
AN INTRODUCTION TO FUNCTIONAL PROGRAMMING THROUGH LAMBDA CALCULUS

Greg Michaelson

Department of Computing and Electrical Engineering
Heriot-Watt University

Riccarton Campus
Edinburgh EH14 4AS

- 2 -

Preface

Overview

This book aims to provide a gentle introduction to functional programming. It is based on the premises that functional
programming provides pedagogic insights into many aspects of computing and offers practical techniques for general
problem solving.

The approach taken is to start with pure λ calculus, Alonzo Church’s elegent but simple formalism for computation,
and add syntactic layers for function definitions, booleans, integers, recursion, types, characters, lists and strings to
build a highish level functional notation. Along the way, a variety of topics are discussed including arithmetic, linear
list and binary tree processing, and alternative evaluation strategies. Finally, functional programming in Standard ML
and COMMON LISP, using techniques developed throughout the book, are explored.

The material is presented sequentially. Each chapter depends on previous chapters. Within chapters, substantial use is
made of worked examples. Each chapter ends with exercises which are based directly on ideas and techniques from
that chapter. Specimen answers are included at the end of the book.

Readership

This book is intended for people who have taken a first course in an imperative programming language like Pascal,
FORTRAN or C and have written programs using arrays and sub-programs. There are no mathematical prerequisites
and no prior experience with functional programming is required.

The material from this book has been taught to third year undergraduate Computer Science students and to post
graduate Knowledge Based Systems MSc students.

Approach

This book does not try to present functional programming as a complete paradigm for computing. Thus, there is no
material on the formal semantics of functional languages or on transformation and implementation techniques. These
topics are ably covered in other books. By analogy, one does not buy a book on COBOL programming in anticipation
of chapters on COBOL’s denotational semantics or on how to write COBOL compilers.

However, a number of topics which might deserve more thorough treatment are ommited or skimmed. In particular,
there might be more discussion of types and typing schemes, especially abstract data types and polymorphic typing,
which are barely mentioned here. I feel that these really deserve a book to themselves but hope that their coverage is
adequate for what is primarily an introductory text. There is no mention of mutual recursion which is conceptually
simple but technically rather fiddly to present. Finally, there is no discussion of assignment in a functional context.

Within the book, the λ calculus is the primary vehicle for developing functional programming. I was trained in a
tradition which saw λ calculus as a solid base for understanding computing and my own teaching experience confirms
this. Many books on functional programming cover the λ calculus but the presentation tends to be relatively brief and
theoretically oriented. In my experience, students whose first language is imperative find functions, substitution and
recursion conceptually difficult. Consequently, I have given a fair amount of space to a relatively informal treatment of
these topics and include many worked examples. Functional afficionados may find this somewhat tedious. However,
this is an introductory text.

The functional notation developed in the book does not correspond to any one implemented language. One of the
book’s objectives is to explore different approaches within functional programming and no single language
encompasses these. In particular, no language offers different reduction strategies.

The final chapters consider functional programming in Standard ML and COMMON LISP. Standard ML is a modern
functional language with succinct syntax and semantics based on sound theoretical principles. It is a pleasing
language to program in and its use is increasing within education and research. SML’s main pedagogic disadvantage is
that it lacks normal order reduction and so the low-level λ calculus representations discussed in earlier chapters cannot
be fully investigated in it.

- 3 -

LISP was one of the earliest languages with an approximation to a functional subset. It has a significant loyal
following, particularly in the Artificial Intelligence community, and is programmed using many functional techniques.
Here, COMMON LISP was chosen as a widely used modern LISP. Like SML, it lacks normal order reduction. Unlike
SML, it combines minimal syntax with baroque semantics, having grown piecemeal since the late 1950’s.

Acknowledgements

I had the good fortune to be taught Computer Science at the University of Essex from 1970 to 1973. There I attended
courses on the theory of computing with Mike Brady and John Laski, which covered the λ calculus, recursive function
theory and LISP, and on programming languages with Tony Brooker, which also covered LISP. Subsequently, I was a
postgraduate student at St Andrew’s University from 1974 to 1977 where I learnt about functional language design
and implementation from Tony Davie and Dave Turner. I would like to thank all these people for an excellent
education.

I would also like to thank my colleagues at Napier College, Glasgow University and Heriot-Watt University with
whom I have argued about many of the ideas in this book, in particular Ken Barclay, Bill Findlay, John Patterson,
David Watt and Stuart Anderson.

I would, of course, like to thank everyone who has helped directly with this book:

• Paul Chisholm for patiently and thoroughly checking much of the material: his help has been invaluable.

• David Marwick for checking an early draft of chapter 1 and Graeme Ritchie for checking an early draft of
chapter 10.

• Peter King, Chris Miller, Donald Pattie, Ian Crorie and Patrick McAndrew, in the Department of Computer
Science, Heriot-Watt University, who provided and maintained the UNIX† facilities used to prepare this book.

• Mike Parkinson and Stephen Troth at Addison-Wesley for their help in the development of this book, and
Andrew McGettrick and Jan van Leeuwen for their editorial guidance.

I would particularly like to thank Allison King at Addison-Wesley.

Finally, I would like to thank my students.

I alone am responsible for bodges and blunders lurking within these pages. If you spot any then please let me know.

Greg Michaelson, Edinburgh, 1988

1. INTRODUCTION

1.1. Introduction

Functional programming is an approach to programming based on function calls as the primary programming
construct. It provides practical approaches to problem solving in general and insights into many aspects of computing.
In particular, with its roots in the theory of computing, it forms a bridge between formal methods in computing and
their application.

In this chapter we are going to look at how functional programming differs from traditional imperative programming.
We will then consider functional programming’s origins in the theory of computing and survey its relevance to
contemporary computing theory and practise. Finally, we will discuss the role of the λ (lambda) calculus as a basis for
functional programming.

__

† UNIX is a trademark of Bell Laboratories.

- 4 -

1.2. Names and values in programming

Some of the simplest computing machines are electronic calculators. These are used to carry out arithmetic
calculations with numbers. The main limitation to a calculator is that there is no way of generalising a calculation so
that it can be used again and again with different values. Thus, to carry out the same calculation with different values,
the whole calculation has to be re-entered each time.

Programming languages provide names to stand for arbitrary values. We write a program using names to stand for
values in general. We then run the program with the names taking on particular values from the input. The program
does not have to change to be used with different values: we simply change the values in the input and the computer
system makes sure that they are associated with the right names in the program.

As we will see, the main difference between imperative programming languages, like Pascal, FORTRAN and
COBOL, and functional programming languages, like SML and Miranda, lies in the rules governing the association of
names and values.

1.3. Names and values in imperative and functional languages

Traditional programming languages are based around the idea of a variable as a changeable association between a
name and values. These languages are said to be imperative because they consist of sequences of commands:

<command1> ;
<command2> ;
<command3> ;
...

Typically, each command consists of an assignment which changes a variables’ value. This involves working out the
value of an expression and associating the result with a name:

<name> := <expression>

In a program, each command’s expression may refer to other variables whose values may have been changed by
preceding commands. This enables values to be passed from command to command.

Functional languages are based on structured function calls. A functional program is an expression consisting of a
function call which calls other functions in turn:

<function1>(<function2>(<function3> ...) ...))

Thus, each function receives values from and passes new values back to the calling function. This is known as
function composition or nesting.

In imperative languages, commands may change the value associated with a name by a previous command so each
name may be and usually will be associated with different values while a program is running.

In imperative languages, the same name may be associated with different values.

In functional languages, names are only introduced as the formal parameters of functions and given values by function
calls with actual parameters. Once a formal parameter is associated with an actual parameter value there is no way for
it to be associated with a new value. There is no concept of a command which changes the value associated with a
name through assignment. Thus, there is no concept of a command sequence or command repetition to enable
successive changes to values associated with names.

In functional languages, a name is only ever associated with one value.

- 5 -

1.4. Execution order in imperative and functional languages

In imperative languages, the order in which commands are carried out is usually crucial. Values are passed from
command to command by references to common variables and one command may change a variable’s value before
that variable is used in the next command. Thus, if the order in which commands are carried out is changed then the
behaviour of the whole program may change.

For example, in the program fragment to swap X and Y:

T := X ;
X := Y ;
Y := T

T’s value depends on X’s value, X’s value depends on Y’s value and Y’s value depends on T’s value. Thus, any change
in the sequence completely changes what happens. For example:

X := Y ;
T := X ;
Y := T

sets X to Y and:

T := X ;
Y := T ;
X := Y

sets Y to X.

Of course, not all command sequences have fixed execution orders. If the commands’ expressions do not refer to each
others’ names then the order does not matter. However, most programs depend on the precise sequencing of
commands.

Imperative languages have fixed execution orders.

In functional languages, function calls cannot change the values associated with common names. Hence, the order in
which nested function calls are carried out does not matter because function calls cannot interact with each other.

For example, suppose we write functions in a Pascalish style:

FUNCTION F(X,Y,Z:INTEGER):INTEGER ;
BEGIN ... END
FUNCTION A(P:INTEGER):INTEGER ;
BEGIN ... END
FUNCTION B(Q:INTEGER):INTEGER ;
BEGIN ... END
FUNCTION C(R:INTEGER):INTEGER ;
BEGIN ... END

In a functional language, in the function call:

F(A(D),B(D),C(D))

the order in which A(D), B(D) and C(D) are carried out does not matter because the functions A, B and C cannot
change their common actual parameter D.

In functional languages, there is no necessary execution order.

- 6 -

Of course, functional programs must be executed in some order - all programs are - but the order does not affect the
final result. As we shall see, this execution order independence is one of the strengths of functional languages and has
led to their use in a wide variety of formal and practical applications.

1.5. Repetition in imperative and functional languages

In imperative languages, commands may change the values associated with a names by previous commands so a new
name is not necessarily introduced for each new command. Thus, in order to carry out several commands several
times, those commands need not be duplicated. Instead, the same commands are repeated. Hence, each name may be
and usually will be associated with different values while a program is running.

For example, in order to find the sum of the N elements of array A we do not write:

SUM1 := A[1] ;
SUM2 := SUM1 + A[2] ;
SUM3 := SUM2 + A[3] ;
...

Instead of creating N new SUMs and refering to each element of A explicitly we write a loop that reuses one name for
the sum, say SUM, and another that indicates successive array elements, say I:

I := 0 ;
SUM := 0 ;
WHILE I < N DO
BEGIN

I := I + 1 ;
SUM := SUM + A[I]

END

In imperative languages, new values may be associated with the same name through command repetition.

In functional languages, because the same names cannot be reused with different values, nested function calls are used
to create new versions of the names for new values. Similarly, because command repetition cannot be used to change
the values associated with names, recursive function calls are used to repeatedly create new versions of names
associated with new values. Here, a function calls itself to create new versions of its formal parameters which are then
bound to new actual parameter values.

For example, we might write a function in a Pascalish style to sum an array:

FUNCTION SUM(A:ARRAY [1..N] OF INTEGER; I,N:INTEGER):INTEGER;
BEGIN

IF I > N THEN
SUM := 0
ELSE
SUM := A[I] + SUM(A,I+1,N)

END

Thus, for the function call:

SUM(B,1,M)

the sum is found through successive recursive calls to SUM:

B[1] + SUM(B,2,M) =

B[1] + B[2] + SUM(B,3,M)

- 7 -

B[1] + B[2] + ... + B[M] + SUM(B,M+1,M)

B[1] + B[2] + ... + B[M] + 0

Here, each recursive call to SUM creates new local versions of A, I and N, and the previous versions become
inaccessable. At the end of each recursive call, the new local variables are lost, the partial sum is returned to the
previous call and the previous local variables come back into use.

In functional languages, new values are associated with new names through recursive function call nesting.

1.6. Data structures in functional languages

In imperative languages, array elements and record fields are changed by successive assignments. In functional
languages, because there is no assignment, sub-structures in data structures cannot be changed one at a time. Instead, it
is necessary to write down a whole structure with explicit changes to the appropriate sub-structure.

Functional languages provide explicit representations for data structures.

Functional languages do not provide arrays because without assignment there is no easy way to access an arbitrary
element. Certainly, writing out an entire array with a change to one element would be ludicrously unwieldy. Instead
nested data structures like lists are provided. These are based on recursive notations where operations on a whole
structure are described in terms of recursive operations on sub-structures. The representations for nested data
structures are often very similar to the nested function call notation. Indeed, in LISP the same representation is used
for functions and data structures.

This ability to represent entire data structures has a number of advantages. It provides a standard format for displaying
structures which greatly simplifies program debugging and final output as there is no need to write special printing
sub-programs for each distinct type of structure. It also provides a standard format for storing data structures which
can remove the need to write special file I/O sub-programs for distinct types of structure.

A related difference lies in the absence of global structures in functional languages. In imperative languages, if a
program manipulates single distinct data structures then it is usual to declare them as globals at the top level of a
program. Their sub-structures may then be accessed and modified directly through assignment within sub-programs
without passing them as parameters.

In functional languages, because there is no assignment, it is not possible to change independently sub-structures of
global structures. Instead, entire data structures are passed explicitly as actual parameters to functions for sub-
structure changes and the entire changed structure is then passed back again to the calling function. This means that
function calls in a functional program are larger than their equivalents in an imperative program because of these
additional parameters. However, it has the advantage of ensuring that structure manipulation by functions is always
explicit in the function definitions and calls. This makes it easier to see the flow of data in programs.

1.7. Functions as values

In many imperative languages, sub-programs may be passed as actual parameters to other sub-programs but it is rare
for an imperative language to allow sub-programs to be passed back as results. In functional languages, functions may
construct new functions and pass them on to other functions.

Functional languages allow functions to be treated as values.

For example, the following contrived, illegal, Pascalish function returns an arithmetic function depending on its
parameter:

TYPE OPTYPE = (ADD,SUB,MULT,QUOT);

- 8 -

FUNCTION ARITH(OP:OPTYPE):FUNCTION;
FUNCTION SUM(X,Y:INTEGER):INTEGER; BEGIN SUM := X+Y END;
FUNCTION DIFF(X,Y:INTEGER):INTEGER; BEGIN DIFF := X-Y END;
FUNCTION TIMES(X,Y:INTEGER):INTEGER; BEGIN TIMES := X*Y END;
FUNCTION DIVIDE(X,Y:INTEGER):INTEGER; BEGIN DIVIDE := X DIV Y END;
BEGIN

CASE OP OF
ADD: ARITH := SUM;
SUB: ARITH := DIFF;
MULT: ARITH := TIMES;
QUOT: ARITH := DIVIDE;
END

END

Thus:

ARITH(ADD)

returns the FUNCTION:

SUM,

and:

ARITH(SUB)

returns the FUNCTION

DIFF

and so on. Thus, we might add two numbers with:

ARITH(ADD)(3,4)

and so on. This is illegal in many imperative languages because it is not possible to construct functions of type
‘function’.

As we shall see, the ability to manipulate functions as values gives functional languages substantial power and
flexibility.

1.8. Origins of functional languages

Functional programming has its roots in mathematical logic. Informal logical systems have been in use for over 2000
years but the first modern formalisations were by Hamilton, De Morgan and Boole in the mid 19th century. Within
their work we now distinguish the propositional and the predicate calculus.

The propositional calculus is a system with true and false as basic values and with and, or, not and so on as
basic operations. Names are used to stand for arbitrary truth values. Within propositional calculus it is possible to
prove whether or not an arbitrary expression is a theorem, always true, by starting with axioms, elementary
expressions which are always true, and applying rules of inference to construct new theorems from axioms and
existing theorems. Propositional calculus provides a foundation for more powerfull logical systems. It is also used to
describe digital electronics where on and off signals are represented as true and false, and electronic circuits are
represented as logical expressions.

The predicate calculus extends propositional calculus to enable expressions involving non-logical values like numbers
or sets or strings. This is through the introduction of predicates to generalise logical expressions to describe properties
of non-logical values, and functions to generalise operations on non-logical values. It also introduces the idea of

- 9 -

quantifiers to describe properties of sequences of values, for example all of a sequence having a property, universal
quantification, or one of a sequence having a property, existential quantification. Additional axioms and rules of
inference are provided for quantified expressions.

Predicate calculus may be applied to different problem areas through the development of appropriate predicates,
functions, axioms and rules of inference. For example, number theoretic predicate calculus is used to reason about
numbers. Functions are provided for arithmetic and predicates are provided for comparing numbers. Predicate calculus
also forms the basis of logic programming in languages like Prolog and of expert systems based on logical inference.

Note that within the propositional and predicate calculi, associations between names and values are unchanging and
expressions have no necessary evaluation order.

The late 19th century also saw Peano’s development of a formal system for number theory. This introduced numbers
in terms of 0 and the successor function, so any number is that number of successors of 0. Proofs in the system were
based on a form of induction which is akin to recursion.

At the turn of the century, Russell and Whitehead attempted to derive mathematical truth directly from logical truth in
their "Principia Mathematica." They were, in effect, trying to construct a logical description for mathematics.
Subsequently, the German mathematician Hilbert proposed a ’Program’ to demonstrate that ’Principia’ really did
describe totally mathematics. He required proof that the ’Principia’ descripton of mathematics was consistent, did not
allow any contradictions to be proved, and complete, allowed every true statement of number theory to be proved.
Alas, in 1931, Godel showed that any system powerful enough to describe arithmetic was necessarily incomplete.

However, Hilbert’s ’Program’ had promoted vigorous investigation into the theory of computability, to try to
develop formal systems to describe computations in general. In 1936, three distinct formal approaches to
computability were proposed: Turing’s Turing machines, Kleene’s recursive function theory (based on work of
Hilbert’s from 1925) and Church’s λλ calculus. Each is well defined in terms of a simple set of primitive operations
and a simple set of rules for structuring operations. Most important, each has a proof theory.

All the above approaches have been shown formally to be equivalent to each other and also to generalised von
Neumann machines - digital computers. This implies that a result from one system will have equivalent results in
equivalent systems and that any system may be used to model any other system. In particular, any results will apply
to digital computer languages and any may be used to describe computer languages. Contrariwise, computer languages
may be used to describe and hence implement any of these systems. Church hypothesised that all descriptions of
computability are equivalent. While Church’s thesis cannot be proved formally, every subsequent description of
computability has been proved to be equivalent to existing descriptions.

An important difference between Turing machines, and recursive functions and λ calculus is that the Turing machine
approach concentrated on computation as mechanised symbol manipulation based on assignment and time ordered
evaluation. Recursive function theory and λ calculus emphasised computation as structured function application. They
both are evaluation order independent.

Turing demonstrated that it is impossible to tell whether or not an arbitrary Turing machine will halt - the halting
problem is unsolvable This also applies to the λ calculus and recursive function theory, so there is no way of telling
if evaluation of an arbitrary λ expression or recursive function call will ever terminate. However, Church and Rosser
showed for the λ calculus that if different evaluation orders do terminate then the results will be the same. They also
showed that one particular evaluation order is more likely to lead to termination than any other. This has important
implications for computing because it may be more efficient to carry out some parts of a program in one order and
other parts in another. In particular, if a language is evaluation order independent then it may be possible to carry out
program parts in parallel.

Today, λ calculus and recursive function theory are the backbones of functional programming but they have wider
applications throughout computing.

- 10 -

1.9. Computing and theory of computing

The development of electronic digital computers in the 1940s and 1950s led to the introduction of high level
languages to simplify programming. Computability theory had a direct impact on programming language design. For
example, ALGOL 60, an early general purpose high level language and an ancestor of Pascal, had recursion and the λ
calculus based call by name parameter passing mechanism

As computer use exploded in the 1960s, there was renewed interest in the application of formal ideas about
computability to practical computing. In 1963, McCarthy proposed a mathematical basis for computation which was
influenced by λ calculus and recursive function theory. This culminated in the LISP(LISt Processing) programming
language. LISP is a very simple language based on recursive functions manipulating lists of words and numbers.
Variables are not typed so there are no restrictions on which values may be associated with names. There is no
necessary distinction between programs and data - a LISP program is a list. This makes it easy for programs to
manipulate programs. LISP was one of the first programming languages with a rigorous definition but it is not a pure
functional language and contains imperative as well as functional elements. It has had a lot of influence on functional
language design and functional programming techniques. At present, LISP is used mainly within the Artificial
Intelligence community but there is growing industrial interest in it. McCarthy also introduced techniques for proving
recursive function based programs.

In the mid 1960s, Landin and Strachey both proposed the use of the λ calculus to model imperative languages.
Landin’s approach was based on an operational description of the λ calculus defined in terms of an abstract
interpreter for it - the SECD machine. Having described the λ calculus, Landin then used it to construct an abstract
interpreter for ALGOL 60. (McCarthy had also used an abstract interpreter to describe LISP). This approach formed
the basis of the Vienna Definition Language(VDL) which was used to define IBM’s PL/1. The SECD machine has
been adapted to implement many functional languages on digital computers. Landin also developed the pure
functional language ISWIM which influenced later languages.

Strachey’s approach was to construct descriptions of imperative languages using a notation based on λ calculus so that
every imperative language construct would have an equivalent function denotation. This approach was strengthened
by Scott’s lattice theoretic description for λ calculus. Currently, denotational semantics and its derivatives are used to
give formal definitions of programming languages. Functional languages are closely related to λ calculus based
semantic languages.

Since LISP many partially and fully functional languages have been developed. For example, POP-2 was developed
in Edinburgh University by Popplestone & Burstall in 1971 as an updated LISP with a modern syntax and a pure
functional subset. It has led to POP11 and and to POPLOG which combines POP11 and Prolog. SASL, developed by
Turner at St Andrews University in 1974, is based strongly on λ calculus. Its offspring include KRC and Miranda,
both from the University of Kent. Miranda is used as a general purpose language in research and teaching. Hope was
developed by Burstall at Edinburgh University in 1980 and is used as the programming language for the ALICE
parallel computer. ML was developed by Milner at Edinburgh University in 1979 as a language for the computer
assisted proof system LCF. Standard ML is now used as a general purpose functional language. Like LISP, it has
imperative extensions.

Interest in functional languages was increased by a paper by Backus in 1977. He claimed that computing was
restricted by the structure of digital computers and imperative languages, and proposed the use of Functional
Programming(FP) systems for program development. FP systems are very simple, consisting of basic atomic objects
and operations, and rules for structuring them. They depend strongly on the use of functions which manipulate other
functions as values. They have solid theoretical foundations and are well suited to program proof and refinement. They
also have all the time order independence properties that we considered above. FP systems have somewhat tortuous
syntax and are not as easy to use as other functional languages. However, Backhus’ paper has been very influential in
motivating the broader use of functional languages.

In addition to the development of functional languages, there is considerable research into formal descriptions of
programming languages using techniques related to λ calculus and recursive function theory. This is both theoretical,
to develop and extend formalisms and proof systems, and practical, to form the basis of programming methodologies
and language implementations. Major areas where computing theory has practical applications include the precise
specification of programs, the development of prototypes from specifications and the verification that implementations
correspond to specifications. For example, the Vienna Development Method(VDM), Z and OBJ approaches to

- 11 -

program specification all use functional notations and functional language implementations are used for prototyping.
Proof techniques related to recursive function theory, for example constructive type theory, are used to verify
programs and to construct correct programs from specifications.

1.10. λλ calculus

The λ calculus is a suprisingly simple yet powerful system. It is based on function abstraction, to generalise
expressions through the introduction of names, and function application, to evaluate generalised expressions by
giving names particular values.

The λ calculus has a number of properties which suit it well for describing programming languages. First of all,
abstraction and application are all that are needed to develop representations for arbitrary programming language
constructs. Thus, λ calculus can be treated as a universal machine code for programming languages. In particular,
because the λ calculus is evaluation order independent it can be used to describe and investigate the implications of
different evaluation orders in different programming languages. Furthermore, there are well developed proof
techniques for the λ calculus and these can be applied to λ calculus language descriptions of other languages. Finally,
because the lambda calculus is very simple it is relatively easy to implement. Thus a λ calculus description of
language can be used as a prototype and run on a λ calculus implementation to try the language out.

1.11. Summary of rest of book

In this book we are going to use λ calculus to explore functional programming. Pure λ calculus does not look much
like a programming language. Indeed, all it provides are names, function abstraction and function application.
However, it is straightforward to develop new language constructs from this basis. Here we will use λ calculus to
construct step by step a compact, general purpose functional programming notation.

In chapter 2, we will look at the pure λ calculus, examine its syntax and evaluation rules, and develop functions for
representing pairs of objects. These will be used as building blocks in subsequent chapters. We will also introduce
simplified notations for λ expressions and for function definitions.

In chapter 3, we will develop representations for boolean values and operations, numbers and conditional expressions.

In chapter 4, we will develop representations for recursive functions and use them to construct arithmetic operations.

In chapter 5, we will discuss types and introduce typed representations for boolean values, numbers and characters.
We will also introduce notations for case definitions of functions.

In chapter 6, we will develop representations for lists and look at linear list processing.

In chapter 7, we will extend linear list processing techniques to composite values and look at nested structures like
trees.

In chapter 8, we will discuss different evaluation orders and termination.

In chapter 9, we will look at functional programming in Standard ML using the techniques developed in earlier
chapters.

In chapter 10, we will look at functional programming in LISP using the techniques developed in earlier chapters.

1.12. Notations

In this book, different typefaces are used for different purposes.

- 12 -

Text is in Times Roman. New terms and important concepts are in bold Times Roman.

Programs and definitions are in Courier.

Greek letters are used in naming λ calculus concepts:

α - alpha
β - beta
λ - lambda
η - eta

Syntactic constructs are defined using BNF rules. Each rule has a rule name consisting of one or more words within
angle brackets < and >. A rule associates its name with a rule body consisting of a sequence of symbols and rule
names. If there are different possible rule bodies for the same rule then they are separated by |s.

For example, binary numbers are based on the digits 1 and 0:

<digit> ::= 1 | 0

and a binary number may be either a single digit or a digit followed by a number:

<binary> ::= <digit> | <digit> <binary>

1.13. Summary

In this chapter we have discussed the differences between imperative and functional programming and seen that:

• imperative languages are based on assignment sequences whereas functional langugaes are based on nested
function calls

• in imperative languages, the same name may be associated with several values whereas in functional languages
a name is only associated with one value

• imperative languages have fixed evaluation orders whereas functional languages need not

• in imperative languages, new values may be associated with the same name through command repetition
whereas in functional languages new names are associated with new values through recursive function call
nesting

• functional languages provide explicit data structure representations

• in functional languages, functions are values

We have also seen that:

• functional languages originate in mathematical logic and the theory of computing, in recursive function theory
and λ calculus

2. LAMBDA CALCULUS

2.1. Introduction

In this chapter we are going to meet the λ calculus, which will be used as a basis for functional programming in the
rest of the book.

- 13 -

To begin with, we will briefly discuss abstraction as generalisation through the introduction of names in expressions
and specialisation through the replacement of names with values. We will also consider the role of abstraction in
programming languages.

Next we will take an overview of the λ calculus as a system for abstractions based on functions and function
applications. We will discuss informally the rules for constructing and evaluating λ expressions in some detail.

We will introduce a notation for defining named functions and look at how functions may be constructed from other
functions.

We will then consider functions for manipulating pairs of values. These will be used as building blocks in subsequent
chapters to add syntax for booleans, numbers, types and lists to λ calculus.

Lastly, we will take a slightly more formal look at λ expression evaluation.

2.2. Abstraction

Abstraction is central to problem solving and programming. It involves generalisation from concrete instances of a
problem so that a general solution may be formulated. A general, abstract, solution may then be used in turn to solve
particular, concrete instances of the problem.

The simplest way to specify an instance of a problem is in terms of particular concrete operations on particular
concrete objects. Abstraction is based on the use of names to stand for concrete objects and operations to generalise
the instances. A generalised instance may subsequently be turned into a particular instance by replacing the names
with new concrete objects and operations.

We will try to get a feel for abstraction through a somewhat contrived example. Consider buying 9 items at 10 pence
each. The total cost is:

10*9

Here we are carrying out the concrete operation of multiplication on the concrete values 10 and 9. Now
consider buying 11 items at 10 pence each. The total cost is:

10*11

Here we are carrying out the concrete operation of multiplication on the concrete values 10 and 11.

We can see that as the number of items changes so the formula for the total cost changes at the place where the
number of items appears. We can abstract over the number of items in the formula by introducing a name to stand
for a general number of items, say items:

10*items

We might make this abstraction explicit by preceding the formula with the name used for abstraction:

REPLACE items IN 10*items

Here, we have abstracted over an operand in the formula. To evaluate this abstraction we need to supply a value for
the name. For example, for 84 items:

REPLACE items WITH 84 IN 10*items

which gives:

10*84

- 14 -

We have made a function from a formula by replacing an object with a name and identifying the name that we used.
We have then evaluated the function by replacing the name in the formula with a new object and evaluating the
resulting formula.

Let us use abstraction again to generalise our example further. Suppose the cost of items goes up to 11 pence. Now
the total cost of items is:

REPLACE items IN 11*items

Suppose the cost of items drops to 9 pence. Now the total cost of items is:

REPLACE items IN 9*items

Because the cost changes, we could also introduce a name to stand for the cost in general, say cost:

REPLACE cost IN
REPLACE items IN cost*items

Here we have abstracted over two operands in the formula. To evaluate the abstraction we need to supply two values.
For example, 12 items at 32 pence will have total cost:

REPLACE cost WITH 32 IN
REPLACE items WITH 12 IN cost*items

which is:

REPLACE items WITH 12 IN 32*items

which is:

32*12

For example, 25 items at 15 pence will have total cost:

REPLACE cost WITH 15 IN
REPLACE items WITH 25 IN cost*items

which is:

REPLACE items WITH 25 IN 15*items

which is:

15*25

Suppose we now want to solve a different problem. We are given the total cost and the number of items and we want
to find out how much each item costs. For example, if 12 items cost 144 pence then each item costs:

144/12

If 15 items cost 45 pence then each item costs:

45/12

In general, if items items cost cost pence then each item costs:

REPLACE cost IN
REPLACE items IN cost/items

- 15 -

Now, compare this with the formula for finding a total cost:

REPLACE cost IN
REPLACE items IN cost*items

They are the same except for the operation / in finding the cost of each item and * in finding the cost of all items. We
have two instances of a problem involving applying an operation to two operands. We could generalise these instances
by introducing a name, say op, where the operation is used:

REPLACE op IN
REPLACE cost IN
REPLACE items IN cost op items

Now, finding the total cost will require the replacement of the operation name with the concrete multiplication
operation:

REPLACE op WITH * IN
REPLACE cost IN
REPLACE items IN cost op items

which is:

REPLACE cost IN
REPLACE items IN cost * items

Similarly, finding the cost of each item will require the replacement of the operation name with the concrete
division operation:

REPLACE op WITH / IN
REPLACE cost IN
REPLACE item IN cost op items

which is:

REPLACE cost IN
REPLACE items IN cost / items

Abstraction is based on generalisation through the introduction of a name to replace a value and specialisation
through the replacement of a name with another value.

Note that care must be taken with generalisation and replacement to ensure that names are replaced by objects of
appropriate types. For example, in the above examples, the operand names must be replaced by numbers and the
operator name must be replaced by an operation with two number arguments. We will look at this in slightly more
detail in chapter 5.

2.3. Abstraction in programming languages

Abstraction lies at the heart of all programming languages. In imperative languages, variables as name/value
associations are abstractions for computer memory locations based on specific address/value associations. The
particular address for a variable is irrelevant so long as the name/value association is consistent. Indeed, on a computer
with memory management, a variable will correspond to many different concrete locations as a program’s data space
is swapped in and out of different physical memory areas. The compiler and the run time system make sure that
variables are implemented as consistent, concrete locations.

Where there are abstractions there are mechanisms for introducing them and for specialising them. For example, in
Pascal, variables are introduced with declarations and given values by statements for use in subsequent statements.
Variables are then used as abstractions for memory addresses on the left of assignment statements or in READ

- 16 -

statements, and as abstractions for values in expressions on the right of assignment statements or in WRITE
statements.

Abstractions may be subject to further abstraction. This is the basis of hierarchical program design methodologies and
modularity. For example, Pascal procedures are abstractions for sequences of statements, named by procedure
declarations, and functions are abstractions for expressions, named by function declarations. Procedures and functions
declare formal parameters which identify the names used to abstract in statement sequences and expressions. Simple,
array and record variable formal parameters are abstractions for simple, array and record variables in statements and
expressions. Procedure and function formal parameters are abstractions for procedures and functions in statements and
expressions. Actual parameters specialise procedures and functions. Procedure calls with actual parameters invoke
sequences of statements with formal parameters replaced by actual parameters. Similarly, function calls with actual
parameters evaluate expressions with formal parameters replaced by actual parameters.

Programming languages may be characterised and compared in terms of the abstraction mechanisms they provide.
Consider, for example, Pascal and BASIC. Pascal has distinct INTEGER and REAL variables as abstractions for
integer and real numbers whereas BASIC just has numeric variables which abstract over both. Pascal also has CHAR
variables as abstractions for single letters. Both Pascal and BASIC have arrays which are abstractions for sequences of
variables of the same type. BASIC has string variables as abstractions for letter sequences whereas in Pascal an array
of CHARs is used. Pascal also has records as abstractions for sequences of variables of differing types. Pascal has
procedures and functions as statement and expression abstractions. Furthermore, procedure and function formal
parameters abstract over procedures and functions within procedures and functions. The original BASIC only had
functions as expression abstractions and did not allow function formal parameters to abstract over functions in
expressions.

In subsequent chapters we will see how abstraction may be used to define many aspects of programming languages.

2.4. λλ calculus

The λ calculus was devised by Alonzo Church in the 1930’s as a model for computability and has subsequently been
central to contemporary computer science. It is a very simple but very powerful language based on pure abstraction.
It can be used to formalise all aspects of programming languages and programming and is particularly suited for use as
a ‘machine code’ for functional languages and functional programming.

In the rest of this chapter we are going to look at how λ calculus expressions are written and manipulated. This may
seem a bit disjointed at first: it is hard to introduce all of a new topic simultaneously and so some details will be rather
sketchy to begin with.

We are going to build up a set of useful functions bit by bit. The functions we introduce in this chapter to illustrate
various aspects of λ calculus will be used as building blocks in later chapters. Each example may assume previous
examples and so it is important that you work through the material slowly and consistently.

2.5. λλ expressions

The λ calculus is a system for manipulating λλ expressions. A λ expression may be a name to identify an abstraction
point, a function to introduce an abstraction or a function application to specialise an abstraction:

<expression> ::= <name> | <function> | <application>

A name may be any sequence of non-blank characters, for example:

fred legs-11 19th_nervous_breakdown 33 + -->

A λ function is an abstraction over a λ expression and has the form:

<function> ::= λ<name>.<body>

- 17 -

where

<body> ::= <expression>

for example:

λx.x λfirst.λsecond.first λf.λa.(f a)

The λ precedes and introduces a name used for abstraction. The name is called the function’s bound variable and is
like a formal parameter in a Pascal function declaration. The . separates the name from the expression in which
abstraction with that name takes place. This expression is called the function’s body.

Notice that the body expression may be any λ expression including another function. This is far more general than, for
example, Pascal which does not allow functions to return functions as values.

Note that functions do not have names! For example, in Pascal, the function name is always used to refer to the
function’s definition.

A function application has the form:

<application> ::= (<function expression> <argument expression>)

where

<function expression> ::= <expression>
<argument expression> ::= <expression>

for example:

(λx.x λa.λb.b)

A function application specialises an abstraction by providing a value for the name. The function expression contains
the abstraction to be specialised with the argument expression.

In a function application, also known as a bound pair, the function expression is said to be applied to the argument
expression. This is like a function call in Pascal where the argument expression corresponds to the actual parameter.
The crucial difference is that in Pascal the function name is used in the function call and the implementation picks up
the corresponding definition. The λ calculus is far more general and allows function definitions to appear directly in
function calls.

There are two approaches to evaluating function applications. For both, the function expression is evaluated to return
a function. Next, all occurences of the function’s bound variable in the function’s body expression are replaced by
either

the value of the argument expression

or

the unevaluated argument expression

Finally, the function body expression is then evaluated.

The first approach is called applicative order and is like Pascal ‘call by value’: the actual parameter expression is
evaluated before being passed to the formal parameter.

The second approach is called normal order and is like ‘call by name’ in ALGOL 60: the actual parameter expression
is not evaluated before being passed to the formal parameter.

- 18 -

As we will see, normal order is more powerful than applicative order but may be less efficient. For the moment, all
function applications will be evaluated in normal order.

The syntax allows a single name as a λ expression but in general we will restrict single names to the bodies of
functions. This is so that we can avoid having to consider names as objects in their own right, like LISP or Prolog
literals for example, as it complicates the presentation. We will discuss this further later on.

We will now look at a variety of simple λ functions.

2.6. Identity function

Consider the function:

λx.x

This is the identity function which returns whatever argument it is applied to. Its bound variable is:

x

and its body expression is the name:

x

When it is used as the function expression in a function application the bound variable x will be replaced by the
argument expression in the body expression x giving the original argument expression.

Suppose the identity function is applied to itself:

(λx.x λx.x)

This is a function application with:

λx.x

as the function expression and:

λx.x

as the argument expression.

When this application is evaluated, the bound variable:

x

for the function expression:

λx.x

is replaced by the argument expression:

λx.x

in the body expression:

x

- 19 -

giving:

λx.x

An identity operation always leaves its argument unchanged. In arithmetic, adding or subtracting 0 are identity
operations. For any number <number>:

<number> + 0 = <number>
<number> - 0 = <number>

Multiplying or dividing by 1 are also identity opeartions:

<number> * 1 = <number>
<number> / 1 = <number>

The identity function is an identity operation for λ functions.

We could equally well have used different names for the bound variable, for example:

λa.a

or:

λyibble.yibble

to define other versions of the identity function. We will consider naming in more detail later but note just now that we
can consistently change names.

2.7. Self application function

Consider the rather odd function:

λs.(s s)

which applies its argument to its argument. The bound variable is:

s

and the body expression is the function application:

(s s)

which has the name:

s

as function expression and the same name:

s

as argument expression.

Let us apply the identity function to it:

(λx.x λs.(s s))

In this application, the function expression is:

- 20 -

λx.x

and the argument expression is:

λs.(s s)

When this application is evaluated, the function expression bound variable:

x

is replaced by the argument:

λs.(s s)

in the function expression body:

x

giving:

λs.(s s)

which is the original argument.

Let us apply this self application function to the identity function:

(λs.(s s) λx.x)

Here, the function expression is:

λs.(s s)

and the argument expression is:

λx.x

When this application is evaluated, the function expression bound variable:

s

is replaced by the argument:

λx.x

in the function expression body:

(s s)

giving a new application:

(λx.x λx.x)

with function expression:

λx.x

and argument expression:

- 21 -

λx.x

This is now evaluated as above giving the final value:

λx.x

Consider the application of the self application function to itself:

(λs.(s s) λs.(s s))

This application has function expression:

λs.(s s)

and argument expression:

λs.(s s)

To evaluate it, the function expression bound variable:

s

is replaced by the argument:

λs.(s s)

in the function expression body:

(s s)

giving a new application:

(λs.(s s) λs.(s s))

with function expression:

λs.(s s)

and argument expression:

λs.(s s)

which is then evaluated. The function expression bound variable:

s

is replaced by the argument:

λs.(s s)

in the function expression body:

(s s)

giving the new application:

(λs.(s s) λs.(s s))

- 22 -

which is then evaluated...

Each application evaluates to the original application so this application never terminates!

We will use a version of this self application function to construct recursive functions in chapter 4. Here, we will note
that not all expression evaluations terminate. In fact, as we will see in chapter 8, there is no way of telling whether or
not an expression evaluation will ever terminate!

2.8. Function application function

Consider the function:

λfunc.λarg.(func arg)

This has bound variable:

func

and the body expression is another function:

λarg.(func arg)

which has bound variable:

arg

and a function application:

(func arg)

as body expression. This in turn has the name:

func

as function expression and the name:

arg

as argument expression.

When used, the whole function returns a second function which then applys the first function’s argument to the second
function’s argument. For example, let us use it to apply the identity function to the self application function:

((λfunc.λarg.(func arg) λx.x) λs.(s s))

In this example of an application, the function expression is itself an application:

(λfunc.λarg.(func arg) λx.x)

which must be evaluated first. The bound variable:

func

is replaced by the argument:

λx.x

- 23 -

in the body:

λarg.(func arg)

giving:

λarg.(λx.x arg)

which is a new function which applies the identity function to its argument. The original expression is now:

(λarg.(λx.x arg) λs.(s s))

and so the bound variable:

arg

is replaced by the argument:

λs.(s s)

in the body:

(λx.x arg)

giving:

(λx.x λs.(s s))

which is now evaluated as above. The bound variable:

x

is replaced by the argument:

λs.(s s)

in the body

x

giving:

λs.(s s)

2.9. Introducing new syntax

As our λ expressions become more elaborate they become harder to work with. To simplify working with λ
expressions and to construct a higher level functional language we will allow the use of more concise notations. For
example, in this and subsequent chapters we will introduce named function definitions, infix operations, an IF style
conditional expression and so on. This addition of higher level layers to a language is known as syntactic sugaring
because the representation of the language is changed but the underlying meaning stays the same.

We will introduce new syntax for commonly used constructs through substitution rules. The application of these rules
won’t involve making choices. Their use will lead to pure λ exprtessions after a finite number of steps involving
simple substitutions. This is to ensure that we can always ‘compile’ completely a higher level representation into λ
calculus before evaluation. Then we only need to refer to our original simple λ calculus rules for evaluation. In this
way we won’t need to modify or augment the λ calculus itself and, should we need to, we can rely on the existing

- 24 -

theories for λ calculus without developing them further.

Furthermore, we are going to use λ calculus as an time order independent language to investigate time ordering. Thus,
our substitution rules should also be time order independent. Otherwise, different substitution orders might lead to
different substitutions being made and these might result in expressions with different meanings. The simplest way to
ensure time order independence is to insist that all substitutions be made statically or be capable of being made
statically. We can then apply them to produce pure λ calculus before evaluation starts.

We won’t always actually make all substitutions before evaluation as this would lead to pages and pages of
incomprehensible λ expressions for large higher level expressions. We will insist, however, that making all
substitutions before evaluation always remains a possibility.

2.10. Notation for naming functions and application reduction

It is a bit tedious writing functions out over and over again. We will now name functions using:

def <name> = <function>

to define a name/function association.

For example, we could name the functions we looked at in the previous sections:

def identity = λx.x

def self_apply = λs.(s s)

def apply = λfunc.λarg.(func arg)

Now we can just use the <name> in expressions to stand for the <function>.

Strictly speaking, all defined names in an expression should be replaced by their definitions before the expression is
evaluated. However, for now we will only replace a name by its associated function when the name is the function
expression of an application. We will use the notation:

(<name> <argument>) == (<function> <argument>)

to indicate the replacement of a <name> by its associated <function>.

Formally, the replacement of a bound variable with an argument in a function body is called ββ reduction (beta
reduction). In future, instead of spelling out each β reduction blow by blow we will introduce the notation:

(<function> <argument>) => <expression>

to mean that the <expression> results from the application of the <function> to the <argument>.

When we have seen a sequence of reductions before or we are familiar with the functions involved we will omit the
reductions and write:

=> ... =>

to show where they should be.

2.11. Functions from functions

- 25 -

We can use the self application function to build versions of other functions. For example, let us define a function
with the same effect as the identity function:

def identity2 = λx.((apply identity) x)

Let us apply this to the identity function:

(identity2 identity) ==

(λx.((apply identity) x) identity) =>

((apply identity) identity) ==

((λfunc.λarg.(func arg) identity) identity) =>

(λarg.(identity arg) identity) =>

(identity identity) => ... =>

identity

Let us show that identity and identity2 are equivalent. Suppose:

<argument>

stands for any expression. Then:

(identity2 <argument>) ==

(λx.((apply identity) x) <argument>) =>

((apply identity) <argument>) => ... =>

(identity <argument>) => ... =>

<argument>

so identity and identity2 have the same effect.

We can use the function application function to define a function with the same effect as the function application
function itself. Suppose:

<function>

is any function. Then:

(apply <function>) ==

(λf.λa.(f a) <function>) =>

λa.(<function> a)

Applying this to any argument:

<argument>

we get:

- 26 -

(λa.(<function> a) <argument>) =>

(<function> <argument>)

which is the application of the original function to the argument. Using apply adds a layer of β reduction to an
application.

We can also use the function application function slightly differently to define a function with the same effect as the
self application function:

def self_apply2 = λs.((apply s) s)

Let us apply this to the identity function:

(self_apply2 identity) ==

(λs.((apply s) s) identity) =>

((apply identity) identity) => ... =>

(identity identity) => ... =>

identity

In general, applying self_apply2 to any argument:

<argument>

gives:

(self_apply2 <argument>) ==

(λs.((apply s) s) <argument>) =>

((apply <argument>) <argument>) => ... =>

(<argument> <argument>)

so self_apply and self_apply2 have the same effect.

2.12. Argument selection and argument pairing functions

We are now going to look at functions for selecting arguments in nested function applications. We will use these
functions a great deal later on to model boolean logic, integer arithmetic and list data structures.

2.12.1. Selecting the first of two arguments

Consider the function:

def select_first = λfirst.λsecond.first

This function has bound variable:

first

- 27 -

and body:

λsecond.first

When applied to an argument, it returns a new function which when applied to another argument returns the first
argument. For example:

((select_first identity) apply) ==

((λfirst.λsecond.first identity) apply) =>

(λsecond.identity apply) =>

identity

In general, applying select_first to arbitrary arguments:

<argument1>

and:

<argument2>

returns the first argument:

((select_first <argument1>) <argument2>) ==

((λfirst.λsecond.first <argument1>) <argument2>) =>

(λsecond.<argument1> <arguement2>) =>

<argument1>

2.12.2. Selecting the second of two arguments

Consider the function:

def select_second = λfirst.λsecond.second

This function has bound variable:

first

and body:

λsecond.second

which is another version of the identity function. When applied to an argument select_second returns a new
function which when applied to another argument returns the other argument. For example:

((select_second identity) apply) ==

((λfirst.λsecond.second identity) apply) =>

(λsecond.second apply) =>

apply

- 28 -

The first argument identity was lost because the bound variable first does not appear in the body
λsecond.second.

