TAIL L))

Wewill now write:

rec LENGTH [] =0
or LENGTH (H: : T) = SUCC (LENGTH T)

For example, suppose we have a list made up of arbitrarily nested lists which we want to flatten into one long linear
list, for example:

FLAT [[2,2,3],[[4,5].,[6,7,[8-9]1]1]1] == ... =>

[1,2,3,4,5,6,7,8,9]
The empty list is already flat:

FLAT [] =[]
If thelist is not empty then if the head is not alist then join it to the flattened tail:

FLAT (H:T) = H:(FLAT T) if NOT (ISLIST H
Otherwise, append the flattened head to the flattened tail:

FLAT (H.:T) = APPEND (FLAT H) (FLAT T) if ISLIST H
In our old notation we would write:

rec FLAT L =

IF ISNIL L

THEN []
ELSE
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I'F NOT (ISLIST (HEAD L))
THEN (HEAD L):: (FLAT (TAIL L))
ELSE APPEND (FLAT (HEAD L)) (FLAT (TAIL L))
We will now write:
rec FLAT [] =]
or FLAT (H:T) =
I'F NOT (ISLIST H
THEN H: : (FLAT T)
ELSE APPEND ( FLAT H) (FLAT T)
Note that we may still need explicit conditional expressions in case definitions. For example, in FLAT above a
conditional is need to distinguish the cases where the argument list has or does not have a list in its head. Structure
matching can only distinguish between structural differences; it cannot distinguish between arbitrary values within
structures.

Notethat in L1SP ther are no case definitions or structure matching so explicit list selection is necessary.

6.14. Ordered linear lists, insertion and sorting

For many applications, it is useful to hold datain some order to ease data access and presentation. Here we will ook at
ordered lists of data.

Firts of al, an ordered list is empty:
ORDERED [] = TRUE
or has asingle element:
ORDERED [C] = TRUE
or has a head which comes before the head of the tail and an ordered tail:
ORDERED (Cl1::C2::L) = (<less> Cl C2) AND ( ORDERED (CONS C2 L))
For example:
[1,2,3]

is ordered because 1 comes before 2 and [ 2, 3] is ordered because 2 comes before 3 and [ 3] is ordered because it
has a single element.

Thus, to insert an item into an ordered list: if thelist is empty then the new list has the item as the sole element:
INSERT X []1 = [X]
or if theitem comes before the head of the list then the new list has the item as head and the old list astail:

INSERT X (H:T) = X:H:T
if <less> X H

otherwise, the new list has the head of the old list as head and the item inserted into the tail of the old list as tail:

INSERT X (H::T) = H: (I NSERT X T)
if NOT <less> X H
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Note that this description tacitly assumes that all the items in the list are of the same type with a defined order relation
<l ess>. For example, for lists of strings <I ess> will be STRI NG_LESS:

rec INSERT S[] =19
or INSERT S (H.:T) =
IF STRING LESS S H
THEN S::H: : T
ELSE H:: (INSERT H T)

For example:
I NSERT "cherry" ["apple", "banana","date"] => ... =>
"appl e":: (I NSERT "cherry" ["banana","date"]) -> ... ->
"appl e"::"banana":: (I NSERT "cherry" ["date"]) -> ... ->
"apple"::"banana"::"cherry"::["date"] ==

["appl e", "banana", "cherry", "date"]
Insertion forms the basis of asimple sort. The empty list is sorted:
SORT [] =[]
and to sort a non-empty list, insert the head into the sorted tail:
SORT (H :T) = INSERT H (SORT T)
Thisisagenera definition but must be made type specific. Once again, we will consider alist of strings:

rec SORT [] =[]
or SORT (H.:T) = INSERT H (SORT T)

For example:
SORT ["cat","bat","ass"] => ... =>
| NSERT "cat" (SORT ["bat","ass"]) -> ... ->
I NSERT "cat" (I NSERT "bat" (SORT ["ass"])) -> ... ->
I NSERT "cat" (INSERT "bat" (INSERT "ass" [])) -> ... ->
I NSERT "cat" (INSERT "bat" ["ass"]) -> ... ->
I NSERT "cat" ["ass","bat"] => ... =>

[n assn , " bat " , "Cat n]

6.15. Indexed linear list access

Arrays are often used where a linear sequence of objects is to be manipulated in terms of the linear positions of the
objects in the sequence. In the same way, it is often useful to access an element of a linear list by specifying its
position relative to the start of the list. For example, in:
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["Chris","Jean","Les","Pat", "Phil"]
thefirst nameis
"Chris"
and we use:
HEAD [ " Chris","Jean", "Les","Pat","Phil"]
to accessit, the second nameis
"Jean"
and we use:
HEAD (TAIL ["Chris","Jean","Les","Pat","Phil"])
to access it, the third nameis
"Les"
and we use:
HEAD (TAIL (TAIL ["Chris","Jean","Les","Pat","Phil"]))

to access it and so on. In general, to access the <nunber >+1t h name we take the TAI L <nunber > times and then
take the HEAD:

IFIND (SUCCN) (H::T) = IFINDN T
| FIND 0

(H:T) =H

Note that the first element is number 0, the second element is number 1 and so on because we are basing our
definition on how often the tail is taken to make the element the head of the remaining list.

If the list does not have <numnber > elements we will just return the empty list:
IFIND N[] =11

To summarise:

rec IFIND N[] =]
or IFINDO (H:T) =H
or IFIND (SUCC N) (H:T) =IFINDNT
For example:
IFIND 3 ["Chris","Jean","Les","Pat","Phil"] => ... =>
IFIND 2 ["Jean","Les","Pat","Phil"] => ... =>
IFIND 1 ["Les","Pat","Phil"] => ... =>
IFIND O ["Pat","Phil"] => ... =>
HEAD ["Pat","Phil"] => ... =>

" Pat "
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Similarly, to remove a specified element from alist: if the list is empty then return the empty list:
| DELETE N [] =[]

If the specified element is at the head of the list then return the tail of the list:
IDELETE O (H.:T) = T

Otherwise, join the head of the list to the result of removing the element from the tail of the list, remembering that its
position in the tail is one less than its position in the whole list:

| DELETE (SUCC N) (H::T) = H :(IDELETE N T)
To summarise:
rec IDELETE N[] =[]

or IDELETEO (H::T) = H
or |IDELETE (SUCC N (H::T) = H :(IDELETE N T)

For example:
| DELETE 2 ["Chris","Jean","Les","Pat","Phil"] => ... =>
“Chris":: (I DELETE 1 ["Jean", "Les","Pat","Phil"]) -> ... ->
"Chris"::"Jean":: (I|DELETE O ["Les","Pat","Phil"]) -> ... ->

"Chris"::"Jean"::["Pat","Phil"]) ==
["Chris","Jean","Pat", "Phil"]

New elements may be added to alist in a specified position. If thelist is empty then return the empty list:
IBEFORE N E [] = []

If the specified position is at the head of the list then make the new element the head of alist with the old list astail:
IBEFORE O E L = E::L

Otherwise, add the head of the list to the result of placing the new element in the tail of the list, remembering that the
specified position is now one less than its position in the whole list:

I BEFORE (SUCC N E (H::T) = H:(IBEFORE N E T)
To summarise:
rec IBEFORE N E [] =[]
or IBEFOREO EL = E:L
or IBEFORE (SUCC N E (H:T) = H:(IBEFORE N E T)
For exanpl e:
| BEFORE 2 "Jo" ["Chris","Jean","Les","Pat","Phil"] => ... =>
"Chris"::(IBEFORE 1 "Jo" ["Jean","Les","Pat","Phil"]) -> ... ->

“Chris"::"Jean":: (IBEFORE O "Jo" ["Les","Pat","Phil"]) -> ... ->
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"Chris"::"Jean"::"Jo"::["Les","Pat","Phil"] ==
["Chris","Jean","Jo","Les","Pat","Phil"]

Finally, to replace the object in a specified position in alist, thelist is empty then return the empty list:
| REPLACE N E [] =[]

If the specified position is at the head then make the replacement the head:
IREPLACE O E (H::T) = E: T

Otherwise, join the head of the list to the result of replacing the element in the tail, remembering that the position in
thetail is now one less than the position in the whole list:

| REPLACE (SUCC N) E (H:T) = H: (I REPLACE N E T)
Note that we have not considered what happensiif the list does not contain the requisite item.
To summarise:

rec |REPLACE N E [] =[]

or IREPLACEO E (H:T) = E: T
or |REPLACE (SUCCN) E (H:T) = H:(IREPLACE N E T)

For example:
| REPLACE 2 "Jo" ["Chris","Jean","Les","Pat","Phil"] => ... =>
"Chris":: (I REPLACE 1 "Jo" ["Jean","Les","Pat","Phil"]) -> ... ->
"Chris"::"Jean":: (I REPLACE 0 "Jo" ["Les","Pat","Phil"]) -> ... ->

"Chris"::"Jean"::"Jo"::["Pat","Phil"] ==
["Chris","Jean","Jo", " "Pat","Phil"]

Alternatively, we could use DELETE to drop the old element and | BEFORE to place the new element, so:
| REPLACE N E L = IBEFORE N E (I DELETE N L)

Thisis much simpler but involves scanning the list twice.

6.16. M apping functions

Many functions have similar structures. We can take advantage of this to simplify function construction by defining
abstract general purpose functions for common structures and inserting particular functions into them to make them
carry out particular processes. For example, we have defined a general purpose make_obj ect function in chapter 5
which we have then used to construct specialised MAKE_BOOL, MAKE_NUMB, MAKE LI ST and MAKE_CHAR
functions.

For lists, such generalised functions are known as mapping functions because they are used to map a function onto
the components of lists. The use of list mapping functions originated with LISP.

For example, consider a function which doubles every valuein alist of numbers:
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rec DOUBLE [] =[]
or DOUBLE (H :T) = (2*H)::(DOUBLE T)

so:
DOUBLE [1,2,3] => ... =>
(2*1)::(DOUBLE [2,3]) -> ... ->
2::(2%2)::(DOUBLE [3]) -> ... ->
2::4::(2*3):: (DOUBLE []) -> ... ->
2::4::6::[] ==
[2, 4, 6]

Now consider the function which turns all thewordsin alist into plurals:

rec PLURAL [] =[]
or PLURAL (H :T) = (APPEND H "s")::(PLURAL T)

0
PLURAL ["cat","dog","pig"] => ... =>
(APPEND "cat" "s")::(PLURAL ["dog","pig"]) -> ... ->
"cats":: (APPEND "dog" "s")::(PLURAL ["pig"]) -> ... ->
"cats"::"dogs":: (APPEND "pig" "s")::(PLURAL []) -> ... ->

"cats"::"dogs"::"pigs"::[] ==

[ n Cat SII , n dogsll , n pi gsII]
The functions DOUBLE and PLURAL both apply a function repeatedly to the consecutive heads of their list arguments.
In LISP thisis known asa CAR mapping because the function is mapped onto the CARs of thelist. We can abstract a
common structure from DOUBLE and PLURAL as:

rec MAPCAR FUNC [] =[]
or MAPCAR FUNC (H. : T) = (FUNC H):: (MAPCAR FUNC T)

Thus, we can define DOUBLE as:
def DOUBLE = MAPCAR AX. (2*X)
so DOUBLEs definition expands as:

rec DOUBLE [] = []
or DOUBLE (H :T) =(AX (2*X) H)::(MAPCAR AX. (2*X) T)

Simplifying, we get:

def DOUBLE [] = []
or DOUBLE (H :T) = (2*H)::(MAPCAR AX. (2*X) T)
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which is equivalent to the original:

rec DOUBLE [] =[]
or DOUBLE (H :T) = (2*H)::(DOUBLE T)

because:

DOUBLE == MAPCAR AX. (2*X)

For example:
DOUBLE [1,2,3] => ... =>
(AX. (2*X) 1):)::(MAPCAR AX. (2*X) [2,3]) -> ... ->
2::(AX. (2*X) 2)::(MAPCAR AX. (2*X) [3]) -> ... ->
2::4:: (AX. (25X) 3)::(MAPCAR AX. (2*X) []) -> ... ->
2::4::6::[] ==
[2, 4, 6]

Similarly, we can redefine PLURAL as:
def PLURAL = MAPCAR AW ( APPEND W "s")
so expanding the definition gives:
rec PLURAL [] =[]
or PLURAL (H::T) = (AW (APPEND W"s") H)::
( MAPCAR AW ( APPEND W"s") T)
so, simplifying:
def PLURAL [] =[]
or PLURAL (H::T) = (APPEND H "s")::
( MAPCAR AW (APPEND W"s") T)

which is equivalent to:

rec PLURAL [] =[]
or PLURAL (H :T) = (APPEND H "s")::(PLURAL T)

because:

PLURAL == MAPCAR AW ( APPEND W "s")
For example:

PLURAL ["cat”,"dog","pig"] => ... =>

(AW (APPEND W"s") "cat")::
(MAPCAR AW (APPEND W"s") ["dog","pig"]) -> ... ->

"cats":: (AW (APPEND W"s") "dog")::
(lVAP(:AR )\W(APPEND W"S") [npign]) > >
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"cats"::"dogs":: (AW (APPEND W"s") "pig")::
(MAPCAR AW (APPEND W"s") []) -> ... ->
"cats"::"dogs"::"pigs"::[] ==

["cats", "dogs", "pigs"]

Consider the function which compares two equal length linear lists of strings component by component and constructs
aboolean list showing where they are the same and where they differ:

rec COW [] [] =[]
or COMP (HL::T1) (H2::T2) = (STRING EQUAL HL H2)::(COVP T1 T2)

COMP ["hey", "di ddl e", "diddle"] ["hey","daddl e","diddle"] => ... =>

(STRING EQUAL "hey" "hey")::
(COVP ["diddl e, "diddl e"] ["daddle","diddle"]) -> ... ->

TRUE: : (STRI NG EQUAL "di ddl e" "daddl e"): :
(COW ["diddle"] ["diddle"]) -> ... ->

TRUE: : FALSE: : ( STRING EQUAL "di ddl e" "diddle")::
(COWP [] []) -> ... ->

TRUE: : FALSE: : TRUE: : [] ==
[ TRUE, FALSE, TRUE]
Now consider the function that adds together corresponding components of two equal length linear numeric lists:

rec SUMR [] [] =11
or SUM2 (H1::T1) (H2::T2) = (HL+H2)::(SUM T1 T2)

SUMR [1,2,3] [4,5,6] => ... =>
(1+4)::(SUMR [2,3] [5,6]) -> ... ->
5::(2+5)::(SUMR [3] [6]) -> ... ->
5::7::(3+6)::(SUMR [] []) -> ... ->
5::7::9::[] ==

[5,7,9]

The functions COMP and SUM2 both apply a function repeatedly to the consecutive heads of two list arguments to
construct anew list. We can abstract acommon structure from COMP and SUM2 as:

rec MAPCARS FUNC [] [] = []
or MAPCARS FUNC (H1::T1) (H2::T2) = (FUNC HL H2)::(MAPCARS FUNC T1 T2)

Thus:



-118 -

def COWP = MAPCARS AX. AY. (STRI NG EQUAL X Y)
def SUMR2 = MAPCARS AX. AY. ( X+Y)
6.17. Summary

In this chapter we have:

. introduced the list type

. developed arepresentation for the list type and typed list operations
. developed elementary functions for manipulating linear lists

. introduced simplified list notations

. introduced strings as character lists with simplified notation

. introduced list case definitions and structure matching

. developed functions for constructing ordered linear lists

. developed functions for indexed linear list access

. devel oped mapping functions to generalise linear list operations

Some of these topics are summarised below.

List notation
<expressi onl>:: <expressi on2> == CONS <expressi onl> <expressi on2>
[ <expressi onl>, <expressi on2>] == <expressionl>::[<expression2>]
[ <expression>] == <expression> :NL
[l == NL

<expressi onl>:: (<expression2>::<expression3>) ==

<expressi onl>:: <expressi on2>:: <expressi on3>
String notation

"<character> <characters>" == <character>::"<characters>"
List case definition

rec <nane> [] = <expressionl>

or <nane> (<head>::<tail>) =

<expression2 using ‘<head> and ‘<tail> > ==
rec <nane> <bound vari abl e> =
IF ISNIL <bound vari abl e>

THEN <expr essi onl>
ELSE <expression2 using ‘ HEAD <bound vari abl e> and
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‘TAI L <bound vari abl e>' >

6.18. Exercises
1) Define a concatenation function for linear lists whose elements are atoms of the same type.

2) i) Write afucntion which indicates whether or not alist starts with a sub-list. For example:

STARTS "The" "The cat sat on the mat." => ... =>
TRUE

STARTS "A" "The cat sat on the mat." => ... =>
FALSE

ii) Write afunction which indicates whether or not alist contains a given sub-list. For example:

CONTAINS "t he" "The cat sat on the mat." => ... =>
TRUE

CONTAI NS "the" "All cats sit on all mats." => ... =>
FALSE

iii) Write afunction which counts how often a sub-list appearsin another list. For example:

COUNT "at" "The cat sat on the mat." => ... =>
3

iv) Write a function which removes a sub-list from the start of alist, assuming that you know that the sub-list
startsthe list. For example:

REMOVE "The " "The cat sat on the mat." => ... =>
"cat sat on the mat."

v) Write afunction which deletes the first occurence of a sub-list in another list. For example:

DELETE "sat" "The cat sat on the mat." => ... =>
"The cat on the nat."

DELETE "l ay" "The cat sat on the mat." => ... =>
"The cat sat on the nmat."

vi) Write afunction which inserts a sub-list after the first occurence of another sub-list in alist. For example:

| NSERT "sat" "cat " "The cat on the mat." => ... =>
"The cat sat on the nmat."

I NSERT "sat" "fish " "The cat on the mat." => ... =>
"The cat on the nat."

vii) Write afunction which replaces a sub-list with another sub-listin alist. For example:

REPLACE "sat" "lay" "The cat sat on the mat." => ... =>
"The cat lay on the mat."

REPLACE "sit" "lay" "The cat sat on the mat." => ... =>
"The cat sat on the nat."
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3) i) Write a function which merges two ordered lists to produce an ordered list. Merging the empty list with an
ordered list gives that list. To merge two non-empty lists, if the head of the first comes before the head of the
second then join the head of the first onto the result of merging the tail of the first and the second. Otherwise,
join the head of the second onto the result of merging the first onto the tail of the second. For example:

MERGE [1,4,7,9] [2,5,8 = ... =>
[1,2, 4,5,7,8,9]

ii) Write a function which merges alist of ordered lists. For example:
LMERGE [[1,4,7],[2,5,8],[3,6,9]] => ... =>
[1,2,3,4,5,6,7,8,9]

7. COMPOSITE VALUESAND TREES

7.1. Introduction
In this chapter we are going to discuss the use of composite values to hold records of related values.

To begin with we will represent composite values as lists and process composite value sequences using linear list
agorithms.

We will then introduce new notations to generaise list structure matching, to simplify list and composite vaue
processing.

Finally, we will look at trees and consider the use of binary tree algorithms.

7.2. Composite values

So far, we have been looking at processing sequences of single values held in lists. However, for many applications,
the data is a sequence of composite values where each consists of a number of related sub-values. These sub-values
may in turn be composite so composite values may be nested.

For example, in processing a circulation list, we need to know each person’s forename and surname. For example, in
processing a stock control system, for each item in stock we need to know its name, the number in stock and the stock
level at which it should be reordered. For example, in processing a telephone directory, we need to know each
person’s name, address and telephone number. Here, the name might in turn consist of aforename and surname.

Some languages provide special constructs for user defined composite values, for example the Pascal RECORD, the C
st ruct ureand the ML tuple. These effectively add new types to the language.

Here, we are going to use lists to represent composite values. Thisis formally less rigorous than introducing a special
construct but greatly simplifies presentation. We will look at the use of ML tuplesin chapter 9.

For example, we might represent a name consisting of astring <f or enane> and astring <sur name> asthelist:
[ <f or enane>, <sur nane>]

for example:
["Anna", " Abl e"]

or
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["Betty","Baker"].

For example, we might represent a stock item consisting of a string <i t em name>, an integer <st ock | evel >
and an integer <r eor der | evel > asthelist:

[ <i tem nanme>, <stock | evel >, <reorder |evel >]
for example:

["VDU', 25, 10]
or

["modent, 12, 15].

For example, we might represent a telephone directory entry consisting of a composite value name as above, a string
<addr ess> and an integer <number > asalist:

[ [ <f orenanme>, <sur name>] , <addr ess>, <nunber >]
for example:
[["Anna", " Abl e"], "Accounts", 1212]
or
[["Betty", "Baker"], "Boil er roomnt, 4242]
Now, a sequence of composite values will be represented by alist of lists, for example acirculation list:
[ [IIAnnall , IIAbI eII] ,
["Betty", "Baker"],
["Carice","Charlie"]]
or astock list:
[["VDU', 25, 10],
["nodent, 12, 15],
["printer, 250, 7]]
or atelephone directory:
[[["Anna", "Abl e"], "Accounts", 1212],

[["Betty", "Baker"],"Boiler room', 4242],
[["Clarice","Charlie"],"Custonmer orders", 1234]]

7.3. Processing composite values sequences

We are using linear lists to represent composite value sequences so we will now look at the use of linear list
algorithms to process them.

For example, suppose that given a circulation list we want to find someone's forename from their surname. If the list
is empty then return the empty list. If thelist is not empty then if the surname matches that for the first namein the list
then return the corresponding forename. Otherwise, try looking in the rest of the list.

rec NFIND S [] =[]
or NFIND S (H:T) =



-122 -

| F STRING EQUAL S (HEAD (TAIL H))
THEN HEAD H
ELSE NFIND S T

For example:

NFIND " Charlie" [["Anna","Able"],
["Betty","Baker"],
["Clarice","Charlie"]] -> ... ->

NFI ND “Charlie" [["Betty","Baker"],
["Clarice","Charlie"]] -> ... ->

NFIND "Charlie" [["Clarice","Charlie"]] -> ... ->

"Clarice

For example, given a stock list, suppose we want to find all the items which have the stock level below the reorder
level. If the list is empty then return the empty list. If the list is not empty then if the first item’s stock level is below
the reorder level then add the first item to the result of checking the rest of the list. Otherwise, check the rest of the
list:

rec SCHECK [] =[]

or SCHECK (H::T) =

I F LESS (HEAD (TAIL H)) (HEAD (TAIL (TAIL H)))
THEN H: : (SCHECK T)

ELSE SCHECK T

For example:

SCHECK [["VDU', 25, 12],
["nodent, 10, 12],
["printer", 125, 10],
["nmouse", 7,12]] -> ... ->

SCHECK [[ " nmodent, 10, 12],
["printer", 125, 10],
["rmouse", 7,12]] -> ... ->

[ "nmodent, 10, 12] : : (SCHECK [["printer", 125, 10],

["rouse",7,12]]1) -> ... ->
["nmodent', 10, 12] : : (SCHECK [["mouse", 7,12]]) -> ... ->
["nmodent, 10, 12] : : [ "nmouse", 7, 12] : : (SCHECK []) -> ... ->

["rmodent', 10, 12] : : [ " mouse", 7, 12] : : [] ==

[["rodent, 10, 12],
["nouse", 7, 12]]

For example, given a telephone directory, suppose we want to change someone's telephone number, knowing their
surname. If the directory is empty then return the empty list. If the directory is not empty then if the required entry is
the first then add a modified first entry to the rest of the entries. Otherwise, add the first entry to the result of looking
for the required entry in the rest of the entries:

rec DCHANGE S N [] [
or DCHANGE S N (H::T) =
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| F STRING EQUAL S (HEAD (TAIL (HEAD H)))
THEN [ (HEAD H), (HEAD TAIL H, N :: T
ELSE H : (DCHANGE S N T)

For example:
DCHANGE "Charlie" 2424

[[["Anna", "Abl e"], "Accounts", 1212],
[["Betty", "Baker"],"Boiler room', 4242],

[["Carice","Charlie"],"Custonmer orders",1234]] => ...

[["Anna", "Able"], "Accounts", 1212] ::
(DCHANGE "Charlie" 2424
[[["Betty", "Baker"],"Boiler room', 4242],
[["Clarice","Charlie"],"Custoner orders", 1234]])

[["Anna", "Abl e"], "Accounts", 1212] ::
[["Betty", "Baker"],"Boiler roont, 4242]::
(DCHANGE "Charlie" 2424
[[["Carice","Charlie"],"Customer orders", 1234]])

[["Anna", " Abl e"], "Accounts", 1212]::
[["Betty", "Baker"],"Boiler roont, 4242]::
[["Clarice","Charlie"],"Custoner orders", 2424]::

[] ==
[[["Anna", "Abl e"], "Accounts", 1212],

[["Betty", "Baker"],"Boiler room', 4242],
[["Clarice","Charlie"],"Custonmer orders", 2424]]

7.4. Selector functions

Because composite values are being represented by lists, the above examples al depend on the nested use of the list
selectors HEAD and TAI L to select sub-values from composite values. For composite values with many sub-values,
this list selection becomes somewhat dense. Instead, we might define selector functions which are named to reflect the
composite values that they operate on. These are particularly useful in LISP to simplify complex list expressions,

because it lacks structure matching.
For example, for names we might define:
def FORENAME N = HEAD N
def SURNAME N = HEAD (TAIL N)
For example, for stock items we might define:
def ITEM N = HEAD N
def STOCK N = HEAD (TAIL N)
def REORDER N = HEAD (TAIL (TAIL N))
For example, for telephone directory entries we might define:
def NAME E = HEAD E

def EFORENAME E = FORENAME ( NAME E)
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def ESURNAME E = SURNAME ( NAME E)
def ADDRESS E = HEAD (TAIL E)
def PHONE E = HEAD (TAIL (TAIL E))

These selector functions disguises the underlying representation and makes it easier to understand the functions that
use them.

