
C++ Annotations Version 4.4.1d

Frank B. Brokken
(and Karel Kubat until version 4.0.0)

ICCE, University of Groningen
Grote Rozenstraat 38, 9712 TJ Groningen

Netherlands
Published at the University of Groningen

ISBN 90 367 0470 7

1994 - 2000

Abstract

This document is intended for knowledgeable users of C who would like to make the transition
to C++. It is a guide for Frank’s C++ programming courses, which are given yearly at the
University of Groningen. As such, this document is not a complete C++ handbook. Rather, it
serves as an addition to other documentation sources.

If you want a hard-copy version of the C++ annotations: that’s available in postscript, and other
formats in our ftp-site.

Contents

1 Overview of the chapters 12

2 Introduction 13

2.0.1 History of the C++ Annotations . 14

2.1 What’s new in the C++ Annotations . 14

2.2 The history of C++ . 16

2.2.1 Compiling a C program by a C++ compiler 16

2.2.2 Compiling a C++ program . 17

2.3 Advantages and pretensions of C++ . 18

2.4 What is Object-Oriented Programming? . 19

2.5 Differences between C and C++ . 21

2.5.1 End-of-line comment . 21

2.5.2 NULL-pointers vs. 0-pointers . 21

2.5.3 Strict type checking . 21

2.5.4 A new syntax for casts . 22

2.5.5 The ’static cast’-operator . 23

2.5.6 The ’const cast’-operator . 23

2.5.7 The ’reinterpret cast’-operator . 23

2.5.8 The void argument list . 24

2.5.9 The #define cplusplus . 24

2.5.10 The usage of standard C functions . 24

2.5.11 Header files for both C and C++ . 25

2.5.12 The definition of local variables . 26

2.5.13 Function Overloading . 27

1

2.5.14 Default function arguments . 29

2.5.15 The keyword typedef . 30

2.5.16 Functions as part of a struct . 31

3 A first impression of C++ 33

3.1 More extensions of C in C++ . 33

3.1.1 The scope resolution operator :: . 33

3.1.2 cout, cin and cerr . 34

3.1.3 The keyword const . 35

3.1.4 References . 37

3.2 Functions as part of structs . 42

3.3 Several new data types . 43

3.3.1 The ‘bool’ data type . 43

3.3.2 The ‘wchar t’ data type . 44

3.3.3 The ‘string’ data type . 44

3.4 Data hiding: public, private and class . 62

3.5 Structs in C vs. structs in C++ . 64

3.6 Namespaces . 66

3.6.1 Defining namespaces . 66

3.6.2 Referring to entities . 67

3.6.3 The standard namespace . 69

3.6.4 Nesting namespaces and namespace aliasing 70

4 Classes 75

4.1 Constructors and destructors . 76

4.1.1 The constructor . 76

4.1.2 The destructor . 78

4.1.3 A first application . 79

4.1.4 Constructors with arguments . 83

4.2 Const member functions and const objects . 85

4.3 The operators new and delete . 87

4.3.1 Allocating and deallocating arrays . 87

2

4.3.2 New and delete and object pointers . 90

4.3.3 The function set new handler() . 91

4.4 The keyword inline . 93

4.4.1 Inline functions within class declarations . 94

4.4.2 Inline functions outside of class declarations 95

4.4.3 When to use inline functions . 95

4.5 Objects in objects: composition . 96

4.5.1 Composition and const objects: const member initializers 97

4.5.2 Composition and reference objects: reference member initializers 99

4.6 Friend functions and friend classes . 101

4.7 Header file organization with classes . 102

4.8 Nesting Classes . 106

4.8.1 Defining nested class members . 109

4.8.2 Declaring nested classes . 110

4.8.3 Access to private members in nested classes 110

4.8.4 Nesting enumerations . 114

5 Classes and memory allocation 117

5.1 Classes with pointer data members . 118

5.2 The assignment operator . 119

5.2.1 Overloading the assignment operator . 120

5.3 The this pointer . 125

5.3.1 Preventing self-destruction with this . 126

5.3.2 Associativity of operators and this . 127

5.4 The copy constructor: Initialization vs. Assignment 129

5.4.1 Similarities between the copy constructor and operator=() 133

5.5 Conclusion . 135

6 More About Operator Overloading 136

6.1 Overloading operator[]() . 136

6.2 Overloading operator new(size t) . 139

6.3 Overloading operator delete(void ∗) . 142

3

6.4 Cin, cout, cerr and their operators . 143

6.5 Conversion operators . 145

6.6 The ‘explicit’ keyword . 148

6.7 Overloading the increment and decrement operators 149

6.8 Function Objects . 150

6.8.1 Categories of Function objects . 155

6.8.2 Function Adaptors . 161

6.9 Overloadable Operators . 163

7 Abstract Containers 164

7.1 The ‘pair’ container . 166

7.2 Sequential Containers . 167

7.2.1 The ‘vector’ container . 167

7.2.2 The ‘list’ container . 169

7.2.3 The ‘queue’ container . 176

7.2.4 The ‘priority queue’ container . 178

7.2.5 The ‘deque’ container . 181

7.2.6 The ‘map’ container . 182

7.2.7 The ‘multimap’ container . 188

7.2.8 The ‘set’ container . 190

7.2.9 The ‘multiset’ container . 193

7.2.10 The ‘stack’ container . 195

7.2.11 The ‘hash map’ and other hashing-based containers 197

7.3 The ‘complex’ container . 201

8 Static data and functions 204

8.1 Static data . 204

8.1.1 Private static data . 205

8.1.2 Public static data . 207

8.2 Static member functions . 208

9 Classes having pointers to members 210

4

9.1 Pointers to members: an example . 210

9.2 Initializing pointers to members . 211

9.3 Pointers to static members . 212

9.4 Using pointers to members for real . 213

9.4.1 Pointers to members: an implementation 217

10The Standard Template Library, generic algorithms 222

10.1 Iterators . 222

10.1.1 Insert iterators . 225

10.1.2 istream iterators . 226

10.1.3 ostream iterators . 227

10.2 The ’auto ptr’ class . 228

10.2.1 Defining auto ptr variables . 230

10.2.2 Pointing to a newly allocated object . 230

10.2.3 Pointing to another auto ptr . 231

10.2.4 Creating an plain auto ptr . 232

10.2.5 The get() memberfunction . 233

10.2.6 The reset() memberfunction . 233

10.2.7 The release() memberfunction . 234

10.3 The Generic Algorithms . 234

10.3.1 accumulate() . 235

10.3.2 adjacent difference() . 236

10.3.3 adjacent find() . 237

10.3.4 binary search() . 238

10.3.5 copy() . 239

10.3.6 copy backward() . 240

10.3.7 count() . 241

10.3.8 count if() . 242

10.3.9 equal() . 242

10.3.10equal range() . 244

10.3.11fill() . 245

5

10.3.12fill n() . 246

10.3.13find() . 246

10.3.14find if() . 247

10.3.15find end() . 249

10.3.16find first of() . 250

10.3.17for each() . 252

10.3.18generate() . 253

10.3.19generate n() . 254

10.3.20 includes() . 255

10.3.21 inner product() . 257

10.3.22 inplace merge() . 258

10.3.23 iter swap() . 260

10.3.24 lexicographical compare() . 260

10.3.25 lower bound() . 262

10.3.26max() . 264

10.3.27max element() . 265

10.3.28merge() . 265

10.3.29min() . 267

10.3.30min element() . 268

10.3.31mismatch() . 269

10.3.32next permutation() . 270

10.3.33nth element() . 272

10.3.34partial sort() . 273

10.3.35partial sort copy() . 274

10.3.36partial sum() . 275

10.3.37partition() . 276

10.3.38prev permutation() . 277

10.3.39random shuffle() . 278

10.3.40remove() . 279

10.3.41remove copy() . 280

10.3.42remove if() . 281

6

10.3.43remove copy if() . 282

10.3.44replace() . 283

10.3.45replace copy() . 284

10.3.46replace if() . 285

10.3.47replace copy if() . 286

10.3.48reverse() . 287

10.3.49reverse copy() . 288

10.3.50rotate() . 288

10.3.51rotate copy() . 289

10.3.52search() . 290

10.3.53search n() . 291

10.3.54set difference() . 293

10.3.55set intersection() . 294

10.3.56set symmetric difference() . 295

10.3.57set union() . 297

10.3.58sort() . 298

10.3.59stable partition() . 299

10.3.60stable sort() . 300

10.3.61swap() . 301

10.3.62swap ranges() . 302

10.3.63transform() . 303

10.3.64unique() . 305

10.3.65unique copy() . 306

10.3.66upper bound() . 307

10.3.67Heap algorithms . 308

11The IO-stream Library 313

11.1 Streams: insertion (<<) and extraction (>>) . 314

11.1.1 The insertion operator << . 314

11.1.2 The extraction operator >> . 314

11.2 Four standard iostreams . 316

7

11.3 Files and Strings in general . 316

11.3.1 String stream objects: a summary . 316

11.3.2 Writing streams . 320

11.3.3 Reading streams . 321

11.3.4 Reading and writing streams . 323

11.3.5 Special functions . 326

11.3.6 Good, bad, and ...: IOStream Condition States 327

11.3.7 Formatting . 328

11.3.8 Constructing manipulators . 333

12Exceptions 335

12.1 Using exceptions: an outline . 336

12.2 An example using exceptions . 336

12.2.1 No exceptions: the setjmp() and longjmp() approach 338

12.2.2 Exceptions: the preferred alternative . 340

12.3 Throwing exceptions . 342

12.3.1 The empty throw statement . 346

12.4 The try block . 348

12.5 Catching exceptions . 348

12.5.1 The default catcher . 350

12.6 Declaring exception throwers . 351

13More about friends 354

13.1 Inserting String objects into streams . 355

13.2 An initial solution . 356

13.3 Friend-functions . 358

13.3.1 Preventing the friend-keyword . 359

13.4 Friend classes . 360

14Inheritance 362

14.1 Related types . 363

14.2 The constructor of a derived class . 366

8

14.3 The destructor of a derived class . 367

14.4 Redefining member functions . 368

14.5 Multiple inheritance . 370

14.6 Conversions between base classes and derived classes 373

14.6.1 Conversions in object assignments . 373

14.6.2 Conversions in pointer assignments . 374

14.7 Storing base class pointers . 375

15Polymorphism, late binding and virtual functions 378

15.1 Virtual functions . 379

15.1.1 Polymorphism in program development . 381

15.1.2 How polymorphism is implemented . 383

15.2 Pure virtual functions . 383

15.3 Comparing only Persons . 386

15.4 Virtual destructors . 387

15.5 Virtual functions in multiple inheritance . 388

15.5.1 Ambiguity in multiple inheritance . 389

15.5.2 Virtual base classes . 391

15.5.3 When virtual derivation is not appropriate 392

15.6 Run-Time Type identification . 394

15.6.1 The dynamic cast operator . 394

15.6.2 The typeid operator . 397

16Templates 400

16.1 Template functions . 400

16.1.1 Template function definitions . 401

16.1.2 Instantiations of template functions . 404

16.1.3 Argument deduction . 408

16.1.4 Explicit arguments . 412

16.1.5 Template explicit specialization . 414

16.1.6 Overloading template functions . 416

16.1.7 Selecting an overloaded (template) function 418

9

16.1.8 Name resolution within template functions 420

16.2 Template classes . 421

16.2.1 Template class definitions . 421

16.2.2 Template class instantiations . 423

16.2.3 Nontype parameters . 424

16.2.4 Template class member functions . 425

16.2.5 Template classes and friend declarations . 426

16.2.6 Template classes and static data . 429

16.2.7 Derived Template Classes . 431

16.2.8 Nesting and template classes . 432

16.2.9 Template members . 434

16.2.10Template class specializations . 436

16.2.11Template class partial specializations . 439

16.2.12Name resolution within template classes . 441

16.3 An example: the implementation of the bvector template 442

16.3.1 The reverse iter template class . 445

16.3.2 The final implementation . 447

17Concrete examples of C++ 452

17.1 Storing objects: Storable and Storage . 452

17.1.1 The global setup . 452

17.1.2 The class Storable . 455

17.1.3 The class Storage . 457

17.2 A binary tree . 460

17.2.1 The Node class . 460

17.2.2 The Tree class . 461

17.2.3 Using Tree and Node . 466

17.3 Classes to process program options . 468

17.3.1 Functionality of the class Configuration . 468

17.3.2 Implementation of the class Configuration 471

17.3.3 The class Option . 474

10

17.3.4 Derived from Option: The class TextOption 478

17.3.5 The class Object . 480

17.3.6 The class Hashtable . 480

17.3.7 Auxiliary classes . 484

17.4 Using Bison and Flex . 490

17.4.1 Using Flex++ to create a scanner . 490

17.4.2 Using both bison++ and flex++ . 500

11

Chapter 1

Overview of the chapters

The chapters of the C++ Annotations cover the following topics:

• Chapter 1: This overview of the chapters.

• Chapter 2: A general introduction to C++.

• Chapter 3: A first impression: differences between C and C++.

• Chapter 4: The ‘class’ concept: structs having functions. The ‘object’ concept: variables of
a class.

• Chapter 5: Allocation and returning unused memory: new, delete, and the function set new handler().

• Chapter 6: More About Operator Overloading.

• Chapter 7: Abstract Containers.

• Chapter 8: Static data and functions: components of a class not bound to objects.

• Chapter 9: Classes having pointer members: how to prevent memory leaks and wild pointers.

• Chapter 10: The Standard Template Library, generic algorithms.

• Chapter 11: The C++ type-safe I/O library.

• Chapter 13: Gaining access to private parts from outside: friend functions and classes.

• Chapter 14: Building classes upon classes: setting up class hierarcies.

• Chapter 15: Polymorphism: changing the behavior of memberfunctions accessed through
base class pointers.

• Chapter 12: Exceptions: handling errors where appropriate, rather than where they occur.

• Chapter 16: Templates: using molds for code that is type dependent.

• Chapter 17: Several examples of programs written in C++.

12

Chapter 2

Introduction

This document presents an introduction to programming in C++. It is a guide for C/C++ pro-
gramming courses, that Frank gives yearly at the University of Groningen. As such, this document
is not a complete C/C++ handbook, but rather serves as an addition to other documentation
sources1

The reader should realize that extensive knowledge of the C programming language is assumed
and required. This document continues where topics of the C programming language end, such as
pointers, memory allocation and compound types.

The version number of this document (currently 4.4.1d) is updated when the contents of the
document change. The first number is the major number, and will probably not be changed for
some time: it indicates a major rewriting. The middle number is increased when new information
is added to the document. The last number only indicates small changes; it is increased when,
e.g., series of typos are corrected.

This document is published by the ICCE, University of Groningen, the Netherlands. This document
was typeset using the yodl formatting system.

All rights reserved. No part of this document may be published or changed with-
out prior consent of the author. Direct all correspondence concerning suggestions,
additions, improvements or changes in this document to the author:

Frank B. Brokken ICCE, department of Education University of Groningen Grote
Rozenstraat 38, 9712 TJ Groningen The Netherlands (email: frank@icce.rug.nl)

The support we receive for maintaining our services and computers from the Depart-
ment of Education and the Faculty of Social Sciences of the University of Groningen is
very, very lean. So, to help us maintain our computers and services donations are grate-
fully accepted. If you feel like helping us maintaining our services, you might consider
sending us an amount of money you think that is appropriate, say $ 25.-. If you plan to
do this, please transfer the amount to F. B. Brokken, Oostum, the Netherlands, Post-
Bank account 2790843, mentioning ”ICCE support”, or send a money order to Dr. F.
B. Brokken, department of Education, Grote Rozenstraat 38, 9712 TJ Groningen. But
no matter what you do: please benefit as much as possible from the (free) Annotations.

1e.g., the Dutch book De programmeertaal C, Brokken and Kubat, University of Groningen 1996

13

In this chapter a first impression of C++ is presented. A few extensions to C are reviewed and a
tip of the mysterious veil surrounding object oriented programming (OOP) is lifted.

2.0.1 History of the C++ Annotations

The original version of the guide was originally written by Frank and Karel in Dutch and in LaTeX
format. After some time, Karel Kubat rewrote the text and converted the guide to a more suitable
format and (of course) to English in september 1994.

The first version of the guide appeared on the net in october 1994. By then it was converted to
SGML.

In time several chapters were added, and the contents were modified thanks to countless readers
who sent us their comment, due to which we were able to correct some typos and improve unclear
parts.

The transition from major version three to major version four was realized by Frank: again new
chapters were added, and the source-document was converted from SGML to Yodl.

The C++ Annotations are not freely distributable. Be sure to read the legal notes.

Reading the annotations beyond this point implies that you are aware of
the restrictions that we pose and that you agree with them.

If you like this document, tell your friends about it. Even better, let us know by sending email to
Frank: frank@icce.rug.nl.

2.1 What’s new in the C++ Annotations

This section is modified when the first and second part of the version numbers change. Modifica-
tions in versions 1.∗.∗, 2.∗.∗, and 3.∗.∗ were not logged.

Major version 4 represents a major rewrite of the previous version 3.4.14: The document was
rewritten from SGML to Yodl, and many new sections were added. All sections got a tune-up.
The distribution basis, however, hasn’t changed: see the introduction.

The upgrade from version 4.1.∗ to 4.2.∗ was the result of the inclusion of section 3.3.1 about
the bool data type in chapter 3. The distinction between differences between C and C++ and
extensions of the C programming languages is (albeit a bit fuzzy) reflected in the introdution
chapter and the chapter on first impressions of C++: The introduction chapter covers some
differences between C and C++, whereas the chapter about first impressions of C++ covers
some extensions of the C programming language as found in C++.

The decision to upgrade from version 4.2.∗ to 4.3.∗ was made after realizing that the lexical scanner
function yylex() can be defined in the scanner class that is derived from yyFlexLexer. Under
this approach the yylex() function can access the members of the class derived from yyFlexLexer
as well as the public and protected members of yyFlexLexer. The result of all this is a clean
implementation of the rules defined in the flex++ specification file. See section 17.4.1 for details.

The version 4.3.1a is a precursor of 4.3.2. In 4.3.1a most of the typos I’ve received since the last
update have been processed. In version 4.3.2. the following modifications will be incorporated
as well:

14

• Function-addresses must be obtained using the &-operator

• Functions called via pointers to memberfunctions must use the (this->∗pointer)(...)
construction inside memberfunctions of the class in which the pointer to memberfunctions is
defined.

Version 4.4.1 again contains new material, and reflects the ANSI/ISO standard (well, I try to
have it reflect the ANSI/ISO standard). In version 4.4.1. the following sections and chapters were
added:

• A section (15.6 about Run-Time Type Identification, included as of release 4.4.1.

• A section (15.6.1 about the dynamic cast cast operator. included as of release 4.4.1.

• Minor spellingcorrections were made up to release 4.4.0n.

• A reference to icmake and the C++-build script was added in release 4.4.0m (see section
2.2.2).

• A section (3.6) about namespaces, included as of release 4.4.0i.

• A section (6.6) about the explicit keyword, included as of release 4.4.0h.

• A section about constructing manipulators (11.3.8), included as of release 4.4.0h.

• A section about overloading the operators ++ and -- (6.7), included as of release 4.4.0h.

• A rewrite of the chapter about Templates (chapter 16), included as of release 4.4.0h.

• A section (10.2 about auto ptr objects, included as of release 4.4.0g.

• A section (4.8) about nested classes. included as of release 4.4.0f.

• The chapter (11) about iostreams was modified, and now contains more information about
using manipulators and flags, as well as information about using strstream objects. Included
as of release 4.4.0e.

• A chapter (10 about the Standard Template Library and generic algorithms, included as of
release 4.4.0e.

• The full contents of the C++ Annotations can be inspected in parallel with the annotations
themselves when the html-format is used. Included as of release 4.4.0d.

• The section (4.4) about inline functions was slightly modified, included as of release 4.4.0d.

• A section (6.8 about function objects, included as of release 4.4.0d.

• A chapter (7 about the abstract container types, included as of release 4.4.0c.

• A section (2.5.4 about the new syntax used with casts, included as of release 4.4.0b.

• A section (3.3.3 about the string type, included as of release 4.4.0b.

• A section (2.2.2 about compiling C++ programs, included as of release 4.4.0a.

15

Version 4.4.0 (and subletters) is a construction version, in which the extras mentioned above are
only partially available.

Version 4.4.1. is considered the final version of the C++ annotations. Considering the volume
of the annotations, I’m sure there will be typos found every now and then. Please do not hesitate
to send me an email containing any mistakes you find or corrections you would like to suggest.
Subreleases like 4.4.1a etc. contain bugfixes and typographical corrections. In release 4.4.1b
the pagesize in the latex file was defined to be din A4. In countries where other pagesizes are
standard the conversion the default pagesize might be a better choice. In that case, remove the
dina4 option from cplusplus.tex (or cplusplus.yo if you have yodl installed), and reconstruct
the annotations from the TeX-file or Yodl-files. The Annotations mailing lists was stopped at
release 4.4.1d. From this point on only minor modifications are to be expected, which are not
anymore generally announced.

2.2 The history of C++

The first implementation of C++ was developed in the eighties at the AT&T Bell Labs, where the
Unix operating system was created.

C++ was originally a ‘pre-compiler’, similar to the preprocessor of C, which converted special
constructions in its source code to plain C. This code was then compiled by a normal C compiler.
The ‘pre-code’, which was read by the C++ pre-compiler, was usually located in a file with the
extension .cc, .C or .cpp. This file would then be converted to a C source file with the extension
.c, which was compiled and linked.

The nomenclature of C++ source files remains: the extensions .cc and .cpp are usually still used.
However, the preliminary work of a C++ pre-compiler is in modern compilers usually included
in the actual compilation process. Often compilers will determine the type of a source file by the
extension. This holds true for Borland’s and Microsoft’s C++ compilers, which assume a C++
source for an extension .cpp. The GNU compiler gcc, which is available on many Unix platforms,
assumes for C++ the extension .cc.

The fact that C++ used to be compiled into C code is also visible from the fact that C++ is
a superset of C: C++ offers all possibilities of C, and more. This makes the transition from C
to C++ quite easy. Programmers who are familiar with C may start ‘programming in C++’ by
using source files with an extension .cc or .cpp instead of .c, and can then just comfortably slide
into all the possibilities that C++ offers. No abrupt change of habits is required.

2.2.1 Compiling a C program by a C++ compiler

For the sake of completeness, it must be mentioned here that C++ is ‘almost’ a superset of C.
There are some small differences which you might encounter when you just rename a file to an
extension .cc and run it through a C++ compiler:

• In C, sizeof(’c’) equals sizeof(int), ’c’ being any ASCII character. The underlying
philosophy is probably that char’s, when passed as arguments to functions, are passed as
integers anyway. Furthermore, the C compiler handles a character constant like ’c’ as an
integer constant. Hence, in C, the function calls

16

putchar(10);

and

putchar(’\n’);

are synonyms.

In contrast, in C++, sizeof(’c’) is always 1 (but see also section 3.3.2), while an int is
still an int. As we shall see later (see section 2.5.13), two function calls

somefunc(10);

and

somefunc(’\n’);

are quite separate functions: C++ discriminates functions by their arguments, which are
different in these two calls: one function requires an int while the other one requires a char.

• C++ requires very strict prototyping of external functions. E.g., a prototype like

extern void func();

means in C that a function func() exists, which returns no value. However, in C, the
declaration doesn’t specify which arguments (if any) the function takes.

In contrast, such a declaration in C++ means that the function func() takes no arguments
at all.

2.2.2 Compiling a C++ program

In order to compile a C++ program, a C++ compiler is needed. Considering the free nature
of this document, it won’t come as a surprise that a free compiler is suggested here. The Free
Software Foundation provides free C++ compilers. Currently, the compiler of choice is the egcs
(pronounce: eggs) compiler, which is, among other places, available in the Debian distribution of
Linux.

For MS-Windows Cygnus provides the foundation for installing the Windows port of the egcs
compiler.

In general, compiling a C++ source source.cc is done as follows:

g++ source.cc

17

This produces a binary program (a.out or a.exe). If the default name is not wanted, the name
of the executable can be specified using the -o flag:

g++ -o source source.cc

If only a compilation is required, the compiled module can be generated using the -c flag:

g++ -c source.cc

This produces the file source.o, which can be linked to other modules later on.

Using the icmake program (to be downloaded from ftp://ftp.icce.rug.nl/icmake-X.YY.tar.gz) a
maintenance script can be used to assist in the construction and maintenance of a C++ pro-
gram. This script has been tested on Linux platforms for several years now. It is described at
http://www.icce.rug.nl/docs/programs/Cscript.html

2.3 Advantages and pretensions of C++

Often it is said that programming in C++ leads to ‘better’ programs. Some of the claimed
advantages of C++ are:

• New programs would be developed in less time because old code can be reused.

• Creating and using new data types would be easier than in C.

• The memory management under C++ would be easier and more transparent.

• Programs would be less bug-prone, as C++ uses a stricter syntax and type checking.

• ‘Data hiding’, the usage of data by one program part while other program parts cannot access
the data, would be easier to implement with C++.

Which of these allegations are true? In our opinion, C++ is a little overrated; in general this holds
true for the entire object-oriented programming (OOP). The enthusiasm around C++ resembles
somewhat the former allegations about Artificial-Intelligence (AI) languages like Lisp and Prolog:
these languages were supposed to solve the most difficult AI-problems ‘almost without effort’.
Obviously, too promising stories about any programming language must be overdone; in the end,
each problem can be coded in any programming language (even BASIC or assembly language).
The advantages or disadvantages of a given programming language aren’t in ‘what you can do with
them’, but rather in ‘which tools the language offers to make the job easier’.

Concerning the above allegations of C++, we think that the following can be concluded. The
development of new programs while existing code is reused can also be realized in C by, e.g., using
function libraries: thus, handy functions can be collected in a library and need not be re-invented
with each new program. Still, C++ offers its specific syntax possibilities for code reuse, apart
from function libraries (see chapter 14).

Creating and using new data types is also very well possible in C; e.g., by using structs, typedefs
etc.. From these types other types can be derived, thus leading to structs containing structs
and so on.

18

Memory management is in principle in C++ as easy or as difficult as in C. Especially when ded-
icated C functions such as xmalloc() and xrealloc() are used2. In short, memory management
in C or in C++ can be coded ‘elegantly’, ‘ugly’ or anything in between – this depends on the
developer rather than on the language.

Concerning ‘bug proneness’ we can say that C++ indeed uses stricter type checking than C.
However, most modern C compilers implement ‘warning levels’; it is then the programmer’s choice
to disregard or heed a generated warning. In C++ many of such warnings become fatal errors
(the compilation stops).

As far as ‘data hiding’ is concerned, C does offer some tools. E.g., where possible, local or static
variables can be used and special data types such as structs can be manipulated by dedicated
functions. Using such techniques, data hiding can be realized even in C; though it needs to be
said that C++ offers special syntactical constructions. In contrast, programmers who prefer to
use a global variable int i for each counter variable will quite likely not benefit from the concept
of data hiding, be it in C or C++.

Concluding, C++ in particular and OOP in general are not solutions to all programming problems.
C++, however, does offer some elegant syntactical possibilities which are worthwhile investigat-
ing. At the same time, the level of grammatical complexity of C++ has increased significantly
compared to C. In time we got used to this increased level of complexity, but the transition didn’t
take place fast or painless. With the annotations we hope to help the reader to make the transition
from C to C++ by providing, indeed, our annotations to what is found in some textbooks on
C++. We hope you like this document and may benefit from it: Good luck!

2.4 What is Object-Oriented Programming?

Object-oriented programming propagates a slightly different approach to programming problems
than the strategy which is usually used in C. The C-way is known as a ‘procedural approach’:
a problem is decomposed into subproblems and this process is repeated until the subtasks can
be coded. Thus a conglomerate of functions is created, communicating through arguments and
variables, global or local (or static).

In contrast, or maybe better: in addition to this, an object-oriented approach identifies the key-
words in the problem. These keywords are then depicted in a diagram and arrows are drawn
between these keywords to define an internal hierarchy. The keywords will be the objects in the
implementation and the hierarchy defines the relationship between these objects. The term object
is used here to describe a limited, well-defined structure, containing all information about some
entity: data types and functions to manipulate the data.

As an example of an object-oriented approach, an illustration follows:

The employees and owner of a car dealer and auto garage company are paid
as follows. First, mechanics who work in the garage are paid a certain sum
each month. Second, the owner of the company receives a fixed amount each
month. Third, there are car salesmen who work in the showroom and receive
their salary each month plus a bonus per sold car. Finally, the company
employs second-hand car purchasers who travel around; these employees receive
their monthly salary, a bonus per bought car, and a restitution of their
travel expenses.

2these functions are often present in our C-programs, they allocate or abort the program when the memory pool
is exhausted

19

\

Figure 2.1: Hierarchy of objects in the salary administration.

When representing the above salary administration, the keywords could be mechanics, owner,
salesmen and purchasers. The properties of such units are: a monthly salary, sometimes a bonus
per purchase or sale, and sometimes restitution of travel expenses. When analyzing the problem
in this manner we arrive at the following representation:

• The owner and the mechanics can be represented as the same type, receiving a given salary
per month. The relevant information for such a type would be the monthly amount. In
addition this object could contain data as the name, address and social security number.

• Car salesmen who work in the showroom can be represented as the same type as above but
with extra functionality: the number of transactions (sales) and the bonus per transaction.

In the hierarchy of objects we would define the dependency between the first two objects by
letting the car salesmen be ‘derived’ from the owner and mechanics.

• Finally, there are the second-hand car purchasers. These share the functionality of the
salesmen except for the travel expenses. The additional functionality would therefore consist
of the expenses made and this type would be derived from the salesmen.

The hierarchy of the thus identified objects further illustrated in figure 2.1.

The overall process in the definition of a hierarchy such as the above starts with the description of
the most simple type. Subsequently more complex types are derived, while each derivation adds
a little functionality. From these derived types, more complex types can be derived ad infinitum,
until a representation of the entire problem can be made.

In C++ each of the objects can be represented in a class, containing the necessary functionality
to do useful things with the variables (called objects) of these classes. Not all of the functionality
and not all of the properties of a class is usually available to objects of other classes. As we will see,
classes tend to encapsulate their properties in such a way that they are not immediately accessible
from the outside world. Instead, dedicated functions are normally used to reach or modify the
properties of objects.

20

2.5 Differences between C and C++

In this section some examples of C++ code are shown. Some differences between C and C++
are highlighted.

2.5.1 End-of-line comment

According to the ANSI definition, ‘end of line comment’ is implemented in the syntax of C++.
This comment starts with // and ends with the end-of-line marker. The standard C comment,
delimited by /∗ and ∗/ can still be used in C++:

int main()
{

// this is end-of-line comment
// one comment per line

/*
this is standard-C comment, over more
than one line

*/

return (0);
}

The end-of-line comment was already implemented as an extension to C in some C compilers, such
as the Microsoft C Compiler V5.

2.5.2 NULL-pointers vs. 0-pointers

In C++ all zero values are coded as 0. In C, where pointers are concerned, NULL is often used.
This difference is purely stylistic, though one that is widely adopted. In C++ there’s no need
anymore to use NULL. Indeed, according to the descriptions of the pointer-returning operator new
0 rather than NULL is returned when memory allocation fails.

2.5.3 Strict type checking

C++ uses very strict type checking. A prototype must be known for each function which is called,
and the call must match the prototype.

The program

int main()
{

printf("Hello World\n");

21

return (0);
}

does often compile under C, though with a warning that printf() is not a known function. Many
C++ compilers will fail to produce code in such a situation3. The error is of course the missing
#include<stdio.h> directive.

2.5.4 A new syntax for casts

Traditionally, C offers the following cast construction:

(typename)expression

in which typename is the name of a valid type, and expression an expression. Following that,
C++ initially also supported the function call style cast notation:

typename(expression)

But, these casts are now all called old-style casts, and they are deprecated. Instead, four new-style
casts were introduced:

• The standard cast to convert one type to another is

static cast<type>(expression)

• There is a special cast to do away with the const type-modification:

const cast<type>(expression)

• A third cast is used to change the interpretation of information:

reinterpret cast<type>(expression)

• And, finally, there is a cast form which is used in combination with polymorphism (see
chapter 15): The

dynamic cast<type>(expression)

is performed run-time to convert, e.g., a pointer to an object of a certain class to a pointer
to an object in its so-called class hierarchy. At this point in the Annotations it is a bit
premature to discuss the dynamic cast, but we will return to this topic in section 15.6.1.

3When GNU’s g++ compiler encounters an unknown function, it assumes that an ‘ordinary’ C function is meant.
It does complain however.

22

2.5.5 The ’static cast’-operator

The static cast<type>(expression) operator is used to convert one type to an acceptable
other type. E.g., double to int. An example of such a cast is, assuming intVar is of type int:

intVar = static cast<int>(12.45);

Another nice example of code in which it is a good idea to use the static cast<>()-operator is
in situations where the arithmetic assignment operators are used in mixed-type situations. E.g.,
consider the following expression (assume doubleVar is a variable of type double:

intVar += doubleVar;

Here, the evaluated expression actually is:

intVar = static cast<int>(static cast<double>(intVar) + doubleVar);

IntVar is first promoted to a double, and is then added as double to doubleVar. Next, the sum
is cast back to an int. These two conversions are a bit overdone. The same result is obtained by
explicitly casting the doubleVar to an int, thus obtaining an int-value for the right-hand side of
the expression:

intVar += static cast<int>(doubleVar);

2.5.6 The ’const cast’-operator

The const cast<type>(expression) operator is used to do away with the const-ness of a
(pointer) type. Assume that a function string op(char ∗s) is available, which performs some
operation on its char ∗s parameter. Furthermore, assume that it’s known that the function does
not actually alter the string it receives as its argument. How can we use the function with a string
like char const hello[] = "Hello world"?

Passing hello to fun() produces the warning

passing ‘const char ∗’ as argument 1 of ‘fun(char ∗)’ discards const

which can be prevented using the call

fun(const cast<char ∗>(hello));

2.5.7 The ’reinterpret cast’-operator

The reinterpret cast<type>(expression) operator is used to reinterpret byte patterns. For
example, the individual bytes making up a double value can easily be reached using a reinterpret cast<>().
Assume doubleVar is a variable of type double, then the individual bytes can be reached using

reinterpret cast<char ∗>(&doubleVar)

23

This particular example also suggests the danger of the cast: it looks as though a standard C-string
is produced, but there is not normally a trailing 0-byte. It’s just a way to reach the individual
bytes of the memory holding a double value.

More in general: using the cast-operators is a dangerous habit, as it suppresses the normal type-
checking mechanism of the compiler. It is suggested to prevent casts if at all possible. If circum-
stances arise in which casts have to be used, document the reasons for their use well in your code,
to make double sure that the cast is not the underlying cause for a program to misbehave.

2.5.8 The void argument list

A function prototype with an empty argument list, such as

extern void func();

means in C that the argument list of the declared function is not prototyped: the compiler will
not be able to warn against improper argument usage. When declaring a function in C which has
no arguments, the keyword void is used, as in:

extern void func(void);

Because C++ maintains strict type checking, an empty argument list is interpreted as the absence
of any parameter. The keyword void can then be left out. In C++ the above two declarations
are equivalent.

2.5.9 The #define cplusplus

Each C++ compiler which conforms to the ANSI standard defines the symbol cplusplus: it is
as if each source file were prefixed with the preprocessor directive #define cplusplus.

We shall see examples of the usage of this symbol in the following sections.

2.5.10 The usage of standard C functions

Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used
in C++ programs. Such functions however must be declared as C functions.

As an example, the following code fragment declares a function xmalloc() which is a C function:

extern "C" void *xmalloc(unsigned size);

24

This declaration is analogous to a declaration in C, except that the prototype is prefixed with
extern "C".

A slightly different way to declare C functions is the following:

extern "C"
{

.

. (declarations)

.
}

It is also possible to place preprocessor directives at the location of the declarations. E.g., a C
header file myheader.h which declares C functions can be included in a C++ source file as follows:

extern "C"
{
include <myheader.h>
}

The above presented methods can be used without problem, but are not very current. A more
frequently used method to declare external C functions is presented below.

2.5.11 Header files for both C and C++

The combination of the predefined symbol cplusplus and of the possibility to define extern
"C" functions offers the ability to create header files for both C and C++. Such a header file
might, e.g., declare a group of functions which are to be used in both C and C++ programs.

The setup of such a header file is as follows:

#ifdef __cplusplus
extern "C"
{
#endif
.
. (the declaration of C-functions occurs
. here, e.g.:)
extern void *xmalloc(unsigned size);
.
#ifdef __cplusplus
}
#endif

25

Using this setup, a normal C header file is enclosed by extern "C" { which occurs at the start of
the file and by }, which occurs at the end of the file. The #ifdef directives test for the type of the
compilation: C or C++. The ‘standard’ header files, such as stdio.h, are built in this manner
and therefore usable for both C and C++.

An extra addition which is often seen is the following. Usually it is desirable to avoid multiple
inclusions of the same header file. This can easily be achieved by including an #ifndef directive
in the header file. An example of a file myheader.h would then be:

#ifndef _MYHEADER_H_
#define _MYHEADER_H_
.
. (the declarations of the header file follow here,
. with #ifdef _cplusplus etc. directives)
.
#endif

When this file is scanned for the first time by the preprocessor, the symbol MYHEADER H is not
yet defined. The #ifndef condition succeeds and all declarations are scanned. In addition, the
symbol MYHEADER H is defined.

When this file is scanned for a second time during the same compilation, the symbol MYHEADER H
is defined. All information between the #ifndef and #endif directives is skipped.

The symbol name MYHEADER H serves in this context only for recognition purposes. E.g., the
name of the header file can be used for this purpose, in capitals, with an underscore character
instead of a dot.

Apart from all this, the custom has evolved to give C header files the extension .h, and to give
C++ header files no extension. For example, the standard iostreams cin, cout and cerr are
available after inclusing the preprocessor directive #include <iostream>, rather than #include
<iostream.h> in a source. In the Annotations this convention is used with the standard C++
header files, but not everywhere else (yet).

There is more to be said about header files. In section 4.7 the preferred organization of header
files when C++ classes are used is discussed.

2.5.12 The definition of local variables

In C local variables can only be defined at the top of a function or at the beginning of a nested
block. In C++ local variables can be created at any position in the code, even between statements.

Furthermore local variables can be defined in some statements, just prior to their usage. A typical
example is the for statement:

#include <stdio.h>

int main()
{

26

for (register int i = 0; i < 20; i++)
printf("%d\n", i);

return (0);
}

In this code fragment the variable i is created inside the for statement. According to the ANSI-
standard, the variable does not exist prior to the for-statement and not beyond the for-statement.
With some compilers, the variable continues to exist after the execution of the for-statement, but
a warning like

warning: name lookup of ‘i’ changed for new ANSI ‘for’ scoping using obsolete binding
at ‘i’

will be issued when the variable is used outside of the for-loop. The implication seems clear:
define a variable just before the for-statement if it’s to be used beyond that statement, otherwise
the variable can be defined at the for-statement itself.

Defining local variables when they’re needed requires a little getting used to. However, eventually
it tends to produce more readable code than defining variables at the beginning of compound
statements. We suggest the following rules of thumb for defining local variables:

• Local variables should be defined at the beginning of a function, following the first {,

• or they should be created at ‘intuitively right’ places, such as in the example above. This
does not only entail the for-statement, but also all situations where a variable is only needed,
say, half-way through the function.

2.5.13 Function Overloading

In C++ it is possible to define several functions with the same name, performing different actions.
The functions must only differ in their argument lists. An example is given below:

#include <stdio.h>

void show(int val)
{

printf("Integer: %d\n", val);
}

void show(double val)
{

printf("Double: %lf\n", val);
}

void show(char *val)
{

printf("String: %s\n", val);
}

27

int main()
{

show(12);
show(3.1415);
show("Hello World\n!");

return (0);
}

In the above fragment three functions show() are defined, which only differ in their argument lists:
int, double and char ∗. The functions have the same name. The definition of several functions
with the same name is called ‘function overloading’.

It is interesting that the way in which the C++ compiler implements function overloading is quite
simple. Although the functions share the same name in the source text (in this example show()),
the compiler –and hence the linker– use quite different names. The conversion of a name in the
source file to an internally used name is called ‘name mangling’. E.g., the C++ compiler might
convert the name void show (int) to the internal name VshowI, while an analogous function with
a char∗ argument might be called VshowCP. The actual names which are internally used depend
on the compiler and are not relevant for the programmer, except where these names show up in
e.g., a listing of the contents of a library.

A few remarks concerning function overloading are:

• The usage of more than one function with the same name but quite different actions should
be avoided. In the example above, the functions show() are still somewhat related (they
print information to the screen).

However, it is also quite possible to define two functions lookup(), one of which would find a
name in a list while the other would determine the video mode. In this case the two functions
have nothing in common except for their name. It would therefore be more practical to use
names which suggest the action; say, findname() and getvidmode().

• C++ does not allow that several functions only differ in their return value. This has the
reason that it is always the programmer’s choice to inspect or ignore the return value of a
function. E.g., the fragment

printf("Hello World!\n");

holds no information concerning the return value of the function printf()4. Two functions
printf() which would only differ in their return type could therefore not be distinguished
by the compiler.

• Function overloading can lead to surprises. E.g., imagine a statement like

show(0);

4The return value is, by the way, an integer which states the number of printed characters. This return value is
practically never inspected.

28

given the three functions show() above. The zero could be interpreted here as a NULL pointer
to a char, i.e., a (char ∗)0, or as an integer with the value zero. C++ will choose to call
the function expecting an integer argument, which might not be what one expects.

2.5.14 Default function arguments

In C++ it is possible to provide ‘default arguments’ when defining a function. These arguments
are supplied by the compiler when not specified by the programmer.

An example is shown below:

#include <stdio.h>

void showstring(char *str = "Hello World!\n")
{

printf(str);
}

int main()
{

showstring("Here’s an explicit argument.\n");

showstring(); // in fact this says:
// showstring("Hello World!\n");

return (0);
}

The possibility to omit arguments in situations where default arguments are defined is just a nice
touch: the compiler will supply the missing argument when not specified. The code of the program
becomes by no means shorter or more efficient.

Functions may be defined with more than one default argument:

void two_ints(int a = 1, int b = 4)
{

.

.

.
}

int main()
{

two_ints(); // arguments: 1, 4
two_ints(20); // arguments: 20, 4
two_ints(20, 5); // arguments: 20, 5

return (0);
}

29

When the function two ints() is called, the compiler supplies one or two arguments when nec-
essary. A statement as two ints(,6) is however not allowed: when arguments are omitted they
must be on the right-hand side.

Default arguments must be known to the compiler when the code is generated where the arguments
may have to be supplied. Often this means that the default arguments are present in a header file:

// sample header file
extern void two_ints(int a = 1, int b = 4);

// code of function in, say, two.cc
void two_ints(int a, int b)
{

.

.
}

Note that supplying the default arguments in the function definition instead of in the header file
would not be the correct approach.

2.5.15 The keyword typedef

The keyword typedef is in C++ allowed, but no longer necessary when it is used as a prefix in
union, struct or enum definitions. This is illustrated in the following example:

struct somestruct
{

int
a;

double
d;

char
string[80];

};

When a struct, union or other compound type is defined, the tag of this type can be used as type
name (this is somestruct in the above example):

somestruct
what;

what.d = 3.1415;

30

2.5.16 Functions as part of a struct

In C++ it is allowed to define functions as part of a struct. This is the first concrete example of
the definition of an object: as was described previously (see section 2.4), an object is a structure
containing all involved code and data.

A definition of a struct point is given in the code fragment below. In this structure, two int
data fields and one function draw() are declared.

struct point // definition of a screen
{ // dot:

int
x, // coordinates
y; // x/y

void
draw(void); // drawing function

};

A similar structure could be part of a painting program and could, e.g., represent a pixel in the
drawing. Concerning this struct it should be noted that:

• The function draw() which occurs in the struct definition is only a declaration. The actual
code of the function, or in other words the actions which the function should perform, are
located elsewhere: in the code section of the program, where all code is collected. We will
describe the actual definitions of functions inside structs later (see section 3.2).

• The size of the struct point is just two ints. Even though a function is declared in the
structure, its size is not affected by this. The compiler implements this behavior by allowing
the function draw() to be known only in the context of a point.

The point structure could be used as follows:

point // two points on
a, // screen
b;

a.x = 0; // define first dot
a.y = 10; // and draw it
a.draw();

b = a; // copy a to b
b.y = 20; // redefine y-coord
b.draw(); // and draw it

The function which is part of the structure is selected in a similar manner in which data fields are
selected; i.e., using the field selector operator (.). When pointers to structs are used, -> can be
used.

31

The idea of this syntactical construction is that several types may contain functions with the same
name. E.g., a structure representing a circle might contain three int values: two values for the
coordinates of the center of the circle and one value for the radius. Analogously to the point
structure, a function draw() could be declared which would draw the circle.

32

Chapter 3

A first impression of C++

In this chapter the usage of C++ is further explored. The possibility to declare functions in
structs is further illustrated using examples. The concept of a class is introduced.

3.1 More extensions of C in C++

Before we continue with the ‘real’ object-oriented approach to programming, we first introduce
some extensions to the C programming language, encountered in C++: not mere differences
between C and C++, but syntactical constructs and keywords that are not found in C.

3.1.1 The scope resolution operator ::

The syntax of C++ introduces a number of new operators, of which the scope resolution operator
:: is described first. This operator can be used in situations where a global variable exists with
the same name as a local variable:

#include <stdio.h>

int
counter = 50; // global variable

int main()
{

for (register int counter = 1; // this refers to the
counter < 10; // local variable
counter++)

{
printf("%d\n",

::counter // global variable
/ // divided by
counter); // local variable

}

33

return (0);
}

In this code fragment the scope operator is used to address a global variable instead of the local
variable with the same name. The usage of the scope operator is more extensive than just this,
but the other purposes will be described later.

3.1.2 cout, cin and cerr

In analogy to C, C++ defines standard input- and output streams which are opened when a
program is executed. The streams are:

• cout, analogous to stdout,

• cin, analogous to stdin,

• cerr, analogous to stderr.

Syntactically these streams are not used with functions: instead, data are read from the streams or
written to them using the operators<<, called the insertion operator and >>, called the extraction
operator. This is illustrated in the example below:

#include <iostream>

void main()
{

int
ival;

char
sval[30];

cout << "Enter a number:" << endl;
cin >> ival;
cout << "And now a string:" << endl;
cin >> sval;

cout << "The number is: " << ival << endl
<< "And the string is: " << sval << endl;

}

This program reads a number and a string from the cin stream (usually the keyboard) and prints
these data to cout. Concerning the streams and their usage we remark the following:

• The streams are declared in the header file iostream.

• The streams cout, cin and cerr are in fact ‘objects’ of a given class (more on classes later),
processing the input and output of a program. Note that the term ‘object’, as used here,
means the set of data and functions which defines the item in question.

34

• The stream cin reads data and copies the information to variables (e.g., ival in the above
example) using the extraction operator >>. We will describe later how operators in C++
can perform quite different actions than what they are defined to do by the language grammar,
such as is the case here. We’ve seen function overloading. In C++ operators can also have
multiple definitions, which is called operator overloading.

• The operators which manipulate cin, cout and cerr (i.e., >> and <<) also manipulate
variables of different types. In the above example cout << ival results in the printing of
an integer value, whereas cout << "Enter a number" results in the printing of a string.
The actions of the operators therefore depend on the type of supplied variables.

• Special symbolic constants are used for special situations. The termination of a line written
by cout is realized by inserting the endl symbol, rather than using the string "\n".

The streams cin, cout and cerr are in fact not part of the C++ grammar, as defined in the
compiler which parses source files. The streams are part of the definitions in the header file
iostream. This is comparable to the fact that functions as printf() are not part of the C
grammar, but were originally written by people who considered such functions handy and collected
them in a run-time library.

Whether a program uses the old-style functions like printf() and scanf() or whether it employs
the new-style streams is a matter of taste. Both styles can even be mixed. A number of advantages
and disadvantages is given below:

• Compared to the standard C functions printf() and scanf(), the usage of the insertion and
extraction operators is more type-safe. The format strings which are used with printf()
and scanf() can define wrong format specifiers for their arguments, for which the compiler
sometimes can’t warn. In contrast, argument checking with cin, cout and cerr is performed
by the compiler. Consequently it isn’t possible to err by providing an int argument in places
where, according to the format string, a string argument should appear.

• The functions printf() and scanf(), and other functions which use format strings, in fact
implement a mini-language which is interpreted at run-time. In contrast, the C++ compiler
knows exactly which in- or output action to perform given which argument.

• The usage of the left-shift and right-shift operators in the context of the streams does illustrate
the possibilities of C++. Again, it requires a little getting used to, coming from C, but after
that these overloaded operators feel rather comfortably.

The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 11 iostreams
will be covered in greater detail.

3.1.3 The keyword const

The keyword const very often occurs in C++ programs, even though it is also part of the C
grammar, where it’s much less used.

This keyword is a modifier which states that the value of a variable or of an argument may not be
modified. In the below example an attempt is made to change the value of a variable ival, which
is not legal:

35

int main()
{

int const // a constant int..
ival = 3; // initialized to 3

ival = 4; // assignment leads
// to an error message

return (0);
}

This example shows how ival may be initialized to a given value in its definition; attempts to
change the value later (in an assignment) are not permitted.

Variables which are declared const can, in contrast to C, be used as the specification of the size
of an array, as in the following example:

int const
size = 20;

char
buf[size]; // 20 chars big

A further usage of the keyword const is seen in the declaration of pointers, e.g., in pointer-
arguments. In the declaration

char const *buf;

buf is a pointer variable, which points to chars. Whatever is pointed to by buf may not be
changed: the chars are declared as const. The pointer buf itself however may be changed. A
statement as ∗buf = ’a’; is therefore not allowed, while buf++ is.

In the declaration

char *const buf;

buf itself is a const pointer which may not be changed. Whatever chars are pointed to by buf
may be changed at will.

Finally, the declaration

char const *const buf;

36

is also possible; here, neither the pointer nor what it points to may be changed.

The rule of thumb for the placement of the keyword const is the following: whatever occurs just
prior to the keyword may not be changed. The definition or declaration in which const is used
should be read from the variable or function identifier back to the type indentifier:

“Buf is a const pointer to const characters”

This rule of thumb is especially handy in cases where confusion may occur. In examples of C++
code, one often encounters the reverse: const preceding what should not be altered. That this
may result in sloppy code is indicated by our second example above:

char const *buf;

What must remain constant here? According to the sloppy interpretation, the pointer cannot be
altered (since const precedes the pointer-∗). In fact, the charvalues are the constant entities here,
as will be clear when it is tried to compile the following program:

int main()
{

char const *buf = "hello";

buf++; // accepted by the compiler
*buf = ’u’; // rejected by the compiler

return (0);
}

Compilation fails on the statement ∗buf = ’u’;, not on the statement buf++.

3.1.4 References

Besides the normal declaration of variables, C++ allows ‘references’ to be declared as synonyms
for variables. A reference to a variable is like an alias; the variable name and the reference name
can both be used in statements which affect the variable:

int
int_value;

int
&ref = int_value;

In the above example a variable int value is defined. Subsequently a reference ref is defined,
which due to its initialization addresses the same memory location which int value occupies. In

37

the definition of ref, the reference operator & indicates that ref is not itself an integer but a
reference to one. The two statements

int_value++; // alternative 1
ref++; // alternative 2

have the same effect, as expected. At some memory location an int value is increased by one —
whether that location is called int value or ref does not matter.

References serve an important function in C++ as a means to pass arguments which can be
modified (‘variable arguments’ in Pascal-terms). E.g., in standard C, a function which increases
the value of its argument by five but which returns nothing (void), needs a pointer argument:

void increase(int *valp) // expects a pointer
{ // to an int

*valp += 5;
}

int main()
{

int
x;

increase(&x) // the address of x is
return (0); // passed as argument

}

This construction can also be used in C++ but the same effect can be achieved using a reference:

void increase(int &valr) // expects a reference
{ // to an int

valr += 5;
}

int main()
{

int
x;

increase(x); // a reference to x is
return (0); // passed as argument

}

The way in which C++ compilers implement references is actually by using pointers: in other
words, references in C++ are just ordinary pointers, as far as the compiler is concerned. However,

38

the programmer does not need to know or to bother about levels of indirection.1

It can be argued whether code such as the above is clear: the statement increase (x) in the
main() function suggests that not x itself but a copy is passed. Yet the value of x changes because
of the way increase() is defined.

Our suggestions for the usage of references as arguments to functions are therefore the following:

• In those situations where a called function does not alter its arguments, a copy of the variable
can be passed:

void some_func(int val)
{

printf("%d\n", val);
}

int main()
{

int
x;

some_func(x); // a copy is passed, so
return (0); // x won’t be changed

}

• When a function changes the value of its argument, the address or a reference can be passed,
whichever you prefer:

void by_pointer(int *valp)
{

*valp += 5;
}

void by_reference(int &valr)
{

valr += 5;
}

int main ()
{

int
x;

by_pointer(&x); // a pointer is passed
by_reference(x); // x is altered by reference
return (0); // x might be changed

}

1Compare this to the Pascal way: an argument which is declared as var is in fact also a pointer, but the
programmer needn’t know.

39

• References have an important role in those cases where the argument will not be changed by
the function, but where it is desirable to pass a reference to the variable instead of a copy of
the whole variable. Such a situation occurs when a large variable, e.g., a struct, is passed
as argument, or is returned from the function. In these cases the copying operations tend
to become significant factors when the entire structure must be copied, and it is preferred
to use references. If the argument isn’t changed by the function, or if the caller shouldn’t
change the returned information, the use of the const keyword is appropriate and should be
used.

Consider the following example:

struct Person // some large structure
{

char
name [80],
address [90];

double
salary;

};

Person
person[50]; // database of persons

void printperson (Person const &p) // printperson expects a
{ // reference to a structure

printf ("Name: %s\n" // but won’t change it
"Address: %s\n",

p.name, p.address);
}

Person const &getperson(int index) // get a person by indexvalue
{

...
return (person[index]); // a reference is returned,

} // not a copy of person[index]

int main ()
{

Person
boss;

printperson (boss); // no pointer is passed,
// so variable won’t be
// altered by function

printperson(getperson(5)); // references, not copies
// are passed here

return (0);
}

• It should furthermore be noted here that there is another reason for using references when
passing objects as function arguments: when passing a reference to an object, the activation
of a copy constructor is avoided. We have to postpone this argument to chapter 5

40

References also can lead to extremely ‘ugly’ code. A function can also return a reference to a
variable, as in the following example:

int &func()
{

static int
value;

return (value);
}

This allows the following constructions:

func() = 20;
func() += func ();

It is probably superfluous to note that such constructions should not normally be used. Nonetheless,
there are situations where it is useful to return a reference. Even though this is discussed later,
we have seen an example of this phenomenon at our previous discussion of the iostreams. In a
statement like cout << "Hello" << endl;, the insertion operator returns a reference to cout.
So, in this statement first the "Hello" is inserted into cout, producing a reference to cout. Via
this reference the endl is then inserted in the cout object, again producing a reference to cout.
This latter reference is not further used.

A number of differences between pointers and references is pointed out in the list below:

• A reference cannot exist by itself, i.e., without something to refer to. A declaration of a
reference like

int &ref;

is not allowed; what would ref refer to?

• References can, however, be declared as external. These references were initialized else-
where.

• Reference may exist as parameters of functions: they are initialized when the function is
called.

• References may be used in the return types of functions. In those cases the function deter-
mines to what the return value will refer.

• Reference may be used as data members of classes. We will return to this usage later.

• In contrast, pointers are variables by themselves. They point at something concrete or just
“at nothing”.

• References are aliases for other variables and cannot be re-aliased to another variable. Once
a reference is defined, it refers to its particular variable.

41

• In contrast, pointers can be reassigned to point to different variables.

• When an address-of operator & is used with a reference, the expression yields the address
of the variable to which the reference applies. In contrast, ordinary pointers are variables
themselves, so the address of a pointer variable has nothing to do with the address of the
variable pointed to.

3.2 Functions as part of structs

The first chapter described that functions can be part of structs (see section 2.5.16). Such
functions are called member functions or methods. This section discusses the actual definition of
such functions.

The code fragment below illustrates a struct in which data fields for a name and address are
present. A function print() is included in the struct definition:

struct person
{

char
name [80],
address [80];

void
print (void);

};

The member function print() is defined using the structure name (person) and the scope reso-
lution operator (::):

void person::print()
{

printf("Name: %s\n"
"Address: %s\n", name, address);

}

In the definition of this member function, the function name is preceded by the struct name
followed by ::. The code of the function shows how the fields of the struct can be addressed
without using the type name: in this example the function print() prints a variable name. Since
print() is a part of the struct person, the variable name implicitly refers to the same type.

The usage of this struct could be, e.g.:

person
p;

42

strcpy(p.name, "Karel");
strcpy(p.address, "Rietveldlaan 37");
p.print();

The advantage of member functions lies in the fact that the called function can automatically
address the data fields of the structure for which it was invoked. As such, in the statement
p.print() the structure p is the ‘substrate’: the variables name and address which are used in
the code of print() refer to the same struct p.

3.3 Several new data types

In C the following basic data types are available: void, char, short, int, long, float and
double. C++ extends these five basic types with several extra types: the types bool, wchar t
and long double. The type long double is merely a double-long double datatype. Apart from
these basic types a standard type string is available. The datatypes bool, wchar t and string
are covered in the following sections.

3.3.1 The ‘bool’ data type

In C the following basic data types are available: void, char, int, float and double. C++
extends these five basic types with several extra types. In this section the type bool is introduced.

The type bool represents boolean (logical) values, for which the (now reserved) values true and
false may be used. Apart from these reserved values, integral values may also be assigned to
variables of type bool, which are implicitly converted to true and false according to the following
conversion rules (assume intValue is an int-variable, and boolValue is a bool-variable):

// from int to bool:
boolValue = intValue ? true : false;

// from bool to int:

intValue = boolValue ? 1 : 0;

Furthermore, when bool values are inserted into, e.g., cout, then 1 is written for true values, and
0 is written for false values. Consider the following example:

cout << "A true value: " << true << endl
<< "A false value: " << false << endl;

The bool data type is found in other programming languages as well. Pascal has its type Boolean,
and Java has a boolean type. Different from these languages, C++’s type bool acts like a kind of
int type: it’s primarily a documentation-improving type, having just two values true and false.

43

Actually, these values can be interpreted as enum values for 1 and 0. Doing so would neglect the
philosophy behind the bool data type, but nevertheless: assigning true to an int variable neither
produces warnings nor errors.

Using the bool-type is generally more intuitively clear than using int. Consider the following
prototypes:

bool exists(char const *fileName); // (1)
int exists(char const *fileName); // (2)

For the first prototype (1), most people will expect the function to return true if the given
filename is the name of an existing file. However, using the second prototype some ambiguity
arises: intuitively the returnvalue 1 is appealing, as it leads to constructions like

if (exists("myfile"))
cout << "myfile exists";

On the other hand, many functions (like access(), stat(), etc.) return 0 to indicate a successful
operation, reserving other values to indicate various types of errors.

As a rule of thumb we suggest the following: If a function should inform its caller about the success
or failure of its task, let the function return a bool value. If the function should return success or
various types of errors, let the function return enum values, documenting the situation when the
function returns. Only when the function returns a meaningful integral value (like the sum of two
int values), let the function return an int value.

3.3.2 The ‘wchar t’ data type

The wchar t type is an extension of the char basic type, to accomodate wide character values,
such as the Unicode character set. Sizeof(wchar t) is 2, allowing for 65,536 different character
values.

Note that a programming language like Java has a data type char that is comparable to C++’s
wchar t type, while Java’s byte data type is comparable to C++’s char type. Very convenient....

3.3.3 The ‘string’ data type

C++ offers a large number of facilities to implement solutions for common problems. Most of these
facilities are part of the Standard Template Library or they are implemented as generic algorithms
(see chapter 10).

Among the facilities C++ programmers have developed over and over again (as reflected in the
Annotations) are those for manipulating chunks of text, commonly called strings. The C program-
ming language offers rudimentary string support: the ascii-z terminated series of characters is the
foundation on which a large amount of code has been built.

44

Standard C++ now offers a string type of its own. In order to use string-type objects, the
header file string must be included in sources.

Actually, string objects are class type variables, and the class is introduced for the first time in
chapter 4. However, in order to use a string, it is not necessary to know what a class is. In this
section the operators that are available for strings and some other operations are discussed. The
operations that can be performed on strings take the form

stringVariable.operation(argumentList)

For example, if string1 and string2 are variables of type string, then

string1.compare(string2)

can be used to compare both strings. A function like compare(), which is part of the string-class
is called a memberfunction. The string class offers a large number of these memberfunctions,
as well as extensions of some well-known operators, like the assignment (=) and the comparison
operator (==). These operators and functions are discussed in the following sections.

Operations on strings

Some of the operations that can be performed on strings return indices within the strings. When-
ever such an operation fails to find an appropriate index, the value string::npos is returned.
This value is a (symbolic) value of type string::size type, which is (for all practical purposes)
an int.

Note that in all operations where string objects can be used as arguments, char const ∗ values
and variables can be used as well.

Some string-memberfunctions use iterators. Iterators will be covered in section 10.1. The mem-
berfunctions that use iterators are listed in the next section (3.3.3), they are not further illustrated
below.

The following operations can be performed on strings:

• String objects can be initialized. For the initialization a plain ascii-z string, another string
object, or an implicit initialization can be used. In the example, note that the implicit
initialization does not have an argument, and does not use the function argumentlist notation.

#include <string>

int main()
{

string
stringOne("Hello World"), // using plain ascii-Z
stringTwo(stringOne), // using another string object
stringThree; // implicit initialization to ""

// do not use: stringThree();
return (0);

}

45

• String objects can be assigned to each other. For this the assignment operator (i.e., the =
operator) can be used, which accepts both a string object and a C-style characterstring as
its right-hand argument:

#include <string>

int main()
{

string
stringOne("Hello World"),
stringTwo;

stringTwo = stringOne; // assign stringOne to stringTwo
stringTwo = "Hello world"; // assign a C-string to StringTwo

return (0);
}

• In the previous example a standard C-string (an ascii-Z string) was implicitly converted to a
string-object. The reverse conversion (converting a string object to a standard C-string)
is not performed automatically. In order to obtain the C-string that is stored within the
string object itself, the memberfunction c str(), which returns a char const ∗, can be
used:

#include <iostream>
#include <string>

int main()
{

string
stringOne("Hello World");

char const
*Cstring = stringOne.c_str();

cout << Cstring << endl;

return (0);
}

• The individual elements of a string object can be reached for reading or writing. For this
operation the subscript-operator ([]) is available, but not the pointer dereferencing operator
(∗). The subscript operator does not perform range-checking. If range-checking is required,
the at() memberfunction can be used instead of the subscript-operator:

#include <string>

int main()
{

string
stringOne("Hello World");

stringOne[6] = ’w’; // now "Hello world"
if (stringOne[0] == ’H’)

46

stringOne[0] = ’h’; // now "hello world"

// THIS WON’T COMPILE:
// *stringOne = ’H’;

// Now using the at() memberfunction:

stringOne.at(6) =
stringOne.at(0); // now "Hello Horld"

if (stringOne.at(0) == ’H’)
stringOne.at(0) = ’W’; // now "Wello Horld"

return (0);
}

When an illegal index is passed to the at() memberfunction, the program aborts.

• Two strings can be compared for (in)equality or ordering, using the ==, !=, <, <=, > and
>= operators or the compare() memberfunction can be used. The compare() memberfunc-
tion comes in different flavors, the plain one (having another string object as argument)
offers a bit more information than the operators do. The returnvalue of the compare()
memberfunction may be used for lexicographical ordering: a negative value is returned if
the string stored in the string object using the compare() memberfunction (in the example:
stringOne) is located earlier in the alphabet (based on the standard ascii-characterset) than
the string stored in the string object passed as argument to the compare() memberfunction.

#include <iostream>
#include <string>

int main()
{

string
stringOne("Hello World"),
stringTwo;

if (stringOne != stringTwo)
stringTwo = stringOne;

if (stringOne == stringTwo)
stringTwo = "Something else";

if (stringOne.compare(stringTwo) > 0)
cout << "stringOne after stringTwo in the alphabet\n";

else if (stringOne.compare(stringTwo) < 0)
cout << "stringOne before stringTwo in the alphabet\n";

else
cout << "Both strings are the same";

// Alternatively:

if (stringOne > stringTwo)
cout << "stringOne after stringTwo in the alphabet\n";

else if (stringOne < stringTwo)

47

cout << "stringOne before stringTwo in the alphabet\n";
else

cout << "Both strings are the same";

return (0);
}

There is no memberfunction to perform a case insensitive comparison of strings.

Overloaded forms of the compare() memberfunction have one or two extra arguments.

– If the compare()memberfunction is used with two arguments, then the second argument
is an index position in the current string-object. It indicates the index position in the
current string object where the comparison should start.

– If the compare()memberfunction is used with three arguments, then the third argument
indicates the number of characters that should be compared.

See the following example for further details about the compare() function.

#include <iostream>
#include <string>

int main()
{

string
stringOne("Hello World");

// comparing from a certain offset in stringOne

if (!stringOne.compare("ello World", 1))
cout << "comparing ’Hello world’ from index 1"

" to ’ello World’: ok\n";

// comparing from a certain offset in stringOne over a certain
// number of characters in "World and more"

if (!stringOne.compare("World and more", 6, 5))
cout << "comparing ’Hello World’ from index 6 over 5 positions"

" to ’World and more’: ok\n";

// The same, but this fails, as all of the chars in stringOne
// starting at index 6 are compared, not just 3 chars.
// number of characters in "World and more"

if (!stringOne.compare("World and more", 6, 3))
cout << "comparing ’Hello World’ from index 6 over 3 positions"

" to ’World and more’: ok\n";
else

cout << "Unequal (sub)strings\n";

return (0);
}

48

• A string can be appended to another string. For this the += operator can be used, as well as
the append() memberfunction. Like the compare() function, the append() memberfunction
may have two extra arguments. The first argument is the string to be appended, the second
argument specifies the index position of the first character that will be appended. The third
argument specifies the number of characters that will be appended. If the first argument is
of type char const ∗, only a second argument may be specified. In that case, the second
argument specifies the number of characters of the first argument that are appended to the
string object. Furthermore, the + operator can be used to append two strings within an
expression:

#include <iostream>
#include <string>

int main()
{

string
stringOne("Hello"),
stringTwo("World");

stringOne += " " + stringTwo;

stringOne = "hello";
stringOne.append(" world");

// append only 5 characters:
stringOne.append(" ok. >This is not used<", 5);

cout << stringOne << endl;

string
stringThree("Hello");

// append " World":
stringThree.append(stringOne, 5, 6);

cout << stringThree << endl;

return (0);
}

The + operator can be used in cases where at least one term of the + operator is a string
object (the other term can be a string, char const ∗ or char).

When neither operand of the + operator is a string, at least one operand must be converted
to a string object first. An easy way to do this is to use an anonymous string object:

string("hello") + " world";

• So, the append() memberfunction is used to append characters at the end of a string. It is
also possible to insert characters somewhere within a string. For this the memberfunction
insert() is available.

The insert() memberfunction to insert (parts of) a string has at least two, and at most
four arguments:

49

– The first argument is the offset in the current string object where another string should
be inserted.

– The second argument is the string to be inserted.

– The third argument specifies the index position of the first character in the provided
string-argument that will be inserted.

– The fourth argument specifies the number of characters that will be inserted.

If the first argument is of type char const ∗, the fourth argument is not available. In that
case, the third argument indicates the number of characters of the provided char const ∗
value that will be inserted.

#include <iostream>
#include <string>

int main()
{

string
stringOne("Hell ok.");

stringOne.insert(4, "o "); // Insert "o " at position 4

string
world("The World of C++");

// insert "World" into stringOne
stringOne.insert(6, world, 4, 5);

cout << "Guess what ? It is: " << stringOne << endl;

return (0);
}

Several other variants of insert() are available. See section 3.3.3 for details.

• At times, the contents of string objects must be replaced by other information. To replace
parts of the contents of a string object by another string the memberfunction replace()
can be used.

The memberfunction has at least three and possibly five arguments, having the following
meanings (see section 3.3.3 for overloaded versions of replace(), using different types of
arguments):

– The first argument indicates the position of the first character that must be replaced

– The second argument gives the number of characters that must be replaced.

– The third argument defines the replacement text (a string or char const ∗).
– The fourth argument specifies the index position of the first character in the provided

string-argument that will be inserted.

– The fifth argument can be used to specify the number of characters that will be inserted.

If the third argument is of type char const ∗, the fifth argument is not available. In that
case, the fourth argument indicates the number of characters of the provided char const ∗
value that will be inserted.

50

The following example shows a very simple filechanger: it reads lines from cin, and replaces
occurrences of a ‘searchstring’ by a ‘replacestring’. Simple tests for the correct number of
arguments and the contents of the provided strings (they should be unequal) are implemented
using the assert() macro.

#include <iostream>
#include <string>
#include <cassert>

int main(int argc, char **argv)
{

assert(argc == 3 &&
"Usage: <searchstring> <replacestring> to process stdin");

string
line,
search(argv[1]),
replace(argv[2]);

assert(search != replace);

while (getline(cin, line))
{

while (true)
{

string::size_type
idx;

idx = line.find(search);

if (idx == string::npos)
break;

line.replace(idx, search.size(), replace);
}
cout << line << endl;

}
return (0);

}

• A particular form of replacement is swapping: the memberfunction swap() swaps the contents
of two string-objects. For example:

#include <iostream>
#include <string>

int main()
{

string
stringOne("Hello"),
stringTwo("World");

51

cout << "Before: stringOne: " << stringOne << ", stringTwo: "
<< stringTwo << endl;

stringOne.swap(stringTwo);

cout << "After: stringOne: " << stringOne << ", stringTwo: "
<< stringTwo << endl;

return (0);
}

• Another form of replacement is to remove characters from the string. For this the member-
function erase() is available. The standard form has two optional arguments:

– If no arguments are specified, the stored string is erased completely: it becomes the
empty string (string() or string("")).

– The first argument may be used to specify the offset of the first character that must be
erased.

– The second argument may be used to specify the number of characters that are to be
erased.

See section 3.3.3 for overloaded versions of erase(). An example of the use of erase() is
given below:

#include <string>

int main()
{

string
stringOne("Hello Cruel World");

stringOne.erase(5, 6);

cout << stringOne << endl;

stringOne.erase();

cout << "’" << stringOne << "’\n";

return (0);
}

• To find substrings in a string the memberfunction find() can be used. This function looks
for the string that is provided as its first argument in the string object calling find() and
returns the index of the first character of the substring if found. If the string is not found
string::npos is returned. The memberfunction rfind() looks for the substring from the
end of the string object back to its beginning. An example using find() was given earlier.

• To extract a substring from a string object, the memberfunction substr() is available.
The returned string object contains a copy of the substring in the string-object calling
substr() The memberfunction has two optional arguments:

– Without arguments, a copy of the string itself is returned.

– The first argument may be used to specify the offset of the first character to be returned.

52

– The second argument may be used to specify the number of characters that are to be
returned.

For example:

#include <string>

int main()
{

string
stringOne("Hello World");

cout << stringOne.substr(0, 5) << endl
<< stringOne.substr(6) << endl
<< stringOne.substr() << endl;

return (0);
}

• Whereas find() is used to find a substring, the functions find first of(), find first not of(),
find last of() and find last not of() can be used to find sets of characters (Unfortu-
nately, regular expressions are not supported here). The following program reads a line of
text from the standard input stream, and displays the substrings starting at the first vowel,
starting at the last vowel, and not starting at the first digit:

#include <string>

int main()
{

string
line;

getline(cin, line);

string::size_type
pos;

cout << "Line: " << line << endl
<< "Starting at the first vowel:\n"
<< "’"

<< (
(pos = line.find_first_of("aeiouAEIOU")) != string::npos ?

line.substr(pos)
:

"*** not found ***"
) << "’\n"

<< "Starting at the last vowel:\n"
<< "’"

<< (
(pos = line.find_last_of("aeiouAEIOU")) != string::npos ?

line.substr(pos)
:

"*** not found ***"

53

) << "’\n"
<< "Not starting at the first digit:\n"
<< "’"

<< (
(pos = line.find_first_not_of("1234567890"))

!= string::npos ?
line.substr(pos)

:
"*** not found ***"

) << "’\n";
return (0);

}

• The number of characters that are stored in a string are obtained by the size() member-
function, which, like the standard C function strlen() does not include the terminating
ascii-Z character. For example:

#include <iostream>
#include <string>

int main()
{

string
stringOne("Hello World");

cout << "The length of the stringOne string is "
<< stringOne.size() << " characters\n";

return (0);
}

• If the size of a string is not enough (or if it is too large), the memberfunction resize() can
be used to make it longer or shorter. Note that operators like + automatically resize the
string when needed.

• The size() memberfunction can be used to determine whether a string holds no characters
as well. Alternatively, the empty() memberfunction can be used:

#include <iostream>
#include <string>

int main()
{

string
stringOne;

cout << "The length of the stringOne string is "
<< stringOne.size() << " characters\n"

"It is " << (stringOne.empty() ? "" : " not ")
<< "empty\n";

stringOne = "";

54

cout << "After assigning a \"\"-string to a string-object\n"
"it is " << (stringOne.empty() ? "also" : " not")

<< " empty\n";

return (0);
}

• The istream &getline(istream instream, string target, char delimiter) member-
function may be used to read a line of text (up to the first delimiter or the end of the stream)
from instream.

The delimiter has a default value ’\n’. It is removed from instream, but it is not stored
in target. The function getline() was used in several earlier examples (e.g., with the
replace() memberfunction).

Overview of operations on strings

In this section the available operations on strings are summarized. There are four subparts here: the
string-initializers, the string-iterators, the string-operators and the string-memberfunctions.

The memberfunctions are ordered alphabetically by the name of the operation. Below, object is
a string-object, and argument is either a string or a char const ∗, unless overloaded versions
tailored to string and char const ∗ parameters are explicitly mentioned. Object is used in
cases where a string object is initialized or given a new value. Argument remains unchanged.
Sometimes multiple arguments are required, in which case argument1, argument2 etc. are used.

With memberfunctions the types of the parameters are given in a function-prototypical way. With
several memberfunctions iterators are used. At this point in the Annotations it’s a bit premature
to discuss iterators, but for referential purposes they have to be mentioned nevertheless. So, a
forward reference is used here: see section 10.1 for a more detailed discussion of iterators.

Finally, note that all string-memberfunctions returning indices in object return the predefined
constant string::pos if no suitable index could be found.

The string-initializers:

The string-iterators:

The string-operators:

The string memberfunctions:

• char &object.at(string::size type pos): The character (reference) at the indicated po-
sition is returned (it may be reassigned). The memberfunction performs range-checking,
aborting the program if an invalid index is passed.

• string &object.append(InputIterator begin, InputIterator end): Using this mem-
berfunction the range of characters implied by the begin and end InputIterators are
appended to object.

• string &object.append(string argument, string::size type pos = 0; string::size type
n = string::npos):

– If only argument is given, it is appended to object.

55

– If pos is specified as well, argument is appended from index position pos until the end
of argument.

– If all three arguments are provided, n characters of argument, starting at index position
pos are appended to object.

If argument is of type char const ∗, parameter pos is not available. So, with char const
∗ arguments, either all characters or an initial subset of the characters of the provided char
const ∗ argument are appended to object.

– string &object.append(string::size type n, char c): Using this memberfunc-
tion, n characters c can be appended to object.

• string &object.assign(string argument, string::size type pos = 0; string::size type
n = string::npos):

– If only argument is given, it is assigned to object.

– If pos is specified as well, object is assigned from index position pos until the end of
argument.

– If all three arguments are provided, n characters of argument, starting at index position
pos are assigned to object.

If argument is of type char const ∗, no parameter pos is available. So, with char const
∗ arguments, either all characters or an initial subset of the characters of the provided char
const ∗ argument are assigned to object.

– string &object.assign(string::size type n, char c): Using this memberfunc-
tion, n characters c can be assigned to object.

• string::size type argument.capacity(): returns the number of characters that can cur-
rently be stored inside argument.

• int argument1.compare(string argument2, string::size type pos, string::size type
n): This memberfunction may be used to compare (according to the ascii-character set) the
strings stored in argument1 and argument2. The parameter n may be used to specify the
number of characters in argument2 that are used in the comparison, the parameter pos may
be used to specify the initial character in argument1 that is used in the comparison.

• char const ∗argument.c str: the memberfunction returns the contents of argument as an
ascii-Z C-string.

• char const ∗argument.data(): returns the raw text stored in argument.

• bool argument.empty(): returns true if argument contains no data.

• string &object.erase(string::size type pos; string::size type n). This member-
function can be used to erase (a sub)string of object. The basic form erases object com-
pletely. The working of other forms of erase() depend on the specification of extra argu-
ments:

– If pos is specified, the contents of object are erased from index position pos until the
end of object.

– If pos and n are provided, n characters of object, starting at index position pos are
erased.

• iterator object.erase(iterator p): The contents of object are erased until (iterator)
position p. The iterator p is returned.

56

• iterator object.erase(iterator f, iterator l): The range of characters of object,
implied by the iterators f and l are erased. The iterator f is returned.

• string::string::size type argument1.find(string argument2, string::size type pos):
This memberfunction returns the index in argument1 where argument2 is found. If pos is
omitted, the search starts at the beginning of argument1. If pos is provided, it refers to the
index in argument1 where the search for argument2 should start.

• string::size type argument1.find(char const ∗argument2, string::size type pos,
string::size type n): This memberfunction returns the index in argument1where argument2
is found. The parameter n indicates the number of characters of argument2 that should be
used in the search: it defines a partial string starting at the beginning of argument2. If
omitted, all characters in argument2 are used. The parameter pos refers to the index in
argument1 where the search for argument2 should start. If the parameter pos is omitted as
well, argument1 is scanned completely.

• string::size type argument.find(char c, string::size type pos): This memberfunc-
tion returns the index in argument where c is found. If the argument pos is omitted, the
search starts at the beginning of argument. If provided, it refers to the index in argument
where the search for argument should start.

• string::size type argument1.find first of(string argument2, string::size type pos):
This memberfunction returns the index in argument1 where any character in argument2 is
found. If the argument pos is omitted, the search starts at the beginning of argument1. If
provided, it refers to the index in argument1 where the search for argument2 should start.

• string::size type argument1.find first of(char const∗ argument2, string::size type
pos, string::size type n): This memberfunction returns the index in argument1 where
a character of argument2 is found, no matter which character. The parameter n indicates
the number of characters of argument1 that should be used in the search: it defines a partial
string starting at the beginning of argument1. If omitted, all characters in argument1 are
used. The parameter pos refers to the index in argument1 where the search for argument2
should start. If the parameter pos is omitted as well, argument1 is scanned completely.

• string::size type argument.find first of(char c, string::size type pos): This mem-
berfunction returns the index in argument1 where character c is found. If the argument pos
is omitted, the search starts at the beginning of argument1. If provided, it refers to the index
in argument1 where the search for argument should start.

• string::size type argument1.find first not of(string argument2, string::size type
pos): This memberfunction returns the index in argument1 where a character not appearing
in argument2 is found. If the argument pos is omitted, the search starts at the beginning of
argument1. If provided, it refers to the index in argument1 where the search for argument2
should start.

• string::size type argument1.find first not of(char const∗ argument2, string::size type
pos, string::size type n): This memberfunction returns the index in argument1 where
any character not appearing in argument2 is found. The parameter n indicates the number
of characters of argument1 that should be used in the search: it defines a partial string
starting at the beginning of argument1. If omitted, all characters in argument1 are used.
The parameter pos refers to the index in argument1 where the search for argument2 should
start. If the parameter pos is omitted as well, argument1 is scanned completely.