In general, applying select_second to arbitrary arguments:

<argument1>

and:

<argument2>

returns the second arguemt:

((select_second <argument1>) <argument2>) ==

((λfirst.λsecond.second <argument1>) <argument2>) =>

(σecond.second <argument2>) =>

<argument2>

We can show that select_second applied to anything returns a version of identity. As before, we will use:

<argument>

to stand for an arbitrary expression, so:

(select_second <argument>) ==

(λfirst.λsecond.second <argument>) =>

λsecond.second

If second is replaced by x then:

λsecond.second

becomes:

λx.x

Notice that select_first applied to identity returns a version of select_second:

(select_first identity) ==

(λfirst.λsecond.first identity) =>

λsecond.identity ==

λsecond.λx.x

If second is replaced by first and x by second then this becomes:

λfirst.λsecond.second

- 29 -

2.12.3. Making pairs from two arguments

Consider the function:

def make_pair = λfirst.λsecond.λfunc.((func first) second)

with bound variable:

first

and body:

λsecond.λfunc.((func first) second)

This function applies argument func to argument first to build a new function which may be applied to argument
second. Note that arguments first and second are used before argument func to build a function:

λfunc.((func first) second)

Now, if this function is applied to select_first then argument first is returned and if it is applied to
select_second then argument second is returned.

For example:

((make_pair identity) apply) ==

((λfirst.λsecond.λfunc.((func first) second)
identity) apply) =>

(λsecond.λfunc.((func identity) second) apply) =>

λfunc.((func identity) apply)

Now, if this function is applied to select_first:

(λfunc.((func identity) apply) select_first) ==

((select_first identity) apply) ==

((λfirst.λsecond.first identity) apply) =>

(λsecond.identity apply) =>

identity

and if it is applied to select_second:

(λfunc.((func identity) apply) select_second) ==

((select_second identity) apply) ==

((λfirst.λsecond.second identity) apply) =>

(λsecond.second apply) =>

apply

- 30 -

In general, applying make_pair to arbitrary arguments:

<argument1>

and

<argument2>

gives:

((make_pair <argument1>) <argument2>) ==

((λfirst.λsecond.λfunc.((func first) second)) <argument1>) <argument2>) =>

(λsecond.λfunc.((func <argument1>) second) <argument2>) =>

λfunc.((func <argument1>) <argument2>)

Thereafter, applying this function to select_first returns the first argument:

(λfunc.((func <argument1>) <argument2>) select_first) =>

((select_first <argument1>) <argument2>) ==

((λfirst.λ second.first <argument1>) <argument2>) =>

(λsecond.<argument1> <argument2>) =>

<argument1>

and applying this function to select_second returns the second argument:

(λfunc.((func <argument1>) <argument2>) select_second) =>

((select_second <argument1>) <argument2>) ==

((λfirst.λ second.second <argument1>) <argument2>) =>

(λsecond.second <argument2>) =>

<argument2>

2.13. Free and bound variables

We are now going to consider how we ensure that arguments are substituted correctly for bound variables in function
bodies. If all the bound variables for functions in an expression have distinct names then there is no problem.

For example, in:

(λf.(f λx.x) λs.(s s))

there are three functions. The first has bound variable f, the second has bound variable x and the third has bound
variable s. Thus:

(λf.(f λx.x) λs.(s s)) =>

(λs.(s s) λx.x) =>

- 31 -

(λx.x λx.x) =>

λx.x

It is possible, however, for bound variables in different functions to have the same name. Consider:

(λf.(f λf.f) λs.(s s))

This should give the same result as the previous expression. Here, the bound variable f should be replaced by:

λs.(s s)

Note that we should replace the first f in:

(f λf.f)

but not the f in the body of:

λf.f

This is a new function with a new bound variable which just happens to have the same name as a previous bound
variable.

To clarify this we need to be more specific about how bound variables relate to variables in function bodies. For an
arbitrary function:

λ<name>.<body>

the bound variable <name> may correspond to occurrences of <name> in <body> and nowhere else. Formally, the
scope of the bound variable <name> is <body>.

For example, in:

λf.λs.(f (s s))

the bound variable f is in scope in:

λs.(f (s s))

In:

(λf.λg.λa.(f (g a)) λg.(g g))

the leftmost bound variable f is in scope in:

λg.λa.(f (g a))

and nowhere else. Similarly, the rightmost bound variable g is in scope in:

(g g)

and nowhere else.

Note that we have said may correspond. This is because the re-use of a name may alter a bound variable’s scope, as
we will see.

Now we can introduce the idea of a variable being bound or free in an expression. A variable is said to be bound to
occurrences in the body of a function for which it is the bound variable provided no other functions within the body

- 32 -

introduce the same bound variable. Otherwise it is said to be free.

Thus, in the expression:

λx.x

the variable x is bound but in the expression:

x

the variable x is free. In:

λf.(f λx.x)

the variable f is bound but in the expression:

(f λx.x)

the variable f is free.

In general, for a function:

λ<name>.<body>

<name> refers to the same variable throughout <body> except where another function has <name> as its bound
variable. References to <name> in the new function’s body then correspond to the new bound variable and not the
old.

In formal terms, all the free occurrences of <name> in <body> are references to the same bound variable <name>
introduced by the original function. <name> is in scope in <body> wherever it may occur free; that is except where
another function introduces it in in a new scope.

For example, in the body of:

λf.(f λf.f)

which is:

(f λf.f)

the first f is free so it corresponds to the original bound variable f but subsequent fs are bound and so are distinct
from the original bound variable. The outer f is in scope except in the scope of the inner f.

In the body of:

λg.((g λh.(h (g λh.(h λg.(h g))))) g)

which is:

(g λh.(h (g λh.(h λg.(h g))))) g

the first, second and last occurrences of g occur free so they correspond to the outer bound variable g. The third and
fourth gs are bound and so are distinct from the original g. The outer g is in scope in the body except in the scope of
the inner g.

Let us tighten up our definitions. A variable is bound in an expression if:

- 33 -

i) the expression is an application:

(<function> <argument>)

and the variable is bound in <function> or <argument>

For example, convict is bound in:

(λconvict.convict fugitive)

and in:

(λprison.prison λconvict.convict)

ii) the expression is a function:

λ<name>.<body>

and either the variable’s name is <name> or it is bound in <body>.

For example, prisoner is bound in:

λprisoner.(number6 prisoner)

and in:

λprison.λprisoner.(prison prisoner)

Similarly, a variable is free in an expression if:

i) the expression is a single name:

<name>

and the variable’s name is <name>

For example, truant is free in:

truant

ii) the expression is an application:

(<function> <argument>)

and the variable is free in <function> or in <argument>

For example, escaper is free in:

(λprisoner.prisoner escaper)

and in:

(escaper λjailor.jailor)

iii) the expression is a function:

λ<name>.<body>

- 34 -

and the variable’s name is not <name> and the variable is free in <body>.

For example, fugitive is free in:

λprison.(prison fugitive)

and in:

λshort.λsharp.λshock.fugitive

Note that a variable may be bound and free in different places in the same expression.

We can now define β reduction more formally. In general, for the β reduction of an application:

(λ<name>.<body> <argument>)

we replace all free occurrences of <name> in <body> with <argument>. This ensures that only those occurrences
of <name> which actually correspond to the bound variable are replaced.

For example, in:

(λf.(f λf.f) λs.(s s))

the first occurrence of f in the body:

(f λf.f)

is free so it gets replaced:

(λs.(s s) λf.f) =>

(λf.f λf.f) =>

λf.f

In subsequent examples we will use distinct bound variables.

2.14. Name clashes and αα conversion

We have restricted the use of names in expressions to the bodies of functions. This may be restated as the requirement
that there be no free variables in a λ expression. Without this restriction names become objects in their own right. This
eases data representation: atomic objects may be represented directly as names and structured sequences of objects as
nested applications using names. However, it also makes reduction much more complicated.

For example consider the function application function:

def apply = λfunc.λarg.(func arg)

Consider:

((apply arg) boing) ==

((λfunc.λarg.(func arg) arg) boing)

Here, arg is used both as a function bound variable name and as a free variable name in the leftmost application.
These are two distinct uses: the bound variable will be replaced by β reduction but the free variable stays the same.
However, if we carry out β reduction literally:

- 35 -

((λfunc.λarg.(func arg) arg) boing) =>

(λarg.(arg arg) boing) =>

(boing boing)

which was not intended at all. The argument arg has been substituted in the scope of the bound variable arg and
appears to create a new occurrence of that bound variable.

We can avoid this using consistent renaming. Here we might replace the bound variable arg in the function with, say,
arg1:

((λfunc.λarg1.(func arg1) arg) boing) =>

(λarg1.(arg arg1) boing) =>

(arg boing)

A name clash arises when a β reduction places an expression with a free variable in the scope of a bound variable with
the same name as the free variable. Consistent renaming, which is known as αα conversion (alpha conversion),
removes the name clash. For a function:

λ<name1>.<body>

the name <name1> and all free occurrences of <name1> in <body> may be replaced by a new name <name2>
provided <name2> is not the name of a free variable in λ<name1>.<body>. Note that replacement includes the
name at:

λ<name1>

In subsequent examples we will avoid name clashes.

2.15. Simplification through eta reduction

Consider an expression of the form:

λ<name>.(<expression> <name>)

This is a bit like the function application function above after application to a function expression only. This is
equivalent to:

<expression>

because the application of this expression to an arbitrary argument:

<argument>

gives:

(λ<name>.(<expression> <name>) <argument>) =>

(<expression> <argument>)

This simplification of:

λ<name>.(<expression> <name>)

- 36 -

to:

<expression>

is called η reduction (eta reduction). We will use it in later chapters to simplify expressions.

2.16. Summary

In this chapter we have:

• considered abstraction and its role in programming languages, and the λ calculus as a language based on pure
abstraction

• met the λ calculus syntax and analysed the structure of some simple expressions

• met normal order β reduction and reduced some simple expressions, noting that not all reductions terminate

• introduced notations for defining functions and simplifying familiar reduction sequences

• seen that functions may be constructed from other functions

• met functions for constructing pairs of values and selecting from them

• formalised normal order β reduction in terms of substitution for free variables

• met α conversion as a way of removing name clashes in expressions

• met η reduction as a way of simplifying expressions

Some of these topics are summarised below.

Lambda calculus syntax

<expression> ::= <name> | <function> | <application>

<name> ::= non-blank character sequence

<function> ::= λ <name> . <body>
<body> ::= <expression>

<application> ::= (<function expression> <argument expression>)
<function expression> ::= <expression>
<argument expression> ::= <expression>

Free variables

i) <name> is free in <name>.

ii) <name> is free in λ<name1>.<body>
if <name1> is not <name>
and <name> is free in <body>.

iii) <name> is free in (<function expression> <argument expression>)
if <name> is free in <function expression>
or <name> is free in <argument expression>.

- 37 -

Bound variables

i) <name> is bound in λ<name1>.<body>
if <name> is <name1>
or <name> is bound in <body>.

ii) <name> is bound in (<function expression> <argument expression>)
if <name> is bound in <function expression>
or <name> is bound in <argument expression>.

Normal order ββ reduction

For (<function expression> <argument expression>)

i) normal order β reduce <function expression> to <function value>

ii) if <function value> is λ<name>.<body>
then replace all free occurences of <name> in <body> with <argument expression>
and normal order β reduce the new <body>

or

iii) if <function value> is not a function
then normal order β reduce <argument expression> to <argument value>
and return (<function value> <argument value>)

Normal order reduction notation

=> - normal order β reduction

=> ... => - multiple normal order β reduction

Definitions

def <name> = <expression>

Replace all subsequent occurences of <name> with <expression> before evaluation.

Replacement notation

== - defined name replacement

αα conversion

To rename <name1> as <name2> in λ<name1>.<body>
if <name2> is not free in λ<name1>.<body>
then replace all free occurences of <name1> in <body> with <name2>
and replace <name1> in λ.<name1>

ηη reduction

(λ<name>.(<expression> <name>) <argument>) =>

<expression> <argument>

- 38 -

2.17. Exercises

1) Analyse each of the following lambda expressions to clarify its structure. If the expression is a function, identify
the bound variable and the body expression, and then analyse the body expression. If the expression is an
application, identify the function and argument expressions, and then analyse the function and argument
expressions:

i) λa.(a λb.(b a))
ii) λx.λy.λz.((z x) (z y))
iii) (λf.λg.(λh.(g h) f) λp.λq.p)
iv) λfee.λfi.λfo.λfum.(fum (fo (fi fee)))
v) (λp.(λq.p λx.(x p)) λi.λj.(j i))

2) Evaluate the following lambda expressions:

i) ((λx.λy.(y x) λp.λq.p) λi.i)
ii) (((λx.λy.λz.((x y) z) λf.λa.(f a)) λi.i) λj.j)
iii) (λh.((λa.λf.(f a) h) h) λf.(f f))
iv) ((λp.λq.(p q) (λx.x λa.λb.a)) λk.k)
v) (((λf.λg.λx.(f (g x)) λs.(s s)) λa.λb.b) λx.λy.x)

3) For each of the following pairs, show that function a) is equivalent to the function resulting from expression
b) by applying both to arbitrary arguments:

i) a) identity
b) (apply (apply identity))

ii) a) apply
b) λx.λy.(((make_pair x) y) identity)

iii) a) identity
b) (self_apply (self_apply select_second))

4) Define a function:

def make_triplet = ...

which is like make_pair but constructs a triplet from a sequence of three arguments so that any one of the
arguments may be selected by the subsequent application of a triplet to a selector function.

Define selector functions:

def triplet_first = ...
def triplet_second = ...
def triplet_third = ...

which will select the first, second or third item from a triplet respectively.

Show that:

make_triplet <item1> <item2> <item3> triplet_first => ... => <item1>
make_triplet <item1> <item2> <item3> triplet_second => ... => <item2>
make_triplet <item1> <item2> <item3> triplet_third => ... => <item3>

for the arbitrary arguments:

<item1> <item2> <item3>

5) Analyse each of the following lambda expressions to identify its free and bound variables, and those in its sub-
expressions:

- 39 -

i) λx.λy.(λx.y λy.x)
ii) λx.(x (λy.(λx.x y) x))
iii) λa.(λb.a λb.(λa.a b))
iv) (λfree.bound λbound.(λfree.free bound))
v) λp.λq.(λr.(p (λq.(λp.(r q)))) (q p))

6) Remove any name clashes in the expressions in exercise 5 above.

3. CONDITIONS, BOOLEANS AND INTEGERS

3.1. Introduction

In this chapter we are going to start to add layers to the λ calculus to develop a higher level functional notation.

First of all we will use the pair functions from chapter 1 to represent conditional expressions with truth values true
and false. We will then use these to develop boolean operations like not, and and or.

Next we will use the pair functions to represent natural numbers in terms of the value zero and the successor
function.

Finally, we will introduce notations for simplifying function definitions and λ expressions, and for an ‘if .. then ...
else’ form of conditional expression.

For the moment we will be looking at untyped representations of truth values and functions. We will develop typed
representations in chapter 5.

3.2. Truth values and conditional expression

Boolean logic is based on the truth values TRUE and FALSE with logical operations NOT, AND, OR and so on.

We are going to represent TRUE by select_first and FALSE by select_second, and use a version of
make_pair to build logical operations. To motivate this, consider the C conditional expression:

<condition>?<expression>:<expression>

If the <condition> is TRUE then the first <expression> is selected for evaluation and if the <condition> is
FALSE then the second <expression> is selected for evaluation.

For example, to set max to the greater of x and y:

max = x>y?x:y

or to set absx to the absolute value of x:

absx = x<0?-x:x

We can model a conditional expression using a version of the make pair function:

def cond = λe1.λe2.λc.((c e1) e2)

Consider cond applied to the arbitrary expressions <expression1> and <expression2>:

((cond <expression1>) <expression2>) ==

- 40 -

((λe1.λe2.λc.((c e1) e2) <expression1>) <expression2>) =>

(λe2.λc.((c <expression1>) e2) <expression2>) =>

λc.((c <expression1>) <expression2>)

Now, if this function is applied to select_first:

(λc.((c <expression1>) <expression2>) select_first) =>

((select_first <expression1>) <expression2>) => ... =>

<expression1>

and if it is applied to select_second:

(λc.((c <expression1>) <expression2>) select_second) =>

((select_second <expression1>) <expression2>) => ... =>

<expression2>

Notice that the <condition> is the last argument for cond, not the first.

Now, we will use the conditional expression and cond function with:

def true = select_first

def false = select_second

to model some of the logical operators.

3.3. NOT

NOT is a unary operator of the form:

NOT <operand>

which we will describe through a truth table with X standing for the single operand:

X | NOT X
------+------
FALSE | TRUE
TRUE | FALSE

Note that if the operand is TRUE then the answer is FALSE and if the operand is FALSE then the answer is TRUE.
Thus NOT could be written using an conditional expression as:

X ? FALSE : TRUE

We can describe this using selectors so if the operand is TRUE then FALSE is selected and if the operand is FALSE
then TRUE is selected. This suggests using:

def not = λx.(((cond false) true) x)

Simplifying the inner body gives:

- 41 -

(((cond false) true) x) ==

(((λe1.λe2.λc.((c e1) e2) false) true) x) =>

((λe2.λc.((c false) e2) true) x) =>

(λc.((c false) true) x) =>

((x false) true)

so we will use:

def not = λx.((x false) true)

Let us try:

NOT TRUE

as:

(not true) ==

(λx.((x false) true) true) =>

((true false) true) ==

((λfirst.λsecond.first false) true) =>

(λsecond.false true) =>

false

and:

NOT FALSE

as:

(not false) ==

((λx.((x false) true) false) =>

((false false) true) ==

((λfirst.λsecond.second false) true) =>

(λsecond.second true) =>

true

which correspond to the truth table.

3.4. AND

AND is a binary operator of the form:

- 42 -

<operand> AND <operand>

which we will describe with a truth table with X standing for the left operand and Y standing for the right operand:

X | Y | X AND Y
-------+-------+--------
FALSE | FALSE | FALSE
FALSE | TRUE | FALSE
TRUE | FALSE | FALSE
TRUE | TRUE | TRUE

Note that if the left operand is TRUE then the final value depends on the right operand and if the left operand is
FALSE then the final value is FALSE so AND could be modelled using the conditional expression as:

X ? Y : FALSE

Using selectors, if the left operand is TRUE then select the right operand and if the left operand is FALSE then select
FALSE, so we will define AND as:

def and = λx.λy.(((cond y) false) x)

Simplifying the inner body gives:

(((cond y) false) x) ==

(((λe1.λe2.λc.((c e1) e2) y) false) x) =>

((λe2.λc.((c y) e2) false) x) =>

(λc.((c y) false) x) =>

((x y) false)

so we will now use:

def and = λx.λy.((x y) false)

For example, we could write:

TRUE AND FALSE

as:

((and true) false) ==

((λx.λy.((x y) false) true) false) =>

(λy.((true y) false) false) =>

((true false) false) ==

((λfirst.λsecond.first false) false) =>

(λsecond.false false) =>

false

- 43 -

3.5. OR

OR is a binary operator of the form:

<operand> OR <operand>

which we will again describe with a truth table using X for the left operand and Y for the right operand:

X | Y | X OR Y
-------+-------+--------
FALSE | FALSE | FALSE
FALSE | TRUE | TRUE
TRUE | FALSE | TRUE
TRUE | TRUE | TRUE

Note that if the first operand is TRUE then the final value is TRUE and otherwise the final value is the second operand,
so we could describe this using the conditional expression as:

X ? TRUE : Y

Using selectors, if the first operand is TRUE then select TRUE and if the first operand is FALSE then select the second
operand:

def or = λx.λy.(((cond true) y) x)

Simplifying the inner body:

(((cond true) y) x) ==

(((λe1.λe2.λc.((c e1) e2) true) y) x) =>

((λe2.λc.((c true) e2) y) x) =>

(λc.((c true) y) x) =>

((x true) y)

Now we will use:

def or = λx.λy.((x true) y)

For example, we could write:

FALSE OR TRUE

as:

((or false) true) ==

((λx.λy.((x true) y) false) true) =>

(λy.((false true) y) true) =>

((false true) true) =>

((λfirst.λsecond.second true) true) =>

(λsecond.second true) =>

- 44 -

true

3.6. Natural numbers

We tend to take numbers for granted in programming but we now have to consider how to represent them explicitly.
Our approach will be based on the ability to define natural numbers - non-negative integers - as successors of zero:

1 = successor of 0

2 = successor of 1
= successor of successor of 0

3 = successor of 2
= successor of successor of 1
= successor of successor of successor of 0

etc.

Thus, the definition of an arbitrary integer will be that number of successors of zero. We need to find a function zero
to represent zero and a successor function succ so that we can define:

def one = (succ zero)

def two = (succ one)

def three = (succ two)

and so on.

Note that:

two == (succ (succ zero))

three == (succ (succ one)) == (succ (succ (succ zero)))

and so on.

There are a variety of ways of representing zero and succ. We will use:

def zero = identity

def succ = λn.λs.((s false) n)

so each time succ is applied to a number n it builds a pair function with false first and the original number second.
For example:

one ==

(succ zero) ==

(λn.λs.((s false) n) zero) =>

λs.((s false) zero)

Similarly:

- 45 -

two ==

(succ one) ==

(λn.λs.((s false) n) one) =>

λs.((s false) one) ==

λs.((s false) λs.((s false) zero))

and:

three ==

(succ two) ==

(λn.λs.((s false) n) two) =>

λs.((s false) two) ==

λs.((s false) λs.((s false) one) ==

λs.((s false) λs.((s false) λs.((s false) zero)))

This representation enables the definition of a unary function iszero which returns true if its argument is zero
and false otherwise. Remember that a number is a function with an argument which may be used as a selector. For
an arbitrary number:

λs.((s false) <number>)

if the argument is set to select_first then false will be selected:

(λs.((s false) <number>) select_first) =>

((select_first false) <number>) ==

((λfirst.λsecond.first false) <number>) =>

(λsecond.false <number>) =>

false

If zero, which is the identity function, is applied to select_first then select_first, which is the same as
true by definition, will be returned:

(zero select_first) ==

(λx.x select_first) =>

select_first ==

true

This suggests using:

def iszero = λn.(n select_first)

- 46 -

Notice that iszero applies the number to the selector rather than the selector to the number. This is because our
number representation models numbers as functions with selector arguments.

We can now define the predecessor function pred so that:

(pred one) => ... => zero

(pred two) => ... => one

(pred three) => ... => two

and so on.

For our number representation, pred should strip off a layer of nesting from an arbitrary number:

λs.((s false) <number>)

and return the:

<number>

This suggests using select_second because:

(λs.((s false) <number>) select_second) =>

((select_second false) <number>) ==

((λfirst.λsecond.second false) <number>) =>

(λsecond.second <number>) =>

<number>

so we might define a first version of pred as:

def pred1 = λn.(n select_second)

However, there is a problem with zero as we only have positive integers. Let us try our present pred1 with zero:

(pred1 zero) ==

(λn.(n select_second) zero) =>

(zero select_second) ==

(λx.x select_second) =>

select_second ==

false

which is not a representation of a number.

We could define the predecessor of zero to be zero and check numbers to see if they are zero before returning
their predecessor, using:

<number> = zero ? zero : predecessor of <number>

- 47 -

So:

def pred = λn.(((cond zero) (pred1 n)) (iszero n))

Simplifying the body gives:

(((cond zero) (pred1 n)) (iszero n)) ==

(((λe1.λe2.λc.((c e1) e2) zero) (pred1 n)) (iszero n)) =>

((λe2.λc.((c zero) e2) (pred1 n)) (iszero n)) =>

(λc.((c zero) (pred1 n)) (iszero n)) =>

(((iszero n) zero) (pred1 n))

Substituting for pred1 and simplifying gives:

(((iszero n) zero) (λn.(n select_second) n)) ==

(((iszero n) zero) (n select_second)) ==

so now we will use:

def pred = λn.(((iszero n) zero) (n select_second))

Alternatively, we might say that the predecessor of zero is undefined. We won’t look at how to handle undefined
values here.

When we use pred we will have to be careful to check for a zero argument.

3.7. Simplified notations

By now you will have noticed that manipulating λ expressions involves lots of brackets. As well as being tedious and
fiddley, it is a major source of mistakes due to unmatched or mismatched brackets. To simplify things, we will allow
brackets to be omitted when it is clear what is intended. In general, for the application of a function <function> to
N arguments we will allow:

<function> <argument1> <argument2> ... <argumentN>

instead of:

(...((<function> <argument1>) <argument2>) ... <argumentN>)

so in a function application, a function is applied first to the nearest argument to the right. If an argument is itself a
function application then the brackets must stay. There must also be brackets round function body applications. For
example, we could re-write pred as:

def pred = λn.((iszero n) n (n select_second))

We can also simplify name/function association definitions by dropping the λ and ., and moving the bound variable
to the left of the = so:

def <names> = λ<name>.<expression>

where <names> is one or more <name>s becomes:

- 48 -

def <names> <name> = <expression>

We can now re-write all our definitions:

def identity x = x

def self_apply s = s s

def apply func = λarg.(func arg)

and hence:

def apply func arg = func arg

def select_first first = λsecond.first

and hence:

def select_first first second = first

def select_second first = λsecond.second

and hence:

def select_second first second = second

def make_pair e1 = λe2.λc.(c e1 e2)

and hence:

def make_pair e1 e2 = λc.(c e1 e2)

and hence:

def make_pair e1 e2 c = c e1 e2

def cond e1 e2 c = c e1 e2

def true first second = first

def false first second = second

def not x = x false true

def and x y = x y false

def or x y = x true y

For some functions there are standard equivalent notations. Thus, it is usual to write:

cond <true choice> <false choice> <condition>

in an if ... then ... else ... form. We will use:

if <condition>
then <true choice>
else <false choice>

- 49 -

For example, we could re-write pred’s definition as:

def pred n =
if iszero n
then zero
else n select_second

Similarly, using our conditional derivation of booleans, we could rewrite not as:

def not x =
if x
then false
else true

and and as:

def and x y =
if x
then y
else false

and or as:

def or x y =
if x
then true
else y

3.8. Summary

In this chapter we have:

• developed representations for conditional expressions and truth values, and used them to develop boolean
operations

• developed a representation for natural numbers based on zero and the successor function

• introduced notations for removing brackets from expressions, simplifying function definitions and an ‘if .. then
... else ...’ form of conditional expression

Some of these topics are summarised below.

Removing brackets

(... ((<function> <argument1>) <argument2>) ... <argumentN>) ==

<function> <argument1> <argument2> ... <argumentN>

Simplifying function definitions

def <names> = λ<name>.<expression> ==

def <names> <name> = <expression>

if ... then ... else ...

- 50 -

if <condition>
then <true choice>
else <false choice> ==

cond <true choice> <false choice> <condition>

3.9. Exercises

1) The boolean operation implication is defined by the following truth table:

X | Y | X IMPLIES Y
-------+-------+------------
FALSE | FALSE | TRUE
FALSE | TRUE | TRUE
TRUE | FALSE | FALSE
TRUE | TRUE | TRUE

Define a lambda calculus representation for implication:

def implies = λx.λy...

Show that the definition satisfies the truth table for all boolean values of x and y.

2) The boolean operation equivalence is defined by the following truth table:

X | Y | X EQUIV Y
-------+-------+------------
FALSE | FALSE | TRUE
FALSE | TRUE | FALSE
TRUE | FALSE | FALSE
TRUE | TRUE | TRUE

Define a lambda calculus representation for equivalence:

def equiv = λx.λy...

Show that the definition satisfies the truth table for all boolean values of x and y.

3) For each of the following pairs, show that functions a) and b) are equivalent for all boolean values of their
arguments:

i) a) λx.λy.(and (not x) (not y))
b) λx.λy.(not (or x y))

ii) a) implies
b) λx.λy.(implies (not y) (not x))

iii) a) not
b) λx.(not (not (not x)))

iv) a) implies
b) λx.λy.(not (and x (not y)))

v) a) equiv
b) λx.λy.(and (implies x y) (implies y x))

- 51 -

4) Show that:

λx.(succ (pred x))

and:

λx.(pred (succ x))

are equivalent for arbitrary non-zero integer arguments. Explain why they are not equivalent for a zero
argument.

4. Recursion and arithmetic

4.1. Introduction

In this chapter we are going to look at how recursion is used for repetition in functional programming.

To begin with, we will see that our existing definition notation cannot be used to introduce recursion because it leads
to infinite substitution sequences. We will then see that this can be overcome through absraction in individual
functions.

Next, we will discuss the introduction of recursion using a general purpose construct based on function self
application.

Finally, we will look at the use of recursion to build a wide variety of arithmetic operations.

4.2. Repetition, iteration and recursion

Repetition involves doing the same thing zero or more times. It is useful to distinguish bounded repetition, where
something is carried out a fixed number of times, from the more general unbounded iteration, where something is
carried out until some condition is met. Thus, for bounded repetition the number of repetitions is known in advance
whereas for unbounded repetition it is not.

It is important to relate the form of repetition to the structure of the item to be processed. Bounded repetition is used
where a linear sequence of objects of known length is to be processed, for example to process each element of an
array. Here, the object sequence can be related to a consecutive range of values. For example, arrays have addresses
which are linear sequences of integers.

Unbounded repetition is used where a nested sequence of objects is to be processed and the number of layers of
nesting is unkown. For example, a filing system might consist of a nested hierarchy of directories and files. Processing
such a filing system involves starting at the root directory and then processing the files and sub-directories. Processing
the sub-directories involves processing their files and sub-directories, and so on. In general, the depth of directory
nesting is unknown. For unbounded repetition, processing ends when the end of the nesting is reached. For example,
processing a filing system ends when all the files at every level of directory nesting have been processed.

Bounded repetition is a weaker form of unbounded repetition. Carrying out something a fixed number of times is the
same as carrying it out until the last item in a sequence has been dealt with.

In imperative languages repetition is based primarily on iterative constructs for repeatedly carrying out structured
assignment sequences. For example, in Pascal, FOR statements provide bounded iteration over a range of integers and
WHILE or REPEAT statements provide unbounded iteration until a condition is met. Here, repetition involves
repeatedly inspecting and changing variables in common memory.

- 52 -

In functional languages, programs are based on structured nested function calls. Repetition requires such nesting to be
continued until some condition is met. There is no concept of a changing shared memory. Instead, each function
passes its result to the next in the function call nesting. Repetition involves deciding whether or not to carry out
another layer of function call nesting with the same nested sequence of function calls.

RBpetition in functional programming is based on recursion: the definition of something in terms of itself. The
nested function call sequence which is to be repeated is given a name. If some condition is met within the sequence
then that name is invoked to repeat the nested function call sequence within itself. The condition often checks whether
or not the end of a linear or nested object sequence has been reached.

Let us compare iteration and recursion through another contrived example. Suppose we want to eat some sweets. If
we know that there are N sweets then we might write an iterative algorithm as:

EAT N = FOR COUNT := N DOWNTO 1 DO
gobble a sweet

or:

EAT N = COUNT := N
WHILE COUNT > 0 DO
BEGIN

gobble a sweet
COUNT := COUNT - 1

END

For example, for 3 sweets we would:

EAT 3 sweets =>

gobble a sweet and
gobble a sweet and
gobble a sweet and
stop

An equivalent recursive algorithm would be:

EAT N = IF N > 0 THEN
BEGIN

gobble a sweet
EAT N-1

END

For example, for 3 sweets we would:

EAT 3 sweets =>

gobble a sweet and
EAT 2 sweets =>

gobble a sweet and
gobble a sweet and
EAT 1 sweet =>

gobble a sweet and
gobble a sweet and
gobble a sweet and
EAT 0 sweets =>

- 53 -

gobble a sweet and
gobble a sweet and
gobble a sweet and
stop

Note that eating sweets iteratively involves gobbling 1 sweet N times whereas eating sweets recursively involves
gobbling 1 sweet and then eating the remaining N-1 sweets recursively.

It is useful to distinguish primitive recursion where the number of repetitions is known from general recursion here
the number of repetitions is unknown. Primitive recursion is weaker than general recursion. Primitive recursion
involves a finite depth of function call nesting so it is equivalent to bounded repetition through iteration with a finite
memory. For general recursion the nesting depth is unknown so it is equivalent to unbounded repetition through
iteration with an infinite memory.

Note that imperative languages often provide repetition through recursive procedures and functions as well as through
iteration.

4.3. Recursion through definitions?

It might appear that our definition notation enables recursion and we could just use the name from the left of the
definition in the expression on the right. For example, two numbers may be added together by repeatedly incrementing
the first and decrementing the second until the second is zero:

def add x y =
if iszero y
then x
else add (succ x) (pred y)

Thus, to add one and two, for example:

add one two => ... =>

add (succ one) (pred two) => ... =>

add (succ (succ one)) (pred (pred two)) => ... =>

(succ (succ one)) ==

three

However, in chapter 2 we required all names in expressions to be replaced by their definitions before the
expression is evaluated.

In the above example:

λx.λy.
if iszero y
then x
else add (succ x) (pred y) ==

λx.λy.
if iszero y
then x
else
((λx.λy.
if iszero y
then x

- 54 -

else add (succ x) (pred y))
(succ x) (pred y)) ==

λx.λy.
if iszero y
then x
else
((λx.λy.
if iszero y
then x
else
((λx.λy.
if iszero y
then x
else add (succ x) (pred y))
(succ x) (pred y))

(succ x) (pred y)) == ...

Replacement will never terminate!

We want the replacement to take place a finite number of times depending on particular uses of the function with
particular arguments but, of course, there is no way of knowing what argument values are required when the function
is defined. If we did know then we could construct specific functions for specific cases rather than a general purpose
function. This was not a problem in earlier examples because we knew replacement would always be finite. For
recursion, though, we need some means of delaying the repetitive use of the function until it is actually required.

4.4. Passing a function to itself

Function use always occurs in an application and may be delayed through abstraction at the point where the function is
used. For an arbitrary function, the application:

<function> <argument>

is equivalent to:

λf.(f <argument>) <function>

The original function becomes the argument in a new application.

In our addition example we could introduce a new argument:

def add1 f x y =
if iszero y
then x
else f (succ x) (pred y)

to remove recursion by abstraction at the point where recursion is required. Now we need to find an argument for
add1 with the same effect as add. Of course, we cannot just pass add to add1 as we end up with the non-
terminating replacement again. What is needed is to pass add1 into itself but this just pushes the problem down a
level. If we try:

def add = add1 add1

then the definition expands to:

(λf.λx.λy.
if iszero y

- 55 -

then x
else f (succ x) (pred y)) add1 =>

λx.λy.
if iszero y
then x
else add1 (succ x) (pred y)

We have failed to pass add1 down far enough. In the original definition for add1, the application:

f (succ x) (pred y)

has only two arguments. Thus, after substitution:

add1 (succ x) (pred y)

has no argument corresponding to the bound variable f.

We need the effect of:

add1 add1 (succ x) (pred y)

so that add1 may be passed on to subsequent recursions.

Let us define an add2, this time passing the argument for f to the argument itself as well:

def add2 f x y =
if iszero y
then x
else f f x y

As before, add is:

def add = add2 add2

The definition expands and evaluates as:

(λf.λx.λy.
if iszero y
then x
else f f (succ x) (pred y)) add2 =>

λx.λy.
if iszero y
then x
else add2 add2 (succ x) (pred y)

Note that we do not strictly need to replace other occurrences of add2 as its definition contains no references to itself.

Now, we have inserted two copies of add2 - one as function and another as argument - to continue recursion. Thus,
every time the recursion point is reached another copy of the whole function is passed down.

For example:

add one two ==

(λx.λy.
if iszero y

- 56 -

then x
else add2 add2 (succ x) (pred y)) one two => ... =>

if iszero two
then one
else add2 add2 (succ one) (pred two) => ... =>

(λf.λx.λy.
if iszero y
then x
else f f (succ x) (pred y)) add2 (succ one) (pred two) => ... =>

if iszero (pred two)
then (succ one)
else add2 add2 (succ (succ one)) (pred (pred two)) => ... =>

(λf.λx.λy.
if iszero y
then x
else f f (succ x) (pred y)) add2 (succ (succ one))

(pred (pred two)) => ... =>

if iszero (pred (pred two))
then (succ (succ one))
else add2 add2 (succ (succ (succ one)))

(pred (pred (pred two))) => ... =>

succ (succ one)) ==

three

4.5. Applicative order

From now on, to simplify the presentation of some examples we will evaluate them partially in applicative order; that
is some cases we will evaluate arguments before passing them to functions. We will indicate the applicative order
reduction of an argument with:

->

and the applicative order reduction of a sequence of arguments with:

-> ... ->

Note that argument evaluation will generally involve other reductions which won’t be shown.

We will consider the relationship between applicative and normal order evaluation in chapter 8 but note now that the
result of a terminating applicative order reduction of an expression is the same as the result of the equivalent
terminating normal order reduction. As we will see in chapter 8, the reverse is not true because there are expressions
with terminating normal order reductions but non-terminating applicative order reductions. Nonetheless, provided
evaluation terminates, applicative and normal order are equivalent.

As we will also see in chapter 8, a major source of non-termination results from our representation of conditional
expressions. It turns out that the strict applicative order evaluation of conditional expressions embodying recursive
calls in a function body won’t terminate. Thus until chapter 8, the use of the applicative order indicators:

->

- 57 -

and:

-> ... ->

will still imply the normal order evaluation of conditional expressions.

4.6. Recursion function

A more general approach to recursion is to find a constructor function to build a recursive function from a non
recursive function, with a single abstraction at the recursion point.

For example, we might define multiplication recursively. To multiply two numbers, add the first to the product of the
first and the decremented second. If the second is zero then so is the product:

def mult x y =
if iszero y
then zero
else add x (mult x (pred y))

For example:

mult three two => ... =>

add three (mult three (pred two)) -> ... ->

add three (add three (mult three (pred (pred two)))) -> ... ->

add three (add three zero) -> ... ->

add three three => ... =>

six

We can remove self-reference by abstraction at the recursion point:

def mult1 f x y =
if iszero y
then zero
else add x (f x (pred y))

We would like to have a function recursive which will construct recursive functions from non-recursive versions,
for example:

def mult = recursive mult1

The function recursive must not only pass a copy of its argument to that argument but also ensure that self
application will continue: the copying mechanism must be passed on as well. This suggests that recursive should
be of the form:

def recursive f = f <’f’ and copy>

If recursive is applied to mult1:

recursive mult1 ==

λf.(f <’f’ and copy>) mult1 =>

- 58 -

mult1 <’mult1’ and copy> ==

(λf.λx.λy.
if iszero y
then zero
else add x (f x (pred y))) <’mult1’ and copy> =>

λx.λy.
if iszero y
then zero
else add x (<’mult1’ and copy> x (pred y))

In the body we have:

<’mult1’ and copy> x (pred y)

but we require:

mult1 <’mult1’ and copy> x (pred y)

so that:

<’mult1’ and copy>

gets passed on again through mult1’s bound variable f to the next level of recursion. Thus, the copy mechanism
must be such that:

<’mult1’ and copy> => ... => mult1 <’mult1’ and copy>

In general, from function f passed to recursive, we need:

<’f’ and copy> => ... => f <’f’ and copy>

so the copy mechanism must be an application and that application must be self-replicating.

We know that the self-application function:

λs.(s s)

will self-replicate when applied to itself but the replication never ends.

Self-application may be delayed through abstraction with the construction of a new function:

λf.λs.(f (s s))

Here, the self-application:

(s s)

becomes an argument for f. This might, for example, be a function with a conditional expression in its body which
will only lead to the evaluation of its argument when some condition is met.

When this new function is applied to an arbitrary function, we get

λf.λs.(f (s s)) <function> =>

λs.(<function> (s s))

- 59 -

If this function is now applied to itself:

λs.(<function> (s s)) λs.(<function> (s s)) =>

<function> (λs.(<function> (s s)) λs.(<function> (s s)))

then we have a copy mechanism which matches our requirement.

Thus, we can define recursive as:

def recursive f = λs.(f (s s)) λs.(f (s s))

For example, in:

def mult = recursive mult1

the definition evaluates to:

λf.(λs.(f (s s)) λs.(f (s s))) mult1 =>

λs.(mult1 (s s)) λs.(mult1 (s s)) =>

mult1 (λs.(mult1 (s s)) λs.(mult1 (s s))) ==

(λf.λx.λy.
if iszero y
then zero
else add x (f x (pred y))) (λs.(mult1 (s s)) λs.(mult1 (s s))) =>

λx.λy.
if iszero y
then zero
else add x ((λs.(mult1 (s s)) λs.(mult1 (s s)))

x (pred y))

Again, note that we don’t strictly need to replace other occurrences of mult1 as its definition contains no references
to itself.

For example, we will try:

mult three two => ... =>

(λx.λy.
if iszero y
then zero
else add x ((λs.(mult1 (s s)) λs.(mult1 (s s)))

x (pred y))) three two => ... =>

if iszero two
then zero
else add three ((λs.(mult1 (s s)) λs.(mult1 (s s)))

three (pred two)) => ... =>

add three ((λs.(mult1 (s s)) λs.(mult1 (s s)))
three (pred two)) ->

add three (mult1 (λs.(mult1 (s s)) λs.(mult1 (s s)))
three (pred two)) ==

- 60 -

add three ((λx.λy.
if iszero y
then zero
else add x ((λs.(mult1 (s s)) λs.(mult1 (s s)))

x (pred y))) three (pred two)) -> ... ->

add three if iszero (pred two)
then zero
else add three ((λs.(mult1 (s s)) λs.(mult1 (s s)))

three (pred (pred two))) -> ... ->

add three (add three ((λs.(mult1 (s s)) λs.(mult1 (s s)))
three (pred (pred two)))) ->

add three (add three (mult1 (λs.(mult1 (s s)) λs.(mult1 (s s)))
three (pred (pred two)))) ==

add three (add three ((λx.λy.
if iszero y
then zero
else add x ((λs.(mult1 (s s)) λs.(mult1 (s s)))

x (pred y))
three (pred (pred two)))) -> ... ->

add three (add three if iszero (pred (pred two))
then zero
else add three ((λs.(mult1 (s s)) λs.(mult1 (s s)))

three (pred (pred (pred two))))) -> ... ->

add three (add three zero) -> ... ->

add three three => ... =>

six

4.7. Recursion notation

The function recursive is known as a paradoxical combinator or a fixed point finder, and is called Y in the λ
calculus literature.

Rather than always defining an auxiliary function with an abstraction and then using recursive to construct a
recursive version, we will allow the defined name to appear in the defining expression but use a new definition form:

rec <name> = <expression>

This is to indicate that the occurrence of the name in the definition should be replaced using abstraction and the
paradoxical combinator should then be applied to the whole of the defining expression. For example, for addition, we
will write:

rec add x y =
if iszero y
then x
else add (succ x) (pred y)

instead of:

- 61 -

def add1 f x y =
if iszero y
then x
else f (succ x) (pred y)

def add = recursive add1

and for multiplication we will write:

rec mult x y =
if iszero y
then zero
else add x (mult x (pred y))

When we expand or evaluate a recursive definition we will just leave the recursive reference in place.

4.8. Arithemtic operations

We will now use recursion to define arithmetic operations for raising to a power, subtraction, equality and inequalities,
and division.

4.8.1. Power

To raise one number to the power of another number, multiply the first by the first to the power of the decremented
second. If the second is zero then the power is one:

rec power x y =
if iszero y
then one
else mult x (power x (pred y))

For example:

power two three => ... =>

mult two
(power two (pred three)) -> ... ->

mult two
(mult two

(power two (pred (pred three)))) -> ... ->

mult two
(mult two

(mult two
(power two (pred (pred (pred three)))))) -> ... ->

mult two
(mult two

(mult two one)) -> ... ->

mult two
(mult two two) -> ... ->

mult two four => ... =>

- 62 -

eight

4.8.2. Subtraction

To find the difference between two numbers, find the difference between the numbers after decrementing both. The
difference between a number and zero is the number:

rec sub x y =
if iszero y
then x
else sub (pred x) (pred y)

For example:

sub four two => ... =>

sub (pred four) (pred two) => ... =>

sub (pred (pred four)) (pred (pred two)) => ... =>

(pred (pred four)) => ... =>

two

Notice that this version of subtraction will return zero if the second number is larger than the first, for example:

sub one two => ... =>

sub (pred one) (pred two) => ... =>

sub (pred (pred one)) (pred (pred two)) => ... =>

pred (pred one) -> ... ->

pred zero => ... =>

zero

This is because pred returns zero from decrementing zero.

This form of subtraction is known as natural subtraction.

4.8.3. Comparison

There are a number of ways of defining equality between numbers. One approach is to notice that the difference
between two equal numbers is zero. However, if we subtract a number from a smaller number we also get zero so we
need to find the absolute difference between them; the difference regardless of the order of comparison.

To find the absolute difference between two numbers, add the difference between the first and the second to the
difference between the second and the first:

def abs_diff x y = add (sub x y) (sub y x)

If they are both the same then the absolute differences will be zero because the result of taking each from the other will
be zero. If the first is greater than the second then the absolute difference will be the first minus the second because

- 63 -

the second minus the first will be zero. Similarly, if the second is greater than the first then the difference will be the
second minus the first because the first minus the second will be zero.

Thus, we can define:

def equal x y = iszero (abs_diff x y)

For example:

equal two three => ... =>

iszero (abs_diff two three) -> ... ->

iszero (add (sub two three) (sub three two)) -> ... ->

iszero (add zero one) -> ... ->

iszero one => ... =>

false

We could equally well be explicit about the decrementing sub carries out and define equality recursively. Two
numbers are equal if both are zero, they are unequal if one is zero or equal if decrementing both gives equal numbers:

rec equal x y =
if and (iszero x) (iszero y)
then true
else
if or (iszero x) (iszero y)
then false
else equal (pred x) (pred y)

For example:

equal two two => ... =>

equal (pred two) (pred two) -> ... ->

equal one one => ... =>

equal (pred one) (pred one) -> ... ->

equal zero zero => ... =>

true

We can also use subtraction to define arithmetic inequalities. For example, a number is greater than another if
subtracting the second from the first gives a non-zero result:

def greater x y = not (iszero (sub x y))

For example, for

3 > 2

we use:

- 64 -

greater three two => ... =>

not (iszero (sub three two)) -> ... ->

not (iszero one) -> ... ->

not false => ... =>

true

Similarly, a number is greater than or equal to another if taking the first from the second gives zero:

def greater_or_equal x y = iszero (sub y x)

For example, for:

2 >= 3

we use:

greater_or_equal two three => ... =>

iszero (sub three two) -> ... ->

iszero one => ... =>

false

4.8.4. Division

Division, like decrementation, is problematic because of zero. It is usual to define division by zero as undefined but we
do not have any way of dealing with undefined values. Let us define division by zero to be zero and remember to
check for a zero divisor. For a non-zero divisor, we count how often it can be subtracted from the dividend until the
dividend is smaller than the divisor:

rec div1 x y =
if greater y x
then zero
else succ (div1 (sub x y) y)

def div x y =
if iszero y
then zero
else div1 x y

For example:

div nine four => ... =>

div1 nine four => ... =>

succ (div1 (sub nine four) four)) -> ... ->

succ (div1 five four) -> ... ->

succ (succ (div1 (sub five four) four)) -> ... ->

- 65 -

succ (succ (div1 one four)) -> ... ->

succ (succ zero) -> ... ->

two

4.9. Summary

In this chapter we have:

• considered recursion as a means of repetition

• seen that recursion through function definitions leads to non-terminating substitution sequences

• introduced recursion by abstracting at the place where recursion takes place in a function and then passing the
function to itself

• met applicative order β reduction

• generalised recursion through a recursion function which substitutes a function at its own recursion points

• introduced notation for defining recursive functions

• used recursion to develop standard arithmetic operations

Some of these topics are summarised below.

