CodeWarrior®

C, C++, and Assembly
Language Reference

0 A

metrowerks

Because of last-minute changes to CodeWarrior, some of the

Release Notes on the CodeWarrior CD for the latest

NSNS NS sN

Metrowerks CodeWarrior copyright ©1993-1996 by Metrowerks Inc. and its licensors.
All rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.

Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.

All other trademarks and registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE
SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
US.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Mail order Voice: (800) 377-5416

Fax: (512) 873-4901
World Wide Web http: //ww. met r ower ks. com
Registration information regi st er @ret r oner ks. com
Technical support support @ret r oner ks. com
Sales, marketing, & licensing sal es@ret r oner ks. com
America Online keyword: Met r ower ks

CompuServe goto Met r ower ks

Table of Contents

1 Introduction 13
Overview of the C/C++/ASM Reference 13
Conventions Used in ThisManual 14
The C/C++ Project Settings Panels 14
What'sNew00 17

Thelonglongtype. 17
Turning off register coloring in the 68K compiler. 17
More information on enumerated types. 17
New pragmas 17
New intrinsic functions. 18
Improved documentation. 18

2 Cand C++ Language Notes 19
Overview of C and C++ LanguageNotes 19
The Metrowerks Implementationof Cand C++. 20

Identifiers. o000 21
Includefileso oL 21
The sizeof() operator L. 22
Register variables 23
Register coloring. 24
Volatile variables.00 0L 25
Limits on variablesizes 26
Declaration specifiers. 27
Enumerated types00 oL 28
Number Formats 30
68K Macintosh integer formats. 30
68K Macintosh floating-point formats. 32
PowerPC Macintosh, Magic Cap, and Win32/ x86 mteger formats

33

PowerPC Macintosh and Win32/x86 floating-point formats . 34
Magic Cap Floating-Point Formats 34
Calling Conventions 35
68K Macintosh calling conventions 35
PowerPC calling conventions 36

C, C++, and Assembly Language Reference CL-3

Magic Cap calling conventions. 39

Win32/x86 calling conventions. 39
ExtensionstoCorC++ 40
ANSI extensions you can’t disable 42
Multibyte characters (MacintoshOnly) 43
Declaring variables by address (Macintosh Only) 43
Opcode inline functions (68K Macintosh Only) 43
Inline data (68K Macintosh Only) 44
Specifying the registers for arguments (68K Macmtosh Only)
45
64-bitintegerso 46
ANSI extensions you disable with ANSI Strict 47
Ct++-stylecomments 48
Unnamed arguments in function definitions. 48
A # not followed by argument in macro definition 48
An identifier after #endif 48
Using typecasted pointers as lvalues 49
Disabling trigraph characters 49
Additional keywords ce e o oo 80
Macintosh and Magic Cap keywords50
Win32/x86 keywords.51
Enumerated constants of any size 5l
Chars alwaysunsigned 52
Inlining functions 52
Using multibyte strings and comments 53
Using prototypes. 54
Requiring prototypes. 5
Relaxing pointer checking. 56
Storing strings (Macintoshonly) 56
Pooling strings 56
Using PC-relative strings57
Reusing strings 58
Warnings for Common Mistakes 59
Treat warningsaserrors. 60
Illegal pragmas 60
Empty declarations.6l

CL-4 C, C++, and Assembly Language Reference

Possible unwanted sideeffects. 61

Unused variables. 62
Unused arguments63
Extracommaso 64
Extended type checking. 65
Functionhidingo 66
Generating Code for Specific 68K Processors (Macintosh Only) . 67
Generating code for the MC68020 70
Generating code for the MC68881 70
Using the Extended datatype 71
Using floating-point registers 72
Calling MPW Functions 72
Adding an MPW library to a CodeWarrior project 73
Declaring MPW C functions (MacintoshOnly) 75
Using MPW Cnewlines. 76
Calling Macintosh Toolbox Functions (Macintosh Only) 77
Passing string arguments e e oo ... 78
Using the pascal keyword in PowerPC code e e e o079
Intrinsic PowerPC Functions (MacintoshOnly). 80
Low-level processor synchronization 80
Floating-point functions. 81
Byte-reversing functions 81
Setting the floating-point environment 82
Floating-point instructions for the 603 and 604 82
Rotating the contents of a variable 83

3 C++LanguageNoteso 85
Overview of C++ LanguageNotes 85
Unsupported Extensions. 86
Metrowerks Implementation of C++ e e e oo 86
Which keywords toput first 8
Additional keywords 000 87
Conversions in the conditional operator. 87
Default arguments in member functions. 88
Local class declarations with inline functions. 89
Copying and constructing class objects 89

C, C++, and Assembly Language Reference CL-5

Checking for resources to initialize staticdata 90
Calling an inherited member function.] |
Setting C++Options 92
Using the C++ compiler always . . 93
Enforcing strict ARM conformance. 94
Adding C++ extensions. . 95
Allowing exception handling 96
Using thebool type 96
Using Run-Time Type Information (RTTI) 96
Using the dynamic_cast operator . .97
Using the typeid operator . C e e e s 98
Using Templates 99
Declaring and defining templates. . 100
Instantiating templates . . 101
Using Exceptions 103
Declaring MPW-Compatible Classes . 104
Creating Direct-to-SOM Code . 105
SOM class restrictions. e (4]
Using SOM headers 109
Automatic SOM error checking R (0
Using SOM pragmas 111
Declaring the release order . 112
Declaring the class’s version. 112
Declaring the metaclass for a class . . 113
Declaring the call style for a class 113

4 68K AssemblerNotes. 115
Overview of 68K Assembler Notes . I U &
Writing an Assembly Function for 68K. 116
Defining a Function for 68K Assembly . 116
Using Global Variables in 68K Assembly ... 119
Using Local Variables and Arguments in 68K Assembly .. 119
Using Structures in 68K Assembly 120
Using the Preprocessor in 68K Assembly 121
Returning From a Function in 68K Assembly. 121
Assembler directives . 122

CL-6 C, C++, and Assembly Language Reference

dso 122
entry. L. Lo Lo 123
fralloc oo o oo 123
frfree.o oL oo 123
machine Lo o Lo 124
opword.o Lo 124

5 PowerPC Assembler Notes. 125
Overview of PowerPC Assembler Notes125
Writing an Assembly Function for PowerPC 126
Defining a Function for PowerPC Assembly126
Creating Labels for PowerPC Assembly 128
Using Comments for Power PCAssembly129
Using the Preprocessor for PowerPC Assembly. 129
Creating a Stack Frame for PowerPC Assembly. 129
Using Local Variables and Arguments for PowerPC Assembly130
Specifying Instructions for PowerPC Assembly. 131
Specifying Operands for PowerPC Assembly 132
Using registers132
Usinglabels. 132
Using variable names as memory locations133
Using immediate operands134
PowerPC Assembler Directives. 134
entry Lo Lo 134
fralloco o000 135
frfree.00 Lo oL 136
machineo o L 136
smclass. Lo Lo 137
PowerPC Assembler Instructions 138
6 MIPS AssemblerNotes 161
Overview of MIPS Assembler Notes.16l
Writing an Assembly Function16l
Creating labels.163
Using comments 163

C, C++, and Assembly Language Reference CL-7

Using the preprocessor 164

Creating astack frame 164
Specifyingoperandso 164
Using registers 164
Using parameters 165
Using global variables 165
Using immediate operands 165
Assembler Directive. 0oL L. 166
set. . . .o Lo 166

7 Win32/x86 Assembler Notes 167
Overview of Win32/x86 Assembler Notes 167
Writing an Assembly Function 167
8 Pragmas and Predefined Symbols. 169
Overview of Pragmas and Predefined Symbols 169
Pragmas.o 169
PragmaSyntax.o 170
The Pragmas. 170
a6bframes (68K Macintosh and Magic Cap). 171
align (Macintosh and MagicCap) 171
align_array_members (Macintosh and Magic Cap only). .172
ANSI strict 173
ARM _conform 174
auto_inline 175

bool (C++only) 176
check_header_flags (precompiled headersonly) 176
code_seg (Win32/x86only) 177
code68020 (68K Macintosh and Magic Cap only) 177
code68349 (Magic Caponly). 178
code68881 (68K Macintosh and Magic Cap only) 178
cplusplus.o Lo 179
cpp_extensions 180
d0_pointers (68K Macintoshonly) 180
data_seg (Win32/x86only) 182
direct_destruction (C++only) 182

CL-8 C, C++, and Assembly Language Reference

direct_to_som (Macintosh and C++only) 182

disable_registers (PowerPC Macintosh only). 183
dont_inline 183
dont_reuse_strings. L. 184
enumsalwaysints 00000 L 184
exceptions (C++only) 185
export (Macintoshonly) 186
extended_errorcheck 187
far_code, near_code, smart_code (68K Macintosh and Magic
Caponly)o 189
far_data (68K Macintosh and Magic Cap only). 189
far_strings (68K Macintosh and Magic Cap only). 190
far_vtables (68K Macintoshonly) 190
force_active (68K Macintoshonly) 190
fourbyteints (68K Macintoshonly) 191
fp_contract (PowerPC Macintoshonly) 191
function (Win32/x86only) 192
global_optimizer, optimization_level (PowerPC Macintosh
only)o 192
IEEEdoubles (68K Macintosh only). 193
ignore_oldstyle 194
import (Macintoshonly) 195
init_seg (Win32/x86only). 196
inline_depth (Win32/x86only) 197
internal (Macintoshonly) 197
lib_export (Macintoshonly) 198
longlongo 198
longlong enums.o 199
macsbug, oldstyle_symbols (68K Macintosh and Magic Cap
only) 199
mark.o Lo oL 200
mpwec (68k Macintoshonly). 200
mpwc_newline00 000 L 201
mpwc_relax. 202
no_register_coloring (68K Macintosh and Magic Cap only) 202
ONCE+« v v e e e e e e e 203

C, C++, and Assembly Language Reference CL-9

oldstyle_symbols (68K Macintosh and Magic Cap only). .
only_std_keywords
optimization_level (PowerPC Macintosh only).
optimize_for_size (Macintosh and Magic Cap only)

pack (Win32/x86only)
parameter (68K Macintosh and Magic Cap only)
pcrelstrings (68K Macintoshonly)
peephole (PowerPC Macintosh and Win32/x86 only). . .
pointers_in_AOQ, pointers_in_DO0 (68K Macintosh only) . .
pool_strings.00
pop,push.o
precompile_targeto L
profile Macintoshonly)
readonly_strings (PowerPC Macintoshonly)
require_prototypes. oL
RTTI o . o o o oo o o
scheduling (PowerPC Macintoshonly)
segment (Macintosh and Magic Cap only).
side_effects (Macintoshonly)
SOMCallOptimization (Macintosh and C++only)
SOMCallStyle (Macintosh and C++only)
SOMCheckEnvironment (Macintosh and C++ only) . .
SOMClassVersion (Macintosh and C++only)
SOMMetaClass (Macintosh and C++only)
SOMReleaseOrder (Macintosh and C++only)
static_inlines
SYM « « vt e e e e
toc_data (PowerPC Macintoshonly)
trigraphs 0000000000
traceback (PowerPC Macintosh only).
unsigned_char. 00000 L L
unused L oL Lo
warn_emptydecl.00 0oL 0L
Warning_errors
warn_extracomma
warn_hidevirtual L.

CL-10 C, C++, and Assembly Language Reference

warn_illpragma00 0oL 223

warn_possunwant L. 0L L. 223
warn_unusedarg.o 224
warn_unusedvar. 225

warning (Win32/x86only) 225

Predefined Symbols. 0oL 226

ANSI Predefined Symbols. 226

Metrowerks Predefined Symbols. 228

Options Checking 229
Optionstable 230
.................................. 237

C, C++, and Assembly Language Reference CL-11

CL-12 C, C++, and Assembly Language Reference

Introduction

This manual describes how the Metrowerks C and C++ compilers
implement the C and C++ standards and its in-line assembler.

Overview of the C/C++/ASM Reference

This manual describes how the Metrowerks C and C++ compilers
implement the C and C++ standards and its in-line assembler. Each
chapter begins with an overview.

Table 1.1 What's in this manual

This chapter...

Documents...

Overview of C and C++
Language Notes

Overview of C++ Lan-
guage Notes

Overview of 68K Assem-
bler Notes

Overview of PowerPC
Assembler Notes

Overview of MIPS As-
sembler Notes

How Metrowerks C implements the C standard. It also de-
scribes the parts of C++ that it shares with C.

How Metrowerks C++ implements the parts of the C++
standard that are unique to C++. It also describes how to
use templates and exception handling.

How to use the 68K inline assembler, which is part of
Metrowerks C and C++, to include assembly code in your
program.

How to use the PowerPC inline assembler, which is part of
Metrowerks C and C++, to include assembly code in your
program.

How to use the MIPS inline assembler, which is part of
Metrowerks C and C++, to include assembly code in your
program.

C, C++, and Assembly Language Reference CL-13

Introduction
Conventions Used in This Manual

This chapter... Documents...

Overview of Win32/x86 How to use the Win32/x86 inline assembler, which is part
Assembler Notes of Metrowerks C and C++, to include assembly code in
your program.

Overview of Pragmas The pragma statement, which lets you change your pro-

and Predefined Symbols gram’s options from your source code. It also describes the
preprocessor function __opt i on(), which lets you test the
setting of many pragmas and options, and the predefined
symbols that Metrowerks C and C++ use.

Conventions Used in This Manual

This manual includes syntax examples that describe how to use cer-
tain statements, such as the following:
#pragma paraneter [return-reg] func-name [param-regs]
#pragma optim ze for_size on | off | reset

Table 1.2 describes how to interpret these statements.

Table 1.2 Understanding Syntax Examples

If the text

looks like... Then...

literal Include it in your statement exactly as it’s printed.

metasymbol Replace the symbol with an appropriate value. The text after the
syntax example describes what the appropriate values are.

al b| c Use one and only one of the symbols in the statement: either a, b,
or c.

[a] Include this symbol only if necessary. The text after the syntax ex-

ample describes when to include it.

The C/C++ Project Settings Panels

This section describes where to find information on the C/C++ Lan-
guage and C/C++ Warnings settings panels.

CL-14 C, C++, and Assembly Language Reference

Introduction
The C/C++ Project Settings Panels

This is the C/C++ Language settings panel:

Figure 1.1

Inliming:

[] Poal Strings

[] bon®t Reuse Strings

(<] Require Function Prototypes
(<] Enable bool Support

The C/C++ Languages Settings Panel
- Language Info:

[] &ctivate C++ Compiler
[] &RM confor mance

[] Enable C++ Exceptions
[] Enable RTTI

[]&NSI Strict

[] &S| Eeywords Only
[] Expand Trigraphs
[] Multi-Eute teware

w | DirecttoS0M: [Off

[] MP'% Mewlines

[] MPW Pointer Type Rules
[] Enums &lways Int

[] Use Unsigned Chars

| Mormal

This table describes where to find more information on its options:

This option...

Is described here...

Activate C++ Compiler
ARM Conformance
Enable C++ Exceptions
Enable RTTI

Inlining

Pool Strings

Don’t Reuse Strings

Require Function Proto-
types
Enable bool Support

ANSI Strict

ANSI Keywords Only
Expand Trigraphs

“Using the C++ compiler always” on page 93
“Enforcing strict ARM conformance” on page 94
“Allowing exception handling” on page 96

“Using Run-Time Type Information (RTTI)” on page 96
“Inlining functions” on page 52

“Pooling strings” on page 56

“Reusing strings” on page 58

“Requiring prototypes” on page 54

“Using the bool type” on page 96

“ANSI extensions you disable with ANSI Strict” on page
47

“Additional keywords” on page 50
“Disabling trigraph characters” on page 49

C, C++, and Assembly Language Reference CL-15

Introduction

The C/C++ Project Settings Panels

This option... Is described here...

Multi-Byte Aware “Using multibyte strings and comments” on page 53
Direct to SOM “Creating Direct-to-SOM Code” on page 105

Map Newlines to CR “Using MPW C newlines” on page 76

Relaxed Pointer Type “Relaxing pointer checking” on page 56

Rules

Enums Always Int
Use Unsigned Chars

“Enumerated constants of any size” on page 51

“Chars always unsigned” on page 52

This is the C/C++ Warnings settings panel:

Figure 1.2 The C/C++ Warnings Settings Panel

- Warnings Info:

[] Treat &11 Warnings &= Errors

[] Megal Pragmas

[] Empty Declarations

[] Possible Errars

[] Unused V¥ariables

[] Unused &rgurments

[] Extra Commas

[] Extended Error Checking
[] Hidden wirtual functions

This table describes where to find more information on its options:

This option... Is described here...

Treat All Warnings As “Treat warnings as errors” on page 60
Errors

Illegal Pragmas “Illegal pragmas” on page 60

Empty Declarations “Empty declarations” on page 61

Possible Errors

“Possible unwanted side effects” on page 61

CL-16 C, C++, and Assembly Language Reference

Introduction
What's New

This option... Is described here...

Unused Variables “Unused variables” on page 62
Unused Arguments “Unused arguments” on page 63
Extra Commas “Extra commas” on page 64

Extended Error Check- ~ “Extended type checking” on page 65
ing

Hidden virtual functions “Function hiding” on page 66

What's New

This section describes the new documentation in this manual.
The long long type

Metrowerks C/C++ now has a 64-bit integer, the | ong | ong. See
“64-bit integers” on page 46.

Turning off register coloring in the 68K compiler

You can now turn off register coloring in the 68K Mac OS compiler.
This is useful when you’re debugging code. See “Register coloring”
on page 24.

More information on enumerated types

This manual now explains how the compiler implements enumer-
ated types and on how to use enumerators that are large enough to
bea | ong | ong. See “Enumerated types” on page 28.

New pragmas

There are three new pragmas:
* “longlong” on page 198
* “longlong_enums” on page 199

e “no_register_coloring (68K Macintosh and Magic Cap only)”
on page 202

C, C++, and Assembly Language Reference CL-17

Introduction
What's New

New intrinsic functions

There are three new PowerPC intrinsic functions, described on “Ro-
tating the contents of a variable” on page 83.

Improved documentation

There is new documentation on the MIPS and Win32/x86 inline as-
semblers. For more information, see “Overview of MIPS Assembler
Notes” on page 161 and “Overview of Win32/x86 Assembler
Notes” on page 167.

And there’s improved documentation on these pragmas:
e “code_seg (Win32/x86 only)” on page 177
e “data_seg (Win32/x86 only)” on page 182
* “init_seg (Win32/x86 only)” on page 196
* “inline_depth (Win32/x86 only)” on page 197
e “warning (Win32/x86 only)” on page 225

CL-18 C, C++, and Assembly Language Reference

C and C++
Language Notes

This chapter describes how Metrowerks handles the C program-
ming language. Since many of the features in C are also in C++, this
chapter is where you’ll find basic information on C++ also.

Overview of C and C++ Language Notes

This chapter describes how Metrowerks handles the C program-
ming language, and basic information on C++. For more informa-
tion on the parts of the C++ language that are unique to C++, see
“Overview of C++ Language Notes” on page 85.

In the margins of this chapter are references to K&R §A, which is
Appendix A, “Reference Manual,” of The C Programming Language,
Second Edition (Prentice Hall) by Kernighan and Ritchie. These refer-
ences show you where to look for more information on the topics
discussed in the corresponding section.

This chapter contains the following sections:

e “The Metrowerks Implementation of C and C++" on page 20
explains how Metrowerks C and C++ implement certain
parts of the standard.

e “Number Formats” on page 30 describes how C and C++ use
store integers and floating-point numbers. This section has
separate explanations for the 68K compiler and the PowerPC
compiler.

e “Calling Conventions” on page 35 explains how C and C++
functions pass their arguments and return their values. This
section has separate explanations for the 68K compiler and
the PowerPC compiler.

C, C++, and Assembly Language Reference CL-19

C and C++ Language Notes
The Metrowerks Implementation of C and C++

“Extensions to C or C++” on page 40 describe some of
Metrowerks C and C++’s extensions to the C and C++ stan-
dards. You can disable most of these extensions with options
in the C/C++ Language settings panel.

“Warnings for Common Mistakes” on page 59 explains some
options that check for common typographical mistakes.
These options are in the C/C++ Warnings settings panel.

“Generating Code for Specific 68K Processors (Macintosh
Only)” on page 67 describes how to generate code optimized
for the MC68020 and MC68881.

“Calling MPW Functions” on page 72 describes how to use
an MPW library in a CodeWarrior project.

“Calling Macintosh Toolbox Functions (Macintosh Only)” on
page 77 explains CodeWarrior’s support for the Macintosh
Toolbox.

“Intrinsic PowerPC Functions (Macintosh Only)” on page 80
explains some functions that are built into Metrowerks C/
C++ for PowerPC.

The Metrowerks Implementation of C and C++

This section describes how Metrowerks implements many parts of
the C and C++ programming languages. For information on the

parts of the C++ language that are specific to C++, see “Overview of

C++ Language Notes” on page 85.

This section contains the following:

“Identifiers” on page 21

“Include files” on page 21

“The sizeof() operator” on page 22
“Register variables” on page 23
“Volatile variables” on page 25
“Limits on variable sizes” on page 26

“Declaration specifiers” on page 27

CL-20 C, C++, and Assembly Language Reference

C and C++ Language Notes
The Metrowerks Implementation of C and C++

Lo

It

1]

Identifiers

(K&R, §A2.3) The C and C++ compilers let you create identifiers of
any size. However, only the first 255 characters are significant for in-
ternal and external linkage.

The C++ compiler creates mangled names in which all the charac-
ters in are significant. You do not need to keep your class and class
member names artificially short to prevent the compiler from creat-
ing mangled names that are too long.

Include files

(K&R, §A12.4) The C and C++ compilers can nest #include files up

to 32 times. An include file is nested if another #include file uses it

in an #i ncl ude statement. For example, if Mai n. ¢ includes the file
MyFunct i ons. h, which includes the file MW i | i ti es. h, the file

M/Utilities. hisnested once.

You can use full path names in #i ncl ude directives, as in this ex-
ample:

#i ncl ude "HD: Tool s: ny headers: macr os. h"

TIP: To add folders to the Access Paths settings panel, see the
CodeWarrior IDE User’s Guide.

The CodeWarrior IDE lets you specify where the compiler looks for
#include files with the Access Paths settings panel, shown in Figure
2.1. It contains two lists of folders: the User list and the System list.
By default, each list contains one folder. The User list contains
{Proj ect f}, which is the folder that the project file is in and all
the folders it contains. The System list contains { Conpi | er f},
which is the folder that the compiler is in and all the folders it con-
tains.

C, C++, and Assembly Language Reference CL-21

C and C++ Language Notes
The Metrowerks Implementation of C and C++

Figure 2.1 The Access Paths settings panel
- Additional Access Paths:
[] Treat #include <...» a5 *include "..."

Uzer: |S{Project f}:

Justem: || S N e

[PR T] [didd] [Change] [Remove]

The compiler searches for an #include file in either the System list or
both the User and System lists, depending on which characters en-
close the file. If you enclose the file in brackets (#i ncl ude

<st di 0. h>), the compiler looks for the file in the System lists’ fold-
ers section. If you enclose the file in quotes (#i ncl ude

"nyfuncs. h"), the compiler looks for the file in the User list’s fold-
ers and then in the System list’s folders. In general, use brackets for
include files that are for a large variety of projects and use quotes for
include files that are for a specific project.

Ay TIP: If you're using the compilers under MPW, you can specify
B where to find #include files with the -i compiler option and the
{ C ncl udes} variable, described in Command-Line Tools Manual
and MPW Command Reference.

The sizeof() operator

The si zeof () operator returns a number of type si ze_t, which
this compiler defines to be unsi gned | ong i nt (in st ddef . h) . If

CL-22 C, C++, and Assembly Language Reference

C and C++ Language Notes
The Metrowerks Implementation of C and C++

your code assumes that si zeof () returns a number of type i nt, it
may not work correctly.

Register variables

(K&R, §A4.1, §A8.1) The C and C++ compilers automatically allo-
cate local variables and parameters to registers according to how
frequently they’re used and how many registers are available. If
you're optimizing for speed, the compilers give preference to vari-
ables used in loops.

The PowerPC and 68K Macintosh compilers give preference to vari-
ables declared to be r egi st er, but do not automatically assign
them to registers. For example, the compilers are more likely to
place a variable from an inner loop in a register than a variable de-
clared register.

The Win32/x86 compiler ignores the r egi st er declaration and de-
cides on its own which variables to place in registers.

The PowerPC Macintosh compiler can use these registers for local
variables:

e GPR13 through GPR31 for integers and pointers

* FPR14 through FPR31 for floating point variables.
The 68K Macintosh and Magic Cap compilers can use these registers
for local variables:

e A2 through A4 for pointers

* DB through D7 for integers and pointers.
If you turn on the 68881 Codegen option, the 68K compilers also use
these registers:

* FP4 through FP7 for 96-bit floating-point numbers

The Win32/x86 compiler can use these registers for local variables:
e EAX
e EBX
e ECX

C, C++, and Assembly Language Reference CL-23

C and C++ Language Notes
The Metrowerks Implementation of C and C++

e EDX
e ES|
e ED

Register coloring

The Macintosh and Magic Cap compilers can also perform an addi-
tional register optimization, called register coloring. In this optimiza-
tion, the compiler lets two or more variables share a register: it
assigns different variables or parameters to the same register if you
do not use the variables at the same time. In this example, the com-
pilers could place i andj in the same register:

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<1000; j++) { QurFunc(j); }

However, if a line like the one below appears anywhere in the func-
tion, the compiler would realize that you're using i andj atthe
same time and place them in different registers:

int k=1 +j;

To let the PowerPC compiler perform register coloring, turn on the
Global Optimizer option in the PPC Processor settings panel and
set the Level to 1 or more. To let the 68K Macintosh and Magic Cap
compilers perform register coloring, turn on the Global Register
Allocation option in the 68K Processor settings panel. The Global
Optimizer option corresponds to the gl obal _opti m zer pragma,
described on “global_optimizer, optimization_level (PowerPC Mac-
intosh only)” on page 192. The Global Register Allocation option
corresponds to the no_r egi st er _col ori ng pragma, described on
“no_register_coloring (68K Macintosh and Magic Cap only)” on
page 202.

If register coloring is on while you debug your project, it may ap-
pear as though there’s something wrong with the variables sharing
a register. In the example above, i and] would always have the
same value. Wheni changes,j changes in the same way. When j

CL-24 C, C++, and Assembly Language Reference

C and C++ Language Notes
The Metrowerks Implementation of C and C++

Listing 2.1

changes, i changes in the same way. To avoid this confusion while
debugging, turn off register coloring or declare the variables you
want to watch as volatile.

Volatile variables

(K&R, §A4.4) When you declare a variable to be volatile, both the C
or C++ compilers take the following precautions:

* It does not store the variable in a register.

e It computes the variable’s address every time a piece of code
references the variable.

Listing 2.1 shows an example of volatile variables.

volatile variables

voi d mai n(voi d)

{
int i[100];
volatile int a, b;
a=>5;
b = 20;
i[a + b] = 15;
if[a + b] = 30;

}

The compiler does not place the value of a, b, or a+b in register.
Also, the compiler re-calculates a+b in both assignment statements.

C, C++, and Assembly Language Reference CL-25

C and C++ Language Notes
The Metrowerks Implementation of C and C++

Limits on variable sizes

(K&R, §A4.3, §A8.3, §A8.6.2) The Macintosh and Magic Cap C/C++
compilers let you declare structs and arrays to be any size, but place
some limits on how you allocate space for them:

¢ A function cannot contain more than 32K of local variables.
To avoid this problem, do one of the following;:

— Dynamically allocate large variables.

— Declare large variables to be st at i c. Note that if you're
using a 68K compiler, you may run into the 32K limit on
global variables, described below.

¢ If you're using a 68K compiler, you cannot declare a global
variable that is over 32K unless you use far data. You must do
one of the following:

— Dynamically allocate the variable.
— Use the f ar qualifier when declaring the variable.

— Turn on the Far Data option in the Processor settings
panel or use the pragma f ar _dat a.

The example below shows how to declare a large struct or array.

int i[50000]; /1 USUALLY OK
/'l Wong only when you use
/'l 68K conpiler and turn off
/'l the Far Data option in the
/| Processor settings panel

far int j[50000]; // ALWAYS OK.

int *k;
& = mal | oc(50000 * sizeof(int));
Il ALWAYS K.

¢ Bitfields can be only 32 bits or less.

The Win32/x86 compiler places no limits on how large variables can
be or how you allocate them.

CL-26 C, C++, and Assembly Language Reference

C and C++ Language Notes
The Metrowerks Implementation of C and C++

Declaration specifiers

CodeWarrior lets you choose how to implement a function or vari-
able with the declaration specifier __decl spec(arg), where arg
specifies how to implement it. The Macintosh and Win32/x86 have
different sets of arguments

For 68K and PowerPC Macintosh code, arg can be one of the follow-
ing values:

e _ decl spec(internal) lets you specify that this variable
or function is internal and not imported. It corresponds to the
pragma i nt er nal , described at “internal (Macintosh only)”
on page 197.

e _ decl spec(inport) lets you import this variable or func-
tion which is in another code fragment or shared library. It
corresponds to the pragma i nport, described at “import
(Macintosh only)” on page 195.

e _ decl spec(export) lets you export this variable or func-
tion from this code fragment or shared library. It corresponds
to the pragma expor t, described at “export (Macintosh
only)” on page 186.

e _ decl spec(lib_export) ignores the pragmas export,
import, and internal for this variable or function. It corre-
sponds to the pragma | i b_expor t, described at “lib_export
(Macintosh only)” on page 198.

For Win32/x86 code, arg can be one of the following values:

e _ decl spec(dl | export) specifies that this function or
variable is exported from the executable or DLL that defines
it.

e _ decl spec(dllinport) specifies that this function or
variable is imported from another DLL or executable.

e _ decl spec(naked) specifies that this function is entirely
implemented with assembler code and the compiler does not
need to produce any prefix or suffix code. It’s the same as
using the asmkeyword.

e _ decl spec(thread) specifies that a copy of this global
variable (i.e. st at i ¢ or ext er n) is created for each separate
thread in this program. Creating separate copies can simplify

C, C++, and Assembly Language Reference CL-27

C and C++ Language Notes
The Metrowerks Implementation of C and C++

Listing 2.2

multi-threaded applications, since this is a reentrant way to
refer to global storage. Note these restrictions on
__decl spec(thread):

— You cannot use it in a DLL that’s dynamically loaded (that
is, your program specifically makes a runtime request for
the DLL). You can use it in DLLs that are statically linked
to your application and are implicitly loaded when your
application is launched.

— If you declare a variable as __decl spec(t hread) , you
cannot use its address as an initializer, since the program
can determine the address only at run-time.

Enumerated types

This section describes how the C/C++ selects the underlying inte-
ger type for an enumerated type. There are two different different
strategies, depending on the setting of the Enum Always Int option
in the C/C++ Language settings panel, which corresponds to the
enunsal waysi nt pragma.

If Enums Always Int is on, the underlying type is always si gned

i nt . All enumerators must be no larger than a si gned i nt. How-
ever, if the ANSI Strict option is off, enumerators that can be repre-
sented as an unsi gned i nt are implicitly converted to si gned

i nt. (The ANSI Strict option is in the C/C++ Language settings
panel and corresponds to the ANSI _stri ct pragma.)

Turning on the Enums Always Int option

#pragma enunsal waysi nt on
#pragma ANSI _strict on
enum foo { a=OxFFFFFFFF }; // ERROR a is 4,294, 967, 295:

I too big for a signed int

#pragma ANSI _strict off
enum bar { b=0OxFFFFFFFF }; // OK b can be represented as an

I unsigned int, but is inplicitly
I converted to a signed int (-1).

CL-28 C, C++, and Assembly Language Reference

C and C++ Language Notes
The Metrowerks Implementation of C and C++

If Enums Always Int is off, the compiler picks one of the following:

e If all enumerators are positive, it picks the smallest unsigned
integral base type that is large enough to represent all enu-
merators

e If at least one enumerator is negative, it picks the smallest
signed integral base type large enough to represent all enu-
merators.

Listing 2.3 Turning off the Enums Always Int option

#pragma enunsal waysi nt of f

enum { a=0, b=1 }; /| base type: unsigned char
enum{ c¢=0,d=-1 }; /'l base type: signed char
enum { e=0,f=128,g=-1 }; [/ base type: signed short

The compiler will only use | ong | ong base types if is the
| ongl ong_enumns pragma is on. (There is no settings panel option
corresponding to the | ongl ong_enuns pragma)

Listing 2.4 Turning on longlong_enums pragma

#pragma enunsal waysi nt of f

#pragma | ongl ong_enuns of f

enum { a=0x7FFFFFFFFFFFFFFF }; // ERROR a is too |large

#pragma | ongl ong_enuns on

enum { b=0x7FFFFFFFFFFFFFFF };// OK base type: signed |ong | ong
enum { ¢=0x8000000000000000 };// OK base type: unsigned |ong | ong
enum { d=-1, e=0x80000000 }; /'l OK base type: signed |ong | ong

When the longlong_enums pragma is off and ANSI strict is on, you
cannot mix huge unsigned 32-bit enumerators (greater than
Ox7FFFFFFF) and negative enumerators. If both the

| ongl ong_enums pragma and the ANSI strict option are off, huge
unsigned 32-bit enumerators are implicitly converted to signed 32-
bit types.

C, C++, and Assembly Language Reference CL-29

C and C++ Language Notes

Number Formats

Listing 2.5

Turning off the longlong_enums pragma

#pragma enunsal waysi nt of f
#pragma | ongl ong_enuns of f
#pragma ANSI _strict on

enum { a=-1, b=OxFFFFFFFF }; [l error
#pragma ANSI _strict off
enum { c=-1, d=OxFFFFFFFF }; /'l base type: signed int (b==-1)

For more information on Enums Always Int, see “Enumerated con-
stants of any size” on page 51. For more information on ANSI Strict,
see “ANSI extensions you disable with ANSI Strict” on page 47. For
more information on the longlong_enums pragma, see
“longlong_enums” on page 199.

Number Formats

(K&R, §A4.2) This section describes how the C and C++ compilers
implement integer and floating-point types. You can also read | i m
i t's. hfor more information on integer types and f | oat . h for more
information on floating-point types.

This section contains the following;:
* “68K Macintosh integer formats” on page 30
* “68K Macintosh floating-point formats” on page 32

e “PowerPC Macintosh, Magic Cap, and Win32/x86 integer
formats” on page 33

e “PowerPC Macintosh and Win32/x86 floating-point for-
mats” on page 34

¢ “Magic Cap Floating-Point Formats” on page 34

68K Macintosh integer formats

The 68K Macintosh compiler lets you choose the size of an int with
the 4-Byte Int option in the Processor settings panel. In general,
you’ll turn this option on since it’s easier to port your code to the

CL-30 C, C++, and Assembly Language Reference

C and C++ Language Notes
Number Formats

PowerPC compiler, which always uses 4-byte ints. However, 2-byte
ints are slightly more efficient on the 68K, so you may want to turn
this option off when efficiency is more important.

Table 2.1 shows the size and range of the integer types for a 68K
compiler.

Table 2.1 68K Macintosh integer types
For this type If this is true... Sizeis andits rangeis
bool Always true 8 bits trueorfal se
char Use Unsigned Chars 8 bits -128 to 127
is off
Use Unsigned Chars 8 bits 0 to 255
is on
si gned char Always true 8 bits -128to 127
unsi gned char Always true 8 bits 0 to 255
short Always true 16 bits -32,768 to 32,767
unsi gned Always true 16 bits 0 to 65,535
short
i nt 4-Byte Ints is off 16 bits -32,768 to 32,767
4-Byte Ints is on 32 bits -2,147,483,648 to
2,147,483,647
unsi gned i nt 4-Byte Ints is off 16 bits 0 to 65, 535
4-Byte Ints is on 32 bits 0to 4,294,967,295
| ong Always true 32 bits -2,147,483,648 to
2,147,483,647
unsi gned | ong Always true 32bits 0 to4,294,967,295
| ong | ong Always true 64 bits -9,223,372,036,854,775,808
t0 9,223,372,036,854,775,807
unsi gned Always true 64 bits 0 to
| ong | ong 18,446,744,073,709,551,615

C, C++, and Assembly Language Reference CL-31

C and C++ Language Notes

Number Formats

68K Macintosh floating-point formats

You can choose the size of a double with the 8-Byte Doubles option.
In general, turn this option off since 8-byte (or 64-bit) doubles are
less efficient than others. However, if you are porting code that re-
lies on 8-byte doubles, turn this option on.

You can also choose to create code that is optimized for machines
with a 68040 processor or a 68881 floating point unit. If you turn on
the 68881 Codegen option in the Processor settings panel, the com-
piler uses floating-point operations and types that are designed spe-
cifically for those chips. If you create code with the 68881 Codegen
option on and try to run it on a machine that does not have a 68040
or 68881, the code will crash. Turn on the 68881 Codegen option
only if the code contains lots of floating-point operations, must be as
fast as possible, and you're sure the code will be used only on ma-
chines that contain a 68040 or 68881. Table 2.2 shows the size and
range of the floating-point types for a 68K compiler.

Table 2.2 68K Macintosh floating point types
For this type If this is true... Its sizeis and its rangeis
f1 oat Always true 32 bits 1.17549e- 38 to
3.40282e+38
short doubl e Always true 64 bits 2.22507e- 308 to
1. 79769e+308
doubl e 8-Byte Doubles is on 64 bits 2.22507e-308 to
1. 79769e+308
8-Byte Doubles is off and 80 bits 1. 68105e- 4932 to
68881 Codegen is off 1.18973e+4932
8-Byte Doubles is off and 96 bits 1. 68105e- 4932 to
68881 Codegen is on 1. 18973e+4932
| ong doubl e 68881 Codegen is off 80 bits 1. 68105e- 4932 to
1. 18973e+4932
68881 Codegen is on 96 bits 1. 68105e- 4932 to
1. 18973e+4932

CL-32 C, C++, and Assembly Language Reference

C and C++ Language Notes
Number Formats

PowerPC Macintosh, Magic Cap, and Win32/
x86 integer formats

The PowerPC Macintosh, Magic Cap, and Win32/x86 compilers do
not let you change the sizes of integers. The size of a short i nt is
always 2 bytes and the size of i nt or| ong i nt is always 4 bytes.

Table 2.3 shows the size and range of the integer types for the Pow-
erPC Macintosh, Magic Cap, and Win32/x86 compilers.

