C+-+ Annotations Version 4.4.1d

Frank B. Brokken
(and Karel Kubat until version 4.0.0)
ICCE, University of Groningen
Grote Rozenstraat 38, 9712 TJ Groningen
Netherlands
Published at the University of Groningen
ISBN 90 367 0470 7

1994 - 2000

Abstract

This document is intended for knowledgeable users of C who would like to make the transition
to C++. It is a guide for Frank’s C++ programming courses, which are given yearly at the
University of Groningen. As such, this document is not a complete C+-+ handbook. Rather, it
serves as an addition to other documentation sources.

If you want a hard-copy version of the C++ annotations: that’s available in postscript, and other
formats in our ftp-site.

Contents

1 Overview of the chapters 12
2 Introduction 13
2.0.1 History of the C++ Annotations 14

2.1 What’s new in the C++ Annotations. 14
2.2 The history of C++ e 16
2.2.1 Compiling a C program by a C+4 compiler 16
2.2.2 Compiling a C++ program oo v v v v 17

2.3 Advantages and pretensions of C++o Lo 18
2.4 What is Object-Oriented Programming? 19
2.5 Differences between C and C++ o 21
2.5.1 End-of-line comment Lo 21
2.5.2 NULL-pointers vs. O-pointers 21
2.5.3 Strict type checking L Lo 21
254 Anewsyntax forcasts. L o 22
2.5.5 The ’static_cast’-operatoro 23
2.5.6 The ’const_cast’-operatoro 23
2.5.7 The ’reinterpret_cast’-operator 23
2.5.8 The void argument list oL oo 24
2.5.9 The #define _cplusplus L 24
2.5.10 The usage of standard C functions 24
2.5.11 Header files for both Cand C++ 25
2.5.12 The definition of local variables 26
2.5.13 Function Overloading 27

2.5.14 Default function arguments L Lo 29

2.5.15 The keyword typedef 30
2.5.16 Functions as part of a struct L. 31

3 A first impression of C++ 33
3.1 Moreextensions of Cin CH+4 33
3.1.1 The scope resolution operator :: 33
3.1.2 cout,cinand cerr. L 34
3.1.3 Thekeywordconst 35
3.1.4 References. e 37

3.2 Functions as part of structs 42
3.3 Several new data types 43
3.3.1 The ‘bool’ data type 43
3.3.2 The ‘wchart’ datatype 44
3.3.3 The ‘string’ data type 44

3.4 Data hiding: public, private and class 62
3.5 Structsin Cvs. structs in C++. 64
3.6 Namespaces« o vt e e 66
3.6.1 Defining namespaces Lo 66
3.6.2 Referring to entities Lo 67
3.6.3 The standard namespace Lo e e 69
3.6.4 Nesting namespaces and namespace aliasing 70

4 Classes 75
4.1 Constructors and destructors Lo Lo 76
4.1.1 The constructor 76
4.1.2 Thedestructor 78
4.1.3 A first application 79
4.1.4 Constructors with arguments 83

4.2 Const member functions and const objects L Lo 85
4.3 The operators new and delete L L 87
4.3.1 Allocating and deallocating arrays 87

4.3.2 New and delete and object pointers 90

4.3.3 The function set.new_handler() 0 L. 91

4.4 The keyword inline L 93
4.4.1 Inline functions within class declarations 94
4.4.2 Inline functions outside of class declarations 95
4.4.3 When to use inline functions 0oL 95

4.5 Objects in objects: composition L oo 96
4.5.1 Composition and const objects: const member initializers 97
4.5.2 Composition and reference objects: reference member initializers 99

4.6 Friend functions and friend classes Lo 101
4.7 Header file organization with classes L oL 102
4.8 Nesting Classes o oo i e 106
4.8.1 Defining nested class members 109
4.8.2 Declaring nested classes L L Lo L 110
4.8.3 Access to private members in nested classes 110
4.8.4 Nesting enumerationso L oo 114

5 Classes and memory allocation 117
5.1 Classes with pointer data members 118
5.2 The assignment operator Lo 119
5.2.1 Overloading the assignment operator 120