Recursion by passing a function to itself

For:

def <name> = ... (<name> ...) ...

write:

def <name1> f = ... (f f ...) ...

def <name> = <name1> <name1>

Applicative order ββ reduction

For (<function expression> <argument expression>)

i) applicative order β reduce <argument expression> to <argument value>

ii) applicative order β reduce <function expression> to <function value>

iii) if <function value> is λ<name>.<body>
then replace all free occurences of <name> in <body> with <argument value> and applicative order β
reduce the new <body>

or

iv) if <function value> is not a function
then return (<function value> <argument value>)

- 66 -

Applicative order reduction notation

-> - applicative order β reduction

-> ... -> - multiple applicative order β reduction

Recursion function

def recursive f = λs.(f (s s)) λs.(f (s s))

For:

def <name> = ... (<name> ...) ...

write:

def <name1> f = ... (f ...) ...

def <name> = recursive <name1>

Note that:

recursive <name1> => ... => <name1> (recursive <name1>)

Recursion notation

rec <name> = <expression using ‘<name>’> ==

def <name> = recursive λf.<expression using ‘f’>

4.10. Exercises

1) The following function finds the sum of the numbers between n and zero:

def sum1 f n =
if iszero n
then zero
else add n (f (pred n))

def sum = recursive sum1

Evaluate:

sum three

2) Write a function that finds the product of the numbers between n and one:

def prod1 f n = ...

def prod = recursive prod1 (*)

so that:

prod n

in lambda calculus is equivalent to:

- 67 -

n * n-1 * n-2 * ... * 1

in normal arithmetic.

Evaluate:

prod three

3) Write a function which finds the sum of applying a function fun to the numbers between n and zero:

def fun_sum1 f fun n = ...

def fun_sum = recursive fun_sum1

For example, given the ‘squaring’ function:

def sq x = mult x x

then:

fun_sum sq three

in the λ calculus is equivalent to:

02 + 12 + 22 + 32

in arithmetic.

Evaluate:

fun_sum double three

given the ‘doubling’ function:

def double x = add x x

4) Define a function to find the sum of applying a function fun to the numbers between n and zero in steps of
s:

def fun_sum_step1 f fun n s = ...

def fun_sum_step = recursive fun_sum_step1

so, for example:

fun_sum_step sq six two

in the λ calculus is equivalent to:

62 + 42 + 22 + 02

in normal arithmetic.

Evaluate:

__

(*) There’s no escape from ‘factorial’...

- 68 -

i) fun_sum_step double five two
ii) fun_sum_step double four two

5) Define functions to test whether or not a number is less than, or less than or equal to another number:

def less x y = ...

def less_or_equal x y = ...

Evaluate:

i) less three two
ii) less two three
iii) less two two
iv) less_or_equal three two
v) less_or_equal two three
vi) less_or_equal two two

6) Define a function to find the remainder on dividing one number by another:

def mod x y = ...

Evaluate:

i) mod three two
ii) mod two three
iii) mod three zero

5. TYPES

5.1. Introduction

In this chapter we are going to consider how types can be added to our functional notation to ensure that only
meaningful arguments are passed to functions.

To begin with, we will consider the role of types in programming in general and how types may be characterised. We
will then introduce functions for constructing and manipulating typed values, using the pair manipulation functions to
represent typed objects as type/value pairs.

Next, we will introduce the error type for error objects which are returned after type errors. We will then develop
typed representations for booleans, numbers and characters.

Finally, we will introduce new notations to simplify function definitions through case definitions and structure
matching.

5.2. Types and programming

We are working with a very simple language. As we exclude single names as expressions, the only objects are
functions which take function arguments and return function results. (For the moment, we won’t consider non-
terminating applications.) We have constructed functions which we can interpret as boolean values, boolean
operations, numbers, arithmetic operations and so on but particular functions have no intrinsic interpretations other
than in terms of their effects on other functions. Because functions are so general, there is no way to restrict the
application of functions to specific other functions, for example we cannot restrict ‘arithmetic’ functions to ‘numeric’
operands. We can carry out function applications which are perfectly valid but have results with no relevant meaning

- 69 -

within our intended interpretations.

For example, consider the effect of:

iszero true ==

λn.(n select_first) true =>

true select_first ==

λfirst.λsecond.first select_first =>

λsecond.select_first ==

λsecond.λfirst.λsecond.first

This produces a perfectly good function for selecting the second argument in an application with three nested
arguments but we expect iszero to return a boolean.

Using these functions is analogous to programming in machine code. In most CPUs, the sole objects are
undifferentiated bit patterns which have no intrinsic meanings but are interpreted in different ways by the machine
code operations applied to them. For example, different machine code instructions may treat a bit pattern as a signed
or unsigned integer, decimal or floating point number or a data or instruction address. Thus, a machine code program
may twos-complement an address or jump to a floating point number.

The single typed systems programming language BCPL, a precursor of C, is similarly free and easy. Although
representations are provided for a variety of objects, operations are used without type checks on the assumption that
their operands are appropriate. Early versions of C provided type checking but were somewhat lax when operations
were carried out on almost appropriate types, allowing indirection on integers or arithmetic on pointers, for example.

It is claimed that this ‘freedom’ from types makes languages more flexible. It does ease implementation dependent
programming where advantage is taken of particular architectural features on particular CPUs through bit or word
level manipulation but this in turn leads to a loss of portability because of gross incompatibilities between
architectures. For example, many computer memories are based on 8 bit bytes so 16 bit words require 2 bytes.
However, computers differ in the order in which these bytes are used: some put the top 8 bits in the first byte but
others put them in the second byte. Thus, programs using ‘clever’ address arithmetic which involves knowing the byte
order won’t work on some computers. ‘Type free’ programming also increases incomprehensible errors through dodgy
low-level subterfuges. For example, ‘cunning’ address manipulations to access the fields of a data structure may cause
the corruption of other fields or of a completely different data structure which is close to the requisite one in memory,
through byte mis-alignments.

5.3. Type as objects and operations

Types are introduced into languages to control the use of operations on objects so as to ensure that only meaningful
combinations are used. As we saw in chapter 2, variables in programming languages are used as a primary abstraction
mechanism. In ‘typeless’ languages there are no restrictions on object/operation combinations and any variable may be
associated with any object. Here, variables just abstract over objects in general. In weakly typed languages, like LISP
and Prolog, objects are typed but variables are not. There are restrictions on object/operation combinations but not on
variable/object associations. Thus, variables do not abstract over specific types. In strongly typed languages like ML
and Pascal variables are specified as being of a specific type and have the same restrictions on use as objects of that
type.

More formally, a type specifies a class of objects and associated operations. Object classes may be defined by listing
their values, for example for booleans:

TRUE is a boolean
FALSE is a boolean

- 70 -

or by specifying a base object and a means of constructing new objects from the base, for example for natural
numbers:

0 is a number

SUCC N is a number
if N is a number

Thus, we can show that:

SUCC (SUCC (SUCC 0))

is a number because:

0

SUCC 0

SUCC (SUCC 0)

are all numbers.

Operations may be specified exhaustively with a case for each base value, for example for booleans, negation:

NOT TRUE = FALSE
NOT FALSE = TRUE

and conjunction:

AND FALSE FALSE = FALSE
AND FALSE TRUE = FALSE
AND TRUE FALSE = FALSE
AND TRUE TRUE = TRUE

Operations may also be specified constructively in terms of base cases for the base objects and general cases for the
constructive objects. For example for natural numbers, the predecessor function:

PRED 0 = 0
PRED (SUCC X) = X

and addition:

ADD X 0 = X
ADD X (SUCC Y) = ADD (SUCC X) Y

and subtraction:

SUB X 0 = X
SUB (SUCC X) (SUCC Y) = SUB X Y

and multiplication:

MULT X 0 = 0
MULT X (SUCC Y) = ADD X (MULT X Y)

Note that we have just formalised the informal descriptions from the last chapter. We will look at the relationship
between exhaustive and case definitions, and our conditional style of definition later in this chapter.

- 71 -

Sometimes it may be necessary to introduce conditions into case definitions because the form of the object definition
may not provide enough information to discriminate between cases. For example for division:

DIV X 0 = NUMBER ERROR
DIV X Y = 0

if (GREATER Y X)
DIV X Y = SUCC (DIV (SUB X Y) Y)

if NOT (GREATER Y X)

the ifs are needed because the values rather than the structures of X and Y determine how they are to be processed.

Operations may map objects of a type to objects of the same type or to objects of another type. A common
requirement is for predicates which are used to test properties of objects and return booleans. For example for
numbers:

EQUAL 0 0 = TRUE
EQUAL (SUCC X) 0 = FALSE
EQUAL 0 (SUCC X) = FALSE
EQUAL (SUCC X) (SUCC Y) = EQUAL X Y

We are not going to give a full formal treatment of types here.

5.4. Representing typed objects

We are going to construct functions to represent typed objects. In general, an object will have a type and a value. We
need to be able to:

i) construct an object from a value and a type

ii) select the value and type from an object

iii) test the type of an object

iv) handle type errors

We will represent an object as a type/value pair:

def make_obj type value = λs.(s type value)

For an arbitrary object of type:

<type>

and value:

<value>

is represented by:

make_obj <type> <value> => ... =>

λs.(s <type> <value>

Thus, the type is selected with select_first:

def type obj = obj select_first

- 72 -

and the value is selected with select_second:

def value obj = obj select_second

We will use numbers to represent types and numeric comparison to test the type:

def istype t obj = equal (type obj) t

We are going to define typed objects and operations in terms of untyped objects and operations. In general, our
approach will be:

i) check argument types

ii) extract untyped values from typed arguments

iii) carry out untyped operations on untyped values

iv) construct typed result form untyped result

We must distinguish definitions from the subsequent uses of typed objects. When defining types we cannot avoid
using untyped operations: we have to start somewhere. Once types are defined, however, we should only manipulate
typed objects with typed operations to ensure that the type checks aren’t overridden.

In general, we will use UPPER CASE LETTERS for typed constructs and lower case letters for untyped
constructs.

We should show that our representation of a type satisfies the formal definition of that type but we won’t do this
rigorously or religiously.

5.5. Errors

Whenever we detect a type error we will return an appropriate error object. Such an object will have type
error_type, represented as zero:

def error_type = zero

We need a function to construct error objects:

def MAKE_ERROR = make_obj error_type

This definition expands as:

make_obj error_type ==

λtype.λvalue.λs.(s type value) error_type =>

λvalue.λs.(s error_type value)

An error object’s value should indicate the sort of error the object represents. For example, for a type error the
corresponding error object might have the expected type as value.

We will define a universal error object of type error_type:

def ERROR = MAKE_ERROR error_type

This definition expands as:

- 73 -

λvalue.λs.(s error_type value) error_type =>

λs.(s error_type error_type)

so the error object ERROR has type error_type and value error_type.

We can test for an object of type error by using istype to look for error_type:

def iserror = istype error_type

so iserror’s definition expands as:

istype error_type ==

λt.λobj.(equal (type obj) t) error_type =>

λobj.(equal (type obj) error_type)

For example, to test that ERROR is of type error:

iserror ERROR ==

λobj.(equal (type obj) error_type) ERROR =>

equal (type ERROR) error_type

Now:

type ERROR

expands as:

λobj.(obj select_first) ERROR =>

ERROR select_first ==

λs.(s error_type error_type) select_first =>

select_first error_type error_type => ... =>

errortype

Thus:

equal (type ERROR) error_type -> ... ->

equal error_type error_type => ... =>

true

Our formal type definitions should be extended to show how error objects are accommodated. We won’t do so
rigorously. In general, if an operation expects an argument of one type and does not receive one then it will return an
error object corresponding to the required type. Thus if an operation is passed an error object as the result of a
previous operation then the error object will not be of the required type and a new error object will be returned.

- 74 -

5.6. Booleans

We will represent the boolean type as one:

def bool_type = one

Constructing a boolean type involves preceding a boolean value with bool_type:

def MAKE_BOOL = make_obj bool_type

which expands as:

λvalue.λs.(s bool_type value)

We can now construct the typed booleans TRUE and FALSE from the untyped versions by:

def TRUE = MAKE_BOOL true

which expands as:

λs.(s bool_type true)

and:

def FALSE = MAKE_BOOL false

which expands as:

λs.(s bool_type false)

As with the error type, the test for a boolean type involves checking for bool_type:

def isbool = istype bool_type

This definition expands as:

λobj.(equal (type obj) bool_type)

A boolean error object will be an error object with type bool_type:

def BOOL_ERROR = MAKE_ERROR bool_type

which expands as:

λs.(s error_type bool_type)

The typed function NOT should either return an error if the argument is not a boolean or extract the value from the
argument, use untyped not to complement it and make a new boolean from the result:

def NOT X =
if isbool X
then MAKE_BOOL (not (value X))
else BOOL_ERROR

Similarly, the typed function AND should either return an error if either argument is non boolean or make a new
boolean from ‘and’ing the values of the arguments:

- 75 -

def AND X Y =
if and (isbool X) (isbool Y)
then MAKE_BOOL (and (value X) (value Y))
else BOOL_ERROR

We will now consider how these definitions bolt together by looking at:

AND TRUE FALSE

After definition replacement and initial bound variable substitution we have:

if and (isbool TRUE) (isbool FALSE)
then MAKE_BOOL (and (value TRUE) (value FALSE))
else BOOL_ERROR

First of all:

isbool TRUE ==

λobj.(equal (type obj) bool_type) TRUE =>

equal (type TRUE) bool_type ==

equal (λobj.(obj select_first) TRUE) bool_type ->

equal (TRUE select_first) bool_type ==

equal (λs.(s bool_type true) select_first) bool_type -> ... ->

equal bool_type bool_type => ... =>

true

Similarly:

isbool FALSE => ... =>

true

Thus:

and (isbool TRUE) (isbool FALSE) -> ... ->

and true (isbool FALSE) -> ... ->

and true true => ... =>

true

We now evaluate:

MAKE_BOOL (and (value TRUE) (value FALSE))

For the and:

value TRUE ==

λobj.(obj select_second) TRUE =>

- 76 -

TRUE select_second ==

λs.(s bool_type true) select_second => ... =>

true

and:

value FALSE => ... =>

false

so:

MAKE_BOOL (and (value TRUE) (value FALSE)) ->

MAKE_BOOL (and true (value FALSE)) ->

MAKE_BOOL (and true false) ->

MAKE_BOOL false ==

λvalue.λs.(s bool_type value) false =>

λs.(s bool_type false) ==

FALSE

5.7. Typed conditional expression

We need a typed conditional expression to handle both typed booleans and type errors in a condition:

def COND E1 E2 C =
if isbool C
then
if value C
then E1
else E2
else BOOL_ERROR

Note that this typed conditional function will return BOOL_ERROR if the condition is not a boolean.

We will now write:

IF <condition>
THEN <expression1>
ELSE <expression2>

instead of:

COND <expression1> <expression2> <condition>

We also need typed versions of the type testers for use with IF because iserror and isbool return the untyped
true or false instead of the typed TRUE or FALSE:

def ISERROR E = MAKE_BOOL (iserror E)

- 77 -

def ISBOOL B = MAKE_BOOL (isbool B)

5.8. Numbers and arithmetic

We will represent the number type as two:

def numb_type = two

and a number will be a pair starting with numb_type:

def MAKE_NUMB = make_obj numb_type

MAKE_NUMBs definition expands to:

λvalue.λs.(s numb_type value)

We need an error object for arithmetic type errors:

def NUMB_ERROR = MAKE_ERROR numb_type

which expands to:

λs.(s error_type numb_type)

We also need a type tester:

def isnumb = istype numb_type

which expands to:

λobj.(equal (type obj) numb_type)

from which we can define a typed type tester:

def ISNUMB N = MAKE_BOOL (isnumb N)

Next we can construct a typed zero:

def 0 = MAKE_NUMB zero

which expands as:

λs.(s numb_type zero)

We now need a typed successor function:

def SUCC N =
if isnumb N
then MAKE_NUMB (succ (value N))
else NUMB_ERROR

to define numbers:

def 1 = SUCC 0

def 2 = SUCC 1

- 78 -

def 3 = SUCC 2
etc.

For example, 1 expands as:

SUCC 0 => ... =>

if isnumb 0
then MAKE_NUMB (succ (value N))
else NUMB_ERROR

First of all:

isnumb 0 ==

equal (type 0) numb_type ==

equal (λobj.(obj select_first) 0) numb_type =>

equal (0 select_first) numb_type ==

equal (λs.(s numb_type zero) select_first) numb_type -> ... ->

equal numb_type numb_type => ... =>

true

Thus, we next evaluate:

MAKE_NUMB (succ (value 0)) ==

MAKE_NUMB (succ (λobj.(obj select_second) 0)) ->

MAKE_NUMB (succ (0 select_second)) ==

MAKE_NUMB (succ (λs.(s numb_type zero) select_second) -> ... ->

MAKE_NUMB (succ zero) ==

MAKE_NUMB one ==

λvalue.λs.(s numb_type value) one =>

λs.(s numb_type one)

In general, a typed number is a pair with the untyped equivalent as value.

We can now redefine the predecessor function to return an error for zero:

def PRED N =
if isnumb N
then
if iszero (value N)
then NUMB_ERROR
else MAKE_NUMB ((value N) select_second)
else NUMB_ERROR

- 79 -

Note that we return NUMB_ERROR for a non-number argument and a zero number argument. We could construct more
elaborate error objects to distinguish such cases but we won’t pursue this further here.

We will need a typed test for zero:

def ISZERO N =
if isnumb N
then MAKE_BOOL (iszero (value N))
else NUMB_ERROR

Now we can redefine the binary arithmetic operations. They all need to test that both arguments are numbers so we
will introduce an auxiliary function to do this:

def both_numbs X Y = and (isnumb X) (isnumb Y)

Now for addition based on our earlier definition:

def + X Y =
if both_numbs X Y
then MAKE_NUMB (add (value X) (value Y))
else NUMB_ERROR

and multiplication:

def * X Y =
if both_numbs X Y
then MAKE_NUMB (mult (value X) (value Y))
else NUMB_ERROR

and division to take account of a zero divisor:

def / X Y =
if both_numbs X Y
then
if iszero (value Y)
then NUMB_ERROR
else MAKE_NUMB (div1 (value X) (value Y))
else NUMB_ERROR

and equality:

def EQUAL X Y =
if both_numbs X Y
then MAKE_BOOL (equal (value X) (value Y))
else NUMB_ERROR

5.9. Characters

Let us now add characters to our types. Character values are specified exhaustively:

’0’ is a character
’1’ is a character
...
’9’ is a character

’A’ is a character
’B’ is a character

- 80 -

...
’Z’ is a character

’a’ is a character
’c’ is a character
...
’z’ is a character

’.’ is a character
’,’ is a character
...

It is useful to have orderings on sub-sequences of characters for lexicographic purposes:

’0’ < ’1’
’1’ < ’2’
...
’8’ < ’9’

’A’ < ’B’
’B’ < ’C’
...
’Y’ < ’Z’

’a’ < ’b’
’b’ < ’c’
...
’y’ < ’z’

where the ordering relation has the usual transitive property:

X < Z
if X < Y and Y < Z

It simplifies character manipulation if there is a uniform ordering overall. For example, in the ASCII character set:

’9’ < ’A’
’Z’ < ’a’

and most punctuation marks appear before ’0’ in the ordering.

We will introduce a new type for characters:

def char_type = four

def CHAR_ERROR = MAKE_ERROR char_type

def ischar = istype char_type

def ISCHAR C = MAKE_BOOL (ischar C)

def MAKE_CHAR = make_obj char_type

A character object will have type char_type. To provide the ordering, characters will be mapped onto the natural
numbers so the value of a character will be an untyped number. We will use the ASCII values:

def ’0’ = MAKE_CHAR forty_eight

- 81 -

def ’1’ = MAKE_CHAR (succ (value ’0’))

...

def ’9’ = MAKE_CHAR (succ (value ’8’))

def ’A’ = MAKE_CHAR sixty_five

def ’B’ = MAKE_CHAR (succ (value ’A’))

...

def ’Z’ = MAKE_CHAR (succ (value ’Y’))

def ’a’ = MAKE_CHAR ninety_seven

def ’b’ = MAKE_CHAR (succ (value ’a’))

...

def ’z’ = MAKE_CHAR (succ (value ’y’))

Now we can define character ordering:

def CHAR_LESS C1 C2 =
if and (ischar C1) (ischar C2)
then MAKE_BOOL (less (value C1) (value C2))
else CHAR_ERROR

and conversion from character to number:

def ORD C =
if ischar C
then MAKE_NUMB (value C)
else CHAR_ERROR

and vice-versa:

def CHAR N =
if isnumb N
then MAKE_CHAR (value N)
else NUMB_ERROR

For example, to find ’A’s numeric equivalent:

ORD ’A’ => ... =>

MAKE_NUMB (value ’A’) ==

MAKE_NUMB (value λs.(s char_type sixty_five)) -> ... ->

MAKE_NUMB sixty_five => ... =>

λs.(numb_type sixty_five) ==

65

- 82 -

Similarly, to construct a character from the number 98:

CHAR 98 => ... =>

MAKE_CHAR (value 98) ==

MAKE_CHAR (value λs.(s numb_type ninety_eight)) -> ... ->

MAKE_CHAR ninety_eight => ... =>

λs.(char_type ninety_eight) ==

’b’

Because we have used numbers as character values we can base character comparison on number comparison:

def CHAR_EQUAL C1 C2 =
if and (ischar C1) (ischar C2)
then MAKE_BOOL (equal (value C1) (value C2))
else CHAR_ERROR

5.10. Repetitive type checking

Once we have defined typed TRUE, FALSE, ISBOOL and IF we could define typed versions of all the other boolean
operations from them, for example:

def NOT X =
IF X
THEN FALSE
ELSE TRUE

def AND X Y =
IF ISBOOL Y
THEN
IF X
THEN Y
ELSE FALSE
ELSE BOOL_ERROR

Note that for NOT we do not need to check explicitly that X is a boolean because the IF does so anyway. In the same
way in AND we do not need to check that X is a boolean as the second IF will.

With typed boolean operations and having defined typed 0, SUCC, PRED, ISNUMB and ISZERO, we could define
the other arithmetic operations using only typed operations, for example:

def ADD X Y =
IF AND (ISNUMB X) (ISNUMB Y)
THEN AND1 X Y
ELSE NUMB_ERROR

rec ADD1 X Y =
IF ISZERO Y
THEN X
ELSE ADD1 (SUCC X) (PRED Y)

Here we have defined an outer non-recursive function to check the arguments and an auxiliary recursive function to
carry out the operation without argument checks. We could avoid the explicit check that Y is a number as ISZERO

- 83 -

will do so. However, for a non numeric argument, ISZERO (and thence the two IFs) will return a BOOL_ERROR
instead of a NUMB_ERROR.

As definitions these seem satisfactory but they would be appallingly inefficient if used as the basis of an
implementation because of repetitive type checking. Consider, for example(*):

ADD 1 2

First of all in:

IF AND (ISNUMB 1) (ISNUMB 2)

both:

ISNUMB 1

and:

ISNUMB 2

are checked and return booleans. Next:

AND (ISNUMB 1) (ISNUMB 2)

checks that both ISNUMBs return booleans and then itself returns a boolean. Then:

IF AND (ISNUMB 1) (ISNUMB 2)

checks that AND returns a boolean.

Secondly, after ADD1 is called:

IF ISZERO 2

calls:

ISZERO 2

to check that 2 is a number and return a boolean. Next:

IF ISZERO 2

checks that ISZERO returns a boolean.

Now, ADD1 is called recursively through:

ADD1 (SUCC 1) (PRED 2)

so:

IF ISZERO (PRED 2)

calls:

__

(*) This example also highlights repetitive argument evaluation due to naive normal order evaluation. We will consider different

approaches to argument evaluation in chapter 8.

- 84 -

ISZERO (PRED 2)

to check that (PRED2) is a number and return a boolean and then:

IF ISZERO (PRED 2)

checks that ISZERO returns a boolean.

Once again, ADD1 is called recursively in:

ADD1 (SUCC (SUCC 1)) (PRED (PRED 2))

and evaluation, and type checking, continue.

5.11. Static and dynamic type checking

Clearly, there is a great deal of unnecessary type checking here. Arguably, we ‘know’ that the function types match so
we only need to test the outer level arguments once. This is the approach we have used above in defining typed
operations where the arguments are checked before untyped operations are carried out. But how do we ‘know’ that the
types match up? It is all very well to claim that we are using types consistently in relatively small definitions but in
developing large expressions, type mismatches will inevitably slip through, just as they do during the development of
large programs. The whole point of types was to detect such inconsistencies.

As we saw above, using untyped functions is analogous to programming in a language without typed variables or type
checking like machine code or BCPL. Similarly, using our fully typed functions is analogous to programming in a
language where variables are untyped but objects are checked dynamically by each operation while a program runs as
in Prolog and LISP.

The alternative is to introduce types into the syntax of the language and then check type consistency symbolically
before running programs. With symbolic checking, run time checks are redundant. Typing may be made explicit with
typed declarations, as in C and Pascal, or deduced from variable and operation use, as in ML and PS-algol, though in
the last two languages types may and sometimes must be specified explicitly as well.

There are well developed theories of types which are used to define and manipulate typed objects and typed languages.
Some languages provide for user defined types in a form based on such theories. For example, ML and Miranda
provide for user defined types through abstract data types which, in effect, allow functional abstraction over type
definitions. We won’t consider these further. We will stick with defining ‘basic’ typed functions from untyped
functions and subsequently using the typed functions. What constitutes a ‘basic’ function will be as much a matter of
expediency as theory! For pure typed functions though, the excessive type checking will remain.

5.12. Infix operators

In our notation the function always precedes the arguments in a function application. This is known as prefix notation
and is used in LISP. Most programming languages follow traditional logic and arithmetic and allow infix notation
as well for some binary function names. These may appear between their arguments.

We will now allow the names for logical and arithmetic functions to be used as infix operators so, for example:

<expression1> AND <expression2> == AND <expression1> <expression2>
<expression1> OR <expression2> == OR <expression1> <expression2>
<expression1> + <expression2> == + <expression1> <expression2>
<expression1> - <expression2> == - <expression1> <expression2>
<expression1> * <expression2> == * <expression1> <expression2>
<expression1> / <expression2> == / <expression1> <expression2>

- 85 -

To simplify the presentation we won’t introduce operator precedence or implicit associativity. Thus, strict bracketing
is still required for function application arguments. For example, we write:

7 + (8 * 9) == + 7 (8 * 9) == + 7 (* 8 9)

rather than the ambiguous:

7 + 8 * 9

Some languages allow the programmer to introduce new infix binary operators with specified precedence and
associativity. These include Algol 68, ML, POP-2 and Prolog.

5.13. Case definitions and structure matching

In this chapter we have introduced formal definitions based on the structure of the type involved. Thus, booleans are
defined by listing the values TRUE and FALSE so boolean function definitions have explicit cases for combinations of
TRUE and FALSE. Numbers are defined in terms of 0 and the application of the successor function SUCC. Thus,
numeric functions have base cases for 0 and recursion cases for non-zero numbers.

In general, for multi-case definitions we have written:

<name> <names1> = <expression1>
<name> <names2> = <expression2>
...

where <names> is a structured sequence of bound variables, constants and constructors. When a function with a
multi-case definition is applied to an argument, the argument is matched against the structured bound variable,
constant and constructor sequences to determine which case applies. When a match succeeds for a particular case, then
that case’s bound variables are associated with the corresponding argument sub-structures for subsequent use in the
case’s right hand side expression. This is known as structure matching.

In our functional notation, however, we have to use conditional expressions explicitly to determine the structure of an
object and hence which case of a definition should be used to process it. We then use explicit selection of sub-
structures from structured arguments.

Some languages allow the direct use of case definitions and structure matching, for example Prolog, ML and Miranda.
We will extend our notation in a similar manner so a function may now take the form:

λ<names1>.<expression1>
or <names2>.<expression2>
or ...

and a definition simplifies to:

def <name> <names1> = <expression1>
or <name> <names2> = <expression2>
or ...

For recursive functions, rec is used in place of def.

Note that the effect of matching depends on the order in which the cases are tried. Here, we will match cases from first
to last in order. We also assume that each case is distinct from the others so at most only one match will succeed.

When a case defined function is applied to an argument, if the argument matches <names1> then the result is
<expression1>; if the argument matches <names2> then the result is <expression2> and so on.

- 86 -

For boolean functions, we will allow the use of the constants TRUE and FALSE in place of bound variables. In
general, for:

def <name> <bound variable> =
IF <bound variable>
THEN <expression1>
ELSE <expression2>

we will now write:

def <name> TRUE = <expression1>
or <name> FALSE = <expression2>

Thus, negation is defined by:

NOT TRUE = FALSE
NOT FALSE = TRUE

but written as:

def NOT X =
IF X
THEN FALSE
ELSE TRUE

We will now write:

def NOT TRUE = FALSE
or NOT FALSE = TRUE

Similarly, implication is defined by:

IMPLIES TRUE Y = Y
IMPLIES FALSE Y = TRUE

but written as:

def IMPLIES X Y =
IF X
THEN Y
ELSE TRUE

We will now write:

def IMPLIES TRUE Y = Y
or IMPLIES FALSE Y = TRUE

For numbers, we will allow the use of the constant 0 and bound variables qualified by nested SUCCs in place of bound
variables. In general, for:

rec <name> <bound variable> =
IF ISZERO <bound variable>
THEN <expression1>
ELSE <expression2 using (PRED <bound variable>)>

we will now write:

- 87 -

rec <name> 0 = <expression1>
or <name> (SUCC <bound variable>) = <expression2 using <bound variable>>

Thus, the predecessor function is defined by:

PRED 0 = 0
PRED (SUCC X) = X

but written as:

def PRED X =
IF ISZERO X
THEN 0
ELSE MAKE_NUMB (pred (value X))

We will now write:

def PRED 0 = 0
or PRED (SUCC X) = X

Similarly the power function is defined by:

POWER X 0 = 1
POWER X (SUCC Y) = X*(POWER X Y)

but written as:

rec POWER X Y =
IF ISZERO Y
THEN 1
ELSE X*(POWER X (PRED Y))

We will now write:

rec POWER X 0 = 1
or POWER X (SUCC Y) = X*(POWER X Y)

5.14. Summary

In this chapter we have:

• considered the role of types in programming

• considered informally types as operations on objects

• introduced a representation for typed objects using type/value pairs

• developed an error type

• developed a boolean type with typed boolean operations

• developed typed conditional expressions and an ‘IF ... THEN ... ELSE ...’ notation for them

• developed a number type with typed numeric operations

• developed a character type with typed character operations

- 88 -

• considered repetitive type checking, and static and dynamic typing

• introduced notation for strictly bracketed infix expressions

• introduced notation for case definitions and structure matching

Some of these topics are summarised below.

IF ... THEN ... ELSE ...

IF <condition>
THEN <expression1>
ELSE <expression2> ==

COND <expression1> <expression2> <condition>

Infix operators

<expression1> <operator> <expresion2> ==

<operator> <expression1> <expression2>

Note that strict bracketing is required for nested infix expressions.

Boolean case definition

def <name> TRUE = <expression1>
or <name> FALSE = <expression2> ==

def <name> <bound variable> =
IF <bound variable>
THEN <expression1>
ELSE <expression2>

Number case definition

rec <name> 0 = <expression1>
or <name> (SUCC <bound variable>) =

<expression2 using ‘<bound variable>’> ==

rec <name> <bound variable> =
IF ISZERO <bound variable>
THEN <expression1>
ELSE <expression2 using ‘PRED <bound variable>’>

5.15. Exercises

1) Evaluate fully the following expressions:

i) ISBOOL 3
ii) ISNUMB FALSE
iii) NOT 1
iv) TRUE AND 2
v) 2 + TRUE

2) Signed numbers might be introduced as a new type with an extra layer of ‘pairing’ so that a numbers’s value is
preceded by a boolean to indicate whether or not the number is positive or negative:

- 89 -

def signed_type = ...
def SIGN_ERROR = MAKE_ERROR signed_type
def POS = TRUE
def NEG = FALSE
def MAKE_SIGNED N SIGN = make_obj signed_type (make_obj SIGN N)

So:

+<number> == MAKE_SIGNED <number> POS
-<number> == MAKE_SIGNED <number> NEG

For example:

+4 == MAKE_SIGNED 4 POS
-4 == MAKE_SIGNED 4 NEG

Note that there are two representations for 0:

+0 == MAKE_SIGNED 0 POS
-0 == MAKE_SIGNED 0 NEG

i) Define tester and selector functions for signed numbers:

def issigned N = ... - true if N is a signed number
def ISSIGNED N = ... - TRUE if N is a signed number
def sign N = ... - N’s sign as an untyped number
def SIGN N = ... - N’s sign as a typed number
def sign_value N = ... - N’s value as an unsigned number
def VALUE N = ... - N’s value as a signed number
def sign_iszero N = ... - true if N is 0

Show that your functions work for representative positive and negative values, and 0.

ii) Define signed versions of ISZERO, SUCC and PRED:

def SIGN_ISZERO N = ...
def SIGN_SUCC N = ...
def SIGN_PRED N = ...

Show that your functions work for representative positive and negative values, and 0.

iii) Define a signed versions of ‘+’:

def SIGN_+ X Y = ...

Show that your function works for representative positive and negative values, and 0.

6. LISTS AND STRINGS

6.1. Introduction

In this chapter we are going to look at the list data structure which is used to hold variable length sequences of values.

To begin with, we will discuss list construction and list element access. We will then use pair functions and the type
representation techniques to add lists to our notation.

- 90 -

Next, we will develop elementary functions for manipulating linear lists and simpler list notations. We will also
introduce strings as lists of characters.

We will then introduce structure matching for list functions and look at a variety of operations on linear lists. In
imperative languages, we might use arrays in these applications.

Finally, we will consider at the use of mapping functions to generalise operations on linear lists.

6.2. Lists

Lists are general purpose data structures which are widely used within functional and logic programming. They were
brought to prominence through LISP and are now found in various forms in many languages. Lists may be used in
place of both arrays and record structures, for example to build stacks, queues and tree structures.

In this chapter, we are going to introduce lists into our functional notation and look at using lists in problems where
arrays might be used in other languages. In chapter 7 we will look at using lists where record structures might be used
in other languages.

Lists are variable length sequences of objects. A strict approach to lists, as in ML for example, treats them as variable
length sequences of objects of the same type. We will take the relatively lax approach of LISP and Prolog and treat
them as variable length sequences of objects of mixed type. Although this is less rigorous theoretically and makes a
formal treatment more complex it simplifies presentation and provides a more flexible structure.

Formally, a list is either empty, denoted by the unique object:

NIL is a list

or it is a constructed pair with a head which is any object and a tail which is a list:

CONS H T is a list
if H is any object and T is a list

CONS is the traditional name for the list constructor, originally from LISP.

For example, from the object 3 and the list NIL we can construct the list:

CONS 3 NIL

with 3 in the head and NIL in the tail.

From the object 2 and this list we can construct the list:

CONS 2 (CONS 3 NIL)

with 1 in the head and the list CONS 3 NIL in the tail.

From the object 1 and the previous list we can construct the list:

CONS 1 (CONS 2 (CONS 3 NIL))

with 1 in the head and the list CONS 2 (CONS 3 NIL)) in the tail, and so on.

Note that the tail of a list must be a list. Thus, all lists end, eventually, with the empty list.

Note that the head of a list may be any object including another list, enabling the construction of nested structures,
particularly trees.

- 91 -

If the head of a list and the heads of all of its tail lists are not lists then the list is said to be linear. In LISP parlance,
an object in a list which is not a list (or a function) is known as an atom.

The head and tail may be selected from non-empty lists:

HEAD (CONS H T) = H
TAIL (CONS H T) = T

but head and tail selection from an empty list is not permitted:

HEAD NIL = LIST_ERROR
TAIL NIL = LIST_ERROR

Consider, for example, the linear list of numbers we constructed above:

CONS 1 (CONS 2 (CONS 3 NIL))

The head of this list:

HEAD (CONS 1 (CONS 2 (CONS 3 NIL)))

is:

1

The tail of this list:

TAIL (CONS 1 (CONS 2 (CONS 3 NIL)))

is:

CONS 2 (CONS 3 NIL)

The head of the tail of the list:

HEAD (TAIL (CONS 1 (CONS 2 (CONS 3 NIL))))

is:

HEAD (CONS 2 (CONS 3 NIL))

which is:

2

The tail of the tail of the list:

TAIL (TAIL (CONS 1 (CONS 2 (CONS 3 NIL))))

is:

TAIL (CONS 2 (CONS 3 NIL))

which is:

CONS 3 NIL

- 92 -

The head of the tail of the tail of this list:

HEAD (TAIL (TAIL (CONS 1 (CONS 2 (CONS 3 NIL)))))

is:

HEAD (TAIL (CONS 2 (CONS 3 NIL)))

which is:

HEAD (CONS 3 NIL)

giving:

3

The tail of the tail of the tail of the list:

TAIL (TAIL (TAIL (CONS 1 (CONS 2 (CONS 3 NIL)))))

is:

TAIL (TAIL (CONS 2 (CONS 3 NIL)))

which is:

TAIL (CONS 3 NIL)

giving:

NIL

6.3. List representation

First we define the list type:

def list_type = three

and associated tests:

def islist = istype list_type

def ISLIST L = MAKE_BOOL (islist L)

and error object:

def LIST_ERROR = MAKE_ERROR list_type

A list value will consist of a pair made from the list head and tail so the general form of a list object with head
<head> and tail <tail> will be:

λs.(s listtype
λs.(s <head> <tail>))

Thus, we define:

- 93 -

def MAKE_LIST = make_obj listtype

def CONS H T =
if islist T
then MAKE_LIST λs.(s H T)
else LIST_ERROR

For example:

CONS 1 NIL => ... =>

MAKE_LIST λs.(s 1 NIL) => ... =>

λs.(s listtype
λs.(s 1 NIL))

and:

CONS 2 (CONS 1 NIL) => ... =>

MAKE_LIST λs.(s 2 (CONS 1 NIL)) => ... =>

λs.(s listtype
λs.(s 2 (CONS 1 NIL))) => ... =>

λs.(s listtype
λs.(s 2 λs.(s listtype

λs.(s 1 NIL))))

The empty list will have both head and tail set to LIST_ERROR:

def NIL = MAKE_LIST λs.(s LIST_ERROR LIST_ERROR)

so NIL is:

λs.(s listtype
λs.(s LIST_ERROR LIST_ERROR))

Now we can use the pair selectors to extract the head and tail:

def HEAD L =
if islist L
then (value L) select_first
else LIST_ERROR

def TAIL L =
if islist L
then (value L) select_second
else LIST_ERROR

For example:

HEAD (CONS 1 (CONS 2 NIL)) ==

(value (CONS 1 (CONS 2 NIL))) select_first ==

(value λs.(s listtype
λs.(s 1 (CONS 2 NIL)))) select_first => ... =>

- 94 -

λs.(s 1 (CONS 2 NIL)) select_first =>

select_first 1 (CONS 2 NIL) => ... =>

1

and:

TAIL (CONS 1 (CONS 2 NIL)) ==

(value (CONS 1 (CONS 2 NIL))) select_second ==

(value λs.(s listtype
λs.(s 1 (CONS 2 NIL)))) select_second => ... =>

λs.(s 1 (CONS 2 NIL)) select_second =>

select_second 1 (CONS 2 NIL) => ... =>

(CONS 2 NIL)

and:

HEAD (TAIL (CONS 1 (CONS 2 NIL))) -> ... ->

HEAD (CONS 2 NIL) ==

(value (CONS 2 NIL)) select_first ==

(value λs.(listtype λs.(s 2 NIL))) select_first => ... =>

λs.(s 2 NIL) select_first => ... =>

select_first 2 NIL => ... =>

2

Note that both HEAD and TAIL will return LIST_ERROR from the empty list. Thus:

HEAD NIL ==

(value NIL) select_first => ...=>

λs.(s LIST_ERROR LIST_ERROR) select_first =>

select_first LIST_ERROR LIST_ERROR => ... =>

LIST_ERROR

and:

TAIL NIL ==

(value NIL) select_second => ...=>

λs.(s LIST_ERROR LIST_ERROR) select_second =>

select_second LIST_ERROR LIST_ERROR => ... =>

- 95 -

LIST_ERROR

The test for an empty list checks for a list with an error object in the head:

def isnil L =
if islist L
then iserror (HEAD L)
else false

def ISNIL L =
if islist L
then MAKE_BOOL (iserror (HEAD L))
else LIST_ERROR

We will now define a variety of elementary operations on lists.

6.4. Linear length of a list

A list is a sequence of an arbitrary number of objects. To find out how many objects are in a linear list: if the list is
empty then there are 0 objects:

LENGTH NIL = 0

and otherwise there are 1 more than the number in the tail:

LENGTH (CONS H T) = SUCC (LENGTH T)

For example:

LENGTH (CONS 1 (CONS 2 (CONS 3 NIL))) -> ... ->

SUCC (LENGTH (CONS 2 (CONS 3 NIL))) -> ... ->

SUCC (SUCC (LENGTH (CONS 3 NIL))) -> ... ->

SUCC (SUCC (SUCC (LENGTH NIL))) -> ... ->

SUCC (SUCC (SUCC 0))) ==

3

In our notation, this is:

rec LENGTH L =
IF ISNIL L
THEN 0
ELSE SUCC (LENGTH (TAIL L))

For example, consider:

LENGTH (CONS 1 (CONS 2 NIL)) -> ... ->

SUCC (LENGTH (TAIL (CONS 1 (CONS 2 NIL)))) -> ... ->

SUCC (LENGTH (CONS 2 NIL)) -> ... ->

SUCC (SUCC (LENGTH (TAIL (CONS 2 NIL)))) -> ... ->

- 96 -

SUCC (SUCC (LENGTH NIL)) -> ... ->

SUCC (SUCC 0) ==

2

Note that the selection of the tail of the list is implicit in the case notation but must be made explicit in our current
notation.

6.5. Appending lists

It is often useful to build one large linear list from several smaller lists. To append two lists together so that the
second is a linear continuation of the first: if the first is empty then the result is the second:

APPEND NIL L = L

Otherwise the result is that of constructing a new list with the head of the first list as the head and the result of
appending the tail of the first list to the second as the tail:

APPEND (CONS H T) L = CONS H (APPEND T L)

For example, to join:

CONS 1 (CONS 2 NIL))

to:

CONS 3 (CONS 4 NIL))

to get:

CONS 1 (CONS 2 (CONS 3 (CONS 4 NIL)))

we use:

APPEND (CONS 1 (CONS 2 NIL)) (CONS 3 (CONS 4 NIL)) -> ... ->

CONS 1 (APPEND (CONS 2 NIL) (CONS 3 (CONS 4 NIL))) -> ... ->

CONS 1 (CONS 2 (APPEND NIL (CONS 3 (CONS 4 NIL)))) -> ... ->

CONS 1 (CONS 2 (CONS 3 (CONS 4 NIL)))

In our notation this is:

rec APPEND L1 L2 =
IF ISNIL L1
THEN L2
ELSE CONS (HEAD L1) (APPEND (TAIL L1) L2)

For example, consider:

APPEND (CONS 1 (CONS 2 NIL)) (CONS 3 NIL) -> ... ->

CONS (HEAD (CONS 1 (CONS 2 NIL)))
(APPEND (TAIL (CONS 1 (CONS 2 NIL))) (CONS 3 NIL)) -> ... ->

- 97 -

CONS 1 (APPEND (TAIL (CONS 1 (CONS 2 NIL))) (CONS 3 NIL)) -> ... ->

CONS 1 (APPEND (CONS 2 NIL) (CONS 3 NIL)) -> ... ->

CONS 1 (CONS (HEAD (CONS 2 NIL))
(APPEND (TAIL (CONS 2 NIL)) (CONS 3 NIL))) -> ... ->

CONS 1 (CONS 2
(APPEND (TAIL (CONS 2 NIL)) (CONS 3 NIL))) -> ... ->

CONS 1 (CONS 2 (APPEND NIL (CONS 3 NIL))) -> ... ->

CONS 1 (CONS 2 (CONS 3 NIL))

Note again that the implicit list head and tail selection in the case notation is replaced by explicit selection in our
current notation.

6.6. List notation

These examples illustrate how inconvenient it is to represent lists in a functional form: there is an excess of brackets
and CONSs! In LISP, a linear list may be represented as a sequence of objects within brackets with an implict NIL at
the end but this overloads the function application notation. LISP’s simple, uniform notation for data and functions is
an undoubted strength for a particular sort of programming where programs manipulate the text of other programs but
it is somewhat opaque.

We will introduce two new notations. First of all, we will follow ML and use the binary infix operator :: in place of
CONS. Thus:

<expression1>::<expression2> == CONS <expression1> <expression2>

LISP and Prolog use . as an infix concatenation operator.

For example:

CONS 1 (CONS 2 (CONS 3 NIL)) ==

CONS 1 (CONS 2 (3::NIL)) ==

CONS 1 (2::(3::NIL)) ==

1::(2::(3::NIL))

Secondly, we will adopt the notation used by ML and Prolog and represent a linear list with an implicit NIL at the end
as a sequence of objects within square brackets [and], separated by commas:

X :: NIL == [X]
X :: [Y] == [X,Y]

For example:

CONS 1 NIL == 1::NIL == [1]

CONS 1 (CONS 2 NIL) == 1::(2::NIL) == 1::[2] == [1,2]

CONS 1 (CONS 2 (CONS 3 NIL)) == 1::(2::(3::NIL))) ==
1::(2::[3]) == 1::[2,3] == [1,2,3]

- 98 -

This leads naturally to:

NIL = []

which is a list of no objects with an implicit NIL at the end.