For example, given a circulation list we might want to delete a name, knowing the surname. If the list is empty then
return the empty list. If thelist is not empty then if the surname is that of the first name then return the rest of the list.
Otherwise, add the first name to the result of deleting the required name from the rest of the list:

rec NDELETE S [] = []

or NDELETE S (H::T) =
| F STRING EQUAL S ( SURNAME H)
THEN T
ELSE H:: (NDELETE S T)

For example:

NDELETE "Charlie" [["Anna","Able"],
["Betty","Baker"],
["Clarice","Charlie"]] -> ... ->

["Anna", "Abl e"]::
(NDELETE "Charlie" [["Betty", "Baker"],

["Carice","Charlie"]]) -> ... ->
["Anna","Able"]::
["Betty", "Baker"]::
(NDELETE "Charlie" [["C arice","Charlie"]]) -> ... ->

["Anna", "Abl e"]::
["Betty", "Baker"]::
[] ==

[["Anna", "Able"],
["Betty", "Baker"]]

For example, given a stock control list, we might want to increment the stock level, knowing the item name. If the list
is empty then return the empty list. If the list is not empty then if the first item is the required one then increment its
stock level and add the changed item to the rest of the list. Otherwise, add the first item to the result of searching the
rest of the list:

rec SINCREMENT | V [] =[]

or SINCREMENT | V (H:T) =

I F STRING EQUAL | (I TEM H)

THEN [ (I TEM H), (STOCK H) +V, (REORDER H)]:: T
ELSE H : (SINCREMENT | V T)

For example:
SI NCREMENT "nmodent 10 [["VDU', 25, 12],
["nodent, 10, 12],
["printer",125,10]] -> ... ->

["VDU', 25, 12] : :
('S NCREMENT "nmodent 10 [["nmodent, 10, 12],
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["printer", 125,10]]) -> ... ->

["VDU', 25, 12] ::
[ "nodent', 20, 12] : :
[["printer",125,610]] ==

[["VDU', 25, 12],
[ "nmodent', 20, 12]
["printer", 125, 10]]

For example, given a telephone directory, we might want to add a new entry in alphabetic surname order. If the
directory is empty then make a new directory from the new entry. If the directory is not empty then if the new entry
comes before the first entry then add it to the front of the directory. Otherwise, add the first entry to the result of
adding the new entry to the rest of the directory:

rec DOINSERT E [] = [ H

or DONSERT E (H::T) =
| F STRI NG _LESS (ESURNAME E) ( ESURNAME H)
THEN E: :H: : T
ELSE H : (DI NSERT E T)

For example:

DI NSERT
[["Chris","Catnip"],"Credit", 3333]
[[["Anna", " Able"],"Accounts", 1212],
[["Betty", "Baker"],"Boiler roont, 4242],
[["Clarice","Charlie"],"Custoner orders", 2424]] -> ... ->

[["Anna", "Abl e"], "Accounts", 1212] ::

( DI NSERT
[["Chris","Catnip"],"Credit", 3333]
[[["Betty", "Baker"],"Boiler room', 4242],
[["Carice","Charlie"],"Customer orders", 2424]]) -> ... ->

[["Anna", " Abl e"], "Accounts", 1212]::
[["Betty", "Baker"],"Boiler room', 4242]::

( DI NSERT
[["Chris","Catnip"],"Credit", 3333]
[[["Carice","Charlie"],"Customer orders", 2424]]) -> ... ->

[["Anna", " Abl e"], "Accounts", 1212]::
[["Betty", "Baker"],"Boiler room', 4242]::
[["Chris","Catnip"],"Credit", 3333] ::
[[["Carice","Charlie"],"Custonmer orders", 2424]] ==

[["Anna", " Abl e"], "Accounts", 1212],

[["Betty", "Baker"],"Boiler roont, 4242],
[["Chris","Catnip"],"Credit", 3333],
[["Clarice","Charlie"],"Custoner orders", 2424]]

[

7.5. Generalised structure matching

In chapter 6 we introduced structure matching into function definitions. Objects are defined in terms of constant base
cases and structured recursion cases. Thus, function definitions have base cases with constants instead of bound
variables for matching against constant arguments, and recursion cases with structured bound variable for matching
againgt structured arguments. In particular, for list processing we have used bound variable lists of the form:
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[]

for matching against the empty list, and of the form:

(H:T)
so that H matches the head of alist argument and T matches the tail. We will now allow arbitrary bound variable lists
for matching against arbitrary list arguments. The bound variable lists may contain implicit or explicit empty lists for
matching against empty listsin arguments.
For example, we can use structure matching to redefine the circulation list selector functions:

def FORENAME [F,S] = F

def SURNAME [F,S] = S
Here the bound variable list:

[F,S] == F:S::NL

matches the argument list:

[ <f orenane>, <surnane>] == <forenane>::<surnane>::NL
o)

F == <forenanme>

S == <sur nane>

We can also pick up the forename and surname from the first entry in alist of names by structuring matching with the
bound variablelist:

([F,S::T)
so [ F, S] matches the head of the list and T matches the tail. For example we might count how often a given
forename occursin acirculation list. If the list is empty the the count is 0. If the list is not empty then if the forename
matches that for the first entry then add 1 to the count for the rest of the list. Otherwise, return the count for the rest of
thelist:
rec NCOUNT N[] =0
or NCOUNT N ([F,S]::T) =
IF EQUAL N F
THEN 1 + (NCOUNT N T)
ELSE (NCOUNT N T)
For example, we can redefine the stock control selector functions as:
def ITEM[I,S R =1
def STOCK [I,S,R =S

def REORDER [I, S, R]

1
Py}

Here, the bound variable list:

[1,SSR ==1::S:R:NL
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matches the argument:

[ <item nanme>, <stock | evel >, <reorder |evel >] ==
<i temmane>: : <stock | evel >::<reorder level > :NL

| == <item nane>
S == <stock | evel >
R == <reorder |evel >

We can use the bound variable list:

([1,S,R::T)

to match against a stock control list sothat [ |1, S, R matches the first item and T matches the rest of the list. For
example, we might find all the items that need to be reordered. If the list is empty then return the empty list.If the list
is not empty, if the first item needs to be reordered then add it to those to be reordered in the rest of the list. Otherwise
return those to be reordered in the rest of the list:

rec REORD [] = 0

or RECRD ([I,S,R::T) =
| F LESS S R
THEN [1,S, R :: (RECRD T)
ELSE REO?D

For example, we can redefine the telephone directory selector functions as:
def ENAME [N,A, Pl = N
def EFORENAME [[F,S],A Pl = F

def ESURNAME [[F, S],A Pl =S

def ADDRESS [N, A P] = A
def PHONE [N,A P] = P
Here, the bound variable list:
[NAP == N:A:P.:NL

matches the argument list:

[ <name>, <addr ess>, <nunber >] == <nane>::<address>:: <number>:: N L
so:

N == <name>

A == <address>

P == <nunber >

Similarly, the bound variable list:
[[F,S],A Pl == (F:S:NL)::A:P::NL

matches the argument list:
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[ [ <f or enanme>, <sur name>] , <addr ess>, <phone>] ==
(<forename>:: <surnanme>:: N L)::<address>::<phone>:: N L

F == <f orenane>
S == <surname>

A bound variable list of the form:
[NAP::T

can be used to match a directory so [ N, A, P] matches the first entry and T matches the rest of the directory. For
example, we might sort the directory in telephone number order using the insertion sort from chapter 7:

rec DDNSERT R[] = [R
or DINSERT [N1, A1, P1] ([N2,A2,P2]::T) =
| F LESS P1 P2
THEN [ N1, A1, P1]::[N2, A2, P2]:: T
ELSE [ N2, A2, P2] : : (DI NSERT [ N1, A1, P1] T)
rec DSORT [] =[]
or DSORT (H:: T) = DINSERT H (DSORT T)
7.6. Local definitions
It is often useful to introduce new name/value associations for use within an expression. Such associations are said to
be local to the expression and are introduced by local definitions. Two forms of local definition are used in functional
programming and they are both equivalent to function application.
Consider:

A<name>. <body> <ar gunent >

This requires the replacement of al free occurences of <nane> in <body> with <ar gurrent > before <body> is
evaluated.

Alternatively, <name> and <ar gunent > might be thought of as being associated throughout the evaluation of
<body>. Thismight be written in a bottom up style as:

| et <nane> = <argunent >
in <body>

or in atop down style as:

<body>
wher e <name> = <ar gunent >

We will use the bottom up | et form of local definition on the grounds that things should be defined before they are
used.

7.7. Matching composite value results

The use of bound variable lists greatly simplifies the construction of functions which return composite value results
represented aslists.
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For example, suppose we have alist of forename/surname pairs and we wish to split it into separate lists of forenames
and surnames. We could scan the list to pick up the forenames and again to pick up the surnames. Alternatively, we
can pick them both up at once.

To split an empty list, return an empty forename list and an empty surname list: Otherwise, split the tail and put the
forename from the head pair onto the forename list from the tail and the surname from the head pair onto the surname
list from the tail:

rec SPLIT[] =1[1::1[1]
or SPLIT ([F, S]::L)
| et (FLIST::SLIST) SPLIT L
in ((F:FLIST)::(S::SLIST))

Note that at each stage SPLI T is called recursively on the tail to return alist of lists. This is then separated into the
listsFLI ST and SLI ST, theitemsfrom the head pair are added and anew list of listsis returned.

For example:
SPLIT [["Allan","Ape"],["Betty","Bat"],["Colin","Cat"]] => ... =>

let (FLIST::SLIST) = SPLIT [["Betty","Bat"],["Colin","Cat"]]
in (("Allan"::FLIST)::("Ape"::SLIST))

Thefirst recursive call to SPLI T involves:
SPLIT [["Betty","Bat","Colin","Cat"] => ... =>

let (FLIST::SLIST) = SPLIT [["Colin","Cat"]]
in (("Betty"::FLIST)::("Bat"::SLIST))

The second recursive call to SPLI T involves:
SPLIT [["Colin","Cat"]] => ... =>

let (FLIST::SLIST) = SPLIT []
in (("Colin"::FLIST)::("Cat"::SLIST))

Thethird recursive call to SPLI T isthe last:
SPLIT[] => ... =>
[1::0]

so the recursive calls start to return:

let (FLIST::SLIST) = []::[]
in (("Colin"::FLIST)::("Cat"::SLIST)) => ... =>

(("Colin"::[])::("Cat"::[])) ==
(["Colin"]::["Cat"]) => ... =>

let (FLIST::SLIST) = (["Colin"]::["Cat"])
in (("Betty"::FLIST)::("Bat"::SLIST)) => ... =>

(("Betty"::["Colin"])::("Bat"::["Cat"])) ==

(["Betty","Colin"]::["Bat","Cat"]) => ... =>
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let (FLIST::SLIST) = (["Betty","Colin"]::["Bat","Cat"])
in (("Allan"::FLIST)::("Ape"::SLIST)) => ... =>
(("Allan"::["Betty","Colin"])::("Ape"::["Bat","Cat")]) ==
(["Allan","Betty","Colin"]::["Ape","Bat","Cat"])
We can simplify this further by making the local variables FLI ST and SLI ST additiona bound variables:

rec SPLIT[[]] L =L
or SPLIT ([F,S]::L) (FLIST::SLIST) = SPLIT L ((F::FLIST)::(S::SLIST))

Now, on the recursive call, the variables FLI ST and SLI ST will pick up thelists (F: : FLI ST) and ( S: : SLI ST)
from the previous call. Initially, FLI ST and LI ST are both empty. For example:

SPLIT [["Diane","Duck"],["Eric","Eagle"],["Fran","Fox"]] ([]1::[]) => ... =>
SPLIT [["Eric","Eagle"],["Fran","Fox"]] (["Diane"]::["Duck"]) => ... =>
SPLIT [["Fran","Fox"]] (["Eric","Diane"]::["Eagle","Duck"]) => ... =>

SPLIT [[]] (["Fran","Eric","Diane"]::["Fox","Eagle","Duck"]) => ... =>

(["Fran","Eric","Diane"]::["Fox", "Eagle", "Duck"])

Note that we have picked up the list components in reverse order because we' ve added the heads of the argument lists
into the new lists before processing the tails of the argument lists.

The bound variables FLI ST and SLI ST are known as accumulation variables because they are used to accumulate
partial results.

7.8. List inefficiency

Linear lists correspond well to problems involving flat sequences of data items but are relatively inefficient to access
and manipulate. Thisis because accessing an item always involves skipping past the preceding items. In long lists this
becomes extremely time consuming. For a list with N items, if we assume that each item is just as likely to be
accessed as any other item then:

to access the 1st item, skip O items;
to access the 2nd item, skip 1 item;

to access the N-1th item, skip N-2 items;
to access the Nth item, skip N-1 items

Thus, on averageit is necessary to skip:
(1+...(N-2)+(N-1))/N = (N*N/2)/N = N/2
items. For example, to find oneitem in alist of 1000 itemsit is necessary to skip 500 items on average.

Sorting using the insertion technique above is far worse. For aworst case sort with N items in complete reverse order
then:

to place the 1st item, skip O items;
to place the 2nd item, skip 1 item;

to place the N-1th item, skip N-2 items;
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to place the Nth item, skip N-1 items
Thus, in total it is necessary to skip:

1+...(N-2)+(N-1) = N*N/2
items. For example, for aworst case sort of 1000 itemsit is hecessary to skip 500000 items.
Remember, for searching and sorting in a linear list, each skip involves a comparison between a list item and a
required or new item. If the items are strings then comparison is character by character so the number of comparisons
can get pretty big for relatively short lists.
Note that we have been considering naive linear list algorithms. For particular problems, if there is a known ordering
on a sequence of values then it may be possible to represent the sequence as an ordered list of ordered sub-sequences.

For example, a sequence of strings might be represented aslist of ordered sub-lists, with a sub-list for each letter of the
alphabet.

7.9. Trees

Trees are genera purpose nested structures which enable far faster access to ordered sequences than linear lists. Here
we are going to look at how trees may be modelled using lists. To begin with, we will introduce the standard tree
terminology.

A treeis a nested data structure consisting of a hierarchy of nodes. Each node holds one data item and has branches
to sub-trees which are in turn composed of nodes. The first node in a tree is called the root. A node with empty
branchesis called aleaf. Often, atree has the same number of branchesin each node. If there are N branches then the
treeissaid to be N-ary.

If there is an ordering relationship on the tree then each sub-tree consists of nodes whose items have a common
relationship to the original node's item. Note that ordering implies that the node items are al the same type. Ordered
linear sequences can be held in atree structure which enables far faster access and update.

We are now going to look specifically at binary trees. A binary tree node has two branches, called the left and right
branches, to binary sub-trees. Formally, the empty tree, which we will denote as EMPTY, isabinary tree:

EMPTY is a binary tree
and atree consisting of anode with an item and two sub-treesis abinary treeif the sub-trees are binary trees:

NODE ITEML Ris a binary tree
if Lis abinary tree and Ris a binary tree

We will model abinary tree using lists. We will represent EMPTY asNI L:
def EMPTY = NIL
def | SEMPTY = I SNI L
and anode as alist of the item and the left and right branches:
def NODE ITEML R = [ITEM L, R
Theitem and the sub-trees may be selected from nodes:
I TEM (NODE | L R)

LEFT (NODE | L R
RIGHT (NODE| L R = R
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but no selection may be made from empty trees:

| TEM EMPTY = TREE_ERROR
LEFT EMPTY = TREE_ERROR
Rl GHT EMPTY = TREE_ERROR

Note that we cannot use these equations directly as functions as we have not introduced trees as a new type into our
notation. Instead, we will model tree functions with list functionsusing LI ST_ERRORfor TREE_ERROR:

def TREE_ERROR

LI ST_ERROR

def | TEM EMPTY = TREE_ERROR
or ITEM[I,L, Rl = |

def LEFT EMPTY = TREE_ERROR
or LEFT [I,L,R =L

def RI GHT EMPTY = TREE_ERROR
or RIGHT [I,L,R =R

Note that we can use EMPTY in structure matching because it isthe sameasNI L.

7.10. Adding valuesto ordered binary trees

In an ordered binary tree, the left sub-tree contains nodes whose items come before the original node's item in some
ordering and the right sub-tree, contains nodes whose items come after the original node’' s item in that ordering. Each
sub-treeisitself an ordered binary tree.

Thus, to add an item to an ordered binary tree, if the tree is empty then make a new node with empty branches for the
item:

TADD | EMPTY = NCDE | EMPTY EMPTY
If the item comes before the root node item then add it to the left sub-tree:

TADD | (NODE NI L R) = NODE NI (TADD I L) R
if <less> 1 N

Otherwise, add it to the right sub-tree:

TADD | (NOCDE NI L R) = NODE N L (TADD | L)
if NOT (<less>1 N)

For example, for abinary tree of integers:
rec TADD | EMPTY = NCDE | EMPTY EMPTY
or TADDI [N,L, R =
IF LESS | N
THEN NODE NI (TADD | L) R
ELSE NODE NITEM L (TADD | R)
For example, to add 7 to an empty tree:

TADD 7 EMPTY

Thetreeis empty so a new node is constructed:



[ 7, EMPTY, EMPTY]
To add 4 to thistree:

TADD 4 [ 7, EMPTY, EMPTY]

4 comes before 7 so it is added to the |eft sub-tree:

[7, (TADD 4 EMPTY), EMPTY] -> ...

[7,
[ 4, EMPTY, EMPTY] ,
EMPTY

]

To add 9 to thistree:

TADD 9 [7,
[ 4, EMPTY, EMPTY] ,
EMPTY
]

9 comes after 7 so it is added to the right sub-tree:

[7,

[ 4, EMPTY, EMPTY],
(TADD 9 EMPTY)
] -> ... ->

[7,
[ 4, EMPTY, EMPTY] ,
[ 9, EMPTY, EMPTY]
]

To add 3 to thistree:

TADD 3 [7,
[ 4, EMPTY, EMPTY] ,
[ 9, EMPTY, EMPTY]
]

3 comes before 7 so it is added to the left sub-tree:

[7,
(TADD 3 [4, EMPTY, EMPTY]),
[ 9, EMPTY, EMPTY]

]

3 comes before 4 so it is added to the left sub-tree:

[7,
[ 4,
(TADD 3 EMPTY),
EMPTY

EMPTY, EMPTY]

I,
[9,
-> L -

]
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[7,
[ 4,
[ 3, EMPTY, EMPTY] ,
EMPTY

1,
[ 9, EMPTY, EMPTY]
]

To add 5 to thistree:

TADD 5 [7,
[ 4,
[ 3, EMPTY, EMPTY] ,
EMPTY

] 1
[ 9, EMPTY, EMPTY]
]

5 comes before 7 so it is added to the left sub-tree:

[7,
(TADD 5 [4,
[ 3, EMPTY, EMPTY] ,
EMPTY
1),
[ 9, EMPTY, EMPTY]
]

Now, 5 comes after 4 so it is added to the right sub-tree:

[7,
[ 4,
[ 3, EMPTY, EMPTY],
(TADD 5 EMPTY)
1.
[ 9, EMPTY, EMPTY]
] -> ... ->

[7,
[4,
[ 3, EMPTY, EMPTY],
[ 5, EMPTY, EMPTY]
] ’
[ 9, EMPTY, EMPTY]
]

To add an arbitrary list of numbersto atree, if the list is empty then return the tree. Otherwise add the tail of thelist to
the result of adding the head of thelist to the tree:

rec TADDLI ST [] TREE = TREE
or TADDLI ST (H::T) TREE = TADDLIST T (TADD H TREE)

Thus:
TADDLI ST [7,4,9,3,5,11,6,8] EMPTY -> ... ->

[7,
[ 4,
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[ 3, EMPTY, EMPTY] ,
[5,

EMPTY,

[ 6, EMPTY, EMPTY]

]
1
[9,
[ 8, EMPTY, EMPTY],
[ 11, EMPTY, EMPTY]
]
]

7.11. Binary treetraversal

Having added values to an ordered tree it may be useful to extract them in some order. This involves walking or
traver sing the tree picking up the node values. From our definition of an ordered binary tree, al the valuesin the left
sub-tree for a node are less than the node value and al the values in the right sub-tree for a node are greater than the
node value. Thus, to extract the values in ascending order we need to traverse the left sub-tree, pick up the node value
and then traverse the right subtree:

TRAVERSE (NODE | L R) = APPEND (TRAVERSE L) (I::(TRAVERSE R))
Traversing an empty tree returns an empty list:

TRAVERSE EMPTY = []
Using listsinstead of atreetype:

rec TRAVERSE EMPTY = []
or TRAVERSE [I,L, Rl = APPEND ( TRAVERSE L) (I::(TRAVERSE R))

We will illustrate this with an example. To ease presentation, we may evaluate several applications at the same time at

each stage:

TRAVERSE [ 7,
[ 4,
[ 3, EMPTY, EMPTY],
[ 5, EMPTY, EMPTY]
1.
[ 9, EMPTY, EMPTY]
] -> ... ->

APPEND ( TRAVERSE | 4,
[ 3, EMPTY, EMPTY],
[ 5, EMPTY, EMPTY]

1)
(7:: (TRAVERSE [ 9, EMPTY, EMPTY])) -> ... ->

APPEND ( APPEND ( TRAVERSE [ 3, EMPTY, EMPTY] )
(4:: (TRAVERSE [5, EMPTY, EMPTY])))
(7:: (APPEND ( TRAVERSE EMPTY)
(9:: (TRAVERSE EMPTY)))) -> ... ->

APPEND ( APPEND ( APPEND ( TRAVERSE EMPTY)
(3:: (TRAVERSE EMPTY)))
(4:: (APPEND ( TRAVERSE EMPTY)
(5:: (TRAVERSE EMPTY))))
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(7:: (APPEND ( TRAVERSE EMPTY)
(9:: (TRAVERSE EMPTY)))) -> ... ->
APPEND ( APPEND ( APPEND [ ]

(3::

[1))
(4:: (APPEND [ ]
(5

2:01)))
(7::(APPEND []
(9::11))) -> ... ->
APPEND ( APPEND [ 3]
(4::13]))
(7::19]) -> ... ->
APPEND [3,4,5] [7,9] -> ... ->

[3,4,5,7,9]

7.12. Binary tree search

Once a binary tree has been constructed it may be searched to find out whether or not it contains a value. The search
algorithm is very similar to the addition algorithm above. If the tree is empty then the search fails:

TFIND V EMPTY = FALSE

If the treeis not empty, and the required value is the node value then the search succeeds:
TFIND V (NODE NV L R) = TRUE if <equal > V NV

Otherwise, if the requiredval ue comes before the node value then try the left branch:

TFIND V (NODE NV L R)

TFIND VL if <less> V NV

Otherwise, try the right branch:

TFIND V (NODE NV L R = TFIND V R if NOT (<less> V NV)

For example, for abinary integer tree:

rec TFIND V EMPTY = ""
or TRINDV [NV,L,R =
| F EQUAL V NV
THEN TRUE
ELSE
| F LESS V
THEN TFI N
ELSE TFIN

NV
DVL
DVR
For example:

TFIND 5 [7,
[4,
[ 3, EMPTY, EMPTY],
[ 5, EMPTY, EMPTY]
1.
[ 9, EMPTY, EMPTY]
] -> ... ->
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TFIND 5 [4,
[ 3, EMPTY, EMPTY],
[ 5, EMPTY, EMPTY]
] -> ... ->

TFIND 5 [5, EMPTY, EMPTY] -> ... ->
TRUE
For example:

TFIND 2 [7,
[4,
[ 3, EMPTY, EMPTY],
[ 5, EMPTY, EMPTY]
1.
[ 9, EMPTY, EMPTY]
] -> ... ->

TFIND 2 [4,
[ 3, EMPTY, EMPTY],
[ 5, EMPTY, EMPTY]
] -> ... ->

TFIND 2 [3, EMPTY, EMPTY] -> ... ->
TFIND 2 EMPTY -> ... ->

FALSE

7.13. Binary trees of composite values

Binary trees, like linear lists, may be used to represent ordered sequences of composite values. Each node holds one
composite value from the sequence and the ordering is determined by one sub-value.

The tree addition functions above may be modified to work with composite values. For example, we might hold the
circulation list of namesin abinary tree in surname order. Adding a new name to the tree involves comparing the new
surname with the node surnames:

rec CTADD N EMPTY = [N, EMPTY, EMPTY]
or CTADD [F, S] [[NF,NS],L, R =
| F STRING LESS S NS
THEN [[NF, NS], (CTADD [F, S] L), R]
ELSE [[NF, NS], L, (CTADD [F, S] R]

rec CTADDLI ST [] TREE = TREE
or CTADDLI ST (H:: T) TREE = CTADDLI ST T (CTADD H TREE)

For example:

CTADDLI ST
[["Mark", " Monkey"],
["G aham', "Goat "],
["Quentin","Quail "],
["Janes", "Jaguar"],
["David", "Duck]] EMPTY -> ... ->
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[["Mark", " Monkey"],
[["G ahant, "Goat"],
[["David", "Duck"], EMPTY, EMPTY],
[["Janes", "Jaguar "], EMPTY, EMPTY]

1,
[["Quentin","Quail"], EMPTY, EMPTY]
]

The tree traversal function above may be applied to binary trees with arbitrary node values as it only inspects branches
during traversal. For example:

TRAVERSE [["Mark", "Monkey"],
[["Gahant, "Goat"],
[["David", "Duck"], EMPTY, EMPTY],
[["Janes", "Jaguar "], EMPTY, EMPTY]
] 1
[["Quentin","Quail"], EMPTY, EMPTY]
] -> ... ->

[[II mvi dll,ll mckll] ,
["Gahant, "Goat"],
["Janes", "Jaguar"],
[II Wr kll, n mnkeyll] ,
["Quentin","Quail"]]

Finally, the tree search function above may be modified to return some or all of a required composite value. For
example, we might find the forename corresponding to a surname, using the surname to identify the required node:

rec CTFIND S EMPTY = ""
or CTFIND S [[NF, NS], L, R =
| F STRING EQUAL S NS
THEN NF
ELSE
| F STRING LESS S NS
THEN CTFIND S L
ELSE CTFIND S R

For example:

CTFI ND "Duck" [["Mark", "Mnkey"],
[["Gahant, "Goat"],
[["David", "Duck"], EMPTY, EMPTY],
[["Janes", "Jaguar "], EMPTY, EMPTY]
] 1
[["Quentin","Quail"], EMPTY, EMPTY]
] -> ... ->

CTFIND "Duck" [["Grahant,"Goat"],
[["David","Duck"], EMPTY, EVPTY],

[["Janes", "Jaguar "], EMPTY, EMPTY]
] -> ... ->

CTFI ND "Duck" [["David","Duck"], EMPTY, EMPTY]

" Davi d"
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7.14. Binary treeefficiency

When an ordered binary tree is formed from a value sequence, each node holds an ordered sub-sequence. Every sub-
node on the left branch of a node contains values which are less than the node’ s value and every sub-node on the right
branch contains values which are greater than the node’ s value. Thus, when searching atree for a node given a value,
the selection of one branch discounts all the sub-nodes, and hence all the values, on the other branch. The number of
comparisons required to find a node depends on how many layers of sub-nodes there are between the root and that
node.

A binary tree is said to be balanced if for any node, the number of values in both branches is the same. For a
balanced binary tree, if a node holds N values then there are (N- 1) / 2 valuesin its left branch and (N- 1) / 2 in the
its right branch. Thus, the total humber of branch layers depends on how often the number of values can be halved.
This suggests that in general, if:

2L <= N < 2L+1
then:
N val ues == IogZ(N)+1 == L+1 layers
For example
1 value == 1 node == 1 layer == Iogz( 1) +1
3 values == 1 node + 2 * 1 value == 2 layers == Iogz( 3)+1
7 values == 1 node + 2 * 3 values == 3 layers == Iogz( 7)+1
15 values == 1 node + 2 * 7 values == 4 |ayers == Iog2(15)+1
31 values == 1 node + 2 * 15 values == 5 |ayers == Iogz(31)+1
63 values == 1 node + 2 * 31 values == 6 layers == Iogz(63)+1

For example, for a balanced tree of 1000 items it is necessary to go down 10 layers, making 10 comparisons, in the
worst case.