• string::size type argument.find first not of(char c, string::size type pos): This
memberfunction returns the index in argument where another character than c is found. If
the argument pos is omitted, the search starts at the beginning of argument. If provided, it
refers to the index in argument where the search for c should start.

57

• string::size type argument1.find last of(string argument2, string::size type pos):
This memberfunction returns the last index in argument1 where a character in argument2
is found. If the argument pos is omitted, the search starts at the beginning of argument1. If
provided, it refers to the index in argument1 where the search for argument2 should start.

• string::size type argument1.find last of(char const∗ argument2, string::size type
pos, string::size type n): This memberfunction returns the last index in argument1
where a character of argument2 is found. The parameter n indicates the number of charac-
ters of argument1 that should be used in the search: it defines a partial string starting at the
beginning of argument1. If omitted, all characters in argument1 are used. The parameter
pos refers to the index in argument1 where the search for argument2 should start. If the
parameter pos is omitted as well, argument1 is scanned completely.

• string::size type argument.find last of(char c, string::size type pos): This mem-
berfunction returns the last index in argument where character c is found. If the argument
pos is omitted, the search starts at the beginning of argument. If provided, it refers to the
index in argument where the search for c should start.

• string::size type argument1.find last not of(string argument2, string::size type
pos): This memberfunction returns the last index in argument1 where any character not
appearing in argument2 is found. If the argument pos is omitted, the search starts at the
beginning of argument1. If provided, it refers to the index in argument1 where the search
for argument2 should start.

• string::size type argument1.find last not of(char const∗ argument2, string::size type
pos, string::size type n): This memberfunction returns the last index in argument1
where any character not appearing in argument2 is found. The parameter n indicates the
number of characters of argument1 that should be used in the search: it defines a partial
string starting at the beginning of argument1. If omitted, all characters in argument1 are
used. The parameter pos refers to the index in argument1 where the search for argument2
should start. If the parameter pos is omitted as well, all of argument1 is scanned.

• string::size type argument.find last not of(char c, string::size type pos): This
memberfunction returns the last index in argument where another character than c is found.
If the argument pos is omitted, the search starts at the beginning of argument. If provided,
it refers to the index in argument where the search for c should start.

• istream &getline(istream instream, string object, char delimiter). This mem-
berfunction can be used to read a line of text (up to the first delimiter or the end of the
stream) from instream. The delimiter has a default value ’\n’. It is removed from instream,
but it is not stored in object.

• string &object.insert(string::size type t pos, string argument, string::size type
pos; string::size type n). This memberfunction can be used to insert (a sub)string of
argument into object, at object’s index position t pos. The basic form inserts argument
completely at index t pos. The way other forms of insert() work depend on the specifica-
tion of extra arguments:

– If pos is specified, argument is inserted from index position pos until the end of
argument.

– If pos and n are provided, n characters of argument, starting at index position pos are
inserted into object.

If argument is of type char const ∗, no parameter pos is available. So, with char const
∗ arguments, either all characters or an initial subset of the characters of the provided char
const ∗ argument are inserted into object.

58

– string &object.insert(string::size type t pos, string::size type n, char c):
Using this memberfunction, n characters c can be inserted to object.

• iterator object.insert(iterator p, char c): The character c is inserted at the (iter-
ator) position p in object. The iterator p is returned.

• iterator object.insert(iterator p, string::size type n, char c): N characters c
are inserted at the (iterator) position p in object. The iterator p is returned.

• iterator object.insert(iterator p, InputIterator first, InputIterator last): The
range of characters implied by the InputIterators first and last are inserted at the (it-
erator) position p in object. The iterator p is returned.

• string::size type argument.length(): returns the number of characters stored in argument.

• string::size type argument.max size(): returns the maximum number of characters
that can be stored in argument.

• string& object.replace(string::size type pos1, string::size type n1, const string
argument, string::size type pos2, string::size type n2): The substring of n1 char-
acters of object, starting at position pos1 is replaced by argument. If n1 is set to 0, the
memberfunction inserts argument into object.
The basic form uses argument completely. The way other forms of replace() work depends
on the specification of extra arguments:

– If pos2 is specified, argument is inserted from index position pos2 until the end of
argument.

– If pos2 and n2 are provided, n2 characters of argument, starting at index position pos2
are inserted into object.

If argument is of type char const ∗, no parameter pos2 is available. So, with char const
∗ arguments, either all characters or an initial subset of the characters of the provided char
const ∗ argument are replaced in object.

• string &object.replace(string::size type pos, string::size type n1, string::size type
n2, char c): This memberfunction can be used to replace n1 characters of object, starting
at index position pos, by n2 c-characters. The argument n2 may be omitted, in which case
the string to be replaced is replaced by just one character c.

• string& object.replace (iterator i1, iterator i2, string argument): Here, the string
implied by the iterators i1 and i2 are replaced by the string str. If argument is a char
const ∗, an extra argument n may be used, specifying the number of characters of argument
that are used in the replacement.

• iterator object.replace(iterator f, iterator l, string argument): The range of
characters of object, implied by the iterators f and l are replaced by argument. If
argument is a char const ∗, an extra argument n may be used, specifying the number of
characters of argument that are used in the replacement. The string object is returned.

• iterator object.replace(iterator f, iterator l, string::size type n, char c): The
range of characters of object, implied by the iterators f and l are replaced by n c-
characters. The iterator f is returned.

• string object.replace(iterator i1, iterator i2, InputIterator j1, InputIterator
j2): here the range of characters implied by the iterators i1 and i2 is replaced by the range
of characters implied by the InputIterators j1 and j2.

59

• void object.resize(string::size type n, char c): The string stored in object is re-
sized to n characters. The second argument is optional. If provided and the string is enlarged,
the extra characters are initialized to c.

• string::size type argument1.rfind(string argument2, string::size type pos): This
memberfunction returns the index in argument1 where argument2 is found. Searching pro-
ceeds from the end of argument1 back to the beginning. If the argument2 pos is omitted, the
search starts at the beginning of argument1. If provided, it refers to the index in argument1
where the search for argument2 should start.

• string::size type argument1.rfind(char const ∗argument2, string::size type pos,
string::size type n): This memberfunction returns the index in argument1where argument2
is found. Searching proceeds from the end of argument1 back to the beginning. The param-
eter n indicates the number of characters of argument2 that should be used in the search: it
defines a partial string starting at the beginning of argument2. If omitted, all characters in
argument2 are used. The parameter pos refers to the index in argument1 where the search
for argument2 should start. If the parameter pos is omitted as well, all of argument1 is
scanned.

• string::size type argument1.rfind(char c, string::size type pos): This member-
function returns the index in argument1 where c is found. Searching proceeds from the end
of argument1 back to the beginning. If the argument2 pos is omitted, the search starts at the
beginning of argument1. If provided, it refers to the index in argument1 where the search
for argument2 should start.

• string::size type argument.size(): returns the number of characters stored in argument.

• string argument.substr(string::size type pos, string::size type n): This mem-
berfunction returns a substring of argument. The parameter n may be used to specify the
number of characters of argument that are returned. The parameter pos may be used to spec-
ify the index of the first character of argument that is returned. Either n or both arguments
may be omitted.

• string::size type object1.swap(string object2): swaps the contents of the object1
and object2. In this case, object2 cannot be a char const ∗.

• object = argument. Assignment of argument to object. May also be used for initializing
string objects.

• object = c. Assignment of char c to object. May not be used for initializing string
objects.

• object += argument. Appends argument to object. Argument may also be a char value.

• argument1 + argument2. Within expressions, strings may be added. The right-hand term
may be a string object, a char const ∗ value or a char value. Note that the left-hand
operand must be a string object. So, in the following example the first expression will
compile correctly, but the second expression won’t compile:

void fun()
{

char const
*asciiz = "hello";

string

60

first = "first",
second;

second = first + asciiz; // compiles ok
second = asciiz + first; // won’t compile

}

• object[string::size type pos]. The subscript-operator may be used to assign individual
characters of object or to retrieve these characters. There is no range-checking. If range
checking is required, use the at() memberfunction, summarized earlier.

• argument1 == argument2. The equality operator may be used to compare a string object to
another string or char const ∗ value. The operator != is available as well. The returnvalue
is a bool, which is true if the two strings are equal (i.e., contain the same characters). !=
returns false in that case.

• argument1 < argument2. The less-than operator may be used to compare the ordering
within the Ascii-character set of argument1 and argument2. The operators <=, > and >=
are available as well.

• ostream stream; stream << argument. The insertion-operator may be used with string
objects.

• istream stream; stream >> object. The extraction-operator may be used with string
objects. It operates analogously to the extraction of characters into a character array, but
object is automatically resized to the required number of characters.

See section 10.1 for details about iterators.

• Forward iterators:

– begin()

– end()

• Reverse iterators:

– rbegin()

– rend()

• string object: Initializes object to an empty string.

• string object(string::size type n, char c): Initializes object with n characters c.

• string object(string argument): Initializes object with argument.

• string object(string argument, string::size type idx, string::size type n = pos):
Initializes object with argument, using n characters of argument, starting at index idx.

• string object(InputIterator begin, InputIterator end): Initializes object with the
range of characters implied by the provided InputIterators.

61

3.4 Data hiding: public, private and class

As mentioned previously (see section 2.3), C++ contains special syntactical possibilities to im-
plement data hiding. Data hiding is the ability of one program part to hide its data from other
parts; thus avoiding improper addressing or name collisions of data.

C++ has two special keywords which are concerned with data hiding: private and public. These
keywords can be inserted in the definition of a struct. The keyword public defines all subsequent
fields of a structure as accessible by all code; the keyword private defines all subsequent fields
as only accessible by the code which is part of the struct (i.e., only accessible for the member
functions)2. In a struct all fields are public, unless explicitly stated otherwise.

With this knowledge we can expand the struct person:

struct person
{

public:
void

setname (char const *n),
setaddress (char const *a),
print (void);

char const
*getname (void),
*getaddress (void);

private:
char

name [80],
address [80];

};

The data fields name and address are only accessible for the member functions which are defined
in the struct: these are the functions setname(), setaddress() etc.. This property of the data
type is given by the fact that the fields name and address are preceded by the keyword private.
As an illustration consider the following code fragment:

person
x;

x.setname ("Frank"); // ok, setname() is public
strcpy (x.name, "Knarf"); // error, name is private

The concept of data hiding is realized here in the following manner. The actual data of a struct
person are named only in the structure definition. The data are accessed by the outside world by
special functions, which are also part of the definition. These member functions control all traffic
between the data fields and other parts of the program and are therefore also called ‘interface’
functions. The data hiding which is thus realized is illustrated further in figure 3.1.

2Besides public and private, C++ defines the keyword protected. This keyword is not often used and it is
left for the reader to explore.

62

\

Figure 3.1: Private data and public interface functions of the class Person.

63

Also note that the functions setname() and setaddress() are declared as having a char const
∗ argument. This means that the functions will not alter the strings which are supplied as their
arguments. In the same vein, the functions getname() and getaddress() return a char const
∗: the caller may not modify the strings which are pointed to by the return values.

Two examples of member functions of the struct person are shown below:

void person::setname(char const *n)
{

strncpy(name, n, 79);
name[79] = ’\0’;

}

char const *person::getname()
{

return (name);
}

In general, the power of the member functions and of the concept of data hiding lies in the fact
that the interface functions can perform special tasks, e.g., checks for the validity of data. In the
above example setname() copies only up to 79 characters from its argument to the data member
name, thereby avoiding array boundary overflow.

Another example of the concept of data hiding is the following. As an alternative to member
functions which keep their data in memory (as do the above code examples), a runtime library
could be developed with interface functions which store their data on file. The conversion of a
program which stores person structures in memory to one that stores the data on disk would
mean the relinking of the program with a different library.

Though data hiding can be realized with structs, more often (almost always) classes are used
instead. A class is in principle equivalent to a struct except that unless specified otherwise, all
members (data or functions) are private. As far as private and public are concerned, a class is
therefore the opposite of a struct. The definition of a class person would therefore look exactly
as shown above, except for the fact that instead of the keyword struct, class would be used. Our
typographic suggestion for class names is a capital as first character, followed by the remainder of
the name in lower case (e.g., Person).

3.5 Structs in C vs. structs in C++

At the end of this chapter we would like to illustrate the analogy between C and C++ as far as
structs are concerned. In C it is common to define several functions to process a struct, which
then require a pointer to the struct as one of their arguments. A fragment of an imaginary C
header file is given below:

// definition of a struct PERSON_
typedef struct
{

64

char
name[80],
address[80];

} PERSON_;

// some functions to manipulate PERSON_ structs

// initialize fields with a name and address
extern void initialize(PERSON_ *p, char const *nm,

char const *adr);

// print information
extern void print(PERSON_ const *p);

// etc..

In C++, the declarations of the involved functions are placed inside the definition of the struct
or class. The argument which denotes which struct is involved is no longer needed.

class Person
{

public:
void initialize(char const *nm, char const *adr);
void print(void);
// etc..

private:
char

name[80],
address[80];

};

The struct argument is implicit in C++. A function call in C like

PERSON_
x;

initialize(&x, "some name", "some address");

becomes in C++:

Person
x;

x.initialize("some name", "some address");

65

3.6 Namespaces

Imagine a math teacher who wants to develop an interactive math program. For this program
functions like cos(), sin(), tan() etc. are to be used accepting arguments in degrees rather
than arguments in radials. Unfortunately, the functionname cos() is already in use, and that
function accepts radials as its arguments, rather than degrees.

Problems like these are normally solved by looking for another name, e.g., the functionname
cosDegrees() is defined. C++ offers an alternative solution by allowing namespaces to be defined:
areas or regions in the code in which identifiers are defined which cannot conflict with existing
names defined elsewhere.

3.6.1 Defining namespaces

Namespaces are defined according to the following syntax:

namespace identifier
{

// declared or defined entities
// (declarative region)

}

The identifier used in the definition of a namespace is a standard C++ identifier.

Within the declarative region, introduced in the above code example, functions, variables, structs,
classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined
within a block. So it is not possible to define a namespace within, e.g., a function. However, it is
possible to define a namespace using multiple namespace declarations. Namespaces are said to be
open. This means that a namespace CppAnnotations could be defined in a file file1.cc and also
in a file file2.cc. The entities defined in the CppAnnotations namespace of files file1.cc and
file2.cc are then united in one CppAnnotations namespace region. For example:

// in file1.cc
namespace CppAnnotations
{

double cos(double argInDegrees)
{

...
}

}

// in file2.cc
namespace CppAnnotations
{

double sin(double argInDegrees)
{

...
}

66

}

Both sin() and cos() are now defined in the same CppAnnotations namespace.

Namespace entities can also be defined outside of their namespaces. This topic is discussed in
section 3.6.4.

Declaring entities in namespaces

Instead of defiing entities in a namespace, entities may also be declared in a namespace. This allows
us to put all the declarations of a namespace in a header file which can thereupon be included in
sources in which the entities of a namespace are used. Such a header file could contain, e.g.,

namespace CppAnnotations
{

double cos(double degrees);
double sin(double degrees);

}

A closed namespace

Namespaces can be defined without a name. Such a namespace is anonymous and it restricts the
usability of the defined entities to the source file in which the anonymous namespace is defined.

The entities that are defined in the anonymous namespace are accessible the same way as static
functions and variables in C. The static keyword can still be used in C++, but its use is more
dominant in class definitions (see chapter 4). In situations where static variables or functions are
necessary, the use of the anonymous namespace is preferred.

3.6.2 Referring to entities

Given a namespace and entities that are defined or declared in it, the scope resolution operator
can be used to refer to the entities that are defined in the namespace. For example, to use the
function cos() defined in the CppAnnotations namespace the following code could be used:

// assume the CppAnnotations namespace is declared in the next header
// file:
#include <CppAnnotations>

int main()
{

cout << "The cosine of 60 degrees is: " <<
CppAnnotations::cos(60) << endl;

return (0);
}

67

This is a rather cumbersome way to refer to the cos() function in the CppAnnotations namespace,
especially so if the function is frequently used.

Therefore, an abbreviated form (just cos() can be used by declaring that cos() will refer to
CppAnnotations::cos(). For this, the using-declaration can be used. Following

using CppAnnotations::cos; // note: no function prototype, just the
// name of the entity is required.

the function cos() will refer to the cos() function in the CppAnnotations namespace. This implies
that the standard cos() function, accepting radials, cannot be used automatically anymore. The
plain scope resolution operator can be used to reach the generic cos() function:

int main()
{

using CppAnnotations::cos;
...
cout << cos(60) // this uses CppAnnotations::cos()

<< ::cos(1.5) // this uses the standard cos() function
<< endl;

return (0);
}

Note that a using-declaration can be used inside a block. The using declaration prevents the
definition of entities having the same name as the one used in the using declaration: it is not
possible to use a using declaration for a variable value in the CppAnnotations namespace, and
to define (or declare) an identically named object in the block in which the using declaration was
placed:

int main()
{

using CppAnnotations::value;
...
cout << value << endl; // this uses CppAnnotations::value

int
value; // error: value already defined.

return (0);
}

68

The using directive

A generalized alternative to the using-declaration is the using-directive:

using namespace CppAnnotations;

Following this directive, all entities defined in the CppAnnotations namespace are uses as if they
where declared by using declarations.

While the using-directive is a quick way to import all the names of the CppAnnotations namespace
(assuming the entities are declared or defined separately from the directive), it is at the same time
a somewhat dirty way to do so, as it is less clear which entity will be used in a particular block of
code.

If, e.g., cos() is defined in the CppAnnotations namespace, the function CppAnnotations::cos()
will be used when cos() is called in the code. However, if cos() is not defined in the CppAnnotations
namespace, the standard cos() function will be used. The using directive does not document as
clearly which entity will be used as the using declaration does. For this reason, the using directive
is somewhat deprecated.

3.6.3 The standard namespace

Apart from the anonymous namespace, many entities of the runtime available software (e.g., cout,
cin, cerr and the templates defined in the Standard Template Library, see chapter 10) are now
defined in the std namespace.

Regarding the discussion in the previous section, one should use a using declaration for these
entities. For example, in order to use the cout stream, the code should start with something like

#include <iostream>

using std::cout;

Often, however, the identifiers that are defined in the std namespace can all be accepted without
much thought. Because of that, one often encounters a using directive, rather than a using decla-
ration with the std namespace. So, instead of the mentioned using declaration a construction
like

#include <iostream>

using namespace std;

is often encountered. Whether this should be encouraged is subject of some dispute. Long using
declarations are of course inconvenient too. So as a rule of thumb one might decide to stick to
using declarations, up to the point where the list becomes impractically long, at which point a
using directive could be considered.

69

3.6.4 Nesting namespaces and namespace aliasing

Namespaces can be nested. The following code shows the definition of a nested namespace:

namespace CppAnnotations
{

namespace Virtual
{

void
*pointer;

}
}

Now the variable pointer defined in the Virtual namespace, nested under the CppAnnotations
namespace. In order to refer to this variable, the following options are available:

• The fully qualified name can be used. A fully qualified name of an entity is a list of all the
namespaces that are visited until the definition of the entity is reached, glued together by
the scope resolution operator:

int main()
{

CppAnnotations::Virtual::pointer = 0;
return (0);

}

• A using declaration for CppAnnotations::Virtual can be used. Now Virtual can be used
without any prefix, but pointer must be used with the Virtual:: prefix:

...
using CppAnnotations::Virtual;

int main()
{

Virtual::pointer = 0;
return (0);

}

• A using declaration for CppAnnotations::Virtual::pointer can be used. Now pointer
can be used without any prefix:

...
using CppAnnotations::Virtual::pointer;

int main()

70

{
pointer = 0;
return (0);

}

• A using directive or directives can be used:

...
using namespace CppAnnotations::Virtual;

int main()
{

pointer = 0;
return (0);

}

Alternatively, two separate using directives could have been used:

...
using namespace CppAnnotations;
using namespace Virtual;

int main()
{

pointer = 0;
return (0);

}

• A combination of using declarations and using directives can be used. E.g., a using directive
can be used for the CppAnnotations namespace, and a using declaration can be used for
the Virtual::pointer variable:

...
using namespace CppAnnotations;
using Virtual::pointer;

int main()
{

pointer = 0;
return (0);

}

At every using directive all entities of that namespace can be used without any further prefix. If a
namespace is nested, then that namespace can also be used without any further prefix. However,
the entities defined in the nested namespace still need the nested namespace’s name. Only by using
a using declaration or directive the qualified name of the nested namespace can be omitted.

71

When fully qualified names are somehow preferred, while the long form (like CppAnnotations::Virtual::pointer)
is at the same time considered too long, a namespace alias can be used:

namespace CV = CppAnnotations::Virtual;

This defines CV as an alias for the full name. So, to refer to the pointer variable the construction

CV::pointer = 0;

Of course, a namespace alias itself can also be used in a using declaration or directive.

Defining entities outside of their namespaces

It is not strictly necessary to define members of namespaces within a namespace region. By
prefixing the member by its namespace or namespaces a member can be defined outside of a
namespace region. This may be done at the global level, or at intermediate levels in the case of
nested namespaces. So while it is not possible to define a member of namespace A within the
region of namespace C, it is possible to define a member of namespace A::B within the region of
namespace A.

Note, however, that when a member of a namespace is defined outside of a namespace region, it
must still be declared within the region.

Assume the type int INT8[8] is defined in the CppAnnotations::Virtual namespace.

Now suppose we want to define (at the global level) a member function funny of namespace
CppAnnotations::Virtual, returning a pointer to CppAnnotations::Virtual::INT8. The defini-
tion of such a function could be as follows (first everything is defined inside the CppAnnotations::Virtual
namespace):

namespace CppAnnotations
{

namespace Virtual
{

void
*pointer;

typedef int INT8[8];

INT8 *funny()
{

INT8
*ip = new INT8[1];

for (int idx = 0; idx < sizeof(INT8) / sizeof(int); ++idx)
(*ip)[idx] = (1 + idx) * (1 + idx);

72

return (ip);
}

}
}

The function funny() defines an array of one INT8 vector, and returns its address after initializing
the vector by the squares of the first eight natural numbers.

Now the function funny() can be defined outside of the CppAnnotations::Virtual as follows:

namespace CppAnnotations
{

namespace Virtual
{

void
*pointer;

typedef int INT8[8];

INT8 *funny();
}

}

CppAnnotations::Virtual::INT8 *CppAnnotations::Virtual::funny()
{

INT8
*ip = new INT8[1];

for (int idx = 0; idx < sizeof(INT8) / sizeof(int); ++idx)
{

cout << idx << endl;
(*ip)[idx] = idx * idx;

}

return (ip);
}

At the final code fragment note the following:

• funny() is declared inside of the CppAnnotations::Virtual namespace.

• The definition outside of the namespace region requires us to use the fully qualified name of
the function and of its returntype.

• Inside the block of the function funny we are within the CppAnnotations::Virtual names-
pace, so inside the function fully qualified names (e.g., for INT8 are not required any more.

Finally, note that the function could also have been defined in the CppAnnotations region. It that
case the Virtual namespace would have been required for the function name and its returntype,
while the internals of the function would remain the same:

73

namespace CppAnnotations
{

namespace Virtual
{

void
*pointer;

typedef int INT8[8];

INT8 *funny();
}

Virtual::INT8 *Virtual::funny()
{

INT8
*ip = new INT8[1];

for (int idx = 0; idx < sizeof(INT8) / sizeof(int); ++idx)
{

cout << idx << endl;
(*ip)[idx] = idx * idx;

}

return (ip);
}

}

74

Chapter 4

Classes

In this chapter classes are the topic of discussion. Two special member functions, the constructor
and the destructor, are introduced.

In steps we will construct a class Person, which could be used in a database application to store
a name, an address and a phone number of a person.

Let’s start off by introducing the declaration of a class Person right away. The class declaration is
normally contained in the header file of the class, e.g., person.h. The class declaration is generally
not called a declaration, though. Rather, the common name for class declarations is class interface,
to be distinguished from the definitions of the function members, called the class implementation.
Thus, the interface of the class Person is given next:

class Person
{

public: // interface functions
void setname(char const *n);
void setaddress(char const *a);
void setphone(char const *p);

char const *getname(void);
char const *getaddress(void);
char const *getphone(void);

private: // data fields
char *name; // name of person
char *address; // address field
char *phone; // telephone number

};

The data fields in this class are name, address and phone. The fields are char ∗s which point
to allocated memory. The data are private, which means that they can only be accessed by the
functions of the class Person.

The data are manipulated by interface functions which take care of all communication with code

75

outside of the class. Either to set the data fields to a given value (e.g., setname()) or to inspect
the data (e.g., getname()).

Note once again how similar the class is to the struct. The fundamental difference being that by
default classes have private members, whereas structs have public members. Since the convention
calls for the public members of a class to appear first, the keyword private is needed to switch
back from public members to the (default) private situation.

4.1 Constructors and destructors

A class in C++ may contain two special categories of member functions which are involved in
the internal workings of the class. These member function categories are, on the one hand, the
constructors and, on the other hand, the destructor.

The basic forms and functions of these two categories are discussed next.

4.1.1 The constructor

The constructor member function has by definition the same name as the corresponding class.
The constructor has no return value specification, not even void. E.g., for the class Person the
constructor is Person::Person(). The C++ run-time system makes sure that the constructor of
a class, if defined, is called when an object of the class is created. It is of course possible to define
a class which has no constructor at all; in that case the run-time system either calls no function or
it calls a dummy constructor (i.e., a constructor which performs no actions) when a corresponding
object is created. The actual generated code of course depends on the compiler1.

Objects may be defined at a local (function) level, or at a global level (in which its status is
comparable to a global variable.

When an object is a local (non-static) variable of a function, the constructor is called every time
the function is called at the point where the variable is defined (a subtlety here is that a variable
may be defined implicitly as, e.g., a temporary variable in an expression).

When an object is a static variable, the constructor is called when the function in which the static
variable is defined is called for the first time.

When an object is a global variable the constructor is called when the program starts. Note that
in even this case the constructor is called even before the function main() is started. This feature
is illustrated in the following listing:

#include <iostream>

// a class Test with a constructor function
class Test
{

public: // ’public’ function:
Test(); // the constructor

1A compiler-supplied constructor in a class which contains composed objects (see section 4.5) will ‘automati-
cally’ call the member initializers, and therefore does perform some actions. We postpone the discussion of such
constructors to 4.5.1.

76

};

Test::Test() // here is the
{ // definition

cout << "constructor of class Test called\n";
}

// and here is the test program:
Test

g; // global object

void func()
{

Test // local object
l; // in function func()

cout << "here’s function func()" << endl;
}

int main()
{

Test // local object
x; // in function main()

cout << "main() function" << endl;
func();
return (0);

}

The listing shows how a class Test is defined which consists of only one function: the constructor.
The constructor performs only one action; a message is printed. The program contains three
objects of the class Test: one global object, one local object in main() and one local object in
func().

Concerning the definition of a constructor we have the following remarks:

• The constructor has the same name as its class.

• The constructor may not be defined with a return value. This is true for the declaration of
the constructor in the class definition, as in:

class Test
{

public:
/* no return value here */ Test();

};

and also holds true for the definition of the constructor function, as in:

77

/* no return value here */ Test::Test()
{

// statements ...
}

• The constructor function in the example above has no arguments. Therefore it is also called
the default constructor. That the function has no arguments is, however, no requirement
per se. We shall later see that it is possible to define constructors with arguments. Once
a constructor function is defined explicitly, the default constructor doesn’t exist anymore,
unless the default constructor is definied explicitly itself.

The constructor of the three objects of the class Test in the above listing are called in the following
order:

• The constructor is first called for the global object g.

• Next the function main() is started. The object x is created as a local variable of this
function and hence the constructor is called again. After this we expect to see the text
main() function.

• Finally the function func() is activated from main(). In this function the local object l is
created and hence the constructor is called. After this, the message here’s function func()
appears.

As expected, the program yields therefore the following output (the text in parentheses is added
for illustration purposes):

constructor of class Test called (global object g)
constructor of class Test called (object x in main())
main() function
constructor of class Test called (object l in func())
here’s function func()

4.1.2 The destructor

The second special member function is the destructor. This function is the opposite of the con-
structor in the sense that it is invoked when an object ceases to exist. For objects which are local
non-static variables, the destructor is called when the block in which the object is defined is left:
the destructors of objects that are defined in nested blocks of functions are therefore usually called
before the function itself terminates. The destructors of objects that are defined somewhere in the
outer block of a function are called just before the function returns (terminates). For static or
global variables the destructor is called before the program terminates.

However, when a program is interrupted using an exit() call, the destructors are called only for
global objects which exist at that time. Destructors of objects defined locally within functions are
not called when a program is forcefully terminated using exit().

When defining a destructor for a given class the following rules apply:

78

• The destructor function has the same name as the class but prefixed by a tilde.

• The destructor has neither arguments nor a return value.

The destructor for the class Test from the previous section could be declared as follows:

class Test
{

public:
Test(); // constructor
~Test(); // destructor
// any other members

};

The position of the constructor(s) and destructor in the class definition is dictated by convention:
First the constructors are declared, then the destructor, and only then any other members follow.

4.1.3 A first application

One of the applications of constructors and destructors is the management of memory allocation.
This is illustrated using the class Person.

As illustrated at the beginning of this chapter, the class Person contains three private pointers, all
char ∗s. These data members are manipulated by the interface functions. The internal workings
of the class are as follows: when a name, address or phone number of a Person is defined, memory
is allocated to store these data. An obvious setup is described below:

• The constructor of the class makes sure that the data members are initially 0-pointers.

• The destructor releases all allocated memory.

• The defining of a name, address or phone number (by means of the set...() functions)
consists of two steps. First, previously allocated memory is released. Next, the string which
is supplied as an argument to the set...() function is duplicated in memory.

• Inspecting a data member by means of one of the get...() functions simply returns the
corresponding pointer: either a 0-pointer, indicating that the data is not defined, or a pointer
to allocated memory holding the data.

The set...() functions are illustrated below. Strings are duplicated in this example by an imag-
inary function xstrdup(), which would duplicate a string or terminate the program when the
memory pool is exhausted2.

2As a word to the initiated reader it is noted here that many other ways to handle the memory allocation are
possible here: As discussed in section 5, new could be used, together with set new handler(), or exceptions could
be used to catch any failing memory allocation. However, since we haven’t covered that subject yet, and since these
annotations start from C, we used the tried and true method of a ‘protected allocation function’ xstrdup() here
for didactical reasons.

79

// interface functions set...()
void Person::setname(char const *n)
{

free(name);
name = xstrdup(n);

}

void Person::setaddress(char const *a)
{

free(address);
address = xstrdup(a);

}

void Person::setphone(char const *p)
{

free(phone);
phone = xstrdup(p);

}

Note that the statements free(...) in the above listing are executed unconditionally. This never
leads to incorrect actions: when a name, address or phone number is defined, the corresponding
pointers point to previously allocated memory which should be freed. When the data are not (yet)
defined, then the corresponding pointer is a 0-pointer; and free(0) performs no action3.

Furthermore it should be noted that this code example uses the standard C function free() which
should be familiar to most C programmers. The delete statement, which has more ‘C++ flavor’,
will be discussed later.

The interface functions get...() are defined now. Note the occurence of the keyword const
following the parameter lists of the functions: the member functions are const member functions,
indicating that they will not modify their object when they’re called. The matter of const member
functions is postponed to section 4.2, where it will be discussed in greater detail.

// interface functions get...()
char const *Person::getname() const
{

return (name);
}

char const *Person::getaddress() const
{

return (address);
}

char const *Person::getphone() const
{

return (phone);

3Actually, free(0) should perform no action. However, later on we’ll introduce the operators new and delete.
With the delete operator delete 0 is formally ignored.

80

}

The destructor, constructor and the class definition are given below.

// class definition
class Person
{

public:
Person(); // constructor
~Person(); // destructor

// functions to set fields
void setname(char const *n);
void setaddress(char const *a);
void setphone(char const *p);

// functions to inspect fields
char const *getname() const;
char const *getaddress() const;
char const *getphone() const;

private:
char *name; // name of person
char *address; // address field
char *phone; // telephone number

};

// constructor
Person::Person()
{

name = 0;
address = 0;
phone = 0;

}

// destructor
Person::~Person()
{

free(name);
free(address);
free(phone);

}

To demonstrate the usage of the class Person, a code example follows next. An object is initialized
and passed to a function printperson(), which prints the contained data. Note also the usage
of the reference operator & in the argument list of the function printperson(). This way only a
reference to a Person object is passed, rather than a whole object. The fact that printperson()
does not modify its argument is evident from the fact that the argument is declared const. Also

81

note that the example doesn’t show where the destructor is called; this action occurs implicitly
when the below function main() terminates and hence when its local variable p ceases to exist.

It should also be noted that the function printperson() could be defined as a public member
function of the class Person.

#include <iostream>

void printperson(Person const &p)
{

cout << "Name : " << p.getname() << endl
<< "Address : " << p.getaddress() << endl
<< "Phone : " << p.getphone() << endl;

}

int main()
{

Person
p;

p.setname("Linus Torvalds");
p.setaddress("E-mail: Torvalds@cs.helsinki.fi");
p.setphone(" - not sure - ");

printperson(p);
return (0);

}

When printperson() receives a fully defined Person object (i.e., containing a name, address and
phone number), the data are correctly printed. However, when a Person object is only partially
filled, e.g. with only a name, printperson() passes 0-pointers to cout. This unesthetic feature
can be remedied with a little more code:

void printperson(Person const &p)
{

if (p.getname())
cout << "Name : " << p.getname() << "\n";

if (p.getaddress())
cout << "Address : " << p.getaddress() << "\n";

if (p.getphone())
cout << "Phone : " << p.getphone() << "\n";

}

Alternatively, the constructor Person::Person() might initialize the members to ‘printable de-
faults’, like " ∗∗ undefined ∗∗ ".

82

4.1.4 Constructors with arguments

In the above declaration of the class Person the constructor has no arguments. C++ allows
constructors to be defined with argument lists. The arguments are supplied when an object is
created.

For the class Person a constructor may be handy which expects three strings: the name, address
and phone number. Such a constructor is shown below:

Person::Person(char const *n, char const *a, char const *p)
{

name = xstrdup(n);
address = xstrdup(a);
phone = xstrdup(p);

}

The constructor must be included in the class declaration, as illustrated here:

class Person
{

public:
Person::Person(char const *n,

char const *a, char const *p);
.
.
.

};

Since C++ allows function overloading, such a declaration of a constructor can co-exist with a
constructor without arguments. The class Person would thus have two constructors.

The usage of a constructor with arguments is illustrated in the following code fragment. The object
a is initialized at its definition:

int main()
{

Person
a("Karel", "Rietveldlaan 37", "542 6044"),
b;

return (0);
}

In this example, the Person objects a and b are created when main() is started. For the object a
the constructor with arguments is selected by the compiler. For the object b the default constructor
(without arguments) is used.

83

The order of construction

The possibility to pass arguments to constructors offers us the chance to monitor at which exact
moment in a program’s execution an object is created or destroyed. This is shown in the next
listing, using a class Test:

class Test
{

public:
// constructors:
Test(); // argument-free
Test(char const *name); // with a name argument
// destructor:
~Test();

private:
// data:
char *n; // name field

};

Test::Test()
{

n = xstrdup("without name");
printf("Test object without name created\n");

}

Test::Test(char const *name)
{

n = xstrdup(name);
cout << "Test object " << name << " created" << endl;

}

Test::~Test()
{

cout << "Test object " << n << " destroyed" << endl;
free(n);

}

By defining objects of the class Test with specific names, the construction and destruction of these
objects can be monitored:

Test
globaltest("global");

void func()
{

Test
functest("func");

84

}

int main()
{

Test
maintest("main");

func();
return (0);

}

This test program thus leads to the following (and expected) output:

Test object global created
Test object main created
Test object func created
Test object func destroyed
Test object main destroyed
Test object global destroyed

4.2 Const member functions and const objects

The keyword const is often seen in the declarations of member functions following the argument
list. This keyword is used to indicate that a member function does not alter the data fields of its
object, but only inspects them. Using the example of the class Person, the get...() functions
should be declared const:

class Person
{

public:
.
.
// functions to inspect fields
char const *getname(void) const;
char const *getaddress(void) const;
char const *getphone(void) const;

private:
.
.

};

As is illustrated in this fragment, the keyword const occurs following the argument list of functions.
Note that in this situation the rule of thumb given in section 3.1.3 applies once again: whichever
appears before the keyword const, may not be altered and doesn’t alter (its own) data.

85

The same specification must be repeated in the definition of member functions themselves:

char const *Person::getname() const
{

return (name);
}

A member function which is declared and defined as const may not alter any data fields of its
class. In other words, a statement like

name = 0;

in the above const function getname() would result in a compilation error.

The const member functions exist because C++ allows const objects to be created, or references
to const objects to be passed on to functions. For such objects only member functions which do
not modify it, i.e., the const member functions, may be called. The only exception to this rule
are the constructors and destructor: these are called ‘automatically’. The possibility of calling
constructors or destructors is comparable to the definition of a variable int const max = 10.
In situations like these, no assignment but rather an initialization takes place at creation-time.
Analogously, the constructor can initialize its object when the variable is created, but subsequent
assignments cannot take place.

The following example shows how a const object of the class Person can be defined. When the
object is created the data fields are initialized by the constructor:

Person const
me("Karel", "karel@icce.rug.nl", "542 6044");

Following this definition it would be illegal to try to redefine the name, address or phone number
for the object me: a statement as

me.setname("Lerak");

would not be accepted by the compiler. Once more, look at the position of the const keyword in
the variable definition: const, following Person and preceding me associates to the left: the Person
object in general must remain unaltered. Hence, if multiple objects were defined here, both would
be constant Person objects, as in:

Person const // all constant Person objects

86

kk("Karel", "karel@icce.rug.nl", "542 6044"),
fbb("Frank", "frank@icce.rug.nl", "403 2223");

Member functions which do not modify their object should be defined as const member functions.
This subsequently allows the use of these functions with const objects or with const references.

4.3 The operators new and delete

The C++ language defines two operators which are specific for the allocation and deallocation of
memory. These operators are new and delete.

The most basic example of the use of these operators is given below. An int pointer variable is
used to point to memory which is allocated by the operator new. This memory is later released by
the operator delete.

int
*ip;

ip = new int;
// any other statements
delete ip;

Note that new and delete are operators and therefore do not require parentheses, which are
required for functions like malloc() and free(). The operator delete returns void, the operator
new returns a pointer to the kind of memory that’s asked for by its argument (e.g., a pointer to an
int in the above example).

4.3.1 Allocating and deallocating arrays

When the operator new is used to allocate an array, the size of the variable is placed between
square brackets following the type:

int
*intarr;

intarr = new int [20]; // allocates 20 ints

The syntactical rule for the operator new is that this operator must be followed by a type, optionally
followed by a number in square brackets. The type and number specification lead to an expression
which is used by the compiler to deduce its size; in C an expression like sizeof(int[20]) might
be used.

An array is deallocated by using the operator delete:

87

delete [] intarr;

In this statement the array operators [] indicate that an array is being deallocated. The rule of
thumb here is: whenever new is followed by [], delete should be followed by it too.

What happens if delete rather than delete [] is used? Consider the following situation: a class
X is defined having a destructor telling us that it’s called. In a main() function an array of two
X objects is allocated by new, to be deleted by delete []. Next, the same actions are repeated,
albeit that the delete operator is called without []:

#include <iostream>

class X
{

public:
~X();

};

X::~X()
{

cout << "X destructor called" << endl;
}

int main()
{

X
*a;

a = new X[2];

cout << "Destruction with []’s" << endl;

delete [] a;

a = new X[2];

cout << "Destruction without []’s" << endl;

delete a;

return (0);
}

Here’s the generated output:

Destruction with []’s

88

X destructor called
X destructor called
Destruction without [] ’s
X destructor called

So, as we can see, the destructor of the individual X objects are called if the delete [] syntax is
followed, and not if the [] is omitted.

If no destructor is defined, it is not called. Consider the following fragment:

#include <iostream>

class X
{

public:
~X();

};

X::~X()
{

cout << "X destructor called" << endl;
}

int main()
{

X
**a;

a = new X* [2];

a[0] = new X [2];
a[1] = new X [2];

delete [] a;

return (0);
}

This program produces no messages at all. Why is this? The variable a is defined as a pointer to
a pointer. For this situation, however, there is no defined destructor as we do not have something
as a ’class pointer to X objects’. Consequently, the [] is ignored.

Now, because of the [] being ignored, not all elements of the array a points to are considered when
a is deleted. The two pointer elements of a are deleted, though, because delete a (note that the
[] is not written here) frees the memory pointed to by a. That’s all there is to it.

What if we don’t want this, but require the X objects pointed to by the elements of a to be deleted
as well? In this case we have two options:

89

• Explicitly walk all the elements of the a array, deleting them in turn. This will call the
destructor for a pointer to X objects, which will destroy all elements if the [] operator is
used, as in:

#include <iostream>

class X
{

public:
~X();

};

X::~X()
{

cout << "X destructor called" << endl;
}

int main()
{

X
**a;

a = new X* [2];

a[0] = new X [2];
a[1] = new X [2];

for (int index = 0; index < 2; index++)
delete [] a[index];

delete a;

return (0);
}

• Define a class containing a pointer to X objects, and allocate a pointer to this super-class,
rather than a pointer to a pointer to X objects. The topic of containing classes in classes,
composition, is discussed in section 4.5.

4.3.2 New and delete and object pointers

The operators new and delete are also used when an object of a given class is allocated. As we
have seen in the previous section, the advantage of the operators new and delete over functions
like malloc() and free() lies in the fact that new and delete call the corresponding constructors
or destructor. This is illustrated in the next example:

Person
*pp; // ptr to Person object

90

pp = new Person; // now constructed
...
delete pp; // now destroyed

The allocation of a new Person object pointed to by pp is a two-step process. First, the memory
for the object itself is allocated. Second, the constructor is called which initializes the object.
In the above example the constructor is the argument-free version; it is however also possible to
choose an explicit constructor:

pp = new Person("Frank", "Oostumerweg 17", "050 403 2223");
...
delete pp;

Note that, analogously to the construction of an object, the destruction is also a two-step process:
first, the destructor of the class is called to deallocate the memory used by the object. Then the
memory which is used by the object itself is freed.

Dynamically allocated arrays of objects can also be manipulated with new and delete. In this
case the size of the array is given between the [] when the array is created:

Person
*personarray;

personarray = new Person [10];

The compiler will generate code to call the default constructor for each object which is created.
As we have seen, the array operator [] must be used with the delete operator to destroy such an
array in the proper way:

delete [] personarray;

The presence of the [] ensures that the destructor is called for each object in the array. Note
again that delete personarray would only release the memory of the array itself.

4.3.3 The function set new handler()

The C++ run-time system makes sure that when memory allocation fails, an error function is
activated. By default this function returns the value 0 to the caller of new, so that the pointer
which is assigned by new is set to zero. The error function can be redefined, but it must comply
with a few prerequisites, which are, unfortunately, compiler-dependent. E.g., for the Microsoft
C/C++ compiler version 7, the prerequisites are:

91

• The function is supplied one argument, a size t value which indicates how many bytes
should have been allocated4.

• The function must return an int, which is the value passed by new to the assigned pointer.

The Gnu C/C++ compiler gcc, which is present on many Unix platforms, requires that the error
handler:

• has no arguments, and

• returns no value (a void return type).

Then again, Microsoft’s Visual C++ interprets the returnvalue of the the function as follows:

• The run-time system retries allocation each time the function returns a nonzero value and
fails new if the function returns 0.

In short: there’s no standard here, so make sure that you lookup the particular characteristics of
the set new handler function for your compiler. Whatever you do, in any case make sure you
use this function: it saves you a lot of checks (and problems with a failing allocation that you just
happened to forget to protect with a check...).

The redefined error function might, e.g., print a message and terminate the program. The user-
written error function becomes part of the allocation system through the function set new handler(),
defined in the header file new.h. With some compilers, the installing function is called set new handler()
(note the leading underscore).

The implementation of an error function is illustrated below. This implementation applies to the
Gnu C/C++ requirements5:

#include <new.h>
#include <iostream>

void out_of_memory()
{

cout << "Memory exhausted. Program terminates." << endl;
exit(1);

}

int main()
{

int
*ip;

long
total_allocated = 0;

// install error function

4The type size t is usually identical to unsigned.
5The actual try-out of the program is not encouraged, as it will slow down the computer enormously due to the

resulting occupation of Unix’s swap area

92

set_new_handler(out_of_memory);

// eat up all memory
puts("Ok, allocating..");
while (1)
{

ip = new int [10000];
total_allocated += 10000 * sizeof(int);
printf("Now got a total of %ld bytes\n",

total_allocated);
}

return (0);
}

The advantage of an allocation error function lies in the fact that once installed, new can be used
without wondering whether the allocation succeeded or not: upon failure the error function is
automatically invoked and the program exits. It is good practice to install a new handler in each
C++ program, even when the actual code of the program does not allocate memory. Memory
allocation can also fail in not directly visible code, e.g., when streams are used or when strings are
duplicated by low-level functions.

Note that it may not be assumed that the standard C functions which allocate memory, such as
strdup(), malloc(), realloc() etc. will trigger the new handler when memory allocation fails.
This means that once a new handler is installed, such functions should not automatically be used
in an unprotected way in a C++ program. As an example of the use of new for duplicating
a string, a rewrite of the function strdup() using the operator new is given in section 5. It is
strongly suggested to revert to this approach, rather than to using functions like xstrdup(), when
the allocation of memory is required.

4.4 The keyword inline

Let us take another look at the implementation of the function Person::getname():

char const *Person::getname() const
{

return (name);
}

This function is used to retrieve the name field of an object of the class Person. In a code fragment,
like:

Person
frank("Frank", "Oostumerweg 17", "403 2223");

93

puts(frank.getname());

the following actions take place:

• The function Person::getname() is called.

• This function returns the value of the pointer name of the object frank.

• This value, which is a pointer to a string, is passed to puts().

• The function puts() finally is called and prints a string.

Especially the first part of these actions leads to some time loss, since an extra function call is
necessary to retrieve the value of the name field. Sometimes a faster process may be desirable, in
which the name field becomes immediately available; thus avoiding the call to getname(). This
can be realized by using inline functions, which can be defined in two ways.

4.4.1 Inline functions within class declarations

Using the first method to implement inline functions, the code of a function is defined in a
class declaration itself. For the class Person this would lead to the following implementation of
getname():

class Person
{

public:
...
char const *getname(void) const
{

return (name);
}
...

};

Note that the code of the function getname() now literally occurs in the interface of the class
Person. The keyword const occurs after the function declaration, and before the code block.

Thus, inline functions appearing in the class interface show their full (and standard) definition
within the class interface itself.

The effect of this is the following. When getname() is called in a program statement, the compiler
generates the code of the function when the function is used in the source-text, rather than a call
to the function, appearing only once in the compiled program.

This construction, where the function code itself is inserted rather than a call to the function, is
called an inline function. Note that the use of inline function results in duplication of the code of
the function for each invokation of the inline function. This is probably ok if the function is a small
one, and needs to be executed fast. It’s not so desirable if the code of the function is extensive.

94

4.4.2 Inline functions outside of class declarations

The second way to implement inline functions leaves a class interface intact, but mentions the
keyword inline in the function definition. The interface and implementation in this case are as
follows:

class Person
{

public:
...
char const *getname(void) const;
...

};

inline char const *Person::getname() const
{

return (name);
}

Again, the compiler will insert the code of the function getname() instead of generating a call.

However, the inline function must still appear in the same file as the class interface, and cannot
be compiled to be stored in, e.g., a library. The reason for this is that the compiler rather than
the linker must be able to insert the code of the function in a source text offered for compilation.
Code stored in a library is inaccessible to the compiler. Consequently, inline functions are always
defined together with the class interface.

4.4.3 When to use inline functions

When should inline functions be used, and when not? There is a number of simple rules of thumb
which may be followed:

• In general inline functions should not be used. Voilà, that’s simple, isn’t it?

• Defining inline functions can be considered once a fully developed and tested program runs
too slowly and shows ‘bottlenecks’ in certain functions. A profiler, which runs a program
and determines where most of the time is spent, is necessary for such optimization.

• inline functions can be used when member functions consist of one very simple statement
(such as the return statement in the function Person::getname()).

• By defining a function as inline, its implementation is inserted in the code wherever the
function is used. As a consequence, when the implementation of the inline function changes,
all sources using the inline function must be recompiled. In practice that means that all
functions must be recompiled that include (either directly or indirectly) the header file of the
class in which the inline function is defined.

• It is only useful to implement an inline function when the time which is spent during a
function call is long compared to the code in the function. An example where an inline
function has no effect at all is the following:

95

void Person::printname() const
{

cout << name << endl;
}

This function, which is, for the sake of the argument, presumed to be a member of the class
Person, contains only one statement.

However, the statement takes a relatively long time to execute. In general, functions which
perform input and output take lots of time. The effect of the conversion of this function
printname() to inline would therefore lead to a very insignificant gain in execution time.

All inline functions have one disadvantage: the actual code is inserted by the compiler and must
therefore be known compile-time. Therefore, as mentioned earlier, an inline function can never
be located in a run-time library. Practically this means that an inline function is placed near the
interface of a class, usually in the same header file. The result is a header file which not only shows
the declaration of a class, but also part of its implementation, thus blurring the distinction
between interface and implementation.

Finally, note that using the keyword inline is not really an order for the compiler. Rather, it is
a suggestion the compiler may either choose to follow or to ignore.

4.5 Objects in objects: composition

An often recurring situation is one where objects are used as data fields in class definitions. This
is referred to as composition.

For example, the class Person could hold information about the name, address and phone number,
but additionally a class Date could be used to keep the information about the birth date:

class Person
{

public:
// constructor and destructor
Person();
Person(char const *nm, char const *adr,

char const *ph);
~Person();

// interface functions
void setname(char const *n);
void setaddress(char const *a);
void setphone(char const *p);
void setbirthday(int yr, int mnth, int d);

char const *getname() const;
char const *getaddress() const;
char const *getphone() const;

96

int getbirthyear() const;
int getbirthmonth() const;
int getbirthday() const;

private:
// data fields
char *name, *address, *phone;
Date birthday;

};

We shall not further elaborate on the class Date: this class could, e.g., consist of three int data
fields to store a year, month and day. These data fields would be set and inspected using interface
functions setyear(), getyear() etc..

The interface functions of the class Person would then use Date’s interface functions to manipulate
the birth date. As an example the function getbirthyear() of the class Person is given below:

int Person::getbirthyear() const
{

return (birthday.getyear());
}

Composition is not extraordinary or C++ specific: in C it is quite common to include structs or
unions in other compound types. Note that the composed objects can be reached through their
member functions: the normal field selector operators are used for this.

However, the initialization of the composed objects deserves some extra attention: the topics of
the coming sections.

4.5.1 Composition and const objects: const member initializers

Composition of objects has an important consequence for the constructor functions of the ‘com-
posed’ (embedded) object. Unless explicitly instructed otherwise, the compiler generates code to
call the default constructors of all composed classes in the constructor of the composing class.

Often it is desirable to initialize a composed object from the constructor of the composing class.
This is illustrated below for the composed class Date in a Person. In this fragment it assumed
that a constructor for a Person should be defined expecting six arguments: the name, address and
phone number plus the year, month and day of the birth date. It is furthermore assumed that the
composed class Date has a constructor with three int arguments for the year, month and day:

Person::Person(char const *nm, char const *adr,
char const *ph,
int d, int m, int y)

:
birthday(d, m, y)

97

{
name = xstrdup(nm);
address = xstrdup(adr);
phone = xstrdup(ph);

}

Note that following the argument list of the constructor Person::Person(), the constructor of
the data field Date is specifically called, supplied with three arguments. This constructor is ex-
plicitly called for the composed object birthday. This occurs even before the code block of
Person::Person() is executed. This means that when a Person object is constructed and when
six arguments are supplied to the constructor, the birthday field of the object is initialized even
before Person’s own data fields are set to their values.

In this situation, the constructor of the composed data member is also referred to as member
initializer.

When several composed data members of a class exist, all member initializers can be called using
a ‘constructor list’: this list consists of the constructors of all composed objects, separated by
commas.

When member initializers are not used, the compiler automatically supplies a call to the default
constructor (i.e., the constructor without arguments). In this case a default constructor must have
been defined in the composed class.

Member initializers should be used as much as possible: not using member initializers can result
in inefficient code, and can be downright necessary. As an example showing the inefficiency of
not using a member initializer, consider the following code fragment where the birthday field is
not initialized by the Date constructor, but instead the setday(), setmonth() and setyear()
functions are called:

Person::Person(char const *nm, char const *adr,
char const *ph,
int d, int m, int y)

{
name = xstrdup(nm);
address = xstrdup(adr);
phone = xstrdup(ph);

birthday.setday(d);
birthday.setmonth(m);
birthday.setyear(y);

}

This code is inefficient because:

• first the default constructor of birthday is called (this action is implicit),

• and subsequently the desired date is set explicitly by member functions of the class Date.

98

This method is not only inefficient, but even more: it may not work when the composed object is
declared as a const object. A data field like birthday is a good candidate for being const, since
a person’s birthday usually doesn’t change.

This means that when the definition of a Person is changed so that the data member birthday
is declared as a const object, the implementation of the constructor Person::Person() with six
arguments must use member initializers. Calling the birthday.set...() would be illegal, since
these are no const functions.

Concluding, the rule of thumb is the following: when composition of objects is used, the member
initializer method is preferred to explicit initialization of the composed object. This not only
results in more efficient code, but it also allows the composed object to be declared as a const
object.

4.5.2 Composition and reference objects: reference member initializers

Apart from using member initializers to initialize composed objects (be they const objects or
not), there is another situation where member initializers must be used. Consider the following
situation.

A program uses an object of the class Configfile, defined in main() to access the information in
a configuration file. The configuration file contains parameters of the program which may be set by
changing the values in the configuration file, rather than by supplying command line arguments.

Assume that another object that is used in the function main() is an object of the class Process,
doing ‘all the work’. What possibilities do we have to tell the object of the class Process that an
object of the class Configfile exists?

• The objects could have been declared as global objects. This is a possibility, but not a very
good one, since all the advantages of local objects are lost.

• The Configfile object may be passed to the Process object at construction time. Passing
an object in a blunt way (i.e., by value) might not be a very good idea, since the object must
be copied into the Configfile parameter, and then a data member of the Process class can
be used to make the Configfile object accessible throughout the Process class. This might
involve yet another object-copying task, as in the following situation:

Process::Process(Configfile conf) // a copy from the caller
{

conf_member = conf; // copying to conf_member
...

}

• The copy-instructions can be avoided by using pointers to the Configfile objects, as in:

Process::Process(Configfile *conf) // a pointer to an external object
{

conf_ptr = conf; // the conf_ptr is a Configfile *
...

}

99

This construction as such is ok, but forces us to use the -> field selector operator, rather
than the . operator, which is (disputably) awkward: conceptually one tends to think of the
Configfile object as an object, and not as a pointer to an object. In C this would probably
have been the preferred method, but in C++ we can do better.

• Rather than using value or pointer parameters, the Configfile parameter could be defined
as a reference parameter to the Process constructor. Next, we can define a Config reference
data member in the class Process. Using the reference variable effectively uses a pointer,
disguised as a variable.

However, the following construction will not result in the correct initialization of the Configfile
&conf ref reference data member:

Process::Process(Configfile &conf)
{

conf_ref = conf; // wrong: no assignment
}

The statement conf ref = conf fails, because the compiler won’t see this as an initialization, but
considers this an assignment of one Configfile object (i.e., conf), to another (conf ref). It does
so, because that’s the normal interpretation: an assignment to a reference variable is actually an
assignment to the variable the reference variable refers to. But to what variable does conf ref
refer? To no variable, since we haven’t initialized conf ref. After all, the whole purpose of the
statement conf ref = conf was to initialize conf ref....

So, how do we proceed when conf ref must be initialized? In this situation we once again use the
member-initializer syntax. The following example shows the correct way to initialize conf ref:

Process::Process(Configfile &conf)
:

conf_ref(conf) // initializing reference member
{

...
}

Note that this syntax can be used in all cases where reference data members are used. If int ref
would be an int reference data member, a construction like

Process::Process(int &ir)
:

int_ref(ir)
{

...
}

would have been called for.

100

4.6 Friend functions and friend classes

As we have seen in the previous sections, private data or function members are normally only
accessible by the code which is part of the corresponding class. However, situations may arise in
which it is desirable to allow the explicit access to private members of one class to one or more
other classless functions or member functions of classes.

E.g., consider the following code example (all functions are inline for purposes of brevity):

class A // class A: just stores an
{ // int value via the constructor

public: // and can retrieve it via
A(int v) // getval

{ value = v; }
int getval()

{ return (value); }

private:
int value;

};

void decrement(A &a) // function decrement: tries
{ // to alter A’s private data

a.value--;
}

class B // class B: tries to touch
{ // A’s private parts

public:
void touch(A &a)

{ a.value++; }
};

This code will not compile, since the classless function decrement() and the function touch() of
the class B attempt to access a private datamember of A.

We can explicitly allow decrement() to access A’s data, and we can explicitly allow the class B to
access these data. To accomplish this, the offending classless function decrement() and the class
B are declared to be friends of A:

class A
{

public:
friend class B; // B’s my buddy, I trust him

friend void decrement(A // decrement() is also a good pal
&what);

...
};

101

Concerning friendship between classes, we remark the following:

• Friendship is not mutual by default. This means that once B is declared as a friend of A, this
does not give A the right to access B’s private members.

• Friendship, when applied to program design, is an escape mechanism which circumvents the
principle of data hiding. Using friend classes should therefore be minimized to those cases
where it is absolutely essential.

• If friends are used, realize that the implementation of classes or functions that are friends to
other classes become implementation dependent on these classes. In the above example: once
the internal organization of the data of the class A changes, all its friends must be recompiled
(and possibly modified) as well.

• As a rule of thumb: don’t use friend functions or classes.

Having thus issued some warnings against the use of friends, we’ll leave our discussion of friends
for the time being. However, in section 13 we’ll continue the discussion, having covered, by that
time, the topic of operator overloading.

4.7 Header file organization with classes

In section 2.5.11 the requirements for header files when a C++ program also uses C functions
were discussed.

When classes are used, there are more requirements for the organization of header files. In this
section these requirements are covered.

First, the source files. With the exception of the occasional classless function, source files should
contain the code of memberfunctions of classes. With source files there are basically two ap-
proaches:

• All required header files for a memberfunction are included in each individual source file.

• All required header files for all memberfunctions are included in the class-headerfile, and each
sourcefile of that class includes only the header file of its class.

The first alternative has the advantage of economy for the compiler: it only needs to read the
header files that are necessary for a particular source file. It has the disadvantage that the program
developer must include multiple header files again and again in sourcefiles: it both takes time to
type in the include-directives and to think about the header files which are needed in a particular
source file.

The second alternative has the advantage of economy for the program developer: the header file
of the class accumulates header files, so it tends to become more and more generally useful. It has
the disadvantage that the compiler will often have to read header files which aren’t actually used
by the function defined in the source file.

With computers running faster and faster we think the second alternative is to be preferred over
the first alternative. So, we suggest that source files of a particular class MyClass are organized
according to the following example:

102

#include <myclass.h>

int MyClass::aMemberFunction()
{

...
}

There is only one include-directive. Note that the directive refers to a header file in a direc-
tory mentioned in the INCLUDE-file environment variable. Local header files (using #include
"myclass.h") could be used too, but that tends to complicate the organization of the class header
file itself somewhat. If name-collisions with existing header files might occur it pays off to have a
subdirectory of one of the directories mentioned in the INCLUDE environment variable (comparable
to, e.g., the sys subdirectory). If class MyClass is developed as part of some larger project, create
a subdirectory (or subdirectory link) of one of the INCLUDE directories, to contain all header files
of all classes that are developed as part of the project. The include-directives will then be similar
to #include <myproject/myclass.h>, and name collisions with other header files are avoided.

The organization of the header-file itself requires some attention. Consider the following example,
in which two classes File and String are used. The File class has a member gets(String
&destination), which reads a line from a file, and stores the line in the String object passed to the
gets() member function as reference, while the class String has a member function getLine(File
&file), which reads one line from the File object which is passed to the getLine() member
function as a reference. The (partial) header file for the class String is then:

#ifndef _String_h_
#define _String_h_

#include <project/file.h> // to know about a File

class String
{

public:
void getLine(File &file);

...
};
#endif

However, a similar setup is required for the class File:

#ifndef _File_h_
#define _File_h_

#include <project/string.h> // to know about a String

class File
{

public:

103

void gets(String &string);
...

};
#endif

Now we have created a problem. The compiler, trying to compile File::gets() proceeds as
follows:

• The header file project/string.h is opened to be read

• String h is defined

• The header file project/file.h is opened to be read

• File h is defined

• The header file project/string.h is opened to be read

• String h has been defined, so project/string.h is skipped

• The definition of the class File is parsed.

• In the class definition contains a reference to a String object

• As the class String hasn’t been parsed yet, a String is an undefined type, and the compiler
quits with an error.

The solution for this problem is to use a forward class reference before the class definition, and to
include the corresponding class header file after the class definition. So we get:

#ifndef _String_h_
#define _String_h_

class File; // forward reference

class String
{

public:
void getLine(File &file);

...
};

#include <project/file.h> // to know about a File

#endif

However, a similar setup is required for the class File:

#ifndef _File_h_

104

#define _File_h_

class String; // forward reference

class File
{

public:
void gets(String &string);

...
};

#include <project/string.h> // to know about a String

#endif

This works well in all situations where either references or pointers to another class are involved.
But it doesn’t work with composition. Assume the class File has a composed data member of the
class String. In that case, the class definition of the class File must include the header file of the
class String before the class definition itself, because otherwise the compiler can’t tell how big a
File object will be, as it doesn’t know the size of a String object once the definition of the File
class is completed.

In cases where classes contain composed objects (or are derived from other classes, see chapter
14) the header files of the classes of the composed objects must have been read before the class
definition itself. In such a case the class File might be defined as follows:

#ifndef _File_h_
#define _File_h_

#include <project/string.h> // to know about a String

class File
{

public:
void gets(String &string);

...
private:

String // composition !
line;

};
#endif

Note that the class String can’t have a File object as a composed member: such a situation
would result again in an undefined class while compiling the sources of these classes.

All other required header files are either related to classes that are used only within the source
files themselves (without being part of the current class definition), or they are related to classless
functions (like memcpy()). All headers that are not required by the compiler to parse the current
class definition can be mentioned below the class definition.

105

To summarize, a class header file should be organized as follows:

• Everything is contained within the block defined by the standard ifndef and endif direc-
tives.

• Header files of classes of objects that are either composed or inherited (see chapter 14) are
mentioned first.

• The classes of objects appearing only as references or as pointers in the class definition are
specified as forward references.

• Next comes the class definition itself.

• Following the class definition the header files of all classes given as forward references are
included.

• Finally, all other header files that are required in the source files of the class are included.

An example of such an header file is:

#ifndef _File_h_
#define _File_h_

#include <fstream> // for composed ’instream’

class String; // forward reference

class File // class definition
{

public:
void gets(String &string);

...
private:

ifstream
instream;

};
// for the class String

#include <project/string.h>

// for remaining software
#include <memory.h>
#include <sys/stat.h>

#endif

4.8 Nesting Classes

Classes can be defined inside other classes. Classes that are defined inside other classes are called
nested classes.

106

A class can be nested in every part of the surrounding class: in the public, protected or private
section. Such a nested class can be considered a member of the surrounding class. The normal
access and visibility rules in classes apply to nested classes. If a class is nested in the public
section of a class, it is visible outside the surrounding class. If it is nested in the protected section
it is visible in subclasses, derived from the surrounding class (see chapter 14), if it is nested in the
private section, it is only visible for the members of the surrounding class.

The surrounding class has no privileges with respect to the nested class. So, the nested class still
has full control over the accessibility of its members by the surrounding class.

For example, consider the following class definition:

class Surround
{

public:
class FirstWithin
{

public:
FirstWithin();
int getVar() const
{

return (variable);
}

private:
int

variable;
};

private:
class SecondWithin
{

public:
SecondWithin();
int getVar() const
{

return (variable);
}

private:
int

variable;
};
// other private members of Surround

};

In this definition access to the members is defined as follows:

• The class FirstWithin is visible both outside and inside Surround. The class FirstWithin
has therefore global scope.

• The constructor FirstWithin() and the memberfunction getVar() of the class FirstWithin
are also globally visible.

107

• The int variable datamember is only visible for the members of the class FirstWithin.
Neither the members of Surround nor the members of SecondWithin can access the variable
of the class FirstWithin directly.

• The class SecondWithin is visible only inside Surround. The public members of the class
SecondWithin can also be used by the members of the class FirstWithin, as nested classes
can be considered members of their surrounding class.

• The constructor SecondWithin() and the memberfunction getVar() of the class SecondWithin
can also only be reached by the members of Surround (and by the members of its nested
classes).

• The int variable datamember of the class SecondWithin is only visible for the members of
the class SecondWithin. Neither the members of Surround nor the members of FirstWithin
can access the variable of the class SecondWithin directly.

If the surrounding class should have access rights to the private members of its nested classes or
if nested classes should have access rights to the private members of the surrounding class, the
classes can be defined as friend classes (see section 4.8.3).

The nested classes can be considered members of the surrounding class, but the members of nested
classes are not members of the surrounding class. So, a member of the class Surround may
not access FirstWithin::getVar() directly. This is understandable considering the fact that a
Surround object is not also a FirstWithin or SecondWithin object. The nested classes are only
available as typenames. They do not imply containment as objects by the surrounding class. If a
member of the surrounding class should use a (non-static) member of a nested class then a pointer
to a nested class object or a nested class datamember must be defined in the surrounding class,
which can thereupon be used by the members of the surrounding class to access members of the
nested class.

For example, in the following class definition there is a surrounding class Outer and a nested class
Inner. The class Outer contains a memberfunction caller() which uses the inner object that is
composed in Outer to call the infunction() memberfunction of Inner:

class Outer
{

public:
void caller()
{

inner.infunction();
}

private:
class Inner
{

public:
void infunction();

};
Inner

inner;
};

108

Also note that the function Inner::infunction() can be called as part of the inline definition of
Outer::caller(), even though the definition of the class Inner is yet to be seen by the compiler.

Inline functions can be defined as if they were functions that were defined outside of the class
definition: if the function Outer::caller() would have been defined outside of the class Outer,
the full class definition (including the definition of the class Inner would have been available to the
compiler. In that situation the function is perfectly compilable. Inline functions can be compiled
accordingly and there is, e.g., no need to define a special private section in Outer in which the
class Inner is defined before defining the inline function caller().

4.8.1 Defining nested class members

Memberfunctions of nested classes may be defined as inline functions. However, they can also
be defined outside of their surrounding class. Consider the constructor of the class FirstWithin
in the example of the previous section. The constructor FirstWithin() is defined in the class
FirstWithin, which is, in turn, defined within the class Surround. Consequently, the class scopes
of the two classes must be used to define the constructor. E.g.,

Surround::FirstWithin::FirstWithin()
{

variable = 0;
}

Static (data) members can be defined accordingly. If the class FirstWithin would have a static
unsigned datamember epoch, it could be initialized as follows:

Surround::FirstWithin::epoch = 1970;

Furthermore, both class scopes are needed to refer to public static members in code outside of the
surrounding class:

void showEpoch()
{

cout << Surround::FirstWithin::epoch = 1970;
}

Of course, inside the members of the class Surround only the FirstWithin:: scope needs to be
mentioned, and inside the members of the class FirstWithin there is no need to refer explicitly
to the scope.

What about the members of the class SecondWithin? The classes FirstWithin and SecondWithin
are both nested within Surround, and can be considered members of the surrounding class. Since
members of a class may directy refer to each other, members of the class SecondWithin can refer
to (public) members of the class FirstWithin. Consequently, members of the class SecondWithin
could refer to the epoch member of FirstWithin as

109

FirstWithin::epoch

4.8.2 Declaring nested classes

Nested classes may be declared before they are actually defined in a surrounding class. Such
forward declarations are required if a class contains multiple nested classes, and the nested classes
contain pointers to objects of the other nested classes.

For example, the following class Outer contains two nested classes Inner1 and Inner2. The class
Inner1 contains a pointer to Inner2 objects, and Inner2 contains a pointer to Inner1 objects.
Such cross references require forward declarations:

class Outer
{

...
private:

class Inner2; // forward declaration

class Inner1
{

...
private:

Inner2
*pi2; // points to Inner2 objects

};
class Inner2
{

...
private:

Inner1
*pi1; // points to Inner1 objects

};
...

};

4.8.3 Access to private members in nested classes

In order to allow nested classes to access the private members of the surrounding class or to access
the private members of other nested classes or to allow the surrounding class to access the private
members of nested classes, the friend keyword must be used. Consider the following situation, in
which a class Surround has two nested classes FirstWithin and SecondWithin, while each class
has a static data member int variable:

class Surround
{

public:
class FirstWithin

110

{
public:

int getValue();
private:

static int
variable;

};
int getValue();

private:
class SecondWithin
{

public:
int getValue();

private:
static int

variable;
};
static int

variable;
};

If the class Surround should be able to access the private members of FirstWithin and SecondWithin,
these latter two classes must declare Surround to be their friend. The function Surround::getValue()
can thereupon access the private members of the nested classes. For example (note the friend
declarations in the two nested classes):

class Surround
{

public:
class FirstWithin
{

friend class Surround;
public:

int getValue();
private:

static int
variable;

};
int getValue()
{

FirstWithin::variable = SecondWithin::variable;
return (variable);

}
private:

class SecondWithin
{

friend class Surround;
public:

int getValue();
private:

111

static int
variable;

};
static int

variable;
};

Now, in order to allow the nested classes to access the private members of the surrounding class, the
class Surround must declare the nested classes as friends. The friend keyword may only be used
when the class that is to become a friend is already known as a class by the compiler, so either a
forward declaration of the nested classes is required, which is followed by the friend declaration, or
the friend declaration follows the definition of the nested classes. The forward declaration followed
by the friend declaration looks like this:

class Surround
{

class FirstWithin;
class SecondWithin;
friend class FirstWithin;
friend class SecondWithin;

public:
class FirstWithin

... (etc)

Alternatively, the friend declaration may follow the definition of the classes. Note that a class can
be declared a friend following its definition, while the inline code in the definition already uses the
fact that it will be declared a friend of the outer class. Also note that the inline code of the nested
class uses members of the surrounding class which have not yet been seen by the compiler. Finally
note that the variable variable that is defined in the class Surround is accessed in the nested
classes as Surround::variable:

class Surround
{

public:
class FirstWithin
{

friend class Surround;
public:

int getValue()
{

Surround::variable = 4;
return (variable);

}
private:

static int
variable;

112

};
friend class FirstWithin;

int getValue()
{

FirstWithin::variable = SecondWithin::variable;
return (variable);

}
private:

class SecondWithin
{

friend class Surround;
public:

int getValue()
{

Surround::variable = 40;
return (variable);

}
private:

static int
variable;

};
friend class SecondWithin;

static int
variable;

};

Finally, we want to allow the nested classes to access each other’s private members. Again this
requires some friend declarations. In order to allow FirstWithin to access SecondWithin’s pri-
vate members nothing but a friend declaration in SecondWithin is required. However, to allow
SecondWithin to access the private members of FirstWithin the friend class SecondWithin
declaration cannot be plainly given in the class FirstWithin, as the definition of SecondWithin
has not yet been given. A forward declaration of SecondWithin is required, and this forward dec-
laration must be given in the class Surround, rather than in the class FirstWithin. Clearly, the
forward declaration class SecondWithin in the class FirstWithin itself makes no sense, as this
would refer to an external (global) class FirstWithin. But the attempt to provide the forward dec-
laration of the nested class SecondWithin inside FirstWithin as class Surround::SecondWithin
also fails miserably, with the compiler issuing a message like

‘Surround’ does not have a nested type named ‘SecondWithin’

The right procedure to follow here is to declare the class SecondWithin in the class Surround, before
the class FirstWithin is defined. Using this procedure, the friend declaration of SecondWithin is
accepted inside the definition of FirstWithin. The following class definition allows full access of
the private members of all classes by all other classes:

class Surround
{

class SecondWithin;

113

public:
class FirstWithin
{

friend class Surround;
friend class SecondWithin;
public:

int getValue()
{

Surround::variable = SecondWithin::variable;
return (variable);

}
private:

static int
variable;

};
friend class FirstWithin;

int getValue()
{

FirstWithin::variable = SecondWithin::variable;
return (variable);

}
private:

class SecondWithin
{

friend class Surround;
friend class FirstWithin;
public:

int getValue()
{

Surround::variable = FirstWithin::variable;
return (variable);

}
private:

static int
variable;

};
friend class SecondWithin;

static int
variable;

};

4.8.4 Nesting enumerations

Enumerations may also be nested in classes. For example, a class DataStructure may be traversed
in a forward or backward direction. Such a class can define an enumerator Traversal having the
values forward and backward. Furthermore, a memberfunction setTraversal() can be defined
requiring either of the two enumeration values. The class can be defined as follows:

114

class DataStructure
{

public:
enum Traversal
{

forward,
backward

};
setTraversal(Traversal mode);
...

private:
Traversal

mode;
...

};

Within the class DataStructure the values of the Traversal enumeration can be used directly.
For example:

void DataStructure::setTraversal(Traversal modeArg)
{

mode = modeArg;
switch (mode)
{

forward:
....

break;

backward:
....

break;
}

}

Ouside of the class DataStructure the name of the enumeration type is not used to refer to the
values of the enumeration. Here the classname is enough. Only if a variable of the enumeration
type is required the name of the enumeration type is needed, as illustrated by the following piece
of code:

void fun()
{

DataStructure::Traversal // enum typename required
localMode = DataStructure::forward; // enum typename not required

DataStructure
ds;

// enum typename not required

115

ds.setTraversal(DataStructure::backward);
}

Again, if DataStructure would define a nested class Nested in which the enumeration Traversal
would have been defined, the two class scopes would have been required. In that case the former
example would have to be coded as follows:

void fun()
{

DataStructure::Nested::Traversal
localMode = DataStructure::Nested::forward;

DataStructure
ds;

ds.setTraversal(DataStructure::Nested::backward);
}

116

Chapter 5

Classes and memory allocation

In contrast to the set of functions which handle memory allocation in C (i.e., malloc() etc.), the
operators new and delete are specifically meant to be used with the features that C++ offers.
Important differences between malloc() and new are:

• The function malloc() doesn’t ‘know’ what the allocated memory will be used for. E.g.,
when memory for ints is allocated, the programmer must supply the correct expression using
a multiplication by sizeof(int). In contrast, new requires the use of a type; the sizeof
expression is implicitly handled by the compiler.

• The only way to initialize memory which is allocated by malloc() is to use calloc(), which
allocates memory and resets it to a given value. In contrast, new can call the constructor of
an allocated object where initial actions are defined. This constructor may be supplied with
arguments.

• All C-allocation functions must be inspected for NULL-returns. In contrast, the new-operator
provides a facility called a new handler (cf. section 4.3.3) which can be used instead of the
explicit checks for NULL-returns.

The relationship between free() and delete is analogous: delete makes sure that when an object
is deallocated, a corresponding destructor is called.

The automatic calling of constructors and destructors when objects are created and destroyed, has a
number of consequences which we shall discuss in this chapter. Many problems encountered during
C program development are caused by incorrect memory allocation or memory leaks: memory is
not allocated, not freed, not initialized, boundaries are overwritten, etc.. C++ does not ‘magically’
solve these problems, but it does provide a number of handy tools.

Unfortunately, the very frequently used str...() functions, like strdup() are all malloc() based,
and should therefore preferably not be used anymore in C++ programs. Instead, a new set of
corresponding functions, based on the operator new, are preferred.

For the function strdup() a comparable function char ∗strdupnew(char const ∗str) could be
developed as follows:

char *strdupnew(char const *str)

117

{
return (strcpy(new char [strlen(str) + 1], str));

}

Similar functions could be developed for comparable malloc()-based str...() and other func-
tions.

In this chapter we discuss the following topics:

• the assignment operator (and operator overloading in general),

• the this pointer,

• the copy constructor.

5.1 Classes with pointer data members

In this section we shall again use the class Person as example:

class Person
{

public:
// constructors and destructor
Person();
Person(char const *n, char const *a,

char const *p);
~Person();

// interface functions
void setname(char const *n);
void setaddress(char const *a);
void setphone(char const *p);

char const *getname(void) const;
char const *getaddress(void) const;
char const *getphone(void) const;

private:
// data fields
char *name;
char *address;
char *phone;

};

In this class the destructor is necessary to prevent that memory, once allocated for the fields name,
address and phone, becomes unreachable when an object ceases to exist. In the following example
a Person object is created, after which the data fields are printed. After this the main() function

118

stops, which leads to the deallocation of memory. The destructor of the class is also shown for
illustration purposes.

Note that in this example an object of the class Person is also created and destroyed using a
pointer variable; using the operators new and delete.

Person::~Person()
{

delete name;
delete address;
delete phone;

}

int main()
{

Person
kk("Karel", "Rietveldlaan",

"050 542 6044"),
*bill = new Person("Bill Clinton",

"White House",
"09-1-202-142-3045");

printf("%s, %s, %s\n"
"%s, %s, %s\n",

kk.getname(), kk.getaddress(), kk.getphone(),
bill->getname(), bill->getaddress(), bill->getphone());

delete bill;

return (0);
}

The memory occupied by the object kk is released automatically when main() terminates: the
C++ compiler makes sure that the destructor is called. Note, however, that the object pointed
to by bill is handled differently. The variable bill is a pointer; and a pointer variable is, even
in C++, in itself no Person. Therefore, before main() terminates, the memory occupied by the
object pointed to by bill must be explicitly released; hence the statement delete bill. The
operator delete will make sure that the destructor is called, thereby releasing the three strings of
the object.

5.2 The assignment operator

Variables which are structs or classes can be directly assigned in C++ in the same way that
structs can be assigned in C. The default action of such an assignment is a straight bytewise copy
from one compound variable to another.

Let us now consider the consequences of this default action in a program statement such as the
following:

119

void printperson(Person const &p)
{

Person
tmp;

tmp = p;
printf("Name: %s\n"

"Address: %s\n"
"Phone: %s\n",

tmp.getname(), tmp.getaddress(), tmp.getphone());
}

We shall follow the execution of this function step by step.

• The function printperson() expects a reference to a Person as its parameter p. So far,
nothing extraordinary is happening.

• The function defines a local object tmp. This means that the default constructor of Person
is called, which -if defined properly- resets the pointer fields name, address and phone of the
tmp object to zero.

• Next, the object referenced by p is copied to tmp. By default this means that sizeof(Person)
bytes from p are copied to tmp.

Now a potentially dangerous situation has arisen. Note that the actual values in p are
pointers, pointing to allocated memory. Following the assignment this memory is addressed
by two objects: p and tmp.

• The potentially dangerous situation develops into an acutely dangerous situation when the
function printperson() terminates: the object tmp is destroyed. The destructor of the class
Person releases the memory pointed to by the fields name, address and phone: unfortunately,
this memory is also in use by p....

The incorrect assignment is illustrated in figure 5.1.

Having executed printperson(), the object which was referenced by p now contain pointers to
deallocated memory.

This action is undoubtedly not a desired effect of a function like the above. The deallocated
memory will likely become occupied during subsequent allocations: the pointer members of p have
effectively become wild pointers, as they don’t point to allocated memory anymore.

In general it can be concluded that every class containing pointer data members is a potential
candidate for trouble. It is of course possible to prevent such troubles, as will be discussed in the
next section.

5.2.1 Overloading the assignment operator

Obviously, the right way to assign one Person object to another, is not to copy the contents of the
object bytewise. A better way is to make an equivalent object; one with its own allocated memory,
but which contains the same strings.