5.3 The this pointer 125
5.3.1 Preventing self-destruction with this 126
5.3.2 Associativity of operators and this 127

5.4 The copy constructor: Initialization vs. Assignment 129
5.4.1 Similarities between the copy constructor and operator=() 133

5.5 Conclusion e 135
6 More About Operator Overloading 136
6.1 Overloading operator[1() 136
6.2 Overloading operator new(size_t) L. 139
6.3 Overloading operator delete(void *)o L 142

6.4
6.5
6.6
6.7
6.8

6.9

Cin, cout, cerr and their operators,
Conversion Operators
The ‘explicit’ keyword
Overloading the increment and decrement operators
Function Objects e
6.8.1 Categories of Function objects
6.8.2 Function Adaptors

Overloadable Operators e

7 Abstract Containers

7.1
7.2

7.3

The ‘pair’ container
Sequential Containers
7.2.1 The ‘vector’ container
7.2.2 The ‘list’ container Lo
7.2.3 The ‘queue’ container
7.2.4 The ‘priority_queue’ container
7.2.5 The ‘deque’ containero
7.2.6 The ‘map’ containero
7.2.7 The ‘multimap’ container
7.2.8 The ‘set’ container
7.2.9 The ‘multiset’ container Lo
7.2.10 The ‘stack’ container L Lo
7.2.11 The ‘hash_map’ and other hashing-based containers

The ‘complex’ container

8 Static data and functions

8.1

8.2

Static data e e e
8.1.1 Private staticdata e
8.1.2 Public staticdata e e

Static member functions

9 Classes having pointers to members

164
166
167
167
169
176
178
181
182
188
190
193
195
197

201

204
204
205
207

208

210

9.1 Pointers to members: an example 210
9.2 Initializing pointers to members Lo oo 211
9.3 Pointers to static memberso Lo 212
9.4 Using pointers to members for real 213
9.4.1 Pointers to members: an implementation 217
10The Standard Template Library, generic algorithms 222
10.1 Tterators o o e e e e 222
10.1.1 Imsert iterators 225
10.1.2 istream iterators L Lo e 226
10.1.3 ostream iterators L 227

10.2 The ’auto_ptr’ class e 228
10.2.1 Defining auto_ptr variableso 230
10.2.2 Pointing to a newly allocated object 230
10.2.3 Pointing to another auto_ptr L. 231
10.2.4 Creating an plain autoptr 232
10.2.5 The get() memberfunction Lo Lo 233
10.2.6 The reset() memberfunction Lo Lo oL 233
10.2.7 The release() memberfunction Lo oL 234

10.3 The Generic Algorithms L 234
10.3.1 accumulate() 235
10.3.2 adjacent.difference() Lo 236
10.3.3 adjacentfind() 237
10.3.4 binarysearch() L 238
10.3.5 copy() - o o o v 239
10.3.6 copy-backward() 240
10.3.7 count()o 241
10.3.8 countif() 242
10.3.9 equal() Lo 242
10.3.10equalrange() 244
103ILAI() .« o oo 245

10312610() « © . o e 246

10.32380d() © © v vt e e 246
10314800« © o v e e 247
10.3.15findend() 249
10.3.16findfirstoof() L 250
10.3.17foreach() L 252
10.3.18generate() 253
10.3.19generaten()o 254
10.3.20includes() oL 255
10.3.21inner_product() 257
10.3.22inplace-merge()o 258
10.3.2310terswap() . . o e e 260
10.3.24lexicographical_compare() Lo 260
10.3.25lower bound() 262
10.3.26MmAX() « « + o e e e 264
10.3.27max-element() 265
10.3.28merge() . . . v o 265
10.320M0() © © v vt e e 267
10.3.30min_element() 268
10.3.31mismatch() 269
10.3.32next_permutation() 270
10.3.33nth_element() 272
10.3.34partial sort() 273
10.3.35partial sort_copy() 274
10.3.36partial sum()o 275
10.3.37partition() 276
10.3.38prev_permutation() Lo 277
10.3.39random shuffle() Lo 278
10.3.40remove()o 279
10.3.411emovecopy() v v v e e e e 280
10.3.42removedf() 281