Note that we have considered perfectly balanced trees. However, the agorithms discussed above do not try to
maintain balance and so the ‘shape’ of a tree depends on the order in which values are added. In general, trees built
with our simple algorithm will not be balanced. Indeed, in the worst case the algorithm builds alinear list, ironically,
when the values are already in order:

TADDLI ST [4,3,2,1] -> ... ->

[1,
EMPTY,
[2,
EMPTY,
[3,
EMPTY,
[ 4, EMPTY, EMPTY]
]
]
]

We will not consider the construction of balanced trees here.
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7.15. Curried and uncurried functions

In imperative languages like Pascal and C we use procedures and functions declared with several formal parameters
and we cannot separate a procedure or function from the name it is declared with. Here, however, al our functions are
built from nested A functions with single bound variables; names and definitions of name/function associations are just
a convenient simplification. Our notation for function definitions and applications has led us to treat a name associated
with a nested function as if it were a function with several bound variables. Now we have introduced another form of
multiple bound variables through bound variable lists.

In fact, nested functions of single bound variables and functions with multiple bound variables are equivalent. The
technique of defining multi-parameter functions as nested single parameter functions was popularised by the American
mathematician Haskell Curry and nested single parameter functions are called curried functions.

We can construct functions to transform a curried function into an uncurried function and vice versa. For a function f
with abound variablelist containing two bound variables:

def curry f xy =1 [x,y]
will convert from uncurried form to curried form.
For example, consider:

def SUM SQL [ X, Y] = (X*X)+(Y*Y)
Then for:

def curry_SUM SQ = curry SUM SQL
the right hand side expands as:

AMLOACAY. (f [x,y]) SUM SQL =>

AX. Ay. (SUM SQL [x,y])

def curry_SUM SQ x y = SUM SQL [x, Y]
Now, theuse of cur ry_SUM_SQwith nested arguments is the same as the use of SUM_SQL with an argument list.
Similarly, for afunction g with asingle bound variablea, which returns afunction with single bound variable b
def uncurry g [a,b] =g ab
will convert from curried form to uncurried form.
For example, with
def SUM S@ X Y = (X*X)+(Y*Y)
then for:
def uncurry_SUM SQ = uncurry SUM SQ2
the right hand side expands as:

Ag.A[a,b].(g a b) SUM S =>
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Ala, b]. (SUM S a b)

def uncurry_ SUM SQ[a,b] = SUMSQ a b

Now, the use of uncurry_SUM SQ with an argument list is equivalent to the use of SUM S with nested
arguments.

Thefunctionscur ry and uncur ry areinverses. For an arbitrary function:
<functi on>

consider:
uncurry (curry <function>) ==
Ag-Ala,b].(g a b) (AM.Ax.Ay. (f [x,y]) <function>) ->
Ag.A[a,b].(g a b) Ax.Ay.(<function> [x,y]) =>
A a, b]. (Ax. Ay. (<function> [x,y]) a b)

which simplifiesto:
AMa, b].(<function> [a,b]) ==
<functi on>

Here we have used aform of n reduction to simplify:
Al <nanel>, <nanme2>]). (<expressi on> [ <nanmel>, <nanme2>])

to:
<expr essi on>

Similarly:
curry (uncurry <function>) ==
MOAXCAY. (f [X,y]) (Ag.A[a,b].(g a b) <function>) ->
AMLOAMCAY. (f [X,y]) (A[a,b].(<function a b) =>
AX.AY. (A[a, b]. (<function> a b) [x,Vy])

which simplifiesto:
AX. Ay. (<function> x y) ==
<functi on>

Again we have used aform of n reduction to simplify:

A<nanmel>. A<nane2>. ( <expr essi on> <nanmel> <nanme2>)
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to:

<expr essi on>.

7.16. Partial application
We have been using a technique which is known as partial application where a multi-parameter function is used to
construct another multi-parameter function by providing arguments for only some of the parameters. We have taken
this for granted because we use nested single bound variable functions. For example, in chapter 5 we defined the
function:

def istype t obj = equal t (type obj)

to test an objects type against an arbitrary typet and then constructed:

def isbool = istype bool _type
def isnumb = istype nunb_type
def ischar = istype char_type
def islist = istype list_type

to test whether an object was a boolean, number, character or list by ‘filling in’ the bound variable t with an
appropriate argument. This creates no problems for us because i st ype is a function of one bound variable which
returns a function of one bound variable. However, many imperative languages with multi-parameter procedures and
functions do not usually allow procedures and functions as objects in their own right, (POP-2 and PS-algol are
exceptions), and so partial application is not directly available. However, an equivalent form is based on defining a
new function or procedure with less parameters which calls the origina procedure or function with some of its
parameters ‘filled in’.

For example, had i st ype been defined in Pascal as:

FUNCTI ON | STYPE( T: TYPEVAL, OBJ: OBJECT) : BOOLEAN
BEG N

I STYPE : = (T = TYPE(OBJ))
END,

assuming that Pascal allowed the construction of appropriate types, then | SBOOL might be defined by:

FUNCTI ON | SBOOL( O: OBJECT) : BOOLEAN
BEG N

| SBOOL : = | STYPE( BOOL_TYPE, O)
END

and
| SNUVB
by:

FUNCTI ON | SNUMB( OBJ: OBJECT) : BOOLEAN
BEG N

I SNUMB : = | STYPE( NUMB_TYPE, OBJ)
END

and so on. In our notation, it is asif we had defined:
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def istype (t::0)= equal t (type 0)

def isbool obj i stype (bool _type::obj)

def isnumb obj = istype (nunb_type::obj)

and so on.

Here, we have explicitly provided a value for the second bound variable o from the new single bound variable obj .
In practical terms, curried functions are more flexible to use but less efficient to implement as more function entry and
exit is necessitated.

7.17. Summary

In this chapter we have:

. represented composite values as lists

. devel oped selector functions to simplify composite value manipulation

. introduced generalised list structure matching

. introduced notations for local definitions

. considered the efficiency of naive linear list algorithms

. represented trees as lists

. devel oped functions to manipulate ordered binary trees

. considered the efficiency of binary trees

. met curried and uncurried functions, and partial application

Some of these topics arte summarised below.

Generalised structure matching

def <name> [ <nanmel>, <name2>, <name3> ... ] =
<expressi on using ‘<namel>, ‘<nane2>, ‘<nane3d> ... >

def <name> <bound variabl e> =
<expressi on using ‘ HEAD <bound vari abl e>",
‘HEAD (TAIL <bound vari able>)’,
‘HEAD (TAIL (TAIL <bound variable>))’ ... >
L ocal definitions

| et <nane> = <expressionl>
i n <expression2> ==

<expr essi on2>
wher e <nane> = <expression> ==

A<name>. <expr essi on2> <expressi onl>
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Curried and uncurried functions

A<nanel>. A<name2>...A<naneN>. <body> ==

Al <nanel>, <nane2> ... <naneN>].<body>

7.18. Exercises

1)

2)

3

The time of day might be represented as a list with three integer fields for hours, minutes and seconds:
[ <hour s>, <m nut es>, <seconds>]

For example:

[17,35,42] == 17 hours 35 nminutes 42 seconds

Note that:

24 hours = 0 hours

1 hour == 60 ninutes

1 nminute == 60 seconds

i) Write functions to convert from atime of day to seconds and from seconds to atime of day. For example:
TOO SECS [2,30,25] => ... => 9025

FROM SECS 48975 => ... => [13, 36, 15]

ii) Write afunction which increments the time of day by one second. For example:

TICK [15,27,18] => ... => [15,27, 19]
TICK [ 15, 44,59] => ... => [15, 45, 0]
TICK [15,59,59] => ... => [16,0, 0]
TICK [23,59,59] => ... =>[0,0,0]

iii) In a shop, each transaction at a cash register is time stamped. Given alist of transaction details, where each
isastring followed by atime of day, write a function which sorts them into ascending time order. For example:

TSORT [["haggis",[12,19,57]],
["clouty dunpling",[18, 22,48]],
["white pudding",[10, 12, 35]],
[ "oat cakes",[15,47,19]]] => ... =>
[["white pudding",[10,12,35]],
["bhaggis",[12,19,57]],
[ "oat cakes", [ 15, 47,19]]
["clouty dunpling",[18, 22, 48]]]
i) Write afunction which compares two integer binary trees.
ii) Write afunction which indicates whether or not one integer binary tree contains another as a sub-tree.

iii) Write afunction which traverses a binary tree to produce alist of node valuesin descending order.

Strictly bracketed integer arithemtic expressions:
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<expr essi on>)
<expr essi on>)
<expr essi on>)

+ + + +

I

I

I
(<expression> |
<nunber >

<expr essi on>)

might be represented by anested list structure so:

(<expressionl> +
(<expressionl> -
(<expressionl> *
(<expressionl> /

<expr essi on2>)
<expr essi on2>)
<expr essi on2>)
<expr essi on2>)

[ <expressionl>, "+", <expressi on2>]
[ <expressionl> "-", 6 <expression2>]
[ <expressionl> "*" <expression2>]
[ <expressionl> "/", <expression2>]

<nunber > == <nunber >

For example:

3 ==

(3 * 4) ==1[3,"*", 4]

((3*4) -5 ==[[3"*",4],"-",5]

((3*4) - (5+6)) ==[[3"*",4],"-",[5"+",6]]

Write a function which evaluates a nested list representation of an arithmetic expression. For example:

EVAL 3 => ... => 3

EVAL [3,"*",4] => ... => 12

EVAL [[3,"*",4],"-",5] => ... =>7

EVAL [[3,"*",4],"-",[5,"+",6]] => ... => 11

8. EVALUATION

8.1. Introduction
In this chapter we are going to look at evaluation order in more detail .

First of all we will consider the relative merits of applicative and normal order evaluation and see that applicative
order is generally more efficient than normal order. We will also see that applicative order evaluation may lead to
non-terminating evaluation segquences where normal order evaluation terminates, with our representations of
conditional expressions and recursion.

We will then see that the halting problem is undecideable in undecidable so it is not possible to tell whether or not the
evauation of an arbitrary A expression terminates. We will also survey the Church-Rosser theorems which show that
normal and applicative order evaluation order are equivalent but that normal order is more likely to terminate.

Finally, we will ook at lazy evaluation which combines the best features of normal and applicative orders.

8.2. Termination and normal form

A lambda expression which cannot be reduced any further is said to bein normal form. Our definition of 3 reduction
in chapter 2 implied that evaluation of an expression terminates when it is no longer afunction application. Thiswon't
reduce an expression to normal form. Technically we should go on evaluating the function body until it contains no
more function applications. Otherwise, expressions which actually reduce to the same normal form appear to be
different. For example, consider:
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AX. X Aa. (a a)
and:

M. Aa. (f a) As. (s s)
Thefirst reduces as:

AX.X Aa.(a a) =>

Aa. (a a)
and the second as:
M.Aa. (f a) As. (s s) =>
Aa. (As. (s s) a)

Evaluation using our definition of B reduction terminates with two different final forms. If, however, we continue to
eva uate the body of the second:

Aa. (As. (s s) a) =>
Aa. (a a)
we can see that they are actually identical.

To be more formal, a reducible function application expression is called a redex. An expression is in normal forms
when it contains no more redexes.

We will still tend to stop evaluation when we reach a recognisable function or function application. Thus, for lists we
will continue to leave:

<val uel>:: <val ue2>
asitisinstead of tranglating to the function application:
CONS <val uel> <val ue2>

and continuing with evaluation.

8.3. Normal order

Normal order 3 reduction requires the evaluation of the leftmost redex in a expression. For a function application, this
will evaluate the function expression and then carry out the substitution of the unevaluated argument. Normal order
evauation has the effect of delaying the evaluation of applications which are in turn arguments for other applications
and may result in the multiple evaluation of expressions. Consider, for example:

rec ADD X Y =
I|F | SZERO Y
THEN X
ELSE ADD (SUCC X) (PRED Y)
Now, if we evaluate:

ADD 1 (ADD 1 2) => ... =>
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| F 1 SZERO (ADD 1 2)

THEN 1
ELSE ADD (SUCC 1) (PRED (ADD 1 2)) => ... =>

ADD (SUCC 1) (PRED (ADD 1 2)) => ... =>

| F 1 SZERO (PRED (ADD 1 2))

THEN SuccC 1

ELSE ADD (SUCC (SUCC 1)) (PRED (PRED (ADD 1 2))) => ... =>
ADD (SUCC (SUCC 1)) (PRED (PRED (ADD 1 2))) => ... =>

| F 1 SZERO (PRED (PRED (ADD 1 2)))
THEN SUCC (SUCC 1)
ELSE ADD (SUCC (SUCC (SUCC 1))) (PRED (PRED (PRED (ADD 1 2)))) => ... =>

ADD (SUCC (SucC (sucC 1))) (PRED (PRED (PRED (ADD 1 2)))) => ... =>

| F | SZERO (PRED (PRED (PRED (ADD 1 2))))

THEN SUCC ( SUCC (SUCC 1))

ELSE ... => ... =>

SUCC (SuUCC (SsucC 1)) ==

4
is returned.
ADD 1 2 has been evaluated 4 times even though it only appeared once originaly. In the initia call to ADD the
argument ADD 1 2 isnot evaluated because it is not aleftmost application. Instead it completely replaces the bound
variable Y throughout ADD's body. Thereafter it is evaluated in the | F condition but when ADD is called recursively it
becomes an argument for the call so evaluation is again delayed. We aso had to repeatedly evaluate other
applications, for example PRED ( ADD 1 2) in the condition, athough we did not highlight these.
In general, for normal order evaluation, an unevaluated application argument will replace all occurrences of the
associated bound variable in the function body. Each replacement is the site of initiation of potential additional

evauation. Clearly, the more often the bound variable appears in the body, the more argument evaluation may
multiply.

8.4. Applicative order

Applicative order (3 reduction of an application requires the evaluation ofs both the function and the argument
expressions. More formally, this involves the evaluation of the left most redex free of internal redexes. For afunction
application, thiswill result in each argument only being evaluated once.

For example, evaluating our previous example in applicative order:

ADD 1 (ADD 1 2) ->

ADD 1 3 -> ... ->
| F | SZERO 3

THEN 1

ELSE ADD (SUCC 1) (PRED 3) -> ... ->

ADD (SUCC 1) (PRED 3) ->
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ADD 2 2 ->
| F | SZERO 2

THEN 2

ELSE ADD (SUCC 2) (PRED 2) -> ... ->

ADD (SUCC 2) (PRED 2) ->

ADD3 1 ->... ->
| F 1 SZERO 1

THEN 3

ELSE ADD (SUCC 3) (PRED 1) -> ... ->

ADD (SucC 3) (PRED 1) ->
ADD 40 ->... ->

IF | SZERO 0O

THEN 4

ELSE ... -> ... ->

4

Here argument evaluation appears to be minimised. For example, ADD 1 2 and PRED (ADD 1 2) are only
evaluated once.

8.5. Consistent applicative order use

We have actualy been using applicative order somewhat selectively; in particular, we are still evaluating | Fs in
normal order. Let uslook at the previous example again, this time using untyped arithmetic to simplify things:

rec add x y =
if iszeroy
then x
el se add (succ x) (pred vy)
Now, consider:
succ (add one two)
First of al, the argument add one t wo isevaluated:
add one two -> ... ->
if iszero two
then one
el se add (succ one) (pred two)
Now, recall our definition of i f as a syntactic simplification of:
def cond el e2 ¢ = ¢ el e2

Thus, after substitution for adds bound variables, add 1 2 becomes:

cond one (add (succ one) (pred two)) (iszero two) ->
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cond one (add (succ one) (pred two)) true
S0 now we have to evaluate:
add (succ one) (pred tw) -> ... ->
add two one -> ... ->
if iszero one
then two
el se add (succ two) (pred one)
Again, replacing i f with cond we have:
cond two (add (succ two) (pred one)) (iszero one) ->

cond two (add (succ two) (pred one)) true

so we have to evaluate:
add (succ two) (pred one) -> ... ->
add three zero -> ... ->

if iszero zero

then three

el se add (succ three) (pred zero)
which trandatesto:

cond three (add (succ three) (pred zero)) (iszero zero) ->

cond three (add (succ three) (pred zero)) true
so we have to evaluate:

add (succ three) (pred zero) -> ... ->

add four zero
and so on.
Evaluation will never terminate! Thisis not because pr ed zer o isdefinedto bezer o. The evaluation would still
not terminate even if an error were returned from pr ed zer o. Rather, the problem lies with consistent applicative
order use.
i f is just another function. When an i f is used it is just the same as caling a function in an application: all
arguments must be evaluated before substitution takes place. Recursive functions are built out of i f ssoif ani fs
argument is itself a recursive function call then, in applicative order, argument evaluation will recurse indefinitely.
This does not occur with normal order evaluation because the recursive function call argument to i f is not evaluated
until it isselected inthei f sbody.

We can see the same difficulty more starkly with our construction for recursion. Recall:

def recursive f = As. (f (s s)) As.(f (s s))
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and consider, for an arbitrary function <f unct i on>:
recursive <function> ==
M. (As. (f (s s)) As.(f (s s))) <function> ->
As. (<function> (s s) As.(<function> (s s) ->

<functi on>
(As. (<function> (s s) As.(<function> (s s)) ->

<function>
(<function>
(As. (<function> (s s) As.(<function> (s s))) ->
<functi on>
(<function>
(<function>
(As. (<function> (s s) As.(<function> (s s))))
and so on. Again thiswon't terminate. This does not arise with normal order because argument evaluation is delayed.

In this example, the self-application will depend on <f unct i on> caling itself recursively and is delayed until the
recursive call is encountered as the leftmost application.

8.6. Delaying evaluation

With consistent applicative order use we need to find some means of delaying argument evaluation explicitly. One
way, as we saw when we discussed recursion, is to add an extra layer of abstraction to make an argument into a
function body and then extract the argument with explicit function application to evaluate the body.

For example, for ani f we need to delay evaluation of thet hen and el se options until oneis selected. We might try
changingani f to takethe form:

def cond el e2 ¢ = ¢ Adummy. el Adummy. e2

to delay the evaluation of el and e2. Heretheideaisthat if the condition c ist r ue then:
Adummy. el

is selected and if the conditionisf al se then:
Adummy. e2

is selected. Sadly, thiswon’'t work. Remember:
def cond el e2 ¢ = ¢ Adummy. el Adummy. e2

is short-hand for:
def cond = Ael.Ae2.Ac. (c Adummy.el Adunmmy. e2)

so when cond is called the arguments corresponding to e1 and e2 are evaluated before being passed to:
Adummy. el

and:
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Adunmmy. e2
Instead, we have to change our notation fori f. Now:
if <condition>
t hen <true choice>
el se <fal se choice>
will be replaced by:

cond Adunmy. <true choi ce> Adummy. <f al se choi ce> <condi ti on>

Thus<true choi ce>and <f al se choi ce> will be inserted straight into the call to cond without evaluation.
We have introduced the delay through atextual substitution technique which is equivalent to normal order evaluation.

Alternatively, we could redefine our def notation so it behaves like a macro definition and then our first attempt
would work. A macro is a text substitution function. When a macro is called occurences of its bound variables in its
body are replaced by the arguments. Macros are used for abstraction in programming languages, for examplein C and
in many assembly languages, but result in the addition of in-line text rather than layers of procedure or functions calls.
Here:

def <name> <bound vari abl es> = <body>
might introduce the macro <name> and subsequent occurrences of:

<nane> <argunent s>

would require the replacment of <bound vari abl es> in <body> with the corresponding <ar gunent s>
followed by the evaluation of the resulting <body>

Thiswould introduce macro expansion in aform equivalent to normal order evaluation.

Here we will redefineif ... then ... else .... Now,true andfal se must be changed to force the
evaluation of the selected option. This suggests:

def true x y = x identity
def false x y =y identity
For arbitrary expressions<expr essi onl> and <expr essi on2>:
if true
t hen <expressionl>
el se <expression2> ==
cond Adunmy. <expressi onl> Adummy. <expressi on2> true ==
true Adunmmy. <expressi onl> Adunmy. <expression2> -> ... ->
Adunmy. <expressionl> identity ->
<expressi onl>

and:

if false
t hen <expressionl>
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el se <expression2> ==

cond Adunmy. <expressi onl> Adummy. <expressi on2> fal se ==
fal se Adummy. <expr essi onl> Adunmy. <expression2> -> ... ->
Adummy. <expr essi on2> identity ->

<expressi on2>

This delayed evaluation approach is similar to the use of thunks to implement ALGOL 60 call by name. A thunk is a
parameterless procedure which is produced for a call by name parameter to delay evaluation of that parameter until the
parameter is encountered in the procedure or function body.

Note that to follow this through, all definitions involving booleans also have to change to accommodate the new forms
fortrue andf al se. Wewon't consider this further.

We could also use abstraction to build an applicative order version of r ecur si ve: we won’'t consider this further
either.

The effect of using abstraction to delay evaluation is to reintroduce the multiple evaluation associated with normal
order. Any expression which is delayed by abstraction must be evaluated explicitly. Thus, if bound variable
substitution places a delayed expression in severa placesthen it must be explicitly evaluated in each place.

Clearly, for functional language implementations based on applicative order evaluation some compromises must be
made. For example, LISP is usually implemented with applicative order evaluation but the conditional operator COND
implicitly delays evaluation of its arguments. Thus, the definition of recursive functions causes no problems. LISP
also provides the QUOTE and EVAL operatorsto delay and force expression evaluation explicitly.

8.7. Evaluation termination, the halting problem, evaluation equivalance and the Church-
Rosser theorems

We have tacitly assumed that there is some equivalence between norma and applicative order and we have switched
between them with cheery abandon. There are, however, differences. We have seen that normal order may lead to
repetitive argument evaluation and that applicative order may not terminate. Of course, normal order may not
terminate aswell. One of our first examples:

As. (s s) As. (s s)
showed us this.

In general, there is no way of telling whether or not the evaluation of an expression will ever terminate. This was
shown originally by Alan Turing who devised a formal model for computing based on what are known as Turing
machines. Turing proved that it is impossible to construct a Turing machine to tell whether or not an arbitrary Turing
machine halts: in formal terminology, the halting problem for Turing machinesis undecidable.

Church’s thesis hypothesised that all descriptions of computing are equivalent. Thus any result for one appliesto the
other as well. In particular, it has been shown that the A calculus and Turing machines are equivalent: for every
Turing machine there is an equivalent A expression and vice-versa. Thus, the undecidability of the halting problem
applies to the A calculus as well so there is no way to tell if evaluation of an arbitrary A expression terminates. In
principle, we can just go on evaluating individual A expressions in the hope that evaluation will terminate but thereis
no way of being surethat it will.

To return to normal and applicative order reduction: two theorems by Church and Rosser show that they are
interchangeable but that normal order gives a better guarantee of evaluation termination.
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The first Church-Rosser theorem shows that every expression has a unique normal form. Thus, if an expression is
reduced using two different evaluation orders and both reductions terminate then they both lead to the same normal
form. For example, if normal and applicative order reductions of an expression both terminate then they produce the
same final result. This suggests that we can use normal and applicative orders as we choose.

The second Church-Rosser theorem shows that if an expression has a normal form then it may be reached by normal
order evaluation. In other words, if any evaluation order will terminate then normal order evaluation is guaranteed to
terminate.

These theorems suggest that normal order evaluation is the best bet if finding the normal form for an expression is an
over-riding consideration.

As we have seen, there are practical advantages in the selective use of applicative order and in not evaluating function

bodies even though the first reduces the likelihood of termination and the second may stop evaluation before a normal
form isreached. We will discuss evaluation strategies for real functional languages in subseguent sections.

8.8. Infinite objects
The evaluation delay with normal order evaluation enables the construction of infinite structures. For example, for
lists with normal order evaluation, if a CONS constructs a list from a recursive call then evaluation of that call is
delayed until the corresponding field is selected. To illustrate this, we will use typeless versions of CONS, HEAD and
TAI L:

def cons ht s =s ht

def head I =1 AX.Ay.X

def tail | =1 AX.Ay.y
Now, let us define the list of all numbers:

rec nunblist n = cons n (nunblist (succ n))

def nunbers = nunblist zero
In normal order, nunber s’ definition leads to:

nunbl i st zero => ... =>

cons zero (nunblist (succ zero) => ... =>

As. (s zero (nunblist (succ zero)))

Now:
head nunmbers => ... =>
As. (s zero (numblist (succ zero))) AX.Ay.x => ... =>
zero
and:
tail nunmbers => ... =>
As. (s zero (numblist (succ zero))) AX.Ay.y => ... =>
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nunbl i st (succ zero) => ... =>

As. (s (succ zero) (numblist (succ (succ zero)))

SO:
head (tail numbers) => ... =>
(tail nunbers) Ax.Ay.x => ... =>
As. (s (succ zero) (numblist (succ (succ zero)))) AX.Ay.x => ... =>
(succ zero)

and:
tail (tail numbers) => ... =>
(tail numbers) AX.Ay.y => ... =>
As. (s (succ zero) (nunblist (succ (succ zero)))) AX.Ay.y => ... =>
numbl i st (succ (succ zero)) => ... =>

As. (s (succ (succ zero)) (nunblist (succ (succ (succ zero)))))
In applicative order, this definition would not terminate because the call to nunbl i st would recurse indefinitely.

In norma order though, we have the multiple evaluation of succ zero, succ (succ zero) and soon. In
addition, the list is recalculated up to the required value every time avalueis selected fromit.

8.9. Lazy evaluation

Lazy evaluation is a method of delaying expression evaluation which avoids multiple evaluation of the same
expression. Thus, it combines the advantages of normal order and applicative order evaluation. With lazy evaluation,
an expression is evaluated when its value is needed; that is when it appears in the function position in a function
application. However, after evaluation all copies of that expression are updated with the new vaue. Hence, lazy
evaluation is also known as call by need.

Lazy evaluation requires some means of keeping track of multiple copies of expressions. We will give each bound pair
in an expression a unique subscript. During expression evaluation, when a bound pair replaces a bound variable it
retains its subscript but the bound pair containing the variable and copies of it, and the surrounding bound pairs and
their copies are given consistent new subscripts.

For example, consider:

(As. (s s)1 (AX. X )\y.y)2)3

To evaluate the outer bound pair 3, the argument bound pair 2 is copied into the function body bound pair 1 which is
renumbered 4:

((AX. X Ay.Y) 2 (AX. X Ay.y) 2)4
Note that bound pair 2 occurstwice in bound pair 4.