120

\

Figure 5.1: Private data and public interface functions of the class Person, using bytewise assign-
ment

121

\

Figure 5.2: Private data and public interface functions of the class Person, using the ‘correct’
assignment.

122

The ‘right’ way to duplicate a Person object is illustrated in figure 5.2.

There is a number of solutions for the above wish. One solution consists of the definition of a
special function to handle assignments of objects of the class Person. The purpose of this function
would be to create a copy of an object, but one with its own name, address and phone strings.
Such a member function might be:

void Person::assign(Person const &other)
{

// delete our own previously used memory
delete name;
delete address;
delete phone;

// now copy the other Person’s data
name = strdupnew(other.name);
address = strdupnew(other.address);
phone = strdupnew(other.phone);

}

Using this tool we could rewrite the offending function printperson():

void printperson(Person const &p)
{

Person
tmp;

// make tmp a copy of p, but with its own allocated
// strings
tmp.assign(p);

printf("Name: %s\n"
"Address: %s\n"
"Phone: %s\n",

tmp.getname(), tmp.getaddress(), tmp.getphone());

// now it doesn’t matter that tmp gets destroyed..
}

In itself this solution is valid, although it is a purely symptomatic solution. This solution requires
that the programmer uses a specific member function instead of the operator =. The problem,
however, remains if this rule is not strictly adhered to. Experience learns that errare humanum
est: a solution which doesn’t enforce exceptions is therefore preferable.

The problem of the assignment operator is solved by means of operator overloading: the syntactic
possibility C++ offers to redefine the actions of an operator in a given context. Operator over-
loading was mentioned earlier, when the operators << and >> were redefined for the usage with
streams as cin, cout and cerr (see section 3.1.2).

123

Overloading the assignment operator is probably the most common form of operator overloading.
However, a word of warning is appropriate: the fact that C++ allows operator overloading does
not mean that this feature should be used at all times. A few rules are:

• Operator overloading should be used in situations where an operator has a defined action,
but when this action is not desired as it has negative side effects. A typical example is the
above assignment operator in the context of the class Person.

• Operator overloading can be used in situations where the usage of the operator is common
and when no ambiguity in the meaning of the operator is introduced by redefining it. An
example may be the redefinition of the operator + for a class which represents a complex
number. The meaning of a + between two complex numbers is quite clear and unambiguous.

• In all other cases it is preferable to define a member function, instead of redefining an
operator.

Using these rules, operator overloading is minimized which helps keep source files readable. An op-
erator simply does what it is designed to do. Therefore, in our vision, the operators insertion (<<)
and extraction (>>) operators in the context of streams are unfortunate: the stream operations
do not have anything in common with the bitwise shift operations.

The function ’operator=()’

To achieve operator overloading in the context of a class, the class is simply expanded with a
public function stating the particular operator. A corresponding function, the implementation of
the overloaded operator, is thereupon defined.

For example, to overload the addition operator +, a function operator+() must be defined. The
function name consists of two parts: the keyword operator, followed by the operator itself.

In our case we define a new function operator=() to redefine the actions of the assignment oper-
ator. A possible extension to the class Person could therefore be:

// new declaration of the class
class Person
{

public:
...
void operator=(Person const &other);
...

private:
...

};

// definition of the function operator=()
void Person::operator=(Person const &other)
{

// deallocate old data
delete name;
delete address;

124

delete phone;

// make duplicates of other’s data
name = strdupnew(other.name);
address = strdupnew(other.address);
phone = strdupnew(other.phone);

}

The function operator=() presented here is the first version of the overloaded assignment operator.
We shall present better and less bug-prone versions shortly.

The actions of this member function are similar to those of the previously proposed function
assign(), but now its name makes sure that this function is also activated when the assignment
operator = is used. There are actually two ways to call this function, as illustrated below:

Person
pers("Frank", "Oostumerweg 17", "403 2223"),
copy;

// first possibility
copy = pers;

// second possibility
copy.operator=(pers);

It is obvious that the second possibility, in which operator=() is explicitly stated, is not used
often. However, the code fragment does illustrate the two ways of calling the same function.

5.3 The this pointer

As we have seen, a member function of a given class is always called in the context of some object
of the class. There is always an implicit ‘substrate’ for the function to act on. C++ defines a
keyword, this, to address this substrate1

The this keyword is a pointer variable, which always contains the address of the object in question.
The this pointer is implicitly declared in each member function (whether public or private).
Therefore, it is as if in each member function of the class Person would contain the following
declaration:

extern Person *this;

A member function like setname(), which sets a name field of a Person to a given string, could
therefore be implemented in two ways: with or without the this pointer:

1Note that ‘this’ is not available in the not yet discussed static member functions.

125

// alternative 1: implicit usage of this
void Person::setname(char const *n)
{

delete name;
name = strdupnew(n);

}

// alternative 2: explicit usage of this
void Person::setname(char const *n)
{

delete this->name;
this->name = strdupnew(n);

}

Explicit usage of the this pointer is not used very frequently. However, there exist a number of
situations where the this pointer is really needed.

5.3.1 Preventing self-destruction with this

As we have seen, the operator = can be redefined for the class Person in such a way that two
objects of the class can be assigned, leading to two copies of the same object.

As long as the two variables are different ones, the previously presented version of the function
operator=() will behave properly: the memory of the assigned object is released, after which it
is allocated again to hold new strings. However, when an object is assigned to itself (which is
called auto-assignment), a problem occurs: the allocated strings of the receiving object are first
released, but this also leads to the release of the strings of the right-hand side variable, which we
call self-destruction. An example of this situation is illustrated below:

void fubar(Person const &p)
{

p = p; // auto-assignment!
}

In this example it is perfectly clear that something unnecessary, possibly even wrong, is happening.
But auto-assignment can also occur in more hidden forms:

Person
one,
two,
*pp;

pp = &one;
...
*pp = two;

126

...
one = *pp;

The problem of the auto-assignment can be solved using the this pointer. In the overloaded
assignment operator function we simply test whether the address of the right-hand side object is
the same as the address of the current object: if so, no action needs to be taken. The definition of
the function operator=() then becomes:

void Person::operator=(Person const &other)
{

// only take action if address of current object
// (this) is NOT equal to address of other
// object(&other):

if (this != &other)
{

delete name;
delete address;
delete phone;

name = strdupnew(other.name);
address = strdupnew(other.address);
phone = strdupnew(other.phone);

}
}

This is the second version of the overloaded assignment function. One, yet better version remains
to be discussed.

As a subtlety, note the usage of the address operator ’&’ in the statement

if (this != &other)

The variable this is a pointer to the ‘current’ object, while other is a reference; which is an ‘alias’
to an actual Person object. The address of the other object is therefore &other, while the address
of the current object is this.

5.3.2 Associativity of operators and this

According to C++’s syntax, the associativity of the assignment operator is to the right-hand side.
I.e., in statements like:

a = b = c;

127

the expression b = c is evaluated first, and the result is assigned to a.

The implementation of the overloaded assignment operator so far does not permit such construc-
tions, as an assignment using the member function returns nothing (void). We can therefore
conclude that the previous implementation does circumvent an allocation problem, but is syntac-
tically not quite right.

The syntactical problem can be illustrated as follows. When we rewrite the expression a = b = c
to the form which explicitly mentions the overloaded assignment member functions, we get:

a.operator=(b.operator=(c));

This variant is syntactically wrong, since the sub-expression b.operator=(c) yields void; and the
class Person contains no member functions with the prototype operator=(void).

This problem can also be remedied using the this pointer. The overloaded assignment function
expects as its argument a reference to a Person object. It can also return a reference to such an
object. This reference can then be used as an argument for a nested assignment.

It is customary to let the overloaded assignment return a reference to the current object (i.e.,
∗this), as a const reference: the receiver is not supposed to alter the ∗this object.

The (final) version of the overloaded assignment operator for the class Person thus becomes:

// declaration in the class
class Person
{

public:
...
Person const &operator=(Person const &other)
...

};

// definition of the function
Person const &Person::operator=(Person const &other)
{

// only take action when no auto-assignment occurs
if (this != &other)
{

// deallocate own data
delete address;
delete name;
delete phone;

// duplicate other’s data
address = strdupnew(other.address);
name = strdupnew(other.name);
phone = strdupnew(other.phone);

}

128

// return current object, compiler will make sure
// that a const reference is returned
return (*this);

}

5.4 The copy constructor: Initialization vs. Assignment

In the following sections we shall take a closer look at another usage of the operator =. For this,
we shall use a class String. This class is meant to handle allocated strings, and its interface is as
follows:

class String
{

public:
// constructors, destructor
String();
String(char const *s);
~String();

// overloaded assignment
String const &operator=(String const &other);

// interface functions
void set(char const *data);
char const *get(void);

private:
// one data field: ptr to allocated string
char *str;

};

Concerning this interface we remark the following:

• The class contains a pointer char ∗str, possibly pointing to allocated memory. Conse-
quently, the class needs a constructor and a destructor.

A typical action of the constructor would be to set the str pointer to 0. A typical action of
the destructor would be to release the allocated memory.

• For the same reason the class has an overloaded assignment operator. The code of this
function would look like:

String const &String::operator=(String const &other)
{

if (this != &other)
{

129

delete str;
str = strdupnew(other.str);

}
return (*this);

}

• The class has, besides a default constructor, a constructor which expects one string argument.
Typically this argument would be used to set the string to a given value, as in:

String
a("Hello World!\n");

• The only interface functions are to set the string part of the object and to retrieve it.

Now let’s consider the following code fragment. The statement references are discussed following
the example:

String
a("Hello World\n"), // see (1)
b, // see (2)
c = a; // see (3)

int main()
{

b = c; // see (4)
return (0);

}

• Statement 1: this statement shows an initialization. The object a is initialized with a string
“Hello World”. This construction of the object a therefore uses the constructor which expects
one string argument.

It should be noted here that this form is identical to

String
a = "Hello World\n";

Even though this piece of code uses the operator =, this is no assignment: rather, it is an
initialization, and hence, it’s done at construction time by a constructor of the class String.

• Statement 2: here a second String object is created. Again a constructor is called. As no
special arguments are present, the default constructor is used.

• Statement 3: again a new object c is created. A constructor is therefore called once more.
The new object is also initialized. This time with a copy of the data of object a.

This form of initializations has not yet been discussed. As we can rewrite this statement in
the form

130

String
c(a);

it suggests that a constructor is called, with as argument a (reference to a) String ob-
ject. Such constructors are quite common in C++ and are called copy constructors. More
properties of these constructors are discussed below.

• Statement 4: here one object is assigned to another. No object is created in this statement.
Hence, this is just an assignment, using the overloaded assignment operator.

The simple rule emanating from these examples is that whenever an object is created, a constructor
is needed. All constructors have the following characteristics:

• Constructors have no return values.

• Constructors are defined in functions having the same names as the class to which they
belong.

• The argument list of constructors can be deduced from the code. The argument is either
present between parentheses or following a =.

Therefore, we conclude that, given the above statement (3), the class String must be rewritten to
define a copy constructor:

// class definition
class String
{

public:
...
String(String const &other);
...

};

// constructor definition
String::String(String const &other)
{

str = strdupnew(other.str);
}

The actions of copy constructors are comparable to those of the overloaded assignment operators:
an object is duplicated, so that it contains its own allocated data. The copy constructor function,
however, is simpler in the following respect:

• A copy constructor doesn’t need to deallocate previously allocated memory: since the object
in question has just been created, it cannot already have its own allocated data.

• A copy constructor never needs to check whether auto-duplication occurs. No variable can
be initialized with itself.

131

Besides the above mentioned quite obvious usage of the copy constructor, the copy constructor
has other important tasks. All of these tasks are related to the fact that the copy constructor is
always called when an object is created and initialized with another object of its class. The copy
constructor is called even when this new object is a hidden or temporary variable.

• When a function takes an object as argument, instead of, e.g., a pointer or a reference, C++
calls the copy constructor to pass a copy of an object as the argument. This argument, which
usually is passed via the stack, is therefore a new object. It is created and initialized with
the data of the passed argument.

This is illustrated in the following code fragment:

void func(String s) // no pointer, no reference
{ // but the String itself

puts(s.get());
}

int main()
{

String
hi("hello world");

func(hi);
return (0);

}

In this code fragment hi itself is not passed as an argument, but instead a temporary(stack)
variable is created using the copy constructor. This temporary variable is known within
func() as s. Note that if func() would have been defined using a reference argument, extra
stack usage and a call to the copy constructor would have been avoided.

• The copy constructor is also implicitly called when a function returns an object.

This situation occurs when, e.g., a function returns keyboard input in a String format:

String getline()
{

char
buf [100]; // buffer for kbd input

gets(buf); // read buffer

String
ret = buf; // convert to String

return(ret); // and return it
}

A hidden String object is here initialized with the return value ret (using the copy con-
structor) and is returned by the function. The local variable ret itself ceases to exist when
getline() terminates.

132

To demonstrate that copy constructors are not called in all situations, consider the following. We
could rewrite the above function getline() to the following form:

String getline()
{

char
buf [100]; // buffer for kbd input

gets(buf); // read buffer
return (buf); // and return it

}

This code fragment is quite valid, even though the return value char ∗ doesn’t match the prototype
String. In this situation, C++ will try to convert the char ∗ to a String. It can do so given
a constructor expecting a char ∗ argument. This means that the copy constructor is not used in
this version of getline(). Instead, the constructor expecting a char ∗ argument is used.

Contrary to the situation we encountered with the default constructor, the default copy constructor
remains available once a constructor (any constructor) is defined explicitly. The copy constructor
can be redefined, but it will not disappear once another constructor is defined.

5.4.1 Similarities between the copy constructor and operator=()

The similarities between on one hand the copy constructor and on the other hand the overloaded
assignment operator are reinvestigated in this section. We present here two primitive functions
which often occur in our code, and which we think are quite useful. Note the following features of
copy constructors, overloaded assignment operators, and destructors:

• The duplication of (private) data occurs (1) in the copy constructor and (2) in the overloaded
assignment function.

• The deallocation of used memory occurs (1) in the overloaded assignment function and (2)
in the destructor.

The two above actions (duplication and deallocation) can be coded in two private functions, say
copy() and destroy(), which are used in the overloaded assignment operator, the copy construc-
tor, and the destructor. When we apply this method to the class Person, we can rewrite the code
as follows.

First, the class definition is expanded with two private functions copy() and destroy(). The
purpose of these functions is to copy the data of another object or to deallocate the memory of
the current object unconditionally. Hence these functions implement ‘primitive’ functionality:

// class definition, only relevant functions are shown here
class Person
{

public:

133

// constructors, destructor
Person(Person const &other);
~Person();

// overloaded assignment
Person const &operator=(Person const &other);

private:
// data fields
char

*name,
*address,
*phone;

// the two primitives
void copy(Person const &other);
void destroy(void);

};

Next, we present the implementations of the functions copy() and destroy():

// copy(): unconditionally copy other object’s data
void Person::copy(Person const &other)
{

name = strdupnew(other.name);
address = strdupnew(other.address);
phone = strdupnew(other.phone);

}

// destroy(): unconditionally deallocate data
void Person::destroy ()
{

delete name;
delete address;
delete phone;

}

Finally the three public functions in which other object’s memory is copied or in which memory
is deallocated are rewritten:

// copy constructor
Person::Person (Person const &other)
{

// unconditionally copy other’s data
copy(other);

}

// destructor

134

Person::~Person()
{

// unconditionally deallocate
destroy();

}

// overloaded assignment
Person const &Person::operator=(Person const &other)
{

// only take action if no auto-assignment
if (this != &other)
{

destroy();
copy(other);

}
// return (reference to) current object for
// chain-assignments
return (*this);

}

What we like about this approach is that the destructor, copy constructor and overloaded as-
signment functions are completely standard: they are independent of a particular class, and their
implementations can therefore be used in every class. Any class dependencies are reduced to the
implementations of the private member functions copy() and destroy().

5.5 Conclusion

Two important extensions to classes have been discussed in this chapter: the overloaded assignment
operator and the copy constructor. As we have seen, classes with pointer data which address
allocated memory are potential sources of semantic errors. The two introduced extensions represent
the standard ways to prevent unintentional loss of allocated data.

The conclusion is therefore: as soon as a class is defined in which pointer data-members are used,
a destructor, an overloaded assignment function and a copy constructor should be implemented.

135

Chapter 6

More About Operator Overloading

Now that we’ve covered the overloaded assignment operator in depth, and now that we’ve seen
some examples of other overloaded operators as well (i.e., the insertion and extraction operators),
let’s take a look at some other interesting examples of operator overloading.

6.1 Overloading operator[]()

As our next example of operator overloading, we present a class which is meant to operate on
an array of ints. Indexing the array elements occurs with the standard array operator [], but
additionally the class checks for boundary overflow. Furthermore, the array operator is interesting
in that it both produces a value and accepts a value, when used, respectively, as a right-hand value
and a left-hand value in expressions.

An example of the use of the class is given here:

int main()
{

IntArray
x(20); // 20 ints

for (int i = 0; i < 20; i++)
x[i] = i * 2; // assign the elements

// produces boundary
// overflow

for (int i = 0; i <= 20; i++)
cout << "At index " << i << ": value is " << x[i] << endl;

return (0);
}

This example shows how an array is created to contain 20 ints. The elements of the array can be
assigned or retrieved. The above example should produce a run-time error, generated by the class

136

IntArray: the last for loop causing a boundary overflow, since x[20] is addressed while legal
indices range from 0 to 19, inclusive.

We give the following class interface:

class IntArray
{

public:
IntArray(int size = 1); // default size: 1 int
IntArray(IntArray const &other);
~IntArray();
IntArray const &operator=(IntArray const &other);

// overloaded index operators:
int &operator[](int index); // first
int operator[](int index) const; // second

private:
void boundary(int index) const;
void destroy(); // standard functions

// used to copy/destroy
void copy(IntArray const &other);

int
*data,
size;

};

#include <iostream>

Concerning this class interface we remark:

• The class has a constructor with a default int argument, specifying the array size. This
function serves also as the default constructor, since the compiler will substitute 1 for the
argument when none is given.

• The class internally uses a pointer to reach allocated memory. Hence, the necessary tools are
provided: a copy constructor, an overloaded assignment function and a destructor.

• Note that there are two overloaded index operators. Why are there two of them ?

The first overloaded index operator allows us to reach and obtain the elements of the
IntArray object.

This overloaded operator has as its prototype a function that returns a reference to an int.
This allows us to use expressions like x[10] on the left-hand side and on the right-hand side
of an assignment.

We can therefore use the same function to retrieve and to assign values. Furthermore note
that the returnvalue of the overloaded array operator is not an int const &, but rather an
int &. In this situation we don’t want the const, as we must be able to change the element
we want to access, if the operator is used as a left-hand value in an assignment.

However, this whole scheme fails if there’s nothing to assign. Consider the situation where
we have an IntArray const stable(5);. Such an object is a const object, which cannot
be modified. The compiler detects this and will refuse to compile this object definition if

137

only the first overloaded index operator is available. Hence the second overloaded index
operator. Here the return-value is an int, rather than an int &, and the member-function
itself is a const member function. This second form of the overloaded index operator cannot
be used with non-const objects, but it’s perfect for const objects. It can only be used
for value-retrieval, not for value-assignment, but that is precisely what we want with const
objects.

• We used the standard implementations of the copy constructor, the overloaded assignment
operator and the destructor, discussed before (in section 5.4.1), albeit that we’ve left out
the implementation of the function destroy(), as this function would consist of merely one
statement (delete data).

• As the elements of data are ints, no delete [] is needed. It does no harm, either. Therefore,
since we use the [] when the object is created, we also use the [] when the data are eventually
destroyed.

The member functions of the class are presented next.

#include "intarray.h"

IntArray::IntArray(int sz)
{

if (sz < 1)
{

cerr << "IntArray: size of array must be >= 1, not " << sz
<< "!" << endl;

exit(1);
}
// remember size, create array
size = sz;
data = new int [sz];

}

// copy constructor
IntArray::IntArray(IntArray const &other)
{

copy(other);
}

// destructor
IntArray::~IntArray()
{

delete [] data;
}

// overloaded assignment
IntArray const &IntArray::operator=(IntArray const &other)
{

// take action only when no auto-assignment
if (this != &other)
{

delete [] data;
copy(other);

138

}
return (*this);

}

// copy() primitive
void IntArray::copy(IntArray const &other)
{

// set size
size = other.size;

// create array
data = new int [size];

// copy other’s values
for (register int i = 0; i < size; i++)

data[i] = other.data[i];
}

// here is the first overloaded array operator
int &IntArray::operator[](int index)
{

boundary(index);
return (data[index]); // emit the reference

}

// and the second overloaded array operator
int IntArray::operator[](int index) const
{

boundary(index);
return (data[index]); // emit the value

}

// the function checking the boundaries for the index:
void IntArray::boundary(int index) const
{

// check for array boundary over/underflow
if (index < 0 || index >= size)
{

cerr << "IntArray: boundary overflow or underflow, index = "
<< index << ", should range from 0 to " << size - 1 << endl;

exit(1);
}

}

6.2 Overloading operator new(size t)

If the operator new is overloaded, it must have a void ∗ return type, and at least an argument
of type size t. The size t type is defined in stddef.h, which must therefore be included when
the operator new is overloaded.

It is also possible to define multiple versions of the operator new, as long as each version has its

139

own unique set of arguments. The global new operator can still be used, through the ::-operator.
If a class X overloads the operator new, then the system-provided operator new is activated by

X ∗x = ::new X();

Furthermore, the new [] construction will always use the default operator new.

An example of the overloaded operator new for the class X is the following:

#include <stddef.h>

void *X::operator new(size_t sizeofX)
{

void
*p = new char[sizeofX];

return (memset(p, 0, sizeof(X)));
}

Now, let’s see what happens when the operator new is defined for the class X. Assume that class
is defined as follows1:

class X
{

public:
void *operator new(size_t sizeofX);

int
x,
y,
z;

};

Now, consider the following program fragment:

#include "X.h" // class X interface etc.

int main()
{

X
*x = new X();

cout << x->x << ", " << x->y << ", "<< x->z << endl;

1For the sake of simplicity we have violated the principle of encapsulation here. The principle of encapsulation,
however, is immaterial to the discussion of the workings of the operator new.

140

return (0);
}

This small program produces the following output:

0, 0, 0

Our little program performed the following actions:

• First, operator new was called, which allocated and initialized a block of memory, the size of
an X object.

• Next, a pointer to this block of memory was passed to the (default) X() constructor. Since
no constructor was defined, the constructor itself didn’t do anything at all.

Due to the initialization of the block of memory by the new operator the allocated X object was
already initialized to zeros when the constructor was called.

Non-static object member functions are passed a (hidden) pointer to the object on which they
should operate. This hidden pointer becomes the this pointer inside the memberfunction. This
procedure is also followed by the constructor. In the following fragments of pseudo C++ the
pointer is made visible. In the first part an X object is declared directly, in the second part of the
example the (overloaded) operator new is used:

X::X(&x); // x’s address is passed to the constructor
// the compiler made ’x’ available

void // ask new to allocate the memory for an X
*ptr = X::operator new();

X::X(ptr); // and let the constructor operate on the
// memory returned by ’operator new’

Notice that in the pseudo C++ fragment the member functions were treated as static functions of
the class X. Actually, the operator new() operator is a static functions of its class: it cannot reach
data members of its object, since it’s normally the task of the operator new() to create room
for that object first. It can do that by allocating enough memory, and by initializing the area as
required. Next, the memory is passed over to the constructor (as the this pointer) for further
processing. The fact that an overloaded operator new is in fact a static function, not requiring an
object of its class can be illustrated in the following (frowned upon in normal situations!) program
fragment, which can be compiled without problems (assume class X has been defined and is
available as before):

int main()
{

X
x;

141

X::operator new(sizeof x);

return (0);
}

The call to X::operator new() returns a void ∗ to an initialized block of memory, the size of an
X object.

The operator new can have multiple parameters. The first parameter again is the size t parameter,
other parameters must be passed during the call to the operator new. For example:

class X
{

public:
void *operator new(size_t p1, unsigned p2);
void *operator new(size_t p1, char const *fmt, ...);

};

int main()
{

X
*object1 = new(12) X(),
*object2 = new("%d %d", 12, 13) X(),
*object3 = new("%d", 12) X();

return (0);
}

The object (object1) is a pointer to an X object for which the memory has been allocated by the call
to the first overloaded operator new, followed by the call of the constructor X() for that block of
memory. The object (object2) is a pointer to an X object for which the memory has been allocated
by the call to the second overloaded operator new, followed again by a call of the constructor X()
for its block of memory. Notice that object3 also uses the second overloaded operator new():
that overloaded operator accepts a variable number of arguments, the first of which is a char
const ∗.

6.3 Overloading operator delete(void ∗)

The delete operator may be overloaded too. The operator delete must have a void ∗ argument,
and an optional second argument of type size t, which is the size in bytes of objects of the class
for which the operator delete is overloaded. The returntype of the overloaded operator delete
is void.

Therefore, in a class the operator delete may be overloaded using the following prototype:

void operator delete(void ∗);

142

or

void operator delete(void ∗, size t);

The ‘home-made’ delete operator is called after executing the class’ destructor. So, the statement

delete ptr;

with ptr being a pointer to an object of the class X for which the operator delete was overloaded,
boils down to the following statements:

X::~X(ptr); // call the destructor function itself

// and do things with the memory pointed
// to by ptr itself.

X::operator delete(ptr, sizeof(*ptr));

The overloaded operator delete may do whatever it wants to do with the memory pointed to by
ptr. It could, e.g., simply delete it. If that would be the preferred thing to do, then the default
delete operator can be activated using the :: scope resolution operator. For example:

void X::operator delete(void *ptr)
{

// ... whatever else is considered necessary

// use the default operator delete
::delete ptr;

}

6.4 Cin, cout, cerr and their operators

This section describes how a class can be adapted in such a way that it can be used with the C++
streams cout and cerr and the insertion operator <<. Adaptating a class in such a way that the
istream’s extraction operator >> can be used occurs in a similar way and is not further illustrated
here.

The implementation of an overloaded operator << in the context of cout or cerr involves the
base class of cout or cerr, which is ostream. This class is declared in the header file iostream
and defines only overloaded operator functions for ‘basic’ types, such as, int, char∗, etc.. The
purpose of this section is to show how an operator function can be defined which processes a new
class, say Person (see chapter 5.1) , so that constructions as the following one become possible:

143

Person
kr("Kernighan and Ritchie", "unknown", "unknown");

cout << "Name, address and phone number of Person kr:\n"
<< kr
<< ’\n’;

The statement cout << kr involves the operator << and its two operands: an ostream & and
a Person &. The proposed action is defined in a class-less operator function operator<<()
expecting two arguments:

// declaration in, say, person.h
ostream &operator<<(ostream &, Person const &);

// definition in some source file
ostream &operator<<(ostream &stream, Person const &pers)
{

return
(

stream << "Name: " << pers.getname()
<< "Address: " << pers.getaddress()
<< "Phone: " << pers.getphone()

);
}

Concerning this function we remark the following:

• The function must return a (reference to) ostream object, to enable ‘chaining’ of the operator.

• The two operands of the operator << are stated as the two arguments of the overloading
function.

• The class ostream provides the member function opfx(), which flushes any other ostream
streams tied with the current stream. opfx() returns 0 when an error has been encountered
(Cf. chapter 11).

An improved form of the above function would therefore be:

ostream &operator<<(ostream &stream, Person const &pers)
{

if (! stream.opfx())
return (stream);

...
}

144

6.5 Conversion operators

A class may be constructed around a basic type. E.g., it is often fruitful to define a class String
around the char ∗. Such a class may define all kinds of operations, like assignments. Take a look
at the following class interface:

class String
{

public:
String();
String(char const *arg);
~String();
String(String const &other);
String const &operator=(String const &rvalue);
String const &operator=(char const *rvalue);

private:
char

*string;
};

Objects from this class can be initialized from a char const ∗, and also from a String itself.
There is an overloaded assignment operator, allowing the assignment from a String object and
from a char const ∗2.

Usually, in classes that are less directly linked to their data than this String class, there will be an
accessor member function, like char const ∗String::getstr() const. However, in the current
context that looks a bit awkward, but it also doesn’t seem to be the right way to go when an
array of strings is defined, e.g., in a class StringArray, in which the operator[] is implemented
to allow the access of individual strings. Take a look at the following class interface:

class StringArray
{

public:
StringArray(unsigned size);
StringArray(StringArray const &other);
StringArray const &operator=(StringArray const &rvalue);
~StringArray();

String &operator[](unsigned index);
private:

String
*store;

unsigned
n;

};

2Note that the assingment from a char const ∗ also includes the null-pointer. An assignment like stringObject

= 0 is perfectly in order.

145

The StringArray class has one interesting memberfunction: the overloaded array operator operator[].
It returns a String reference.

Using this operator assignments between the String elements can be realized:

StringArray
sa(10);

... // assume the array is filled here

sa[4] = sa[3]; // String to String assignment

It is also possible to assign a char const ∗ to an element of sa:

sa[3] = "hello world";

When this is evaluated, the following steps are followed:

• First, sa[3] is evaluated. This results in a String reference.

• Next, the String class is inspected for an overloaded assignment, expecting a char const
∗ to its right-hand side. This operator is found, and the string object sa[3] can receive its
new value.

Now we try to do it the other way around: how to access the char const ∗ that’s stored in sa[3]?
We try the following code:

char const
*cp;

cp = sa[3];

Well, this won’t work: we would need an overloaded assignment operator for the ’class char const
∗’. However, there isn’t such a class, and therefore we can’t build that overloaded assignment
operator (see also section 6.9). Furthermore, casting won’t work: the compiler doesn’t know how
to cast a String to a char const ∗. How to proceed?

The naive solution is to resort to the accessor member function getstr():

cp = sa[3].getstr();

That solution would work, but it looks so clumsy.... A far better approach would be to use a
conversion operator.

A conversion operator is a kind of overloaded operator, but this time the overloading is used to
cast the object to another type. Using a conversion operator a String object may be interpreted

146

as a char const ∗, which can then be assigned to another char const ∗. Conversion operators
can be implemented for all types for which a conversion is needed.

In the current example, the class String would need a conversion operator for a char const ∗.
The general form of a conversion operator in the class interface is:

operator <type>();

With our String class, it would therefore be:

operator char const ∗();

The implementation of the conversion operator is straightforward:

String::operator char const *()
{

return (string);
}

Notes:

• There is no mentioning of a return type. The conversion operator has the type of the returned
value just after the operator keyword.

• In certain situations the compiler needs a hand to disambiguate our intentions. In a statement
like

printf("%s", sa[3]);

the compiler is confused: are we going to pass a String & or a char const ∗ to the printf()
function? To help the compiler out, we supply an explicit cast here:

printf("%s", static cast<char const ∗>(sa[3]));

For completion, the final String class interface, containing the conversion operator, looks like this:

class String
{

public:
String();
String(char const *arg);
~String();
String(String const &other);
String const &operator=(String const &rvalue);
String const &operator=(char const *rvalue);
operator char const *();

private:
char

*string;
};

147

6.6 The ‘explicit’ keyword

Assume we have a class that’s doing all kinds of interesting stuff. Its public members could be,
e.g.:

class Convertor
{

public:
Convertor();
Convertor(char const *str);
Convertor(Convertor const &other);
~Convertor();
operator char const*();
void anyOtherMemberFunction();

};

Objects of the class Convertor may be constructed using a default constructor and using a char
const ∗. Functions might return Convertor objects and functions might expect Convertor objects
as arguments. E.g.,

Convertor returnConvertorObject()
{

Convertor
convertor;

return (convertor);
}
void expectConvertorObject(Convertor const &object)
{

...
}

In cases like these, implicit conversions to Convertor objects will be performed if there are con-
structors having one parameter (or multiple parameters, using default argument values), if an
argument of the type of the single parameter is passed to or returned from the function. E.g., the
following function expects a char const ∗ and returns an Convertor object due to the implicit
conversion from char const ∗ to Convertor using the Convertor(char const ∗) constructor as
middleman:

Convertor returnConvertorObject(char const *str)
{

return (str);
}

This conversion generally occurs wherever possible, and acts like some sort of ‘reversed’ conversion
operator: in applicable situations the constructor expecting one argument will be used if the

148

argument is specified, and the class object is required.

If such implicit use of a constructor is not appropriate, it can be prevented by using the explicit
modifier with the constructor. Constructors using the explicit modifier can only be used for
the explicit definition of objects, and cannot be used as implicit type convertors anymore. For
example, to prevent the implicit conversion from char const ∗ to Convertor the class interface
of the class Convertor must contain the constructor

explicit Convertor(char const *str);

6.7 Overloading the increment and decrement operators

Overloading the increment (and decrement) operator creates a small problem: there are two version
of each operator, as they may be used as postfix operator (e.g., x++) or as prefix operator (e.g.,
++x).

Suppose we define a class bvector whose members can be used to visit the elements of an array.
The bvector object will return a pointer to an element of the array, and the increment operators
will change the pointer to the next element. A partially defined bvector class is:

class bvector
{

public:
bvector(int *vector, unsigned size)
:

vector(vector),
current(vector),
finish(vector + size)

{}
int *begin()
{

return(current = vector);
}
operator int *() const
{

return (current);
}
// increment and decrement operators: see the text

private:
int

*vector,
*current,
*finish;

};

In order to privide this class with an overloaded increment operator, the following overloaded
operator++() can be designed:

149

int *bvector::operator++()
{

return (++current);
}

As current is incremented before it is returned, the above overloaded operator++() clearly be-
haves like the prefix operator. However, it is not possible to use the same function to implement the
postfix operator, as overloaded functions must differ in their parameterlists. To solve this problem,
the convention is adopted to provide the postfix operator with an anonymous int parameter. So,
the postfix increment operator can be designed as follows:

int *bvector::operator++(int)
{

return (current++);
}

In situations where the function operator++() is called explicitly, a dummy int argument may be
passed to the function to indicate that the postfix version is required. If no argument is provided,
the prefix version of the operator is used. E.g.,

bvector
*bvp = new bvector(intArray, 10);

bvp->operator++(1); // postfix operator++()
bvp->operator++() // prefix operator++()

6.8 Function Objects

Function Objects are created by overloading the function call operator operator(). By defining
the function call operator an object may be used as a function, hence the term function objects.

Function objects play an important role in the generic algorithms and they can be used profitably
as alternatives to using pointers to functions. The fact that they are important in the context of
the generic algorithms constitutes some sort of a didactical dilemma: at this point it would have
been nice if the generic algorithms would have been covered, but for the discussion of the generic
algorithms knowledge of function objects is an advantage. This bootstrap problem is solved in a
well known way: by ignoring the dependency.

Function objects are class type objects for which the operator() has been defined. Usually
they are used in combination with the generic algorithms, but they are also used in situations
where otherwise pointers to functions would have been used. Another reason for using function
objects is to support inline functions, something that is not possible via the pointers to functions
construction.

150

Assume we have a class Person and an array of Person objects. The array is not sorted. A
well known procedure for finding a particular Person object in the array is to use the function
lsearch(), which performs a lineair search in an array. A program fragment in which this function
is used is, e.g.,

Person
*pArray;

unsigned
n;

n = fillPerson(&pArray);

Person
target(...);

cout <<
"The target person is " <<
(

lsearch(&target, pArray, &n, sizeof(Person), compareFunction) ?
"found"

:
"not found"

) <<
endl;

The function fillPerson() is called to fill the array, the target person is defined, and then
lsearch() is used to locate the target person. The comparison function must be available, as its
address is passed over to the function. It could be something like:

int compareFunction(Person const *p1, Person const *p2)
{

return (*p1 != *p2); // lsearch() wants 0 for equal objects
}

This, of course, assumes that the operator!=() has been overloaded in the class Person, as it is
quite unlikely that a bytewise comparison will be appropriate here. But overloading operator!=()
is no big deal, so let’s assume that operator is available as well. In this situation an inline compare
function cannot be used: as the address of the compare() function must be known to the lsearch()
function. So, on the average n / 2 times at least the following actions take place:

• The two arguments of the comparefunction are pushed on the stack,

• The final parameter of lsearch() is evaluated, producing the address of compareFunction(),

• The comparefunction is called,

• The address of the right-hand argument of the Person::operator!=()) argument is pushed
on the stack,

151

• The operator!=() function is evaluated,

• The argument of Person::operator!=()) argument is popped off the stack,

• The two arguments of the comparefunction are popped off the stack.

When using function objects a different picture emerges. Assume we have constructed a function
PersonSearch(), having the following prototype (realize that this is not the real thing. Normally a
generic algorithm will be used instead of a home-made function. But for now our PersonSearch()
function is used for the sake of argument):

Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target);

The next program fragment shows the use of this function:

Person
*pArray;

unsigned
n;

n = fillPerson(&pArray);

cout <<
"The target person is " <<
(

PersonSearch(pArray, n, Person(...)) ?
"found"

:
"not found"

) <<
endl;

Here we see that the target person is passed over to the function using an anonymous Person object.
A named object could have been used as well, though. What happens inside PersonSearch() is
shown next:

Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target)

{
for (int idx = 0; idx < nmemb; ++idx)

if (!target(base[idx])) // using the same returnvalues
return (base + idx); // as lsearch(): 0 means ’found’

return (0);
}

152

The expression target(base[idx]) shows our target object being used as a function object. Its
implementation can be something like:

int Person::operator()(Person const &other) const
{

return (*this != other);
}

Note the somewhat peculiar syntax: operator()(...). The first set of parentheses define the
particular operator that is overloaded: the function call operator. The second set of parentheses
define the parameters that are required for this function. The operator() appears in the class
header file as:

bool operator()(Person const &other) const;

Now, Person::operator() is a simple function. It contains but one statement, and we could
consider making it inline. Assuming we do so, here is what happens when the operator() is
called:

• The address of the right-hand argument of the Person::operator!=()) argument is pushed
on the stack,

• The operator!=() function is evaluated,

• The argument of Person::operator!=()) argument is popped off the stack,

Note that due to the fact that operator() is an inline function, it is not actually called. Instead
operator!=() is called immediately. Also note that the required stack operations are fairly modest.

The operator() could have been avoided altogether in the above example. However, in the coming
sections several predefined function objects are introduced calling specific operators of underlying
datatypes. Usually these function object will receive one or two arguments (for, respectively, unary
and binary operators).

Function objects play important roles in combination with generic algorithms. For example, there
exists a generic algorithm sort that takes two iterators defining the range of objects that should
be sorted, and a function object calling the appropriate comparison operator for two objects. Let’s
take a quick look at this situation. Assume strings are stored in a vector, and we want to sort the
vector in descending order. In that case, sorting the vector stringVec is as simple as:

sort(stringVec.begin(), stringVec.end(), greater<string>());

The last argument is in fact a constructor of the greater (template) class applied on strings. This
object is called (as function object) by the sort() generic algorithm. The function object itself is
not visible at this point: don’t confuse the parentheses in greater<string>() with the calling

153

of the function object. When the function object is actually called, it receives two arguments: two
strings to compare for ‘greaterness’. Internally, the operator>() of the underlying datatype (i.e.,
string) is called to compare the two objects. Since the greater::operator() is defined inline,
it is not actually present in the code. Rather, the string::operator>() is called by sort().

Now that we know that a constructor is passed as argument to (many) generic algorithms, we can
design our own function objects. Assume we want to sort our vector case-insensitively. How do we
proceed? First we note that the default string::operator<() (for an incremental sort) is not
appropriate, as it does case sensitive comparisons. So, we provide our own case less class, in which
the two strings are compared case-insensitively. Using the standard C function strcasecmp(), the
following program performs the trick. It sorts in increasing order its command-line arguments:

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
#include <string.h>

class case_less
{

public:
bool operator()(string const &left, string const &right) const
{

return (strcasecmp(left.c_str(), right.c_str()) < 0);
}

};

int main(int argc, char **argv)
{

sort(argv, argv + argc, case_less());
for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";
cout << endl;

return (0);
}

The default constructor of the class case less is used with the final argument of sort(). The
only memberfunction that must be defined with the class case less is the function object operator
operator(). Since we know it’s called with string arguments, we provide it with two string
arguments, which are used in the strcasecmp() function. Furthermore, the operator() function
is made inline, so that it does not produce overhead in the sort() function. The sort() function
calls the function object with various combinations of strings, i.e., it thinks it does so. However,
in fact it calls strcasecmp(), due to the inline-nature of case less::operator().

The comparison function object is often a predefined function object, since these are available for
most of the common operations.

A function object may be defined inline. This is not possible for functions that are called indirectly
(i.e., via pointers to functions). So, even if the function object needs to do very little work it has to
be defined as an ordinary function if it is going to be called via pointers. The overhead of performing
the indirect call may not outweight the advantage of the flexibility of calling functions indirectly.

154

In these cases function objects that are defined as inline functions can result in an increase of
efficiency of the program. Finally, function object may access the data of the objects for which
they are called directly, as they have access to the private data of their object. In situations where
a function must be able to serve many different datatypes (like the qsort() function) it is always
somewhat cumbersome to reach the data of the involved objects via a pointer to a function of
global scope.

In the following sections the available predefined function objects are presented, together with some
examples showing their use. At the end of this section about function objects function adaptors
are presented.

6.8.1 Categories of Function objects

Function objects may be defined when necessary. However, it is also (and often) possible to
use predefined function objects. In order to use the predefined function objects the header file
functional must be included:

#include <functional>

The predefined function objects are used predominantly with the generic algorithms. Predefined
function objects exists for arithmetic, relational, and logical functions. They are discussed in the
coming sections.

Arithmetic Function Objects

The arithmetic function objects support the standard arithmetic operations: addition, subtraction,
multiplication, division, modulus and negation. By using the predefined function objects, the
corresponding operator of the associated data type is invoked. For example, for addition the
function object plus<Type> is available. If we set type to unsigned then the + operator for
unsigneds is used, if we set type to string, then the + operator for strings is used. For example:

#include <iostream>
#include <string>
#include <functional>

int main(int argc, char **argv)
{

plus<unsigned>
uAdd; // function object to add unsigneds

cout << "3 + 5 = " << uAdd(3, 5) << endl;

plus<string>
sAdd; // function object to add strings

cout << "argv[0] + argv[1] = " << sAdd(argv[0], argv[1]) << endl;
}

155

Why is this useful? Note that the function object can be used for all kinds of data types, not only
on the predefined datatypes, but on any (class) type in which the particular operator has been
overloaded. Assume that we want to perform an operation on a common variable on the one hand
and on each element of an array in turn. E.g., we want to compute the sum of the elements of an
array, or we want to concatenate all the strings in a text-array. In situations like these the function
objects come in handy. As noted before, the function objects are most heavily used in the context
of the generic algorithms, so let’s take a quick look at one of them.

One of the generic algorithms is called accumulate. It visits all elements implied by an iterator-
range, and performs a requested binary operation on a common element and each of the elements in
the range, returning the accumulated result after visiting all elements. For example, the following
program accumulates all its command line arguments, and prints the final string:

#include <iostream>
#include <string>
#include <functional>
#include <numeric>

int main(int argc, char **argv)
{

string
result =

accumulate(argv, argv + argc, string(""), plus<string>());

cout << "All concatenated arguments: " << result << endl;
}

The first two arguments define the (iterator) range of elements to visit, the third argument is
string(""). This anonymous string object provides an initial value. It could as well have been
initialized to

string("All concatenated elements: ")

in which case the cout statement could have been a simple

cout << result << endl

Then, the operator to apply is plus<string>(). Here it is important to note the function call
notation: it is not plus<string>, but rather plus<string>(). The final concatenated string is
returned.

Now we define our own class data type Time, in which the operator+() has been overloaded. Again,
we can apply the predefined function object plus, now tailored to our newly defined datatype, to
add times:

#include <iostream>
#include <strstream>
#include <string>
#include <vector>
#include <functional>

156

#include <numeric>

class Time
{

public:
Time(unsigned hours, unsigned minutes, unsigned seconds)
{

days = 0;
this->hours = hours;
this->minutes = minutes;
this->seconds = seconds;

}
Time(Time const &other)
{

this->days = other.days;
this->hours = other.hours;
this->minutes = other.minutes;
this->seconds = other.seconds;

}
Time const operator+(Time const &rValue) const
{

Time
added(*this);

added.seconds += rValue.seconds;
added.minutes += rValue.minutes + added.seconds / 60;
added.hours += rValue.hours + added.minutes / 60;
added.days += rValue.days + added.hours / 24;
added.seconds %= 60;
added.minutes %= 60;
added.hours %= 24;
return (added);

}
operator char const *() const
{

static ostrstream
timeString;

timeString.seekp(ios::beg);
timeString << days << " days, " << hours << ":" <<

minutes << ":" << seconds << ends;
return (timeString.str());

}
private:

unsigned
days,
hours,
minutes,
seconds;

};

int main(int argc, char **argv)
{

vector<Time>

157

tvector;

tvector.push_back(Time(1, 10, 20));
tvector.push_back(Time(10, 30, 40));
tvector.push_back(Time(20, 50, 0));
tvector.push_back(Time(30, 20, 30));

cout <<
accumulate
(

tvector.begin(), tvector.end(),
Time(0, 0, 0), plus<Time>()

) << endl;

}

Note that all memberfunctions of Time in the above source are inline functions. This approach was
followed in order to keep the example relatively small, and to show explicitly that the operator+()
function may be an inline function. On the other hand, in real life the operator+() function of
Time should probably not be made inline, due to its size. Considering the previous discussion
of the plus function object, the example is pretty straightforward. The class Time defines two
constructors, the second one being the copy-constructor, it defines a conversion operator (operator
char const ∗()) to produce a textual representation of the stored time (deploying an ostrstream
object, see chapter 11), and it defines its own operator+(), adding two time objects.

The organization of the operator+() deserves some attention. In expressions like x + y neither x
nor y are modified. The result of the addition is returned as a temporary value, which is then used
in the rest of the expression. Consequently, in the operator+() function the this object and the
rValue object must not be modified. Hence the const modifier for the function, forcing this to
be constant, and the const modifier for rValue, forcing rValue to be constant. The sum of both
times is stored in a separate Time object, a copy of which is then returned by the function.

In the main() function four Time objects are stored in a vector<Time> object. Then, the
accumulate() generic algorithm is called to compute the accumulated time. It returns a Time
object, which cannot be inserted in the cout ostream object. Fortunately, the conversion oper-
ator is available, and this conversion operator is called implicitly to produce the required char
const ∗ string from the Time object returned by the accumulate() generic algorithm.

While the first example did show the use of a named function object, the last two examples showed
unnamed or anonymous objects which were passed to the (accumulate) function.

The following arithmetic objects are available as predefined objects:

• plus, as shown this object calls the operator+()

• minus, calling operator-() as a binary operator,

• multiplies, calling operator∗() as a binary operator,

158

• divides, calling operator/(),

• modulus, calling operator%(),

• negate, calling operator-() as a unary operator.

An example using the unary operator-() is the following, in which the transform() generic
algorithm is used to toggle the signs of all elements in an array. The transform() generic algorithm
expects two iterators, defining the range of objects to be transformed, an iterator defining the begin
of the destination range (which may be the same iterator as the first argument) and a function
object defining a unary operation for the indicated data type.

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>

int main(int argc, char **argv)
{

int
iArr[] = { 1, -2, 3, -4, 5, -6 };

transform(iArr, iArr + 6, iArr, negate<int>());

for (int idx = 0; idx < 6; ++idx)
cout << iArr[idx] << ", ";

cout << endl;
}

Relational Function Objects

The relational operators may be called from the relational function objects. All standard relational
operators are supported: ==, !=, >, >=, < and <=. The following objects are available:

• equal to<Type>, calling operator==(),

• not equal to<Type>, calling operator!=(),

• greater<Type>, calling operator>(),

• greater equal<Type>, calling operator>=(),

• less<Type>, calling operator<(),

• less equal<Type>, calling operator<=().

Like the arithmetic function objects, these function objects can be used as named and unnamed
objects. An example using the relational function objects using the generic algorithm sort() is:

159

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>

int main(int argc, char **argv)
{

sort(argv, argv + argc, greater_equal<string>());
for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";
cout << endl;

sort(argv, argv + argc, less<string>());
for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";
cout << endl;

return (0);
}

The sort() generic algorithm expects an iterator range and a comparator object for the underlying
data type. The example shows the alphabetic sorting of strings and the reversed sorting of strings.
By passing greater equal<string>() the strings are sorted in decreasing order (the first word
will be the ’greatest’), by passing less<string>() the strings are sorted in increasing order (the
first word will be the ’smallest’).

Note that the type of the elements of argv is char ∗, and that the relational function object expects
a string. The relational object greater equal<string>() will therefore use the >= operator
of strings, but will be called with char ∗ variables. The conversion from char ∗ arguments to
string const & parameters is done implicitly by the string(char const ∗) constructor.

Logical Function Objects

The logical operators are called by the logical function objects. The standard logical operators are
supported: &&, || and !. The following objects are available:

• logical and<Type>, calling operator&&(),

• logical or<Type>, calling operator||(),

• logical not<Type>, calling operator!() (unary operator).

An example using the operator!() is the following trivial example, in which the transform()
generic algorithm is used to transform the logical values stored in an array:

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>

160

int main(int argc, char **argv)
{

bool
bArr[] = {true, true, true, false, false, false};

unsigned const
bArrSize = sizeof(bArr) / sizeof(bool);

for (int idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";

cout << endl;

transform(bArr, bArr + bArrSize, bArr, logical_not<bool>());

for (int idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";

cout << endl;

return (0);
}

6.8.2 Function Adaptors

Function adaptors modify the working of existing function objects. There are two kinds of function
adaptors:

• Binders are function adaptors converting binary function objects to unary function ob-
jects. They do so by binding one object to a fixed function object. For example, with
the minus<int> function object, which is a binary function object, the first argument may
be fixed to 100, meaning that the resulting value will always be 100 minus the value of the
second argument. Either the first or the second argument may be bound to a specific value.
To bind the first argument to a specific value, the function object bind1st() is used. To
bind the second argument of a binary function to a specific value bind2nd() is used. As an
example, assume we want to count all elements of a vector of Person objects that exceed
(according to some criterion) some reference Person object. For this situation we pass the
following binder and relational function object to the count if() generic algorithm:

bind2nd(greater<Person>(), referencePerson)

The count if() generic algorithm visits all the elements in an iterator-range, returning the
number of times the predicate specified in its final argument returns true. Each of the
elements of the iterator range is given to the predicate, which is therefore a unary function.
By using the binder the binary function object greater() is adapted to a unary function
object, comparing each of the elements in the range to the reference person. Here is, to be
complete, the call of the count if() function:

count_if(pVector.begin(), pVector.end(),
bind2nd(greater<Person>(), referencePerson))

161

• The negators are function adaptors converting the truth value of a predicate function. Since
there are unary and binary predicate functions, there are two negator function adaptors:
not1() is the negator to be used with unary function adaptors, not2() is the negator to be
used with binary function objects.

If we want to count the number of persons in a vector<Person> vector not exceeding a certain
reference person, we may, among other approaches, use either of the following alternatives:

• Use a binary predicate that directly offers the required comparison:

count_if(pVector.begin(), pVector.end(),
bind2nd(less_equal<Person>(), referencePerson))

• Use not2 in combination with the greater() predicate:

count_if(pVector.begin(), pVector.end(),
bind2nd(not2(greater<Person>()), referencePerson))

• Use not1 in combination with the bind2nd() predicate:

count_if(pVector.begin(), pVector.end(),
not1(bind2nd((greater<Person>()), referencePerson)))

The following small example illustrates the use of the negator function adaptors, completing
the section on function objects:

#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>

int main(int argc, char **argv)
{

int
iArr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

cout << count_if(iArr, iArr + 10, bind2nd(less_equal<int>(), 6)) <<
endl;

cout << count_if(iArr, iArr + 10, bind2nd(not2(greater<int>()), 6)) <<
endl;

cout << count_if(iArr, iArr + 10, not1(bind2nd(greater<int>(), 6))) <<
endl;

return (0);
}

162

6.9 Overloadable Operators

The following operators can be overloaded:

+ - * / % ^ & |
~ ! , = < > <= >=
++ -- << >> == != && ||
+= -= *= /= %= ^= &= |=
<<= >>= [] () -> ->* new delete

However, some of these operators may only be overloaded as member functions within a class. This
holds true for the ’=’, the ’[]’, the ’()’ and the ’->’ operators. Consequently, it isn’t possible
to redefine, e.g., the assignment operator globally in such a way that it accepts a char const ∗
as an lvalue and a String & as an rvalue. Fortunately, that isn’t necessary, as we have seen in
section 6.5.

163

Chapter 7

Abstract Containers

C++ offers several predefined datatypes, all part of the Standard Template Library, which can
be used to implement solutions to frequently occurring problems. The datatypes discussed in
this chapter are all containers: you can put stuff inside them, and you can retrieve the stored
information from them.

The interesting part is that the kind of data that can be stored inside these containers has been
left unspecified by the time the containers were constructed. That’s why they are spoken of as
abstract containers.

The abstract containers rely heavily on templates, which are covered near the end of the C++
Annotations, in chapter 16. However, in order to use the abstract containers, only a minimal
grasp of the template concept is needed. In C++ a template is in fact a recipe for constructing a
function or a complete class. The recipe tries to abstract the functionality of the class or function
as much as possible from the data on which the class or function operate. As the types of the data
on which the templates operate were not known by the time the template was constructed, the
datatypes are either inferred from the context in which a template function is used, or they are
mentioned explicitly by the time a template class is used (the term that’s used here is instantiated).
In situations where the types are explicitly mentioned, the angular bracket notation is used to
indicate which data types are required. For example, below (in section 7.1) we’ll encounter the
pair container, which requires the explicit mentioning of two data types. E.g., to define a pair
variable containing both an int and a string, the notation

pair<int, string>
myPair;

is used. Here, myPair is defined as a pair variable, containing both an int and a string.

The angular bracket notation is used intensively in the following discussion of the abstract con-
tainer. Actually, understanding this part of templates is the only real requirement for being able
to use the abstract containers. Now that we’ve introduced this notation, we can postpone the
more thorough discussion of templates to chapter 16, and get on with their use in the form of the
abstract container classes.

Most of the abstract containers are sequential containers: they represent a series of data which
can be stored and retrieved in some sequential way. Examples are the vector, implementing an

164

extendable array, the list, implementing a datastructure in which insertions and deletions can be
easily realized, a queue, in which the first element that is entered will be the first element that will
be retrieved, and the stack, which is a first in, last out datastructure.

Apart from the sequential containers, several special containers are available. The pair is a basic
container in which a pair of values (of types that are left open for further specification) can be
stored, like two strings, two ints, a string and a double, etc.. Pairs are often used to return data
elements that naturally come in pairs. For example, the map is an abstract container in which keys
and corresponding values are stored. Elements of these maps are returned as pairs.

A variant of the pair is the complex container, which implements operations that are defined on
complex numbers.

All abstract containers described in this chapter and the string datatype discussed in section
3.3.3 are part of the standard template library. There exists also an abstract container for the
implementation of a hashtable, but that container is not (yet) accepted by the ISO/ANSI standard.
The final section of this chapter will cover the hashtable to some extent.

All containers support the = operator to assign two containers of the same type to each other. All
containers also support the ==, !=, <, <=, > and >= operators.

Note that if a user-defined type (usually a class-type) is to be stored in a container, the user-
defined type must support

• A default-value (e.g., a default constructor)

• The equality operator (==)

• The less-than operator (<)

Closely linked to the standard template library are the generic algorithms. These algorithms may
be used to perform even more tasks than is possible with the containers themselves, like counting,
filling, merging, filtering etc.. An overview of the generic algorithms and their applications is given
in chapter 10. Generic algorithms usually rely on the availability of iterators, which represent begin
and endpoints for processing data stored inside the containers. The abstract containers normally
have constructors and members using iterators themselves, and they have members returning
iterators (comparable to the string::begin() and string::end() members). In the remainder
of this chapter the use of iterators is not really covered. Refer to chapter 10 for the discussion of
iterators.

The url http://www.sgi.com/Technology/STL is worth visiting by those readers who want more
information about the abstract containers and the standard template library than can be provided
in the C++ annotations.

Containers often collect data during their lifetime. When a container goes out of scope, its de-
structor tries to destroy its data elements. This only succeeds if the data elements themselves
are stored inside the container. If the data elements of containers are pointers, the data to which
these pointers point will not be destroyed, and a memory leak will result. A consequence of this
scheme is that the data stored in a container should be considered the ‘property’ of the container:
the container should be able to destroy its data elements when the destructor of the container is
called. Consequently, the container should not only contain no pointer data, but it should also
not contain const data elements, as these data elements cannot be destroyed by the container’s
destructor.

165

7.1 The ‘pair’ container

The pair container is a rather basic container. It can be used to store two elements, called first
and second, and that’s about it. To define a variable as a pair container, the header file

#include <utility>

must be included.

The data types of a pair are defined when the pair variable is defined, using the standard template
(see chapter Templates) notation:

pair<string, string>
piper("PA28", "PH-ANI"),
cessna("C172", "PH-ANG");

here, the variables piper and cessna are defined as pair variables containing two strings. Both
strings can be retrieved using the first and second fields of the pair type:

cout << piper.first << endl << // shows ’PA28’
cessna.second << endl; // shows ’PH-ANG’

The first and second members can also be used to reassign values:

cessna.first = "C152";
cessna.second = "PH-ANW";

If a pair variable must be completely reassigned, it is also possible to use an anonymous pair
variable as the right-hand side operand of the assignment. An anonymous variable defines a
temporary variable (which receives no name) solely for the purpose of (re)assigning another variable
of the same type. Its general form is

type(initializer list)

Note, however, that with a pair variable the type specification is not completed when the con-
tainername pair has been mentioned. It also requires the specification of the data types which are
stored inside the pair. For this the (template) angular bracket notation is used again. E.g., the
reassignment of the cessna pair variable could also have been accomplished as follows:

166

cessna = pair<string, string>("C152", "PH-ANW");

In cases like this, the type specification can become quite elaborate, which has caused a revival
of interest in the possibilities offered by the typedef keyword. If a lot of pair<type1, type2>
clauses are used in a source, the amount of typing may be reduced and legibility might be improved
by first defining a name for the clause, and then using the defined name later on. E.g.,

typedef pair<string, string> pairStrStr
...
cessna = pairStrStr("C152", "PH-ANW")

Apart from this (and the basic set of operations (assignment and comparisons) the pair has no
further special features. It is, however, a basic ingredient of the upcoming abstract containers map,
multimap and hash map.

7.2 Sequential Containers

7.2.1 The ‘vector’ container

The vector class implements an (expandable) array. To use the vector, the header file vector
must be included:

#include <vector>

Vectors can be used like arrays, and can be defined with a fixed number of elements. E.g., to
define a vector of 30 ints we do

vector<int>
iVector(30);

Note the specification of the data type that is to be used: the datatype is given between angular
brackets after the vector container name. So, a vector of 30 strings is defined as

vector<string>
strVector(30);

One of the nice characteristics of defining such a vector is that it’s initialized to the data type’s
default value. If there is a default constructor, it is called to construct the elements of the vector.
For the basic data types the initial value is zero. So, for the int vector we know its values are 0.

167

Another way to initialize the vector is to use explicit initialization values:

vector<int>
iVector(1, 2, 3);

This does not work, however, if a vector of one element must be initialized to a non-default value.

As with string variables,

• vector objects may be initialized with other vectors, or parts of existing vectors may be
used to initialize a vector:

vector<int>
a(10);

...
vector<int>

b(&a[3], &a[6]);

Note here that the last element mentioned is not used for the initialization. This is a simple
example of the use of iterators, in which the range of values that is used starts at the first value,
and includes all elements up to, but not including the last value mentioned. The standard notation
for this is [begin, end).

• vectors may be assigned to each other,

• the subscript operator may be used to retrieve individual elements,

• the == and != operators may be used to test the equality of two vectors.

• the < operator may be used to test whether each element in the left-hand operand vector is
less than each corresponding element in the right-hand operand vector. The <=, > and >=
operators are also available.

• the size() and empty() memberfunctions are available,

• the swap() memberfunction is available, swapping two vectors. E.g.,

int main()
{

vector<int>
v1(10),
v2(10);

v1.swap(v2);
}

• elements may be inserted at a certain position pos. Below source represents a value of the
type that is stored in the vector, while pos is an iterator pointing to a position in the vector
where source must be inserted:

168

– insert(pos, source) inserts source at pos,

– insert(pos, begin, end) inserts the elements in the iterator range [begin, end).

– insert(pos, n, source) inserts n elements having value source at position pos.

• elements may be erased:

– erase() and clear() both erase all elements, clear() is not available with strings.

– erase(pos) erases all elements starting at position pos,

– erase(begin, end) erases elements indicated by the iterator range [begin, end).

• resize(n) and resize(n, source) may be used to resize the vector to a size of n. If
the vector is expanded, the extra elements are initialized by the default value of the used
datatype, or by the explicitly provided value source.

Also available are:

• void pop back() may be used to remove the last element from the vector. The element is
not returned by this memberfunction.

• front(), returning the initial element of the vector,

• back(), returning the final element of the vector,

• push back(source) stores source at the end of the vector: a new element is added at the
end.

Note that a vector may be defined without size: vector<int> ivect;. This defines an empty
vector, without any element at all. Therefore, a statement like ivect[0] = 18; would (in
this case) be an error, as there isn’t any element as yet. In this case the preferred idiom is
ivect.push back(18);

7.2.2 The ‘list’ container

The list class implements a list datastructure. To use the list, the header file list must be
included:

#include <list>

A list is depicted in figure 7.1.

In figure 7.1 it is shown that a list consists of separate data-items, connected to each other by
pointers. The list can be traversed in two ways: starting at the Front the list may be traversed
from left to right, until the 0-pointer is reached at the end of the rightmost data-item. The list
can also be traversed from right to left: starting at the Back, the list is traversed from right to
left, until eventually the 0-pointer emanating from the leftmost data-item is reached.

Both lists and vectors are often possible datastructures in situations where an unknown number
of data elements must be stored. However, there are some rules of thumb to follow when a choice
between the two datastructures must be made.

169

\

Figure 7.1: A list data-structure

• When the majority of accesses is random, then the vector is the preferred datastructure.
E.g., in a program that counts the frequencies of characters in a textfile, a vector<int>
frequencies(256) is the datastructure doing the trick, as the values of the received charac-
ters can be used as indices into the frequencies vector.

• The previous example illustrates a second rule of thumb, also favoring the vector: if the
number of elements is known in advance (and does not notably change during the lifetime of
the program), the vector is also preferred over the list.

• In cases where insertions and deletions prevail, the list is generally preferred. Actually, in my
experience, lists aren’t that useful at all, and often an implementation will be faster when a
vector, maybe containing holes, is used. Nonetheless, the list container exists, and it may
become popular now that the list-management is part of the implementation of the abstract
container.

Other considerations related to the choice between lists and vectors should also be given some
thought. Although it is true that the vector is able to grow dynamically, the dynamical growth
does involve a lot of copying of data elements. Clearly, copying a million large datastructures
takes a considerable amount of time, even on fast computers. On the other hand, inserting a large
number of elements in a list doesn’t require us to copy the remainder of the list structure: inserting
a new element in a list merely requires us to juggle some pointers. In figure 7.2 this is shown: a
new element is inserted between the second and third element, creating a new list of four elements.

Removing an element from a list also is a simple matter. Starting again from the situation shown
in figure 7.1, figure 7.3 shows what happens if element two is removed from our list. Again: only
pointers need to be juggled. In this case it’s even simpler than adding an element: only two
pointers need to be rerouted.

Summarizing the comparison between lists and vectors, it’s probably best to conclude that there is
no clear-cut answer to the question what datastructure to prefer. There are rules of thumb, which
may be adhered to. But if worse comes to worst, a profiler may be required to find out what’s
working best. But, no matter what thoughts remain, the list container is available, so let’s see

170

\

Figure 7.2: Adding a new element to a list

\

Figure 7.3: Removing an element from a list

171

what we can do with it. As with the vector-class, the following constructors and memberfunctions
are available:
Constructors:

• an empty list is created using, e.g.,

list<string>
strList;

• A list may be initialized with a certain number of elements. By default, if the initializa-
tion value is not explicitly mentioned, the defaultvalue or default constructor for the actual
datatype is used. For example:

list<string>
hello(5, string("Hello")), // initialize to 5 Hello’s
zilch(10); // initialize to 10 empty strings

• A list may be initialized using a two iterators, e.g., to initialize a list with elements 5 until
10 (including the last one) of a vector<string> the following construction may be used:

extern vector<string>
svector;

list<string>
slist(&svector[5], &svector[11]);

Note that a list may be defined without size:

list<int> ivect;

This defines an empty list, without any element at all. So, a statement like

∗ivect.begin() = 18;

would in this case be an error, as there isn’t any element as yet. In this case, the preferred idiom
is:

ivect.push back(18);

Other memberfunctions, some of which were also available in vector, are:

• back(), returning the last element of the list.

• clear(),

• front(), returning the first element of the list.

172

• empty(),

• elements may be erased:

– erase() and clear() both erase all elements,

– erase(pos) erases all elements starting at the position pointed to by iterator pos,

– erase(begin, end) erases elements indicated by the iterator range [begin, end).

• elements may be inserted at a certain position pointed to by the iterator pos:

– insert(pos, source) inserts source at the position pointed to by pos,

– insert(pos, begin, end) inserts the elements in the iterator range [begin, end) at
the position pointed to by pos.

– insert(pos, n, argument) inserts n elements having value argument at the position
pointed to by pos. The data type of argument must be equal to the data type of the
the elements of the list.

• resize(n) and resize(n, argument) may be used to resize the list to a size of n. If the
list is expanded, the extra elements are initialized by the default value of the used datatype,
or by the explicitly provided value argument.

• size(),

• swap(argument), swaps two lists.

Also available are:

• void push front(source) to enter a new element at the head of the list.

• void push back(source) to enter a new element at the end of the list.

• void pop front() may be used to remove the first element from the list. This element is
not returned by this memberfunction.

• void pop back() may be used to remove the last element from the list. This element is not
returned by this memberfunction.

• remove(source): This memberfunction removes all occurrences of source from the list: the
two strings Hello are removed from the list object in the following example:

#include <iostream>
#include <string>
#include <list>

int main()
{

list<string>
object;

object.push_back(string("Hello"));
object.push_back(string("World"));
object.push_back(string("Hello"));
object.push_back(string("World"));

object.remove(string("Hello"));

173

while (object.size())
{

cout << object.front() << endl;
object.pop_front();

}

return (0);
}

• sort() will sort the list. Once the list has been sorted, the following memberfunction
(unique()) may be used to remove all multiply occurring elements from the list, leaving
only one element of each. The following example shows the use of both memberfunctions.

• unique() makes sure that each element will occur only once. Here’s an example, leaving
each single word only once in the list:

#include <iostream>
#include <string>
#include <list>

int main()
{

list<string>
target;

target.push_back(string("A"));
target.push_back(string("rose"));
target.push_back(string("is"));
target.push_back(string("a"));
target.push_back(string("rose"));
target.push_back(string("is"));
target.push_back(string("a"));
target.push_back(string("rose"));

cout << "Initially we have: " << endl;
list<string>::iterator

from;
for (from = target.begin(); from != target.end(); ++from)

cout << *from << " ";
cout << endl;
target.sort();
cout << "After sort() we have: " << endl;
for (from = target.begin(); from != target.end(); ++from)

cout << *from << " ";
cout << endl;
target.unique();
cout << "After unique() we have: " << endl;
for (from = target.begin(); from != target.end(); ++from)

cout << *from << " ";
cout << endl;

174

return (0);
}

• merge(argument) combines the current list and the argument list. The merging will add
elements of source to target. When both lists are ordered, the resulting list will be ordered
as well. If both list are not completely ordered, the resulting list will be ordered as much
as possible, given the initial ordering of the elements in each list. In the following example
this is illustrated: the object list is not completely ordered, but the resulting list (alfa
bravo golf oscar mike november quebec zulu) is ordered ’as much as possible’: mike
has to follow oscar, since this ordering is imposed by object, but given that imperfection
the resulting list is ordered alphabetically.

#include <iostream>
#include <string>
#include <list>

int main()
{

list<string>
object,
argument;

object.push_back(string("alfa"));
object.push_back(string("bravo"));
object.push_back(string("golf"));
object.push_back(string("quebec"));

argument.push_back(string("oscar"));
argument.push_back(string("mike"));
argument.push_back(string("november"));
argument.push_back(string("zulu"));

object.merge(argument);

list<string>::iterator
from;

for (from = object.begin(); from != object.end(); ++from)
cout << *from << " ";

cout << endl;

return (0);
}

Note that the members merge() and sort() both assume the availability of the < and == operators.

• target.splice(iterator position, list source): This memberfunction transfers the
contents of source to the current list. Following splice(), source is empty. For example:

175

#include <iostream>
#include <string>
#include <list>

int main()
{

list<string>
object;

object.push_front(string("Hello"));
object.push_back(string("World"));

list<string>
argument(object);

object.splice(++object.begin(), argument);

cout << "Object contains " << object.size() << " elements, " <<
"Argument contains " << argument.size() << " elements," << endl;

while (object.size())
{

cout << object.front() << endl;
object.pop_front();

}

return (0);
}

Alternatively, source may be followed by a iterator of source, indicating the first element of
source that should be spliced, or by two iterators begin and end defining the iterator-range
[begin, end) on source that should be spliced into target.

Available operators with the list containertype are:

• The assignment of a list to another: =,

• The test for equality of two lists: ==,

• The test for inequality of two lists: !=,

• <: This operator returns true if each element stored in the left-hand operand list is less
than each corresponding element in the right-hand operand list, based on the <-operator of
the element-type of the lists. Also available are the <=, > and >= operators.

7.2.3 The ‘queue’ container

The queue class implements a queue datastructure. To use the queue, the header file queue must
be included:

#include <queue>

176

\

Figure 7.4: A queue data-structure

A queue is depicted in figure 7.4.

In figure 7.4 it is shown that a queue has one point (the back) where items can be added to the
queue, and one point (the front) where items can be removed (read) from the queue.

Bearing this model of the queue in mind, let’s see what we can do with it.

A queue can be initialized by an existing other queue, or it can be created empty:

queue<int>
queue1;

...
queue<int>

queue2(queue1);

Apart from these constructors, and the basic operators for comparison and assignment (see the
introductory paragraph of this chapter), the following memberfunctions are available:

• empty(),

• size(),

• front(): returns the first element that would be removed by pop(), Alternatively, the last
element of the queue may be reassigned, as illustrated in the following example, in which
Hello World, rather than Hello is displayed:

#include <iostream>
#include <string>
#include <queue>

int main()
{

queue<string>
q;

q.push("Hello");
q.front() = "Hello World";

177

cout << q.front() << endl;

return (0);
}

• back(): returns the last element that was added to the queue. Like front(), back() can
be used to reassign the last item that was added to the queue.

• push(source): adds item source to the back of the queue.

• void pop(): removes (but does not return) the element at the front of the queue.

Note that the queue does not support iterators or a subscript operator. The only elements that
can be accessed are its front and back element, and a queue can only be emptied by repeatedly
removing its front element.

7.2.4 The ‘priority queue’ container

The priority queue class implements a priority queue datastructure. To use the priority queue,
the header file queue must be included:

#include <queue>

A priority queue is identical to a queue, but allows the entry of data elements according to priority
rules. An example of a situation where the priority queue is encountered in real-life is found at
the check-in terminals at airports. At a terminal the passengers normally stand in line to wait for
their turn to check in, but late passengers are usually allowed to jump the queue: they receive a
higher priority than the other passengers.

The priority queue uses the <-operator of the used data type to decide about the priority of the
data elements. The smaller the value, the lower the priority. So, the priority queue could also be
used for sorting values while they arrive.

A simple example of a priority queue application is the following program: it reads words from
cin and writes a sorted list of words to cout:

#include <iostream>
#include <string>
#include <queue>

int main()
{

priority_queue<string>
q;

string
word;

while (cin >> word)

178

q.push(word);

while (q.size())
{

cout << q.top() << endl;
q.pop();

}

return (0);
}

Unfortunately, the words are listed in reversed order: because of the underlying <-operator the
words appearing later in the ascii-sequence appear first in the priority queue. A solution for that
problem is to define a wrapper class around the string datatype, in which the <-operator has been
defined according to our wish, i.e., making sure that the words appearing early in the ascii-sequence
appear first in the queue. Here is the modified program:

#include <iostream>
#include <string>
#include <queue>

class Text
{

public:
Text(string const &str): s(str)
{}
operator string const &() const
{

return (s);
}
bool operator<(Text const &right) const
{

return (s > right.s);
}

private:
string

s;
};

ostream &operator<<(ostream &ostr, Text const &text)
{

return (ostr << text);
}

int main()
{

priority_queue<Text>
q;

string
word;

while (cin >> word)

179

q.push(word);

while (q.size())
{

word = q.top();
cout << word << endl;
q.pop();

}
return (0);

}

In the above program the wrapper class defines the operator< just the other way around than
the string class itself, resulting in the preferred ordering. Other possibilities would be to store the
contents of the priority queue in, e.g., a vector, from which the elements can be read in reversed
order. However, the example shows how the priority queue can be fed objects of a special class, in
which the operator< has been tailored to a particular use.

A priority queue can be initialized by an existing other priority queue, or it can be created empty:

priority_queue<int>
priority_queue1;

...
priority_queue<int>

priority_queue2(priority_queue1);

Apart from these constructors, and the basic operators for comparison and assignment (see the
introductory paragraph of this chapter), the following memberfunctions are available:

• empty(),

• size(),

• top(): returns the first element that would be removed by pop(). This element is not
removed from the priority queue, and could be given a new value, as in:

priority_queue<string>
pq;

...
pq.top() = "Hello world";

• push(argument): adds item argument to its appropriate position, respecting its priority.

Note that the priority queue does not support iterators or a subscript operator. The only element
that can be accessed is its top element, and it can only be emptied by repeatedly removing this
element.

180

7.2.5 The ‘deque’ container

The deque class implements a double ended queue (deque) datastructure. To use the deque class,
the header file deque must be included:

#include <deque>

A deque is comparable to a queue, but it allows reading and writing at both ends of the queue.
Actually, the deque data type supports a lot more functionality than the queue, as will be clear
from the following overview of memberfunctions that are available for the deque:

First, several constructors are available for the deque:

• deque() initializes an empty deque.

• deque(argument) initializes a deque with another deque argument.

• deque(n, argument) initializes a deque with n values provided by the argument variable.
E.g., to initialize a deque with 10 strings containing Hello World we do:

deque<string>
hello(10, "Hello World");

• deque(size type n) initializes a deque with n default values of the datatype stored in the
deque.

• deque(iterator first, iterator last) initializes the deque with the iterator range im-
plied by [first, last). The iterators first and last may also be pointers to the data-type
stored in the deque.

To access the individual elements of the deque, the following members are available:

• begin(): this returns the iterator pointing to the front-element

• end(): the iterator beyond the back-element.

• rbegin(): the iterator pointing to the last (back) element

• rend(): and the corresponding one pointing just before the first (front) element.

• The subscript operator may be used to access random elements from the deque.

• front(): returns the element at the front of the deque. This member may be used for
reassigning the front element as well.

• back(): and the element at the back of the deque. Again, reassignment is possible.

• size(), returning the number of elements in the deque.

• empty(), returns true if the deque contains no elements.

181

The following operations and operator affect all elements of a deque:

• The assignment operator (=) may be used to assign one deque object to another.

• swap(argument) is used to swap the contents of the current deque with deque argument.

Elements may be added and removed from both ends of a deque:

• push back(source) adds source at the back of the deque,

• push front(source) adds source at the front of the deque.

• pop back() removes (but does not return) the element at the back of the deque.

• pop front() removes (but does not return) the element at the front of the deque.

Elements may also inserted somewhere within the deque:

• insert(position, argument): argument is inserted at the position indicated by the position
iterator, which is itself returned by the function. Argument may be omitted, in which case
the default value of the data-type used with the deque is inserted.

• insert(pos, n, argument): At the position indicated by the pos iterator n new elements
are inserted, all having value argument. There is no returnvalue.

• insert(pos, first, last): At the position indicated by the pos iterator the elements
implied by the iterator range [first, last) are inserted. There is no returnvalue.

• resize(new size, argument): the size of the deque is altered to new size. If new size
exceeds size(), then the new elements are initialized to argument. If argument is omitted,
the default value of the data type of the deque is used. If new size is less than size(), then
the size of the deque is merely reduced.

Apart from using resize(), elements may be removed from the deque as follows:

• erase(pos) erases all elements of the deque from the position indicated by the iterator pos
to the end of the deque.

• erase(first, last) erases all elements implied by the iterator range [first, last).

• clear() erases all elements from the deque.

7.2.6 The ‘map’ container

The map class implements a (sorted) associative array. To use the map, the header file map must
be included:

#include <map>

182

A map is filled with Key/Value pairs, which may be of any container-acceptable type.

The key is used for looking up the information belonging to the key. The associated information is
the Value. For example, a phonebook uses the names of people as the key, and uses the telephone
number and maybe other information (e.g., the zip-code, the address, the profession) as the value.

Basically, the operations on a map are the storage of Key/Value combinations, and looking for a
value, given a key. Each key can be stored only once in a map. If the same key is entered twice,
the last entered key/value pair is stored, and the pair that was entered before is lost.

A single value that must be entered into a map must be constructed first. For this, every map
defines a value type which may be used to create values of that type. For example, a value for a
map<string, int> can be constructed as follows:

map<string, int>::value_type(string("Hello"), 1)

The value type is associated with the map<string, int> map. Its leftmost argument defines
the key, its rightmost argument defines its value.

Instead of using the line map<string, string>::value type(...) over and over again, a
typedef comes in handy:

typedef map<string, int>::value_type MapStrIntValue

Using this typedef, values for the map<string, int> may be constructed as

MapStrIntValue(string("Hello"), 1);

Apart from the basic operations (assignment, comparison, etc,), the map supports several more
operations:

• The constructor defining an empty map. The types of the Key and Value must be specified
when the map is defined. E.g., to define a map in which the key is a string and the value an
int, use:

map<string, int>
object;

To define a map in which the key is a string and the value is a pair of strings, use:

map<string, pair<string, string> >
object;

183

Note the white space between the two closing angular brackets >: this is obligatory, as the
immediate concatenation of the two angular brackets will be interpreted by the compiler as
a rightshift operator (>>), which is not what you want here.

• object(iterator first, iterator last): This constructor defines a map that is initial-
ized by the values implied by the iterator range [first, last). The range could be defined
by pointers in an array of Key/Value pairs. For example (see section 7.1 for a discussion of
the pair container):

pair<string, int>
pa[] = {

pair<string,int>("one", 1),
pair<string,int>("two", 2),
pair<string,int>("three", 3),

};

map<string, int>
object(&pa[0], &pa[3]);

Note that &pa[3], as with the iterators, points to the first element that must not be included
in the map. The particular array element does not have to exist.

Also note that key/value pairs are only entered if the corresponding key has not yet been
entered. If the last element of pa would have been "one", 3, only two elements would have
entered the map: "one", 1 and "two", 2. The value "one", 3 would have been ignored
silently.

Finally, it is worth noting that the map receives its own copies of the data to which the
iterators point. The following example illustrates this:

#include <iostream>
#include <string>
#include <utility>
#include <map>

class MyClass
{

public:
MyClass()
{

cout << "MyClass constructor called\n";
}
MyClass(const MyClass &other)
{

cout << "MyClass copy constructor called\n";
}
~MyClass()
{

cout << "MyClass destructor called\n";
}

};

int main()

184

{
pair<string, MyClass>

pairs[] =
{

pair<string, MyClass>("one", MyClass()),
};

cout << "pairs constructed\n";

map<string, MyClass>
mapsm(&pairs[0], &pairs[1]);

cout << "mapsm constructed\n";

return (0);
}

First, the constructors of a MyClass object is called to initialize the first element of the
array pairs. This object is copied into the first element of the array pairs by calling the
copy constructor. Next, the original element is not needed anymore, and gets destroyed.
At that point the array pairs is constructed. Next, the map constructs a temporary pair
object, from which the map element is constructed. Having constructed the map element,
the temporary pair objects is destroyed. Eventually, when the program terminates, the pair
element stored in the map is destroyed too.