10.3.43remove_copy-if()o 282

10.344replace() o L 283
10.3.45replacecopy() . - . v o o oo 284
10.346replace-if() L 285
10.347replace_copydf() 286
10.3.48reverse() oo 287
10.3.49reverse copy () - -« - v o e e 288
10.3.50rotate()o 288
10.3.51rotatecopy() - .« .« . oo 289
10.3.52search() 290
10.3.53searchn() 291
10.3.54set difference() 293
10.3.55set_intersection() 294
10.3.56set_symmetricdifference() Lo Lo 295
10.3.57setunion()o 297
10.3.58501t() « « o 208
10.3.59stable_partition() L 299
10.3.60stable_sort() 300
10.3.61SWAD() « « « v v e e 301
10.3.62swapranges()o e e e 302
10.3.63transform() 303
10.3.64unique()o 305
10.3.65unique_copy() - - - . o o e 306
10.3.66upper-bound() oL 307
10.3.67Heap algorithms Lo 308
11The IO-stream Library 313
11.1 Streams: insertion (<<) and extraction (>>) 314
11.1.1 The insertion operator << e 314
11.1.2 The extraction operator >>. oo 314

11.2 Four standard iostreams L L 316

11.3 Files and Strings in general L oL oL o 316

11.3.1 String stream objects: a summary 316

11.3.2 Writing streams Lo L 320

11.3.3 Reading streams Lo 321

11.3.4 Reading and writing streams oL 0oL 323

11.3.5 Special functions 326

11.3.6 Good, bad, and ...: IOStream Condition States 327

11.3.7 Formatting 328

11.3.8 Constructing manipulators oL oo 333
12Exceptions 335
12.1 Using exceptions: an outline L Lo 336
12.2 An example using exceptions 336
12.2.1 No exceptions: the setjmp() and longjmp() approach 338

12.2.2 Exceptions: the preferred alternative 340

12.3 Throwing exceptions e 342
12.3.1 The empty throw statement 346

12.4 The try block e 348
12.5 Catching exceptions L 348
12.5.1 The default catcher 350

12.6 Declaring exception throwers L 0. 351
13More about friends 354
13.1 Inserting String objects into streams L. 355
13.2 An initial solutiono 356
13.3 Friend-functions 358
13.3.1 Preventing the friend-keyword oL oo 359

13.4 Friend classes e 360
14Inheritance 362
14.1 Related types o . o e 363
14.2 The constructor of a derived class L L. 366

14.3 The destructor of a derived class 367

14.4 Redefining member functions oL 0o 368
14.5 Multiple inheritance L Lo 370
14.6 Conversions between base classes and derived classes 373
14.6.1 Conversions in object assignments oL 373
14.6.2 Conversions in pointer assignments 374

14.7 Storing base class pointers oL 375
15Polymorphism, late binding and virtual functions 378
15.1 Virtual functions L 379
15.1.1 Polymorphism in program development 381
15.1.2 How polymorphism is implemented 383

15.2 Pure virtual functions L oL 383
15.3 Comparing only Persons 386
15.4 Virtual destructors 387
15.5 Virtual functions in multiple inheritance 388
15.5.1 Ambiguity in multiple inheritanceo 389
15.5.2 Virtual base classes. L L 391
15.5.3 When virtual derivation is not appropriate 392

15.6 Run-Time Type identification 394
15.6.1 The dynamic_cast operator 394
15.6.2 The typeid operator L L 397

16 Templates 400
16.1 Template functions L 400
16.1.1 Template function definitions 401
16.1.2 Instantiations of template functions 404
16.1.3 Argument deduction 408
16.1.4 Explicit arguments L L 412
16.1.5 Template explicit specialization 414
16.1.6 Overloading template functions 416
16.1.7 Selecting an overloaded (template) function 418

16.1.8 Name resolution within template functions 420

16.2 Template classes L 421
16.2.1 Template class definitions L oo 421
16.2.2 Template class instantiations 423
16.2.3 Nontype parameters o 424
16.2.4 Template class member functions 425
16.2.5 Template classes and friend declarations 426
16.2.6 Template classes and staticdata 429
16.2.7 Derived Template Classes it i it it 431
16.2.8 Nesting and template classes oo, 432
16.2.9 Template memberso Lo 434
16.2.10 Template class specializations 436
16.2.11 Template class partial specializations 439
16.2.12Name resolution within template classes 441