Table 2.3 PowerPC, Magic Cap, and Win32/x86 Integer Types

For this type If this is true... Sizeis anditsrangeis
bool Always true 8 bits trueorfal se
char Use Unsigned Chars 8 bits -128 to 127
is off
Use Unsigned Chars 8 bits 0 to 255
is on
si gned char Always true 8 bits -128 to 127
unsi gned char Always true 8 bits 0 to 255
short Always true 16 bits -32,768 to 32,767
unsi gned Always true 16 bits 0 to 65,535
short
i nt Always true 32 bits -2,147,483,648 to
2,147,483,647
unsi gned i nt Always true 32 bits 0 to 4,294,967,295
| ong Always true 32 bits -2,147,483,648 to
2,147,483,647
unsi gned | ong Always true 32 bits 0 to 4,294,967,295
| ong | ong Always true 64 bits -9,223,372,036,854,775,808
t0 9,223,372,036,854,775,807
unsi gned Always true 64bits Oto
| ong | ong 18,446,744,073,709,551,615

C, C++, and Assembly Language Reference CL-33

C and C++ Language Notes

Number Formats

Table 2.4

WARNING! Do not turn off the 4-Byte Ints option in Magic Cap
code. Although the Magic Cap compiler lets you change the set-
ting of this option, your code will not run correctly if it's off. It is on
by default.

PowerPC Macintosh and Win32/x86 floating-
point formats

Table 2.4 shows the sizes and ranges of the floating point types for
the PowerPC Macintosh and Win32/x86 compilers.

PowerPC Macintosh and Win32/x86 floating point types

Type

Size Range

fl oat

32 bits 1.17549e- 38 to 3. 40282e+38

short doubl e

64 bits 2.22507e-308 to 1. 79769e+308

doubl e

64 bits 2.22507e-308 to 1. 79769e+308

| ong doubl e

64 bits 2.22507e-308 to 1. 79769e+308

Table 2.5

Magic Cap Floating-Point Formats

Table 2.5 shows the size and range of the floating-point types for the
Magic Cap compiler.

Magic Cap floating point types

Type

Size Range

fl oat

32 bits 1.17549e- 38 to 3. 40282e+38

short doubl e

64 bits 2.22507e-308 to 1. 79769e+308

double

96 bits 1. 68105e-4932 to 1. 18973e+4932

| ong doubl e

96 bits 1. 68105e-4932 to 1. 18973e+4932

CL-34 C, C++, and Assembly Language Reference

C and C++ Language Notes
Calling Conventions

=
T

WARNING! Do not turn on the 8-Byte Doubles option in Magic
Cap code. Although the Magic Cap compiler lets you change the
setting of this option, your code will not run correctly if it's on. It is
off by default.

It
1]

Calling Conventions

(K&R, §A8.6.3) This section describes the C and C++ calling conven-
tions for both the Macintosh, Magic Cap, and Win32/x86 compilers.
It contains the following:

e “68K Macintosh calling conventions” on page 35
¢ “PowerPC calling conventions” on page 36
e “Win32/x86 calling conventions” on page 39

* “Magic Cap calling conventions” on page 39

68K Macintosh calling conventions

The 68K Macintosh and Magic Cap compilers pass all parameters
on the stack in reverse order. This list describes where the compiler
places a return value:

e It returns an integer values in register DO.
¢ [t returns a pointer value in register AQ.

e If it returns a value of any other type, the caller reserves tem-
porary storage area for that type in the caller's stack and
passes a pointer to that area as the last argument. The callee
returns its value in the temporary storage area.

There are two options which can change how the compiler returns a
value:

e If you turn on either the pragma poi nt er s_i n_DO or
pragma npwe, the compiler returns pointer values in register
DO. Use one of these pragmas if you're calling a function de-
clared in an MPW library. For more information, see “Calling
MPW Functions” on page 72.

C, C++, and Assembly Language Reference CL-35

C and C++ Language Notes
Calling Conventions

e If the 68881 Codegen option is on, the compiler returns 96-bit
floating-point values in register FPO.

Figure 2.2 shows what the stack looks like when you call a C func-
tion with the 68K Macintosh and Magic Cap compiler.

Figure 2.2 Calling a C function

Stack pointer — | return address

pointer to return value (if needed)

first argument

last argument

PowerPC calling conventions

The consortium behind the PowerPC dictates a standard set of call-
ing conventions that Metrowerks C/C++ for PowerPC follows. For
more information on these calling conventions, see Inside Macintosh:
PowerPC System Software. The rest of this section describes how
Metrowerks C/C++ implements these standards.

The compiler reserves space for a function’s parameters in two
places: it reserves space for all parameter values in a structure in the
caller’s parameter area, and then it copies as many parameters as
possible in registers. If the compiler copies a parameter into a regis-
ter, it does not also copy it onto the parameter stack, but the com-
piler still reserves space for it on the stack. Placing parameters in
registers avoids memory references to the parameter area and
speeds up your programs.

NOTE: A word is eight bytes on the PowerPC.

In the parameter area, parameters are laid out in the order they ap-
pear, with the left-most parameter at the lowest offset. Each parame-
ter starts at a word boundary regardless of size. For example,
characters take up a word and doubles may not be on a double

CL-36 C, C++, and Assembly Language Reference

C and C++ Language Notes
Calling Conventions

word boundary. Signed integers smaller than a word are sign-byte
extended to a word. Unsigned chars are zero-extended.

In the registers, the compiler maps the first eight words of the pa-
rameter area — excluding floating point values — to the general
purpose registers r 3 through r 10. Integers and pointers take up one
register each. Composite parameters (such as structs, classes, and
arrays) take up as many consecutive registers as they need. Note
that the compiler maps composite parameters are to the registers as
raw data, not as individual members or elements. For example, an
array of six chars uses two registers: all of the first and the top half
of the second.

NOTE: A composite parameter may be both in registers and the
parameter stack. If the parameter starts in or before the eighth
word and ends after the eighth word, the compiler stores part of it
in registers and the rest on the parameter stack.

Floating-point values are mapped to the floating point registers f p1
through f p13. The compiler maps only free variables and not float-
ing-point values contained in composite types. If the floating-point
parameter appears within the first eight words, the compiler does
not use the corresponding general register or pair of registers. The
compiler does not use the register but simply skips it. The compiler
does not skip floating-point registers but uses them consecutively.

If a function does not have a prototype or has a variable argument
list, the compiler copies the floating-point arguments into both gen-
eral purpose registers and floating-point registers. In other words,
the general purpose registers contain the first eight bytes of all pa-
rameters, and the floating-point registers contain duplicates of the
floating-point parameters. The compiler performs this duplication
since the function may be expecting either floats or raw data. If the
function definition specifies floats, it will look for the parameters in
the floating-point registers. If the function accepts anything and in-
terprets the data itself (like pri nt f ()), it will look for the parame-
ters in the general purpose registers.

C, C++, and Assembly Language Reference CL-37

C and C++ Language Notes
Calling Conventions

Figure 2.3 shows how the compiler would store the parameters in
function f 00() , shown below. Note thatr 4, r5, and r 6 are empty
and that the floating-point members of the struct are not stored in
floating-point registers. Also, the compiler fills up the floating-point
registers one after the other, even though the floating-point parame-
ters do not follow each other.

typedef struct rec {
int i;
float f;
doubl e d;

} rec;

void foo(int i1, float f1, double di, rec r,
int i3, float f3, double d3);

Figure 2.3 PowerPC parameter passing example

Parameter Stack General Purpose Registers Floating-point Registers
24 i1 r3 i1 fp1 f1
28 fl r4 empty fp2 d1 (first word)
32 d1 (first word) r5 empty fp3 - d_l (;ec_ona w_ord_) B
36 - d_l (;ec_ona w_ord_)) ré empty fp4 f3
40 rec.i r7 rec.i fp5 d3 (first word)
44 rec.f r8 rec.f fp6 - d_3 (;ec_ona w_ord_) B
48 rec.d (first word) ro rec.d (first word) fp7 empty
52| rec.d (second word) r10 _re;.d_(se_co;d ;vo:d)_ fp8 empty
56 i3 fp9 empty
60 3 fp10 empty
64 d3 (first word) fpl1 empty
68 - d_3 (;ec_ona w_ord_)) fp12 empty

fp13 empty

CL-38 C, C++, and Assembly Language Reference

C and C++ Language Notes
Calling Conventions

This list describes where the compiler places a return value:
¢ It returns integer valuesinr 3.
¢ It returns float and double floating-point values in f p1.

e [fitreturnsa composite type (such as a struct, class, or array),
it allocates area for the return value in a temporary storage
area, and returns a pointer to that area as an implicit left-most
parameter (that is, in r 3).

Magic Cap calling conventions

The Magic Cap compiler uses the same calling conventions as the
68K Macintosh compiler with the MPW C Calling Conventions op-
tion on and the dO_poi nt er s pragma on. For more information,
see “68K Macintosh calling conventions” on page 35, “Declaring
MPW C functions (Macintosh Only)” on page 75, and “d0_pointers
(68K Macintosh only)” on page 180.

Win32/x86 calling conventions

The Win32/x86 C/C++ compiler lets you choose how it calls func-
tions with these types of declaration: __stdcal | and __t hi scal I .

If you don’t use a declaration specifier, the compiler uses the default
calling convention. It pushes all parameters onto the stack in right to
left order, so the first parameter in the list is on top of stack when the
call is made. It expands each parameter to at least 32 bits on the
stack and pads structs to an even number of 32 bit longwords. The
caller removes the parameters from the stack. The compiler returns
the function’s value in one of these ways:

e It returns integer and pointer values in the EAX register.

e Itreturns floating point values on the floating point processor
stack

¢ It returns structures and classes by passing an additional pa-
rameter with the address of a temporary variable and pushes
that address onto the stack after all explicit parameters.

C, C++, and Assembly Language Reference CL-39

C and C++ Language Notes
Extensions to C or C++

If you're declaring a function for an API, specify the standard call-
ing convention with __st dcal | . It’s the same as the default calling
convention, except that the callee removes parameters from stack.

If you're declaring a non-static member function, the compiler auto-
matically uses the __t hi scal | calling convention unless you ex-
plicitly specify the standard calling convention with __st dcal | .
The __thi scal | calling convention is the same as the standard
calling convention, except that it passes the t hi s pointer in the ECX
register.

Extensions to C or C++

Figure 2.4

This section describes some of Metrowerks C and C++’s extensions
to the C and C++ standards. You can disable most of these exten-
sions with options in the Language preference panel, as shown in
Figure 2.4.

Setting C Options in the C/C++ Languages Settings Panel

- Language Infa:

[] Enable RTTI

[] etivate C++ Compiler
[] &RM conformance
[] Enable C++ Exceptions

Common ANSI
[] &NSI Strict iﬁiﬁﬂiﬁjs
[] ANSI Keywords Only Keywords
' Disabling trigraph
[] Expand Trigraphs Disabling trigrap

[] Multi-Euyte &ware

Using multi-byte
strings,comments

—Inlining: |

Nor mal - |

Direct to SOM: | Onwith Envi...w |

[] Pool Strings
[] Don’t Reuse Strings
[<] Require Function Prototypes

[] Map Mewlines to CR
[] Relaxed Pointer Type Rules ——
[] Enums &lways Int
[] Use Unsigned Chars

Using Prototypes
Enumerated cons-
tants of any size

Chars always
unsigned

— Storing strings

$ Enable bool Support
I
Using prototypes

— Inlining functions

CL-40 C, C++, and Assembly Language Reference

C and C++ Language Notes

Extensions to C or C++

NOTE: For more information on the options in the upper right
corner of the dialog (Activate C++ Compiler, ARM Conformance,
Enable Exception Handling, Don’t Inline, and Enable RTTI), as
well as Enable bool support and Direct to SOM see “Overview of
C++ Language Notes” on page 85. For more information on en-
able bool support, see “Using the bool type” on page 96. For more
information on Map Newlines to CR, see “Using MPW C newlines”
on page 76.

These are the extensions described in this section:

e “ANSI extensions you can’t disable” on page 42 describes ex-
tensions you cannot disable. These extensions are common to
many compilers, especially Macintosh compilers.

» “ANSI extensions you disable with ANSI Strict” on page 47
describes extensions you can disable with the ANSI Strict
option. These extensions are common to many compilers.

 “Disabling trigraph characters” on page 49 describes how to
prevent the compiler from expanding trigraph characters.
You can disable this extension with the Expand Trigraphs op-
tion.

e “Additional keywords” on page 50 describes three additional
words that the compiler recognizes as keywords. You can dis-
able this extension with the ANSI Keywords Only option.

¢ “Enumerated constants of any size” on page 51 describes
how Metrowerks C and C++ create enumerated constants of
any size. You can disable this extension with the Enums Al-
ways Int option.

* “Chars always unsigned” on page 52 describes how Metrow-
erks C and C++ lets you treat a char declaration as an
unsi gned char declaration. You can enable this extension
with the Use Unsigned Chars option.

e “Inlining functions” on page 52 describes how to choose the
way in which Metrowerks C and C++ inline your functions.
You choose with the Inlining menu.

¢ “Using multibyte strings and comments” on page 53 de-
scribes how to use multibyte strings and comments (such as

C, C++, and Assembly Language Reference CL-41

C and C++ Language Notes

Extensions to C or C++

Kanji). You can enable this extension with the Multi-Byte
Aware option.

“Using prototypes” on page 54 describes how to control how
strictly Metrowerks C and C++ enforce prototypes. There are
two options and a pragma that control prototypes: the Re-
quire Function Prototypes option, the Relaxed Pointer Type
Rules option, and the pragma i gnor e_ol dstyl e.

“Storing strings (Macintosh only)” on page 56 describes how
to control how to store strings. There are two options that
control strings: Pool Strings and Don’t Reuse Strings.

ANSI extensions you can’t disable

This section describes some extensions to the ANSI C and C++ stan-
dards that you cannot disable with any option in the project set-
tings. Many compilers, especially Macintosh compilers, support
these extensions.

These extensions are as follows:

“Multibyte characters (Macintosh Only)” on page 43

“Declaring variables by address (Macintosh Only)” on page
43

“Opcode inline functions (68K Macintosh Only)” on page 43

“Specifying the registers for arguments (68K Macintosh
Only)” on page 45

“64-bit integers” on page 46

CL-42 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

Table

L

It

2.6

e

Multibyte characters (Macintosh Only)

(K&R, §A2.5.2) The C and C++ compilers let you use multibyte
character constants which contain 2 to 4 characters. Here are some
examples:

Multibyte character constant

Character constant Equivalent hexadecimal
" ABCD 0x41424344
" ABC 0x00414243
" AB' 0x00004142

Declaring variables by address (Macintosh Only)

(K&R, §A8.7) The C and C++ compilers let you specify the address
that a variable refers to. For example, this definition defines MenEr r
to contain whatever is at the address 0x0220:

short MenErr: 0x220;

the variable MenEr r contains whatever is at the address 0x220.

TIP: Avoid using this extension to refer to low-memory globals.
To ensure that your programs are compatible with future versions
of the Mac OS, use the functions defined in the Lowvem h header
file.

Opcode inline functions (68K Macintosh Only)

(K&R, §A8.6.3, §A10.1) The 68K C and C++ compilers let you de-
clare a function that specifies the opcodes that it contains. When you
call an opcode inline function, the compiler replaces the function
call with those opcodes. To define an opcode inline function, replace
the function body with an equals sign and the opcode. If there’s

C, C++, and Assembly Language Reference CL-43

C and C++ Language Notes
Extensions to C or C++

Listing 2.6

Listing 2.7

more than one opcode, enclose them in brackets. Listing 2.6 shows
two opcode inline functions.

Declaring an opcode inline function

pascal OSErr FSpCat Move(FSSpec *from FSSpec *t o)
= { 0x303C, 0x000C, OxAA52 };

pascal void LineTo(short h,short v) = OxA891;

NOTE: Only the 68K Macintosh C and C++ compilers lets you
use opcode inline function declarations. However, all the C++ com-
pilers let you use C++ inline functions, declared with the i nl i ne
keyword.

Inline data (68K Macintosh Only)

The 68K C and C++ compilers let you include simple inline data
with the asm declaration. Use this syntax:

asm { constant, constant, . . . }
asm (constant, constant, . . .)

A constant can be a numeric constant or a string literal.

For example, this function:

Inline data example

voi d foo()
{
asm ((short)0Ox4e71, (short)Ox4e71);
/] two 68K NOP instructions

CL-44 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

asm{ Ox4e714e7l, Ox4e714e71 },;
/] four 68K NOP instructions

asm ((char)' C, (char)' o', (short)'de',"Warrior");
}

Produces assembly code that looks like this:

Listing 2.8 Assembly code from inline data

LINK A6, #$0000

NCP . First two NOPs

NOP ; Next four NOPs
DC. B "CodeWarri or\ Q"

UNLK A6

RTS

Specifying the registers for arguments (68K Macintosh Only)

(K&R, §A8.6.3, §A10.1) The 68K C and C++ compilers let you can
specify which registers that a function uses for its parameters and
the return value. The registers D0-D2, AO-Al, and FPO-FP3 are avail-
able.

When you declare the function, specify the registers by using the
#pragma parameter statement before the declaration. When you de-
fine the function, specify the registers right in the argument list.
This is the syntax for the #pragma parameter:

#pragma paraneter return-reg func-name(param-regs)

The compiler passes the parameters for the function func-name in the
registers specified in param-regs instead of the stack, and returns any

C, C++, and Assembly Language Reference CL-45

C and C++ Language Notes
Extensions to C or C++

Listing 2.9

return value in the register return-req. Both return-reg and param-regs
are optional.

For example, Listing 2.9 shows the declaration and definition of a

function, in which a is passed in DO, p is passed in Al, X is passed in
FPO and f is passed on the stack.

Using registers with functions

#pragma parameter _ D2 function(__DO, Al, FPO)
short function(long a, Ptr p, |ong double X,
short f);

short function(long a: DO, Ptr p:__Al,
| ong double x: _FPO, short f) :_ D2
{

/1
}

64-bit integers

The C or C++ compiler lets you define a 64-bit integer with the type
specifier |1 ong | ong. This is twice as large as a | ong i nt, which
is a 32-bit integer. A | ong | ong can hold values from
-9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807. An
unsi gned | ong | ong can hold values from 0 to
18,446,744,073,709,551,615.

In an enumerated type, you can use an enumerator large enough for
a | ong | ong. For more information, see “Enumerated types” on
page 28. However, | ong | ong bitfields are not supported.

You can disable the |1 ong | ong type with the pragma | ongl ong,
described at “longlong” on page 198. There is no settings panel op-
tion to disable it. If this pragma is off, using | ong | ong causes a
syntax error. To check whether this option is on, use

__option (Ionglong), described in “Options Checking” on page
229. By default, this pragma is on.

CL-46 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

ANSI extensions you disable with ANSI Strict

This section describes some optional extensions to the ANSI C and
C++ standards that you can enable by turning off the ANSI Strict
option in the Language preference panel. Many compilers, includ-
ing Metrowerks C and C++, support these extensions.

NOTE: You cannot compile most standard Macintosh applica-
tions if the ANSI Strict option is on. In general, use this option
only if you have to check whether a program is strictly ANSI-con-
ferment.

The optional ANSI extensions are the following. If you turn on the
ANSI Strict option, the compiler generates an error if it encounters
any of these extensions.

* “C++-style comments” on page 48
¢ “Unnamed arguments in function definitions” on page 48

* “A# not followed by argument in macro definition” on page
48

* “An identifier after #endif” on page 48
* “Using typecasted pointers as lvalues” on page 49

For more information on how this option affects enumerated types,
see “Enumerated types” on page 28.

The ANSI Strict option corresponds to the pragma ANSI _stri ct,
described at “ANSI_strict” on page 173. To check whether this op-
tionis on, use _option (ANSI _strict), described at
“ANSI_strict” on page 230. By default, this option is off.

C, C++, and Assembly Language Reference CL-47

C and C++ Language Notes
Extensions to C or C++

C++-style comments

(K&R, §A2.2) In the C compiler, you can use C++-style comments.
Anything that follows / / on a line is considered a comment. For ex-
ample:

a = b; /1l This is a C+t+-style comment
Unnamed arguments in function definitions

(K&R, §A10.1) The C compiler lets you use an unnamed argument
in a function definitions. For example:

void f(int) {} /* OK if ANSI Strict is off */
void f(int i) {} /* ALWAYS OK */

A # not followed by argument in macro definition

(K&R, §A12.3) The C and C++ compilers do not generate an error if
you use the quote token (#) in a macro definition and a macro argu-
ment does not follow it. For example:

#defi ne addl(x) #x #1
/1l OK, but probably not what you want ed:
Il addl(abc) creates "abc"#1

#defi ne add2(x) #x "2"
/'l OK: add2(abc) creates "abc2"

An identifier after #endif

(K&R, §A12.5) The C and C++ compilers let you place an identifier
token after #endi f and #el se. This extension helps you match an
#endi f statement with its corresponding #i {, #i f def, or #i f ndef
statement, as shown below:

#i fdef _ MAERKS
i1fndef _ cplusplus
/*
* .
*/
endif _ cplusplus
#endi f _ MAERKS

CL-48 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

If you turn on the ANSI Strict option, you can make the identifiers
into comments, like this:

#i fdef _ MAERKS
ifndef _ cplusplus
/*
*/
endif /* _ cplusplus */
#endif /* _ MANERKS _ */

Using typecasted pointers as Ivalues

The C and C++ compilers let you use a pointer that you've type-
casted to another pointer type as an lvalue. For example:

char *cp;
((long *) cp)++; /* OKif ANSI Strict is off. */

Disabling trigraph characters

(K&R, §A12.1) The C and C++ compilers let you ignore trigraph
characters. Many common Macintosh character constants look like
trigraph sequences, and this extension lets you use them without in-
cluding escape characters.

If you're writing code that must follow the ANSI standard strictly,
turn on the Expand Trigraphs option in the Language preference
panel. Be careful when you initialize strings or multi-character con-
stants that contain question marks. For example:

char ¢ = '???7?7"; /1 ERROR Trigraph sequence
/1 expands to ' ??%
char d = "\2A2A2\?,; //] K

The Expand Trigraphs option corresponds to the pragmatri -

gr aphs, described at “trigraphs” on page 219. To check whether
this option is on, use __option (trigraphs), described at “tri-
graphs” on page 235. By default, this option is off.

C, C++, and Assembly Language Reference CL-49

C and C++ Language Notes
Extensions to C or C++

Additional keywords

(K&R, §A2.4) If you're writing code that must follow the ANSI stan-
dard strictly, turn on the ANSI Keywords Only option in the Lan-
guage preference panel. The compiler generates an error if it
encounters any of the Metrowerks C/C++ additional keywords.

This sections contains the following:
* “Macintosh and Magic Cap keywords” on page 50
* “Win32/x86 keywords” on page 51

The ANSI Keywords Only option corresponds to the pragma

onl y_st d_keywor ds, described at “only_std_keywords” on page
204. To check whether this option is on, use __opt i on
(only_std_keywor ds), described at “only_std_keywords” on
page 233. By default, this option is off.

Macintosh and Magic Cap keywords

The 68K Macintosh, PowerPC Macintosh, and Magic Cap C /C++
compilers recognize three additional reserved keywords.

* asmlets you compile a function’s body with built-in assem-
bler. For more information on how to use the built-in assem-
bler, consult “Overview of 68K Assembler Notes” on page
115 and “Overview of PowerPC Assembler Notes” on page
125. (K&R, §A10.1)

e far (68K only) lets you declare a variable or a function to use
the far mode addressing regardless of how you set the op-
tions Far Data, Far Virtual Function Tables, and Far String
Constants in the Processor settings. For more information on
the far mode, see the CodeWarrior IDE User’s Guide. (K&R,
§A8.1)

NOTE: The PowerPC compiler ignores the f ar qualifier but does
ﬁ not generate an error.

e pascal lets you declare a function that uses Pascal calling
conventions. For information, see “Calling Macintosh Tool-

CL-50 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

box Functions (Macintosh Only)” on page 77. (K&R, §A8.6.3,
§A10.1)

* i nlinelets you declare a C function to be inline. It works the
same as i Nl i ne in C++. For more information, see “Inlining
functions” on page 52.

Win32/x86 keywords

The Win32/x86 compiler recognizes these keywords:

e _ stdcal |l specifies that this function uses the standard call-
ing convention. For more information, see “Win32 / x86 call-
ing conventions” on page 39.

e asmspecifies that this function is entirely implemented with
assembler code and the compiler does not need to produce
any prefix or suffix code.

The Win32/x86 compiler ignores the pascal keyword and raises an
error for the f ar keyword.

Enumerated constants of any size

(K&R, §A8.4) When the Enums Always Int option is on, the C or
C++ compiler makes an enumerated type the same size as ani nt . If
an enumerated constant is larger than i nt, the compiler generates
an error. When the option is off, the compiler makes an enumerated
type the size of any integral type. It chooses the integral type with
the size that most closely matches the size of the largest enumerated
constant. The type could be as small as achar or aslargeasa | ong
int.

For example:

enum Smal | Nunber { One = 1, Two = 2 };
/[* |f Enuns Always Int is off, this type wll
be the sane size as a char.
If the option is on, this type will be
the sane size as an int. */

C, C++, and Assembly Language Reference CL-51

C and C++ Language Notes
Extensions to C or C++

enum Bi gNunber
{ ThreeThousandM I lion = 3000000000 };
[* I'f Enuns Always Int is off, this type wll
be the sane size as a long int.
If this option is on, the conpiler may
generate an error. */

For more information on how enumerated types are implemented,
see “Enumerated types” on page 28.

The Enums Always Int option corresponds to the pragma

enunsal waysi nt, described at “enumsalwaysints” on page 184. To
check whether this option is on, use __opti on (enumnsal way-

si nt), described at “enumsalwaysint” on page 231. By default, this
option is off.

Chars always unsigned

When the Use Unsigned Chars option is on, the C/C++ compiler
treats a char declaration as if it were an unsi gned char declara-
tion.

NOTE: If you turn this option on, your code may not be compati-
ble with libraries that were compiled with this option turned off. In
particular, your code may not work with the ANSI libraries included
with CodeWarrior.

The Use Unsigned Chars option corresponds to the pragma

unsi gned_char, described at “unsigned_char” on page 220. To
check whether this option is on, use __opti on (unsi gned_char),
described at “unsigned_char” on page 235. By default, this option is
off.

Inlining functions

Metrowerks C/C++ gives you several different ways to inline both
C and C++ functions. When you call an inline function, the caller in-
serts the function’s code instead of a function call. Inlining functions

CL-52 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

makes your programs faster (since the compiler executes the func-
tion’s code immediately without a function call), but possibly larger
(since the function’s code may be repeated in several different
places).

If you turn off the ANSI Keywords Only option, you can declare C
functions to be i nl i ne, just as you do in C++. And the Inlining
menu lets you choose to inline all small functions, only functions
declared inline, or no functions, as shown in the table below:

This option Does this...

Don’t Inline Inlines no functions, not even C or C++ func-
tions declared i nl i ne.

Normal Inlines only C and C++ functions declared i n-
| i ne and member functions defined within a
class declaration. Note that Metrowerks may not
be able to inline all the functions you declare i n-
l'ine.

Auto-Inline Lets the compiler choose which functions to in-
line. Also inlines C++ functions declared i n-
| i ne and member functions defined within a
class declaration.

The Don’t Inline option corresponds to the pragma dont _i nl i ne,
described at “dont_inline” on page 183. To check whether this op-
tionison, use __opti on (dont _inline), described at
“dont_inline” on page 231. By default, this option is off.

The Auto-Inline option corresponds to the pragma aut o_i nl i ne,
described at “auto_inline” on page 175. To check whether this op-
tionis on,use _option (auto_inline), described at
“auto_inline” on page 230. By default, this option is off.

Using multibyte strings and comments

To use multibyte strings or comments (such as Kanji), turn on the
Multi-Byte Aware option. If you don’t need multibyte strings or
comments, turn this option off, since it slows down the compiler.

C, C++, and Assembly Language Reference CL-53

C and C++ Language Notes
Extensions to C or C++

Using prototypes

(K&R, §A8.6.3, §A10.1) The C and C++ compilers let you choose
how to enforce function prototypes:

* “Requiring prototypes” on page 54 explains the Require Pro-
totypes option which forces you to prototype every function
so you can find errors caused by forgotten prototypes.

e “Relaxing pointer checking” on page 56 explains the Relaxed
Pointer Type Rules option which treats char *, unsi gned
char*, and Pt r as the same type.

Requiring prototypes

When the Require Prototypes option is on, the compiler generates
an error if you use a function that does not have a prototype. This
option helps you prevent errors that happen when you use a func-
tion before you define it. If you do not use function prototypes, your
code may not work as you expect even though it compiles without
€error.

In Listing 2.10, Pri nt Nun() is called with an integer argument but
is later defined to take a floating-point argument.

Listing 2.10 Unnoticed type-mismatch

#i ncl ude <stdi o. h>

voi d nai n(voi d)
{
PrintNunm(1); /1 NO PrintNum() tries to
} /[l interpret the integer as a
/1 float. Prints 0.000000.
void PrintNum(float x)
{
printf("%\n", Xx);
}

CL-54 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

Listing 2.11

When you run it, you could get this result:
0. 000000

Although the compiler does not complain about the type mismatch,
the function does not work as you want. Since Pri nt Nun{) is not
prototyped, the compiler does not know it needs to convert the inte-
ger to a floating-point number before calling the function. Instead,
the function interprets the bits it received as a floating-point number
and prints nonsense.

If you prototype Pri nt Nun{() first, as in Listing 2.11, the compiler
converts its argument to a floating-point number, and the function
prints what you wanted.

Using a prototype to avoid type-mismatch

#i ncl ude <stdio. h>

void PrintNun(float x); // Function prototype.

voi d mai n(voi d)

{ PrintNun(1); /1 OK Conpiler knows to

} /1l convert integer to float.

/1 Prints 1.000000.
void PrintNum(float x)

{
}

printf("%\n", Xx);

In other situations where automatic typecasting is not available, the
compiler generates an error when an argument does not match the
expected data type. Such a mismatched data type error is easy to lo-
cate at compile time. If you do not use prototypes, you get no error
and the cause of the resulting unintentional behavior can be ex-
tremely difficult to track down.

C, C++, and Assembly Language Reference CL-55

C and C++ Language Notes
Extensions to C or C++

The Require Prototypes option corresponds to the pragma

requi r e_pr ot ot ypes, described at “require_prototypes” on page
211. To check whether this option is on, use __opti on
(require_prototypes), described at “require_prototypes” on
page 234. By default, this option is on.

Relaxing pointer checking

When you turn on the Relaxed Pointer Type Rules option in the C/
C++ Language settings panel, the compiler treats char *, unsi gned
char*, and Pt r as the same type. This option is especially useful if
you're using code written before the ANSI C standard. This old code
frequently used these types interchangeably. When compiling C++
code, the compiler ignores the setting of this option and always
treats the types as different types.

The Relaxed Pointer Type Rules option corresponds to the pragma
mpwe_r el ax, described at “mpwc_relax” on page 202. To check
whether this option is on, use __opti on (nmpwc_rel ax), de-
scribed at “mpwc_relax” on page 233.

Storing strings (Macintosh only)

The C and C++ compilers let you choose how to store strings:

e “Pooling strings” on page 56 describes the Pool Strings op-
tion which lets you save space in your program’s TOC by col-
lecting all your string constants into a single data object.

e “Using PC-relative strings” on page 57 describes the PC-Rel-
ative Strings option which lets you choose whether to store
strings in your code resources or in your global data.

* “Reusing strings” on page 58 describes the Don’t Reuse
Strings option which lets you store only one copy of identical
strings.

Pooling strings

If the Pool Strings option in the Language preference panel is on,
the compiler collects all string constants into a single data object so
your program needs one TOC entry for all of them. If this option is
off, the compiler creates a unique data object and TOC entry for

CL-56 C, C++, and Assembly Language Reference

C and C++ Language Notes
Extensions to C or C++

each string constant. Turning this option on decreases the number of
TOC entries in your program but increases your program’s size,
since it uses a less efficient method to store the string’s address.

TIP: You can also change the size of the TOC with the Store
Static Data in TOC option in the PPC Processor preference panel.
For more information, see the CodeWarrior User’s Guide.

This option is especially useful if your program is large and has
many string constants or uses the Metrowerks Profiler.

NOTE: If you turn the Pool Strings option on, the compiler ig-
nores the setting of the PC-Relative Strings option.

The Pool Strings option corresponds to the pragma

pool _stri ngs, described at “pool_strings” on page 208. To check
whether this option is on, use __opti on (pool _strings), de-
scribed at “pool_strings” on page 234. By default, this option is off.

Using PC-relative strings

If the PC-Relative Strings option in the Processor preference panel
is on, the compiler stores the string constants used in a local scope in
the code segment and addresses these strings with PC-relative in-
structions. If this option is off, the compiler stores all string con-
stants in the global data segment. This option helps keep your
global data segment smaller.

NOTE: This option is available only with the 68K compilers. It is
not available with the PowerPC compilers.

C, C++, and Assembly Language Reference CL-57

C and C++ Language Notes
Extensions to C or C++

Regardless of how this option is set, the compiler stores string con-
stants used in the global scope in the global data segment. For ex-
ample:

#pragma pcrel strings on
int f(char *);

int x =f("Hello"); // "Hello" is allocated in
/'l the gl obal data segnent
int bar()
{
return f("World"); // "Wrld" is allocated in
} /1l the code segnent
Il (pc-relative)
#pragma pcrel strings reset

NOTE: If you turn the Pool Strings option on, the compiler ig-
nores the setting of the PC-Relative Strings option.

The PC-Relative Strings option corresponds to the pragma

pcrel strings, described at “pcrelstrings (68K Macintosh only)”
on page 206. To check whether this option is on, use __opti on
(pcrel strings), described at “pcrelstrings (68K only)” on page
233. By default, this option is off.

WARNING! Do not turn off the PC-Relative Strings option in
Magic Cap code. Although the Magic Cap compiler lets you
change the setting of this option, your code will not run correctly if
it's off. It is on by default.

Reusing strings

If the Don’t Reuse Strings option in the C/C++ Languages settings
panel is on, the compiler stores each string literal separately. If this
option is off, the compiler stores only one copy of identical string lit-

CL-58 C, C++, and Assembly Language Reference

C and C++ Language Notes
Warnings for Common Mistakes

erals. This option helps you save memory if your program contains
lots of identical string literals which you do not modify.

For example, take this code segment:

char *stril1="Hell 0o";
char *str2="Hel |l 0"
*str2 ='Y';

If this optionison, str1is"Hel | 0" and str2is" Yel | 0". If this
option is off, both str1 and str2 are " Yel | 0".

The Don’t Reuse Strings option corresponds to the pragma

dont _reuse_stri ngs, described at “dont_reuse_strings” on page
184. To check whether this option is on, use __opti on

(dont _reuse_strings), described at “dont_reuse_strings” on
page 231. By default, this option is on. (Strings are not reused.)

Warnings for Common Mistakes

This section describes the options in the Warnings preference panel,
which check for common typographical mistakes.These mistakes
are legal C and C++ code but might not do what you expect. When
the compiler finds one of these possible mistakes, it generates a
warning. Since these mistakes raise warnings, your code will com-
pile and run even if the compiler finds one.

The options in this section warn you of the following;:
¢ “Illegal pragmas” on page 60
¢ “Empty declarations” on page 61
* “Possible unwanted side effects” on page 61
¢ “Unused variables” on page 62
¢ “Unused arguments” on page 63
¢ “Extra commas” on page 64
e “Extended type checking” on page 65
e “Function hiding” on page 66

C, C++, and Assembly Language Reference CL-59

C and C++ Language Notes
Warnings for Common Mistakes

The one option that isn’t a warning is the Treat All Warnings as Er-
rors option. If these option is on, the compiler treats all the warnings
the compiler generates, including the ones described here, as errors,
and it won’t compile your code until you resolve them.

Figure 2.5 The C/C++ Warnings Settings Panel
- Warnings Info:

[] Treat &11 Warnings &= Errors

[] Megal Pragmas

[] Empty Declarations

[] Possible Errars

[] Unused V¥ariables

[] Unused &rgurments

[] Extra Commas

[] Extended Error Checking
[] Hidden wirtual functions

Treat warnings as errors

When the Treat All Warnings as Errors option in the Warnings pref-
erence panel is on, the compiler treats all warnings as though they
were errors. It will not compile a file until all warnings are resolved.

The Treat All Warnings as Errors option corresponds to the pragma
war ni ng_errors, described at“warning_errors” on page 221. To
check whether this option is on, use __opti on

(war ni ng_errors), described at “warning_errors” on page 236.
By default, this option is off.

lllegal pragmas

If the Illegal Pragmas option is on, the compiler displays a warning
when it encounters an illegal pragma. For example, these pragma
statements generate warnings:

#pragma near data of f
/1 WARNING near_data is not a pragna.

CL-60 C, C++, and Assembly Language Reference

C and C++ Language Notes
Warnings for Common Mistakes

#pragma far_data sel ect

/1 WARNI NG select is not defined
#pragma far_data on

Il K

The Illegal Pragmas option corresponds to the pragma

war n_i | | pragma, described at “warn_illpragma” on page 223. To
check whether this option is on, use __opti on

(warn_i | | pragma), described at “warn_illpragma” on page 235.
By default, this option is off.

Empty declarations

If the Empty Declarations option is on, the compiler displays a
warning when it encounters a declaration with no variables. For ex-
ample:

int ; /1 WARNI NG
int i; Il K

The Empty Declarations option corresponds to the pragma

war n_enpt ydecl , described at “warn_emptydecl” on page 221. To
check whether this option is on, use __opti on

(war n_enpt ydecl), described at “warn_emptydecl” on page 235.
By default, this option is off.

Possible unwanted side effects

If the Possible Errors option is on, the compiler checks for some
common typographical mistakes that are legal C and C++ but that
may have unwanted side effects, such as putting in unintended
semicolons or confusing = and ==. The compiler generates a warn-
ing if it encounters one of these:

* An assignment in a logical expression or the condition in an
i f,while, orfor expression. This check is useful if you fre-
quently use = when you meant to use ==. For example:

if (a=b) f(); I/l WARNING a=b is an
/1l assi gnment

C, C++, and Assembly Language Reference CL-61

C and C++ Language Notes
Warnings for Common Mistakes

if ((a=b)!=0) f(); Il K (a=b)!'=0is a
Il conpari son

if (a==b) f(); Il K (a==b) is a
Il conpari son

e An equal comparison in a statement that contains a single ex-
pression. This check is useful if you frequently use == when
you meant to use =. For example:

a == 0; /1 WARNING This is a conparison.
a =0; /[l OK This is an assi gnnent

e Asemicolon (;) directly afterawhi | e,i f, or f or statement.
For example, the statement generates an error and is proba-
bly an unintended infinite loop:

while (i++); [// WARNING Uni ntended
I infinite | oop

If you intended to create an infinite loop, put white space or a com-
ment between the whi | e statement and the a comment. For exam-
ple, these statements do not generate errors:

while (i++) ; // OK Wiite space separation
while (i++) /*: Conment separation */ ;

The Possible Errors option corresponds to the pragma

war n_possunwant , described at “warn_possunwant” on page 223.
To check whether this option is on, use __opti on

(war n_possunwant), described at “warn_possunwant” on page
235. By default, this option is off.