When run, the program produces the following output:

MyClass constructor called
MyClass copy constructor called
MyClass destructor called
pairs constructed
MyClass copy constructor called
MyClass copy constructor called
MyClass destructor called
mapsm constructed
MyClass destructor called

• object(argument): This constructor initializes object with an existing map argument hav-
ing the same key/value combinations.

The standard iterators are also available:

• begin()

• end()

• rbegin()

• rend()

Other member functions of the map are:

185

• empty(),

• size(),

• swap(),

• The subscript operator ([]), which may be used to access and redefine values. Here, the
argument of the subscript operator is the keyvalue. If the provided key is not available in the
map, a new data element is added to the map, using the default value or default constructor
to initialize the value part of the newly added key/value combination. This default value is
then returned.

When initializing a new or reassigning another element of the map, the right-hand side
of the assignment operator must have the type of the value part of the map. E.g., to add
another element "two" to the map that was defined in the previous example, use the following
construction:

mapsm["two"] = MyClass();

• insert(argument) is used to insert a new value argument in the map. The returnvalue is
a pair<iterator,bool>. The bool field indicates whether source was inserted (true is
returned) or not (in which case the key field of source was already available). In both cases
the iterator field points to the data-element in the map: a new element if true is returned,
the existing element if false is returned. The following little program illustrates this:

#include <string>
#include <map>
#include <iostream>

int main()
{

pair<string, int>
pa[] = {

pair<string,int>("one", 1),
pair<string,int>("two", 2),
pair<string,int>("three", 3),

};

map<string, int>
xmap(&pa[0], &pa[3]);

// {four, 4} and true (1) is returned here
pair<map<string, int>::iterator, bool>

ret = xmap.insert(map<string, int>::value_type("four", 4));

cout << ret.first->first << " " << ret.first->second << " " <<
ret.second << " " << xmap["four"] << endl;

// {four, 4} and false (0) is returned here
ret = xmap.insert(map<string, int>::value_type("four", 0));

cout << ret.first->first << " " << ret.first->second << " " <<
ret.second << " " << xmap["four"] << endl;

186

return (0);
}

Note the somewhat peculiar constructions like

cout << ret.first->first << " " << ret.first->second << ...

Here ret is the pair variable returned by the insert member function. Its first field is an
iterator into the t(map<string, int>), so it can be considered a pointer to a map<string,
int> value type. These value types themselves are pairs too, having first and second
fields. Consequently, ret.first->first is the key field of the map value (a string), and
ret.first->second is the value field (an int).

• insert(position, argument). This is another way to insert a value, this time using a
specific position within the map. Position is an map<keytype, valuetype>::iterator.
Although a specific position is given, the new element is inserted at its appropriate sorted
location within the map, so mapVariable.begin() could be used for the position.

• insert(first, last): this memberfunction may be used to insert a range of elements
implied by the iterator range [first, last) into the map. Again, elements are only inserted
if their keys are not yet in the map, and the map remains sorted by key values. Instead of
iterators pointers to elements of the same value type as stored in the map may be used.

• erase(position): erases the element at the indicated position, which is an iterator of the
particular map.

• erase(key): erases the element having key as its key value.

• erase(first, last): erases the range of elements implied by the iterator range [first,
last).

• clear(): erases all elements from the map.

• find(key): an iterator is returned pointing to the element whose key is key. If the element
isn’t available, the iterator end() is returned. The following example illustrates the use of
the find() memberfunction:

#include <iostream>
#include <string>
#include <utility>
#include <map>

int main()
{

map<string, int>
mapsi;

mapsi["one"] = 1;

map<string, int>::iterator
it = mapsi.find("one");

187

cout << "\"one\" " <<
(it == mapsi.end() ? "not " : "") <<
"found\n";

it = mapsi.find("three");

cout << "\"three\" " <<
(it == mapsi.end() ? "not " : "") <<
"found\n";

return (0);
}

The following members have special meanings with the multimap, but they are defined with the
plain map too:

• count(key): returns 1 if the provided key is available in the map, otherwise 0 is returned.

• lower bound(key): returns an iterator pointing to the first element having a key equal to
or exceeding the key value that is passed to the memberfunction. If no such value exists,
target.end() is returned.

• upper bound(key type key): same as the previous function.

• equal range(key type key): a pair<iterator,iterator> is returned. In the case of a
map, the range consists of the data element having as its key the key value that is passed to
the function. If no such data element could be found, the pair (end(), end()) is returned.

7.2.7 The ‘multimap’ container

Like the map, the multimap class implements also a (sorted) associative array. To use the multimap,
the header file multimap must be included:

#include <multimap>

The main difference between the map and the multimap is that the multimap supports multiple
entries of the same key, whereas the map contains only unique keys. Note that multiple entries of
the same key and the same value are also accepted.

The functions that are available with the multimap and the map are practically the same, with
the exception of the subscript operator ([]), which is not supported with the multimap. This is
understandable: if multiple entries of the same key are allowed, which of the possible values should
be returned for myMap[myKey]?

Below the available constructors and memberfunctions are mentioned. They are presented without
further comment if their function is identical to that of the map container.

A single value that is to be entered into a multimap must be constructed. For this, a multimap
defines a value type, corresponding to a particular multimap type, which may be used to create
values of that type. For example, with a multimap<string, string> it can be used as follows:

188

multimap<string, string>::value_type(string("Hello"), 1)

Here are the constructors that are available for the multimap:

• The constructor defining an empty multimap. E.g.,

multimap<string, int>
object;

• object(first, last): This constructor defines a multimap that is initialized by the values
implied by the iterator range [first, last).

• object(argument): This constructor initializes object with an existing multimap.

The standard iterator producing member functions are available:

• begin()

• end()

• rbegin()

• rend()

Other available memberfunctions are:

• empty()

• size()

• swap()

• insert(argument) is used to insert a new value argument in the multimap. The returnvalue
is an iterator (and not a pair<iterator,bool> as with the map container), pointing to the
newly added element.

• insert(position, argument).

• insert(first, last).

• erase(position).

• erase(key).

• erase(first, last).

• clear().

• find(key): an iterator is returned pointing to the (first) element whose key is key. If the
element isn’t available, target.end() is returned.

• count(key): returns the number of times the provided key is available in the multimap.

189

• lower bound(key): returns an iterator pointing to the first of a series of data element having
the same keys of which the value is equal to or exceeds the key value that is passed to the
memberfunction. If no such value exists, the behavior of the function is undefined.

• upper bound(key): returns an iterator pointing to the last of a series of data element having
the same keys of which the value is equal to or exceeds the key value that is passed to the
memberfunction. If no such value exists, the behavior of the function is undefined.

• equal range(key): a pair<iterator,iterator> is returned, defining the range of data
elements all having key value key. If no such data element could be found, the pair (end(),
end()) is returned.

The subscript operator is not available.

7.2.8 The ‘set’ container

The set class implements a set of (sorted) values. To use the set, the header file set must be
included:

#include <set>

A set is filled with values, which may be of any container-acceptable type. Each value can be
stored only once in a set.

A single value that is to be entered in a set must be constructed. For this, a set defines a
value type, corresponding to a particular type of set, which may be used to create values of
that type. For example, with a set<string> it can be used as follows:

set<string>::value_type(string("Hello"))

Instead of using the line set<string>::value type(...) over and over again, a typedef may
come in handy here:

typedef set<string>::value_type SetSValue

Using this typedef, values for the set<string, string> may be constructed as follows:

SetSValue(string("Hello"))

Apart from the basic operations (assignment, comparison, etc,), the set supports several more
operations. They are:

190

• The constructor defining an empty set. When the set is defined, the type of the value must
be specified. E.g., to define a set in which ints can be stored, use:

set<int>
object;

• object(iterator first, iterator last): This constructor defines a set that is initialized
by the values implied by the iterator range [first, last). The range may also be defined
by pointers in an array of values of the same type as the values that must be stored in the
set. For example:

int
ia[] = {1, 2, 3, 4, 5};

set<int>
object(&ia[0], &ia[5]);

Note that &pa[5] points to the first element that must not be included in the set. Also note
that all values values in the set will be different: it is not possible to store the same value
more than once.

• object(argument): This constructor initializes object with an existing set argument, con-
structing a copy of the set argument.

The standard iterators are all available:

• begin()

• end()

• rbegin()

• rend()

Other member functions are:

• empty(),

• size(),

• swap(argument), swapping the contents of the current set and the set argument.

• insert(argument) is used to insert a new value argument in the set. Argument is a value
of the appropriate value type of the set. The returnvalue is a pair<iterator, bool>. The
bool field indicates whether source was inserted (true is returned) or not (in which case
the key field of source was already available). In both cases the iterator field points to the
data-element in the set: a new element if true is returned, the existing element if false is
returned. An example using the insert() memberfunction is given below:

191

#include <set>
#include <utility>

int main()
{

set<int>
object;

pair<set<int>::iterator, bool>
result = object.insert(set<int>::value_type(4));

cout << "Element " << *result.first << " was " <<
(result.second ? "" : "not ") << "inserted\n";

result = object.insert(set<int>::value_type(4));

cout << "Element " << *result.first << " was " <<
(result.second ? "" : "not ") << "inserted\n";

return (0);
}

• insert(position, argument). This is another way to insert a value argument, this time
using a specific position within the set, indicated by set<type>::iterator position. Al-
though a specific position is given, the new element is inserted at its appropriate sorted
location within the set. An insertion could therefore be realized using a statement like

object.insert(object.begin(), set<int>::value_type(1));

• insert(first, last): this memberfunction may be used to insert a range of elements
implied by the iterator range [first, last) into the set. Again, elements are only inserted
if their keys are not yet in the set, and the set remains sorted. Instead of iterators pointers
to elements of the same value type as stored in the set may be used.

• erase(position): erases the element at the indicated set<type>::iterator position.

• erase(argument): erases the element having argument as its value.

• erase(first, last): erases the range of elements implied by the iterator range [first,
last).

• clear(): erases all elements from the set.

• find(argument): an iterator is returned pointing to the element whose value is argument.
If the element isn’t available, object.end() is returned.

The following members have special meanings with the multiset, but they are defined with the
plain set too:

• count(argument): returns 1 if the provided value is available in the set, otherwise 0 is
returned.

192

• lower bound(argument): returns an iterator pointing to the (first) data element having a
value which is equal to or exceeds the value that is passed to the memberfunction. If no such
value exists, the behavior of the function is undefined.

• upper bound(argument): same as the previous function.

• equal range(argument): a pair<set<type>::iterator, set<type>::iterator> is re-
turned. In the case of a set, the range consists of a pair of iterators of which the first iterator
points to the element of the set containing the value argument, while the second iterator
points beyond that elementand (or to end() if the first iterator points to the last element in
the set). If the set does not contain a data element having value argument the pair (end(),
end()) is returned.

7.2.9 The ‘multiset’ container

Like the set, the multiset class also implements a (sorted) set of values. To use the multiset,
the header file multiset must be included:

#include <multiset>

The main difference between the set and the multiset is that the multiset supports multiple
entries of the same value, whereas the set contains only unique values.

The member functions that are available for the set are also available for the multiset. They are
presented below without further comment if their functions and parameters are comparable to
those used by the set container’s members.

A single value that is to be entered into a multiset must be constructed. For this, a multiset defines
a value type, corresponding to a particular multiset type, which may be used to create values of
that type. For example, with a multiset<string> it can be used as follows:

multiset<string>::value_type(string("Hello"))

Here are the constructors that are available for the multiset:

• The constructor defining an empty multiset. E.g.,

multiset<string>
object;

• object(first, last): This constructor defines a multiset that is initialized by the values
implied by the iterator range [first, last).

• object(argument): This constructor initializes object with an existing multiset argument,
creating a copy of that multiset.

193

The standard iterators:

• begin()

• end()

• rbegin()

• rend()

Other member functions are:

• empty(),

• size(),

• swap(argument), argument is an existing multiset.

• insert(argument) is used to insert a new value multiset<type>::value type(argument)
into the multiset. The returnvalue is an iterator (and not a pair<iterator, bool> as with
the set container), pointing to the newly added element.

• insert(position, argument). Position is an iterator of the multiset, and argument is a
value for the multiset.

• insert(first, last), inserting values defined by the iterator range rangett(first, last).

• erase(position),

• erase(argument),

• erase(first, last),

• clear().

• find(argument): an iterator is returned pointing to the (first) element whose value is
argument. If the element isn’t available, object.end() is returned.

• count(argument): returns the number of times the provided value argument is available in
the multiset.

• lower bound(argument): returns an iterator pointing to the first of a series of data ele-
ment having values which are equal to or exceed the value argument that is passed to the
memberfunction. If no such value exists, the behavior of the function is undefined.

• upper bound(value): returns an iterator pointing to the last of a series of data element
having values which are equal to or exceed the value argument that is passed to the mem-
berfunction. If no such value exists, the behavior of the function is undefined.

• equal range(argument): a pair<iterator, iterator> is returned, defining the range of
data elements all having the value argument. If no such elements could be found, the pair
(end(), end()) is returned.

A small example showing the use of various memberfunctions of a multiset is given below:

194

#include <string>
#include <set>
#include <iostream>

int main()
{

string
sa[] =
{

"alfa",
"echo",
"hotel",
"mike",
"romeo"

};

multiset<string>
xset(&sa[0], &sa[5]);

xset.insert(multiset<string> ::value_type("echo"));
xset.insert(multiset<string> ::value_type("echo"));
xset.insert(multiset<string> ::value_type("echo"));

multiset<string>::iterator
it = xset.find("echo");

for (; it != xset.end(); ++it)
cout << *it << " ";

cout << endl;

pair
<

multiset<string>::iterator,
multiset<string>::iterator

>
itpair = xset.equal_range("echo");

for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";

cout << endl <<
xset.count("echo") << " occurrences of ’echo’" << endl;

return (0);
}

7.2.10 The ‘stack’ container

The stack class implements a stack datastructure. To use the stack, the header file stack must
be included:

195

\

Figure 7.5: The contents of a stack while evaluating 3 4 + 2 ∗

#include <stack>

A stack is also called a first-in last-out datastructure, as the first item to enter the stack is the last
item that will be removed from it. A stack is an extremely useful datastructure in situations where
data must be temporarily be available. For example, programs maintain a stack to store local
variables of functions: these variables live only as long as the functions live, contrary to global (or
static local) variables, which live for as long as the program itself lives. Another example is found
in calculators using the Reverse Polish Notation (RPN), in which the operands of expressions are
entered in the stack, and the operators pop their operands and push the results of their work.

As an example of the use of a stack, consider figure 7.5, in which the contents of the stack is shown
while the expression (3 + 4) ∗ 2 is evaluated. In the RPN this expression becomes 3 4 + 2 ∗,
and figure 7.5 shows the stack contents after each token (i.e., the operands and the operators) is
read from the input. Notice that indeed each operand is pushed on the stack, while each operator
changes the contents of the stack.

The expression is evaluated in five steps. The caret between the tokens in the expressions shown
on the first line of figure 7.5 shows what token has just been read. The next line shows the actual
stack-contents, and the final line shows the steps for referential purposes. Note that at step 2, two
numbers have been pushed on the stack. The first number (3) is now at the bottom of the stack.
Next, in step 3, the + operator is read. The operator pops two operands (so that the stack is empty
at that moment), calculates their sum, and pushes the resulting value (7) on the stack. Then, in
step 4, the number 2 is read, which is dutifully pushed on the stack again. Finally, in step 5 the
final operator ∗ is read, which pops the values 2 and 7 from the stack, computes their product,
and pushes the result back on the stack. This result (14) could then be popped to be displayed on
some medium.

From figure 7.5 we see that a stack has one point (the top) where items can be added to and
removed from the stack. Furthermore, values can be pushed and popped from a stack.

Bearing this model of the stack in mind, let’s see what we can formally do with it, using the stack
container.

196

A stack can be initialized by an existing other stack, or it can be created empty:

stack<int>
stack1;

...
stack<int>

stack2(stack1);

Apart from these constructors, and the basic operators for comparison and assignment (see the
introductory paragraph of this chapter), the following memberfunctions are available:

• empty(),

• size(),

• top(): returns the first element that would be removed by pop(). Using top() the value at
the top of the stack may be inspected or reassigned.

• push(argument): pushes item argument on the stack.

• void pop(): removes (but does not return) the element at the top of the stack.

Note that the stack does not support iterators or a subscript operator. The only elements that
can be accessed is its top element, and it can only be emptied by repeatedly popping the element
at the top.

7.2.11 The ‘hash map’ and other hashing-based containers

The (multi) map and (multi) set containertypes store sorted keys. This is in general not the
fastest way to store keys with respect to storage and retrieval. The main benefit of sorted keys
is that a listing of sorted keys appeals more to humans than an unsorted list. However, a by far
faster method of storing keys is to use hashing.

Hashing uses a function (called the hash-function) to compute a (unsigned) number from the key,
which number is thereupon used as an index in the table in which the keys are stored. Retrieval
of a key is as simple as computing the hashvalue of the provided key, and looking at the table in
the computed indexlocation: if the key is present, it is stored in the table, and its value can be
returned. If it’s not present, the key is not stored.

Boundary conditions arise when a computed index position is already occupied by another element.
For these situations the abstract containers have solutions available, but that topic is beyond the
subject of this chapter.

The egcs compiler supports the hash (multi)map and hash (multi)set containers. Below the
hash map container is illustrated. The other containers using hashing (hash multimap, hash set
and hash multiset) operate correspondingly.

Concentrating on the hash map, its constructor needs a key-type, a value-type, an object creating
a hashvalue for the key, and an object comparing two keys for equality.

The hash map class implements an associative array in which the key is stored according to some
hashing scheme. To use the hash map, the header file hash map must be included:

197

#include <hash_map>

Hash functions are available for char const ∗ keys, and for all the scalar numerical types char,
short, int etc.. If another datatype must be used, a hash function and an equality test must be
implemented, possibly using function objects (see section 6.8). For both situations examples are
given below.

The class implementing the hash-function could be called hash. Its function-call operator returns
the hashvalue of the key which is passed as its argument.

A generic algorithm (see section 10) exists for the test of equality (i.e., equal to()), which can
be used if the key’s data type supports the equality operator. Alternatively, a function object
could also be constructed here, supporting the equality test of two keys. Again, both situations
are illustrated below.

In the first example a hash map is defined for a string, int combination using existing template
functions.

The test for equality is implemented using an instantiation of the equal to generic algorithm.
The hash function uses a template specialization for the hash template class. The how and why of
template specializations are covered in chapter 16.

The hash<string> explicit specialization in fact uses the predefined hash<char const ∗> tem-
plate, but the roundabout way is chosen here to illustrate how a template explicit specialization
can be constructed. Here it is:

template <>
class hash<string>
{

public:
size_t operator()(string const &str) const
{

hash<char const *>
h;

return (h(str.c_str()));
}

};

The following program defines a map containing the names of the months of the year and the
number of days these months (usually) have. Then, using the subscript operator the days in several
months are displayed. The equality operator used the generic algorithm equal to<string>, which
is the default fourth argument of the hash map constructor:

#include <iostream>
#include <string>
#include <hash_map>

198

template <> class hash<string>; // insert the above mentioned template
// here

int main()
{

hash_map<string, int, hash<string> >
months;

months["january"] = 31;
months["february"] = 28;
months["march"] = 31;
months["april"] = 30;
months["may"] = 31;
months["june"] = 30;
months["july"] = 31;
months["august"] = 31;
months["september"] = 30;
months["october"] = 31;
months["november"] = 30;
months["december"] = 31;

cout << "september -> " << months["september"] << endl <<
"april -> " << months["april"] << endl <<
"june -> " << months["june"] << endl <<
"november -> " << months["november"] << endl;

return (0);
}

Note that the definition hash map<string, int, hash<string> > months; may be written
simpler if the key is a char const ∗: hash map<char const ∗, int> months;

The next example shows an alternative implementation, using function objects. The class Equal
defines the equality test of two keys in its function call operator operator(), and a Equal object is
now explicitly mentioned when the hash map is constructed. Similarly, the hashString class defines
the hash function of the key. A hashString object is also passed explicitly to the constructor of
the hash map:

#include <iostream>
#include <string>
#include <hash_map>

class Equal
{

public:
size_t operator()(string const &s1, string const &s2) const
{

return (s1 == s2);
}

};

class hashString

199

{
public:

size_t operator()(string const &str) const
{

hash<char const *>
h;

return (h(str.c_str()));
}

};

int main()
{

hash_map
<

string,
int,
hashString,
Equal

>
months;

months["january"] = 31;
months["february"] = 28;
months["march"] = 31;
months["april"] = 30;
months["may"] = 31;
months["june"] = 30;
months["july"] = 31;
months["august"] = 31;
months["september"] = 30;
months["october"] = 31;
months["november"] = 30;
months["december"] = 31;

cout << "february -> " << months["february"] << endl <<
"april -> " << months["april"] << endl <<
"june -> " << months["june"] << endl <<
"november -> " << months["november"] << endl <<
"december -> " << months["december"] << endl;

return (0);
}

Like the map, a single value that will be entered into a hash map must be constructed. For this, a
hash map defines a value type, corresponding to a particular hash map-type, which may be used
to create values of that type. For example, with a hash map<string, int> it can be used as
follows:

hash_map<string, int>::value_type(string("Hello"), 1)

200

All the memberfunctions and constructors that are available for the map datatype can also be used
for the hash map. The constructor object(n) defines a hash map consisting of an initial number
of n slots to put key/value combinations in. This number is automatically extended when needed.

The hash multimap, hash set and hash multiset containers are used analogously. For these
containers the equal and hash classes must also be defined. The hash multimap also requires the
hash map header file, the hash set and hash multiset containers can be used after including the
hash set header file. Be careful not to use the subscript operator with the hash multimap and
hash multiset, as this operator is not defined for the multi ... containers.

7.3 The ‘complex’ container

The complex container is a specialized container in that it defines operations that can be performed
on complex numbers, given possible numerical real and imaginary data types.

In order to use the complex container, the headerfile

#include <complex>

must be included.

The complex container can be used to define complex numbers, consisting of two parts, representing
the real and complex parts of a complex number.

While initializing (or assigning) a complex variable, the imaginary part may be left out of the
initialization or assignment, in which case this part is 0 (zero). By default, both parts are zero.

When complex numbers are defined, the typedefinition requires the specification of the datatype
of the real and imaginary parts. E.g.,

complex<double>
complex<int>
complex<float>

Note that the real and imaginary parts of complex numbers have the same datatypes.

Below it is silently assumed that the used complex type is complex<double>. Given this assump-
tion, complex numbers may be initialized as follows:

• target: A default initialization: real and imaginary parts are 0.

• target(1): The real part is 1, imaginary part is 0

• target(0, 3.5): The real part is 0, imaginary part is 3.5

• target(source): target is initialized with the values of source.

Anonymous complex values may also be used. In the following example two anonymous complex
values are pushed on a stack of complex numbers, to be popped again thereafter:

201

#include <iostream>
#include <complex>
#include <stack>

int main()
{

stack<complex<double> >
cstack;

cstack.push(complex<double>(3.14, 2.71));
cstack.push(complex<double>(-3.14, -2.71));

while (cstack.size())
{

cout << cstack.top().real() << ", " <<
cstack.top().imag() << "i" << endl;

cstack.pop();
}

return (0);
}

Note that a blank is required between the two consecutive >-barckets used in the definition of
cstack. If the blank is omitted, the resulting >> is read as the right-shift operator, which of
course makes no sense here.

The following memberfunctions and operators are defined for complex numbers:

• The standard assignment and comparison operators that are available for containers are also
available for complex numbers.

• real(): this memberfunction returns the real part of a complex number.

• imag(): this memberfunction returns the imaginary part of a complex number.

• The following operations are defined for complex containers: +, -, ∗, /, +=, -=, ∗=, /=.

Furthermore, several mathematical functions are available for complex numbers. They are abs(),
arg(), conj(), cos(), cosh(), exp(), log(), norm(), polar(), pow(), sin(), sinh()) and sqrt(). These
functions are normal functions, not memberfunctions. They accept complex numbers as their
arguments. For example,

abs(complex<double>(3, -5));
pow(target, complex<int>(2, 3));

Complex numbers may be extracted from istream objects and inserted into ostream objects. The
insertion results in an ordered pair (x, y), in which x represents the real part and y the imaginary
part of the complex number. The same form may also be used when extracting a complex number
from an istream object. However, simpler forms are also allowed. E.g., 1.2345: only the real
part, the imaginary part will be set to 0; (1.2345): the same value.

202

Finally, ordinary numbers may be used in expressions involving complex numbers. E.g.,

// assume target is complex<double>:
target *= 3;

Note, however, that the reverse does not hold true: a complex number cannot be assigned to a
non-complex type variable. In these situations the real(), imag() or other functions must be
used. E.g.:

// assume x is double:
x = target; // error: x is not complex<double>
x = target.real(); // ok.

203

Chapter 8

Static data and functions

In the previous chapters we have shown examples of classes where each object of a class had its
own set of public or private data. Each public or private function could access the object’s
own version of the data.

In some situations it may be desirable that one or more common data fields exist, which are
accessible to all objects of the class. An example of such a situation is the name of the startup
directory in a program which recursively scans the directory tree of a disk. A second example is a
flag variable, which states whether some specific initialization has occurred: only the first object
of the class would then perform the initialization and would then set the flag to ‘done’.

Such situations are analogous to C code, where several functions need to access the same variable.
A common solution in C is to define all these functions in one source file and to declare the
variable as a static: the variable name is then not known beyond the scope of the source file.
This approach is quite valid, but doesn’t stroke with our philosophy of one function per source file.
Another C-solution is to give the variable in question an unusual name, e.g., 6uldv8, and then to
hope that other program parts won’t use this name by accident. Neither the first, nor the second
C-like solution is elegant.

C++’s solution is to define static data and functions, common to all objects of a class, and
inaccessible outside of the class. These functions and data will be discussed in this chapter.

8.1 Static data

A data member of a class can be declared static; be it in the public or private part of the class
definition. Such a data member is created and initialized only once, in contrast to non-static data
members, which are created again and again, for each separate object of the class. A static data
member is created once: when the program starts executing. Nonetheless, it is still part of the
class.

static data members which are declared public are like ‘normal’ global variables: they can be
reached by all code of the program using their name, together with their class name and the scope
resolution operator. This is illustrated in the following code fragment:

class Test

204

{
public:

static int
public_int;

private:
static int

private_int;
}

int main()
{

Test::public_int = 145; // ok

Test::private_int = 12; // wrong, don’t touch
// the private parts

return (0);
}

This code fragment is not suitable for consumption by a C++ compiler: it only illustrates the
interface, and not the implementation of static data members. We will discuss the implementation
of such members shortly.

8.1.1 Private static data

To illustrate the use of a static data member which is a private variable in a class, consider the
following code fragment:

class Directory
{

public:
// constructors, destructors, etc. (not shown)
...

private:
// data members
static char

path[];
};

The data member path[] is a private static variable. During the execution of the program,
only one Directory::path[] exists, even though more than one object of the class Directory
may exist. This data member could be inspected or altered by the constructor, destructor or by
any other member function of the class Directory.

Since constructors are called for each new object of a class, static data members are never
initialized by constructors. At most they are modified. The reason for this is that the static data
members exist before the constructor of the class is called for the very first time. The static data
members can be initialized during their definition, outside of all member functions, in the same
way as global variables are initialized. The definition and initialization of a static data member

205

usually occurs in one of the source files of the class functions, preferably in a source file dedicated
to the definition of static data members, called data.cc.

The data member path[] from the above class Directory could thus be defined and initialized in
the source file of the constructor (or in a separate file data.cc):

// the static data member: definition and initialization
char

Directory::path [200] = "/usr/local";

// the default constructor
Directory::Directory()
{

...
}

It should be noted that the definition of the static data member can occur in any source file; as
long as it is defined only once. So, there is no need to define it in, e.g., a source file in which also
a memberfunction of the class is implemented.

In the class interface the static member is actually only declared. At its implementation (defi-
nition) its type and class name are explicitly stated. Note also that the size specification can be
left out of the interface, as is shown in the above array path[]. However, its size is needed at its
implementation.

A second example of a useful private static data member is given below. A class Graphics
defines the communication of a program with a graphics-capable device (e.g., a VGA screen). The
initial preparing of the device, which in this case would be to switch from text mode to graphics
mode, is an action of the constructor and depends on a static flag variable nobjects. The
variable nobjects simply counts the number of Graphics objects which are present at one time.
Similarly, the destructor of the class may switch back from graphics mode to text mode when the
last Graphics object ceases to exist.

The class interface for this Graphics class might be:

class Graphics
{

public:
// constructor, destructor
Graphics();
~Graphics();

// other interface is not shown here,
// e.g. to draw lines or whatever

private:
// counter of # of objects
static int nobjects;

// hypothetical functions to switch to graphics

206

// mode or back to text mode
void setgraphicsmode();
void settextmode();

}

The purpose of the variable nobjects is to count the number of objects which exist at one given
time. When the first object is created, the graphics device is initialized. At the destruction of the
last Graphics object, the switch from graphics mode to text mode is made:

// the static data member
int Graphics::nobjects = 0;

// the constructor
Graphics::Graphics()
{

if (! nobjects)
setgraphicsmode();

nobjects++;
}

// the destructor
Graphics::~Graphics()
{

nobjects--;
if (! nobjects)

settextmode();
}

It is obvious that when the class Graphics would define more than one constructor, each construc-
tor would need to increase the variable nobjects and possibly would have to initialize the graphics
mode.

8.1.2 Public static data

Data members can be declared in the public section of a class definition, although this is not com-
mon practice (such a setup would violate the principle of data hiding). E.g., when the static data
member path[] from chapter 8.1 would be declared in the public section of the class definition,
all program code could access this variable:

int main()
{

getcwd(Directory::path, 199);
return(0);

}

207

Note that the variable path would still have to be defined. As before, the class interface would
only declare the array path[]. This means that some source file would still need to contain the
implementation:

char
Directory::path[200];

8.2 Static member functions

Besides static data, C++ allows the definition of static functions. Similar to the concept of
static data, in which these variables are shared by all objects of the class, static functions apply
to all objects of the class.

The static functions can therefore address only the static data of a class; non-static data
are unavailable to these functions. If non-static data could be addressed, to which object would
they belong? Similarly, static functions cannot call non-static functions of the class. All this is
caused by the fact that static functions have no this pointer.

Functions which are static and which are declared in the public section of a class interface can be
called without specifying an object of the class. This is illustrated in the following code fragment:

class Directory
{

public:
// constructors, destructors etc. not shown here
...
// here’s the static public function
static void setpath(char const *newpath);

private:
// the static string
static char path [];

};

// implementation of the static variable
char Directory::path [199] = "/usr/local";

// the static function
void Directory::setpath(char const *newpath)
{

strncpy(path, newpath, 199);
}

// example of the usage
int main()
{

// Alternative (1): calling setpath() without
// an object of the class Directory

208

Directory::setpath("/etc");

// Alternative (2): with an object
Directory

dir;

dir.setpath("/etc");

return (0);
}

In the example above the function setpath() is a public static function. C++ also allows
private static functions: these functions can only be called from other member functions of the
class of which they are themselves members, but not from other functions.

Note that such a private static function could only (a) access static variables, or (b) call other
static functions: non-static code or data members would still be inaccessible to the static function.

209

Chapter 9

Classes having pointers to
members

Pointers in classes have been discussed in detail in chapter 5.1. As we have seen, when pointer
data-members occur in classes, such classes deserve some special treatment.

By now it is well known how to treat pointer data members: constructors are used to initialize
pointers, destructors are needed to free the memory pointed to by the pointer data members.

Furthermore, in classes having pointer data members copy constructors and overloaded assignment
operators are normally needed as well.

However, in some situations we do not need a pointer to an object, but rather a pointer to members
of an object. The realization of pointers to members of an object is the subject of this part of the
C++ annotations.

9.1 Pointers to members: an example

Knowing how pointers to variables and objects are to be used does not intuitively lead to the
concept of pointer to members. Even if the returntype and parametertypes of a memberfunction
are taken into account, surprises are encountered. For example, consider the following class:

class String
{

public:
...
char const *get() const;

private:
...
char const *(*sp)() const;

};

210

Within this class, it is not possible to define a char const ∗(∗sp)() const pointing to the get()
member function of the String class.

One of the reasons why this doesn’t work is that the variable sp has a global scope, while the
memberfunction get() is defined within the String class. The fact that the variable sp is part of
the String class is of no relevance. According to sp’s definition, it points to a function outside of
the class.

Consequently, in order to define a pointer to a member (either data or function, but usually a
function) of a class, the scope of the pointer must be within the class’ scope. Doing so, a pointer
to a member of the class String can be defined as

char const
*(String::*sp)() const;

So, due to the String:: prefix, sp is defined to be active only in the context of the class String. In
this context, it is defined as a pointer to a const function, not expecting arguments, and returning
a pointer to const chars.

9.2 Initializing pointers to members

Pointers to members can be initialized to point to intended members. Such a pointer can be defined
either inside or outside a member function.

Initializing or assigning an address to such a pointer does nothing but indicating which member
the pointer will point to. However, member functions (except for the static member functions) can
only be used when associated with an object of the member function’s class. The same holds true
for pointers to data members.

While it is allowed to initialize such a pointer outside of the class, it is not possible to access such
a function without an associated object.

In the following example these characteristics are illustrated. First, a pointer is initialized to point
to the function String::get(). In this case no String object is required.

Next, a String object is defined, and the string that is stored within the object is retrieved through
the pointer, and not directly by the function String::get(). Note that the pointer is a variable
existing outside of the class’ context. This presents no problem, as the actual object to be used
is identified by the statement in which object and pointervariable are combined. Consider the
following piece of code:

void fun()
{

char const
*(String::*sp)() const;

sp = String::get; // assign the address
// of String’s get()
// function

211

String // define a String object
s("Hello world");

cout << (s.*sp)() // show the string
<< endl;

String
*ps; // pointer to a String object

ps = &s; // initialize ps to point at s

cout << (ps->*sp)() // show the string again
<< endl;

}

Note in this example the statement (s.∗sp)(). The .∗ construction indicates that sp is a pointer
to a member function. Since the pointer variable sp points to the String::get() function, this
function is now called, producing the string “Hello world”.

Furthermore, note the parentheses around (s.∗sp). These parentheses are required. If they were
omitted, then the default interpretation (now parenthesized for further emphasis) would be s.∗
(sp()). This latter construction means

• Call function sp(), which should return a pointer to a member. E.g., sp() has the prototype

char const ∗ (String::∗)() sp();

So, sp() is a function returning a pointer to a memberfunction of the class String, while
such a memberfunction must return a pointer to const chars.

• Apply this pointer with regard to object s.

Not an impossible or unlikely construction, but wrong as far as the current definition of sp is
concerned.

When a pointer to a member function is associated with an object, the pointer to member selector
operator .∗ is used. When a pointer to an object is used (instead of the object itself) the “pointer
to member through a pointer to a class object” operator ->∗ operator is required. The use of this
operator is also illustrated in the above example.

9.3 Pointers to static members

Static members of a class exist without an object of their class. In other words, they can exist
outside of any object of their class.

When these static members are public, they can be accessed in a ‘stand-alone’ fashion.

Assume that the String class also has a public static member function int n strings(), returning
the number of string objects created so far. Then, without using any String object the function
String::n strings() may be called:

212

void fun()
{

cout << String::n_strings() << endl;
}

Since pointers to members are always associated with an object, the use of a pointer to a member-
function would normally produce an error. However, static members are actually global variables
or functions, bound to their class.

Public static members can be treated as globally accessible functions and data. Private static
members, on the other hand, can be accessed only from within the context of their class: they can
only be accessed from inside the member functions of their class.

Since static members have no particular link with objects of their class, but look a lot like global
functions, a pointer variable that is not part of the class of the member function must be used.

Consequently, a variable int (∗pfi)() can be used to point to the static memberfunction int
String::n strings(), even though int (∗pfi)() has nothing in common with the class String.
This is illustrated in the next example:

void fun()
{

int
(*pfi)();

pfi = String::n_strings;
// address of the static memberfunction

cout << pfi() << endl;
// print the value produced by
// String::n_strings()

}

9.4 Using pointers to members for real

Let’s assume that a database is created in which information about persons is stored. Name, street
names, city names, house numbers, birthdays, etc. are collected in objects of the class Person,
which are, in turn, stored in a class Person dbase. Partial interfaces of these classes could be
designed as follows:

class Date;

class Person()
{

public:
...

213

pp

Person
0

Person
1

Person_dbase

\

Figure 9.1: Person dbase objects: Persons reached via Person ∗pp

char const *get_name() const;
Date const &birthdate() const;

private:
...

};

class Person_dbase
{

public:
enum Listtype
{

list_by_name,
list_by_birthday,

};
void list(Listtype type);

private:
Person

*pp; // pointer to the info
unsigned

n; // number of persons stored.
};

The organization of Person and Person dbase is pictured in figure 9.1: Within a Person dbase
object the Person objects are stored. They can be reached via the pointer variable Person ∗pp.

We would like to develop the function Person dbase::list() in such a way that it lists the
contents of the database sorted according to a selected field of a Person object.

So, when list() is called to list the database sorted by names, the database of Person objects is
first sorted by names, and is then listed.

Alternatively, when list() is called to list the database sorted by birthdates, the database of
Person objects is first sorted by birthdates, and is then listed.

214

In this situation, the function qsort() is most likely called to do the actual sorting of the Person
objects1. This function requires a pointer to a compare function, comparing two elements of the
array to be sorted. The prototype of this compare function is

int (∗)(void const ∗, void const ∗)

However, when used with Person objects, the prototype of the compare() function should be

int (∗)(Person const ∗, Person const ∗)

Somewhere a typecast will be required: either when calling qsort(), or within the compare()
functions themselves. We will use the typecast when calling qsort(), using the following typedef to
reduce the verbosity of the typecasts (a pointer to an integer function requiring two void pointers):

typedef int (∗pif2vp)(void const ∗, void const ∗)

Next, the function list() could be developed according to the following setup:

void Person_dbase::list(Listtype type)
{

switch (type)
{

case list_by_name:
qsort(pp, n, sizeof(Person), (pif2vp)cmpname);

break;

case list_by_birthday:
qsort(pp, n, sizeof(Person), (pif2vp)cmpdate);

break;
}
// list the sorted Person-database

}

There are several reasons why this setup is not particularly desirable:

• Although the example only shows two list-alternatives (sort by name and sort by birthday),
a real-life implementation will have many more ways to list the information. This will soon
result in a very long function list() which will be hard to maintain and will look inaccessible
due to its length.

• Every time a new way to list the data in the database, the function list() will have to be
expanded, by offering an extra case label for every new way to list the data.

• Much of the code in the function list() will be repeated within the function, showing only
some small differences.

1In the current implementation pp points to an array of Person objects. In this implementation, the function
qsort() will have to copy the actual Person objects again and again, which may be rather inefficient when the
Person objects become large. Under an alternative implementation, in which the Person objects are reached through
pointers, the efficiency of the qsort() function will be improved. In that case, the datamember pp will have to be
declared as Person ∗∗pp.

215

Much of the complexity of list() function could be reduced by defining pointers to the compare-
functions, storing these pointers in an array. Since this array will be common to all Person dbase
objects, it should be defined as a static array, containing the pointers to the compare-functions.

Before actually constructing this array, note that this approach requires the definition of as many
compare functions as there are elements in the Listtype enum. So, to list the information sorted
by name a function cmpname() is used, comparing the names stored in two Person objects, while
a function cmpcity(), is used to compare cities. Somehow this seems to be redundant as well:
we would like to use one function to compare strings, whatever their meanings. Comparable
considerations hold true for other fields of information.

The compare functions, however, receive pointers to Person objects. Therefore, the data-members
of the Person objects to which these pointers point can be accessed using the access-memberfunctions
of the Person class. So, the compare functions can access these data-members as well, using the
pointers to the Person objects.

Now note that the access memberfunctions that are used within a particular compare function can
be hard-coded, by plainly mentioning the accessors to be used, and they can be selected indirectly,
by using pointers to the accessors to be used.

This latter solution allows us to merge compare functions that use the same implementations, but
use different accessors: By setting a pointer to the appropriate accessor function just before the
compare function is called, one single compare function can be used to compare many different
kinds of data stored inside Person objects.

The compare functions themselves are used within the context of the Person dbase class, where
they are passed to the qsort() function. The qsort() function, however, is a global function. Con-
sequently, the compare functions can’t be ordinary member functions of the class Person dbase,
but they must be static members of that class, so they can be passed to the qsort() function.

Summarizing what we’ve got so far, we see that the problem has been broken down as follows:

• The switch construction in the list() function should be replaced by a call to a function
using a pointer to a function.

• The actual function to be used is determined by the value of the selector, which is given to
list() when it’s called.

• The compare() functions may be further abstracted by combining those comparing the same
types.

• When compare() functions are combined, the access memberfunction of the Person objects
to be used will also be found via an array containing pointers to the access member functions
of Person objects.

• The compare() functions are part of the Person dbase class, but it must also be possible
to give their addresses as arguments to qsort(). Hence, these functions must be defined as
static functions of the class Person dbase.

From this analysis the essential characteristics of the proposed implementation emerge.

For every type of listing, as produced by the function list(), the following is required:

• The access member function of the Person class to be used.

216

• The compare() function to be used. The compare() functions will be static functions of the
class Person dbase, so that they can be passed over to qsort()

This information does not depend on a particular Person dbase object, but is common to all of
these objects. Hence it will be stored compile-time in a static Person dbase kind of array.

How will the compare() functions know which element of this array to use? The requested index
is passed to the list() member function as a Listtype value. The list() function can then save
this information in a static Person dbase::Listtype variable for the compare() functions to
use.

We’ve analyzed enough. Let’s build it this way.

9.4.1 Pointers to members: an implementation

• First, the necessary class interfaces are defined. The existence of a class Date is assumed,
containing overloaded operators like < and > to compare dates. To start with, we present
the interface of the class Person, omitting all the standard stuff like overloaded assignment
operator, (copy) constructors, etc.:

#include <stdlib.h> // for qsort()

class Date;

class Person()
{

public:
unsigned length() const;
unsigned weight() const;
char const *name() const;
char const *city() const;
Date const &birthdate() const;

private:
// all necessary data members

};

• Next, the class Person dbase. Within this class a struct CmpPerson is defined, containing
two fields:

– A pointer to a union of compare functions.
As the compare functions are static functions of the class Person dbase, pointers to
these functions are indiscernible from pointers to functions at the global (::) level. The
compare functions return ints (for qsort()), and expect two pointers to Person const
objects. The field persons expects the two pointers to Person const objects. The field
voids is the alternate interpretation, to be used with qsort(), instead of the typecast
(pif2vp).

– A field pf (pointer to access function) of the nested union Person accessor.
The types of as many different access functions of the Person class as are used in the
class are declared in this union.

217

Access functions returning ints, char const ∗s and Date &s will be needed. Conse-
quently, the Person accessor union contains these (three) types.

From this CmpPerson struct a static array cmpPerson[] is constructed. It is a static
Person dbase array, making it possible for the compare functions to inspect its elements2.

Also note the static Listtype selector. This variable will be used later in the compare
functions to find the actual Person access function to be used. Here, then, is the interface
of the class Person dbase:

class Person_dbase
{

public:
enum Listtype
{

list_by_length,
list_by_weight,
list_by_name,
list_by_city,
list_by_birthday,

};

// ... constructors etc.

void list(Listtype type);
// list the information

private:
struct CmpPerson
{

union Compare_function
{

int (*persons)// comparing two Persons
(Person const *p1, Person const *p2);

int (*voids)// for qsort()
(void const *p1, void const *p2);

}
cmp;

union Person_accessor
{

char const
*(Person::*cp)() const;

int
(Person::*i)() const;

Date const
&(Person::*d)() const;

}
pf; // to Person’s access functions

};

static CmpPerson

2The number of elements of the cmpPerson[] array is not specified in the interface: that number is determined
compile-time by the compiler, when the static variable cmpPerson[] is initialized.

218

cmpPerson[];
static Listtype

selector;

static int cmpstr(Person const *p1,
Person const *p2);

static int cmpint(Person const *p1,
Person const *p2);

static int cmpdate(Person const *p1,
Person const *p2);

Person
*pp; // pointer to the info

unsigned
n; // number of persons stored.

};

Next, we define each of the members of the Person dbase class (as far as necessary).

• The list() function now only has to do three things:

– The Listtype parameter is copied to selector,

– The function qsort() is called. Note the use of the cmpPerson array to determine which
compare function to use.

– The information of the Personobjects is displayed. This part is left for the reader to
implement.

void Person_dbase::list(Listtype type)
{

selector = type;
qsort(pp, n, sizeof(Person), cmpPerson[type].cmp.voids);
// list the sorted Person-database (to be implemented)

}

• The array cmpPerson[] is a static array of CmpPerson elements. In this example there
are five different ways to sort the data. Consequently, there are five elements in the array
cmpPerson[]. All these elements can be defined and initialized by the compiler. No run-time
execution time is needed for this.

However, note the form of the declaration: the array is defined in the scope of the Person dbase
class. Its elements are CmpPersons, also defined in the scope of the Person dbase class. Hence
the double mentioning of Person dbase.

Person_dbase::CmpPerson
Person_dbase::cmpPerson[] =
{

{ // compare- and access

219

// function to compare length
cmpint,
Person::length,

},

{ // same for weight
cmpint,
Person::weight,

},

{ // same for name
cmpstr,
Person::name,

},

{ // same for city
cmpstr,
Person::city,

},

{ // same for Date
cmpdate,
Person::birthdate,

},
};

• Now only the compare functions remain to be implemented. Although five accessors can be
used, only three compare functions are needed.

The compare functions, being static functions, have access to the cmpPerson[] array and to
the Listtype selector variable. This information is used by the compare functions to call
the relevant access member function of the two Person objects, pointed to by the parameters
of the compare functions.

For this, the pointer to member operator ->∗ is used. The element cmpPerson[selector]
contains the function pointers to the functions to be used: they are the fields pf, variant cp,
i or d. These fields return a pointer to a particular access function of a Person object.

Through these pointers the functions can be associated to a particular Person object using
the pointer to member operator. This results in expressions like:

p1->∗cmpPerson[selector].pf.cp

By this time we have the name (i.e., address) of an access function for a particular Person
object. To call this function, parentheses are needed, one set of parentheses to protect this
expression from desintegrating due to the high priority of the second set of parentheses, which
are needed for the actual call of the function. Hence, we get:

(p1->∗cmpPerson[selector].pf.cp)()

Finally, here are the three compare functions:

int Person_dbase::cmpstr(Person const *p1, Person const *p2)

220

{
return
(

strcmp
(

(p1->*cmpPerson[selector].pf.cp)(),
(p2->*cmpPerson[selector].pf.cp)()

)
);

}

int Person_dbase::cmpint(Person const *p1, Person const *p2)
{

return
(

(p1->*cmpPerson[selector].pf.i)()
-
(p2->*cmpPerson[selector].pf.i)()

);
}

int Person_dbase::cmpdate(Person const *p1, Person const *p2)
{

return
(

(p1->*cmpPerson[selector].pf.d)()
<
(p2->*cmpPerson[selector].pf.d)() ?

-1
:

(p1->*cmpPerson[selector].pf.d)()
>
(p2->*cmpPerson[selector].pf.d)()

);
}

221

Chapter 10

The Standard Template Library,
generic algorithms

The Standard Template Library (STL) consists of containers, generic algorithms, iterators, func-
tion objects, allocators and adaptors. The STL is a general purpose library consisting of algorithms
and data structures. The data structures that are used in the algorithms are abstract in the sense
that the algorithms can be used on (practically) every data type.

The algorithms can work on these abstract data types due to the fact that they are template based
algorithms. In this chapter the construction of these templates in not further discussed (see chapter
16 for that). Rather, the use of these template algorithms is the focus of this chapter.

Several parts of the standard template library have already been discussed in the C++ Annota-
tions. In chapter 7 the abstract containers were discussed, and in section 6.8 function objects and
adaptors were covered. Also, iterators were mentioned at several places in this document.

The remaining components of the STL will be covered in this chapter. Iterators, and the generic
algorithms will be discussed in the coming sections. Allocators take care of the memory allocation
within the STL. The default allocator class suffices for most applications.

Forgetting to delete allocated memory is a common source of errors or memory leaks in a program.
The auto ptr template class may be used to prevent these types of problems. The auto ptr class
is discussed in section 10.2 of this chapter.

10.1 Iterators

Iterators are an abstraction of pointers. In general, the following holds true of iterators:

• Given an iterator iter, ∗iter represents the object the iterator points to (alternatively,
iter-> can be used to reach the object the iterator points to).

• ++iter or iter++ advances the iterator to the next element. The notion of advancing an it-
erator to the next element is consequently applied: several containers have a reversed iterator
type, in which the iter++ operation actually reaches an previous element in a sequence.

222

• For the containers that have their elements stored consecutively in memory pointer arithmetic
is available as well. This counts out the list, but includes the vector, queue, deque, set
and map. For these containers iter + 2 points to the second element beyond the one to which
iter points.

The STL containers produce iterators (i.e., type iterator) using member functions begin() and
end() and, in the case of reversed iterators (type reverse iterator), rbegin() and rend().
Standard practice requires the iterator range to be left inclusive: the notation [left, right)
indicates that left is an iterator pointing to the first element that is to be considered, while right
is an iterator pointing just beyond the last element to be used. The iterator-range is said to be
empty when left == right.

The following example shows a situation where all elements of a vector of strings are written to
cout using the iterator range [begin(), end()), and the iterator range [rbegin(), rend()).
Note that the for-loops for both ranges are identical:

#include <iostream>
#include <vector>
#include <string>

int main(int argc, char **argv)
{

vector<string>
args(argv, argv + argc);

for
(

vector<string>::iterator iter = args.begin();
iter != args.end();

++iter
)

cout << *iter << " ";

cout << endl;

for
(

vector<string>::reverse_iterator iter = args.rbegin();
iter != args.rend();

++iter
)

cout << *iter << " ";

cout << endl;

return (0);
}

Furthermore, the STL defines const iterator types to be able to visit a range of the elements in a
constant container. Whereas the elements of the vector in the previous example could have been
altered, the elements of the vector in the next example are immutable, and const iterators are

223

required:

#include <iostream>
#include <vector>
#include <string>

int main(int argc, char **argv)
{

const vector<string>
args(argv, argv + argc);

for
(

vector<string>::const_iterator iter = args.begin();
iter != args.end();

++iter
)

cout << *iter << " ";

cout << endl;

for
(

vector<string>::const_reverse_iterator iter = args.rbegin();
iter != args.rend();

++iter
)

cout << *iter << " ";

cout << endl;

return (0);
}

The examples also illustrate the use of plain pointers for iterators. The initialization vector<string>
sarg(argv, argv + argc) provides the sarg vector with a pair of pointer-based iterators: argv
points to the first element to initialize sarg with, argv + argc points just beyond the last element
to be used, argv++ reaches the next string. This is a general characteristic of pointers, which is
why they too can be used in situations where iterators are expected.

The STL defines five types of iterators. These types recur in the generic algorithms, and in order to
be able to create a particular type of iterator yourself it is important to know their characteristic.
In general, it must be possible to

• test iterators for equality (==)

• test iterators for inequality (!=)

• increment iterators using the prefix or postfix increment operator (++)

• access the element iterators refer to using the dereference operator (∗).

224

InputIterators: InputIterators can read elements from a container. The dereference operator is
guaranteed to work as an rvalue in an expression, not as an lvalue. Instead of an InputIter-
ator it is also possible to (see below) use a Forward-, Bidirectional- or RandomAccessIterator.

OutputIterators: OutputIterators can be used to write to a container. The dereference opera-
tor is guaranteed to work as an lvalue in an expression, not as an rvalue. Instead of an
OutputIterator it is also possible to (see below) use a Forward-, Bidirectional- or RandomAc-
cessIterator.

ForwardIterators: ForwardIterators combine InputIterators and OutputIterators. They can be
used to traverse the container in one direction, for reading and/or writing. Instead of a For-
wardIterator it is also possible to (see below) use a Bidirectional- or RandomAccessIterator.

BidirectionalIterators: BidirectionalIterators allow the traversal of a container in both direc-
tions, for reading and writing. Instead of a BidirectionalIterator it is also possible to (see
below) use a RandomAccessIterator. For example, to traverse a list or a deque a Bidirec-
tionalIterator may be useful.

RandomAccessIterators: RandomAccessIterators provide access to any element of the con-
tainer at any moment. An algorithm such as sort() requires a RandomAccessIterator, and
can therefore not be used with lists or maps, which only provide BidirectionalIterators.

The example given with the RandomAccessIterator provides an approach towards iterators: look
for the iterator that’s required by the (generic) algorithm, and then see whether the datastructure
supports the required iterator or not. If not, the algorithm cannot be used with the particular
datastructure.

10.1.1 Insert iterators

The generic algorithms often require a target container into which the results of the algorithm
are deposited. For example, the copy() algorithm has three parameters, the first two of them
define the range of elements which are visited, and the third parameter defines the first position
where the result of the copy operation is to be stored. With the copy() algorithm the number of
elements that are copied are normally available beforehand, since the number is normally equal to
the number of elements in the range defined by the first two parameters, but this does not always
hold true. Sometimes the number of resulting elements is different from the number of elements in
the initial range. The generic algorithm unique copy() is a case in point: the number of elements
which are copied to the destination container is normally not known beforehand.

In situations like these, the inserter() adaptor functions may be used to create elements in the
destination container when they are needed.

There are three inserter() adaptors:

• back inserter() calls the container’s push back() insert member to add new elements at
the end of the container. E.g.,

copy(source.rbegin(), source.rend(), back_inserter(destination));

will copy all elements of source in reversed order to the back of destination.

225

• front inserter() calls the container’s push front() insert member to add new elements
at the beginning of the container. E.g.,

copy(source.begin(), source.end(), front_inserter(destination));

will copy all elements of source to the front of the destination container (thereby also re-
versing the order of the elements).

• inserter() calls the container’s insert() member to add new elements starting at a spec-
ified starting point within the container. E.g.,

copy(source.begin(), source.end(), inserter(destination,
destination.begin()));

will copy all elements of source to the destination container, starting at the beginning of
destination.

10.1.2 istream iterators

The istream iterator<Type>() can be used to define an iterator (pair) for an istream object
or for a subtype of an istream. The general form of the istream iterator<Type>() iterator is:

istream iterator<Type> identifier(istream &inStream)

Here, Type is the type of the data elements that are to be read from the istream stream. Type
may be any of the types for which the operator>>() is defined with istream objects.

The default (empty) constructor defines the end of the iterator pair, corresponding to end-of-stream.
For example,

istream iterator<string> endOfStream;

Note that the actual stream object which is specified for the begin-iterator is not mentioned here.

Using a back inserter() and a set of istream iterator<>()s all strings could be read from
cin as follows:

#include <algorithm>
#include <iterator>
#include <string>
#include <vector>

int main()
{

vector<string>
vs;

226

copy(istream_iterator<string>(cin), istream_iterator<string>(),
back_inserter(vs));

for
(

vector<string>::iterator from = vs.begin();
from != vs.end();

++from
)

cout << *from << " ";
cout << endl;

return (0);
}

In the above example, note the use of the anonymous versions of the istream iterators. Espe-
cially note the use of the anonymous default constructor. Instead of using istream iterator<string>()
the (non-anonymous) construction

istream_iterator<string>
eos;

copy(istream_iterator<string>(cin), eos, back_inserter(vs));

could have been used.

The istream iterator iterators is available when the iterator header file is included. This is,
e.g., the case when iostream is included.

10.1.3 ostream iterators

The ostream iterator<Type>() can be used to define a destination iterator for an ostream
object or for a subtype of an ostream. The general forms of the ostream iterator<Type>()
iterator are:

ostream iterator<Type> identifier(ostream &outStream)

and

ostream iterator<Type> identifier(ostream &outStream), char const ∗delimiter

Type is the type of the data elements that are to be written to the ostream stream. Type may be
any of the types for which the operator<<() is defined with ostream objects. The latter form of
the ostream iterators separates the individual Type data elements by delimiter strings. The
former form does not use any delimiters.

The following example shows the use of a istream iterators and an ostream iterator to copy
information of a file to another file. A subtlety is the statement in.unsetf(ios::skipws): it resets

227

the ios::skipws flag. The consequence of this is that the default behavior of the operator>>(),
to skip whitespace, is modified. White space characters are simply returned by the operator, and
the file is copied unrestrictedly. Here is the program:

#include <algorithm>
#include <fstream>
#include <iomanip>

int main(int argc, char **argv)
{

ifstream
in(argv[1]);

in.unsetf(ios::skipws);

ofstream
out(argv[2]);

copy(istream_iterator<char>(in), istream_iterator<char>(),
ostream_iterator<char>(out));

return (0);
}

The ostream iterator iterators are available when the iterator header file is included. This is,
e.g., the case when iostream is included.

10.2 The ’auto ptr’ class

One of the problems using pointers is that strict bookkeeping is required about the memory the
pointers point to. When a pointer variable goes out of scope, the memory pointed to by the
pointer is suddenly inaccessible, and the program suffers from a memory leak. For example, in the
following code, a memory leak is introduced in which 200 int values remain allocated:

#include <iostream>

int main()
{

for (int idx = 0; idx < 200; ++idx)
{

int
c,
*ip;

cin >> c; // read an int
ip = new int(c); // ip points to int initialized to ’c’

} // no delete-operation
next(); // whatever comes next
return (0);

228

}

The standard way to prevent memory leakage is strict bookkeeping: the programmer has to make
sure that the memory pointed to by a pointer is deleted just before the pointer variable dies. In
the above example the repair would be:

#include <iostream>

int main()
{

for (int idx = 0; idx < 200; ++idx)
{

int
c,
*ip;

cin >> c; // read an int
ip = new int(c); // ip points to int initialized to ’c’
delete ip; // and delete the allocated memory again

}
next(); // whatever comes next
return (0);

}

When a pointer variable is used to point to a single value or object, the bookkeeping becomes
less of a burden when the pointer variable is defined as a auto ptr object. The template class
auto ptr is available when the header file memory is included.

Normally, an auto ptr object is initialized to point to a dynamically created value or object.
When the auto ptr object goes out of scope, the memory pointed to by the object is automatically
deleted, taking over the programmer’s responsibility to delete memory.

Alternative forms to create auto ptr objects are available as well, as discussed in the coming
sections.

Note that

• the auto ptr object cannot be used to point to arrays of objects.

• an auto ptr object should only point to memory that was made available dynamically, as
only dynamically allocated memory can be deleted.

• multiple auto ptr objects should not be allowed to point to the same block of dynamically
allocated memory. Once one auto ptr object goes out of scope, it deletes the memory it
points to, immediately rendering the other objects wild. Ways to prevent this situation are
discussed below.

The class auto ptr has several memberfunctions which can be used to access the pointer itself
and to have the auto ptr point to another block of memory. These memberfunctions are discussed
in the following sections as well.

229

Note:

By the time these annotations were written the memory header file which must be in-
cluded to use the auto ptr objects was still incomplete. A modified memory header file
which can be used to replace the current incomplete file can be found at ftp://ftp.icce.rug.nl/pub/frank/egcs/mem
This file can replace the memory file in (on Linux systems) /usr/include/g++, and on
computers running MS-Windows in Cygnus/B19/include/g++/memory.

10.2.1 Defining auto ptr variables

There are three ways to define auto ptr objects. Each definition contains the usual <type>
specifier between pointed brackets. Concrete examples are given in the coming sections, but an
overview of the various possibilities is presented here:

• The basic form initializes an auto ptr object to a block of memory that’s allocated by the
new operator:

auto ptr<type> identifier (new-expression);

This form is discussed in the next section 10.2.2.

• Another form initializes an auto ptr object through another auto ptr object:

auto ptr<type> identifier(another auto ptr for type);

This form is discussed in the next section 10.2.3.

• The third form simply creates an auto ptr object that does not point to a particular block
of memory:

auto ptr<type> identifier;

This form is discussed in the next section 10.2.4.

10.2.2 Pointing to a newly allocated object

The basic form to initialize an auto ptr object is to pass its constructor a block of memory that’s
allocated by the new operator. The generic form is:

auto ptr<type> identifier (new-expression);

For example, to initialize an auto ptr to a string variable the construction

auto ptr<string> strPtr (new string("Hello world"));

can be used. To initialize an auto ptr to a double variable the construction

auto ptr<double> dPtr (new double(123.456));

230

can be used.

Note the use of the operator new in the above expressions. The use of the operator new ensures the
dynamic nature of the memory pointed to by the auto ptr objects, and allows the deletion of the
memory once the auto ptr objects go out of scope. Also note that the type does not contain the
pointer: the type used in the auto ptr construction is the same type as used in the new expression.

In the example of the 200 int values given earlier, the memory leak can be avoided by using
auto ptr objects as follows:

#include <iostream>
#include <memory>

int main()
{

for (int idx = 0; idx < 200; ++idx)
{

int
c;

cin >> c; // read an int
auto_ptr<int> ip (new int(c));

} // no delete-operation needed
return (0);

}

Following each cycle of the for loop, the memory allocated by the new int(c) expression is deleted
automatically.

All member functions that are available for objects that are allocated by the new expression (like
the string object in the first example in this section) can be reached via the auto ptr as if it was
a plain pointer to the dynamically allocated object. E.g., to insert some text beyond the wordt
hello in the string pointed to by strPtr, an expression like

strPtr->insert(strPtr->find first of(" ") + 1, "C++ ");

can be used.

10.2.3 Pointing to another auto ptr

Another form to initialize an auto ptr object is to initialize it from another auto ptr object for
the same type. The generic form is:

auto ptr<type> identifier (other auto ptr object);

For example, to initialize an auto ptr to a string variable, given the strPtr variable defined in
the previous section, the construction

auto ptr<string> newPtr(strPtr);

231

can be used.

A comparable construction can be used with the assignment operator in expressions. One auto ptr
object may be assigned to another auto ptr object of the same type. For example:

#include <iostream>
#include <memory>
#include <string>

int main()
{

auto_ptr<string>
hello(new string("Hello world")),
hello2(hello),
hello3(new string("Another string"));

hello3 = hello2;
return (0);

}

Looking at the above example, we see that hello is initialized as described in the previous section.
A new expression is used to allocate a string variable dynamically. Next, hello2 is initialized to
hello, which is possible, as they are auto ptr objects of the same types. However, in order to
prevent problems when either object goes out of scope, special measures are required.

If the program would stop here, both hello and hello2 go out of scope. But only hello2 would
point to the dynamically allocated string hello world: once a auto ptr object is used to initialize
another auto ptr object, the former (initializing) object does not refer anymore to the allocated
string. The string is now ‘owned’ by the latter (initialized) object.

A comparable action takes place in the assignment statement hello3 = hello2. Here, prior to
the actual assignment, the memory pointed to by hello3 is deleted automatically. Then hello3
gains the ownership of the string Hello world, and hello2 cannot be used anymore to reach the
string Hello world.

10.2.4 Creating an plain auto ptr

The third form to create an auto ptr object simply creates an empty auto ptr object that does
not point to a particular block of memory:

auto ptr<type> identifier;

In this case the underlying pointer is set to 0 (zero). Since the auto ptr object itself is not the
pointer, its value cannot be compared to 0 to see if it has not been initialized. E.g., code like

auto_ptr<int>
ip;

232

if (!ip)
cout << "0-pointer with an auto_ptr object ?" << endl;

will not produce any output (actually, it won’t compile either...). So, how do we inspect the value
of the pointer that’s maintained by the auto ptr object? For this the member get() is available.
This member function, as well as the other member functions of the class auto ptr are described
in the following sections.

10.2.5 The get() memberfunction

The memberfunction get() of an auto ptr object returns the underlying pointer. The value
returned by get() is a pointer to the underlying data-type. It may be inspected: if it’s zero the
auto ptr object does not point to any memory.

The memberfunction get() cannot be used to let the auto ptr object point to (another) block of
memory. Instead the memberfunction reset(), discussed in the next section, should be used.

10.2.6 The reset() memberfunction

The memberfunction reset() of an auto ptr object can be used to (re)assign a block of memory
allocated by the operator new to an auto ptr. The function reset() does not return a value.

An example of its use is:

auto_ptr<string>
str;

str.reset(new string("Hello")); // assignment of a value
str.reset(new string("Hello world")); // reassignment of a value

The object that is assigned to the pointer using reset() must have been allocated using the new
operator. The object the pointer points to just before applying reset()) is deleted first. The value
0 can be passed to reset() if the object pointed to by the pointer should be deleted. Following
reset(0) the pointer variable has been reinitialized.

Note that it is usually more efficient to use a reassignment memberfunction of the object pointed
to by the pointer if the only purpose of the exercise is to redefine the value of the object. For
example, the string class supports a function assign() which may be used for that purpose. So,
a construction like:

auto_ptr<string>
aps(new string("Hello"));

aps.reset("Hello world");

233

can more efficiently be implemented as:

auto_ptr<string>
aps(new string("Hello"));

aps->assign("Hello world");

10.2.7 The release() memberfunction

As we saw in section 10.2.3, when an auto ptr is assigned to another auto ptr, the pointer
providing the value loses its value and is reinitialized to 0. If that’s not what we want, the
memberfunction release() may be used.

The release()memeberfunction returns the address of the underlying pointer used by the auto ptr
object, and releases the ownership of the object at the same time. The ownership can then be
taken over by another auto ptr variable (or, indeed, by any other pointer).

In the following example a pointer is initialized, and then another pointer is created to point to
the same string as the first auto ptr points to. The first auto ptr still points to the string, but
doesn’t own the string anymore. Therefore, when the first auto ptr goes out of scope, it won’t
delete the string pointed to by the second auto ptr.

#include <memory>
#include <string>

int main()
{

auto_ptr<string>
first;

{
auto_ptr<string>

second(new string("Hello world"));

first.reset(second.release());

cout << "Second auto_ptr still points at: " << *second << endl
<< "First auto_ptr also points to: " << *first << endl;

}
cout << "Second object now out of scope. First auto_ptr\n"

"still points at: " << *first << endl;
}

10.3 The Generic Algorithms

The following sections describe the generic algorithms in alphabetical order. For each algorithm
the following information is provided:

234

• The required header file(s)

• The function prototype

• A short description

• A short example.

In the prototypes of the algorithms Type is used to specify a generic (i.e., template) datatype. The
particular kind of iterator that is required is mentioned, and possibly other generic types, e.g.,
performing BinaryOperations, like plus<Type>().

Almost every generic algorithm has as its first two arguments an iterator range [first, last),
defining the range of elements on which the algorithm operates.

10.3.1 accumulate()

• Header file:

#include<numeric>

• Function prototypes:

– Type accumulate(InputIterator first, InputIterator last, Type init);

– Type accumulate(InputIterator first, InputIterator last, Type init, BinaryOperation
op);

• Description:

– The first prototype: the operator+() is applied to all elements implied by the iterator
range and to the initial value init, and the resulting value is returned.

– The second prototype: the op() is applied to all elements implied by the iterator range
and to the initial value init, and the resulting value is returned.

• Example:

#include<numeric>
#include<vector>
#include<iostream>

int main()
{

int
ia[] = {1, 2, 3, 4};

vector<int>
iv(ia, ia + 4);

cout <<
"Sum of values: " << accumulate(iv.begin(), iv.end(), int(0)) <<
endl <<
"Product of values: " << accumulate(iv.begin(), iv.end(), int(1),

multiplies<int>()) <<
endl;

235

return(0);
}

10.3.2 adjacent difference()

• Header file:

#include<numeric>

• Function prototypes:

– OutputIterator adjacent difference(InputIterator first, InputIterator last,
OutputIterator result);

– OutputIterator adjacent difference(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation op);

• Description:

– The first prototype: The first returned element is equal to the first element of the input
range. The remaining returned elements are equal to the difference of the corresponding
element in the input range and its previous element.

– The second prototype: The first returned element is equal to the first element of the
input range. The remaining returned elements are equal to the result of the binary
operator op applied to the corresponding element in the input range (left operand) and
its previous element (right operand).

• Example:

#include<numeric>
#include<vector>
#include<iostream>

int main()
{

int
ia[] = {1, 2, 5, 10};

vector<int>
iv(ia, ia + 4),
ov(iv.size());

adjacent_difference(iv.begin(), iv.end(), ov.begin());
copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));
cout << endl;

adjacent_difference(iv.begin(), iv.end(), ov.begin(), minus<int>());
copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return(0);
}

236

10.3.3 adjacent find()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator adjacent find(ForwardIterator first, ForwardIterator last);

– OutputIterator adjacent find(ForwardIterator first, ForwardIterator last,
Predicate pred);

• Description:

– The first prototype: The iterator pointing to the first element of the first set of two
adjacent equal elements is returned. If no such element exists, last is returned.

– The second prototype: The iterator pointing to the first element of the first set of two
adjacent elements for which the binary predicate pred returns true is returned. If no
such element exists, last is returned.

• Example (see section 10.3.5 for a description of the copy() generic algorithm that is used in
the following example):

#include<algorithm>
#include<string>
#include<iostream>

class SquaresDiff
{

public:
SquaresDiff(unsigned minimum): minimum(minimum)
{}
bool operator()(unsigned first, unsigned second)
{

return (second * second - first * first >= minimum);
}

private:
unsigned

minimum;
};

int main()
{

string
sarr[] =
{

"Alpha", "bravo", "charley", "echo", "echo", "delta",
"foxtrot", "golf"

};
string

*last = sarr + sizeof(sarr) / sizeof(string),
*result = adjacent_find(sarr, last);

237

cout << *result << endl;
result = adjacent_find(++result, last);

cout << "Second time, starting from the next position:\n" <<
(

result == last ?
"** No more adjacent equal elements **"

:
"*result"

) << endl;

unsigned
*ires,
iv[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
*ilast = iv + sizeof(iv) / sizeof(unsigned);

ires = adjacent_find(iv, ilast, SquaresDiff(10));
cout <<

"The first numbers for which the squares differ by at least 10 are: "
<< *ires << " and " << *(ires + 1) << endl;

return(0);
}

10.3.4 binary search()

• Header file:

#include<algorithm>

• Function prototypes:

– bool binary search(ForwardIterator first, ForwardIterator last, Type const
&value);

– bool binary search(ForwardIterator first, ForwardIterator last, Type const
&value, Comparator comp);

• Description:

– The first prototype: value is looked up using binary search in the range of elements
implied by the iterator range [first, last). The elements in the range must have
been sorted by the Type::operator<() function. True is returned if the element was
found, false otherwise.

– The second prototype: value is looked up using binary search in the range of elements
implied by the iterator range [first, last). The elements in the range must have
been sorted by the Comparator function object. True is returned if the element was
found, false otherwise.

• Example:

238

#include <algorithm>
#include <string>
#include <iostream>
#include <functional>

int main()
{

string
sarr[] =
{

"Alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel"

};
string

*last = sarr + sizeof(sarr) / sizeof(string);
bool

result = binary_search(sarr, last, "foxtrot");
cout << (result ? "found " : "didn’t find ") << "foxtrot" << endl;

reverse(sarr, last); // reverse the order of elements
// binary search now fails:

result = binary_search(sarr, last, "foxtrot");
cout << (result ? "found " : "didn’t find ") << "foxtrot" << endl;

// ok when using appropriate
// comparator:

result = binary_search(sarr, last, "foxtrot", greater<string>());
cout << (result ? "found " : "didn’t find ") << "foxtrot" << endl;

return(0);
}

10.3.5 copy()

• Header file:

#include<algorithm>

• Function prototype:

– OutputIterator copy(InputIterator first, InputIterator last, OutputIterator
destination);

• Description:

– The range of elements implied by the iterator range [first, last) are copied to an
output range, starting at destination, using the assignment operator of the underlying
data type. The returnvalue is the OutputIterator pointing just beyond the last element
that was copied to the destinatin range (so, ‘last’ in the destination range is returned).
In the example, note the second call to copy(). It uses an ostream iterator for string
objects. This iterator will write the string values to the specified ostream (i.e., cout),
separating the values by the specified separation string (i.e., " ").

239

• Example:

#include <algorithm>
#include <string>
#include <iostream>

int main()
{

string
sarr[] =
{

"Alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel"

};
string

*last = sarr + sizeof(sarr) / sizeof(string);

copy(sarr + 2, last, sarr); // move all elements two positions left

// copy to cout using an ostream_iterator
// for strings,

copy(sarr, last, ostream_iterator<string>(cout, " "));
cout << endl;

return(0);
}

10.3.6 copy backward()

• Header file:

#include<algorithm>

• Function prototype:

– BidirectionalIterator copy backward(InputIterator first, InputIterator last,
BidirectionalIterator last2);

• Description:

– The range of elements implied by the iterator range [first, last) are copied from
the element at position last - 1 until (and including) the element at position first to
the element range, ending at position last2 - 1, using the assignment operator of the
underlying data type. The destination range is therefore [last2 - (last - first),
last2).
The returnvalue is the BidirectionalIterator pointing at the last element that was copied
to the destinatin range (so, ‘first’ in the destination range, pointed to by last2 - (last
- first), is returned).

• Example:

240

#include <algorithm>
#include <string>
#include <iostream>

int main()
{

string
sarr[] =
{

"Alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel"

};
string

*last = sarr + sizeof(sarr) / sizeof(string);

copy
(

copy_backward(sarr + 3, last, last - 3),
last,
ostream_iterator<string>(cout, " ")

);
cout << endl;

return(0);
}

10.3.7 count()

• Header file:

#include<algorithm>

• Function prototypes:

– size t cout(InputIterator first, InputIterator last, Type const &value);

• Description:

– The number of times value occurs in the iterator range first, last is returned. To de-
termine wheter value is equal to an element in the iterator range Type::operator==()
is used.

• Example:

#include<algorithm>
#include<iostream>

int main()
{

int
ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

241

cout << "Number of times the value 3 is available: " <<
count(ia, ia + sizeof(ia) / sizeof(int), 3) <<
endl;

return(0);
}

10.3.8 count if()

• Header file:

#include<algorithm>

• Function prototypes:

– size t cout if(InputIterator first, InputIterator last, Predicate predicate);

• Description:

– The number of times unary predicate predicate returns true when applied to the
elements implied by the iterator range first, last is returned.

• Example:

#include<algorithm>
#include<iostream>

class Odd
{

public:
bool operator()(int value)
{

return (value & 1);
}

};

int main()
{

int
ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

cout << "The number of odd values in the array is: " <<
count_if(ia, ia + sizeof(ia) / sizeof(int), Odd()) <<
endl;

return(0);
}

10.3.9 equal()

• Header file:

242

#include<algorithm>

• Function prototypes:

– bool equal(InputIterator first, InputIterator last, InputIterator otherFirst);

– bool equal(InputIterator first, InputIterator last, InputIterator otherFirst,
BinaryPredicate pred);

• Description:

– The first prototype: The elements in the range [first, last) are compared to a range
of equal length starting at otherFirst. The function returns true if the visited elements
in both ranges are equal pairwise. The ranges need not be of equal length, only the
elements in the indicated range are considered (and must be available).

– The second prototype: The elements in the range [first, last) are compared to a
range of equal length starting at otherFirst. The function returns true if the binary
predicate, applied to all corresponding elements in both ranges returns true for every
pair of corresponsing elements. The ranges need not be of equal length, only the elements
in the indicated range are considered (and must be available).

• Example:

#include <algorithm>
#include <string>
#include <iostream>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (!strcasecmp(first.c_str(), second.c_str()));
}

};

int main()
{

string
first[] =
{

"Alpha", "bravo", "Charley", "echo", "Delta",
"foxtrot", "Golf", "hotel"

},
second[] =
{

"alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel"

};
string

*last = first + sizeof(first) / sizeof(string);

cout << "The elements of ‘first’ and ‘second’ are pairwise " <<
(equal(first, last, second) ? "equal" : "not equal") <<
endl <<

243

"compared case-insensitively, they are " <<
(equal(first, last, second, CaseString()) ? "equal" : "not equal") <<
endl;

return(0);
}

10.3.10 equal range()

• Header files:

#include<algorithm>

• Function prototypes:

– pair<ForwardIterator, ForwardIterator> equal range(ForwardIterator first,
ForwardIterator last, Type const &value);

– pair<ForwardIterator, ForwardIterator> equal range(ForwardIterator first,
ForwardIterator last, Type const &value, Compare comp);

• Description:

– The first prototype: Starting from a sorted sequence (where the operator<() of the
underlying data type was used to sort the elements in the provided range), a pair of iter-
ators representing the returnvalue of, respectively, lower bound() and upper bound()is
returned.

– The second prototype: Starting from a sorted sequence (where the comp function object
was used to sort the elements in the provided range), a pair of iterators representing
the returnvalue of, respectively, lower bound() and upper bound()is returned.

• Example:

#include <algorithm>
#include <functional>
#include <iostream>
#include <utility>
#include <vector>

int main()
{

int
range[] = {1, 3, 5, 7, 7, 9, 9, 9};

unsigned const
size = sizeof(range) / sizeof(int);

pair<int *, int *>
pi;

pi = equal_range(range, range + size, 7);

244

cout << "Lower bound for 7: ";
copy(pi.first, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Upper bound for 7: ";
copy(pi.second, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

sort(range, range + size, greater<int>());

cout << "Sorted in descending order\n";

copy(range, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

pi = equal_range(range, range + size, 7, greater<int>());

cout << "Lower bound for 7: ";
copy(pi.first, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "Upper bound for 7: ";
copy(pi.second, range + size, ostream_iterator<int>(cout, " "));
cout << endl;

return (0);
}

10.3.11 fill()

• Header file:

#include<algorithm>

• Function prototypes:

– void fill(ForwardIterator first, ForwardIterator last, Type const &value);

• Description:

– all the elements implied by the interator range [first, last) are initialized to value,
overwriting the previous values stored in the range.

• Example:

#include<algorithm>
#include<vector>
#include<iostream>
#include<iterator>

245

int main()
{

vector<int>
iv(8);

fill(iv.begin(), iv.end(), 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return(0);
}

10.3.12 fill n()

• Header file:

#include<algorithm>

• Function prototypes:

– void fill n(ForwardIterator first, Size n, Type const &value);

• Description:

– n elements starting at the element pointed to by first are initialized to value, over-
writing the previous values stored in the range.

• Example:

#include<algorithm>
#include<vector>
#include<iostream>
#include<iterator>

int main()
{

vector<int>
iv(8);

fill_n(iv.begin(), 8, 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return(0);
}

10.3.13 find()

• Header file:

246

#include<algorithm>

• Function prototypes:

– InputIterator find(InputIterator first, InputIterator last, Type const &value);

• Description:

– Element value is searched for in the range of the elements implied by the interator
range [first, last). An iterator pointing to the first element found is returned. If
the element was not found, last is returned. The operator==() of the underlying data
type is used to compare the elements.

• Example:

#include<algorithm>
#include<string>
#include<iostream>
#include<iterator>

int main()
{

string
sarr[] =
{

"alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel"

};
string

*last = sarr + sizeof(sarr) / sizeof(string);

copy
(

find(sarr, last, "echo"), last, ostream_iterator<string>(cout, " ")
);
cout << endl;

if (find(sarr, last, "india") == last)
{

cout << "‘india’ was not found in the range\n";
copy(sarr, last, ostream_iterator<string>(cout, " "));
cout << endl;

}

return(0);
}

10.3.14 find if()

• Header file:

#include<algorithm>

247

• Function prototypes:

– InputIterator find if(InputIterator first, InputIterator last, Prdicate pred);

• Description:

– An iterator pointing to the first element in the range implied by the interator range
[first, last) for which the (unary) predicate pred returns true is returned. If the
element was not found, last is returned.