16.3 An example: the implementation of the bvector template 442
16.3.1 The reverse.ter template class 445
16.3.2 The final implementation 447

17Concrete examples of C++ 452

17.1 Storing objects: Storable and Storage 452
17.1.1 The global setup 452
17.1.2 The class Storable 455
17.1.3 The class Storage e 457

172 Abinary tree o 460
17.2.1 The Nodeclass e 460
17.2.2 The Tree class e 461
17.2.3 Using Tree and Node 466

17.3 Classes to process program options e 468
17.3.1 Functionality of the class Configuration 468
17.3.2 Implementation of the class Configuration 471
17.3.3 The class Option e 474

10

17.3.4 Derived from Option: The class TextOption

17.3.5 The class Object
17.3.6 The class Hashtable
17.3.7 Auxiliary classes
17.4 Using Bison and Flex
17.4.1 Using Flex++ to create a scanner

17.4.2 Using both bison++ and flex++

11

Chapter 1

Overview of the chapters

The chapters of the C++4 Annotations cover the following topics:

e Chapter 1: This overview of the chapters.
e Chapter 2: A general introduction to C++.
e Chapter 3: A first impression: differences between C and C++.

e Chapter 4: The ‘class’ concept: structs having functions. The ‘object’ concept: variables of
a class.

e Chapter 5: Allocation and returning unused memory: new, delete, and the function set_new handler ().
e Chapter 6: More About Operator Overloading.

e Chapter 7: Abstract Containers.

e Chapter 8: Static data and functions: components of a class not bound to objects.

e Chapter 9: Classes having pointer members: how to prevent memory leaks and wild pointers.

e Chapter 10: The Standard Template Library, generic algorithms.

e Chapter 11: The C++ type-safe I/O library.

e Chapter 13: Gaining access to private parts from outside: friend functions and classes.

e Chapter 14: Building classes upon classes: setting up class hierarcies.

e Chapter 15: Polymorphism: changing the behavior of memberfunctions accessed through
base class pointers.

e Chapter 12: Exceptions: handling errors where appropriate, rather than where they occur.
e Chapter 16: Templates: using molds for code that is type dependent.

e Chapter 17: Several examples of programs written in C++.

12

Chapter 2

Introduction

This document presents an introduction to programming in C4++. It is a guide for C/C++ pro-

gramming courses, that Frank gives yearly at the University of Groningen. As such, this document

is not a complete C/C++ handbook, but rather serves as an addition to other documentation
1

sources

The reader should realize that extensive knowledge of the C programming language is assumed
and required. This document continues where topics of the C programming language end, such as
pointers, memory allocation and compound types.

The version number of this document (currently 4.4.1d) is updated when the contents of the
document change. The first number is the major number, and will probably not be changed for
some time: it indicates a major rewriting. The middle number is increased when new information
is added to the document. The last number only indicates small changes; it is increased when,
e.g., series of typos are corrected.

This document is published by the ICCE, University of Groningen, the Netherlands. This document
was typeset using the yodl formatting system.

All rights reserved. No part of this document may be published or changed with-
out prior consent of the author. Direct all correspondence concerning suggestions,
additions, improvements or changes in this document to the author:

Frank B. Brokken ICCE, department of Education University of Groningen Grote
Rozenstraat 38, 9712 TJ Groningen The Netherlands (email: frank@icce.rug.nl)

The support we receive for maintaining our services and computers from the Depart-
ment of Education and the Faculty of Social Sciences of the University of Groningen is
very, very lean. So, to help us maintain our computers and services donations are grate-
fully accepted. If you feel like helping us maintaining our services, you might consider
sending us an amount of money you think that is appropriate, say $ 25.-. If you plan to
do this, please transfer the amount to F. B. Brokken, Oostum, the Netherlands, Post-
Bank account 2790843, mentioning ”ICCE support”, or send a money order to Dr. F.
B. Brokken, department of Education, Grote Rozenstraat 38, 9712 TJ Groningen. But
no matter what you do: please benefit as much as possible from the (free) Annotations.

le.g., the Dutch book De programmeertaal C, Brokken and Kubat, University of Groningen 1996

13

In this chapter a first impression of C++ is presented. A few extensions to C are reviewed and a
tip of the mysterious veil surrounding object oriented programming (OOP) is lifted.