To evaluate bound pair 4 first evaluate the function expression which is bound pair 2:
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(AX. X Ay.y) 5 =>
AY. Y
and then replace al occurrences of it in bound pair 4 with the new value and renumber bound pair 4 as 5 to get:
(Ay.y Ay.y)g
Finally, evaluate bound pair 5:
Ay.y
Note that bound pair 2:
(AX. X Ay.y) 2
has only been evaluated once even though it occursin two places.
We can now see a substantial saving in normal order evaluation with recursion. To simplify presentation we will only
number bound pairs which may be evaluated several times and we won't expand everything into lambda functions.
We will also use applicative order to simplify things occasionally.
Consider addition once again:
rec ADD X Y =
I F I SZERO Y
THEN X
ELSE ADD (SUCC X) (PRED Y)
For the evaluation of:
ADD 2 2 => ... =>
| F 1 SZERO 2
THEN 2
ELSE ADD (SUCC 2) (PRED 2), => ... =>
ADD (SUCC 2) (PRED 2), => ... =>

| F | SZERO (PRED 2) |
THEN ( SUCC 1)

ELSE ADD (SUCC (SUCC 2)) (PRED (PRED 2),)
evaluate:

| SZERO (PRED 2) 4
which leads to the evaluation of bound pair 1:

(PRED 2) , => ... =>1
which replaces all other occurrences of bound pair 1:

I F | SZERO 1

THEN SUCC 1

ELSE ADD (SUCC (SUCC 2)) (PRED 1), => ... =>

ADD (SUCC (SUCC 2)) (PRED 1), => ... =>
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| F | SZERO (PRED 1)
THEN (SUCC (SUCC 2f)
ELSE ADD (SUCC (SUCC (SUCC 2))) (PRED (PRED 1))

| SZERO (PRED 1),
is evaluated which involves the evaluation of bound pair 2:
(PRED 1), => ... =>0

which replaces all other occurrences of bound pair 2:

| F | SZERO 0
THEN SUCC (SUCC 2)

ELSE ADD (SUCC (SUCC (SUCC 2))) (PRED 0) => ... =>
SUCC (SUCC 2) => ... =>

0

Here, the evaluation of arguments is delayed, as for normal order, but an argument is only evaluated once, as for
applicative order.

Lazy evaluation avoids repetitive evaluation in infinite lists as the list is extended whenever head or tail evaluation
occurs. This makes them useful when the same values are going to be used repeatedly and one wants to avoid
recalculating them every time.

For example, we might define afunction to calculate squares as:

def SQ X = X * X

Every time we required the square of a number, SQwould calculate it afresh. We could put the squaresinto an infinite
list:

rec SQLIST N = (SQ N)::(SQIST (SUCC N))
def SQUARES = SQ.IST O
s0 SQUARES is:
(SQ 0):: (SQI ST (succ o) 1)2
Here, we have only labeled the recursive extension of thelist.
We now construct functions to select values from the list:
rec IFIND NL =
| F | SZERO N
THEN HEAD L
ELSE IFIND (PRED N) (TAIL L)
def SQUARE N = | FIND N SQUARES
Now, if a particular square has been selected before then it is already in the list and is just selected. Otherwise,

selection forces evauation until the required value is found. This forced evaluation then leaves new values in the
extended list ready for another value selection.
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For example, consider:

SQUARE 2 => ...=>
|FIND 2 SQUARES => ... =>

IFIND 1 (TAIL SQUARES) => ... =>

IFIND O (TAIL (TAIL SQUARES)) => ... =>

HEAD (TAIL (TAIL SQUARES))
Now, the inner selection of:
TAI L SQUARES ==
TAIL ((SQ0)::(SQLIST (SUCC 0)4) 5)
resultsin the the selection of bound pair 2:
(SQLIST (SucC 0) 4)
The next level of selection:
TAIL (TAIL SQUARES) => ... =>
TAIL (SQUIST (SUCC 0),) 5
resultsin the forced evaluation of bound pair 2:
(SQUIST (SUCC 0) 1) 5 => ... =>
((SQ (SUCC 0) 1) :: (SQLIST (SUCC (SUCC 0) 1) 3) 4) 5
Thus:
TAIL (SQUIST (SUCC 0) ), => ... =>
TAIL ((SQ (SUCC 0) 1) ::(SQIST (SUCC (SUCC 0) 1) 3)4) 5 =>. .. =>
(SQLIST (SUCC (SUCC 0) 4) 3) 4
leads to the selection of bound pair 4.

Note that al occurrences of bound pair 2 were replaced by the new bound pair 5 so SQUARES is now associated with
thelist:

(SQ 0)::((SQ (SUCC 0) 1):: (SQLIST (SUCC (SUCC 0)) 3) )5
Thefinal level of selection:

HEAD (TAIL (TAIL SQUARES)) => ... =>

HEAD (SQLI ST (SUCC (SUCC 0) 1) 5) 4

resultsin the forced evaluation of bound pair 4:



- 158 -

(SQLI ST (succ (succ 0)1)3)4 = ... =>
(SQ (Ssucc (succ 0) 1)3)6: 2 (SQ.I ST (SUCC (Ssucc (succ 0) 1)3)7)8
Occurrences of bound pair 4 are replaced by the new bound pair 8 so SQUARES is how:

(SQ 0)::(SQ (SUCC 0) 1) :: (SQ (SUCC (SUCC 0) 1) 5) ¢ :
(SQUI ST (SUCC (SUCC (SUCC 0) 1) 3) ) g

Thus, evaluation of:
HEAD (TAIL (TAIL SQUARES))
reguires the selection of:
(SQ (SUCC (SUCC 0) 1) 5) ¢
This requires the evaluation of:
(SUCC (Succ 0) 4) 5
which in turn requires the evaluation of:
(SUCCO)1 = ... =1
which replaces all occurrences of bound pair 1. Now, SQUARES is:
(SQ0)::(SQ 1)::(SQ (SUCC 1) 5) g1 (SQLIST (SUCC (SUCC 1) 4)4) g
Thus evaluation of:
(SUCC (sucC 0) 4) 5 => ... =>
(SUcCC 1) 4
gives:
2
which replaces all occurrences of bound pair 3 so SQUARES is now:
(SQ0)::(SQ1)::(SQ 2)g::(SQIST (SUCC 2),)g
Finally, evaluation of:
(SQ 2)4
gives:
4
which replaces all occurrences of bound pair 6 so SQUARES is now:
(SQO0)::(SQ 1)::4::(SQIST (SucC 2))

If we now try:
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SQUARE 1 => ... =>
IFIND 1 SQUARES => ... =>
IFIND O (TAIL SQUARES) => ... =>

HEAD ( TAI L SQUARES) ==

HEAD (TAIL ((SQ 0)::(SQ1)g::4::(SQIST (SUCC 2)))) -> ... ->
HEAD ((SQ 1) g::4::(SQIST (SUCC 2))) => ... =>
(SQ1)9:>... =1

which replaces all occurrences of bound pair 9 so SQUARES is now:
(SQO0)::1::4::(SQIST (SuUCC 2))
Thus, repested list access evaluates more and more of the infinite list but avoids repetitive evaluation.

Lazy evaluation is used for Mirandalists.

8.10. Summary
In this chapter we have:
. compared normal and applicative order 3 reduction and seen that normal order reduction may be less efficient

. seen that consitent applicative order 8 reduction with our conditional expression representation leads to non-
termination

. considered ways of delaying applicative order evaluation
. seen that the halting problem is unsolvable
. met the Church-Rosser theorems which suggest that normal order 3 reduction is most likely to terminate
. seen that normal order 3 reduction enables the construction of infinite objects
. met lazy evaluation as away of combining the best aspects of normal and applicative order [3 reduction
Lazy evaluation is summarised below.
L azy evaluation
i) number every bound pair
ii) Tolazy evaluate ( <f uncti on expressi on> <ar gunment expr essi on>)i
a) lazy evaluate <f unct i on expressi on>to<functi on val ue>
b) if <f uncti on val ue>isA<nane>. <body>
then replace all free occurences of <nane> in <body> with <ar gunment expression>
and renumber consistently all surrounding bound pairs
and replace all occurencesof ( <f uncti on expressi on> <argument expressi on>) i

with the new <body >
and lazy evaluate the new <body >
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or

d) if <f uncti on val ue>isnot afunction
then lazy evaluate<ar gunent expressi on>to<ar gunent val ue>
and replace all occurencesof ( <f uncti on expressi on> <argument expressi on>) i
with (<f uncti on val ue> <argunment val ue>)
and return ( <f uncti on val ue> <ar gunent val ue>)

8.11. Exercises

1) Evaluate the following expressions using normal order, applicative order and lazy evaluation. Explain any
differencesin the final result and the number of reductionsin each case:

i) As.(s s) (AMf.Aa. (f a) AX.X Ay.y)

ii) AX.AY. X AX.X (As.(s s) As.(s s))
iii) Aa.(a a) (AM.As.(f (s s)) Ax.x)

9. FUNCTIONAL PROGRAMMING IN STANDARD ML

9.1. Introduction

ML (Meta Language) is ageneral purpose language with a powerful functional subset. It is used mainly as adesign and
implementation tool for computing theory based research and development. It is also used as a teaching language. ML
is strongly typed with compile time type checking. Function calls are evaluated in applicative order.

ML originated in the mid 1970's as a language for building proofs in Robin Milner's LCF(Logic for Computable
Functions) computer assisted formal reasoning system. SML (Standard ML) was developed in the early 1980’s from
ML with extensions from the Hope functional language. SML is one of the first programming languages to be based
on well defined theoretical foundations.

We won't give a full presentation of SML. Instead, we will concentrate on how SML relates to our approach to
functional programming.

SML is defined in terms of a very simple bar e language which is overlaid with standard derived formsto provide a
higher level syntax. Here, we will just use these derived forms.

We will explain SML with examples. As the symbol - > is used in SML to represent the types of functions, we will
follow SML system usage and show the result of evaluating an expression as:

- <expression>;
> <result>

9.2. Types

Types are central to SML. Every object and construct is typed. Unlike Pascal, types need not be made explicit but they
must be capable of being deduced statically from a program.

SML provides several standard types, for example for booleans, integers, strings, lists and tuples which we will ook at
below. SML also has avariety of mechanisms for defining new types but we won't consider these here.

When representing objects, SML always displays types along with values:
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<val ue> : <type>

For objects which do not have printable value representations SML will still display the types. In particular, function
values are displayed as:

fn: <type>

Types are described by type expressions. We will see how these are constructed as we discuss specific types.

9.3. Basic types - booleans, integersand strings
The type expression for abasic typeisthe type' sidentifier.
The boolean type hasidentifier:

bool
and values:

true fal se
For example:

- true;
> true : bool

The integer type hasidentifier:
i nt

with positive and negative integer values, for example:

- 42;
> 42 : int
- 784
"84 : int

Notetheuse of ~ asthe negative sign.
The string type hasidentifier:
string
String values are character sequences within
- "lIs this a string?";
> "ls this a string?" : string
9.4. Lists

In SML, unlike LISP and our approach to A calculus, alist must contain el ements of the same type and end with the
empty list. Thus, lists cannot be used to represent records with different type fields.

Listsarewritten as, separated element sequenceswithin[ and] . For example:
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[1, 4,9, 16, 25]

["ant", "beetle","caterpillar","dragonfly", "earw g"]
Thereisan implied empty list at the end of alist.

[]
isthe empty list.
The type expression for alist depends on the element type:

<el enent type> |ist

Thefirst example above:

- [1,4,9, 16, 25];
>[1,4,9,16,25] : int list

isalist of integers. The second example above:

- ["ant", "beetle","caterpillar","dragonfly", "earw g"];
> ["ant","beetle","caterpillar”,"dragonfly", "earwig"] : string list

isalist of strings.
Lists may be nested, for example:

1,1],[2,8],[3,27],[ 4, 64],[5, 125]];
1,1],[2,8],[3,27],[4,64],[5,125]] : (int list) list

isalist of integer lists.

Notetheuseof ( and) to structure the type expression.

9.5. Tuples

An ML tuple, like a Pascal RECORD, is fixed length sequence of elements of different types, unlike a list which is
variable length sequence of elements of the sametype. Tuplesarewritten as, separated sequenceswithin ( and) .

For example, we might represent a stock control record from chapter 7 as:
("VDUs", 250, 120)

Tuples may be nested. For example, we might represent a telephone directory entry from chapter 7 as:
(("Anna", "Abl e"), "Accounts", 101)

A tuple' stypeis represented by its elements’ types separated by * s:
<elementl type> * <elenment2 type> * ...

For example:

("VvDUs", 250, 120);
> ("VDUs", 250,120) : string * int * int
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isatuple consisting of two integers and a string. For example:

- (("Anna", "Able"), "Accounts", 101);
> (("Anna","Able"),"Accounts",101) : (string * string) * string * int

isatuple consisting of atuple consisting of two strings, a string and an integer.
These may be used to build tuple lists, for example a stock control list:

- [("VvDUs", 250, 120),
("mce", 155, 170),
("printers", 43,20)];
> [("VDUs", 250, 120),
("mce", 155, 170),
("printers",43,20)] : (string * int * int) |ist

or atelephone directory:

- [(("Anna", "Abl e"), "Accounts", 101),
(("Betty", "Baker"),"Boiler rooni, 102),
(("Coe","Charlie"),"Customer orders", 103)];
(("Anna", "Abl e"], "Accounts", 101),
(("Betty", "Baker"),"Boiler rooni, 102),
(("Coe","Charlie"),"Customer orders",103)] : ((string * string) *
string * int) list

> [

Note that if atupleis defined with expression elements then those expressions are evaluated from left to right. Thus, as
tuples are used to specify bound variables for uncurried functions, such functions have a defined actual parameter
evauation order.

9.6. Function types and expressions

A function uses values in an argument domain to produce afinal valuein aresult range. In SML, afunction’stypeis
characterised by its domain and range types:

fn : <domain type> -> <range type>
Note the use of - > to indicate a function’ s domain/range mapping.
Tuples are normally used to enable uncurried functions with multiple bound variables.

In SML, asin A calculus and LISP, expressions are usualy based on prefix notation function applications with the
function preceding the arguments:

<functi on expressi on> <argunent expression>
Function applications are evaluated in applicative order.

Note that function applications need not be explicitly bracketed but brackets should be used round arguments to avoid
ambiguity.

SML enables uncurried binary functions to be used as infix operators so the function name may appear in between the
two arguments. They are then typed asif they had tuples for arguments. We won't consider this further here.

Similarly, many standard binary functions are provided as infix operators. They may be treated as prefix functions on
tuples by preceding them with:
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op

Wewill look at thisin more detail when we consider standard functions.

9.7. Boolean standard functions
The boolean negation function:
not
returns the negation of its boolean argument, for example:

- not true;
> fal se : bool

Thus, not 'stypeis:

- not;
> fn : bool -> bool

Conjunction and disjunction are provided through the sequential infix operators:
andal so orel se
in the derived syntax, for example:

- true orel se fal se;
> true : bool

- true andal so fal se;
> fal se : bool

SML systems may not be able to display these operators’ types but they are effectively:
fn: (bool * bool) -> bool

as they both take two boolean arguments, which are treated as a
bool * bool

tuple for infix syntax, and return a boolean result.

9.8. Numeric standard functions and oper ator overloading
SML provides real numbers as well as integers. However, as in many other languages, the same operators are used for
both even though they are distinct types. This use of the same operator with different types is known as operator
overloading.
The addition, subtraction and multiplication infix operators are:

+ - *

SML systems may not display their types because they are overloaded. SML literature uses the invented type:

num
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to indicate both integer and real so these operators types might be:
fn: (num* num -> num
asthey take two numeric arguments, with infix syntax for atuple, and return a numeric result.
Note that for each operator both arguments must be the same type.
The infix operator:
div
isfor integer division. We can use op to convert it to prefix form to display its type:

- op div;
>fn: (int * int) ->int

Arithmetic expressions are built from these operators with the brackets ( and ), for example:

-6 * 7div (7 - 4) + 28;
> 42 : int

Note that thereis no strict bracketing. The usual precedence:
()
before:
div *
before:
+ -
applies.
The numeric negation operator is:
again with effective type:
fn: num-> num

asit isoverloaded for use with integers and reals.

9.9. String standard functions
The binary infix operator:

concatenates two strings together:

- op
>fn : (string * string) -> string
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For example:

- "Happy"™" birthday!";
> "Happy birthday!" : string

The operator:
si ze
returns the size of a string:

- size;
>fn : string -> int

For example:

- size "hello";
>5: int

Standard functions for turning strings into string lists are discussed below.

9.10. List standard functions

In SML, list operations apply to lists of any types. In SML, an unknown type is denoted by a single letter name
preceded by aprime-' , for example:

"a'b'c
Thus, we can refer to alist of arbitrary typed objects as having type:
"a list
In SML, lists are accessed by the head and tail operators:
hd tl
The head operator returns the head object with type:
"a
from an arbitrary typed list. Thus, hd is of type:

- hd;
>fn: ("alist) ->"a

For example:

- hd [1,2,3,4,5];
>1: int

Similarly, the tail operator returns the tail with type:
"a list

from an arbitrary typelist. Thus, t | isof type:
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- tl
>fn: ("alist) -> ("alist)
For example:

- tl ["al pha", "beta", "gamm", "delta", "epsilon"];
> ["beta","gamm","delta","epsilon"] : string list

Theinfix list concatenation operator is:

Given an object and alist of the same type of object, : : returns a new list with the object in the head and the object
listinthetail. Thus, : : hastype:

- op i
>((a* ("alist)) -> ("a list)

For example:

- 0::]1,2,3,4,5];
>[0,1,2,3,4,5] : int list

The operatorshd, t1 and:: aresaid to be polymorphic because they apply to alist of any type of object. We will
look at polymorphism in dlightly more detail later.

9.11. Characters, strings and lists
SML does not provide a separate character type. Instead, a character is a one letter string.
The standard function
ord
converts asingle character string to the equivalent ASCII code:

- ord,;
>fn : string -> int

For example:

- ord "a";
> 97 @ int

Similarly, the standard function
chr
converts an integer ASCII value into the equivalent single character string:

- chr;
>fn: int -> string

For example:

- chr 54;
> "6" : string
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In order to access the individual characters making up a string it must be unpacked into a list of single character
strings. The standard function:
expl ode
doesthis:

- expl ode;
>fn : string -> (string list)

For example:

- explode "hello";
>["h","e","l"1"|"1,0"] : Stringlist

Similarly, the standard function:
i npl ode

convertsalist of strings to asingle string:

- i npl ode;
>fn : (string list) -> string
For example:
- inplode ["Tine ","for ","tea?"];
> "Time for tea?" : string

Notethat i npl ode will join strings of any length.

9.12. Comparison operators

SML provides avariety of overloaded infix comparison operators. Equality and inequality are tested with:
= <>

and may be used with booleans, integers, strings, lists and tuples.

Theless than, less than or equal, greater than and greater than or equal operators:
< <= >= >

may be used with numbers and strings. For strings, they test for al phabetic order, for example:

"haggi s" < "oatcake";
> true : bool

SML systems may not display these operators’ types because they are overloaded.

For all these operators, both arguments must be of the same type.

9.13. Functions



-169 -

Functions have the form:
fn <bound vari abl es> => <expressi on>

A bound variable is known as an alphabetic identifier and consists of one or more letters, digits and _s starting with a
letter, for example:

oxynoron Home_on_t he_range Hi ghway61l
A function’ s bound variable may be a single bound variable or a tuple of bound variable elements.
For example:

- fn x => x+1;
>fn:int ->int

increments its argument.
Note that SML deducesthat the domain and range arei nt because + isused with thei nt argument 1.
For example:

- fnx = fny => not (x orelse y);
> fn : bool -> (bool -> bool)

is the boolean implication function.

Note that or el se has aboolean tuple domain so x and y must both be boolean. Similarly, not returns a boolean so
the inner function:

fny =>not (x orelsey)
hastype:
bool -> bool
Hence, the whole function has type:
fn: bool -> (bool -> bool)
This might have been written with a tuple domain:
- fn (x,y) => not (x orelse y);
> fn : (bool * bool) -> bool
9.14. Making bound variables types explicit
Suppose we try to define a squaring function:
fnx => x*x
Because * isoverloaded, SML cannot deduce x’ stype and will reject this function.
Domain types may be made explicit by following each bound variable with its type. Thus for asingle bound variable:

(<bound variable> : <type>)
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isused. For example, an integer squaring function may be defined by:

- fn (x:int) => x*x;
>fn: int ->int

For atuple of bound variables:
(<bound variabl el> : <typel> <bound variable2> : <type2>, ... )
isused. For example, we might define the sum of squares function as:

- fn (xiint,yrint) => x*x+y*y;
>fn: (int * int) ->int

It is thought to be ‘good practise’ to make all bound variables' types explicit. This is supposed to make it easier to
read functions and to ensure that types are consistent. However, without care, type expressions can become
unmanageably long. SML provides ways to name complex types which we will consider in alater section.

9.15. Definitions

Global definitions may be established with:

val <nanme> = <expression>

For example:
- val sq = fn (x:int) => x*x;
>val sq =fn: int ->int

- val sum.sq
> val sum.sq

fn (x:int,y:int) => x*x+y*y;
fn: (int * int) ->int

Note that the SML system acknowledges the definition by displaying the defined name and the expression’s value
and/or type.

Defined names may be used in subsequent expressions, for example:

- sq 3;
>9 : int

and subsequent definitions, for example:

- val sum.sq
> val sum sq

fn (x:int,y:int) => (sq x)+(sq V)
fn: (int * int) ->int

9.16. Conditional expressions

The SML conditional expression has the form:
i f <expressionl>
t hen <expressi on2>

el se <expressi on3>

The first expression must return a boolean and the option expressions <expr essi on2> and <expr essi on3>
must have the same type.
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For example, to find the larger of two integers:

- val max = fn (xrint,y:int) =>if x>y
t hen x
el se y;

>val max = fn : (int * int) ->int

For example, to define sequentia boolean implication:

-val imp =fn (x,y) = if x

then y

el se true;
fn: (bool * bool) -> bool

> val inp

9.17. Recursion and function definitions
To define recursive functions, the defined name is preceded by:
rec
For example, to find the length of an integer list:
- val rec length = fn (l:int list) =>if | =[]
then O
el se 1+(length (t1 1))
>val length = fn : (int list) ->int
Aswith our A calculus notation there is a shortened form for function definitions. Instead of val :

fun

is used to introduce the definition, the f n is dropped, the bound variables are moved to the left of the = and the => is
dropped. For recursive definitions, ther ec isdropped. Thus:

fun <name> <bound vari abl es> = <expressi on> ==
val rec <nanme> = fn <bound vari abl es> => <expressi on>
For example, to square al the valuesin an integer list:

- fun squarel (l:int list) =
if 1=[]

then []
else ((hd 1)*(hd I))::(squarel (tI 1));
> fun squarel =fn : (int list) -> (int list)

For example, to insert a string into an ordered string list:

- fun sinsert (s:string,l:string list) =
if 1l =11
then [s]
el se
if s < (hdl)
then s::|
else (hd I)::(sinsert (s,(tl 1)));
> val sinsert = fn : (string * (string list)) -> (string list)
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9.18. Tuple selection

Tuple elements are selected by defining functions with appropriate bound variable tuples. For example, to select the
name, department and ' phone number from a telephone directory entry tuple:

- fun tname (n:(string * string),d:string,p:int) = n;
> val tname = fn : ((string * string) * string * int) -> (string * string)

- fun tdept (n:(string * string),d:string,p:int) = d;
> val tdept = fn : ((string * string) * string * int) -> string

- fun tno (n:(string * string),d:string,p:int) = p;
>val tno = fn : ((string * string) * string * int) -> int

To avoid writing out bound variables which are not used in the function body, SML provides the wild card variable:

which behaves like a nameless variable of arbitrary type. For example, we could rewrite the above examples as:

- fun tnane (n:(string * string), _,_

) = n
> val tname = fn : ((string * string) * '

a* 'b) -> (string * string)

- tname (("Anna","Able"),"Accounts", 123);
> ("Anna","Able") : (string * string)

- fun tdept (_,d:string,_ ) = d;

> val tdept = fn: ("a * string *’b) -> string
- tdept (("Anna","Able"),"Accounts", 123);

> "Accounts" : string

- fun tno (_, _,p:int) = p;

>val tno=fn: (Ca* 'b* int) ->int

- tno (("Anna", "Able"),"Accounts", 123);

> 123 : int

Notethat SML uses’ a and’ b to stand for possibly distinct unknown types.

For nested tuple selection, nested bound variable tuples are used. For example, to select the forename and surname
from atelephone directory entry:

- fun fname ((f:string,_),_,_) =f;
> val fname = fn : ((string * a) * "b * '¢c) -> string

- fname (("Anna","Able"),"Accounts", 123);
> "Anna" : string

- fun snane ((_,s:string), _,_ ) =s;
>val fname = fn: (("a * string) * "b * '¢c) -> string

- snanme (("Anna","Able"),"Accounts", 123);
> "Able" : string
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9.19. Pattern matching

SML functions may be defined with bound variable patterns using constants and constructors as well as variables. For
example, the head and tail selector functions for integer lists might be defined by:

- funihd ((h:int)::(t:int list)) = h;
>val ihd =fn : (int list) ->int

- funitl ((hrint)::(t:int list)) =t;
>val itl =fn : (int list) -> (int list)

Note the use of the bound variable pattern:
((h:int)::(t:int list))
with thelist constructor : : .
Note that this function will crash with an empty list argument as the pattern match will fail.

It is common SML practise to use case style function definitions with pattern matching rather than conditional
expressionsin afunction’sbody. These are known as clausal form definitions. The general formiis:

fun <nanme> <patternl>
<nanme> <pattern2>

<expressi onl> |
<expressi on2> |

.<;1.ama> <pat ter nN> <expressi onN>
Here, each:

<name> <patternl> = <expressionl>
defines a case.

Note that the order of the casesis significant.

When a case defined function is applied to an argument, each pattern is matched against the argument in turn, from
first to last, until one succeeds. The value of the corresponding expression is then returned.

For example, we might construct a function to return the capital of a Scandinavian country as a sequence of constant
Cases:

- fun capital "Denmark" = "Copenhagen" |
capital "Finland" = "Helsinki" |
capital "Norway" = "GCslo" |
capital "Sweden" = "Stockhol m' |
capital _ = "not in Scandi navi a";

> val capital = fn : string -> string

Here, an argument is compared with constants until the last case where it is matched with the wild card variable.

For example, we might redefine the integer list length function in terms of a base case for the empty list and a
recursive case for anon-empty list:

- fun length [] =0 |
length (_::(t:int list)) = 1+(length t);
>val length = fn : (int list) ->int
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Here an argument is compared with the empty list in the first case or split into its head and tail in the second. The head
is matched with the wild card variable and lost.

For example, we might generate a list of the first n cubes with a base case for when n is 0 and a recursive case for
positiven:

- fun cubes 0 = [0] |
cubes (n:int) = (n*n*n)::(cubes (n-1));
> val cubes =fn : int -> (int list)

Here, an argument is compared with O in the first case or associated with the bound variable n in the second.

For example, we might find the i th element in a string list with a base case which fails for an empty list, a base case
which returns the head of thelist wheni is0 and arecursive case for positivei with anon empty list:

- fun sifind _ [] = "can’t find it" |

sifind O ((h:string)::_) = h |

sifind (i:int) (_::(t:string list)) =sifind (i-1) t;
>val sfiind =fn : int -> ((string list) -> string)

Here, the integer argument is matched with the wild card variable in the first case, compared with 0 in the second and
associated with the bound variable i in the third. Similarly, the list argument is compared with the empty list in the
first case and split into its head and tail in the second and third. In the second case, the tail is matched with with the
wild ard variable and lost. In the third case, the head is matched with the wild card variable and lost.