Unused variables

If the Unused Variables option is on, the compiler generates a
warning when it encounters a variable you declare but do not use.
This check helps you find misspelled variable names and variables
you have written out of your program. For example:

voi d foo(void)
{
int tenp, errer; /'l ERROR errer is
/1 msspelled

CL-62 C, C++, and Assembly Language Reference

C and C++ Language Notes
Warnings for Common Mistakes

error = do_sonet hi ng()
} /1 WARNING tenp and error are unused.

If you need to declare a variable that you don’t use, use the pragma
unused, as in this example:

voi d foo(void)

{
int i, tenp, error;
#pragma unused (i, tenp) /* Conpiler won't warn
error=do_sonet hi ng(); * that i and tenp are
} * not used

*/

The Unused Variables option corresponds to the pragma

war n_unusedvar, described at “warn_unusedvar” on page 225. To
check whether this option is on, use __opti on

(war n_unusedvar), described at “warn_unusedvar” on page 236.
By default, this option is off.

Unused arguments

If the Unused Arguments option is on, the compiler generates a
warning when it encounters an argument you declare but do not
use. This check helps you find misspelled argument names and ar-
guments you have written out of your program.

void foo(int tenp,int errer); // ERROR errer is
/1 msspelled
{

error = do_sonet hi ng();
} /1 WARNING tenp and error are unused.

If you need to declare an argument that you don’t use, there are two
ways to avoid this warning. You can use the pragma unused, as in
this example:

void foo(int tenp, int error)

{

#pragma unused (tenp) /* Conpiler won't warn
error=do_sonething(); * that tenp is not used

} x|

C, C++, and Assembly Language Reference CL-63

C and C++ Language Notes
Warnings for Common Mistakes

You can also turn off the ANSI Strict option, and not give the un-
used argument a name, like this:

void foo(int /* tenp */, int error)

{ /* Conpiler won't warn

#pragma unused (tenp) * that tenp is not used
error=do_sonething(); */

}

The Unused Arguments option corresponds to the pragma

war n_unusedar g, described at “warn_unusedarg” on page 224. To
check whether this option is on, use __opti on

(war n_unusedar g), described at “warn_unusedarg” on page 235.
By default, this option is off.

Extra commas

If the Extra Commas option is on, the compiler generates a warning
when it encounters an extra comma. For example, this statement is
legal in C, but it causes a warning when this option is on:

int a[] ={ 1, 2, 3, 4, };
/1~ WARNI NG Extra comma
!/ after 4

The Extra Commas option corresponds to the pragma

war n_ext r acomma, described at “warn_extracomma” on page 222.
To check whether this option is on, use __opti on

(war n_ext racomma), described at “warn_extracomma” on page
235. By default, this option is off.

CL-64 C, C++, and Assembly Language Reference

C and C++ Language Notes
Warnings for Common Mistakes

Extended type checking

If the Extended Error Checking option is on, the C compiler gener-
ates a warning (not an error) if it encounters one of these syntax
problems:

¢ A non-voi d function that does not contain a r et ur n state-
ment. For example, this would generate a warning:

mai n() /* assumed to return int */
{
printf ("hello world\n");
} /* WARNING no return
statenment */
This would be OK:
void main()
{
printf ("hello world\n");
}

¢ Assigning an integer or floating-point value to an enumtype.
For example:

enum Day { Sunday, Monday, Tuesday,
Wednesday, Thursday,
Friday, Saturday } d;

d = 5; /* VWARNI NG */
d = Monday; [* OK */
d = (Day)3 ; /[* OK */

NOTE: Both of these syntax problems are always errors in C++.

C, C++, and Assembly Language Reference CL-65

C and C++ Language Notes
Warnings for Common Mistakes

The C and C++ compilers generate a warning if it encounters this:

e Anempty r et ur n statement (r et ur n;) in a function that is
not declared voi d. For example, this code would generate a
warning;:
int Mylnit(void)

{
int err = Get MyResources();
1 f (err!=0) return,
/'l ERROR Enpty return statenent

/1
}
This would be OK:
int Mylnit(void)
{
int err = Get MyResources();
if (err!=0) return -1;
Il K
/1
}

The Extended Error Checking option corresponds to the pragma
ext ended_err or check, described at “extended_errorcheck” on
page 187. To check whether this option is on, use __opti on

(ext ended_error check), described at “extended_errorcheck” on
page 231. By default, this option is off.

Function hiding

If the Hidden virtual functions option is on, the compiler generates
a warning if you declare a non-virtual member function that hides a
virtual function in a superclass. One function hides another if it has
the same name but a different argument types. For example:

class A {

publ i c:
virtual void f(int);
virtual void g(int);

¥

CL-66 C, C++, and Assembly Language Reference

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

class B: public A {
publ i c:
void f(char); /1 VWARNI NG
/1l Hdes A :f(int)
virtual void g(int); // X
/1 Overrides A :g(int)

1

The Hidden virtual functions option corresponds to the pragma
war n_hi devi rt ual , described at “warn_hidevirtual” on page 222.
To check whether this option is on, use __opti on

(war n_hi devi rtual), described at “warn_hidevirtual” on page
235. By default, this option is off.

Generating Code for Specific 68K Processors
(Macintosh Only)

The CodeWarrior IDE lets you generate code for specific 68K pro-
cessors: the MC68020 processor and the MC68881 floating-point
unit. You can find these options in the Processor settings panel,
shown in Figure 2.6.

C, C++, and Assembly Language Reference CL-67

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

Figure 2.6 Options to Generate Code for Specific 68K Processors

- Processor [nfo:

Code Madel: [Smart * |
Struct dlignment: | GEK v |
Compili I -
fora%[;ggific [] 65020 Codegen [] 4-Byte Ints
68K chip [] 6585851 Codegen [] 8-Byte Doubles
[] Peephole Optimizer [] Far Data
[] CSE Optimizer [] Far Method Tables
[] Optimize For Size [] Far String Constants
[] PC-Relative Strings [] MPw C Calling Conventions
[] Generate Profiler Calls []Global Register Allacation
This sections contains the following:
e “Generating code for the MC68020” on page 70
e “Generating code for the MC68881” on page 70
wfe. T|P: Use these options only if your application will run solely on

It
1]

machines that have that processor and your application needs the
extra efficiency that the processor provides. In general, if your ap-
plication needs to be as fast as possible, compile it for the Pow-
erPC. Most users who want fast applications have a Power
Macintosh.

Metrowerks C and C++ let you compile different code depending
on which processor you're compiling code for, with the
__option() pre-processor function. Use __opti on(code68881)
to check whether the 68881 Codegen option is on. Use
__option(code68020) to check whether the 68020 Codegen op-

CL-68 C, C++, and Assembly Language Reference

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

Iy,
e

tion is on. The following example uses different code depending on
whether the function is going to run on a machine with a MC68881:

int cal c(double i)

{
#if _ option (code68881)

/'l Code optimzed for the floating point unit.
#el se

/| Code for any Maci ntosh
#endi f

}

TIP: For more information on __opti on(), see “Options Check-
ing” on page 229.

To check whether the computer on which your application is run-
ning has a specific processor use the gest al t () function. The fol-
lowing code sample displays an alert if the application is for an
MC68881 and the machine does not have an MC68881:

voi d mai n(voi d)
{
#if _ option (code68881)
if (!HasFPUY()) /1l Calls gestalt() to check

{ /[l if the conputer has FPU
D spl ayNoFPU(); // D splays an alert
return; /1l saying there is no FPU
}
#endi f
/1

}

TIP: For more information on gest al t (), see Chapter “Gestalt
Manager” in Inside Macintosh: Operating System Ultilities.

Note that HasFPU() and Di spl ayNoFPU() are not Toolbox func-
tions. If you use this code, you must define these functions.

C, C++, and Assembly Language Reference CL-69

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

A

WARNING! Do not turn off the 68020 Codegen and 68881
Codegen options in Magic Cap code. Although the Magic Cap
compiler lets you change the setting of these options, your code
will not run correctly if they’re off. They are on by default.

Generating code for the MC68020

The CodeWarrior IDE lets you take full advantage of the MC68020
processor. When you turn on the 68020 Codegen option in the Pro-
cessor preference panel, the C and C++ compilers use the extensions
available in the MC68020 instruction set, including integer multipli-
cation, integer division, and bit-field operations.

WARNING! Before your program runs code optimized for the
MC68020, use the gest al t () function to make sure it is avail-
able. For more information on gest al t () , see Chapter “Gestalt
Manager” in Inside Macintosh: Operating System Ultilities.

Generating code for the MC68881

The CodeWarrior IDE lets you take full advantage the MC68881
floating-point unit. The MC68881 is built into most versions of the
MC68040 processor, and it is included separately in many Macin-
tosh computers that contain the MC68030 or MC68020 processor.

Metrowerks C and C++ give you two levels of support for the
MC68881, as described below:

e No matter what you do, the Macintosh Toolbox uses the
MC68881 for many floating-point functions.

e If you also turn on the 68881 Codegen option in the Processor
settings panel, the compiler generates code optimized for the
MC68881 and stores variables declared | ong doubl e or ex-
t ended in 96 bits. It uses MC68881 instructions for basic
arithmetic operations, such as addition, subtraction, multipli-
cation, division, and comparisons. The header files f p. h and
mat h. h use MC68881 instructions for many transcendental

CL-70 C, C++, and Assembly Language Reference

C and C++ Language Notes
Generating Code for Specific 68K Processors (Macintosh Only)

and floating-point conversions. The compiled code is faster
and computes the same results as code compiled with the op-
tion off.

Think carefully before you use the 68881 Codegen option. Your code
will not run on a Power Macintosh or any 68K Macintosh that does
not have a MC68881. Even if you do not use the 68881 Codegen op-
tion, the Macintosh toolbox will use the MC68881 to compute many
floating-point functions.

WARNING! Before your program runs code optimized for the
MC68881, use the gest al t () function to make sure an FPU is
available. For more information on gest al t (), see Chapter “Ge-
stalt Manager” in Inside Macintosh: Operating System Utilities.

The rest of this section describes what happens when you turn on
the MC68881 Codegen option.

Using the Extended data type

If you turn on the 68881 Codegen option, the compiler stores any
variable declared ext ended or | ong doubl e in the Motorola 96-
bit format, instead of the SANE 80-bit format. Both formats meet the
IEEE standards for accuracy. The main difference between them is
that the 96-bit format contains 16 bits of padding so that an ex-
tended number fits evenly into three 32-bit memory accesses.

Types. h defines the ext ended type. SANE. h contains two other
type definitions: ext ended80 and ext ended96. It also contains
functions that convert between 80-bit and 96-bit formats:

x96t 0x80() and x80t 0x96() .

NOTE: The PowerPC architecture does not support the
ext ended type. Use doubl e instead.

C, C++, and Assembly Language Reference CL-71

C and C++ Language Notes
Calling MPW Functions

Using floating-point registers

The MC68881 has eight registers, FPO through FP7, which store 96-
bit floating-point values (that is, ext ended or | ong doubl e). If
you turn on the 68881 Codegen option, your assembly language
routines can use registers FP0 through FP3 for temporary storage
without restoring their values. If you use registers FP4 through FP7,
you must preserve their contents.

The compiler allocates variables of type | ong doubl e or ex-
t ended to registers to optimize performance.

Calling MPW Functions

Figure 2.7

MPW C options —

[] Pool Strings

The CodeWarrior IDE lets you include an MPW C library in your
CodeWarrior project and call most of its functions. You can set vari-
ous options in the Processor and Language preference panel to
make your project compatible with MPW C code. The Language
preference panel options are shown in Figure 2.7.

MPW C Options in the C/C++ Languages Settings Panel
- Language I nfa:
[] etivate C++ Compiler [] &NSI Strict
[] &RM conformance []&NSI Keywords Only
[] Enable C++ Exceptions [] Expand Trigraphs
[] Enable RTTI [] Multi-Euyte &ware
Inlining: | Mormal w | DirecttoS0M: | Onwith Envi..w |

[] Map Mewlines to CR
[] Relaxed Pointer Type Rules

(<] Require Function Prototypes [] Enums &lways |nt
<] Enable bool Support [] Use Unsigned Chars

CL-72 C, C++, and Assembly Language Reference

C and C++ Language Notes
Calling MPW Functions

NOTE: The Win32/x86 compiler also honors the Map Newlines
to CR, Relaxed Pointer Type Rules, and Enums Always Int op-
tions. However, it does not use the MPW C Calling Convention
option.

Note that even if you turn on the MPW C Calling Convention op-
tion, MPW and Metrowerks aren’t completely compatible in certain
situations. For more information, see “Declaring MPW C functions
(Macintosh Only)” on page 75.

This section contains the following;:

¢ “Adding an MPW library to a CodeWarrior project” on page
73

e “Declaring MPW C functions (Macintosh Only)” on page 75
¢ “Using MPW C newlines” on page 76

WARNING! Do not turn off the MPW C Calling Convention or
Map Newlines to CR options in Magic Cap code. Although the
Magic Cap compiler lets you change the settings of these options,
your code will not run correctly if they're off. They are on by default.

Adding an MPW library to a CodeWarrior
project

To call a function from an MPW library, do the following.

Add the library to your project with the Add Files command in
the Project menu.

If you're using a 68K library, turn on the MPW C Calling Con-
vention option.

You can either turn on the MPW C Calling Convention option in
the Processor preference panel, or you can use the pragma npwc. If
you use the MPW C Calling Convention option, all functions in
your project use MPW C calling conventions. If you use the pragma

C, C++, and Assembly Language Reference CL-73

C and C++ Language Notes
Calling MPW Functions

mpwe, only those functions declared with that pragma use MPW C
calling convention.

To use the pragma, turn on the pragma npwc in the header file that
declares the MPW C functions, declare the functions, and turn off
the pragma npwc. For example:

#pragnma npwc on

int funcl(double a, int b);
int func2(int a, double b);

#pragnma npwc reset

For more information, see “Declaring MPW C functions (Macintosh
Only)” on page 75.

3. If you're creating a 68K project, turn on the 4-Byte Int option in
the Processor preference panel.

MPW C does not support 2-byte ints. For more information, see
“Number Formats” on page 30.

4. If you use the ANSI library to perform input or output, turn on
the Map Newlines to CR option in the Language preference
panel.

MPW and Metrowerks C and C++ handle the newline character
("\n') differently. For more information, see “Using MPW C new-
lines” on page 76.

5. If your code relies on MPW C's relaxed type checking, turn on
the Relaxed Pointer Type Rules option in the C/C++ Language
settings panel .

Metrowerks C and C++ uses stricter rules than MPW when decid-
ing whether certain pointer types are equivalent. For more informa-
tion, see “Relaxing pointer checking” on page 56.

CL-74 C, C++, and Assembly Language Reference

C and C++ Language Notes
Calling MPW Functions

Declaring MPW C functions (Macintosh Only)

When you turn on the MPW C Calling Convention option, the
compiler does the following to be compatible with MPW C’s calling
conventions:

e Passes any integral argument that is smaller than 2 bytes as a
sign-extended | ong i nt eger. For example, the compiler
converts this declaration:

int MPWunc (char a, short b, int c,
long d, char *e);

To this:

long MPWunc(long a, long b, long c,
long d, char *e);

¢ Passes any floating-point arguments asa | ong doubl e. For
example, the compiler converts this declaration:

void MPWunc(float a, double b,
| ong double c);

To this:

void MPWunc(| ong double a, |ong double b,
| ong double c);

* Returns any pointer value in DO (even if the pragma
poi nters_i n_DO is off).

¢ Returns any 1-byte, 2-byte, or 4-byte structure in DO.

e If the 68881 Codegen option is on, returns any floating-point
value in FPO.

NOTE: The MPW C Calling Conventions option is available
ﬁ only with the 68K compilers. The PowerPC compilers don’t need it,
since all PowerPC compilers use the same calling conventions.

C, C++, and Assembly Language Reference CL-75

C and C++ Language Notes
Calling MPW Functions

Note that even if you turn on the MPW C Calling Convention op-
tion, MPW and Metrowerks aren’t completely compatible in these
situations:

* Metrowerks C++ and MPW C++ classes are generally not
compatible. Unless you follow the directions in “Declaring
MPW-Compatible Classes” on page 104, you cannot use a
Metrowerks C++ library in MPW or an MPW C++ library in
a CodeWarrior project. If you need to use an MPW C library
with Metrowerks C++ code, don’t turn on the MPW C Call-
ing Conventions option. Instead use the pragma npwc as
needed for non-member functions.

e To use MPW C functions that return a floating-point value,
you must turn on the 68881 Codegen option. If that option is
off, Metrowerks C returns a long double value in a temporary
variable, while MPW C returns it in a register.

This option corresponds to the pragma npwe, described at “mpwc
(68k Macintosh only)” on page 200. To check whether this pragma is
on, __opti on(nmpwe), described at “mpwc (68K only)” on page
233. By default, this option is off.

Using MPW C newlines

If you turn on the Map Newlines to CR option in the Language
preference panel, the compiler uses the MPW conventions for the
"\n' and ' \r"' characters. If this option is off, the compiler uses the
Metrowerks C and C++ conventions for these characters.

In most compilers, including Metrowerks C and C++, "\ r" is trans-
lated to the value Ox0D, the standard value for carriage return, and
"\ n' is translated to the value 0x0A, the standard value for line-
feed. However, in MPW C, ' \ r' is translated to OXxOAand ' \ n' is
translated to 0XxOD. When you turn on the Map Newlines to CR op-
tion, Metrowerks C conforms to MPW C conventions for these char-
acters.

If you want to turn this option on, be sure you use the ANSI C and
C++ libraries that were compiled with this option on. The 68K ver-
sions of these libraries are marked with an N; for example, ANSI

CL-76 C, C++, and Assembly Language Reference

C and C++ Language Notes
Calling Macintosh Toolbox Functions (Macintosh Only)

(N 2i) C 68K. Li b. The PowerPC versions of these libraries are
marked with NL; for example, ANSI (NL) C. PPC. Li b.

If you turn this option on and use the standard ANSI C and C++ li-
braries, you won’t be able to read and write' \ n' and'\r"' prop-
erly. For example, printing ' \ n' brings you to the beginning of the
current line instead of inserting a new line.

This option corresponds to the pragma mpwc_new i ne, described
at “mpwc_newline” on page 201. To check whether this option is on,
use __option (npwc_new i ne), described at “mpwc_newline”
on page 233. By default, this option is off.

Calling Macintosh Toolbox Functions
(Macintosh Only)

Metrowerks C and C++ let you use any routine described in Inside
Macintosh. Simply call a routine exactly as it appears. Use these rules
to convert the Pascal calling conventions to C:

¢ To pass a structure that is smaller than or equal to 4 bytes
(such as a Poi nt, Cel |, or Rect), pass the actual structure.

e To pass a structure larger than 4 bytes, pass a pointer to the
structure.

To pass a VAR argument, pass a pointer that argument.

¢ To pass a string, pass a Pascal string.

To pass any ResType or OSType, such as' MENU or' TEXT",
pass a character literal.

The rest of this section describes creating Pascal strings, using Pascal
variant records in the Macintosh Toolbox, and writing Pascal func-
tions for the PowerPC:

¢ “Passing string arguments” on page 78

» “Using the pascal keyword in PowerPC code” on page 79

C, C++, and Assembly Language Reference CL-77

C and C++ Language Notes
Calling Macintosh Toolbox Functions (Macintosh Only)

Passing string arguments

Metrowerks C and C++ have two kinds of string parameters: C
strings and Pascal strings. Most C functions, such as the ANSI li-
braries, use C strings, arrays of characters whose last element is the
null byte (\ 0). Most Pascal routines, such as the Macintosh Toolbox,
use Pascal strings, arrays of characters whose initial element is the
number of characters in the string.

To create a Pascal string literal, use \ p at the beginning of the string.
For example, this statement sets the title of a window:

SetWitle (nyWnPtr, "\pM/ wi ndow');

To declare a variable or argument that is a Pascal string, use one of
these types: Str 255, Str63, Str32, Str31, Str27, Str15. The
number in the type’s name specifies the number of characters that
the string may contain. For example, this statement declares a Pascal
string with 255 characters:

Str255 winTitl e;

Since both string formats have an extra byte of information (either a
count at the beginning or a null byte at the end), the compiler can
transform a string in place from Pascal to C and vice versa. The rou-
tines c2pst r () and p2cstr (), declared in the header file
Strings. h, perform these conversions. They are declared like this:

char *p2cstr(StringPtr aStr);
StringPtr c2pstr(char *aStr);

The following example creates a window title that contains the
name of the current user. It gets the name of the user from a Pascal
routine, creates the window title with a C routine, and sets the win-
dow title with a Pascal routine:

char* wi nTitl e[256] ;
Str32 user Nane;

err = CetDefaul tUser(& ef, &userNane);

sprintf(wnTitle, "%"'s w ndow',
p2cstr (userNane));

SetWhitle(nyWnPtr, c2pstr(winTitle));

CL-78 C, C++, and Assembly Language Reference

C and C++ Language Notes
Calling Macintosh Toolbox Functions (Macintosh Only)

Generally, Macintosh Toolbox routines expect a string argument to
be a Pascal string. However, the universal headers sometimes de-
clare two versions of a function: one that uses C strings and one that
uses Pascal strings. When you come across a function like this, fol-
low these rules:

¢ If a Macintosh Toolbox routine name is all lower-case, use C
strings.

e If a Macintosh Toolbox routine name contains a mixture of
upper-case and lower-case letters, use Pascal strings.

For example, Set Wi t | e() expects a Pascal string:
SetWitle (nyWnPtr, "\pM/ w ndow');

And setwtitl e() expectsa C string:
setwitle (myWnPtr, "My wi ndow');

Using the pascal keyword in PowerPC code

Since the PowerPC handles pascal functions differently from 68K,
you must be careful when you're writing a filter or call-back func-
tion that works with a Macintosh Toolbox function. If your function
takes an argument which is a structure larger than 4 bytes, you must
declare that argument as a pointer to the structure. For example:

pascal OSErr MyQapp(Appl eEvent aevt,
Appl eEvent reply, long refCon);
Il WRONG On PPC, aevt and reply wll
/'l point to garbage. Code may work on 68K

pascal OSErr MyCapp(Appl eEvent *aevt,
Appl eEvent *reply, long refCon);
/[l K Code will work on both PPC and 68K

You were always encouraged to declare a large structure argument
as a pointer to the structure. But since the 68K would pass the struc-
ture on the stack anyway, you could get away with declaring a large
structure argument as the structure itself. However, the PowerPC is
much stricter and never passes a structure larger than 4 bytes on the
stack.

C, C++, and Assembly Language Reference CL-79

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

Intrinsic PowerPC Functions (Macintosh Only)

Metrowerks C/C++ for PowerPC provides intrinsic functions to
generate inline PowerPC instructions. These intrinsic functions are
faster than other functions, since the compiler translates them into
inline assembly instructions instead of function calls.

NOTE: These intrinsic functions are not part of the ANSI C or
C++ standards. They are available only with the Metrowerks C/
C++ for PowerPC compiler. They are not available with the
Metrowerks C/C++ for 68K compiler.

This section contains the following:
* “Low-level processor synchronization” on page 80
* “Floating-point functions” on page 81
e “Byte-reversing functions” on page 81
* “Floating-point instructions for the 603 and 604” on page 82

e “Setting the floating-point environment” on page 82

Low-level processor synchronization

These functions perform low-level processor synchronization.

void __eieio(void)
[* Enforce In-Order Execution of 1/0 */

void _ sync(void)

/* Synchroni ze */
void __isync(void)
/* Instruction Synchronize */

For more information on these functions, see the instructions
ei ei 0, sync, and i sync in PowerPC Microprocessor Family: The Pro-
gramming Environments by Motorola.

CL-80 C, C++, and Assembly Language Reference

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

Floating-point functions
These functions generate inline instructions that take the absolute
value of a number.

int __abs(int);

/* Absol ute value of an integer. */

float _ fabs(float);
[* Absolute value of a float. */

float _ fnabs(float);
/* Negative of the absolute value of a float.*/

long __labs(long);
/* Absolute value of a long int. */

Byte-reversing functions

These functions generate inline instructions than can dramatically
speed up certain code sequences, especially byte-reversal operations

int _cntlzwint);

/* Count |eading zeros in a integer. */
int __Ihbrx(void *, int);
/* Load half word byte —reverse indexed. */

int _Iwbrx(void *, int);
/* Load word byte —reverse indexed. */

void _ sthbrx(unsigned short, void *, int);
/[* Store half word byte —reverse i ndexed. */

void _ stwbrx(unsigned int, void *, int);
/* Store word byte —reverse indexed. */

C, C++, and Assembly Language Reference CL-81

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

Setting the floating-point environment

This function lets you change the PowerPC processor’s Floating
Point Status and Control Register (FPSCR). It sets the FPSCR to its
argument and returns the original value of the FPSCR.

float setflnm(float);

This example shows how to set and restore the FPSCR:

doubl e ol d_fpscr;
ol df pscr = __setfln(0.0);
/* Cear all flag/exception/node bits and
* save the original settings. */

I* . ..
* Peform sone floating point operations
*/

__setflnm(ol d_fpscr);
/* Restore the FPSCR */

Floating-point instructions for the 603 and 604

These floating-point instructions, which are available only on the
PowerPC 603 and 604, can speed up certain types of graphics code.

WARNING! On a Mac OS computer with a PowerPC 601, they
will raise an illegal instruction exception and may crash your pro-
gram.

float _ fres(float);
/* Floating Reciprocal Estimate Single */

double _ fsqgrte(double);
/* Floating Reciprocal Square Root Estimate */

doubl e _ fsel (doubl e, double, double)
/* Floating Sel ect */

CL-82 C, C++, and Assembly Language Reference

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

Rotating the contents of a variable

These functions rotate the contents of a variable to the left.

int _rlwinnm(int, int, int, int);
/* Rotate Left Wrd | medi at e
then AND wi th Mask */

int _rlwn(int, int, int, int);
/* Rotate Left Word then AND with Mask */

int _rlwim(int, int, int, int, int);
/* Rotate Left Wrd | medi ate
then Mask | nsert */

Please note that the first argument to __r| w ni is overwritten.

C, C++, and Assembly Language Reference CL-83

C and C++ Language Notes
Intrinsic PowerPC Functions (Macintosh Only)

CL-84 C, C++, and Assembly Language Reference

3
M C++ Language Notes

This chapter describes how Metrowerks C++ handles the parts of
the C++ language that are unique to C++ and not shared by C.

Overview of C++ Language Notes

This chapter describes how Metrowerks C++ handles the parts of
the C++ language that are unique to C++ and not shared by C. For
more information on the parts of the language that C and C++
share, see “Overview of C and C++ Language Notes” on page 19.

In the margins of this chapter are references to ARM, which is The
Annotated C++ Reference Manual (Addison-Wesley) by Ellis and
Stroustrap. These references show you where to look for more infor-
mation on the topics discussed in the near-by section.

This chapter contains the following sections:

¢ “Unsupported Extensions” on page 86 describes some com-
mon extensions to the C++ standard that Metrowerks C++
does not currently support.

¢ “Metrowerks Implementation of C++” on page 86 describes
how Metrowerks C++ implements certain sections of the C++
standard.

e “Setting C++ Options” on page 92 describes how to change
Metrowerks C++’s behavior by setting options in the C/C++
Language settings panel.

e “Using Run-Time Type Information (RTTI)” on page 96 de-
scribes the dynani ¢_cast and t ypei d operators.

» “Using Templates” on page 99 describes the best way set up
the files that define and declare your templates. It also docu-
ments an addition to the C++ standard which lets you explic-
itly instantiate templates.

C, C++, and Assembly Language Reference CL-85

C++ Language Notes

Unsupported Extensions

“Using Exceptions” on page 103 describes how to use the
t ry and cat ch statements to perform exception handling.

“Declaring MPW-Compatible Classes” on page 104 describes
how to create classes you can use in libraries for either MPW
C++ or Metrowerks C++.

“Creating Direct-to-SOM Code” on page 105 describes how
to write SOM code with Metrowerks C++.

Unsupported Extensions

The C++ compiler does not currently support these common exten-
sion to The Annotated C++ Reference Manual (Addison-Wesley) by
Ellis and Stroustrap:

Overloading methods operat or new|] and oper at or

del et e[], which let you allocate and deallocate the memory
for a whole array of objects at once. Instead, overload oper -
ator new() andoperator del ete(), which are the func-
tions that operator new[] and operator del ete[]
call. (ARM, §5.3.3, §5.3.4)

Name spaces

The rmut abl e keyword

Metrowerks Implementation of C++

This section describes how Metrowerks C++ implements certain
parts of the C++ standard, as described in The Annotated C++ Refer-
ence Manual (Addison-Wesley) by Ellis and Stroustrap. It contains
the following:

“Which keywords to put first” on page 87

“Additional keywords” on page 87

“Conversions in the conditional operator” on page 87
“Default arguments in member functions” on page 88
“Local class declarations with inline functions” on page 89

“Copying and constructing class objects” on page 89

CL-86 C, C++, and Assembly Language Reference

C++ Language Notes
Metrowerks Implementation of C++

Listing 3.1

e “Checking for resources to initialize static data” on page 90
e “Calling an inherited member function” on page 91
Which keywords to put first

(ARM §7.1.2, §11.4) If you use either the vi rt ual orthefriend
keyword in a declaration, it must be the first word in the declara-
tion. For example:

Using the virtual or friend keywords

class foo {
virtual int fOo(); // XK
int virtual f1(); // ERROR

friend int f2(); Il K
int friend f3(); /1 ERROR

}

Additional keywords

(ARM §2.4, ANSI §2.8) In addition to reserving the symbols in §2.3
of the ARM as keywords, Metrowerks C++ reserves these symbols
from §2.8 of the ANSI Draft C++ Standard as keywords:

bool const cast dynam c_cast
explicit fal se nmut abl e
nanespace reinterpret_char static_cast
true typeid usi ng

Metrowerks C++ does not implement the symbol wchar _t from
§2.8 of the ANSI Draft C++ Standard.

Conversions in the conditional operator

(ARM §5.16) The compiler does not apply reference conversions to
the second and third expressions of the conditional operator. In

C, C++, and Assembly Language Reference CL-87

C++ Language Notes
Metrowerks Implementation of C++

Listing 3.2

Listing 3.3

other words, unless the second and third expressions are numeric
types, they must be the same type.

A conversion in a conditional operator

cl ass base { };
cl ass derived : public base { };

static void foo(derived i)
{
base &a
deri ved &b

I
(@]

c = (sizeof (0)?a:b);
/[l ERROR b is not converted to (base &)

c = (sizeof (0)7?a: (base &) b)
Il K

Default arguments in member functions

(ARM, §8.2.6) The compiler does not bind default arguments in a
member function at the end of the class declaration. Before the de-
fault argument appears, you must declare any value that you use in
the default argument expression must be declared. For example:

Using default arguments in member functions

class foo {
enum A { AA };

int f(Aa=~AA; /] K
int f(Bb=BB); // ERROR BB is not declared
enum B { BB }; I yet

};

CL-88 C, C++, and Assembly Language Reference

C++ Language Notes
Metrowerks Implementation of C++

Listing 3.4

Local class declarations with inline functions

(ARM, §9.8) If you're declaring a class within a function, the class’s
inline functions cannot access the outer function’s local types or
variables. In other words, the compiler inserts the class’s inline func-
tions on global scope level. For example:

Using local class declarations with inline functions

int Xx;

voi d foo()

{

static int s;

class local {
int f1() { return s; }
// ERROR cannot access 's'
int f2() { return local::f1(); }
// ERROR cannot access | ocal

int £3() { return x; }
Il K

b

Copying and constructing class objects

(ARM, §12.1, §12.8) The compiler does not generate a copy construc-
tor or a default oper at or = for a simple class. A simple class is a
class that:

¢ Is a base class or is derived only from simple classes
e Has no class members or has only simple class members

e Has no virtual member functions

C, C++, and Assembly Language Reference CL-89

C++ Language Notes
Metrowerks Implementation of C++

Listing 3.5

¢ Has no virtual base classes

¢ Has no constructor or destructor

Constructors

class Sinmple { int f; };

voi d sinpl eFunc (Sinple sl)

{
Sinpl e s2=Si npl e(sl);
/1 ERROR An explicit copy constructor

I call. The conpil er generates
I no default copy constructor.
Si npl e s3=s1;
/[l OK The conpiler perforns a
} /1 bi twi se copy

The compiler does not guarantee that generated assignment or copy
constructors will assign or initialize objects representing virtual base
classes only once.

Checking for resources to initialize static data

Sometimes you create static C++ objects that require certain re-
sources, such as a floating-point unit (FPU). You can check for these
resources by creating a function called __Prel ni t __ () which the
compiler calls before it initializes static data. You cannot check for
these resources in your mai n() routine, since the compiler initial-
izes static data before it calls mai n().

You must declare the __ Prel nit__ () function like this:

extern "C'" void _ Prelnit__ (void);

NOTE: The PPC compiler does not support this function.

CL-90 C, C++, and Assembly Language Reference

C++ Language Notes
Metrowerks Implementation of C++

Listing 3.6

This stub checks for a floating-point unit: (Note that you must de-
fine the functions HasFPU() and Di spl ayNoFPW() yourself.)

Checking for an FPU before initializing static data

#i ncl ude <Types. h>
#i ncl ude <stdlib. h>

extern "C'" void __Prelnit__ (void);

void _ Prelnit__(void)

{
i f(!HasFPW()) {
D spl ayNoFPU(); // Display "No FPU' Al ert
abort(); /1 Abort program exection
}
}

Calling an inherited member function

(ARM, §10.2) Metrowerks C++ lets you incrementally build upon a
class’s behavior with the i nher i t ed keyword. Frequently when
you override a function, you just want to add some behavior to the
overridden function. Metrowerks C++ lets you call the overridden
function with the i nheri t ed keyword and then perform the addi-
tional behavior. The syntax is the following:

i nheri ted: : func-name(param-list) ;
The statement calls the func-name that the class’s base class would

call. If class has more than one base class and the compiler can’t de-
cide which func-name to call, the compiler generates an error.

C, C++, and Assembly Language Reference CL-91

C++ Language Notes

Setting C++ Options

Listing 3.7

This example creates a Q class that draws its objects by adding be-
havior to the O class:

Using the inherited keyword to call an inherited member
function

class O{ virtual void drawm Point); }
class Q: O{ void draw(Point); }

void O :draw (Point p)

{
Rect r = { p.x-5, p.y-5, p.x+5, p.y+5 };
FranmeOval (r); /1l Draw an QO

}

void Q :draw (Point p)

{
inherited::draw(p); // Perform behavior of

I base cl ass

MoveTo(p. X, p.Y); /1 Perform added behavi or
Li ne(5, 5);

}

Setting C++ Options

This section describes how to change the behavior of Metrowerks
C++ by setting some options in the Language preference panel. Fig-
ure 3.1 shows where the C++ options are. For information on the
rest of the options in the C/C++ Language settings panel, see
“Overview of C and C++ Language Notes” on page 19.

CL-92 C, C++, and Assembly Language Reference

C++ Language Notes
Setting C++ Options

Figure 3.1

C++ Options

Setting C++ Options in the C/C++ Languages Settings Panel

- Language | nfa:

[] &ctivate C++ Compiler []&NSI Strict

[] &RM confor mance [] &NSI Eeywords Only

[] Enable C++ Exceptions [] Expand Trigraphs

[] Enable RTTI [] Multi-Euyte dware

Inlining: | Mormal | Direct to SOM: | off v |

] Panl Strings [] Map Mewlines ta CR

[] bon®t Reuse Strings [] Relaxed Pointer Type Rules

(<] Require Function Prototypes [] Enums &lways Int

(<] Enable bool Support [] Use Unsigned Chars

This section contains the following:
e “Using the C++ compiler always” on page 93
¢ “Enforcing strict ARM conformance” on page 94
¢ “Adding C++ extensions” on page 95
» “Allowing exception handling” on page 96
» “Using the bool type” on page 96

For more information on Direct to SOM, see “Creating Direct-to-
SOM Code” on page 105.

Using the C++ compiler always

If you turn on the Activate C++ Compiler option, the compiler com-
piles all the C source files in your project as C++ code. If you turn
this option off, the CodeWarrior IDE looks at a file name’s suffix to
determine whether to use the C or C++ compiler. These are the suf-
fixes it looks for:

e If the suffix is .cp, . cpp, or . c++, the CodeWarrior IDE uses
C++

e If the suffix is . ¢, the CodeWarrior IDE uses C.

This option corresponds to the pragma cpl uspl us, described on
“cplusplus” on page 179. To check whether this option is on, use

C, C++, and Assembly Language Reference CL-93

C++ Language Notes
Setting C++ Options

__option (cplusplus), described on “cplusplus” on page 230.
By default, this option is off.

Enforcing strict ARM conformance

When the ARM Conformance option is on, Metrowerks C++ gener-
ates an error when it encounters certain ANSI C++ features that con-
flict with the C++ specification in The Annotated C++ Reference
Manual. Use this option only if you must make sure that your code
strictly follows the specification in The Annotated C++ Reference Man-
ual.

Turning on this option prevents you from doing the following
e Using protected base classes (ARM, §11.2). For example:

class X {};
class Y : protected X {};
/Il OKin Metrowerks C++. Error in ARM

e Changing the syntax of the conditional operator to let you
use assignment expressions without parentheses in the sec-
ond and third expressions (K&R, §A7.16). For example:

i ? X=y . y=z
[/ OKin Metrowerks C++. Error in ARM
i ? (x=y):(y=2)

[/ OKin ARM and Metrowerks C++

* Declaring variables in the conditions of i f, whi | e and
swi t ch statements (K&R, §A9.4, §A9.5). For example:

while (int i=x+y) { . . . }
[/ OKin Mtrowerks C++. Error in ARM

Turning on this option allows you to do the following:

e Using variables declared in the condition of anf or statement
after the f or statement (K&R, §9.5). For example:

for(int i=1; 1<1000; i++) { /* . . . *| }
return i;
[l OKin ARM Error in Metrowerks C++

This option corresponds to the pragma ARM conf or m described on
“ARM_conform” on page 174. To check whether this option is on,

CL-94 C, C++, and Assembly Language Reference

C++ Language Notes
Setting C++ Options

use __option (ARM conformn, described on “ARM_conform” on
page 230. By default, this option is off.