2.0.1 History of the C++ Annotations

The original version of the guide was originally written by Frank and Karel in Dutch and in LaTeX
format. After some time, Karel Kubat rewrote the text and converted the guide to a more suitable
format and (of course) to English in september 1994.

The first version of the guide appeared on the net in october 1994. By then it was converted to
SGML.

In time several chapters were added, and the contents were modified thanks to countless readers
who sent us their comment, due to which we were able to correct some typos and improve unclear
parts.

The transition from major version three to major version four was realized by Frank: again new
chapters were added, and the source-document was converted from SGML to Yodl.

The C++ Annotations are not freely distributable. Be sure to read the legal notes.

Reading the annotations beyond this point implies that you are aware of
the restrictions that we pose and that you agree with them.

If you like this document, tell your friends about it. Even better, let us know by sending email to
Frank: frank@icce.rug.nl.

2.1 What’s new in the C++4 Annotations

This section is modified when the first and second part of the version numbers change. Modifica-
tions in versions 1.x.x, 2.x.%, and 3.x.x were not logged.

Major version 4 represents a major rewrite of the previous version 3.4.14: The document was
rewritten from SGML to Yodl, and many new sections were added. All sections got a tune-up.
The distribution basis, however, hasn’t changed: see the introduction.

The upgrade from version 4.1.x to 4.2.x was the result of the inclusion of section 3.3.1 about
the bool data type in chapter 3. The distinction between differences between C and C++ and
extensions of the C programming languages is (albeit a bit fuzzy) reflected in the introdution
chapter and the chapter on first impressions of C++: The introduction chapter covers some
differences between C and C++, whereas the chapter about first impressions of C++4 covers
some extensions of the C programming language as found in C++.

The decision to upgrade from version 4.2.x to 4.3.x was made after realizing that the lexical scanner
function yylex() can be defined in the scanner class that is derived from yyFlexLexer. Under
this approach the yylex () function can access the members of the class derived from yyFlexLexer
as well as the public and protected members of yyFlexLexer. The result of all this is a clean
implementation of the rules defined in the flex++ specification file. See section 17.4.1 for details.

The version 4.3.1ais a precursor of 4.3.2. In 4.3. 1a most of the typos I've received since the last
update have been processed. In version 4.3.2. the following modifications will be incorporated
as well:

14

Function-addresses must be obtained using the &-operator

Functions called via pointers to memberfunctions must use the (this->xpointer)(...)
construction inside memberfunctions of the class in which the pointer to memberfunctions is
defined.

Version 4.4.1 again contains new material, and reflects the ANSI/ISO standard (well, T try to
have it reflect the ANSI/ISO standard). In version 4.4.1. the following sections and chapters were
added:

A section (15.6 about Run-Time Type Identification, included as of release 4.4.1.
A section (15.6.1 about the dynamic_cast cast operator. included as of release 4.4.1.
Minor spellingcorrections were made up to release 4.4.0n.

A reference to icmake and the C++-build script was added in release 4.4.0m (see section
2.2.2).

A section (3.6) about namespaces, included as of release 4.4.0i.

A section (6.6) about the explicit keyword, included as of release 4.4.0h.

A section about constructing manipulators (11.3.8), included as of release 4.4.0h.

A section about overloading the operators ++ and -- (6.7), included as of release 4.4.0h.
A rewrite of the chapter about Templates (chapter 16), included as of release 4.4.0h.

A section (10.2 about auto_ptr objects, included as of release 4.4.0g.

A section (4.8) about nested classes. included as of release 4.4.0f.

The chapter (11) about iostreams was modified, and now contains more information about
using manipulators and flags, as well as information about using strstream objects. Included
as of release 4.4.0e.

A chapter (10 about the Standard Template Library and generic algorithms, included as of
release 4.4.0e.

The full contents of the C++ Annotations can be inspected in parallel with the annotations
themselves when the html-format is used. Included as of release 4.4.0d.