For example, a list of pairs:

CONS (CONS 5 (CONS 12 NIL))
(CONS (CONS 10 (CONS 15 NIL))

(CONS (CONS 15 (CONS 23 NIL))
(CONS (CONS 20 (CONS 45 NIL))

NIL)))

becomes the compact:

[[5,12],[10,15],[15,23],[20,45]]

As before, HEAD selects the head element:

HEAD (X::Y) = X
HEAD [X,L] = X

For example:

HEAD [[5,12],[10,15],[15,23],[20,45]] => ... =>

[5,12]

and TAIL selects the tail:

TAIL (X::Y) = Y
TAIL [X,L] = [L]

for example:

TAIL [[5,12],[10,15],[15,23],[20,45]] => ... =>

[[10,15],[15,23],[20,45]]

and:

TAIL [5] => ... =>

[]

Note that constructing a list with CONS is not the same as using [and]. For lists constructed with [and] there is
an assumed empty list at the end. Thus:

[<first item>,<second item>] ==

CONS <first item> (CONS <second item> NIL)

We may simplify long lists made from :: by dropping intervening brackets. Thus:

<expression1>::(<expression2>::<expression3>) ==

<expression1>::<expression2>::<expression3>

- 99 -

For example:

1::(2::(3::(4::[]))) == 1::2::3::4::[] == [1,2,3,4]

6.7. Lists and evaluation

It is important to note that we have adopted tacitly a weaker form of β reduction with lists because we are not
evaluating fully the expressions corresponding to list representations. A list of the form:

<expression1>::<expression2>

is shorthand for:

CONS <expression1> <expression2>

which is a function application and should, strictly speaking, be evaluated.

Here, we have tended to use a modified form of applicative order where we evaluate the arguments
<expression1> and <expression2> to get values <value1> and <value2> but do not then evaluate the
resulting function application:

CONS <value1> <value2>

any further.

Similarly, a list of the form:

[<expression1>,<expression2>]

has been evaluated to:

[<value1>,<value2>]

but no further even though it is equivalent to:

CONS <value1> (CONS <value2> NIL)

This should be born in brain until we discuss evaluation in more detail in chapter 9.

6.8. Deletion from a list

To add a new value to an unordered list we CONS it on the front. To delete a value, we must then search the list until
we find it. Thus, if the list is empty then the value is not in it so return the empty list:

DELETE X [] = []

It is common in list processing to return the empty list if list access fails.

Otherwise, if the first value in the list is the required value then return the rest of the list:

DELETE X (H::T) = T if <equal> X H

Otherwise, join the first value onto the result of deleting the required value from the rest of the list:

DELETE X (H::T) = H::(DELETE X T) if NOT (<equal> X H)

- 100 -

Note that the comparison <equal> depends on the type of the list elements.

Suppose we are deleting from a linear list of numbers. For example, suppose we want to delete 3

from the list:

[1,2,3,4]

we use:

DELETE 3 [1,2,3,4] -> ... ->

CONS 1 (DELETE 3 [2,3,4]) -> ... ->

CONS 1 (CONS 2 (DELETE 3 [3,4])) -> ... ->

CONS 1 (CONS 2 [4]) -> ... ->

CONS 1 [2,4] ==

[1,2,4]

In our notation, the function becomes:

rec DELETE V L =
IF ISNIL L
THEN NIL
ELSE
IF EQUAL V (HEAD L)
THEN TAIL L
ELSE (HEAD L)::(DELETE V (TAIL L))

For example, suppose we want to delete 10 from:

[5,10,15,20]

we use:

DELETE 10 [5,10,15,20]

(HEAD [5,10,15,20])::(DELETE 10 (TAIL [5,10,15,20])) -> ... ->

5::(DELETE 10 ([10,15,20]))

5::(TAIL [10,15,20]) -> ... ->

5::[15,20] => ... =>

[5,15,20]

Note again that implicit list head and tail selection in the case notation ie replaced by explicit selection in our current
notation.

6.9. List comparison

Two lists are the same if they are both empty:

- 101 -

LIST_EQUAL [] [] = TRUE
LIST_EQUAL [] (H::T) = FALSE
LIST_EQUAL (H::T) [] = FALSE

Otherwise they are the same if the heads are equal and the tails are the same:

LIST_EQUAL (H1::T1) (H2::T2) = LIST_EQUAL T1 T2
if <equal> H1 H2

LIST_EQUAL (H1::T1) (H2::T2) = FALSE
if NOT (<equal> H1 H2)

Notice again that the comparison operation <equal> depends on the type of the list elements.

Here, we will compare lists of numbers, for example:

LIST_EQUAL [1,2,3] [1,2,3] -> ... ->

LIST_EQUAL [2,3] [2,3] -> ... ->

LIST_EQUAL [3] [3] -> ... ->

LIST_EQUAL [] [] -> ... ->

TRUE

In our notation this algortithm is:

rec LIST_EQUAL L1 L2 =
IF AND (ISNIL L1) (ISNIL L2)
THEN TRUE
ELSE
IF OR (ISNIL L1) (ISNIL L2)
THEN FALSE
ELSE
IF EQUAL (HEAD L1) (HEAD L2)
THEN LIST_EQUAL (TAIL L1) (TAIL L2)
ELSE FALSE

For example consider:

LIST_EQUAL [1,2,3] [1,2,4] -> ... ->

{ EQUAL (HEAD [1,2,3]) (HEAD [1,2,4])) -> ... ->

EQUAL 1 1 -> ... ->

TRUE}

LIST_EQUAL (TAIL [1,2,3]) (TAIL [1,2,4]) -> ... ->

LIST_EQUAL [2,3] [2,4] -> ... ->

{ EQUAL (HEAD [2,3]) (HEAD [2,4])) -> ... ->

EQUAL 2 2 -> ... ->

TRUE}

- 102 -

LIST_EQUAL (TAIL [2,3]) (TAIL [2,4]) -> ... ->

LIST_EQUAL [3] [4] -> ... ->

{ EQUAL (HEAD [3]) (HEAD [4])) -> ... ->

EQUAL 3 4 -> ... ->

FALSE}

FALSE

6.10. Strings

Strings are the basis of text processing in many languages. Some provide strings as a distinct type, for example
BASIC and ML. Others base strings on arrays of characters, for example Pascal and C. Here we will introduce strings
as linear lists of characters.

We can define a test for stringness:

ISSTRING [] = TRUE
ISSTRING (H::T) = (ISCHAR H) AND (ISSTRING T)

For example:

ISSTRING [’a’,’p’,’e’] -> ... ->

(ISCHAR ’a’) AND
(ISSTRING [’p’,’e’]) -> ... ->

(ISCHAR ’a’) AND
((ISCHAR ’p’) AND
(ISSTRING [’e’])) -> ... ->

(ISCHAR ’a’) AND
((ISCHAR ’p’) AND
((ISCHAR ’e’) AND
(ISSTRING []))) -> ... ->

(ISCHAR ’a’) AND
((ISCHAR ’p’) AND
((ISCHAR ’e’) AND
TRUE) -> ... ->

TRUE

In our notation, this function is:

rec ISSTRING S =
IF ISNIL S
THEN TRUE
ELSE AND (ISCHAR (HEAD S)) (ISSTRING (TAIL S))

We will represent a string as a sequence of characters within

"Here is a string!"

- 103 -

In general, the string:

"<character> <characters>"

is equivalent to the list:

’<character>’::"<characters>"

For example:

"cat" ==

’c’::"at" ==

’c’::’a’::"t" ==

’c’::’a’::’t’::""

If we represent the empty string:

""

as:

[]

then the string notation mirrors the compact list notation. For example:

"cat" ==

’c’::’a’::’t’::"" ==

’c’::’a’::’t’::[] ==

[’c’,’a’,’t’]

6.11. String comparison

String comparison is a type specific version of list comparison. Two strings are the same if both are empty:

STRING_EQUAL "" "" = TRUE
STRING_EQUAL "" (C::S) = FALSE
STRING_EQUAL (C::S) "" = FALSE

or if the characters in the heads are the same and the strings in the tails are the same:

STRING_EQUAL (C1::S1) (C2::S2) = STRING_EQUAL S1 S2
if CHAR_EQUAL C1 C2

STRING_EQUAL (C1::S1) (C2::S2) = FALSE
if NOT (CHAR_EQUAL C1 C2)

For example:

STRING_EQUAL "dog" "dog" ==

STRING_EQUAL (’d’::"og") (’d’::"og") -> ... ->

- 104 -

STRING_EQUAL "og" "og" ==

STRING_EQUAL (’o’::"g") (’o’::"g") -> ... ->

STRING_EQUAL "g" "g" ==

STRING_EQUAL (’g’::"") (’g’::"") -> ... ->

STRING_EQUAL "" "" -> ... ->

TRUE
In our notation:

rec STRING_EQUAL S1 S2 =
IF (ISNIL S1) AND (ISNIL S2)
THEN TRUE
ELSE
IF (ISNIL S1) OR (ISNIL S2)
THEN FALSE
ELSE
IF CHAR_EQUAL (HEAD S1) (HEAD S2)
THEN STRING_EQUAL (TAIL S1) (TAIL S2)
ELSE FALSE

Similarly, one string comes before another if its empty and the other is not:

STRING_LESS "" (C::S) = TRUE
STRING_LESS (C::S) "" = FALSE

or if the character in its head comes before the character in the others head:

STRING_LESS (C1::S1) (C2::S2) = TRUE
if CHAR_LESS C1 C2

or the head characters are the same and the first string’s tail comes before the second string’s tail:

STRING_LESS (C1::S1) (C2::S2) = (CHAR_EQUAL C1 C2) AND
(STRING_LESS S1 S2)
if NOT (CHAR_LESS C1 C2)

For example:

STRING_LESS "porridge" "potato" ==

STRING_LESS (’p’::"orridge") (’p’::"otato") -> ... ->

(CHAR_EQUAL ’p’ ’p’) AND
(STRING_LESS "orridge" "otato") ==

(CHAR_EQUAL ’p’ ’p’) AND
(STRING_LESS (’o’::"rridge") (’o’::"tato")) -> ... ->

(CHAR EQUAL ’p’ ’p’) AND
((CHAR_EQUAL ’o’ ’o’) AND
(STRING_LESS "rridge" "tato")) ==

(CHAR EQUAL ’p’ ’p’) AND
((CHAR_EQUAL ’o’ ’o’) AND

- 105 -

(STRING_LESS (’r’::"ridge") (’t’::"ato")) -> ... ->

(CHAR EQUAL ’p’ ’p’) AND
((CHAR_EQUAL ’o’ ’o’) AND
TRUE)) -> ... ->

TRUE

In our notation this is:

rec STRING_LESS S1 S2 =
IF ISNIL S1
THEN NOT (ISNIL S2)
ELSE
IF ISNIL L2
THEN FALSE
ELSE
IF CHAR_LESS (HEAD S1) (HEAD S2)
THEN TRUE
ELSE (CHAR_EQUAL (HEAD S1) (HEAD S2)) AND

(STRING_LESS1 (TAIL S1) (TAIL S2))

6.12. Numeric string to number conversion

Given a string of digits, we might wish to find the equivalent number. Note first of all that the number equivalent to a
digit is found by taking ’0’s value away from its value. For example:

value ’0’ => ... =>

forty_eight

so:

sub (value ’0’) (value ’0’) -> ... ->

sub forty_eight forty_eight => ... =>

zero

Similarly:

value ’1’ => ... =>

forty_nine

so:

sub (value ’1’) (value ’0’) -> ... ->

sub forty_nine forty_eight => ... =>

one

and:

- 106 -

value ’2’ => ... =>

fifty

so:

sub (value ’2’) (value ’0’) -> ... ->

sub fifty forty_eight => ... =>

two

and so on. Thus, we can define:

def digit_value d = sub (value d) (value ’0’)

Note also that the value of a single digit string is the value of the digit, for example:

value of "9"

gives value of ’9’

gives 9

The value of a two digit string is ten times the value of the first digit added to the value of the second digit, for
example:

value of "98"

gives 10*value of "9"+value of ’8’

gives 90+8 = 98

The value of a three digit string is ten times the value of the first two digits added to the value of the third digit, which
is ten times ten times the value of the first digit added to the second digit, added to the value of the third digit, for
example:

value of "987"

gives 10*value of "98"+value of ’7’

gives 10*(10*value of "9"+value of ’8’)+value of ’7’

gives 10*(10*9+8)+7 = 987

In general, the value of an N digit string is ten times the value of the first N-1 digits added to the value of the Nth digit.
The value of an empty digit string is 0.

We will implement this inside out so we can work from left to right through the string. We will keep track of the value
of the first N-1 digits in another bound variable v. Each time we will multiply v by 10 and add in the value of the
Nth digit to get the value of v for processing the N+1 the digit. When the string is empty we return v. To start with,
v is 0. For example:

value of "987" with 0

gives value of "87" with 10*0+value of ’9’

gives value of "7" with 10*(10*0+value of ’9’)+value of ’8’

- 107 -

gives value of "" with 10*(10*(10*0+value of ’9’)+value of ’8’)+value of ’7’

gives 987

Thus:

STRING_VAL V "" = V
STRING_VAL V D::T = STRING_VAL 10*V+(digit_value D) T

For a whole string, V starts at

0 for example:

STRING_VAL 0 "321" ==

STRING_VAL 0 (’3’::"21") -> ... ->

STRING_VAL 10*0+(digit_value ’3’) "21" -> ... ->

STRING_VAL 3 "21" ==

STRING_VAL 3 (’2’::"1") -> ... ->

STRING_VAL 10*3+(digit_value ’2’) "1" -> ... ->

STRING_VAL 32 "1" ==

STRING_VAL 32 (’1’::"") -> ... ->

STRING_VAL 32*10+(digit_value ’1’) "" -> ... ->

STRING_VAL 321 "" -> ... ->

321

In our notation, using untyped arithmetic, the function is:

rec string_val v L =
IF ISNIL L
THEN v
ELSE string_val (add (mult v ten) (digit_value (HEAD L)))

(TAIL L)

def STRING_VAL S = MAKE_NUMB (string_val zero S)

For example:

STRING_VAL "987" ==

MAKE_NUMB (string_val zero "987") -> ... ->

MAKE_NUMB (string_val (add
(mult zero ten)
(digit_value ’9’))
"87") -> ... ->

MAKE_NUMB (string_val (add
(mult

- 108 -

(add
(mult zero ten)
(digit_value ’9’))
ten)
(digit_value ’8’))
"7") -> ... ->

MAKE_NUMB (string_val (add
(mult
(add
(mult
(add
(mult zero ten)
(digit_value ’9’))
ten)
(digit_value ’8’))
ten)
(digit_value ’7’))
"") -> ... ->

MAKE_NUMB (add
(mult
(add
(mult
(add
(mult zero ten)
(digit_value ’9’))
ten)
(digit_value ’8’))
ten)
(digit_value ’7’))
) -> ... ->

MAKE_NUMB (add
(mult
(add
(mult nine ten)
(digit_value ’8’))
ten)
(digit_value ’7’))
) -> ... ->

MAKE_NUMB (add
(mult ninety_eight ten)
(digit_value ’7’))
) -> ... ->

MAKE_NUMB nine_hundred_and_eighty_seven => ... =>

987

6.13. Structure matching with lists

We have been defining list functions with a base case for an empty list argument and a recursion case for a non-empty
list argument, but we have translated them into explicit list selection. We will now extend our structure matching
notation to lists and allow cases for the empty list NIL and for bound variable lists built with :: in place of bound
variables.

- 109 -

In general, for:

rec <name> <bound variable> =
IF ISNIL <bound variable>
THEN <expression1>
ELSE <expression2 using (HEAD <bound variable>)

and (TAIL <bound variable>)>

we will write:

rec <name> [] = <expression1>
or <name> (<head>::<tail>) = <expression2 using <head>

and <tail>>

where <head> and <tail> are bound variables.

Consider the definition of the linear length of a list:

LENGTH [] = 0
LENGTH (H::T) = SUCC (LENGTH T)

which we wrote as:

rec LENGTH L =
IF ISNIL L
THEN 0
ELSE SUCC (LENGTH (TAIL L))

We will now write:

rec LENGTH [] = 0
or LENGTH (H::T) = SUCC (LENGTH T)

For example, suppose we have a list made up of arbitrarily nested lists which we want to flatten into one long linear
list, for example:

FLAT [[1,2,3],[[4,5],[6,7,[8.9]]]] => ... =>

[1,2,3,4,5,6,7,8,9]

The empty list is already flat:

FLAT [] = []

If the list is not empty then if the head is not a list then join it to the flattened tail:

FLAT (H::T) = H::(FLAT T) if NOT (ISLIST H)

Otherwise, append the flattened head to the flattened tail:

FLAT (H::T) = APPEND (FLAT H) (FLAT T) if ISLIST H

In our old notation we would write:

rec FLAT L =
IF ISNIL L
THEN []
ELSE

- 110 -

IF NOT (ISLIST (HEAD L))
THEN (HEAD L)::(FLAT (TAIL L))
ELSE APPEND (FLAT (HEAD L)) (FLAT (TAIL L))

We will now write:

rec FLAT [] = []
or FLAT (H::T) =
IF NOT (ISLIST H)
THEN H::(FLAT T)
ELSE APPEND (FLAT H) (FLAT T)

Note that we may still need explicit conditional expressions in case definitions. For example, in FLAT above a
conditional is need to distinguish the cases where the argument list has or does not have a list in its head. Structure
matching can only distinguish between structural differences; it cannot distinguish between arbitrary values within
structures.

Note that in LISP ther are no case definitions or structure matching so explicit list selection is necessary.

6.14. Ordered linear lists, insertion and sorting

For many applications, it is useful to hold data in some order to ease data access and presentation. Here we will look at
ordered lists of data.

Firts of all, an ordered list is empty:

ORDERED [] = TRUE

or has a single element:

ORDERED [C] = TRUE

or has a head which comes before the head of the tail and an ordered tail:

ORDERED (C1::C2::L) = (<less> C1 C2) AND (ORDERED (CONS C2 L))

For example:

[1,2,3]

is ordered because 1 comes before 2 and [2,3] is ordered because 2 comes before 3 and [3] is ordered because it
has a single element.

Thus, to insert an item into an ordered list: if the list is empty then the new list has the item as the sole element:

INSERT X [] = [X]

or if the item comes before the head of the list then the new list has the item as head and the old list as tail:

INSERT X (H::T) = X::H::T
if <less> X H

otherwise, the new list has the head of the old list as head and the item inserted into the tail of the old list as tail:

INSERT X (H::T) = H::(INSERT X T)
if NOT <less> X H

- 111 -

Note that this description tacitly assumes that all the items in the list are of the same type with a defined order relation
<less>. For example, for lists of strings <less> will be STRING_LESS:

rec INSERT S [] = [S]
or INSERT S (H::T) =
IF STRING_LESS S H
THEN S::H::T
ELSE H::(INSERT H T)

For example:

INSERT "cherry" ["apple","banana","date"] => ... =>

"apple"::(INSERT "cherry" ["banana","date"]) -> ... ->

"apple"::"banana"::(INSERT "cherry" ["date"]) -> ... ->

"apple"::"banana"::"cherry"::["date"] ==

["apple","banana","cherry","date"]

Insertion forms the basis of a simple sort. The empty list is sorted:

SORT [] = []

and to sort a non-empty list, insert the head into the sorted tail:

SORT (H::T) = INSERT H (SORT T)

This is a general definition but must be made type specific. Once again, we will consider a list of strings:

rec SORT [] = []
or SORT (H::T) = INSERT H (SORT T)

For example:

SORT ["cat","bat","ass"] => ... =>

INSERT "cat" (SORT ["bat","ass"]) -> ... ->

INSERT "cat" (INSERT "bat" (SORT ["ass"])) -> ... ->

INSERT "cat" (INSERT "bat" (INSERT "ass" [])) -> ... ->

INSERT "cat" (INSERT "bat" ["ass"]) -> ... ->

INSERT "cat" ["ass","bat"] => ... =>

["ass","bat","cat"]

6.15. Indexed linear list access

Arrays are often used where a linear sequence of objects is to be manipulated in terms of the linear positions of the
objects in the sequence. In the same way, it is often useful to access an element of a linear list by specifying its
position relative to the start of the list. For example, in:

- 112 -

["Chris","Jean","Les","Pat","Phil"]

the first name is

"Chris"

and we use:

HEAD ["Chris","Jean","Les","Pat","Phil"]

to access it, the second name is

"Jean"

and we use:

HEAD (TAIL ["Chris","Jean","Les","Pat","Phil"])

to access it, the third name is

"Les"

and we use:

HEAD (TAIL (TAIL ["Chris","Jean","Les","Pat","Phil"]))

to access it and so on. In general, to access the <number>+1th name we take the TAIL <number> times and then
take the HEAD:

IFIND (SUCC N) (H::T) = IFIND N T
IFIND 0 (H::T) = H

Note that the first element is number 0, the second element is number 1 and so on because we are basing our
definition on how often the tail is taken to make the element the head of the remaining list.

If the list does not have <number> elements we will just return the empty list:

IFIND N [] = []

To summarise:

rec IFIND N [] = []
or IFIND 0 (H::T) = H
or IFIND (SUCC N) (H::T) = IFIND N T

For example:

IFIND 3 ["Chris","Jean","Les","Pat","Phil"] => ... =>

IFIND 2 ["Jean","Les","Pat","Phil"] => ... =>

IFIND 1 ["Les","Pat","Phil"] => ... =>

IFIND 0 ["Pat","Phil"] => ... =>

HEAD ["Pat","Phil"] => ... =>

"Pat"

- 113 -

Similarly, to remove a specified element from a list: if the list is empty then return the empty list:

IDELETE N [] = []

If the specified element is at the head of the list then return the tail of the list:

IDELETE 0 (H::T) = T

Otherwise, join the head of the list to the result of removing the element from the tail of the list, remembering that its
position in the tail is one less than its position in the whole list:

IDELETE (SUCC N) (H::T) = H::(IDELETE N T)

To summarise:

rec IDELETE N [] = []
or IDELETE 0 (H::T) = H
or IDELETE (SUCC N) (H::T) = H::(IDELETE N T)

For example:

IDELETE 2 ["Chris","Jean","Les","Pat","Phil"] => ... =>

"Chris"::(IDELETE 1 ["Jean","Les","Pat","Phil"]) -> ... ->

"Chris"::"Jean":: (IDELETE 0 ["Les","Pat","Phil"]) -> ... ->

"Chris"::"Jean"::["Pat","Phil"]) ==

["Chris","Jean","Pat","Phil"]

New elements may be added to a list in a specified position. If the list is empty then return the empty list:

IBEFORE N E [] = []

If the specified position is at the head of the list then make the new element the head of a list with the old list as tail:

IBEFORE 0 E L = E::L

Otherwise, add the head of the list to the result of placing the new element in the tail of the list, remembering that the
specified position is now one less than its position in the whole list:

IBEFORE (SUCC N) E (H::T) = H::(IBEFORE N E T)

To summarise:

rec IBEFORE N E [] = []
or IBEFORE 0 E L = E::L
or IBEFORE (SUCC N) E (H::T) = H::(IBEFORE N E T)

For example:

IBEFORE 2 "Jo" ["Chris","Jean","Les","Pat","Phil"] => ... =>

"Chris"::(IBEFORE 1 "Jo" ["Jean","Les","Pat","Phil"]) -> ... ->

"Chris"::"Jean":: (IBEFORE 0 "Jo" ["Les","Pat","Phil"]) -> ... ->

- 114 -

"Chris"::"Jean"::"Jo"::["Les","Pat","Phil"] ==

["Chris","Jean","Jo","Les","Pat","Phil"]

Finally, to replace the object in a specified position in a list, the list is empty then return the empty list:

IREPLACE N E [] = []

If the specified position is at the head then make the replacement the head:

IREPLACE 0 E (H::T) = E::T

Otherwise, join the head of the list to the result of replacing the element in the tail, remembering that the position in
the tail is now one less than the position in the whole list:

IREPLACE (SUCC N) E (H::T) = H::(IREPLACE N E T)

Note that we have not considered what happens if the list does not contain the requisite item.

To summarise:

rec IREPLACE N E [] = []
or IREPLACE 0 E (H::T) = E::T
or IREPLACE (SUCC N) E (H::T) = H::(IREPLACE N E T)

For example:

IREPLACE 2 "Jo" ["Chris","Jean","Les","Pat","Phil"] => ... =>

"Chris"::(IREPLACE 1 "Jo" ["Jean","Les","Pat","Phil"]) -> ... ->

"Chris"::"Jean"::(IREPLACE 0 "Jo" ["Les","Pat","Phil"]) -> ... ->

"Chris"::"Jean"::"Jo"::["Pat","Phil"] ==

["Chris","Jean","Jo","Pat","Phil"]

Alternatively, we could use DELETE to drop the old element and IBEFORE to place the new element, so:

IREPLACE N E L = IBEFORE N E (IDELETE N L)

This is much simpler but involves scanning the list twice.

6.16. Mapping functions

Many functions have similar structures. We can take advantage of this to simplify function construction by defining
abstract general purpose functions for common structures and inserting particular functions into them to make them
carry out particular processes. For example, we have defined a general purpose make_object function in chapter 5
which we have then used to construct specialised MAKE_BOOL, MAKE_NUMB, MAKE_LIST and MAKE_CHAR
functions.

For lists, such generalised functions are known as mapping functions because they are used to map a function onto
the components of lists. The use of list mapping functions originated with LISP.

For example, consider a function which doubles every value in a list of numbers:

- 115 -

rec DOUBLE [] = []
or DOUBLE (H::T) = (2*H)::(DOUBLE T)

so:

DOUBLE [1,2,3] => ... =>

(2*1)::(DOUBLE [2,3]) -> ... ->

2::(2*2)::(DOUBLE [3]) -> ... ->

2::4::(2*3)::(DOUBLE []) -> ... ->

2::4::6::[] ==

[2,4,6]

Now consider the function which turns all the words in a list into plurals:

rec PLURAL [] = []
or PLURAL (H::T) = (APPEND H "s")::(PLURAL T)

so:

PLURAL ["cat","dog","pig"] => ... =>

(APPEND "cat" "s")::(PLURAL ["dog","pig"]) -> ... ->

"cats"::(APPEND "dog" "s")::(PLURAL ["pig"]) -> ... ->

"cats"::"dogs"::(APPEND "pig" "s")::(PLURAL []) -> ... ->

"cats"::"dogs"::"pigs"::[] ==

["cats","dogs","pigs"]

The functions DOUBLE and PLURAL both apply a function repeatedly to the consecutive heads of their list arguments.
In LISP this is known as a CAR mapping because the function is mapped onto the CARs of the list. We can abstract a
common structure from DOUBLE and PLURAL as:

rec MAPCAR FUNC [] = []
or MAPCAR FUNC (H::T) = (FUNC H)::(MAPCAR FUNC T)

Thus, we can define DOUBLE as:

def DOUBLE = MAPCAR λX.(2*X)

so DOUBLEs definition expands as:

rec DOUBLE [] = []
or DOUBLE (H::T) =(λX.(2*X) H)::(MAPCAR λX.(2*X) T)

Simplifying, we get:

def DOUBLE [] = []
or DOUBLE (H::T) = (2*H)::(MAPCAR λX.(2*X) T)

- 116 -

which is equivalent to the original:

rec DOUBLE [] = []
or DOUBLE (H::T) = (2*H)::(DOUBLE T)

because:

DOUBLE == MAPCAR λX.(2*X)

For example:

DOUBLE [1,2,3] => ... =>

(λX.(2*X) 1):)::(MAPCAR λX.(2*X) [2,3]) -> ... ->

2::(λX.(2*X) 2)::(MAPCAR λX.(2*X) [3]) -> ... ->

2::4::(λX.(2*X) 3)::(MAPCAR λX.(2*X) []) -> ... ->

2::4::6::[] ==

[2,4,6]

Similarly, we can redefine PLURAL as:

def PLURAL = MAPCAR λW.(APPEND W "s")

so expanding the definition gives:

rec PLURAL [] = []
or PLURAL (H::T) = (λW.(APPEND W "s") H)::

(MAPCAR λW.(APPEND W "s") T)

so, simplifying:

def PLURAL [] = []
or PLURAL (H::T) = (APPEND H "s")::

(MAPCAR λW.(APPEND W "s") T)

which is equivalent to:

rec PLURAL [] = []
or PLURAL (H::T) = (APPEND H "s")::(PLURAL T)

because:

PLURAL == MAPCAR λW.(APPEND W "s")

For example:

PLURAL ["cat","dog","pig"] => ... =>

(λW.(APPEND W "s") "cat")::
(MAPCAR λW.(APPEND W "s") ["dog","pig"]) -> ... ->

"cats"::(λW.(APPEND W "s") "dog")::
(MAPCAR λW.(APPEND W "s") ["pig"]) -> ... ->

- 117 -

"cats"::"dogs"::(λW.(APPEND W "s") "pig")::
(MAPCAR λW.(APPEND W "s") []) -> ... ->

"cats"::"dogs"::"pigs"::[] ==

["cats","dogs","pigs"]

Consider the function which compares two equal length linear lists of strings component by component and constructs
a boolean list showing where they are the same and where they differ:

rec COMP [] [] = []
or COMP (H1::T1) (H2::T2) = (STRING_EQUAL H1 H2)::(COMP T1 T2)

so:

COMP ["hey","diddle","diddle"] ["hey","daddle","diddle"] => ... =>

(STRING_EQUAL "hey" "hey")::
(COMP ["diddle","diddle"] ["daddle","diddle"]) -> ... ->

TRUE::(STRING_EQUAL "diddle" "daddle")::
(COMP ["diddle"] ["diddle"]) -> ... ->

TRUE::FALSE::(STRING_EQUAL "diddle" "diddle")::
(COMP [] []) -> ... ->

TRUE::FALSE::TRUE::[] ==

[TRUE,FALSE,TRUE]

Now consider the function that adds together corresponding components of two equal length linear numeric lists:

rec SUM2 [] [] = []
or SUM2 (H1::T1) (H2::T2) = (H1+H2)::(SUM2 T1 T2)

so:

SUM2 [1,2,3] [4,5,6] => ... =>

(1+4)::(SUM2 [2,3] [5,6]) -> ... ->

5::(2+5)::(SUM2 [3] [6]) -> ... ->

5::7::(3+6)::(SUM2 [] []) -> ... ->

5::7::9::[] ==

[5,7,9]

The functions COMP and SUM2 both apply a function repeatedly to the consecutive heads of two list arguments to
construct a new list. We can abstract a common structure from COMP and SUM2 as:

rec MAPCARS FUNC [] [] = []
or MAPCARS FUNC (H1::T1) (H2::T2) = (FUNC H1 H2)::(MAPCARS FUNC T1 T2)

Thus:

- 118 -

def COMP = MAPCARS λX.λY.(STRING_EQUAL X Y)
def SUM2 = MAPCARS λX.λY.(X+Y)

6.17. Summary

In this chapter we have:

• introduced the list type

• developed a representation for the list type and typed list operations

• developed elementary functions for manipulating linear lists

• introduced simplified list notations

• introduced strings as character lists with simplified notation

• introduced list case definitions and structure matching

• developed functions for constructing ordered linear lists

• developed functions for indexed linear list access

• developed mapping functions to generalise linear list operations

Some of these topics are summarised below.

List notation

<expression1>::<expression2> == CONS <expression1> <expression2>

[<expression1>,<expression2>] == <expression1>::[<expression2>]

[<expression>] == <expression>::NIL

[] == NIL

<expression1>::(<expression2>::<expression3>) ==

<expression1>::<expression2>::<expression3>

String notation

"<character> <characters>" == <character>::"<characters>"

"" = []

List case definition

rec <name> [] = <expression1>
or <name> (<head>::<tail>) =

<expression2 using ‘<head>’ and ‘<tail>’> ==

rec <name> <bound variable> =
IF ISNIL <bound variable>
THEN <expression1>
ELSE <expression2 using ‘HEAD <bound variable>’ and

- 119 -

‘TAIL <bound variable>’>

6.18. Exercises

1) Define a concatenation function for linear lists whose elements are atoms of the same type.

2) i) Write a fucntion which indicates whether or not a list starts with a sub-list. For example:

STARTS "The" "The cat sat on the mat." => ... =>
TRUE

STARTS "A" "The cat sat on the mat." => ... =>
FALSE

ii) Write a function which indicates whether or not a list contains a given sub-list. For example:

CONTAINS "the" "The cat sat on the mat." => ... =>
TRUE

CONTAINS "the" "All cats sit on all mats." => ... =>
FALSE

iii) Write a function which counts how often a sub-list appears in another list. For example:

COUNT "at" "The cat sat on the mat." => ... =>
3

iv) Write a function which removes a sub-list from the start of a list, assuming that you know that the sub-list
starts the list. For example:

REMOVE "The " "The cat sat on the mat." => ... =>
"cat sat on the mat."

v) Write a function which deletes the first occurence of a sub-list in another list. For example:

DELETE "sat" "The cat sat on the mat." => ... =>
"The cat on the mat."

DELETE "lay" "The cat sat on the mat." => ... =>
"The cat sat on the mat."

vi) Write a function which inserts a sub-list after the first occurence of another sub-list in a list. For example:

INSERT "sat" "cat " "The cat on the mat." => ... =>
"The cat sat on the mat."

INSERT "sat" "fish " "The cat on the mat." => ... =>
"The cat on the mat."

vii) Write a function which replaces a sub-list with another sub-list in a list. For example:

REPLACE "sat" "lay" "The cat sat on the mat." => ... =>
"The cat lay on the mat."

REPLACE "sit" "lay" "The cat sat on the mat." => ... =>
"The cat sat on the mat."

- 120 -

3) i) Write a function which merges two ordered lists to produce an ordered list. Merging the empty list with an
ordered list gives that list. To merge two non-empty lists, if the head of the first comes before the head of the
second then join the head of the first onto the result of merging the tail of the first and the second. Otherwise,
join the head of the second onto the result of merging the first onto the tail of the second. For example:

MERGE [1,4,7,9] [2,5,8] => ... =>
[1,2,4,5,7,8,9]

ii) Write a function which merges a list of ordered lists. For example:

LMERGE [[1,4,7],[2,5,8],[3,6,9]] => ... =>
[1,2,3,4,5,6,7,8,9]

7. COMPOSITE VALUES AND TREES

7.1. Introduction

In this chapter we are going to discuss the use of composite values to hold records of related values.

To begin with we will represent composite values as lists and process composite value sequences using linear list
algorithms.

We will then introduce new notations to generalise list structure matching, to simplify list and composite value
processing.

Finally, we will look at trees and consider the use of binary tree algorithms.

7.2. Composite values

So far, we have been looking at processing sequences of single values held in lists. However, for many applications,
the data is a sequence of composite values where each consists of a number of related sub-values. These sub-values
may in turn be composite so composite values may be nested.

For example, in processing a circulation list, we need to know each person’s forename and surname. For example, in
processing a stock control system, for each item in stock we need to know its name, the number in stock and the stock
level at which it should be reordered. For example, in processing a telephone directory, we need to know each
person’s name, address and telephone number. Here, the name might in turn consist of a forename and surname.

Some languages provide special constructs for user defined composite values, for example the Pascal RECORD, the C
structure and the ML tuple. These effectively add new types to the language.

Here, we are going to use lists to represent composite values. This is formally less rigorous than introducing a special
construct but greatly simplifies presentation. We will look at the use of ML tuples in chapter 9.

For example, we might represent a name consisting of a string <forename> and a string <surname> as the list:

[<forename>,<surname>]

for example:

["Anna","Able"]

or

- 121 -

["Betty","Baker"].

For example, we might represent a stock item consisting of a string <item name>, an integer <stock level>
and an integer <reorder level> as the list:

[<item name>,<stock level>,<reorder level>]

for example:

["VDU",25,10]

or

["modem",12,15].

For example, we might represent a telephone directory entry consisting of a composite value name as above, a string
<address> and an integer <number> as a list:

[[<forename>,<surname>],<address>,<number>]

for example:

[["Anna","Able"],"Accounts",1212]

or

[["Betty","Baker"],"Boiler room",4242]

Now, a sequence of composite values will be represented by a list of lists, for example a circulation list:

[["Anna","Able"],
["Betty","Baker"],
["Clarice","Charlie"]]

or a stock list:

[["VDU",25,10],
["modem",12,15],
["printer,250,7]]

or a telephone directory:

[[["Anna","Able"],"Accounts",1212],
[["Betty","Baker"],"Boiler room",4242],
[["Clarice","Charlie"],"Customer orders",1234]]

7.3. Processing composite values sequences

We are using linear lists to represent composite value sequences so we will now look at the use of linear list
algorithms to process them.

For example, suppose that given a circulation list we want to find someone’s forename from their surname. If the list
is empty then return the empty list. If the list is not empty then if the surname matches that for the first name in the list
then return the corresponding forename. Otherwise, try looking in the rest of the list.

rec NFIND S [] = []
or NFIND S (H::T) =

- 122 -

IF STRING_EQUAL S (HEAD (TAIL H))
THEN HEAD H
ELSE NFIND S T

For example:

NFIND "Charlie" [["Anna","Able"],
["Betty","Baker"],
["Clarice","Charlie"]] -> ... ->

NFIND "Charlie" [["Betty","Baker"],
["Clarice","Charlie"]] -> ... ->

NFIND "Charlie" [["Clarice","Charlie"]] -> ... ->

"Clarice"

For example, given a stock list, suppose we want to find all the items which have the stock level below the reorder
level. If the list is empty then return the empty list. If the list is not empty then if the first item’s stock level is below
the reorder level then add the first item to the result of checking the rest of the list. Otherwise, check the rest of the
list:

rec SCHECK [] = []
or SCHECK (H::T) =
IF LESS (HEAD (TAIL H)) (HEAD (TAIL (TAIL H)))
THEN H::(SCHECK T)
ELSE SCHECK T

For example:

SCHECK [["VDU",25,12],
["modem",10,12],
["printer",125,10],
["mouse",7,12]] -> ... ->

SCHECK [["modem",10,12],
["printer",125,10],
["mouse",7,12]] -> ... ->

["modem",10,12]::(SCHECK [["printer",125,10],
["mouse",7,12]]) -> ... ->

["modem",10,12]::(SCHECK [["mouse",7,12]]) -> ... ->

["modem",10,12]::["mouse",7,12]::(SCHECK []) -> ... ->

["modem",10,12]::["mouse",7,12]::[] ==

[["modem",10,12],
["mouse",7,12]]

For example, given a telephone directory, suppose we want to change someone’s telephone number, knowing their
surname. If the directory is empty then return the empty list. If the directory is not empty then if the required entry is
the first then add a modified first entry to the rest of the entries. Otherwise, add the first entry to the result of looking
for the required entry in the rest of the entries:

rec DCHANGE S N [] = []
or DCHANGE S N (H::T) =

- 123 -

IF STRING_EQUAL S (HEAD (TAIL (HEAD H)))
THEN [(HEAD H),(HEAD TAIL H),N]::T
ELSE H::(DCHANGE S N T)

For example:

DCHANGE "Charlie" 2424
[[["Anna","Able"],"Accounts",1212],
[["Betty","Baker"],"Boiler room",4242],
[["Clarice","Charlie"],"Customer orders",1234]] => ... =>

[["Anna","Able"],"Accounts",1212]::
(DCHANGE "Charlie" 2424
[[["Betty","Baker"],"Boiler room",4242],
[["Clarice","Charlie"],"Customer orders",1234]]) => ... =>

[["Anna","Able"],"Accounts",1212]::
[["Betty","Baker"],"Boiler room",4242]::
(DCHANGE "Charlie" 2424
[[["Clarice","Charlie"],"Customer orders",1234]]) => ... =>

[["Anna","Able"],"Accounts",1212]::
[["Betty","Baker"],"Boiler room",4242]::
[["Clarice","Charlie"],"Customer orders",2424]::
[] ==

[[["Anna","Able"],"Accounts",1212],
[["Betty","Baker"],"Boiler room",4242],
[["Clarice","Charlie"],"Customer orders",2424]]

7.4. Selector functions

Because composite values are being represented by lists, the above examples all depend on the nested use of the list
selectors HEAD and TAIL to select sub-values from composite values. For composite values with many sub-values,
this list selection becomes somewhat dense. Instead, we might define selector functions which are named to reflect the
composite values that they operate on. These are particularly useful in LISP to simplify complex list expressions,
because it lacks structure matching.

For example, for names we might define:

def FORENAME N = HEAD N

def SURNAME N = HEAD (TAIL N)

For example, for stock items we might define:

def ITEM N = HEAD N

def STOCK N = HEAD (TAIL N)

def REORDER N = HEAD (TAIL (TAIL N))

For example, for telephone directory entries we might define:

def NAME E = HEAD E

def EFORENAME E = FORENAME (NAME E)

- 124 -

def ESURNAME E = SURNAME (NAME E)

def ADDRESS E = HEAD (TAIL E)

def PHONE E = HEAD (TAIL (TAIL E))

These selector functions disguises the underlying representation and makes it easier to understand the functions that
use them.

For example, given a circulation list we might want to delete a name, knowing the surname. If the list is empty then
return the empty list. If the list is not empty then if the surname is that of the first name then return the rest of the list.
Otherwise, add the first name to the result of deleting the required name from the rest of the list:

rec NDELETE S [] = []
or NDELETE S (H::T) =
IF STRING_EQUAL S (SURNAME H)
THEN T
ELSE H::(NDELETE S T)

For example:

NDELETE "Charlie" [["Anna","Able"],
["Betty","Baker"],
["Clarice","Charlie"]] -> ... ->

["Anna","Able"]::
(NDELETE "Charlie" [["Betty","Baker"],

["Clarice","Charlie"]]) -> ... ->
["Anna","Able"]::
["Betty","Baker"]::
(NDELETE "Charlie" [["Clarice","Charlie"]]) -> ... ->

["Anna","Able"]::
["Betty","Baker"]::
[] ==

[["Anna","Able"],
["Betty","Baker"]]

For example, given a stock control list, we might want to increment the stock level, knowing the item name. If the list
is empty then return the empty list. If the list is not empty then if the first item is the required one then increment its
stock level and add the changed item to the rest of the list. Otherwise, add the first item to the result of searching the
rest of the list:

rec SINCREMENT I V [] = []
or SINCREMENT I V (H::T) =
IF STRING_EQUAL I (ITEM H)
THEN [(ITEM H),(STOCK H)+V,(REORDER H)]::T
ELSE H::(SINCREMENT I V T)

For example:

SINCREMENT "modem" 10 [["VDU",25,12],
["modem",10,12],
["printer",125,10]] -> ... ->

["VDU",25,12]::
(SINCREMENT "modem" 10 [["modem",10,12],

- 125 -

["printer",125,10]]) -> ... ->

["VDU",25,12]::
["modem",20,12]::
[["printer",125,10]] ==

[["VDU",25,12],
["modem",20,12]
["printer",125,10]]

For example, given a telephone directory, we might want to add a new entry in alphabetic surname order. If the
directory is empty then make a new directory from the new entry. If the directory is not empty then if the new entry
comes before the first entry then add it to the front of the directory. Otherwise, add the first entry to the result of
adding the new entry to the rest of the directory:

rec DINSERT E [] = [E]
or DINSERT E (H::T) =
IF STRING_LESS (ESURNAME E) (ESURNAME H)
THEN E::H::T
ELSE H::(DINSERT E T)

For example:

DINSERT
[["Chris","Catnip"],"Credit",3333]
[[["Anna","Able"],"Accounts",1212],
[["Betty","Baker"],"Boiler room",4242],
[["Clarice","Charlie"],"Customer orders",2424]] -> ... ->

[["Anna","Able"],"Accounts",1212]::
(DINSERT
[["Chris","Catnip"],"Credit",3333]
[[["Betty","Baker"],"Boiler room",4242],
[["Clarice","Charlie"],"Customer orders",2424]]) -> ... ->

[["Anna","Able"],"Accounts",1212]::
[["Betty","Baker"],"Boiler room",4242]::
(DINSERT
[["Chris","Catnip"],"Credit",3333]
[[["Clarice","Charlie"],"Customer orders",2424]]) -> ... ->

[["Anna","Able"],"Accounts",1212]::
[["Betty","Baker"],"Boiler room",4242]::
[["Chris","Catnip"],"Credit",3333]::
[[["Clarice","Charlie"],"Customer orders",2424]] ==

[[["Anna","Able"],"Accounts",1212],
[["Betty","Baker"],"Boiler room",4242],
[["Chris","Catnip"],"Credit",3333],
[["Clarice","Charlie"],"Customer orders",2424]]

7.5. Generalised structure matching

In chapter 6 we introduced structure matching into function definitions. Objects are defined in terms of constant base
cases and structured recursion cases. Thus, function definitions have base cases with constants instead of bound
variables for matching against constant arguments, and recursion cases with structured bound variable for matching
against structured arguments. In particular, for list processing we have used bound variable lists of the form:

- 126 -

[]

for matching against the empty list, and of the form:

(H::T)

so that H matches the head of a list argument and T matches the tail. We will now allow arbitrary bound variable lists
for matching against arbitrary list arguments. The bound variable lists may contain implicit or explicit empty lists for
matching against empty lists in arguments.

For example, we can use structure matching to redefine the circulation list selector functions:

def FORENAME [F,S] = F

def SURNAME [F,S] = S

Here the bound variable list:

[F,S] == F::S::NIL

matches the argument list:

[<forename>,<surname>] == <forename>::<surname>::NIL

so:

F == <forename>
S == <surname>

We can also pick up the forename and surname from the first entry in a list of names by structuring matching with the
bound variable list:

([F,S]::T)

so [F,S] matches the head of the list and T matches the tail. For example we might count how often a given
forename occurs in a circulation list. If the list is empty the the count is 0. If the list is not empty then if the forename
matches that for the first entry then add 1 to the count for the rest of the list. Otherwise, return the count for the rest of
the list:

rec NCOUNT N [] = 0
or NCOUNT N ([F,S]::T) =
IF EQUAL N F
THEN 1 + (NCOUNT N T)
ELSE (NCOUNT N T)

For example, we can redefine the stock control selector functions as:

def ITEM [I,S,R] = I

def STOCK [I,S,R] = S

def REORDER [I,S,R] = R

Here, the bound variable list:

[I,S,R] == I::S::R::NIL

- 127 -

matches the argument:

[<item name>,<stock level>,<reorder level>] ==
<itemname>::<stock level>::<reorder level>::NIL

so:

I == <item name>
S == <stock level>
R == <reorder level>

We can use the bound variable list:

([I,S,R]::T)

to match against a stock control list so that [I,S,R] matches the first item and T matches the rest of the list. For
example, we might find all the items that need to be reordered. If the list is empty then return the empty list.If the list
is not empty, if the first item needs to be reordered then add it to those to be reordered in the rest of the list. Otherwise
return those to be reordered in the rest of the list:

rec REORD [] = 0
or REORD ([I,S,R]::T) =
IF LESS S R
THEN [I,S,R]::(REORD T)
ELSE REORD T

For example, we can redefine the telephone directory selector functions as:

def ENAME [N,A,P] = N

def EFORENAME [[F,S],A,P] = F

def ESURNAME [[F,S],A,P] = S

def ADDRESS [N,A,P] = A

def PHONE [N,A,P] = P

Here, the bound variable list:

[N,A,P] == N::A::P::NIL

matches the argument list:

[<name>,<address>,<number>] == <name>::<address>::<number>::NIL

so:

N == <name>
A == <address>
P == <number>

Similarly, the bound variable list:

[[F,S],A,P] == (F::S::NIL)::A::P::NIL

matches the argument list:

- 128 -

[[<forename>,<surname>],<address>,<phone>] ==
(<forename>::<surname>::NIL)::<address>::<phone>::NIL

so:

F == <forename>
S == <surname>

A bound variable list of the form:

[N,A,P]::T

can be used to match a directory so [N,A,P] matches the first entry and T matches the rest of the directory. For
example, we might sort the directory in telephone number order using the insertion sort from chapter 7:

rec DINSERT R [] = [R]
or DINSERT [N1,A1,P1] ([N2,A2,P2]::T) =
IF LESS P1 P2
THEN [N1,A1,P1]::[N2,A2,P2]::T
ELSE [N2,A2,P2]::(DINSERT [N1,A1,P1] T)

rec DSORT [] = []
or DSORT (H::T) = DINSERT H (DSORT T)

7.6. Local definitions

It is often useful to introduce new name/value associations for use within an expression. Such associations are said to
be local to the expression and are introduced by local definitions. Two forms of local definition are used in functional
programming and they are both equivalent to function application.