• Example:

#include<algorithm>
#include<string>
#include<iostream>
#include<iterator>

class CaseName
{

public:
CaseName(char const *str): _string(str)
{}
bool operator()(string const &element)
{

return (!strcasecmp(element.c_str(), _string.c_str()));
}

private:
string

_string;
};

int main()
{

string
sarr[] =
{

"Alpha", "Bravo", "Charley", "Echo", "Delta",
"Foxtrot", "Golf", "Hotel"

};
string

*last = sarr + sizeof(sarr) / sizeof(string);

copy
(

find_if(sarr, last, CaseName("foxtrot")),
last, ostream_iterator<string>(cout, " ")

);
cout << endl;

if (find_if(sarr, last, CaseName("india")) == last)
{

cout << "‘india’ was not found in the range\n";
copy(sarr, last, ostream_iterator<string>(cout, " "));

248

cout << endl;
}

return(0);
}

10.3.15 find end()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator1 find end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2)

– ForwardIterator1 find end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred)

• Description:

– The first prototype: The sequence of elements implied by [first1, last1) is searched
for the last occurrence of the sequence of elements implied by [first2, last2). If
the sequence [first2, last2) is not found, last1 is returned, otherwise an iterator
pointing to the first element of the matching sequence is returned. The operator==()
of the underlying data type is used to compare the elements in the two sequences.

– The second prototype: The sequence of elements implied by [first1, last1) is searched
for the last occurrence of the sequence of elements implied by [first2, last2). If
the sequence [first2, last2) is not found, last1 is returned, otherwise an iterator
pointing to the first element of the matching sequence is returned. The provided binary
predicate is used to compare the elements in the two sequences.

• Example:

#include<algorithm>
#include<string>
#include<iostream>
#include<iterator>

class Twice
{

public:
bool operator()(unsigned first, unsigned second) const
{

return (first == (second << 1));
}

};

int main()
{

string

249

sarr[] =
{

"alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel",
"foxtrot", "golf", "hotel",
"india", "juliet", "kilo"

},
search[] =
{

"foxtrot",
"golf",
"hotel"

};
string

*last = sarr + sizeof(sarr) / sizeof(string);

copy
(

find_end(sarr, last, search, search + 3), // shows sequence starting
last, ostream_iterator<string>(cout, " ") // at 2nd ’foxtrot’

);
cout << endl;

unsigned
range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10},
nrs[] = {2, 3, 4};

copy // show sequence of values starting at last sequence
(// of range[] that are twice the values in nrs[]

find_end(range, range + 9, nrs, nrs + 3, Twice()),
range + 9, ostream_iterator<unsigned>(cout, " ")

);
cout << endl;

return(0);
}

10.3.16 find first of()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator1 find first of(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2)

250

– ForwardIterator1 find first of(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred)

• Description:

– The first prototype: The sequence of elements implied by [first1, last1) is searched
for the first occurrence of an element in the sequence of elements implied by [first2,
last2). If no element in the sequence [first2, last2) is found, last1 is returned,
otherwise an iterator pointing to the first element in [first1, last1) that is equal to
an element in [first2, last2) is returned. The operator==() of the underlying data
type is used to compare the elements in the two sequences.

– The second prototype: The sequence of elements implied by [first1, first1) is
searched for the first occurrence of an element in the sequence of elements implied
by [first2, last2). Each element in the range [first1, last1) is compared to
each element in the range [first2, last2), and an iterator to the first element in
[first1, last1) for which the binary predicate pred (receiving an the element out of
the range [first1, last1) and an element from the range [first2, last2)) returns
true is returned. Otherwise, last1 is returned.

• Example:

#include<algorithm>
#include<string>
#include<iostream>
#include<iterator>

class Twice
{

public:
bool operator()(unsigned first, unsigned second) const
{

return (first == (second << 1));
}

};

int main()
{

string
sarr[] =
{

"alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel",
"foxtrot", "golf", "hotel",
"india", "juliet", "kilo"

},
search[] =
{

"foxtrot",
"golf",
"hotel"

};
string

*last = sarr + sizeof(sarr) / sizeof(string);

251

copy
(// shows sequence starting

find_first_of(sarr, last, search, search + 3), // at 1st ’foxtrot’
last, ostream_iterator<string>(cout, " ")

);
cout << endl;

unsigned
range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10},
nrs[] = {2, 3, 4};

copy // show sequence of values starting at first sequence
(// of range[] that are twice the values in nrs[]

find_first_of(range, range + 9, nrs, nrs + 3, Twice()),
range + 9, ostream_iterator<unsigned>(cout, " ")

);
cout << endl;

return(0);
}

10.3.17 for each()

• Header file:

#include<algorithm>

• Function prototype:

– Function for each(InputIterator first, InputIterator last, Function func);

• Description:

– Each of the elements implied by the iterator range [first, last) is passed in turn
to the function func. The function may not modify the elements it receives (as the
used iterator is an input iterator). If the elements are to be transformed, transform()
(see section 10.3.63) should be used. The function object is returned: see the example
below, in which an extra argument list is added to the for each() call, which argument
is eventually also passed to the function given to for each(). Within for each() the
returnvalue of the function that is passed to it is ignored.

• Example:

#include<algorithm>
#include<string>
#include<iostream>

void capitalizedOutput(string const &str)

252

{
char

*tmp = strcpy(new char[str.size() + 1], str.c_str());

// can’t use for_each here,
// as ’tmp’ is modified

transform(tmp + 1, tmp + str.size(), tmp + 1, tolower);

tmp[0] = toupper(*tmp);
cout << tmp << " ";
delete tmp;

};

int main()
{

string
sarr[] =
{

"alpha", "BRAVO", "charley", "ECHO", "delta",
"FOXTROT", "golf", "HOTEL",

},
*last = sarr + sizeof(sarr) / sizeof(string);

for_each(sarr, last, capitalizedOutput)("that’s all, folks");
cout << endl;

return(0);
}

10.3.18 generate()

• Header file:

#include<algorithm>

• Function prototypes:

– void generate(ForwardIterator first, ForwardIterator last, Generator generator);

• Description:

– all the elements implied by the interator range [first, last) are initialized by the
returnvalue of generator, which can be a function or function object.

• Example:

#include<algorithm>
#include<vector>
#include<iostream>

253

#include<iterator>

class NaturalSquares
{

public:
NaturalSquares(): newsqr(0), last(0)
{}
unsigned operator()()
{ // (a + 1)^2 == a^2 + 2*a + 1

return (newsqr += (last++ << 1) + 1);
}

private:
unsigned

newsqr,
last;

};

int main()
{

vector<unsigned>
uv(10);

generate(uv.begin(), uv.end(), NaturalSquares());

copy(uv.begin(), uv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return(0);
}

10.3.19 generate n()

• Header file:

#include<algorithm>

• Function prototypes:

– void generate n(ForwardIterator first, Size n, Generator generator);

• Description:

– n elements starting at the element pointed to by interator first are initialized by the
returnvalue of generator, which can be a function or function object.

• Example:

#include<algorithm>
#include<vector>
#include<iostream>
#include<iterator>

254

class NaturalSquares
{

public:
NaturalSquares(): newsqr(0), last(0)
{}
unsigned operator()()
{ // (a + 1)^2 == a^2 + 2*a + 1

return (newsqr += (last++ << 1) + 1);
}

private:
unsigned

newsqr,
last;

};

int main()
{

vector<unsigned>
uv(10);

generate_n(uv.begin(), 10, NaturalSquares());

copy(uv.begin(), uv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

return(0);
}

10.3.20 includes()

• Header files:

#include<algorithm>

• Function prototypes:

– bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, InputIterator2 last2);

– bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: Both sequences of elements implied by the ranges [first1, last1)
and [first2, last2) should be sorted, using the operator<() of the underlying
datatype. The function returns true if every element in the second sequence ([first2,
second2) is contained in the first sequence ([first1, second1)) (the second range is
a subset of the first range).

255

– The second prototype: Both sequences of elements implied by the ranges [first1,
last1) and [first2, last2) should be sorted, using the comp function object. The
function returns true if every element in the second sequence ([first2, second2) is
contained in the first seqence ([first1, second1)) (the second range is a subset of the
first range).

• Example:

#include <algorithm>
#include <string>
#include <iostream>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (!strcasecmp(first.c_str(), second.c_str()));
}

};

int main()
{

string
first1[] =
{

"alpha", "bravo", "charley", "echo", "delta",
"foxtrot", "golf", "hotel"

},
first2[] =
{

"Alpha", "bravo", "Charley", "echo", "Delta",
"foxtrot", "Golf", "hotel"

},
second[] =
{

"charley", "foxtrot", "hotel"
};

unsigned
n = sizeof(first1) / sizeof(string);

cout << "The elements of ‘second’ are " <<
(includes(first1, first1 + n, second, second + 3) ? "" : "not")
<< " contained in the first sequence: second is a subset of first1\n";

cout << "The elements of ‘first1’ are " <<
(includes(second, second + 3, first1, first1 + n) ? "" : "not")
<< " contained in the second sequence\n";

cout << "The elements of ‘second’ are " <<
(includes(first2, first2 + n, second, second + 3) ? "" : "not")
<< " contained in the first2 sequence\n";

256

cout << "Using case-insensitive comparison,\n"
"the elements of ‘second’ are "
<<
(includes(first2, first2 + n, second, second + 3, CaseString()) ?

"" : "not")
<< " contained in the first2 sequence\n";

return(0);
}

10.3.21 inner product()

• Header files:

#include<algorithm>

• Function prototypes:

– Type inner product(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, Type init);

– Type inner product(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, Type init, BinaryOperator1 op1, BinaryOperator2 op2);

• Description:

– The first prototype: The sum of all pairwise products of the elements implied by the
range [first1, last1) and the same number of elements starting at the element
pointed to by first2 are added to init, and this sum is returned. The function
uses the operator+() and operator∗() of the underlying datatype.

– The second prototype: Binary operator op2 instead of the default addition operator,
and binary operator op1 instead of the default multiplication operator are applied to
all pairwise elements implied by the range [first1, last1) and the same number of
elements starting at the element pointed to by first2. The final result is returned.

• Example:

#include <numeric>
#include <algorithm>
#include <iostream>
#include <string>

class Cat
{

public:
Cat(string const &sep): sep(sep)
{}
string operator()(string const &s1, string const &s2)
{

return (s1 + sep + s2);

257

}
private:

string
sep;

};

int main()
{

unsigned
ia1[] = {1, 2, 3, 4, 5, 6, 7},
ia2[] = {7, 6, 5, 4, 3, 2, 1},
init = 0;

cout << "The sum of all squares in ";
copy(ia1, ia1 + 7, ostream_iterator<unsigned>(cout, " "));
cout << "is " <<

inner_product(ia1, ia1 + 7, ia1, init) << endl;

cout << "The sum of all cross-products in ";
copy(ia1, ia1 + 7, ostream_iterator<unsigned>(cout, " "));
cout << " and ";
copy(ia2, ia2 + 7, ostream_iterator<unsigned>(cout, " "));
cout << "is " <<

inner_product(ia1, ia1 + 7, ia2, init) << endl;

string
names1[] = {"Frank", "Karel", "Piet"},
names2[] = {"Brokken", "Kubat", "Plomp"};

cout << "A list of all combined names in ";
copy(names1, names1 + 3, ostream_iterator<string>(cout, " "));
cout << "and ";
copy(names2, names2 + 3, ostream_iterator<string>(cout, " "));
cout << "is:" <<

inner_product(names1, names1 + 3, names2, string("\t"),
Cat("\n\t"), Cat(" ")) <<

endl;

return(0);
}

10.3.22 inplace merge()

• Header files:

#include<algorithm>

• Function prototypes:

258

– void inplace merge(BidirectionalIterator first, BidirectionalIterator middle,
BidirectionalIterator last);

– void inplace merge(BidirectionalIterator first, BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

• Description:

– The first prototype: The two (sorted) ranges [first, middle) and [middle, last)
are merged, keeping a sorted list (using the operator<() of the underlying data type).
The final series is stored in the range [first, last).

– The second prototype: The two (sorted) ranges [first, middle) and [middle, last)
are merged, keeping a sorted list (using the boolean result of the binaray comparison
operator comp). The final series is stored in the range [first, last).

• Example:

#include <algorithm>
#include <string>
#include <iostream>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (strcasecmp(first.c_str(), second.c_str()) < 0);
}

};

int main()
{

string
range[] =
{

"alpha", "charley", "delta", "foxtrot", "hotel"
"bravo", "echo", "golf"

};

inplace_merge(range, range + 5, range + 8);
copy(range, range + 8, ostream_iterator<string>(cout, " "));
cout << endl;

string
range2[] =
{

"ALFA", "CHARLEY", "DELTA", "foxtrot", "hotel"
"bravo", "ECHO", "GOLF"

};

inplace_merge(range2, range2 + 5, range2 + 8, CaseString());
copy(range2, range2 + 8, ostream_iterator<string>(cout, " "));
cout << endl;

259

return(0);
}

10.3.23 iter swap()

• Header file:

#include<algorithm>

• Function prototypes:

– void iter swap(ForwardIterator1 iter1, ForwardIterator2 iter2);

• Description:

– The elements pointed to by iter1 and iter2 are swapped.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
first[] = {"alpha", "bravo", "charley", "delta", "echo", "delta"},
second[] = {"echo", "foxtrot", "golf", "hotel", "india", "kilo"};

unsigned
n = sizeof(first) / sizeof(string);

cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

for (unsigned idx = 0; idx < n; ++idx)
iter_swap(first + idx, second + idx);

cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.24 lexicographical compare()

• Header files:

260

#include<algorithm>

• Function prototypes:

– bool lexicographical compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

– bool lexicographical compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: The corresponding pairs of elements in the ranges pointed to by
[first1, last1) and [first2, last2) are compared. The function returns true

∗ at the first element in the first range which is less than the corresponding element
in the second range (using the operator<() of the underlying data type),
∗ if last1 is reached, but last2 isn’t reached yet.

False is returned in the other cases, which indicates that the first sequence is not lexi-
cographical less than the second sequence. I.e., false is returned

∗ at the first element in the first range which is greater than the corresponding element
in the second range (using the operator<() of the underlying data type),
∗ if last2 is reached, but last1 isn’t reached yet.
∗ if last1 and last2 are reached.

– The second prototype: With this function the binary comparison operation as defined
by comp is used instead of the underlying operator<().

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (strcasecmp(first.c_str(), second.c_str()) < 0);
}

};

int main()
{

char const
word1[] = "help",
word2[] = "hello";

cout << word1 << " is " <<
(

lexicographical_compare(word1, word1 + strlen(word1),
word2, word2 + strlen(word2)) ?

261

"before "
:

"beyond or at "
) <<
word2 << " in the alphabet\n";

cout << word1 << " is " <<
(

lexicographical_compare(word1, word1 + strlen(word1),
word1, word1 + strlen(word1)) ?

"before "
:

"beyond or at "
) <<
word1 << " in the alphabet\n";

cout << word2 << " is " <<
(

lexicographical_compare(word2, word2 + strlen(word2),
word1, word1 + strlen(word1)) ?

"before "
:

"beyond or at "
) <<
word1 << " in the alphabet\n";

string
one[] = {"alpha", "bravo", "charley"},
two[] = {"ALPHA", "BRAVO", "DELTA"};

copy(one, one + 3, ostream_iterator<string>(cout, " "));
cout << " is ordered " <<

(
lexicographical_compare(one, one + 3,

two, two + 3, CaseString()) ?
"before "

:
"beyond or at "

);
copy(two, two + 3, ostream_iterator<string>(cout, " "));
cout << endl <<

"using case-insensitive comparisons.\n";

return (0);
}

10.3.25 lower bound()

• Header files:

#include<algorithm>

262

• Function prototypes:

– ForwardIterator lower bound(ForwardIterator first, ForwardIterator last, const
Type &value);

– ForwardIterator lower bound(ForwardIterator first, ForwardIterator last, const
Type &value, Compare comp);

• Description:

– The first prototype: The sorted elements implied by the iterator range [first, last)
are searched for the first element that that is not less than (i.e., greater than or equal
to) value. The returned iterator marks the location in the sequence where value can
be inserted without breaking the sorted order of the elements. The operator<() of the
underlying datatype is used. If no such element is found, last is returned.

– The second prototype: The elements implied by the iterator range [first, last)
must have been sorted using the comp function (-object). Each element in the range is
compared to value using the comp function. An iterator to the first element for which
the binary predicate comp, applied to the elements of the range and value, returns
false is returned. If no such element is found, last is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <functional>

int main()
{

int
ia[] = {10, 20, 30};

cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<
*lower_bound(ia, ia + 3, 15) << endl;

cout << "35 can be inserted after " <<
(lower_bound(ia, ia + 3, 35) == ia + 3 ?

"the last element" : "???") << endl;

iter_swap(ia, ia + 2);

cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<
*lower_bound(ia, ia + 3, 15, greater<int>()) << endl;

cout << "35 can be inserted before " <<
(lower_bound(ia, ia + 3, 35, greater<int>()) == ia ?

"the first element " : "???") << endl;

263

return (0);
}

10.3.26 max()

• Header file:

#include<algorithm>

• Function prototypes:

– Type const &max(Type const &one, Type const &two);

– Type const &max(Type const &one, Type const &two, Comparator comp);

• Description:

– The first prototype: The larger of the two elements one and two is returned, using the
operator>() of the underlying type.

– The second prototype: one is returned if the binary predicate comp(one, two) returns
true, otherwise two is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (strcasecmp(second.c_str(), first.c_str()) > 0);
}

};

int main()
{

cout << "Word ’" << max(string("first"), string("second")) <<
"’ is lexicographically last\n";

cout << "Word ’" << max(string("first"), string("SECOND")) <<
"’ is lexicographically last\n";

cout << "Word ’" << max(string("first"), string("SECOND"),
CaseString()) << "’ is lexicographically last\n";

return (0);
}

264

10.3.27 max element()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator max element(ForwardIterator first, ForwardIterator last);

– ForwardIterator max element(ForwardIterator first, ForwardIterator last, Comparator
comp);

• Description:

– The first prototype: An iterator pointing to the largest element in the range implied by
[first, last) is returned. The operator>() of the underlying type is used.

– The second prototype: rather than using operator>(), the binary predicate comp
is used to make the comparisons between the elements implied by the iterator range
[first, last). The element with which comp returns most often true is returned.

• Example:

#include <algorithm>
#include <iostream>

class AbsValue
{

public:
bool operator()(int first, int second) const
{

return (abs(second) > abs(first));
}

};

int main()
{

int
ia[] = {-4, 7, -2, 10, -12};

cout << "The maximum int value is " << *max_element(ia, ia + 5) << endl;
cout << "The maximum absolute int value is " <<

*max_element(ia, ia + 5, AbsValue()) << endl;

return (0);
}

10.3.28 merge()

• Header files:

265

#include<algorithm>

• Function prototypes:

– OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, InputIterator2 last2, OutputIterator result);

– OutputIterator merge(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, InputIterator2 last2, OutputIterator result, Compare comp);

• Description:

– The first prototype: The two (sorted) ranges [first, middle) and [middle, last)
are merged, keeping a sorted list (using the operator<() of the underlying data type).
The final series is stored in the range starting at result and ending just before the
OutputIterator that is returned by the function.

– The second prototype: The two (sorted) ranges [first, middle) and [middle, last)
are merged, keeping a sorted list (using the boolean result of the binaray comparison
operator comp). The final series is stored in the range starting at result and ending
just before the OutputIterator that is returned by the function.

• Example:

#include <algorithm>
#include <string>
#include <iostream>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (strcasecmp(first.c_str(), second.c_str()) < 0);
}

};

int main()
{

string
range1[] =
{

"alpha", "bravo", "foxtrot", "hotel", "zulu"
},
range2[] =
{

"delta", "echo", "golf", "romeo"
},
result[5 + 4];

copy(result,
merge(range1, range1 + 5, range2, range2 + 4, result),
ostream_iterator<string>(cout, " "));

266

cout << endl;

string
range3[] =
{

"ALPHA", "bravo", "foxtrot", "HOTEL", "ZULU"
},
range4[] =
{

"delta", "ECHO", "GOLF", "romeo"
};

copy(result,
merge(range3, range3 + 5, range4, range4 + 4, result, CaseString()),
ostream_iterator<string>(cout, " "));

cout << endl;

return(0);
}

10.3.29 min()

• Header file:

#include<algorithm>

• Function prototypes:

– Type const &min(Type const &one, Type const &two);

– Type const &min(Type const &one, Type const &two, Comparator comp);

• Description:

– The first prototype: The smaller of the two elements one and two is returned, using the
operator<() of the underlying type.

– The second prototype: one is returned if the binary predicate comp(one, two) returns
false, otherwise two is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

267

return (strcasecmp(second.c_str(), first.c_str()) > 0);
}

};

int main()
{

cout << "Word ’" << min(string("first"), string("second")) <<
"’ is lexicographically first\n";

cout << "Word ’" << min(string("first"), string("SECOND")) <<
"’ is lexicographically first\n";

cout << "Word ’" << min(string("first"), string("SECOND"),
CaseString()) << "’ is lexicographically first\n";

return (0);
}

10.3.30 min element()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator min element(ForwardIterator first, ForwardIterator last);

– ForwardIterator min element(ForwardIterator first, ForwardIterator last, Comparator
comp);

• Description:

– The first prototype: An iterator pointing to the smallest element in the range implied
by [first, last) is returned. The operator<() of the underlying type is used.

– The second prototype: rather than using operator<(), the binary predicate comp
is used to make the comparisons between the elements implied by the iterator range
[first, last). The element with which comp returns most often false is returned.

• Example:

#include <algorithm>
#include <iostream>

class AbsValue
{

public:
bool operator()(int first, int second) const
{

return (abs(second) > abs(first));
}

};

268

int main()
{

int
ia[] = {-4, 7, -2, 10, -12};

cout << "The minimum int value is " << *min_element(ia, ia + 5) << endl;
cout << "The minimum absolute int value is " <<

*min_element(ia, ia + 5, AbsValue()) << endl;

return (0);
}

10.3.31 mismatch()

• Header files:

#include<algorithm>

• Function prototypes:

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1
last1, InputIterator2 first2);

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1, InputIterator1
last1, InputIterator2 first2, Compare comp);

• Description:

– The first prototype: The two sequences of elements starting at first1 and first2 are
compared using the equality operator of the underlying data type. Comparison stops if
the compared elements differ (i.e., operator==() returns false) or last1 is reached. A
pair containing iterators pointing to the final positions is returned. The second sequence
may contain more elements than the first sequence. The behavior of the algorithm is
undefined if the second sequence contains less elements than the first sequence.

– The second prototype: The two sequences of elements starting at first1 and first2
are compared using With this function the binary comparison operation as defined by
comp is used instead of the underlying operator==(). Comparison stops if the comp
function returns false or last1 is reached. A pair containing iterators pointing to
the final positions is returned. The second sequence may contain more elements than
the first sequence. The behavior of the algorithm is undefined if the second sequence
contains less elements than the first sequence.

• Example:

#include <algorithm>
#include <string>
#include <iostream>
#include <utility>

269

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (strcasecmp(first.c_str(), second.c_str()) == 0);
}

};

int main()
{

string
range1[] =
{

"alpha", "bravo", "foxtrot", "hotel", "zulu"
},
range2[] =
{

"alpha", "bravo", "foxtrot", "Hotel", "zulu"
};

pair<string *, string *>
pss = mismatch(range1, range1 + 5, range2);

cout << "The elements " << *pss.first << " and " << *pss.second <<
" at offset " << (pss.first - range1) << " differ\n";

if
(

mismatch(range1, range1 + 5, range2, CaseString()).first
== range1 + 5

)
cout << "When compared case-insensitively they match\n";

return(0);
}

10.3.32 next permutation()

• Header files:

#include<algorithm>

• Function prototypes:

– bool next permutation(BidirectionalIterator first, BidirectionalIterator last);

– bool next permutation(BidirectionalIterator first, BidirectionalIterator last,
Comp comp);

270

• Description:

– The first prototype: The next permutation given the sequence of elements in the range
[first, last) is determined. The elements in the range are reordered. The value true
is returned if a reordering took place, the value false is returned if no reordering took
place, which is the case if the resulting sequence would haven been ordered, according
to the operator<() of the underlying data type.

– The second prototype: The next permutation given the sequence of elements in the
range [first, last) is determined. The elements in the range are reordered. The
value true is returned if a reordering took place, the value false is returned if no
reordering took place, which is the case if the resulting sequence would haven been
ordered, using the binary predicate comp to compare two elements.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (strcasecmp(first.c_str(), second.c_str()) < 0);
}

};

int main()
{

string
saints[] = {"Oh", "when", "the", "saints"};

cout << "All permutations of ’Oh when the saints’:\n";

cout << "Sequences:\n";
do
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

}
while (next_permutation(saints, saints + 4, CaseString()));

cout << "After first sorting the sequence:\n";

sort(saints, saints + 4, CaseString());

cout << "Sequences:\n";
do
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

271

}
while (next_permutation(saints, saints + 4, CaseString()));

return (0);
}

10.3.33 nth element()

• Header files:

#include<algorithm>

• Function prototypes:

– void nth element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterat
last);

– void nth element(RandomAccessIterator first, RandomAccessIterator nth, RandomAccessIterat
last, Compare comp);

• Description:

– The first prototype: All elements in the range [first, last) are sorted relative to the
element pointed to by nth: all elements in the range [left, nth) are smaller than the
element pointed to by nth, and alle elements in the range [nth + 1, last) are greater
than the element pointed to by nth. The two subsets themselves are not sorted. The
operator<() of the underlying datatype is used.

– The second prototype: All elements in the range [first, last) are sorted relative to
the element pointed to by nth: all elements in the range [left, nth) are smaller than
the element pointed to by nth, and alle elements in the range [nth + 1, last) are
greater than the element pointed to by nth. The two subsets themselves are not sorted.
The comp function object is used to compare the elements.

• Example:

#include <algorithm>
#include <iostream>
#include <functional>

int main()
{

int
ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

nth_element(ia, ia + 3, ia + 10);
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

nth_element(ia, ia + 5, ia + 10, greater<int>());
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

272

return (0);
}

10.3.34 partial sort()

• Header files:

#include<algorithm>

• Function prototypes:

– void partial sort(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last);

– void partial sort(RandomAccessIterator first, RandomAccessIterator middle,
RandomAccessIterator last, Compare comp);

• Description:

– The first prototype: The middle - first smallest elements are sorted and stored in the
[first, middle), using the operator<() of the underlying datatype. The remaining
elements of the series remain unsorted.

– The second prototype: The middle - first smallest elements (according to the pro-
vided binary predicate comp are sorted and stored in the [first, middle). The re-
maining elements of the series remain unsorted.

• Example:

#include <algorithm>
#include <iostream>
#include <functional>

int main()
{

int
ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

partial_sort(ia, ia + 3, ia + 10);
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

partial_sort(ia, ia + 5, ia + 10, greater<int>());
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

return (0);
}

273

10.3.35 partial sort copy()

• Header files:

#include<algorithm>

• Function prototypes:

– void partial sort copy(InputIterator first, InputIterator last, RandomAccessIterator
dest first, RandomAccessIterator dest last);

– void partial sort copy(InputIterator first, InputIterator last, RandomAccessIterator
dest first, RandomAccessIterator dest last, Compare comp);

• Description:

– The first prototype: The smallest elements in the range [first, last) are copied to the
range [dest first, dest last), using the operator<() of the underlying datatype.
Only the number of elements in the smaller range are copied to the second range.

– The second prototype: The elements in the range [first, last) are are sorted by the
binary predicate comp. The elements for which the predicate returns most often true
are copied to the range [dest first, dest last). Only the number of elements in the
smaller range are copied to the second range.

• Example:

#include <algorithm>
#include <iostream>
#include <functional>

int main()
{

int
ia[] = {1, 10, 3, 8, 5, 6, 7, 4, 9, 2},
ia2[6];

partial_sort_copy(ia, ia + 10, ia2, ia2 + 6);
copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << endl;

partial_sort_copy(ia, ia + 4, ia2, ia2 + 6);
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << endl;

partial_sort_copy(ia, ia + 4, ia2, ia2 + 6, greater<int>());
copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));
cout << endl;

return (0);
}

274

10.3.36 partial sum()

• Header files:

#include<numeric>

• Function prototypes:

– OutputIterator partial sum(InputIterator first, InputIterator last, OutputIterator
result);

– OutputIterator partial sum(InputIterator first, InputIterator last, OutputIterator
result, BinaryOperation op);

• Description:

– The first prototype: the value of each element in the range [result, <returned
OutputIterator>) is obtained by adding the elements in the corresponding range of
the range [first, last). The first element in the resulting range will be equal to the
element pointed to by first.

– The second prototype: the value of each element in the range [result, <returned
OutputIterator>) is obtained by applying the binary operator op to the previous
element in the resulting range and the corresponding element in the range [first,
last). The first element in the resulting range will be equal to the element pointed to
by first.

• Example:

#include <numeric>
#include <algorithm>
#include <iostream>
#include <functional>

int main()
{

int
ia[] = {1, 2, 3, 4, 5},
ia2[5];

copy(ia2,
partial_sum(ia, ia + 5, ia2),
ostream_iterator<int>(cout, " "));

cout << endl;

copy(ia2,
partial_sum(ia, ia + 5, ia2, multiplies<int>()),
ostream_iterator<int>(cout, " "));

cout << endl;

return (0);
}

275

10.3.37 partition()

• Header files:

#include<algorithm>

• Function prototypes:

– BidirectionalIterator partition(BidirectionalIterator first, BidirectionalIterator
last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates
as true are placed before the elements which evaluate as false. The returnvalue points
just beyond the last element in the partitioned range for which pred evaluates as true.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class LessThan
{

public:
LessThan(int x): x(x)
{}
bool operator()(int value)
{

return (value <= x);
}

private:
int

x;
};

int main()
{

int
ia[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4},
*split;

split = partition(ia, ia + 10, LessThan(ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;
return (0);

}

276

10.3.38 prev permutation()

• Header files:

#include<algorithm>

• Function prototypes:

– bool prev permutation(BidirectionalIterator first, BidirectionalIterator last);

– bool prev permutation(BidirectionalIterator first, BidirectionalIterator last,
Comp comp);

• Description:

– The first prototype: The previous permutation given the sequence of elements in the
range [first, last) is determined. The elements in the range are reordered. The
value true is returned if a reordering took place, the value false is returned if no
reordering took place, which is the case if the provided sequence was already ordered,
according to the operator<() of the underlying data type.

– The second prototype: The previous permutation given the sequence of elements in the
range [first, last) is determined. The elements in the range are reordered. The
value true is returned if a reordering took place, the value false is returned if no
reordering took place, which is the case if the original sequence was already ordered,
using the binary predicate comp to compare two elements.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (strcasecmp(first.c_str(), second.c_str()) < 0);
}

};

int main()
{

string
saints[] = {"Oh", "when", "the", "saints"};

cout << "All previous permutations of ’Oh when the saints’:\n";

277

cout << "Sequences:\n";
do
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

}
while (prev_permutation(saints, saints + 4, CaseString()));

cout << "After first sorting the sequence:\n";

sort(saints, saints + 4, CaseString());

cout << "Sequences:\n";
while (prev_permutation(saints, saints + 4, CaseString()))
{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));
cout << endl;

}

cout << "No (more) previous permutations\n";

return (0);
}

10.3.39 random shuffle()

• Header files:

#include<algorithm>

• Function prototypes:

– void random shuffle(RandomAccessIterator first, RandomAccessIterator last);

– void random shuffle(RandomAccessIterator first, RandomAccessIterator last,
RandomNumberGenerator rand);

• Description:

– The first prototype: The elements in the range [first, last) are randomly reordered.

– The second prototype: The elements in the range [first, last) are randomly re-
ordered, using the rand random number generator, which should return an int in the
range [0, remaining), where remaining is passed as argument to the operator()()
of the rand function object.

• Example:

278

#include <algorithm>
#include <iostream>
#include <string>
#include <time.h>

class randomGenerator
{

public:
randomGenerator()
{

srand(static_cast<int>(time(0)));
}
int operator()(int remaining) const
{

return (rand() % remaining);
}

};

int main()
{

string
words[] =
{ "kilo", "lima", "mike", "november", "oscar", "papa", "quebec" };

unsigned
size = sizeof(words) / sizeof(string);

random_shuffle(words, words + size);

copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

cout << "sorting the words again\n";
sort(words, words + size);

randomGenerator
rg;

random_shuffle(words, words + size, rg);

copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.40 remove()

• Header file:

#include<algorithm>

• Function prototype:

279

– ForwardIterator remove(ForwardIterator first, ForwardIterator last, Type &value);

• Description:

– The elements in the range pointed to by [first, last) are reordered in such a way
that all values unequal to value are placed at the beginning of the range. The returned
forward iterator points to the first element, after reordering, that can be removed. The
range [returnvalue, last) is called the leftover of the algorithm. The leftover may
contain other values than value, but these can also safely be removed, as they are also
present in the range [first, returnvalue).

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" },
*removed;

unsigned
size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";
removed = remove(words, words + size, "alpha");
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.41 remove copy()

• Header file:

#include<algorithm>

• Function prototypes:

– OutputIterator remove copy(InputIterator first, InputIterator last, OutputIterator
result, Type &value);

• Description:

– The elements in the range pointed to by [first, last) not matching value are copied
to the range [result, returnvalue), where returnvalue is the value returned by the
function. The range [first, last) is not modified.

280

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <functional>

class EqualAlpha
{

public:
operator()(string const &word) const
{

return (word == "alpha");
}

};

int main()
{

string
words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
unsigned

size = sizeof(words) / sizeof(string);
string

remaining[size - count_if(words, words + size, EqualAlpha())],
*returnvalue;

returnvalue = remove_copy(words, words + size, remaining, "alpha");

cout << "Removing all \"alpha\"s:\n";
copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.42 remove if()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator remove if(ForwardIterator first, ForwardIterator last, UnaryPredicate
pred);

• Description:

– The elements in the range pointed to by [first, last) are reordered in such a way
that all values for which the unary predicate pred evaluates as false are placed at

281

the beginning of the range. The returned forward iterator points to the first element,
after reordering, for which pred returns true. The range [returnvalue, last) is
called the leftover of the algorithm. The leftover may contain other values than value,
but these can also safely be removed, as they are also present in the range [first,
returnvalue).

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class Remover
{

public:
bool operator()(string const &str)
{

return (str == "alpha");
}

};

int main()
{

string
words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" },
*removed;

unsigned
size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";
removed = remove_if(words, words + size, Remover());
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.43 remove copy if()

• Header file:

#include<algorithm>

• Function prototypes:

– OutputIterator remove copy if(InputIterator first, InputIterator last, OutputIterator
result, UnaryPredicate pred);

282

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate
pred returns true are copied to the range [result, returnvalue), where returnvalue
is the value returned by the function. The range [first, last) is not modified.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <functional>

class EqualAlpha
{

public:
bool operator()(string const &word) const
{

return (word == "alpha");
}

};

int main()
{

string
words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
unsigned

size = sizeof(words) / sizeof(string);
string

remaining[size - count_if(words, words + size, EqualAlpha())],
*returnvalue;

returnvalue = remove_copy_if(words, words + size, remaining, EqualAlpha());

cout << "Removing all \"alpha\"s:\n";
copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.44 replace()

• Header file:

#include<algorithm>

• Function prototypes:

283

– ForwardIterator replace(ForwardIterator first, ForwardIterator last, Type
&oldvalue, Type &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced
by the value newvalue.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" },
*removed;

unsigned
size = sizeof(words) / sizeof(string);

replace(words, words + size, string("alpha"), string("ALPHA"));
copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.45 replace copy()

• Header file:

#include<algorithm>

• Function prototypes:

– OutputIterator replace copy(InputIterator first, InputIterator last, OutputIterator
result, Type &oldvalue, Type &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced
by the value newvalue in a new range [result, returnvalue), where returnvalue is
the returnvalue of the function.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>

284

#include <functional>
int main()
{

string
words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
unsigned

size = sizeof(words) / sizeof(string);
string

remaining[size],
*returnvalue;

returnvalue = replace_copy(words, words + size, remaining,
string("alpha"), string("ALPHA"));

copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.46 replace if()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator replace if(ForwardIterator first, ForwardIterator last, UnaryPredicate
pred, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate
pred evaluates as true are replaced by newvalue.

Example:

#include <algorithm>
#include <iostream>
#include <string>

class Replacer
{

public:
bool operator()(string const &str)
{

return (str == "alpha");
}

};

285

int main()
{

string
words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
unsigned

size = sizeof(words) / sizeof(string);

replace_if(words, words + size, Replacer(), string("ALPHA"));
copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.47 replace copy if()

• Header file:

#include<algorithm>

• Function prototypes:

– OutputIterator replace copy if(ForwardIterator first, ForwardIterator last,
OutputIterator result, UnaryPredicate pred, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) are copied to the range
[result, returnvalue), where returnvalue is the value returned by the function.
The elements for which the unary predicate pred returns true are replaced by newvalue.
The range [first, last) is not modified.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <functional>

class Replacer
{

public:
bool operator()(string const &str) const
{

return (str == "alpha");
}

};

int main()

286

{
string

words[] =
{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };
unsigned

size = sizeof(words) / sizeof(string);
string

result[size];

replace_copy_if(words, words + size, result, Replacer(), string("ALPHA"));
copy (result, result + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.48 reverse()

• Header files:

#include<algorithm>

• Function prototypes:

– void reverse(BidirectionalIterator first, BidirectionalIterator last);

• Description:

– The elements in the range pointed to by [first, last) are reversed.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
line;

while (getline(cin, line))
{

reverse(line.begin(), line.end());
cout << line << endl;

}

return (0);
}

287

10.3.49 reverse copy()

• Header files:

#include<algorithm>

• Function prototypes:

– OutputIterator reverse copy(BidirectionalIterator first, BidirectionalIterator
last, OutputIterator result);

• Description:

– The elements in the range pointed to by [first, last) are copied to the range
[result, returnvalue) in reversed order. The value returnvalue is the value that is
returned by the function.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
line;

while (getline(cin, line))
{

unsigned
size = line.size();

char
copy[size + 1];

cout << "line: " << line << endl <<
"reversed: ";

reverse_copy(line.begin(), line.end(), copy);
copy[size] = 0; // 0 is not part of the reversed

// line !
cout << copy << endl;

}

return (0);
}

10.3.50 rotate()

• Header files:

288

#include<algorithm>

• Function prototypes:

– void rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator
last);

• Description:

– The elements implied by the range [first, middle) are moved to the end of the con-
tainer, the elements implied by the range [middle, last) are moved to the beginning
of the container.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
words[] =
{ "kilo", "lima", "mike", "november", "oscar", "papa", "quebec",

"echo", "foxtrot", "golf", "hotel", "india", "juliet" };
unsigned const

size = sizeof(words) / sizeof(string),
midsize = 7;

rotate(words, words + midsize, words + size);

copy(words, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.51 rotate copy()

• Header files:

#include<algorithm>

• Function prototypes:

– OutputIterator rotate copy(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);

• Description:

289

– The elements implied by the range [middle, last) and then the elements implied
by the range [first, middle) are copied to the destination container having range
[result, returnvalue), where returnvalue is the iterator returned by the function.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
words[] =
{ "kilo", "lima", "mike", "november", "oscar", "papa", "quebec",

"echo", "foxtrot", "golf", "hotel", "india", "juliet" };
unsigned const

size = sizeof(words) / sizeof(string),
midsize = 7;

string
out[size];

copy(out,
rotate_copy(words, words + midsize, words + size, out),
ostream_iterator<string>(cout, " "));

cout << endl;

return (0);
}

10.3.52 search()

• Header files:

#include<algorithm>

• Function prototypes:

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2
first2, ForwardIterator2 last2);

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1, ForwardIterator2
first2, ForwardIterator2 last2, BinaryPredicate pred);

• Description:

– The first prototype: An iterator into the first range [first1, last1) is returned where
the elements in the range [first2, last2) are found, using the operator==() operator
of the underlying data type. If no such location exists, last1 is returned.

290

– The second prototype: An iterator into the first range [first1, last1) is returned
where the elements in the range [first2, last2) are found, using the provided binary
predicate pred to compare the elements in the two ranges. If no such location exists,
last1 is returned.

• Example:

#include <algorithm>
#include <iostream>

class absInt
{

public:
bool operator()(int i1, int i2)
{

return (abs(i1) == abs(i2));
}

};

int main()
{

int
range1[] =

{-2, -4, -6, -8, 2, 4, 6, 8},
range2[] =

{6, 8};

copy
(

search(range1, range1 + 8, range2, range2 + 2),
range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

copy
(

search(range1, range1 + 8, range2, range2 + 2, absInt()),
range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

return (0);
}

10.3.53 search n()

• Header files:

291

#include<algorithm>

• Function prototypes:

– ForwardIterator1 search n(ForwardIterator1 first1, ForwardIterator1 last1,
Size count, Type const & value);

– ForwardIterator1 search n(ForwardIterator1 first1, ForwardIterator1 last1,
Size count, Type const & value, BinaryPredicate pred);

• Description:

– The first prototype: An iterator into the first range [first1, last1) is returned where
n elements having value value are found, using the operator==() operator of the
underlying data type to compare the elements. If no such location exists, last1 is
returned.

– The second prototype: An iterator into the first range [first1, last1) is returned
where n elements having value value are found, using the provided binary predicate
pred to compare the elements. If no such location exists, last1 is returned.

• Example:

#include <algorithm>
#include <iostream>

class absInt
{

public:
bool operator()(int i1, int i2)
{

return (abs(i1) == abs(i2));
}

};

int main()
{

int
range1[] =

{-2, -4, -4, -6, -8, 2, 4, 4, 6, 8},
range2[] =

{6, 8};

copy
(

search_n(range1, range1 + 8, 2, 4),
range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

copy
(

search_n(range1, range1 + 8, 2, 4, absInt()),

292

range1 + 8,
ostream_iterator<int>(cout, " ")

);
cout << endl;

return (0);
}

10.3.54 set difference()

• Header files:

#include<algorithm>

• Function prototypes:

– OutputIterator set difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare
comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are not present in the range [first2, last2) is returned, starting at
[result), and ending at the outputiterator that is returned by the function. The ele-
ments in the two ranges must have been sorted using the operator<() of the underlying
datatype.

– The second prototype: a sorted sequence of the elements pointed to by the range
[first1, last1) that are not present in the range [first2, last2) is returned, start-
ing at [result), and ending at the outputiterator that is returned by the function. The
elements in the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseLess
{

public:
bool operator()(string const &left, string const &right)
{

return (strcasecmp(left.c_str(), right.c_str()) < 0);
}

};

293

int main()
{

string
set1[] =
{ "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" },
set2[] =
{ "papa", "quebec", "romeo"},
result[7],
*returned;

copy(result,
set_difference(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string
set3[] =
{ "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_difference(set1, set1 + 7, set3, set3 + 3, result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return (0);
}

10.3.55 set intersection()

• Header files:

#include<algorithm>

• Function prototypes:

– OutputIterator set intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare
comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are also present in the ranges [first2, last2) is returned, starting at
[result), and ending at the outputiterator that is returned by the function. The ele-
ments in the two ranges must have been sorted using the operator<() of the underlying
datatype.

294

– The second prototype: a sorted sequence of the elements pointed to by the range
[first1, last1) that are also present in the ranges [first2, last2) is returned,
starting at [result), and ending at the outputiterator that is returned by the function.
The elements in the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseLess
{

public:
bool operator()(string const &left, string const &right)
{

return (strcasecmp(left.c_str(), right.c_str()) < 0);
}

};

int main()
{

string
set1[] =
{ "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" },
set2[] =
{ "papa", "quebec", "romeo"},
result[7],
*returned;

copy(result,
set_intersection(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string
set3[] =
{ "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_intersection(set1, set1 + 7, set3, set3 + 3, result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return (0);
}

10.3.56 set symmetric difference()

• Header files:

295

#include<algorithm>

• Function prototypes:

– OutputIterator set symmetric difference(InputIterator1 first1, InputIterator1
last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set symmetric difference(InputIterator1 first1, InputIterator1
last1, InputIterator2 first2, InputIterator2 last2, OutputIterator result,
Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are not present in the range [first2, last2) and those in the range
[first2, last2) that are not present in the range [first1, last1) is returned, start-
ing at [result) and ending at the outputiterator that is returned by the function. The
elements in the two ranges must have been sorted using the operator<() of the under-
lying datatype.

– The second prototype: a sorted sequence of the elements a sorted sequence of the el-
ements pointed to by the range [first1, last1) that are not present in the range
[first2, last2) and those in the range [first2, last2) that are not present in the
range [first1, last1) is returned, starting at [result) and ending at the outputit-
erator that is returned by the function. The elements in the two ranges must have been
sorted using the comp function object.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseLess
{

public:
bool operator()(string const &left, string const &right)
{

return (strcasecmp(left.c_str(), right.c_str()) < 0);
}

};

int main()
{

string
set1[] =
{ "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" },
set2[] =
{ "papa", "quebec", "romeo"},
result[7],
*returned;

copy(result,

296

set_symmetric_difference(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string
set3[] =
{ "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_symmetric_difference(set1, set1 + 7, set3, set3 + 3, result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return (0);
}

10.3.57 set union()

• Header files:

#include<algorithm>

• Function prototypes:

– OutputIterator set intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, OutputIterator result, Compare
comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,
last1) that are also present in the ranges [first2, last2) is returned, starting at
[result), and ending at the outputiterator that is returned by the function. The ele-
ments in the two ranges must have been sorted using the operator<() of the underlying
datatype.

– The second prototype: a sorted sequence of the elements pointed to by the range
[first1, last1) that are also present in the ranges [first2, last2) is returned,
starting at [result), and ending at the outputiterator that is returned by the function.
The elements in the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseLess
{

297

public:
bool operator()(string const &left, string const &right)
{

return (strcasecmp(left.c_str(), right.c_str()) < 0);
}

};

int main()
{

string
set1[] =
{ "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" },
set2[] =
{ "papa", "quebec", "romeo"},
result[7],
*returned;

copy(result,
set_intersection(set1, set1 + 7, set2, set2 + 3, result),
ostream_iterator<string>(cout, " "));

cout << endl;

string
set3[] =
{ "PAPA", "QUEBEC", "ROMEO"};

copy(result,
set_intersection(set1, set1 + 7, set3, set3 + 3, result,
CaseLess()),
ostream_iterator<string>(cout, " "));

cout << endl;

return (0);
}

10.3.58 sort()

• Header files:

#include<algorithm>

• Function prototypes:

– void sort(RandomAccessIterator first, RandomAccessIterator last);

– void sort(RandomAccessIterator first, RandomAccessIterator last, Compare
comp);

• Description:

– The first prototype: the elements in the range [first, last) are sorted in ascending
order, using the operator<() of the underlying datatype.

298

– The second prototype: the elements in the range [first, last) are sorted in ascending
order, using the comp function object to compare the elements.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>

int main()
{

string
words[] =
{"november", "kilo", "mike", "lima",

"oscar", "quebec", "papa"};

sort(words, words + 7);
copy(words, words + 7,

ostream_iterator<string>(cout, " "));
cout << endl;

sort(words, words + 7, greater<string>());
copy(words, words + 7,

ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.59 stable partition()

• Header files:

#include<algorithm>

• Function prototypes:

– BidirectionalIterator stable partition(BidirectionalIterator first, BidirectionalIterator
last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates
as true are placed before the elements which evaluate as false. The relative order
of the elements in the container is kept. The returnvalue points just beyond the last
element in the partitioned range for which pred evaluates as true.

• Example:

299

#include <algorithm>
#include <iostream>
#include <string>

class LessThan
{

public:
LessThan(int x): x(x)
{}
bool operator()(int value)
{

return (value <= x);
}

private:
int

x;
};

int main()
{

int
org[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4},
ia[10],
*split;

copy(org, org + 10, ia);
split = partition(ia, ia + 10, LessThan(ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;

copy(org, org + 10, ia);
split = stable_partition(ia, ia + 10, LessThan(ia[9]));
cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));
cout << endl;
return (0);

}

10.3.60 stable sort()

• Header files:

#include<algorithm>

300

• Function prototypes:

– void stable sort(RandomAccessIterator first, RandomAccessIterator last);

– void stable sort(RandomAccessIterator first, RandomAccessIterator last, Compare
comp);

• Description:

– The first prototype: the elements in the range [first, last) are stable sorted in
ascending order, using the operator<() of the underlying datatype. The relative order
of the equal elements is kept.

– The second prototype: the elements in the range [first, last) are stable sorted in
ascending order, using the comp function object to compare the elements. The relative
order of the equal elements is kept.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>

class CmpFirst
{

public:
bool operator()(string const &left, string const &right)
{

return (left[0] < right[0]);
}

};

int main()
{

string
words[] =
{"piper", "november", "kilo", "mooney", "mike", "lima",

"oscar", "quebec", "papa", "netherlands"};

stable_sort(words, words + 10, CmpFirst());
copy(words, words + 10,

ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.61 swap()

• Header file:

301

#include<algorithm>

• Function prototypes:

– void swap(Type &object1, Type &object2);

• Description:

– The elements object1 and object2 change values.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
first[] = {"alpha", "bravo", "charley", "delta", "echo", "delta"},
second[] = {"echo", "foxtrot", "golf", "hotel", "india", "kilo"};

unsigned
n = sizeof(first) / sizeof(string);

cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

for (unsigned idx = 0; idx < n; ++idx)
swap(first[idx], second[idx]);

cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.62 swap ranges()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator2 swap ranges(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 result);

• Description:

302

– The elements in the ranges pointed to by [first1, last1) are swapped with the ele-
ments in the ranges [result, returnvalue), where returnvalue is the value returned
by the function. The two ranges must be disjoint.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

int main()
{

string
first[] = {"alpha", "bravo", "charley", "delta", "echo", "delta"},
second[] = {"echo", "foxtrot", "golf", "hotel", "india", "kilo"};

unsigned
n = sizeof(first) / sizeof(string);

cout << "Before:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

swap_ranges(first, first + n, second);

cout << "After:\n";
copy(first, first + n, ostream_iterator<string>(cout, " "));
cout << endl;
copy(second, second + n, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.63 transform()

• Header files:

#include<algorithm>

• Function prototypes:

– OutputIterator transform(InputIterator first, InputIterator last, OutputIterator
result, UnaryOperator op);

– OutputIterator transform(InputIterator1 first1, InputIterator1 last1, InputIterator2
first2, OutputIterator result, BinaryOperator op);

• Description:

303

– The first prototype: the unary operator op is applied to each of the elements in the range
[first, last), and the resulting values are stored in the range starting at result. The
returnvalue points just beyond the last generated element.

– The second prototype: the binary operator op is applied to each of the elements in the
range [first, last) and the corresponding element in the second range starting at
first2. The resulting values are stored in the range starting at result. The returnvalue
points just beyond the last generated element.

• Example:

#include <functional>
#include <vector>
#include <algorithm>
#include <iostream>
#include <string>
#include <ctype.h>

class Caps
{

public:
string operator()(string const &src)
{

string
tmp = src;

transform(&tmp[0], &tmp[tmp.size()], &tmp[0], toupper);
return (tmp);

}
};

int main()
{

string
words[] = {"alpha", "bravo", "charley"};

copy(words, transform(words, words + 3, words, Caps()),
ostream_iterator<string>(cout, " "));

cout << endl;

int
values[] = {1, 2, 3, 4, 5};

vector<int>
squares;

transform(values, values + 5, values,
back_inserter(squares), multiplies<int>());

copy(squares.begin(), squares.end(),
ostream_iterator<int>(cout, " "));

cout << endl;
return (0);

}

304

10.3.64 unique()

• Header file:

#include<algorithm>

• Function prototypes:

– ForwardIterator unique(ForwardIterator first, ForwardIterator last);

– ForwardIterator unique(ForwardIterator first, ForwardIterator last, BinaryPredicate
pred);

• Description:

– The first prototype: Consecutively equal elements (according to the operator==() of
the underlying data type) in the range pointed to by [first, last) are collapsed into
a single element. The returned forward iterator marks the leftover of the algorithm, and
contains (unique) elements appearing earlier in the range.

– The second prototype: Consecutive elements in the range pointed to by [first, last)
for which the binary predicate pred returns true are collapsed into a single element.
The returned forward iterator marks the leftover of the algorithm, and contains (unique)
elements appearing earlier in the range.

• Example:

#include <algorithm>
#include <iostream>
#include <string>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const
{

return (!strcasecmp(first.c_str(), second.c_str()));
}

};

int main()
{

string
words[] =
{"alpha", "alpha", "Alpha", "papa", "quebec" },
*removed;

unsigned
size = sizeof(words) / sizeof(string);

removed = unique(words, words + size);

305

copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

removed = unique(words, words + size, CaseString());
copy(words, removed, ostream_iterator<string>(cout, " "));
cout << endl

<< "Trailing elements are:\n";
copy(removed, words + size, ostream_iterator<string>(cout, " "));
cout << endl;

return (0);
}

10.3.65 unique copy()

• Header file:

#include<algorithm>

• Function prototypes:

– OutputIterator unique copy(InputIterator first, InputIterator last, OutputIterator
result);

– OutputIterator unique copy(InputIterator first, InputIterator last, OutputIterator
Result, BinaryPredicate pred);

• Description:

– The first prototype: The elements in the range [first, last) are copied to the re-
sulting container, starting at result. Consecutively equal elements (according to the
operator==() of the underlying data type) are copied only once. The returned output
iterator points just beyond the last element that was copied.

– The second prototype: The elements in the range [first, last) are copied to the
resulting container, starting at result. Consecutive elements in the range pointed to
by [first, last) for which the binary predicate pred returns true are copied only
once. The returned output iterator points just beyond the last element that was copied.

• Example:

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include <functional>

class CaseString
{

public:
bool operator()(string const &first, string const &second) const

306

{
return (!strcasecmp(first.c_str(), second.c_str()));

}
};

int main()
{

string
words[] = {"oscar", "Alpha", "alpha", "alpha", "papa", "quebec" };

unsigned
size = sizeof(words) / sizeof(string);

vector<string>
remaining;

unique_copy(words, words + size,
back_inserter(remaining));

copy(remaining.begin(), remaining.end(),
ostream_iterator<string>(cout, " "));

cout << endl;

vector<string>
remaining2;

unique_copy(words, words + size,
back_inserter(remaining2), CaseString());

copy(remaining2.begin(), remaining2.end(),
ostream_iterator<string>(cout, " "));

cout << endl;

return (0);
}

10.3.66 upper bound()

• Header files:

#include<algorithm>

• Function prototypes:

– ForwardIterator upper bound(ForwardIterator first, ForwardIterator last, const
Type &value);

– ForwardIterator upper bound(ForwardIterator first, ForwardIterator last, const
Type &value, Compare comp);

• Description:

– The first prototype: The sorted elements implied by the iterator range [first, last)
are searched for the first element that that is greater than value. The returned iterator

307

marks the location in the sequence where value can be inserted without breaking the
sorted order of the elements. The operator<() of the underlying datatype is used. If
no such element is found, last is returned.

– The second prototype: The elements implied by the iterator range [first, last)
must have been sorted using the comp function (-object). Each element in the range is
compared to value using the comp function. An iterator to the first element for which
the binary predicate comp, applied to the elements of the range and value, returns true
is returned. If no such element is found, last is returned.

• Example:

#include <algorithm>
#include <iostream>
#include <functional>

int main()
{

int
ia[] = {10, 20, 30};

cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<
*upper_bound(ia, ia + 3, 15) << endl;

cout << "35 can be inserted after " <<
(upper_bound(ia, ia + 3, 35) == ia + 3 ?

"the last element" : "???") << endl;

iter_swap(ia, ia + 2);

cout << "Sequence: ";
copy(ia, ia + 3, ostream_iterator<int>(cout, " "));
cout << endl;

cout << "15 can be inserted before " <<
*upper_bound(ia, ia + 3, 15, greater<int>()) << endl;

cout << "35 can be inserted before " <<
(upper_bound(ia, ia + 3, 35, greater<int>()) == ia ?

"the first element " : "???") << endl;

return (0);
}

10.3.67 Heap algorithms

A heap is a form of binary tree represented as an array. In the standard heap, the key of an element
is greater or equal to the key of its children. This kind of heap is called a max heap.

A tree in which numbers are keys could be organized as follows:

This tree can be organized in an array as follows:

308

\

Figure 10.1: A binary tree representation of a heap

12, 11, 10, 8, 9, 7, 6, 1, 2, 4, 3, 5

Here, 12 is the top node. its children are 11 and 10, both less than 12. 11, in turn, has 8 and 9 as
its children, while the children of 10 are 7 and 6. 8 has 1 and 2 as its children, 9 has 4 and 3, and
finally, 7 has left child 5. 7 doesn’t have a right child, and 6 has no children.

Note that the left and right branches are not ordered: 8 is less than 9, but 7 is larger than 6.

The heap is formed by traversing a binary tree level-wise, starting from the top node. The top
node is 12, at the zeroth level. At the first level we find 11 and 10. At the second level 6, 7, 8 and
9 are found, etc.

Heaps can be created in containers supporting random access. So, a heap is not, for example,
constructed in a list. Heaps can be constructed from an (unsorted) array (using make heap()).
The top-element can be pruned from a heap, followed by reordering the heap (using pop heap()),
a new element can be added to the heap, followed by reordering the heap (using push heap()), and
the elements in a heap can be sorted (using sort heap(), which invalidates the heap, though).

The following subsections introduce the prototypes of the heap-algorithms, the final subsection
provides a small example in which the heap algorithms are used.

make heap()

• Header files:

#include<algorithm>

• Function prototypes:

– void make heap(RandomAccessIterator first, RandomAccessIterator last);

309

– void make heap(RandomAccessIterator first, RandomAccessIterator last, Compare
comp);

• Description:

– The first prototype: The elements in the range [first, last) are reordered to form a
max-heap, using the operator<() of the underlying data type.

– The second prototype: The elements in the range [first, last) are reordered to form
a heap, using the binary comparison function object comp to compare elements.

• Follow this link for a small example of a program using make heap().

pop heap()

• Header files:

#include<algorithm>

• Function prototypes:

– void pop heap(RandomAccessIterator first, RandomAccessIterator last);

– void pop heap(RandomAccessIterator first, RandomAccessIterator last, Compare
comp);

• Description:

– The first prototype: The first element in the range [first, last) is moved to last
- 1. Then, the elements in the range [first, last - 1) are reordered to form a
max-heap, using the operator<() of the underlying data type.

– The second prototype: The first element in the range [first, last) is moved to last
- 1. Then, the elements in the range [first, last - 1) are reordered to form a heap,
using the binary comparison function object comp to compare elements.

• Follow this link for a small example of a program using pop heap().

push heap()

• Header files:

#include<algorithm>

• Function prototypes:

– void push heap(RandomAccessIterator first, RandomAccessIterator last);

– void push heap(RandomAccessIterator first, RandomAccessIterator last, Compare
comp);

• Description:

310

– The first prototype: Assuming that the range [first, last - 2) contains a valid
heap, and the element at last - 1 contains an element to be added to the heap, the
elements in the range [first, last - 1) are reordered to form a max-heap, using the
operator<() of the underlying data type.

– The second prototype: Assuming that the range [first, last - 2) contains a valid
heap, and the element at last - 1 contains an element to be added to the heap, the
elements in the range [first, last - 1) are reordered to form a heap, using the
binary comparison function object comp to compare elements.

• Follow this link for a small example of a program using push heap().

sort heap()

• Header files:

#include<algorithm>

• Function prototypes:

– void sort heap(RandomAccessIterator first, RandomAccessIterator last);

– void sort heap(RandomAccessIterator first, RandomAccessIterator last, Compare
comp);

• Description:

– The first prototype: Assuming the elements in the range [first, last) form a valid
max-heap, the elements in the range [first, last) are sorted, using the operator<()
of the underlying data type.

– The second prototype: Assuming the elements in the range [first, last) form a valid
heap, the elements in the range [first, last) are sorted, using the binary comparison
function object comp to compare elements.

• Follow this link for a small example of a program using sort heap().

A small example using the heap algorithms

#include <algorithm>
#include <iostream>
#include <functional>

void show(int *ia, char const *header)
{

cout << header << ":\n";
copy(ia, ia + 20, ostream_iterator<int>(cout, " "));
cout << endl;

}

int main()
{

311

int
ia[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20};

make_heap(ia, ia + 20);
show(ia, "The values 1-20 in a max-heap");

pop_heap(ia, ia + 20);
show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20);
show(ia, "Adding 20 (at the end) to the heap again");

sort_heap(ia, ia + 20);
show(ia, "Sorting the elements in the heap");

make_heap(ia, ia + 20, greater<int>());
show(ia, "The values 1-20 in a heap, using > (and beyond too)");

pop_heap(ia, ia + 20, greater<int>());
show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20, greater<int>());
show(ia, "Adding 20 (at the end) to the heap again");

sort_heap(ia, ia + 20, greater<int>());
show(ia, "Sorting the elements in the heap");

return (0);
}

312

Chapter 11

The IO-stream Library

As an extension to the standard stream (FILE) approach well known from the C programming
language, C++ offers an I/O library based on class concepts.

Earlier (in chapter 3) we’ve already seen examples of the use of the C++ I/O library. In this
chapter we’ll cover the library to a larger extent.

Apart from defining the insertion (<<) and extraction(>>) operators, the use of the C++ I/O
library offers the additional advantage of type safety in all kinds of standard situations. Objects (or
plain values) are inserted into the iostreams. Compare this to the situation commonly encountered
in C where the fprintf() function is used to indicate by a format string what kind of value to
expect where. Compared to this latter situation C++’s iostream approach uses the objects where
their values should appear, as in

cout << "There were " << nMaidens << " virgins present\n";

The compiler notices the type of the nMaidens variable, inserting its proper value at the appropriate
place in the sentence inserted into the cout iostream.

Compare this to the situation encountered in C. Although C compilers are getting smarter and
smarter over the years, and although a well-designed C compiler may warn you for a mismatch
between a format specifier and the type of a variable encountered in the corresponding position of
the argument list of a printf() statement, it can’t do much more than warn you. The type safety
seen in C++ prevents you from making type mismatches, as there are no types to match.

Apart from this, the iostreams offer more or less the same set of possibilities as the standard
streams of C: files can be opened, closed, positioned, read, written, etc.. The remainder of this
chapter presents an overview.

In general, input is managed by istream objects, having the derived classes ifstream for files,
and istrstream for strings (character arrays), whereas output is managed by ostream objects,
having the derived classes ofstream for files and ostrstream for strings.

If a file should allow both reading from and writing to, a fstream object (c.q. strstream object)
should be used.

Finally, in order to use the iostream facilities, the header file iostream must be included in source
files using these facilities. When ifstream, ofstream or fstream objects are to be used, the

313

fstream header file, which in turn includes iostream, must be included. An analogous situation
holds true for string streams. Here the header file strstream is required.

11.1 Streams: insertion (<<) and extraction (>>)

The insertion and extraction operators are used to write information to or read information from,
respectively, ostream and istream objects (and to all classes derived from these classes). By default,
white space is skipped when the insertion and extraction operators are used.

11.1.1 The insertion operator <<

The insertion operator (<<) points to the ostream object wherein the information is inserted.
The extraction operator points to the object receiving the information obtained from the istream
object.

As an example, the << operator as defined with the class ostream is an overloaded operator
having as prototype, e.g.,

ostream &ostream::operator <<(char const ∗text)

The normal associativity of the <<-operator remains unaltered, so when a statement like

(cout << ”hello ” << ”world”)

is encountered, the leftmost two operands are evaluated first (cout << "hello "), and a ostream
& object, which is actually the same cout object. From here, the statement is reduced to

(cout << ”world”)

and the second string is inserted into cout.

Since the << operator has a lot of (overloaded) variants, many types of variables can be inserted
into ostream objects. There is an overloaded <<-operator expecting an int, a double, a pointer,
etc. etc.. For every part of the information that is inserted into the stream the operator returns the
ostream object into which the information so far was inserted, and the next part of the information
to be inserted is devoured.

As we have seen in the discussion of friends, even new classes can contain an overloaded <<
operator to be used with ostream objects (see sections 13.3 and 13.3.1).

11.1.2 The extraction operator >>

With the extraction operator, a similar situation holds true as with the insertion operator, the
extraction operator operating comparably to the scanf() function. I.e., white space characters
are skipped. Also, the operator doesn’t expect pointers to variables that should be given new values,
but references (with the exception of the char ∗, but string variables are used as references).

Consider the following code:

314

int
i1,
i2;

char
c;

cin >> i1 >> i2; // see (1)

while (cin >> c && c != ’.’) // see (2)
process(c);

char // see (3)
buffer[80];

// see (3)
while (cin >> buffer)

process(buffer);

This example shows several characteristics of the extraction operator worth noting. Assume the
input consists of the following lines:

125
22
h e l l o
w o r l d .
this example shows
that we’re not yet done
with C++

1. In the first part of the example two int values are extracted from the input: these values are
assigned, respectively, to i1 and i2. White-space (newlines, spaces, tabs) is skipped, and
the values 125 and 22 are assigned to i1 and i2.

If the assignment fails, e.g., when there are no numbers to be converted, the result of the
extraction operator evaluates to a zero result, which can be used for testing purposes, as in:

if (!(cin >> i1))

2. In the second part, characters are read. However, white space is skipped, so the characters
of the words hello and world are produced by cin, but the blanks that appear in between
are not.

Furthermore, the final ’.’ is not processed, since that one’s used as a sentinel: the delimiter
to end the while-loop, when the extraction is still successful.

3. In the third part, the argument of the extraction operator is yet another type of variable:
when a char ∗ is passed, white-space delimited strings are extracted. So, here the words
this, example, shows, that, we’re, not, yet, done, with and C++ are returned.

Then, the end of the information is reached. This has two consequences: First, the while-
loop terminates. Second, an empty string is copied into the buffer variable.

315

11.2 Four standard iostreams

In C three standard files are available: stdin, the standard input stream, normally connected to
the keyboard, stdout, the (buffered) standard output stream, normally connected to the screen,
and stderr, the (unbuffered) standard error stream, normally not redirected, and also connected
to the screen.

In C++ comparable iostreams are

• cin, an istream object from which information can be extracted. This stream is normally
connected to the keyboard.

• cout, an ostream object, into which information can be inserted. This stream is normally
connected to the screen.

• cerr, an ostream object, into which information can be inserted. This stream is normally
connected to the screen. Insertions into that stream are unbuffered.

• clog, an ostream object, comparable to cerr, but using buffered insertions. Again, this
stream is normally connected to the screen.

11.3 Files and Strings in general

In order to be able to create fstream objects, the header file fstream must be included. Files to
read are accessed through ifstream objects, files to write are accessed through ofstream objects.
Files may be accessed for reading and writing as well. The general fstream object is used for that
purpose.

String stream objects can be used to read or write objects to streams in memory, allowing the use
of, e.g., the insertion and extraction operators on these objects. To use the string stream objects
istrstream, ostrstream or strstream the header file strstream must be included. Note that
a strstream object is not a string object. A strstream object should be approached like a
fstream object, not as a char ∗ object having special characteristics.

11.3.1 String stream objects: a summary

Strings can be processed similarly to iostream objects, if objects of the class istrstream,
ostrstream or strstream are constructed. Objects of these classes can be used to, respectively,
read information from memory, write information to memory, or both.

These objects can be created by constructors expecting the address of a block of memory (and its
size) as its argument. It is also possible to let the objects to the memory management themselves.

Let’s go through some examples. To write something into a block of memory using a ostrstream
object, the following code could be used:

char
buffer[100];

ostrstream

316

os(buffer, 100); // construct the ostrstream object

// fill ’buffer’ with a well-known text
os << "Hello world " << endl << ends;

cout << os.str(); // display the string

Note the final ends that is appended: When an ascii-z string is inserted into an ostrstream object
it will not automatically write a trailing ascii-z sentinel (comparable to the way ostream objects
behave). In order to append a terminating ascii-z, the symbolic value ends can be used. After
inserting an ends further insertions into the ostrstream object will succeed, but they will not
normally be visible:

char
buffer[100];

ostrstream
os(buffer, 100); // construct the ostrstream object

os << "Hello world " << ends;

os << " More text " << ends;

cout << os.str() << endl; // this only shows ’Hello world’

The information, however, is stored in the string, as shown by the following example:

void bytes(ostrstream &str)
{

char
*cp = str.str();

cout << str.pcount() << ": ";

for (int idx = 0; idx < 10; ++idx)
cout << setw(3) << static_cast<int>(cp[idx]) << " ";

cout << endl;
}

int main()
{

char buffer[10];

memset(buffer, 10, 10);

ostrstream
str(buffer, 100);

bytes(str);

317

str << "A";

bytes(str);

str << "B" << ends;

bytes(str);

str << "C";

bytes(str);

return (0);
}

This little program produces the following output:

0: 10 10 10 10 10 10 10 10 10 10
1: 65 10 10 10 10 10 10 10 10 10
3: 65 66 0 10 10 10 10 10 10 10
4: 65 66 0 67 10 10 10 10 10 10

This output shows that all insertions succeed, but the ends writes an ascii-z character. This
effectively creating an ascii-z string, preventing the display of the information beyond when the
contents of the ostrstream object are inserted into cout.

Furthermore, note the use of the memberfunction str(), returning the string the ostrstream
object operates on. Using str() the existence of buffer can be hidden from the users of the
ostrstream object.

When an ostrstream object is created without an external memory buffer (e.g., ‘ostrstream
str;’ is defined), the ostrstream object allocates the required memory itself. In that case using the
str() memberfunction will result in the freezing of the ostrstream object: it will no longer create
room for new characters when additional text is inserted into the object, and, most important, it
will not delete allocated memory when the object itself is deleted.

To prevent memory leakage here, the program using the str() memberfunction can take two
actions:

• First, as str() returns a char ∗ rather than a char const ∗ the caller of str() may consider
the returned string its own. Consequently, the caller of str() is responsible for deleting the
string returned by str(). E.g.,

ostrstram
ostr;

ostr << "Hello world" << ends;

318

char
*cp = ostr.gets(); // freezes ostr

cout << cp; // use ostr’s string
delete cp; // caller deletes ostr’s string

• Alternatively, the string can be unfrozen, after which insertions are again possible. Now, when
the ostrstream object is destroyed the ostrstream’s internally stored string is destroyed
too. E.g.,

ostrstram
ostr;

ostr << "Hello world" << ends;

char
*cp = ostr.gets(); // freezes ostr

cout << cp; // use ostr’s string

ostr.freeze(0); // ostr will now delete its own string, cp
// should leave the memory it points to alone.

The following memberfunctions are available for strstream objects:

• istrstream::istrstream(const char ∗str [, int size]): This constructor creates an
input string class istrstream object, associating it with an existing buffer starting at str,
of size size. If size is not specified, the buffer is treated as a null-terminated string.

• ostrstream::ostrstream(): This constructor creates a new stream for output to a dynam-
ically managed string, which will grow as needed.

• ostrstream::ostrstream(char ∗str, int size [, int mode]): This constructor creates
a new stream for output to a statically defined string of length size, starting at str. The mode
parameter may optionally be specified as one of the iostream modes. By default ios::out
is used.

• int ostrstream::pcount(): returns the current length of the string associated with this
ostrstream object.

• char ∗ostrstream::str(): The memberfunction returns a pointer to the string managed
by this ostrstream object. This function implies freeze(), see below:

• void ostrstream::freeze ([int n]): If n is nonzero (the default), the string associated
with this ostrstream object must not change dynamically anymore. While frozen, it will
not be reallocated if it needs more space, and it will not be deallocated when the ostrstream
object is destroyed. freeze(1) can be used to refer to the string as a pointer after creating
it via ostrstream facilities. freeze(0) can be used to unfreeze (thaw ?) the object again.
Following freeze(0) the ostrstream object will delete memory it allocated when the object
itself is deleted.

319

• int ostrstream::frozen(): This member can be used to test whether freeze(1) is in
effect for this string.

In order to use the strstream classes, the header file strstream must be included.

11.3.2 Writing streams

In order to be able to write to a file an ofstream object must be created, in order to be able to
write to a string stream an ostrstream object must be created.

To open a file to write to, the ofstream constructor receives the name of the file to be opened:

ofstream out("outfile");

By default this will result in the creation of the file, and information inserted into it will be written
from the beginning of the file. Actually, this corresponds to the creation of the ofstream object
in standard output mode, for which the enumeration value ios::out could have been provided as
well:

ofstream out("outfile", ios::out);

Alternatively, instead of (re)writing the file, the ofstream object could be created in the append
mode, using the ios::app mode indicator:

ofstream out("outfile", ios::app);

Normally, information will be inserted into the ofstream object using the insertion operator <<,
in the way it is used with the standard streams like cout, e.g.:

out << "Information inserted into the ’out’ stream\n";

Just like the fopen() function of C may fail, the construction of the ofstream object might not
succeed. When an attempt is made to create an ofstream object, it is a good idea to test the
successful construction. The ofstream object returns 0 if its construction failed. This value can
be used in tests, and the code can throw an exception (see chapter 12) or it can handle the failure
itself, as in the following code:

#include <iostream>
#include <fstream>

int main()
{

ofstream
out("/"); // creating ’out’ fails

if (!out)

320

{
cerr << "creating ofstream object failed\n";
exit(1);

}
}

Alternatively, a ofstream object may be constructed first, and opened later:

ofstream
out;

out.open("outfile");

Here, the return value of open() may be inspected to see whether the stream has been successfully
opened or not.

Analogous to an ofstream object, an ostrstream object can be created. Here no filename is
required. E.g.,

ostrstream text;

opens an empty ostrstream object. There is no open() member function for ostrstream objects.

An ostrstream object may be initialized by an ascii-z string. E.g.,

ostrstream text("hello world");

These strings expand dynamically when more information is inserted into them. However, the
inserted information is not automatically ascii-z terminated. In order to append an ascii-z to the
information inserted into an ostrstream object an ends can be inserted:

text << ", and there is more." << ends;

The information that is stored in a ostrstream object can be retrieved from its str() member,
which returns a char const ∗, but realize that this will ‘freeze’ the object, see section 11.3.1. The
number of characters returned by str() is obtained from the pcount() member, returning an int.

11.3.3 Reading streams

In order to be able to read from a file an ifstream object must be created, in order to be able to
read from a string stream an istrstream object must be created.

To open a file to read from, the ifstream constructor receives the name of the file to be opened:

ifstream in("infile");

321

By default this will result in the opening of the file for reading. The file must exist for the ifstream
object construction to succeed. Instead of the shorthand form to open a file for reading, and explicit
ios flag may be used as well:

ifstream in("infile", ios::in);

As with the ofstream objects, ifstream objects may be constructed first, and opened later:

ifstream
ifstr;

ifstr.open("infile");

Normally, information will be extracted from the ifstream object using the extraction operator
>>, in the way it is used with the standard stream cin, e.g.:

in >> x >> y;

By default, the extraction operator skips blanks: between words, between characters, between
numbers, etc.. Consequently, if the input consists of the following information:

12
13
a b
hello world

then the next code fragment will read 12 and 13 into x and y, will then return the characters a
and b, and will finally read hello and world into the character array buffer:

int
x,
y;

char
c,
buffer[10];

in >> x >> y >> c >> c >> buffer >> buffer;

Notice that no format specifiers are necessary. The type of the variables receiving the extracted
information determines the nature of the extraction: integer values for ints, white space delimited
strings for char []s, etc..

Just like the fopen() function of C may fail, the construction of the ifstream object might not
succeed. When an attempt is made to create an ifstream object, it is a good idea to test the

322

successful construction. The ifstream object returns 0 if its construction failed. This value can
be used in tests, and the code can throw an exception (see section 12) or it can handle the failure
itself, as in the following code:

#include <iostream>
#include <fstream>

int main()
{

ifstream
in(""); // creating ’in’ fails

if (!in)
{

cerr << "creating ifstream object failed\n";
exit(1);

}
}

Analogous to an ifstream object, an istrstream object can be created. Here no filename is
required. E.g.,

istrstream text("hello world");

opens an istrstream object that is initialized by an ascii-z string.

11.3.4 Reading and writing streams

In order to be able to read and write to a file a fstream object must be created. To read and write
to a strstream a strstream object must be created. Again, the constructor receives the name of
the file to be opened:

fstream inout("infile", ios::in | ios::out);

Note the use of the ios constants ios::in and ios::out, indicating that the file must be opened
both for reading and writing. Multiple mode indicators may be used, concatenated by the binary
or operator ’|’. Alternatively, instead of ios::out, ios::app might have been used, in which case
writing will always be done at the end of the file.

Under DOS-like operating systems, which use the multiple character \r\n sentinels to separate
lines in textfiles the flag ios::binary (or ios::bin) is required for processing binary files to ensure
that \r\n combinations are processed as two characters.

With fstream objects, the ios::out will result in the creation of the file, if the file doesn’t exist,
and if ios::out is the only mode specification of the file. If the mode ios::in is given as well,
then the file is created only if it doesn’t exist. So, we have the following possibilities:

323

Specified Filemode

File: ios::out ios::in | ios::out

exists File is rewritten File is used as found

doesn’t exist File is created File is created

Once a file has been opened in read and write mode, the << operator may be used to write to the
file, while the >> operator may be used to read from the file. These operations may be performed
in random order. The following fragment will read a blank-delimited word from the file, will write
a string to the file, just beyond the point where the string just read terminated, and will read
another string: just beyond the location where the string just written ended:

...
fstream

f("filename", ios::in | ios::out);
char

buffer[80]; // for now assume this
// is long enough

f >> buffer; // read the first word

// write a well known text
f << "hello world";

f >> buffer; // and read again

Since the operators << and >> can apparently be used with fstream objects, you might wonder
whether a series of << and >> operators in one statement might be possible. After all, f >>
buffer should produce a fstream &, shouldn’t it?

The answer is: it doesn’t. The compiler casts the fstream object into an ifstream object in
combination with the extraction operator, and into an ofstream object in combination with the
insertion operator. Consequently, a statement like

f >> buffer << "grandpa" >> buffer;

results in a compiler error like

no match for ‘operator <<(class istream, char[8])’

Since the compiler complains about the istream class, the fstream object is apparently considered
an ifstream object in combination with the extraction operator.

324

Of course, random insertions and extractions are hardly used. Generally, insertions and extrac-
tions take place at specific locations in the file. In those cases, the position where the insertion or
extraction must take place can be controlled and monitored by the seekg() and tellg() mem-
berfunctions.

The memberfunction tellg() returns the current offsetposition of the stream for which it is called.

The memberfunction seekg() expects two arguments, the second one having a default value:

seekg(long offset, seek dir position = ios::beg);

The first argument is a long offset with respect to a seek dir postion. The seek dir position
may be one of:

• ios::beg: add offset to the begin of file position. Negative offsets result in an error
condition, which must be cleared before any further operations on the file will succeed.

• ios::end: add offset to the end of file position. Positive offsets result in the insertion of
as many padding (char)0 characters as necessary to reach the intended offset.

• ios::cur: add offset to the current file position. If adding the offset to the current
position would result in a position before ios::beg, then, again, an error condition results.
If the position would be beyond ios::end, then extra (char)0 characters are supplied.

Error conditions (see also section 11.3.6) occurring due to, e.g., reading beyond end of file, reaching
end of file, or positioning before begin of file, can be cleared using the clear() memberfunction.
Following clear() processing continues. E.g.,

...
fstream

f("filename", ios::in | ios::out);
char

buffer[80]; // for now assume this
// is long enough

f.seekg(-10); // this fails, but...
f.clear(); // processing f continues

f >> buffer; // read the first word

Strstream objects can be given flags as well. The ostrstream object may be constructed by the
following constructor:

ostrstream text(initext, size, flags);

where initext is an ascii-z terminated initialization text, size is the size of the internal buffer
of the strstream object, and flags is a set of ios flags. The last and last two arguments are
optional. If size is specified, the internal buffer will not grow dynamically, but will be given a
static size of size bytes.