The section (4.4) about inline functions was slightly modified, included as of release 4.4.0d.
A section (6.8 about function objects, included as of release 4.4.0d.

A chapter (7 about the abstract container types, included as of release 4.4.0c.

A section (2.5.4 about the new syntax used with casts, included as of release 4.4.0b.

A section (3.3.3 about the string type, included as of release 4.4.0b.

A section (2.2.2 about compiling C++ programs, included as of release 4.4.0a.

15

Version 4.4.0 (and subletters) is a construction version, in which the extras mentioned above are
only partially available.

Version 4.4.1. is considered the final version of the C++ annotations. Considering the volume
of the annotations, I'm sure there will be typos found every now and then. Please do not hesitate
to send me an email containing any mistakes you find or corrections you would like to suggest.
Subreleases like 4.4.1a etc. contain bugfixes and typographical corrections. In release 4.4.1b
the pagesize in the latex file was defined to be din A4. In countries where other pagesizes are
standard the conversion the default pagesize might be a better choice. In that case, remove the
dina4 option from cplusplus.tex (or cplusplus.yo if you have yodl installed), and reconstruct
the annotations from the TeX-file or Yodl-files. The Annotations mailing lists was stopped at
release 4.4.1d. From this point on only minor modifications are to be expected, which are not
anymore generally announced.

2.2 The history of C++

The first implementation of C++4 was developed in the eighties at the AT&T Bell Labs, where the
Unix operating system was created.

C++ was originally a ‘pre-compiler’, similar to the preprocessor of C, which converted special
constructions in its source code to plain C. This code was then compiled by a normal C compiler.
The ‘pre-code’, which was read by the C++4 pre-compiler, was usually located in a file with the
extension .cc, .C or .cpp. This file would then be converted to a C source file with the extension
.c, which was compiled and linked.

The nomenclature of C++ source files remains: the extensions .cc and . cpp are usually still used.
However, the preliminary work of a C+4++ pre-compiler is in modern compilers usually included
in the actual compilation process. Often compilers will determine the type of a source file by the
extension. This holds true for Borland’s and Microsoft’s C++ compilers, which assume a C++
source for an extension .cpp. The GNU compiler gcc, which is available on many Unix platforms,
assumes for C+-+ the extension .cc.

The fact that C++ used to be compiled into C code is also visible from the fact that C++ is
a superset of C: C++ offers all possibilities of C, and more. This makes the transition from C
to C++ quite easy. Programmers who are familiar with C may start ‘programming in C++4’ by
using source files with an extension .cc or .cpp instead of .c, and can then just comfortably slide
into all the possibilities that C++ offers. No abrupt change of habits is required.

2.2.1 Compiling a C program by a C++ compiler

For the sake of completeness, it must be mentioned here that C++ is ‘almost’ a superset of C.
There are some small differences which you might encounter when you just rename a file to an
extension .cc and run it through a C4++ compiler:

e In C, sizeof (’c’) equals sizeof (int), ’c’ being any ASCII character. The underlying
philosophy is probably that char’s, when passed as arguments to functions, are passed as
integers anyway. Furthermore, the C compiler handles a character constant like c’ as an
integer constant. Hence, in C, the function calls

16

putchar(10);

and

putchar(’\n’);

are synonyms.

In contrast, in C++, sizeof (’c’) is always 1 (but see also section 3.3.2), while an int is
still an int. As we shall see later (see section 2.5.13), two function calls

somefunc(10) ;

and

somefunc(’\n’) ;

are quite separate functions: C++ discriminates functions by their arguments, which are
different in these two calls: one function requires an int while the other one requires a char.

C++ requires very strict prototyping of external functions. E.g., a prototype like

extern void func();

means in C that a function func() exists, which returns no value. However, in C, the
declaration doesn’t specify which arguments (if any) the function takes.

In contrast, such a declaration in C++ means that the function func() takes no arguments
at all.

2.2.2 Compiling a C4++4 program

In order to compile a C4++ program, a C+-+4 compiler is needed. Considering the free nature
of this document, it won’'t come as a surprise that a free compiler is suggested here. The Free
Software Foundation provides free C++ compilers. Currently, the compiler of choice is the egcs
(pronounce: eggs) compiler, which is, among other places, available in the Debian distribution of
Linux.