Consider:

λ<name>.<body> <argument>

This requires the replacement of all free occurences of <name> in <body> with <argument> before <body> is
evaluated.

Alternatively, <name> and <argument> might be thought of as being associated throughout the evaluation of
<body>. This might be written in a bottom up style as:

let <name> = <argument>
in <body>

or in a top down style as:

<body>
where <name> = <argument>

We will use the bottom up let form of local definition on the grounds that things should be defined before they are
used.

7.7. Matching composite value results

The use of bound variable lists greatly simplifies the construction of functions which return composite value results
represented as lists.

- 129 -

For example, suppose we have a list of forename/surname pairs and we wish to split it into separate lists of forenames
and surnames. We could scan the list to pick up the forenames and again to pick up the surnames. Alternatively, we
can pick them both up at once.

To split an empty list, return an empty forename list and an empty surname list: Otherwise, split the tail and put the
forename from the head pair onto the forename list from the tail and the surname from the head pair onto the surname
list from the tail:

rec SPLIT [] = []::[]
or SPLIT ([F,S]::L) =
let (FLIST::SLIST) = SPLIT L
in ((F::FLIST)::(S::SLIST))

Note that at each stage SPLIT is called recursively on the tail to return a list of lists. This is then separated into the
lists FLIST and SLIST, the items from the head pair are added and a new list of lists is returned.

For example:

SPLIT [["Allan","Ape"],["Betty","Bat"],["Colin","Cat"]] => ... =>

let (FLIST::SLIST) = SPLIT [["Betty","Bat"],["Colin","Cat"]]
in (("Allan"::FLIST)::("Ape"::SLIST))

The first recursive call to SPLIT involves:

SPLIT [["Betty","Bat","Colin","Cat"] => ... =>

let (FLIST::SLIST) = SPLIT [["Colin","Cat"]]
in (("Betty"::FLIST)::("Bat"::SLIST))

The second recursive call to SPLIT involves:

SPLIT [["Colin","Cat"]] => ... =>

let (FLIST::SLIST) = SPLIT []
in (("Colin"::FLIST)::("Cat"::SLIST))

The third recursive call to SPLIT is the last:

SPLIT [] => ... =>

[]::[]

so the recursive calls start to return:

let (FLIST::SLIST) = []::[]
in (("Colin"::FLIST)::("Cat"::SLIST)) => ... =>

(("Colin"::[])::("Cat"::[])) ==

(["Colin"]::["Cat"]) => ... =>

let (FLIST::SLIST) = (["Colin"]::["Cat"])
in (("Betty"::FLIST)::("Bat"::SLIST)) => ... =>

(("Betty"::["Colin"])::("Bat"::["Cat"])) ==

(["Betty","Colin"]::["Bat","Cat"]) => ... =>

- 130 -

let (FLIST::SLIST) = (["Betty","Colin"]::["Bat","Cat"])
in (("Allan"::FLIST)::("Ape"::SLIST)) => ... =>

(("Allan"::["Betty","Colin"])::("Ape"::["Bat","Cat")]) ==

(["Allan","Betty","Colin"]::["Ape","Bat","Cat"])

We can simplify this further by making the local variables FLIST and SLIST additional bound variables:

rec SPLIT [[]] L = L
or SPLIT ([F,S]::L) (FLIST::SLIST) = SPLIT L ((F::FLIST)::(S::SLIST))

Now, on the recursive call, the variables FLIST and SLIST will pick up the lists (F::FLIST) and (S::SLIST)
from the previous call. Initially, FLIST and LIST are both empty. For example:

SPLIT [["Diane","Duck"],["Eric","Eagle"],["Fran","Fox"]] ([]::[]) => ... =>

SPLIT [["Eric","Eagle"],["Fran","Fox"]] (["Diane"]::["Duck"]) => ... =>

SPLIT [["Fran","Fox"]] (["Eric","Diane"]::["Eagle","Duck"]) => ... =>

SPLIT [[]] (["Fran","Eric","Diane"]::["Fox","Eagle","Duck"]) => ... =>

(["Fran","Eric","Diane"]::["Fox","Eagle","Duck"])

Note that we have picked up the list components in reverse order because we’ve added the heads of the argument lists
into the new lists before processing the tails of the argument lists.

The bound variables FLIST and SLIST are known as accumulation variables because they are used to accumulate
partial results.

7.8. List inefficiency

Linear lists correspond well to problems involving flat sequences of data items but are relatively inefficient to access
and manipulate. This is because accessing an item always involves skipping past the preceding items. In long lists this
becomes extremely time consuming. For a list with N items, if we assume that each item is just as likely to be
accessed as any other item then:

to access the 1st item, skip 0 items;
to access the 2nd item, skip 1 item;
...
to access the N-1th item, skip N-2 items;
to access the Nth item, skip N-1 items

Thus, on average it is necessary to skip:

(1+...(N-2)+(N-1))/N = (N*N/2)/N = N/2

items. For example, to find one item in a list of 1000 items it is necessary to skip 500 items on average.

Sorting using the insertion technique above is far worse. For a worst case sort with N items in complete reverse order
then:

to place the 1st item, skip 0 items;
to place the 2nd item, skip 1 item;
...
to place the N-1th item, skip N-2 items;

- 131 -

to place the Nth item, skip N-1 items

Thus, in total it is necessary to skip:

1+...(N-2)+(N-1) = N*N/2

items. For example, for a worst case sort of 1000 items it is necessary to skip 500000 items.

Remember, for searching and sorting in a linear list, each skip involves a comparison between a list item and a
required or new item. If the items are strings then comparison is character by character so the number of comparisons
can get pretty big for relatively short lists.

Note that we have been considering naive linear list algorithms. For particular problems, if there is a known ordering
on a sequence of values then it may be possible to represent the sequence as an ordered list of ordered sub-sequences.
For example, a sequence of strings might be represented as list of ordered sub-lists, with a sub-list for each letter of the
alphabet.

7.9. Trees

Trees are general purpose nested structures which enable far faster access to ordered sequences than linear lists. Here
we are going to look at how trees may be modelled using lists. To begin with, we will introduce the standard tree
terminology.

A tree is a nested data structure consisting of a hierarchy of nodes. Each node holds one data item and has branches
to sub-trees which are in turn composed of nodes. The first node in a tree is called the root. A node with empty
branches is called a leaf. Often, a tree has the same number of branches in each node. If there are N branches then the
tree is said to be N-ary.

If there is an ordering relationship on the tree then each sub-tree consists of nodes whose items have a common
relationship to the original node’s item. Note that ordering implies that the node items are all the same type. Ordered
linear sequences can be held in a tree structure which enables far faster access and update.

We are now going to look specifically at binary trees. A binary tree node has two branches, called the left and right
branches, to binary sub-trees. Formally, the empty tree, which we will denote as EMPTY, is a binary tree:

EMPTY is a binary tree

and a tree consisting of a node with an item and two sub-trees is a binary tree if the sub-trees are binary trees:

NODE ITEM L R is a binary tree
if L is a binary tree and R is a binary tree

We will model a binary tree using lists. We will represent EMPTY as NIL:

def EMPTY = NIL

def ISEMPTY = ISNIL

and a node as a list of the item and the left and right branches:

def NODE ITEM L R = [ITEM,L,R]

The item and the sub-trees may be selected from nodes:

ITEM (NODE I L R) = I
LEFT (NODE I L R) = L
RIGHT (NODE I L R) = R

- 132 -

but no selection may be made from empty trees:

ITEM EMPTY = TREE_ERROR
LEFT EMPTY = TREE_ERROR
RIGHT EMPTY = TREE_ERROR

Note that we cannot use these equations directly as functions as we have not introduced trees as a new type into our
notation. Instead, we will model tree functions with list functions using LIST_ERROR for TREE_ERROR:

def TREE_ERROR = LIST_ERROR

def ITEM EMPTY = TREE_ERROR
or ITEM [I,L,R] = I

def LEFT EMPTY = TREE_ERROR
or LEFT [I,L,R] = L

def RIGHT EMPTY = TREE_ERROR
or RIGHT [I,L,R] = R

Note that we can use EMPTY in structure matching because it is the same as NIL.

7.10. Adding values to ordered binary trees

In an ordered binary tree, the left sub-tree contains nodes whose items come before the original node’s item in some
ordering and the right sub-tree, contains nodes whose items come after the original node’s item in that ordering. Each
sub-tree is itself an ordered binary tree.

Thus, to add an item to an ordered binary tree, if the tree is empty then make a new node with empty branches for the
item:

TADD I EMPTY = NODE I EMPTY EMPTY

If the item comes before the root node item then add it to the left sub-tree:

TADD I (NODE NI L R) = NODE NI (TADD I L) R
if <less> I NI

Otherwise, add it to the right sub-tree:

TADD I (NODE NI L R) = NODE NI L (TADD I L)
if NOT (<less> I NI)

For example, for a binary tree of integers:

rec TADD I EMPTY = NODE I EMPTY EMPTY
or TADD I [NI,L,R] =
IF LESS I NI
THEN NODE NI (TADD I L) R
ELSE NODE NITEM L (TADD I R)

For example, to add 7 to an empty tree:

TADD 7 EMPTY

The tree is empty so a new node is constructed:

- 133 -

[7,EMPTY,EMPTY]

To add 4 to this tree:

TADD 4 [7,EMPTY,EMPTY]

4 comes before 7 so it is added to the left sub-tree:

[7,(TADD 4 EMPTY),EMPTY] -> ... ->

[7,
[4,EMPTY,EMPTY],
EMPTY
]

To add 9 to this tree:

TADD 9 [7,
[4,EMPTY,EMPTY],
EMPTY
]

9 comes after 7 so it is added to the right sub-tree:

[7,
[4,EMPTY,EMPTY],
(TADD 9 EMPTY)
] -> ... ->

[7,
[4,EMPTY,EMPTY],
[9,EMPTY,EMPTY]
]

To add 3 to this tree:

TADD 3 [7,
[4,EMPTY,EMPTY],
[9,EMPTY,EMPTY]
]

3 comes before 7 so it is added to the left sub-tree:

[7,
(TADD 3 [4,EMPTY,EMPTY]),
[9,EMPTY,EMPTY]
]

3 comes before 4 so it is added to the left sub-tree:

[7,
[4,
(TADD 3 EMPTY),
EMPTY
],
[9,EMPTY,EMPTY]
] -> ... ->

- 134 -

[7,
[4,
[3,EMPTY,EMPTY],
EMPTY
],
[9,EMPTY,EMPTY]
]

To add 5 to this tree:

TADD 5 [7,
[4,
[3,EMPTY,EMPTY],
EMPTY
],
[9,EMPTY,EMPTY]
]

5 comes before 7 so it is added to the left sub-tree:

[7,
(TADD 5 [4,

[3,EMPTY,EMPTY],
EMPTY
]),

[9,EMPTY,EMPTY]
]

Now, 5 comes after 4 so it is added to the right sub-tree:

[7,
[4,
[3,EMPTY,EMPTY],
(TADD 5 EMPTY)
],
[9,EMPTY,EMPTY]
] -> ... ->

[7,
[4,
[3,EMPTY,EMPTY],
[5,EMPTY,EMPTY]
],
[9,EMPTY,EMPTY]
]

To add an arbitrary list of numbers to a tree, if the list is empty then return the tree. Otherwise add the tail of the list to
the result of adding the head of the list to the tree:

rec TADDLIST [] TREE = TREE
or TADDLIST (H::T) TREE = TADDLIST T (TADD H TREE)

Thus:

TADDLIST [7,4,9,3,5,11,6,8] EMPTY -> ... ->

[7,
[4,

- 135 -

[3,EMPTY,EMPTY],
[5,
EMPTY,
[6,EMPTY,EMPTY]
]
],
[9,
[8,EMPTY,EMPTY],
[11,EMPTY,EMPTY]
]
]

7.11. Binary tree traversal

Having added values to an ordered tree it may be useful to extract them in some order. This involves walking or
traversing the tree picking up the node values. From our definition of an ordered binary tree, all the values in the left
sub-tree for a node are less than the node value and all the values in the right sub-tree for a node are greater than the
node value. Thus, to extract the values in ascending order we need to traverse the left sub-tree, pick up the node value
and then traverse the right subtree:

TRAVERSE (NODE I L R) = APPEND (TRAVERSE L) (I::(TRAVERSE R))

Traversing an empty tree returns an empty list:

TRAVERSE EMPTY = []

Using lists instead of a tree type:

rec TRAVERSE EMPTY = []
or TRAVERSE [I,L,R] = APPEND (TRAVERSE L) (I::(TRAVERSE R))

We will illustrate this with an example. To ease presentation, we may evaluate several applications at the same time at
each stage:

TRAVERSE [7,
[4,
[3,EMPTY,EMPTY],
[5,EMPTY,EMPTY]
],
[9,EMPTY,EMPTY]
] -> ... ->

APPEND (TRAVERSE [4,
[3,EMPTY,EMPTY],
[5,EMPTY,EMPTY]
])

(7::(TRAVERSE [9,EMPTY,EMPTY])) -> ... ->

APPEND (APPEND (TRAVERSE [3,EMPTY,EMPTY])
(4::(TRAVERSE [5,EMPTY,EMPTY])))

(7::(APPEND (TRAVERSE EMPTY)
(9::(TRAVERSE EMPTY)))) -> ... ->

APPEND (APPEND (APPEND (TRAVERSE EMPTY)
(3::(TRAVERSE EMPTY)))

(4::(APPEND (TRAVERSE EMPTY)
(5::(TRAVERSE EMPTY))))

- 136 -

(7::(APPEND (TRAVERSE EMPTY)
(9::(TRAVERSE EMPTY)))) -> ... ->

APPEND (APPEND (APPEND []
(3::[]))

(4::(APPEND []
(5::[])))

(7::(APPEND []
(9::[]))) -> ... ->

APPEND (APPEND [3]
(4::[5]))

(7::[9]) -> ... ->

APPEND [3,4,5] [7,9] -> ... ->

[3,4,5,7,9]

7.12. Binary tree search

Once a binary tree has been constructed it may be searched to find out whether or not it contains a value. The search
algorithm is very similar to the addition algorithm above. If the tree is empty then the search fails:

TFIND V EMPTY = FALSE

If the tree is not empty, and the required value is the node value then the search succeeds:

TFIND V (NODE NV L R) = TRUE if <equal> V NV

Otherwise, if the requiredvalue comes before the node value then try the left branch:

TFIND V (NODE NV L R) = TFIND V L if <less> V NV

Otherwise, try the right branch:

TFIND V (NODE NV L R) = TFIND V R if NOT (<less> V NV)

For example, for a binary integer tree:

rec TFIND V EMPTY = ""
or TFIND V [NV,L,R] =
IF EQUAL V NV
THEN TRUE
ELSE
IF LESS V NV
THEN TFIND V L
ELSE TFIND V R

For example:

TFIND 5 [7,
[4,
[3,EMPTY,EMPTY],
[5,EMPTY,EMPTY]
],
[9,EMPTY,EMPTY]
] -> ... ->

- 137 -

TFIND 5 [4,
[3,EMPTY,EMPTY],
[5,EMPTY,EMPTY]
] -> ... ->

TFIND 5 [5,EMPTY,EMPTY] -> ... ->

TRUE

For example:

TFIND 2 [7,
[4,
[3,EMPTY,EMPTY],
[5,EMPTY,EMPTY]
],
[9,EMPTY,EMPTY]
] -> ... ->

TFIND 2 [4,
[3,EMPTY,EMPTY],
[5,EMPTY,EMPTY]
] -> ... ->

TFIND 2 [3,EMPTY,EMPTY] -> ... ->

TFIND 2 EMPTY -> ... ->

FALSE

7.13. Binary trees of composite values

Binary trees, like linear lists, may be used to represent ordered sequences of composite values. Each node holds one
composite value from the sequence and the ordering is determined by one sub-value.

The tree addition functions above may be modified to work with composite values. For example, we might hold the
circulation list of names in a binary tree in surname order. Adding a new name to the tree involves comparing the new
surname with the node surnames:

rec CTADD N EMPTY = [N,EMPTY,EMPTY]
or CTADD [F,S] [[NF,NS],L,R] =
IF STRING_LESS S NS
THEN [[NF,NS],(CTADD [F,S] L),R]
ELSE [[NF,NS],L,(CTADD [F,S] R)]

rec CTADDLIST [] TREE = TREE
or CTADDLIST (H::T) TREE = CTADDLIST T (CTADD H TREE)

For example:

CTADDLIST
[["Mark","Monkey"],
["Graham","Goat"],
["Quentin","Quail"],
["James","Jaguar"],
["David","Duck]] EMPTY -> ... ->

- 138 -

[["Mark","Monkey"],
[["Graham","Goat"],
[["David","Duck"],EMPTY,EMPTY],
[["James","Jaguar"],EMPTY,EMPTY]

],
[["Quentin","Quail"],EMPTY,EMPTY]

]

The tree traversal function above may be applied to binary trees with arbitrary node values as it only inspects branches
during traversal. For example:

TRAVERSE [["Mark","Monkey"],
[["Graham","Goat"],
[["David","Duck"],EMPTY,EMPTY],
[["James","Jaguar"],EMPTY,EMPTY]

],
[["Quentin","Quail"],EMPTY,EMPTY]

] -> ... ->

[["David","Duck"],
["Graham","Goat"],
["James","Jaguar"],
["Mark","Monkey"],
["Quentin","Quail"]]

Finally, the tree search function above may be modified to return some or all of a required composite value. For
example, we might find the forename corresponding to a surname, using the surname to identify the required node:

rec CTFIND S EMPTY = ""
or CTFIND S [[NF,NS],L,R] =
IF STRING_EQUAL S NS
THEN NF
ELSE
IF STRING_LESS S NS
THEN CTFIND S L
ELSE CTFIND S R

For example:

CTFIND "Duck" [["Mark","Monkey"],
[["Graham","Goat"],
[["David","Duck"],EMPTY,EMPTY],
[["James","Jaguar"],EMPTY,EMPTY]

],
[["Quentin","Quail"],EMPTY,EMPTY]

] -> ... ->

CTFIND "Duck" [["Graham","Goat"],
[["David","Duck"],EMPTY,EMPTY],
[["James","Jaguar"],EMPTY,EMPTY]

] -> ... ->

CTFIND "Duck" [["David","Duck"],EMPTY,EMPTY]

"David"

- 139 -

7.14. Binary tree efficiency

When an ordered binary tree is formed from a value sequence, each node holds an ordered sub-sequence. Every sub-
node on the left branch of a node contains values which are less than the node’s value and every sub-node on the right
branch contains values which are greater than the node’s value. Thus, when searching a tree for a node given a value,
the selection of one branch discounts all the sub-nodes, and hence all the values, on the other branch. The number of
comparisons required to find a node depends on how many layers of sub-nodes there are between the root and that
node.

A binary tree is said to be balanced if for any node, the number of values in both branches is the same. For a
balanced binary tree, if a node holds N values then there are (N-1)/2 values in its left branch and (N-1)/2 in the
its right branch. Thus, the total number of branch layers depends on how often the number of values can be halved.
This suggests that in general, if:

2L <= N < 2L+1

then:

N values == log2(N)+1 == L+1 layers

For example:

1 value == 1 node == 1 layer == log2(1)+1
3 values == 1 node + 2 * 1 value == 2 layers == log2(3)+1
7 values == 1 node + 2 * 3 values == 3 layers == log2(7)+1
15 values == 1 node + 2 * 7 values == 4 layers == log2(15)+1
31 values == 1 node + 2 * 15 values == 5 layers == log2(31)+1
63 values == 1 node + 2 * 31 values == 6 layers == log2(63)+1
...

For example, for a balanced tree of 1000 items it is necessary to go down 10 layers, making 10 comparisons, in the
worst case.

Note that we have considered perfectly balanced trees. However, the algorithms discussed above do not try to
maintain balance and so the ‘shape’ of a tree depends on the order in which values are added. In general, trees built
with our simple algorithm will not be balanced. Indeed, in the worst case the algorithm builds a linear list, ironically,
when the values are already in order:

TADDLIST [4,3,2,1] -> ... ->

[1,
EMPTY,
[2,
EMPTY,
[3,
EMPTY,
[4,EMPTY,EMPTY]
]
]
]

We will not consider the construction of balanced trees here.

- 140 -

7.15. Curried and uncurried functions

In imperative languages like Pascal and C we use procedures and functions declared with several formal parameters
and we cannot separate a procedure or function from the name it is declared with. Here, however, all our functions are
built from nested λ functions with single bound variables: names and definitions of name/function associations are just
a convenient simplification. Our notation for function definitions and applications has led us to treat a name associated
with a nested function as if it were a function with several bound variables. Now we have introduced another form of
multiple bound variables through bound variable lists.

In fact, nested functions of single bound variables and functions with multiple bound variables are equivalent. The
technique of defining multi-parameter functions as nested single parameter functions was popularised by the American
mathematician Haskell Curry and nested single parameter functions are called curried functions.

We can construct functions to transform a curried function into an uncurried function and vice versa. For a function f
with a bound variable list containing two bound variables:

def curry f x y = f [x,y]

will convert from uncurried form to curried form.

For example, consider:

def SUM_SQ1 [X,Y] = (X*X)+(Y*Y)

Then for:

def curry_SUM_SQ = curry SUM_SQ1

the right hand side expands as:

λf.λx.λy.(f [x,y]) SUM_SQ1 =>

λx.λy.(SUM_SQ1 [x,y])

so:

def curry_SUM_SQ x y = SUM_SQ1 [x,y]

Now, the use of curry_SUM_SQ with nested arguments is the same as the use of SUM_SQ1 with an argument list.

Similarly, for a function g with a single bound variable a, which returns a function with single bound variable b

def uncurry g [a,b] = g a b

will convert from curried form to uncurried form.

For example, with

def SUM_SQ2 X Y = (X*X)+(Y*Y)

then for:

def uncurry_SUM_SQ = uncurry SUM_SQ2

the right hand side expands as:

λg.λ[a,b].(g a b) SUM_SQ2 =>

- 141 -

λ[a,b].(SUM_SQ2 a b)

so:

def uncurry_SUM_SQ [a,b] = SUM_SQ2 a b

Now, the use of uncurry_SUM_SQ with an argument list is equivalent to the use of SUM_SQ2 with nested
arguments.

The functions curry and uncurry are inverses. For an arbitrary function:

<function>

consider:

uncurry (curry <function>) ==

λg.λ[a,b].(g a b) (λf.λx.λy.(f [x,y]) <function>) ->

λg.λ[a,b].(g a b) λx.λy.(<function> [x,y]) =>

λ[a,b].(λx.λy.(<function> [x,y]) a b)

which simplifies to:

λ[a,b].(<function> [a,b]) ==

<function>

Here we have used a form of η reduction to simplify:

λ[<name1>,<name2>]).(<expression> [<name1>,<name2>])

to:

<expression>

Similarly:

curry (uncurry <function>) ==

λf.λx.λy.(f [x,y]) (λg.λ[a,b].(g a b) <function>) ->

λf.λx.λy.(f [x,y]) (λ[a,b].(<function a b) =>

λx.λy.(λ[a,b].(<function> a b) [x,y])

which simplifies to:

λx.λy.(<function> x y) ==

<function>

Again we have used a form of η reduction to simplify:

λ<name1>.λ<name2>.(<expression> <name1> <name2>)

- 142 -

to:

<expression>.

7.16. Partial application

We have been using a technique which is known as partial application where a multi-parameter function is used to
construct another multi-parameter function by providing arguments for only some of the parameters. We have taken
this for granted because we use nested single bound variable functions. For example, in chapter 5 we defined the
function:

def istype t obj = equal t (type obj)

to test an objects type against an arbitrary type t and then constructed:

def isbool = istype bool_type

def isnumb = istype numb_type

def ischar = istype char_type

def islist = istype list_type

to test whether an object was a boolean, number, character or list by ‘filling in’ the bound variable t with an
appropriate argument. This creates no problems for us because istype is a function of one bound variable which
returns a function of one bound variable. However, many imperative languages with multi-parameter procedures and
functions do not usually allow procedures and functions as objects in their own right, (POP-2 and PS-algol are
exceptions), and so partial application is not directly available. However, an equivalent form is based on defining a
new function or procedure with less parameters which calls the original procedure or function with some of its
parameters ‘filled in’.

For example, had istype been defined in Pascal as:

FUNCTION ISTYPE(T:TYPEVAL,OBJ:OBJECT):BOOLEAN
BEGIN

ISTYPE := (T = TYPE(OBJ))
END,

assuming that Pascal allowed the construction of appropriate types, then ISBOOL might be defined by:

FUNCTION ISBOOL(O:OBJECT):BOOLEAN
BEGIN

ISBOOL := ISTYPE(BOOL_TYPE,O)
END

and
ISNUMB
by:

FUNCTION ISNUMB(OBJ:OBJECT):BOOLEAN
BEGIN

ISNUMB := ISTYPE(NUMB_TYPE,OBJ)
END

and so on. In our notation, it is as if we had defined:

- 143 -

def istype (t::o)= equal t (type o)

def isbool obj = istype (bool_type::obj)

def isnumb obj = istype (numb_type::obj)

and so on.

Here, we have explicitly provided a value for the second bound variable o from the new single bound variable obj.

In practical terms, curried functions are more flexible to use but less efficient to implement as more function entry and
exit is necessitated.

7.17. Summary

In this chapter we have:

• represented composite values as lists

• developed selector functions to simplify composite value manipulation

• introduced generalised list structure matching

• introduced notations for local definitions

• considered the efficiency of naive linear list algorithms

• represented trees as lists

• developed functions to manipulate ordered binary trees

• considered the efficiency of binary trees

• met curried and uncurried functions, and partial application

Some of these topics arte summarised below.

Generalised structure matching

def <name> [<name1>,<name2>,<name3> ...] =
<expression using ‘<name1>’, ‘<name2>’, ‘<name3>’ ... >

def <name> <bound variable> =
<expression using ‘HEAD <bound variable>’,

‘HEAD (TAIL <bound variable>)’,
‘HEAD (TAIL (TAIL <bound variable>))’ ... >

Local definitions

let <name> = <expression1>
in <expression2> ==

<expression2>
where <name> = <expression> ==

λ<name>.<expression2> <expression1>

- 144 -

Curried and uncurried functions

λ<name1>.λ<name2>...λ<nameN>.<body> ==

λ[<name1>,<name2> ... <nameN>].<body>

7.18. Exercises

1) The time of day might be represented as a list with three integer fields for hours, minutes and seconds:

[<hours>,<minutes>,<seconds>]

For example:

[17,35,42] == 17 hours 35 minutes 42 seconds

Note that:

24 hours = 0 hours
1 hour == 60 minutes
1 minute == 60 seconds

i) Write functions to convert from a time of day to seconds and from seconds to a time of day. For example:

TOO_SECS [2,30,25] => ... => 9025

FROM_SECS 48975 => ... => [13,36,15]

ii) Write a function which increments the time of day by one second. For example:

TICK [15,27,18] => ... => [15,27,19]
TICK [15,44,59] => ... => [15,45,0]
TICK [15,59,59] => ... => [16,0,0]
TICK [23,59,59] => ... => [0,0,0]

iii) In a shop, each transaction at a cash register is time stamped. Given a list of transaction details, where each
is a string followed by a time of day, write a function which sorts them into ascending time order. For example:

TSORT [["haggis",[12,19,57]],
["clouty dumpling",[18,22,48]],
["white pudding",[10,12,35]],
["oatcakes",[15,47,19]]] => ... =>

[["white pudding",[10,12,35]],
["haggis",[12,19,57]],
["oatcakes",[15,47,19]]
["clouty dumpling",[18,22,48]]]

2) i) Write a function which compares two integer binary trees.

ii) Write a function which indicates whether or not one integer binary tree contains another as a sub-tree.

iii) Write a function which traverses a binary tree to produce a list of node values in descending order.

3) Strictly bracketed integer arithemtic expressions:

- 145 -

<expression> ::= (<expression> + <expression>) |
(<expression> + <expression>) |
(<expression> + <expression>) |
(<expression> + <expression>) |
<number>

might be represented by a nested list structure so:

(<expression1> + <expression2>) == [<expression1>,"+",<expression2>]
(<expression1> - <expression2>) == [<expression1>,"-",<expression2>]
(<expression1> * <expression2>) == [<expression1>,"*",<expression2>]
(<expression1> / <expression2>) == [<expression1>,"/",<expression2>]
<number> == <number>

For example:

3 == 3
(3 * 4) == [3,"*",4]
((3 * 4) - 5) == [[3,"*",4],"-",5]
((3 * 4) - (5 + 6)) == [[3,"*",4],"-",[5,"+",6]]

Write a function which evaluates a nested list representation of an arithmetic expression. For example:

EVAL 3 => ... => 3
EVAL [3,"*",4] => ... => 12
EVAL [[3,"*",4],"-",5] => ... => 7
EVAL [[3,"*",4],"-",[5,"+",6]] => ... => 11

8. EVALUATION

8.1. Introduction

In this chapter we are going to look at evaluation order in more detail.

First of all we will consider the relative merits of applicative and normal order evaluation and see that applicative
order is generally more efficient than normal order. We will also see that applicative order evaluation may lead to
non-terminating evaluation sequences where normal order evaluation terminates, with our representations of
conditional expressions and recursion.

We will then see that the halting problem is undecideable in undecidable so it is not possible to tell whether or not the
evaluation of an arbitrary λ expression terminates. We will also survey the Church-Rosser theorems which show that
normal and applicative order evaluation order are equivalent but that normal order is more likely to terminate.

Finally, we will look at lazy evaluation which combines the best features of normal and applicative orders.

8.2. Termination and normal form

A lambda expression which cannot be reduced any further is said to be in normal form. Our definition of β reduction
in chapter 2 implied that evaluation of an expression terminates when it is no longer a function application. This won’t
reduce an expression to normal form. Technically we should go on evaluating the function body until it contains no
more function applications. Otherwise, expressions which actually reduce to the same normal form appear to be
different. For example, consider:

- 146 -

λx.x λa.(a a)

and:

λf.λa.(f a) λs.(s s)

The first reduces as:

λx.x λa.(a a) =>

λa.(a a)

and the second as:

λf.λa.(f a) λs.(s s) =>

λa.(λs.(s s) a)

Evaluation using our definition of β reduction terminates with two different final forms. If, however, we continue to
evaluate the body of the second:

λa.(λs.(s s) a) =>

λa.(a a)

we can see that they are actually identical.

To be more formal, a reducible function application expression is called a redex. An expression is in normal forms
when it contains no more redexes.

We will still tend to stop evaluation when we reach a recognisable function or function application. Thus, for lists we
will continue to leave:

<value1>::<value2>

as it is instead of translating to the function application:

CONS <value1> <value2>

and continuing with evaluation.

8.3. Normal order

Normal order β reduction requires the evaluation of the leftmost redex in a expression. For a function application, this
will evaluate the function expression and then carry out the substitution of the unevaluated argument. Normal order
evaluation has the effect of delaying the evaluation of applications which are in turn arguments for other applications
and may result in the multiple evaluation of expressions. Consider, for example:

rec ADD X Y =
IF ISZERO Y
THEN X
ELSE ADD (SUCC X) (PRED Y)

Now, if we evaluate:

ADD 1 (ADD 1 2) => ... =>

- 147 -

IF ISZERO (ADD 1 2)
THEN 1
ELSE ADD (SUCC 1) (PRED (ADD 1 2)) => ... =>

ADD (SUCC 1) (PRED (ADD 1 2)) => ... =>

IF ISZERO (PRED (ADD 1 2))
THEN SUCC 1
ELSE ADD (SUCC (SUCC 1)) (PRED (PRED (ADD 1 2))) => ... =>

ADD (SUCC (SUCC 1)) (PRED (PRED (ADD 1 2))) => ... =>

IF ISZERO (PRED (PRED (ADD 1 2)))
THEN SUCC (SUCC 1)
ELSE ADD (SUCC (SUCC (SUCC 1))) (PRED (PRED (PRED (ADD 1 2)))) => ... =>

ADD (SUCC (SUCC (SUCC 1))) (PRED (PRED (PRED (ADD 1 2)))) => ... =>

IF ISZERO (PRED (PRED (PRED (ADD 1 2))))
THEN SUCC (SUCC (SUCC 1))
ELSE ... => ... =>

SUCC (SUCC (SUCC 1)) ==

4

is returned.

ADD 1 2 has been evaluated 4 times even though it only appeared once originally. In the initial call to ADD the
argument ADD 1 2 is not evaluated because it is not a leftmost application. Instead it completely replaces the bound
variable Y throughout ADD’s body. Thereafter it is evaluated in the IF condition but when ADD is called recursively it
becomes an argument for the call so evaluation is again delayed. We also had to repeatedly evaluate other
applications, for example PRED (ADD 1 2) in the condition, although we did not highlight these.

In general, for normal order evaluation, an unevaluated application argument will replace all occurrences of the
associated bound variable in the function body. Each replacement is the site of initiation of potential additional
evaluation. Clearly, the more often the bound variable appears in the body, the more argument evaluation may
multiply.

8.4. Applicative order

Applicative order β reduction of an application requires the evaluation ofs both the function and the argument
expressions. More formally, this involves the evaluation of the left most redex free of internal redexes. For a function
application, this will result in each argument only being evaluated once.

For example, evaluating our previous example in applicative order:

ADD 1 (ADD 1 2) ->

ADD 1 3 -> ... ->

IF ISZERO 3
THEN 1
ELSE ADD (SUCC 1) (PRED 3) -> ... ->

ADD (SUCC 1) (PRED 3) ->

- 148 -

ADD 2 2 ->

IF ISZERO 2
THEN 2
ELSE ADD (SUCC 2) (PRED 2) -> ... ->

ADD (SUCC 2) (PRED 2) ->

ADD 3 1 -> ... ->

IF ISZERO 1
THEN 3
ELSE ADD (SUCC 3) (PRED 1) -> ... ->

ADD (SUCC 3) (PRED 1) ->

ADD 4 0 -> ... ->

IF ISZERO 0
THEN 4
ELSE ... -> ... ->

4

Here argument evaluation appears to be minimised. For example, ADD 1 2 and PRED (ADD 1 2) are only
evaluated once.

8.5. Consistent applicative order use

We have actually been using applicative order somewhat selectively; in particular, we are still evaluating IFs in
normal order. Let us look at the previous example again, this time using untyped arithmetic to simplify things:

rec add x y =
if iszero y
then x
else add (succ x) (pred y)

Now, consider:

succ (add one two)

First of all, the argument add one two is evaluated:

add one two -> ... ->

if iszero two
then one
else add (succ one) (pred two)

Now, recall our definition of if as a syntactic simplification of:

def cond e1 e2 c = c e1 e2

Thus, after substitution for adds bound variables, add 1 2 becomes:

cond one (add (succ one) (pred two)) (iszero two) ->

- 149 -

cond one (add (succ one) (pred two)) true

so now we have to evaluate:

add (succ one) (pred two) -> ... ->

add two one -> ... ->

if iszero one
then two
else add (succ two) (pred one)

Again, replacing if with cond we have:

cond two (add (succ two) (pred one)) (iszero one) ->

cond two (add (succ two) (pred one)) true

so we have to evaluate:

add (succ two) (pred one) -> ... ->

add three zero -> ... ->

if iszero zero
then three
else add (succ three) (pred zero)

which translates to:

cond three (add (succ three) (pred zero)) (iszero zero) ->

cond three (add (succ three) (pred zero)) true

so we have to evaluate:

add (succ three) (pred zero) -> ... ->

add four zero

and so on.

Evaluation will never terminate! This is not because pred zero is defined to be zero. The evaluation would still
not terminate even if an error were returned from pred zero. Rather, the problem lies with consistent applicative
order use.

if is just another function. When an if is used it is just the same as calling a function in an application: all
arguments must be evaluated before substitution takes place. Recursive functions are built out of ifs so if an ifs
argument is itself a recursive function call then, in applicative order, argument evaluation will recurse indefinitely.
This does not occur with normal order evaluation because the recursive function call argument to if is not evaluated
until it is selected in the ifs body.

We can see the same difficulty more starkly with our construction for recursion. Recall:

def recursive f = λs.(f (s s)) λs.(f (s s))

- 150 -

and consider, for an arbitrary function <function>:

recursive <function> ==

λf.(λs.(f (s s)) λs.(f (s s))) <function> ->

λs.(<function> (s s) λs.(<function> (s s) ->

<function>
(λs.(<function> (s s) λs.(<function> (s s)) ->

<function>
(<function>
(λs.(<function> (s s) λs.(<function> (s s))) ->

<function>
(<function>
(<function>
(λs.(<function> (s s) λs.(<function> (s s))))

and so on. Again this won’t terminate. This does not arise with normal order because argument evaluation is delayed.
In this example, the self-application will depend on <function> calling itself recursively and is delayed until the
recursive call is encountered as the leftmost application.

8.6. Delaying evaluation

With consistent applicative order use we need to find some means of delaying argument evaluation explicitly. One
way, as we saw when we discussed recursion, is to add an extra layer of abstraction to make an argument into a
function body and then extract the argument with explicit function application to evaluate the body.

For example, for an if we need to delay evaluation of the then and else options until one is selected. We might try
changing an if to take the form:

def cond e1 e2 c = c λdummy.e1 λdummy.e2

to delay the evaluation of e1 and e2. Here the idea is that if the condition c is true then:

λdummy.e1

is selected and if the condition is false then:

λdummy.e2

is selected. Sadly, this won’t work. Remember:

def cond e1 e2 c = c λdummy.e1 λdummy.e2

is short-hand for:

def cond = λe1.λe2.λc.(c λdummy.e1 λdummy.e2)

so when cond is called the arguments corresponding to e1 and e2 are evaluated before being passed to:

λdummy.e1

and:

- 151 -

λdummy.e2

Instead, we have to change our notation for if. Now:

if <condition>
then <true choice>
else <false choice>

will be replaced by:

cond λdummy.<true choice> λdummy.<false choice> <condition>

Thus <true choice> and <false choice> will be inserted straight into the call to cond without evaluation.
We have introduced the delay through a textual substitution technique which is equivalent to normal order evaluation.

Alternatively, we could redefine our def notation so it behaves like a macro definition and then our first attempt
would work. A macro is a text substitution function. When a macro is called occurences of its bound variables in its
body are replaced by the arguments. Macros are used for abstraction in programming languages, for example in C and
in many assembly languages, but result in the addition of in-line text rather than layers of procedure or functions calls.

Here:

def <name> <bound variables> = <body>

might introduce the macro <name> and subsequent occurrences of:

<name> <arguments>

would require the replacment of <bound variables> in <body> with the corresponding <arguments>
followed by the evaluation of the resulting <body>

This would introduce macro expansion in a form equivalent to normal order evaluation.

Here we will redefine if ... then ... else Now, true and false must be changed to force the
evaluation of the selected option. This suggests:

def true x y = x identity

def false x y = y identity

For arbitrary expressions <expression1> and <expression2>:

if true
then <expression1>
else <expression2> ==

cond λdummy.<expression1> λdummy.<expression2> true ==

true λdummy.<expression1> λdummy.<expression2> -> ... ->

λdummy.<expression1> identity ->

<expression1>

and:

if false
then <expression1>

- 152 -

else <expression2> ==

cond λdummy.<expression1> λdummy.<expression2> false ==

false λdummy.<expression1> λdummy.<expression2> -> ... ->

λdummy.<expression2> identity ->

<expression2>

This delayed evaluation approach is similar to the use of thunks to implement ALGOL 60 call by name. A thunk is a
parameterless procedure which is produced for a call by name parameter to delay evaluation of that parameter until the
parameter is encountered in the procedure or function body.

Note that to follow this through, all definitions involving booleans also have to change to accommodate the new forms
for true and false. We won’t consider this further.

We could also use abstraction to build an applicative order version of recursive: we won’t consider this further
either.

The effect of using abstraction to delay evaluation is to reintroduce the multiple evaluation associated with normal
order. Any expression which is delayed by abstraction must be evaluated explicitly. Thus, if bound variable
substitution places a delayed expression in several places then it must be explicitly evaluated in each place.

Clearly, for functional language implementations based on applicative order evaluation some compromises must be
made. For example, LISP is usually implemented with applicative order evaluation but the conditional operator COND
implicitly delays evaluation of its arguments. Thus, the definition of recursive functions causes no problems. LISP
also provides the QUOTE and EVAL operators to delay and force expression evaluation explicitly.

8.7. Evaluation termination, the halting problem, evaluation equivalance and the Church-
Rosser theorems

We have tacitly assumed that there is some equivalence between normal and applicative order and we have switched
between them with cheery abandon. There are, however, differences. We have seen that normal order may lead to
repetitive argument evaluation and that applicative order may not terminate. Of course, normal order may not
terminate as well. One of our first examples:

λs.(s s) λs.(s s)

showed us this.

In general, there is no way of telling whether or not the evaluation of an expression will ever terminate. This was
shown originally by Alan Turing who devised a formal model for computing based on what are known as Turing
machines. Turing proved that it is impossible to construct a Turing machine to tell whether or not an arbitrary Turing
machine halts: in formal terminology, the halting problem for Turing machines is undecidable.

Church’s thesis hypothesised that all descriptions of computing are equivalent. Thus any result for one applies to the
other as well. In particular, it has been shown that the λ calculus and Turing machines are equivalent: for every
Turing machine there is an equivalent λ expression and vice-versa. Thus, the undecidability of the halting problem
applies to the λ calculus as well so there is no way to tell if evaluation of an arbitrary λ expression terminates. In
principle, we can just go on evaluating individual λ expressions in the hope that evaluation will terminate but there is
no way of being sure that it will.

To return to normal and applicative order reduction: two theorems by Church and Rosser show that they are
interchangeable but that normal order gives a better guarantee of evaluation termination.

- 153 -

The first Church-Rosser theorem shows that every expression has a unique normal form. Thus, if an expression is
reduced using two different evaluation orders and both reductions terminate then they both lead to the same normal
form. For example, if normal and applicative order reductions of an expression both terminate then they produce the
same final result. This suggests that we can use normal and applicative orders as we choose.

The second Church-Rosser theorem shows that if an expression has a normal form then it may be reached by normal
order evaluation. In other words, if any evaluation order will terminate then normal order evaluation is guaranteed to
terminate.

These theorems suggest that normal order evaluation is the best bet if finding the normal form for an expression is an
over-riding consideration.

As we have seen, there are practical advantages in the selective use of applicative order and in not evaluating function
bodies even though the first reduces the likelihood of termination and the second may stop evaluation before a normal
form is reached. We will discuss evaluation strategies for real functional languages in subsequent sections.

8.8. Infinite objects

The evaluation delay with normal order evaluation enables the construction of infinite structures. For example, for
lists with normal order evaluation, if a CONS constructs a list from a recursive call then evaluation of that call is
delayed until the corresponding field is selected. To illustrate this, we will use typeless versions of CONS, HEAD and
TAIL:

def cons h t s = s h t

def head l = l λx.λy.x

def tail l = l λx.λy.y

Now, let us define the list of all numbers:

rec numblist n = cons n (numblist (succ n))

def numbers = numblist zero

In normal order, numbers’ definition leads to:

numblist zero => ... =>

cons zero (numblist (succ zero) => ... =>

λs.(s zero (numblist (succ zero)))

Now:

head numbers => ... =>

λs.(s zero (numblist (succ zero))) λx.λy.x => ... =>

zero

and:

tail numbers => ... =>

λs.(s zero (numblist (succ zero))) λx.λy.y => ... =>

- 154 -

numblist (succ zero) => ... =>

λs.(s (succ zero) (numblist (succ (succ zero)))

so:

head (tail numbers) => ... =>

(tail numbers) λx.λy.x => ... =>

λs.(s (succ zero) (numblist (succ (succ zero)))) λx.λy.x => ... =>

(succ zero)

and:

tail (tail numbers) => ... =>

(tail numbers) λx.λy.y => ... =>

λs.(s (succ zero) (numblist (succ (succ zero)))) λx.λy.y => ... =>

numblist (succ (succ zero)) => ... =>

λs.(s (succ (succ zero)) (numblist (succ (succ (succ zero)))))

In applicative order, this definition would not terminate because the call to numblist would recurse indefinitely.

In normal order though, we have the multiple evaluation of succ zero, succ (succ zero) and so on. In
addition, the list is recalculated up to the required value every time a value is selected from it.

8.9. Lazy evaluation

Lazy evaluation is a method of delaying expression evaluation which avoids multiple evaluation of the same
expression. Thus, it combines the advantages of normal order and applicative order evaluation. With lazy evaluation,
an expression is evaluated when its value is needed; that is when it appears in the function position in a function
application. However, after evaluation all copies of that expression are updated with the new value. Hence, lazy
evaluation is also known as call by need.

Lazy evaluation requires some means of keeping track of multiple copies of expressions. We will give each bound pair
in an expression a unique subscript. During expression evaluation, when a bound pair replaces a bound variable it
retains its subscript but the bound pair containing the variable and copies of it, and the surrounding bound pairs and
their copies are given consistent new subscripts.

For example, consider:

(λs.(s s)1 (λx.x λy.y)2)3

To evaluate the outer bound pair 3, the argument bound pair 2 is copied into the function body bound pair 1 which is
renumbered 4:

((λx.x λy.y)2 (λx.x λy.y)2)4

Note that bound pair 2 occurs twice in bound pair 4.