Note that thisis a curried function.

Patterns may also be used to specify nameless functions.

9.20. Local definitions
SML usesthel et ... in ... notation forlocal definitions:

| et val <nane> = <expressionl>
i n <expression2>
end

Thisevaluates <expr essi on2> with <nane> associated with <expr essi on1>.
For function definitions:

I et fun <nane> <pattern> = <expressionl>
i n <expression2>
end

and the corresponding case form is used.
For example, to sort alist of integers with alocal insertion function:

- fun sort [] =171 |
sort ((h:int)::(t:int list)) =

let fun insert (i:int) [] =1T[i] |
insert (i:int) ((h:int)::(t:int list)) =
if i<h
then i::h::t
else h::(insert i t)

ininsert h (sort t)
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end;
> val sort =fn : (int list) -> (int list)
9.21. Type expressions and abbreviated types
We will now be a bit more formal about types in SML. We specify a variable's type with atype expression. Type
expressions are built from type constructorslikei nt, real, stringandlist. Sofar, atypeexpression may
be a single type constructor or a type variable or a function type or a product type or a bracketed type expression or a

type variable preceding atype constructor.

SML also enables the use of abbreviated types to name type expressions. A name may be associated with a type
expression using atype binding of the form:

type <abbreviation> = <type expressi on>
The<abbr evi at i on> isan identifier which may be used in subsequent type expressions.

For example, in the telephone directory example we might use abbreviations to simplify the types used in a directory
entry:

- type forenanme = string;
> type forename = string
- type surnanme = string;
> type surnane = string

- type person
> type person

forenane * surnane;
forenane * surname

- type departnment = string;
> type department = string
- type extension = int;

> type extension = int

- type entry
> type entry

person * departnent * extension;
person * departnent * extension

New type constructors may be used in subsegquent expressionsin the same way as predefined types.
Note that a new type constructor is syntactically equivalent to its defining expression. Thus, if we define:

int;
i nt

- type whol e_nunb
> type whol e_nunb

int;
i nt

- type integer
> type integer

then values of type whol e_nunb, i nt eger and i nt may be used in the same places without causing type errors.
Thisform of type binding just disguises alonger type expression.
9.22. Typevariables and polymor phism

SML, like Pascdl, is strongly typed. All types must be determinable by static analysis of a program. Pascal is
particularly restrictive because there is no means of referring to atypein general. SML, however, allow generalisation
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through the use of type variables in type expressions where particular types are not significant.
A typevariable startswith a’ and usually has only one letter, for example:
a'b’c

We have aready seen the use of type variables to describe the standard list functions' types and the use of the wild
card variable.

With strong typing but without type variables, generalised functions cannot be described. In Pascal, for example, it is
not possible to write general purpose procedures or functions to process arrays of arbitrary types. In SML, though, the
I'i st typeisgeneralised through atype variable to be element type independent.

Above, we described a variety of functions with specific types. Let us now look at how we can use type variables to
provide more general definitions. For example, the head and tail list selector functions might be defined as:

- fun hd (h::t) = h;

>val hd =fn: ("alist) ->"a

- fun tl (h::t) =1t;

>val tIl =fn: ("alist) -> ("a list)

Here, in the pattern:
(h::t)

there are no explicit types. SML ‘knows' that : : isa constructor for lists of any type element provided the head and
tail element type have the sametype. Thus, if : : is:

(a* ("alist)) -> ("a list)

thenh mustbe’aand’t mustbe’a |Iist. Wedo not need to specify types here because list construction and
selection is type independent.

Note that we could have use awild card variablefort inhd andforhint| .
For example, we can define general functions to select the elements of athree place tuple:

- fun first (x,y,2) = x;
>val first =fn: ("a* 'b*’'c) ->"a

- fun second (x,y,z) =y
>val second =fn: ("a* 'b* 'c) ->'Db

- fun third (x,y,z) =z
>val third =fn: ("a* 'b* 'c) ->"c

Herein the pattern:
(a, b, c)

there are no explicit types. Hence, SML assignsthetypes’ atox, 'btoy and’ c toz. Here, the element typesare
not significant. For selection, all that mattersistheir relative positions within the tuple.

Note that we could have used wild cardsfory andz infirst, forx andz insecond, andforx andy int hi rd.

For example, we can define a general purpose list length function:
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- fun length [] =0 |
length (h::t) = 1+(length t);

>val length =fn: ("alist) ->int
There are no explicit typesin the pattern:

(h::t)
and this pattern isconsistent if his’ aandt is’a list as(h::t) isthen’ a |ist. Thisisalso consistent with
theuse of t asthe argument in the recursive call to| engt h. Here again, the element types are irrelevant for purely
structural manipulations.

This approach can also be used to define type independent functions which are later made type specific.

For example, we might try and define a general purposelist insertion function as:

- funinsert i [] =Ti] |
insert i (h::t) =
if i<h
then i::h::t

else h::(insert i t);

but this is incorrect athough the bound variable typing is consistent if i and h are both’ a andt isan’a list.
The problem lies with the use of the comparison operator <. Thisisoverloaded so its arguments’ types must be made
explicit. We could get round this by abstracting for the comparison:

- funinsert _ i [] =T1i] |
insert conp i (h::t) =
if comp (i,h)
then i::h::t

el se h::(insert comp i t);
> val insert = (('"a* 'a) ->bool) ->("a->(("alist) ->("alist)))

Here,conp needsan (' a * 'a) argumentto be consistentini nsert and must return abool to satisfy itsusein
thei f .

Now, different typed comparison functions may be used to construct different typed insertion functions. For example,
we could construct a string insertion function through partial application by passing a string comparison function:

fn (sl:string,s2:string) => sl<s2
toi nsert:

- val sinsert
> val sinsert

insert (fn (sl:string,s2:string) => s1<s2);
fn: string -> ((string list) -> (string list))

Here, the comparison function is:
(string * string) -> bool

so’ a must best ring intherest of the function’stype.

For example, we could also construct a integer insertion function through partial application by passing an integer
comparison function:

fn (il:integer,i2:integer) =>i1l<i2
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toi nsert:
- val iinsert = insert (fn (il:iint,i2:int) =>il<i2);
>val iinsert =fn : int -> ((int list) -> (int list))

Now, the comparison function is:
(int * int) -> bool
so’ a must bei nt intherest of the function.

Functions which are defined for generalised types are said to be polymorphic because they have many forms.
Polymorphic typing gives substantial power to a programming language and a great deal of research and devel opment
has gone into its theory and practise. There are several forms of polymorphism. Strachey distinguishes ‘ad-hoc’
polymorphism through operator overloading from ‘parameterised’” polymorphism through abstraction over types.
Cardelli distinguishes ‘explicit’ parameterised polymorphism where the types are themselves objects from the weaker
‘implicit’ polymorphism where type variables are used in type expressions but types are not themselves objects, asin
SML. Milner first made type polymorphism in functional languages practical with his early ML for LCF. This
introduced polymorphic type checking where types are deduced from type expressions and variable use. Hope and
Miranda also have implicit parameterised polymorphic type checking.

9.23. New types

A new concrete type may be introduced by a datatype binding. This is used to define a new type's constituent
values recursively by

i) listing base values explicitly
ii)  defining structured values in terms of base values and other structured values.

The binding introduces new type constructor swhich are used to build new values of that datatype. They are also used
to identify and manipulate such values.

At simplest, adatatype binding takes the form:

dat at ype <constructor> = <constructorl> |
<constructor2> |

<construct or N>

which defines the base values of type <construct or >, an identifier, to be the type constructor identifiers
<constructor1>or<constructor 2> efc.

For example, we could define thetype bool with:

- dat atype bool rue | fal se;
> dat at ype bool rue | false
con true = true : bool
con false = fal se : bool

=1
=1

This defines the constructorst r ue and f al se for the new typebool . In effect, this specifies that an object of type
bool may have either the value t r ue or the value f al se. An equality test for bool is aso defined so that the
valuest r ue and f al se may betested explicitly.

For example, atraffic light goes through the stages red, red and amber, green, amber and back to red:
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- datatype traffic_light = red | red_anber | green | anber;
> datatype traffic_light = red | red_anber | green | anber

con red =red : traffic_light

con red_anber = red_anber : traffic_light
con green = green : traffic_light

con anber = anber : traffic_light

Thisdefinesthe datatypet r af fi c_I i ght with the constructorsr ed, r ed_anber, gr een and effect,anber . In
red, red_anber, green and anber are the values of the new type: traffic_light. An equaity test for

traffic_light valuesisaso defined.

For example, we can now define a function to change atraffic light from one stage to the next:

- fun change red = red_anber |
change red_anber = green |
change green = anber |
change amnber = red;

> val change = fn : traffic_light -> traffic_light

The datatype binding is also used to define structured concrete types. The binding form is extended to:

dat at ype <constructor> = <constructorl1> of <type expressionl> |
<constructor2> of <type expression2> |

<constructor N> of <type expressi onN>

where the extension of <t ype expressi on>isoptiona. This specifies a new type:
<construct or >

with values of the form:
<constructorl1l>(<val ue for <type expressi onl>>)

<constructor2>(<val ue for <type expressi on2>>)
et c.

<constructorl1> <constructor2>, etc ae functions which build structured values of type

<construct or>.

For example, integer lists might be defined by:

- datatype intlist = intnil | intcons of int * intlist;
> datatype intlist = intnil | intcons of int * intlist
con intnil =intnil : intlist

con intcons = fn : (int * intlist) ->intlist

Now, i ntnil isanintlist and values of the form i nt cons(<i nt val ue>,

<intlist

val ue>) are

intlist. Thatis, i ntcons is a function which buildsanintlist fromanint and anintlist. For

example:
- intcons(l,intnil);
> jintcons(l,intnil) : intlist
- intcons(l,intcons(2,intnil));
> intcons(1,intcons(2,intnil)) : intlist
- intcons(1,intcons(2,intcons(3,intnil)));
> intcons(1l,intcons(2,intcons(3,intnil))) intlist
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A datatype constructor may be preceded by atype variable to parameterise the datatype. For example, SML lists might
be defined by:

- datatype 'a list =1nil | cons of "a * ("a list);
> datatype "a list =1nil | cons of "a * ("a list)
con Inil @ "a list

con cons =fn: ("a* "alist) -> ("a list)
This definescons asaprefix constructor.

Type variables in datatype definitions may be set to other types in subsequent type expressions. For example, in:

- type intlist int list
> type intlist = int |ist

thetypevariable’ aissettoi nt tousei ntli st to namean integer list type.

SML systems will also deduce the intended type when the constructor from a parameterised data type is used with
consistent values Thus, the following areall string |ists:

- cons("ant",Inil);
> cons("ant",Inil) : string list

- cons("ant",cons("bee",Inil));
> cons("ant",cons("bee",Inil)) string |ist

- cons("ant", cons("bee",cons("caterpiller”, Inil)));
> cons("ant", cons("bee",cons("caterpiller",Inil))) string |ist

Structured datatype values may also be used in patterns with typed variables and constructors in the tuple following
the datatype constructor. It is usual to have separate patterened definitions for base and for structured values.

For example, to sum the elementsof ani nt 1 i st :

- fun sumintnil = 0 |
sum (intcons(x:int,y:intlist)) = x + (sumy);
>val sum= fn : intlist -> int

- sum (intcons(9,intcons(8,intcons(7,intnil))));
> 24 : int

For examples, to join the elementsof astring i st:
- fun join Inil =""|
join (cons(s:string,l:(string list))) =s"join |;

>val join =fn : (string list) -> string

- join (cons("here",cons("we",cons("go",Inil))));
> "herewego" : string

Note that existing types cannot be used as base types directly. For example, we might try to define a general number
typeas:

- datatype nunber = int | real;
> datatype nunmber = int | real
con int =int : nunber

con real = int : nunber
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but this defines the new type nunber with base constructorsi nt and r eal asif they were simple identifiers for
constant values instead of types. A structured constructor must be used to incorporate existing types into a new type,
for example:

- dat atype numnber intnunb of int | real nunb of real;
> dat at ype nunber intnunb of int | real nunb of real
con intnunb = fn : int -> nunber
con realnunmb = fn : real -> nunber

For example:

- intnunb(3);
> intnunb(3) : nunber

- real numb(3. 3);
>real nunb(3.3) : nunber

Note that structure matching must now be used to extract the values from this structured type:

- fun ivalue (intnunmb(n:int)) = n;
> val ivalue = fn : nunber -> int

- fun rvalue (real nunmb(r:real)) =r;
> val rvalue = fn : nunber -> real

so, for example:

- ivalue (intnunb(3));
>3 : int

- rvalue (real numb(3.3));
> 3.3 : real

9.24. Trees

We looked at tree construction in chapter 7. We will now see how SML concrete datatypes may be used to construct
trees. First of all we will consider binary integer trees.

To recap: abinary integer tree is either empty or it is a node consisting of an integer value, a left sub-tree and a right
sub-tree. Thus, we can define a corresponding datatype:

- datatype inttree enpty | node of int * inttree * inttree;
> datatype inttree enpty | node of int * inttree * inttree
con enpty = enpty : inttree
con node = fn : (int * inttree * inttree) -> inttree

To add an integer to an integer binary tree, if the tree is empty then form a new node with the integer as value and
empty left and right sub-trees. Otherwise, if the integer comes before the root node value then add it to the left sub-
treeand if it comes afyer the root node value then add it to the right subtree:

- fun add (v:int) enpty = node(v, enpty, enpty) |
add (v:int) (node(nv:int,l:inttree,r:inttree)) =
if v <nv
then node(nv,add v I,r)
el se node(nv,|,add v r);
>val add = fn : int -> (inttree -> inttree)
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For example

- val root
> val root

enpty;
enpty @ inttree

add 5 root;
node(5, enpty, enpty) : inttree

- val root
> val root

add 3 root;
node(5,

node( 3, enpty, enpty),
enpty) : inttree

- val root
> val root

add 7 root;
node(5,

node(3, enpty, enpty),
node(7, enpty, enpty)) : inttree

- val root
> val root

- val root = add 2 root;
> val root = node(5,
node( 3,
node( 2, enpty, enpty),
enpty),
node(7, enpty, enpty)) : inttree
- val root = add 4 root;
> val root = node(5,
node( 3,

node( 2, enpty, enpty),
node( 4, enpty, enpty)),
node(7, enpty, enpty)) : inttree

- val root = add 9 root;
> val root = node(5,
node( 3,
node( 2, enpty, enpty),
node( 4, enpty, enpty)),
node( 7,

enpty,
node(9, enpty, enpty))) : inttree

Given an integer binary tree, to construct an ordered list of node values: if the tree is empty then return the empty list;
otherwise, traverse the left sub-tree, pick up the root node value and traverse the right subtree:

- fun traverse enpty =[] |

traverse (node(v:int,l:inttree,r:inttree)) =
append (traverse |) (v::traverse r);
> val traverse = fn : inttree -> (int list)

For example

- traverse root;
>[2,3,4,5,7,9] : int list

We can rewrite the above datatype to specify trees of polymorphic type by abstracting with the type variable’ a:

- datatype 'a tree
> datatype 'a tree

enpty | node of
enpty | node of

atree) * ("atree);
atree) * ("atree)

a* (’
a* (’
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con enpty = enpty :
(

("a tree)
con node = fn : ("a * (

"atree) ('atree)) -> ('atree)
Similarly, we can define polymorphic versions of add:

- fun add _ (v:’'a) enpty = node(v, enpty, enpty) |
add (less:'a -> ("a -> bool))
(v:'a)
(node(nv:'a,l:"a tree,r: a tree)) =
if less v nv
then node(nv,add less v I,r)
el se node(nv,|,add less v r);
>val add =fn: ("a ->("a -> bool)) ->
(a->(("atree) -> ("atree)))

andtraverse:

- fun traverse enpty =[] |

traverse (node(v:'a,l:"a tree,r:"a tree)) =
append (traverse |) (v::traverse r);
> val traverse =fn : ('atree) -> ('a list)

Note the use of the bound variable | ess in add to generalise the comparison between the new value and the node
value.

9.25. A calculusin ML
We can use SML to represent directly many pure A functions. For example, the identity function is:

- fn x => x;
>fn: 'a->"a

Note that thisis a polymorphic function from the domain* a to the samerange’ a.
Let us apply theidentity function to itself:

- (fn x == x) (fn x => x);
>fn: 'a->"a

Alas, SML will not display nameless functions.
For example, the function application function is:

- fnf = fn x = (f x);
>fn: ("a->"b) ->("a->"bhb)

This is another polymorphic function. Here, f is used as a function but its type is not specified so it might be” a - >
" b for arbitrary domain’ a and arbitrary range’ b. f isappliedtox sox must be’ a. Thewhole function returnsthe
result of applying f to x whichisof type’ b.

Let us use this function to apply the identity function to itself:

- (fnf = fn x = (f x)) (fn x => x) (fn x => x);
>fn: 'a->"a

Once again, SML will not display the resulting function. Using global definitions does not help here:
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- val identity
> val identity

X => X;

’

fn
fn: "a->"a

- identity identity;
>fn: 'a->"a

fnf =>fn x => (f x);
fn: ("a->'b) ->("a->"Dh)

- val apply
> val apply

- apply identity identity;
>fn: 'a->"a

as applicative order evaluation replaces name arguments with values.

Some of our A functions cannot be represented directly in SML as the type system won't allow self application. For
example, in:

fns => (s s)
thereis atype inconsistency in the function body:
(s s)

Here, the s in the function position is untyped so it might be’ a - > ' b. Thus, the s in the argument position should
be’ a but this clashes with the type for the s in the function position!

9.26. Other features

There are many aspects of SML which we cannot cover here. Most important are abstract type construction and
modularisation techniques and the use of exceptions to change control flow, in particular to trap errors. SML aso
provides imperative constructs for assignment, 1/0O and iteration.

9.27. Summary

In this chapter we have:

. surveyed quickly Standard ML (SML)

. seen how to implement algorithms from preceding chaptersin SML

. seen that some pure A functions cannot be represented in SML

9.28. Exercises
1)  Writeand test functions to:
i) Find y3 givenintegery.

ii) Findx inplies yfromx inplies y == not x or ygivenx andy. The functioninplies
should be prefix.

iii)  Find the smallest of theintegersa, b andc.
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2)

i)
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Join strings s1 and s 2 together in descending a phabetic order.
Find the shorter of stringss1 and s2.

Write and test functionsto:

Find the sum of the integers between 1 and n.

Find the sum of the integers between mand n.

Repeat astring s integer n times.

Write and test functionsto:

Count the number of negative integersin alist| .

Count how often agiven string s occursinalist| .

Construct alist of al theintegersinalist| which are greater than agiven valuev.
Merge two sorted string listss1 and s2. For example:

_ SrrErge ["a","d","e"] ["b","C","f","g"];
> ["a","b","C","d","e","f","g"] Strlng ||St

Use smrer ge from iv) above to construct a single sorted string list from alist of sorted string lists. For example:

_ S|rrErge [["a","C","i","j"],["b","d","f"],["e","g","h","k"]];
>["a","b","C","d","e","f","g","h","i","j","k"] Strlngllst

Process alist of stock records represented as tuples of:

i tem nane - string
no. in stock - integer
reorder level - integer

to:
a) construct alist of those stock records with the number in stock less than the reorder level. For example:

- check [("RAM', 9,10), ("ROM', 12,10), ("PROM', 20, 21)];
> [("RAM', 9, 10), ("PROM', 20,21)] : (string * int * int) list

b) update alist of stock records from alist of update records represented as tuples of:

itemnane - string
update no. - integer

by constructing a new stock list of records with the number in stock increased by the update number.

The update records may be in any order. There may not be update records for all stock items. There may be
more than one update record for any stock item. For example:

- update [("RAM, 9, 10), ("ROV', 12, 10), ("PROV', 20, 21)]
[("PROM, 15), ("RAM', 12), (" PROV', 15)];

> [("RAM, 21, 10), ("ROM', 12, 10), ("PROM', 50, 21)] : (string * int * int) Ilist
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Write functions to:
Extract the leftmost n lettersfrom string s:

- left 4 "goodbye";
> "good" string

Extract the rightmost n lettersfrom string s:

- right 3 "goodbye";
> "pye" string

Extract n letters starting with the| "th letter from string s:

- mddle 2 5 "goodbye";
> "hy" string

Find the position of the first occurence of string s1 in string s2:

- find "by" "goodbye";
>5: int

The train travelling east from Glasgow Queen’s Street to Edinburgh Waverly passes through Bishopbriggs,
Lenzie, Croy, Polmont, Falkirk High, Linlithgow and Edinburgh Haymarket. These stations might be
represented by the data type:

dat at ype station = Queens_Street | Bishopbriggs |

Lenzie | Croy |
Pol mont | Fal kirk_Hi gh |
Linlithgow | Haynmarket | Waverly;

Write functions which return the station to the east or the west of a given station, for example:

- east Croy;

> Pol nont station

- west Croy;

> Lenzie : station
The datatype:

dat at ype exp = add of exp * exp |
diff of exp * exp |
mult of exp * exp |
guot of exp * exp |
nunb of int;

might be used to represent strictly bracketed integer arithmetic expressions:

<expressi on> :

: = (<expression>

+

(<expression> -

(<expression>
(<expression>
<i nt eger >

*

/

<expr essi on>)
<expr essi on>)
<expr essi on>)
<expr essi on>)
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(<expressionl> + <expression2>) == add(<expressionl>, <expression2>)
(<expressionl> - <expression2>) == diff(<expressionl>, <expression2>)
(<expressionl> * <expression2>) == mult(<expressionl>, <expression2>)
(<expressionl> / <expression2>) == quot(<expressionl>, <expression2>)
<i nt eger > == nunb(<i nt eger >)

For example:
1 == nunmb(1)

(1 + 2) == add(nunb(1), nunb(2))
((1* 2) + 3) == add(mult(nunb(1), nunb(2)), nunmb(3))
((2*2) +(3- 4)) == add(mult(nunb(1), nunb(2)),diff(nunb(3), nunb(4)))

Write a function which evaluates an arithemtic expression in this representation, for example:

- eval (nunb(1));
>1: exp

- eval (add(nunb(1), numb(2)));
> 3 exp

- eval (add(mult(numb(1), numb(2)), nunb(3)));
>5: exp

- eval (add(mult (numb(1), numb(2)),diff(nunb(3), nunb(4))));
>1: exp

10. FUNCTIONAL PROGRAMMING AND LISP

10.1. Introduction

LISP(LISt Processor) is awidely used artificial intelligence language. 1t isweakly typed with run-time type checking.
Functions calls are evaluated in applicative order. LI1SP lacks structure and pattern matching.

Although LISP is not a pure functional language, it has a number of functional features. Like the A calculus, LISP has
an incredibly simple core syntax. This is based on bracketed symbol sequences which may be interpreted as list data
structures or as function calls. The shared representation of data and program reputedly makes LISP particularly
appropriate for artificial intelligence applications.

The original LISP programming system was devised by McCarthy in the late 1950's as an aid to the Advice Taker
experimental artificial intelligence system. McCarthy’s early description of LISP was based on a functional formalism
influenced by A calculus, known as M-expressions(Meta expressions). These were represented in an extremely
simple S-expression’ (Symbolic expression) format for practica programming. Contemporary LISP systems are
based solely on the S-expression format athough other functional languages are reminiscent of the richer M-
expressions. We won't consider M-expressions here.

LISP, like BASIC, is not a unitary language and is available in a number of widely differing dialects. The heart of
these differences, as we shall see, lies in the way that name/object associations are treated. Here we will consider
COMMON LISP which is a modern standard. We will also look briefly at Scheme, a fully functional LISP. Other
LISPs include FRANZ LISP which is widely available on UNIX systems, MACLISP and INTERLISP which
COMMON LISP subsumes, and Lispkit Lisp which is another fully functional LISP.

It isimportant to note that L1SP has been refined and developed for many years and so is not avery ‘clean’ language.
LISP systems differ in how some aspects of LISP are implemented. Some aspects of LISP are extremely arcane and
subject to much disputation amongst the cognoscenti. Furthermore, while LISP has much in common with functional
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languagesit is actually used as an imperative programming language for most applications.

We will only look at enough LISP to see how it corresponds to our functional approach. Many details will,
necessarily, be omited.

10.2. Atoms, numbers and symbols

The basic LISP objects are atoms composed of sequences of printing characters. Whenever a LISP system sees an
atom it triesto evaluateit.

COMMON LISP provides distinct representations for integer, ratio, floating point and complex number atoms. Here,
we will only consider integers. These consist of digit sequences preceded by an optional sign, for example:

0 42 -99
Theresult of evaluating a number is that number.
Symbols or literals are non-numeric atoms and correspond to names, for example:
banana BANANA forty two --> +
Symbols have associated values. The result of evaluating a symboal is its associated value. There are alarge number of

system symbols with standard associated values known as primitives. As we will see, symbols are also objects in
their own right.

10.3. Forms, expressions and function applications

The form is the basic LISP construct and consists of an atom or a left bracket followed by zero or more atoms or
forms ending with aright bracket:

<formp ::= <atone | ( <forms>) | ()
<forms> ::= <form> | <fornme <formnms>

Forms are used for all expressions and data structures in LISP. Forms are always strictly bracketed except when
special shorthand constructs are introduced.

Expressions are always prefix. The first form in a bracketed form sequence is interpreted as the function. Subsequent
forms are interpreted as arguments. Thus, in a bracketed sequence of forms, we will refer to the first form as the
function and to the subsequent forms as the arguments. We will aso refer to primitives as if they were system
functions.

Forms are evaluated in applicative order from left to right. For expressions, we will use - > to indicate a result after
applicative order evaluation.

Note that the function form may be the name of a function or a lambda expression but may NOT be an expression
returning a function!