For MS-Windows Cygnus provides the foundation for installing the Windows port of the egcs
compiler.

In general, compiling a C+4+ source source.cc is done as follows:

gt++ source.cc

17

This produces a binary program (a.out or a.exe). If the default name is not wanted, the name
of the executable can be specified using the -o flag:

g++ -0 source source.cc
If only a compilation is required, the compiled module can be generated using the -c flag:
g++ —c source.cc

This produces the file source. o, which can be linked to other modules later on.

Using the icmake program (to be downloaded from ftp://ftp.icce.rug.nl/icmake-X.YY .tar.gz) a
maintenance script can be used to assist in the construction and maintenance of a C++ pro-
gram. This script has been tested on Linux platforms for several years now. It is described at
http://www.icce.rug.nl/docs/programs,/Cscript.html

2.3 Advantages and pretensions of C+-+

Often it is said that programming in C++ leads to ‘better’ programs. Some of the claimed
advantages of C++ are:

e New programs would be developed in less time because old code can be reused.
e Creating and using new data types would be easier than in C.
e The memory management under C++ would be easier and more transparent.

e Programs would be less bug-prone, as C+-+ uses a stricter syntax and type checking.

‘Data hiding’, the usage of data by one program part while other program parts cannot access
the data, would be easier to implement with C++.

Which of these allegations are true? In our opinion, C++ is a little overrated; in general this holds
true for the entire object-oriented programming (OOP). The enthusiasm around C++ resembles
somewhat the former allegations about Artificial-Intelligence (AI) languages like Lisp and Prolog:
these languages were supposed to solve the most difficult Al-problems ‘almost without effort’.
Obviously, too promising stories about any programming language must be overdone; in the end,
each problem can be coded in any programming language (even BASIC or assembly language).
The advantages or disadvantages of a given programming language aren’t in ‘what you can do with
them’, but rather in ‘which tools the language offers to make the job easier’.

Concerning the above allegations of C++, we think that the following can be concluded. The
development of new programs while existing code is reused can also be realized in C by, e.g., using
function libraries: thus, handy functions can be collected in a library and need not be re-invented
with each new program. Still, C+4++ offers its specific syntax possibilities for code reuse, apart
from function libraries (see chapter 14).

Creating and using new data types is also very well possible in C; e.g., by using structs, typedefs
etc.. From these types other types can be derived, thus leading to structs containing structs
and so on.

18

Memory management is in principle in C++ as easy or as difficult as in C. Especially when ded-
icated C functions such as xmalloc() and xrealloc() are used?. In short, memory management
in C or in C++ can be coded ‘elegantly’, ‘ugly’ or anything in between — this depends on the
developer rather than on the language.

Concerning ‘bug proneness’ we can say that C+-4 indeed uses stricter type checking than C.
However, most modern C compilers implement ‘warning levels’; it is then the programmer’s choice
to disregard or heed a generated warning. In C++ many of such warnings become fatal errors
(the compilation stops).

As far as ‘data hiding’ is concerned, C does offer some tools. E.g., where possible, local or static
variables can be used and special data types such as structs can be manipulated by dedicated
functions. Using such techniques, data hiding can be realized even in C; though it needs to be
said that C++ offers special syntactical constructions. In contrast, programmers who prefer to
use a global variable int i for each counter variable will quite likely not benefit from the concept
of data hiding, be it in C or C++.

Concluding, C++ in particular and OOP in general are not solutions to all programming problems.
C++, however, does offer some elegant syntactical possibilities which are worthwhile investigat-
ing. At the same time, the level of grammatical complexity of C++ has increased significantly
compared to C. In time we got used to this increased level of complexity, but the transition didn’t
take place fast or painless. With the annotations we hope to help the reader to make the transition
from C to C++ by providing, indeed, our annotations to what is found in some textbooks on
C++. We hope you like this document and may benefit from it: Good luck!

2.4 What is Object-Oriented Programming?

Object-oriented programming propagates a slightly different approach to programming problems
than the strategy which is usually used in C. The C-way is known as a ‘procedural approach’:
a problem is decomposed into subproblems and this process is repeated until the subtasks can
be coded. Thus a conglomerate of functions is created, communicating through arguments and
variables, global or local (or static).