To evaluate bound pair 4 first evaluate the function expression which is bound pair 2:

- 155 -

(λx.x λy.y)2 =>

λy.y

and then replace all occurrences of it in bound pair 4 with the new value and renumber bound pair 4 as 5 to get:

(λy.y λy.y)5

Finally, evaluate bound pair 5:

λy.y

Note that bound pair 2:

(λx.x λy.y)2

has only been evaluated once even though it occurs in two places.

We can now see a substantial saving in normal order evaluation with recursion. To simplify presentation we will only
number bound pairs which may be evaluated several times and we won’t expand everything into lambda functions.
We will also use applicative order to simplify things occasionally.

Consider addition once again:

rec ADD X Y =
IF ISZERO Y
THEN X
ELSE ADD (SUCC X) (PRED Y)

For the evaluation of:

ADD 2 2 => ... =>

IF ISZERO 2
THEN 2
ELSE ADD (SUCC 2) (PRED 2)1 => ... =>

ADD (SUCC 2) (PRED 2)1 => ... =>

IF ISZERO (PRED 2)1
THEN (SUCC 1)
ELSE ADD (SUCC (SUCC 2)) (PRED (PRED 2)1)

evaluate:

ISZERO (PRED 2)1

which leads to the evaluation of bound pair 1:

(PRED 2)1 => ... => 1

which replaces all other occurrences of bound pair 1:

IF ISZERO 1
THEN SUCC 1
ELSE ADD (SUCC (SUCC 2)) (PRED 1)2 => ... =>

ADD (SUCC (SUCC 2)) (PRED 1)2 => ... =>

- 156 -

IF ISZERO (PRED 1)2
THEN (SUCC (SUCC 2))
ELSE ADD (SUCC (SUCC (SUCC 2))) (PRED (PRED 1)2)

so:

ISZERO (PRED 1)2

is evaluated which involves the evaluation of bound pair 2:

(PRED 1)2 => ... => 0

which replaces all other occurrences of bound pair 2:

IF ISZERO 0
THEN SUCC (SUCC 2)
ELSE ADD (SUCC (SUCC (SUCC 2))) (PRED 0) => ... =>

SUCC (SUCC 2) => ... =>

0

Here, the evaluation of arguments is delayed, as for normal order, but an argument is only evaluated once, as for
applicative order.

Lazy evaluation avoids repetitive evaluation in infinite lists as the list is extended whenever head or tail evaluation
occurs. This makes them useful when the same values are going to be used repeatedly and one wants to avoid
recalculating them every time.

For example, we might define a function to calculate squares as:

def SQ X = X * X

Every time we required the square of a number, SQ would calculate it afresh. We could put the squares into an infinite
list:

rec SQLIST N = (SQ N)::(SQLIST (SUCC N))

def SQUARES = SQLIST 0

so SQUARES is:

(SQ 0)::(SQLIST (SUCC 0)1)2

Here, we have only labeled the recursive extension of the list.

We now construct functions to select values from the list:

rec IFIND N L =
IF ISZERO N
THEN HEAD L
ELSE IFIND (PRED N) (TAIL L)

def SQUARE N = IFIND N SQUARES

Now, if a particular square has been selected before then it is already in the list and is just selected. Otherwise,
selection forces evaluation until the required value is found. This forced evaluation then leaves new values in the
extended list ready for another value selection.

- 157 -

For example, consider:

SQUARE 2 => ...=>

IFIND 2 SQUARES => ... =>

IFIND 1 (TAIL SQUARES) => ... =>

IFIND 0 (TAIL (TAIL SQUARES)) => ... =>

HEAD (TAIL (TAIL SQUARES))

Now, the inner selection of:

TAIL SQUARES ==

TAIL ((SQ 0)::(SQLIST (SUCC 0)1)2)

results in the the selection of bound pair 2:

(SQLIST (SUCC 0)1)2

The next level of selection:

TAIL (TAIL SQUARES) => ... =>

TAIL (SQLIST (SUCC 0)1)2

results in the forced evaluation of bound pair 2:

(SQLIST (SUCC 0)1)2 => ... =>

((SQ (SUCC 0)1)::(SQLIST (SUCC (SUCC 0)1)3)4)5

Thus:

TAIL (SQLIST (SUCC 0)1)2 => ... =>

TAIL ((SQ (SUCC 0)1)::(SQLIST (SUCC (SUCC 0)1)3)4)5 =>... =>

(SQLIST (SUCC (SUCC 0)1)3)4

leads to the selection of bound pair 4.

Note that all occurrences of bound pair 2 were replaced by the new bound pair 5 so SQUARES is now associated with
the list:

(SQ 0)::((SQ (SUCC 0)1)::(SQLIST (SUCC (SUCC 0)1)3)4)5

The final level of selection:

HEAD (TAIL (TAIL SQUARES)) => ... =>

HEAD (SQLIST (SUCC (SUCC 0)1)3)4

results in the forced evaluation of bound pair 4:

- 158 -

(SQLIST (SUCC (SUCC 0)1)3)4 => ... =>

(SQ (SUCC (SUCC 0)1)3)6::(SQLIST (SUCC (SUCC (SUCC 0)1)3)7)8

Occurrences of bound pair 4 are replaced by the new bound pair 8 so SQUARES is now:

(SQ 0)::(SQ (SUCC 0)1)::(SQ (SUCC (SUCC 0)1)3)6::
(SQLIST (SUCC (SUCC (SUCC 0)1)3)7)8

Thus, evaluation of:

HEAD (TAIL (TAIL SQUARES))

requires the selection of:

(SQ (SUCC (SUCC 0)1)3)6

This requires the evaluation of:

(SUCC (SUCC 0)1)3

which in turn requires the evaluation of:

(SUCC 0)1 => ... => 1

which replaces all occurrences of bound pair 1. Now, SQUARES is:

(SQ 0)::(SQ 1)::(SQ (SUCC 1)3)6::(SQLIST (SUCC (SUCC 1)3)7)8

Thus evaluation of:

(SUCC (SUCC 0)1)3 => ... =>

(SUCC 1)3

gives:

2

which replaces all occurrences of bound pair 3 so SQUARES is now:

(SQ 0)::(SQ 1)::(SQ 2)6::(SQLIST (SUCC 2)7)8

Finally, evaluation of:

(SQ 2)6

gives:

4

which replaces all occurrences of bound pair 6 so SQUARES is now:

(SQ 0)::(SQ 1)::4::(SQLIST (SUCC 2))

If we now try:

- 159 -

SQUARE 1 => ... =>

IFIND 1 SQUARES => ... =>

IFIND 0 (TAIL SQUARES) => ... =>

HEAD (TAIL SQUARES) ==

HEAD (TAIL ((SQ 0)::(SQ 1)9::4::(SQLIST (SUCC 2)))) -> ... ->

HEAD ((SQ 1)9::4::(SQLIST (SUCC 2))) => ... =>

(SQ 1)9 => ... => 1

which replaces all occurrences of bound pair 9 so SQUARES is now:

(SQ 0)::1::4::(SQLIST (SUCC 2))

Thus, repeated list access evaluates more and more of the infinite list but avoids repetitive evaluation.

Lazy evaluation is used for Miranda lists.

8.10. Summary

In this chapter we have:

• compared normal and applicative order β reduction and seen that normal order reduction may be less efficient

• seen that consitent applicative order β reduction with our conditional expression representation leads to non-
termination

• considered ways of delaying applicative order evaluation

• seen that the halting problem is unsolvable

• met the Church-Rosser theorems which suggest that normal order β reduction is most likely to terminate

• seen that normal order β reduction enables the construction of infinite objects

• met lazy evaluation as a way of combining the best aspects of normal and applicative order β reduction

Lazy evaluation is summarised below.

Lazy evaluation

i) number every bound pair

ii) To lazy evaluate (<function expression> <argument expression>)i

a) lazy evaluate <function expression> to <function value>

b) if <function value> is λ<name>.<body>
then replace all free occurences of <name> in <body> with <argumentexpression>
and renumber consistently all surrounding bound pairs
and replace all occurences of (<function expression> <argument expression>)i
with the new <body>
and lazy evaluate the new <body>

- 160 -

or

d) if <function value> is not a function
then lazy evaluate <argument expression>to <argument value>
and replace all occurences of (<function expression> <argument expression>)i
with (<function value> <argument value>)
and return (<function value> <argument value>)

8.11. Exercises

1) Evaluate the following expressions using normal order, applicative order and lazy evaluation. Explain any
differences in the final result and the number of reductions in each case:

i) λs.(s s) (λf.λa.(f a) λx.x λy.y)
ii) λx.λy.x λx.x (λs.(s s) λs.(s s))
iii) λa.(a a) (λf.λs.(f (s s)) λx.x)

9. FUNCTIONAL PROGRAMMING IN STANDARD ML

9.1. Introduction

ML(Meta Language) is a general purpose language with a powerful functional subset. It is used mainly as a design and
implementation tool for computing theory based research and development. It is also used as a teaching language. ML
is strongly typed with compile time type checking. Function calls are evaluated in applicative order.

ML originated in the mid 1970’s as a language for building proofs in Robin Milner’s LCF(Logic for Computable
Functions) computer assisted formal reasoning system. SML(Standard ML) was developed in the early 1980’s from
ML with extensions from the Hope functional language. SML is one of the first programming languages to be based
on well defined theoretical foundations.

We won’t give a full presentation of SML. Instead, we will concentrate on how SML relates to our approach to
functional programming.

SML is defined in terms of a very simple bare language which is overlaid with standard derived forms to provide a
higher level syntax. Here, we will just use these derived forms.

We will explain SML with examples. As the symbol -> is used in SML to represent the types of functions, we will
follow SML system usage and show the result of evaluating an expression as:

- <expression>;
> <result>

9.2. Types

Types are central to SML. Every object and construct is typed. Unlike Pascal, types need not be made explicit but they
must be capable of being deduced statically from a program.

SML provides several standard types, for example for booleans, integers, strings, lists and tuples which we will look at
below. SML also has a variety of mechanisms for defining new types but we won’t consider these here.

When representing objects, SML always displays types along with values:

- 161 -

<value> : <type>

For objects which do not have printable value representations SML will still display the types. In particular, function
values are displayed as:

fn : <type>

Types are described by type expressions. We will see how these are constructed as we discuss specific types.

9.3. Basic types - booleans, integers and strings

The type expression for a basic type is the type’s identifier.

The boolean type has identifier:

bool

and values:

true false

For example:

- true;
> true : bool

The integer type has identifier:

int

with positive and negative integer values, for example:

- 42;
> 42 : int

- ˜84
˜84 : int

Note the use of ˜ as the negative sign.

The string type has identifier:

string

String values are character sequences within

- "Is this a string?";
> "Is this a string?" : string

9.4. Lists

In SML, unlike LISP and our approach to λ calculus, a list must contain elements of the same type and end with the
empty list. Thus, lists cannot be used to represent records with different type fields.

Lists are written as , separated element sequences within [and]. For example:

- 162 -

[1,4,9,16,25]

["ant","beetle","caterpillar","dragonfly","earwig"]

There is an implied empty list at the end of a list.

[]

is the empty list.

The type expression for a list depends on the element type:

<element type> list

The first example above:

- [1,4,9,16,25];
> [1,4,9,16,25] : int list

is a list of integers. The second example above:

- ["ant","beetle","caterpillar","dragonfly","earwig"];
> ["ant","beetle","caterpillar","dragonfly","earwig"] : string list

is a list of strings.

Lists may be nested, for example:

- [[1,1],[2,8],[3,27],[4,64],[5,125]];
> [[1,1],[2,8],[3,27],[4,64],[5,125]] : (int list) list

is a list of integer lists.

Note the use of (and) to structure the type expression.

9.5. Tuples

An ML tuple, like a Pascal RECORD, is fixed length sequence of elements of different types, unlike a list which is
variable length sequence of elements of the same type. Tuples are written as , separated sequences within (and).

For example, we might represent a stock control record from chapter 7 as:

("VDUs",250,120)

Tuples may be nested. For example, we might represent a telephone directory entry from chapter 7 as:

(("Anna","Able"),"Accounts",101)

A tuple’s type is represented by its elements’ types separated by *s:

<element1 type> * <element2 type> * ...

For example:

- ("VDUs",250,120);
> ("VDUs",250,120) : string * int * int

- 163 -

is a tuple consisting of two integers and a string. For example:

- (("Anna","Able"),"Accounts",101);
> (("Anna","Able"),"Accounts",101) : (string * string) * string * int

is a tuple consisting of a tuple consisting of two strings, a string and an integer.

These may be used to build tuple lists, for example a stock control list:

- [("VDUs",250,120),
("mice",155,170),
("printers",43,20)];

> [("VDUs",250,120),
("mice",155,170),
("printers",43,20)] : (string * int * int) list

or a telephone directory:

- [(("Anna","Able"),"Accounts",101),
(("Betty","Baker"),"Boiler room",102),
(("Cloe","Charlie"),"Customer orders",103)];

> [(("Anna","Able"],"Accounts",101),
(("Betty","Baker"),"Boiler room",102),
(("Cloe","Charlie"),"Customer orders",103)] : ((string * string) *

string * int) list

Note that if a tuple is defined with expression elements then those expressions are evaluated from left to right. Thus, as
tuples are used to specify bound variables for uncurried functions, such functions have a defined actual parameter
evaluation order.

9.6. Function types and expressions

A function uses values in an argument domain to produce a final value in a result range. In SML, a function’s type is
characterised by its domain and range types:

fn : <domain type> -> <range type>

Note the use of -> to indicate a function’s domain/range mapping.

Tuples are normally used to enable uncurried functions with multiple bound variables.

In SML, as in λ calculus and LISP, expressions are usually based on prefix notation function applications with the
function preceding the arguments:

<function expression> <argument expression>

Function applications are evaluated in applicative order.

Note that function applications need not be explicitly bracketed but brackets should be used round arguments to avoid
ambiguity.

SML enables uncurried binary functions to be used as infix operators so the function name may appear in between the
two arguments. They are then typed as if they had tuples for arguments. We won’t consider this further here.

Similarly, many standard binary functions are provided as infix operators. They may be treated as prefix functions on
tuples by preceding them with:

- 164 -

op

We will look at this in more detail when we consider standard functions.

9.7. Boolean standard functions

The boolean negation function:

not

returns the negation of its boolean argument, for example:

- not true;
> false : bool

Thus, not’s type is:

- not;
> fn : bool -> bool

Conjunction and disjunction are provided through the sequential infix operators:

andalso orelse

in the derived syntax, for example:

- true orelse false;
> true : bool

- true andalso false;
> false : bool

SML systems may not be able to display these operators’ types but they are effectively:

fn : (bool * bool) -> bool

as they both take two boolean arguments, which are treated as a:

bool * bool

tuple for infix syntax, and return a boolean result.

9.8. Numeric standard functions and operator overloading

SML provides real numbers as well as integers. However, as in many other languages, the same operators are used for
both even though they are distinct types. This use of the same operator with different types is known as operator
overloading.

The addition, subtraction and multiplication infix operators are:

+ - *

SML systems may not display their types because they are overloaded. SML literature uses the invented type:

num

- 165 -

to indicate both integer and real so these operators types might be:

fn : (num * num) -> num

as they take two numeric arguments, with infix syntax for a tuple, and return a numeric result.

Note that for each operator both arguments must be the same type.

The infix operator:

div

is for integer division. We can use op to convert it to prefix form to display its type:

- op div;
> fn : (int * int) -> int

Arithmetic expressions are built from these operators with the brackets (and), for example:

- 6 * 7 div (7 - 4) + 28;
> 42 : int

Note that there is no strict bracketing. The usual precedence:

()

before:

div *

before:

+ -

applies.

The numeric negation operator is:

˜

again with effective type:

fn : num -> num

as it is overloaded for use with integers and reals.

9.9. String standard functions

The binary infix operator:

ˆ

concatenates two strings together:

- op ˆ;
> fn : (string * string) -> string

- 166 -

For example:

- "Happy"ˆ" birthday!";
> "Happy birthday!" : string

The operator:

size

returns the size of a string:

- size;
> fn : string -> int

For example:

- size "hello";
> 5 : int

Standard functions for turning strings into string lists are discussed below.

9.10. List standard functions

In SML, list operations apply to lists of any types. In SML, an unknown type is denoted by a single letter name
preceded by a prime - ’, for example:

’a ’b ’c

Thus, we can refer to a list of arbitrary typed objects as having type:

’a list

In SML, lists are accessed by the head and tail operators:

hd tl

The head operator returns the head object with type:

’a

from an arbitrary typed list. Thus, hd is of type:

- hd;
> fn : (’a list) -> ’a

For example:

- hd [1,2,3,4,5];
> 1 : int

Similarly, the tail operator returns the tail with type:

’a list

from an arbitrary type list. Thus, tl is of type:

- 167 -

- tl;
> fn : (’a list) -> (’a list)

For example:

- tl ["alpha","beta","gamma","delta","epsilon"];
> ["beta","gamma","delta","epsilon"] : string list

The infix list concatenation operator is:

::

Given an object and a list of the same type of object, :: returns a new list with the object in the head and the object
list in the tail. Thus, :: has type:

- op ::;
> (’a * (’a list)) -> (’a list)

For example:

- 0::[1,2,3,4,5];
> [0,1,2,3,4,5] : int list

The operators hd, tl and :: are said to be polymorphic because they apply to a list of any type of object. We will
look at polymorphism in slightly more detail later.

9.11. Characters, strings and lists

SML does not provide a separate character type. Instead, a character is a one letter string.

The standard function

ord

converts a single character string to the equivalent ASCII code:

- ord;
> fn : string -> int

For example:

- ord "a";
> 97 : int

Similarly, the standard function

chr

converts an integer ASCII value into the equivalent single character string:

- chr;
> fn : int -> string

For example:

- chr 54;
> "6" : string

- 168 -

In order to access the individual characters making up a string it must be unpacked into a list of single character
strings. The standard function:

explode

does this:

- explode;
> fn : string -> (string list)

For example:

- explode "hello";
> ["h","e","l","l",’o"] : string list

Similarly, the standard function:

implode

converts a list of strings to a single string:

- implode;
> fn : (string list) -> string

For example:

- implode ["Time ","for ","tea?"];
> "Time for tea?" : string

Note that implode will join strings of any length.

9.12. Comparison operators

SML provides a variety of overloaded infix comparison operators. Equality and inequality are tested with:

= <>

and may be used with booleans, integers, strings, lists and tuples.

The less than, less than or equal, greater than and greater than or equal operators:

< <= >= >

may be used with numbers and strings. For strings, they test for alphabetic order, for example:

- "haggis" < "oatcake";
> true : bool

SML systems may not display these operators’ types because they are overloaded.

For all these operators, both arguments must be of the same type.

9.13. Functions

- 169 -

Functions have the form:

fn <bound variables> => <expression>

A bound variable is known as an alphabetic identifier and consists of one or more letters, digits and _s starting with a
letter, for example:

oxymoron Home_on_the_range Highway61

A function’s bound variable may be a single bound variable or a tuple of bound variable elements.

For example:

- fn x => x+1;
> fn : int -> int

increments its argument.

Note that SML deduces that the domain and range are int because + is used with the int argument 1.

For example:

- fn x => fn y => not (x orelse y);
> fn : bool -> (bool -> bool)

is the boolean implication function.

Note that orelse has a boolean tuple domain so x and y must both be boolean. Similarly, not returns a boolean so
the inner function:

fn y => not (x orelse y)

has type:

bool -> bool

Hence, the whole function has type:

fn : bool -> (bool -> bool)

This might have been written with a tuple domain:

- fn (x,y) => not (x orelse y);
> fn : (bool * bool) -> bool

9.14. Making bound variables’ types explicit

Suppose we try to define a squaring function:

fn x => x*x

Because * is overloaded, SML cannot deduce x’s type and will reject this function.

Domain types may be made explicit by following each bound variable with its type. Thus for a single bound variable:

(<bound variable> : <type>)

- 170 -

is used. For example, an integer squaring function may be defined by:

- fn (x:int) => x*x;
> fn : int -> int

For a tuple of bound variables:

(<bound variable1> : <type1>, <bound variable2> : <type2>, ...)

is used. For example, we might define the sum of squares function as:

- fn (x:int,y:int) => x*x+y*y;
> fn : (int * int) -> int

It is thought to be ‘good practise’ to make all bound variables’ types explicit. This is supposed to make it easier to
read functions and to ensure that types are consistent. However, without care, type expressions can become
unmanageably long. SML provides ways to name complex types which we will consider in a later section.

9.15. Definitions

Global definitions may be established with:

val <name> = <expression>

For example:

- val sq = fn (x:int) => x*x;
> val sq = fn : int -> int

- val sum_sq = fn (x:int,y:int) => x*x+y*y;
> val sum_sq = fn : (int * int) -> int

Note that the SML system acknowledges the definition by displaying the defined name and the expression’s value
and/or type.

Defined names may be used in subsequent expressions, for example:

- sq 3;
> 9 : int

and subsequent definitions, for example:

- val sum_sq = fn (x:int,y:int) => (sq x)+(sq y)
> val sum_sq = fn : (int * int) -> int

9.16. Conditional expressions

The SML conditional expression has the form:

if <expression1>
then <expression2>
else <expression3>

The first expression must return a boolean and the option expressions <expression2> and <expression3>
must have the same type.

- 171 -

For example, to find the larger of two integers:

- val max = fn (x:int,y:int) => if x>y
then x
else y;

> val max = fn : (int * int) -> int

For example, to define sequential boolean implication:

- val imp = fn (x,y) => if x
then y
else true;

> val imp = fn : (bool * bool) -> bool

9.17. Recursion and function definitions

To define recursive functions, the defined name is preceded by:

rec

For example, to find the length of an integer list:

- val rec length = fn (l:int list) => if l = []
then 0
else 1+(length (tl l))

> val length = fn : (int list) -> int

As with our λ calculus notation there is a shortened form for function definitions. Instead of val:

fun

is used to introduce the definition, the fn is dropped, the bound variables are moved to the left of the = and the => is
dropped. For recursive definitions, the rec is dropped. Thus:

fun <name> <bound variables> = <expression> ==

val rec <name> = fn <bound variables> => <expression>

For example, to square all the values in an integer list:

- fun squarel (l:int list) =
if l=[]
then []
else ((hd l)*(hd l))::(squarel (tl l));

> fun squarel = fn : (int list) -> (int list)

For example, to insert a string into an ordered string list:

- fun sinsert (s:string,l:string list) =
if l = []
then [s]
else
if s < (hd l)
then s::l
else (hd l)::(sinsert (s,(tl l)));

> val sinsert = fn : (string * (string list)) -> (string list)

- 172 -

9.18. Tuple selection

Tuple elements are selected by defining functions with appropriate bound variable tuples. For example, to select the
name, department and ’phone number from a telephone directory entry tuple:

- fun tname (n:(string * string),d:string,p:int) = n;
> val tname = fn : ((string * string) * string * int) -> (string * string)

- fun tdept (n:(string * string),d:string,p:int) = d;
> val tdept = fn : ((string * string) * string * int) -> string

- fun tno (n:(string * string),d:string,p:int) = p;
> val tno = fn : ((string * string) * string * int) -> int

To avoid writing out bound variables which are not used in the function body, SML provides the wild card variable:

_

which behaves like a nameless variable of arbitrary type. For example, we could rewrite the above examples as:

- fun tname (n:(string * string),_,_) = n;
> val tname = fn : ((string * string) * ’a * ’b) -> (string * string)

- tname (("Anna","Able"),"Accounts",123);
> ("Anna","Able") : (string * string)

- fun tdept (_,d:string,_) = d;
> val tdept = fn : (’a * string *’b) -> string

- tdept (("Anna","Able"),"Accounts",123);
> "Accounts" : string

- fun tno (_,_,p:int) = p;
> val tno = fn : (’a * ’b * int) -> int

- tno (("Anna","Able"),"Accounts",123);
> 123 : int

Note that SML uses ’a and ’b to stand for possibly distinct unknown types.

For nested tuple selection, nested bound variable tuples are used. For example, to select the forename and surname
from a telephone directory entry:

- fun fname ((f:string,_),_,_) = f;
> val fname = fn : ((string * ’a) * ’b * ’c) -> string

- fname (("Anna","Able"),"Accounts",123);
> "Anna" : string

- fun sname ((_,s:string),_,_) = s;
> val fname = fn : ((’a * string) * ’b * ’c) -> string

- sname (("Anna","Able"),"Accounts",123);
> "Able" : string

- 173 -

9.19. Pattern matching

SML functions may be defined with bound variable patterns using constants and constructors as well as variables. For
example, the head and tail selector functions for integer lists might be defined by:

- fun ihd ((h:int)::(t:int list)) = h;
> val ihd = fn : (int list) -> int

- fun itl ((h:int)::(t:int list)) = t;
> val itl = fn : (int list) -> (int list)

Note the use of the bound variable pattern:

((h:int)::(t:int list))

with the list constructor ::.

Note that this function will crash with an empty list argument as the pattern match will fail.

It is common SML practise to use case style function definitions with pattern matching rather than conditional
expressions in a function’s body. These are known as clausal form definitions. The general form is:

fun <name> <pattern1> = <expression1> |
<name> <pattern2> = <expression2> |
...
<name> <patternN> = <expressionN>

Here, each:

<name> <patternI> = <expressionI>

defines a case.

Note that the order of the cases is significant.

When a case defined function is applied to an argument, each pattern is matched against the argument in turn, from
first to last, until one succeeds. The value of the corresponding expression is then returned.

For example, we might construct a function to return the capital of a Scandinavian country as a sequence of constant
cases:

- fun capital "Denmark" = "Copenhagen" |
capital "Finland" = "Helsinki" |
capital "Norway" = "Oslo" |
capital "Sweden" = "Stockholm" |
capital _ = "not in Scandinavia";

> val capital = fn : string -> string

Here, an argument is compared with constants until the last case where it is matched with the wild card variable.

For example, we might redefine the integer list length function in terms of a base case for the empty list and a
recursive case for a non-empty list:

- fun length [] = 0 |
length (_::(t:int list)) = 1+(length t);

> val length = fn : (int list) -> int

- 174 -

Here an argument is compared with the empty list in the first case or split into its head and tail in the second. The head
is matched with the wild card variable and lost.

For example, we might generate a list of the first n cubes with a base case for when n is 0 and a recursive case for
positive n:

- fun cubes 0 = [0] |
cubes (n:int) = (n*n*n)::(cubes (n-1));

> val cubes = fn : int -> (int list)

Here, an argument is compared with 0 in the first case or associated with the bound variable n in the second.

For example, we might find the ith element in a string list with a base case which fails for an empty list, a base case
which returns the head of the list when i is 0 and a recursive case for positive i with a non empty list:

- fun sifind _ [] = "can’t find it" |
sifind 0 ((h:string)::_) = h |
sifind (i:int) (_::(t:string list)) = sifind (i-1) t;

> val sfiind = fn : int -> ((string list) -> string)

Here, the integer argument is matched with the wild card variable in the first case, compared with 0 in the second and
associated with the bound variable i in the third. Similarly, the list argument is compared with the empty list in the
first case and split into its head and tail in the second and third. In the second case, the tail is matched with with the
wild ard variable and lost. In the third case, the head is matched with the wild card variable and lost.

Note that this is a curried function.

Patterns may also be used to specify nameless functions.

9.20. Local definitions

SML uses the let ... in ... notation for local definitions:

let val <name> = <expression1>
in <expression2>
end

This evaluates <expression2> with <name> associated with <expression1>.

For function definitions:

let fun <name> <pattern> = <expression1>
in <expression2>
end

and the corresponding case form is used.

For example, to sort a list of integers with a local insertion function:

- fun sort [] = [] |
sort ((h:int)::(t:int list)) =
let fun insert (i:int) [] = [i] |

insert (i:int) ((h:int)::(t:int list)) =
if i<h
then i::h::t
else h::(insert i t)

in insert h (sort t)

- 175 -

end;
> val sort = fn : (int list) -> (int list)

9.21. Type expressions and abbreviated types

We will now be a bit more formal about types in SML. We specify a variable’s type with a type expression. Type
expressions are built from type constructors like int, real, string and list. So far, a type expression may
be a single type constructor or a type variable or a function type or a product type or a bracketed type expression or a
type variable preceding a type constructor.

SML also enables the use of abbreviated types to name type expressions. A name may be associated with a type
expression using a type binding of the form:

type <abbreviation> = <type expression>

The <abbreviation> is an identifier which may be used in subsequent type expressions.

For example, in the telephone directory example we might use abbreviations to simplify the types used in a directory
entry:

- type forename = string;
> type forename = string

- type surname = string;
> type surname = string

- type person = forename * surname;
> type person = forename * surname

- type department = string;
> type department = string

- type extension = int;
> type extension = int

- type entry = person * department * extension;
> type entry = person * department * extension

New type constructors may be used in subsequent expressions in the same way as predefined types.

Note that a new type constructor is syntactically equivalent to its defining expression. Thus, if we define:

- type whole_numb = int;
> type whole_numb = int

- type integer = int;
> type integer = int

then values of type whole_numb, integer and int may be used in the same places without causing type errors.
This form of type binding just disguises a longer type expression.

9.22. Type variables and polymorphism

SML, like Pascal, is strongly typed. All types must be determinable by static analysis of a program. Pascal is
particularly restrictive because there is no means of referring to a type in general. SML, however, allow generalisation

- 176 -

through the use of type variables in type expressions where particular types are not significant.

A type variable starts with a ’ and usually has only one letter, for example:

’a ’b ’c

We have already seen the use of type variables to describe the standard list functions’ types and the use of the wild
card variable.

With strong typing but without type variables, generalised functions cannot be described. In Pascal, for example, it is
not possible to write general purpose procedures or functions to process arrays of arbitrary types. In SML, though, the
list type is generalised through a type variable to be element type independent.

Above, we described a variety of functions with specific types. Let us now look at how we can use type variables to
provide more general definitions. For example, the head and tail list selector functions might be defined as:

- fun hd (h::t) = h;
> val hd = fn : (’a list) -> ’a

- fun tl (h::t) = t;
> val tl = fn : (’a list) -> (’a list)

Here, in the pattern:

(h::t)

there are no explicit types. SML ‘knows’ that :: is a constructor for lists of any type element provided the head and
tail element type have the same type. Thus, if :: is:

(’a * (’a list)) -> (’a list)

then h must be ’a and ’t must be ’a list. We do not need to specify types here because list construction and
selection is type independent.

Note that we could have use a wild card variable for t in hd and for h in tl.

For example, we can define general functions to select the elements of a three place tuple:

- fun first (x,y,z) = x;
> val first = fn : (’a * ’b * ’c) -> ’a

- fun second (x,y,z) = y
> val second = fn : (’a * ’b * ’c) -> ’b

- fun third (x,y,z) = z
> val third = fn : (’a * ’b * ’c) -> ’c

Here in the pattern:

(a,b,c)

there are no explicit types. Hence, SML assigns the types ’a to x, ’b to y and ’c to z. Here, the element types are
not significant. For selection, all that matters is their relative positions within the tuple.

Note that we could have used wild cards for y and z in first, for x and z in second, and for x and y in third.

For example, we can define a general purpose list length function:

- 177 -

- fun length [] = 0 |
length (h::t) = 1+(length t);

> val length = fn : (’a list) -> int

There are no explicit types in the pattern:

(h::t)

and this pattern is consistent if h is ’a and t is ’a list as (h::t) is then ’a list. This is also consistent with
the use of t as the argument in the recursive call to length. Here again, the element types are irrelevant for purely
structural manipulations.

This approach can also be used to define type independent functions which are later made type specific.

For example, we might try and define a general purpose list insertion function as:

- fun insert i [] = [i] |
insert i (h::t) =
if i<h
then i::h::t
else h::(insert i t);

but this is incorrect although the bound variable typing is consistent if i and h are both ’a and t is an ’a list.
The problem lies with the use of the comparison operator <. This is overloaded so its arguments’ types must be made
explicit. We could get round this by abstracting for the comparison:

- fun insert _ i [] = [i] |
insert comp i (h::t) =
if comp (i,h)
then i::h::t
else h::(insert comp i t);

> val insert = ((’a * ’a) -> bool) -> (’a -> ((’a list) -> (’a list)))

Here, comp needs an (’a * ’a) argument to be consistent in insert and must return a bool to satisfy its use in
the if.

Now, different typed comparison functions may be used to construct different typed insertion functions. For example,
we could construct a string insertion function through partial application by passing a string comparison function:

fn (s1:string,s2:string) => s1<s2

to insert:

- val sinsert = insert (fn (s1:string,s2:string) => s1<s2);
> val sinsert = fn : string -> ((string list) -> (string list))

Here, the comparison function is:

(string * string) -> bool

so ’a must be string in the rest of the function’s type.

For example, we could also construct a integer insertion function through partial application by passing an integer
comparison function:

fn (i1:integer,i2:integer) => i1<i2

- 178 -

to insert:

- val iinsert = insert (fn (i1:int,i2:int) => i1<i2);
> val iinsert = fn : int -> ((int list) -> (int list))

Now, the comparison function is:

(int * int) -> bool

so ’a must be int in the rest of the function.

Functions which are defined for generalised types are said to be polymorphic because they have many forms.
Polymorphic typing gives substantial power to a programming language and a great deal of research and development
has gone into its theory and practise. There are several forms of polymorphism. Strachey distinguishes ‘ad-hoc’
polymorphism through operator overloading from ‘parameterised’ polymorphism through abstraction over types.
Cardelli distinguishes ‘explicit’ parameterised polymorphism where the types are themselves objects from the weaker
‘implicit’ polymorphism where type variables are used in type expressions but types are not themselves objects, as in
SML. Milner first made type polymorphism in functional languages practical with his early ML for LCF. This
introduced polymorphic type checking where types are deduced from type expressions and variable use. Hope and
Miranda also have implicit parameterised polymorphic type checking.

9.23. New types

A new concrete type may be introduced by a datatype binding. This is used to define a new type’s constituent
values recursively by

i) listing base values explicitly

ii) defining structured values in terms of base values and other structured values.

The binding introduces new type constructors which are used to build new values of that datatype. They are also used
to identify and manipulate such values.

At simplest, a datatype binding takes the form:

datatype <constructor> = <constructor1> |
<constructor2> |
...
<constructorN>

which defines the base values of type <constructor>, an identifier, to be the type constructor identifiers
<constructor1> or <constructor2> etc.

For example, we could define the type bool with:

- datatype bool = true | false;
> datatype bool = true | false
con true = true : bool
con false = false : bool

This defines the constructors true and false for the new type bool. In effect, this specifies that an object of type
bool may have either the value true or the value false. An equality test for bool is also defined so that the
values true and false may be tested explicitly.

For example, a traffic light goes through the stages red, red and amber, green, amber and back to red:

- 179 -

- datatype traffic_light = red | red_amber | green | amber;
> datatype traffic_light = red | red_amber | green | amber
con red = red : traffic_light
con red_amber = red_amber : traffic_light
con green = green : traffic_light
con amber = amber : traffic_light

This defines the data type traffic_light with the constructors red, red_amber, green and effect,amber.In
red, red_amber, green and amber are the values of the new type: traffic_light. An equality test for
traffic_light values is also defined.

For example, we can now define a function to change a traffic light from one stage to the next:

- fun change red = red_amber |
change red_amber = green |
change green = amber |
change amber = red;

> val change = fn : traffic_light -> traffic_light

The datatype binding is also used to define structured concrete types. The binding form is extended to:

datatype <constructor> = <constructor1> of <type expression1> |
<constructor2> of <type expression2> |
...
<constructorN> of <type expressionN>

where the extension of <type expression> is optional. This specifies a new type:

<constructor>

with values of the form:

<constructor1>(<value for <type expression1>>)
<constructor2>(<value for <type expression2>>)
etc.

<constructor1>, <constructor2>, etc are functions which build structured values of type
<constructor>.

For example, integer lists might be defined by:

- datatype intlist = intnil | intcons of int * intlist;
> datatype intlist = intnil | intcons of int * intlist
con intnil = intnil : intlist
con intcons = fn : (int * intlist) -> intlist

Now, intnil is an intlist and values of the form intcons(<int value>, <intlist value>) are
intlist. That is, intcons is a function which builds an intlist from an int and an intlist. For
example:

- intcons(1,intnil);
> intcons(1,intnil) : intlist

- intcons(1,intcons(2,intnil));
> intcons(1,intcons(2,intnil)) : intlist

- intcons(1,intcons(2,intcons(3,intnil)));
> intcons(1,intcons(2,intcons(3,intnil))) : intlist

- 180 -

A datatype constructor may be preceded by a type variable to parameterise the datatype. For example, SML lists might
be defined by:

- datatype ’a list = lnil | cons of ’a * (’a list);
> datatype ’a list = lnil | cons of ’a * (’a list)
con lnil : ’a list
con cons = fn : (’a * ’a list) -> (’a list)

This defines cons as a prefix constructor.

Type variables in datatype definitions may be set to other types in subsequent type expressions. For example, in:

- type intlist = int list
> type intlist = int list

the type variable ’a is set to int to use intlist to name an integer list type.

SML systems will also deduce the intended type when the constructor from a parameterised data type is used with
consistent values Thus, the following are all string lists:

- cons("ant",lnil);
> cons("ant",lnil) : string list

- cons("ant",cons("bee",lnil));
> cons("ant",cons("bee",lnil)) : string list

- cons("ant",cons("bee",cons("caterpiller",lnil)));
> cons("ant",cons("bee",cons("caterpiller",lnil))) : string list

Structured datatype values may also be used in patterns with typed variables and constructors in the tuple following
the datatype constructor. It is usual to have separate patterened definitions for base and for structured values.

For example, to sum the elements of an intlist:

- fun sum intnil = 0 |
sum (intcons(x:int,y:intlist)) = x + (sum y);

> val sum = fn : intlist -> int

- sum (intcons(9,intcons(8,intcons(7,intnil))));
> 24 : int

For examples, to join the elements of a string list:

- fun join lnil = "" |
join (cons(s:string,l:(string list))) = sˆjoin l;

> val join = fn : (string list) -> string

- join (cons("here",cons("we",cons("go",lnil))));
> "herewego" : string

Note that existing types cannot be used as base types directly. For example, we might try to define a general number
type as:

- datatype number = int | real;
> datatype number = int | real
con int = int : number
con real = int : number

- 181 -

but this defines the new type number with base constructors int and real as if they were simple identifiers for
constant values instead of types. A structured constructor must be used to incorporate existing types into a new type,
for example:

- datatype number = intnumb of int | realnumb of real;
> datatype number = intnumb of int | realnumb of real
con intnumb = fn : int -> number
con realnumb = fn : real -> number

For example:

- intnumb(3);
> intnumb(3) : number

- realnumb(3.3);
>realnumb(3.3) : number

Note that structure matching must now be used to extract the values from this structured type:

- fun ivalue (intnumb(n:int)) = n;
> val ivalue = fn : number -> int

- fun rvalue (realnumb(r:real)) = r;
> val rvalue = fn : number -> real

so, for example:

- ivalue (intnumb(3));
> 3 : int

- rvalue (realnumb(3.3));
> 3.3 : real

9.24. Trees

We looked at tree construction in chapter 7. We will now see how SML concrete datatypes may be used to construct
trees. First of all we will consider binary integer trees.

To recap: a binary integer tree is either empty or it is a node consisting of an integer value, a left sub-tree and a right
sub-tree. Thus, we can define a corresponding datatype:

- datatype inttree = empty | node of int * inttree * inttree;
> datatype inttree = empty | node of int * inttree * inttree
con empty = empty : inttree
con node = fn : (int * inttree * inttree) -> inttree

To add an integer to an integer binary tree, if the tree is empty then form a new node with the integer as value and
empty left and right sub-trees. Otherwise, if the integer comes before the root node value then add it to the left sub-
tree and if it comes afyer the root node value then add it to the right subtree:

- fun add (v:int) empty = node(v,empty,empty) |
add (v:int) (node(nv:int,l:inttree,r:inttree)) =
if v < nv
then node(nv,add v l,r)
else node(nv,l,add v r);

> val add = fn : int -> (inttree -> inttree)

- 182 -

For example:

- val root = empty;
> val root = empty : inttree

- val root = add 5 root;
> val root = node(5,empty, empty) : inttree

- val root = add 3 root;
> val root = node(5,

node(3,empty,empty),
empty) : inttree

- val root = add 7 root;
> val root = node(5,

node(3,empty,empty),
node(7,empty,empty)) : inttree

- val root = add 2 root;
> val root = node(5,

node(3,
node(2,empty,empty),
empty),

node(7,empty,empty)) : inttree

- val root = add 4 root;
> val root = node(5,

node(3,
node(2,empty,empty),
node(4,empty,empty)),

node(7,empty,empty)) : inttree

- val root = add 9 root;
> val root = node(5,

node(3,
node(2,empty,empty),
node(4,empty,empty)),

node(7,
empty,
node(9,empty,empty))) : inttree

Given an integer binary tree, to construct an ordered list of node values: if the tree is empty then return the empty list;
otherwise, traverse the left sub-tree, pick up the root node value and traverse the right subtree:

- fun traverse empty = [] |
traverse (node(v:int,l:inttree,r:inttree)) =
append (traverse l) (v::traverse r);

> val traverse = fn : inttree -> (int list)

For example:

- traverse root;
> [2,3,4,5,7,9] : int list

We can rewrite the above datatype to specify trees of polymorphic type by abstracting with the type variable ’a:

- datatype ’a tree = empty | node of ’a * (’a tree) * (’a tree);
> datatype ’a tree = empty | node of ’a * (’a tree) * (’a tree)

- 183 -

con empty = empty : (’a tree)
con node = fn : (’a * (’a tree) (’a tree)) -> (’a tree)

Similarly, we can define polymorphic versions of add:

- fun add _ (v:’a) empty = node(v,empty,empty) |
add (less:’a -> (’a -> bool))

(v:’a)
(node(nv:’a,l:’a tree,r:’a tree)) =

if less v nv
then node(nv,add less v l,r)
else node(nv,l,add less v r);

> val add = fn : (’a -> (’a -> bool)) ->
(’a -> ((’a tree) -> (’a tree)))

and traverse:

- fun traverse empty = [] |
traverse (node(v:’a,l:’a tree,r:’a tree)) =
append (traverse l) (v::traverse r);

> val traverse = fn : (’a tree) -> (’a list)

Note the use of the bound variable less in add to generalise the comparison between the new value and the node
value.

9.25. λλ calculus in ML

We can use SML to represent directly many pure λ functions. For example, the identity function is:

- fn x => x;
> fn : ’a -> ’a

Note that this is a polymorphic function from the domain ’a to the same range ’a.

Let us apply the identity function to itself:

- (fn x => x) (fn x => x);
> fn : ’a -> ’a

Alas, SML will not display nameless functions.

For example, the function application function is:

- fn f => fn x => (f x);
> fn : (’a -> ’b) -> (’a -> ’b)

This is another polymorphic function. Here, f is used as a function but its type is not specified so it might be ’a ->
’b for arbitrary domain ’a and arbitrary range ’b. f is applied to x so x must be ’a. The whole function returns the
result of applying f to x which is of type ’b.

Let us use this function to apply the identity function to itself:

- (fn f => fn x => (f x)) (fn x => x) (fn x => x);
> fn : ’a -> ’a

Once again, SML will not display the resulting function. Using global definitions does not help here:

- 184 -

- val identity = fn x => x;
> val identity = fn : ’a -> ’a

- identity identity;
> fn : ’a -> ’a

- val apply = fn f => fn x => (f x);
> val apply = fn : (’a -> ’b) -> (’a -> ’b)

- apply identity identity;
> fn : ’a -> ’a

as applicative order evaluation replaces name arguments with values.

Some of our λ functions cannot be represented directly in SML as the type system won’t allow self application. For
example, in:

fn s => (s s)

there is a type inconsistency in the function body:

(s s)

Here, the s in the function position is untyped so it might be ’a -> ’b. Thus, the s in the argument position should
be ’a but this clashes with the type for the s in the function position!

9.26. Other features

There are many aspects of SML which we cannot cover here. Most important are abstract type construction and
modularisation techniques and the use of exceptions to change control flow, in particular to trap errors. SML also
provides imperative constructs for assignment, I/O and iteration.

9.27. Summary

In this chapter we have:

• surveyed quickly Standard ML(SML)

• seen how to implement algorithms from preceding chapters in SML

• seen that some pure λ functions cannot be represented in SML

9.28. Exercises

1) Write and test functions to:

i) Find y3 given integer y.

ii) Find x implies y from x implies y == not x or y given x and y. The function implies
should be prefix.

iii) Find the smallest of the integers a, b and c.

- 185 -

iv) Join strings s1 and s2 together in descending alphabetic order.

v) Find the shorter of strings s1 and s2.

2) Write and test functions to:

i) Find the sum of the integers between 1 and n.

ii) Find the sum of the integers between m and n.

iii) Repeat a string s integer n times.

3) Write and test functions to:

i) Count the number of negative integers in a list l.

ii) Count how often a given string s occurs in a list l.

iii) Construct a list of all the integers in a list l which are greater than a given value v.

iv) Merge two sorted string lists s1 and s2. For example:

- smerge ["a","d","e"] ["b","c","f","g"];
> ["a","b","c","d","e","f","g"] : string list

v) Use smerge from iv) above to construct a single sorted string list from a list of sorted string lists. For example:

- slmerge [["a","c","i","j"],["b","d","f"],["e","g","h","k"]];
> ["a","b","c","d","e","f","g","h","i","j","k"] : string list

vi) Process a list of stock records represented as tuples of:

item name - string
no. in stock - integer
reorder level - integer

to:

a) construct a list of those stock records with the number in stock less than the reorder level. For example:

- check [("RAM",9,10),("ROM",12,10),("PROM",20,21)];
> [("RAM",9,10),("PROM",20,21)] : (string * int * int) list

b) update a list of stock records from a list of update records represented as tuples of:

item name - string
update no. - integer

by constructing a new stock list of records with the number in stock increased by the update number.