325

11.3.5 Special functions

Apart from the functions discussed so far, and the extraction and assignment operators, several
other functions are available for stream objects which are worthwhile mentioning.

• close(): this function can be used to close a stream explicitly. When an o(f)stream is
closed, any information remaining in its internal buffer is flushed automatically.

• gcount(): this function returns the number of characters read by getline() (described
below) or read() (described below).

• flush(): this function flushed the output of the ostream object.

• get(): returns the next character as an int: End-of-file is returned as EOF, a value which
can’t be a character.

• get(char c): this function reads a char from an istream object, and returns the istream
object for which the function was called.
The get() and get(char c) functions read separate characters, and will not skip whitespace.

• getline(char ∗buffer, int size, int delimiter = ’\n’): this function reads up to
size - 1 characters or until delimiter was read into buffer, and appends a final ascii-z.
The delimiter is not entered into buffer. The function changes the state of the output-
stream to fail if a line was not terminated by the delimiter. Since this situation will prevent
the function from reading more information, the function clear must be called in these
circumstances to allow the function to produce more information. The frame for reading
lines from an istream object is, therefore:

#include <iostream>

int main()
{

char
buffer[100];

while (1)
{

cin.getline(buffer, 100);
cout << buffer;
if (cin.eof())

return(0);

if (cin.good())
cout << endl;

else
cin.clear();

}
}

A disadvantage of getline() might be that it requires a buffer of a predetermined size.
Alternatively (and preferably) the function

istream &getline(istream &input, string &str, char delim);

326

can be used, which reads the next line from input into str. By default, lines are read until
an end of line is seen. By specifying delim another line delimiter may be used. The delimiter
is not included in the str object.

• istream &ignore([int n] [, int delimiter]). This function skips over a certain num-
ber of characters, but not beyond the delimiter character. By default, the delimiter
character is ‘end of file’ (EOF): the function ignore() will not skip beyond EOF. If the num-
ber of characters isn’t specified, one character will be skipped.

• int peek(). This function returns the character that will be read with the next call to the
function get().

• istream &putback(char c). This function attempts to put character c back into the
stream. The most recently read character character may always be returned into the stream.
If the character can’t be returned, EOF is returned. This function is the analogue of C’s
ungetc() function.

• int opfx(). This function should be called before any further processing. If the ostream
object is in the state ‘good’, flush() is called for that object, and 1 is returned. Otherwise, 0
is returned. The p in opfx() indicates prefix: the function should be called before processing
the ostream object.

• int osfx(): This function is the suffix equivalent for opfx(). called at the conclusion of
any processing. All the ostream methods end by calling osfx().
If the unitbuf flag is set for this stream, osfx() flushes any buffered output for it, while any
output buffered for the C output streams stdout and stderr files is flushed if the stdio flag
was set for this stream.

• istream &read(char ∗buffer, int size): this function reads size bytes from the istream
object calling this memberfunction into buffer.

• ostream &write(char const ∗str, int length): writes length characters in str to the
ostream object for which it was called, and it returns the ostream object.

11.3.6 Good, bad, and ...: IOStream Condition States

Operations on streams may succeed and they may fail for several reasons. Whenever an operation
fails, further read and write operations on the stream are suspended. Furtunately, it is possible to
clear these error condition, so that a program can repair the problem, instead of having to abort.

Several condition member functions of the fstreams exist to manipulate or determine the states
of the stream:

• bad(): this member function returns a non-zero value when an invalid operation has been
requested, like seeking before the begin of file position.

• eof(): this member function returns a non-zero value when the stream has reached end of
file (EOF).

• fail(): this member function returns a non-zero value when eof() or bad() returns a
non-zero value.

Note that once one of these error conditions are raised, further processing of the stream is sus-
pended. The member function good(), on the other hand, returns a non-zero value when there are

327

no error conditions. Alternatively, the operator ’!’ could be used for that in combination with
fail(). So good() and !fail() return identical logical values.

A subtlety is the following: Assume a stream is constructed, but not attached to an actual file.
E.g., the statement ifstream instream creates the stream object, but doesn’t assign it to a
file. However, if we next check it’s status through good() this member will return a non-zero
value. The ‘good’ status here indicates that the stream object has been cleanly constructed.
It doesn’t mean the file is also open. A direct test for that can be performed by inspecting
instream.rdbuf()->is open. If non-zero, the stream is open.

When an error condition has occurred (i.e., fail() returns a non-zero value), and can be repaired,
then the member function clear() should be called to clear the error status of the file.

11.3.7 Formatting

While the insertion and extraction operators provide elegant ways to read information from and
write information to iostreams, there are situations in which special formatting is required. For-
matting may involve the control of the width of an output field or an input buffer or the form (e.g.,
the radix) in which a value is displayed. The functions (v)form() and (v)scan() can be used for
special formatting. Although these latter functions are not available in all implementations, they
are available with the egcs run-time system.

Apart from these memberfunctions, memberfunctions are available for defining the precision and
the way numbers are displayed. Apart from using members, manipulators exist for controlling
the display form and the width of output and input elements. Different from member functions,
manipulators are part of insertion or extraction statements.

The (v)form() and (v)scan() members

To format information to be inserted into a stream the member form() is available:

ostream& form(const char ∗format, ...);

Note that this is a member-function, returning a reference to an ostream object. Therefore, it can
be used in combination with, e.g., the insertion operator:

cout.form("Hello %s", "world") << endl;

produces a well known sentence.

The memberfunction form() is the analogue of C’s fprintf() function. When variadic functions
are constructed in which information must be inserted into a stream, the memberfunction vform()
can be used, being the analogue of vfprintf().

To scan information from a stream, the memberfunction scan() can be used, which is the analogue
of C’s fscanf() function. Similarly to vfscanf(), the memberfunction vscan() can be used in
variadic functions.

328

Manipulators: dec, hex, oct and other manipulators

The iostream objects maintain format states controlling the default formatting of values. The for-
mat states can be controlled by memberfunctions and by manipulators. Manipulators are inserted
into the stream, the memberfunctions are used by themselves.

The following manipulators are available:

• dec, hex, oct: These manipulators enforce the display of integral numbers in, respectively,
decimal, hexadecimal and octal format. The default conversion is decimal. The conversion
takes effect on information inserted into the stream after processing the manipulators. So, a
statement like:

cout << 16 << ", " << hex << 16 << ", " << oct << 16;

will produce the output

16, 10, 20

• setbase(int b): This manipulator can be used to display integral values using the base 8,
10 or 16. It can be used instead of oct, dec, hex in situations where the base of integral
values is parameterized.

• setfill(int ch): This manipulator defines the filling character in situations where the
values of numbers are too small to fill the width that is used to display these values. By
default the blank space is used.

• setprecision(int width): This manipulator can be used to set the precision in which a
float or double is displayed. In order to use manipulators requiring arguments the header
file iomanip must be included.

• setw(int width): This manipulator expects as its argument the width of the field that is
inserted or extracted next. It can be used as manipulator for insertion, where it defines the
maximum number of characters that are displayed for the field, and it can be used with
extraction, where it defines the maximum number of characters that are inserted into an
array.

For example, to insert 20 characters into cout, use:

cout << setw(20) << 8 << endl;

To prevent array-bounds overflow when extracting from cin, setw() can be used as well:

cin >> setw(sizeof(array)) >> array;

A nice feature here is that a long string appearing at cin is split into substrings of at most
sizeof(array) - 1 characters, and an ascii-z is appended. Notes:

– setw() is valid only for the next field. It does not act like e.g., hex which changes the
general state of the output stream for displaying numbers.

– When setw(sizeof(someArray)) is used, make sure that someArray really is an array,
and not a pointer to an array: the size of a pointer, being 2 or 4 bytes, is usually not
the size of the array that it points to....

– In order to use setw() the header file iomanip must be included.

329

Setting the precision: the member precision()

The function precision() is used to define the precision of the display of floating point numbers.
The function expects the number of digits (not counting the decimal point or the minus sign) that
are to be displayed as its argument. For example,

cout.precision(4);
cout << sqrt(2) << endl;
cout.precision(6);
cout << -sqrt(2) << endl;

results in the following output:

1.414
-1.41421

When used without argument, precision() returns the actual precision value:

cout.precision(4);
cout << cout.precision() << ", " << sqrt(2) << endl;

Note that precision() is not a manipulator, but a memberfunction. Therefore, cout.precision()
rather than precision() is inserted into the stream.

(Un)Setting display flags: the member (un)setf()

The memberfunction setf() is used to define the way numbers are displayed. It expects one or
two arguments, all flags of the iostream class. In the following examples, cout is used, but other
ostream objects might have been used as well:

• To display the numeric base of integral values, use

cout.setf(ios::showbase)

This results in no prefix for decimal values, 0x for hexadecimal values, 0 for octal values. For
example:

cout.setf(ios::showbase);
cout << 16 << ", " << hex << 16 << ", " << oct << 16 << endl;

results in:

330

16, 0x10, 020

• To display a trailing decimal point and trailing decimal zeros when real numbers are displayed,
use

cout.setf(ios::showpoint)

For example:

cout.setf(ios::showpoint);
cout << 16.0 << ", " << 16.1 << ", " << 16 << endl;

results in:

16.0000, 16.1000, 16

Note that the last 16 is an integral rather than a real number, and is not given a decimal
point.

If ios::showpoint is not used, then trailing zeros are discarded. If the decimal part is zero,
then the decimal point is discarded as well.

• Comparable to the dec, hex and oct manipulators

cout.setf(ios::dec, ios::basefield);
cout.setf(ios::hex, ios::basefield);

or

cout.setf(ios::oct, ios::basefield);

can be used.

• To control the way real numbers are displayed cout.setf(ios::fixed, ios::floatfield)
or cout.setf(ios::scientific, ios::floatfield) can be used. These settings result
in, respectively, a fixed value display or a scientific (power of 10) display of numbers. For
example,

cout.setf(ios::fixed, ios::floatfield);
cout << sqrt(200) << endl;
cout.setf(ios::scientific, ios::floatfield);
cout << sqrt(200) << endl;

results in

14.142136
1.414214e+01

331

• ios::left: This format state is used to left-adjust the display of values for which the setw()
manipulator (see below) is used. The format state can be set using the setf() member
function, and it can be unset using the unsetf() member function. By default values are
right-adjusted.

• ios::internal: This format state will add the fill-characters (blanks by default) between
the minus sign of negative numbers and the value itself.

With istream objects the flag ios::skipws can be used to control the handling of whitespace
characters when characters are extracted. Leading white space characters of numerical values are
skipped when istreamObject.unsetf(ios::skipws) has been specified, but otherwise they must
be read explicitly. Reading a char ∗ or string variable in this situation will only succeed if the
first character to be read isn’t a white-space character. The following small program can be used
to illustrate the effects of unsetting ios::skipws:

#include <iostream>
#include <string>

int main()
{

string
buffer;

int
i;

char
c;

cin.unsetf(ios::skipws);

cin >> i; // skips leading ws
cin >> buffer; // doesn’t skip leading ws.

cout << "got " << i << " and " << buffer << endl;

while (cin >> c) // reads individual chars, if the previous
cout << "got ’" << c << "’\n"; // extraction succeeded.

return (0);
}

Summarizing:

• setf(ios::showbase) is used to display the numeric base of integral values,

• setf(ios::showpoint) is used to display the trailing decimal point and trailing zeros of real
numbers

• setf(ios::dec, ios::basefield), setf(ios::hex, ios::basefield)and setf(ios::oct,
ios::basefield) can be used instead of the dec, hex and oct manipulators.

• cout.setf(ios::scientific, ios::floatfield)and cout.setf(ios::fixed, ios::floatfield)
can be used to obtain a fixed or scientific (power of 10) display of real values.

332

• setf(ios::left) is used to left-adjust values in the width of their fields

• setf(ios::internal) is used to left-adjust the minus sign of negative values (while the
values themselves are right adjusted).

• ios::skipws is used to control the handling of white space characters by the extraction
operator.

To unset flags, the function unsetf() can be used.

11.3.8 Constructing manipulators

Using a construction like cout << hex << 13 << endl the value 13 is displayed in hexadecimal
format. One may wonder by what magic the hex manipulator accomplishes this. In this section
the construction of manipulators like hex is covered.

Actually the construction of a manipulator is rather simple. To start, a definition of the manipu-
lator is needed. Let’s assume we want to create a manipulator w10 which will set the field width
of the next field to be written to the ostream object to 10. This manipulator is constructed as a
function. The w10 function will have to know about the ostream object in which the width must
be set. By providing the function with a ostream & parameter, it obtains this knowledge. Now
that the function knows about the ostream object we’re referring to, it can set the width in that
object.

Furthermore, it must be possible to use the manipulator in a <<-sequence. This implies that the
return value of the manipulator must be a reference to an ostream object also.

From the above considerations we’re now able to construct our w10 function:

#include <iostream>
#include <iomanip>

ostream &w10(ostream &str)
{

return (str << setw(10));
}

The w10 function can of course be used in a ‘stand alone’ mode, but it can also be used as a
manipulator. E.g.,

#include <iostream>
#include <iomanip>

extern ostream &w10(ostream &str);

int main()
{

w10(cout) << 3 << " ships sailed to America" << endl;
cout << "And " << w10 << 3 << " other ships sailed too." << endl;

333

}

The w10 function can be used as manipulator because the class ostream has an overloaded
operator<< accepting a pointer to a function that takes an ostream & and returns an ostream
&. Its definition is:

ostream& operator<<(ostream & (*func)(ostream &str))
{

return ((*func)(*this));
}

334

Chapter 12

Exceptions

In C there are several ways to have a program react to situations which break the normal unham-
pered flow of the program:

• The function may notice the abnormality and issue a message. This is probably the least
disastrous reaction a program may show.

• The function in which the abnormality is observed may decide to stop its intended task,
returning an errorcode to its caller. This is a great example of postponing decisions: now the
calling function is faced with a problem. Of course the calling function may act similarly, by
passing the error-code up to its caller.

• The function may decide that things are going out of hand, and may call exit() to terminate
the program completely. A tough way to handle a problem.

• The function may use a combination of the functions setjmp() and longjmp()) to enforce
non-local exits. This mechanism implements a kind of goto jump, allowing the program to
proceed at an outer section, skipping the intermediate levels which would have to be visited
if a series of returns from nested functions would have been used.

In C++ all the above ways to handle flow-breaking situations are still available. However, the
last way, using setjmp() and longjmp() isn’t often seen in C++ (or even in C) programs, due
to the fact that the program flow is completely disrupted.

In C++ the alternative to using setjmp() and longjmp() are exceptions. Exceptions are a
mechanism by which a controlled non-local exit is realized within the context of a C++ program,
without the disadvantages of longjmp() and setjmp().

Exceptions are the proper way to bail out of a situation which cannot be handled easily by a
function itself, but which are not disastrous enough for the program to terminate completely.
Also, exceptions provide a flexible layer of flow control between the short-range return and the
crude exit().

In this chapter the use of exceptions and their syntax will be discussed. First an example of the
different impacts exceptions and setjmp() and longjmp() have on the program will be given.
Then the discussion will dig into the formalities of the use of exceptions.

335

12.1 Using exceptions: an outline

Using exceptions, it involves the following syntactical elements:

• try. The try-block surrounds statements in which exceptions may be generated (the parlance
is for exceptions to be thrown). Example:

try
{

// statements in which
// exceptions may be thrown

}

• throw: followed by an expression of a certain type, throws the expressionvalue as an ex-
ception. The throw statement should be executed somewhere within the try-block: either
directly or from within a function called directly or indirectly from the try-block. Example:

throw "This generates a char * exception";

• catch: Immediately following the try-block, the catch-block receives the thrown exceptions.
Example of a catch-block receiving char ∗ exceptions:

catch (char *message)
{

// statements in which
// the thrown char * exceptions
// are processed

}

12.2 An example using exceptions

In the next two sections the same basic program will be used. The program uses two classes, Outer
and Inner. An Outer object is created in the main() function, and the function Outer::fun()
is called. Then, in the Outer::fun() function an Inner object is allocated. After allocating the
Inner object, its memberfunction fun() is called.

That’s about it. The function Outer::fun() terminates, and the destructor of the Inner object
is called. Then the program terminates and the destructor of the Outer object is called.

Here is the basic program:

#include <iostream.h>

class Inner

336

{
public:

Inner();
~Inner();
void fun();

};

class Outer
{

public:
Outer();
~Outer();
void fun();

private:
};

Inner::Inner()
{

cout << "Inner constructor\n";
}

Inner::~Inner()
{

cout << "Inner destructor\n";
}

void Inner::fun()
{

cout << "Inner fun\n";
}

Outer::Outer()
{

cout << "Outer constructor\n";
}

Outer::~Outer()
{

cout << "Outer destructor\n";
}

void Outer::fun()
{

Inner
in;

cout << "Outer fun\n";
in.fun();

}

int main()
{

Outer

337

out;

out.fun();
}

This program can be compiled and run, producing the following output:

Outer constructor
Inner constructor
Outer fun
Inner fun
Inner destructor
Outer destructor

This output is completely as expected, and it is exactly what we want: the destructors are called
in their correct order, reversing the calling sequence of the constructors.

Now let’s focus our attention on two variants, in which we simulate a non-fatal disastrous event
to take place in the Inner::fun() function, which is supposedly handled somewhere at the end of
the function main(). We’ll consider two variants. The first variant will try to handle this situation
using setjmp() and longjmp(), the second variant will try to handle this situation using C++’s
exception mechanism.

12.2.1 No exceptions: the setjmp() and longjmp() approach

In order to use setjmp() and longjmp() the basic program from section 12.2 is slightly modified
to contain a variable jmp buf jmpBuf. The function Inner::fun() now calls longjmp, simulating
a disastrous event, to be handled at the end of the function main(). In main() we see the standard
code defining the target location of the long jump, using the function setjmp(). A zero returnvalue
indicates the initialization of the jmp buf variable, upon which the Outer::fun() function is called.
This situation represents the ‘normal flow’.

To complete the simulation, the returnvalue of the program is zero if only we would have been able
to return from the function Outer::fun() normally. However, as we know, this won’t happen.
Inner:fun() calls longjmp(), returning to the setjmp() function, which (at this time) will not
return a zero returnvalue. Hence, after calling Inner::fun() from Outer::fun() the program
proceeds beyond the if-statement in the main() function, and the program terminates with the
returnvalue 1.

Now try to follow these steps by studying the next program source, modified after the basic program
given in section 12.2:

#include <iostream.h>
#include <setjmp.h>

338

#include <stdlib.h>

class Inner
{

public:
Inner();
~Inner();
void fun();

};

class Outer
{

public:
Outer();
~Outer();
void fun();

};

jmp_buf
jmpBuf;

Inner::Inner()
{

cout << "Inner constructor\n";
}

void Inner::fun()
{

cout << "Inner fun()\n";
longjmp(jmpBuf, 0);

}

Inner::~Inner()
{

cout << "Inner destructor\n";
}

Outer::Outer()
{

cout << "Outer constructor\n";
}

Outer::~Outer()
{

cout << "Outer destructor\n";
}

void Outer::fun()
{

Inner
in;

cout << "Outer fun\n";
in.fun();

339

}

int main()
{

Outer
out;

if (!setjmp(jmpBuf))
{

out.fun();
return (0);

}

return (1);
}

Running the above program produces the following output:

Outer constructor
Inner constructor
Outer fun
Inner fun()
Outer destructor

As will be clear from this output, the destructor of the class Inner is not executed. This is a direct
result of the non-local characteristic of the call to longjmp(): from the function Inner::fun() pro-
cessing continues immediately in the function setjmp() in main(): the call to Inner::~Inner(),
hiddenly placed at the end of Outer::fun() is never executed.

Since the destructors of objects can easily be skipped when longjmp() and setjmp() are used,
it’s probably best to skip these function completely in C++ program.

12.2.2 Exceptions: the preferred alternative

In C++ exceptions are the best alternative to using setjmp() and longjmp(). In this section
an example using exceptions is presented. Again, the program is derived from the basic program,
given in section 12.2. The syntax of exceptions will be covered shortly, so please skip over the
syntactical peculiarities like throw, try and catch. Here comes the sourcetext:

#include <iostream.h>

340

class Inner
{

public:
Inner();
~Inner();
void fun();

};

class Outer
{

public:
Outer();
~Outer();
void fun();

};

Inner::Inner()
{

cout << "Inner constructor\n";
}

Inner::~Inner()
{

cout << "Inner destructor\n";
}

void Inner::fun()
{

cout << "Inner fun\n";
throw 1;
cout << "This statement is not executed\n";

}

Outer::Outer()
{

cout << "Outer constructor\n";
}

Outer::~Outer()
{

cout << "Outer destructor\n";
}

void Outer::fun()
{

Inner
in;

cout << "Outer fun\n";
in.fun();

}

int main()

341

{
Outer

out;
try
{

out.fun();
}
catch (...)
{}

}

In this program an exception is thrown, where a longjmp() was used in the program in section
12.2.1. The comparable construct for the setjmp() call in that program is represented here by
the try and catch blocks. The try block surrounds statements (including function calls) in which
exceptions are thrown, the catch block may contain statements to be executed just after throwing
an exception.

So, like section 12.2.1, the execution of function Inner::fun() terminates, albeit with an exception,
rather than a longjmp(). The exception is caught in main(), and the program terminates.

Now look at the output generated by this program:

Outer constructor
Inner constructor
Outer fun
Inner fun
Inner destructor
Outer destructor

Note that the destructor of the Inner object, created in Outer::fun() is now called again. On
the other hand, execution of the function Inner::fun() really terminates at the throw statement:
the insertion of the text into cout, just beyond the throw statement, isn’t performed.

So, with our illustrations we hope to have raised your appetite for exceptions by showing that

• Exceptions provide a means to break out of the normal flow control without having to use a
cascade of return-statements, and without having to terminate the program.

• Exceptions do not disrupt the activation of destructors, and are therefore strongly preferred
over the use of setjmp() and longjmp().

12.3 Throwing exceptions

Exceptions may be generated in a throw statement. The throw keyword is followed by an expres-
sion, which results in a value of a certain type. For example:

342

throw "Hello world"; // throws a char *
throw 18; // throws an int
throw string("hello"); // throws a string

Objects defined locally in functions are automatically destroyed once exceptions are thrown within
these functions. However, if the object itself is thrown, the exception catcher receives a copy of
the thrown object. This copy is constructed just before the local object is destroyed.

The next source illustrates this point. Within the function Object::fun() a local Object toThrow
is created, which is thereupon thrown as an exception. The exception is caught outside of
Object::fun(), in main(). At this point the thrown object doesn’t actually exist anymore,

Let’s first take a look at the sourcetext:

#include <iostream.h>
#include <string>

class Object
{

public:
Object(string name)
:

name(name)
{

cout << "Object constructor of " << name << "\n";
}
Object(Object const &other)
:

name(other.name + " (copy)")
{

cout << "Copy constructor for " << name << "\n";
}
~Object()
{

cout << "Object destructor of " << name << "\n";
}
void fun()
{

Object
toThrow("’local object’");

cout << "Object fun() of " << name << "\n";
throw toThrow;

}
void hello()
{

cout << "Hello by " << name << "\n";
}

private:
string

name;

343

};

int main()
{

Object
out("’main object’");

try
{

out.fun();
}
catch (Object o)
{

cout << "Caught exception\n";
o.hello();

}
}

The class Object defines some simple constructors and members. The copy constructor is special
in that it adds the text " (copy)" to the received name, to allow us to monitor the construction
and destruction of objects somewhat more closely. The member function fun() generates the
exception, and throws its locally defined object. Just before the exception the following output is
generated by the program:

Object constructor of ’main object’
Object constructor of ’local object’
Object fun() of ’main object’

Then the exception is generated, resulting in the next line of output:

Copy constructor for ’local object’ (copy)

The throw clause receives the local object, and treats it as a value argument: it creates a copy of
the local object. Next, the exception is processed. The local object is destroyed, and the catcher
catches an Object, which again is a value parameter. Hence, another copy is created. We see the
following lines:

Object destructor of ’local object’
Copy constructor for ’local object’ (copy) (copy)

344

Now the message inside the catcher is displayed, and the hello member of the object received by
the catcher is called, showing us once again that we received a copy of the copy of the local object
of the fun() member function:

Caught exception
Hello by ’local object’ (copy) (copy)

Now the program terminates, and the still living objects are destroyed in their reversed order of
creation:

Object destructor of ’local object’ (copy) (copy)
Object destructor of ’local object’ (copy)
Object destructor of ’main object’

If the catcher would have implemented so as to receive a reference to an object (catch (Object
&o)), the double copy would have been avoided. In that case the output of the program would
have been:

Object constructor of ’main object’
Object constructor of ’local object’
Object fun() of ’main object’
Copy constructor for ’local object’ (copy)
Object destructor of ’local object’
Caught exception
Hello by ’local object’ (copy)
Object destructor of ’local object’ (copy)
Object destructor of ’main object’

showing that only a single copy of the local object is used.

Of course it’s a bad idea to throw a pointer to a locally defined object: the pointer is thrown, but
the object to which the pointer refers dies once the exception is thrown, and the catcher receives
a wild pointer. Bad news.

Summarizing, local objects are thrown as copied objects, pointers to local objects should not be
thrown. However, it is possible to throw pointers or references to dynamically generated objects,
taking care that the generated object is properly deleted when the generated exception is caught.

Exceptions are thrown in situations where a function can’t continue its normal task anymore,
although the program is still able to continue. Imagine a program which is an interactive calculator.
The program continuously requests expressions, which are then evaluated. In this case the parsing
of the expression may show syntax errors, and the evaluation of the expression may result in
expressions which can’t be evaluated, e.g., because of the expression resulting in a division by
zero. A bit more sophistication would allow the use of variables, and non-existing variables may
be referred to.

345

Each of these situations are enough reason to terminate the processing of the expression at hand,
but there’s no need to terminate the program. Each component of the processing of the expression
may therefore throw an exception. E.g.,

...
if (parse(expressionBuffer)) // parsing failed ?

throw "Syntax error in expression";
...
if (lookup(variableName))

throw "Variable not defined";
...
if (illegalDivision())

throw "Division by zero is not defined";

The location of these throw statements is immaterial: they may be placed deeply nested within
the program, or at a more superficial level. Furthermore, functions may be used to generate the
expression which is thrown. A function

char const ∗formatMessage(char const ∗fmt, ...);

would allow us to throw more specific messages, like

if (lookup(variableName))
throw formatMessage("Variable ’%s’ not defined", variableName);

12.3.1 The empty throw statement

Situations may arise in which it is required to inspect a thrown exception. Depending on the nature
of the received exception, the program may continue its normal operation, or a serious event took
place, requiring a more drastic reaction by the program. In a server-client situation the client may
enter requests to the server in a queue. Every request placed in the queue is normally answered
by the server, telling the client that the request was successfully completed, or that some sort of
error has occurred. Actually, the server may have died, and the client should be able to discover
this calamity, by not waiting indefinitely for the server to reply.

In this situation an intermediate exception handler is called for. A thrown exception is first
inspected at the middle level. If possible it’s processed there. If it’s not possible to process the
exception at the middle level, it’s passed on unaltered to a more superficial level, where the really
tough exceptions are handled.

By placing an empty throw statement in the code handling an exception the received exception is
passed on to the next level able to process that particular type of exception.

In our server-client situation a function

initialExceptionHandler(char ∗exception)

346

could be designed to do so. The received message is inspected. If it’s a simple message it’s pro-
cessed, otherwise the exception is passed on to an outer level. The implementation of initialExceptionHandler()
shows the empty throw statement:

void initialExceptionHandler(char *exception)
{

if (plainMessage(exception))
handleTheMessage(exception);

else
throw;

}

As we will see below (section 12.5), the empty throw statement passes on the exception received in
a catch-block. Therefore, a function like initialExceptionHandler() can be used for a variety of
thrown exceptions, as long as the argument used with initialExceptionHandler() is compatible
with the nature of the received exception.

Does this sound intriguing? Suppose we have a class Exception, containing a memberfunction
Exception::Type Exception::severity(). This memberfunction tells us (little wonder!) the
severity of a thrown exception. It might be Message, Warning, Mistake, Error or Fatal. Fur-
thermore, depending on the severity, a thrown exception may contain less or more information,
somehow processed by a function process(). In addition to this, all exceptions have a plain-text
producing memberfunction toString(), telling us a bit more about the nature of the generated
exception. This smells a lot like polymorphism, showing process() as a virtual function for the
derived classes Message, Warning, Mistake, Error and Fatal.

Now the program may throw all these five types of exceptions Let’s assume that the Message and
Warning exceptions are processable by our initialExceptionHandler(). Then its code would
become:

void initialExceptionHandler(Exception *e)
{

// show the plain-text information
cout << e->toString() << endl;

// Can we process it ?
if (e->severity <= Exception::Warning)

e->process(); // It’s either a message
// or a warning

else
throw; // No, pass it on

}

Due to polymorphism, e->process() will either process a Message or a Warning. Thrown excep-
tions are generated as follows:

throw new Message(<arguments>);

347

throw new Warning(<arguments>);
throw new Mistake(<arguments>);
throw new Error(<arguments>);
throw new Fatal(<arguments>);

All of these exceptions are processable by our initialExceptionHandler(), which may decide to
pass exceptions upward for further processing or to process exceptions itself.

12.4 The try block

The try-block surrounds statements in which exceptions may be thrown. As we have seen, the
actual throw statement doesn’t have to be placed within the try-block, but may be placed in a
function which is called from the try-block, either directly or indirectly.

The keyword try is followed by a set of curly braces, which acts like a standard C++ compound
statement: multiple statements and variable definitions may be placed here.

It is possible (and very common) to create levels in which exceptions may be thrown. For example,
code within the main() function is surrounded by a try-block, forming an outer level in which
exceptions can be handled. Within main()’s try-block, functions are called which may also contain
try-blocks, forming the next level in which exceptions may be placed. As we have seen (in section
12.3.1) exceptions thrown in inner level try-blocks may or may not be processed at that level. By
placing an empty throw in an exception handler, the thrown exception is passed on to the next
(outer) level.

If an exception is thrown outside of any try-block, then the default way to process (uncaught)
exceptions is used, which is usually to abort the program. Try to compile and run the following
tiny program, and see what happens:

int main()
{

throw "hello";
}

12.5 Catching exceptions

The catch-block contains code that is executed when an exception is thrown. Since expressions
are thrown, the catch-block should know what kind of exceptions it should handle. Therefore, the
keyword catch is followed by a parameter list having one parameter, which is of the type of the
expression of the thrown exception.

So, an exception handler for char ∗ exceptions will have the following form:

catch (char const *message)
{

348

// code to handle the message
}

Earlier (section 12.3) we’ve seen that such a message doesn’t have to be thrown as static string. It’s
also possible for a function to return a string, which is then thrown as an exception. However, if
such a function creates the string to be thrown as an exception dynamically, the exception handler
will normally have to delete the allocated memory lest memory leaks away.

Generally close attention must be paid to the nature of the parameter of the exception handler,
to make sure that dynamically generated exceptions are deleted once the handler has processed
them. Of course, when an exception is passed on upwards to an outer level exception handler, the
received exception should not be deleted by the inner level handler.

Different exception types may be thrown: char ∗\s, ints, pointers or references to objects, etc.:
all these different types may be used in throwing and catching exceptions. So, the exceptions
appearing at the end of a try-block may be of different types. In order to catch all the types that
may appear at the end of a try-block, multiple exception handlers (i.e., catch-blocks) may follow
the try-block.

The order in which the exception handlers are placed is important. When an exception is thrown,
the first exception handler matching the type of the thrown exception is selected, remaining excep-
tion handlers are skipped. So only one exception handler following a try-block will be executed.
Consequently, exception handlers should be placed from the ones having the most specific parame-
ters to the ones having more general parameters. For example, if exception handlers are defined for
char ∗s and void ∗\s (i.e., any old pointer) then the exception handler for the former exception
type should be placed before the exception handler for the latter type:

try
{

// code may throw char pointers
// and other pointers

}
catch (char *message)
{

// code processing the char pointers
// thrown as exceptions

}
catch (void *whatever)
{

// code processing all other pointers
// thrown as exceptions

}

An alternative to construct different types of exception handlers for different types of situations,
it is of course also possible to design a specific class whose objects contain information about
the reason for the exception. Such an approach was discussed earlier, in section 12.3.1. Using
this approach, there’s only one handler required, since we know we won’t throw other types of
exceptions:

349

try
{

// code may throw only
// Exception pointers

}
catch (Exception *e)
{

// code processing the Exception pointer
delete e;

}

The use of the delete e statement in the above code indicates that the Exception object which
could be thrown as an exception in the try-block was created dynamically.

When the code of an exception handler that is placed beyond a try-block has been processed, the
execution of the program continues beyond the last exception handler following that try-block
(unless the handler uses return, throw or exit() to leave the function prematurely). So we have
the following cases:

• If no exception was thrown within the try-block no exception handler is activated, and the
execution continues from the last statement in the try-block to the first statement beyond
the last catch-block.

• If an exception was thrown within the try-block but neither the current level nor an other
level contains an appropriate exception handler, the program’s default exception handler is
called, usually aborting the program.

• If an exception was thrown within the try-block and an appropriate exception handler is
available, then that the code of that exception handler is exectuted. Following the execution
of the code of the exception handler, the execution of the program continues at the first
statement beyond the last catch-block.

In all cases a throw-statement will result in skipping all remaining statements of the try-block in
which the exception was thrown. However, destructors of objects defined locally in the try-block
are called, and they are called before any exception handler’s code is executed.

The actual construction of the Exception object may be performed in various degrees of so-
phistication. Possibilities are using a plain new operator, using static memberfunctions of the class
Exception dedicated to a particular kind of exception, returning a pointer to an Exception object,
or using objects of classes derived from the class Exception, possibly involving polymorphism.

12.5.1 The default catcher

In cases where different types of exceptions can be thrown, only a limited set of handlers may be
required at a certain level of the program. Exceptions whose types belong to that limited set are
to be processed, all other exceptions are treated differently, e.g., they are passed on to an outer
level of exception handling.

This situation is implemented using the default exception handler, which will (because of the reason
given in the previous section 12.5) be placed beyond all other, more specific exception handlers.

350

Often the default exception handler will be used in combination with the empty throw statement,
discused in section 12.3.1.

Here is an example showing the use of a default exception handler:

try
{

// this code may throw
// different types of
// exceptions

}
catch (char *message)
{

// code to process
// char pointers

}
catch (int value)
{

// code to process
// ints

}
catch (...)
{

// code to process other exceptions,
// often passing the exception on
// to outer level exception handlers:

throw;
}

The reason for passing unspecified exceptions on to outer level exception handlers is simply the
fact that they are unspecified: how would you process an exception if you don’t know its type? In
these situations the outer level exception handlers should of course know what exceptions other
than char ∗s and ints to expect....

12.6 Declaring exception throwers

Functions that are defined elsewhere may be linked to code using those functions. These functions
are normally declared in header files, either as stand-alone functions or as member-functions of a
class.

These external function may of course throw exceptions. The declaration of such functions may
contain a function throw list, in which the types of the exceptions that can be thrown by the
function are specified. For example, a function that may throw char ∗ and int exceptions can be
declared as

void exceptionThrower() throw(char ∗, int);

A function for which a function throw list was specified is not allowed to throw other types of

351

exceptions. A run-time error occurs if it does throw other types of exceptions than mentioned in
the function throw list.

If a function throw list is specified in the declaration, it must also be given in the definition of the
function. For example, using declaration and definition in the same example:

#include <iostream>

void intThrower() throw(int);
void charP_IntThrower() throw (char *, int);

void intThrower(int x) throw (int)
{

if (x)
throw x;

}

void charP_IntThrower() throw (char *, int)
{

int
x;

cout << "Enter an int: ";
cout.flush();
cin >> x;

intThrower(x);
throw "from charP_IntThrower() with love";

}

int main()
{

try
{

charP_IntThrower();
}
catch (char *message)
{

cout << "Text exception: " << message << endl;
}
catch (int value)
{

cout << "Int exception: " << value << endl;
}
return (0);

}

In the function charP IntThrower() the throw statement clearly throws a char ∗. However, since
IntThrower() may throw an int exception, the function throw list of charP IntThrower() must
also contain int. Try this: remove the int from the (two!) function throw lists, compile and link
the program and see what happens if you enter the value 5.

352

If a function doesn’t throw exceptions an empty function throw list may be used. E.g.,

void noExceptions() throw ();

Again, the function definition must also contain the empty function throw list in this case.

If the function throw list is not used, the function may either throw exceptions (of any kind) or not
throw exceptions at all. Without a function throw list all responsibilities of providing the correct
handlers is in the hands of the designer of the program....

353

Chapter 13

More about friends

Let’s return to friends once more. In section 4.6 the possibility of declaring a function or class as
a friend of a class was discussed. At the end of that section, we mentioned

• Friendship, when applied to program design, is an escape mechanism which circumvents the
principle of data hiding. Using friend classes should therefore be minimized to those cases
where it is absolutely essential.

• If friends are used, realize that the implementation of classes or functions that are friends to
other classes become implementation dependent on these classes. In the above example: once
the internal organization of the data of the class A changes, all its friends must be recompiled
(and possibly modified) as well.

• As a rule of thumb: don’t use friend functions or classes.

In our opinion, there are indeed very few reasons for using the friend keyword. It violates the
principle of data hiding, and makes the maintenance of a class dependent on another class.

Nonetheless, it might be worthwhile to look at some examples in which the friend keyword can
be used profitably. Having seen such examples, the decision about whether or not to use friends
might be based on a somewhat more solid foundation than on a plain rule of thumb.

At the onset, we remark that in our programming projects we never found any convincing reason
to resort to friends. Having thus made our position clear, let’s consider a situation where it would
be nice for an existing class to have access to another class.

Such a situation might occur when we would like to give an old class access to a class developed
later in history.

However, while developing the older class, it was not yet known that the newer class would be
developed later in time. E.g., the older class is distributed in the runtime-library of a compiler,
and the newer class is a class developed by us.

Consequently, no provisions were offered in the older class to access the information in the newer
class.

Consider the following situation. Within the C++ I/O-library the extraction >> and insertion <<
operators may be used to extract from and to insert into a stream.

354

These operators can be given data of several types: int, double, char ∗, etc.. Now assume that
we develop a class String. Objects of the class String can be given a string, and String objects
can also produce other String objects.

While it is possible to use the insertion operator to write the string that is stored in the object to
a stream, it is not possible to use the extraction operator, as illustrated by the following piece of
code:

#include <iostream>

class String
{

public:
// ...
void set(char const *s);
char const *get() const;

private:
char

*str;
};

void f()
{

String
str;

str.set("hello world");
// Assign a value. Can’t use
// cin >> str.set() or
// a similar construction

cout << str.get() << endl;
// this is ok.

}

Actually, the use of the insertion operator in combination with the String class is also a bit of a
kludge: it isn’t the String object that is inserted into the stream, but rather a string produced
by one of its members.

Below we’ll discuss a method to allow the insertion and extraction of String objects, based on the
use of the friend keyword.

13.1 Inserting String objects into streams

Assume that we would like to be able to insert String objects into streams, rather than derivatives
of String objects, like char const ∗’s. If we would be able to write String objects into streams,
we could be using code comparable to

355

int main()
{

String
str("Hello world");

cout << "The string is: ’" << str << "’" << endl;
return (0);

}

Analogously, with the extraction operator, we would like to be able to write code comparable to
the next example:

int main()
{

String
str;

cout << "Enter your string: ";

cin >> str;

cout << "Got: ’" << str << "’" << endl;

return (0);
}

In this situation we would not have to rely on the availability of a particular member (like char
const ∗String::get()), and we would be able to fill a String object directly via the extraction
operator, rather than via an intermediate variable of a type understood by the cin stream.

Even more central to the concept of object oriented programming: we would be able to ignore the
functionality of the String class in combination with iostream objects: our objective is, after all,
to insert the information in the String object into the cout stream, and not to call a particular
function to do so.

Once we’re able to focus our attention on the object, rather than on its member functions, the
above piece of code remains valid, no matter what internal organization the String object has.

13.2 An initial solution

Consider the following overloaded operator>>, to be used as an extraction operator with a String
object:

istream &String::operator>>(istream &is)
{

356

char
buffer[500];
// assume this buffer to be
// large enough.

is >> buffer; // extraction

delete str; // free this->str
// memory

// assign new value
str = strdupnew(buffer);

return (is); // return is-reference
}

The extraction operator can now be used with String objects. Unfortunately, this implementation
produces awkward code. The extraction operator is part of the String class, so its left operand
must be a String object.

As the left operand must be a String object, we’re now forced to use weird-looking code like the
following, which can only partially be compiled. The numbered statements are annotated next.

void fun()
{

String
s;

s >> cin; // (1)

int x;

s >> (cin >> x); // (2)

cin >> x >> s; // (3)
}

1. In this statement s is the left-hand operator, and cin the right-hand, consequently, this
statement represents extraction from a cin object into a String object.

2. In this statement parentheses are needed to indicate the proper ordering of the sub-expressions:
first cin >> x is executed, producing an istream &, which is then used as a right-hand
operand with the extraction to s.

3. This statement is what we want, but it doesn’t compile: the istream’s overloaded operator
>> doesn’t know how to extract information into String objects.

357

13.3 Friend-functions

The last statement of the previous example is in fact what we want. How can we accomplish the
syntactical (and semantical) correctness of that last statement?

A solution is to overload the global >> operator to accept a left-operand of the istream & type,
and a right operand of the String & type, returning an istream &. Its prototype is, therefore:

istream &operator>>(istream &is, String &destination);

To implement this function, the implementation given for the overloaded extraction operator of
the String class can’t simply be copied, since the private datamember str is accessed there.
A small (and perfectly legal) modification would be to access the String’s information via a
char const ∗String::get() const member, but this would again generate a dependency on the
String::get() function, which we would like to avoid.

However, the need for overloading the extraction operator arose strictly in the context of the String
class, and is in fact depending on the existence of that class. In this situation the overloading of
the operator could be considered an extension to the String class, rather than to the iostream
class.

Next, since we consider the overloading of the >> operator in the context of the String class an
extension of the String class, we feel safe to allow that function access to the private members of
a String object, instead of forcing the operator>>() function to assign the data members of the
String object through the String’s member functions.

Access to the private data members of the String object is granted by declaring the operator>>()
function to be a friend of the String class:

#include <iostream>

class String
{

friend istream &operator>>(istream &is,
String &destination);

public:
// ...

private:
char

*str;
};

istream &operator>>(istream &is, String &destination)
{

char
buffer[500];

is >> buffer; // extraction

delete destination.str; // free old ’str’ memory

destination.str = strdupnew(buffer);

358

// assign new value

return (is); // return istream-reference
}

void fun()
{

String
s;

cin >> s; // application

int
x;

cin >> x >> s;
// extraction order is now
// as expected

}

Note that nothing in the implementation of the operator>>() function suggests that it’s a
friend of the String class. The compiler detects this only from the String interface, where
the operator>>() function is declared as a friend.

13.3.1 Preventing the friend-keyword

Now that we’ve seen that it’s possible to define an overloaded operator>>() function for the
String class, it’s hopefully clear that there is only very little reason to declare it as a friend of the
class String, assuming that the proper memberfunctions of the class are available.

On the other hand, declaring the operator>>() as a friend function isn’t that much of a problem,
as the operator>>() function can very well be interpreted as a true member function of the class
String, although, due to a syntactical peculiarity, it cannot be defined as such.

To illustrate the possibility of overloading the >> operator for the istream and String combina-
tion, we present here the version which does not have to be declared as a friend in the String
class interface. This implementation assumes that the class String has an overloaded operator =,
accepting as r-value a char const ∗:

istream &operator>>(istream &lvalue, String &rvalue)
{

char
buffer[500];

lvalue >> buffer; // extraction

rvalue = buffer; // assignment

return (lvalue); // return istream-reference
}

359

No big deal, isn’t it? After all, whether or not to use friend functions might purely be a matter
of taste. As yet, we haven’t come across a situation where friend functions are truly needed.

13.4 Friend classes

Situations may arise in which two classes doing closely related tasks are developed together.

For example, a window application can define a class Window to contain the information of a
particular window, and a class Screen shadowing the Window objects for those windows that are
actually visible on the screen.

Assuming that the window-contents of a Window or Screen object are accessible through a char
∗win pointer, of unsigned size characters, an overloaded operator != can be defined in one (or
both) classes to compare the contents of a Screen and Window object immediately. Objects of the
two classes may then be compared directly, as in the following code fragment:

void fun()
{

Screen
s;

Window
w;

// ... actions on s and w ...

if (w != s) // refresh the screen
w.refresh(s); // if w != s

}

It is likely that the overloaded operator != and other member functions of w (like refresh()) will
benefit from direct access to the data of a Screen object. In this case the class Screen may declare
the class Window as a friend class, thus allowing Window’s member functions to access the private
members of its objects.

A (partial) implementation of this situation is:

class Window; // forward declaration
class Screen
{

friend class Window; // Window’s object may
// access Screen’s
// private members

public:
// ...

private:

360

// ...
char

*win;
unsigned

size;
};

// ===
// now in Window’s context:

int Window::operator!=(Screen const &s)
{

return
(

s.size != size // accessing Screen’s
|| // private members
!memcmp(win, s.win, size)

);
};

It is also possible to declare classes to be each other’s friends, or to declare a global function to be
a friend in multiple classes. While there may be situations where this is a useful thing to do, it is
important to realize that these multiple friendships actually violate the principle of encapsulation.

In the example we’ve been giving earlier for single friend functions, the implementation of such
functions can be placed in the same directory as the actual member functions of the class declar-
ing the function to be its friend. Such functions can very well be considered part of the class
implementation, being somewhat ‘eccentric‘ member functions. Those functions will normally be
inspected automatically when the implementation of the data of the class is changed.

However, when a class itself is declared as a friend of another class, things become a little more
complex. If the sources of classes are kept and maintained in different directories, it is not clear
where the code of Window::operator!=() should be stored, as this function accesses private mem-
bers of both the class Window and Screen. Consequently caution should be exercized when these
situations arise.

In our opinion it’s probably best to avoid friend classes, as they violate of the central principle of
encapsulation.

361

Chapter 14

Inheritance

When programming in C, it is common to view problem solutions from a top-down approach:
functions and actions of the program are defined in terms of sub-functions, which again are defined
in sub-sub-functions, etc.. This yields a hierarchy of code: main() at the top, followed by a level
of functions which are called from main(), etc..

In C++ the dependencies between code and data can also be defined in terms of classes which
are related to other classes. This looks like composition (see section 4.5), where objects of a class
contain objects of another class as their data. But the relation which is described here is of a
different kind: a class can be defined by means of an older, pre-existing, class. This leads to a
situation in which a new class has all the functionality of the older class, and additionally introduces
its own specific functionality. Instead of composition, where a given class contains another class,
we mean here derivation, where a given class is another class.

Another term for derivation is inheritance: the new class inherits the functionality of an existing
class, while the existing class does not appear as a data member in the definition of the new class.
When speaking of inheritance the existing class is called the base class, while the new class is called
the derived class.

Derivation of classes is often used when the methodology of C++ program development is fully
exploited. In this chapter we will first address the syntactical possibilities which C++ offers to
derive classes from other classes. Then we will address the peculiar extension to C which is thus
offered by C++.

As we have seen the object-oriented approach to problem solving in the introductory chapter (see
section 2.4), classes are identified during the problem analysis, after which objects of the defined
classes can be declared to represent entities of the problem at hand. The classes are placed in
a hierarchy, where the top-level class contains the least functionality. Each derivation and hence
descent in the hierarchy adds functionality in the class definition.

In this chapter we shall use a simple vehicle classification system to build a hierarchy of classes.
The first class is Vehicle, which implements as its functionality the possibility to set or retrieve
the weight of a vehicle. The next level in the object hierarchy are land-, water- and air vehicles.

The initial object hierarchy is illustrated in figure 14.1.

362

\

Figure 14.1: Initial object hierarchy of vehicles.

14.1 Related types

The relationship between the proposed classes representing different kinds of vehicles is further
illustrated here. The figure shows the object hierarchy in vertical direction: an Auto is a special
case of a Land vehicle, which in turn is a special case of a Vehicle.

The class Vehicle is thus the ‘greatest common denominator’ in the classification system. For the
sake of the example we implement in this class the functionality to store and retrieve the weight
of a vehicle:

class Vehicle
{

public:
// constructors
Vehicle();
Vehicle(int wt);

// interface
int getweight() const;
void setweight(int wt);

private:
// data
int weight;

};

Using this class, the weight of a vehicle can be defined as soon as the corresponding object is
created. At a later stage the weight can be re-defined or retrieved.

363

To represent vehicles which travel over land, a new class Land can be defined with the functionality
of a Vehicle, but in addition its own specific information. For the sake of the example we assume
that we are interested in the speed of land vehicles and in their weight. The relationship between
Vehicles and Lands could of course be represented with composition, but that would be awkward:
composition would suggest that a Land vehicle contains a vehicle, while the relationship should be
that the Land vehicle is a special case of a vehicle.

A relationship in terms of composition would also introduce needless code. E.g., consider the
following code fragment which shows a class Land using composition (only the setweight() func-
tionality is shown):

class Land
{

public:
void setweight(int wt);

private:
Vehicle v; // composed Vehicle

};

void Land::setweight(int wt)
{

v.setweight(wt);
}

Using composition, the setweight() function of the class Land would only serve to pass its argu-
ment to Vehicle::setweight(). Thus, as far as weight handling is concerned, Land::setweight()
would introduce no extra functionality, just extra code. Clearly this code duplication is redundant:
a Land should be a Vehicle, and not: a Land should contain a Vehicle.

The relationship is better achieved with inheritance: Land is derived from Vehicle, in which
Vehicle is the base class of the derivation.

class Land: public Vehicle
{

public:
// constructors
Land();
Land(int wt, int sp);

// interface
void setspeed(int sp);
int getspeed() const;

private:
// data
int speed;

};

By postfixing the class name Land in its definition by public Vehicle the derivation is defined:

364

the class Land now contains all the functionality of its base class Vehicle plus its own specific in-
formation. The extra functionality consists here of a constructor with two arguments and interface
functions to access the speed data member.1.

To illustrate the use of the derived class Land consider the following example:

Land
veh(1200, 145);

int main()
{

cout << "Vehicle weighs " << veh.getweight() << endl
<< "Speed is " << veh.getspeed() << endl;

return (0);
}

This example shows two features of derivation. First, getweight() is no direct member of a Land.
Nevertheless it is used in veh.getweight(). This member function is an implicit part of the class,
inherited from its ‘parent’ vehicle.

Second, although the derived class Land now contains the functionality of Vehicle, the private
fields of Vehicle remain private in the sense that they can only be accessed by member functions
of Vehicle itself. This means that the member functions of Land must use the interface functions
(getweight(), setweight()) to address the weight field; just as any other code outside the
Vehicle class. This restriction is necessary to enforce the principle of data hiding. The class
Vehicle could, e.g., be recoded and recompiled, after which the program could be relinked. The
class Land itself could remain unchanged.

Actually, the previous remark is not quite right: If the internal organization of the Vehicle changes,
then the internal organization of the Land objects, containing the data of Vehicle, changes as well.
This means that objects of the Land class, after changing Vehicle, might require more (or less)
memory than before the modification. However, in such a situation we still don’t have to worry
about the use of memberfunctions of the parent class Vehicle in the class Land. We might have
to recompile the Land sources, though, as the relative locations of the data members within the
Land objects will have changed due to the modification of the Vehicle class.

To play it safe, classes which are derived from other classes must be fully recompiled (but don’t
have to be modified) after changing the data organization of their base class(es). As adding new
memberfunctions to the base class doesn’t alter the data organization, no such recompilation is
needed after adding new memberfunctions. (A subtle point to note, however, is that adding a new
memberfunction that happens to be the first virtual memberfunction of a class results in a hidden
pointer to a table of pointers to virtual functions. This topic is discussed further in chapter 15).

In the following example we assume that the class Auto, representing automobiles, should be able
to contain the weight, speed and name of a car. This class is therefore derived from Land:

class Auto: public Land

1The derivation in this example mentions the keyword public. C++ also implements private derivation, which
is not often used and which we will therefore leave to the reader to uncover.

365

{
public:

// constructors
Auto();
Auto(int wt, int sp, char const *nm);

// copy constructor
Auto(Auto const &other);

// assignment
Auto const &operator=(Auto const &other);

// destructor
~Auto();

// interface
char const *getname() const;
void setname(char const *nm);

private:
// data
char const *name;

};

In the above class definition, Auto is derived from Land, which in turn is derived from Vehicle.
This is called nested derivation: Land is called Auto’s direct base class, while Vehicle is called the
the indirect base class.

Note the presence of a destructor, a copy constructor and overloaded assignment function in the
class Auto. Since this class uses a pointer to reach allocated memory, these tools are needed.

14.2 The constructor of a derived class

As mentioned earlier, a derived class inherits the functionality from its base class. In this section
we shall describe the effects of the inheritance on the constructor of a derived class.

As can be seen from the definition of the class Land, a constructor exists to set both the weight
and the speed of an object. The poor-man’s implementation of this constructor could be:

Land::Land (int wt, int sp)
{

setweight(wt);
setspeed(sp);

}

This implementation has the following disadvantage. The C++ compiler will generate code to call
the default constructor of a base class from each constructor in the derived class, unless explicitly

366

instructed otherwise. This can be compared to the situation which arises in composed objects (see
section 4.5).

Consequently, in the above implementation (a) the default constructor of a Vehicle is called,
which probably initializes the weight of the vehicle, and (b) subsequently the weight is redefined
by calling setweight().

A better solution is of course to call directly the constructor of Vehicle expecting an int argument.
The syntax to achieve this is to mention the constructor to be called (supplied with an argument)
immediately following the argument list of the constructor of the derived class itself:

Land::Land(int wt, int sp)
:

Vehicle(wt)
{

setspeed(sp);
}

14.3 The destructor of a derived class

Destructors of classes are called automatically when an object is destroyed. This rule also holds
true for objects of classes that are derived from other classes. Assume we have the following
situation:

class Base
{

public:
... // members
~Base(); // destructor

};

class Derived
{

public:
... // members
~Derived(); // destructor

}

... // other code

int main()
{

Derived
derived;

...
return (0);

}

367

At the end of the main() function, the derived object ceases to exists. Hence, its destructor
Derived::~Derived() is called. However, since derived is also a Base object, the Base::~Base()
destructor is called as well.

It is not necessary to call the Base::~Base() destructor explicitly from the Derived::~Derived()
destructor.

Constructors and destructors are called in a stack-like fashion: when derived is constructed, the
appropriate Base constructor is called first, then the appropriate Derived constructor is called.
When derived is destroyed, the Derived destructor is called first, and then the Base destructor is
called for that object. In general, a derived class destructor is called before a base class destructor
is called.

14.4 Redefining member functions

The actions of all functions which are defined in a base class (and which are therefore also available
in derived classes) can be redefined. This feature is illustrated in this section.

Let’s assume that the vehicle classification system should be able to represent trucks, which consist
of a two parts: the front engine, which pulls a trailer. Both the front engine and the trailer have
their own weights, but the getweight() function should return the combined weight.

The definition of a Truck therefore starts with the class definition, derived from Auto but expanded
to hold one more int field to represent additional weight information. Here we choose to represent
the weight of the front part of the truck in the Auto class and to store the weight of the trailer in
an additional field:

class Truck: public Auto
{

public:
// constructors
Truck();
Truck(int engine_wt, int sp, char const *nm,

int trailer_wt);

// interface: to set two weight fields
void setweight(int engine_wt, int trailer_wt);
// and to return combined weight
int getweight() const;

private:
// data
int trailer_weight;

};

// example of constructor
Truck::Truck(int engine_wt, int sp, char const *nm,

int trailer_wt)

368

:
Auto(engine_wt, sp, nm)

{
trailer_weight = trailer_wt;

}

Note that the class Truck now contains two functions which are already present in the base class:

• The function setweight() is already defined in Auto. The redefinition in Truck poses no
problem: this functionality is simply redefined to perform actions which are specific to a
Truck object.
The definition of a new version of setweight() in the class Truck will hide the version of
Auto (which is the version defined in Vehicle: for a Truck only a setweight() function
with two int arguments can be used.
However, note that the Vehicle’s setweight() function remains available. But, as the
Auto::setweight() function is hidden it must be called explicitly when needed (e.g., in-
side Truck::setweight(). This is required even though Auto::setweight() has only one
int argument, and one could argue that Auto::setweight() and Truck::setweight() are
merely overloaded functions within the class Truck. So, the implementation of the function
Truck::setweight() could be:

void Truck::setweight(int engine_wt, int trailer_wt)
{

trailer_weight = trailer_wt;
Auto::setweight(engine_wt); // note: Auto:: is required

}

• Outside of the class the Auto-version of setweight() is accessed through the scope resolution
operator. So, if a Truck t needs to set its Auto weight, it must use

t.Auto::setweight(x)

• An alternative to using the scope resolution operator is to include the base-class functions in
the class interface as inline functions. This might be an elegant solution for the occasional
function. E.g., if the interface of the class Truck contains

void setweight(int engine_wt)
{

Auto::setweight(engine_wt);
}

then the single argument setweight() function can be used by Truck objects without using
the scope resolution operator. As the function is defined inline, no overhead of an extra
function call is involved.

• The function getweight() is also already defined in Vehicle, with the same argument list
as in Truck. In this case, the class Truck redefines this member function.

The next code fragment presents the redefined function Truck::getweight():

369

int Truck::getweight() const
{

return
(// sum of:

Auto::getweight() + // engine part plus
trailer_weight // the trailer

);
}

The following example shows the actual usage of the member functions of the class Truck to display
several of its weights:

int main()
{

Land
veh(1200, 145);

Truck
lorry(3000, 120, "Juggernaut", 2500);

lorry.Vehicle::setweight(4000);

cout << endl << "Truck weighs " << lorry.Vehicle::getweight() << endl
<< "Truck + trailer weighs " << lorry.getweight() << endl
<< "Speed is " << lorry.getspeed() << endl
<< "Name is " << lorry.getname() << endl;

return (0);
}

Note the explicit call to Vehicle::setweight(4000): in order to reach the hidden memberfunc-
tion Vehicle::setweight(), which is part of the set of memberfunctions available to the class
Vehicle, is must be called explicitly, using the Vehicle:: scope resolution. As said, this is re-
markable, because Vehicle::setweight() can very well be considered an overloaded version of
Truck::setweight(). The situation with Vehicle::getweight() and Truck::getweight() is a
different one: here the function Truck::getweight() is a redefinition of Vehicle::getweight(),
so in order to reach Vehicle::getweight() a scope resolution operation (Vehicle::) is required.

14.5 Multiple inheritance

In the previously described derivations, a class was always derived from one base class. C++
also implements multiple derivation, in which a class is derived from several base classes and hence
inherits the functionality from more than one ‘parent’ at the same time.

For example, let’s assume that a class Engine exists with the functionality to store information
about an engine: the serial number, the power, the type of fuel, etc.:

370

class Engine
{

public:
// constructors and such
Engine();
Engine(char const *serial_nr, int power,

char const *fuel_type);

// tools needed as we have pointers in the class
Engine(Engine const &other);
Engine const &operator=(Engine const &other);

~Engine();

// interface to get/set stuff
void setserial(char const *serial_nr);
void setpower(int power);
void setfueltype(char const *type);

char const *getserial() const;
int getpower() const;
char const *getfueltype() const;

private:
// data
char const

*serial_number,
*fuel_type;

int
power;

};

To represent an Auto but with all information about the engine, a class MotorCar can be derived
from Auto and from Engine, as illustrated in the below listing. By using multiple derivation, the
functionality of an Auto and of an Engine are combined into a MotorCar:

class MotorCar
:

public Auto,
public Engine

{
public:

// constructors
MotorCar();
MotorCar(int wt, int sp, char const *nm,

char const *ser, int pow, char const *fuel);
};

MotorCar::MotorCar(int wt, int sp, char const *nm,

371

char const *ser, int pow, char const *fuel)
:

Engine (ser, pow, fuel),
Auto (wt, sp, nm)

{
}

A few remarks concerning this derivation are:

• The keyword public is present both before the classname Auto and before the classname
Engine. This is so because the default derivation in C++ is private: the keyword public
must be repeated before each base class specification.

• The multiply derived class MotorCar introduces no ‘extra’ functionality of its own, but only
combines two pre-existing types into one aggregate type. Thus, C++ offers the possibility
to simply sweep multiple simple types into one more complex type.

This feature of C++ is very often used. Usually it pays to develop ‘simple’ classes each with
its strict well-defined functionality. More functionality can always be achieved by combining
several small classes.

• The constructor which expects six arguments contains no code of its own. Its only purpose
is to activate the constructors of the base classes. Similarly, the class definition contains no
data or interface functions: here it is sufficient that all interface is inherited from the base
classes.

Note also the syntax of the constructor: following the argument list, the two base class constructors
are called, each supplied with the correct arguments. It is also noteworthy that the order in which
the constructors are called is defined by the interface, and not by the implementation (i.e., by the
statement in the constructor of the class MotorCar. This implies that:

• First, the constructor of Auto is called, since MotorCar is first of all derived from Auto.

• Then, the constructor of Engine is called,

• Last, any actions of the constructor of MotorCar itself are executed (in this example, none).

Lastly, it should be noted that the multiple derivation in this example may feel a bit awkward: the
derivation implies that MotorCar is an Auto and at the same time it is an Engine. A relationship
‘a MotorCar has an Engine’ would be expressed as composition, by including an Engine object
in the data of a MotorCar. But using composition, unnecessary code duplication occurs in the
interface functions for an Engine (here we assume that a composed object engine of the class
Engine exists in a MotorCar):

void MotorCar::setpower(int pow)
{

engine.setpower(pow);
}

int MotorCar::getpower() const

372

{
return (engine.getpower());

}

// etcetera, repeated for set/getserial(),
// and set/getfueltype()

Clearly, such simple interface functions are avoided completely by using derivation. Alternatively,
when insisting on the has relationship and hence on composition, the interface functions could
have been avoided by using inline functions.

14.6 Conversions between base classes and derived classes

When inheritance is used in the definition of classes, it can be said that an object of a derived
class is at the same time an object of the base class. This has important consequences for the
assignment of objects, and for the situation where pointers or references to such objects are used.
Both situations will be discussed next.

14.6.1 Conversions in object assignments

We define two objects, one of a base class and one of a derived class:

Vehicle
v(900); // vehicle with weight 900 kg

Auto
a(1200, 130, "Ford"); // automobile with weight 1200 kg,

// max speed 130 km/h, make Ford

The object a is now initialized with its specific values. However, an Auto is at the same time a
Vehicle, which makes the assignment from a derived object to a base object possible:

v = a;

The effect of this assignment is that the object v now receives the value 1200 as its weight field.
A Vehicle has neither a speed nor a name field: these data are therefore not assigned.

The conversion from a base object to a derived object, however, is problematic: In a statement
like

a = v;

373

it isn’t clear what data to enter into the fields speed and name of the Auto object a, as they are
missing in the Vehicle object v. Such an assignment is therefore not accepted by the compiler.

The following general rule applies: when assigning related objects, an assignment in which some
data are dropped is legal. However, an assignment where data would have to be left blank is not
legal. This rule is a syntactic one: it also applies when the classes in question have their overloaded
assignment functions.

The conversion of an object of a base class to an object of a derived class could of course be
explicitly defined using a dedicated constructor. E.g., to achieve compilability of a statement

a = v;

the class Auto would need an assignment function accepting a Vehicle as its argument. It would
be the programmer’s responsibility to decide what to do with the missing data:

Auto const &Auto::operator=(Vehicle const &veh)
{

setweight (veh.getweight());
.
. code to handle other fields should
. be supplied here
.

}

14.6.2 Conversions in pointer assignments

We define the following objects and one pointer variable:

Land
land(1200, 130);

Auto
auto(500, 75, "Daf");

Truck
truck(2600, 120, "Mercedes", 6000);

Vehicle
*vp;

Subsequently we can assign vp to the addresses of the three objects of the derived classes:

vp = &land;
vp = &auto;
vp = &truck;

374

Each of these assignments is perfectly legal. However, an implicit conversion of the type of the
derived class to a Vehicle is made, since vp is defined as a pointer to a Vehicle. Hence, when
using vp only the member functions which manipulate the weight can be called, as this is the only
functionality of a Vehicle and thus it is the only functionality which is available when a pointer
to a Vehicle is used.

The same reasoning holds true for references to Vehicles. If, e.g., a function is defined with a
Vehicle reference parameter, the function may be passed an object of a class that is derived from
Vehicle. Inside the function, the specific Vehicle members of the object of the derived class
remain accessible. This analogy between pointers and references holds true in all cases. Remember
that a reference is nothing but a pointer in disguise: it mimics a plain variable, but is actually a
pointer.

This restriction in functionality has furthermore an important effect for the class Truck. After the
statement vp = &truck, vp points to a Truck object. Nevertheless, vp->getweight() will return
2600; and not 8600 (the combined weight of the cabin and of the trailer: 2600 + 6000), which
would have been returned by t.getweight().

When a function is called via a pointer to an object, then the type of the pointer and not the
object itself determines which member functions are available and executed. In other words,
C++ implicitly converts the type of an object reached via a pointer to the type of the pointer
pointing to the object.

There is of course a way around the implicit conversion, which is an explicit type cast:

Truck
truck;

Vehicle
*vp;

vp = &truck; // vp now points to a truck object

Truck
*trp;

trp = (Truck *) vp;
printf ("Make: %s\n", trp->getname());

The second to last statement of the code fragment above specifically casts a Vehicle ∗ variable
to a Truck ∗ in order to assign the value to the pointer trp. This code will only work if vp indeed
points to a Truck and hence a function getname() is available. Otherwise the program may show
some unexpected behavior.

14.7 Storing base class pointers

The fact that pointers to a base class can be used to reach derived classes can be used to develop
general-purpose classes which can process objects of the derived types. A typical example of such
processing is the storage of objects, be it in an array, a list, a tree or whichever storage method
may be appropriate. Classes which are designed to store objects of other classes are therefore often
called container classes. The stored objects are contained in the container class.

375

As an example we present the class VStorage, which is used to store pointers to Vehicles. The
actual pointers may be addresses of Vehicles themselves, but also may refer to derived types such
as Autos.

The definition of the class is the following:

class VStorage
{

public:
VStorage();
VSTorage(VStorage const &other);
~VStorage();
VStorage const &operator=(VStorage const &other);

// add Vehicle& to storage
void add(Vehicle const &vehicle);

// retrieve first Vehicle *
Vehicle const *getfirst() const;

// retrieve next Vehicle *
Vehicle const *getnext() const;

private:
// data
Vehicle

**storage;
int

nstored,
current;

};

Concerning this class definition we note:

• The class contains three interface functions: one to add a Vehicle & to the storage, one to
retrieve the first Vehicle ∗ from the storage, and one to retrieve next pointers until no more
are in the storage.

An illustration of the use of this class is given in the next example:

Land
land(200, 20); // weight 200, speed 20

Auto
auto(1200, 130, "Ford");// weight 1200 , speed 130,

// make Ford
VStorage

garage; // the storage

garage.add(land); // add to storage
garage.add(auto);

Vehicle const

376

*anyp;
int

total_wt = 0;

for (anyp = garage.getfirst(); anyp; anyp = garage.getnext())
total_wt += anyp->getweight();

cout << "Total weight: " << total_wt << endl;

This example demonstrates how derived types (one Auto and one Land) are implicitly con-
verted to their base type (a Vehicle &), so that they can be stored in a VStorage. Base-type
objects are then retrieved from the storage. The function getweight(), defined in the base
class and the derived classes, is therupon used to compute the total weight.

• Furthermore, the class VStorage contains all the tools to ensure that two VStorage objects
can be assigned to one another etc.. These tools are the overloaded assignment function and
the copy constructor.

• The actual internal workings of the class only become apparent once the private section is
seen. The class VStorage maintains an array of pointers to Vehicles and needs two ints to
store how many objects are in the storage and which the ‘current’ index is, to be returned
by getnext().

The class VStorage shall not be further elaborated; similar examples shall appear in the next
chapters. It is however very noteworthy that by providing class derivation and base/derived con-
versions, C++ presents a powerful tool: these features of C++ allow the processing of all derived
types by one generic class.

The above class VStorage could even be used to store all types which may be derived from a
Vehicle in the future. It seems a bit paradoxical that the class should be able to use code which
isn’t even there yet, but there is no real paradox: VStorage uses a certain protocol, defined by the
Vehicle and obligatory for all derived classes.

The above class VStorage has just one disadvantage: when we add a Truck object to a storage,
then a code fragment like:

Vehicle const
*any;

VStorage
garage;

any = garage.getnext();
cout << any->getweight() << endl;

will not print the truck’s combined weight of the cabin and the trailer. Only the weight stored in the
Vehicle portion of the truck will be returned via the function any->getweight(). Fortunately,
there is a remedy against this slight disadvantage. This remedy will be discussed in the next
chapter.

377

Chapter 15

Polymorphism, late binding and
virtual functions

As we have seen in the previous chapter, C++ provides the tools to derive classes from one base
type, to use base class pointers to address derived objects, and subsequently to process derived
objects in a generic class.

Concerning the allowed operations on all objects in such a generic class we have seen that the base
class must define the actions to be performed on all derived objects. In the example of the Vehicle
this was the functionality to store and retrieve the weight of a vehicle.

When using a base class pointer to address an object of a derived class, the pointer type (i.e.,
the base class type) normally determines which function will actually be called. This means that
the code example from section 14.7 using the storage class VStorage, will incorrectly compute
the combined weight when a Truck object (see section 14.4) is in the storage: only one weight
field of the engine part of the truck is taken into consideration. The reason for this is obvious: a
Vehicle ∗vp calls the function Vehicle::getweight() and not Truck::getweight(), even when
that pointer actually points to a Truck.

However, a remedy is available. In C++ it is possible for a Vehicle ∗vp to call a function
Truck::getweight() when the pointer actually points to a Truck.

The terminology for this feature is polymorphism: it is as though the pointer vp assumes the type
of the object it points to, rather than keeping it own (base class) type. So, vp might behave like a
Truck ∗ when pointing to a Truck, or like an Auto ∗ when pointing to an Auto etc..1

A second term for this characteristic is late binding. This name refers to the fact that the decision
which function to call (a base class function or a function of a derived class) cannot be made
compile-time, but is postponed until the program is actually executed: the right function is selected
run-time.

1In one of the StarTrek movies, Cap. Kirk was in trouble, as usual. He met an extremely beautiful lady who
however thereupon changed into a hideous troll. Kirk was quite surprised, but the lady told him: “Didn’t you know
I am a polymorph?”

378

15.1 Virtual functions

The default behavior of the activation of a member function via a pointer is that the type of the
pointer determines the function. E.g., a Vehicle∗ will activate Vehicle’s member functions, even
when pointing to an object of a derived class. This is referred to as early or static binding, since
the type of function is known compile-time. The late or dynamic binding is achieved in C++ with
virtual functions.

A function becomes virtual when its declaration starts with the keyword virtual. Once a function
is declared virtual in a base class, its definition remains virtual in all derived classes; even when
the keyword virtual is not repeated in the definition of the derived classes.

As far as the vehicle classification system is concerned (see section 14.1 ff.) the two member
functions getweight() and setweight() might be declared as virtual. The class definitions
below illustrate the classes Vehicle (which is the overall base class of the classification system)
and Truck, which has Vehicle as an indirect base class. The functions getweight() of the two
classes are also shown:

class Vehicle
{

public:
Vehicle(); // constructors
Vehicle(int wt);

// interface.. now virtuals!
virtual int getweight() const;
virtual void setweight(int wt);

private:
int // data

weight;
}

// Vehicle’s own getweight() function:
int Vehicle::getweight() const
{

return (weight);
}

class Land: public Vehicle
{

...
}

class Auto: public Land
{

...
}

class Truck: public Auto
{

379

public:
Truck(); // constructors
Truck(int engine_wt, int sp, char const *nm,

int trailer_wt);

// interface: to set two weight fields
void setweight(int engine_wt, int trailer_wt);

// and to return combined weight
int getweight() const;

private:
int // data

trailer_weight;
};

// Truck’s own getweight() function
int Truck::getweight() const
{

return (Auto::getweight() + trailer_wt);
}

Note that the keyword virtual appears only in the definition of the base class Vehicle; it need
not be repeated in the derived classes (though a repetition would be no error).

The effect of the late binding is illustrated in the next fragment:

Vehicle
v(1200); // vehicle with weight 1200

Truck
t(6000, 115, // truck with cabin weight 6000, speed 115,
"Scania", // make Scania, trailer weight 15000
15000);

Vehicle
*vp; // generic vehicle pointer

int main()
{

// see below (1)
vp = &v;
printf("%d\n", vp->getweight());

// see below (2)
vp = &t;
printf("%d\n", vp->getweight());

// see below (3)
printf("%d\n", vp->getspeed());

return (0);

380

}

Since the function getweight() is defined as virtual, late binding is used here: in the statements
above, just below the (1) mark, Vehicle’s function getweight() is called. In contrast, the
statements below (2) use Truck’s function getweight().

Statement (3) however will produces a syntax error. A function getspeed() is no member of
Vehicle, and hence also not callable via a Vehicle∗.

The rule is that when using a pointer to a class, only the functions which are members of that class
can be called. These functions can be virtual, but this only affects the type of binding (early vs.
late).

15.1.1 Polymorphism in program development

When functions are defined as virtual in a base class (and hence in all derived classes), and when
these functions are called using a pointer to the base class, the pointer as it were can assume more
forms: it is polymorph. In this section we illustrate the effect of polymorphism on the manner in
which programs in C++ can be developed.

A vehicle classification system in C might be implemented with Vehicle being a union of structs,
and having an enumeration field to determine which actual type of vehicle is represented. A
function getweight() would typically first determine what type of vehicle is represented, and
then inspect the relevant fields:

enum Vtype // type of the vehicle
{

is_vehicle,
is_land,
is_auto,
is_truck,

}
struct Vehicle // generic vehicle type
{

int weight;
}
struct Land // land vehicle: adds speed
{

Vehicle v;
int speed;

}
struct Auto // auto: Land vehicle + name
{

Land l;
char *name;

}
struct Truck // truck: Auto + trailer
{

Auto a;

381

int trailer_wt;
}
union AnyVehicle // all sorts of vehicles in 1 union
{

Vehicle v;
Land l;
Auto a;
Truck t;

}
struct Object // the data for all vehicles
{

Vtype type;
AnyVehicle thing;

}

int getweight(Object *o) // how to get weight of a vehicle
{

switch (o->type)
{

case is_vehicle:
return (o->thing.v.weight);

case is_land:
return (o->thing.l.v.weight);

case is_auto:
return (o->thing.a.l.v.weight);

case is_truck:
return (o->thing.t.a.l.v.weight +

o->thing.t.trailer_wt);
}

}

A disadvantage of this approach is that the implementation cannot be easily changed. E.g., if we
wanted to define a type Airplane, which would, e.g., add the functionality to store the number of
passengers, then we’d have to re-edit and re-compile the above code.

In contrast, C++ offers the possiblity of polymorphism. The advantage is that ‘old’ code remains
usable. The implementation of an extra class Airplane would in C++ mean one extra class,
possibly with its own (virtual) functions getweight() and setweight(). A function like:

void printweight(Vehicle const *any)
{

printf("Weight: %d\n", any->getweight());
}

would still work; the function wouldn’t even need to be recompiled, since late binding is in effect.

382

15.1.2 How polymorphism is implemented

This section briefly describes how polymorphism is implemented in C++. Understanding the
implementation is not necessary for the usage of this feature of C++, though it does explain why
there is a cost of polymorphism in terms of memory usage.

The fundamental idea of polymorphism is that the C++ compiler does not know which function
to call at compile-time; the appropriate function will be selected run-time. That means that the
address of the function must be stored somewhere, to be looked up prior to the actual call. This
‘somewhere’ place must be accessible from the object in question. E.g., when a Vehicle ∗vp points
to a Truck object, then vp->getweight() calls a member function of Truck; the address of this
function is determined from the actual object which vp points to.

A common implementation is the following. An object containing virtual functions holds as its
first data member a hidden field, pointing to an array of pointers holding the addresses of the
virtual functions. It must be noted that this implementation is compiler-dependent, and is by no
means dictated by the C++ ANSI definition.

The table of addresses of virtual functions is shared by all objects of the class. It even may be
the case that two classes share the same table. The overhead in terms of memory consumption is
therefore:

• One extra pointer field per object, which points to:

• One table of pointers per (derived) class to address the virtual functions.

Consequently, a statement like vp->getweight() first inspects the hidden data member of the
object pointed to by vp. In the case of the vehicle classification system, this data member points
to a table of two addresses: one pointer for the function getweight() and one pointer for the
function setweight(). The actual function which is called is determined from this table.

The internal organization of the objects having virtual functions is further illustrated in figure
15.1.

As can be seen from figure 15.1, all objects which use virtual functions must have one (hidden)
data member to address a table of function pointers. The objects of the classes Vehicle and Auto
both address the same table. The class Truck, however, introduces its own version of getweight():
therefore, this class needs its own table of function pointers.

15.2 Pure virtual functions

Until now the base class Vehicle contained its own, concrete, implementations of the virtual
functions getweight() and setweight(). In C++ it is however also possible only to mention
virtual functions in a base class, and not define them. The functions are concretely implemented
in a derived class. This approach defines a protocol, which has to be followed in the derived classes.

The special feature of only declaring functions in a base class, and not defining them, is that derived
classes must take care of the actual definition: the C++ compiler will not allow the definition
of an object of a class which doesn’t concretely define the function in question. The base class
thus enforces a protocol by declaring a function by its name, return value and arguments; but the
derived classes must take care of the actual implementation. The base class itself is therefore only

383

\

Figure 15.1: Internal organization objects when virtual functions are defined.

a model, to be used for the derivation of other classes. Such base classes are also called abstract
classes.

The functions which are only declared but not defined in the base class are called pure virtual
functions. A function is made pure virtual by preceding its declaration with the keyword virtual
and by postfixing it with = 0. An example of a pure virtual function occurs in the following
listing, where the definition of a class Sortable requires that all subsequent classes have a function
compare():

class Sortable
{

public:
virtual int compare(Sortable const &other) const = 0;

};

The function compare() must return an int and receives a reference to a second Sortable object.
Possibly its action would be to compare the current object with the other one. The function is
not allowed to alter the other object, as other is declared const. Furthermore, the function is not
allowed to alter the current object, as the function itself is declared const.

The above base class can be used as a model for derived classes. As an example consider the
following class Person (a prototype of which was introduced in chapter 5.1), capable of comparing
two Person objects by the alphabetical order of their names and addresses:

class Person: public Sortable
{

public:
// constructors, destructor, and stuff

384

Person();
Person(char const *nm, char const *add, char const *ph);
Person(Person const &other);
Person const &operator=(Person const &other);
~Person();

// interface
char const *getname() const;
char const *getaddress() const;
char const *getphone() const;
void setname(char const *nm);
void setaddress(char const *add);
void setphone(char const *ph);

// requirements enforced by Sortable
int compare(Sortable const &other) const;

private:
// data members
char *name, *address, *phone;

};

int Person::compare(Sortable const &o)
{

Person
const &other = (Person const &)o;

register int
cmp;

return
(

// first try: if names unequal, we’re done
(cmp = strcmp(name, other.name)) ?

cmp
:

// second try: compare by addresses
strcmp(address, other.address)

);
}

Note in the implementation of Person::compare() that the argument of the function is not a
reference to a Person but a reference to a Sortable. Remember that C++ allows function
overloading: a function compare(Person const &other) would be an entirely different function
from the one required by the protocol of Sortable. In the implementation of the function we
therefore cast the Sortable& argument to a Person& argument.