Note that the argument form may NOT be a lambda function or the name from a global definition or the name of a
primitivel

Special primitives and techniques are used to treat functions as values.
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10.4. Logic
t

is the primitive for TRUE and:
nil

isthe primitive for FALSE.
not and or

are the primitives for the logical negation, conjunction and disjunction functions respectively. These may be used to
construct simple logical expressions as forms, for example:

(not t) ->
ni |

(and t nil) ->
nil

(or (and t nil) (not nil)) ->
t

In LISP, unlike most programming languages, and and or may have more than two arguments. For and, the final
valueis the conjunction of al the arguments, for example:

(and t nil t) ->
nil

For or, thefina valueisthedisjunction of al the arguments, for example:
(or t nil t) ->
t

10.5. Arithmetic and numeric comparison
+ - *

are the primitives for the addition, subtraction, multiplication and division functions. These may be used with numbers
to construct simple arithmetic expressions, for example:

(+ 40 2) ->
42
(- 46 4) ->
42

(* 6 (+34) ->
42

(/ (+ 153 15) (- 7 3)) ->
42

Aswith and and or, these functions may have more than two arguments, so + returns the sum, - the difference, *
the product and / the overall quotient, for example:
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(+ 12 25 5) ->
42

(- 59 89) ->
42

(* 327 ->
42

(/ 336 4 2) ->
42

/ isactually areal division operator. The primitive
truncate

rounds a single argument down to the nearest integer. If t r uncat e is given two arguments then it divides one by the
other and rounds the result down to the nearest integer, for example:

(truncate 43 6) ->
7

The primitive:
rem
returns the integer remainder after division, for example:

(rem43 6) ->
1

The numeric less than, less than or equal, equality, greater than and greater than or equal primitive comparison
functions are:

< <= = >= >
These may all be used with more than two arguments. Thus = checks that al its arguments are equal, for example:

(22222 ->
t

<= checksthat its arguments are in ascending order, for example:

(<=122345) ->
t

< checksthat its arguments are in strictly ascending order, for example:

(122345 ->
nil

>= checksthat its arguments are in descending order, for example:

(>=543321) ->
t

and > checksthat its arguments are in strictly descending order, for example:
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(>98765) ->
t
The primitive:
nunber p
returns true if its argument is anumber. For example,

(nunberp 42) ->
t

10.6. Lambda functions
LISP uses anotation like that for the A calculusto define nameless functions.
It is important to note that LISP functions do not have all the properties we might expect from the A calculus. In
particular, special techniques are needed to pass functions as arguments, to return functions as values and to apply
functions returned as values to new arguments.
Functions are defined as forms with the primitive:

| amrbda
followed by aflat list of bound variables and the body form:

(lambda (<bound vari abl es>) <body>)
where;

<bound vari abl es> ::= <bound variabl e> | <bound vari abl e> <bound vari abl es>
For example, to square a number:

(lambda (x) (* x x))
or to find the sum of the squares of two numbers:

(lambda (x y) (+ (* x x) (* yy)))
or to find the value of the quadratic:

ax2+bx+c
givena, b, candx:

(lambda (a b c x) (+ (* a (* x X)) (* b x) ¢)))
Note that functions are normally uncurried in L1SP.
Note that LI1SP systems will reject attempts to present lambda functions directly as values other than in the function
position in aform. | anbda is not a primitive which denotes a system function. Instead it acts as a marker to indicate
afunction form. However, if a LISP system sees a naked lambda function form it will try to find a function associated

with | anbda and fail. The special techniques needed to manipulate function values are discussed below.

A function is applied to arguments in a form with the function followed by the arguments. The function’s body is
evaluated with the bound variables associated initially with the corresponding arguments:
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(<function> <argunent 1> <argunment2> ... )
Note that arguments for uncurried functions are not bracketed but follow straight after the function.
For example:

((lambda (x) (* x x)) 2) ->
4

((lambda (x y) (+ (* x x) (* yy))) 34) ->
25

((lanbda (a bc x) (+(*a(*xx)) (*bx)c) 1211 ->
4
10.7. Global definitions

LISP systems are usually interactive and accept forms from the input for immediate evaluation. Global definitions
provide away of naming functions for use in subsequent forms.

A definition is aform with the primitive:

def un
followed by the name, bound variable list and the body form:

(defun <name> (<bound variable list>) <body>)
Many LISP systems print the defined name after a definition. For example:

(defun sqg (x) (* x x)) ->
sq

(defun sumsqg (x y) (+ (* x x) (* yvy))) ->
sum sq

(defun quad (a b c x) (+(* a(* xx)) (* bx)c) ->
quad

A defined name may then be used instead of alambda function in other forms. For example:

(sq 2) ->
4

(sumsq 3 4) ->
25

(quad 1 2 1 2) ->
9

In particular, defined names may be used in other definitions. For example, the last two definitions might be shortened
to:

(defun sumsq (x y) (+ (sq x) (sqy)))

(defun quad (a b c x) (+ (* a (sq x)) (* b x) ¢))
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It is important to note that a globa definition establishes a special sort of name/value relationship which is not the
same as that between bound variables and values.

10.8. Conditional expressions
LISP conditional expressions are forms with the primitive:
cond

followed by a sequence of options. Each option is a test expression followed by a result expression which is to be
evauated if the test expression is true:

(cond (<testl> <resultl>)
(<test2> <result2>)

(t <resultN>))
Note that the last option’ s test expression isusualy t to ensure afinal value for the conditional.
When a conditional expression is evaluated, each option’s test expression is tried in turn. When a true test expression
is found, the value of the corresponding result expression is returned. This is like a nested sequence of i f
then ... el se expressions.
Note that a conditional expression is not evaluated in applicative order.
For example, to find the larger of two values:
(defun max (x y)
(cond ((> x y) x)
(t y)))

or to define logical not :
(defun I not (x)
(cond (x nil)

(t 1))

or to define logical and:
(defun land (x vy)
(cond (x vy)
(t nil)))
COMMON LISP provides asimpler conditional primitive:
i f
which isfollowed by atest and expressionsto be evaluated if the test is true or false:
(if <test>
<true result>
<fal se result>)

For example, to find the smaller of two numbers:

(defun mn (x vy)
(if (<xy)
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X

y))

or to define logical or :
(defun lor (x vy)
(if x
t
y))

10.9. Quoting
We said above that in LISP forms are used as both program and data structures. So far, we have used forms as
function calls in general and to build higher level control structures using special system primitives which control
form evaluation. In order to use forms as data structures additional primitives are used to prevent form evaluation.
This is a different approach to the A calculus where data structures are packaged as functions with bound variables to
control the subsequent application of selector functions.
In LISP, a mechanism known as quoting is used to delay form evaluation. This is based on the idea from ordinary
language use that if you want to refer to something’s name rather than that thing then you put the name in quotation
marks. For example:

Edi nburgh is in Scotl and
is astatement about a city, whereas:

‘ Edi nburgh’ has nine letters
is a statement about a word. Putting in the quotation marks shows that we are interested in the letter sequence rather
than the thing which the letter sequence refersto. In LISP, quoting is used to prevent form evauation. Quoting aform
shows that we are interested in the sequence of sub-forms as a structure rather than the form’ sfinal value. Quoting is a
special sort of abstraction for delaying evaluation. Later on, we will see how it can be reversed.
When the LISP primitive:

quot e
is applied to an argument then that argument is returned uneval uated:

(quot e <argunent>) -> <argument >
In particular, a symbol argument is not replaced by its associated value but becomes an object in its own right.
Quoting is so widely used in LISP that the special notation:

' <ar gunent >

has been introduced. Thisis equivalent to the above use of the quot e primitive.

10.10. Lists
LISPis perhaps best known for the use of list processing as the basis of programming.

The empty list isthe primitive:
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nil
which may be also written as:
0
The tester for an empty list isthe primitive:
nul |
Thisisthe same asnot because FALSE isni | in LISP and anything which is not FALSE is actually TRUE!
Lists may be constructed explicitly with the:
cons
primitive:
(cons <head> <tail >)

The <head> and <t ai | > arguments are evaluated, and a list with <head>s value in the head and <t ai | >svalue
in thetail isformed.

If the eventua tail is not the empty list then the dotted pair representation is used for the resultant list:
<head value> . <tail value>
For example:

(cons 1 2) ->
1. 2

(cons 1 (cons 2 3)) ->
1. (2. 3

(cons (cons 1 2) (cons 3 4)) ->
(1. 2) . (3. 4

(cons (cons 1 2) (cons (cons 3 4) (cons 5 6))) ->

(1.2 . ((3.4) . (5. 86))

When alist ends with the empty list then aflat representation based on forms is used with an implicit empty list at the
end. For example:

(cons 1 nil) ->

(1)

(cons 1 (cons 2 nil)) ->
(1 2)

(cons (cons 1 (cons 2 nil)) (cons (cons 3 (cons 4 nil)) nil)) ->

((12) (34)
Thus, asin chapter 6, the empty list ni | isequivalent to the empty form () .

Note that lists built by cons and ending with the empty list appear to be forms but are not actually evaluated further
asfunction calls.
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Lists may be constructed directly in form notation and this is the most common approach. Note, however, that list
forms must be explicitly quoted to prevent function call evaluation. For example:
(1223
looks like a call to the function 1 with arguments 2 and 3, wheress:
(12 3)
isthelist:
1. (2. (3. nil))
The primitive:
I'ist
isamulti-argument version of cons but constructs alist ending with the empty list. For example:

(list 12) ->
(1 2)

(list 1 23) ->
(12 3)

(list (list 1.2) (list 3 4)) ->
((12) (34)

(list (list 1 2) (list 3 4) (list 586)) ->
((12) (34 (56))

The primitive:
listp
returnstrueif itsargument isalist.
For example:
(listp'(1234) ->
t
10.11. List selection
The head of aLISP list is known asthe car and the tail asthe cdr. Thisisfrom the original IBM 704 implementation
where a list head was processed as the ‘Contents of the Address Register’ and the tail as the ‘Contents of the
Decrement Register’. Thus:
car
isthe head selection primitive and:

cdr

isthetail selection primitive. For example:
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(car "(1 2 3)) ->
1

(cdr '(1 2 3)) ->
(2 3)

(car (cdr (1 2 3))) ->
2

(cdr (cdr (1 2 3))) ->
(3)

Note that sub-lists selected from lists appear to be forms but are not further evaluated as function call formsby car or
cdr.

10.12. Recursion

In LISP, recursive functions are based on function definitions with the defined name appearing in the function body.
For example, to find the length of alinear list:

(defun length (1)
(if (null 1)
0
(+ 1 (length (cdr 1)))))
and to count how often avalue appearsin alinear list of numbers:
(defun count (x 1)
(cond ((null 1) 0)
((=x (car 1)) (+ 1 (count x (cdr 1))))
(t (count x (cdr 1)))))
For example, to insert avalueinto an ordered list:
(defun insert (x 1)
(cond ((null 1) (cons x nil))
((< x (car 1)) (cons x 1))
(t (cons (car I) (insert x (cdr 1))))))
and to sort alist:
(defun sort (I)
(if (null 1)
ni |
(t (insert (car 1) (sort (cdr 1))))))
10.13. Local definitions
LISP provides the:
| et

primitive for the introduction of local variablesin expressions:

(let ((<variablel> <val uel>)
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(<vari abl e2> <val ue2>)
)
(<result>))
is equivalent to the function call:
((lambda (<variabl el> <variable2> ... ) <result>) <valuel> <value2> ... )
For example, to insert avalue into an ordered list if it is not there already:
(defun new_insert (x I)
(if (null 1)
(cons x nil)
(let ((hl (car 1))
(tl (cdr 1)))
(cond ((= x hl) 1)
((< x hl) (cons x 1))
(t (cons hl (new_insert x tl)))))))
Here, if the list is empty then a new list with the value in the head is returned. Otherwise, the head and tail of the list

are selected. If the head matches the value then the list is returned. If the value comes before the head then it is added
before the head. Otherwise the value isinserted in the tail.

10.14. Binary treesin LI1SP

In chapter 7 we looked at the construction of binary trees using alist representation. This trandates directly into L1SP:
wewill useni | for the empty tree and the list:

(<itemr <left> <right>)
for the tree with node value <i t en®, left branch <I ef t > and right branch <r i ght >.
Wewill use:

(defun node (itemleft right) (list itemleft right))
to construct new nodes.
LISP has no pattern matching so it is useful to define selector functions:

(defun item (1) (car 1))

(defun left (1) (car (cdr 1)))

(defun right (1) (car (cdr (cdr 1))))
for the node value, left branch and right branch.
Thus, to add an integer to an ordered binary tree:

(defun tadd (i tree)

(cond ((null tree) (node v nil nil))

((<i (itemtree)) (node (itemtree) (tadd i (left tree) (right tree))))

(t (node (itemtree) (left tree) (tadd i (right tree))))))

For example:
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(tadd 7 nil) ->
(7 nil nil)

(tadd 4 ' (7 nil nil)) ->
(7

(4 nil nil)

nil)

(tadd 10 "(7 (4 nil nil) nil)) ->
(7

(4 nil nil)

(10 nil nil))

(tadd 2 ' (7 (4 nil nil) (10 nil nil))) ->

(7
(4
(2 nil nil)
nil)

(10 nil nil))

(tadd 5 ' (7 (4 (2 nil nil) nil) (10 nil nil))) ->

(7
(4
(2 nil nil)
(5 nil nil))

(10 nil nil))
Hence, to add alist of numbersto an ordered binary tree:

(defun taddlist (I tree)
(if (null 1)
tree
(taddlist (cdr I) (tadd (car 1) tree))))

Finally, to traverse a binary tree in ascending order:

(defun traverse (tree)
(if (null tree)
ni |
(append (traverse (left tree))
(cons (itemtree) (traverse (right tree))))))

For example:
(traverse " (7 (4 (2 nil nil) (5 nil nil) (10 nil nil))) ->
(2457 10)
10.15. Dynamic and lexical scope
LISP is often presented as if it were based on the A calculus but this is somewhat misleading. LISP function
abstraction uses a notation similar to the A abstraction but the relationship between bound variables and variables in

expressions s rather opague.

In our presentation of A calculus, names have lexical or static scope. That is, a name in an expression corresponds to
the bound variable of the innermost enclosing function to define it.
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Consider the following contrived example. We might define:
def doubl e_second = Ax. AX. (X + X)
Thisis afunction with bound variable:
X
and body:
AX. (X + X)
Thus, in the expression:
(x + x)

the xs correspond to the second rather than the first bound variable. We would normally avoid any confusion by
renaming:

def doubl e_second = AX. Ay. (y + V)

For lexical scope, the bound variable corresponding to a name in an expression is determined by their relative
positions in that expression, before the expression is evaluated. Expression evaluation cannot change that static
relationship.

Early LISPs were based on dynamic scope where names values are determined when expressions are evaluated.
Thus, aname in an expression corresponds to to the most recent bound variable/val ue association with the same name,
when that name is encountered during expression evaluation. This is effectively the same as lexical scope when a
nameis evaluated in the scope of the corresponding statically scoped bound variable.

However, LISP functions may contain free variables and a function may be created in one scope and evaluated in
another. Thus, a name might refer to different variables depending on the scopes in which it is evaluated. Expression
evaluation can change the name/bound variable correspondence.

For example, suppose we want to calculate the tax on a gross income but do not know the rate of tax. Instead of
making the tax rate a bound variable we could make it a free variable. Our approach to the A calculus does not allow
thisunless the free variable has been introduced by a previous definition. However, thisis allowed in LISP:

(defun tax (gross)
(/! (* gross rate) 100))

Note that r at e is free in the function body. For a LISP with dynamic scope, like FRANZ LISP, r at e’s value is
determined when:

(/ (* gross rate) 100)
is evaluated. For example, if the lowest rate of tax is 25% then we might define:
(defun | ow tax (gross)
(let ((rate 25))
(tax gross)))

When | ow_t ax is applied to an argument, r at e is set to 25 and then t ax is caled. Thus, rate in tax is
evauated in the scope of thelocal variabler at e inl ow_t ax and will havethe value 25.

In LISPs with dynamic scope this use of free variables is seen as a positive advantage because it delays decisions
about name/value associations. Thus, the same function with free variables may be used to different effect in different
places.
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For example, suppose the average tax rate is 30%. We might define:

(defun av_tax (gross)
(let ((rate 30))
(tax gross)))

Once again, the call to t ax in av_t ax evaluates the free variable r at e in t ax in the scope of the local r at e in
av_t ax, thistime with value 30.

It is not clear whether or not dynamic scope was a conscious feature or the result of early approachesto implementing
LISP. COMMON LISP is based on lexical scope but provides a primitive to make dynamic scope explicit if it is
needed. Attempts to move lexically scoped free variables in and out of different scopes are faulted in COMMON
LISP.

10.16. Functions as values and arguments

In looking at the A calculus, we have become used to treating functions as objects which can be manipulated freely.
This approach to objects is actually quite uncommon in programming languages, in part because until comparatively
recently it was thought that it was hard to implement.

In LISP, functions are not like other objects and cannot be simply passed around as in the A calculus. Instead, function
values must be identified explicitly and applied explicitly except in the special case of the function form in a function
application form.

The provision of functions as first class citizens in LISP used to be known as the FUNARG problem because
implementation problems centred on the use of functions with free variables as arguments to other functions. This
arose because of dynamic scope where a free variable is associated with avalue in the calling rather than the defining
scope. However, it is often necessary to return a function value with free variables frozen to values from the defining
scope. We have used thisin defining typed functionsin chapter 5.

The traditional way round the FUNARG problem is to identify function values explicitly so that free variables can be
frozen in their defining scopes. The application of such function values is also made explicit so that free variables are
not evaluated in the calling scope. This freezing of free variables in a function value is often implemented by
constructing a closur e which identifies the rel ationship between free and lexical bound variables.

COMMON LISP is based on lexical scope where names are frozen in their defining scope. None the less, COMMON
LISP still requires function values to be identified and applied explicitly.

In COMMON LISP, the primitive:
function

isused as a specia form of quoting for functions:
(function <function>)

It creates a function value in which free variables are associated with bound variables in the defining scope. As with
quot e, an equivalent specia notation:

# <function>
is provided.
Note that most LISP systems will not actually display function values astext. Thisis because they trandate functions

into intermediate forms to ease implementation but lose the equivalent text. Some systems may display an
implementation dependent representation.
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For example, we could define a general tax function:

(defun gen_tax (rate)
# (lambda (gross) (/ (* gross rate) 100)))

We might then produce the low and average tax rate functions as:

(gen_tax 25)
and

(gen_tax 30)
which return lambda function values with r at e bound to 25 and 30 respectively.
The primitive:

funcal |
is used to apply afunction value to its arguments:

(funcal | <function val ue> <argunent 1> <argunent2> ...)
For example, to apply the low tax function to a gross income:

(funcall (gen_tax 25) 10000) ->
2500

This call builds afunction value with r at e bound to 25 and then appliesit to the grossincome 10000. Similarly:

(funcall (gen_tax 30) 15000) ->
4500

builds afunction value with r at e bound to 30 and then appliesit to the gross income 15000.
For example, the mapping function mapcar may be defined as:
(defun mapcar (fn arg)
(if (null arg)
nil
(cons (funcall fn (car arg)) (mapcar fn (cdr arg)))))

Note that the function f n is applied explicitly to theargument car ar g by f uncal | . Now, we could square every
element of alist with:

(defun sqg_list (1)
(mapcar # (lanbda (x) (* x x)) 1))

Note that the function argument for mapcar has been quoted with #' .

Note that even if a function value argument is identified simply by name then that name must still be quoted with #'
beforeit may be used as an argument. For example, to apply sq to every element of alist:

(mapcar #sq '(1 2 3 45))
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10.17. Symbals, quoting and evaluation

Normally, symbols are variable names but they may also be used as objects in their own right. Quoting a symbol
prevents the associated value being extracted. Thereafter, a quoted symbol may be passed around like any object.

One simple use for quoted symbols is as Pascal-like user defined enumeration types. For example, we might define the
days of the week as:

"Monday ' Tuesday 'Wednesday ' Thursday ' Friday ' Saturday ' Sunday

We could then write functions to manipulate these objects. In particular, they may be compared with the equality
primitive which istrue if its arguments are identical objects:

€q

Note that in Pascal enumeration types are mapped onto integers and so have successor functions defined automatically
for them. In L1SP, we have to define a successor function explicitly if we need one. For example:

(defun next _day (day)

(cond ((eq day ' Monday) " Tuesday)
((eq day ' Tuesday) "Wednesday)
((eq day ' Wednesday) ' Thursday)
((eq day '’ Thursday) ' Friday)

((eq day '’ Friday) ' Sat ur day)
((eq day ’Saturday) ' Sunday)
((eq day ' Sunday) " Monday)))
The primitive:
eval

forces evaluation of a quoted form as a LISP expression. Thus, functions can construct quoted forms which are
program structures for later evaluation by other functions. Thus, compiling techniques can be used to produce LISP
from what is apparently data. For example, the rules for an expert system might be trandated into functions to
implement that system. Similarly, the grammar for an interface language might be used to generate functions to
recognise that language.

For example, suppose we want to tranglate strictly bracketed infix arithmetic expressions:

<expression> ::= <nunber> |
(<expressi on> + <expression>) |
(<expression> - <expression>) |
(<expression> * <expression>) |
(<expression> / <expression>)

into prefix form so:

(<expression> + <expression>) == (+ <expressi on> <expressi on>)
(<expression> - <expression>) == (- <expression> <expressi on>)
(<expression> * <expression>) == (* <expression> <expressi on>)
(<expression> |/ <expression>) == (/ <expression> <expression>)

We need to extract the operator and placeit at the head of alist with the translated expressions as arguments:

(defun trans (1)
(if (nunberp I)
|
(let ((el (trans (car 1)))
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(op (car (cdr 1)))
(e2 (trans (car (cdr (cdr 1))))))
(list op el e2))))

For example:

(trans " (1 + 2)) ->
(+1 2

(trans (3 * (4 * 5))) ->
(* 3 (* 4059))

(trans " ((6 * 7) + (8 - 9))) ->
(+ (67 (- 89))

Note that quoted symbols for infix operators have been moved into the function positions in the resultant forms.
Now, we can evaluate the translated expression, asaLISP form, using eval :

(defun calc (1)
(eval (trans 1)))

For example:

(calc "((6 * 7) +(8-19))) ->
41

The treatment of free variables in quoted forms depends on the scope rules. For dynamic scope systems, quoted free
variables are associated with the corresponding bound variable when the quoted form is evaluated. Thus, with
dynamic scope, quoting can move free variablesinto different evaluation scopes.

In COMMON LISP, with lexical scope, quoted free variables are not associated with bound variables in the defining

scope as might be expected. Instead, they are evauated as if there were no bound variables defined apart from the
names from global definitions.

10.18. A calculusin LISP

Wecanusefuncti on andfuncal | for rather clumsy applicative order pure A calculus. For example, we can try
out some of the A functions we met in chapter 2. First of all, we can apply the identity function:

# (lanbda (x) x)
to itself:
(funcall # (lanmbda (x) x) # (lanbda (x) x))

Note that some LI1SP implementations will not print out the resultant function and others will print a system sepecific
representation.

Let us now use definitions:

(defun identity (x) x) ->
identity

(funcall # identity # identity)
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Note once again that there may be no resultant function or an internal representation will be printed.
Let us apply the self application function to the identity function:

(funcall # (lanmbda (s) (funcall s s)) # (lanbda (x) X))
Notice that we must make the application of the argument to itself explicit. Now, let us use definitions:

(defun self_apply (s) (funcall s s)) ->
sel f _apply

(funcall # self_apply # identity)
Finally, let u try the function application function:

(defun apply (f a) (funcall f a)) ->
apply

with the self application function and the identity function:
(funcall # apply # self_apply # identity)

Pure A calculusin LISP is complicated by this need to make function values and their applications explicit and by the
absence of uniform representations for function values.

10.19. A calculus and Scheme

Scheme is alanguage in the LISP tradition which provides function values without explicit function identification and
application. Scheme, like other LISPs, uses the bracket based form as the combined program and data structure, is
weakly typed and has applicative order evaluation. Like COMMON LISP, Scheme is lexically scoped. We are not
going to look at Scheme in any depth. Here, we are only going to consider the use of function values.

In Scheme, functions are true first class objects. They may be passed as arguments and function expressions may
appear in the function position in forms. Thus, many of our pure A calculus examples will run with alittle translation
into Scheme. However, Scheme systems may not display directly function values as text but may produce a system
dependent representation.

Let us consider once again the examples from chapter 2. We can enter a lambda function directly, for example the
identity function:

(lambda (x) x)

We can also directly apply functions to functions, for example we might apply the identity function to itself:
((lanbda (x) x) (lanmbda (x) x))

Alas, the representation of the result depends on the system.

Scheme function definitions have the form:
(define (<name> <argunent1> <argunent2> ...) <body>)

Defined functions may be applied without quoting:

(define (identity x) x) ->
identity
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(identity identity)

Note once again that there may be no resultant function or a system specific internal representation may be printed.

To continue with the self application and function application functions:

(lambda (s) (s s))
((lanbda (s) (s s)) (lanmbda (x) x))

(define (self_apply s) (s s)) ->
sel f _apply

(self_apply identity)

(define (apply f a) (f a)) ->
apply

(apply self_apply identity)

This explicit use of function values is much closer to the A calculus than COMMON LISP though there is still no
uniform representation for function values.

10.20. Other features

It is impossible to consider an entire language in a small chapter. Here, we have concentrated COMMON LISP in
relation to pure functional programming. COMMON LISP has come along way since the original LISP systems. In
particular, it includes a wide variety of data types which we have not considered including characters, arrays, strings,
structures and multiple value objects. We a so have not looked at input/output and other system interface facilities.

10.21. Summary

In this chapter we have:

surveyed quickly COMMON LISP
seen how to implement algorithms from preceding chaptersin COMMON LISP

seen that treating functions as objects in COMMON LISP involves explicit notation and that there is no
standard representation for function results.

seen that Scheme simplifies treating functions as objects but lacks a standard representation for function results.

10.22. Exercises

1)

(c.f. Chapter 4 Exercises 1, 2, 3 & 4) Write functions to:
i) find the sum of the integers between n and 0.
ii) find the product of the numbers betweenn and 1.

iii) find the sum of applying afunction f un to the numbers between n and 0.
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iv) find the sum of applying afunction f un to the numbers betweenn and zer o in stepsof s.
(c.f. Chapter 6 Exercise 2)
i) Write a function which indicates whether or not alist starts with a sub-list. For example:

(I'starts "(1 2 3) "(12345)) ->
t

(Istarts '(1 2 3) '(456)) ->
ni |

ii) Write afunction which indicates whether or not alist contains a given sub-list. For example:

(lcontains "(456) '(1234567829)) ->
t

(lcontains "(4 56) '(246810)) ->
ni |

iii) Write afunction which counts how often a sub-list appearsin another list. For example:

(lcount "(12) "(123123123)) ->
3

iv) Write a function which removes a sub-list from the start of alist, assuming that you know that the sub-list
startsthe list. For example:

(Iremove (1 23) "(1234567809)) ->
(4567809

V) Write afunction which deletes the first occurence of a sub-list in another list. For example:

(ldelete '(456) '(123456789) ->
(1237819

(Idelete (4 56) '(24 6 8 10)) ->
(2 4 6 8 19)

vi) Write afunction which inserts a sub-list after the first occurence of another sub-list in alist. For example:

(linsert "(456) '(123) '(123789) ->
(1234567809

(linsert (4 56) '(123) (2468 10) ->
(2 4 6 8 10)

vii) Write afunction which replaces a sub-list with another sub-listin alist. For example:

(lreplace '(6 54) "(456) '(987654321)) ->
(987456321)

(lreplace '(6 54) "(456) '(246810)) ->
(2 4 6 8 10)

(c.f. Chapter 6 Exercise 3)
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i) Write afunction which merges two ordered lists to produce an ordered list.
ii) Write a function which merges alist of ordered lists.