The update records may be in any order. There may not be update records for all stock items. There may be
more than one update record for any stock item. For example:

- update [("RAM",9,10),("ROM",12,10),("PROM",20,21)]
[("PROM",15),("RAM",12),("PROM",15)];

> [("RAM",21,10),("ROM",12,10),("PROM",50,21)] : (string * int * int) list

- 186 -

4) Write functions to:

i) Extract the leftmost n letters from string s:

- left 4 "goodbye";
> "good" : string

ii) Extract the rightmost n letters from string s:

- right 3 "goodbye";
> "bye" : string

iii) Extract n letters starting with the l’th letter from string s:

- middle 2 5 "goodbye";
> "by" : string

iv) Find the position of the first occurence of string s1 in string s2:

- find "by" "goodbye";
> 5 : int

5) The train travelling east from Glasgow Queen’s Street to Edinburgh Waverly passes through Bishopbriggs,
Lenzie, Croy, Polmont, Falkirk High, Linlithgow and Edinburgh Haymarket. These stations might be
represented by the data type:

datatype station = Queens_Street | Bishopbriggs |
Lenzie | Croy |
Polmont | Falkirk_High |
Linlithgow | Haymarket | Waverly;

Write functions which return the station to the east or the west of a given station, for example:

- east Croy;
> Polmont : station

- west Croy;
> Lenzie : station

6) The data type:

datatype exp = add of exp * exp |
diff of exp * exp |
mult of exp * exp |
quot of exp * exp |
numb of int;

might be used to represent strictly bracketed integer arithmetic expressions:

<expression> ::= (<expression> + <expression>) |
(<expression> - <expression>) |
(<expression> * <expression>) |
(<expression> / <expression>) |
<integer>

so:

- 187 -

(<expression1> + <expression2>) == add(<expression1>,<expression2>)
(<expression1> - <expression2>) == diff(<expression1>,<expression2>)
(<expression1> * <expression2>) == mult(<expression1>,<expression2>)
(<expression1> / <expression2>) == quot(<expression1>,<expression2>)
<integer> == numb(<integer>)

For example:

1 == numb(1)
(1 + 2) == add(numb(1),numb(2))
((1 * 2) + 3) == add(mult(numb(1),numb(2)),numb(3))
((1 * 2) + (3 - 4)) == add(mult(numb(1),numb(2)),diff(numb(3),numb(4)))

Write a function which evaluates an arithemtic expression in this representation, for example:

- eval (numb(1));
> 1 : exp

- eval (add(numb(1),numb(2)));
> 3 : exp

- eval (add(mult(numb(1),numb(2)),numb(3)));
> 5 : exp

- eval (add(mult(numb(1),numb(2)),diff(numb(3),numb(4))));
> 1 : exp

10. FUNCTIONAL PROGRAMMING AND LISP

10.1. Introduction

LISP(LISt Processor) is a widely used artificial intelligence language. It is weakly typed with run-time type checking.
Functions calls are evaluated in applicative order. LISP lacks structure and pattern matching.

Although LISP is not a pure functional language, it has a number of functional features. Like the λ calculus, LISP has
an incredibly simple core syntax. This is based on bracketed symbol sequences which may be interpreted as list data
structures or as function calls. The shared representation of data and program reputedly makes LISP particularly
appropriate for artificial intelligence applications.

The original LISP programming system was devised by McCarthy in the late 1950’s as an aid to the Advice Taker
experimental artificial intelligence system. McCarthy’s early description of LISP was based on a functional formalism
influenced by λ calculus, known as M-expressions(Meta expressions). These were represented in an extremely
simple S-expression’(Symbolic expression) format for practical programming. Contemporary LISP systems are
based solely on the S-expression format although other functional languages are reminiscent of the richer M-
expressions. We won’t consider M-expressions here.

LISP, like BASIC, is not a unitary language and is available in a number of widely differing dialects. The heart of
these differences, as we shall see, lies in the way that name/object associations are treated. Here we will consider
COMMON LISP which is a modern standard. We will also look briefly at Scheme, a fully functional LISP. Other
LISPs include FRANZ LISP which is widely available on UNIX systems, MACLISP and INTERLISP which
COMMON LISP subsumes, and Lispkit Lisp which is another fully functional LISP.

It is important to note that LISP has been refined and developed for many years and so is not a very ‘clean’ language.
LISP systems differ in how some aspects of LISP are implemented. Some aspects of LISP are extremely arcane and
subject to much disputation amongst the cognoscenti. Furthermore, while LISP has much in common with functional

- 188 -

languages it is actually used as an imperative programming language for most applications.

We will only look at enough LISP to see how it corresponds to our functional approach. Many details will,
necessarily, be omited.

10.2. Atoms, numbers and symbols

The basic LISP objects are atoms composed of sequences of printing characters. Whenever a LISP system sees an
atom it tries to evaluate it.

COMMON LISP provides distinct representations for integer, ratio, floating point and complex number atoms. Here,
we will only consider integers. These consist of digit sequences preceded by an optional sign, for example:

0 42 -99

The result of evaluating a number is that number.

Symbols or literals are non-numeric atoms and correspond to names, for example:

banana BANANA forty_two --> +

Symbols have associated values. The result of evaluating a symbol is its associated value. There are a large number of
system symbols with standard associated values known as primitives. As we will see, symbols are also objects in
their own right.

10.3. Forms, expressions and function applications

The form is the basic LISP construct and consists of an atom or a left bracket followed by zero or more atoms or
forms ending with a right bracket:

<form> ::= <atom> | (<forms>) | ()
<forms> ::= <form> | <form> <forms>

Forms are used for all expressions and data structures in LISP. Forms are always strictly bracketed except when
special shorthand constructs are introduced.

Expressions are always prefix. The first form in a bracketed form sequence is interpreted as the function. Subsequent
forms are interpreted as arguments. Thus, in a bracketed sequence of forms, we will refer to the first form as the
function and to the subsequent forms as the arguments. We will also refer to primitives as if they were system
functions.

Forms are evaluated in applicative order from left to right. For expressions, we will use -> to indicate a result after
applicative order evaluation.

Note that the function form may be the name of a function or a lambda expression but may NOT be an expression
returning a function!

Note that the argument form may NOT be a lambda function or the name from a global definition or the name of a
primitive!

Special primitives and techniques are used to treat functions as values.

- 189 -

10.4. Logic

t

is the primitive for TRUE and:

nil

is the primitive for FALSE.

not and or

are the primitives for the logical negation, conjunction and disjunction functions respectively. These may be used to
construct simple logical expressions as forms, for example:

(not t) ->
nil

(and t nil) ->
nil

(or (and t nil) (not nil)) ->
t

In LISP, unlike most programming languages, and and or may have more than two arguments. For and, the final
value is the conjunction of all the arguments, for example:

(and t nil t) ->
nil

For or, the final value is the disjunction of all the arguments, for example:

(or t nil t) ->
t

10.5. Arithmetic and numeric comparison

+ - * /

are the primitives for the addition, subtraction, multiplication and division functions. These may be used with numbers
to construct simple arithmetic expressions, for example:

(+ 40 2) ->
42

(- 46 4) ->
42

(* 6 (+ 3 4)) ->
42

(/ (+ 153 15) (- 7 3)) ->
42

As with and and or, these functions may have more than two arguments, so + returns the sum, - the difference, *
the product and / the overall quotient, for example:

- 190 -

(+ 12 25 5) ->
42

(- 59 8 9) ->
42

(* 3 2 7) ->
42

(/ 336 4 2) ->
42

/ is actually a real division operator. The primitive

truncate

rounds a single argument down to the nearest integer. If truncate is given two arguments then it divides one by the
other and rounds the result down to the nearest integer, for example:

(truncate 43 6) ->
7

The primitive:

rem

returns the integer remainder after division, for example:

(rem 43 6) ->
1

The numeric less than, less than or equal, equality, greater than and greater than or equal primitive comparison
functions are:

< <= = >= >

These may all be used with more than two arguments. Thus = checks that all its arguments are equal, for example:

(= 2 2 2 2 2) ->
t

<= checks that its arguments are in ascending order, for example:

(<= 1 2 2 3 4 5) ->
t

< checks that its arguments are in strictly ascending order, for example:

(< 1 2 2 3 4 5) ->
nil

>= checks that its arguments are in descending order, for example:

(>= 5 4 3 3 2 1) ->
t

and > checks that its arguments are in strictly descending order, for example:

- 191 -

(> 9 8 7 6 5) ->
t

The primitive:

numberp

returns true if its argument is a number. For example,

(numberp 42) ->
t

10.6. Lambda functions

LISP uses a notation like that for the λ calculus to define nameless functions.

It is important to note that LISP functions do not have all the properties we might expect from the λ calculus. In
particular, special techniques are needed to pass functions as arguments, to return functions as values and to apply
functions returned as values to new arguments.

Functions are defined as forms with the primitive:

lambda

followed by a flat list of bound variables and the body form:

(lambda (<bound variables>) <body>)

where:

<bound variables> ::= <bound variable> | <bound variable> <bound variables>

For example, to square a number:

(lambda (x) (* x x))

or to find the sum of the squares of two numbers:

(lambda (x y) (+ (* x x) (* y y)))

or to find the value of the quadratic:

ax2+bx+c

given a, b, c and x:

(lambda (a b c x) (+ (* a (* x x)) (* b x) c)))

Note that functions are normally uncurried in LISP.

Note that LISP systems will reject attempts to present lambda functions directly as values other than in the function
position in a form. lambda is not a primitive which denotes a system function. Instead it acts as a marker to indicate
a function form. However, if a LISP system sees a naked lambda function form it will try to find a function associated
with lambda and fail. The special techniques needed to manipulate function values are discussed below.

A function is applied to arguments in a form with the function followed by the arguments. The function’s body is
evaluated with the bound variables associated initially with the corresponding arguments:

- 192 -

(<function> <argument1> <argument2> ...)

Note that arguments for uncurried functions are not bracketed but follow straight after the function.

For example:

((lambda (x) (* x x)) 2) ->
4

((lambda (x y) (+ (* x x) (* y y))) 3 4) ->
25

((lambda (a b c x) (+ (* a (* x x)) (* b x) c))) 1 2 1 1) ->
4

10.7. Global definitions

LISP systems are usually interactive and accept forms from the input for immediate evaluation. Global definitions
provide a way of naming functions for use in subsequent forms.

A definition is a form with the primitive:

defun

followed by the name, bound variable list and the body form:

(defun <name> (<bound variable list>) <body>)

Many LISP systems print the defined name after a definition. For example:

(defun sq (x) (* x x)) ->
sq

(defun sum_sq (x y) (+ (* x x) (* y y))) ->
sum_sq

(defun quad (a b c x) (+ (* a (* x x)) (* b x) c)) ->
quad

A defined name may then be used instead of a lambda function in other forms. For example:

(sq 2) ->
4

(sum_sq 3 4) ->
25

(quad 1 2 1 2) ->
9

In particular, defined names may be used in other definitions. For example, the last two definitions might be shortened
to:

(defun sum_sq (x y) (+ (sq x) (sq y)))

(defun quad (a b c x) (+ (* a (sq x)) (* b x) c))

- 193 -

It is important to note that a global definition establishes a special sort of name/value relationship which is not the
same as that between bound variables and values.

10.8. Conditional expressions

LISP conditional expressions are forms with the primitive:

cond

followed by a sequence of options. Each option is a test expression followed by a result expression which is to be
evaluated if the test expression is true:

(cond (<test1> <result1>)
(<test2> <result2>)
...
(t <resultN>))

Note that the last option’s test expression is usually t to ensure a final value for the conditional.

When a conditional expression is evaluated, each option’s test expression is tried in turn. When a true test expression
is found, the value of the corresponding result expression is returned. This is like a nested sequence of if ...
then ... else expressions.

Note that a conditional expression is not evaluated in applicative order.

For example, to find the larger of two values:

(defun max (x y)
(cond ((> x y) x)

(t y)))

or to define logical not:

(defun lnot (x)
(cond (x nil)

(t t)))

or to define logical and:

(defun land (x y)
(cond (x y)

(t nil)))

COMMON LISP provides a simpler conditional primitive:

if

which is followed by a test and expressions to be evaluated if the test is true or false:

(if <test>
<true result>
<false result>)

For example, to find the smaller of two numbers:

(defun min (x y)
(if (< x y)

- 194 -

x
y))

or to define logical or:

(defun lor (x y)
(if x

t
y))

10.9. Quoting

We said above that in LISP forms are used as both program and data structures. So far, we have used forms as
function calls in general and to build higher level control structures using special system primitives which control
form evaluation. In order to use forms as data structures additional primitives are used to prevent form evaluation.
This is a different approach to the λ calculus where data structures are packaged as functions with bound variables to
control the subsequent application of selector functions.

In LISP, a mechanism known as quoting is used to delay form evaluation. This is based on the idea from ordinary
language use that if you want to refer to something’s name rather than that thing then you put the name in quotation
marks. For example:

Edinburgh is in Scotland

is a statement about a city, whereas:

‘Edinburgh’ has nine letters

is a statement about a word. Putting in the quotation marks shows that we are interested in the letter sequence rather
than the thing which the letter sequence refers to. In LISP, quoting is used to prevent form evaluation. Quoting a form
shows that we are interested in the sequence of sub-forms as a structure rather than the form’s final value. Quoting is a
special sort of abstraction for delaying evaluation. Later on, we will see how it can be reversed.

When the LISP primitive:

quote

is applied to an argument then that argument is returned unevaluated:

(quote <argument>) -> <argument>

In particular, a symbol argument is not replaced by its associated value but becomes an object in its own right.

Quoting is so widely used in LISP that the special notation:

’<argument>

has been introduced. This is equivalent to the above use of the quote primitive.

10.10. Lists

LISP is perhaps best known for the use of list processing as the basis of programming.

The empty list is the primitive:

- 195 -

nil

which may be also written as:

()

The tester for an empty list is the primitive:

null

This is the same as not because FALSE is nil in LISP and anything which is not FALSE is actually TRUE!

Lists may be constructed explicitly with the:

cons

primitive:

(cons <head> <tail>)

The <head> and <tail> arguments are evaluated, and a list with <head>s value in the head and <tail>s value
in the tail is formed.

If the eventual tail is not the empty list then the dotted pair representation is used for the resultant list:

<head value> . <tail value>

For example:

(cons 1 2) ->
1 . 2

(cons 1 (cons 2 3)) ->
1. (2 . 3)

(cons (cons 1 2) (cons 3 4)) ->
(1 . 2) . (3 . 4)

(cons (cons 1 2) (cons (cons 3 4) (cons 5 6))) ->
(1 . 2) . ((3 . 4) . (5 . 6))

When a list ends with the empty list then a flat representation based on forms is used with an implicit empty list at the
end. For example:

(cons 1 nil) ->
(1)

(cons 1 (cons 2 nil)) ->
(1 2)

(cons (cons 1 (cons 2 nil)) (cons (cons 3 (cons 4 nil)) nil)) ->
((1 2) (3 4))

Thus, as in chapter 6, the empty list nil is equivalent to the empty form ().

Note that lists built by cons and ending with the empty list appear to be forms but are not actually evaluated further
as function calls.

- 196 -

Lists may be constructed directly in form notation and this is the most common approach. Note, however, that list
forms must be explicitly quoted to prevent function call evaluation. For example:

(1 2 3)

looks like a call to the function 1 with arguments 2 and 3, whereas:

’(1 2 3)

is the list:

1 . (2 . (3 . nil))

The primitive:

list

is a multi-argument version of cons but constructs a list ending with the empty list. For example:

(list 1 2) ->
(1 2)

(list 1 2 3) ->
(1 2 3)

(list (list 1 2) (list 3 4)) ->
((1 2) (3 4))

(list (list 1 2) (list 3 4) (list 5 6)) ->
((1 2) (3 4) (5 6))

The primitive:

listp

returns true if its argument is a list.

For example:

(listp ’(1 2 3 4)) ->
t

10.11. List selection

The head of a LISP list is known as the car and the tail as the cdr. This is from the original IBM 704 implementation
where a list head was processed as the ‘Contents of the Address Register’ and the tail as the ‘Contents of the
Decrement Register’. Thus:

car

is the head selection primitive and:

cdr

is the tail selection primitive. For example:

- 197 -

(car ’(1 2 3)) ->
1

(cdr ’(1 2 3)) ->
(2 3)

(car (cdr ’(1 2 3))) ->
2

(cdr (cdr ’(1 2 3))) ->
(3)

Note that sub-lists selected from lists appear to be forms but are not further evaluated as function call forms by car or
cdr.

10.12. Recursion

In LISP, recursive functions are based on function definitions with the defined name appearing in the function body.
For example, to find the length of a linear list:

(defun length (l)
(if (null l)

0
(+ 1 (length (cdr l)))))

and to count how often a value appears in a linear list of numbers:

(defun count (x l)
(cond ((null l) 0)

((= x (car l)) (+ 1 (count x (cdr l))))
(t (count x (cdr l)))))

For example, to insert a value into an ordered list:

(defun insert (x l)
(cond ((null l) (cons x nil))

((< x (car l)) (cons x l))
(t (cons (car l) (insert x (cdr l))))))

and to sort a list:

(defun sort (l)
(if (null l)

nil
(t (insert (car l) (sort (cdr l))))))

10.13. Local definitions

LISP provides the:

let

primitive for the introduction of local variables in expressions:

(let ((<variable1> <value1>)

- 198 -

(<variable2> <value2>)
...)
(<result>))

is equivalent to the function call:

((lambda (<variable1> <variable2> ...) <result>) <value1> <value2> ...)

For example, to insert a value into an ordered list if it is not there already:

(defun new_insert (x l)
(if (null l)

(cons x nil)
(let ((hl (car l))

(tl (cdr l)))
(cond ((= x hl) l)

((< x hl) (cons x l))
(t (cons hl (new_insert x tl)))))))

Here, if the list is empty then a new list with the value in the head is returned. Otherwise, the head and tail of the list
are selected. If the head matches the value then the list is returned. If the value comes before the head then it is added
before the head. Otherwise the value is inserted in the tail.

10.14. Binary trees in LISP

In chapter 7 we looked at the construction of binary trees using a list representation. This translates directly into LISP:
we will use nil for the empty tree and the list:

(<item> <left> <right>)

for the tree with node value <item>, left branch <left> and right branch <right>.

We will use:

(defun node (item left right) (list item left right))

to construct new nodes.

LISP has no pattern matching so it is useful to define selector functions:

(defun item (l) (car l))

(defun left (l) (car (cdr l)))

(defun right (l) (car (cdr (cdr l))))

for the node value, left branch and right branch.

Thus, to add an integer to an ordered binary tree:

(defun tadd (i tree)
(cond ((null tree) (node v nil nil))

((< i (item tree)) (node (item tree) (tadd i (left tree) (right tree))))
(t (node (item tree) (left tree) (tadd i (right tree))))))

For example:

- 199 -

(tadd 7 nil) ->
(7 nil nil)

(tadd 4 ’(7 nil nil)) ->
(7
(4 nil nil)
nil)

(tadd 10 ’(7 (4 nil nil) nil)) ->
(7
(4 nil nil)
(10 nil nil))

(tadd 2 ’(7 (4 nil nil) (10 nil nil))) ->
(7
(4
(2 nil nil)
nil)
(10 nil nil))

(tadd 5 ’(7 (4 (2 nil nil) nil) (10 nil nil))) ->
(7
(4
(2 nil nil)
(5 nil nil))
(10 nil nil))

Hence, to add a list of numbers to an ordered binary tree:

(defun taddlist (l tree)
(if (null l)

tree
(taddlist (cdr l) (tadd (car l) tree))))

Finally, to traverse a binary tree in ascending order:

(defun traverse (tree)
(if (null tree)

nil
(append (traverse (left tree))

(cons (item tree) (traverse (right tree))))))

For example:

(traverse ’(7 (4 (2 nil nil) (5 nil nil) (10 nil nil))) ->
(2 4 5 7 10)

10.15. Dynamic and lexical scope

LISP is often presented as if it were based on the λ calculus but this is somewhat misleading. LISP function
abstraction uses a notation similar to the λ abstraction but the relationship between bound variables and variables in
expressions is rather opaque.

In our presentation of λ calculus, names have lexical or static scope. That is, a name in an expression corresponds to
the bound variable of the innermost enclosing function to define it.

- 200 -

Consider the following contrived example. We might define:

def double_second = λx.λx.(x + x)

This is a function with bound variable:

x

and body:

λx.(x + x)

Thus, in the expression:

(x + x)

the xs correspond to the second rather than the first bound variable. We would normally avoid any confusion by
renaming:

def double_second = λx.λy.(y + y)

For lexical scope, the bound variable corresponding to a name in an expression is determined by their relative
positions in that expression, before the expression is evaluated. Expression evaluation cannot change that static
relationship.

Early LISPs were based on dynamic scope where names’ values are determined when expressions are evaluated.
Thus, a name in an expression corresponds to to the most recent bound variable/value association with the same name,
when that name is encountered during expression evaluation. This is effectively the same as lexical scope when a
name is evaluated in the scope of the corresponding statically scoped bound variable.

However, LISP functions may contain free variables and a function may be created in one scope and evaluated in
another. Thus, a name might refer to different variables depending on the scopes in which it is evaluated. Expression
evaluation can change the name/bound variable correspondence.

For example, suppose we want to calculate the tax on a gross income but do not know the rate of tax. Instead of
making the tax rate a bound variable we could make it a free variable. Our approach to the λ calculus does not allow
this unless the free variable has been introduced by a previous definition. However, this is allowed in LISP:

(defun tax (gross)
(/ (* gross rate) 100))

Note that rate is free in the function body. For a LISP with dynamic scope, like FRANZ LISP, rate’s value is
determined when:

(/ (* gross rate) 100)

is evaluated. For example, if the lowest rate of tax is 25% then we might define:

(defun low_tax (gross)
(let ((rate 25))

(tax gross)))

When low_tax is applied to an argument, rate is set to 25 and then tax is called. Thus, rate in tax is
evaluated in the scope of the local variable rate in low_tax and will have the value 25.

In LISPs with dynamic scope this use of free variables is seen as a positive advantage because it delays decisions
about name/value associations. Thus, the same function with free variables may be used to different effect in different
places.

- 201 -

For example, suppose the average tax rate is 30%. We might define:

(defun av_tax (gross)
(let ((rate 30))

(tax gross)))

Once again, the call to tax in av_tax evaluates the free variable rate in tax in the scope of the local rate in
av_tax, this time with value 30.

It is not clear whether or not dynamic scope was a conscious feature or the result of early approaches to implementing
LISP. COMMON LISP is based on lexical scope but provides a primitive to make dynamic scope explicit if it is
needed. Attempts to move lexically scoped free variables in and out of different scopes are faulted in COMMON
LISP.

10.16. Functions as values and arguments

In looking at the λ calculus, we have become used to treating functions as objects which can be manipulated freely.
This approach to objects is actually quite uncommon in programming languages, in part because until comparatively
recently it was thought that it was hard to implement.

In LISP, functions are not like other objects and cannot be simply passed around as in the λ calculus. Instead, function
values must be identified explicitly and applied explicitly except in the special case of the function form in a function
application form.

The provision of functions as first class citizens in LISP used to be known as the FUNARG problem because
implementation problems centred on the use of functions with free variables as arguments to other functions. This
arose because of dynamic scope where a free variable is associated with a value in the calling rather than the defining
scope. However, it is often necessary to return a function value with free variables frozen to values from the defining
scope. We have used this in defining typed functions in chapter 5.

The traditional way round the FUNARG problem is to identify function values explicitly so that free variables can be
frozen in their defining scopes. The application of such function values is also made explicit so that free variables are
not evaluated in the calling scope. This freezing of free variables in a function value is often implemented by
constructing a closure which identifies the relationship between free and lexical bound variables.

COMMON LISP is based on lexical scope where names are frozen in their defining scope. None the less, COMMON
LISP still requires function values to be identified and applied explicitly.

In COMMON LISP, the primitive:

function

is used as a special form of quoting for functions:

(function <function>)

It creates a function value in which free variables are associated with bound variables in the defining scope. As with
quote, an equivalent special notation:

#’<function>

is provided.

Note that most LISP systems will not actually display function values as text. This is because they translate functions
into intermediate forms to ease implementation but lose the equivalent text. Some systems may display an
implementation dependent representation.

- 202 -

For example, we could define a general tax function:

(defun gen_tax (rate)
#’(lambda (gross) (/ (* gross rate) 100)))

We might then produce the low and average tax rate functions as:

(gen_tax 25)

and

(gen_tax 30)

which return lambda function values with rate bound to 25 and 30 respectively.

The primitive:

funcall

is used to apply a function value to its arguments:

(funcall <function value> <argument1> <argument2> ...)

For example, to apply the low tax function to a gross income:

(funcall (gen_tax 25) 10000) ->
2500

This call builds a function value with rate bound to 25 and then applies it to the gross income 10000. Similarly:

(funcall (gen_tax 30) 15000) ->
4500

builds a function value with rate bound to 30 and then applies it to the gross income 15000.

For example, the mapping function mapcar may be defined as:

(defun mapcar (fn arg)
(if (null arg)

nil
(cons (funcall fn (car arg)) (mapcar fn (cdr arg)))))

Note that the function fn is applied explicitly to the argument car arg by funcall. Now, we could square every
element of a list with:

(defun sq_list (l)
(mapcar #’(lambda (x) (* x x)) l))

Note that the function argument for mapcar has been quoted with #’.

Note that even if a function value argument is identified simply by name then that name must still be quoted with #’
before it may be used as an argument. For example, to apply sq to every element of a list:

(mapcar #’sq ’(1 2 3 4 5))

- 203 -

10.17. Symbols, quoting and evaluation

Normally, symbols are variable names but they may also be used as objects in their own right. Quoting a symbol
prevents the associated value being extracted. Thereafter, a quoted symbol may be passed around like any object.

One simple use for quoted symbols is as Pascal-like user defined enumeration types. For example, we might define the
days of the week as:

’Monday ’Tuesday ’Wednesday ’Thursday ’Friday ’Saturday ’Sunday

We could then write functions to manipulate these objects. In particular, they may be compared with the equality
primitive which is true if its arguments are identical objects:

eq

Note that in Pascal enumeration types are mapped onto integers and so have successor functions defined automatically
for them. In LISP, we have to define a successor function explicitly if we need one. For example:

(defun next_day (day)
(cond ((eq day ’Monday) ’Tuesday)

((eq day ’Tuesday) ’Wednesday)
((eq day ’Wednesday) ’Thursday)
((eq day ’Thursday) ’Friday)
((eq day ’Friday) ’Saturday)
((eq day ’Saturday) ’Sunday)
((eq day ’Sunday) ’Monday)))

The primitive:

eval

forces evaluation of a quoted form as a LISP expression. Thus, functions can construct quoted forms which are
program structures for later evaluation by other functions. Thus, compiling techniques can be used to produce LISP
from what is apparently data. For example, the rules for an expert system might be translated into functions to
implement that system. Similarly, the grammar for an interface language might be used to generate functions to
recognise that language.

For example, suppose we want to translate strictly bracketed infix arithmetic expressions:

<expression> ::= <number> |
(<expression> + <expression>) |
(<expression> - <expression>) |
(<expression> * <expression>) |
(<expression> / <expression>)

into prefix form so:

(<expression> + <expression>) == (+ <expression> <expression>)
(<expression> - <expression>) == (- <expression> <expression>)
(<expression> * <expression>) == (* <expression> <expression>)
(<expression> / <expression>) == (/ <expression> <expression>)

We need to extract the operator and place it at the head of a list with the translated expressions as arguments:

(defun trans (l)
(if (numberp l)

l
(let ((e1 (trans (car l)))

- 204 -

(op (car (cdr l)))
(e2 (trans (car (cdr (cdr l))))))
(list op e1 e2))))

For example:

(trans ’(1 + 2)) ->
(+ 1 2)

(trans ’(3 * (4 * 5))) ->
(* 3 (* 4 5))

(trans ’((6 * 7) + (8 - 9))) ->
(+ (* 6 7) (- 8 9))

Note that quoted symbols for infix operators have been moved into the function positions in the resultant forms.

Now, we can evaluate the translated expression, as a LISP form, using eval:

(defun calc (l)
(eval (trans l)))

For example:

(calc ’((6 * 7) + (8 - 9))) ->
41

The treatment of free variables in quoted forms depends on the scope rules. For dynamic scope systems, quoted free
variables are associated with the corresponding bound variable when the quoted form is evaluated. Thus, with
dynamic scope, quoting can move free variables into different evaluation scopes.

In COMMON LISP, with lexical scope, quoted free variables are not associated with bound variables in the defining
scope as might be expected. Instead, they are evaluated as if there were no bound variables defined apart from the
names from global definitions.

10.18. λλ calculus in LISP

We can use function and funcall for rather clumsy applicative order pure λ calculus. For example, we can try
out some of the λ functions we met in chapter 2. First of all, we can apply the identity function:

#’(lambda (x) x)

to itself:

(funcall #’(lambda (x) x) #’(lambda (x) x))

Note that some LISP implementations will not print out the resultant function and others will print a system sepecific
representation.

Let us now use definitions:

(defun identity (x) x) ->
identity

(funcall #’identity #’identity)

- 205 -

Note once again that there may be no resultant function or an internal representation will be printed.

Let us apply the self application function to the identity function:

(funcall #’(lambda (s) (funcall s s)) #’(lambda (x) x))

Notice that we must make the application of the argument to itself explicit. Now, let us use definitions:

(defun self_apply (s) (funcall s s)) ->
self_apply

(funcall #’self_apply #’identity)

Finally, let u try the function application function:

(defun apply (f a) (funcall f a)) ->
apply

with the self application function and the identity function:

(funcall #’apply #’self_apply #’identity)

Pure λ calculus in LISP is complicated by this need to make function values and their applications explicit and by the
absence of uniform representations for function values.

10.19. λλ calculus and Scheme

Scheme is a language in the LISP tradition which provides function values without explicit function identification and
application. Scheme, like other LISPs, uses the bracket based form as the combined program and data structure, is
weakly typed and has applicative order evaluation. Like COMMON LISP, Scheme is lexically scoped. We are not
going to look at Scheme in any depth. Here, we are only going to consider the use of function values.

In Scheme, functions are true first class objects. They may be passed as arguments and function expressions may
appear in the function position in forms. Thus, many of our pure λ calculus examples will run with a little translation
into Scheme. However, Scheme systems may not display directly function values as text but may produce a system
dependent representation.

Let us consider once again the examples from chapter 2. We can enter a lambda function directly, for example the
identity function:

(lambda (x) x)

We can also directly apply functions to functions, for example we might apply the identity function to itself:

((lambda (x) x) (lambda (x) x))

Alas, the representation of the result depends on the system.

Scheme function definitions have the form:

(define (<name> <argument1> <argument2> ...) <body>)

Defined functions may be applied without quoting:

(define (identity x) x) ->
identity

- 206 -

(identity identity)

Note once again that there may be no resultant function or a system specific internal representation may be printed.

To continue with the self application and function application functions:

(lambda (s) (s s))

((lambda (s) (s s)) (lambda (x) x))

(define (self_apply s) (s s)) ->
self_apply

(self_apply identity)

(define (apply f a) (f a)) ->
apply

(apply self_apply identity)

This explicit use of function values is much closer to the λ calculus than COMMON LISP though there is still no
uniform representation for function values.

10.20. Other features

It is impossible to consider an entire language in a small chapter. Here, we have concentrated COMMON LISP in
relation to pure functional programming. COMMON LISP has come along way since the original LISP systems. In
particular, it includes a wide variety of data types which we have not considered including characters, arrays, strings,
structures and multiple value objects. We also have not looked at input/output and other system interface facilities.

10.21. Summary

In this chapter we have:

• surveyed quickly COMMON LISP

• seen how to implement algorithms from preceding chapters in COMMON LISP

• seen that treating functions as objects in COMMON LISP involves explicit notation and that there is no
standard representation for function results.

• seen that Scheme simplifies treating functions as objects but lacks a standard representation for function results.

10.22. Exercises

1) (c.f. Chapter 4 Exercises 1, 2, 3 & 4) Write functions to:

i) find the sum of the integers between n and 0.

ii) find the product of the numbers between n and 1.

iii) find the sum of applying a function fun to the numbers between n and 0.

- 207 -

iv) find the sum of applying a function fun to the numbers between n and zero in steps of s.

2) (c.f. Chapter 6 Exercise 2)

i) Write a function which indicates whether or not a list starts with a sub-list. For example:

(lstarts ’(1 2 3) ’(1 2 3 4 5)) ->
t

(lstarts ’(1 2 3) ’(4 5 6)) ->
nil

ii) Write a function which indicates whether or not a list contains a given sub-list. For example:

(lcontains ’(4 5 6) ’(1 2 3 4 5 6 7 8 9)) ->
t

(lcontains ’(4 5 6) ’(2 4 6 8 10)) ->
nil

iii) Write a function which counts how often a sub-list appears in another list. For example:

(lcount ’(1 2) ’(1 2 3 1 2 3 1 2 3)) ->
3

iv) Write a function which removes a sub-list from the start of a list, assuming that you know that the sub-list
starts the list. For example:

(lremove ’(1 2 3) ’(1 2 3 4 5 6 7 8 9)) ->
(4 5 6 7 8 9)

v) Write a function which deletes the first occurence of a sub-list in another list. For example:

(ldelete ’(4 5 6) ’(1 2 3 4 5 6 7 8 9) ->
(1 2 3 7 8 9)

(ldelete ’(4 5 6) ’(2 4 6 8 10)) ->
(2 4 6 8 19)

vi) Write a function which inserts a sub-list after the first occurence of another sub-list in a list. For example:

(linsert ’(4 5 6) ’(1 2 3) ’(1 2 3 7 8 9)) ->
(1 2 3 4 5 6 7 8 9)

(linsert ’(4 5 6) ’(1 2 3) ’(2 4 6 8 10)) ->
(2 4 6 8 10)

vii) Write a function which replaces a sub-list with another sub-list in a list. For example:

(lreplace ’(6 5 4) ’(4 5 6) ’(9 8 7 6 5 4 3 2 1)) ->
(9 8 7 4 5 6 3 2 1)

(lreplace ’(6 5 4) ’(4 5 6) ’(2 4 6 8 10)) ->
(2 4 6 8 10)

3) (c.f. Chapter 6 Exercise 3)

- 208 -

i) Write a function which merges two ordered lists to produce an ordered list.

ii) Write a function which merges a list of ordered lists.

4) (c.f. Chapter 7 Exercise 1)

The time of day might be represented as a list with three integer fields for hours, minutes and seconds:

(<hours> <minutes> <seconds>)

For example:

(17 35 42) == 17 hours 35 minutes 42 seconds

Note that:

24 hours = 0 hours
1 hour == 60 minutes
1 minute == 60 seconds

i) Write functions to convert from a time of day to seconds and from seconds to a time of day. For example:

(too_secs (2 30 25)) ->
9025

(from_secs 48975) ->
(13 36 15)

ii) Write a function which increments the time of day by one second. For example:

(tick (15 27 18)) ->
(15 27 19)

(tick (15 44 59)) ->
(15 45 0)

(tick (15 59 59) ->
(16 0 0)

(tick (23 59 59) ->
(0 0 0)

iii) In a shop, each transaction at a cash register is time stamped. Given a list of transaction details, where each
is a string followed by a time of day, write a function which sorts them into ascending time order. For example:

(tsort ’((haggis (12 19 57))
(bannocks (18 22 48))
(white_pudding (10 12 35))
(oatcakes (15 47 19)))) ->

((white_pudding (10 12 35))
(haggis (12 19 57))
(oatcakes (15 47 19))
(bannocks (18 22 48)))

5) (c.f. Chapter 7 Exercise 2)

i) Write a function which compares two integer binary trees.

- 209 -

ii) Write a function which indicates whether or not one integer binary tree contains another as a sub-tree.

iii) Write a function which traverses a binary tree to produce a list of node values in descending order.

- 210 -

Bibliography

This is an introductory book which draws on a wide range of sources. Most of the material here is covered in other
texts though often with different perspectives and emphases. This bibliography is not exhaustive: rather, it offers a
broad cross section of source and supplementary material. References are almost entirely to books on the grounds that
these tend to be more discursive than academic papers.

Chapter 1 - Introduction

Backus’3 influential paper contains a critique of von Neumann computing and arguments for functional
programming.

Brief motivational material on functional programming is contained in Sadler and Eisenbach48, Glaser, Hankin
and Till21, Henderson30 and Henson31.

Brady9 provides an accessable introduction to the theory of computing. There are further accounts in a wide
variety of mathematical logic texts, of which Kleene’s36 and Mendelson’s38 are still outstanding.

For related general computing topics not considered further in this book: the denotational approach to
programming language semantics is covered by Gordon22, Schmidt49, and Stoy51; program specification is
covered by Cohen, Harwood and Jackson15, Gehani & McGettrick20, Hayes29, Jones33, and more formally by
Turski & Maibaum54; program verification is covered by Backhouse2, Gries23, Manna37, and less formally
though thoroughly by Bornat7.

For related functional programming and language topics not considered further in this book: Eisenbach8,O16,O24

and Glaser, Hankin and Till21 contain overviews of implementation techniques; SECD machine
implementations are discussed by Brady9, Burge 10, Field and Harrison18, Henderson30, Henson31, and
Wegner55; combinators and graph reduction are covered thoroughly by Field and Harrison18 and by Peyton-
Jones43, and, in less detail, by Henson31 and Revesz46; Bird and Wadler6 cover verification; Field and
Harrison18 cover program transformation and abstract interpretation; Henson31 covers verification and
transformation; Harrison and Khoshnevisan27 also discuss transformation.

For functional languages not considered further in this book: Field and Harrison18 is based on Hope and also
contains brief discussion of Miranda, Lisp and FP; Peyton-Jones43 is based on Miranda and contains an
introduction by Turner52; Bailey4 covers Hope; Harrison and Khoshnevisan28 cover FP; Henson31 covers FP;
Glaser, Hankin and Till21 discuss briefly FP, Hope and KRC; Bird and Wadler contains a brief appendix on
Miranda6; Revesz46 discusses briefly FP and Miranda; SASL is covered by Turner53.

For various imperative languages mentioned here: ALGOL 6040; Algol 6841; BCPL47; C35; Pascal19; POP-211;
Prolog14 and PS-algol12

Chapter 2 - λλ calculus

Church’s13 description of the λ calculus is much referenced but little read. Barendregt5 is the standard
reference. Hindley and Seldin32 is less detailed.

Early descriptions from a computing perspective include Burge10, and Wegner55. Field and Harrison18,
Peyton-Jones43 and Revesz46 provide thorough contemporary accounts, as does Stoy51 though oriented to
semantics. Glaser, Hankin and Till21, and Henson31 also describe λ calculus.

Pair functions are discussed by Barendregt5, Field and Harrison18, Glaser, Hankin and Till21, Henson31,
Revesz46 and Wegner55.

- 211 -

Chapter 3 - Conditions, booleans and integers

Burge10, Field and Harrison18, Glaser, Hankin and Till21, Henson31, Revesz46 and Wegner55 all have accounts
of aspects of the material on conditional expressions and booleans. Schmidt49 and Stoy51 cover it in exercises.

There are many approaches to representing numbers. The approach here is discussed by Barendregt5, and
Glaser, Hankin and Till21, and also by Revesz46 in an exercise. Field and Harrison18 and Wegner55 discuss
variants. Church’s representation is discussed by Barendregt5, Burge10, Henson31, Revesz46, and Wegner55.

Chapter 4 - Recursion

Barendregt5, Brady9, Glaser, Hankin and Till21, Henson31, Peyton-Jones43, Revesz46 and Stoy51 all discuss the
derivation of the ‘recursion’ function. Field and Harrison18 present it. Schmidt49 presents it in an exercise.
Burge10 discusses it in terms of combinators.

Kleene36 Mendelson38, Peter42, and Rayward-Smith45 provide accounts of the construction of arithmetic and
comparison operations within recursive function theory. Brief computing oriented accounts are in Burge10 and
Glaser, Hankin and Till21.

Chapter 5 - Types

The approach to types considered here is a λ calculus implementation of run-time typing with tags. Abelson and
Sussman1 discuss a related Scheme approach to manifest types, and Henderson30 and Peyton-Jones43 discuss
implementations of typing.

Field and Harrison18 and Peyton-Jones43 contain thorough accounts of type checking.

Chapter 6 - Lists and strings

Bird and Wadler6, Henderson30, Henson31 and Revesz46 contain thorough accounts of lists from a functional
programming perspective.

Numerous books on LISP contain material on list processing and mapping functions. Wilensky57 provides an
accessable introduction.

Chapter 7 - Composite values and trees

The use of lists to represent composite values is discussed implicitly in numerous books on LISP.

Henderson30 and Queinnec44 discuss accumulation variables.

Abelson and Sussman1 and Shapiro50 discuss the list representation of binary trees in Scheme and LISP
respectively.

Bird and Wadler6 provides a thorough account of trees from a functional language perspective.

Chapter 8 - Evaluation

Barendregt5 and Hindley and Seldin32 contain formal details of reduction. There are more accessable
approaches in Brady9, Burge10, Field and Harrison18, Glaser, Hankin and Till21, Henson31, Peyton-Jones43,
Revesz46, Stoy51, and Wegner55. Note that Barendregt, Burge, Field and Harrison, Hindley and Seldin, and
Wegner only name one Church-Rosser theorem.

- 212 -

Bird and Wadler6 discuss evaluation models, time and space efficiency and algorithm design techniques.

Brady9 and Minsky39 contain details of the halting problem for Turing machines.

Abelson and Sussman1, Bird and Wadler6, Field and Harrison18, Glaser, Hankin and Till21, Henderson30,
Henson31, Peyton-Jones43 and Revesz46 all discuss aspects of lazy evaluation.

Bird and Wadler6 provides a thorough account of infinite lists.

Chapter 9 - Functional programming in Standard ML

Wikstrom56 provides thorough coverage of SML programming. Harper, MacQueen and Milner25 describes
SML informally and gives details of I/O and modules. (The informal description and the I/O details are
duplicated in Wikstrom). Harper, Milner and Tofte26 is a first version of a formal semantics for SML.

Bird and Wadler6 provide much additional material which is relevant to SML programming including
discussion of concrete and abstract types.

Chapter 10 - Functional programming and LISP

Steele34 is the COMMON LISP ‘bible’. Wilensky57 is an good introduction. Winston and Horn58 take an
Artificial Intelligence perspective.

Abelson and Sussman1 is the standard reference for SCHEME and is based around an introductory computer
science course. Dybvig17 is a more traditional programming language text.

References

1. H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of Computer Programs, MIT Press,
Cambridge, Massachusetts, (1985).

2. R. C. Backhouse, Program Construction and Verification, Prentice-Hall, Englewood Cliffs, N.J., (1986).

3. J. W. Backus, “Can programming be liberated from the von Neumann style? A functional style and its algebra
of programs.” Communications of the ACM, Vol. 21, (8), pp. 613-641, (August 1978).

4. R. Bailey, “An Introduction to Hope,” in Functional Programming: Languages, Tools & Architectures, ed. S.
Eisenbach, Ellis Horwood, Chichester, (1987).

5. H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, North-Holland, Amsterdam, (1981).

6. R. Bird and P. Wadler, Introduction to Functional Programming, Prentice-Hall, New York, (1988).

7. R. Bornat, Programming from First Principles, Prentice-Hall, Englewood Cliffs N.J., (1987).

8. B. Boutel, “Combinators as Machine Code for Implementing Functional Languages,” in Functional
Programming: Languages, Tools & Architectures, ed. S. Eisenbach, Ellis Horwood, Chichester, (1987).

9. J. M. Brady, The Theory of Computer Science: A Programming Approach, Chapman and Hall, London, (1977).

10. W. H. Burge, Recursive Programming Techniques, Addison-Wesley, Reading, (1975).

- 213 -

11. R. M. Burstall, J. S. Collins, and R. J. Popplestone, Programming in POP-2, Edinburgh University Press,
Edinburgh, (1977).

12. R. Carrick, J. Cole, and R. Morrison, “An Introduction to PS-algol Programming,” PPRR 31, Dept. of
Computational Science, University of St Andrews, St Andrews, Scotland, (1986).

13. A. Church, The Calculi of Lambda Conversion, Princeton University Press, Princeton, N.J., (1941).

14. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, Berlin, (1981).

15. B. Cohen, W. T. Harwood, and M. I. Jackson, The Specification of Complex Systems, Addison-Wesley,
Wokingham, (1986).

16. M. Cripps, T. Field, and M. Reeve, “An Introduction to ALICE: a Multiprocessor Graph Reduction Machine,”
in Functional Programming: Languages, Tools & Architectures, ed. S. Eisenbach, Ellis Horwood, Chichester,
(1987).

17. R. K. Dybvig, The SCHEME Programming Language, Prentice-Hall, Englewood Cliffs, New Jersey, (1987).

18. A. Field and P. Harrison, Functional Programming, Addison-Wesley, Wokingham, (1988).

19. W. Findlay and D. A. Watt, Pascal: An Introduction to Methodical Programming, Pitman, London, (1981).

20. N. Gehani and A. D. McGettrick, Software Specification Techniques, Addison-Wesley, Wokingham, (1986).

21. H. Glaser, C. Hankin, and D. Till, Principles of Functional Programming, Prentice-Hall, Englewood-Cliffs,
N.J., (1984).

22. M. J. C. Gordon, The Denotational Description of Programming Languages: An Introduction, Springer-Verlag,
New York, (1979).

23. D. Gries, The Science of Programming, Springer-Verlag, New York, (1981).

24. C. Hankin, D. Till, and H. Glaser, “Applicative Languages and Data Flow,” in Functional Programming:
Languages, Tools & Architectures, ed. S. Eisenbach, Ellis Horwood, Chichester, (1987).

25. R. Harper, D. MacQueen, and R. Milner, “Standard ML,” ECS-LFCS-86-2, LFCS, Dept. of Computer Science,
University of Edinburgh, Edinburgh, Scotland, (March 1986).

26. R. Harper, R. Milner, and M. Tofte, “The Semantics of Standard ML, Version 1,” ECS-LFCS-87-36, LFCS,
Dept. of Computer Science, University of Edinburgh, Edinburgh, Scotland, (August 1987).

27. P. Harrison and H. Khoshnevisan, “A Functional Algebra and its Application to Program Transformation,” in
Functional Programming: Languages, Tools & Architectures, ed. S. Eisenbach, Ellis Horwood, Chichester,
(1987).

28. P. Harrison and H. Khoshnevisan, “An Introduction to FP and the FP Style of Programming,” in Functional
Programming: Languages, Tools & Architectures, ed. S. Eisenbach, Ellis Horwood, Chichester, (1987).

29. I. Hayes, Specification Case Studies, Prentice-Hall, Englewood Cliffs, N.J., (1987).

30. P. Henderson, Functional Programming: Application and Implementation, Prentice-Hall, Englewood Cliffs,
N.J., (1980).

31. M. C. Henson, Elements of Functional Languages, Blackwell, Oxford, (1987).

- 214 -

32. J. R. Hindley and J. P. Seldin, Introduction to Combinators and λ Calculus, Cambridge University Press,
Cambridge, England, (1987).

33. C. B. Jones, Systematic Software Development Using VDM, Prentice-Hall, Englewood Cliffs, N.J., (1986).

34. G. L. Steele Jr., Common LISP: The Language, Digital, (1984).

35. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs, N.J.,
(1978).