Adding C++ extensions

If you turn on the pragma cpp_ext ensi ons, the compiler lets you
use these extensions to the ANSI C++ standard:

e Anonymous structs (ARM, §9). For example:

#pragma cpp_extensi ons on
voi d foo()
{
uni on {
| ong hi | o;
struct { short hi, lo; };
/'l annonynous struct
1
hi =0x1234;
| 0=0x5678;
/1 hilo==0x12345678
}

e Unqualified pointer to a member function (ARM, §8.1c). For
example:

#pragma cpp_extensi ons on
struct Foo { void f(); }
voi d Foo: :f()
{
void (Foo::*ptnfl)() = &Foo::f;
Il ALWAYS K

void (Foo::*ptnf2)() = f;
[l OK, if cpp_exptensions is on.

}

This pragma does not correspond to any option in the preference
panel. To check whether this option is on, use the __opti on
(cpp_ext ensi ons), described on “Options Checking” on page
229. By default, this option is off.

C, C++, and Assembly Language Reference CL-95

C++ Language Notes
Using Run-Time Type Information (RTTI)

Allowing exception handling

Turn on the Enable C++ Exceptions option if you use PowerPlant or
the ANSI-standard t r y and cat ch statements. Otherwise, turn off
this option to generate smaller and faster code.

=se=~ TIP: For more information on Metrowerks implements ANSI
C++'s exception handling mechanism, see “Using Exceptions” on
page 103.

This option corresponds to the pragma except i ons, described on

“exceptions (C++ only)” on page 185. To check whether this option

ison, use__option (exceptions), described on “exceptions” on
page 231. By default, this option is off.

Using the bool type

Turn on the Enable bool Support option if you want to use the stan-
dard C++ bool type to representt r ue and f al se. Turn this option
off if recognizing bool , tr ue, or f al se as keywords would cause
problems in your program.

This option corresponds to the pragma bool , described on “bool
(C++ only)” on page 176. To check whether this option is on, use

__option (bool), described on “bool” on page 230. By default,
this option is off.

Using Run-Time Type Information (RTTI)

Metrowerks C++ supports Run-Time type Information (or RTTI), in-
cluding the dynam c_cast and t ypei d operators. To use these op-
erators, turn on the Enable RTTI option in the C/C++ Language
preference panel.

The rest of this section describes the two parts of RTTI:
e “Using the dynamic_cast operator” on page 97

e “Using the typeid operator” on page 98

CL-96 C, C++, and Assembly Language Reference

C++ Language Notes
Using Run-Time Type Information (RTTI)

Using the dynamic_cast operator

The dynam c_cast operator lets you safely convert a pointer of
one type to a pointer of another type. Unlike an ordinary cast,
dynam c_cast returns 0 if the conversion is not possible. An ordi-
nary cast returns an unpredictable value that may crash your pro-
gram if the conversion is not possible

This is the syntax for dynani c_cast operator:

dynam c_cast <Type*>(expr)
The Type must be either voi d or a class with at least one virtual
function member. If the object that expr points to (* expr) is of type
Type or is derived from type Type, this expression converts expr to a
pointer of type Type* and returns it. Otherwise, it returns 0, the null
pointer.
For example, take these classes:

class Person { virtual void func(void) { ; } };

class Athlete : public Person { /* . . . *| };
class Superman : public Athlete { /* . . . *| };
And these pointers:

Person *l ois = new Person;
Person *arnold = new Athl et e;
Person *cl ark = new Super man;
Athlete *a;

This is how dynam c_cast would work with each:

a = dynam c_cast <At hl et e*>(arnol d);
/Il ais arnold, since arnold is an Athlete.
a = dynam c_cast <At hl ete*>(10i s);
/Il ais 0, since lois is not an Athelete.
a = dynam c_cast <At hl ete*>(cl ark);
/Il ais clark, since clark is both a Superman
/1 and an Athlete.

You can also use the dynam c_cast operator with reference types.
However, since there is no equivalent to the null pointer for refer-

C, C++, and Assembly Language Reference CL-97

C++ Language Notes
Using Run-Time Type Information (RTTI)

ences, dynam c_cast throws an exception of type bad_cast if it
cannot perform the conversion.

NOTE: The bad_cast type is defined in the header file excep-
tion. Whenever you use dynam c_cast with a reference, you
must #include exception.

This is an example of using dynam c_cast with a reference:

#i ncl ude <exception>
/1 .o
Person &superref = *clark;

try {
Person & ef = dynam c_cast <Per son&>(superref);

}
catch(bad_cast) {

cout << "oops!" << endl;

}

Using the typeid operator

The t ypei d operator lets you determine the type of an object. Like
the si zeof operator, it takes two kinds of arguments:
* The name of a class

e An expression that evaluates to an object

NOTE: Whenever you use t ypei d operator, you must #include
the typeinfo header file.

The t ypei d operator returns a reference to at ype_i nf o object that
you can compare with the == and ! = operators. For example, take
these classes from above:

class Person { /* . . . *| };
class Athlete : public Person { /* . . . *| };

CL-98 C, C++, and Assembly Language Reference

C++ Language Notes
Using Templates

Person *l ois = new Person;
Athlete *arnold = new At hl et e;
Athlete *I ouganis = new At hl et e;

All these expressions are true:

#i ncl ude <typei nfo>

. ..

if (typeid(Athlete) == typeid(*arnold)) //
/] arnold is an Athlete.

if (typeid(*arnold) == typeid(*louganis)) //...
/1l arnold and | ouganis are both Athletes.

if (typeid(*lois) !'=typeid(*arnold)) //
/'l 1ois and arnold are not the sane type.

You can access the name of a type with the name() member func-
tion in the t ype_i nf o class. For example, these statements:

#i ncl ude <typei nfo>
11 :
cout << "Lois is a(n)
<< typeid(*lois).nanme() << endl;
cout << "Arnold is a(n) "
<< typeid(*arnol d).nanme() << endl;

Print this:

Lois is a(n) Person
Arnold is a(n) Athlete

Using Templates

(ARM, §14) This section describes the best way to organize your
template declarations and definitions in files. It also documents how
to explicitly instantiate templates, using a syntax that is not in the
ARM but is part of the ANSI C++ draft standard.

This section contains the following:
¢ “Declaring and defining templates” on page 100

¢ “Instantiating templates” on page 101

C, C++, and Assembly Language Reference CL-99

C++ Language Notes

Using Templates

Listing 3.8

Listing 3.9

Declaring and defining templates

In a header file, declare your class functions and function templates,
as shown in Listing 3.8.

templ.h: A Template Declaration File

tenpl ate <class T>
class Tenpl {
T nenber;
public:
Templ (T x) { menber=x; }
T Cet();
1

tenpl ate <class T>
T Max(T, T);

In a source file, include the header file, and define the function tem-
plates and the member functions of the class templates, as shown in
Listing 3.9. This is a template definition file. You'll include this file in
any file that uses your templates. You do not need to add the tem-
plate definition file to your project.

templ.cp: A Template Definition File

#i ncl ude "tenpl.h"

tenpl ate <class T>
T Tenpl <T>:: Get ()
{

return menber;

}

CL-100 C, C++, and Assembly Language Reference

C++ Language Notes
Using Templates

tenpl ate <class T>
T Max(T x, Ty)
{

}

return ((x>y)?x:y);

NOTE: Although the template definition file is a source file and
ends in . cp, itis the file you will include in any other source file

that uses your templates. If you include the template declaration
file, which ends in . h, the compiler will generate an error saying
that the function or class is undefined.

Instantiating templates

The template definition file does not generate code. The compiler
cannot generate code for a template until you specify what values it
should substitute for the templates arguments. Specifying these val-
ues is called instantiating the template.

Metrowerks C++ gives you two ways to instantiate a template. You
can let the compiler instantiate it automatically when you first use
it, or you can explicitly create all the instantiations you'll need in
one place:

e If you use automatic instantiation, the compiler may take
longer to compile your program since it has to determine on
its own which instantiations you’ll need. Also, the object
code for the template instantiations will be scattered
throughout your program.

e If you use explicit instantiation, the compiler compiles your
program quicker. Since the instantiations can be in one file,
with no other code, you can choose to put them all in one
segment or even in a separate library.

C, C++, and Assembly Language Reference CL-101

C++ Language Notes
Using Templates

NOTE: Explicit instantiation is not in the ARM but is part of the
!9 ANSI C++ draft standard.

To instantiate templates automatically, include the template defini-
tion file in all the source files that use the templates, and just use the
templates as you would any other type or function. The compiler
automatically generates code for a template instantiation whenever
it sees a new one. Listing 3.10 shows how to automatically instanti-
ate the templates in Listing 3.8 and Listing 3.9.

Listing 3.10 myprog.cp: A Source File that Uses Templates

#i ncl ude <i ostreans. h>

#i ncl ude "tenpl.cp"
/1l This statenent includes both the tenplate
/'l declarations and the tenplate defintions.

voi d mai n(voi d)

{
Tenmpl <long> a =1, b = 2;
/'l The conpiler instantiates Tenpl <l ong> here.
cout << Max(a.Cet(), b.Get());
/1 The conpiler instantiates Max<l ong>() here.
}

To instantiate templates explicitly, include the template definition
file in a source file, and write a template instantiation statement for
every instantiation. The syntax for a class template instantiation is

tenpl ate cl ass class-name<templ-specs>;

The syntax for a function template instantiation is

tenpl at e return-type func-name<templ-specs>(arg-specs)

Listing 3.11 shows how to explicitly instantiate the templates in List-
ing 3.8 and Listing 3.9.

CL-102 C, C++, and Assembly Language Reference

C++ Language Notes
Using Exceptions

Listing 3.11 myinst.cp: Explicitly Instantiating Templates

#i ncl ude "tenpl.cp"

tenpl ate cl ass Tenpl <l ong>;
[/ class instantiation

tenpl ate | ong Max<l ong>(| ong, | ong);
/1 function instantiation

When you're explicitly instantiating a function, you do not need to
include in templ-specs any arguments that the compiler can deduce
from arg-specs. For example, in Listing 3.11 you can instantiate
Max<l ong>() like this:

tenpl ate | ong Max<>(long, |ong);
/'l The conpiler can tell fromthe argunents
/1 that you' re instantiating Max<l ong>().

Using Exceptions

If you turn on the Enable C++ Exceptions options in the C/C++
Languages preference panel, you can use the t ry and cat ch state-
ments to perform exception handling. If your program doesn’t use
exception handling, turn this option to make your program smaller.

You can throw exceptions across any code that’s compiled by the
CodeWarrior 8 (or later) Metrowerks C/C++ compiler with the En-
able C++ Exceptions option turned on. You cannot throw excep-
tions across the following:

¢ Macintosh Toolbox function calls

e Libraries compiled with the Enable C++ Exceptions option
turned off

e Libraries compiled with versions of the Metrowerks C/C++
compiler earlier than CodeWarrior 8

e Libraries compiled with Metrowerks Pascal or other
compilers.

C, C++, and Assembly Language Reference CL-103

C++ Language Notes
Declaring MPW-Compatible Classes

If you throw an exception across one of these, the code calls
t erm nat e() and exits.

If you throw an exception when you're allocating a class object or an
array of class objects, the code automatically destructs the partially
constructed objects and de-allocates the memory for them.

Declaring MPW-Compatible Classes

Metrowerks C++ lets you declare classes that save you some over-
head and that are automatically created on the application’s heap.
These classes are also the only type of Metrowerks C++ classes that
are compatible with MPW C++ code. Use them only when you need
to save as much space as possible or need to create a library you can
use with MPW C++.

These are the two types of objects:
* SingleObject objects are created on the stack.

» HandleObject objects are created in the application’s heap.

o
S

It

TIP: For more information on writing MPW-compatible C code,
see “Calling MPW Functions” on page 72.

1]

Since these classes do not let you use multiple-inheritance or run-
time type information (RTTI), they can save you some overhead.
The compiler stores information about an object’s virtual functions
in a data structure called a virtual table. The virtual table for a single-
inheritance object can be much simpler and smaller than the one for
a multiple-inheritance object.

HandleObject has all the features as SingleObject, with one addi-
tional feature: Any object descended from it is automatically stored
on the application’s heap, and you reference the object with a han-
dle. You treat these handles as pointers, since the compiler automat-

CL-104 C, C++, and Assembly Language Reference

C++ Language Notes
Creating Direct-to-SOM Code

ically changes the pointer references to handle references for you.
For example:

class nyd ass : Handl e(bj ect {

int a;

/1
}
M/d ass *nmyGbj = new Myd ass
myQoj ->a = 0;

/1l The conpiler automatically converts these
/'l pointer references to handl e references.

These restrictions apply to objects descended from HandleObject:

You cannot use multiple inheritance or run-time type infor-
mation.

You must create a new HandleObject object with the newop-
erator.

You cannot create a HandleObject local variable, global vari-
able, array, class member , or function parameter. However,
HandleObject pointers can be any of the above.

You cannot cast a HandleObject pointer to another type,
other than a pointer to another HandleObject object. You can-
not cast any other type of pointer to a HandleObject pointer.

When you dereference a HandleObject pointer , you can use
it only to refer to a class member. For example:

nyCbj ->a = 0; Il K
*nyQbj.a = 0; Il K
func(*nmyQoj); /1 ERROR

Avoid taking the address of a member of a HandleObject ob-
ject (such as &y Qj - >a). Since the object is in the heap, it
may move unexpectedly and the address will point to gar-
bage.

Creating Direct-to-SOM Code

Metrowerks C/C++ lets you create SOM code directly in the Code-
Warrior IDE. SOM is an integral part of OpenDoc.

C, C++, and Assembly Language Reference CL-105

C++ Language Notes
Creating Direct-to-SOM Code

There are two ways to create SOM code. You can turn select On or
On with Environment Checks from the Direct to SOM menu in the
C/C++ Language preference panel, or use the di rect _t o_som
pragma before you import any SOM header files, like this:

#pragma direct _to_som on

If you select On with Environment Checks from the Direct to SOM
menu, the compiler performs some automatic error checking, as de-
scribed in “Automatic SOM error checking” on page 109.

Note that when you turn on the Direct to SOM option, you should
turn on the Enums Always Int option in the C/C++ Language pref-
erence panel, described in “Enumerated constants of any size” on
page 51.

Also, when you define a SOM class, Metrowerks C/C++ uses
PowerPC alignment for that class. In other words, the compiler acts
as though you enclosed the class definition with #pragma op-
tions al i gn=power pc and #pragnma options align=reset.
For more information on structure alignment, see Targeting Mac OS.

The rest of this section describes the restrictions SOM code must
abide by, some useful SOM header files, and pragmas for SOM
classes:

* “SOM class restrictions” on page 106
e “Using SOM headers” on page 109
e “Using SOM pragmas” on page 111

SOM class restrictions

Since you can develop SOM code in different languages and then
use that code under different operating systems, you must work
with several restrictions when developing SOM code.

These restrictions apply only to classes that are descended from
SOMODbject. You can use SOMODbjects and other classes together in a
project.

CL-106 C, C++, and Assembly Language Reference

C++ Language Notes
Creating Direct-to-SOM Code

When you create a SOM class and define its members, keep these re-
strictions in mind:

The base class must be SOMODbject or a descendant of SOM-

Obect. If you use multiple inheritance, all parent classes must
be descendants of SOMODbject. (You cannot mix SOM classes
with other classes in the base list for any class.)

You must declare the class with the cl ass keyword. A class
declared as st r uct or uni on cannot be a SOM class.

All the class inheritance must be vi rt ual .
All the class’s data members must be pri vat e.

The only member functions you can overload are inline
member functions that are not virtual. They are not consid-
ered to be SOM methods.

The only operations you can overload are newand del et e.

The class must contain at least one member function that’s
not inline. MacSOM uses the first such class to determine
whether the class is implemented in a particular compilation
unit.

The class cannot contain the following:
— nested class definitions

— static data or function members.

constructors (ctors) with parameters.

copy constructors
In a member function, you cannot do the following:
— use | ong doubl e parameters or return type

— use a variable length argument list

When you use a SOM class in your code, remember that you cannot
do the following:

Create global SOM objects.

Use si zeof () with SOM objects or classes.
Create class templates that expand to SOM objects.
Create arrays of SOM objects.

C, C++, and Assembly Language Reference CL-107

C++ Language Notes
Creating Direct-to-SOM Code

Use the placement and array forms of new (such as new(ad-
dress) T or new T[n]) or the array form of delete (such
as delete [] p).

Declare SOM classes as members of other classes. (You can
declare pointers to SOM class objects as members.)

Take the address of a member of a SOM class. For example,
&f 00: : bar is not allowed if f 00 is a SOM class.

Pass aggregate parameters by value to a SOM member func-
tion.

Use SOM objects as function parameters. (You can use a
pointer to a SOM object as a parameter.)

Perform an assignment with SOM classes

Return a SOM object as a function’s value

Also when you invoke a method with explicit scope (such as
obj - >B: : f unc()), the specified class (B) must be the same class as
the object (0bj) or a direct parent of the object’s class.

For example, if class A is the parent of class B which is the parent of
class C, then

C* obj = new C

obj->C. :func(); // OK Cis obj’'s class
obj->B::func(); // OK Bis a direct parent

/1 of obj’s class
obj->A::func(); // ERROR Ais NOT a direct
/1 parent of obj’s class

CL-108 C, C++, and Assembly Language Reference

C++ Language Notes
Creating Direct-to-SOM Code

Table 3.1

Using SOM headers

CodeWarrior includes several different header files for use in SOM
code. These are the most important and probably the only ones
you'll need to use yourself:

SOM Headers

This header Contains this...

sonobj . hh SOMObject, a SOM base class. If your file sub-
classes from SOMODbject, include this header. If
you're converting a file from IDL to Metrowerks
C++, you can use this header as a replacement for
sonobj . i dl and sonobj . xh.

sontls. hh SOMClass, the SOM base meta-class. If your file
sub-classes from SOMClass, include this header. If
you're converting a file from IDL to Metrowerks
C++, you can use this header as a replacement for
sontl s.idl and sontl s. xh.

som xh The procedural interface to SOMODbjects for Mac
OS. It's not needed for basic SOM programming.

sonobj . xh Same as sonobj . hh. Use sonobj . hh instead.
sonmtl s. xh Same as sontl s. hh. Use sontl s. hh instead.

Automatic SOM error checking

If you choose On with Environment Checks from the Direct to
SOM menu, the compiler performs some automatic error checking,
in addition to creating SOM code. It transforms every IDL method
call and new allocation into an expression which also calls an error-
checking function. You must define separate error-checking func-
tions for method calls and allocations.

For example, the compiler transforms this IDL method call:

SOWbbj - >func(&env, argl, arg2) ;

C, C++, and Assembly Language Reference CL-109

C++ Language Notes
Creating Direct-to-SOM Code

Listing 3.12

into something that is equivalent to this:
(tenmp=SOwbbj - >f unc(&env, argl, arg2),
__som check_ev(&env), tenp) ;

First, the compiler calls the method and stores the result in a tempo-
rary variable. Then it checks the environment pointer. Finally, it re-
turns the method’s result.

And, the compiler transforms this new allocation:

new SOWtl ass;

into something that is equivalent to this:

(tenmp=new SOMcl ass, __som check _new(tenp),
tenmp);

First, the compiler creates the object and stores it in a temporary
variable. Then it checks the object and returns it.

You must define __som check_ev() and __som check_new()
to do something like this:

The __som_check_ev() and __som_check_new() functions

#i ncl ude <sondts. h>
#pragma i nternal on

extern "C' void _ _som check_ev(
struct Environnent *);
extern void _ som check_ev(
struct Environnment *envp)
{

i f(envp->_nmmj or)

{

}
}

/1l your error handling code here

CL-110 C, C++, and Assembly Language Reference

C++ Language Notes
Creating Direct-to-SOM Code

extern "C'" void __somcheck _new(SOMMject *);
extern void _ som check_new SOMXject *SOMNDj)
{

i f (sonp==NULL)

{

/1l your error handling code here

}

}

The PowerPC compiler uses an optimized error check that is smaller
but slightly slower than the one given above. To use the error check
show above in PowerPC code, use the pragma SOMCal | -

Opti m zat i on. It looks like this:

#pragma SOMCal | Qptim zation on | off | reset
The default is on.

You can also turn on SOM error checking with with this pragma:

#pragma SOMCheckEnvi ronment on | off | reset

The default is of f .

Using SOM pragmas

The following pragmas let you give information on a SOM class to
the MacSOM software:

e SOVRel easeOr der declares the release order of a class’s
methods.

e SOV assVer si on declares the version number for a class.
e SOMMVet ad ass declares the metaclass for a class.

e SOMCal | Styl e declares the call style (IDL or OIDL) for a
class.

All pragmas besides SOMCheck Envi r onnent must appear within
the declaration of the class they apply to. These pragmas may ap-
pear more than once in a class declaration, but they must specify the
same information each time.

C, C++, and Assembly Language Reference CL-111

C++ Language Notes
Creating Direct-to-SOM Code

Declaring the release order

A SOM class must specify the release order of its member functions.
As a convenience for when you're first developing the class,
Metrowerks C++ lets you leave out the SOVRel easeOr der pragma
and assumes the release order is the same as the order in which the
functions appear in the class declaration. However, when you re-
lease a version of the class, use the pragma, since you'll need to
modify its list in later versions of the class. The pragma looks like
this:

#pragma SOVRel aseOr der (funcl, func2, ... funcN)

You must specify every SOM method that the class introduces. Do
not specify inline member functions that are not virtual, since
they’re not considered to be SOM methods. Don’t specify overrid-
den functions.

If you remove a function from a later version of the class, leave its
name in the release order list. If you add a function, place it at the
end of the list. If you move a function up in the class hierarchy, leave
it in the original list and add it to the list for the new class.

Declaring the class’s version

SOM uses the class’s version number to make sure the class is com-
patible with other software you're using. If you don’t declare the
version numbers, SOM assumes zeroes.

The SOMO assVer si on pragma looks like this:
#pragma SOMO assVer si on(class, majorVer, minorVer)

The version numbers must be positive or zero.

When you define the class, the program passes its version number
to the SOM kernel in the class’s metadata. When you instantiate an
object of the class, the program passes the version to the runtime
kernel, which checks to make sure the class is compatible with the
running software.

CL-112 C, C++, and Assembly Language Reference

C++ Language Notes
Creating Direct-to-SOM Code

Declaring the metaclass for a class

A metaclass is a special kind of SOM class that defines the imple-
mentation of other SOM classes. All SOM classes have a metaclass,
including metaclasses themselves. By default, the metaclass for a
SOM class is SOMClass. If you want to use another metaclass, use
the SOMMet adl ass pragma. It looks like this:

#pragma SOWMet adl ass (class, metaclass)
The metaclass must be a descendant of SOMClass. Also, a class can-

not be its own metaclass. That is, class and metaclass must name dif-
ferent classes.

Declaring the call style for a class

SOM supports two call styles:
e OIDL, an older style that does not support DSOM
* IDL, a newer style that does support DSOM.
By default, Metrowerks C++ assumes that a class uses IDL. To use
OIDL, use the SOMCal | St yl e pragma, which looks like this:
#pragma SOMCal | Style O DL

If a class uses the IDL style, its methods must have an Environment
pointer as the first parameter. Note that the SOMClass and SOMOb-
ject classes use OIDL, so if you override a method from one of them,
you should not include the Environment pointer.

C, C++, and Assembly Language Reference CL-113

C++ Language Notes
Creating Direct-to-SOM Code

CL-114 C, C++, and Assembly Language Reference

68K Assembler
Notes

This chapter describes the 68K assembler that is part of the
CodeWarrior package of compilers.

Overview of 68K Assembler Notes

Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. Both the
PowerPC and 68K compilers include built-in assemblers that let you
do just that.

This chapter describes how to use the built-in 68K assembler with
either the 68K Macintosh compiler or the Magic Cap compiler, in-
cluding its syntax and special directives. It does not document all
the instructions available in 68K assembler. For more information,
see the MC68000 Family Programmer’s Reference Manual from Motor-
ola.

=e~%~ TIP: For more information on the built-in PowerPC assembler,
see “Overview of PowerPC Assembler Notes” on page 125.

The topics in this chapter include:
¢ “Writing an Assembly Function for 68K” on page 116

¢ “Assembler directives” on page 122

C, C++, and Assembly Language Reference CL-115

68K Assembler Notes
Writing an Assembly Function for 68K

Writing an Assembly Function for 68K

This section details how to write a function for the 68K assembler.
The topics in this section include:

¢ “Defining a Function for 68K Assembly” on page 116
¢ “Using Global Variables in 68K Assembly” on page 119

¢ “Using Local Variables and Arguments in 68K Assembly” on
page 119

¢ “Using Structures in 68K Assembly” on page 120
e “Using the Preprocessor in 68K Assembly” on page 121

¢ “Returning From a Function in 68K Assembly” on page 121

Defining a Function for 68K Assembly

To include assembly in your 68K project, declare a function with the
asmqualifier, like this:

asmlong f(void) { . . . } // OK An assenbly
I function

Note that you cannot create an assembly statement block within a C

function:
| ong f(void)
{
asm{ . . . } /'l ERROR Assenbly statenent
} /'l bl ocks are not supported.

The built-in assembler uses all the standard MC 680000 assembler
instructions. It accepts some additional directives described in “As-
sembler directives” on page 122. It also accepts the following 68020
assembler instructions, after you use one of these directives: ma-
chine 68020, machi ne 68030, or machi ne 68040:

bf chg bfclr bf ext s bf extu
bfffo bfi ns bf set bf t st

CL-116 C, C++, and Assembly Language Reference

68K Assembler Notes
Writing an Assembly Function for 68K

di vsli di vs. | di vul di vu. |

mul s. | mul u. | extbh. | rtd

You cannot use MC68020, MC68030, or MC68040 addressing modes.

=
S

TIP: If you know the opcode for an assembly statement that's not
supported, you can include it in your function with the opwor d di-
rective, described at “opword” on page 124.

It
1]

Keep these tips in mind as you write assembly functions:
e All statements must follow this syntax:
[LocalLabel:] (instruction | directive) [operands]

Each instruction must end with a newline or a semicolon (;).

* Hex constants must be in C-style , not Pascal-style. For exam-
ple:
move. | OxABCDEF, d5 I X
nove. | $ABCDEF, d5 /'l ERRCR

¢ Assembler directives, instructions, and registers are not case-
sensitive. For example these two statements are same:

move. | b, DO /] K
MOVE. L b, dO /] ALSO OK

e Alabel must end in a colon and may contain the @character.
For example:

asmvoi d foo(void)

{

x1l: dc.b "Hello world!l'\n" // K

@2: dc.w 5 [l K

x3 dc. w 1,2,3,4 // ERROR Needs a col on
}

C, C++, and Assembly Language Reference CL-117

68K Assembler Notes
Writing an Assembly Function for 68K

Listing 4.1

* You cannot begin comments with a semicolon (;), but you
can use C and C++ comments. For example:

add. | d5, d5 ; ERRCR
add. | ds, d5 Il K
add. | ds5, d5 [* K */

Listing 4.1 shows an example of an assembly function.

Creating an assembly function

long int b;
struct nystruct {
long int a;
.
static asmlong f(void) /'l Legal asmqualifier
{
nove. | struct (nystruct. a) (A0), DO
/'l Accessing a struct.
add. | b, DO // Using a gl obal variable and
I putting return value in
DO.
rts /1l Returning fromthe
I function:
} I result = nystruct.a + b

The rest of this section describes how to create local variables, access
function parameters, refer to fields within a structure, and use the
preprocessor with the assembler. A section at the end of the chapter
describes some special assembler directives that the built-in assem-
bler allows.

CL-118 C, C++, and Assembly Language Reference

68K Assembler Notes
Writing an Assembly Function for 68K

Using Global Variables in 68K Assembly

To refer to a global variable, just use its name, as shown below:

int Xx;

asmvoid f(void)

{
nove. w X, dO /1l Moving x into dO
/1

}

Using Local Variables and Arguments in 68K
Assembly

The built-in assembler gives you two ways to refer to local variables
and function arguments: you can do the work on your own or let
the built-in assembler do the work for you. To do it on your own,
you must explicitly save and restore processor registers and local
variables when entering and leaving your assembly function. You
cannot refer to the variables by name. You can refer to function ar-
guments off the stack pointer. For example, this function moves its
argument into dO:

asmvoid foo(short n)

{
nove. w 4(sp),d0 // n
/1

}

To let the built-in assembler do it for you, use the directives

frall ocandfrfree.Just declare your variables as you would in a
normal C function. Then use the f r al | oc directive. It makes space
on the stack for the local stack variables and reserves registers for
the local register variables (with the statement | i nk #x, a6). In
your assembly, you can refer to the local variables and variable ar-
guments by name. Finally, use the f r f r ee directive to free the stack
storage and restore the reserved registers.

C, C++, and Assembly Language Reference CL-119

68K Assembler Notes
Writing an Assembly Function for 68K

Listing 4.2

Listing 4.2 is an example of using local variables and function argu-
ments.

Using the fralloc directive

static asmshort f(short n)

{
regi ster short a; // Declaring a as a register
short b; /1 variable and b as a stack
[l variable. Note that you need
/'l sem colons at the ends of
/'l these statenents.
fralloc + /1l Allocate space on stack
/1l and reserve registers.
nmove.w n,a // Using an argunent and | ocal var.
add.w a,a
nove.w a, DO
frfree /'l Free the space that
/1 fralloc allocated
res
}

Using Structures in 68K Assembly
You can refer to a field in a structure with the st r uct construct, as
shown below:
st ruct (structTypeName. fieldName) structAddress
This instruction moves into DO the r ef Con field in the W ndow
Recor d that AO points to:
nove.l struct (W ndowRecord. ref Con) (A0), DO

CL-120 C, C++, and Assembly Language Reference

68K Assembler Notes
Writing an Assembly Function for 68K

Using the Preprocessor in 68K Assembly

You can use all preprocessor features, such as comments and mac-
ros, in the assembler. Just keep these points in mind when writing a
macro definition:

e End each assembly statement with a semicolon (;), since the
preprocessor ignores newlines. For example:

#def i ne MODULQ(X, Yy, resul t)\
nove.w X, DO; \

ext .| Do; \
divs.w vy, DO; \
swap DO; \

nmove. w DO, resul t

e Use %instead of #, since the preprocessor uses # as an opera-
tor to concatenate token. For example:

#define dearD0 noveq %, DO

Returning From a Function in 68K Assembly

Every assembly function should end inanrt s or a pr et ur n state-
ment. If you forget to add one, the compiler does not add one for
you, and does not raise an error. Use the r t s statement for ordinary
C functions. Use the pr et ur n statement for Pascal functions, since
it performs the clean up that Pascal functions need. For example:

asmvoid f(void)

{
add. | d4, d5
} /'l No RTS statenent
asmvoid g(voi d)
{
add. | d4, d5
rts Il K
}

C, C++, and Assembly Language Reference CL-121

68K Assembler Notes

Assembler directives

asm voi d pascal h(void)

{
add. | d4, d5
preturn Il K

Assembler directives

This section describes some special assembler directives that the
Metrowerks built-in assembler accepts. The directives are listed al-
phabetically.

dc
dc[. (bW)] constexpr (, constexpr)*

Defines a block of constant expressions, constexpr, as initialized
bytes, words, or long words. If there is no qualifier, . wis assumed.
For dc. b you can specify any string constant (C or Pascal). Fordc. w
you can specify any 16-bit relative offset to a local label. For exam-
ple:

asm voi d foo(voi d)

{
x1: dc.b "Hello world!'\n" // Creating a string
x2: dc.w 1,2,3,4 /'l Creating an arrray
x3: dc.l 3000000000 /'l Creating a nunber
}

ds

ds[. (bl W 1)] size

Defines a block of size bytes, words, or longs. The block is initialized
with null characters. If there is no qualifier, . wis assumed. For ex-
ample, this statement defines a block big enough for the structure
DRVRHeader .

ds. b sizeof (DRVRHeader)

CL-122 C, C++, and Assembly Language Reference

68K Assembler Notes
Assembler directives

Listing 4.3

entry
entry [extern|static] name

Defines an entry point into the current function. Use the ext er n
qualifier to declare a global entry point and use the st at i ¢ qualifier
to declare a local entry point. If you leave out the qualifier, ext er n
is assumed.

Using the entry directive

static long MyEntry(void);
static asm|ong MyFunc(voi d)

{
move.l a, dO
bra.s L1
entry static M/Entry
move.|l b, dO
L1: rts
}
fralloc

fralloc [+]

Lets you declare local variables in an assembly function. The f r al -
| oc directive makes space on the stack for your local stack variables
and reserves registers for your local register variables (with the
statement | i nk #x, a6). For more information, see “Using Local
Variables and Arguments in 68K Assembly” on page 119.

There are two versions of f ral | oc. Thef r al | oc directive (without
a +), pushes modified registers onto the stack. The frall oc + di-
rective also pushes all register arguments into their 68K registers.

frfree
frfree

Frees the stack storage area and restores the registers (with the state-
ment unl k a6) that f ral | oc reserved. For more information, see

C, C++, and Assembly Language Reference CL-123

68K Assembler Notes
Assembler directives

“Using Local Variables and Arguments in 68K Assembly” on page
119.

machine
machi ne number

Specifies which CPU the assembly code is for. The number must be
one of the following:

68000 68010 68020 68030
68040 68349 68881 68882
68851

To use the following MC68020 assembler instructions, specify
68020, 68030, or 68040:

bf chg bf clr bf ext s bf ext u
bfffo bfi ns bf set bf t st
di vsl di vs. | di vul di vu. |
mul s. | mul u. | extb. | rtd

You cannot use MC68020, MC68030, or MC68040 addressing modes.
To disable the MC68020 assembler instructions, specify 68000 or
68010. The arguments 68349, 68881, 68882, and 68851 have no
effect.

opword
opwor d const-expr (, const-expr) *

Lets you include the opcode for an instruction. It works the same as
dc. w but emphasizes that the expression is an instruction. For ex-
ample, this directive calls Wai t Next Event () :

opword OxA860 /1 Vi t Next Event

CL-124 C, C++, and Assembly Language Reference

5

PowerPC Assembler
Notes

This chapter describes the PowerPC assembler that is part of the
CodeWarrior package of compilers.

Overview of PowerPC Assembler Notes

Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. Both the
PowerPC and 68K compilers include built-in assemblers that let you
do just that.

This chapter describes how to use the built-in PowerPC assembler,
including its syntax and special directives. It does not document all
the instructions available in PowerPC assembler. For more informa-
tion on the PowerPC programming model, see the IBM PowerPC
User Instruction Set Architecture. For more information on a particu-
lar PowerPC processor and its instruction set, refer to the appropri-
ate document such as the Motorola PowerPC 601 RISC Microprocessor
User’s Manual. The Apple Assembler for PowerPC for the MPW s PP-
CAsmassembler is also a good reference and is on the CodeWarrior
CD.

o
T

It

TIP: For more information on the built-in 68K assembler, see
“Overview of 68K Assembler Notes” on page 115.

1]

C, C++, and Assembly Language Reference CL-125

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

The sections in this chapter include:
* “Writing an Assembly Function for PowerPC” on page 126
¢ “PowerPC Assembler Directives” on page 134

¢ “PowerPC Assembler Instructions” on page 138

Writing an Assembly Function for PowerPC

This section details how to write a function for the PowerPC assem-
bler. The topics in this section include:

¢ “Defining a Function for PowerPC Assembly” on page 126
¢ “Creating Labels for PowerPC Assembly” on page 128
¢ “Using Comments for Power PCAssembly” on page 129

e “Using the Preprocessor for PowerPC Assembly” on page
129

¢ “Creating a Stack Frame for PowerPC Assembly” on page
129

¢ “Using Local Variables and Arguments for PowerPC Assem-
bly” on page 130

¢ “Specifying Instructions for PowerPC Assembly” on page
131

* “Specifying Operands for PowerPC Assembly” on page 132

Defining a Function for PowerPC Assembly

To include assembly in your PowerPC project, declare a function
with the asmqualifier, like this:
asmlong f(void) { . . .}
/1 OK An assenbly function

Note that you cannot create an assembly statement block within a C

function:
| ong f(void)
{
asm{ . . . } /'l ERROR Assenbly statenent
} /'l bl ocks are not supported.

CL-126 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

The built-in assembler uses all the standard PowerPC assembler in-
structions. It accepts some additional directives described in “Pow-
erPC Assembler Directives” on page 134. If you use the machi ne
directive, you can also use instructions that are available only in cer-
tain versions of the PowerPC. For more information, see “machine”
on page 136.

Keep these tips in mind as you write assembly functions:
e All statements must follow this syntax:
[LocalLabel:] (instruction | directive) [operands]

Each instruction must end with a newline or a semicolon (;).

* Hex constants must be in C-style , not Pascal-style. For exam-
ple:

[i r3, OxABCDEF Il K
[i r3, $ABCDEF /'l ERROR

¢ Assembler directives, instructions, and registers are case-sen-
sitive and must be in lowercase. For example these two state-
ments are different:

add r2,r3,r4 /] ok
ADD R2, R3, R4 /] ERROR

e Every assembly function must end in an bl r statement. The
compiler does not add one for you. For example:

asmvoid f(void)

{
add r2,r3,r4
} /'l ERROR No blr statenent
asmvoid g(voi d)
{
add r2,r3,r4
bl r Il K
}

C, C++, and Assembly Language Reference CL-127

PowerPC Assembler Notes

Writing an Assembly Function for PowerPC

Listing 5.1 shows an example of an assembly function.

Listing 5.1 Creating an assembly function

asm voi d nystrcpy(char *tostr,

{
addi

addi
@ |bzu
cnpwi
st bu
bne
bl r

tostr,tostr,-1

fronstr,fronstr, -1

r5,1(fromstr)
rs5,0
r5,1(tostr)
@]

char *fronstr)

The rest of this section describes how to create local variables, access
function parameters, refer to fields within a structure, and use the

preprocessor with the assembler. A section at the end of the chapter
describes some special assembler directives that the built-in assem-

bler allows.