(c.f. Chapter 7 Exercise 1)

The time of day might be represented as a list with three integer fields for hours, minutes and seconds:
(<hour s> <mi nut es> <seconds>)

For example:

(17 35 42) == 17 hours 35 minutes 42 seconds

Note that:

24 hours = 0 hours

1 hour == 60 ninutes

1 nminute == 60 seconds

i) Write functions to convert from atime of day to seconds and from seconds to atime of day. For example:

(too_secs (2 30 25)) ->
9025

(fromsecs 48975) ->
(13 36 15)

ii) Write afunction which increments the time of day by one second. For example:

(tick (15 27 18)) ->
(15 27 19)

(tick (15 44 59)) ->
(15 45 0)

(tick (15 59 59) ->
(16 0 0)

(tick (23 59 59) ->
(0 0 0)

iii) In a shop, each transaction at a cash register is time stamped. Given alist of transaction details, where each
isastring followed by atime of day, write a function which sorts them into ascending time order. For example:

(tsort ' ((haggis (12 19 57))
(bannocks (18 22 48))
(white_pudding (10 12 35))
(oat cakes (15 47 19)))) ->

((white_pudding (10 12 35))

(haggis (12 19 57))
(oat cakes (15 47 19))
(bannocks (18 22 48)))

(c.f. Chapter 7 Exercise 2)

i) Write afunction which compares two integer binary trees.
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ii) Write afunction which indicates whether or not one integer binary tree contains another as a sub-tree.

iii) Write afunction which traverses a binary tree to produce alist of node valuesin descending order.
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Bibliography

This is an introductory book which draws on a wide range of sources. Most of the material here is covered in other
texts though often with different perspectives and emphases. This bibliography is not exhaustive: rather, it offers a
broad cross section of source and supplementary material. References are almost entirely to books on the grounds that
these tend to be more discursive than academic papers.

Chapter 1 - Introduction

Backus'3 influential paper contains a critique of von Neumann computing and arguments for functional
programming.

Brief motivational material on functional programming is contained in Sadler and Eisenbach®®, Glaser, Hankin
and Till2!, Henderson3 and Henson31.,

Brady® provides an accessable introduction to the theory of computing. There are further accounts in a wide
variety of mathematical logic texts, of which Kleene s36 and Mendelson’s3 are till outstanding.

For related general computing topics not considered further in this book: the denotational approach to
programming language semantics is covered by Gordon??, Schmidt*®, and Stoy®l; program specification is
covered by Cohen, Harwood and Jackson®®, Gehani & McGettrick??, Hayes??, Jones33, and more formally by
Turski & Maibaum>#; program verification is covered by Backhouse?, Gries?3, Manna3’, and less formally
though thoroughly by Bornat”.

For related functional programming and language topics not considered further in this book: Eisenbach8: 16,24
and Glaser, Hankin and Till?l contain overviews of implementation techniques; SECD machine
implementations are discussed by Brady®, Burge 10, Field and Harrison18, Henderson30, Henson3l, and
Wegner>>; combinators and graph reduction are covered thoroughly by Field and Harrison!® and by Peyton-
Jones®, and, in less detail, by Henson3! and Revesz#®; Bird and Wadler® cover verification; Field and
Harrison18 cover program transformation and abstract interpretation; Henson3l covers verification and
transformation; Harrison and K hoshnevisan?’ also discuss transformation.

For functional languages not considered further in this book: Field and Harrison!® is based on Hope and also
contains brief discussion of Miranda, Lisp and FP; Peyton-Jones® is based on Miranda and contains an
introduction by Turner®2; Bailey? covers Hope; Harrison and Khoshnevisan?® cover FP; Henson3! covers FP;
Glaser, Hankin and Till?® discuss briefly FP, Hope and KRC; Bird and Wadler contains a brief appendix on
Miranda®; Revesz#® discusses briefly FP and Miranda; SASL is covered by Turner>3,

For various imperative languages mentioned here: ALGOL 60%0; Algol 68%1; BCPL#/; C35; Pascall?; POP-211;
Prolog! and PS-algol12

Chapter 2 - A calculus

Church’s!3 description of the A calculus is much referenced but little read. Barendregt® is the standard
reference. Hindley and Seldin3? is less detailed.

Early descriptions from a computing perspective include Burgel®, and Wegner®. Field and Harrisonl8,
Peyton-Jones®™ and Revesz*® provide thorough contemporary accounts, as does Stoy®! though oriented to
semantics. Glaser, Hankin and Till?1, and Henson3! also describe A calculus.

Pair functions are discussed by Barendregt®, Field and Harrison18, Glaser, Hankin and Till?1, Henson3l,
Revesz* and Wegner®.
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Chapter 3 - Conditions, booleans and integers

Burgeld, Field and Harrison18, Glaser, Hankin and Till?1, Henson31, Revesz#6 and Wegner®® al have accounts
of aspects of the material on conditional expressions and booleans. Schmidt4? and Stoy>! cover it in exercises.

There are many approaches to representing numbers. The approach here is discussed by Barendregt®, and

Glaser, Hankin and Till2!, and also by Revesz* in an exercise. Field and Harrison18 and Wegner>® discuss
variants. Church’s representation is discussed by Barendregt®, Burgel®, Henson31, Revesz#%, and Wegner®5.

Chapter 4 - Recursion
Barendregt®, Brady®, Glaser, Hankin and Till21, Henson3!, Peyton-Jones®3, Revesz#® and Stoy®? all discuss the
derivation of the ‘recursion’ function. Field and Harrison® present it. Schmidt4® presents it in an exercise.
Burgel? discussesit in terms of combinators.
Kleene3® Mendelson38, Peter4?, and Rayward-Smith® provide accounts of the construction of arithmetic and

comparison operations within recursive function theory. Brief computing oriented accounts are in Burgel? and
Glaser, Hankin and Till2L,

Chapter 5- Types
The approach to types considered hereis aA calculus implementation of run-time typing with tags. Abelson and
Sussman? discuss a related Scheme approach to manifest types, and Henderson3 and Peyton-Jones*® discuss
implementations of typing.

Field and Harrison!® and Peyton-Jones* contain thorough accounts of type checking.

Chapter 6 - Listsand strings

Bird and WadlerS, Henderson30, Henson3! and Revesz* contain thorough accounts of lists from a functional
programming perspective.

Numerous books on LISP contain material on list processing and mapping functions. Wilensky®’ provides an
accessableintroduction.

Chapter 7 - Composite values and trees
The use of lists to represent composite values is discussed implicitly in numerous books on LISP.
Henderson3C and Queinnec** discuss accumul ation variables.

Abelson and Sussman! and Shapiro™ discuss the list representation of binary trees in Scheme and LISP
respectively.

Bird and Wadler® provides a thorough account of trees from a functional language perspective.

Chapter 8 - Evaluation

Barendregt® and Hindley and Seldin32 contain formal details of reduction. There are more accessable
approaches in Brady®, Burgel®, Field and Harrison!8, Glaser, Hankin and Till?1, Henson31, Peyton-Jones®,
Revesz*, Stoy®l, and Wegner®. Note that Barendregt, Burge, Field and Harrison, Hindley and Seldin, and
Wegner only name one Church-Rosser theorem.
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Bird and Wadler® discuss evaluation models, time and space efficiency and agorithm design techniques.
Brady® and Minsky3° contain details of the halting problem for Turing machines.

Abelson and Sussman?, Bird and Wadler®, Field and Harrison!8, Glaser, Hankin and Till?1, Henderson¥0,
Henson3!, Peyton-Jones® and Revesz? | discuss aspects of lazy evaluation.

Bird and Wadler® provides a thorough account of infinite lists.

Chapter 9 - Functional programming in Standard ML

Wikstrom?6 provides thorough coverage of SML programming. Harper, MacQueen and Milner?® describes
SML informally and gives details of 1/O and modules. (The informal description and the I/O details are
duplicated in Wikstrom). Harper, Milner and Tofte?® is afirst version of aformal semantics for SML.

Bird and Wadler provide much additional material which is relevant to SML programming including
discussion of concrete and abstract types.

Chapter 10 - Functional programming and L1SP

Steele3* is the COMMON LISP ‘bible’. Wilensky®’ is an good introduction. Winston and Horn®® take an
Artificia Intelligence perspective.

Abelson and Sussman! is the standard reference for SCHEME and is based around an introductory computer
science course. Dybvigl’ is amore traditional programming language text.
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Answers to exercises

Chapter 2
1)
i) Aa.(a Ab. (b a))

<function>
<bound variable> - a
<body> - (a Ab.(b a))
<appl i cation>
<function exp> - <nanme> - a
<argunment exp> - Ab. (b a)
<function>
<bound variable> - b
<body> - (b a)
<appl i cation>
<function exp> - <nane> - b
<argunment exp> - <name> - a

i) AX.AY.AZ.((z x) (z y))

<function>
<bound vari abl e> - x
<body> Ay.Az.((z x) (z vy))
<function>
<bound variable> - vy
<body> - Az.((z x) (z vy))
<function>
<bound variable> - z
<body> - ((z x) (z y))
<appl i cation>
<function exp> - (z x)
<appl i cation>
<function exp> - <nane> - z
<argunent exp> - <nane> - X
<function exp> - (z vy)
<appl i cation>
<function exp> - <nane> - z
<argunment exp> - <name> - Yy

iii) (M.Ag.(Ah.(g h) f) Ap.Aq.p)

<appl i cation>
<function exp>
<function> - Af.Ag.(Ah.(g h) f)
<bound variable> - f
<body> - Ag. (Ah.(g h) f)
<functi on>
<bound variable> - g
<body> - (Ah.(g h) f)
<appl i cation>
<function exp> - Ah.(g h)
<functi on>
<bound variable> - h
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<body> - (g h)
<appl i cation>
<function exp> - <name> - ¢
<ar gunment exp> - <nane> - h
<ar gunment exp> - <nane> f
<argument exp> - Ap.Ad.p
<functi on>
<bound variable> - p
<body> - AQ.p
<functi on>
<bound variable> - q
<body> - <pame> - p

iv) AMee.AMi.AMo.Mum (fum (fo (fi fee)))

<functi on>
<bound vari able> - fee
<body> - Afi.Afo.Afum (fum (fo (fi fee)))
<functi on>
<bound vari able> - fi
<body> - Afo.Afum (fum (fo (fi fee)))
<functi on>
<bound variable> - fo
<body> - Afum (fum (fo (fi fee)))
<function>
<bound variable> - fum
<body> - (fum (fo (fi fee)))
<appl i cation>
<function exp> - <name> - fum
<argunment exp> - (fo (fi fee))
<appl i cation>
<function exp> - <nane> - fo
<argunment exp> - (fi fee)
<appl i cation>
<function exp> - <name> - fi
<argunment exp> - <name> - fee

V) ((Ap.(AQ.p AX. (x P)) Ai.Aj.(j 1)) Aa.Ab.(a (a b)))
<appl i cation>
<function exp> - (Ap.(Ag.p AX.(x p)) Ai.Aj.(] 1))
<appl i cation>
<function exp> - Ap. (AQ.p AX.(X p))
<functi on>
<bound variable> - p
<body> - (Ag.p AX.(X p))
<appl i cation>
<function exp> - AQ.p
<functi on>
<bound variable> - q
<body> - <nane> - p
<argument exp> - AX. (X p)
<functi on>
<bound vari able> - x
<body> - (x p)
<appl i cation>
<function exp> - <name> - x
<argument exp> - <nane p>
<argunent exp> - Ai.Aj. (] 1)
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<function>
<bound variabl e> - i
<body> - Aj. (] i)
<function>
<bound vari abl e> - |j
<body> - (j 1)
<appl i cation>
<function exp> - <name> - |j
<argunent exp> - <nane> -
<argunent exp> - Aa.Ab.(a (a b))
<function>
<bound variable> - a
<body> - Ab.(a (a b))
<function>
<bound variable> - b
<body>
<appl i cation>
<function exp> - <nanme> - a
<argunent exp> - (a b)
<appl i cation>
<function exp> - <nane> - a
<argunment exp> - <nane> - b

i) ((M.AY. (Y X) Ap.AQ.p) Ai.i) =>
(AY. (Y Ap.Ag.p) Ai.i) =>
(Ai.i Ap.Ag.p) =>
Ap. AQ. p

i) (((AX.AY.AzZ. ((x y) z) M.Aa.(f a)) ANi.i) Aj.j) =>
((AY.Az. ((M.Aa. (f &) y) z) Ni.i) Aj.j) =>
(Az. ((M.Aa. (f a) Ai.i) z) Aj.j) =>
((M.Aa. (f a) ANi.i) Aj.j) =>
(Aa. (ANi.i a) Aj.j) =>
(NiLi A.j) =
A

iii) (Ah.((Aa.Af.(f a) h) h) Af.(f f))
((Aa. Af.(f a) M. (f f)) AM.(f f)) =>
(M. (f AM.(F f)) M. (f f)) =>
(M. (f f) M. (f f)) =>
(M. (F ) AL(F f)) => ...

iv) ((Ap.-Ag.(p q) (Ax.x Aa.Ab.a)) Ak.k) =>
(Ag. ((AX.x Aa.Ab.a) q) Ak.k) =>
((Ax.x Aa.Ab.a) Ak.k) =>
(Aa. Ab.a Ak. k) =>
Ab. AK. k

(AMf.Ag. AX.(f (g X)) As. (s S)) Aa.Ab.b) Ax.Ay.x) =>
AQ. AX. (As. (s s) (g X)) Aa.Ab.b) Ax.Ay.x) =>

X.(As. (s s) (Aa.Ab.b x)) Ax.Ay.x) =>

S.(s s) (Aa.Ab.b Ax.Ay.x)) =>

Aa. Ab. b Ax.Ay.x) (Aa.Ab.b Ax.Ay.x)) =>

b.b (Aa.Ab.b Ax.Ay.x)) =>

((
((
(A
(A
((
(A
(Aa. Ab. b Ax.Ay.x) =>
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Ab. b

i) a) (identity <argunent>) => ... =>
<ar gunent >

b) ((apply (apply identity)) <argument>) => ... =>
((apply identity) <argunent>) => ... =>
(identity <argunent>) => ... =>
<ar gunent >

ii) a) ((apply <function>) <argunment>) => ... =>
(<function> <argunent >)

b) ((Ax.Ay. (((make_pair x) y) identity) <function>) <argunent>) =>
(Ay. (((rmake_pair <function>) y) identity) <argunent>) =>
(((rmake_pair <function>) <argunent>) identity) => ... =>
((identity <function>) <argunent>) => ... =>
(<function> <argument >)

iii) a) (identity <argunent>) => ... =>
<ar gument >

b) ((self_apply (self_apply select_second)) <argunent>) => ... =>
(((self_apply select_second) (self_apply sel ect_second))
<argument>) => ... =>
(((sel ect_second sel ect_second) (sel ect_second sel ect_second))
<argument>) => ... =>
((Asecond. second (sel ect_second sel ect _second) <argunent>) => ..
((sel ect _second sel ect_second) <argunent>) => ... =>

(Asecond. second <argunent>) =>
<ar gunent >

def nmake triplet = Afirst.
Asecond.
At hird.
As. (((s first) second) third)

def triplet _first = AMirst.Asecond. Athird. first

def triplet_second = Afirst.Asecond. At hird. second

def triplet_third = AMirst.Asecond. Athird.third
make_triplet <iteml> <itenR2> <itenB> triplet_first ==
AMirst.

Asecond.
At hird.

As. (((s first) second) third) <iteml> <item2> <itenB> triplet first => ..

(((triplet_first <iteml>) <itenR>) <itenB>) ==
(((AMfirst.Asecond. Athird.first <iteml>) <itenmk>) <itenB>) => ... =>
<iteml>
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make triplet <itenml> <itenP> <itenB> triplet first ==
Mirst.

Asecond.

At hird.

As. (((s first) second) third) <iteml> <itenP> <itenB> triplet_second => ..

(((triplet_second <itenl>) <itenR>) <itenB>) ==

(((Afirst.Asecond. Athird.second <iteml>) <itenP>) <itenB8>) => ..

<i ten2>

make_triplet <iteml> <itenR2> <itenB> triplet_third ==
AMfirst.

Asecond.

Athird.

As. (((s first) second) third) <iteml> <item2> <itenB> triplet _third => ..

(((triplet_third <iteml>) <itenR>) <itenB>) ==
(((AMfirst.Asecond. Athird.third <itenl>) <itenR>) <itenB>) => ..
<itenB>

i) AX.AY. (AX.y Ay. X)
x bound at {x} in AX.Ay.(Ax.y Ay.{x})
x free at {x} in Ay.(Ax.y Ay.{x})
(Ax.y Ay.{x})
Ay. {x}
{x}
y bound at {y} in AxX.Ay. (Ax.{y} Ay.Xx)
AY. (AX. {y} Ay.Xx)
y free at {y} in (A.{y} Ay.x)
Ax. {y}
{y}

i)  AX. (X (Ay. (AX.x y) X))
x bound at {x} in Ax.({x} (Ay.(Ax.x y) {x}))
x free at {x} in ({x} (Ay.(Ax.x y) {x}))

in {x}
in Ay. (Ax.x y) {x})
in {x}
x bound at {x} in Ay.(Ax.{x} vy)
(Ax. {x} y)
Ax. {x}

x free at {x} in {x}
y bound at {y} in Ax.(x (Ay.(Mx.x {y}) X))
(x (Ay. (Ax.x {y}) x))
(Ay. (Ax.x {y}) x)
Ay. (Ax.x {y})
y free at {y} in (M. x {y})
{y}

iii) Aa.(Ab.a Ab.(Ma.a b))

a bound at {a} in Aa.(Ab.{a} Ab.(Aa.a b))
a free at {a} in (Ab.{a} Ab.(ra.a b))
Ab. {a}
{a}
a bound at {a} in Aa.(Ab.a Ab.(Aa.{a} b))
(Ab.a Ab. (Aa.{a} b))

=>

=>
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Ab. (Aa. {a} b))
Aa. {a}
a free at {a} in {a}
b bound at {b} in Aa.(Ab.a Ab.(Aa.a {b}))
(Ab.a Ab. (Aa.a {b}))
Ab. (Aa.a {b})
b free at {b} in (Aa.a {b})
{ b}

iv) (Afree.bound Abound. (AMfree.free bound))

bound free at {bound} in (Afree.{bound} Abound. (Afree.free bound))
A ree. {bound}
{bound}
bound bound at {bound} in (Afree.bound Abound. (AMfree.free {bound}))
Abound. (AMfree. free {bound})
bound free at {bound} in (Afree.free {bound})
{bound}
free bound at {free} in (Afree. bound Abound. (Afree.{free} bound))
Abound. (AMfree. {free} bound)
(AMfree.{free} bound)
Mree. {free}
free free at {free} in {free}

v)  Ap.Ag. (Ar.(p (Ag. (Ap.(r )))) (g p))

p bound at {p} in Ap.Aq. (Ar.({p} (Ad.(Ap.(r q)))) (a {p}))
p free at {p} in Ag. (Ar.({p} (Ag.(Ap.(r @)))) (g {p}))
(Ar.({p} (Ag.(Ap.(r q)))) (a {p}))
Aro({p} (Ag. (Ap.(r q))))
({p} (Ag.(Ap-(r @))))
{p}
(g {p})
{p}
q bound at {q} in Ap.Aqg. (Ar.(p (Ag.(Ap.(r a)))) ({a} p))
Ag. (Ar.(p (Ag. (Ap-(r @)))) ({a} p))
q free at {q} in (Ar.(p (Ag.(Ap.(r q)))) ({a} p))

E{?} p))

q

g bound at {q} in Ap.Aqg. (Ar.(p (Ag. (Ap.(r {a})))) (g p))
Ag. (Ar. (p (Ag. (Ap-(r {a})))) (g p))
(Ar.(p (AQ. (Ap. (r {a})))) (a p))
Ar.(p (AQ. (Ap. (r {a}))))
(p (AQ. (Ap-(r {a}))))

Ag. (Ap. (r {a})))
q free at {q} in (Ap.(r {q}))
(r {a})
{a}
r bound at {r} in Ap.Aq.(Ar.(p (Ag.(Ap.({r} @)))) (a p))
AG. (Ar.(p (Ag. (Ap. ({r} @))) (g p))
(Ar.(p (AQ. (Ap. ({r} a)))) (g p))
Ar.(p (Ag. (Ap. ({r} a))))
r free at {r} in (p (Ag.(Ap.({r} a))))
Ag. (Ap. ({r} a)))
(Ap. ({r} )
({r} a)
{r}



-222 -

6)
i) AX.AY. (Az.y Aa.Xx)
ii) AX. (X (Ay.(Az.z y) X))
iii) Aa.(Ab.a Ab.(Ac.c b))
V) Ap-Ad. (Ar.(p (Ag.(As.(r q)))) (a p))
Chapter 3
1)
def inmplies = AX.Ay.(x y true)
inmplies false false => ... => false false true => ... => true
inplies false true => ... => false true true => ... =>true
inplies true false => ... => true false true => ... => false
inplies true true => ... =>true true true => ... => true
2)
def equiv = AX. Ay. (x y (not vy)
equiv false false => ... => false false (not false) => ... =>true
equiv false true => ... => false true (not true) => ... => false
equiv true false => ... => true false (not false) => ... => fal se
equiv true true => ... =>true true (not true) => ... => true
3
i) a) AX.Ay.(and (not x) (not y)) false false => ... =>
and (not false) (not false) => ... =>
(not false) (not false) false) => ... =>
true (not false) false => ... =>
not false => ... => true
AX.Ay. (and (not x) (not y)) false true => ... =>
and (not false) (not true) => ... =>
(not false) (not true) false => ... =>
true (not true) false => ... =>
not true => ... => false
AX.Ay. (and (not x) (not y)) true false => ... =>
and (not true) (not false) => ... =>
(not true) (not false) false => ... =>
false (not false) false => .. => false
AX.Ay. (and (not x) (not y)) true true => ... =>
and (not true) (not true)
(not true) (not true) false => ... =>
false (not true) false => ... => false

b) Ax.Ay.(not (or x y)) false false => ... =>



ii) a)
b)

iii) a)

b)
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not (or false false) => ... =>

(or false false) false true => ... =>
(false true false) false true => ... =>
false false true => ... => true

AX.Ay.(not (or x y)) false true => ... =>
not (or false true) => ... =>

(or false true) false true => ... =>
(false true true) false true => ... =>
true false true => ... => false

AX.Ay. (not (or x y)) true false => ... =>
not (or true false) => ... =>

(or true false) false true => ... =>
(true true false) false true => ... =>
true false true => ... => fal se

AX.Ay. (not (or x y)) true true => ... =>
not (or true true) => ... =>

(or true true) false true => ... =>
(true true true) false true => ... =>
true false true => ... => fal se

- see 1) above

AX.Ay. (inmplies (not y) (not x)) false false => ..

inmplies (not false) (not false) => ... =>
(not false) (not false) true => ... =>
true (not false) true => ... =>

not false => ... => true

AX.Ay. (inmplies (not y) (not x)) false true => ..

inmplies (not true) (not false) => ... =>
(not true) (not false) true => ... =>
false (not false) true => ... =>true

AX.Ay. (inmplies (not y) (not x)) true false => ..

inmplies (not false) (not true)

(not false) (not true) true => ... =>
true (not true) true => ... =>
not true => ... => false

AX.Ay. (inmplies (not y) (not x)) true true => ..

inmplies (not true) (not true) => ... =>
(not true) (not true) true => ... =>
false (not true) true => ... => true

not false => ... => true
not true => ... => fal se

AX. (not (not (not x))) false => ... =>

not (not (not false)) => ... =>

(not (not false)) false true => ... =>

((not false) false true) false true => ... =>

((false false true) false true) false true => ..

(true false true) false true => ... =>
false false true => ... => true
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AX. (not (not (not x))) true => ... =>

not (not (not true)) => ... =>

((not (not true)) false true) => ... =>

((not true) false true) false true => ... =>

((true false true) false true) false true => ... =>
(false false true) false true => ... =>

true false true => ... => fal se

- see 1) above

AX.Ay.(not (and x (not y))) false false => ... =>
not (and false (not false)) => ... =>

(and false (not false)) false true => ... =>
(false (not false) false) false true) => ... =>
false false true => ... => true

AX.Ay.(not (and x (not y))) false true => ... =>
not (and false (not true)) => ... =>

(and false (not true)) false true => ... =>
(false (not true) false) false true => ... =>
false false true => ... => true

AX.Ay. (not (and x (not y))) true false => ... =>
not (and true (not false)) => ... =>

(and true (not false)) false true => ... =>
(true (not false) false) false true => ... =>
(not false) false true => ... =>

true false true => ... => fal se

AX.Ay. (not (and x (not y))) true true => ... =>
not (and true (not true)) => ... =>

(and true (not true)) false true => ... =>
(true (not true) false) false true => ... =>
(not true) false true => ... =>

false false true => ... => true

- see 2) above

AX.Ay. (and (inplies x y) (inplies y x)) false false => ..

and (inplies false false) (inplies false false) => ..

(inmplies false false) (inplies false false) false => ..

(false false true) (inplies false false) false => ..

true (inplies false false) false => ... =>
inmplies false false => ... =>
false false true => ... => true

AX.Ay. (and (inplies x y) (inplies y x)) false true => ..

and (inplies false true) (inplies true false)
(inplies false true) (inplies true false) false => ..