36. S. C. Kleene, Introduction to Metamathematics, North-Holland, Amsterdam, (1952).

37. Z. Manna, Mathematical theory of Computation, McGraw-Hill, New York, (1974).

38. E. Mendelson, Introduction to Mathematical Logic, D. Van Nostrand, Princeton, New Jersey, (1964).

39. M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, London, (1972).

40. P. Naur and et. al., “Revised Report on the Algorithmic Language ALGOL 60,” Communications of the ACM,
Vol. 6, (1), (1963).

41. F. G. Pagan, A Practical Guide to Algol68, Wiley, London, (1976).

42. R. Peter, Recursive Functions, Academic Press, New York, (1967).

43. S. L. Peyton-Jones, The Implementation of Functional Programming Languages, Prentice-Hall, Englewood
Cliffs, N.J., (1987).

44. C. Queinnec, LISP, Macmillan, London, (1983).

45. V. J. Rayward-Smith, A First Course in Computability, Blackwell, Oxford, (1986).

46. G. Revesz, Lambda-Calculus, Combinators and Functional Programming, Cambridge University Press,
Cambridge, (1988).

47. M. Richards, “C. Whitby-Strevens,” BCPL - The Language and its Compiler, Cambridge University Press,
Cambridge, (1982).

48. C. Sadler and S. Eisenbach, “Why Functional Programming?” in Functional Programming: Languages, Tools
& Architectures, ed. S. Eisenbach, Ellis Horwood, Chichester, (1987).

49. D. A. Schmidt, Denotational Semantics: A Methodology for Language Development, Allyn and Bacon, Boston,
(1986).

50. S. C. Shapiro, LISP: An Interactive Approach, Computer Science Press, Rockville, Maryland, (1986).

51. J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, MIT
Press, Cambridge, Massachussets, (1977).

52. D. Turner, An Introduction to Miranda. (in Peyton-Jones 1987)

53. D. Turner, SASL Language Manual, Dept. of Computational Science, University of St Andrews, St Andrews,
Scotland, (December 1976).

54. W. M. Turski and T. S. E. Maibaum, The Specification of Computer Programs, Addison-Wesley, Wokingham,
(1987).

- 215 -

55. P. Wegner, Programming Languages, Information Structures and Machine Organisation, McGraw-Hill,
London, (1971).

56. A. Wikstrom, Functional Programming Using Standard ML, Prentice-Hall, London, (1987).

57. R. Wilensky, Common LISPcraft, Norton, New York, (1986).

58. P. H. Winston and B. K. P. Horn, LISP, Addison-Wesley, Reading, (1984).

- 216 -

Answers to exercises

Chapter 2

1)

i) λa.(a λb.(b a))

<function>
<bound variable> - a
<body> - (a λb.(b a))
<application>
<function exp> - <name> - a
<argument exp> - λb.(b a)
<function>
<bound variable> - b
<body> - (b a)
<application>
<function exp> - <name> - b
<argument exp> - <name> - a

ii) λx.λy.λz.((z x) (z y))

<function>
<bound variable> - x
<body> λy.λz.((z x) (z y))
<function>
<bound variable> - y
<body> - λz.((z x) (z y))
<function>
<bound variable> - z
<body> - ((z x) (z y))
<application>
<function exp> - (z x)
<application>
<function exp> - <name> - z
<argument exp> - <name> - x

<function exp> - (z y)
<application>
<function exp> - <name> - z
<argument exp> - <name> - y

iii) (λf.λg.(λh.(g h) f) λp.λq.p)

<application>
<function exp>
<function> - λf.λg.(λh.(g h) f)
<bound variable> - f
<body> - λg.(λh.(g h) f)
<function>
<bound variable> - g
<body> - (λh.(g h) f)
<application>
<function exp> - λh.(g h)
<function>
<bound variable> - h

- 217 -

<body> - (g h)
<application>
<function exp> - <name> - g
<argument exp> - <name> - h

<argument exp> - <name> f
<argument exp> - λp.λq.p
<function>
<bound variable> - p
<body> - λq.p
<function>
<bound variable> - q
<body> - <name> - p

iv) λfee.λfi.λfo.λfum.(fum (fo (fi fee)))

<function>
<bound variable> - fee
<body> - λfi.λfo.λfum.(fum (fo (fi fee)))
<function>
<bound variable> - fi
<body> - λfo.λfum.(fum (fo (fi fee)))
<function>
<bound variable> - fo
<body> - λfum.(fum (fo (fi fee)))
<function>
<bound variable> - fum
<body> - (fum (fo (fi fee)))
<application>
<function exp> - <name> - fum
<argument exp> - (fo (fi fee))
<application>
<function exp> - <name> - fo
<argument exp> - (fi fee)
<application>
<function exp> - <name> - fi
<argument exp> - <name> - fee

v) ((λp.(λq.p λx.(x p)) λi.λj.(j i)) λa.λb.(a (a b)))
<application>
<function exp> - (λp.(λq.p λx.(x p)) λi.λj.(j i))
<application>
<function exp> - λp.(λq.p λx.(x p))
<function>
<bound variable> - p
<body> - (λq.p λx.(x p))
<application>
<function exp> - λq.p
<function>
<bound variable> - q
<body> - <name> - p

<argument exp> - λx.(x p)
<function>
<bound variable> - x
<body> - (x p)
<application>
<function exp> - <name> - x
<argument exp> - <name p>

<argument exp> - λi.λj.(j i)

- 218 -

<function>
<bound variable> - i
<body> - λj.(j i)
<function>
<bound variable> - j
<body> - (j i)
<application>
<function exp> - <name> - j
<argument exp> - <name> - i

<argument exp> - λa.λb.(a (a b))
<function>
<bound variable> - a
<body> - λb.(a (a b))
<function>
<bound variable> - b
<body>
<application>
<function exp> - <name> - a
<argument exp> - (a b)
<application>
<function exp> - <name> - a
<argument exp> - <name> - b

2)

i) ((λx.λy.(y x) λp.λq.p) λi.i) =>
(λy.(y λp.λq.p) λi.i) =>
(λi.i λp.λq.p) =>
λp.λq.p

ii) (((λx.λy.λz.((x y) z) λf.λa.(f a)) λi.i) λj.j) =>
((λy.λz.((λf.λa.(f a) y) z) λi.i) λj.j) =>
(λz.((λf.λa.(f a) λi.i) z) λj.j) =>
((λf.λa.(f a) λi.i) λj.j) =>
(λa.(λi.i a) λj.j) =>
(λi.i λj.j) =>
λj.j

iii) (λh.((λa.λf.(f a) h) h) λf.(f f)) =>
((λa.λf.(f a) λf.(f f)) λf.(f f)) =>
(λf.(f λf.(f f)) λf.(f f)) =>
(λf.(f f) λf.(f f)) =>
(λf.(f f) λf.(f f)) => ...

iv) ((λp.λq.(p q) (λx.x λa.λb.a)) λk.k) =>
(λq.((λx.x λa.λb.a) q) λk.k) =>
((λx.x λa.λb.a) λk.k) =>
(λa.λb.a λk.k) =>
λb.λk.k

v) (((λf.λg.λx.(f (g x)) λs.(s s)) λa.λb.b) λx.λy.x) =>
((λg.λx.(λs.(s s) (g x)) λa.λb.b) λx.λy.x) =>
(λx.(λs.(s s) (λa.λb.b x)) λx.λy.x) =>
(λs.(s s) (λa.λb.b λx.λy.x)) =>
((λa.λb.b λx.λy.x) (λa.λb.b λx.λy.x)) =>
(λb.b (λa.λb.b λx.λy.x)) =>
(λa.λb.b λx.λy.x) =>

- 219 -

λb.b

3)

i) a) (identity <argument>) => ... =>
<argument>

b) ((apply (apply identity)) <argument>) => ... =>
((apply identity) <argument>) => ... =>
(identity <argument>) => ... =>
<argument>

ii) a) ((apply <function>) <argument>) => ... =>
(<function> <argument>)

b) ((λx.λy.(((make_pair x) y) identity) <function>) <argument>) =>
(λy.(((make_pair <function>) y) identity) <argument>) =>
(((make_pair <function>) <argument>) identity) => ... =>
((identity <function>) <argument>) => ... =>
(<function> <argument>)

iii) a) (identity <argument>) => ... =>
<argument>

b) ((self_apply (self_apply select_second)) <argument>) => ... =>
(((self_apply select_second) (self_apply select_second))
<argument>) => ... =>
(((select_second select_second) (select_second select_second))
<argument>) => ... =>
((λsecond.second (select_second select_second) <argument>) => ... =>
((select_second select_second) <argument>) => ... =>
(λsecond.second <argument>) =>
<argument>

4)

def make_triplet = λfirst.
λsecond.

λthird.
λs.(((s first) second) third)

def triplet_first = λfirst.λsecond.λthird.first

def triplet_second = λfirst.λsecond.λthird.second

def triplet_third = λfirst.λsecond.λthird.third

make_triplet <item1> <item2> <item3> triplet_first ==
λfirst.

λsecond.
λthird.

λs.(((s first) second) third) <item1> <item2> <item3> triplet_first => ... =>
(((triplet_first <item1>) <item2>) <item3>) ==
(((λfirst.λsecond.λthird.first <item1>) <item2>) <item3>) => ... =>
<item1>

- 220 -

make_triplet <item1> <item2> <item3> triplet_first ==
λfirst.

λsecond.
λthird.

λs.(((s first) second) third) <item1> <item2> <item3> triplet_second => ... =>
(((triplet_second <item1>) <item2>) <item3>) ==
(((λfirst.λsecond.λthird.second <item1>) <item2>) <item3>) => ... =>
<item2>

make_triplet <item1> <item2> <item3> triplet_third ==
λfirst.

λsecond.
λthird.

λs.(((s first) second) third) <item1> <item2> <item3> triplet_third => ... =>
(((triplet_third <item1>) <item2>) <item3>) ==
(((λfirst.λsecond.λthird.third <item1>) <item2>) <item3>) => ... =>
<item3>

5)

i) λx.λy.(λx.y λy.x)
x bound at {x} in λx.λy.(λx.y λy.{x})
x free at {x} in λy.(λx.y λy.{x})

(λx.y λy.{x})
λy.{x}
{x}

y bound at {y} in λx.λy.(λx.{y} λy.x)
λy.(λx.{y} λy.x)

y free at {y} in (λx.{y} λy.x)
λx.{y}
{y}

ii) λx.(x (λy.(λx.x y) x))
x bound at {x} in λx.({x} (λy.(λx.x y) {x}))
x free at {x} in ({x} (λy.(λx.x y) {x}))

in {x}
in λy.(λx.x y) {x})
in {x}

x bound at {x} in λy.(λx.{x} y)
(λx.{x} y)
λx.{x}

x free at {x} in {x}
y bound at {y} in λx.(x (λy.(λx.x {y}) x))

(x (λy.(λx.x {y}) x))
(λy.(λx.x {y}) x)
λy.(λx.x {y})

y free at {y} in (λx.x {y})
{y}

iii) λa.(λb.a λb.(λa.a b))

a bound at {a} in λa.(λb.{a} λb.(λa.a b))
a free at {a} in (λb.{a} λb.(λa.a b))

λb.{a}
{a}

a bound at {a} in λa.(λb.a λb.(λa.{a} b))
(λb.a λb.(λa.{a} b))

- 221 -

λb.(λa.{a} b))
λa.{a}

a free at {a} in {a}
b bound at {b} in λa.(λb.a λb.(λa.a {b}))

(λb.a λb.(λa.a {b}))
λb.(λa.a {b})

b free at {b} in (λa.a {b})
{b}

iv) (λfree.bound λbound.(λfree.free bound))

bound free at {bound} in (λfree.{bound} λbound.(λfree.free bound))
λfree.{bound}
{bound}

bound bound at {bound} in (λfree.bound λbound.(λfree.free {bound}))
λbound.(λfree.free {bound})

bound free at {bound} in (λfree.free {bound})
{bound}

free bound at {free} in (λfree.bound λbound.(λfree.{free} bound))
λbound.(λfree.{free} bound)
(λfree.{free} bound)
λfree.{free}

free free at {free} in {free}

v) λp.λq.(λr.(p (λq.(λp.(r q)))) (q p))

p bound at {p} in λp.λq.(λr.({p} (λq.(λp.(r q)))) (q {p}))
p free at {p} in λq.(λr.({p} (λq.(λp.(r q)))) (q {p}))

(λr.({p} (λq.(λp.(r q)))) (q {p}))
λr.({p} (λq.(λp.(r q))))
({p} (λq.(λp.(r q))))
{p}
(q {p})
{p}

q bound at {q} in λp.λq.(λr.(p (λq.(λp.(r q)))) ({q} p))
λq.(λr.(p (λq.(λp.(r q)))) ({q} p))

q free at {q} in (λr.(p (λq.(λp.(r q)))) ({q} p))
({q} p))
{q}

q bound at {q} in λp.λq.(λr.(p (λq.(λp.(r {q})))) (q p))
λq.(λr.(p (λq.(λp.(r {q})))) (q p))
(λr.(p (λq.(λp.(r {q})))) (q p))
λr.(p (λq.(λp.(r {q}))))
(p (λq.(λp.(r {q}))))
λq.(λp.(r {q})))

q free at {q} in (λp.(r {q}))
(r {q})
{q}

r bound at {r} in λp.λq.(λr.(p (λq.(λp.({r} q)))) (q p))
λq.(λr.(p (λq.(λp.({r} q)))) (q p))
(λr.(p (λq.(λp.({r} q)))) (q p))
λr.(p (λq.(λp.({r} q))))

r free at {r} in (p (λq.(λp.({r} q))))
λq.(λp.({r} q)))
(λp.({r} q))
({r} q)
{r}

- 222 -

6)

i) λx.λy.(λz.y λa.x)

ii) λx.(x (λy.(λz.z y) x))

iii) λa.(λb.a λb.(λc.c b))

v) λp.λq.(λr.(p (λq.(λs.(r q)))) (q p))

Chapter 3

1)

def implies = λx.λy.(x y true)

implies false false => ... => false false true => ... => true
implies false true => ... => false true true => ... => true
implies true false => ... => true false true => ... => false
implies true true => ... => true true true => ... => true

2)

def equiv = λx.λy.(x y (not y)

equiv false false => ... => false false (not false) => ... => true
equiv false true => ... => false true (not true) => ... => false
equiv true false => ... => true false (not false) => ... => false
equiv true true => ... => true true (not true) => ... => true

3)

i) a) λx.λy.(and (not x) (not y)) false false => ... =>
and (not false) (not false) => ... =>
(not false) (not false) false) => ... =>
true (not false) false => ... =>
not false => ... => true

λx.λy.(and (not x) (not y)) false true => ... =>
and (not false) (not true) => ... =>
(not false) (not true) false => ... =>
true (not true) false => ... =>
not true => ... => false

λx.λy.(and (not x) (not y)) true false => ... =>
and (not true) (not false) => ... =>
(not true) (not false) false => ... =>
false (not false) false => .. => false

λx.λy.(and (not x) (not y)) true true => ... =>
and (not true) (not true)
(not true) (not true) false => ... =>
false (not true) false => ... => false

b) λx.λy.(not (or x y)) false false => ... =>

- 223 -

not (or false false) => ... =>
(or false false) false true => ... =>
(false true false) false true => ... =>
false false true => ... => true

λx.λy.(not (or x y)) false true => ... =>
not (or false true) => ... =>
(or false true) false true => ... =>
(false true true) false true => ... =>
true false true => ... => false

λx.λy.(not (or x y)) true false => ... =>
not (or true false) => ... =>
(or true false) false true => ... =>
(true true false) false true => ... =>
true false true => ... => false

λx.λy.(not (or x y)) true true => ... =>
not (or true true) => ... =>
(or true true) false true => ... =>
(true true true) false true => ... =>
true false true => ... => false

ii) a) - see 1) above

b) λx.λy.(implies (not y) (not x)) false false => ... =>
implies (not false) (not false) => ... =>
(not false) (not false) true => ... =>
true (not false) true => ... =>
not false => ... => true

λx.λy.(implies (not y) (not x)) false true => ... =>
implies (not true) (not false) => ... =>
(not true) (not false) true => ... =>
false (not false) true => ... => true

λx.λy.(implies (not y) (not x)) true false => ... =>
implies (not false) (not true)
(not false) (not true) true => ... =>
true (not true) true => ... =>
not true => ... => false

λx.λy.(implies (not y) (not x)) true true => ... =>
implies (not true) (not true) => ... =>
(not true) (not true) true => ... =>
false (not true) true => ... => true

iii) a) not false => ... => true
not true => ... => false

b) λx.(not (not (not x))) false => ... =>
not (not (not false)) => ... =>
(not (not false)) false true => ... =>
((not false) false true) false true => ... =>
((false false true) false true) false true => ... =>
(true false true) false true => ... =>
false false true => ... => true

- 224 -

λx.(not (not (not x))) true => ... =>
not (not (not true)) => ... =>
((not (not true)) false true) => ... =>
((not true) false true) false true => ... =>
((true false true) false true) false true => ... =>
(false false true) false true => ... =>
true false true => ... => false

iv) a) - see 1) above

b) λx.λy.(not (and x (not y))) false false => ... =>
not (and false (not false)) => ... =>
(and false (not false)) false true => ... =>
(false (not false) false) false true) => ... =>
false false true => ... => true

λx.λy.(not (and x (not y))) false true => ... =>
not (and false (not true)) => ... =>
(and false (not true)) false true => ... =>
(false (not true) false) false true => ... =>
false false true => ... => true

λx.λy.(not (and x (not y))) true false => ... =>
not (and true (not false)) => ... =>
(and true (not false)) false true => ... =>
(true (not false) false) false true => ... =>
(not false) false true => ... =>
true false true => ... => false

λx.λy.(not (and x (not y))) true true => ... =>
not (and true (not true)) => ... =>
(and true (not true)) false true => ... =>
(true (not true) false) false true => ... =>
(not true) false true => ... =>
false false true => ... => true

v) a) - see 2) above

b) λx.λy.(and (implies x y) (implies y x)) false false => ... =>
and (implies false false) (implies false false) => ... =>
(implies false false) (implies false false) false => ... =>
(false false true) (implies false false) false => ... =>
true (implies false false) false => ... =>
implies false false => ... =>
false false true => ... => true

λx.λy.(and (implies x y) (implies y x)) false true => ... =>
and (implies false true) (implies true false)
(implies false true) (implies true false) false => ... =>
(false true true) (implies true false) false => ... =>
true (implies true false) false => ... =>
implies true false => ... =>
true false false => ... => false

λx.λy.(and (implies x y) (implies y x)) true false => ... =>
and (implies true false) (implies false true)
(implies true false) (implies false true) false => ... =>
(true false true) (implies false true) false => ... =>

- 225 -

false (implies false true) false => ... => false

λx.λy.(and (implies x y) (implies y x)) true true => ... =>
and (implies true true) (implies true true) => ... =>
(implies true true) (implies true true) false => ... =>
(true true true) (implies true true) false => ... =>
true (implies true true) false => ... =>
implies true true => ... =>
true true true => ... => true

4)

λx.(succ (pred x)) λs.(s false <number>) =>
succ (pred λs.(s false <number>)
Simplifying: pred λs.(s false <number>) => ... =>

<number>
so: succ <number> => ... =>

λs.(s false <number>)

λx.(pred (succ x)) λs.(s false <number>) =>
pred (succ λs.(s false number>))
Simplifying: succ λs.(s false <number>) => ... =>

λs.(s false λs.(s false <number>))
so: pred λs.(s false λs.(s false <number>)) => ... =>

λs.(s false <number>)

λx.(succ (pred x)) zero =>
(succ (pred zero))
Simplifying: pred zero => ... => zero
so: succ zero ==

one

λx.(pred (succ x)) zero =>
(pred (succ zero))
Simplifying: succ zero == one
so: pred one => ... =>

zero

Chapter 4

1)

sum three => ... =>
recursive sum1 three => ... =>
sum1 (recursive sum1) three => ... =>
add three ((recursive sum1) (pred three)) -> ... ->
add three (sum1 (recursive sum1) two) -> ... ->
add three (add two ((recursive sum1) (pred two))) -> ... ->
add three (add two (sum1 (recursive sum1) one)) -> ... ->
add three (add two (add one ((recursive sum1) (pred one)))) -> ... ->
add three (add two (add one (sum1 (recursive sum1) zero))) -> ... ->
add three (add two (add one zero)) -> ... ->
six

2)

- 226 -

def prod1 f n =
if equal n one
then one
else mult n (f (pred n))

def prod = recursive prod1

prod three
recursive prod1 three => ... =>
prod1 (recursive prod1) three => ... =>
mult three ((recursive prod1) (pred three)) -> ... ->
mult three (prod1 (recursive prod1) two) -> ... ->
mult three (mult two ((recursive prod1) (pred two))) -> ... ->
mult three (mult two (prod1 (recursive prod1) one)) -> ... ->
mult three (mult two one) -> ... ->
six

3)

def fun_sum1 f fun n =
if iszero n
then fun zero
else add (fun n) (f fun (pred n))

def fun_sum = recursive fun_sum1

fun_sum double three => ... =>
recursive fun_sum1 double three => ... =>
fun_sum1 (recursive fun_sum1) double three => ... =>
add (double three)

((recursive fun_sum1) double (pred three)) -> ... ->
add (double three)

(fun_sum1 (recursive fun_sum1) double two) -> ... ->
add (double three)

(add (double two)
((recursive fun_sum1) double (pred two))) -> ... ->

add (double three)
(add (double two)

(fun_sum1 (recursive fun_sum1) double one)) -> ... ->
add (double three)

(add (double two)
(add (double one)

((recursive fun_sum1) double (pred one)))) -> ... ->
add (double three)

(add (double two)
(add (double one)

(fun_sum1 (recursive fun_sum1) double zero))) -> ... ->
add (double three)

(add (double two)
(add (double one)

(double zero))) -> ... ->
twelve

4)

def fun_sum_step1 f fun n s =
if iszero n

- 227 -

then fun n
else add (fun n) (f fun (sub n s) s)

def fun_sum_step = recursive fun_sum_step1

i)
fun_sum_step double five two => ... =>
recursive fun_sum_step1 double five two => ... =>
fun_sum_step1 (recursive fun_sum_step1) double five two => ... =>
add (double five)

((recursive fun_sum_step1) double (sub five two) two) -> ... ->
add (double five)

(fun_sum_step1 (recursive fun_sum_step1) double three two) -> ... ->
add (double five)

(add (double three)
((recursive fun_sum_step1) double (sub three two) two)) -> ... ->

add (double five)
(add (double three)

(fun_sum_step1 (recursive fun_sum_step1) double one two)) -> ... ->
add (double five)

(add (double three)
(add (double one)

((recursive fun_sum_step1) double (sub one two) two))) -> ... ->
add (double five)

(add (double three)
(add (double one)

(fun_sum_step1 (recursive fun_sum_step1) double zero two))) -> ... ->
add (double five)

(add (double three)
(add (double one)

(double zero))) -> ... ->
eighteen

ii)
fun_sum_step double four two
recursive fun_sum_step1 double four two => ... =>
fun_sum_step1 (recursive fun_sum_step1) double four two => ... =>
add (double four)

((recursive fun_sum_step1) double (sub four two) two) -> ... ->
add (double four)

(fun_sum_step1 (recursive fun_sum_step1) double two two) -> ... ->
add (double four)

(add (double three)
((recursive fun_sum_step1) double (sub two two) two)) -> ... ->

add (double four)
(add (double two)

(fun_sum_step1 (recursive fun_sum_step1) double zero two)) -> ... ->
add (double four)

(add (double two)
(double zero))

twelve

5)

def less x y = greater y x

def less_or_equal x y = greater_or_equal y x

- 228 -

i) less three two => ... =>
greater two three => ... =>
not (iszero (sub two three)) -> ... ->
not (iszero zero) -> ... ->
not true => ... => false

ii) less two three => ... =>
greater three two -> ... -> true - see 4.8.3

iii) less two two => ... =>
greater two two => ... =>
not (iszero (sub two two)) -> ... ->
not (iszero zero) -> ... ->
not true => ... => false

iv) less_or_equal three two => ... =>
greater_or_equal two three => ... =>
iszero (sub three two) -> ... ->
iszero one => ... => false

v) less_or_equal two three => ... =>
greater_or_equal three two => ... =>
iszero (sub two three) -> ... ->
iszero zero => ... => true

vi) less_or_equal two two => ... =>
greater_or_equal two two => ... =>
iszero (sub two two) -> ... ->
iszero zero => ... => true

6)

def mod x y =
if iszero y
then x
else mod1 x y

rec mod1 x y =
if less x y
then x
else mod1 (sub x y) y

i) mod three two => ... =>
mod1 three two
mod1 (sub three two) two -> ... ->
mod1 one two => ... => one

ii) mod two three => ... =>
mod1 two three => ... => two

iii) mod three zero => ... => three

Chapter 5

1)

- 229 -

i) ISBOOL 3 => ... =>
MAKE_BOOL (isbool 3) ==
MAKE_BOOL (istype bool_type 3) -> ... ->
MAKE_BOOL (equal (type 3) bool_type) -> ... ->
MAKE_BOOL (equal numb_type bool_type) -> ... ->
MAKE_BOOL false ==
FALSE

ii) ISNUMB FALSE => ... =>
MAKE_BOOL (isnumb FALSE) ==
MAKE_BOOL (istype numb_type FALSE) -> ... ->
MAKE_BOOL (equal (type FALSE) numb_type) -> ... ->
MAKE_BOOL (equal bool_type numb_type) -> ... ->
MAKE_BOOL false ==
FALSE

iii) NOT 1 => ... =>
if isbool 1
then MAKE_BOOL (not (value 1))
else BOOL_ERROR -> ... ->
if equal (type 1) bool_type
then ...
else ... -> ... ->
if equal numb_type bool_type
then ...
else ... -> ... ->
if false
then ...
else BOOL_ERROR -> ... ->
BOOL_ERROR

iv) TRUE AND 2 => ... =>
if and (isbool TRUE) (isbool 2)
then MAKE_BOOL (and (value TRUE) (value 2))
else BOOL_ERROR -> ... ->
if and (istype bool_type TRUE) (istype bool_type 2)
then ...
else ... -> ... ->
if and (equal (type TRUE) bool_type) (equal (type 2) bool_type)
then ...
else ... -> ... ->
if and (equal bool_type bool_type) (equal numb_type bool_type)
then ...
else ... -> ... ->
if and true false
then ...
else ... -> ... ->
if false
then ...
else BOOL_ERROR -> ... ->
BOOL_ERROR

v) 2 + TRUE => ... =>
if and (isnumb 2) (isnumb TRUE)
then MAKE_NUMB (add (value 2) (value TRUE))
else NUMB_ERROR -> ... ->
if and (istype numb_type 2) (istype numbtype TRUE)
then ...

- 230 -

else ... -> ... ->
if and (equal (type 2) numb_type) (equal (type TRUE) numb_type)
then ...
else ... -> ... ->
if and (equal numb_type numb_type) (equal numb_type numb_type)
then ...
else ... -> ... ->
if and true false
then ...
else NUMB_ERROR -> ... ->
NUMB_ERROR

2) i)

def issigned N = istype signed_type N

def ISSIGNED N = MAKE_BOOL (issigned N)

def sign = value (select_first (value N))

def SIGN N =
if issigned N
then select_first (value N)
else SIGN_ERROR

def sign_value N = value (select_second (value N))

def VALUE N =
if issigned N
then select_second (value N)
else SIGN_ERROR

def sign_iszero N = iszero (sign_value N)

ii)

def SIGN_ISZERO N =
if issigned N
then MAKE_BOOL (sign_iszero N)
else SIGN_ERROR

def SIGN_SUCC N =
IF SIGN_ISZERO N
THEN +1
ELSE
IF SIGN N
THEN MAKE_SIGNED POS (MAKE_NUMB (succ (sign_value N)))
ELSE MAKE_SIGNED NEG (MAKE_NUMB (pred (sign_value N)))

def SIGN_PRED N =
IF SIGN_ISZERO N
THEN -1
ELSE
IF SIGN N
THEN MAKE_SIGNED POS (MAKE_NUMB (pred (sign_value N)))
ELSE MAKE_SIGNED NEG (MAKE_NUMB (succ (sign_value N)))

- 231 -

iii)

def SIGN_+ X Y =
if and (issigned X) (issigned Y)
then
if iszero (sign_value X)
then Y
else
if sign_iszero (sign_value Y)
then X
else
if and (sign X) (sign Y)
then MAKE_SIGNED POS (MAKE_NUMB (add (sign_value X) (sign_value Y)))
else
if and (not (sign X)) (not (sign Y))
then MAKE_SIGNED NEG (MAKE_NUMB (add (sign_value X) (sign_value Y)))
else
if not (sign X)
then
if greater (sign_value X) (sign_value Y)
then MAKE_SIGNED NEG (MAKE_NUMB (sub (sign_value X) (sign_value Y)))
else MAKE_SIGNED POS (MAKE_NUMB (sub (sign_value Y) (sign_value X)))
else
if GREATER (sign_value Y) (sign_value X)
then MAKE_SIGNED NEG (sub (sign_value Y) (sign_value X))
else MAKE_SIGNED POS (sub (sign_value X) (sign_value Y))

else SIGN_ERROR

Chapter 6

1)

def ATOMCONS A L =
if isnil L
then [A]
else
if equal (type A) (type (HEAD L))
then CONS A L
else LIST_ERROR

2)

i) rec STARTS [] L = TRUE
or STARTS L [] = FALSE
or STARTS (H1::T1) (H2::T2) =
IF CHAR_EQUALS H1 H2
THEN STARTS T1 T2
ELSE FALSE

ii) rec CONTAINS L [] = FALSE
or CONTAINS L1 L2 =
IF STARTS L1 L2
THEN TRUE
ELSE CONTAINS L1 (TAIL L2)

iii) rec COUNT L [] = 0
or COUNT L1 L2 =

- 232 -

IF STARTS L1 L2
THEN 1 + (COUNT L1 (TAIL L2))
ELSE COUNT L1 (TAIL L2)

iv) rec REMOVE [] L = L
or REMOVE (H1::T1) (H2::T2) = REMOVE T1 T2

v) rec DELETE L [] = []
or DELETE L1 L2 =
IF STARTS L1 L2
THEN REMOVE L1 L2
ELSE (HEAD L2)::(DELETE L1 (TAIL L2))

vi) rec INSERT L1 L2 [] = []
or INSERT L1 L2 L3 =
IF STARTS L2 L3
THEN APPEND L2 (APPEND L1 (REMOVE L2 L3))
ELSE (HEAD L3)::(INSERT L1 L2 (TAIL L3))

vii) rec REPLACE L1 L2 [] = []
or REPLACE L1 L2 L3 =
IF STARTS L2 L3
THEN APPEND L1 (REMOVE L2 L3)
ELSE (HEAD L3)::(REPLACE L1 L2 (TAIL L3))

3)

i) rec MERGE L [] = L
or MERGE [] L = L
or MERGE (H1::T1) (H2::T2) =
IF LESS H1 H2
THEN H1::(MERGE T1 (H2::T2))
ELSE H2::(MERGE (H1::T1) T2)

ii) rec LMERGE [] = []
or LMERGE (H::T) = MERGE H (LMERGE T)

Chapter 7

1)

i) def TOO_SECS [H,M,S] = (60 * ((60 * H) + M)) + S

def MOD X Y = X - ((X / Y) * Y)

def FROM_SECS S =
let SECS = MOD S 60
in
let MINS = (MOD S 3600) / 60
in
let HOURS = S / 3600
in [HOURS,MINS,SECS]

ii) def TICK [H,M,S] =
let S = S + 1
in
IF LESS S 60

- 233 -

THEN [H,M,S]
ELSE
let M = M + 1
in
IF LESS M 60
THEN [H,M,0]
ELSE
let H = H + 1
in
IF LESS H 24
THEN [H,0,0]
ELSE [0,0,0]

iii) def TLESS [TR1,[H1,M1,S1]] [TR2,[H2,M2,S2]] =
IF LESS H1 H2
THEN TRUE
ELSE
IF EQUAL H1 H2
THEN
IF LESS M1 M2
THEN TRUE
ELSE
IF EQUAL M1 M2
THEN
IF LESS S1 S2
THEN TRUE
ELSE FALSE
ELSE FALSE

ELSE FALSE

rec TINSERT T [] = [T]
or TINSERT T (T1::R) =
IF TLESS T T1
THEN T::T1::R
ELSE T1::(TINSERT T R)

rec TSORT [] = []
or TSORT (H::T) = TINSERT H (TSORT T)

2)

i) rec TCOMP TEMPTY TEMPTY = TRUE
or TCOMP TEMPTY T = FALSE
or TCOMP T TEMPTY = FALSE
or TCOMP [V1,L1,R1] [V2,L2,R2] =
IF EQUAL V1 V2
THEN AND (TCOMP L1 L2) (TCOMP R1 R2)
ELSE FALSE

ii) rec TFIND TEMPTY T = TRUE
or TFIND T TEMPTY = FALSE
or TFIND T1 T2 =
IF TCOMP T1 T2
THEN TRUE
ELSE
IF LESS (ITEM T1) (ITEM T2)
THEN TFIND T1 (LEFT T2)
ELSE TFIND T1 (RIGHT T2)

- 234 -

iii) rec DTRAVERSE TEMPTY = []
or DTRAVERSE [V,L,R] = APPEND (DTRAVERSE R) (V::(DTRAVERSE L))

3)

rec EVAL [E1,OP,E2] =
let R1 = EVAL E1
in
let R2 = EVAL E2
in
IF STRING_EQUAL OP "+"
THEN R1 + R2
ELSE
IF STRING_EQUAL OP "-"
THEN R1 - R2
ELSE
IF STRING_EQUAL OP "*"
THEN R1 * R2
ELSE R1 / R2

or EVAL N = N

Chapter 8

1)

i)
Normal order
λs.(s s) (λf.λa.(f a) λx.x λy.y) =>
(λf.λa.(f a) λx.x λy.y) (λf.λa.(f a) λx.x λy.y) =>
(λa.(λx.x a) λy.y) (λf.λa.(f a) λx.x λy.y) =>
(λx.x λy.y) (λf.λa.(f a) λx.x λy.y) =>
λy.y (λf.λa.(f a) λx.x λy.y) =>
λf.λa.(f a) λx.x λy.y =>
λa.(λx.x a) λy.y =>
λx.x λy.y =>
λy.y

8 reductions
λf.λa.(f a) λx.x λy.y reduced twice

Applicative order
λs.(s s) (λf.λa.(f a) λx.x λy.y) ->
λs.(s s) (λa.(λx.x a) λy.y) ->
λs.(s s) (λx.x λy.y) ->
λs.(s s) λy.y ->
λy.y λy.y ->
λy.y

5 reductions
λf.λa.(f a) λx.x λy.y reduced once

Lazy
λs.(s s) (λf.λa.(f a) λx.x λy.y)1 =>
(λf.λa.(f a) λx.x λy.y)1 (λf.λa.(f a) λx.x λy.y)1 =>
(λa.(λx.x a) λy.y)2 (λa.(λx.x a) λy.y)2 =>
(λx.x λy.y)3 (λx.x λy.y)3 =>
λy.y λy.y =>

- 235 -

λy.y

5 reductions
λf.λa.(f a) λx.x λy.y reduced once

ii)
Normal order
λx.λy.x λx.x (λs.(s s) λs.(s s)) =>
λy.λx.x (λs.(s s) λs.(s s)) =>
λx.x

2 reductions
λs.(s s) λs.(s s) not reduced

Applicative order
λx.λy.x λx.x (λs.(s s) λs.(s s)) ->
λx.λy.x λx.x (λs.(s s) λs.(s s)) -> ...

Non-terminating - 1 reduction/cycle
λs.(s s) λs.(s s) reduced every cycle

Lazy
λx.λy.x λx.x (λs.(s s) λs.(s s)) =>
λy.λx.x (λs.(s s) λs.(s s)) =>
λx.x

2 reductions - as normal order

iii)
Normal order
λa.(a a) (λf.λs.(f (s s)) λx.x) =>
(λf.λs.(f (s s)) λx.x) (λf.λs.(f (s s)) λx.x) =>
λs.(λx.x (s s)) (λf.λs.(f (s s)) λx.x) =>
λx.x ((λf.λs.(f (s s)) λx.x) (λf.λs.(f (s s)) λx.x)) =>
(λf.λs.(f (s s)) λx.x) (λf.λs.(f (s s)) λx.x) => ...

Non-terminating - 3 reductions/cycle
λf.λs.(f (s s)) λx.x reduced every cycle

Applicative order
λa.(a a) (λf.λs.(f (s s)) λx.x) ->
λa.(a a) λs.(λx.x (s s)) ->
λs.(λx.x (s s)) λs.(λx.x (s s)) ->
λx.x (λs.(λx.x (s s)) λs.(λx.x (s s))) ->
λs.(λx.x (s s)) λs.(λx.x (s s)) -> ...

Non-terminating - 2 reductions/cycle
λf.λs.(f (s s)) λx.x reduced before non-terminating cycle

Lazy
λa.(a a) (λf.λs.(f (s s)) λx.x)1 =>
(λf.λs.(f (s s)) λx.x)1 (λf.λs.(f (s s)) λx.x)1 =>
λs.(λx.x (s s)) λs.(λx.x (s s)) =>
λx.x (λs.(λx.x (s s)) λs.(λx.x (s s))) =>
λs.(λx.x (s s)) λs.(λx.x (s s)) => ...

Non-terminating - 2 reductions/cycle
λf.λs.(f (s s)) λx.x reduced before non-terminating cycle

- 236 -

Chapter 9

1)

i) fun cube (y:int) = y*y*y;

ii) fun implies (x:bool) (y:bool) = (not x) orelse y;

iii) fun smallest (a:int) (b:int) (c:int) =
if a< b
then
if a<c
then a
else c
else
if b<c
then b
else c;

iv) fun desc_join (s1:string) (s2:string) =
if s1<s2
then s1ˆs2
else s2ˆs1;

v) fun shorter (s1:string) (s2:string) =
if (size s1) < (size s2)
then s1
else s2;

2)

i) fun sum 0 = 0 |
sum (n:int) = n+(sum (n-1));

ii) fun nsum (m:int) (n:int) =
if m>n
then 0
else m+(nsum (m+1) n);

iii) fun repeat (s:string) 0 = "" |
repeat (s:string) (n:int) = sˆ(repeat s (n-1));

3)

i) fun ncount [] = 0 |
ncount ((h::t):int list) =
if h < 0
then 1+(ncount t)
else ncount t;

ii) fun scount (s:string) [] = 0 |
scount (s:string) ((h::t):string list) =
if h = s
then 1+(scount s t)
else scount s t;

iii) fun gconstr (v:int) [] = [] |

- 237 -

gconstr (v:int) ((h::t):int list) =
if h > v
then h::(gconstr v t)
else gconstr v t;

iv) fun smerge [] (s2:string list) = s2 |
smerge (s1:string list) [] = s1 |
smerge ((h1::t1):string list) ((h2::t2):string list) =
if h1 < h2
then h1::(smerge t1 (h2::t2))
else h2::(smerge (h1::t1) t2);

v) fun slmerge [] = [] |
slmerge ((h::t):(string list) list) = smerge h (slmerge t);

vi)
a) type stock = string * int * int;

fun item (s:string,n:int,r:int) = s;
fun numb (s:string,n:int,r:int) = n;
fun reord (s:string,n:int,r:int) = r;

fun getmore [] = [] |
getmore ((h::t):stock list) =
if (numb h) < (reord h)
then h::(getmore t)
else getmore t;

b) type upd = string * int;
fun uitem (s:string,n:int) = s;
fun unumb (s:string,n:int) = n;

fun update1 [] (u:upd) = [] |
update1 ((h::t):stock list) (u:upd) =
if (item h) = (uitem u)
then (item h,(numb h)+(unumb u),reord h)::t
else h::(update1 t u);

fun update (r:stock list) [] = r |
update (r:stock list) ((h::t):upd list) = update (update1 r h) t;

4)

i) fun left1 0 (s:string list) = "" |
left1 (n:int) [] = "" |
left1 (n:int) ((h::t):string list) = hˆ(left1 (n-1) t);

fun left (n:int) (s:string) = left1 n (explode s);

ii) fun drop 0 (s:string list) = s |
drop (n:int) [] = [] |
drop (n:int) ((h::t):string list) = drop (n-1) t;

fun right (n:int) (s:string) = implode (drop ((size s)-n) (explode s));

iii) fun middle (n:int) (l:int) (s:string) = left1 l (drop (n-1) (explode s));

iv) fun starts [] (s2:string list) = true |
starts (s1:string list) [] = false |

- 238 -

starts ((h1::t1):string list) ((h2::t2):string list) =
if h1=h2
then starts t1 t2
else false;

fun find1 [] (s2:string list) = 1 |
find1 (s1:string list) [] = 1 |
find1 (s1:string list) (s2:string list) =
if starts s1 s2
then 1
else 1+(find1 s1 (tl s2));

fun find (s1:string) (s2:string) =
let val pos = find1 (explode s1) (explode s2)
in
if pos > (size s2)
then 0
else pos
end;

5)

fun east Queens_Street = Bishopbriggs |
east Bishopbriggs = Lenzie |
east Lenzie = Croy |
east Croy = Polmont |
east Polmont = Falkirk_High |
east Falkirk_High = Linlithgow |
east Linlithgow = Haymarket |
east Haymarket = Waverly |
east Waverly = Waverly;

fun west Queens_Street = Queens_Street |
west Bishopbriggs = Queens_Street |
west Lenzie = Bishopbriggs |
west Croy = Lenzie |
west Polmont = Croy |
west Falkirk_High = Polmont |
west Linlithgow = Falkirk_High |
west Haymarket = Linlithgow |
west Waverly = Haymarket;

6)

fun eval (numb(i:int)) = i |
eval (add(e1:exp,e2:exp)) = (eval e1)+(eval e2) |
eval (diff(e1:exp,e2:exp)) = (eval e1)-(eval e2) |
eval (mult(e1:exp,e2:exp)) = (eval e1)*(eval e2) |
eval (quot(e1:exp,e2:exp)) = (eval e1) div (eval e2);

Chapter 10

1)

i) (defun nsum (n)
(if (eq 0 n)

- 239 -

0
(+ n (nsum (- n 1)))))

ii) (defun nprod (n)
(if (eq 1 n)

1
(* n (nprod (- n 1)))))

iii) (defun napply (fun n)
(if (eq 0 n)

(funcall fun 0)
(+ (funcall fun n) (napply fun (- n 1)))))

iv) (defun nstepapply (fun n s)
(if (<= n 0)

(funcall fun 0)
(+ (funcall fun n) (nstepapply fun (- n s) s))))

2)

i) (defun lstarts (l1 l2)
(cond ((null l1) t)

((null l2) nil)
((eq (car l1) (car l2)) (lstarts (cdr l1) (cdr l2)))
(t nil)))

ii) (defun lcontains (l1 l2)
(cond ((null l2) nil)

((lstarts l1 l2) t)
(t (lcontains l1 (cdr l2)))))

iii) (defun lcount (l1 l2)
(cond ((null l2) 0)

((lstarts l1 l2) (+ 1 (lcount l1 (cdr l2))))
(t (lcount l1 (cdr l2)))))

iv) (defun lremove (l1 l2)
(if (null l1)

l2
(lremove (cdr l1) (cdr l2))))

v) (defun ldelete (l1 l2)
(cond ((null l2) nil)

((lstarts l1 l2) (lremove l1 l2))
(t (cons (car l2) (ldelete l1 (cdr l2))))))

vi) (defun linsert (l1 l2 l3)
(cond ((null l3) nil)

((lstarts l2 l3) (append l2 (append l1 (lremove l2 l3))))
(t (cons (car l3) (ilnsert l1 l2 (cdr l3))))))

vii) (defun lreplace (l1 l2 l3)
(cond ((null l3) nil)

((lstarts l1 l3) (append l2 (lremove l1 l3)))
(t (cons (car l3) (lreplace l1 l2 (cdr l3))))))

3)

- 240 -

i) (defun merge (l1 l2)
(cond ((null l1) l2)

((null l2) l1)
((< (car l1) (car l2)) (cons (car l1) (merge (cdr l1) l2)))
(t (cons (car l2) (merge l1 (cdr l2))))))

ii) (defun lmerge (l)
(if (null l)

nil
(merge (car l) (lmerge (cdr l)))))

4)

i) (defun hours (hms) (car hms))

(defun mins (hms) (car (cdr hms)))

(defun secs (hms) (car (cdr (cdr hms))))

(defun too_secs (hms)
(+ (* 60 (+ (* 60 (hours hms)) (mins hms))) (secs hms)))

(defun from_secs (s)
(list (truncate s 3600)

(truncate (rem s 3600) 60)
(rem s 60)))

ii) (defun tick (hms)
(let ((h (hours hms))

(m (mins hms))
(s (secs hms)))
(let ((s1 (+ s 1)))

(if (< s1 60)
(list h m s1)
(let ((m1 (+ m 1)))

(if (< m1 60)
(list h m1 0)
(let ((h1 (+ h 1)))

(if (< h1 24)
(list h1 0 0)
(list 0 0 0)))))))))

iii) (defun hms (trans) (car (cdr trans)))

(defun tless (tr1 tr2)
(let ((t1 (hms tr1))

(t2 (hms tr2)))
(let ((h1 (hours t1))

(m1 (mins t1))
(s1 (secs t1))
(h2 (hours t2))
(m2 (mins t2))
(s2 (secs t2)))
(if (< h1 h2)

t
(if (= h1 h2)

(if (< m1 m2)
t

- 241 -

(if (= m1 m2)
(if (< s1 s2)

t
nil)

nil))
nil)))))

(defun tinsert (tr l)
(cond ((null l) (cons tr nil))

((tless tr (car l)) (cons tr l))
(t (cons (car l) (tinsert tr (cdr l))))))

(defun tsort (l)
(if (null l)

l
(tinsert (car l) (tsort (cdr l)))))

5)

i) (defun tcomp (t1 t2)
(cond ((and (null t1) (null t2)) t)

((or (null t1) (null t2)) nil)
((= (item t1) (item t2)) (and (tcomp (left t1) (left t2))

(tcomp (right t1) (right t2))))
(t nil)))

ii) (defun tfind (t1 t2)
(cond ((null t1) t)

((null t2) nil)
((tcomp t1 t2) t)
((< (item t1) (item t2)) (tfind t1 (left t2)))
(t (tfind t1 (right t2)))))

iii) (defun dtraverse (tree)
(if (null tree)

nil
(append (dtraverse (right tree))

(cons (item tree) (dtraverse (left tree))))))