Creating Labels for PowerPC Assembly

Alabel can be any identifier that you haven’t already declared as a

local variable. The name may start with @so these are legal names:
f 00, @ 00, and @L. Only labels that don’t start with @need to end in
a colon. For example:

asmvoid
{

x1: add
@2: add
x3 add
@4 add
}

f oo(voi d)

r3,r4,r5
re,r7,r8
ro,ri10,r11
ri2,r13,r14

Il
/Il
/1
Il

K
K
ERROR: Needs col on
K

CL-128 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

NOTE: The first statement in an assembly function cannot be a
label that starts with @

Using Comments for Power PCAssembly

You cannot begin comments with a pound sign (#), since the prepro-
cessor uses the pound sign. However, you can use C and C++ com-
ments. For example:

add r3,r4,r5 # ERRCR
add r3,r4,r5 [/ K
add r3,r4,r5 [* OK */

Using the Preprocessor for PowerPC Assembly

You can use all preprocessor features, such as comments and mac-
ros, in the assembler. However you must end each assembly state-
ment with a semicolon (;), since the preprocessor ignores newlines.
For example:

#defi ne remai nder (x,y,z) \
di vw z,X,y; \
mullw z,z,y; \
subf Z,2,X

Creating a Stack Frame for PowerPC Assembly

You need to create a stack frame for a function, if the function
e Calls other functions
e Uses more than 224 bytes of local variables
¢ Declares local register variables.
The easiest way to create a stack frame is to use the f r al | oc direc-

tive at the beginning of your function and the f r f r ee directive just
before the bl r statement. It automatically allocates and deallocates

C, C++, and Assembly Language Reference CL-129

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

memory for your local variables and saves and restores the register
contents. This example shows where to put these directives:

asmvoid foo ()
{
frall oc
/1l Your code here
frfree
bl r

}

The f r al | oc directive has an optional argument number which lets
you specify the size in bytes of the parameter area of the stack
frame. By default, the compiler creates a 32-byte parameter area. If
your assembly-language routine calls any function that takes more
than 32 bytes of parameters, you must specify a larger amount.

Using Local Variables and Arguments for
PowerPC Assembly

To refer to a memory location, you can use the name of a local vari-
able or argument.

NOTE: You can refer to local variables by name even if a function
does not contain the f r al | oc directive. The PowerPC in-line as-
sembler is different from the 68K in-line assembler in this matter.

The rule for assigning arguments to registers or memory depends
on whether the function has a stack frame. If function has a stack
frame, the in-line assembler assigns:

® Scalar arguments declared r egi st er tor 13-r 31
¢ Floating-point arguments declared r egi st er tof p14-f p31

Other arguments to memory locations

Scalar locals declared r egi st er tor 13-r 31

Floating-point locals declared r egi st er to f p14-f p31

Other locals to memory locations

CL-130 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

If function has no stack frame, the in-line assembler assigns:

e Arguments that are declared r egi st er and passed in regis-
ters to the appropriate register

e Other arguments to memory locations

¢ All locals to memory locations

NOTE: |If there is no stack frame, a function cannot have more
than 224 bytes of local variables.

For more information on PowerPC register conventions and argu-
ment-passing conventions, see the Apple Assembler for PowerPC on
the CodeWarrior CD.

Specifying Instructions for PowerPC Assembly

The PowerPC in-line assembler lets you use most of the basic and
extended assembly-language instructions described in the various
IBM and Motorola PowerPC User's Guides, such as the Motorola
PowerPC 601 RISC Microprocessor User’s Manual. The Apple Assem-
bler for PowerPC for the MPW s PPCAsmassembler is also a good ref-
erence and is on the CodeWarrior CD.

Each instruction statement corresponds to exactly one PowerPC ma-
chine code instruction. All instructions are exactly 4 bytes long. In-
struction names are case-sensitive and in all lowercase.

To set the branch prediction (y) bit for those branch instructions that
can use it, use + or - . For example:

@ bne+ @ // Predicts branch taken
@ bne- a /1] Predicts branch not taken

Most integer instructions have four different forms:
¢ Normal

e Record, which sets register cr O to whether the result is less,

than, equal to, or greater than zero. This form ends in a pe-
riod (".).

C, C++, and Assembly Language Reference CL-131

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

e Overflow, which sets the SOand OV bits in the XERif the re-
sult overflows. This form ends in the letter "0".

e Overflow and Record, which sets both registers. This form
endsin "0. "

add r3,r4,r5 // Normal add
add. r3,r4,r5// Add with record: sets cr0
addo r3,r4,r5// Add with overflow sets XER
addo. r3,r4,r5// Add with overfl ow and

/1l record: sets crO and XER

Some instructions only have a record form (with a period). Make
sure to include the period always:

andi. r3,r4,7 /] '.' is not optional here
andis. r3,r4,7 /!l O here
stwex. r3,r4,r5 // O here

Specifying Operands for PowerPC Assembly

This section describes how to specify the operands for assembly lan-
guage instructions.

Using registers

For a register operand, you must use one of the register names of the
appropriate kind for the instruction. The register names are case-
sensitive. You can also use a symbolic name for an argument or local
variable that was assigned to a register.

The general registers are RTOC, SP r followed by any number from
0to31(r0,r1,r2,...r31), orgpr followed by any number from O
to 31 (gpr0, gpr 1, gpr 2, ... gpr 31). The floating-point registers are
f p followed by any number from O to 31 (f pO, f p1, f p2, ... f p31)
orf followed by any number from 0 to 31 (f0,f1,f2,...f31). The
condition registers are cr followed by any number from 0 to 7 (cr O,
crlcr2,...cr7).

Using labels

For a label operand, you can use the name of a label. For long
branches (such as b and bl instructions) you can also use function

CL-132 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
Writing an Assembly Function for PowerPC

names. For bl a and | a instructions, you use absolute addresses For
other branches, you must use the name of a label. For example:

b @B // OK: Branch to | ocal | abel

b foo /[l OK: Branch to external
/1 function foo
bl @ [l OK Call |ocal |abel
bl foo // OK Call external function foo
bne foo // ERROR Short branch outside
/1 function

Using variable names as memory locations

Whenever an instruction requires a memory location (such as load
instruction, a store instruction, or | a), you can use a local or global
variable name. You can modify local variable names with struct
member references, class member references, array subscripts, or
constant displacements. For example, all of the following are valid
local variable references:

Ilwz r3,nmyVar(SP) // load nyvVar into r3

la r3,nmyVar(SP) // |oad address of nyVar
/1l into r3

lwz r3,nmyRect.top

Iwz r3, nyArray[2] (SP)

Iwz r3,myRectArray[2].top

| bz r3, nyRect Array[2].top+1l(SP)

You can also use a register variable which is a pointer to a struct or
class to access a member of the struct. For example:

regi ster Rect *p;
lwz r3, p->top;

Global variable names always refer to the TOC pointer for the vari-
able, not to the variable itself, so you cannot modify them:

lwz r3, nmyd obal Rect (RTQC)

/'l 1oad TOC poi nter for nyd obal Rect
lwz r4,Rect.top(r3)

/Il fetch "top' field
lwz r3, nyd obal Rect.top(RTOO)

/'l nonsensi cal

C, C++, and Assembly Language Reference CL-133

PowerPC Assembler Notes
PowerPC Assembler Directives

You use the same method for obtaining the address of a function:

lwz r3, nyFuncti on(RTOC)
/'l 1 oad TOGC- poi nter for TVector
/1 to nyFunction

Using immediate operands

For an immediate operand, you can use an integer or enum con-
stant, si zeof expression, and any constant expression using any of
the C dyadic and monadic arithmetic operators. These expressions
follow the same precedence and associativity rules as normal C ex-
pressions. The in-line assembler carries out all arithmetic with 32-bit
signed integers.

An immediate operand can also be a reference to a member of a
struct or class type. You can use any struct or class name from a

t ypedef statement, followed by any number of member references.
This evaluates to the offset of the member from the start of the
struct. For example:

| wz r4, Rect.top(r3)
addi r6,r6, Rect.|eft

PowerPC Assembler Directives

This section describes some special assembler directives that the
Metrowerks built-in assembler accepts. The directives are listed al-
phabetically.

entry
entry [extern | static]| name

Defines an entry point into the current function. Use the ext er n
qualifier to declare a global entry point and use the st at i ¢ qualifier
to declare a local entry point. If you leave out the qualifier, ext er n
is assumed.

CL-134 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Directives

Listing 5.2

Using the entry directive

void _ save fpr_15(void);
void _ save fpr_16(void);
asmvoid _ save fpr_14(void)

{
stfd fpl4, - 144(SP)
entry _ save fpr_15
stfd fpl5, -136(SP)
entry _ save fpr_16
stfd fpl6,-128(SP)
/1

}

fralloc

fralloc [number]

Creates a stack frame for a function and reserves registers for your
local register variables. You need to create a stack frame, if the func-
tion

e Calls other functions
e Uses more than 224 bytes of local variables
¢ Declares local register variables.

For more information, see “Creating a Stack Frame for PowerPC As-
sembly” on page 129.

The f r al | oc directive has an optional argument number which lets
you specify the size in bytes of the parameter area of the stack
frame. By default, the compiler creates a 32-byte parameter area. If
your assembly-language routine calls any function that takes more
than 32 bytes of parameters, you must specify a larger amount.

C, C++, and Assembly Language Reference CL-135

PowerPC Assembler Notes
PowerPC Assembler Directives

frfree
frfree

Frees the stack frame and restores the registers thatf ral | oc re-
served. For more information, see “Creating a Stack Frame for Pow-
erPC Assembly” on page 129.

NOTE: The frfree directive does not generate a bl r instruc-
tion. You must include one explicitly.

machine
machi ne number

Specifies which CPU the assembly code is for. The number must be
one of the following:

601 603 604 al |

If youuse al |, you can use only those instructions that are available
on all PowerPC CPUs. If you don’t use the machi ne directive, the
compiler assumes al | .

CL-136 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Directives

If you use 601, you can also use the following instructions:

abs abs. abso abso. clcs
div div. di vo di vo. doz
doz. dozo dozo. dozi | schx
| scbx. maskg maskg. mar Ki r mar Ki r .
mul mul . mul o mul o. nabs
nabs. nabso nabso. rim rim.
rrib rrib. sle sl e. sl eq
sl eq. slig slig. slliq slliq.
sllq sl | g. slq sl q. sraig
sraig. sraq srag. sre sre.
srea srea. sreq sreq. sriq
srig. srliq srliq. srlq srlg.
srq srq. tlbie

If you use 603 or 604, you can also use the following instructions:

fres fres. frsgrte frsgrte. fse
fsel. nftb nft bl stfiwx tlbld
tlbli tl bsync

smclass

sntlass PR| G

Lets you set the class for a function. By default, all functions have
class {PR} which means they are normal executable code. If you're
writing a glue routine, like the __pt r _gl ue routine that imple-
ments calls through function pointers, use sntlass G to set the
class to {GL}.

C, C++, and Assembly Language Reference CL-137

PowerPC Assembler Notes
PowerPC Assembler Instructions

You shouldn't need this directive for your own code, but CodeWar-
rior PowerPC runtime library uses it frequently

PowerPC Assembler Instructions

The following table gives short descriptions of all the instructions
that the PowerPC in-line assembler accepts. If an instruction is
available only on certain PowerPC CPUs, the CPUs are listed in
brackets at the end of the description, like this: [603, 604].

For more information on the PowerPC programming model, see the
IBM PowerPC User Instruction Set Architecture. For complete infor-
mation on the instruction set for a particular PowerPC CP, refer to
the appropriate document such as the Motorola PowerPC 601 RISC
Microprocessor User’s Manual.

Instruction Arguments Description
abs rD rA Absolute [601]
abs. rb, rA Absolute [601]
abso rD, rA Absolute [601]
abso. rD rA Absolute [601]
add rD,rArB Add

add. rD,rArB Add

addo rD,rA rB Add

addo. rD,rArB Add

addc rD,rArB Add Carrying
addc. rD,rArB Add Carrying
addco rD,rA rB Add Carrying
addco. rD,rArB Add Carrying
adde rD,rA rB Add Extended
adde. rD,rA rB Add Extended
addeo rD,rA rB Add Extended
addeo. rD,rA rB Add Extended

CL-138 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

addi rD,rA SI MW Add Immediate

addi c rD rA Sl WM Add Immediate Carrying

addi c. rD rA SIMW Add Immediate Carrying and Record
addi s rD, rA Sl W Add Immediate Shifted

addne rbrA Add to Minus One Extended

addne. rDrA Add to Minus One Extended

addneo rbrA Add to Minus One Extended
addneo. rD, rA Add to Minus One Extended

addze rD,rA Add to Zero Extended

addze. rbD rA Add to Zero Extended

addzeo rbrA Add to Zero Extended

addzeo. rDrA Add to Zero Extended

and rArSrB AND

and. rArSrB AND

andc rArS rB AND with Complement

andc. rArS rB AND with Complement

andi . rArS, U w AND Immediate

andi s. rArS, UM AND Immediate

b t ar get Branch

ba addr ess Branch Absolute

bc BO, Bl , t ar get Branch Conditional

bcectr BO, Bl Branch Conditional to Count Register
bcctrl BO Bl Branch Conditional to Count Register and Link
bcl BO, Bl , t ar get Branch Conditional and Link

belr BO, Bl Branch Conditional to Link Register
belrl BO, Bl Branch Conditional to Link Register and Link
betr Branch to Count Register

C, C++, and Assembly Language Reference CL-139

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

betrl Branch to Count Register and Link

bdnz t ar get Decrement CTR, branch if CTR non-zero

bdnzf Bl , target Decrement CTR, branch if CTR non-zero and
condition False

bdnzf | Bl , t ar get Decrement CTR, branch if CTR non-zero and
condition False and Link

bdnzflr Bl Decrement CTR, branch if CTR non-zero and
condition False to Link Register

bdnzflrl Bl Decrement CTR, branch if CTR non-zero and
condition False to Link Register and Link

bdnzl t ar get Decrement CTR, branch if CTR non-zero and
Link

bdnzl r Decrement CTR, branch if CTR non-zero to
Link Register

bdnzl rl Decrement CTR, branch if CTR non-zero to
Link Register and Link

bdnzt Bl , t ar get Decrement CTR, branch if CTR non-zero and
condition True

bdnzt | Bl , tar get Decrement CTR, branch if CTR non-zero and
condition True and Link

bdnztlr Bl Decrement CTR, branch if CTR non-zero and
condition True to Link Register

bdnztl rl Bl Decrement CTR, branch if CTR non-zero and
condition True to Link Register and Link

bdz t ar get Decrement CTR, branch if CTR zero

bdzf Bl , t ar get Decrement CTR, branch if CTR zero and condi-
tion False

bdzf | Bl , tar get Decrement CTR, branch if CTR zero and condi-
tion False and Link

bdzflr BI Decrement CTR, branch if CTR zero and condi-

tion False to Link Register

CL-140 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

bdzflrl Bl Decrement CTR, branch if CTR zero and condi-
tion False to Link Register and Link

bdzl t ar get Decrement CTR, branch if CTR zero and Link

bdzl r Decrement CTR, branch if CTR zero to Link
Register

bdzl rl Decrement CTR, branch if CTR zero to Link
Register and Link

bdzt Bl , target Decrement CTR, branch if CTR zero and condi-
tion True

bdzt | Bl , target Decrement CTR, branch if CTR zero and condi-
tion True and Link

bdztlr Bl Decrement CTR, branch if CTR zero and condi-
tion True to Link Register

bdztlrl BI Decrement CTR, branch if CTR zero and condi-
tion True to Link Register and Link

beq [crf,]target Branch if Equal

beqctr [cri] Branch if Equal to Count Register

beqctrl [crif] Branch if Equal to Count Register and Link

beql [crf,]target Branch if Equal and Link

beql r [cri] Branch if Equal to Link Register

beql rl [crif] Branch if Equal to Link Register and Link

bf Bl , target Branch if Condition False

bf ctr Bl Branch if Condition False to Count Register

bfctrl Bl Branch if Condition False to Count Register
and Link

bf | Bl , target Branch if Condition False and Link

bf I r Bl Branch if Condition False to Link Register

bf I rl Bl Branch if Condition False to Link Register and
Link

bge [crf,]target Branch if Greater or Equal

C, C++, and Assembly Language Reference CL-141

PowerPC Assembler Notes

PowerPC Assembler Instructions

Instruction Arguments Description

bgectr [crif] Branch if Greater or Equal to Count Register

bgect | [crf] Branch if Greater or Equal to Count Register
and Link

bgel [crf,]target Branch if Greater or Equal and Link

bgel r [cri] Branch if Greater or Equal to Link Register

bgel rl [cri] Branch if Greater or Equal to Link Register and
Link

bgt [crf,]target Branch if Greater

bgtctr [cri] Branch if Greater to Count Register

bgtctrl [crif] Branch if Greater to Count Register and Link

bgt | [crf,]target Branch if Greater and Link

bgtlr [cri] Branch if Greater to Link Register

bgtlrl [cri] Branch if Greater to Link Register and Link

bl t ar get Branch and Link

bl a addr ess Branch and Link Absolute

bl e [crf,]target Branch if Less or Equal

bl ectr [crf] Branch if Less or Equal to Count Register

bl ectrl [crif] Branch if Less or Equal to Count Register and
Link

bl el [crf,]target Branch if Less or Equal and Link

bl el r [crif] Branch if Less or Equal to Link Register

blelrl [crf] Branch if Less or Equal to Link Register and
Link

bl r Branch to Link Register

blrl Branch to Link Register and Link

bl t [crf,]target Branch if Less

bltctr [crf] Branch if Less to Count Register

bltctrl [crf] Branch if Less to Count Register and Link

CL-142 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

bltl [crf,]target Branch if Less and Link

bl tlr [cri] Branch if Less to Link Register

bltlrl [crf] Branch if Less to Link Register and Link

bne [crf,]target Branch if Not Equal

bnectr [cri] Branch if Not Equal to Count Register

bnectr [crf] Branch if Not Equal to Count Register and
Link

bnel [crf,]target Branch if Not Equal and Link

bnel r [crif] Branch if Not Equal to Link Register

bnel rl [crf] Branch if Not Equal to Link Register and Link

bng [crf,]target Branch if Not Greater

bngctr [crif] Branch if Not Greater to Count Register

bngctr [cri] Branch if Not Greater to Count Register and
Link

bngl [crf,]target Branch if Not Greater and Link

bngl r [cri] Branch if Not Greater to Link Register

bngl rl [crf] Branch if Not Greater to Link Register and
Link

bnl [crf,]target Branch if Not Less

bnl ctr [crf] Branch if Not Less to Count Register

bnl ctrl [crif] Branch if Not Less to Count Register and Link

bnl | [crf,]target Branch if Not Less and Link

bnl I 'r [crf] Branch if Not Less to Link Register

bnllrl [crf] Branch if Not Less to Link Register and Link

bns [crf,]target Branch if Not Summary Overflow

bnsctr [crf] Branch if Not Summary Overflow to Count

Register

C, C++, and Assembly Language Reference CL-143

PowerPC Assembler Notes

PowerPC Assembler Instructions

Instruction Arguments Description

bnsctrl [crif] Branch if Not Summary Overflow to Count
Register and Link

bnsl [crf,]target Branch if Not Summary Overflow and Link

bnsl r [crf] Branch if Not Summary Overflow to Link Reg-
ister

bnslrl [crif] Branch if Not Summary Overflow to Link Reg-
ister and Link

bnu [crf,]target Branch if Not Unordered

bnuctr [cri] Branch if Not Unordered to Count Register

bnuctrl [crif] Branch if Not Unordered to Count Register
and Link

bnul [crf,]target Branch if Not Unordered and Link

bnul r [cri] Branch if Not Unordered to Link Register

bnul rl [crf] Branch if Not Unordered to Link Register and
Link

bso [crf,]target Branch if Summary Overflow

bsoctr [crf] Branch if Summary Overflow to Count Regis-
ter

bsoctrl [crif] Branch if Summary Overflow to Count Regis-
ter and Link

bsol [crf,]target Branch if Summary Overflow and Link

bsol r [crf] Branch if Summary Overflow to Link Register

bsol rl [crf] Branch if Summary Overflow to Link Register
and Link

bt Bl , target Branch if Condition True

btctr Bl Branch if Condition True to Count Register

btctrl Bl Branch if Condition True to Count Register and
Link

bt | Bl , t ar get Branch if Condition True and Link

btlr Bl Branch if Condition True to Link Register

CL-144 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

btlrl Bl Branch if Condition True to Link Register and
Link

bun [crf,]target Branch if Unordered

bunctr [crf] Branch if Unordered to Count Register

bunctrl [cri] Branch if Unordered to Count Register and
Link

bunl [crf,]target Branch if Unordered to Link Register

bunl r [cri] Branch if Unordered to Link Register and Link

bunl r| [cri] Branch if Unordered and Link

clcs rD, rA Cache Line Compute Size [601]

cnp crfD,L,rArB Compare

cnpi crfD L, rA SIM Compare Immediate

cnpl crfD L, rA rB Compare Logical

cnpl i crfD L, rA UM Compare Logical Immediate

cnpl w [crfD]rA B Compare Logical Word

cnpl wi [crfD]rA U M Compare Logical Word Immediate

cnpw [crfD]rA B Compare Word

cnpw [crfD]rA SI MM Compare Word Immediate

cntlzw rArsS Count Leading Zeros Word

crand crbDb, crbA, crbB Condition Register AND

crandc crbD, cr bA, crbB Condition Register AND with Complement

creqv crbb, crbA, crbB Condition Register Equivalent

cr nand crbb, crbA, crbB Condition Register NAND

crnor crbD, crbA, crbB Condition Register NOR

cror crbD, cr bA, crbB Condition Register OR

crorc crbD, cr bA, crbB Condition Register OR with Complement

crxor crbD, crbA, crbB Condition Register XOR

C, C++, and Assembly Language Reference CL-145

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

dchbf rArB Data Cache Block Flush
dchi rA rB Data Cache Block Invalidate
dcbst rA rB Data Cache Block Store
dchbt rArB Data Cache Block Touch
dchbt st rA rB Data Cache Block Touch for Store
dcbz rArB Data Cache Block Zero

div rD,rArB Divide [601]

di v. rD,rArB Divide [601]

di vo rD,rArB Divide [601]

di vo. rD,rArB Divide [601]

di vs rD,rA rB Divide Short [601]

di vs. rD,rArB Divide Short [601]

di vso rD,rArB Divide Short [601]

di vso. rD,rA rB Divide Short [601]

di vw rD,rA rB Divide Word

di vw. rbrArB Divide Word

di vwo rD,rA rB Divide Word

di vwo. rD,rA rB Divide Word

di vwu rD,rA rB Divide Word Unsigned

di vwu. rD,rA rB Divide Word Unsigned

di vwuo rD,rArB Divide Word Unsigned

di vwuo. rD,rA rB Divide Word Unsigned

doz rD rA Difference or Zero [601]
doz. rD rA Difference or Zero [601]
dozo rD rA Difference or Zero [601]
dozo. rD rA Difference or Zero [601]
dozi rD, rA SI MW Difference or Zero Immediate [601]

CL-146 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

eci wWx rD,rArB External Control Input Word Indexed

€eCcowx rD,rArB External Control Output Word Indexed

eieio Enforce In-Order Execution of I/O

eqv rArS, rB Equivalent

eqv. rArS, rB Equivalent

ext sb rArS Extend Sign Byte

ext sb. rArS Extend Sign Byte

ext sh rArS Extend Sign Halfword

ext sh. rATrS Extend Sign Halfword

f abs frD frB Floating-Point Absolute Value

f abs. frD frB Floating-Point Absolute Value

f add frD frA frB Floating-Point Add

f add. frD frA frB Floating-Point Add

f adds frD frA frB Floating-Point Add Single

f adds. frD frA frB Floating-Point Add Single

f cnpo [crfD]frA frB Floating-Point Compare Ordered

f cnpu [crfD JfrA frB Floating-Point Compare Unordered

fctiw frD frB Floating-Point Convert to Integer Word

fctiw frD frB Floating-Point Convert to Integer Word

fctiwz frD frB Floating-Point Convert to Integer Word with
Round toward Zero

fctiwz. frD frB Floating-Point Convert to Integer Word with
Round toward Zero

fdiv frD frA frB Floating-Point Divide

fdiv. frD frA frB Floating-Point Divide

fdivs frD frA frB Floating-Point Divide Single

fdivs. frD frA frB Floating-Point Divide Single

C, C++, and Assembly Language Reference CL-147

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

f madd frD frAfrCfrB Floating-Point Multiply-Add

f madd. frD frA frC frB Floating-Point Multiply-Add

f madds frDfrAfrC frB Floating-Point Multiply-Add Single

f madds. frD frA frC frB Floating-Point Multiply-Add Single

f o frD frB Floating-Point Move Register

fnr. frD frB Floating-Point Move Register

f msub frD frA frC frB Floating-Point Multiply-Subtract

f msub. frDfrA frC frB Floating-Point Multiply-Subtract

f msubs frD frA frC frB Floating-Point Multiply-Subtract Single

f msubs. frD frA frC frB Floating-Point Multiply-Subtract Single

f mul frD frA frC Floating-Point Multiply

fmul . frDfrAfrC Floating-Point Multiply

frmul s fro frA frC Floating-Point Multiply Single

frul s. frD frA frC Floating-Point Multiply Single

f nabs frD frB Floating-Point Negative Absolute

f nabs. frD frB Floating-Point Negative Absolute

f neg frD frB Floating-Point Negate

f neg. frD frB Floating-Point Negate

f nmadd frD frA frCfrB Floating-Point Negative Multiply-Add

f nmadd. frD frA frC frB Floating-Point Negative Multiply-Add

f nmadds frD frA frC frB Floating-Point Negative Multiply-Add Single
f nmadds. frD frA frCfrB Floating-Point Negative Multiply-Add Single
f nmsub frD frA frC frB Floating-Point Negative Multiply-Subtract

f nnsub. frD frA frC frB Floating-Point Negative Multiply-Subtract

f nnsubs frD frA frC frB Floating-Point Negative Multiply-Subtract Sin-

gle

CL-148 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

f nnsubs. frD frAfrCfrB Floating-Point Negative Multiply-Subtract Sin-
gle

fres frD frB Floating-Point Reciprocal Estimate Single [603,
604]

fres. frD frB Floating-Point Reciprocal Estimate Single [603,
604]

frsp frD frB Floating-Point Round to Single Precision

frsp. frD frB Floating-Point Round to Single Precision

frsgrte frD frB Floating-Point Reciprocal Square Root Esti-
mate [603, 604]

frsarte. frD frB Floating-Point Reciprocal Square Root Esti-
mate [603, 604]

f sel frD frA frC frB Floating-Point Select [603, 604]

fsel. frD frA frC frB Floating-Point Select [603, 604]

f sub frD frA frB Floating-Point Subtract

f sub. frD frA frB Floating-Point Subtract

f subs frD frA frB Floating-Point Subtract Single

f subs. frD frA frB Floating-Point Subtract Single

i chi rA rB Instruction Cache Block Invalidate

i sync Instruction Synchronize

| a rD, d(rA) Load Address

| bz rD, d(rA) Load Byte and Zero

| bzu rD, d(rA) Load Byte and Zero with Update

| bzux rD,rA rB Load Byte and Zero with Update Indexed

| bzx rD,rArB Load Byte and Zero Indexed

[fd frD d(rA) Load Floating Double

I fdu frD d(rA) Load Floating Double with Update

| f dux frDrArB Load Floating Double with Update Indexed

C, C++, and Assembly Language Reference CL-149

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

| fdx frDrArB Load Floating Double Indexed

[fs frD d(rA) Load Floating Single

| fsu frD d(rA) Load Floating Single with Update

| f sux frDrArB Load Floating Single with Update Indexed

| fsx frDrArB Load Floating Single Indexed

| ha rD, d(rA) Load Halfword Algebraic

| hau rD, d(rA) Load Halfword Algebraic with Update

| haux rD,rA rB Load Halfword Algebraic with Update In-
dexed

| hax rD,rA rB Load Halfword Algebraic Indexed

| hbr x rD,rA rB Load Halfword Byte-Reversed Indexed

| hz rD, d(rA) Load Halfword and Zero

| hzu rD, d(rA) Load Halfword and Zero with Update

| hzux rD,rArB Load Halfword and Zero with Update Indexed

| hzx rD,rArB Load Halfword and Zero Indexed

li rD, SI VWM Load Immediate

lis rD, SI WM Load Immediate Shifted

[mw rD, d(rA) Load Multiple Word

| schx rD,rA rB Load String and Compare Byte Indexed [601]

| schx. rD,rA rB Load String and Compare Byte Indexed [601]

| swi rD, rA NB Load String Word Immediate

| swx rD,rA rB Load String Word Indexed

| war x rD,rA rB Load Word and Reserve Indexed

| wor x rD,rA rB Load Word Byte-Reversed Indexed

| wz rD, d(rA) Load Word and Zero

[wzu rD, d(rA) Load Word and Zero with Update

| wzux rD,rA rB Load Word and Zero with Update Indexed

CL-150 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

| wzx rD,rArB Load Word and Zero Indexed

maskg rArSrB Mask Generate [601]

maskg. rArS rB Mask Generate [601]

maski r rArS rB Mask Insert from Register [601]

maski r. rArS, rB Mask Insert from Register [601]

ner f crfDcrfS Move Condition Register Field

merfs crfD crfS Move to Condition Register from FPSCR
ner xr crfD Move to Condition Register from XER
nfcr rD Move from Condition Register

nfctr rD Move from Count Register

nffs frD Move from FPSCR Fields

nffs. frD Move from FPSCR Fields

nflr rD Move from Link Register

nf nsr rb Move from Machine State Register

nf spr r D, SPR Move from Special-Purpose Register
nf sr rD, SR Move from Segment Register

nfsrin rD,rB Move from Segment Register Indirect
nftb rD Move from Time Base Lower [603, 604]
nftbu rb Move from Time Base Upper [603, 604]
nf xer rb Move from XER

nr rArS Move Register

nr. rArsS Move Register

ncrf CRMrS Move to Condition Register Fields
mctr) Move to Count Register

mt f sbO crbD Move to FPSCR Bit 0

nt f sbO. crbD Move to FPSCR Bit 0

ntfsbl crbD Move to FPSCR Bit 1

C, C++, and Assembly Language Reference CL-151

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

nt f sbil. crbD Move to FPSCR Bit 1

m f sf FMfrB Move to FPSCR Fields

m f sf. FMfrB Move from FPSCR Fields
mfsfi crfD, | MM Move to FPSCR Field Immediate
mfsfi. crfD | WM Move to FPSCR Field Immediate
mir rs Move to Link Register

m nmsr rS Move to Machine State Register
nt spr SPR, rS Move to Special Purpose Register
m sr SR rS Move to Segment Register
ntsrin rSrB Move to Segment Register Indirect
nt xer rs Move to XER

mul rD,rA rB Multiply [601]

mul . rD,rA rB Multiply [601]

mul o rD,rArB Multiply [601]

mul o. rD,rA rB Multiply [601]

mul hw rD,rA rB Multiply High Word

mul hw. rD,rArB Multiply High Word

mul hwu rD,rA rB Multiply High Word Unsigned
mul hwu. rD,rA rB Multiply High Word Unsigned
mul | rD, rA Sl W Multiply Low Immediate

mul | w rD,rArB Multiply Low Word

mul | w. rD,rA rB Multiply Low Word

mul | wo rD,rArB Multiply Low Word

mul | wo. rD,rA rB Multiply Low Word

nabs rD rA Negative Absolute [601]

nabs. rDrA Negative Absolute [601]

nabso rb rA Negative Absolute [601]

CL-152 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

nabso. rD rA Negative Absolute [601]

nand rArSrB NAND

nand. rArS, rB NAND

neg rD,rA Negate

neg. rbrA Negate

nego rbrA Negate

nego. rD,rA Negate

nop No Operation

nor rArS rB NOR

nor . rArSrB NOR

not rATrS NOT

not . rA TS NOT

or rArSrB OR

or. rArSrB OR

orc rArS rB OR with Complement

orc. rArS rB OR with Complement

ori rArS, U w OR Immediate

oris rArS, UM OR Immediate

rfi Return from Interrupt

rim rArS rB, MB, MVE Rotate Left then Mask Insert [601]

rim. rArS, rB, MB, ME Rotate Left then Mask Insert [601]

rlwim rA rS, SH MB, VE Rotate Left Word Immediate then Mask Insert

rlwim. rA rS, SH MB, ME Rotate Left Word Immediate then Mask Insert

rlwi nm rA rS, SH MB, ME Rotate Left Word Immediate then AND with
Mask

rliwi nm rA rS, SH MB, ME Rotate Left Word Immediate then AND with
Mask

C, C++, and Assembly Language Reference CL-153

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

rlwnm rArS, rB, MB, ME Rotate Left Word then AND with Mask

rlwnm rArS, rB, MB, ME Rotate Left Word then AND with Mask

rrib rArSrB Rotate Right and Insert Bit [601]

rrib. rArS rB Rotate Right and Insert Bit [601]

sc System Call

sl e rArS rB Shift Left Extended [601]

sl e. rArSrB Shift Left Extended [601]

sl eq rArSrB Shift Left Extended with MQ [601]

sl eq. rArSrB Shift Left Extended with MQ [601]

sliq rArS, SH Shift Left Immediate with MQ [601]

slig. rArsS, SH Shift Left Immediate with MQ [601]

slliq rArS, SH Shift Left Long Immediate with MQ [601]

slliq. rArS, SH Shift Left Long Immediate with MQ [601]

sllqg rArS,rB Shift Left Long with MQ [601]

sl lq. rArS rB Shift Left Long with MQ [601]

sl g rArS rB Shift Left with MQ [601]

sl g. rArS rB Shift Left with MQ [601]

slw rArS rB Shift Left Word

sl w. rArS rB Shift Left Word

sraiq rArS, SH Shift Right Algebraic Immediate with MQ
[601]

srai q. rArsS, SH Shift Right Algebraic Immediate with MQ
[601]

sraq rArS rB Shift Right Algebraic with MQ [601]

sragq. rArS, rB Shift Right Algebraic with MQ [601]

sraw rArS rB Shift Right Algebraic Word

Sraw. rArSrB Shift Right Algebraic Word

CL-154 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

Sraw rArS, SH Shift Right Algebraic Word Immediate
Srawi . rArS, SH Shift Right Algebraic Word Immediate

sre rArS rB Shift Right Extended [601]

sre. rArS rB Shift Right Extended [601]

Srea rArS rB Shift Right Extended Algebraic [601]

Srea. rArS rB Shift Right Extended Algebraic [601]

sreq rArS rB Shift Right Extended with MQ [601]

sreq. rArS rB Shift Right Extended with MQ [601]

sriq rArS, SH Shift Right Immediate with MQ [601]
sriq. rArS, SH Shift Right Immediate with MQ [601]
srlig rA rS, SH Shift Right Long Immediate with MQ [601]
srliq. rArS, SH Shift Right Long Immediate with MQ [601]
srlq rArS rB Shift Right Long with MQ [601]

srlq. rArS rB Shift Right Long with MQ [601]

srq rArSrB Shift Right with MQ [601]

srg. rArS rB Shift Right with MQ [601]

srw rArS rB Shift Right Word

Srw. rArS, rB Shift Right Word

stb rS,d(rA) Store Byte

stbu rs,d(rA) Store Byte with Update

st bux rS,rArB Store Byte with Update Indexed

st bx rS,rArB Store Byte Indexed

stfd frS,d(rA) Store Floating Double

stfdu frS d(rA) Store Floating Double with Update

st f dux frS, rArB Store Floating Double with Update Indexed
st f dx frSrArB Store Floating Double Indexed

C, C++, and Assembly Language Reference CL-155

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

stfiwx frS, rArB Store Floating-Point as Integer Word Indexed
[603, 604]

stfs frS,d(rA) Store Floating Single

stfsu frS d(rA) Store Floating Single with Update

st f sux frS,rArB Store Floating Single with Update Indexed

st f sx frSrArB Store Floating Single Indexed

sth rs, d(rA) Store Halfword

st hbr x rS,rA rB Store Halfword Byte-Reversed Indexed

st hu rs,d(rA) Store Halfword with Update

st hux rS,rArB Store Halfword with Update Indexed

st hx rS,rA rB Store Halfword Indexed

st nw rS,d(rA) Store Multiple Word

St sw rs, rA NB Store String Word Immediate

St swx rS,rArB Store String Word Indexed

stw rS,d(rA) Store Word

st wbr x rS,rArB Store Word Byte-Reversed Indexed

st wex. rS,rArB Store Word Conditional Indexed

st wu rs,d(rA) Store Word with Update

St wux rS,rA rB Store Word with Update Indexed

St Wwx rS,rA rB Store Word Indexed

sub rD,rB, rA Subtract

sub. rD, rB, rA Subtract

subo rD, rB, rA Subtract

subo. rD, rB, rA Subtract

subc rD, rB, rA Subtract Carrying

subc. rD,rB, rA Subtract Carrying

subco rb, rB, rA Subtract Carrying

CL-156 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

subco. rD, rB, rA Subtract Carrying

subf rD,rA rB Subtract From

subf . rD,rA rB Subtract From

subfo rD,rA rB Subtract From

subf o. rD,rA rB Subtract From

subfc rD,rArB Subtract From Carrying

subf c. rD,rA rB Subtract From Carrying

subfco rD,rArB Subtract From Carrying

subf co. rD,rArB Subtract From Carrying

subf e rD,rA rB Subtract From Extended

subf e. rD,rA rB Subtract From Extended

subf eo rD,rArB Subtract From Extended

subf eo. rD,rA rB Subtract From Extended

subfic rD rA SIMW Subtract From Immediate Carrying
subf ne rD,rA Subtract From Minus One Extended
subf ne. rb rA Subtract From Minus One Extended
subf neo rD,rA Subtract From Minus One Extended
subf neo. rDrA Subtract From Minus One Extended
subf ze rbD, rA Subtract From Zero Extended

subf ze. rDrA Subtract From Zero Extended

subf zeo rDrA Subtract From Zero Extended

subf zeo. rbDrA Subtract From Zero Extended

subi rD rA SIMW Subtract Immediate

subi c rD rA SI MW Subtract Immediate Carrying

subi c. rD, rA Sl MW Subtract Immediate Carrying and Record
subi s rD, rA Sl MW Subtract Immediate Shifted

sync Synchronize

C, C++, and Assembly Language Reference CL-157

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

tlbie rB Translation Lookaside Buffer Invalidate Entry
[601, 603]

tlbld rB Load Data TLB Entry [603, 604]

tlbli rB Load Instruction TLB Entry [603, 604]

tl bsync TLB Synchronize [603, 604]

trap Trap Unconditionally

tw TOTrA rB Trap Word

t weq rA rB Trap Word Equal

t weqi rA SI W Trap Word Equal Immediate

twge rArB Trap Word Greater or Equal

t wgei r A, SI W Trap Word Greater or Equal Immediate

t wgt rArB Trap Word Greater Than

twgti rA Sl W Trap Word Greater Than Immediate

t Wi TO, r A, SI WM Trap Word Immediate

tw e rArB Trap Word Less or Equal

tw ei rA Sl W Trap Word Less or Equal Immediate

tw ge rArB Trap Word Logical Greater or Equal

tw gei rA SI W Trap Word Logical Greater or Equal Immediate

tw gt rArB Trap Word Logical Greater Than

tw gti rA SI W Trap Word Logical Greater Than Immediate

twle rArB Trap Word Logical Less or Equal

tw | ei rA Sl W Trap Word Logical Less or Equal Immediate

tw |t rArB Trap Word Logical Less Than

twhlti rA SI M\M Trap Word Logical Less Than Immediate

tw ng rArB Trap Word Logical Not Greater

tw ngi rA SI W Trap Word Logical Not Greater Immediate

tw nl rArB Trap Word Logical Not Less

CL-158 C, C++, and Assembly Language Reference

PowerPC Assembler Notes
PowerPC Assembler Instructions

Instruction Arguments Description

tw nli rA SI MM Trap Word Logical Not Less Immediate
twt rArB Trap Word Less Than

tw ti r A, SI W Trap Word Less Than Immediate

t wne rArB Trap Word Not Equal

t wnei rA Sl W Trap Word Not Equal Immediate

t wng rArB Trap Word Not Greater

t wngi rA Sl WM Trap Word Not Greater Immediate
t wnl rArB Trap Word Not Less

twnl i rA Sl WM Trap Word Not Less Immediate
xor rArS rB XOR

Xor . rArS rB XOR

XOr i rArS, U w XOR Immediate

Xoris rArS, uw XOR Immediate

C, C++, and Assembly Language Reference CL-159

PowerPC Assembler Notes
PowerPC Assembler Instructions

CL-160 C, C++, and Assembly Language Reference

MIPS Assembler
Notes

This chapter describes the MIPS assembler that is part of the
Metrowerks C/C++ compiler.