(false true true) (inplies true false) false => ... =>
true (inplies true false) false => ... =>

inplies true false => ... =>

true false false => ... => fal se

AX.Ay. (and (inplies x y) (inplies y x)) true false => ..

and (inplies true false) (inplies false true)
(inplies true false) (inplies false true) false => ..
(true false true) (inplies false true) false => ... =>
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false (inplies false true) false => ... => fal se

AX.Ay. (and (inplies x y) (inplies y x)) true true => ..

and (inplies true true) (inplies true true) => ... =>
(inplies true true) (inplies true true) false => ... =>
(true true true) (inplies true true) false => ... =
true (inplies true true) false => ... =

inplies true true => ... =>

true true true => ... => true

4)
AX. (succ (pred x)) As.(s fal se <nunber>) =>
succ (pred As. (s fal se <nunber>)
Sinplifying: pred As.(s fal se <nunber>) => ... =>
<nunber >
so: succ <nunber> => ... =>
As. (s fal se <nunber>)
AX. (pred (succ x)) As.(s false <nunber>) =>
pred (succ As. (s fal se number>))
Sinplifying: succ As.(s fal se <nunber>) => ... =>
As. (s false As. (s fal se <nunber>))
so: pred As.(s false As.(s false <nunmber>)) => ... =>
As. (s fal se <nunber>)
AX. (succ (pred x)) zero =>
(succ (pred zero))
Simplifying: pred zero => ... => zero
S0: succ zero ==
one
AX. (pred (succ x)) zero =>
(pred (succ zero))
Sinplifying: succ zero == one
so: pred one => ... =>
zero
Chapter 4
1)
sumthree => ... =>
recursive sunl three => ... =>
suml (recursive suml) three => ... =>
add three ((recursive sum) (pred three)) -> ... ->
add three (suml (recursive suml) two) -> ... ->
add three (add two ((recursive suml) (pred two))) -> ... ->
add three (add two (sunl (recursive sunl) one)) -> ... ->

2)

add three (add two (add one ((recursive sunl) (pred one)))) -> ..
add three (add two (add one (suml (recursive suml) zero))) -> ..

add three (add two (add one zero)) -> ... ->
Si X

->
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def prodl f n =

if equal n one

t hen one

else mult n (f (pred n))

def prod = recursive prodl

prod three

recursive prodl three => ... =>

prodl (recursive prodl) three => ... =>

mult three ((recursive prodl) (pred three)) -> ... ->
mult three (prodl (recursive prodl) two) -> ... ->

mult three (mult two ((recursive prodl) (pred two))) -> ..
mult three (mult two (prodl (recursive prodl) one)) -> ..
mult three (mult two one) -> ... ->

Si X

def fun_suml f fun n =

if iszero n

then fun zero

el se add (fun n) (f fun (pred n))

def fun_sum = recursive fun_sunil

fun_sum double three => ... =>
recursive fun_suml double three => ... =>
fun_suml (recursive fun_sunl) double three => ... =>
add (doubl e three)
((recursive fun_suml) double (pred three)) -> ... ->
add (doubl e three)
(fun_sunl (recursive fun_suml) double two) -> ... ->

add (doubl e three)
(add (doubl e two)
((recursive fun_suml) double (pred two))) -> ... -
add (doubl e three)
(add (doubl e two)
(fun_sunl (recursive fun_suml) double one)) -> ..
add (doubl e three)
(add (doubl e two)
(add (doubl e one)

((recursive fun_sunl) double (pred one)))) -> ..

add (doubl e three)
(add (doubl e two)
(add (doubl e one)
(fun_sunil (recursive fun_suml) double zero)))
add (doubl e three)
(add (doubl e two)
(add (doubl e one)
(double zero))) -> ... ->
twel ve

def fun_sumstepl f fun n s =
if iszero n

->
->

->

-> L.
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then fun n
el se add (fun n) (f fun (sub n s) s)

def fun_sumstep = recursive fun_sumstepl

i)
fun_sum step double five two => ... =>
recursive fun_sum stepl double five two => ... =>
fun_sum stepl (recursive fun_sumstepl) double five two => ... =>
add (double five)
((recursive fun_sum stepl) double (sub five two) two) -> ... ->
add (double five)
(fun_sum stepl (recursive fun_sum stepl) double three two) -> ... ->

add (double five)
(add (doubl e three)
((recursive fun_sum stepl) double (sub three two) two)) -> ... ->
add (double five)
(add (doubl e three)
(fun_sum stepl (recursive fun_sum stepl) double one two)) -> ..
add (double five)
(add (doubl e three)
(add (doubl e one)

((recursive fun_sum stepl) double (sub one twd) two))) -> ..

add (double five)
(add (doubl e three)
(add (doubl e one)
(fun_sum stepl (recursive fun_sum stepl) double zero two)))
add (double five)
(add (doubl e three)
(add (doubl e one)

(doubl e zero))) -> ... ->

ei ght een
ii)
fun_sum step double four two
recursive fun_sum stepl double four two => ... =>
fun_sum stepl (recursive fun_sum stepl) double four two => ... =>
add (doubl e four)

((recursive fun_sum stepl) double (sub four two) two) -> ... ->
add (doubl e four)

(fun_sum stepl (recursive fun_sum stepl) double two two) -> ... ->

add (doubl e four)

(add (doubl e three)

((recursive fun_sum stepl) double (sub two two) two)) -> ... ->
add (doubl e four)

(add (doubl e two)

(fun_sum stepl (recursive fun_sum stepl) double zero tw)) -> ..

add (doubl e four)
(add (doubl e two)
(doubl e zero))
twel ve

def less x y = greater y x

def less_or_equal x y = greater_or_equal y x

->

-> L.

->



-228 -

i) less three two => ... =>
greater two three => ... =>
not (iszero (sub two three)) -> ... ->
not (iszero zero) -> ... ->
not true => ... => false
ii) less two three => ... =>
greater three two -> ... ->true - see 4.8.3
iii) less two two => ... =>
greater two two => ... =>
not (iszero (sub two two)) -> ... ->
not (iszero zero) -> ... ->
not true => ... => false
iv) less_or_equal three two => ... =>
greater_or_equal two three => ... =>
iszero (sub three two) -> ... ->
iszero one => ... => false
V) |l ess_or_equal two three => ... =>
greater_or_equal three two => ... =>
iszero (sub two three) -> ... ->
iszero zero => ... => true
vi) less_or_equal two two => ... =>
greater_or_equal two two => ... =>
iszero (sub two two) -> ... ->
iszero zero => ... => true
6)
def nod x y =
if iszeroy
then x
el se nmodl x vy
rec nodl x y =
if less x vy
then x
el se nodl (sub x y) vy
i) mod three two => ... =>
nmodl three two
modl (sub three two) two -> ... ->
nodl one two => ... => one
ii) nmod two three => ... =>
modl two three => ... => two
iii) nod three zero => ... => three
Chapter 5

1)
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iii)
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ISBOOL 3 => ... =>

MAKE BOOL (i sbool 3) ==

MAKE BOCOL (istype bool type 3) -> ... ->

MAKE BOOL (equal (type 3) bool type) -> ... ->
MAKE BOOL (equal nunmb_type bool _type) -> ... ->
MAKE_BOCL fal se ==

FALSE

| SNUMB FALSE => ... =>

MAKE_BOCL (i snumb FALSE) ==

MAKE_BOCL (istype nunb_type FALSE) -> ... ->
MAKE_BOCL (equal (type FALSE) nunb_type) -> ... ->
MAKE BOOL (equal bool _type numb_type) -> ... ->
MAKE_BOCL fal se ==

FALSE

NOT 1 => ... =>

if isbool 1

then MAKE_BOCL (not (value 1))
else BOOL_ERROR -> ... ->

if equal (type 1) bool _type
then ...

else ... -> ... ->

i f equal nunb_type bool _type
then ...

else ... -> ... ->

if fal se

then ...

else BOOL_ERROR -> ... ->
BOOL_ERROR

TRUE AND 2 => ... =>

if and (isbool TRUE) (isbool 2)

then MAKE_BOCL (and (val ue TRUE) (val ue 2))

else BOOL_ERROR -> ... ->

if and (istype bool _type TRUE) (istype bool type 2)

then ...

else ... -> ... ->

if and (equal (type TRUE) bool _type) (equal (type 2) bool _type)
then ...

else ... -> ... ->

if and (equal bool _type bool _type) (equal nunb_type bool type)
then ...

else ... -> ... ->

if and true fal se

then ...

else ... -> ... ->

if fal se

then ...

else BOOL_ERROR -> ... ->
BOOL_ERROR

2 + TRUE => ... =>

if and (isnunb 2) (isnunb TRUE)

then MAKE_NUMB (add (value 2) (value TRUE))

el se NUMB ERROR -> ... ->

if and (istype nunb_type 2) (istype nunbtype TRUE)
then ...
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else ... -> ... ->
if and (equal (type 2) nunb_type) (equal (type TRUE) nunb_type)

then ...

else ... -> ... ->

if and (equal nunb_type nunmb_type) (equal nunb_type nunb_type)
then ...

else ... -> ... ->

if and true fal se

then ...

el se NUMB ERROR -> ... ->

NUMB_ERROR

i)

def issigned N = istype signed_type N

def 1SSIGNED N

MAKE_BOCL (i ssigned N)
def sign = value (select_first (value N))

def SIGN N =

if issigned N

then select _first (value N)
el se SI GN_ERROR

def sign_value N = value (sel ect_second (value N))
def VALUE N =

if issigned N

then sel ect _second (value N)

el se SI GN_ERROR

def sign_iszero N = iszero (sign_value N)

i)

def SIGN_I SZERO N
if issigned N
then MAKE BOOL (sign_iszero N)
el se SI GN_ERROR

def SIGN_SUCC N =
I F SIGN_| SZERO N
THEN +1
ELSE
IF SIGN N
THEN MAKE_SI GNED POS ( MAKE_NUMB (succ (sign_value N)))
ELSE MAKE_SI GNED NEG (MAKE_NUMB (pred (sign_value N)))

def SIGN_PRED N =
IF SIG\_I SZERO N
THEN -1
ELSE
IF SIGN N
THEN MAKE_SI GNED POS ( MAKE_NUMB (pred (sign_value N)))
ELSE MAKE_SI GNED NEG ( MAKE_NUMB (succ (sign_value N)))
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i)

def SIGN + XY =
if and (issigned X) (issigned Y)

t hen
if iszero (sign_value X)
then Y
el se
if sign_iszero (sign_valueY)
then X
el se

if and (sign X) (signY)
then MAKE_SI GNED POS ( MAKE_NUMB (add (sign_value X) (sign_value Y)))
el se
if and (not (sign X)) (not (sign Y))
then MAKE_SI GNED NEG ( MAKE_NUMB (add (sign_value X) (sign_value Y)))
el se
if not (sign X
t hen
if greater (sign_value X) (sign_valueY)
then MAKE_SI GNED NEG ( MAKE_NUMB (sub (sign_value X) (sign_value Y)))
el se MAKE_SI GNED PCS ( MAKE_NUMB (sub (sign_value Y) (sign_value X)))
el se
i f GREATER (sign_value Y) (sign_value X)
then MAKE_SI GNED NEG (sub (sign_value Y) (sign_value X))
el se MAKE_SI GNED PCS (sub (sign_value X) (sign_value Y))
el se SI GN_ERROR

Chapter 6
1)
def ATOMCONS A L =
if isnil L
then [ A]
el se

if equal (type A) (type (HEAD L))
then CONS A L
el se LI ST_ERRCR

2)

i) rec STARTS [] L = TRUE
or STARTS L [] = FALSE
or STARTS (H1::T1) (H2::T2) =
| F CHAR_EQUALS H1 H2
THEN STARTS T1 T2
ELSE FALSE

ii) rec CONTAINS L [] = FALSE
or CONTAINS L1 L2 =
| F STARTS L1 L2
THEN TRUE
ELSE CONTAINS L1 (TAIL L2)

iii) rec COINT L [] =0
or COUNT L1 L2 =



-232-

| F STARTS L1 L2
THEN 1 + (COUNT L1 (TAIL L2))
ELSE COUNT L1 (TAIL L2)

iv) rec REMOVE [] L =L
or REMOVE (H1::T1) (H2::T2) = REMOVE T1 T2

v) rec DELETE L [] =[]
or DELETE L1 L2 =
| F STARTS L1 L2
THEN REMOVE L1 L2
ELSE (HEAD L2):: (DELETE L1 (TAIL L2))

vi) rec INSERT L1 L2 [] =[]
or INSERT L1 L2 L3 =
| F STARTS L2 L3
THEN APPEND L2 (APPEND L1 (REMOVE L2 L3))
ELSE (HEAD L3)::(INSERT L1 L2 (TAIL L3))

vii) rec REPLACE L1 L2 [] =[]
or REPLACE L1 L2 L3 =
| F STARTS L2 L3
THEN APPEND L1 (REMOVE L2 L3)
ELSE (HEAD L3)::(REPLACE L1 L2 (TAIL L3))

3

i) rec MERGE L [] L
or MERGE [] L L
or MERGE (HL::T1l) (H2::T2) =
I F LESS H1 H2
THEN H1:: (MERCE T1 (H2::T2))
ELSE H2::(MERGE (H1::T1) T2)

ii) rec LMERGE [] =[]
or LMERGE (H:: T) = MERGE H (LMERCE T)

Chapter 7
1)
i) def TOO SECS [HMS] = (60 * ((60 * H + M) + S
def MD XY =X- ((X/ Y) *Y)

def FROM SECS S =
let SECS = MOD S 60
in
let MNS = (MDD S 3600) / 60
in
let HOURS = S/ 3600
i n [ HOURS, M NS, SECS]

ii) def TICK[HMS] =
let S=S +1
in
IF LESS S 60
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THEN [H, M S]
ELSE
let M= M+ 1
in
IF LESS M 60
THEN [ H, M 0]
ELSE
let H=H + 1
in
IF LESS H 24
THEN [ H, 0, 0]
ELSE [0, 0, 0]

iii) def TLESS [TRL,[HL, M, S1]] [TR2, [H2, M, S2]] =
I|F LESS HL H2
THEN TRUE
ELSE

|F EQUAL H1 H2
THEN
| F LESS ML M2
THEN TRUE
ELSE
|F EQUAL ML M2
THEN
| F LESS S1 S2
THEN TRUE
ELSE FALSE
ELSE FALSE
ELSE FALSE

rec TINSERT T [] = [T]

or TINSERT T (T1::R) =
IF TLESS T T1
THEN T::T1:.:R
ELSE T1:: (TINSERT T R)

rec TSORT [] =[]
or TSORT (H: : T) = TINSERT H (TSORT T)

2)

i) rec TCOMP TEMPTY TEMPTY = TRUE
or TCOMP TEMPTY T = FALSE
or TCOMP T TEMPTY = FALSE
or TCOWP [V1,L1,Rl] [V2, L2, R2] =
|F EQUAL V1 V2
THEN AND (TCOWP L1 L2) (TCOWP Rl R2)

ELSE FALSE
ii) rec TFIND TEMPTY T = TRUE
or TFIND T TEMPTY = FALSE

or TFIND T1 T2 =
|F TCOWP T1 T2
THEN TRUE
ELSE
I F LESS (1 TEM T1) (I TEM T2)
THEN TFIND T1 (LEFT T2)
ELSE TFIND T1 (R GHT T2)
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iii) rec DTRAVERSE TEMPTY = []

or DTRAVERSE [V, L, R] = APPEND (DTRAVERSE R) (V:: (DTRAVERSE L))

rec EVAL [E1, OP, E2] =
let Rl = EVAL E1
in
let R2 = EVAL E2
in
| F STRING EQUAL CP " +"
THEN R1 + R2
ELSE
| F STRING EQUAL CP "-"
THEN R1 - R2
ELSE
| F STRING EQUAL CP "*"
THEN R1 * R2
ELSE R1 / R2
or EVAL N = N

Chapter 8

1)

i)

Nor mal order

As. (s s) (Af.Aa.(f a) Ax.x Ay.y) =>

(AMf.2a. (f a) AX.x Ay.y) (Af.ra. (f a) AX.x Ay.y) =>
(Aa. (Ax.x a) Ay.y) (Af.Aa.(f a) Ax.x Ay.y) =>
(AX.x Ay.y) (Af.ra.(f a) AX.x Ay.y) =>

AY.y (Af.Aa. (f a) AX.x Ay.y) =>

AM.Aa. (f a) AX.x Ay.y =>

Aa. (AX.x a) Ay.y =>

AX.X Ay.y =>

AY. Y

8 reductions
Af.Aa. (f a) Ax.x Ay.y reduced tw ce

Applicative order

As. (s s) (Af.Aa.(f a) AX.x Ay.y) ->
As. (s s) (Aa.(MAx.x a) Ay.y) ->

AS. (s s) (AX.X Ay.y) ->

As. (s s) Ay.y ->

AY.Y Ay.y ->

AY. Y

5 reductions
Af.Aa. (f a) Ax.X Ay.y reduced once

Lazy

As. (s s) (Af.ra.(f a) Ax.x Ay.y), =>

(AMf.Aa. (f a) Ax.x Ay.y), (Af.Aa.%f a) AX.x Ay.y), =>
(Aa. (Ax.x a) Ay.y), (Aa.(Ax.x a) Ay.y), =>

(AX. X AY.y) o (AX. X Ay.y) 5 =>

AY.Y Ay y =>
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Ay.y

5 reductions
Af.Aa. (f a) Ax.Xx Ay.y reduced once

i)

Nor mal order

AX.AY. X AX.X (AS.(Ss S) As.(s s)) =>
AY.AX. X (As. (s S) As.(s s)) =>

AX. X

2 reductions
As. (s s) As.(s s) not reduced

Applicative order
AX.AY. X AX.X (As.(s S) As.(s s)) ->
AX.AY. X AX. X (As. (s S) As.(s s)) -> ...

Non-term nating - 1 reduction/cycle
As. (s s) As. (s s) reduced every cycle

Lazy

AX.AY. X AX.X (AsS.(Ss S) As.(s s)) =>
AY.AX. X (As. (s S) As.(s s)) =>

AX. X

2 reductions - as normal order

iii)

Nor mal order

Aa. (a a) (Af.As.(f (s s)) Ax.x) =>

(M. As. (f (s s)) Ax.x) (Af.As.(f (s s)) Ax.x)
AS. (AX. X (s s)) (AMf.As.(f (s s)) Ax.x) =>
AX.X ((AMfUAs. (f (s s)) AX.x) (M.As.(f (s s)) AX.x)) =>
(M .As. (f (s s)) AX.x) (Af.As.(f (s s)) Ax.x) => ..

1
\

Non-term nating - 3 reductions/cycle
AM.As. (f (s s)) Ax.x reduced every cycle

Applicative order

Aa. (a a) (Af.As.(f (s s)) Ax.x) ->

Aa.(a a) As.(Mx.x (s s)) ->

AS. (AX.X (s s)) As.(MX.x (s s5)) ->

AX. X (AS. (AX.X (S S)) As.(MX.x (s s8))) ->
AS. (AX.X (s s)) As.(MX.x (s s5)) -> ..

Non-term nating - 2 reductions/cycle
AM.As. (f (s s)) Ax.x reduced before non-termninating cycle

Lazy

Aa. (a a) (Af.As.(f (s s)) Ax.x), =>

(M. As. (f (s s)) )\x.x)1 (Af.As.%f (s s)) }\x.x)1 =>
AS. (AX.X (s S)) As.(Mx.x (s s)) =>

AX. X (AS. (AX.X (S S)) As.(MAX.Xx (s s))) =>

AS. (AX.X (s S)) As.(MX.x (s s)) => ..

Non-term nating - 2 reductions/cycle
AM.As. (f (s s)) Ax.x reduced before non-terminating cycle
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Chapter 9
1
i) fun cube (y:int) = y*y*y;
ii) fun inplies (x:bool) (y:bool) = (not x) orelse y;

iii) fun smallest (a:int) (b:int) (c:int) =

if a< b
t hen

if a<c

then a

else c
el se

if b<c

then b

el se c;

iv) fun desc_join (sl:string) (s2:string) =
if sl<s2
then s17s2
el se s27s1

v) fun shorter (sl:string) (s2:string) =
if (size sl) < (size s2)

then sl
el se s2;
2)
i) fun sumO = 0 |
sum (n:int) = n+(sum(n-1));
ii) fun nsum(mint) (n:int) =
if men
then O
el se mt(nsum (nmtl) n);
iii) fun repeat (s:string) 0 ="" |
repeat (s:string) (n:int) = s (repeat s (n-1));
3

i) fun ncount [] = 0 |
ncount ((h::t):int list) =
if h<oO
then 1+(ncount t)
el se ncount t;

ii) fun scount (s:string) [] =0 |
scount (s:string) ((h::t):string list) =
if h=s
then 1+(scount s t)
el se scount s t;

iii) fun gconstr (v:int) []1 =[] |
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geconstr (v:iint) ((h::t):int list) =
if h>v

then h::(gconstr v t)

el se gconstr v t;

iv) fun snmerge [] (s2:string list) s2 |
smerge (sl:string list) [] sl
smerge ((hl::tl):string list) ((h2::t2):string list) =
if hl < h2
then hl::(snmerge t1l (h2::12))
el se h2::(smerge (hl::t1l) t2);

v) fun slmerge [] =] |
slmerge ((h::t):(string list) list) = smerge h (slnmerge t);

Vi)

a) type stock = string * int * int;
fun item(s:string,n:int,r:int) = s;
fun nunb (s:string,n:int,r:int) = n;

fun reord (s:string,n:int,r:int) =r;

fun getnore [] =[] |
getrmore ((h::t):stock list) =
if (numb h) < (reord h)
then h::(getnore t)
el se getnore t;

b) type upd = string * int;
fun uvitem (s:string,n:int)
fun ununmb (s:string,n:int)

S;
n;

fun updatel [] (u:upd) =17 |
updatel ((h::t):stock list) (u:upd) =
if (itemh) = (uitemu)
then (item h, (nunb h)+(ununb u),reord h)::t
el se h::(updatel t u);

fun update (r:stock list) [] =71 |
update (r:stock list) ((h::t):upd list) = update (updatel r h) t;

i) fun leftl O (s:string list) =""
leftl (n:int) [] ="" |
leftl (n:int) ((h::t):string list) = h"(leftl (n-1) t);
fun left (n:int) (s:string) = leftl n (explode s);
ii) fun drop O (s:string list) =s
drop (n:int) [1 =11 |
drop (n:int) ((h::t):string list) = drop (n-1) t;
fun right (n:int) (s:string) = inplode (drop ((size s)-n) (explode s));
iii) fun middle (n:iint) (l:int) (s:string) = leftl | (drop (n-1) (explode s));

iv) fun starts [] (s2:string list)
starts (sl:string list) []

true |
fal se |
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starts ((hl::tl):string list) ((h2::t2):string list) =
if hl=h2

then starts t1 t2

el se fal se;

fun findl [] (s2:string list) 1|
findl (sl:string list) [] 1
findl (sl:string list) (s2:string list) =
if starts sl s2
then 1
el se 1+(findl sl (tl s2));

fun find (sl:string) (s2:string) =
l et val pos = findl (explode sl1) (explode s2)
in
if pos > (size s2)
then O
el se pos
end;

5)
fun east Queens_Street = Bi shopbriggs |
east Bi shopbriggs = Lenzie |
east Lenzie = Croy |
east Croy = Pol nont |
east Pol mont = Fal ki rk_Hi gh |
east Fal kirk_H gh = Linlithgow |
east Linlithgow = Haymarket |
east Haymarket = Waverly |
east Waverly = Vaverly;
fun west Queens_Street = Queens_Street |
west Bi shopbriggs = Queens_Street |
west Lenzi e = Bi shopbriggs |
west Croy = Lenzie |
west Pol nont = Croy |
west Fal ki rk_Hi gh = Pol nont |
west Linlithgow = Fal ki rk_Hi gh |
west Haymar ket = Linlithgow |
west Waverly = Haymarket ;
6)
fun eval (nunb(i:int)) =i |
eval (add(el:exp,e2:exp)) = (eval el)+(eval e2) |
eval (diff(el:exp,e2:exp)) = (eval el)-(eval e2) |
eval (nmult(el:exp,e2:exp)) = (eval el)*(eval e2) |
eval (quot(el:exp,e2:exp)) = (eval el) div (eval e2);
Chapter 10
1)

i) (defun nsum (n)
(if (eq 0 n)



2)

3
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0
(+ n (nsum (- n 1)))))

ii) (defun nprod (n)
(if (eq 1 n)
1
(* n (nprod (- n 1)))))

iii) (defun napply (fun n)
(if (eq 0 n)
(funcall fun 0)
(+ (funcall fun n) (napply fun (- n 1)))))

iv) (defun nstepapply (fun n s)
(if (<= n 0
(funcall fun 0)
(+ (funcall fun n) (nstepapply fun (- n s) s))))

i) (defun Istarts (11 12)
(cond ((null 11) t)
((null 12) nil)
((eq (car 11) (car 12)) (lstarts (cdr 11) (cdr 12)))

(t nil)))

ii) (defun lcontains (11 12)
(cond ((null 12) nil)
((I'starts 11 12) t)
(t (lcontains 11 (cdr 12)))))

iii) (defun Icount (11 12)
(cond ((null 12) 0)
((Istarts 112 12) (+ 1 (lcount 11 (cdr 12))))
(t (lcount I'1 (cdr 12)))))

iv) (defun Irenove (11 12)
(if (null 11)
|2
(Iremove (cdr 11) (cdr 12))))

v) (defun Idelete (11 12)
(cond ((null 12) nil)
((I'starts 11 12) (lrenmove 11 12))
(t (cons (car 12) (ldelete |1 (cdr 12))))))

vi) (defun linsert (1112 13)
(cond ((null 13) nil)
((I'starts 12 13) (append |12 (append |1 (lremove 12 13))))
(t (cons (car 13) (ilnsert 1112 (cdr 13))))))

vii) (defun lreplace (1112 13)
(cond ((null 13) nil)
((I'starts 11 13) (append |2 (lremove 11 13)))
(t (cons (car 13) (lreplace 112 (cdr 13))))))



- 240 -

i) (defun merge (11 12)
(cond ((null 11) 12)
((nul'l 12) 11)
((< (car 11) (car 12)) (cons (car 11) (merge (cdr 11) 12)))
(t (cons (car 12) (merge |1 (cdr 12))))))

ii) (defun Imerge (I)
(if (null 1)
ni |
(merge (car |) (lnerge (cdr 1)))))

i) (defun hours (hms) (car hns))
(defun mns (hms) (car (cdr hms)))
(defun secs (hms) (car (cdr (cdr hmns))))

(defun too_secs (hns)
(+ (* 60 (+ (* 60 (hours hns)) (mins hns))) (secs hns)))

(defun fromsecs (s)

(list (truncate s 3600)
(truncate (rems 3600) 60)
(rems 60)))

ii) (defun tick (hms)
(let ((h (hours hns))
(m (mns hns))
(s (secs hms)))
(let ((s1 (+ s 1)))
(if (< sl 60)
(list h msl)
(let ((mL (+ m1)))
(if (< nml 60)
(list h ml 0)
(let ((h1 (+ h 1)))
(if (< hl 24)
(list h1 0 0)
(list 000)))))))))

iii) (defun hms (trans) (car (cdr trans)))

(defun tless (trl tr2)
(let ((t1 (hns trl))
(t2 (hms tr2)))
(let ((h1 (hours t1))
(m (nmins tl1))
(sl (secs t1))
(h2 (hours t2))
(m2 (nmins t2))
(s2 (secs t2)))
(if (< h1l h2)
t

(if (= hl h2)
(if (< nl np)
t
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(if (= nl nR)
(if (< sl s2)

t
nil)
nil))
nil)))))
(defun tinsert (tr I)
(cond ((null 1) (cons tr nil))

((tless tr (car 1)) (cons tr 1))
(t (cons (car 1) (tinsert tr (cdr 1))))))

(defun tsort (1)
(if (null 1)
[
(tinsert (car I) (tsort (cdr 1)))))

5)

i) (defun tcomp (t1 t2)
(cond ((and (null t1) (null t2)) t)
((or (null t1) (null t2)) nil)
((= (itemtl) (itemt2)) (and (tconp (left tl1l) (left t2))
(tcomp (right t1) (right t2))))
(t nil)))

ii) (defun tfind (t1 t2)
(cond ((null t1) t)
((null t2) nil)
((tcomp t1 t2) t)
((< (itemtl) (itemt2)) (tfind t1 (left t2)))
(t (tfind t1 (right t2)))))

iii) (defun dtraverse (tree)
(if (null tree)
nil
(append (dtraverse (right tree))
(cons (itemtree) (dtraverse (left tree))))))