385

15.3 Comparing only Persons

Sometimes it may be useful to know in the concrete implementation of a pure virtual function what
the other object is. E.g., the function Person::compare() should make the comparison only if
the other object is a Person too: imagine what the expression

strcmp(name, other.name)

would do when the other object were in fact not a Person and hence did not have a char ∗name
datamember.

We therefore present here an improved version of the protocol of the class Sortable. This class is
expanded to require that each derived class implements a function int getsignature():

class Sortable
{

...
virtual int getsignature() const = 0;
...

};

The concrete function Person::compare() can now compare names and addresses only if the
signatures of the current and other object match:

int Person::compare(Sortable const &o)
{

register int
cmp;

// first, check signatures
if ((cmp = getsignature() - o.getsignature()))

return (cmp);

Person
const &other = (Person const &)o;

return
(

// next try: if names unequal, we’re done
(cmp = strcmp(name, other.name)) ?

cmp
:

// last try: compare by addresses
strcmp(address, other.address)

);
}

386

The crux of the matter is of course the function getsignature(). This function should return a
unique int value for its particular class. An elegant implementation is the following:

class Person: public Sortable
{

...
// getsignature() now required too
int getsignature() const;

}

int Person::getsignature() const
{

static int // Person’s own tag, I’m quite sure
tag; // that no other class can access it

return ((int) &tag); // Hence, &tag is unique for Person
}

For the reader who’s puzzled by our ‘elegant solution’: the static int tag defined in the Person::getsignature()
function is just one variable, no matter how many Person objects exist. Furthermore, it’s created
compile-time as a global variable, since it’s static. Hence, there’s only one variable tag for the
Person class. Its address, therefore, is uniquely connected to the Person class. This address is
cast to an int which thus becomes the (unique) signature of Person objects.

15.4 Virtual destructors

When the operator delete releases memory which is occupied by a dynamically allocated object,
a corresponding destructor is called to ensure that internally used memory of the object can also
be released. Now consider the following code fragment, in which the two classes from the previous
sections are used:

Sortable
*sp;

Person
*pp = new Person("Frank", "frank@icce.rug.nl", "363 3688");

sp = pp; // sp now points to a Person
...
delete sp; // object destroyed

In this example an object of a derived class (Person) is destroyed using a base class pointer
(Sortable ∗). For a ‘standard’ class definition this will mean that the destructor of Sortable is
called, instead of the destructor of Person.

C++ however allows a destructor to be virtual. By preceding the declaration of a destructor with
the keyword virtual we can ensure that the right destructor is activated even when called via a

387

base class pointer. The definition of the class Sortable would therefore become:

class Sortable
{

public:
virtual ~Sortable();
virtual int compare(Sortable const &other) const = 0;
...

};

Should the virtual destructor of the base class be a pure virtual function or not? In general, the
answer to this question would be no: for a class such as Sortable the definition should not force
derived classes to define a destructor. In contrast, compare() is a pure virtual function: in this
case the base class defines a protocol which must be adhered to.

By defining the destructor of the base class as virtual, but not as purely so, the base class offers
the possibility of redefinition of the destructor in any derived classes. The base class doesn’t enforce
the choice.

The conclusion is therefore that the base class must define a destructor function, which is used in
the case that derived classes do not define their own destructors. Such a destructor could be an
empty function:

Sortable::~Sortable()
{
}

15.5 Virtual functions in multiple inheritance

As was previously mentioned in chapter 14 it is possible to derive a class from several base classes
at once. Such a derived class inherits the properties of all its base classes. Of course, the base
classes themselves may be derived from classes yet higher in the hierarchy.

A slight difficulty in multiple inheritance may arise when more than one ‘path’ leads from the
derived class to the base class. This is illustrated in the code fragment below: a class Derived is
doubly derived from a class Base:

class Base
{

public:
void setfield(int val)

{ field = val; }
int getfield() const

{ return (field); }
private:

388

\

Figure 15.2: Duplication of a base class in multiple derivation.

int field;
};

class Derived: public Base, public Base
{
};

Due to the double derivation, the functionality of Base now occurs twice in Derived. This leads
to ambiguity: when the function setfield() is called for a Derived object, which function should
that be, since there are two? In such a duplicate derivation, many C++ compilers will fail to
generate code and (correctly) identify the error.

The above code clearly duplicates its base class in the derivation. Such a duplication can be
easily avoided here. But duplication of a base class can also occur via nested inheritance, where
an object is derived from, say, an Auto and from an Air (see the vehicle classification system,
chapter 14.1). Such a class would be needed to represent, e.g., a flying car2. An AirAuto would
ultimately contain two Vehicles, and hence two weight fields, two setweight() functions and
two getweight() functions.

15.5.1 Ambiguity in multiple inheritance

Let’s investigate closer why an AirAuto introduces ambiguity, when derived from Auto and Air.

• An AirAuto is an Auto, hence a Land, and hence a Vehicle.

• However, an AirAuto is also an Air, and hence a Vehicle.

The duplication of Vehicle data is further illustrated in figure 15.2.

The internal organization of an AirAuto is shown in figure 15.3

The C++ compiler will detect the ambiguity in an AirAuto object, and will therefore fail to
produce code for a statement like:

2such as the one in James Bond vs. the Man with the Golden Gun...

389

\

Figure 15.3: Internal organization of an AirAuto object.

AirAuto
cool;

printf("%d\n", cool.getweight());

The question of which member function getweight() should be called, cannot be resolved by the
compiler. The programmer has two possibilities to resolve the ambiguity explicitly:

• First, the function call where the ambiguity occurs can be modified. This is done with the
scope resolution operator:

// let’s hope that the weight is kept in the Auto
// part of the object..
printf("%d\n", cool.Auto::getweight());

Note the place of the scope operator and the class name: before the name of the member
function itself.

• Second, a dedicated function getweight() could be created for the class AirAuto:

int AirAuto::getweight() const
{

return(Auto::getweight());
}

The second possibility from the two above is preferable, since it relieves the programmer who uses
the class AirAuto of special precautions.

However, besides these explicit solutions, there is a more elegant one. This will be discussed in the
next section.

390

\

Figure 15.4: Internal organization of an AirAuto object when the base classes are virtual.

15.5.2 Virtual base classes

As is illustrated in figure 15.3, more than one object of the type Vehicle is present in one AirAuto.
The result is not only an ambiguity in the functions which access the weight data, but also the
presence of two weight fields. This is somewhat redundant, since we can assume that an AirAuto
has just one weight.

We can achieve that only one Vehicle will be contained in an AirAuto. This is done by ensuring
that the base class which is multiply present in a derived class, is defined as a virtual base class.
The behavior of virtual base classes is the following: when a base class B is a virtual base class of
a derived class D, then B may be present in D but this is not necessarily so. The compiler will leave
out the inclusion of the members of B when these are already present in D.

For the class AirAuto this means that the derivation of Land and Air is changed:

class Land: virtual public Vehicle
{

...
};

class Air: virtual public Vehicle
{

...
};

The virtual derivation ensures that via the Land route, a Vehicle is only added to a class when
not yet present. The same holds true for the Air route. This means that we can no longer say by
which route a Vehicle becomes a part of an AirAuto; we only can say that there is one Vehicle
object embedded.

The internal organization of an AirAuto after virtual derivation is shown in figure 15.4.

With respect to virtual derivation we note:

391

• Virtual derivation is, in contrast to virtual functions, a pure compile-time issue: whether
a derivation is virtual or not defines how the compiler builds a class definition from other
classes.

• In the above example it would suffice to define either Land or Air with virtual derivation.
That also would have the effect that one definition of a Vehicle in an AirAuto would be
dropped. Defining both Land and Air as virtually derived is however by no means erroneous.

• The fact that the Vehicle in an AirAuto is no longer ‘embedded’ in Auto or Air has a
consequence for the chain of construction. The constructor of an AirAuto will directly call
the constructor of a Vehicle; this constructor will not be called from the constructors of
Auto or Air.

Summarizing, virtual derivation has the consequence that ambiguity in the calling of member
functions of a base class is avoided. Furthermore, duplication of data members is avoided.

15.5.3 When virtual derivation is not appropriate

In contrast to the previous definition of a class such as AirAuto, situations may arise where the
double presence of the members of a base class is appropriate. To illustrate this, consider the
definition of a Truck from section 14.4:

class Truck: public Auto
{

public:
// constructors
Truck();
Truck(int engine_wt, int sp, char const *nm,

int trailer_wt);

// interface: to set two weight fields
void setweight(int engine_wt, int trailer_wt);
// and to return combined weight
int getweight() const;

private:
// data
int trailer_weight;

};

// example of constructor
Truck::Truck(int engine_wt, int sp, char const *nm,

int trailer_wt)
:

Auto(engine_wt, sp, nm)
{

trailer_weight = trailer_wt;
}

// example of interface function

392

int Truck::getweight() const
{

return
(// sum of:

Auto::getweight() + // engine part plus
trailer_wt // the trailer

);
}

This definition shows how a Truck object is constructed to hold two weight fields: one via its
derivation from Auto and one via its own int trailer weight data member. Such a definition is
of course valid, but could be rewritten. We could let a Truck be derived from an Auto and from a
Vehicle, thereby explicitly requesting the double presence of a Vehicle; one for the weight of the
engine and cabin, and one for the weight of the trailer.

A small item of interest here is that a derivation like

class Truck: public Auto, public Vehicle

is not accepted by the C++ compiler: a Vehicle is already part of an Auto, and is therefore not
needed. An intermediate class resolves the problem: we derive a class TrailerVeh from Vehicle,
and Truck from Auto and from TrailerVeh. All ambiguities concerning the member functions are
then be resolved in the class Truck:

class TrailerVeh: public Vehicle
{

public:
TrailerVeh(int wt);

};

TrailerVeh::TrailerVeh(int wt)
:

Vehicle(wt)
{
}

class Truck: public Auto, public TrailerVeh
{

public:
// constructors
Truck();
Truck(int engine_wt, int sp, char const *nm,

int trailer_wt);

// interface: to set two weight fields
void setweight(int engine_wt, int trailer_wt);
// and to return combined weight

393

int getweight() const;
};

// example of constructor
Truck::Truck(int engine_wt, int sp, char const *nm,

int trailer_wt)
:

Auto(engine_wt, sp, nm),
TrailerVeh(trailer_wt)

{
}

// example of interface function
int Truck::getweight() const
{

return
(// sum of:

Auto::getweight() + // engine part plus
TrailerVeh::getweight() // the trailer

);
}

15.6 Run-Time Type identification

C++ offers two ways to retrieve the type of objects and expressions while the program is run. The
possibilities of C++’s run-time type identification are somewhat limited compared to languages
like JAVA. Normally, C++ uses static type checking and type identification. Static type checking
and determination is safer and more efficient than run-time type identification, and should therefore
be used wherever possible. Nonetheles, C++ offers run-time type identification by providing the
dynamic cast and typeid operators.

• The dynamic cast operator can be used to convert a pointer or reference to a base class to
a pointer or reference to a derived class.

• The typeid operator returns the actual type of an expression.

For all practical purposes, these operators work on class type objects, where the classes contain
one or more virtual functions.

15.6.1 The dynamic cast operator

The dynamic cast operator is used to convert a (base) class pointer or reference to a (base) class
object to, respectively, a derived class pointer or derived class reference.

The dynamic cast is performed run-time. A prerequisiste for the proper functioning of the dynamic
cast operator is the existence of at least one virtual function in the base class.

In the following example a pointer to the class Derived is obtained from the Base class pointer bp:

394

class Base
{

public:
virtual ~Base();

};
class Derived: public Base
{

public:
char const *toString()
{

return ("Derived object");
}

};
int main()
{

Base
*bp;

Derived
*dp,
d;

bp = &d;

if ((dp = dynamic_cast<Derived *>(bp)))
cout << dp->toString() << endl;

else
cout << "dynamic cast conversion failed\n";

return (0);
}

Note the test: in the if condition the success of the dynamic cast is checked. This must be done
run-time, as the compiler can’t do this itself. If a base class pointer is provided the dynamic cast
operator returns 0 on failure, and a pointer to the requested derived class on success. Consequently,
if there are multiple derived classes, a series of checks could be performed to find the actual derived
class to which the pointer points:

class Base
{

public:
virtual ~Base();

};
class Derived: public Base
{

public:
char const *toString()
{

return ("Derived object");
}

395

};
class SecondDerived: public Base
{

public:
char const *hello()
{

return ("hello from a SecondDerived object");
}

};
int main()
{

Base
*bp;

Derived
*dp,
d;

SecondDerived
*sdp;

bp = &d;

if ((dp = dynamic_cast<Derived *>(bp)))
cout << dp->toString() << endl;

else if ((sdp = dynamic_cast<SecondDerived *>(bp)))
cout << dp->hello() << endl;

}

Alternatively, a reference to a base class object may be available. In this case the dynamic cast<>()
operator will throw an exception if it fails. For example, assuming the availability of the above-
mentioned classes Base, Derived, and SecondDerived:

void process(Base &b)
{

try
{

cout << dynamic_cast<Derived &>(b).toString() << endl;
return;

}
catch (std::bad_cast)
{}

try
{

cout << dynamic_cast<SecondDerived &>(b).hello() << endl;
return;

}
catch (std::bad_cast)
{}

}

396

int main()
{

Derived
d;

process(d);
return (0);

}

In this example the value std::bad cast is introduced. The std::bad cast is thrown as an
exception if the dynamic cast of a reference to a base class object fails.

The dynamic cast operator may be a handy tool when an existing base class cannot or should not
be modified (e.g., when the sources are not available), and a derived class may be modified instead.
Code receiving a base class pointer or reference may then perform a dynamic cast to the derived
class to be able to use the derived class’ functionality.

Casts from a base class reference or pointer to a derived class reference or pointer are called
downcasts.

15.6.2 The typeid operator

As with the dynamic cast operator, the typeid is usually applied to base class objects, that
are actually derived class objects. Similarly, the base class should contain one or more virtual
functions.

In order to use the typeid operator, the header file typeinfo must be included:

#include <typeinfo>

Actually, the typeid operator returns an object of type type info, which may, e.g., be compared
to other type info objects.

The class type info may be implemented differently by different implementations, but at the very
least it has the following interface:

class type_info
{

public:
virtual ~type_info();
int operator==(const type_info &other) const;
int operator!=(const type_info &other) const;
char const *name() const;

private:
type_info(type_info const &other);
type_info &operator=(type_info const &other);

};

397

Note that this class has a private copy constructor and overloaded assignment operator. This
prevents the normal construction or assignment of a type info object. Type info objects are
constructed and returned by the typeid operator. Implementations, however, may choose to
extend or elaborate upon the type info class and provide, e.g., lists of functions that can be
called in a certain class.

If the type id operator is given a base class reference (where the base class contains at least one
virtual function), it will indicate that the type of its operand is the derived class. For example:

class Base; // contains >= 1 virtual functions
class Derived: public Base;

Derived
d;

Base
&br = d;

cout << typeid(br).name() << endl;

In this example the typeid operator is given a base class reference. It will print the text Derived,
being the class name of the class br actually refers to. If Base does not contain virtual functions,
the text Base would have been printed.

The typeid operator can be used to determine the name of any type of expression, not just of
class type objects. For example:

cout << typeid(12)->name() << endl; // prints: int
cout << typeid(12.23)->name() << endl; // prints: double

In situations where the typeid operator is applied to determine the type of a derived class, it is
important to realize that a base class reference is used as the argument of the typeid operator.
Consider the following example:

class Base; // contains at least one virtual function
class Derived: public Base;

Base
*bp = new Derived; // base class pointer to derived object

if (typeid(bp) == typeid(Derived *)) // 1: false
...

if (typeid(bp) == typeid(Base *)) // 2: true
...

if (typeid(bp) == typeid(Derived)) // 3: false
...

if (typeid(bp) == typeid(Base)) // 4: false
...

398

Here, (1) returns false as a Base ∗ is not a Derived ∗. (2) returns true, as the two pointer
types are the same, (3) and (4) return false as pointers to objects are not the objects themselves.

On the other hand, if ∗bp is used in the above expressions, then (1) and (2) return false as an
object (or reference to an object) is not a pointer to an object, whereas with

if (typeid(*bp) == typeid(Derived)) // 3: true
...

if (typeid(*bp) == typeid(Base)) // 4: false
...

we see that (3) now returns true: ∗bp actually refers to a Derived class object, and typeid(∗bp)
will return typeid(Derived).

A similar result is obtained if a base class reference is used:

Base
&br = *bp;

if (typeid(br) == typeid(Derived)) // 3: true
...

if (typeid(br) == typeid(Base)) // 4: false
...

399

Chapter 16

Templates

The C++ language support a mechanism which allows programmers to define completely gen-
eral functions or classes, based on hypothetical arguments or other entities. Code in which this
mechanism has been used is found in de chapter on abstract containers.

These general functions or classes become concrete code once their definitions are applied to real
entities. The general definitions of functions or classes are called templates, the concrete imple-
mentations instantiations.

In this chapter we will examine template functions and template classes.

16.1 Template functions

Template functions are used in cases where a single implementation of a function is not practical
due to the different types that are distinguished in C++. If a function is defined as

fun(int ∗array)

then this function will likely run into problems if it is passed the address of an array of double
values. The function will normally have to be duplicated for parameters of different types. For
example, a function computing the sum of the elements of an array for an array of ints is:

int sumVector(int *array, unsigned n)
{

int
sum(0);

for (int idx = 0; idx < n; ++idx)
sum += array[idx];

return (sum);
}

The function must be overloaded for arrays of doubles:

400

double sumVector(double *array, unsigned n)
{

double
sum(0);

for (int idx = 0; idx < n; ++idx)
sum += array[idx];

return (sum);
}

In a local program development situation this hardly ever happens, since only one or two sumVector()
implementations will be required. But the strongly typed nature of C++ stands in the way of
creating a truly general function, that can be used for any type of array.

In cases like these, template functions are used to create the truly general function. The template
function can be considered a general recipe for constructing a function that can be used with the
general array. In the coming sections we’ll discuss the construction of template functions. First,
the construction of a template function is discussed. Then the instantiation is covered. With
template functions the argument deduction deserves special attention, which is given in section
16.1.3.

16.1.1 Template function definitions

The definition of a template function is very similar to the definition of a normal function, except
for the fact that the parameters, the types that are used in the function, and the function’s return
value may be specified in a completely general way. The function sumVector() in the previous
section can as follows be rewritten as a template function:

template <class T>
T sumVector(T *array, unsigned n)
{

T
sum(0);

for (int idx = 0; idx < n; ++idx)
sum += array[idx];

return (sum);
}

Note the correspondence with the formerly defined sumVector() functions. In fact, if a typedef
int T had been specified, the template function, except for the initial template line, would be
the first sumVector() function of the previous section. So, the essence of the template function is
found in the first line. From the above example:

template <class T>

This line starts out the definition or declaration of a template function. It is followed by the
template parameter list, which is a comma-separated non-empty list of so-called template type or

401

template non-type parameters, surrounded by angular brackets < and >. In the template function
sumVector() the only template parameter is T, which is a template type parameter. ttT) is the
formal type that is used in the template function definition to represent the actual type that will
be specified when the template function is instantiated. This type is used in the parameter list of
the function, it is used to define the type of a local variable of the function, and it is used to define
the return type of the function.

Normal scope rules and identifier rules apply to template definitions and declarations: the type T
is a formal name, it could have been named Type. The formal typename that is used overrules,
within the scope of the template definition or declaration, any previously defined identifiers by
that name.

A template non-type parameter represents a constant expression, which must be known by the
time the template is instantiated, and which is specified in terms of existing types, such as an
unsigned.

An alternative definition for the above template function, using a template non-type parameter is:

template <class T, unsigned size>
T sumVector(const T (&array)[size])
{

T
sum(0);

for (int idx = 0; idx < size; ++idx)
sum += array[idx];

return (sum);
}

Template function definitions may have multiple type and non-type parameters. Each parameter
name must be unique. For example, the following template declaration declares a template function
for a function outerProduct(), returning a pointer to vectors of size2 T2 elements, and expecting
two vectors of, respectively, size1 and size2 elements:

template
<

class T1,
class T2,
unsigned size1,
unsigned size2

>
T1
(

*outerProduct
(

T2 const (&v1)[size1],
T2 const (&v2)[size2]

)
)[size2];

402

Note that the return type T1 of the returned vectors is intentionally specified different from T2.
This allows us to specify, e.g., return type double for the returned outer product, while the
vectors passed to outerProduct are of type int. Instead of using the keyword class, the keyword
typename can be used in template type parameter lists. However, the keyword typename is required
in certain situations that may occur when the template function is defined. For example, assume
we define the following template function:

template <class T>
void function()
{

unsigned
p;

...
{

T::member
*p;

...
}

}

Although the layout of the above function suggests that p is defined as a pointer to the type member,
that must have been declared in the class that is specified when the function is instantiated, it
actually is interpreted by the compiler as a multiplication of T::member and p.

The compiler does so, because it cannot know from the template definition whether member is a
typename, defined in the class T, or a member of the class T. It takes the latter and, consequently,
interprets the ∗ as a multiplication operator.

What if this interpretation was not intended? In that case the typename keyword must be used.
In the following template definition the ∗ indicates a pointer definition to a T::member type.

template <class T>
void function()
{

unsigned
p;

...
{

typename T::member
*p;

...
}

}

The keyword ’typename’

As illustrated in section 16.1.1 The keyword typename can be used to disambiguate members and
typenames in cases where the template type parameter represents a class type. It can also be used

403

instead of the class keyword indicating a template type. So, instead of

template <class T>
void function(T type)
{

...
}

the function can be defined as:

template <typename T>
void function(T type)
{

...
}

16.1.2 Instantiations of template functions

Consider the first template function definition in section 16.1.1. This definition is a mere recipe
for constructing a particular function. The function is actually constructed once it is used, or its
address is taken. Its type is implicitly defined by the nature of its parameters.

For example, in the following code assumes that the function sumVector has been defined in the
header file sumvector.h. In the function main() the function sumVector() is called once for the
int array x, once for the double array y, and once the address is taken of a sumVector() function.
By taking the address of a sumVector function the type of the argument is defined by the type
of the pointer variable, in this case a pointer to a function processing a array of unsigned long
values. Since such a function wasn’t available yet (we had functions for ints and doubles, it is
constructed once its address is required. Here is the function main():

#include "sumvector.h"

int main()
{

int
x[] = {1, 2};

double
y[] = {1.1, 2.2};

cout << sumVector(x, 2) << endl // first instantiation
<< sumVector(y, 2) << endl; // second instantiation

unsigned long // third instantiation
(*pf)(unsigned long *, unsigned) = sumVector;

return (0);

404

}

While in the above example the functions sumVector() could be instantiated, this is not always
possible. Consider the following code:

#include "template.h"

unsigned fun(unsigned (*f)(unsigned *p, unsigned n));
double fun(double (*f)(double *p, unsigned n));

int main()
{

cout << fun(sumVector) << endl;
return (0);

}

In the above example the function fun() is called in the function main(). Although it appears
that the address of the function sumVector() is passed over to the function fun(), there is a slight
problem: there are two overloaded versions of the function fun(), and both can be given the address
of a function sumVector(). The first function fun() expects an unsigned ∗, the second one a
double ∗. Which instantiation must be used for sumVector() in the fun(sumVector) expression?
This is an ambiguity, which balks the compiler. The compiler complains with a message like

In function ‘int main()’:
call of overloaded ‘fun ({unknown type})’ is ambiguous
candidates are: fun(unsigned int (*)(unsigned int *, unsigned int))

fun(double (*)(double *, unsigned int))

Situations like this should of course be avoided. Template functions can only be instantiated if
this can be done unambiguously. It is, however, possible to disambiguate the situation using a
cast. In the following code fragment the (proper) double ∗ implementation is forced by means of
a static cast:

#include "template.h"

unsigned fun(unsigned (*f)(unsigned *p, unsigned n));
double fun(double (*f)(double *p, unsigned n));

int main()
{

cout << fun(static_cast<double (*)(double *, unsigned)>(sumVector))
<< endl;

return (0);
}

405

But casts should be avoided, where possible. Fortunately the cast can be avoided in this kind of
situation, as described in section 16.1.4.

If the same template function definition was included in different source files, which are then
compiled to different object files which are thereupon linked together, there will, per type of
template function, be only one instantiation of the template function in the final program.

This is illustrated by the following example, in which the address of a function sumVector() for
int arrays is written to cout. The first part defines a function fun() in which the address of a
sumVector() function is written to cout. The second part defines a function main(), defined in
a different sourcefile, in which the address of a similar sumVector() function is written to cout,
and in which fun() is called:

// This is source file 1: fun.cc
#include "template.h"
void fun()
{

cout << static_cast<void *>
(

static_cast<int (*)(int *, unsigned)>
(sumVector)

)
<< endl;

}

// This is source file 2: main.cc
#include "template.h"

void fun();

int main()
{

fun();

cout << static_cast<void *>
(

static_cast<int (*)(int *, unsigned)>
(sumVector)

)
<< endl;

return (0);
}

After compiling and linking the above two source files, the resulting program produces output like:

0x8048760
0x8048760

406

the addresses of the two functions are the same, so each function eventually uses the same imple-
mentation of the template function.

Knowing this, it is also understandable that it is possible to declare a template function, if it is
known that the required instantiation is available in another sourcefile. E.g., the function fun()
in the above example could be defined as follows:

template<class T>
T sumVector(T *tp, unsigned n);

void fun()
{

cout << static_cast<void *>
(

static_cast<int (*)(int *, unsigned)>
(sumVector)

)
<< endl;

}

To make this work, one must of course be certain that the instantiation is available elsewhere. The
advantage of this approach is that the compiler doesn’t have to instantiate a template function,
which speeds up the compilation of the function fun(), the disadvantage is that we have to do the
bookkeeping ourselves: is the template function used somewhere else or not?

A third approach, is to declare template functions in header files, keeping the definition in a
template source file. In the template source file the functions are instantiated by pointers to the
appropriate functions. For example, define sumvector.cc as follows:

template<class T>
T sumVector(T *tp, unsigned n)
{

return (*tp);
}

static void
p1 = static_cast<int ()(int *, unsigned)>(sumVector);

and declare the sumVector template function in all sourcefiles using sumVector. This way the com-
piler keeps track of which sumVector() functions are required, linking them from the sumvector.o
object when necessary. Of course, they must be available there. But if they aren’t then they
can be defined simply by providing another pointer defnition, followed by a recompilation of
sumvector.cc. The advantage here is gain in compilation time (and maybe a clear overview
of what template functions are actually instantiated), as well as data hiding: the implementation
of the template function is not required by the users of the implementation, and can therefore be
hidden from them. The disadvantage is the definition of a bunch of static void ∗ variables: they
are used as rvalues for the addresses of instantiated template functions. Another disadvantage
is that the template definition is not available for other situations. If some program would benefit

407

from a sumVector() instantiation for a type that is not available in sumvector.cc, the template
itself or the sumvector.cc sourcefile would be required (since we strongly agree with the principles
of the free software foundation, the latter disadvantage is actually more of an advantage in our
opinion :-).

Finally, as the structure of the void ∗ definitions is always the same, a macro definition might
come in handy here. E.g., the sumvector.cc source file in which three sumVector() functions are
instantiated could be written as follows:

template<class T>
T sumVector(T *tp, unsigned n)
{

return (*tp);
}

// NOTE: the next line ends at the backslash
#define instantiate(type) \

static_cast<type (*)(type *, unsigned)>(sumVector)

static void
*p[] =
{

instantiate(int),
instantiate(double),
instantiate(unsigned)

};

#undef instantiate

This model can be used over and over again: the instantiate() macro is never defined outside of
the sourcefile itself, while instantiations can be generated on the fly by new instantiate() macro
calls.

16.1.3 Argument deduction

The compiler determines what type of template function is needed by examining the types and
values of the arguments of template functions. This process is called template argument deduction.
With template argument deduction, the type of the return value of the template function is not
considered.

For example, consider once again the function

T sumVector(const T (&array)[size])

given in section 16.1.1:

template <class T, unsigned size>
T sumVector(const T (&array)[size])
{

408

T
sum(0);

for (int idx = 0; idx < size; ++idx)
sum += array[idx];

return (sum);
}

In this function the template non-type parameter size is determined from the size of the array
that is used with the call. Since the size of an array is known to the compiler, the compiler can
determine the size parameter by looking up the size of the array that is used as argument to the
function sumVector(). If the size is not known, e.g., when a pointer to an array element is passed
to the function, the compilation will not succeed. Therefore, in the following example, the first
call of the function sumVector() will succeed, as iArray is an array; the second one will fail, as
iPtr is a pointer, pointing to an array of (in principle) unknown size:

#include "sumvector.t" // define the template function

int main()
{

int
iArray[] = {1, 2, 3},
*iPtr = iArray;

sumVector(iArray); // succeeds: size of iArray is known
sumVector(iPtr); // fails: size of array pointed to by

// iPtr is unknown
return (0);

}

It is not necessary for a template function’s argument to match exactly the type of the template
function’s corresponding parameter. Three kinds of conversions are allowed here:

• lvalue transformations

• qualification conversions

• conversion to a base class instantiated from a class template

These three conversions are now discussed and illustrated.

Lvalue transformations

There are three types of lvalue transformations:

• lvalue-to-rvalue conversions

• array-to-pointer conversions

• function-to-pointer conversions

409

lvalue-to-rvalue conversions. Simply stated, an lvalue is an expression that may be used to the
left of an assignment operator. It is an object whose address may be determined, and which
contains a value. In contrast, an rvalue is an expression that may be used to the right of an
assignment operator: it represents a value that does not have an address and that cannot be
modified.
In a statement like

x = y;

(in which x and y are variables of comparable types), the value of y is determined. Then this
value is assigned to x. Determining the value of y is called an lvalue-to-rvalue conversion. An
lvalue-to-rvalue conversion takes place in situations where the value of an lvalue expression
is required. This also happens when a variable is used as argument to a function having a
value parameter.

array-to-pointer conversions. An array-to-pointer conversion occurs when the name of an ar-
ray is assign to a pointervariable. This if frequently seen with functions using parameters
that are pointer variables. When calling such functions, an array is often specified as argu-
ment to the function. The address of the array is then assigned to the pointer-parameter.
This is called an array-to-pointer conversion.

function-to-pointer conversions. This conversion is most often seen with functions defining a
parameter which is a pointer to a function. When calling such a function the name of a
function may be specified for the parameter which is a pointer to a function. The address of
the function is then assigned to the pointer-parameter. This is called a function-to-pointer
conversion.

In the first sumVector() function (section 16.1.1) the first parameter is defined as a T ∗. Here an
array-to-pointer conversion is allowed, as it is an lvalue transformation, which is one of the three
allowed conversions. Therefore, the name of an array may be passed to this function as its first
argument.

Qualification conversions

A qualification conversion adds const or volatile qualifications to pointers. Assume the function
sumVector() in section 16.1.1 was defined as follows:

template <class T>
T sumVector(T const *array, unsigned n)
{

T
sum(0);

for (int idx = 0; idx < n; ++idx)
sum += array[idx];

return (sum);
}

In the above definition, a plain array or pointer to some type can be used in combination with this
function sumVector(). E.g., an argument iArray could be defined as int iArray[5]. However,

410

no damage is inflicted on the elements of iArray by the function sumVector(): it explicitly states
so, by defining array as a T const ∗. Qualification conversions are therefore allowed in the process
of template argument deduction.

Conversion to a base class

In section 16.2 template classes are formally introduced. However, they were already used earlier:
abstract containers (covered in chapter 7) are actually defined as template classes. Like ‘normal’
classes, template classes can participate in the construction of class hierarchies. In section 16.2.7
it is shown how a template class can be derived from another template class.

Assume that the template class Pipe is derived from the class queue. Furthermore, assume our
function sumVector() was written to return the sum of the elements of a queue:

template <class T>
T sumVector(queue<T> &queue)
{

T
sum(0);

while (!queue.empty())
{

sum += gueue.front();
queue.pop();

}
return (sum);

}

All kinds of queue objects can be passed to the above function. However, it is also possible to pass
Pipe objects to the function sumVector(): By instantiating the Pipe object, its base class, which
is the template class queue, is also instantiated. Now:

• Pipe<xxx> has queue<xxx> as its base class, and

• queue<xxx> is a possible first argument of the above template function sumVector(), and

• a function argument which is of a derived class type may be used with a base class parameter
of a template function.

Consequently, the definition ‘Pipe<int> pi;’ implies the instantiation of the base class queue<int>,
which is an allowed type for the first parameter of sumVector(). Therefore, pi may be passed as
argument to sumVector().

This conversion is called a conversion to a base class instantiated from a class template. In the
above example, the class template is Pipe, the base class is queue.

Summary: the template argument deduction algorithm

The following algorithm is used with template argument deduction when a template function is
called with one or more arguments:

411

• In turn, the template parameters are identified in the parameters of the called function.

• For each template parameter, the template’s type is deduced from the template function’s
argument (e.g., int if the argument is a Pipe<int> object).

• The three allowed conversions (see section 16.1.3) for template arguments are applied where
necessary.

• If the same template parameter is used with multiple function parameters, the template types
of the arguments must be the same. E.g., with template function

twoVectors(vector<Type> &v1, vector<Type> &v2)

the arguments used with twoVectors() must have equal types. E.g.,

vector<int>
v1,
v2;

...
twoVectors(v1, v2);

16.1.4 Explicit arguments

Consider once again the function main() is section 16.1.2. Here the function sumVector() was
called as follows:

#include "sumvector.h"

int main()
{

int
x[] = {1, 2};

double
y[] = {1.1, 2.2};

cout << sumVector(x, 2) << endl
<< sumVector(y, 2) << endl;

...
}

In both cases the final argument of the function is of type int, but in the template’s definition,
the second parameter is an unsigned. The conversion unsigned -> int is not one of the allowed
conversions lvalue transformations, qualification conversions or conversion to a base class.
Why doesn’t the compiler complain in this case? In cases where the type of the argument is fixed,
standard type conversions are allowed, and they are applied automatically by the compiler. The
types of arguments may also be made explicit by providing casts. In those cases there is no need
for the compiler to deduce the types of the arguments.

412

In section 16.1.2, a cast was used to disambiguate. Rather than using a static cast, the type
of the required function can be made explicit using another syntax: the function name may be
followed by the types of the arguments, surrounded by pointed brackets. Here is the example of
section 16.1.2 using explicit template argument types:

#include "template.h"

unsigned fun(unsigned (*f)(unsigned *p, unsigned n));
double fun(double (*f)(double *p, unsigned n));

int main()
{

cout << fun(sumVector<double, unsigned>)
<< endl;

return (0);
}

The explicit argument type list should follow the types mentioned in the template<...> line
preceding the template’s function definition. The type class T in the template line of the function
sumVector() is made explicit as type double, and not as, e.g., a type double ∗, which was used
in the static cast in the example of section 16.1.2.

Explicit template arguments may be partially specified. Like the specification of arguments of
functions for which default arguments are defined, trailing template arguments may be omitted
from the list of explicit template argument types. When they are omitted, the types mentioned
in the template<> line preceding the template’s function definition are used. So, in the above
example the explicit argument type unsigned may be omitted safely, as the type of the second
template’s argument is already known from the argument type list. The function main() can
therefore also be written as:

int main()
{

cout << fun(sumVector<double>)
<< endl;

return (0);
}

Explicit template arguments can also be used to simplify the definition of the instantiate macro in
section 16.1.2. Using an explicit template argument, the code gets so simple that the macro itself
can be completely avoided. Here is the revised code of the example:

template<class T>
T sumVector(T *tp, unsigned n)
{

return (*tp);
}
static void

413

*p[] =
{

&sumVector<int>,
&sumVector<double>,
&sumVector<unsigned>

};

Note that the initial &-tokens indicating the addresses of the sumVector() functions are required
when the addresses of the functions are assigned to pointer variables.

Template explicit instantiation declarations

The explicit instantiations that were defined in the previous section were all embedded in the array
of void pointers p[], which array was used to have a target for the addresses of the instantiated
function.

This is, admittedly not too elegant, but it works well. However, it is also possible to declare a
template providing explicit types of the template’s arguments with the purpose of instantiating
the corresponding template functions. An explicit instantiation declaration starts with the key-
word template, to be followed by an explicit template function declaration. Although this is a
declaration, it is considered by the compiler as a request to instantiate that particular variant of
the function.

Using explicit instantiation declarations the final example of the previous section can be rewritten
as follows:

template<class T>
T sumVector(T *tp, unsigned n)
{

return (*tp);
}

template int sumVector<int>(int *, unsigned);
template double sumVector<double>(double *, unsigned);
template unsigned sumVector<unsigned>(unsigned *, unsigned);

As can be seen from this example, explicit instantiation declarations are mere function declarations,
e.g.,

int sumVector(int ∗, unsigned);

embellished with the template keyword and an explicit template argument list, e.g., <int>.

16.1.5 Template explicit specialization

Although the function sumVector() we’ve seen in the previous sections is well suited for arrays
of elements of the basic types (like int, double, etc.), the template implementation is of course

414

not appropriate in cases where the += operator is not defined or the sum(0) initialization makes
no sense. In these cases an template explicit specialization may be provided,

The template’s implementation of the sumVector() is not suited for variables of type char ∗, like
the argv parameter of main(). If we want to be able to use sumVector() with variables of type
char ∗ as well, we can define the following special form of sumVector():

#include <string>
#include <numeric>

template <> char *sumVector<char *>(char **argv, unsigned argc)
{

string
s = accumulate(argv, argv + argc, string());

return (strcpy (new char[s.size() + 1], s.c_str()));
}

A template explicit specialization starts with the keyword template, followed by an empty set of
pointed brackets. This is followed by the head of the function, which follows the same syntax as a
template explicit instantiation declaration, albeit that the trailing ; of the declaration is replaced
by the actual function body of the specialization implementation.

The template explicit specialization is normally included in the same file as the standard imple-
mentation of the template function.

If the template explicit specialization is to be used in a different file than the file in which it is
defined, it must be declared. Of course, being a template function, the definition of the template
explicit specialization can also be included in every file in which it is used, but that will also slow
down the compilation of those other files.

The declaration of a template explicit specialization obeys the standard syntax of a function
declaration: the definition is replaced by a semicolon. Therefore, the declaration of the above
template explicit specialization is

template <> char ∗sumVector<char ∗>(char ∗∗, unsigned);

Note the pair of pointed brackets following the template keyword. Were they omitted, the function
would reduce to a template instantiation declaration: you would not notice it, except for the longer
compilation time, as using a template instantiation declaration implies an extra instantiation (i.e.,
compilation) of the function.

In the declaration of the template explicit specialization the explicit specification of the template
arguments (in the < ... > list following the name of the function) can be omitted if the types
of the arguments can be deduced from the types of the arguments. With the above declaration
this is the case. Therefore, the declaration can be simplified to:

template <> char ∗sumVector(char ∗∗, unsigned);

Comparably, the template <> part of the template explicit specialization may be omitted. The
result is an ordinary function or ordinary function declaration. This is not an error: template func-
tions and non-template functions may overload each other. Ordinary functions are less restrictive

415

in the type conversions that are allowed for their arguments than template functions, which might
be a reason for using an ordinary function. On the other hand, a template explicit specialization
must obey the form of the general template function of which it is a specialization. If the template
function head is

T sumVector(T ∗tp, unsigned n)

then the template explicit specialization cannot be

template<> char ∗sumVector<char const ∗>(char const ∗∗, unsigned)

as this results in different interpretations of the formal type T of the template: char ∗ or char
const ∗.

16.1.6 Overloading template functions

Template functions may be overloaded. The function sumVector() defined earlier (e.g. in section
16.1.1) may be overloaded to accept, e.g., variables of type vector:

#include <vector>
#include <numeric>

template <class T>
T sumVector(vector<T> &array)
{

return (accumulate(array.begin(), array.end(), T(0)));
}

Such a template function can be used by passing it an argument of type vector, as in:

void fun(vector<int> &vi)
{

cout << sumVector(vi) << endl;
}

Apart from defining overloaded versions, the overloaded versions can of course also be declared.
E.g.,

template <class T>
T sumVector(vector<T> &array);

Using templates may result in ambiguities which overloading can’t solve. Consider the following
template function definition:

416

template<class T>
bool differentSigns(T v1, T v2)
{

return
(

v1 < 0 && v2 >= 0
||
v1 >= 0 && v2 < 0

);
}

Passing differentSigns() an int and an unsigned is an error, as the two types are different,
whereas the template definition calls for identical types. Overloading doesn’t really help here:
defining a template having the following prototype is ok with the int and unsigned, but now two
instantiations are possible with identical types.

template<class T1, class T2>
bool differentSigns(T1 v1, T2 v2);

This situation can be disambiguated by using template explicit arguments, e.g., differentSigns<int,
int>(12, 30). But template explicit arguments could be used anyway with the second overloaded
version of the function: the first definition is superfluous and can be omitted.

On the other hand, if one overloaded version can be interpreted as a more specialized variant of
another version of a template function, then in principle the two variants of the template function
could be used if the arguments are of the more specialized types. In this case, however, there is no
ambiguity, as the compiler will use the more specialized variant if the arguments so suggest.

So, assume an overloaded version of sumVector() is defined having the following prototype and a
snippet of code requiring the instantiation of sumVector:

template <class T>
T sumVector(T, unsigned);

extern int
iArray[];

void fun()
{

sumVector(iArray, 12);
}

The above example doesn’t produce an ambiguity, even though the original sumVector() given
in section 16.1.1 and the version declared here could both be used for the call. Why is there no
ambiguity here?

417

In situations like this there is no ambiguity if both declarations are identical but for the fact that
one version is able to accept a superset of the possible arguments that are acceptable for the other
version. The original sumVector() template can accept only a pointer type as its first argument.
The version declared here can accept a pointer type as well as any non-pointer type. A pointer
type iArray is passed, so both template functions are candidates for instantiation. However, the
original sumVector() template function can only accept a pointer type as its first argument. It
is therefore more specialized than the one given here, and it is therefore selected by the compiler.
If, for some reason, this is not appropriate, then an explicit template argument can be used to
overrule the selection made by the compiler. E.g.,

sumVector<int ∗>(iArray, 12);

16.1.7 Selecting an overloaded (template) function

The following steps determine the actual function that is called, given a set of (template or non-
template) overloaded functions:

• First, a set of candidate functions is constructed. This set contains all functions that are
visible at the point of the call, having the same name as the function that is called. For
a template function to be considered here, depends on the actual arguments that are used.
These arguments must be acceptable given the standard template argument deduction pro-
cess described in section 16.1.3. For example, assuming all of the following declarations were
provided, an instantiation of

template <class T, class U>
bool differentSigns(T t, U u);

and the functions

bool differentSigns(double i, double j);
bool differentSigns(bool i, bool j);
bool differentSigns(int (&i)[2]);

will all be elements of the set of possible functions in the following code fragment, as all of
the four functions have the same name of the function that is called:

void fun(int arg1, double arg2)
{

differentSigns(arg1, arg2);
}

• Second, the set of viable functions is constructed. Viable functions are functions for which
type conversions exist that can be applied to match the types of the parameters of the func-
tions and the types of the actual arguments. This removes the last two function declarations
from the initial set: the third function is removed as there is no standard conversion from
double to int, and the fourth function is removed as there is a mismatch in the number of
arguments between the called function and the declared function.

418

• Third, the remaining functions are ranked in order of preference, and the first one is going
to be used. Let’s see what this boils down to:

For the template function, the function differentSign<int, double> is instantiated. For
this function the types of the two parameters and arguments for a pairwise exact match:
score two points for the template function.

For the function bool differentSigns(double i, double j) the type of the second pa-
rameter is exactly matches the type of the second argument, but a (standard) conversion int
-> double is required for the first argument: score one point for this function.

Consequently, the template function is selected as the one to be used. As an exercise,
feed the abouve four declarations and the function fun() to the compiler and wait for the
linker errors: ignoring the undefined reference to main(), the linker will complain that the
(template) function

bool differentSigns<int, double>(int, double)

is an undefined reference.

If the template would have been declared as

template <class T>
bool differentSigns(T t, T u);

then no template function would have been instantiated here. This is ok, as the ordinary function
differentSigns(double, double) will now be used. An error occurs only if no instantiation of
the template function can be generated and if no acceptable ordinary function is available. If such
a case, the compiler will generate an error like

no matching function for call to ‘differentSigns (int &, double &)

As we’ve seen, a template function in which all type parameters exactly match the types of the
arguments prevails over an ordinary function in which a (standard) type conversion is required.
Correspondingly, a template explicitly specialized function will prevail over an instantiation of the
general template if both instantiations show an exact match between the types of the parameters
and the arguments. For example, if the following template declarations are available:

template <class T, class U>
bool differentSigns(T t, U u);

template <> bool differentSigns<double, int>(double, int);

then the template explicitly specialized function will be selected without generating an extra in-
stantiation from the general template definition.

Another situation in which an apparent ambiguity arises is when both an ordinary function is
available and a proper instantiation of a template can be generated, both exactly matching the

419

types of the arguments of the called function. In this case the compiler does not flag an ambiguity
as the oridinary function is considered the more specialized function, which is therefore selected.

As a rule of thumb consider that when there are multiple viable functions sharing the top ranks
of the set of viable functions, then the function template instantiations are removed from the set.
If only one function remains, it is selected. Otherwise, the call is ambiguous.

16.1.8 Name resolution within template functions

Consider once more our function sumVector() of section 16.1.1, but now it’s given a somewhat
different implementation:

template <class T>
T sumVector(T *array, unsigned n)
{

T
sum = accumulate(array, array + n, T(0));

cout << "The array has " << n << " elements." << endl;
cout << "The sum is " << sum << endl;

return (sum);
}

In this template definition, cout’s operator<< is called to display a char const ∗ string, an
unsigned, and a T-value. The first cout statement displays the string and the unsigned value,
no matter what happens in the template. These types do not depend on a template parameter.
If a type does not depend on a template parameter, the necesary declarations for compiling the
statement must be available when the definition of the template is given. In the above template
definition this implies that

ostream &ostream::operator<<(unsigned)

and

ostream &ostream::operator<<(char const ∗)

must be known to the compiler when the definition of the template is given. On the other hand,

cout << ... << sum << endl

cannot be compiled by the time the template’s definition is given, as the type of the variable
sum depends on a template parameter. The statement can therefore be checked for semantical
correctness (i.e., the question whether sum can be inserted into cout) can only be answered at the
point where the template function is instantiated.

Names (variables) whose type depend on a template parameter are resolved when the template is
instantiated: at that point the relevant declarations must be available. The location where this

420

happens is called the template’s point of instantiation. As a rule of thumb, make sure that the
necessary declarations (usually: header files) are available at every instantiation of the template.

16.2 Template classes

Like templates for functions, templates can be constructed for complete classes. A template class
can be considered when the class should be available for different types of data. Template classes are
frequently used in C++: chapter 7 covers general data structures like vector, stack and queue,
which are available as template classes. The algorithms and the data on which the algorithms
operate are completely separated from each other. To use a particular data structure on a particular
data type, only the data type needs to be specified at the definition or declaration of the template
class object, e.g., stack<int> istack.

In the upcoming sections the construction of such a template class is discussed. In a sense, template
classes compete with object oriented programming (cf. chapter 15), where a similar mechanism is
seen. Polymorphism allows the programmer to separate algorithms from data, by deriving classes
from the base class in which the algorithm is implemented, while implementing the data in the
derived class, together with memberfunctions that were defined as pure virtual functions in the
base class to handle the data.

Generally, template classes are easier to use. It is certainly easier to write stack<int> istack to
create a stack of ints than it is to derive a new class Istack: public stack and to implement
all necessary member functions to be able to create a similar stack of ints using object oriented
programming. On the other hand, for each different type that is used with a template class the
complete class is reinstantiated, whereas in the context of object oriented programming the derived
classes use, rather than copy, the functions that are already available in the base class.

Below a simple version of the template class vector is constructed: the essential characteristics of
a template class are illustrated, without attempting to redo the existing vector class completely.

16.2.1 Template class definitions

The construction and use of template classes will be covered in the coming sections, where a basic
template class bvector (basic vector will be constructed.

The construction of a template class can normally begin with the construction of a normal class
interface around a hypothetical type Type. If more hypothetical types are required, then hypo-
thetical types U, V, W, etc. can be used as well. Assume we want to construct a class bvector,
that can be used to store values of type Type. We want to provide the class with the following
members:

• Constructors to create an object of the class bvector, possibly of a given size, as well as a
copy constructor, since memory will be allocated by the object to store the values of type
Type.

• A destructor.

• An overloaded operator= operator.

• A operator[] to retrieve and reassign the elements giving their indices.

421

• Forward and backward iterators to be able to visit all elements sequentially, either from the
first to the last or from the last to the first.

• A sort() member to sort the elements of type Type.

• A member push back() to add a new element at the end of the vector.

Should the set of members include members that can be used with const objects? In practical
situations it probably should, but for now these members are not included in the interface: I’ve
left them for the reader to implement.

Now that we have decided which members we want, the class interface can be constructed. Like
template functions, a template class definition begins with the keyword template, to be followed
by a non-empty list of template type and/or non-type parameters, surrounded by angular brackets.
This template announcement is then followed by the class interface, in which the template param-
eters may be used to represent types and constants. Here is initial class interface of the bvector
template class, already showing member functions construct and destroy which are used in the
implementation of the copy constructor, the destructor, and the overloaded assignment operator.
The class also already contains an iterator type: it’s defined simply as a pointer to an element of
the vector. The reverse-iterator will be added later. Note that the bvector template class contains
only a template type parameter, and no non-type parameter.

template <class Type>
class bvector
{

public:
typedef reverse_iter<Type> reverse_iterator;

bvector();
bvector(unsigned n);
bvector(bvector<Type> const &other);
~bvector();
bvector<Type> const &operator=(bvector<Type> const &other);
Type &operator[](int index);
bvector<Type> &sort();
void push_back(Type const &value);
Type *begin();
Type *end();
reverse_iterator rbegin();
reverse_iterator rend();
unsigned size();

private:
void construct(bvector<Type> const &other);
Type

*start,
*finish,
*end_of_storage;

};

Within the class interface definition the abstract type Type can be used as a normal typename.
However, note the bvector<Type> constructions appearing in the interface: there is no plain

422

bvector, as the bvector will be bound to a type Type, to be specified later on in the program
using a bvector.

Different from template functions, template class parameters can have default arguments. This
holds true both for template type- and template non-type parameters. If a template class is
instantiated without specifying arguments for the template parameters, and if default template
parameters were defined, then the defaults are used. Such defaults should be suitable for a majority
of instantiations of the class. E.g., for the template class bvector the template announcement could
have been altered to specify int as the default type:

template <class Type = int>

The class contains three data members: pointers to the begin and end of the allocated storage area
(respectively start and end of storage) and a pointer pointing just beyond the element that was
last allocated. The allocation scheme will add elements beyond the ones that are actually required
to reduce the number of times the vector must be reallocated to accomodate new elements.

Template class declarations are constructed by removing the template interface definition (the part
between the curly braces), replacing the definition by a semicolon:

template <class Type>
class bvector;

here too, default types may be specified.

In section 16.3 the full implementation of the bvector template class is given.

16.2.2 Template class instantiations

template classes are instantiated when an object of the template class is defined. When a template
class object is defined (or declared) the template parameters must be explicitly specified (note
that the parameters having default arguments are also specified, albeit as defaults). The template
arguments are never deducted, as with template functions. To define a bvector to store ints, the
construction

bvector<int>
bvInt;

is used. For a bvector for strings

bvector<string>
bvString;

is used.

In combination with the keyword extern these variables are declared rather than defined. E.g.,

423

extern bvector<int>
bvInt;

A template (type) parameter can be used to designate a type within another template. In the
following function the template function manipulateVector() is defined, using type parameter T.
It receives, defines, and returns bvector references and objects:

template <class T>
bvector<T> &manipulateVector(bvector<T> &vector)
{

bvector<T>
extra(vector);

...
return (vector);

}

A template class is not instantiated if a reference or pointer to the class template is used. In
the above example, the bvector<int> extra(...) results in a template instantiation, but the
parameter and the return value of the function manipulateVector(), being references, don’t result
in template instantiations. However, if a memberfunction of a template class is used with a pointer
or reference to a template class object, then the class is instantiated. E.g., in the following code

template <class T>
void add(bvector<T> &vector, int value)
{

vector.push_back(value);
}

the class bvector<int> will be instantiated.

16.2.3 Nontype parameters

Template nontype parameters must be constant expressions. I.e., the compiler must be able to
evaluate their values. For example, the following class uses a template type parameter to define
the type of the elements of a buffer, and a template nontype parameter to define the size of the
buffer:

template <class Type, unsigned size>
class Buffer
{

...
Type

buffer[size];

424

};

The size parameter must be a constant value when a Buffer object is defined or declared. E.g.,

Buffer<int, 20>
buffer;

Note that

• Global variables have constant addresses, that can be used as arguments for nontype param-
eters

• Local and dynamically allocated variables have addresses that are not known by the compiler
when the source file is compiled. These addresses can therefore not be used as arguments for
nontype parameters.

• Lvalue transformations are allowed: if a pointer is defined as a nontype parameter, an array-
name may be specified.

• Qualification conversions are allowed: a pointer to a non-const object may be used with a
non-type parameter defined as a const pointer.

• Promotions are allowed: a constant of a narrower datatype may be used for a nontype
parameter of a wider type (e.g., short when an int is called for, long when a double is
called for).

• Integral conversions are allowed: if an unsigned parameter is specified, an int may be used.

16.2.4 Template class member functions

Normal design considerations should be followed when constructing template class member func-
tions or template class constructors: template class type parameters should preferably be defined
as T const &, rather than T, to prevent unnecessary copying of large T types. Template class
constructors should use member initializers rather than member assignment within the body of
the constructors, again to prevent double assignment of composed objects: once by the default
constructor of the object, once by the assignment itself.

Template memberfunctions must be known to the compiler when the template is instantiated. The
current egcs compiler does not allow precompiled template classes, therefore the memberfunctions
of templates are inline functions. They can be defined inside the template interface or outside the
template interface. Template memberfunctions are defined as the inline memberfunctions of any
other class. However, for the memberfunctions that are defined outside of the template’s interface

• No inline keyword is required in the interface,

• A template <template parameter list> definition is required.

In the bvector template class a memberfunction

425

void push back(T const &value);

is declared. Its definition, outside of the template’s interface, could be:

template <class T>
void bvector<T>::push_back(T const &t)
{

if (finish == end_of_storage)
{

end_of_storage <<= 1;
T

*tmp = copy(start, finish, new T[max]);
delete [] start;
finish = tmp + (finish - start);
finish = tmp;

}
*finish++ = t;

}

Note the fact that the class type of push back is the generic bvector<T> type. The abstract type
T is also used to define the type of the variable tmp.

16.2.5 Template classes and friend declarations

Template classes may define other functions and classes as friends. There are three types of friend
declarations that can appear within a template class:

• A nontemplate friend function or class. This is a well-known friend declaration.

• A bound friend template class or function. Here the template parameters of the current
template are used to bind the types of another template class or function, so that a one-to-
one correspondence between the template’s parameters and the template parameters of the
friend template class or function is obtained.

• A unbound friend template class or function. Here the template parameters of the friend
template class or function remain to be specified, and are not related in some predefined way
to the current template’s parameters.

The following sections will discuss the three types of friend declarations in further detail.

Nontemplate friends

A template class may declare another function or class or class member function as its friend.
Such a friend may access the private members of the template. Friend classes and ordinary friend
functions can be declared as friends, but a class interface must have been seen by the compiler
before one of its members can be declared a friend of a template class (in order to verify the name
of the friend function against the interface.

For example, here are some friend declarations:

426

class Friend
{

public:
void member();

};

template <class T>
class bvector
{

friend class AnotherFriend; // declaration only is ok here
friend void anotherMember(); // declaration is ok here
friend Friend::member(); // Friend interface class required.
...

};

Such ordinary friends can be used, e.g., to access the static private members of the bvector class
or they can themselves define bvector objects and access all members of these objects.

Bound friends

With bound friend template classes or functions there is a one-to-one mapping between the types
that are used with the instantiations of the friends and the template class declaring them as friends.
Here the friends are themselves templates. For example:

template <class T>
class Friend; // declare a template class

template <class T>
void function(Friend<T> &t); // declare a template function

template <class T>
class AnotherFriend
{

public:
void member();

}

template <class T>
class bvector
{

friend class Friend<T>; // 1
friend void function<T>(Friend<T> t); // 2
friend void AnotherFriend<T>::member(); // 3

};

Above, three friend declarations are defined:

427

• At 1, the class Friend is declared a friend of bvector if it is instantiated for the same type
T as bvector itself.

• At 2, the function funciont is declared a friend of bvector if it is instantiated for the same
type T as bvector itself. Note that the template type parameter T appears immediately
following the function name in the friend declaration. Here the correspondence between
the function’s template parameter and bvector’s template parameter is defined. After all,
function() could have been a parameterless function. Without the <T> affixed to the
function name, it is an ordinary function, expecting an (unrestricted) instantiation of the
class bvector for its argument.

• At 3, a specific memberfunction of the class AnotherFriend, instantiated for type T is de-
clared as a friend of the class bvector.

Assume we would like to be able to insert the elements of a bvector into an ostream object, using
the insertion operator <<. For such a situation the copy() generic algorithm in combination
with the ostream iterator comes in handy. However, the latter iterator is a template function,
depending on type T. If we can assume that start and finish are iterators of bvector, then
the implementation is quickly realized by defining operator<< as a template function, and by
declaring this operator as a friend of the class bvector():

#include <iterator>
#include <algorithm>
#include <iostream>

template<class T>
class bvector
{

friend ostream &operator<< <T> (ostream &str,
bvector<T> const &vector);

private:
Iterator

*start,
*finish;

};

template <class T>
ostream &operator<<(ostream &str, bvector<T> const &vector)
{

ostream_iterator<T *>
out(str, " ");

return (copy(bvector.start, bvector.finish, out));
}

Unbound friends

By prepending the friend declarations by the template<typelist> phrase, the friends received
their own template parameter list. The template types of these friends are completely independent
from the type of the template class declaring the friends. Such friends are called unbound friends.

428

Every instantiation of an unbound friend has unrestricted access to the private members of every
instantiation of the template class declaring the friends.

Here is the syntactic convention for declaring an unbound friend function, an unbound friend class
and an unbound friend member function of a class:

template <class Type>
class bvector
{

template <class T>
friend void function(); // unbound friend function

template <class T>
friend class Friend; // unbound friend class

template <class T> // unbound friend member function
friend void AnotherFriend<T>::member();

...
};

Unbound friends may not yet be supported by your compiler, though. E.g., earlier versions of the
egcs compiler)) used to complain with a message like

invalid member template declaration

However, current versions of the egcs compiler do accept unbound friends.

16.2.6 Template classes and static data

When static members are defined in a template class, these static members are instantiated for
every different instantiation of the template class. As they are static members, there will be only
one member when multiple objects of the same template type(s) are defined. For example, in a
class like:

template <class Type>
class TheClass
{

...
private:

static int
objectCounter;

};

There will be one TheClass<Type>::objectCounter for each different Type. However, the fol-
lowing will result in just one static variable, which is shared among the different objects:

429

TheClass<int>
theClassOne,
theClassTwo;

Remeber that static members are only declared in their classes. They must be defined separately.
With static members of template classes this is not different. But, comparable to the implementa-
tions of static functions, the definitions of static members are usually provided in the same file as
the template class interface itself. The definition of the static member objectCounter is therefore:

template <class Type>
class TheClass
{

...
private:

static int
objectCounter;

};

template <class Type>
int

TheClass<Type>::objectCounter = 0;

In the above case objectCounter is an int, and thus independent of the template type parameter
Type. In a list-like construction, where a pointer to objects of the class itself is required, the
template type parameter Type does enter the definition of the static variable, as is shown in the
following example:

template <class Type>
class TheClass
{

...
private:

static TheClass
*objectPtr;

};

template <class Type>
TheClass<Type>

*TheClass<Type>::objectPtr = 0;

Note here that the definition can be read, as usual, from the variable name back to the be-
ginning of the definition: objectPtr of the class TheClass<Type> is a pointer to an object of
TheClass<Type>.

430

16.2.7 Derived Template Classes

Template classes can be used in class derivation as well. Consider the following base class:

template<class T>
class Base
{

public:
Base(T const &t)
:

t(t)
{}
// and other members

private:
T const &t;

};

The above class is a template class, which can be used as a base class for the following template
class Derived:

template<class T>
class Derived: public Base<T>
{

public:
Derived(T const &t)
:

Base(t)
{}
// and other members

};

Other combinations are possible too: By specifying the template type parameters of the base class
at the point where the base class is introduced as the base class of a derived class, the derived class
becomes an ordinary (non-template) class:

class Ordinary: public Base<int>
{

public:
Ordinary(int x)
:

Base(x)
{}

};

// With the following object definition:
Ordinary

431

o(5);

16.2.8 Nesting and template classes

When a class is nested within a template class, it automatically becomes a template class itself. The
nested class may use the template parameters of the surrounding class, as shown in the following
small program:

#include <vector>

template<class Type>
class TheVector
{

public:
class Enumeration
{

public:
Enumeration(vector<Type> const &vector)
:

vp(&vector),
idx(0)

{
}
Type const &nextElement() // uses ’Type’
{

if (idx == vp->size())
throw NoSuchElementException(index);

return ((*vp)[idx++]);
}
bool hasMoreElements()
{

return (idx < vp->size());
}

private:
vector<Type>

const *vp;
unsigned

idx;
};

TheVector<Type>::Enumeration getEnumeration()
{

return (Enumeration(vector));
}

private:
vector<Type>

vector;
};

int main()

432

{
TheVector<int>

theVector;

TheVector<int>::Enumeration
en = theVector.getEnumeration();

cout << (en.hasMoreElements() ? "has more elements" :
"no more elements") << endl;

return (0);
}

In the above program the class Enumeration is a nested class, that uses the template parameter
Type of its surrounding class. The nested class Enumeration defines an object that returns the
subsequent elements of the vector of the surrounding class, and allows a simple query about the
existence of another element.

(Parts of) the nested class are instantiated once used. E.g., in the above example, the function
nextElent() is not used. This is why the example can be compiled to a working program, as the
NoSuchElementException() exception was never defined!

Enumerations and typedefs can be defined nested in template classes as well. For example, with
arrays the distinction between the last index that can be used and the number of elements frequently
causes confusion in people who are first exposed to the C-array types. The following construction
automatically provides a valid last and nElements definition:

template<class Type, int size>
class Buffer
{

public:
enum Limits
{

last = size - 1,
nElements

};
typedef Type elementType;

Buffer()
:

b(new Type [size])
{}

private:
Type

*b;
};

This small example defines Buffer<Type, size>::elementType, Buffer<Type, size>::last
and Buffer<Type, size>::nElements (as values), as well as Buffer<Type, size>::Limits
and Buffer<Type, size>::elementType> (as typenames).

433

Of course, the above represents the template form of these values and declarations. They must be
instantiated before they can be used. E.g,

Buffer<int, 80>::elementType

is a synonym of int.

Note that a construction like Buffer::elementType is illegal, as the type of the Buffer class
remains unknown.

16.2.9 Template members

It is possible to define a template class or a template function within another class (which itself
may or may not be a template class). Such a template function or template class is called a member
template. It is defined as any other ordinary template class, including the template <class ...>
header. E.g.,

template <class T>
class Outer
{

public:
...
template <class T2> // template class
class Inner
{

public:
T

tVariable;
T2

t2Variable;
};
template <class Type>
Type process(Type const &p1, Type const &p2)
{

Type
result;

...
return (result);

}
...

};

The special characteristic of a member template is that it can use its own and its surrounding
class’ template parameters, as illustrated by the definition of tVariable in Inner.

Normall access rules apply: the function process() can be used by the general program, given an
instantiated Outer object. Of course, this implies that a large number of possible instantiations of
process() are possible. Actually, an instantiation is only then constructed when a process() func-
tion is in fact used. In the following code the function memberfunction int process(int const
&p1, int const &p2) is instantiated, even though the object is of the class Outer<double>:

434

Outer<double>
outer;

outer.process(10, -3);

The template member function allows the processing of any other type by an object of the class
Outer, which becomes important if the other type can be converted to the type that’s used by the
outer template class.

Any function can be defined as a template function, not just an ordinary member function. A
constructor can be defined as a template as well:

template <class T>
class Outer
{

public:
template <class T2> // template class
Outer(T2 const &initialValue)
{

...
}
...

};

Here, an Outer object can be constructed for a particular type given another type that’s passed
over to the constructor. E.g.

Outer<int>
t(12.5); // uses Outer(double const &initialvalue)

Template members can be defined inline or outside of their containing class. When a member is
defined outside of its surrounding class, the template parameter list must precede the template
parameter list of the template member. E.g.,

template <class T>
class Outer
{

public:
template <class T2> // template class
class Inner;

template <class Type>
Type process(Type const &p1, Type const &p2);

};

435

template <class T> template <class Type> // template class member
class Outer<T>::Inner<Type>
{

public:
T

tVariable;
T2

t2Variable;
};

template <class T> template <class Type> // template function member
Type Outer<T>::process(Type const &p1, Type const &p2)
{

Type
result;

...
return (result);

}

Not all compilers fully support member templates yet. E.g., the egcs compiler 1.0.3 does not
support the member template classes, but it does support the member template functions.

16.2.10 Template class specializations

Template class specializations are used in cases where template member functions cannot be used
with a (class) type for which the template is instantiated. In those cases the template’s member
function(s) can be explicitly constructed to suit the needs of the particular type for which the
template is instantiated.

Assume we have a template class which supports the insertion of its type parameter into an ostream.
E.g.,

template <class Type>
class Inserter
{

public:
Inserter(Type const &t)
:

object(t)
{}
ostream &insert(ostream &os) const
{

return (os << object);
}

private:
Type

object;
};

436

In the example a plain member function is used to insert the current object into an ostream. The
implementation of the insert() function shows that it uses the operator<<, as defined for the
type that was used when the template class was instantiated. E.g., the following little program
instantiates the class Inserter<int>:

int main()
{

Inserter<int>
ins(5);

ins.insert(cout) << endl;
return (0);

}

Now suppose we have a class Person having, among other members, the following memberfunc-
tion:

class Person
{

public:
ostream &insert(ostream &ostr) const;

};

This class cannot be used to instantiate Inserter, as it does not have a operator<<() function,
which is used by the function Inserter<Type>::insert(). Attempts to instantiate Inserter<Person>
will result in a compilation error. For example, consider the following main() function:

int main()
{

Person
person;

Inserter<Person>
p2(person);

p2.insert(cout) << endl;
}

If this function is compiled, the compiler will complain about the missing function ostream & <<
const Person &, which was indeed not available. However, the function ostream &Person::insert(ostream
&ostr) is available, and it serves the same purpose as the required function ostream & Inserter<Person>::insert(
&).

For this situation multiple solutions exist. One would be to define an operator<<(Person const
&p) function which calls the Person::insert() function. But in the context of the Inserter

437

class, this might not what we want. Instead, we might want to look for a solution that is closer to
the class Inserter.

Such a solution exists in the form of a template class specialization. Such an explicit specialization
definition starts with the wordt template, then two angular brackets (<>), which is then followed
by the function definition for the instantiation of the template class for the particular template
parameter(s). So, with the above function this yields the following function definition:

template<>
ostream &Inserter<Person>::insert(ostream &os) const
{

return (object.insert(os));
}

Here we explicitly define a function insert of the class Inserter<Person>, which calls the
appropriate function that lives in the Person class.

Note that the explicit specialization definition is a true definition: it should not be given in the
header file of the Inserter template class, but it should have its own sourcefile. However, in order
to inform the compiler that an explicit specialization is available, it can be declared in the template’s
header file. The declaration is straightforward: the code-block is replaced by the semicolon:

template<>
ostream &Inserter<Person>::insert(ostream &os) const;

It is even possible to specialize a complete template class. For the above class Inserter which
would boil down to the following for the class double:

template <>
class Inserter
{

public:
Inserter<double>(double const &t);
ostream &insert(ostream &os) const;

private:
double

object;
};

The explicit template class specialization is obtained by replacing all references to the template’s
class name Inserter by the class name and the type for which the specialization holds true:
Inserter<double>, and by replacing occurrences of the template’s type parameter by the actual
type for which the specialization was constructed. The complete template class specialization
interface must be given after the original template class has been defined. The definition of its
members are, analogously to the Inserter<Person>::insert() function above, given in separate

438

source files. However, in the case of a complete template class specialization, the definitions of its
members should not be preceded by the template<> prefix. E.g.,

Inserter<double>(double const &t) // NO template<> prefix !
:

object(t)
{}

16.2.11 Template class partial specializations

In cases where a template has more than one parameter, a partial specialization rather than a full
specialization might be appropriate. With a partial specialization, a subset of the parameters of
the original template can be redefined.

Let’s assume we are working on a image processing program. A class defining an image receives
two int template parameters, e.g.,

template <int columns, int rows>
class Image
{

public:
Image()
{

// use ’columns’ and ’rows’
}
...

};

Now, assume that an image having 320 columns deserves special attention, as those pictures
require, e.g., a special smoothing algorithm. From the general template given above we can now
construct a partially specialized template, which only has a columns parameter. Such a template is
like an ordinary template parameter, in which only the rows remain as a template parameter. At
the definition of the class name the specialization is made explicit by mentioning a specialization
parameter list:

template <int rows>
class Image<320, rows>
{

public:
Image()
{

// use 320 columns and ’rows’ rows.
}
...

};

439

With the above partially specialized template definition the 320 columns are explicitly mentioned
at the class interface, while the rows remain variable. Now, if an image is defined as

Image<320, 240>
image;

two instantiations could be used: the fully general template is a candidate as well as the partially
specialized template. Since the partially specialized template is more specialized than the fully
general template, the Image<320, rows> template will be used. This is a general rule: a more
specialized template instantiation is chosen in favor of a more general one whereever possible.

Every template parameter can be used for the specialization. In the last example the columns were
specialized, but the rows could have been specialized as well. The following partial specialization
of the template class Image specializes the rows parameter and leaves the columns open for later
specification:

template <int columns>
class Image<columns, 200>
{

public:
Image()
{

// use ’columns’ columns and 200 rows.
}
...

};

Even when both specializations are provided there will (generally) be no problem. The following
three images will result in, respectively, an instantiation of the general template, of the template
that has been specialized for 320 columns, and of the template that has been specialized for the
200 rows:

Image<1024, 768>
generic;

Image<320, 240>
columnSpecialization;

Image<480, 200>
rowSpecialization;

With the generic image, no specialized template is available, so the general template is used.
With the columnSpecialization image, 320 columns were specified. For that number of columns
a specialized template is available, so it’s used. With the rowSpecialization image, 200 rows
were specified. For that number of rows a specialized template is available, so that specialized
template is used with rowSpecialization.

One might wonder what happens if we want to construct a

440

Image<320, 200>
superSpecialized;

image. Is this a specialization of the columns or of the rows? The answer is: neither. It’s an
ambiguity, precisely because both the columns and the rows could be used with a (differently)
specialized template. If such an image is required, yet another specialized template is needed,
albeit that that one isn’t a partially specialized template anymore. Instead, it specializes all its
parameters with the class interface:

template <>
class Image<320, 200>
{

public:
Image()
{

// use 320 columns and 200 rows.
}
...

};

The above super specialization of the Image template will be used with the image having 320
columns and 200 rows.

16.2.12 Name resolution within template classes

In section 16.1.8 the name resolution process with template functions was discussed. As is the case
with template functions, name resolution in template classes also proceeds in two steps. Names
that do not depend on template parameters are resolved when the template is defined. E.g., if a
member function in a template class uses a qsort() function, then qsort() does not depend on a
template parameter. Consequently, qsort() must be known when the compiler sees the template
definition, e.g., by including the file stdlib.h.

On the other hand, if a template defines a <class Type> template parameter, which is the
returntype of some template function, e.g.,

Type returnValue();

then we have a different situation. At the point where template objects are defined or declared, at
the point where template member functions are used, and at the point where static data members
of template classes are defined or declared, it must be able to resolve the template type parameters.
So, if the following template class is defined:

template <class Type>

441

class Resolver
{

public:
Resolver();
Type result();

private:
Type

datum;
static int

value;
};

Then string must be known before each of the following examples:

// ----------------------- example 1: define the static variable
int Resolver<string>::value = 12;

// ----------------------- example 2: define a Resolver object
int main()
{

Resolver<string>
resolver;

}

// ----------------------- example 3: declare a Resolver object
extern Resolver<string>

resolver;

16.3 An example: the implementation of the bvector tem-
plate

In this section the implementation of the basic vector bvector, introduced in section 16.2.1, will
be completed.

The implementation of the bvector is generally straightforward: the basic constructors initialize
the data members of the bvector, using an auxiliary private function init():

bvector()
{

init(0);
};
bvector(unsigned n)
{

init(n);
}
void init(unsigned n)

442

{
if (n)
{

start = new Type[n];
finish = start + n;
end_of_storage = start + n;

}
else
{

start = 0;
finish = 0;
end_of_storage = 0;

}
}

The copy-constructor, overloaded assignment operator and destructor are also constructed accord-
ing to a general recipe. The destructor is simple: it only has to call the operator delete for
start, using the [] notation to make sure that class objects stored in the bvector are deleted
too. Therefore, no destroy() function was considered necessary in this class. Note that storing
pointers in the bvector is dangerous, as it is with the official STL vector type: the data pointed
to by pointer elements of bvector is not deleted when the bvector itself is destroyed.

Here are the destructor, the copy constructor, the overloaded assignment operator and the private
construct() function:

~bvector()
{

delete [] start;
}

bvector(bvector<Type> const &other)
{

construct(other);
}

bvector<Type> const &operator=(bvector<Type> const &other)
{

if (this != &other)
{

delete [] start;
construct(other);

}
return (*this);

}

void construct(bvector<Type> const &other)
{

init(other.finish - other.start);
copy(other.start, other.finish, start);

}

443

The operator[] first checks the validity of the index that’s passed to the function. If out of
bounds a simple exception is thrown. Otherwise the function is completely standard. Note that
the current implementation of bvector does not allow for bvector<Type> const objects to use
the operator[]. Here is the implementation of the operator[] function:

Type &operator[](unsigned index) throw(char const *)
{

if (index > (finish - start))
throw "bvector array index out of bounds";

return (start[index]);
}

The sort() function uses the available sort() generic algorithm. The ::sort() notation is
required to prevent confusion: without the scope resolution operator the compiler complains about
us having specified the wrong arguments for the function sort(). Here is the implementation of
sort():

bvector<Type> &sort()
{

::sort(start, finish);
return (*this);

}

The push back() function either initializes the size of the bvector to one element, or doubles
the number of elements in the vector when there’s no more room to store new elements. When
the number of elements must be doubled, an auxiliary bvector object is created, into which the
elements of the current bvector object are copied, using the copy() generic algorithm. Next, the
memory pointed to by the the current bvector object is deleted, and its pointers are reassigned to
point to the memory occupied by the auxiliary bvector object. The start pointer of the auxiliary
bvector object is then set to 0, to prevent the destruction of its memory, to which the current
bvector points as well. Finally the new value is stored in the vector. Here is the implementation:

void push_back(Type const &value)
{

if (!finish)
{

init(1);
finish = start;

}
else if (finish == end_of_storage)
{

bvector<Type>
enlarged((end_of_storage - start) << 1);

copy(start, finish, enlarged.start);
delete [] start;
finish = enlarged.start + (finish - start);

444

start = enlarged.start;
end_of_storage = enlarged.end_of_storage;
enlarged.start = 0;

}
*finish++ = value;

}

Two sets of iterators are available: the begin() and end() functions return iterators, the
rbegin() and rend() functions return reverse iterators. Iterators and reverse iterators
are defined as typedefs within the template class. These typedefs and the functions returning the
(reverse) iterators are given below:

typedef Type *iterator;
typedef reverse_iter<Type> reverse_iterator;

iterator begin()
{

return (start);
}
iterator end()
{

return (finish);
}
reverse_iterator rbegin()
{

return (reverse_iterator(finish));
}
reverse_iterator rend()
{

return (reverse_iterator(start));
}

The iterator is simply a type definition for a pointer to a Type. The reverse iterator is more
complex, as its type definition depends on a reverse iter<iterator> type, defining the actual
reverse iterator. The reverse iter<iterator> itself is a template class, that is discussed in the
next section.

16.3.1 The reverse iter template class

The template class reverse iter uses a template class parameter Type representing the data type
for which a reverse iterator must be constructed. Since the type of the data to which the reverse
iterator points is known, a reference and a pointer to the data type can easily be constructed.

Given the data type Type to which a reverse iterator points, the reverse iterator must support the
following operations:

• It must be possible to construct a reverse iterator from an iterator.

445

• A dereference operator Type &operator∗(), returning the data item to which the reverse
iterator points.

• A pointer operator Type ∗operator->() returning the address of the data element, to be
used when the data element is an object having members.

• A prefix and postfix increment operator returning a reverse iterator pointing to the previous
data element.

As the reverse iterator returns a pointer to the previous element, it is possible to let the rbegin()
iterator return a pointer to the last element, and to let rend() return a pointer to the address before
the first data element. But it is also possible to let rbegin() return end(), and to let rend()
return begin(). That way the pointers are used the same way, both for iterators and reverse
iterators. This latter approach, which is used by the standard template library’s implementation
of the reverse iterators, requires the dereference operator to return the data element before the one
to which the reverse iterator actually points. The implementation of the operator∗() is, therefore:

Type &operator*() const
{

Type
*tmp = current;

return (*--tmp);
}

The increment operators return reverse iterators. The prefix increment operator reduces the
current pointer, and returns a reference to the current reverse iterator by returning ∗this:

reverse_iter<Type>& operator++()
{

--current;
return (*this);

}

The postfix increment operator returns a reverse iterator object which is a copy of the current
reverse iterator, whose pointer current is reduced by applying the postfix decrement operator on
the current pointer:

reverse_iter<Type> operator++(int)
{

reverse_iter<Type>
tmp(current--);

return (tmp);
}

Of course, the operator+(int step) and the operator--() could be defined as well. These
definitions are left as an exercise for the reader.