Overview of MIPS Assembler Notes

Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. The Pow-
erPC, MIPS, and 68K compilers include built-in assemblers that let
you do just that.

This chapter describes how to use the built-in MIPS assembler, in-
cluding its syntax and special directives. It does not document all
the instructions available in MIPS assembler. For more information
on the MIPS programming model, see the hardware book for your
board.

Writing an Assembly Function
To include assembly in your MIPS project, declare a function with
the asmqualifier, like this:

asmlong f(void) { . . .}
/1 OK An assenbly function

C, C++, and Assembly Language Reference CL-161

MIPS Assembler Notes
Writing an Assembly Function

Note that you cannot create an assembly statement block within a C

function:
| ong f(void)
{
asm{ . . . } /'l ERROR Assenbly statenent
} /1 bl ocks are not supported.

The built-in assembler supports all the standard MIPS assembler in-
structions. It accepts some additional directives described in “As-
sembler Directive” on page 166, as well as macros.

Keep these tips in mind as you write assembly functions:
¢ All statements must either be a label, like this:
[LocalLabel:]

Or an instruction, like this:
((instruction | directive) [operands])

Each statement must end with a newline.
* Hex constants must be in C-style , not Pascal-style. For exam-
ple:
li t0, OxABCDEF // XK
li t0, S$ABCDEF /'l ERRCR

¢ Assembler directives, instructions, and registers are case-sen-
sitive and must be in lowercase. For example these two state-
ments are different:
add t2,t3,t4 /'l ok
ADD T2,T3,T4 /| ERROR

e Every assembly function mustend in an j r statement. The
compiler does not add one for you. For example:

asmvoid f(void)

{
add t2,t3,t4
} /'l ERROR No jr ra statenent

CL-162 C, C++, and Assembly Language Reference

MIPS Assembler Notes
Writing an Assembly Function

asmvoid g(voi d)
{
add t2,t3,t4
jr ra Il K

}

 The assembler supports only the three-operand form of the
MIPS instructions. For example:

add t0,t1 /'l ERRCR
add t0,t0,t1 // XK

The rest of this section describes how to create local variables, access
function parameters, refer to fields within a structure, and use the
preprocessor with the assembler. A section at the end of the chapter
describes some special assembler directives that the built-in assem-
bler allows.

Creating labels

Alabel can be any identifier that you haven’t already declared as a
local variable. A label must end with a colon. An instruction cannot
follow a label on the same line. For example:

x1: add t0,t1,t2 /1 ERRCR
X2: /] K
add t0,t1,t2 [l K

Using comments

You cannot begin comments with a pound sign (#), since the prepro-
cessor uses the pound sign. However, you can begin comments with
a semicolon (;) or use C and C++ comments. For example:

add t3,t4,t5 # ERROR
add t3,t4,t5 I K
add t3,t4,t5 [* OK */
add t3,t4,t5 ;X

C, C++, and Assembly Language Reference CL-163

MIPS Assembler Notes
Writing an Assembly Function

Using the preprocessor

You can use all preprocessor features, such as comments and mac-
ros, in the assembler. However you must end each assembly state-
ment with a semicolon (;), since the preprocessor ignores newlines.
For example:

#defi ne remai nder (x,y,z) \
di v Y, Z; \
nf hi X

Creating a stack frame

You need to create a stack frame for a function, if the function
e Calls other functions
e Declares local variables.

For more information on creating a stack frame, see the System V,
Application Binary Interface ,MIPS Processor Supplement.

Specifying operands

This section describes how to specify the operands for assembly lan-
guage instructions.

Using registers

For a register operand, you must use either:
* The register number with a dollar sign ($) in front
$0, $1, $2,...%$32
¢ The software name
zero,v0,vl,a0-a3,t0-t 9, k0, k1, gp,sp,fp,ra
$f 0-$f 31

CL-164 C, C++, and Assembly Language Reference

MIPS Assembler Notes
Writing an Assembly Function

Using parameters

To refer to a parameter, you must use the hardware register it’s
passed in. For more information on parameter passing, see System V
Application Binary Interface, MIPS Processor Supplement .

For example:

asmint ADD (int x, int vy)

{
/[l return x +vy
. set r eor der
add v0, a0, al
jr ra

}

Using global variables

You can refer to global variables by their names. For example:

i nt d ob;

PO NT P;

asmvoid INNT (voi d)

{
. set r eor der
SwW zero, dob
SW zero, P.Xx
SW zero, P.y
jr ra

}

Note that you cannot declare and use local variables in a MIPS as-
sembler function.

Using immediate operands

For an immediate operand, you can use an integer or enum con-
stant, si zeof expression, and any constant expression using any of
the C dyadic and monadic arithmetic operators. These expressions
follow the same precedence and associativity rules as normal C ex-

C, C++, and Assembly Language Reference CL-165

MIPS Assembler Notes

Assembler Directive

Assembler

pressions. The in-line assembler carries out all arithmetic with 32-bit
signed integers.

An immediate operand can also be a reference to a member of a
struct or class type. You can use any struct or class name from a

t ypedef statement, followed by any number of member references.
This evaluates to the offset of the member from the start of the
struct. For example:

| w t0, Rect.top(a0)

Directive

The MIPS assembler supports one directive.

set
.set [reorder | noreorder |

If you use the r eor der option, the assembler reorders machine lan-
guage instructions to improve performance. By default, the assem-
bler uses nor eor der, and does not reorder instructions. For
example:

asmint ADD1 (void){
jr ra /] return statenent
addi v0,a0,1 // increnent in the branch
/1 del ay sl ot

CL-166 C, C++, and Assembly Language Reference

WIin32/x86
Assembler Notes

This chapter describes the Win32/x86 assembler that is part of the
Metrowerks C/C++ compiler.

Overview of Win32/x86 Assembler Notes

Frequently you want to include a small amount of assembly code in
a program. For example, you may want to make sure that a fre-
quently-used function is written as efficiently as possible. The Pow-
erPC, 68K, MIPS, and Win32/x86 compilers include built-in
assemblers that let you do just that.

This chapter describes how to use the built-in Win32 assembler, in-
cluding its syntax and special directives. It does not document the
instructions available in Win32 assemb]er.

Writing an Assembly Function

Assembly code for the Win32 compiler uses the following syntax:
asm (single_instruction)

or
asm { multiple_instructions}

An asminstruction or block may be used wherever a statement is al-

lowed. The assembly instructions are in the standard Intel assem-
bler format.

Assembly instructions may refer to local and global variables as op-
erands. They can use the name of a structure, class, or union as an

C, C++, and Assembly Language Reference CL-167

Win32/x86 Assembler Notes
Writing an Assembly Function

immediate operand that evaluates to the size of the structure. To
specify the offset of a member, use the structure, union, or class
name qualified with the member name, separated by a dot (.).

Listing 7.1 shows an example of an assembler function to add two
64-bit integers.

Listing 7.1 Assembler function example

struct longlong {int Iow, high;};

voi d addl ongl ong(struct |onglong *a,
struct | ongl ong b)

{
asm
{
nov eax, a
nov ebx, b+l ongl ong. | ow
add | onglong. | ow eax], ebx
mov ebx, b+l ongl ong. hi gh
adc | ongl ong. hi gh[eax], ebx
}
}

=
T

It

TIP: If you write a function entirely in assembly language and do
not want the standard entry and exit code to be generated, use the
declaration modifier __decl spec(naked), as described under
“Declaration specifiers” on page 27.

1]

@ WARNING! Although you can mix assembly code and C/C++
code in the same function, you should generally avoid this prac-
tice, since it disables all code optimization for that function.

CL-168 C, C++, and Assembly Language Reference

8

Pragmas and
M Predefined Symbols
e & Ergamas and prodefined symbels vl

Overview of Pragmas and Predefined Symbols

This chapter discusses all the pragmas and predefined symbols
available with the Metrowerks C/C++ compiler. The sections in-
clude:

e Pragmas—Ilists each pragma
e Predefined Symbols—lists each symbol

e Options Checking—discusses how to check for the state of
the compiler

Pragmas

Metrowerks C and C++ let your source code change how the com-
piler compiles it with pragmas. Most of the pragmas correspond to
options in the Project Settings dialog. Usually, you'll use the Prefer-
ence dialog to set the options for most of your code and use prag-
mas to change the options for special cases. For example, with the
Project Settings dialog, you can turn off a time-consuming optimiza-
tion and, with a pragma, turn it on only for the code it helps most.

C, C++, and Assembly Language Reference CL-169

Pragmas and Predefined Symbols

Pragmas

TIP: If you use Metrowerks command-line tools, such as those
for MPW or Be OS, see the Command-Line Tools manual for infor-
mation on how to duplicate the effect of #pragma statements using
command-line tool options.

This section includes the following topics:
e Pragma Syntax—how to use pragmas in your code

e The Pragmas—a list of each pragma and its options

Pragma Syntax

Most pragmas have this syntax:

#pragma option-name on | off | reset

Generally, use on or of f to change the option’s setting, and then use
reset to restore the option’s original setting, as shown below:

#pragma profile off
/[* If the option Generate Profiler Calls is |,
* on, turn it off for these functions.
*/
#i ncl ude <smal | funcs. h>
#pragma profile reset
/* If the option Generate Profiler Calls was
* on, turn it back on.
* @ herwise, the option remains off
*/

Suppose that you use #pragma profile on instead of #pragna
profile reset.If you later turn off Generate Profiler Calls from
the Preference dialog, that pragma turns it on. Using r eset ensures
that you don’t inadvertently change the settings in the Project Set-
tings dialog.

The Pragmas

The rest of this section is an alphabetical listing of all pragma op-
tions with descriptions.

CL-170 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

a6frames (68K Macintosh and Magic Cap)
#pragma a6franes on | off | reset

If this pragma is on, the compiler generates A6 stack frames which
let debuggers trace through the call stack and find each routine.
Many debuggers, including the Metrowerks debugger and Jasik’s
The Debugger, require these frames. If this pragma is off, the com-
piler does not generate these frames, so the generated code is
smaller and faster.

This is the code that the compiler generates for each function, if this
pragma is on:

LI NK #nn, A6
UNLK A6

This pragma corresponds to Generate A6 Stack Frames option in
the 68K Linker settings panel. To check whether this option is on,
use __option (a6frames), described in “Options Checking” on
page 229.

align (Macintosh and Magic Cap)
#pragma options align= alignment

This pragma specifies how to align structs and classes, where align-
ment can be one of the following values:

If alignment is The compiler ...

mac68k Aligns every field on a 2-byte boundaries,
unless a field is only 1-byte long. This is the
standard alignment for 68K Macintosh com-
puters.

mac68k4byt e Aligns every field on 4-byte boundaries.

C, C++, and Assembly Language Reference CL-171

Pragmas and Predefined Symbols
Pragmas

If alignment is The compiler ...

power Align every field on its natural boundary.
This is the standard alignment for Power
Macintosh computers. For example, it aligns
a character on a 1-byte boundary and a 16-bit
integer on a 2-byte boundary. The compiler
applies this alignment recursively to struc-
tured data and arrays containing structured
data. So, for example, it aligns an array of
structured types containing an 4-byte float-
ing point member on an 4-byte boundary.

native Aligns every field using the standard align-
ment. It is equivalent to using mac68k for
68K Macintosh computers and power for
Power Macintosh computers.

packed Aligns ever field on a 1-byte boundary. It is
not available in any settings panel. This
alignment will cause your code to crash or
run slowly on many platforms. Use it with
caution.

reset Resets the option to the value in the previous
#pragnma opt i ons al i gn statement, if there
is one, or to the value in the 68K or PPC Pro-
cessor settings panel.

Note there is a space between opt i ons and al i gn.

This pragma corresponds to the Struct Alignment option in the 68K
Processor settings panel.

align_array_members (Macintosh and Magic Cap only)
#pragma align_array_nenbers on | off | reset

This option lets you choose how to align an array in a struct or class.
If this option is on, the compiler aligns all array fields larger than a

byte according to the setting of the Struct Alignment option. If this
option is off, the compiler doesn’t align array fields.

CL-172 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols

Pragmas
Listing 8.1 Choosing how to align arrays
#pragma align_array _nenbers off
struct X1 {
char c; /] offset==
char arr[4]; /1 offset==1 (char aligned)
1
#pragnma align_array_nenbers on
#pragma al i gn nmac68k
struct X2 {
char c; /] offset==
char arr[4]; /] offset==2 (2-byte align)
b
#pragma align_array_nenbers on
#pragma al i gn nmac68k4byt e
struct X3 {
char c; /] offset==
char arr[4]; /1 offset==4 (4-byte align)
s

To check whether this option is on, use __opti on
(align_array_menbers), described in “Options Checking” on
page 229. By default, this option is off.

ANSI_strict
#pragma ANSI _strict on | off | reset

The common ANSI extensions are the following. If you turn on the
pragma ANSI _stri ct, the compiler generates an error if it encoun-
ters any of these extensions.

¢ C++-style comments. For example:
a = b; /1l This is a Ct+-styl e coment

C, C++, and Assembly Language Reference CL-173

Pragmas and Predefined Symbols

Pragmas

¢ Unnamed arguments in function definitions. For example:

void f(int) {} /* OK if ANSI Strict is off */
void f(int i) {} /* ALWAYS (K */

A # token not followed by an argument in a macro definition.
For example:

#def i ne addl(x) #x #1
/[* OK if ANSI strict is off,
but probably not what you want ed:

addl(abc) creates "abc"#1 */
#define add2(x) #x "2"
/* ALWAYS K. add2(abc) creates "abc2" */

An identifier after #endi f . For example:

#i fdef _ MAERKS
[* . . . *
#endi f _ MAERKS
/* OK, if ANSI strict is off */

#ifdef _ MAERKS

/> . . . *
#endi f /* MAERKS */
/* ALWAYS K */

This pragma corresponds to the ANSI Strict option in the C/C++
Language settings panel. To check whether this option is on, use
_option (ANSI_strict), described in “Options Checking” on
page 229.

ARM_conform

#pragma ARM conformon | off | reset

When pragma ARM conf or mis on, the compiler generates an error
when it encounters certain ANSI C++ features that conflict with the
C++ specification in The Annotated C++ Reference Manual. Use this
option only if you must make sure that your code strictly follows
the specification in The Annotated C++ Reference Manual.

CL-174 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

Turning on this pragma prevents you from doing the following

¢ Using protected base classes. For example:

class X {};
class Y : protected X {};
Il Kif ARMconformis off.

* Changing the syntax of the conditional operator to let you
use assignment expressions without parentheses in the sec-
ond and third expressions . For example:

i ? X=y . y=z

Il Kif ARMconformis off.
i ? (x=y):(y=2)

/'l ALWAYS OK

* Declaring variables in the conditions of i f, whi | e and
swi t ch statements. For example:

while (int i=x+y) { . . . }
Il OKif ARMconformis off.

Turning on this option allows you to do the following:

e Using variables declared in the condition of ani f statement
after the i f statement. For example:

for(int i=1; i<1000; i++) { /* . . . * }
return i;
Il OKif ARMconformis on.

This pragma corresponds to the ARM Conformance option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (ARM conforn), described in “Options Checking”
on page 229.

auto_inline
#pragma auto_inline on | off | reset

If this pragma is on, the compiler, automatically picks functions to
inline for you

Note that if either the Don’t Inline option (“Inlining functions” on
page 52) or the dont _i nl i ne pragma (“dont_inline” on page 183)

C, C++, and Assembly Language Reference CL-175

Pragmas and Predefined Symbols

Pragmas

is on, the compiler ignores the setting of the aut o_i nl i ne pragma
and doesn’t inline any functions.

This pragma corresponds to the Auto-Inline option of the Inlining
menu the C/C++ Language settings panel. To check whether this
option is on, use __option (auto_inline), described in “Op-
tions Checking” on page 229.

bool (C++ only)
#pragma bool on | off | reset

When this pragma is on, you can use the standard C++ bool type to
represent t r ue and f al se. Turn this pragma off if recognizing
bool , true, or f al se as keywords would cause problems in your
program.

This pragma corresponds to the Enable bool Support option in the
C/C++ Language settings panel, described in “Using the bool type”
on page 96. To check whether this option is on, use
__option(bool), described in “Options Checking” on page 229.
By default, this option is off.

check_header_flags (precompiled headers only)
#pragma check _header flags on | off | reset

When this pragma is on, the compiler makes sure that the precom-
piled header’s preferences for doubl e size (8-byte or 12-byte), i nt
size (2-byte or 4-byte) and floating point math correspond to the
project’s preferences. If they do not match, the compiler generates
an error.

If your precompiled header file has settings that are independent
from those in the project, turn this pragma off. If your precompiled
header depends on these settings, turn this pragma on.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use __opti on
(check_header _f1 ags), described in “Options Checking” on
page 229. By default, this pragma is off.

CL-176 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

code_seg (Win32/x86 only)
#pragma code_seg(name)

This pragma designates the segment into which compiled code is
placed. The name is a string specifying the name of the code seg-
ment. For example, the pragma

code_seg(".code")
places all subsequent code into a segment named . code.

code68020 (68K Macintosh and Magic Cap only)
#pragma code68020 on | off | reset

When this option is on, the compiler generates code that’s opti-
mized for the MC68020. The code runs on a Power Macintosh or a
Macintosh with a MC68020 or MC68040. The code does crash on a
Macintosh with a MC68000. When this option is off, the compiler
generates code that will run on any Macintosh.

WARNING! Do not change this option’s setting within a function
definition.

Before your program runs code optimized for the MC68020 , use the
gestal t () function to make sure the chip is available. For more in-
formation on gest al t (), see Chapter “Gestalt Manager” in Inside
Macintosh: Operating System Utilities.

In the Macintosh compiler, this option is off by default. In the Magic
Cap compiler, this option is on by default. If you change its setting,
be sure to change the setting of the pragma code68349 to the same
value.

This pragma corresponds to the 68020 Codegen option in the 68K
Processor settings panel. To check whether this option is on, use
__option (code68020), described in “Options Checking” on
page 229.

C, C++, and Assembly Language Reference CL-177

Pragmas and Predefined Symbols

Pragmas

code68349 (Magic Cap only)
#pragma code68349 on | off | reset

Turning this pragma on automatically turns on the code68020
pragma as well.

If both this option and the 68020 Codegen options are on, the com-
piler does not use certain MC 68020 bitfield instructions which the
MC68349 cannot understand, but the compiler does use other
MC68020 optimizations. If the 68020 Codegen option is off, this op-
tion has no effect.

In the Macintosh compiler, this option is off by default. In Magic
Cap compiler, it’s on by default. If you change its setting, be sure to
change the setting of the pragma code68020 to the same value.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __opti on
(code68349), described in “Options Checking” on page 229.

code68881 (68K Macintosh and Magic Cap only)
#pragma code68881 on | off | reset

When this option is on, the compiler generates code that’s opti-
mized for the MC68881 floating-point unit (FPU). This code runs on
a Macintosh with an MC68881 FPU, MC68882 FPU, or a MC68040
processor. (The MC68040 has a MC68881 FPU built in.) The code
does not run on a Power Macintosh, a Macintosh with an
MC68LC040, or a Macintosh with any other processor and no FPU.
When this option is off, the compiler generates code that will run on
any Macintosh.

WARNING! If you use the code68881 pragma to turn this option
on, place it at the beginning of your file, before you include any
files and declare any variables and functions.

Before your program runs code optimized for the MC68881, use the
gestal t () function to make sure an FPU is available. For more in-

CL-178 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

formation on gest al t (), see Chapter “Gestalt Manager” in Inside
Macintosh: Operating System Utilities.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it’s off. It is on by default.

This pragma corresponds to the 68881 Codegen option in the 68K
Processor settings panel. To check whether this option is on, use
__option (code68881), described in “Options Checking” on
page 229.

cplusplus
#pragma cplusplus on | off | reset

When this pragma is on, the compiler compiles the code that fol-
lows as C++ code. When this option is off, the compiler uses the suf-
fix of the filename to determine how to compile it. If a file’s name
endsin . cp, . cpp, or. c++, the compiler automatically compiles it
as C++ code. If a file’s name ends in . ¢, the compiler automatically
compiles it as C code. You need to use this pragma only if a file con-
tains a mixture of C and C++ code.

This pragma corresponds to the Activate C++ Compiler option in
the C/C++ Language settings panel. To check whether this option is
on, use __option (cplusplus), described in “Options Check-
ing” on page 229.

C, C++, and Assembly Language Reference CL-179

Pragmas and Predefined Symbols
Pragmas

cpp_extensions
#pragma cpp_extensions on | off | reset

If this option is on, it enables these extensions to the ANSI C++ stan-
dard:
¢ Anonymous structs. For example:

#pragma cpp_ext ensi ons on

voi d foo()
{
uni on {
long hilo;

struct { short hi, lo; };
/'l annonynous struct
i

hi =0x1234;
| 0=0x5678; // hilo0o==0x12345678

}

¢ Unqualified pointer to a member function. For example:

#pragma cpp_extensi ons on
struct Foo { void f(); }
voi d Foo: :f()
{
void (Foo::*ptnfl)() = &Foo::f;
Il ALWAYS K

void (Foo::*ptnf2)() = f;
[l OK, if cpp_exptensions is on.
}

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __opti on
(cpp_ext ensi ons), described in “Options Checking” on page
229. By default, this option is off.

d0_pointers (68K Macintosh only)
#pragma dO_pointers

This pragma lets you choose between two calling conventions: the
convention for MPW and Macintosh Toolbox routines and the con-

CL-180 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

Listing 8.2

vention for Metrowerks C and C++ routines. In the MPW and Mac-
intosh Toolbox calling convention, functions return pointers in the
register DO In the Metrowerks C and C++ convention, functions re-
turn pointers in the register AQ.

When you declare functions from the Macintosh Toolbox or a li-
brary compiled with MPW, turn on the dO_poi nt er s pragma.
After you declare those functions, turn off the pragma to start de-
claring or defining Metrowerks C and C++ functions.

In Listing 8.2, the Toolbox functions in Sound. h return pointers in
DO and the user-defined functions in Myheader . h use AQ.

Using #pragma pointers_in_AO and #pragma pointers_in_DO

#pragma dO_poi nters on /'l set for Tool box calls
#i ncl ude <Sound. h>

#pragma dO_pointers reset // set for ny routines

#i ncl ude "Myheader. h"

The pragmas poi nt er s_i n_A0 and poi nt er s_i n_DO0 have much
the same meaning as d0_poi nt er s and are available for back-
ground compatibility. The pragma poi nt er s_i n_A0 corresponds
to#pragma dO_poi nters of f and the pragma poi nt ers_i n_DO
corresponds to #pr agma dO_poi nt ers on. The pragma

dO_poi nt er s is recommended for new code since it supports the
reset argument. For more information, see “pointers_in_A0,
pointers_in_DO0 (68K Macintosh only)” on page 207.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it's off. It is on by default.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __opt i on
(d0_poi nt ers), described in “Options Checking” on page 229.

C, C++, and Assembly Language Reference CL-181

Pragmas and Predefined Symbols

Pragmas

data_seg (Win32/x86 only)
#pragma dat a_seg(name)

Ignored. Included for compatibility with Microsoft. It designates the
segment into which initialized is placed. The name is a string speci-
fying the name of the data segment. For example, the pragma

data_seg(".data")
places all subsequent data into a segment named . dat a.

direct_destruction (C++ only)
#pragma direct_destruction on | off | reset

This option is available for backwards-compatibility only and is ig-
nored. Use #pr agna except i ons instead.

direct_to_som (Macintosh and C++ only)
#pragma direct _to_somon | off | reset

This pragma lets you create SOM code directly in the CodeWarrior
IDE. SOM is an integral part of OpenDoc. For more information, see
“Creating Direct-to-SOM Code” on page 105.

Note that when you turn on this program, Metrowerks C/C++ au-
tomatically turns on the Enums Always Int option in the C/C++
Language settings panel, described in “Enumerated constants of
any size” on page 51.

This pragma corresponds to the Direct to SOM menu in the C/C++
Language settings panel. Selecting On from that menu is like setting
this pragma to on and setting the SOMCheckEnvi or nnent pragma
to of f . Selecting On with Environment Checks from that menu is
like setting both this pragma and SOMCheckEnvi or nrent to on.
Selecting off from that menu is like setting both this pragma and
SOMCheckEnvi or nnent to off. For more information on
SOVCheckEnvi or nnent see “SOMCheckEnvironment (Macintosh
and C++ only)” on page 215.

To check whether this option is on, use the __opti on
(direct_to_SQV) . See “Options Checking” on page 229. By de-
fault, this pragma is off.

CL-182 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

disable_registers (PowerPC Macintosh only)
#pragma di sable registers on | off | reset

If this option is on, the compiler turns off certain optimizations for
any function that calls set j np() . It disables global optimization
and does not store local variables and arguments in registers. These
changes ensures that all locals will have up-to-date values.

NOTE: This option disables register optimizations in functions
that use PowerPlant’s TRY and CATCH macros but not in functions
that use the ANSI-standard t ry and cat ch statements. The TRY
and CATCH macros use set j np(), but the t ry and cat ch state-
ments are implemented at a lower level and do not use set j np() .

This pragma mimics a feature that’s available in THINK C and Sy-
mantec C++. Use this pragma only if you're porting code that relies
on this feature, since it drastically increases your code’s size and de-
creases its speed. In new code, declare a variable to be vol ati | e if
you expect its value to persist across set j np() calls.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __opti on

(di sabl e_r egi st ers), described in “Options Checking” on page
229. By default, this option is off.

dont_inline
#pragma dont _inline on | off | reset

If the pragma dont _i nl i ne is on, the compiler doesn’t inline any
function calls, even functions declared with the i nl i ne keyword or
member functions defined within a class declaration. Also, it
doesn’t automatically inline functions, regardless of the setting of
the aut o_i nl i ne pragma, described in “auto_inline” on page 175.
If this option is off, the compiler expands all inline function calls.

This pragma corresponds to the Don’t Inline option of the Inlining
menu the C/C++ Language settings panel. To check whether this
option is on, use __option (dont_inline), described in “Op-
tions Checking” on page 229.

C, C++, and Assembly Language Reference CL-183

Pragmas and Predefined Symbols

Pragmas

dont_reuse_strings
#pragma dont _reuse_strings on | off | reset

If the pragma dont _r euse_st ri ngs is on, the compiler stores
each string literal separately. If this pragma is off, the compiler
stores only one copy of identical string literals. This pragma helps
you save memory if your program contains lots of identical string
literals which you do not modify.

For example, take this code segment:

char *strl1="Hell o";
char *str2="Hel | 0"
*str2 ='Y';

If this option is on, str1is "Hel | 0" and str2is" Yel | 0" . If this
option is off, both st r 1 and st r 2 are " Yel | 0".

This pragma corresponds to the Don’t Reuse Strings option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (dont_reuse_strings), described in “Options
Checking” on page 229.

enumsalwaysints
#pragma enunsal waysint on | off | reset

When pragma enunsal waysi nt is on, the C or C++ compiler
makes an enumerated types the same size as an i nt . If an enumer-
ated constant is larger than i nt, the compiler generates an error.
When the pragma is off, the compiler makes an enumerated type
the size of any integral type. It chooses the integral type with the
size that most closely matches the size of the largest enumerated
constant. The type could be as small as achar or aslargeasa | ong
int.

CL-184 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

For example:

enum Smal | Nunber { One = 1, Two = 2 };
/[* If enunsal waysint is on, this type wll
be the sane size as a char.
If the pragna is off, this type will be
the sane size as an int. */

enum Bi gNunber
{ ThreeThousandM I lion = 3000000000 };
/* 1f enunsal waysint is on, this type wll
be the same size as a long int.
If this pragnma is off, the conpiler may
generate an error. */

For more information on how the compiler handles enumerated
types, see “Enumerated types” on page 28.

This pragma corresponds to the Enums Always Int option in the C/
C++ Language settings panel. To check whether this option is on,
use __option (enunsal waysi nt), described in “Options Check-
ing” on page 229.

exceptions (C++ only)
#pragma exceptions on | off | reset

If you turn on this pragma, you can use the t ry and cat ch state-
ments to perform exception handling. If your program doesn’t use
exception handling, turn this option to make your program smaller.

You can throw exceptions across any code that’s compiled by the
CodeWarrior 8 (or later) Metrowerks C/C++ compiler with the En-
able C++ Exceptions option turned on. You cannot throw excep-
tions across the following:

¢ Macintosh Toolbox function calls

e Libraries compiled with the Enable C++ Exceptions option
turned off

C, C++, and Assembly Language Reference CL-185

Pragmas and Predefined Symbols

Pragmas

e Libraries compiled with versions of the Metrowerks C/C++
compiler earlier than CodeWarrior 8

e Libraries compiled with Metrowerks Pascal or other compil-
ers.

If you throw an exception across one of these, the code calls
term nat e() and exits.

This pragma corresponds to the Enable C++ Exceptions option in
the C/C++ Language settings panel. To check whether this option is
on, use __option (exceptions),described in “Options Check-
ing” on page 229.

export (Macintosh only)
#pragma export on | off | reset | |ist names

The pragma expor t gives you another way to export symbols be-
sides using a . exp file. To export symbols with this pragma, choose
Use # pragma from the Export Symbols menu in the PPC PEF or
CFM68K settings panel. Then turn on this pragma to export vari-
ables and functions declared or defined in this file. If you choose
any other option from the Export Symbols menu, the compiler ig-
nores this pragma.

If you want to export all the functions and variables declared or de-
fined within a certain range, use #pr agna export on at the begin-
ning of the range and use #pr agma export of f at the end of the
range. If you want to export all the functions and variables in a list,
use #pragma export | i st.If you want to export a single variable
or function, use __decl spec(export) at the beginning of the dec-
laration

For example, this code fragment use #pr agma export on and of f
to export the variable wand the functions a1() and b1():

#pragnma export on

int al(int x, double y);
doubl e bl(int z);

int w

#pragma export off

CL-186 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

This code fragment use #pragnma export |i st toexportthe
symbols:

int al(int x, double y);
doubl e b1(int z);

int w

#pragma export list al, bl, w

This code fragment uses __decl spec(i nt ernal) to export the
symbols:

__decl spec(export) int al(int x, double y);
__decl spec(export) double bl(int z);
__decl spec(export) int w

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __opti on(export), de-
scribed in “Options Checking” on page 229.

extended_errorcheck
#pragma extended_errorcheck on | off | reset

If the pragma ext ended_er r or check is on, the C compiler gener-
ates a warning (not an error) if it encounters one of the following;:

e Anon-voi d function that does not contain a r et ur n state-
ment. For example, this would generate a warning:

mai n() /* assunmed to return int */

{
printf ("hello world\n");
} /* WARNI NG no return
statenment */
This would be OK:
void main()
{
printf ("hello world\n");
}

C, C++, and Assembly Language Reference CL-187

Pragmas and Predefined Symbols
Pragmas

¢ Assigning an integer or floating-point value to an enumtype.
For example:

enum Day { Sunday, Monday, Tuesday,
Wednesday, Thur sday,
Friday, Saturday } d;

d = 5; /* WARNI NG */
d = Monday; [* OK */
d = (Day) 3; /[* OK */

NOTE: Both of these are always errors in C++.

The C and C++ compilers generate a warning if it encounters this:

e Anempty r et ur n statement (r et ur n;) in a function that is
not declared voi d. For example, this code would generate a
warning;:
int M/lnit(void)

{
int err = Get MyResources();
if (err!=0) return;
/1 WARNI NG Enpty return statenent

/11
}
This would be OK:
int Mylnit(void)
{
int err = Get MyResources();
if (err!=0) return -1;
Il XK
I
}

This pragma corresponds to the Extended Error Checking option in
the C/C++ Warnings settings panel. To check whether this option is

CL-188 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

on, use __option (extended_errorcheck), described in “Op-
tions Checking” on page 229.

far_code, near_code, smart_code (68K Macintosh and Magic
Cap only)

#pragma far_code,

#pragma near _code,

#pragma smart_code

These pragmas determine what kind of addressing the compiler
uses to refer to functions:

e #pragma far_code always generates 32-bit addressing,
even if 16-bit addressing can be used

e #pragma near _code always generates 16-bit addressing,
even if data or instructions are out of range.

e #pragna snart_code generates 16-bit addressing when-
ever possible and uses 32-bit addressing only when neces-
sary.

For more information on these code models, see the CodeWarrior
User’s Guide.

These pragmas correspond to the Code Model option in the 68K
Processor settings panel. The default is #pr agna smart _code.

far_data (68K Macintosh and Magic Cap only)
#pragma far_data on | off | reset

If this pragma is on, you can have any amount of global data since
the compiler uses 32-bit addressing to refer to globals instead of 16-
bit addressing. Your program will also be slightly bigger and slower.
this pragma is off, your global data is stored as near data and add to
the 64K limit on near data.

This pragma corresponds to the Far Data option in the 68K Proces-
sor settings panel. To check whether this option is on, use __opti on
(far_dat a), described in “Options Checking” on page 229.

C, C++, and Assembly Language Reference CL-189

Pragmas and Predefined Symbols

Pragmas

far_strings (68K Macintosh and Magic Cap only)
#pragma far_strings on | off | reset

If this pragma is on, you can have any number of string literals since
the compiler uses 32-bit addressing to refer to string literals, instead
of 16-bit addressing. Your program will also be slightly bigger and
slower. If this pragma is off, your string literals are stored as near
data and add to the 64K limit on near data.

This pragma corresponds to the Far String Constants option in the

68K Processor settings panel. To check whether this option is on, use
_option (far_strings), described in “Options Checking” on

page 229.

far_vtables (68K Macintosh only)
#pragma far_vtables on | off | reset

A class with virtual function members has to create a virtual func-
tion dispatch table in a data segment. If this pragma is on, that table
can be any size since a the compiler uses 32-bit addressing to refer to
the table, instead of 16-bit addressing. Your program will also be
slightly bigger and slower. If this pragma is off, the table is stored as
near data and adds to the 64K limit on near data.

Although the Magic Cap compiler does not raise an error if you use
this pragma, it ignores the pragma’s value since the Magic Cap com-
piler does not support C++

This pragma corresponds to the Far Method Tables option in the
68K Processor settings panel. To check whether this option is on, use
_option (far_vtables), described in “Options Checking” on
page 229.

force_active (68K Macintosh only)
#pragma force_active on | off | reset

If this option is on, the linker will not strip the following functions
out of the finished application, even if the functions are never called
in the program.

CL-190 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

Although the Magic Cap compiler does not raise an error if you use
this pragma, it ignores the pragma’s value. In Magic Cap code, this
option is always on. In Macintosh code, this option is off by default.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __opt i on
(force_active), described in “Options Checking” on page 229.

fourbyteints (68K Macintosh only)
#pragma fourbyteints on | off | reset

When this option is on, the size of an i nt is 4 bytes. When this op-
tion is off, the size of an i nt is 2 byes.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it's off. It is on by default.

This pragma corresponds to the 4-Byte Ints option in the 68K Pro-
cessor settings panel. To check whether this option is on, use
__option (fourbyteints),described in “Options Checking” on
page 229.

NOTE: Whenever possible, set this option from the settings
panel and not from a pragma. If you must set it from a pragma,
place the pragma at the beginning of your program, before you in-
clude any files or declare any functions or variables.

fp_contract (PowerPC Macintosh only)
#pragma fp_contract on | off | reset

If this pragma is on, the compiler uses such PowerPC instructions as
FMADD, FMSUB, and FNVAD to speed up floating-point computations.

C, C++, and Assembly Language Reference CL-191

Pragmas and Predefined Symbols
Pragmas

However, certain computations give unexpected results when this
pragma is on. For example:

regi ster double A, B, C, D, Y, Z

regi ster double T1, T2;

A
B

C
D

2. 0e23;
3. 0e23;

Y=(A*B) - (C* D:
printf("Y = %\n", Y);
/* prints 2126770058756096187563369299968. 000000 */

TL = (A * B);
T2 = (C* D);
Z=T1- T2

printf("zZ = %\n", 2);
/* prints 0.000000 */

When this option is off, Y and Z have the same value.

This pragma corresponds to the Use FMADD & FMSUB option in
the PPC Processor settings panel. To check whether this option is on,
use __option (fp_contract), described in “Options Checking”
on page 229.

function (Win32/x86 only)
#pragma function(funcnamel, funcname2, ...)

Ignored. Included for compatibility with Microsoft.

global _optimizer, optimization_level (PowerPC Macintosh only)
#pragma gl obal _optimzer on | off | reset
#pragma optim zation level 1 | 2| 3| 4| 5

These pragmas control the global optimizer performs. To turn the
global optimizer on and off, use the pragma gl obal _opti ni zer.
To choose which optimizations the global optimizer performs, use
the pragma opt i m zati on_| evel with an argument from 1 to 5.
The higher the argument, the more optimizations that the global op-
timizer performs. If the global optimizer is turned off, the compiler
ignores the pragma opt i m zati on_| evel .

CL-192 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

Level 1 is the same as the CW4 Global Optimizer. Its optimizations
include:

* Register coloring
Level 2 is best for most code. Its optimizations include all those in
Level 1 plus these:

* Global common subexpression elimination (also called CSE)

¢ Copy propagation
Level 3 is best for code with many loops. Its optimizations are all
those in Level 2 plus these:

* Moving invariant expressions out of loops (also called Code
motion)

e Strength reduction of induction variables

e Using the CTR register for loops that execute a known num-
ber of times.

¢ Loop unrolling.

Level 4 optimizes loops even more, but takes more time. Its options
include all those in Level 3 plus this:

e Performing CSE and Code motion a second time, in case the
loop optimizations create new opportunities.

These pragmas correspond to the Global Optimization option and
the Level menu in the PPC Processor settings panel. To check
whether the global optimizer is on, use __opti on

(gl obal _optim zer), described in “Options Checking” on page
229.

IEEEdoubles (68K Macintosh only)
#pragma | EEEdoubl es on | off | reset

This option, along with the 68881 Codegen option, specifies the
length of a doubl e. The table below shows how these options work:

C, C++, and Assembly Language Reference CL-193

Pragmas and Predefined Symbols

Pragmas

If | EEEDoubl es and code68881 Then a doubl e is this

is... is... size...
on on or off 64 bits
off off 80 bits
off on 96 bits

WARNING! Do not turn this option on in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it's on. It is off by default.

This pragma corresponds to the 8-Byte Doubles option in the 68K
Processor settings panel. To check whether this option is on, use
__option (I|EEEdoubl es), described in “Options Checking” on
page 229.

NOTE: Whenever possible, set this option from the settings
panel and not from a pragma. If you must set it from a pragma,
place the pragma at the beginning of your program, before you in-
clude any files or declare any functions or variables.

ignore_oldstyle
#pragma ignore_oldstyle on | off | reset

If pragma i gnor e_ol dst yl e is on, the compiler ignores old-style
function declarations and lets you prototype a function any way
you want. In old-style declarations, you don’t specify the types of
the arguments in the argument list but on separate lines. It’s the
style of declaration used in the first edition of The C Programming
Language (Prentice Hall) by Kernighan and Ritchie.

CL-194 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

For example, this code defines a prototype for a function with an
old-style declaration:

int f(char x, short y, float z);

#pragma i gnore_ol dstyl e on

f(x, y, 2)
char x;
short vy;
float z;
{
return (int)x+y+z;

}
#pragma i gnore_ol dstyle reset

This pragma does not correspond to an option in any settings panel.
By default this option is off. To check whether this option is on, use
__option (ignore_oldstyle), described in “Options Check-
ing” on page 229.

import (Macintosh only)
#pragma inport on | off | reset | |ist names

This pragma lets you import variables and functions that are in
other fragments. Use this to import symbols that have been ex-
ported with the export pragma, an . exp file, or the Export Sym-
bols menu in the CFM68K and PPC PEF settings panel.

If you want to import all the functions and variables declared or de-
fine within a certain range, use #pragma i nport on at the begin-
ning of the range and use #pragna i nport of f atthe end of the
range. If you want to import all the functions and variables in a list,
use #pragma inport |ist.If youwanttoimport a single vari-
able or function, use __decl spec(ext ernal) at the beginning of
the declaration

C, C++, and Assembly Language Reference CL-195

Pragmas and Predefined Symbols
Pragmas

For example, this code fragment use #pragna i nport on and
of f to import the variable wand the functions al() and b1():

#pragma i nport on

int al(int x, double y);
doubl e bl(int 2z);

int w

#pragma i nport off

This code fragment use #pragnma i nport |ist toimport the
symbols:

int al(int x, double y);
doubl e bl(int z);

int w

#pragma i nport list al, bl, w

And this code fragment uses __decl spec(i nport) to import the
symbols:
__decl spec(inmport) int al(int x, double y);
__decl spec(inport) double bil(int z);
__decl spec(inmport) int w

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __opti on (i nport), de-
scribed in “Options Checking” on page 229.

init_seg (Win32/x86 only)
pragma init_seg(conpiler | lib | user | "name ")

This pragma controls the order in which initialization code is exe-
cuted.The initialization code for a C++ compiled module calls con-
structors for any statically declared objects. For C, no initialization
code is generated.

The order of initialization is
1. conpiler

2.1iDb
3. user

CL-196 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

If you specify the name of a segment, a pointer to the initialization
code is placed in the designated segment. In this case, the initializa-
tion code is not called automatically: it’s up to you to call it explic-
itly.

inline_depth (Win32/x86 only)
#pragma i nline_depth(n)

Ignored. Included for compatibility with Microsoft. The number 7 is
an integer from 0O to 255.

internal (Macintosh only)
#pragma internal on | off | reset | |ist names

This pragma lets you specify that certain variables and functions are
internal and not imported. The compiler generates smaller and
faster code when it calls an internal function, even if you declared it
as extern.

If you want to declare all the functions and variables declared or de-
fine within a certain range as internal, use #pragna i nternal on
at the beginning of the range and use #pragnma i nternal off at
the end of the range. If you want to declare all the functions and
variables in a list as internal, use #pragma i nternal |ist.If you
want to declare a single variable or function as internal, use

__decl spec(internal) atthe beginning of the declaration.

For example, this code fragment use #pragnma i nternal on and
of f to declare the variable wand the functions al() and b1() asin-
ternal:

#pragma i nternal on

int al(int x, double y);
doubl e b1(int z);

int w

#pragma i nternal off

C, C++, and Assembly Language Reference CL-197

Pragmas and Predefined Symbols

Pragmas

This code fragment uses #pragna i nternal |ist todeclare the
symbols as internal:

int al(int x, double y);

doubl e b1(int z);

int w

#pragma internal list al, bl, w

And this code fragment uses __decl spec(i nternal) to declare
the symbols as internal:

__decl spec(internal) int al(int x, double y);
__decl spec(internal) double bl(int z);
__declspec(internal) int w

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (internal),
described in “Options Checking” on page 229.

lib_export (Macintosh only)
#pragma |ib_export on | off | reset

If this pragma is off, the compiler ignores the pragmas export, im-
port, and internal. It is available for compatibility with previous ver-
sions of the compiler. It corresponds to the

__decl spec(lib_export) type qualifier, described in “Macin-
tosh and Magic Cap keywords” on page 50. To check whether this
optionis on, use __option (lib_export), described in “Options
Checking” on page 229.

This pragma does not correspond to an option in any settings panel.

longlong
#pragma | onglong on | off | reset

When the | ongl ong pragma is on, the C or C++ compiler lets you
define a 64-bit integer with the type specifier |1 ong | ong. This is
twice as large as a long int, which is a 32-bit integer. A |1 ong | ong
can hold values from - 9,223,372,036,854,775,308 to
9,223,372,036,854,775,807. An unsi gned | ong | ong can hold
values from 0 to 18,446,744,073,709,551,615.

CL-198 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __opti on (I ongl ong),
described in “Options Checking” on page 229.

longlong_enums
#pragma | ongl ong_enuns on | off | reset

This pragma lets you use enumerators that large enough tobe | ong
| ong integers. It's ignored if the enunsal waysi nt pragma is on
(described in “enumsalwaysints” on page 184).

For more information on how the compiler handles enumerated
types, see “Enumerated types” on page 28.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __opti on

(1 ongl ong_enuns), described in “Options Checking” on page
229. By default, this option is on.

macsbug, oldstyle_symbols (68K Macintosh and Magic Cap
only)

#pragma macsbug on | off | reset

#pragma ol dstyle _synbols on | off | reset

These pragmas let you choose how the compiler generates Macsbug
symbols. Many debuggers, including Metrowerks debugger, use
Macsbug symbols to display the names of functions and variables.
The pragma nmacsbug lets you turn on and off Macsbug generation.
The pragma ol dstyl e_synbol s lets you choose which type of
symbols to generate. The table below shows how these pragmas
work:

To do this... Use these pragmas...

Do not generate Macsbug #pragma macsbug on
symbols

Generate old style Macs- ~ #pragnma nmacsbug on
bug symbols #pragma ol dstyl e_synbol s on

Generate new style Macs- #pragnma nacsbug on
bug symbols #pragnma ol dstyl e_synbol s of f

C, C++, and Assembly Language Reference CL-199

Pragmas and Predefined Symbols

Pragmas

These pragmas corresponds to MacsBug Symbols option in the 68K
Linker settings panel. To check whether the macsbug pragma op-
tionis on, use __option (nmacsbug), described in “Options
Checking” on page 229. To check whether the old style pragma is
on, use __option (ol dstyl e_synbol s) described in “Options
Checking” on page 229.

mark
#pragma mar k itemName

This pragma adds itemName to the source file’s Function pop-up
menu. If you open the file in the CodeWarrior Editor and select the
item from the Function pop-up menu, the editor brings you to the
pragma. Note that if the pragma is inside a function definition, the
item will not appear in the Function pop-up menu.

This pragma does not correspond to an option in any settings panel.

mpwc (68k Macintosh only)
#pragma npwc on | off | reset

When the pragma npwc is on, the compiler does the following to be
compatible with MPW C’s calling conventions:

* Passes any integral argument that is smaller than 2 bytes as a
sign-extended | ong i nt eger. For example, the compiler
converts this declaration:

int MPWunc (char a, short b, int c,
l ong d, char *e);

To this:

|l ong MPWunc(long a, long b, long c,
long d, char *e);
* Passes any floating-point arguments asa | ong doubl e. For
example, the compiler converts this declaration:
void MPWunc(fl oat a, double b,
| ong double c);
To this:

voi d MPWunc(| ong doubl e a, |ong doubl e b,
| ong double c);

CL-200 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

 Returns any pointer value in DO (even if the pragma
poi nters_i n_DO is off).

¢ Returns any 1-byte, 2-byte, or 4-byte structure in DO.

e If the 68881 Codegen option is on, returns any floating-point
value in FPO.

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it's off. It is on by default.

This pragma corresponds to the MPW C Calling Convention op-
tion in the 68K Processor settings panel. To check whether this op-
tionis on, use __opti on (npwe), described in “Options Checking”
on page 229.

mpwc_newline
#pragma npwc_new ine on | off | reset

If you turn on the pragma mpwc_newl i ne, the compiler uses the
MPW conventions for the' \ n' and' \r"' characters. If this pragma
is off, the compiler uses the Metrowerks C and C++ conventions for
these characters.

In MPW, "\ n' is a Carriage Return (0xOD) and '\ r' is a Line Feed
(0x0A). In Metrowerks C and C++, they’re reversed: ' \ n' is a Line
Feed and ' \r' is a Carriage Return.

If you want to turn this pragma on, be sure you use the ANSI C and
C++ libraries that were compiled with this option on. The 68K ver-
sions of these libraries are marked with an N; for example, ANSI

(N 2i) C 68K Li b. The PowerPC versions of these libraries are
marked with NL; for example, ANSI (NL) C. PPC. Li b.

If you turn this pragma on and use the standard ANSI C and C++ li-
braries, you won't be able to read and write' \ n' and'\r"' prop-
erly. For example, printing ' \ n' brings you to the beginning of the
current line instead of inserting a new line.

C, C++, and Assembly Language Reference CL-201

Pragmas and Predefined Symbols

Pragmas

A

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it's off. It is on by default.

This pragma corresponds to the Map Newlines to CR option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (npwc_new i ne), described in “Options Check-
ing” on page 229.

mpwc_relax
#pragma npwc_relax on | off | reset

When you turn on this pragma, the compiler treats char *, un-

si gned char*, and Pt r as the same type. This option is especially
useful if you're using code written before the ANSI C standard. This
old code frequently used these types interchangeably.

This pragma corresponds to the Relaxed Pointer Type Rules option
in the C/C++ Language settings panel. To check whether this option
ison, __option (npwc_rel ax), described in “Options Checking”
on page 229.

no_register_coloring (68K Macintosh and Magic Cap only)
#pragma no_register _coloring on | off | reset

When the no_r egi st er _col ori ng pragma is off, the compiler
performs register coloring. In this optimization, the compiler lets
two or more variables share a register: it assigns different variables
or parameters to the same register if you do not use the variables at
the same time. In this example, the compilers could placei andj in
the same register:

short i;
int j;

for (i=0; i<100; i++) { MFunc(i); }
for (j=0; j<1000; j++) { QurFunc(j); }

CL-202 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

However, if a line like the one below appears anywhere in the func-
tion, the compiler would realize that you're using i andj at the
same time and place them in different registers:

int k=i +j;

If register coloring is on while you debug your project, it may ap-
pear as though there’s something wrong with the variables sharing
a register. In the example above, i and j would always have the
same value. Wheni changes,j changes in the same way. When j
changes, i changes in the same way. To avoid this confusion while
debugging, turn off register coloring or declare the variables you
want to watch as volatile.

The pragma corresponds to the Global Register Allocation option

in the 68K Processor settings panel. To check whether this option is
on, use __option (no_register_col oring), described in “Op-
tions Checking” on page 229. By default, this option is off.

NOTE: To turn off register coloring in code for a PowerPC Macin-
tosh, use the statement #pragnma gl obal _opti m zer off.For
more information, see “global_optimizer, optimization_level (Pow-

erPC Macintosh only)” on page 192.

once
#pragma once [on | off]

Use this pragma to ensure that the compiler includes header files
only once in a source file. This pragma is especially useful in pre-
compiled header files.

There are two versions of this pragma: #pragma once and
#pragma once on.Use #pragma once in a header file to ensure
that the header file is included only once in a source file. Use
#pragnma once on in a header file or source file to insure that any
file is included only once in a source file.

This pragma does not correspond to an option in any settings panel.
By default this option is off.

C, C++, and Assembly Language Reference CL-203

Pragmas and Predefined Symbols

Pragmas

oldstyle_symbols (68K Macintosh and Magic Cap only)

See the pragma macsbug, described in “macsbug, oldstyle_symbols
(68K Macintosh and Magic Cap only)” on page 199.

only_std_keywords
#pragma only std _keywords on | off | reset

The C and C++ compilers recognize additional reserved keywords.
If you're writing code that must follow the ANSI standard strictly,
turn on the pragma onl y_st d_keywor ds. For more information,
see “Additional keywords” on page 50.

This pragma corresponds to the ANSI Keywords Only option in
the C/C++ Language settings panel. To check whether this option is
on,use __option (only_std_keywords), described in “Options
Checking” on page 229.

optimization_level (PowerPC Macintosh only)

See the pragma gl obal _opt i m zer, described in
“global_optimizer, optimization_level (PowerPC Macintosh only)”
on page 192.

optimize_for_size (Macintosh and Magic Cap only)
#pragma optim ze for_size on | off | reset

This option lets you choose what the compiler does when it must
decide between creating small code or fast code. If this option is on,
the compiler creates smaller object code at the expense of speed. If
this option is off, the compiler creates faster object code at the ex-
pense of size.

Most significantly if this option is on, the compiler ignores the i n-
| i ne directive, and generates function calls to call any function de-
clared i nli ne.

The pragma corresponds to the Optimize for Size option in the 68K
Processor settings panel and to the Optimize For menu in the PPC
Processor settings panel. To check whether this option is on, use
_option (optimze_for_size), described in “Options Check-
ing” on page 229.

CL-204 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

pack (Win32/x86 only)
#pragma pack([n | push, n | pop])

Sets the packing alignment for data structures. It affects all data
structures declared after this pragma until you change it again with
another pack pragma.

This pragma... Does this...

#pragma pack(n) Sets the alignment modulus to 7,
where n may be 1, 2, 4, 8 or 16.

#pragnma pack(push, n) Pushes the current alignment mod-
ulus on a stack, then sets it to n,
where n may be 1, 2, 4, 8 or 16.
Use push and pop when you need
a specific modulus for some decla-
ration or set of declarations, but do
not want to disturb the default set-
ting.

#pragma pack(pop) Pops a previously pushed align-
ment modulus from the stack.

#pragma pack() Resets alignment modulus to the

value specified in the settings pan-
el.

This pragma corresponds to the Byte Alignment option in the x86
CodeGen settings panel.

parameter (68K Macintosh and Magic Cap only)
#pragma par anet er return-reg func-name(param-regs)

The compiler passes the parameters for the function func-name in the
registers specified in param-regs instead of the stack, and returns any
return value in the register return-reg. Both return-reg and param-regs
are optional.

Here are some samples:

#pragma paranmeter _ DO Gestalt(__ DO, _ Al)
#pragma paraneter _ A0 Get Zone
#pragma paraneter HLock(___A0)

C, C++, and Assembly Language Reference CL-205

Pragmas and Predefined Symbols
Pragmas

When you define the function, you need to specify the registers
right in the parameter list, as described in “Specifying the registers
for arguments (68K Macintosh Only)” on page 45.

This pragma does not correspond to an option in any settings panel.

pcrelstrings (68K Macintosh only)
#pragma pcrelstrings on | off | reset

If this option is on, the compiler stores the string constants used in a
local scope in the code segment and addresses these strings with
PC-relative instructions. If this option is off, the compiler stores all
string constants in the global data segment. Regardless of how this
option is set, the compiler stores string constants used in the global
scope in the global data segment. For example:

#pragma pcrel strings on
int foo(char *);

int x =f("Hello"); [// "Hello" is allocated in
/1l the gl obal data segnent
int bar()
{
return f("World"); //"Wrld" is allocated in
} /1l the code segnent
Il (pc-relative)

Strings in C++ initialization code are always allocated in the global
data segment.

NOTE: If you turn the pool _stri ngs pragma on, the compiler
ignores the setting of the pcr el stri ngs pragma.

[y

WARNING! Do not turn this option off in Magic Cap code. Al-
though the Magic Cap compiler lets you change the setting of this
option, your code will not run correctly if it's off. It is on by default.

>

CL-206 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

This pragma corresponds to the PC-Relative Strings option in the
68K Processor settings panel. To check whether this option is on, use
__option (pcrel strings),described in “Options Checking” on
page 229. By default, this option is off.

peephole (PowerPC Macintosh and Win32/x86 only)
#pragma peephole on | off | reset

If this pragma is on, the compiler performs peephole optimizations,
which are small local optimizations that eliminate some compare in-
structions and improve branch sequences.

This pragma corresponds to the Peephole Optimizer option in the
PPC Processor settings panel. To check whether this option is on,
use __option (peephol e), described in “Options Checking” on
page 229.

pointers_in_AOQ, pointers_in_DO (68K Macintosh only)
#pragma poi nters_i n_AO0
#pragma pointers_in_DO

These pragmas let you choose between two calling conventions: the
convention for MPW and Macintosh Toolbox routines and the con-
vention for Metrowerks C and C++ routines. In the MPW and Mac-
intosh Toolbox calling convention, functions return pointers in the
register DO In the Metrowerks C and C++ convention, functions re-
turn pointers in the register AQ.

When you declare functions from the Macintosh Toolbox or a li-
brary compiled with MPW, use the pragma poi nt er s_i n_DO.
After you declare those functions, use the pragma

poi nt er s_i n_AQ to start declaring or defining Metrowerks C and
C++ functions.

C, C++, and Assembly Language Reference CL-207

Pragmas and Predefined Symbols

Pragmas
In Listing 8.3, the Toolbox functions in Sound. h return pointers in
DO and the user-defined functions in Myheader . h use AQ.
Listing 8.3 Using #pragma pointers_in_AO0 and #pragma pointers_in_DO

#pragma pointers_in_DO // set for Tool box calls
#i ncl ude <Sound. h>

#pragma pointers_in_AO0 // set for ny own routines
#i ncl ude "Myheader. h"

The pragmas poi nt er s_i n_A0 and poi nt er s_i n_D0 have much
the same meaning as dO_poi nt er s and are available for backwards
compatibility. The pragma poi nt er s_i n_AO corresponds to
#pragna dO_poi nters of f and the pragma poi nters_i n_DO
corresponds to #pr agma dO_poi nt ers on. The pragma

dO_poi nt er s is recommended for new code since it supports the

r eset argument. For more information, see “d0_pointers (68K Mac-
intosh only)” on page 180.

WARNING! Although the Magic Cap compiler lets you change
the settings of these option, your code will not run correctly if
poi nters_in_AOison and poi nters_i n_DO is off. By default,
poi nters_i n_AQ is off and poi nters_i n_DO is on.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __opti on
(d0_poi nt er s), described in “Options Checking” on page 229.

pool_strings
#pragma pool strings on | off | reset

If the pragma pool _stri ngs in the C/C++ Language settings
panel is on, the compiler collects all string constants into a single
data object so your program needs one TOC entry for all of them. If
this pragma is off, the compiler creates a unique data object and
TOC entry for each string constant. Turning this pragma on de-
creases the number of TOC entries in your program but increases

CL-208 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

Listing 8.4

your program’s size, since it uses a less efficient method to store the
string’s address.

This pragma is especially useful if your program is large and has
many string constants or uses the Metrowerks Profiler.

NOTE: If you turn the pool _stri ngs pragma on, the compiler
ignores the setting of the pcr el stri ngs pragma.

This pragma corresponds to the Pool Strings option in the C/C++
Language settings panel. To check whether this option is on, use
__option (pool _strings), described in “Options Checking” on
page 229.

pop, push
#pragma push
#pragnma pop

The pragma push saves all the current pragma settings. The pragma
pop restores all the pragma settings to what they were at the last
push pragma. For example, see Listing 8.4.

push and pop example

#pragma far_data on
#pragma pointers_in_A0
#pragma push
/'l push all conpiler options
#pragma far_data of f
#pragma poi nters_in_DO
/'l pop restores "far_data" and "pointers_in_AQ"
#pragnma pop

These pragmas are available so you can use MacApp with Metro-
werks C and C++. If you're writing new code and need to set a
pragma option to its original value, use the r eset argument, de-
scribed in “Pragma Syntax” on page 170.

C, C++, and Assembly Language Reference CL-209

Pragmas and Predefined Symbols
Pragmas

precompile_target
#pragma preconpi |l e_target filename

This pragma specifies the filename for a precompiled header file. If
you don’t specify the filename , the compiler gives the precompiled
header file the same name as its source file.

Filename can be a simple filename or an absolute pathname. If file-
name is a simple filename, the compiler saves the file in the same
folder as the source file. If filename is a path name, the compiler
saves the file in the specified folder.

Listing 8.5 shows sample source code from the MacHeaders pre-
compiled header source file. By using the predefined symbols
__cpl uspl us and power ¢ and the pragma pr econpi | e_t ar get,
the compiler can use the same source code to create different pre-
compiled header files for C and C++, 680x0 and PowerPC.

Listing 8.5 Using #pragma precompile_target filename

#i fdef _ cpl uspl us
#i f def powerc
#pragma preconpil e_target "MacHeader sPPC++"
#el se
#pragnma preconpil e _target "MacHeader s68K++"
#endi f
#el se
#i f def powerc
#pragma preconpi |l e_target "MacHeader sPPC
#el se
#pragnma preconpil e _target "MacHeader s68K"
#endi f
#endi f

CL-210 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

profile (Macintosh only)
#pragma profile on | off | reset

If this pragma is on, the compiler generates code for each function
that lets the Metrowerks Profiler collect information on it. For more
information, see the Metrowerks Profiler Manual.

This pragma corresponds to the Generate Profiler Calls option in
the 68K Processor settings panel and the Emit Profiler Calls in the
PPC Processor settings panel. To check whether this option is on,
use __option (profile) described in “Options Checking” on
page 229.

readonly_strings (PowerPC Macintosh only)
#pragma readonly_strings on | off | reset

This option determines where to stores string constants. If this op-
tion is off, the compiler stores string constants in the data section
(class RW). If this option is on, the compiler stores string constants
in the code section (class RO).

NOTE: Variables that are not initialized to the address of another
object at run time are always placed in the code section (class
RO). This includes C/C++ variables declared with the const stor-
age-class modifier.

This pragma corresponds to the Make Strings ReadOnly option in
the PPC Processor panel. To check whether this option is on, using
#i f _ _option (readonly_strings),see “Options Checking”
on page 229.

require_prototypes
#pragma require_prototypes on | off | reset

When the pragma r equi r e_pr ot ot ypes is on, the compiler gener-
ates an error if you use a function that does not have a prototype.
This pragma helps you prevent errors that happen when you use a
function before you define it.

C, C++, and Assembly Language Reference CL-211

Pragmas and Predefined Symbols

Pragmas

This pragma corresponds to the Require Function Prototypes op-
tion in the C/C++ Language settings panel. To check whether this
option is on, use __option (require_prototypes), described
in “Options Checking” on page 229.

RTTI
#pragma RTTI on | off | reset

When the pragma RTTI is on, you can use Run-Time Type Informa-
tion (or RTTI) features, such as dyanam c_cast andt ypei d. The
other RTTI expressions are available even if the Enable RTTI option
is off. Note that *type_i nfo:: bef ore(const type_info&) is
not yet implemented.

This pragma corresponds to the Enable RTTI option in the C/C++
Language settings panel. To check whether this option is on, use
__option (RTTl), described in “Options Checking” on page 229.

scheduling (PowerPC Macintosh only)
#pragma scheduling 601 | 603 | 604 |
on | off | reset

This pragma lets you choose how the compiler rearranges instruc-
tions to increase speed. Some instructions, such as a memory load,
take more than one processor cycle. By moving an unrelated instruc-
tion between the load and the instruction that uses the loaded item,
the compiler saves a cycle when executing the program.

CodeWarrior lets you choose the type of scheduling that works best
for each PowerPC chip. You can use 601, 603, or 604. If you use on,
the compiler performs 601 scheduling.

However, if you're debugging your code, turn this pragma off. Since
it rearranges the instructions produced from your code, the debug-
ger will not be able to match the statements in your source code to
the produced instructions.

This pragma corresponds to the Instruction Scheduling option in
the PPC Processor settings panel.

CL-212 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

segment (Macintosh and Magic Cap only)
#pragma segnent name

This pragma places all the functions that follow into the code seg-
ment named name. For more on function-level segmentation, con-
sult the CodeWarrior User’s Guide.

Generally, the PowerPC compilers ignore this directive since Pow-
erPC applications do not have code segments. However, if you turn
on the Order Code Sections option in the PPC PEF settings panel,
the PowerPC compilers group functions in the same segment to-
gether. For more information, see the CodeWarrior User’s Guide.

The Magic Cap compiler plugin for the CodeWarrior IDE ignores
this pragma and puts all your code in one segment. However, the
Magic Cap compiler for MPW does pay attention to this pragma
and can segment your code.

This pragma does not correspond to an option in any settings panel.

side_effects (Macintosh only)
#pragma side_effects on | off | reset

If your program does not contain pointer alias, turn off this pragma
to make your program smaller and faster. If your program does use
pointer aliases, turn on this pragma to avoid incorrect code. A
pointer alias looks like this:

int a, *p;

p = &a; /'l *p is an alias for a.

To understand why pointer aliases are so important, remember that
the compiler needs to load a variable into a register before perform-
ing arithmetic on it. So, in the example below, the compiler loads a
into a register before the first addition. If * p is an alias for a, the
compiler needs to load a into a register again before the second ad-
dition, since changing * p also changed a. If * p is not an alias for a,

C, C++, and Assembly Language Reference CL-213

Pragmas and Predefined Symbols

Pragmas

the compiler doesn’t need to load a into a register again, since
changing * p does not change a.

X =a + 1,
*p = 0; /[l 1f *pis an alias for a,
y =a+ 2 /1 this changes a.

NOTE: The PowerPC compilers ignore this pragma and always
assume that a program may contain pointer aliases.

This pragma does not correspond to an option in any settings panel.
To check whether this pragma is on, use __opti on

(si de_effects), described in “Options Checking” on page 229.
By default, this pragma is on.

SOMCallOptimization (Macintosh and C++ only)
#pragma SOMCal | Optim zation on | off | reset

The PowerPC compiler uses an optimized error check that is smaller
but slightly slower than the one given above. To use the error check
show above in PowerPC code, turn this pragma on.

This pragma is ignored if the di r ect _t o_SOMpragma, described in
“direct_to_som (Macintosh and C++ only)” on page 182, is off.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __opti on (SOMCal | -

Opt i m zat i on). See on “Options Checking” on page 229. By de-
fault, this pragma is off.

SOMCallStyle (Macintosh and C++ only)
#pragma SOMCal | Style QDL | IDL
The SOMCal | St yl e pragma chooses between two SOM call styles:
e OIDL, an older style that does not support DSOM
e IDL, a newer style that does support SOM.

If a class uses the IDL style, its methods must have an Environment
pointer as the first parameter. Note that the SOMClass and SOMOb-

CL-214 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

ject classes use OIDL, so if you override a method from one of them,
you should not include the Environment pointer.

This pragma is ignored if the di r ect _t o_SOMpragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __opti on (SOMCheckEn-
vi ronnent) . See “Options Checking” on page 229. By default, this
pragmais set to | DL.

SOMCheckEnvironment (Macintosh and C++ only)
#pragma SOMCheckEnvi ronnment on | off | reset

When the pragma SOMCheckEnvi r onnment is on, the compiler per-
forms automatic SOM environment checking. It transforms every
IDL method call and new allocation into an expression which also
calls an error-checking function. You must define separate error-
checking functions for method calls and allocations. For more infor-
mation on how to write these functions, see “Automatic SOM error
checking” on page 109.

For example, the compiler transforms this IDL method call:
SOwbbj - >func(&env, argl, arg2) ;

into something that is equivalent to this:
(tenmp=SOWbbj - >f unc(&env, argl, arg2),
__som check_ev(&env), tenp) ;

First, the compiler calls the method and stores the result in a tempo-
rary variable. Then it checks the environment pointer. Finally, it re-
turns the method’s result.

And, the compiler transforms this new allocation:

new SOWtl ass;

into something that is equivalent to this:

(tenmp=new SOMtl ass, __som check_new(tenp),
tenp);

C, C++, and Assembly Language Reference CL-215

Pragmas and Predefined Symbols

Pragmas

First, the compiler creates the object and stores it in a temporary
variable. Then it checks the object and returns it.

The PowerPC compiler uses an optimized error check that is smaller
but slightly slower than the one given above. To use the error check
show above in PowerPC code, use the pragma SOMCal | -

Opt i m zat i on, described in “SOMCallOptimization (Macintosh
and C++ only)” on page 214.

This pragma is ignored if the di r ect _t o_SOMpragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma corresponds to the Direct to SOM menu in the C/C++
Language settings panel. Selecting On with Environment Checks
from that menu is like setting this pragma to on. Selecting anything
else from that menu is like setting this pragma to of f . To check
whether this option is on, use __opti on (RTTI), described in
“Options Checking” on page 229. By default, this pragma is on.

SOMClassVersion (Macintosh and C++ only)
#pragma SOMO assVer si on(class, majorVer, minorVer)

SOM uses the class’s version number to make sure the class is com-
patible with other software you're using. If you don’t declare the
version numbers, SOM assumes zeroes. The version numbers must
be positive or zero.

When you define the class, the program passes its version number
to the SOM kernel in the class’s metadata. When you instantiate an
object of the class, the program passes the version to the runtime
kernel, which checks to make sure the class is compatible with the
running software.

This pragma is ignored if the di r ect _t 0o_SOMpragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.

CL-216 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

SOMMetaClass (Macintosh and C++ only)
#pragma SOMMVet ad ass (class, metaclass)

A metaclass is a special kind of SOM class that defines the imple-
mentation of other SOM classes. All SOM classes have a metaclass,
including metaclasses themselves. By default, the metaclass for a
SOM class is SOMClass. If you want to use another metaclass, use
the SOMVet adl ass pragma:

The metaclass must be a descendant of SOMClass. Also, a class can-
not be its own metaclass. That is, class and metaclass must name dif-
ferent classes.

This pragma is ignored if the di r ect _t o_SOMpragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.

SOMReleaseOrder (Macintosh and C++ only)
#pragma SOVRel aseOr der (funcl, func2, ... funcN)

A SOM class must specify the release order of its member functions.
As a convenience for when you're first developing the class,
Metrowerks C++ lets you leave out the SOVRel easeOr der pragma
and assumes the release order is the same as the order in which the
functions appear in the class declaration. However, when you re-
lease a version of the class, use the pragma, since you’ll need to
modify its list in later versions of the class.

You must specify every SOM method that the class introduces. Do
not specify inline member functions that are virtual, since they're
not considered to be SOM methods. Don’t specify overridden func-
tions.

If you remove a function from a later version of the class, leave its
name in the release order list. If you add a function, place it at the
end of the list. If you move a function up in the class hierarchy, leave
it in the original list and add it to the list for the new class.

C, C++, and Assembly Language Reference CL-217

Pragmas and Predefined Symbols

Pragmas

This pragma is ignored if the di r ect _t o_SOMpragma, described in
“Creating Direct-to-SOM Code” on page 105, is off.

This pragma does not correspond to an option in any settings panel.

static_inlines
#pragma static_inlines on | off | reset

The pragma st ati c_i nl i nes determines what the compiler does
if it cannot inline a call to a function declared i nl i ne and must cre-
ate a compiled version of the function. If the pragma is off, the com-
piler creates one compiled version for the whole project. If the
pragma is on, the compiler creates a different compiled version for
each file that needs a compiled version.

This pragma is available only so that the compiler can pass certain
validation suites. Generally, you’ll want to leave this pragma off to
make your code smaller without any loss of speed.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __opti on
(static_inlines), described in “Options Checking” on page
229. By default, this pragma is off.

sym
#pragma symon | off | reset

The compiler pays attention to this pragma only if you turn on the
debug diamond next to the file. If this pragma is off, the compiler
does not put debugging information into this source file’s SYM file
for the functions that follow. If this pragma is on, the compiler does
generate debugging information.

Note that the compiler always generates a SYM file for a source file
that has a debug diamond next to it in the project window. This

pragma changes only which functions have information in that
SYM file.

To check whether this option is on, use __option (syn), de-
scribed in “Options Checking” on page 229. By default, this pragma
is on.

CL-218 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

toc_data (PowerPC Macintosh only)
#pragma toc_data on | off | reset

If the t oc_dat a pragma is on, the compiler makes your code
smaller and faster. It stores static variables that are 4-bytes long or
smaller directly in the TOC, instead of allocating space for them
elsewhere and storing pointers to them in the TOC. Turn this
pragma off only if your code expects the TOC to contain pointers to
data.

This pragma corresponds to the Store Static Data in TOC option in
the PPC Processor settings panel. To check whether this option is on,
use __option (toc_data), described in “Options Checking” on
page 229.

trigraphs
#pragma trigraphs on | off | reset

If you're writing code that must follow the ANSI standard strictly,
turn on the pragma t ri gr aphs in the C/C++ Language settings
panel. Many common Macintosh character constants look like tri-
graph sequences, and this pragma lets you use them without in-
cluding escape characters. Be careful when you initialize strings or
multi-character constants that contain question marks. For example:

char ¢ = '???7?7"; /1 ERROR Trigraph sequence
/1 expands to ' ??°
char d = "\2A2A2A?,; /] K

This pragma corresponds to the Expand Trigraphs option in the C/
C++ Language settings panel. To check whether this option is on,
use __option (trigraphs), described in “Options Checking” on
page 229.

traceback (PowerPC Macintosh only)
#pragma traceback on | off | reset

This pragma helps other people debug your application or shared li-
brary if you do not distribute the source code. If this option is on,
the compiler generates an AIX-format traceback table for each func-
tion, which are placed in the executable code. Both the Metrowerks
and Apple debuggers can use traceback tables.

C, C++, and Assembly Language Reference CL-219

Pragmas and Predefined Symbols

Pragmas

This pragma corresponds to the Emit Traceback Tables option in
the PPC Linker settings panel. To check whether this option is on,
use the __option (traceback), described in “Options Check-
ing” on page 229. By default, this option is off.

unsigned_char
#pragma unsi gned_char on | off | reset

When the unsi gned_char pragma is on, the C/C++ compiler
treats a char declaration as if it were an unsi gned char declara-
tion.

NOTE: If you turn this pragma on, your code may not be compat-
ible with libraries that were compiled with it turned off. In particular,
your code may not work with the ANSI libraries included with
CodeWarrior.

This pragma corresponds to the Use unsigned chars option in the
C/C++ Language settings panel. To check whether this option is on,
use __option (unsigned_char), described in “Options Check-
ing” on page 229. By default, this option is off.

unused
#pragma unused (var_name [, var_name]|...)

This pragma suppresses the compile time warnings for the unused
variables and parameters specified in its argument list. You can use
this pragma only within a function body, and the listed variables
must be within the function’s scope. You cannot use this pragma

CL-220 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

with functions defined within a class definition or with template
functions. For example:

#pragma war n_unusedvar on
#pragma war n_unusedarg on

static void ff(int a)
{
int b;
#pragma unused(a,b) // Conpiler won't conplain
/!l that a and b are unused
/1

}

This pragma does not correspond to any option in the settings
panel.

warn_emptydecl
#pragma warn_enptydecl on | off | reset

If the pragma war n_enpt ydecl is on, the compiler displays a
warning when it encounters a declaration with no variables. For ex-
ample:

int ; [/ WARNI NG
int i; Il K

This pragma corresponds to the Empty Declarations option in the
C/C++ Warnings settings panel. To check whether this option is on,
use __option (warn_enptydecl), described in “Options Check-
ing” on page 229.

warning_errors
#pragma warning_errors on | off | reset

When the pragma war ni ng_er r or s is on, the compiler treats all
warnings as though they were errors. It will not compile a file until
all warnings are resolved.

This pragma corresponds to the Treat All Warnings as Errors option
in the C/C++ Warnings settings panel. To check whether this option

C, C++, and Assembly Language Reference CL-221

Pragmas and Predefined Symbols

Pragmas

ison, use __option (warning_errors), described in “Options
Checking” on page 229.

warn_extracomma
#pragma warn_extracomma on | off | reset

If the pragma war n_ext r acomma is on, the compiler generates a
warning when it encounters an extra comma. For example, this
statement is legal in C, but it causes a warning when this pragma is
on:

int a[] ={ 1, 2, 3, 4, };
{1 ~ WARNI NG Extra comma
[/ after 4

This pragma corresponds to the Treat All Warnings as Errors option
in the C/C++ Warnings settings panel. To check whether this option
ison, use __option (warn_extracomma), described in “Options
Checking” on page 229.

warn_hidevirtual
#pragma war n_hi devirtual on|of f|reset

If the pragma war n_hi devi rt ual is on, the compiler generates a
warning if you declare a non-virtual member function that hides a
virtual function in a superclass. One function hides another if it has
the same name but a different argument types. For example:

class A {

publ i c:
virtual void f(int);
virtual void g(int);

3
class B: public A {
publ i c:
voi d f(char); /'l VWARNI NG
/'l Hdes A :f(int)
virtual void g(int); // X
/1 Overrides A :g(int)
1

CL-222 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

This pragma corresponds to the Hidden virtual functions option in
the C/C++ Warnings settings panel. To check whether this option is
on, use __option (warn_hidevirtual).See “Options Check-
ing” on page 229. By default, this option is off.

warn_illpragma
#pragma warn_ill pragma on | off | reset

If the pragma war n_i | | pr agma is on, the compiler displays a
warning when it encounters an illegal pragma. For example, these
pragma statements generate warnings:

#pragma near _data of f

/1 WARNI NG near_data is not a pragna.
#pragma far_data sel ect

I/ WARNI NG select is not defined
#pragnma far_data on

Il K

This pragma corresponds to the Illegal Pragmas option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_illpragna), described in “Options Check-
ing” on page 229.

warn_possunwant
#pragma war n_possunwant on | off | reset

If the pragma war n_possunwant is on, the compiler checks for
some common typographical mistakes that are legal C and C++ but
that may have unwanted side effects, such as putting in unintended
semicolons or confusing = and ==. The compiler generates a warn-
ing if it encounters one of these:

* An assignment in a logical expression or the condition in an
i f,while, orfor expression. This check is useful if you fre-
quently use = when you meant to use ==. For example:

if (a=b) f(); /1 WARNING a=b is an
/11 assi gnnent

if ((a=b)!=0) f(); // OK (a=b)!=0is a
I conpari son

C, C++, and Assembly Language Reference CL-223

Pragmas and Predefined Symbols

Pragmas

if (a==b) f(); Il OK (a==b) is a
I conpari son

e An equal comparison in a statement that contains a single ex-
pression. This check is useful if you frequently use == when
you meant to use =. For example:

a == 0; /1 WARNING This is a conparison.
a =0; /1 OK This is an assi gnnent

e Asemicolon (;) directly afterawhi | e,i f, or f or statement.
For example, the statement generates an error and is proba-
bly an unintended infinite loop:

while (i++); // WARNING Unintended
/1l infinite | oop

If you intended to create an infinite loop, put white space or a com-
ment between the whi | e statement and the a comment. For exam-
ple, these statements do not generate errors:

while (i++) ; /1 OK Wiite space separation
while (i++) /* OK: Conment separation */ ;

This pragma corresponds to the Possible Errors option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_possunwant), described in “Options
Checking” on page 229.

warn_unusedarg
#pragma warn_unusedarg on | off | reset

If the pragma war n_unusedar g is on, the compiler generates a
warning when it encounters an argument you declare but do not
use. This check helps you find misspelled argument names and ar-
guments you have written out of your program.

void foo(int tenp, int errer)

{
error = do_sonething(); // ERROR FError is

I undef i ned
} /1 WARNING tenp and error are unused.