446

16.3.2 The final implementation

Below is the implementation of the template class bvector and its auxiliary template class reverse iter:

#include <algorithm>

template <class Type>
class reverse_iter
{

public:
explicit reverse_iter(Type *x)
:

current(x)
{}
Type &operator*() const
{

Type
*tmp = current;

return (*--tmp);
}
Type *operator->() const
{

return &(operator*());
}
reverse_iter<Type>& operator++()
{

--current;
return (*this);

}
reverse_iter<Type> operator++(int)
{

reverse_iter<Type>
tmp(current--);

return (tmp);
}
bool operator!=(reverse_iter<Type> const &other)
{

return (current != other.current);
}

private:
Type

*current;
};

template <class Type>
class bvector
{

typedef Type *iterator;
typedef reverse_iter<Type> reverse_iterator;

public:
bvector()

447

{
init(0);

};
bvector(unsigned n)
{

init(n);
}
bvector(bvector<Type> const &other)
{

construct(other);
}
~bvector()
{

delete [] start;
}
bvector<Type> const &operator=(bvector<Type> const &other)
{

if (this != &other)
{

delete [] start;
construct(other);

}
return (*this);

}
Type &operator[](unsigned index) throw(char const *)
{

if (index >= (finish - start))
throw "bvector array index out of bounds";

return (start[index]);
}
bvector<Type> &sort()
{

::sort(start, finish);
return (*this);

}
void push_back(Type const &value)
{

if (!finish)
{

init(1);
finish = start;

}
else if (finish == end_of_storage)
{

bvector<Type>
enlarged((end_of_storage - start) << 1);

copy(start, finish, enlarged.start);
delete [] start;
finish = enlarged.start + (finish - start);
start = enlarged.start;
end_of_storage = enlarged.end_of_storage;
enlarged.start = 0;

}

448

*finish++ = value;
}
iterator begin()
{

return (start);
}
iterator end()
{

return (finish);
}
reverse_iterator rbegin()
{

return (reverse_iterator(finish));
}
reverse_iterator rend()
{

return (reverse_iterator(start));
}
unsigned size()
{

return (finish - start);
}

private:
void init(unsigned n)
{

if (n)
{

start = new Type[n];
finish = start + n;
end_of_storage = start + n;

}
else
{

start = 0;
finish = 0;
end_of_storage = 0;

}
}
void construct(bvector<Type> const &other)
{

init(other.finish - other.start);
copy(other.start, other.finish, start);

}

Type
*start,
*finish,
*end_of_storage;

};

449

A small main() function using the bvector data type is given next:

#include <iostream>
#include <string>
#include "bvector.h"

int main()
{

bvector<int>
bv(5),
b2;

b2 = bv;

bv[0] = 3;
bv[1] = 33;
bv[2] = 13;
bv[3] = 6;
bv[4] = 373;

copy(bv.begin(), bv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

bvector<int>::reverse_iterator
rit = bv.rbegin();

while (rit != bv.rend())
cout << *rit++ << ", ";

cout << endl;

bv.push_back(12);
bv.push_back(5);

copy(bv.begin(), bv.end(), ostream_iterator<int>(cout, " "));
cout << endl;

bv.sort();
copy(bv.begin(), bv.end(), ostream_iterator<int>(cout, " "));
cout << "bv has " << bv.size() << " elements\n";

bvector<string>
bstr;

bstr.push_back("bravo");
bstr.push_back("delta");
bstr.push_back("foxtrot");
bstr.push_back("echo");
bstr.push_back("charley");
bstr.push_back("alpha");

bstr.sort();
copy(bstr.begin(), bstr.end(), ostream_iterator<string>(cout, " "));

450

cout << endl;
}

451

Chapter 17

Concrete examples of C++

This chapter presents a number of concrete examples of programming in C++. Items from this
document such as virtual functions, static members, etc. are rediscussed. Examples of container
classes are shown.

Another example digs into the peculiarities of using a parser- and scanner-generator with C++.
Once the input for a program exceeds a certain level of complexity, it’s advantageous to use a
scanner- and parser-generator for creating the code which does the actual input recognition. The
example describes the usage of these tool in a C++ environment.

17.1 Storing objects: Storable and Storage

A reoccurring task of many programs is the storage of data, which are then sorted, selected, etc..
Storing data can be as simple as maintaining an array of ints, but can also be much more complex,
such as maintaining file system information by the kernel of an operating system.

In this section we take a closer look at the storage of generic objects in memory (i.e., during the
execution of a program). Conforming to the object-oriented recipe we shall develop two classes: a
class Storage, which stores objects, and a class Storable, the prototype of objects which can be
stored.

17.1.1 The global setup

As far as the functionality of the class Storage is concerned, objects can be added to the storage
and objects can be obtained from the storage. Also it must be possible to obtain the number of
objects in the storage.

As far as the internal data organization of the storage is concerned, we opt for an approach in
which Storage maintains an array which can be reallocated, consisting of pointers to the stored
objects.

The internal organization of the class Storage is illustrated in figure 17.1.

452

\

Figure 17.1: Internal organization of the class Storage.

Interface functions of the class Storage

The usage (interface) of the class Storage is contained in three member functions. The following
list describes these member functions and mentions the class Storable, more on this later.

• The function add(Storable const ∗newobj) adds an object to the storage. The function
reallocates the array of pointers to accommodate one more and inserts the address of the
object to store.

• The function Storable const ∗get(int index) returns a pointer to the object which is
stored at the index’th slot.

• The function int nstored() returns the number of objects in the storage.

To copy or not to copy?

There are two distinct design alternatives for the function add(). These considerations address the
choice whether the stored objects (the squares on the right side of figure 17.1) should be copies
of the original objects, or the objects themselves.

In other words, should the function add() of the class Storage:

• just store the address of the object which it receives as its argument in the array of pointers,
or should it

• make a copy of the object first, and store the address of the copy?

These considerations are not trivial. Consider the following example:

Storage
store;

Storable
something;

453

store.add(something); // add to storage

// let’s assume that Storable::modify() is defined
something.modify(); // modify original object,

Storable
*retrieved = store.get(0); // retrieve from storage

// NOW: is "*retrieved" equal to "something" ?!

If we choose to store (addresses of) the objects themselves, then at the end of the above code
fragment, the object pointed to by retrieved will equal something. A manipulation of previously
stored objects thereby alters the contents of the storage.

If we choose to store copies of objects, then obviously ∗retrieved will not equal something but
will remain the original, unaltered, object. This approach has a great merit: objects can be placed
into storage as a ‘safeguard’, to be retrieved later when an original object was altered or even
ceased to exist. In this implementation we therefore choose for this approach.

Who makes the copy?

The fact that copies of objects should be stored presents a small problem. If we want to keep the
class Storage as universal as possible, then the making of a copy of a Storable object cannot
occur here. The reason for this is that the actual type of the objects to store is not known in
advance. A simplistic approach, such as the following:

void Storage::add(Storable const *obj)
{

Storable
*to_store = new Storable(*obj);

// now add to_store instead of obj
.
.

}

shall not work. This code attempts to make a copy of obj by using the operator new, which in
turn calls the copy constructor of Storable. However, if Storable is only a base class, and the
class of the object to store is a derived class (say, a Person), how can the copy constructor of the
class Storable create a copy of a Person?

The making of a copy therefore must lie with the actual class of the object to store, i.e., with
the derived class. Such a class must have the functionality to create a duplicate of the object in
question and to return a pointer to this duplicate. If we call this function duplicate() then the
code of the adding function becomes:

454

void Storage::add(Storable const *obj)
{

Storable
*to_store = obj->duplicate();

// now add to_store instead of obj
.
.

}

The function duplicate() is called in this example by using a pointer to the original object (this is
the pointer obj). The class Storable is in this example only a base class which defines a protocol,
and not the class of the actual objects which will be stored. Ergo, the function duplicate() need
not be defined in Storable, but must be concretely implemented in derived classes. In other
words, duplicate() is a pure virtual function.

17.1.2 The class Storable

Using the above discussed approach we can now define the class Storable. The following questions
are of importance:

• Does the class Storable need a default constructor, or possibly other constructors such as a
copy constructor?

The answer is no. Storable will be a bare prototype, from which other classes will be derived.

• Does the class Storable need a destructor? Should this destructor be (pure) virtual?

Yes. The destructor will be called when, e.g., a Storage object ceases to exist. It is quite
possible that classes which will be derived from Storable will have their own destructors:
we should therefore define a virtual destructor, to ensure that when an object pointed to
by a Storable∗ is deleted, the actual destructor of the derived class is called.

The destructor however should not be pure virtual. It is quite possible that the classes which
will be derived from Storable will not need a destructor; in that case, an empty destructor
function should be supplied.

The class definition and its functions are given below:

class Storable
{

public:
virtual ~Storable();
virtual Storable *duplicate() const = 0;

};

Storable::~Storable()
{
}

455

Converting an existing class to a Storable

To show how (existing) classes can be converted to derivation from a Storable, consider the below
class Person from section 5.1. This class is re-created here, conforming to Storable’s protocol
(only the relevant or new code is shown):

class Person: public Storable
{

public:
// copy constructor
Person(Person const &other);

// assignment
Person const &operator=(Person const &other);

// duplicator function
Storable *duplicate() const;

.

.
};

When implementing the function Person::duplicate() we can use either the copy construc-
tor or the default constructor with the overloaded assignment operator. The implementation of
duplicate() is quite simple:

// first version:
Storable *Person::duplicate() const
{

// uses default constructor in new Person
Person

*dup = new Person;

// uses overloaded assignment in *dup = *this
*dup = *this;

return (dup);
}

// second version:
Storable *Person::duplicate() const
{

// uses copy constructor in new Person(*this)
return (new Person(*this));

}

The above conversion from a class Person to the needs of a Storable supposes that the sources
of Person are at hand and can be modified. However, even if the definition of a Person class is

456

not available, but is e.g., contained in a run-time library, the conversion to the Storable format
poses no difficulties:

class StorablePerson: public Person, public Storable
{

public:
// duplicator function
Storable *duplicate() const;

};

Storable *StorablePerson::duplicate() const
{

return (new StorablePerson(*this));
}

17.1.3 The class Storage

We can now implement the class Storage. The class definition is given below:

class Storage: public Storable
{

public:
// destructors, constructor
~Storage();
Storage();
Storage(Storage const &other);

// overloaded assignment
Storage const &operator=(Storage const &other);

// functionality to duplicate storages
Storable *duplicate() const;

// interface
void add(Storable *newobj);
int nstored() const;
Storable *get(int index);

private:
// copy/destroy primitives
void destroy();
void copy(Storage const &other);

// private data
int n;
Storable **storage;

};

457

Concerning the class definition we remark:

• As its interface the class has the functions add(), get() and nstored(). These functions
were previously discussed (see section 17.1.1).

• The class has a copy constructor and an overloaded assignment function. These functions
are needed because Storage contains a pointer, which addresses allocated memory.

• Storage itself is derived from Storable, as can be seen in the classname definition and in
the presence of the function duplicate(). This means that Storage objects can themselves
be placed in a Storage, thereby creating ‘super-storages’: say, a list of groups of Persons.

• Internally, Storage defines two private functions copy() and destroy(). The purpose of
these primitive functions is discussed in section 5.4.1.

The destructor, constructors and the overloaded assignment function are listed below:

// default constructor
Storage::Storage()
{

n = 0;
storage = 0;

}

// copy constructor
Storage::Storage(Storage const &other)
{

copy(other);
}

// destructor
Storage::~Storage()
{

destroy();
}

// overloaded assignment
Storage const &Storage::operator=(Storage const &other)
{

if (this != &other)
{

destroy();
copy(other);

}
return (*this);

}

The primitive functions copy() and destroy() unconditionally copy another Storage object, or
destroy the contents of the current one. Note that copy() calls duplicate() to duplicate the
other’s stored objects:

458

void Storage::copy(Storage const &other)
{

n = other.n;
storage = new Storable* [n];
for (int i = 0; i < n; i++)

storage [i] = other.storage [i]->duplicate();
}

void Storage::destroy()
{

for (register int i = 0; i < n; i++)
delete storage [i];

delete storage;
}

The function duplicate(), which is required since Storage itself should be a Storable, uses the
copy constructor to duplicate the current object:

Storable *Storage::duplicate() const
{

return (new Storage (*this));
}

Finally, here are the interface functions which add objects to the storage, return them, or determine
the number of stored objects1

void Storage::add(Storable const *newobj)
{

// reallocate storage array
storage = (Storable **) realloc(storage,

(n + 1) * sizeof(Storable *));
// put duplicate of newobj in storage
storage [n] = newobj->duplicate();
// increase number of obj in storage
n++;

}

Storable *Storage::get(int index)
{

// check if index within range
if (index < 0 || index >= n)

return (0);
// return address of stored object
return (storage [index]);

1Note: the function realloc() that is used in this section should actually not be used. A better procedure would
be to create a C++ variant for the realloc() function. A modification is in the pipeline....

459

}

int Storage::nstored() const
{

return (n);
}

17.2 A binary tree

This section shows an implementation of a binary tree in C++. Analogously to the classes Storage
and Storable (see section 17.1) two separate classes are used: one to represent the tree itself, and
one to represent the objects which are stored in the tree. The classes will be appropriately named
Tree and Node.

17.2.1 The Node class

The class Node is an abstract (pure virtual) class, which defines the protocol for the usage of
derived classes with a Tree. Concerning this protocol we remark the following:

• When data are stored in a binary tree, the place of the data is determined by some order:
it is necessary to determine how the objects should be sorted. This requires a comparison
between objects. This comparison must inform the caller (i.e., the function which places
objects in a tree) whether one object is ‘smaller’ or ‘greater’ than another object.

This comparison must lie with Nodes: a Tree itself cannot know how objects should be
compared. Part of the procotol which is required by Node is therefore:

virtual int compare(Node const &other) const = 0;

The comparing function will have to be implemented in each derived class.

• Similar to the storage of objects in the class Storage (see section 17.1), a binary tree will
contain copies of objects. The responsibility to duplicate an object therefore also lies with
Node, as enforced by a pure virtual function:

virtual Node *clone() const = 0;

• When processing a binary tree containing objects, the tree is recursively descended and a
given operation is performed for each object. The operation depends of course on the actual
type of the stored object. By declaring a pure virtual function

virtual void process() = 0;

in the class Node, the responsibility to process an object is placed with the derived class.

460

• When an object is to be stored in a binary tree, it may be that the object had already been
stored previously. In that case the object will not be stored twice.

For these cases we define a virtual function rejected(), which is a virtual function called for
the Node that was already stored, receiving the node requesting to be added as its argument.
However, since it’s a virtual function, it can be redefined in a derived class:

virtual void rejected(Node const &twice)
{
}

The complete definition and declaration of the class Node is given below:

class Node
{

public:
virtual ~Node() // destructor
{}
virtual Node* clone() const = 0; // duplicator
virtual void process() = 0; // Node processor

// comparing 2 Nodes
virtual int compare(Node const &other) const = 0;

virtual void rejected(Node const &twice) // called when the node
{ // was found in the tree
}

};

17.2.2 The Tree class

The class Tree is responsible for the storage of objects which are derived from a Node. To implement
the recursive tree structure, the class Tree has two private pointers as its data, pointing to
subtrees: a Tree ∗left and Tree ∗right. The information which is contained in a node of the
tree is represented as a private field Node ∗info.

Tree objects may be constructed empty and they may be constructed storing an initial Node object.

To scan a binary tree, the class Tree offers three methods: preorder, inorder and postorder. When
scanning in preorder first the left subtree is scanned, then the leaf itself is processed and finally
the right subtree is scanned. When scanning in inorder first a leaf in a node is processed, then the
left subtree is scanned and finally the right subtree is scanned. When scanning in postorder first
the left and right subtrees are scanned and then the leaf itself is processed.

The definition of the class Tree is given below:

#include "node.h"

class Tree
{

public:

461

// destructor, constructors
~Tree();
Tree();
Tree(Node const &node);
Tree(Tree const &other);

// assignment
Tree const &operator=(Tree const &other);

// addition of a Node
void add(Node const &node);

// processing order in the tree
void preorder_walk();
void inorder_walk();
void postorder_walk();

private:
// primitives
void construct(Tree const &other);
void destroy();

// called by add(Node const &node)
void add(Tree *&branch, Node const &node);

// data
Tree

*left,
*right;

Node
*node;

};

Constructing a tree

There are three constructors defined in the Tree class. The copy constructor is presented in the
next section, the other two constructors are:

#include "tree.h"

// default constructor: initializes to 0
Tree::Tree()
:

left(0),
right(0),
node(0)

{
}

// Node constructor: add a Node object
Tree::Tree(Node const &node)

462

:
left(0),
right(0),
node(node.clone())

{
}

The ‘standard’ functions

As can be seen from the class definition, Tree contains pointer fields. This means that the class
will need a destructor, a copy constructor and an overloaded assignment function to ensure that
no allocation problems occur.

The destructor, the copy constructor and the overloaded assignment function are implemented
with two primitive operations construct() and destroy() (presented later):

#include "tree.h"

// destructor: destroys the tree
Tree::~Tree()
{

destroy();
}

// copy constructor: initializes to contents of other object
Tree::Tree(Tree const &other)
{

construct(other);
}

Adding an object to the tree

Adding a new object to the tree is a recursive process. When the function add() is called to insert
an object into the tree, there are only three possibilities:

• The node field of the current node can be a 0-pointer. In that case, a clone of the Node object
is inserted at the current node.

• When the tree is already partially filled, then it is necessary to determine whether the object
to add should come ‘before’ or ‘after’ the object of the current node. This comparison is
performed by compare(), a pure virtual function whose implementation is required by Node.
Depending on the order the new object must be inserted in the left or in the right subtree.
Adding a node to a subtree is done by an overloaded (private) add() function.

• When the comparison of the new object and the object of the current node yields ‘equality’,
then the new object should not be stored again in the tree. The function rejected() is
called to process the duplicated Node.

Here are the two add() functions:

463

#include "tree.h"

void Tree::add(Node const &newNode)
{

if (!node)
{

node = newNode.clone();
return;

}

int
cmp = node->compare(newNode);

if (!cmp) // already stored
{

node->rejected(newNode);
return;

}

add
(

cmp < 0 ? left : right, newNode
);

}

void Tree::add(Tree *&tree, Node const &newNode)
{

if (!tree)
tree = new Tree(newNode);

else
tree->add(newNode);

}

Scanning the tree

The class Tree offers three methods of scanning a binary tree: preorder, inorder and postorder.
The three functions defining these actions are recursive:

#include "tree.h"

void Tree::preorder_walk()
{

if (node)
node->process();

if (left)
left->preorder_walk();

if (right)
right->preorder_walk();

}

464

void Tree::inorder_walk()
{

if (left)
left->inorder_walk();

if (node)
node->process();

if (right)
right->inorder_walk();

}

void Tree::postorder_walk()
{

if (left)
left->postorder_walk();

if (right)
right->postorder_walk();

if (node)
node->process();

}

The primitive operations copy() and destroy()

The functions copy() and destroy() are two private member functions which implement prim-
itive operations of the class Tree: the copying of the contents of another Tree or the destroying
of the tree.

#include "tree.h"

void Tree::destroy()
{

delete node;
if (left)

delete left;
if (right)

delete right;
}

void Tree::construct(Tree const &other)
{

node = other.node ? other.node->clone() : 0;
left = other.left ? new Tree(*other.left) : 0;
right = other.right ? new Tree(*other.right) : 0;

}

Concerning this implementation we remark the following:

• The function destroy() is recursive, even though this is not at once visible. A statement like
delete left will activate the destructor for the Tree object which is pointed to by left;
this in turn will call destroy() etc..

465

• Similarly, the function construct() is recursive. The code left = new Tree(∗other.left)
activates the copy constructor, which in turn calls construct() for the left branch of the
tree.

• As is the case with the function add(), nodes themselves are cloned by the function clone().
This function must be provided by a concrete implementation of a derived class of Node.

17.2.3 Using Tree and Node

We illustrate the usage of the classes Tree and Node by a program that counts words in files.
Words are defined, rather blandly, as series of characters, separated by white spaces. The program
shows which words are present in which file, and how many times.

Below is the listing of a class Strnode. This class is derived from Node and implements the virtual
functions. Note how this class implements the counting of words; when a given word occurs more
than one time, Tree will call the member function rejected(). This function simply increases the
private counter variable times.

#include <fstream>
#include <iomanip>
#include <string>

#include "tree.h"

class Strnode: public Node
{

public:
Strnode(string const &s)
:

str(s),
times(1)

{
}
Node* clone() const
{

return (new Strnode(*this));
}
int compare (Node const &other) const
{

return
(

str.compare
(

static_cast<Strnode const &>(other).str
)

);
}
void process ()
{

if (times)
cout << setw(20) << str.c_str() << ": " <<

setw(3) << times << endl;

466

}
void rejected(Node const &node)
{

++times;
}

private:
string

str;
unsigned

times;
};

void countfile(istream &inf)
{

Tree
tree;

string
word;

while (inf >> word)
{

Strnode
next(word);

tree.add(next);
}
tree.inorder_walk();

}

int main (int argc, char **argv)
{

int
exitstatus = 0;

if (argc > 1)
{

for (int i = 1; i < argc; ++i)
{

ifstream
inf(argv[i]);

if (!inf)
{

cerr << "can’t open " << argv[i] << endl;
exitstatus++;
continue;

}
countfile(inf);

}
}
else

countfile (cin);

467

return (exitstatus);
}

17.3 Classes to process program options

Programs usually can be given options by which the program can be configured to a particular task.
Often programs have sensible default values for their options. Given those defaults, a resource file
may be used to overrule the options that were hard-coded into the program. The resource file
is normally used to configure the program to the specific needs of a particular computer system.
Finally, the program can be given command-line options, by which the program can be configured
to its task during one particular run.

In this section we will develop a set of classes starting from the class Configuration, whose objects
can process a great variety of options. Actually, we’ll start from a small demo program, in which an
object of the class Configuration is used. From there, the class Configuration will be developed,
working our way down to the auxiliary classes that are used with the Configuration class.

The resulting program will be available as a zip-file containing the sources and (Linux) binary
program at our ftp-site. The zip-archive contains all the sources and auxiliary files for creating the
program, as well as an icmake build script.

17.3.1 Functionality of the class Configuration

What functionality must a Configuration object have?

• Its constructor should get full control over the program arguments int argc and char
∗∗argv.

• The class will have several pointer data members. Consequently, the class will need a de-
structor.

• The Configuration object must be able to load a resourcefile. Our resource file will obey
the standard unix form of configuration files: empty lines are ignored, and information on
lines beyond the hashmark (#) is ignored.

• The Configuration object must be able to process command-line options, which can be
either with or without an extra argument.

• The object should be able to produce the plain name of the program, i.e., the name from
which all directories are stripped.

• The object should be able to produce the name of the resource file that was used.

• The object should be able to tell us how many command-line arguments are available, not
counting command-line options and their arguments.

• The object should be able to produce the command-line arguments by their index-value,
again not counting command-line options and their arguments.

• The object should be able to produce an option, given the name of the option. We don’t
know yet what an Option is, but then, we don’t have to if we decide at this point that
pointers to Options, rather than the Options themselves are prodcued.

468

Maybe of similar importance as the functionality the object can perform is what the object can
not perform:

• A program will normally not need multiple Configurationobjects. Therefore there will be
no copy constructor.

• For the same reason, the class will have no overloaded assignment operator.

What if we accidently try to use a copy-constructor or (overloaded) assignment operator? Those
situations will be covered by the following trick: we will mention a copy constructor and an
overloaded assignment operator in the interface of the class, but will not implement it. The compiler
will, where needed, happily generate code calling these two functions, but the program can’t be
linked, since the copy constructor and the overloaded assignment operator aren’t available. Thus
we prevent the accidental use of these functions. This approach is used also with other, auxiliary,
classes.

Now that we’ve specified the functionality we’re ready to take a look at the interface.

The interface of the class Configuration

Here is the full interface of the class Configuration. In the interface, we recognize the functions
we required when specifying the functionality of the class: the constructor, destructor, and the
(not to be implemented) copy constructor and overloaded assignment operator.

To process the resource file we have loadResourceFile(), the command-line options are processed
by loadCommandLineOptions(). Next we see two plain accessors: programName() will return the
plain program name, while resourceFile()will return the name of the resource file. To obtain the
number of command-line arguments that are available when all command-line options have been
processed we have argc(). The arguments themselves are obtained by overloaded index operator,
using an unsigned argument. Finally, options can be obtained by name: for this another overloaded
index operator is available, this time using a string (char const ∗) for its argument.

The private section contains data: variables to access argc and argv, using reference-type vari-
ables; variables to store the program- and resource filenames, and two Hashtables (the class
Hashtable will be covered in section 17.3.6) containing, respectively, the precompiled options and
the command-line options.

Here is the interface of the class Configuration:

#ifndef _Configuration_H_
#define _Configuration_H_

#include "../hashtable/hashtable.h"

class Option;

class Configuration
{

public:
Configuration(int &argc, char const **&argv, int initialCap = 20,

double maxLoadFactor = 0.75);

469

~Configuration();

Configuration(Configuration const &other); // NI
Configuration &operator=(Configuration const &right); // NI

void loadResourceFile(char const *fname);
void loadCommandLineOptions();
char const *programName(); // name of the program
char const *resourceFile(); // name of used resourcefile
unsigned argc() const; // count beyond [0], c.q. options

// returns argv[index] | 0
// also beyond [0] c.q. options

// option [name]
Option const * operator[](char const *name) const;
char const *operator[](unsigned index) const; // argument[index]

private:
int

argcShift,
&argC;

char const
**&argv;

char
*progName;

Hashtable
optionTable,
cmdLineOption;

char
*resourceFilename;

};

#include <string.h>
#include "../option/option.h"
#include "../string/string.h"
#include "../mem/mem.h"
#include "../ustream/ustream.h"
#include "../stringtokenizer/stringtokenizer.h"

#endif _Configuration_H_

An example of a program using the class Configuration

Below we present the source of the demonstration program. The program sets up the memoryhan-
dler, to make sure that failing memory allocations will be noticed.

Next, a configuration object is created. This object is passed to an auxiliary function showing
us interesting aspects of the object (showConfigurationInformation()). Although this func-
tion tells us things about the Configuration object, it was not made part of the class, since it
was specifically designed in the context of the demonstration program, without adding any real
functionality to the Configuration class.

Having displayed the raw information stored in the Configuration object, the resource-file is

470

loaded. This might alter the values of the program-parameters, of which there are four in the
demonstration program. Having loaded the resourcefile, the contents of the Configuration object
are shown again.

Then, the command-line options (if any) are processed, followed by yet another display of the
contents of the Configuration object.

Here is the source of the demonstration program:

#include "demo.h"

int main(int argc, char const **argv)
{

Mem::installNewHandler();

Configuration
config(argc, argv);

showConfigurationInformation(config, "After constructing ’config’");

config.loadResourceFile("demo.rc");

showConfigurationInformation(config, "After reading demo.rc");

config.loadCommandLineOptions();

showConfigurationInformation(config,
"After processing command-line options");

return (0);
}

17.3.2 Implementation of the class Configuration

The constructor

The constructor of the class Configuration expects argc and argv as reference-type variables.
Apart from these two, tho extra parameters are defined, for which the interface defines default val-
ues: initialCap defines the initial capacity of the hashtables that are used by the Configuration
object, and maxLoadFactor defining the maximum load percentage of the hashtables. So, with
the default parameters the hashtables would be enlarged once more than 15 elements are stored
in them.

Having initialized the reference variables and the hashtables the options are stored in the hashtables
for fast access. The Option-class function nextOptionDefinition() produces a sequence of all op-
tions that are defined for the program. Each option’s name and value is stored in the optionTable
hashtable, and each option’s command-line character and name is stored in the cmdLineOption
hashtable. Therefore, the values of options can be retrieved immediately, given the name of the
option, while the option’s command-line character can be used to produce the name of the option,
which can then be used in a second step to obtain the value of the option.

Here is the source of the constructor:

471

#include "configuration.h"

Configuration::Configuration(int &argCount, char const **&argVector,
int initialCap, double maxLoadFactor)

:
argC(argCount),
argv(argVector),
optionTable(initialCap, maxLoadFactor),
cmdLineOption(initialCap, maxLoadFactor)

{
resourceFilename = Mem::strdup("");

Option
*option;

while ((option = Option::nextOptionDefinition()))
{

String
*name = new String(option->getName());

optionTable.put(name, option);

String const
*cmdopt = &(option->getCmdLineOption());

if (strlen(*cmdopt))
cmdLineOption.put(new String(*cmdopt), new String(*name));

}

char const
*cp = strrchr(argv[0], ’/’);

progName =
Mem::strdup
(

!cp ?
argv[0]

:
cp + 1

);

argcShift = 1;
}

472

loadResourceFile()

The function loadResourceFile() processes a unix-style resource-files. In these files, empty lines
are ignored, as well as information on a line beyond hash-marks (#) if these hashmarks are preceded
by the beginning of the line or white space. Long lines may be stretched out over several lines by
adding a continuation character (the backslash (\)) at the end of each line that continues on the
next line.

To obtain the remaining lines of the configuration file, loadResourceFile() creates a Ustream
object. The class Ustream was specifically designed for the processing of unix-style resource-files.
As this class doesn’t add much to the understanding of the Configuration-class its interface and
implementation is not discussed in the annotations. Rather, interface and implementation is found
in the configdemo.zip file at our ftp-site.

The processing of the information in the configuration file is based on the assumption that all
information on a line is organized as follows:

• The first word is an identifying word: it should match the name of an option. The word is
called the key.

• The key is optionally terminated by a colon, e.g.,

color:

• The remainder of the line, starting at the first non-blank character beyond the key, and
ending at the last non-blank character on the line, is considered to be the value of the key.

With respect to this format, each key is looked up in the optionTable. If found, the value of the
option is set to the key’s value. Otherwise, if the key is not found, a warning message is written,
by catching the exception thrown by the hashtable when it receives an undefined option-name.

Apart from the Ustream object, the function loadResourceFile() also uses a StringTokenizer
object, which splits lines from the Ustream file into words. The first word is interpreted as
key, while the function range(index) produces the unsplit line beyond word index. The class
StringTokenizer is also found in the distributed zip-file.

loadCommandLineOptions()

The function loadCommandLineOptions() uses the function getopt() which is available on unix
systems to retrieve command-line options (and possibly their values) and to separate them from the
remaining command-line arguments. The function getopt() expects (among other arguments) a
string of command-line option letters, which are possibly followed by a colon. If a colon is following
a command-line option, then information trailing the command-line option character or the next
command-line argument is interpreted as the value of the command-line option. E.g., a command-
line option character specified as n: may be specified on the command-line as -n20 or -n 20.

The function Hashtable::catKeys() is used to obtain a list of command-line option characters.
Next, the options are extracted from the command-line arguments using getopt(). When an
option has been found, the cmdLineOption hashtable is used to obtain the name of the option,
then the optionTable hashtable is used to obtain a pointer to the option.

Next the option receives a new value, through the virtual function assign(). This function is
available for all options, and allows loadCommandLineOptions() to assign a new value to an
option irrespective of the actual type of the option.

473

Here is the code of the function loadCommandLineOptions():

#include "configuration.h"

void Configuration::loadCommandLineOptions()
{

String
list;

cmdLineOption.catKeys(list);

register int
optionChar;

String
opt;

register char
*cp;

opterr = 0; // no error messages from getopt()
while // while options are found
(

(optionChar = getopt(argC, (char *const *)argv, list)) != -1
&&
(cp = strchr(list, optionChar))

)
{

opt = " :";

opt[0] = (char)optionChar; // create option-string
if (cp[1] != ’:’) // no option value ?

opt[1] = 0; // then remove ’:’ from opt.

Option // get the configuration option
*option = (Option *)optionTable[cmdLineOption[&opt]];

option->assign(optarg); // assign the value
}
argcShift = optind; // first non-option index in argv

}

17.3.3 The class Option

The class Option is designed as an abstract base class, defining the protocol to which all derived
classes must adhere. Derived classes representing logical values (Boolean), integer values (Int),
real values (Double) and textstrings (Text) will be constructed later on.

474

The class itself is derived from another abstract base class, Object. Pointers to Objects are stored
in, e.g., Hashtables.

The class Option (cf. section 17.3.3), has a constructor, expecting an option name and the spec-
ification of a command-line parameter, and a virtual destructor to be able to deleting memory
allocated by derived class objects through an Option pointer.

Default implementations returning the logical, int, double and textvalues of options are available
as well. These implementations are replaced in derived classes by memberfunctions returning the
real, rather than the default, value of the derived class’ object.

Since the options must be storable in a hashtable, and since the hashtable must be able to compare
two different object for equality, abstract members hashCode() and equals() are available, to be
implemented in the derived class’ objects.

The name and command-line option are obtained via two accessor functions: getName() and
getCmdLineOption(), respectively.

To assign a value to an option one more function must be implemented by derived class options:
assign(), to assign a value to an option.

The static Option ∗nextOptionDefinition() memberfunction returns a pointer to an object
of a class derived from Option. The returned option is constructed by a function that can be called
from an element of the

static Option ∗(∗optionConstructor[])(Mold const &mold)

array of pointers to functions returning pointers to Options. Each of these functions expects a
reference to a Mold struct.

An array of these structs must be available as static Mold mold[]. The Mold array allows us to
specify as data the ingredients of any option we require in our program. In other words: by defining
the elements of an array Option::Mold Option::mold[] all kinds of program-options and their
default values. can easily be defined.

For example, in our demonstration program four program options were defined, representing a
logical value, an integer value, a real value and a textual string. Note that the following mold[]
array is defined as data:

#include "../demo.h"

Option::Mold Option::mold[] =
{

{Boolean, "colors", "c", "True"},
{Int, "trials", "n:", "20"},
{Double, "epsilon", "e:", "0.004"},
{Text, "files", 0, "ls -Fla"},
{},

};

The last element of the mold[] array is an empty struct, acting as a sentinel. The remaining
lines (refer to the struct Mold in the interface of the class Option) contain four elements:

• The first element indicates the type of option: the options mentioned in the Type enum are
available. Note that this enum is protected: it’s only used in derived classes.

475

• The second element is the name of the option, as it should appear in resource files and in
the Configuration’s overloaded index operator.

• The third element is the command-line option character. If set to zero, there is no command-
line option. If the command-line option is followed by a colon, then the command-line option
should be given an argument of its own.

• The fourth element is the initial default value of the option. For logical (Boolean) options
string values like on, off, true, false, 0, 1 in any casing are all acceptable. Note again
that the initial default values are given as strings.

The interface of the class Option

Here is the complete interface of the abstract base class Option:

#ifndef _Option_H_
#define _Option_H_

#include "../string/string.h"

class Option: public Object
{

public:
Option(char const *name, char const *cmdLineOpt);
~Option();

virtual int BoolValue() const;
virtual int IntValue() const;
virtual double DoubleValue() const;
virtual char const *TextValue() const;

unsigned hashCode() const;
int operator==(Object const &other) const;

String const
&getName() const,
&getCmdLineOption() const;

virtual void assign(char const *string) = 0;

static Option *nextOptionDefinition();
protected:

enum Type
{

Sentinel,
Int,
Double,
Text,
Boolean,

};

private:

476

struct Mold
{

Type
optionType;

char
*name,
*cmdLineOption,
*defaultValue;

};

static Mold
mold[];

static Option *(*optionConstructor[])(Mold const &mold);

String
name,
cmdLineName;

};

#include <strstream.h>
#include "../booloption/booloption.h"
#include "../intoption/intoption.h"
#include "../doubleoption/doubleoption.h"
#include "../textoption/textoption.h"

#endif _Option_H_

The static member nextOptionDefinition

The static memberfunction nextOptionDefinition() is called repeatedly until it returns 0. The
function visits all elements of the mold[] array, calling the static function optionConstructor
associated with the option-type of the element of the array mold[] that is visited.

The variable optionConstructor[] is an array, which is initialized as data of the class Option.
The elements of the optionConstructor[] array are pointers to Constructor() functions of all
the derived classes. These functions construct actual derived class option objects, and expect the
ingredients for the construction as a reference to a Mold struct.

The function nextOptionDefinition() is:

#include "option.h"

Option *Option::nextOptionDefinition()
{

static unsigned
index = 0;

if (mold[index].optionType == Sentinel)
return (0);

477

Option
*option =

optionConstructor[mold[index].optionType]
(mold[index]);

index++;
return (option);

}

The array optionConstructor[] is initialized as follows:

#include "option.h"

Option *(*Option::optionConstructor[])(Mold const &mold) =
{

0,
IntOption::Constructor,
DoubleOption::Constructor,
TextOption::Constructor,
BoolOption::Constructor,

};

Note that in this initialization reflects the ordering of the Option::Type enum. There is no
constructor for the Sentinel enum-value, while the remaining elements contain the addresses for
the different derived-class option types.

17.3.4 Derived from Option: The class TextOption

Below (in section 17.3.4) the interface of the class TextOption, derived from Option, is given. The
class contains implementations of all the pure virtual functions of the class Option, and it mentions
the existence of a copy constructor and overloaded assignment operator. However, these functions
are (once again) not to be used, and are mentioned here as a safeguard against their being used
accidently.

The interesting part of the interface is the function static Option ∗Constructor(Mold const
&mold): it constructs a TextOption object (through TextOption’s constructor), using the ingredi-
ents it encounters in the Mold it receives as its argument. Note that the prototype of Constructor
corresponds to the prototype of the elements of the array Option::optionConstructor[]. As
we have seen (in section 17.3.3), Option:optionConstructor[Text] has been given the value
TextOption::Constructor, thus setting up the connection between an option-type and the con-
structor for such an option from the ingredients found in an Option::Mold.

The other three classes derived from the class Option are constructed similarly. The reader is
referred to their interfaces and implementation in the zip-archive in our ftp-site.

The interface of the class TextOption

Here is the interface of the class TextOption, derived from Option:

478

#ifndef _TextOption_H_
#define _TextOption_H_

#include "../option/option.h"

class TextOption: public Option
{

public:
static Option *Constructor(Mold const &mold);
TextOption(char const *name, char const *cmdLineOpt,

char const *initialValue);
~TextOption();

TextOption(TextOption const &other); // NI
TextOption &operator=(TextOption const &other); // NI

void assign(char const *str);
char const *TextValue() const;
char const *toString() const;

private:
char

*value;
};

#include "../mem/mem.h"

#endif _TextOption_H_

The implementation of the assign() function

As an example of an implementation of an assign() function, we present the function TextOption::assign().
As defined by the interface of the class Option, this function has one parameter, a char const
∗str. It needs to perform only two tasks: First, the old value of the TextOption object is deleted,
then a new value is assigned. Corresponding assign() functions are available for the other derived
option classes.

Here is the implementation of TextOption::assign():

#include "textoption.h"

void TextOption::assign(char const *str)
{

delete value;
value = Mem::strdup(str);

}

479

17.3.5 The class Object

The class Object is an abstract base class. Pointers to Objects are be stored in Hashtables.
The class is a very simple one, containing a virtual destructor (doing nothing in particular), and
requiring the implementation of three pure virtual functions:

• int operator==(Object const &other), used to compare two objects of classes derived
from the class Object,

• unsigned hashCode(), returning a hashcode for the object. This function is used in combi-
nation with a Hashtable object.

• char const ∗toString(), returning a printable representation of the object.

Here is the interface of the class Object:

#ifndef _Object_H_
#define _Object_H_

class Object
{

public:
virtual ~Object();

virtual int operator==(Object const &other) const = 0;
virtual unsigned hashCode() const = 0;
virtual char const *toString() const = 0;

};

#endif _Object_H_

17.3.6 The class Hashtable

The class Hashtable is used to store and retrieve objects of classes derived from the class
Object. The class contains two pointers to vectors of pointers to Objects, containing the keys
and values that are stored in the hashtable. Furthermore, the class has data-members holding the
actual number of elements that are stored in the hashtable (n), the number of elements of the
two vectors of pointers to Objects (capacity), the original number of elements of these vectors
(initialCapacity) and the maximum proportion of elements of the vectors that may be occupied
(maxLoadFactor).

The Hashtable objects are self-expanding. Once maxLoadFactor threatens to be exceeded, the
table is expanded automatically.

The functionality of the hashtable includes members for retrieving values of the objects stored
in the table using either the name of a key (as a char const ∗) or a pointer to an Object;
a member to add a new key/value pair to the table, and a utility member catKeys() return-
ing a string containing the catenated names of all keys. This latter function is used by the
Option::nextOptionDefinition() to tell getopt() what command-line option characters it can
expect.

The interface of the class Hashtable also shows some private memberfunctions, used for expand-
ing the table, and for inserting and retrieving elements from the table. Some of these functions are

480

covered in the following discussion. Functions not needing special attention are available in the
zip-archive.

Here is the interface of the class Hashtable:

#ifndef _Hashtable_H_
#define _Hashtable_H_

#include "../string/string.h"

class Object;

class Hashtable
{

public:
Hashtable(int initialCapacity, double maxLoadFactor = 0.75);
~Hashtable();

Hashtable(Hashtable const &other); // NI
Hashtable const &operator=(Hashtable const &other); // NI

Object const *operator[](Object const *key) const;
Object const *operator[](char const *key) const;
Object const *put(Object *key, Object *value); // returns value

void catKeys(String &target); // catenate the keys
// as strings

char const *toString() const;
private:

void installVectors(int capacityRequest);
int lookup(Object const *key) const; // key must exist
int mayInsert(Object *key); // key might not exist

// the key in the table
int expanded(); // 1 if table was expanded

unsigned
capacity,
initialCapacity,
n;

double
maxLoadFactor;

Object
**keys,
**values;

};

#include <unistd.h>
#include <stdlib.h>

#include "../option/option.h"

481

#endif _Hashtable_H_

The Hashtable constructor

The constructor of the hashtable initializes the data-members of the table, and then calls installVectors()
to initialize the keys and values vectors. Here is the constructor of the class Hashtable:

#include "hashtable.h"

Hashtable::Hashtable(int iniCap, double maxFactor)
{

maxLoadFactor = maxFactor;
n = 0;
initialCapacity = iniCap;

capacity = 0;
keys = 0;
values = 0;

installVectors(initialCapacity);
}

The function installVectors() simply creates two vectors of the required number of elements
(i.e., capacity), initializing the vectors with null-pointers.

The function mayInsert()

The functions mayInsert() returns the index of a key that is stored in the hashtable. The difference
with the function lookup() is that the function lookup() requires the key to be available in the
hashtable, whereas the function mayInsert() will insert the key when it isn’t available yet.

If the function lookup() doesn’t find the key in the table, it throws a char const ∗ exeption, con-
taining the name of the key. The exception is thereupon caught by the function Configuration::loadResourceFile()
The function mayInsert(), however, will try to insert a non-existing key into the hashtable.

Before looking for a key, both lookup() and mayInsert() first determine an initial hashcode,
using the key’s hashCode() function. A simple add-the-hash rehash scheme is used to cope with
collisions. The add-the-hash value is at least 1 and at most the current capacity minus one. Using
a prime-sized hashtable, this ensures that all elements of the hashtable are visited by repeatedly
adding the add-the-hash value to the index value that was last used.

The insertion process itself consists of a perpetual loop, that terminates when the index of the key
in the hashtable has been determined.

If an empty element of the key vector is hit, expand() is called, which may enlarge the hashtable.
If the table was enlarged, both the hashcode and the add-the-hash value of the actual key are
recomputed, and the perpetual loop starts its next cycle. Otherwise, the key is entered at the
empty element’s position, and its index value is returned.

482

If the key is found in the vector of keys, then the corresponding index position is returned. Al-
ternatively, a collision may occur, and the index value is incremented by the add-the-hash value,
followed by the next cycle of the perpetual loop.

Thus, the lookup() and mayInsert() functions return the index of the provided key. Apart from
that, lookup() will throw an exception when the provided key isn’t found in the table.

Here is the sourcetext of the function mayInsert():

#include "hashtable.h"

// addTheHash is set in the range 1 .. capacity - 1, and the initial
// index is made equal to the addTheHash value. Since addTheHash is non-zero
// a new index computed by adding the addTheHash value to the index will
// always get another value. The zeroth index of the hashtable will only be
// used as the result of a collision, but that doesn’t matter: hashtables
// aren’t filled up completely anyway.

int Hashtable::mayInsert(Object *key)
{

unsigned
hashCode = key->hashCode();

register unsigned
addTheHash = 1 + hashCode % (capacity - 1),
index = addTheHash; // within the capacity range

while (1)
{

if (!keys[index]) // empty slot ?
{

if (expanded()) // hashtable was expanded ?
{

addTheHash = 1 + hashCode % (capacity - 1);
index = addTheHash; // new index after expansion

continue; // restart the checking
}
keys[index] = key; // place the key here
++n; // n contains #-elements

return (index); // and produce its index
}

if (*keys[index] == *key) // same object ?
return (index); // return its index

if ((index += addTheHash) >= capacity) // collision: try next entry
index -= capacity;

}
}

483

The function expanded()

The function expanded() first checks the loadfactor of the hashtable: if the actual number of
elements divided by the capacity of the table exceeds maxLoadFactor, the current keys and values
vectors are saved, and new vectors containing initialCapacity extra elements are installed.

Next, the elements of the old keys vector are visited. If a non-empty element is found, that element
and its value are stored in the hashtable using the function put(). This process continues until n
elements (the number of non-empty elements in the old vectors) are stored in the enlarged table.
Since the function put() owns the objects that its arguments point to (i.e., Object ∗s rather
than Object const ∗s are used, the objects the elements of the old vectors point to must not be
deleted. Therefore, at the end of the function expanded() the old keys and values vectors are
simply deleted, disregarding the objects their elements point to.

17.3.7 Auxiliary classes

The classes we’ve covered so far rely on the specific functionality of other classes. The memory
management class Mem is a good example: while standard functions are available for the allocation
of memory, these functions reduce to the function malloc(), and not to the operator new. Since
the operator new can be protected by the set new handler() function, it’s a good idea to duplicate
the popular standard memory allocating functions based on malloc() by functions using new.

Another example is found in the class Util, containing functions we think are useful, but which
we could not place conceptually easy in other classes. For example, the utility class contains a
function prime() returning a prime number.

The following utility classes are available:

• Mem: this class handles memory allocation through the operator new rather than through the
function malloc().

• String: objects of this class represent strings, and can perform certain string-related tasks.

• StringTokenizer: objects of this class break up strings into substrings according to a set of
delimiters.

• Ustream: objects of this class handle unix-style configuration files, in which empty lines and
information on lines beyond the hash-mark are ignored.

• Util: this class contains functions performing tasks which do not belong conceptually to
other classes.

The Mem and Util classes contain just static memberfunctions, and do not require objects to be
used. For the other classes objects must be defined.

The next sections will cover the interfaces of these classes. The implementation of the functions of
these classes is found in the zip-archive at our ftp-site.

The class Mem

The class Mem contains functions related to the allocation of memory, using the operator new. Using
new, it is easy to catch exhausted dynamic memory through the function set new handler().

484

The class contains functions to install a new-handler, to duplicate and concatenate strings, to
compare strings, and to reallocate memory. As all these functions are static, there is no need to
create a Mem object.

The function realloc() isn’t a particularly elegant attempt to make available a function that
resembles the standard malloc()-based realloc() function. Actually, in the demonstration pro-
gram it’s used only by the StringTokenizer constructor. However, by making it a member of the
latter class, we feel we would mix up memory allocation with string handling.

The Mem::realloc() function does a rather crude job: it should be used only for enlarging the
required amount of memory, in which case the extra allocated memory remains completely unini-
tialized.

The other memberfunctions are implemented in a standard way. Most of them accept null-pointers
as arguments as well. Here is the interface of the class Mem:

#ifndef _Mem_H_
#define _Mem_H_

class Mem
{

public:
static void installNewHandler();
static char *strdup(char const *str);
static int casecmp(char const *s1, char const *s2);
static int cmp(char const *s1, char const *s2);
static char *strndup(char const *str, unsigned len);
static char *strcat(char const *src1, char const *src2);
static void *realloc(void *addressOfPointerToOldData,

unsigned dataSize, unsigned oldN,
unsigned newN);

private:
static void memoryExhausted();

};

#include <iostream.h>
#include <new.h>
#include <string.h>

#endif _Mem_H_

485

The class String

Objects of the class String represent strings: 0-delimited series of ascii-characters. The class is
derived from Object, so String objects can be stored in Hashtables.

Apart from the functions required by the class Object, the class String contains all standard
members, like a copy constructor and a overloaded assignment operators. Apart from these mem-
bers, there is a conversion operator, allowing the use of a String object as a char const ∗, and
there are members for enlarging the string by catenating another string to it, and for retrieving a
character using the index-operator.

Here is the interface of the class String:

#ifndef _String_H_
#define _String_H_

#include <iostream.h>
#include <stdarg.h>

#include "../object/object.h"

class String: public Object
{

public:
String();
String(char const *arg);
~String();

String(String const &other);
String &operator=(String const &rvalue);
String &operator=(char const *rvalue);

int operator==(Object const &other) const;
unsigned hashCode() const;
char const *toString() const;

operator char const *() const;
String &strcat(char const *str2);
char &operator[](unsigned index);

private:
char

*string;
};

#include "../mem/mem.h"
#include "../hashtable/hashtable.h"

#endif _String_H_

486

The class StringTokenizer

The class StringTokenizer is used for breaking up strings into substrings according to a (set of)
delimiters. By default, the white-space delimiters are used. The constructor of the class expects
an ascii-z string (and optionally a string of delimiter-characters) and will split the string into
substrings according to the set of delimiters.

The substrings are retrievable through the overloaded index-operator, returning pointers to String
objects, which are then owned by the calling function. Another memberfunction is range(),
returning the substring starting at a particular index-position. For example, if StringTokenizer
st contains five substrings, st.range(3) will return the substring of the original string starting
at st[3].

Here is the interface of the class StringTokenizer:

#ifndef _StringTokenizer_H_
#define _StringTokenizer_H_

#include "../string/string.h"

class StringTokenizer
{

public:
StringTokenizer(char const *cp, char const *delimiters = " \t\n");
~StringTokenizer();

StringTokenizer(StringTokenizer const &other); // NI
StringTokenizer &operator=(StringTokenizer const &other); // NI

String *operator[](unsigned index);
String *range(unsigned from); // until the last one

private:
struct SubString
{

char
*str;

unsigned
length;

};

char
*str;

SubString
*subString;

unsigned
n;

};

#endif _StringTokenizer_H_

487

The class Ustream

The class Ustream processes files as unix-like configuration files. In these files empty lines are
ignored, as is information starting at a hash-mark at the beginning of a line or preceded by a
white-space character. Furthermore, lines are combined if the last character of a line is a backslash.

The constructor of the class expects one argument: the name of the file to be processed. Having
created a Ustream object, the conversion operator operator void ∗() can be used to determine
the successful opening of the file: it returns 0 if the file wasn’t opened successfully.

The (non-empty, non-comment section of) lines of the file are returned by the member read() as
a char ∗: the line is owned by the calling function. Calling read() succeeds until a null-pointer
is returned.

After a successful read-operation, the member-function lineNr() will return the actual linenumber
of the just read line in the original file. In this case empty and comment-lines are counted.

The file is closed when the Ustream object is destroyed.

Here is the interface of the class Ustream:

#ifndef _Ustream_H_
#define _Ustream_H_

#include <fstream.h>

class Ustream
{

public:
Ustream(char const *fname);

Ustream(Ustream const &other); // NI
Ustream const &operator=(Ustream const &right); // NI

operator void *(); // direct status-check

char *read(); // 0 if no more lines
int lineNr();

private:
ifstream

stream;
int

line;
};

#include "../mem/mem.h"

488

#endif _Ustream_H_

The class Util

The class Util contains several utility functions, which did not belong elsewhere. The functions
atod() and atoi() convert, respectively, strings to doubles and strings to ints, and they differ
from the standard functions atof() and atoi() only by the fact that the Util functions accept
null-pointers as well.

The function prime() uses the sieve of Aristosthenes to generate the first prime exceeding the
value given as its argument.

The function hashPjw() returns a hashvalue for a string. This algorithm is given in Aho, Sethi,
and Ullman’s Compilers: Principles, Techniques and Tools, 1986, p. 435 as P. J. Weinberger’s
algorithm for computing hash-values.

The interface of the class Util is given below:

#ifndef _Util_H_
#define _Util_H_

#include <values.h>
// uses INTBITS to find the # of bits in a word, hence in an int

class Util
{

public:
static double atod(char const *value); // convert to double
static int atoi(char const *value); // convert to int
static unsigned prime(unsigned lowerBound); // first prime exceeding

// lowerBound
static unsigned hashPjw(char const *key); // return hashvalue

private:
int const

bitsPerInt = INTBITS,
moduloMask = bitsPerInt - 1;

static int
shiftBitsPerInt;

};

#include <stdlib.h>
#include <string.h>
#include <math.h>

#endif _Util_H_

489

17.4 Using Bison and Flex

The example discussed in this section digs into the peculiarities of using a parser- and scanner-
generator with C++. Once the input for a program exceeds a certain level of complexity, it’s
advantageous to use a scanner- and parser-generator for creating the code which does the actual
input recognition. The example about this topic assumes that the reader knows how to use the
scanner generator flex and the parser generator bison. Both bison and flex are well documented
elsewhere. The original predecessors of bison and flex, called yacc and lex are described in
several books, e.g. in O’Reilly’s book ‘lex & yacc’.

However, the scanner and parser generators are also (and maybe even more commonly, nowadays)
available as free software. Both bison and flex can be obtained from prep.ai.mit.edu/pub/gnu.
Flex will create a C++ class when called as flex++, or when the -+ flag is used. With bison
the situation is a bit more complex. Scattered over the Internet several bison++ archives can
be found (e.g., in rzbsdi01.uni-trier.de). The information in these archives usually dates back to
1993, irrespective of the version number mentioned with the archive itself. (However, the given
ftp-archive also contains dos-executables, for those who are interested....)

Using flex++ and bison++ a class-based scanner and parser can be generated. The advantage
of this approach is that the interface to the scanner and the parser tends to become a bit cleaner
than without using the class interface.

Below two examples are given. In the first example only a lexical scanner is used to monitor
the production of a file from several parts. This example focuses on the lexical scanner, and
on switching files while churning through the parts. The second example uses both a scanner
and a parser to transform standard arithmetic expressions to their postfix notation, commonly
encountered in code generated by compilers and in HP-calculators. The second example focuses on
the parser.

17.4.1 Using Flex++ to create a scanner

In this example a lexical scanner is used to monitor the production of a file from several parts. This
example focuses on the lexical scanner, and on switching files while churning through the parts.
The setup is as follows: The input-language knows of an #include statement, which is followed
by a string indicating the file which should be included at the location of the #include.

In order to avoid complexities that have nothing to do with the current example, the format of the
#include statement is restricted to the form #include <filepath>. The file specified between
the pointed brackets should be available at the location indicated by filepath. If the file is not
available, the program should terminate using a proper error message.

The program is started with one or two filename arguments. If the program is started with just
one filename argument, the output is written to the standard output stream cout. Otherwise, the
output is written to the stream whose name is given as the program’s second argument.

The program uses a maximum nesting depth. Once the maximum is exceeded, the program
terminates with an appropriate error message. In that case, the filenamestack indicating where
which file was included should be printed.

One minor extra feature is that comment-lines should be recognized: include directives in comment-
lines should be ignored, comment being the standard C++ comment-types.

The program is created in the following steps:

490

• First, the file lexer is constructed, containing the specifications of the input-language.

• From the specifications in lexer the requirements for the class Scanner evolve. The
Scanner class is a wrapper around the class yyFlexLexer generated by flex++. The re-
quirements results in the specification of the interface for the class Scanner.

• Next, the main() function is constructed. A Startup object is created to inspect the com-
mandline arguments. If successful, the scanner’s member yylex() is called to construct the
output file.

• Now that the global setup of the program has been specified, the memberfunctions of the
different classes are constructed.

• Finally, the program is compiled and linked.

The flex++ specification file

The organization of the lexical scanner specification file is similar to the one used with flex.
However, flex++ creates a class (yyFlexLexer) from which the class Scanner will be derived.

The code associated with the regular expression rules will be located inside the class yyFlexLexer.
However, it would be handy to access the member-functions of the derived class within that code.
Fortunately, class derivation and inheritance helps us to realize this. In the specification of the class
yyFlexLexer(), we notice that the function yylex() is a virtual function. In the FlexLexer.h
header file we see virtual int yylex():

class yyFlexLexer: public FlexLexer
{

public:
yyFlexLexer(istream* arg_yyin = 0, ostream* arg_yyout = 0);

virtual ~yyFlexLexer();

void yy_switch_to_buffer(struct yy_buffer_state* new_buffer);
struct yy_buffer_state* yy_create_buffer(istream* s, int size);
void yy_delete_buffer(struct yy_buffer_state* b);
void yyrestart(istream* s);

virtual int yylex();
virtual void switch_streams(istream* new_in, ostream* new_out);

protected:
...

};

Consequently, if yylex() is defined in a derived class, then this function of the derived class will
be called from a base class (i.e., yyFlexLexer) pointer. Since the yylex() function of the derived
class is called, that function will have access to the members of its class, and to the public and
protected members of its base class.

491

The context in which the generated scanner is placed is (by default) the function yyFlexLexer::yylex().
However, this context can be changed by defining the YY DECL-macro. This macro, if defined, de-
termines the context in which the generated scanner will be placed. So, in order to make the
generated scanner part of the derived class function yylex(), three things must be done:

• The macro YY DECL must be defined in the lexer specficiation file. It must define the derived
class function yylex() as the scanner function. For example:

#define YY DECL int Scanner::yylex()

• The function yylex() must be declared in the class definition of the derived class.

• As the function yyFlexLexer::yylex() is a virtual function, it must still be defined. It is
not called, though, so its definition may be a simple

int yyFlexLexer::yylex()
{

return (0);
}

The definition of the YY DECL macro and the yyFlexLexer::yylex() function can conveniently be
placed in the lexer specification file, as shown below.

Looking at the regular expressions themselves, notice that we’ll need rules for the recognition
of the comment, for the include directive, and for the remaining characters. This is all fairly
standard practice. When an include directive is detected, the derived-class’ member function
switchSource() is called, which will perform the required file switching. When the end of the file
(EOF) is detected, the derived class’ member function popSource() is called, which will pop the
previous previously pushed file, returning 1. Once the file-stack is empty, the function will return
0, resulting in the call of yyterminate(), which will terminate the scanner.

The lexical scanner specification file has three sections: a C++ preamble, containing code which
can be used in the code defining the actions to be performed once a regular expression is matched, a
Flex++ symbol area, which is used for the definition of symbols, like a mini scanner, or options,
like %option yylineno when the lexical scanner should keep track of the line numbers of the files
it is scanning and, finally a rules section, in which the regular expressions and their actions are
given. In the current example, the lexer should mainly copy information from the istream ∗yyin
to the ostream ∗yyout, for which the predefined macro ECHO can be used.

Here is the complete and annotated lexical scanner specification file to be used with flex++:

%{
/* --

C++ -preamble.
Include header files, other than those generated by flex++ and bison++.

E.g., include the interface to the class derived from yyFlexLexer
--*/

// the yylex() function that’s actually
// used

#define YY_DECL int Scanner::yylex()

492

#include "scanner.h" // The interface of the derived class

int yyFlexLexer::yylex() // not called: overruled by
{ // Scanner::yylex()

return (0);
}

%}

/* --
Flex++ symbol area
~~~~~~~~~~~~~~~~~~

The symbols mentioned here are used for defining e.g., a miniscanner
---------------------------------------------------------------------------- */
%x comment
%option yylineno

eolnComment "//".*
anyChar .|\n

/* ----------------------------------------------------------------------------
Flex rules area:
~~~~~~~~~~~~~~~~

Regular expressions below here define what the lexer will recognize.
-- */
%%

/*
The comment-rules: comment lines are ignored.

*/
{eolnComment}
"/*" BEGIN comment;
<comment>{anyChar}
<comment>"*/" BEGIN INITIAL;

/*
File switching: #include <filepath>

*/
"#include "[^>]*">" switchSource();

/*
The default rules: eating all the rest, echoing it to output

*/
{anyChar} ECHO;

/*
The <<EOF>>)rule: pop a pushed file, or terminate the lexer

*/
<<EOF>> {

if (!popSource())
yyterminate();

}

493

Since the derived class is able to access the information stored within the lexical scanner itself (it
can even access the information directly, since the data members of yyFlexLexer are protected,
and thus accessible to derived classes), very much processing can be done by the derived class’
member functions. This results in a very clean setup of the lexer specification file, in which hardly
any code is required in the preamble.

The derived class: Scanner

The class Scanner is derived from the class yyFlexLexer, generated by flex++. The derived
class has access to the data controlled by the lexical scanner. In particular, the derived class has
access to the following data members:

• char ∗yytext: contains the text matched by a regular expression

• int yyleng: the length of the text in yytext

• int yylineno: the current line number (only if %option yylineo was specified in the lexer
specfication file)

Other members are available as well, but they are less often used in our experience. Details can
be found in the file FlexLexer.h, which is part of the flex distribution.

The class Scanner has to perform two tasks: It should push file information about the current
file to a filestack, and should pop the information pushed last once EOF is detected on a file.

Several member functions are needed for the accomplishment of these tasks. As they are auxiliary
to the switchSource() and popSource() functions, they are private members. In practice, these
private members are developed once the need for them arises. In the following interface of the
Scanner class the final header file is given. Note that, apart from the private member functions,
several private data members are used as well. These members are initialized in the constructor
Scanner() and are used in the private memberfunctions. They are discussed below, in the context
of the memberfunctions using them.

#include <FlexLexer.h> // provides yyFlexLexer interface
#include <fstream.h>
#include <stdio.h>
#include <string.h>

class Scanner: public yyFlexLexer
{

public:
Scanner(istream *yyin);

int yylex(); // overruling yyFlexLexer’s yylex()
private:

void switchSource();
int popSource();

494

int scanYYText(); // 1: nextSource contains new name
void performSwitch();
void checkCircularity();
void checkDepth();

yy_buffer_state
**state;

char
**fileName,
*srcPtr,
*nextSource;

int
stackTop;

static int const
sizeof_buffer = 16384,
stackDepth = 10;

};

The switchSource() memberfunction should interpret the information given in yytext: it is
interpreted by scanYYText(). If scanYYText() can extract a filename from yytext a switch to
another file can be performed. This switch is performed by performSwitch(). If the filename could
not be extracted, a message is written to the outputstream. Here is the code of switchSource():

#include "scanner.h"

void Scanner::switchSource()
{

if (scanYYText())
performSwitch();

}

The performSwitch() function and the matching function popSource() handle a simple file
switch. In particular, the yylineno variable is not updated when a file switch is performed.
If line numbers are to be monitored, the performSwitch() and popSource() functions should
respectively push the current value of yylineno on a stack, and thereafter reset yylineno, and (at
EOF) pop yylineno from the stack.

The memberfunction scanYYText() performs a simple scan of the information in yytext. If a name
is detected following #include < that name is stored in the private data member nextSource,
and 1 is returned. Otherwise, the information in yytext is copied to yyout, and 0 is returned.
Here is the source for scanYYText():

#include "scanner.h"

int Scanner::scanYYText()
{

delete nextSource; // build new buffer

495

nextSource = new char[yyleng];

if
(

sscanf(yytext, "#include %[^ \t\n>]", nextSource) != 1
||
!(srcPtr = strchr(nextSource, ’<’))

)
{

*yyout << yytext; // copy #include to yyout
return (0); // scan failed

}
srcPtr++;
return (1);

}

The function performSwitch() performs the actual file-switching. The yyFlexLexer class pro-
vides a series of memberfunctions that can be used for file switching purposes. The file-switching
capability of a yyFlexLexer object is founded on the struct yy buffer state, containing the
state of the scan-buffer of the file that is currently scanned by the lexical scanner. This buffer is
pushed on a stack when an #include is encountered, to be replaced with the buffer of the file that
is mentioned in the #include directive.

The switching of the file to be scanned is realized in the following steps:

• First, the current depth of the include-nesting is inspected. If the stackDepth is reached,
the stack is full, and the program aborts with an appropriate message. For this the member-
function checkDepth() is called.

• Next, the fileName stack is inspected, to avoid circular inclusions. If nextSource is encoun-
tered in the fileName array, the inclusion is refused, and the program terminates with an
appropriate message. The memberfunction checkCircularity() is called for this task.

• Then, a new ifstream object is created, assigned to nextSource. If this fails, the program
terminates with an appropriate message.

• Finally, a new yy buffer state is created for the newly opened stream, and the lexi-
cal scanner is instructed to switch to that stream using yyFlexLexer’s memberfunction
yy switch to buffer.

The sources for the memberfunctions performSwitch(), checkDepth(), and checkCircularity()
are given next:

#include "scanner.h"

void Scanner::performSwitch()
{

++stackTop;
checkDepth();
checkCircularity();

496

ifstream
*newStream = new ifstream(srcPtr);

if (!*newStream)
{

cerr << "Can’t open " << srcPtr << endl;
exit(1);

}
state[stackTop] = yy_current_buffer;
yy_switch_to_buffer(yy_create_buffer(newStream, sizeof_buffer));

}

#include "scanner.h"

void Scanner::checkDepth()
{

if (stackTop == stackDepth)
{

cerr << "Inclusion level exceeded. Maximum is " << stackDepth << endl;
exit (1);

}
}

#include "scanner.h"

void Scanner::checkCircularity()
{

delete fileName[stackTop];

fileName[stackTop] = new char [strlen(srcPtr) + 1];
strcpy(fileName[stackTop], srcPtr);

int
index;

for (index = 0; strcmp(srcPtr, fileName[index]); index++)
;

if (index != stackTop)
{

cerr << "Circular inclusion of " << srcPtr << endl;
while (stackTop > index)
{

cerr << fileName[stackTop] << " was included in " <<
fileName[stackTop - 1] << endl;

--stackTop;
}
exit (1);

}
}

497

The memberfunction popSource() is called to pop the previously pushed sourcefile from the stack,
to continue its scan just beyond the just processed #include directive. The popSource() function
first inspects stackTop: if the variable is at least 0, then it’s an index into the yy buffer state
array, and thus the current buffer is deleted, to be replaced by the state waiting on top of the stack.
This is realized by the yyFlexLexer members yy delete buffer and yy switch to buffer.

If a previous buffer waited on top of the stack, then 1 is returned, indicating a successful switch
to the previously pushed file. If the stack was empty, 0 is returned, and the lexer will terminate.

Here is the source of the function popSource():

#include "scanner.h"

int Scanner::popSource()
{

if (stackTop >= 0)
{

yy_delete_buffer(yy_current_buffer);
yy_switch_to_buffer(state[stackTop]);

stackTop--;
return (1);

}
return (0);

}

These functions complete the implementation of the complete lexical scanner. the lexical scanner
itself is stored in the Scanner::yylex() function. The Scanner object itself only has three public
memberfunctions: one function to push a sourcefile on a stack when a switch to the next sourcefile
is requested, one function to restore the previously pushed source, and of course yylex() itself.

Finally, the constructor will initialize the Scanner object. Note that the interface contains an
overloaded assignment operator and a copy constructor. By mentioning these two functions in the
interface only, without implementing them, they cannot be used in a program: the linking phase
of a program using such functions would fail. In this case this is intended behavior: the Scanner
object does its own job, and there simply is no need for the assignment of a Scanner object to
another one, or for the duplication of a Scanner object.

The constructor itself is a simple piece of code. Here is its source:

#include "scanner.h"

Scanner::Scanner(istream *yyin)
{

switch_streams(yyin, yyout);

state = new yy_buffer_state * [stackDepth];
memset(state, 0, stackDepth * sizeof(yy_buffer_state *));

fileName = new char * [stackDepth];
memset(fileName, 0, stackDepth * sizeof(char *));

498

nextSource = 0;

stackTop = -1;
}

The main() function

The main program is a very simple one. As the program expects a filename to start the scanning
process at, initially the number of arguments is checked. If at least one argument was given, then a
ifstream object is created. If this object can be created, then a Scanner object is created, receiving
the address of the ifstream object as its argument. Then the yylex() member function of the
Scanner object is called. This function is inherited from the Scanner’s base class yyFlexLexer.

Here is the source-text of the main function:

/* lexer.cc

A C++ main()-frame generated by C++ for lexer.cc

*/

#include "lexer.h" /* program header file */

int main(int argc, char **argv)
{

if (argc == 1)
{

cerr << "Filename argument required\n";
exit (1);

}

ifstream
yyin(argv[1]);

if (!yyin)
{

cerr << "Can’t read " << argv[1] << endl;
exit(1);

}

Scanner
scanner(&yyin);

scanner.yylex();
return (0);

}

499

Building the scanner-program

The final program is constructed in two steps. These steps are given for a unix system, on which
flex++ and the Gnu C++ compiler g++ have been installed:

• First, the lexical scanner’s source is created using flex++. For this the command

flex++ lexer

can be given.

• Next, all sources are compiled and linked, using the libfl.a library. The appropriate com-
mand here is

g++ -o scanner ∗.cc -lfl

For the purpose of debugging a lexical scanner the rules that are matched and the tokens that are
returned are useful information. When flex++ is called with the -d flag, debugging code will be
part of the generated scanner. Apart from that, the debugging code must be activated. Assuming
the scanner object is called scanner, the statement

scanner.set debug(1);

must be given following the creation of the scanner object.

17.4.2 Using both bison++ and flex++

When the input language exceeds a certain level of complexity, a parser is generally needed to
control the complexity of the input language. In these cases, a parser generator is used to generate
the code that’s required to determine the grammatical correctness of the input language. The
function of the scanner is to provided chunks of the input, called tokens, for the parser to work
with.

Starting point for a program using both a parser and a scanner is the grammar: the grammar
is specified first. This results in a set of tokens which can be returned by the lexical scanner
(commonly called the lexer. Finally, auxiliary code is provided to fill in the blanks: the actions
which are performed by the parser and the lexer are not normally specified with the grammatical
rules or lexical regular expressions, but are executed by functions, which are called from within
the parser’s rules or associated with the lexer’s regular expressions.

In the previous section we’ve seen an example of a C++ class generated by flex++. In the
current section the parser is our main concern. The parser can be generated from a grammar
specified for the program bison++. The specification of bison++ is similar to the specifications
required for bison, but a class is generated, rather than a single function. In the next sections we’ll
develop a program converting infix expressions, in which binary operators are written between their
operands, to postfix expressions, in which binary operators are written following their operands. A
comparable situation holds true for the unary operators - and +: We can ignore the + operator,
but the - is converted to a unary minus.

Our calculator will recognize a minimal set of operators: multiplication, addition, parentheses,
and the unary minus. We’ll distinguish real numbers from integers, to illustrate a subtlety in

500

the bison-like grammar specifications, but that’s about it: the purpose of this section, after all,
is to illustrate a C++ program, using a parser and a lexer, and not to construct a full-fledged
calculator.

In the next few sections we’ll start developing the grammar in a bison++ specification file. Then,
the regular expressions for the scanner are specified according to the requirements of flex++.
Finally the program is constructed.

The class-generating bison software (bison++) is not widely available. The version used by us is
2.20. It can be obtained from

ftp.icce.rug.nl:/pub/unix/bison++2.20.tar.gz.

The bison++ specification file

The bison specification file used with bison++ is comparable to the specification file used with
bison. Differences are related to the class nature of the resulting parser. The calculator will
distinguish real numbers from ints, and will support the basic set of arithmetic operators.

The bison++ specification file consists of the following sections:

• The header section. This section is comparable to the C specification section used with
bison. The difference being the %header{ opening. In this section we’ll encounter mainly
declarations: header files are included, and the yyFlexLexer object is declared.

• The token section. In this section the bison tokens, and the priority rules for the operators
are declared. However, bison++ has several extra items that can be declared here. They are
important and warrant a section of their own.

• The rules. The grammatical rules define the grammar. This section has not changed since
the bison program.

The bison++ token section

The token section contains all the tokens that are used in the grammar, as well as the priority
rules as used for the mathematical operators. Moreover, several new items can be declared here:

• %name ParserName. The name ParserName will be the name of the parser’s class. This entry
should be the first entry of the token-section. It is used in cases where multiple grammars
are used, to make sure that the different parser-classes use unique identifiers. By default the
name parse is used.

• %define name content. The %define has the same function as the #define statement for
the C++ preprocessor. It can be used to define, e.g., a macro. Internally, the defined symbol
will be the concatenation of YY , the parser’s classname, and the name of the macro. E.g.,

YY ParserName name

Several symbols will normally be defined here. Of all the definitions that can be given here,
two are required:

501

– %define LEX BODY inline-code: here the body of the call to the lexer is defined. It
can be defined as = 0 for an abstract parser-class, but otherwise it must contain the code
(including surrounding curly braces) representing the call to the lexer. For example, if
the lexer object generated by flex++ is called lexer, this declaration should be

%define LEX BODY {return lexer.yylex();}
– %define ERROR BODY inline-code: similarly, the body of the code of the call to the

error-function is defined here. It can be defined as = 0, in which case the parser’s class
will again become abstract. Otherwise, it is used to specify the inner workings of the
error function, including surrounding braces. E.g.,

%define ERROR BODY { cerr << "syntax Error\n"; }

When the LEX BODY and ERROR BODY definitions are omitted, then the compiler is not able to
complete the virtual table of the parser class, and the linking phase will report an error like

undefined reference to ‘Parser virtual table’

The remaining symbols are optional, and can be (re)defined as needed:

– %define DEBUG 1: if non-0 debugging code will be included in the parser’s source.

– %define ERROR VERBOSE: if defined, the parser’s stack will be dumped when an error
occurs.

– %define LVAL yylval: the default variable name is shown here: the variable name con-
taining the parser’s semantic value is by default yylval, but its name may be redefined
here.

– %define INHERIT :public ClassA, public ClassB: the inheritance list for the parser’s
class. Note that it starts with the ’:’ character. The define should be left out if the
parser’s class isn’t derived from another class.

– %define MEMBERS member-prototypes: if the parser should contain extra members,
they must be declared here. Note that there is only one %define MEMBERS definition
allowed. So, if multiple members are to be declared, they must all be declared at this
point. To prevent very long lines in the specification file, the \ can be used at the end
of a line, to indicate that it continues on the next line of the source-text. E.g.,

%define MEMBERS void lookup(); void lookdown();

The MEMBERS section starts in a public section. If private members are required too, a
private: directive can be part of the MEMBERS section.

– Constructor-related defines: When a special parser constructor is needed, then three
%defines can be used:

∗ %define CONSTRUCTOR PARAM parameterlist: this defines the parameterlist for
the parser’s constructor. Here the types and names of the parameters of the parser
should be given. The surrounding parentheses of the parameterlist are not part of
the CONSTRUCTOR PARAM definition.
∗ %define CONSTRUCTOR INIT :initializer(s): this defines the base-class and mem-

ber initializers for the constructor. Note the initial colon following CONSTRUCTOR INIT,
which is required. The colon may be given immediately after the CONSTRUCOR INIT
statement, or blanks may be used to separate the symbol from the colon.
∗ %define CONSTRUCTOR CODE { code }: this defines the code of the parser’s con-

structor.

502

When the parser doesn’t need special effects, a constructor will not be needed. In those
cases the parser can be created as follows (using the default parser-name):

parse parser;

• %union. This starts the definition of the semantical value union. It replaces the #define
YYSTYPE definition seen with bison. An example of a %union declaration is

%union
{

int
i;

double
d;

};

The union cannot contain objects as its fields, as constructors cannot be called when a union
is created. This means that a string cannot be a member of the union. A string ∗,
however, is a possible union member. As a side line: the lexical scanner has no need to know
about this union. The scanner can simply pass its scanned text to the parser through its
YYText() memberfunction. At the appropriate action block a statements like

$$.i = atoi(scanner.YYText());

can be used to convert the matched text to a value of an appropriate type.

• Associating tokens and nonterminals with unionfields. Tokens and nonterminals can be
associated with unionfields. This is strongly advised. By doing so, the parser’s actions-code
becomes much cleaner than if the tokens aren’t associated with fields. As nonterminals can
also be associated with unionfields, the generic returnvariable $$ or the generic returnvalues
$1, $2, etc, that are associated with components of rules can be used, rather than $$.i,
$3.d, etc. To associate a nonterminal or a token with a unionfield, the <fieldname>
specification is used. E.g.,

%token <i> INT // token association (deprecated)
<d> DOUBLE

%type <i> intExpr // non-terminal association

In this example, note that both the tokens and the nonterminals can be associated with a field
of the union. However, as noted earlier, the lexical scanner has no need to know about all this.
In our opinion, it is cleaner to let the scanner do just one thing: scan texts. The parser knows
what it’s all about, and may convert strings like "123" to an integer value. Consequently,
we are discouraging the association of a unionfield and a token. In the upcoming description
of the rules of the grammar this will be further illustrated.

• In the %union discussion the %token and %type specifications should be noted. They are
used for the specficiation of the tokens (terminal symbols) that can be returned by the lexical
scanner, and for the specification of the returntypes of nonterminals. Apart from %token the
token-indicators %left, %right and %nonassoc may be used to specify the associativity of
operators. The token(s) mentioned at these indicators are interpreted as tokens indicating
operators, associating in the indicated direction. The precedence of operators is given by their

503

order: the first specification has the lowest precedence. To overrule a certain precedence in
a certain context, %prec can be used. As all this is standard bison practice, it isn’t further
discussed in this context. The documentation provided with the bison distribution should
be consulted for further reference.

The bison++ grammar rules

The rules and actions of the grammar are specified as usual. The grammar for our little calculator is
given below. A lot of rules, but they illustrate the use of nonterminals associated with value-types.

lines:
lines
line

|
line

;

line:
intExpr
’\n’
{

cerr << "int: " << $1 << endl;
}

|
doubleExpr
’\n’
{

cerr << "double: " << $1 << endl;
}

|
’\n’
{

cout << "Good bye\n";
YYACCEPT;

}
|

error
’\n’

;

intExpr:
intExpr ’*’ intExpr
{

$$ = $1 * $3;
}

|
intExpr ’+’ intExpr
{

$$ = $1 + $3;
}

504

|
’(’ intExpr ’)’
{

$$ = $2;
}

|
’-’ intExpr %prec UnaryMinus
{

$$ = -$2;
}

|
INT
{

$$ = atoi(lexer.YYText());
}

;

doubleExpr:
doubleExpr ’*’ doubleExpr
{

$$ = $1 * $3;
}

|
doubleExpr ’+’ doubleExpr
{

$$ = $1 + $3;
}

|
doubleExpr ’*’ intExpr
{

$$ = $1 * $3;
}

|
doubleExpr ’+’ intExpr
{

$$ = $1 + $3;
}

|
intExpr ’*’ doubleExpr
{

$$ = $1 * $3;
}

|
intExpr ’+’ doubleExpr
{

$$ = $1 + $3;
}

|
’(’ doubleExpr ’)’
{

$$ = $2;
}

|

505

’-’ doubleExpr %prec UnaryMinus
{

$$ = -$2;
}

|
DOUBLE
{

$$ = atof(lexer.YYText());
}

;

With these rules a very simple calculator is defined in which integer and real values can be negated,
added, and multiplied, and in which standard priority rules can be circumvented using parentheses.
The rules show the use of typed nonterminal symbols: doubleExpr is linked to real (double) values,
intExpr is linked to integer values. Precedence and type association is defined in the token section
of the parser specification file, which is:

%name Parser
%union
{

int i;
double d;

};
%token INT

DOUBLE
%type <i> intExpr

<d> doubleExpr

%left ’+’
%left ’*’
%right UnaryMinus

%define MEMBERS \
virtual ~Parser() {} \
private: \

yyFlexLexer lexer;
%define LEX_BODY {return lexer.yylex();}

%define ERROR_BODY { cerr << "error encountered\n"; }

In the token section we see the use of the %type specifiers, connecting intExpr to the i-field of
the semantic-value union, and connecting doubleExpr to the d-field. At first sight it looks a bit
complex, since the expression rules must be included for each individual returntype. On the other
hand, if the union itself would have been used, we would have had to specify somewhere in the
returned semantic values what field to use: less rules, but more complex and error-prone code.

Also, note that the lexical scanner is included as a member of the parser. There is no need to
define the scanner outside of the parser, as it’s not used outside of the parser object. The virtual
destructor is included as an member to prevent the compiler from complaining about the parser
having a non-virtual destructor.

506

The flex++ specification file

The flex-specification file to be used with our little calculator is simple: blanks are skipped, single
characters are returned, and numerical values are returned as either Parser::INT or Parser::DOUBLE
values. Here is the complete flex++ specification file:

%{
#include "parser.h"
%}

%%

[\t] ;
[0-9]+ return(Parser::INT);

"."[0-9]* |
[0-9]+("."[0-9]*)? return(Parser::DOUBLE);

exit |
quit return (Parser::DONE);

.|\n return (*yytext);

The generation of the code

The code is generated in the same way as with bison and flex. To order bison++ to generate the
files parser.cc and parser.h, the command

bison++ -d -o parser.cc parser

can be given.

Flex++ will thereupon generate code on lexer.cc using the command

flex++ -I -olexer.cc lexer

Note here that flex++ expects no blanks between the -o flag and lexer.cc.

On unix, linking and compiling the generated sources and the source for the main program (listed
below) is realized with the following command:

g++ -o calc -Wall ∗.cc -lfl -s

Note the fact that the libfl.a library is mentioned here. If it’s not mentioned unresolved functions
like yywrap() emerge.

A source in which the main() function, the lexical scanner and the parser objects are defined is,
finally:

507

#include "parser.h"
int main()
{

Parser
parser;

return (parser.yyparse());
}

508