This pragma corresponds to the Unused Arguments option in the
C/C++ Warnings settings panel. To check whether this option is on,

CL-224 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Pragmas

use __option (warn_unusedar g), described in “Options Check-
ing” on page 229.

warn_unusedvar
#pragma warn_unusedvar on | off | reset

If the pragma war n_unusedvar is on, the compiler generates a
warning when it encounters a variable you declare but do not use.
This check helps you find misspelled variable names and variables
you have written out of your program. For example:

voi d foo(voi d)
{
int tenp, errer;
error = do_sonething(); // ERROR error is
I undefi ned
} /1 WARNING tenp and error are unused

This pragma corresponds to the Unused Variables option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_unusedvar), described in “Options Check-
ing” on page 229.

warning (Win32/x86 only)
#pragma war ni ng(warning_specifier . warning_number_list)

Ignored. Included for compatibility with Microsoft. The
warning_number_list is a list of warning numbers separated by
spaces, and warning_specifier is one of the following:

once
def aul t

C, C++, and Assembly Language Reference CL-225

Pragmas and Predefined Symbols

Predefined Symbols

Predefined Symbols

Metrowerks C and C++ define several preprocessor symbols that
give you information about the compile-time environment. Note
that these symbols are evaluated at compile time and not at run

time.

ANSI Predefined Symbols

The table below lists the symbols that the ANSI C standard requires.

Table 8.1 ANSI predefined symbols

This macro...

is...

_ DATE _

__FILE

_LINE__

_TIVE__

STDC

The date at which the file is compiled; for ex-
ample, "Jul 14, 1995".

The name of the file being compiled; for exam-
ple"prog.c".

The line number of the line being compiled.
This is the number before including any
header files.

The time at which the file is compiled in 24-
hour format; for example, " 13: 01: 45".

Always 1. This macro lets you know that
Metrowerks C implements the ANSI C stan-
dard.

CL-226 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Predefined Symbols

Listing 8.6

Listing 8.6 shows a small program that uses the ANSI predefined
symbols.

Using ANSI’'s Predefined Symbols

#i ncl ude <stdi o. h>
voi d mai n(voi d)
{
printf("Hello Wrld!\n");

printf("%, %\n",

DATE, __TIME_);
printf("%, line: %\n",
__FILE _, __LINE);

The program prints something like the following;:

Hell o Worl d!
Cct 31 1995, 18:23:50
main. ANSI .c, line: 10

C, C++, and Assembly Language Reference CL-227

Pragmas and Predefined Symbols
Predefined Symbols

Metrowerks Predefined Symbols

The table below lists additional symbols that Metrowerks C and
C++ provides.

Table 8.2 Predefined symbols for Metrowerks

This macro... is...

A5 1 if data is A5-relative, O if data is A4 rela-

(68K only.) tive. It's undefined in the PowerPC com-
piler.

__cplusplus Defined if you're compiling this file as a
C++ file, undefined if you're compiling
this file as a C file.

_ fourbyteints__ 1,if you turn on the 4-byte Ints option in

(68K only.) the Processor settings panel. 0, if you turn

off that option. It's undefined in the Pow-
erPC compiler.

_ | EEEdoubl es__ 1, if you turn on the 8-Byte Doubles op-

(68K only.) tion in the Processor settings panel. O, if
you turn off that option. It's undefined in
the PowerPC compiler.

_ INTEL__ 1, if you're compiling this code with the
Intel compiler. 0, otherwise.

_ MCB8K__ 1, if you're compiling this code with the
68K compiler. 0, otherwise.

_MC68020__ 1, if you turn on the 68020 Codegen op-

(68K only.) tion in the Processor settings panel. O, if

you turn that option off. It's undefined in
the PowerPC compiler.

_ M>%8881_ 1, if you turn on the 68881 Codegen op-

(68K only.) tion in the Processor settings panel. O, if
you turn that option off. It's undefined in
the PowerPC compiler.

__MABRONBER 1, if the CodeWarrior browser is parsing
your code. O, otherwise.

CL-228 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols
Options Checking

This macro...

is...

_ MAERKS

__profile__

__powerc,
power c,
__PONERPC

maci nt osh

The version number of the Metrowerks
C/C++ compiler, if you're using CW7 or
later. For example, in Metrowerks C/C++
version 7.1 _ MWERKS__ would be
0x0710. It's 1, if you're using an earlier
version.

1, if you turn on the Generate Profiler
Calls option in the Processor settings
panel. 0, if you turn that option off.

1, if you're compiling this code with the
PowerPC compiler. O, otherwise.

1, if you're compiling this code with the
68K or PowerPC Macintosh compiler. 0O,
otherwise.

Options Checking

The preprocessor function __opti on() lets you test the setting of
many pragmas and options in the Project Settings dialog. Its syntax

1S:

__opti on(option-name)

If the optionis on, __option () returns 1; otherwise, it returns 0.

This function is useful when you want one source file to contains
code that’s used for different option settings. The example below
shows how to compile one series of lines if you're compiling for ma-
chines with the MC68881 floating-point unit and another series if
you’re compiling for machines without out:

#if _ option (code68881)
/'l Code optimzed for the floating point unit.

t#el se

/| Code for any Maci ntosh

#endi f

C, C++, and Assembly Language Reference CL-229

Pragmas and Predefined Symbols

Options Checking

Options table

The table below lists all the option names.

This argument...

Corresponds to the...

ao6f ranes
(68K only)

align_array_nenbers

ANSI strict

ARM conf orm

auto_inline

bool

check_header fl ags

code68020
(68K only)

code68881
(68K only)

code68349
(68K only)

cpl uspl us

Generate A6 Stack Frames option in
the 68K Linker settings panel and
pragma a6franes.

Pragma al i gn_array_nenbers.

ANSI Strict option in the C/C++ Lan-
guage settings panel and pragma
ANSI strict.

ARM Conformance option in the C/
C++ Language settings panel and
pragma ARM conf or m

Auto-Inline option of the Inlining
menu in the C/C++ Language settings
panel and pragma aut o_i nl i ne.

Enable C++ bool/true/false option in
the C/C++ Language settings panel
and pragma bool .

Pragma check_header _f| ags.

68020 Codegen option in the 68K Pro-
cessor settings panel and pragma
code68020.

68881 Codegen option in the 68K Pro-
cessor settings panel and pragma
code68881.

Pragma code68349

Whether the compiler is compiling
this file as a C++ file. Related to the
Activate C++ Compiler option in the
C/C++ Language settings panel, the
pragma cpl uspl us, and the macro
cpl uspl us

CL-230 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols

Options Checking

This argument...

Corresponds to the...

cpp_ext ensi ons

dO_pointers
(68K only)

di rect _destruction

direct _to_ _SOM

di sabl e registers
(PowerPC only)

dont _inline

dont _reuse_strings

enunsal waysi nt

exceptions

export
ext ended_error check

far _data
(68K only)

far_strings
(68K only)

Pragma cpp_ext ensi ons

Pragmas poi nters_i n_DO0 and
poi nters_in_AQ.

Enable Exception Handling option in
the C/C++ Language settings panel
and pragma di rect _destruction.

Direct to SOM menu in the C/C++
Language settings panel and pragma
direct _to SOV

Pragma di sabl e_regi sters.

Don’t Inline option in the C/C++
Language settings panel and pragma
dont _inli ne.

Don’t Reuse Strings option in the C/
C++ Language settings panel and
pragma dont _reuse_stri ngs.

Enums Always Int option in the C/
C++ Language settings panel and
pragma enunsal waysi nt

Enable C++ Exceptions option in the
C/C++ Language settings panel and
pragma excepti ons

Pragma export .

Extended Error Checking option in
the C/C++ Warnings settings panel
and pragma ext ended_er r or check.

Far Data option in the 68K Processor
settings panel and pragma
far_dat a.

Far String Constants option in the
68K Processor settings panel and
pragma f ar_strings.

C, C++, and Assembly Language Reference CL-231

Pragmas and Predefined Symbols
Options Checking

This argument...

Corresponds to the...

far_vtabl es
(68K only)

force_active
(68K only)

fourbyteints
(68K only)

fp_contract
(PowerPC only)

gl obal _opti m zer
(PowerPC only)

| EEEdoubl es
(68K only)

i gnore_ol dstyl e
i mport

i nterna
lib_export

i nksym

little_endi an

| ongl ong

| ongl ong_enuns

Far Method Tables in the 68K Proces-
sor settings panel and pragma
far_vtabl es.

Pragma f orce_acti ve.

4-Byte Ints option in the 68K Proces-
sor settings panel and pragma f our -
byt ei nts.

Use FMADD & FMSUB option in the
PPC Processor settings panel and
pragma f p_contract.

Global Optimization option in the
PPC Processor settings panel and
pragma gl obal _opti m zer.

8-Byte Doubles option in the 68K Pro-
cessor settings panel and pragma
| EEEdoubl es.

Pragmai gnore_ol dstyl e.
Pragmai nport.

Pragmai nt ernal .
Pragmal i b_export.

a read-only option that is true when
the link SYM option in the linker dia-
log is set

No option. It is 1 if you're compiling
for a little endian target (such as
Win32/x86) and 0 if you're compiling
for a big endian target (such as Mac
OS or Magic Cap).

Pragma | ongl ong.
Pragma | ongl ong_enuns.

CL-232 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols

Options Checking

This argument...

Corresponds to the...

macsbug
(68K only)

mpwe
(68K only)

npwc_new i ne

nmpwc_r el ax

no_regi ster_col oring

ol dstyl e_synbol s

(68K only)

only_std_keywords

optimze_for_size

pcrel strings
(68K only)

peephol e

MacsBug Symbols option in the 68K
Linker settings panel and pragma
macsbug.

MPW C Calling Conventions option
in the 68K Processor settings panel
and pragma npwc.

Map Newlines to CR option in the C/
C++ Language settings panel and
pragma npwc_new i ne.

Relaxed Pointer Type Rules option in
the C/C++ Language settings panel
and pragma npwc_r el ax.

Global Register Allocation option in
the 68K Processor settings panel and
pragma no_r egi st er _col ori ng.

MacsBug Symbols option in the 68K
Linker settings panel and pragma
ol dstyl e_synbol s

ANSI Keywords Only option in the
C/C++ Language settings panel and
pragma onl y_st d_keywor ds.

This corresponds to the Optimize For
Size option in the 68K Processor set-
tings panel and to the Optimize For
menu in the PPC Processor settings
panel. Also corresponds to the pragma
optim ze for_size.

PC-Relative Strings option in the 68K
Processor settings panel and pragma
pcrel strings.

Peephole Optimization option in the
PPC Processor settings panel and
pragma peephol e.

C, C++, and Assembly Language Reference CL-233

Pragmas and Predefined Symbols
Options Checking

This argument...

Corresponds to the...

pool _strings

preconpil e
preprocess

profile

readonly_strings
(PowerPC only)

require_prototypes

RTTI

side_effects
SOMCal | Opti m zati on
SOMCheckEnvi r onnent

static_inlines

sym

Pool Strings option in the C/C++
Language settings panel and pragma
pool _strings

Whether the file is being pre-com-
piled.

Whether the file is being pre-pro-
cessed

Generate Profiler Calls option in the
68K Processor settings panel, Emit
Profiler Calls option in the PPC Pro-
cessor settings panel, and pragma
profile.

Make String Literals Readonly op-
tion in the PPC Processor settings
panel and pragma
readonly_strings.

Require Function Prototypes option
in the C/C++ Language settings panel
and pragma r equi r e_pr ot ot ypes.

Enable RTTI option in the C/C++
Language settings panel and pragma
RTTI .

Pragma si de_ef fects.
Pragma SOMCal | Opt i m zat i on

Direct to SOM menu in the C/C++
Language settings panel and pragma
SOMCheckEnvi r onnent

Pragmastatic_inlines

Generate SYM Files option in the 68K
and PPC Linker settings panels and
pragma sym

CL-234 C, C++, and Assembly Language Reference

Pragmas and Predefined Symbols

Options Checking

This argument...

Corresponds to the...

toc_data

t raceback
(PowerPC only)

trigraphs

unsi gned_char

war n_enpt ydecl

war n_ext racomma

war n_hi devi rt ual

warn_i |l pragma

war n_possunwant

war n_unusedar g

Store Static Data in TOC option in the
PPC Processor settings panel and
pragmat oc_dat a

Pragma t r aceback.

Expand Trigraphs option in the C/
C++ Language settings panel and
pragmatri graphs.

Use Unsigned Chars option in the C/
C++ Language settings panel and
pragma unsi gned_char.

Empty Declarations option in the C/
C++ Warnings settings panel and
pragma war n_enpt ydecl .

Extra Commas option in the C/C++
Warnings settings panel and pragma
war n_ext r aconma.

Hidden virtual functions option in
the C/++ Warnings settings panel and
pragma war n_hi devi rtual .

Illegal Pragmas option in the C/C++
Warnings settings panel and pragma
war n_i | | pragma.

Possible Errors option in the C/C++
Warnings settings panel and pragma
war n_possunwant .

Unused Arguments option in the C/
C++ Warnings settings panel and
pragma war n_unusedar g.

C, C++, and Assembly Language Reference CL-235

Pragmas and Predefined Symbols
Options Checking

This argument...

Corresponds to the...

war n_unusedvar

warni ng_errors

Unused Variables option in the C/
C++ Warnings settings panel and
pragma war n_unusedvar.

Treat Warnings As Errors option in
the C/C++ Warnings settings panel
and pragma war ni ng_errors.

CL-236 C, C++, and Assembly Language Reference

Index

Symbols

#, and macros 48

#el se 48

#endi f 48

#pr agma statements 170
illegal 60

* 63

accidental 61

operator 89
?: conditional operator 87, 94
\n 76

\p 78
\r 76
A5 228
__abs() 81

_ cntlzw() 81
__cplusplus 228
__DATE__ 226
__decl spec 27
__eieio() 80
__fabs() 81
__FILE _ 226
__fnabs() 81
__fourbyteints__ 228
__fres() 82
__fsel() 82
__fsarte() 82
__ieeedoubles__ 228
_ I NTEL__ 228
__isync() 80
__labs() 81

_ Ihbrx() 81
__LINE__ 226
_lwbrx() 81
__MC68020__ 228

_ MC68881_ 228
_ MCB8K__ 228

__ MABROASER _ 228
__ MAERKS__ 229

__option(), preprocessor function 229

__powerc 229

__PONERPC__ 229
__Prelnit__() 90
__profile__ 229
_rlwim() 83
__rlwinn() 83
__rlwan() 83
__setflm() 82

__som check_ev() 110
__som check_new() 110
__STDC__ 226
__stdcall 51

__ sthbrx() 81

__stwbrx() 81

__sync() 80
__TIME__ 226

Numerics

4-Byte Int option 30
__MC68020__ 228

68020 Codegen 70
__MC68881__ 228

68881 Codegen option 32, 71
68K assembly 115

8-Byte Doubles option 32

A

__A5__ 228
a6f r anmes pragma 171
__abs() 81
Access Paths preference panel 22
Activate C++ Compiler option 93
address

specifying for variable 43
al i gn pragma 171
al i gn_array_nenber s pragma 172
anonymous structs 95
ANSI Keywords Only option 50
ANSI Strict option 28, 47
ANS| _strict pragma 47,173
arguments

default 88

passing in registers 45

C, C++, and Assembly Language Reference CL-237

Index

unnamed 48 Cell 77
unused 63 char 52
VAR 77 char size 31,33
ARM Conformance option 94 characters, multi-byte 43
ARM_conform 94, 95 check_header _f| ags pragma 176
ARM conf or mpragma 174 Cl ncl udes 22
arrays class declaration, local 89
size of 26 __cntlzw() 81
asm instruction 167 code_seg pragma 177
asmkeyword 50, 115, 125, 161, 167 code68020 pragma 177
asnmkDef aul t Para Text> statement 44 code68349 pragma 178
Assembler 167 code68881 pragma 178
assembler, inline 115, 125, 161, 167 commas, extra 64
assembly instructions 138 comments, C++-styles 48
assembly, 68K 115 conditional operator 87, 94
assembly, PowerPC 125 const _cast keyword 87
assembly, 68K 115 copy constructor 89
assignment, accidental 61 __cpl uspl us 228
Auto-Inline option 53 cpl uspl us pragma 93,179
aut o_i nl i ne pragma 53, 175 cpp_ext ensi ons pragma 95, 180
B D
base classes, protected 94 d0_poi nt er s pragma 180
bf chg assembly statement 116 DATE 226
bf cl r assembly statement 116 ag assem_}gly statement 122
bf ext s assembly statement 116 declaration
bf ext u assembly statement 116 local class 89
bf f f 0 assembly statement 116 of variable in statements 94
bf i ns assembly statement 116 default arguments 88
bf set assembly statement 116 direct-to-SOM 105, 113
bf t st assembly statement 116 di rect _destructi on pragma 182
bitfields di rect _t o_sompragma 106, 182
size of 26 di sabl e_r egi st er s pragma 183
bool keyword 87, 96 di vs. | assembly statement 117
bool pragma 176 di vsl assembly statement 117
bool size 31, 33 di vu. | assembly statement 117
di vul assembly statement 117
C Don’t Inline option 53
c2pstr() 78 Don’t Reuse Strings option 58
calling conventions 35 dont _i nli ne pragma 53, 183
MPW 75 dont _reuse_strings pragma 59, 184
registers 45 doubl e size 32, 34
carriage return 76 ds assembly statement 122
cat ch statement 86, 96, 103, 185 dyanamic_cast keyword 212

CL-238 C, C++, and Assembly Language Reference

Index

dynam c_cast 97
dynam c_cast keyword 87

E
__eieio() 80
8-Byte Doubles option 32
#el se 48
empty declarations 61
Empty Declarations option 61
Enable Exception Handling option 96
#endi f 48
ent ry assembly statement 123, 134
Enum Always Int option 28
enumerated type 65

size of 51
enumerated types 28
Enums Always Int option 51
enunsal waysi nt pragma 52, 184

accidental 61

operator 89
errors

and warnings 60
exception handling 96, 103
except i ons pragma 185
.exp file 195
Expand Trigraphs option 49
explicit keyword 87
export pragma 186
Export Symbols option 195
ext b. | assembly statement 117
Extended Error Checking option 65
ext ended type 71

ext ended_error checki ng pragma 66, 187

ext ended80 71
Extra Commas option 64

F

__fabs() 81

f al se keyword 87

Far Data option 26

far keyword 26, 50

f ar _code pragma 189

f ar_dat a pragma 26, 189

far_strings pragma 190
far_vtabl es pragma 190
__FILE__ 226

fl oat size 32,34
floating-point formats 32, 34
floating-point unit 70
__fnabs() 81

f or statement 62, 94
force_active pragma 190
4-Byte Int option 30
__fourbyteints__ 228
four byt ei nts pragma 191
fp_contract pragma 191
FPSCR 82

FPU 70

fral | oc assembly statement 119, 129
_fres() 82

frfree assembly statement 119, 129
fri end keyword 87
__fsel() 82

__fsqrte() 82

function initialization 119

G

Global Register Allocation option 24, 233
gl obal _opti m zer pragma 192

H

Handl eoj ect 104
header files 21
header files, for templates 100

identifiers 21

IEEE floating-point standards 71
__ieeedoubl es__ 228

| EEEdoubl es pragma 193

i f statement 62, 94

i gnor e_ol dstyl e pragma 194
lllegal Pragmas option 60

i nport pragma 195

include files, see header files
infinite loop 62

C, C++, and Assembly Language Reference CL-239

Index

infinite loop, creating 62 calling conventions 39

i nherited keyword 91 number formats 33, 34

i ni t_seg pragma 196 mangled names 21

initializing static data 90 Map Newlines to CR option 76

inline assembler 115, 125, 161, 167 __MC68020__ 228

inline data 44 MC68020 processor 70

inline functions 43 _ MC68881__ 228

i nl'i ne_dept h pragma 197 MC68881 floating-point unit 70

Inlining menu 53 _ MC68K__ 228

instantiating templates 101 member function pointer 95

i nt size 31,33 MPW C Calling Convention option 75

integer formats 30, 33, 46 MPW compatibility 72, 104

__INTEL__ 228 npwec pragma 76, 200

i nternal pragma 197 npwec_new i ne pragma 77,201

intrinsic functions 80 npwe_r el ax pragma 56, 202

__isync() 80 mul s. | assembly statement 117
multi-byte characters 43

K mul u. | assembly statement 117

keywords, additional 50, 87 mut abl e keyword 87
__MABROABER _ 228

L __MAERKS__ 229

__labs() 81 N

Language preference panel 40

__lhbrx() 81 \n 76

l'i b_export pragma 198 namespace keyword 87

LINE 226 near _code pragma 189

local class declaration 89 newline 76

| ong doubl e size 32,34 number formats 30

| ong | ong 46

| ong | ong size 31, 33 O

| ong size 31, 33 ol dstyl e_synbol s pragma 199

I ongl ong 198 once pragma 203

[ongl ong pragma 46 only_std_keywor ds pragma 50, 204

| ongl ong_enuns pragma 199 Opcode inline functions 43

__lwbrx() 81 OpenDoc 105
operator delete 86

M operator new 86

machi ne assembly statement 116, 136 operator= 89

Macintosh Toolbox functions 77 optim zation_| evel pragma 192

macros optim ze_for_size pragma 204

and # 48 __option(), preprocessor function 229
and inline assembler 121, 129, 164 options align=pragma 171
macsbug pragma 199 opwor d assembly statement 124
Magic Cap OSType 77

CL-240 C, C++, and Assembly Language Reference

Index

P
\p 78
p2cstr() 78
pack pragma 205
par anet er pragma 45, 205
parameters, see arguments
pascal keyword 50
and PowerPC 79
Pascal strings 78
pcrel strings pragma 58, 206
peephol e pragma 207
Poi nt 77
pointer to member function 95
pointer types 56
poi nt ers_i n_AQO pragma 207
poi nters_i n_DO pragma 207
Pool Strings option 56
pool _strings pragma 57, 208
pop pragma 209
Possible Errors option 61
__powerc 229
_ POVERPC__ 229
PowerPC assembly 125
PowerPC intrinsic functions 80
#pr agma statements 170
illegal 60

preconpi | e_t ar get pragma 210

__Prelnit__() 90
preprocessor
and # 48

and inline assembler 121, 129, 164

__profile__ 229
profil e pragma 211
protected base classes 94
prototypes 54

requiring 54
push pragma 209

R
\r 76

readonl y_strings pragma 211

Rect 77
registers
coloring 24

floating-point 72
passing arugments in 45
variables 23
reinterpret_char keyword 87
Relaxed Pointer Type Rules option 54, 56
Require Prototypes option 54
requi r e_pr ot ot ypes pragma 56, 211
ResType 77
r et ur n statement
empty 66
missing 65
return, carriage 76
_riwim() 83
_rlwinm) 83
_rlwnm() 83
rt d assembly statement 117
RTTI 96, 212
RTTI option 96
RTTI pragma 212
Run-time type information 96, 212

S

SANE.h 71
schedul i ng pragma 212
segnent pragma 213
__setfln() 82
short doubl e size 32, 34
short size 31,33
si de_effects pragma 213
si gned char size 31, 33
simple class 89
Si ngl ebj ect 104
68020 Codegen 70
68881 Codegen option 32, 71
68K assembly 115
size
of data structures 26
of enumerated types 51
of numbers 30
size t 22
si zeof () operator 22
smart _code pragma 189
sntl ass assembly statement 137
SOM 105, 113

C, C++, and Assembly Language Reference CL-241

Index

SOM Cal | Optim zationpragma 111, 214

__som check_ev() 110
__som check_new() 110
SOMCal | Styl e pragma 113, 214

SOMCheckEnvi r onnment pragma 111, 215

SOMO assVer si on pragma 112, 216
SOMMet aCl ass pragma 217
SOVRel aseOr der pragma 112,217
static data, initializing 90
static_cast keyword 87
static_inlines pragma 218
__STDC__ 226
__sthbrx() 81
string literals

PC-relative 57

pooling 56

reusing 58
strings

Pascal 78
struct assembly construct 120
structs

anonymous 95

size of 26
__stwbrx() 81
SW t ch statement 94
sympragma 218
__sync() 80

T

tenpl at e cl ass statement 102
templates 99
instantiating 101
__TIME__ 226
toc_data pragma 219
Toolbox functions 77
t raceback pragma 219
Treat All Warnings as Errors option 60
trigraph characters 49
trigraphs pragma 49, 219
t rue keyword 87
t ry statement 86, 96, 103, 185
type-checking 56
type_info 99
typeid 98

t ypei d keyword 87
typeid keyword 212
Types.h 71

U

unnamed arguments 48

unsi gned char 52

unsi gned char size 31, 33

unsi gned i nt size 31, 33

unsi gned | ong | ong size 31, 33
unsi gned | ong size 31, 33

unsi gned short size 31, 33
unsi gned_char pragma 220
Unused Arguments option 63
unused pragma 63, 220

Unused Variables option 62

Use Unsigned Chars option 41, 52
usi ng keyword 87

Vv

VAR arguments 77
variables
declaring by address 43
register 23
unused 62
volatile 25
virtual keyword 87
volatile variables 25

W
war n_enpt ydecl pragma 61, 221
war n_ext raconmma pragma 64, 222
war n_hi devi rtual pragma 222
war n_i | | pragma pragma 61, 223
war n_possunwant pragma 62, 223
war n_unusedar g pragma 64, 224
war n_unusedvar pragma 63, 225
war ni ng pragma 225
war ni ng_errors pragma 60, 221
warnings 59

as errors 60
wchar _t keyword 87
whi | e statement 62, 94
Win32/x86

CL-242 C, C++, and Assembly Language Reference

Index

keywords 51
number formats 33, 34, 39
registers 23

X

x80t 0x96() 71
x96t 0x80() 71

C, C++, and Assembly Language Reference CL-243

Index

CL-244 C, C++, and Assembly Language Reference

CodeWarrior

C, C++, and Assembly Language
Reference

Credits

engineering: Andreas Hommel,
John McEnerney, Jason Eckhardt

writing: Jeff Mattson

frontline warriors: Fred Peterson

'\

NSNS NS sN

Guide to CodeWarrior Documentation

If you need information about... See this
Installing updates to CodeWarrior QuickStart Guide
Getting started using CodeWarrior QuickStart Guide;
Tutorials (Apple Guide)
Using CodeWarrior IDE (Integrated Development Environment) IDE User’s Guide
Debugging Debugger Manual
Important last-minute information on new features and changes Release Notes folder
Creating Macintosh and Power Macintosh software Targeting Mac OS;
Mac OS folder
Creating Microsoft Win32/x86 software Targeting Win32;
Win32/x86 folder

Creating Java software
Creating Magic Cap software

Using ToolServer with the CodeWarrior editor
Controlling CodeWarrior through AppleScript
Using CodeWarrior to program in MPW

C, C++, or 68K assembly-language programming

Pascal or Object Pascal programming

Fixing compiler and linker errors
Fixing memory bugs

Speeding up your programs
PowerPlant

Creating a PowerPlant visual interface
Creating a Java visual interface

Learning how to program for the Mac OS
Learning how to program in Java

Contacting Metrowerks about registration, sales, and licensing
Contacting Metrowerks about problems and suggestions using

CodeWarrior software
Sample programs and examples

Problems other CodeWarrior users have solved

Targeting Java

Sun Java Documentation folder
Targeting Magic Cap;

Magic Cap folder

IDE User’s Guide

IDE User’s Guide

Command Line Tools Manual

C, C++, and Assembly Reference;
MSL C Reference;
MSL C++ Reference

Pascal Language Manual;
Pascal Library Reference

Errors Reference
ZoneRanger Manual
Profiler Manual

The PowerPlant Book;
PowerPlant Advanced Topics;
PowerPlant reference documents

Constructor Manual
Constructor for Java Manual

Discover Programming for Macintosh

Discover Programming for Java
Quick Start Guide

email Report Forms in the Release Notes

folder

CodeWarrior Examples folder;
The PowerPlant Book;
PowerPlant Advanced Topics;
Tutorials (Apple Guide)

Internet newsgroup [docs] folder

961218-1821

	Introduction
	Overview of the C/C++/ASM Reference
	Conventions Used in This Manual
	The C/C++ Project Settings Panels
	What’s New
	The long long type
	Turning off register coloring in the 68K compiler
	More information on enumerated types
	New pragmas
	New intrinsic functions
	Improved documentation

	C and C++ Language Notes
	Overview of C and C++ Language Notes
	The Metrowerks Implementation of C and C++
	Identifiers
	Include files
	The sizeof() operator
	Register variables
	Register coloring

	Volatile variables
	Limits on variable sizes
	Declaration specifiers
	Enumerated types

	Number Formats
	68K Macintosh integer formats
	68K Macintosh floating-point formats
	PowerPC Macintosh, Magic Cap, and Win32/ x86 integ...
	PowerPC Macintosh and Win32/x86 floating- point fo...
	Magic Cap Floating-Point Formats

	Calling Conventions
	68K Macintosh calling conventions
	PowerPC calling conventions
	Magic Cap calling conventions
	Win32/x86 calling conventions

	Extensions to C or C++
	ANSI extensions you can’t disable
	Multibyte characters (Macintosh Only)
	Declaring variables by address (Macintosh Only)
	Opcode inline functions (68K Macintosh Only)
	Inline data (68K Macintosh Only)
	Specifying the registers for arguments (68K Macint...
	64-bit integers

	ANSI extensions you disable with ANSI Strict
	C++-style comments
	Unnamed arguments in function definitions
	A # not followed by argument in macro definition
	An identifier after #endif
	Using typecasted pointers as lvalues

	Disabling trigraph characters
	Additional keywords
	Macintosh and Magic Cap keywords
	Win32/x86 keywords

	Enumerated constants of any size
	Chars always unsigned
	Inlining functions
	Using multibyte strings and comments
	Using prototypes
	Requiring prototypes
	Relaxing pointer checking

	Storing strings (Macintosh only)
	Pooling strings
	Using PC-relative strings
	Reusing strings

	Warnings for Common Mistakes
	Treat warnings as errors
	Illegal pragmas
	Empty declarations
	Possible unwanted side effects
	Unused variables
	Unused arguments
	Extra commas
	Extended type checking
	Function hiding

	Generating Code for Specific 68K Processors (Macin...
	Generating code for the MC68020
	Generating code for the MC68881
	Using the Extended data type
	Using floating-point registers

	Calling MPW Functions
	Adding an MPW library to a CodeWarrior project
	Declaring MPW C functions (Macintosh Only)
	Using MPW C newlines

	Calling Macintosh Toolbox Functions (Macintosh Onl...
	Passing string arguments
	Using the pascal keyword in PowerPC code

	Intrinsic PowerPC Functions (Macintosh Only)
	Low-level processor synchronization
	Floating-point functions
	Byte-reversing functions
	Setting the floating-point environment
	Floating-point instructions for the 603 and 604
	Rotating the contents of a variable

	C++ Language Notes
	Overview of C++ Language Notes
	Unsupported Extensions
	Metrowerks Implementation of C++
	Which keywords to put first
	Additional keywords
	Conversions in the conditional operator
	Default arguments in member functions
	Local class declarations with inline functions
	Copying and constructing class objects
	Checking for resources to initialize static data
	Calling an inherited member function

	Setting C++ Options
	Using the C++ compiler always
	Enforcing strict ARM conformance
	Adding C++ extensions
	Allowing exception handling
	Using the bool type

	Using Run-Time Type Information (RTTI)
	Using the dynamic_cast operator
	Using the typeid operator

	Using Templates
	Declaring and defining templates
	Instantiating templates

	Using Exceptions
	Declaring MPW-Compatible Classes
	Creating Direct-to-SOM Code
	SOM class restrictions
	Using SOM headers
	Automatic SOM error checking
	Using SOM pragmas
	Declaring the release order
	Declaring the class’s version
	Declaring the metaclass for a class
	Declaring the call style for a class

	68K Assembler Notes
	Overview of 68K Assembler Notes
	Writing an Assembly Function for 68K
	Defining a Function for 68K Assembly
	Using Global Variables in 68K Assembly
	Using Local Variables and Arguments in 68K Assembl...
	Using Structures in 68K Assembly
	Using the Preprocessor in 68K Assembly
	Returning From a Function in 68K Assembly

	Assembler directives
	dc
	ds
	entry
	fralloc
	frfree
	machine
	opword

	PowerPC Assembler Notes
	Overview of PowerPC Assembler Notes
	Writing an Assembly Function for PowerPC
	Defining a Function for PowerPC Assembly
	Creating Labels for PowerPC Assembly
	Using Comments for Power PCAssembly
	Using the Preprocessor for PowerPC Assembly
	Creating a Stack Frame for PowerPC Assembly
	Using Local Variables and Arguments for PowerPC As...
	Specifying Instructions for PowerPC Assembly
	Specifying Operands for PowerPC Assembly
	Using registers
	Using labels
	Using variable names as memory locations
	Using immediate operands

	PowerPC Assembler Directives
	entry
	fralloc
	frfree
	machine
	smclass

	PowerPC Assembler Instructions

	MIPS Assembler Notes
	Overview of MIPS Assembler Notes
	Writing an Assembly Function
	Creating labels
	Using comments
	Using the preprocessor
	Creating a stack frame
	Specifying operands
	Using registers
	Using parameters
	Using global variables
	Using immediate operands

	Assembler Directive
	.set

	Win32/x86 Assembler Notes
	Overview of Win32/x86 Assembler Notes
	Writing an Assembly Function

	Pragmas and Predefined Symbols
	Overview of Pragmas and Predefined Symbols
	Pragmas
	Pragma Syntax
	The Pragmas
	a6frames (68K Macintosh and Magic Cap)
	align (Macintosh and Magic Cap)
	align_array_members (Macintosh and Magic Cap only)...
	ANSI_strict
	ARM_conform
	auto_inline
	bool (C++ only)
	check_header_flags (precompiled headers only)
	code_seg (Win32/x86 only)
	code68020 (68K Macintosh and Magic Cap only)
	code68349 (Magic Cap only)
	code68881 (68K Macintosh and Magic Cap only)
	cplusplus
	cpp_extensions
	d0_pointers (68K Macintosh only)
	data_seg (Win32/x86 only)
	direct_destruction (C++ only)
	direct_to_som (Macintosh and C++ only)
	disable_registers (PowerPC Macintosh only)
	dont_inline
	dont_reuse_strings
	enumsalwaysints
	exceptions (C++ only)
	export (Macintosh only)
	extended_errorcheck
	far_code, near_code, smart_code (68K Macintosh and...
	far_data (68K Macintosh and Magic Cap only)
	far_strings (68K Macintosh and Magic Cap only)
	far_vtables (68K Macintosh only)
	force_active (68K Macintosh only)
	fourbyteints (68K Macintosh only)
	fp_contract (PowerPC Macintosh only)
	function (Win32/x86 only)
	global_optimizer, optimization_level (PowerPC Maci...
	IEEEdoubles (68K Macintosh only)
	ignore_oldstyle
	import (Macintosh only)
	init_seg (Win32/x86 only)
	inline_depth (Win32/x86 only)
	internal (Macintosh only)
	lib_export (Macintosh only)
	longlong
	longlong_enums
	macsbug, oldstyle_symbols (68K Macintosh and Magic...
	mark
	mpwc (68k Macintosh only)
	mpwc_newline
	mpwc_relax
	no_register_coloring (68K Macintosh and Magic Cap ...
	once
	oldstyle_symbols (68K Macintosh and Magic Cap only...
	only_std_keywords
	optimization_level (PowerPC Macintosh only)
	optimize_for_size (Macintosh and Magic Cap only)
	pack (Win32/x86 only)
	parameter (68K Macintosh and Magic Cap only)
	pcrelstrings (68K Macintosh only)
	peephole (PowerPC Macintosh and Win32/x86 only)
	pointers_in_A0, pointers_in_D0 (68K Macintosh only...
	pool_strings
	pop, push
	precompile_target
	profile (Macintosh only)
	readonly_strings (PowerPC Macintosh only)
	require_prototypes
	RTTI
	scheduling (PowerPC Macintosh only)
	segment (Macintosh and Magic Cap only)
	side_effects (Macintosh only)
	SOM�Call�Optimization (Macintosh and C++ only)
	SOMCallStyle (Macintosh and C++ only)
	SOMCheckEnvironment (Macintosh and C++ only)
	SOMClassVersion (Macintosh and C++ only)
	SOMMetaClass (Macintosh and C++ only)
	SOMReleaseOrder (Macintosh and C++ only)
	static_inlines
	sym
	toc_data (PowerPC Macintosh only)
	trigraphs
	traceback (PowerPC Macintosh only)
	unsigned_char
	unused
	warn_emptydecl
	warning_errors
	warn_extracomma
	warn_hidevirtual
	warn_illpragma
	warn_possunwant
	warn_unusedarg
	warn_unusedvar
	warning (Win32/x86 only)

	Predefined Symbols
	ANSI Predefined Symbols
	Metrowerks Predefined Symbols

	Options Checking
	Options table

	Index