In contrast, or maybe better: in addition to this, an object-oriented approach identifies the key-
words in the problem. These keywords are then depicted in a diagram and arrows are drawn
between these keywords to define an internal hierarchy. The keywords will be the objects in the
implementation and the hierarchy defines the relationship between these objects. The term object
is used here to describe a limited, well-defined structure, containing all information about some
entity: data types and functions to manipulate the data.

As an example of an object-oriented approach, an illustration follows:

The employees and owner of a car dealer and auto garage company are paid

as follows. First, mechanics who work in the garage are paid a certain sum
each month. Second, the owner of the company receives a fixed amount each
month. Third, there are car salesmen who work in the showroom and receive
their salary each month plus a bonus per sold car. Finally, the company
employs second-hand car purchasers who travel around; these employees receive
their monthly salary, a bonus per bought car, and a restitution of their
travel expenses.

2these functions are often present in our C-programs, they allocate or abort the program when the memory pool
is exhausted

19

g.g. mechanics

ronthly salary |3 vwner

e.g. salesmen

+honus per sale | i shoswroom

g.g. Car

+travel expenses purchasers

Figure 2.1: Hierarchy of objects in the salary administration.

When representing the above salary administration, the keywords could be mechanics, owner,
salesmen and purchasers. The properties of such units are: a monthly salary, sometimes a bonus
per purchase or sale, and sometimes restitution of travel expenses. When analyzing the problem
in this manner we arrive at the following representation:

e The owner and the mechanics can be represented as the same type, receiving a given salary
per month. The relevant information for such a type would be the monthly amount. In
addition this object could contain data as the name, address and social security number.

e Car salesmen who work in the showroom can be represented as the same type as above but
with extra functionality: the number of transactions (sales) and the bonus per transaction.

In the hierarchy of objects we would define the dependency between the first two objects by
letting the car salesmen be ‘derived’ from the owner and mechanics.

e Finally, there are the second-hand car purchasers. These share the functionality of the
salesmen except for the travel expenses. The additional functionality would therefore consist
of the expenses made and this type would be derived from the salesmen.

The hierarchy of the thus identified objects further illustrated in figure 2.1.

The overall process in the definition of a hierarchy such as the above starts with the description of
the most simple type. Subsequently more complex types are derived, while each derivation adds
a little functionality. From these derived types, more complex types can be derived ad infinitum,
until a representation of the entire problem can be made.

In C++ each of the objects can be represented in a class, containing the necessary functionality
to do useful things with the variables (called objects) of these classes. Not all of the functionality
and not all of the properties of a class is usually available to objects of other classes. As we will see,
classes tend to encapsulate their properties in such a way that they are not immediately accessible
from the outside world. Instead, dedicated functions are normally used to reach or modify the
properties of objects.

20

2.5 Differences between C and C++4

In this section some examples of C++4 code are shown. Some differences between C and C++
are highlighted.

2.5.1 End-of-line comment

According to the ANSI definition, ‘end of line comment’ is implemented in the syntax of C++.
This comment starts with // and ends with the end-of-line marker. The standard C comment,
delimited by /* and */ can still be used in C++:

int main()

{
// this is end-of-line comment
// one comment per line
/*
this is standard-C comment, over more
than one line
*/
return (0);
}

The end-of-line comment was already implemented as an extension to C in some C compilers, such
as the Microsoft C Compiler V5.

2.5.2 NULL-pointers vs. O-pointers

In C++ all zero values are coded as 0. In C, where pointers are concerned, NULL is often used.
This difference is purely stylistic, though one that is widely adopted. In C++4 there’s no need
anymore to use NULL. Indeed, according to the descriptions of the pointer-returning operator new
0 rather than NULL is returned when memory allocation fails.

2.5.3 Strict type checking

C++ uses very strict type checking. A prototype must be known for each function which is called,
and the call must match the prototype.

The program

int main()

{
printf ("Hello World\n");

21

return (0);

does often compile under C, though with a warning that printf () is not a known function. Many
C++ compilers will fail to produce code in such a situation3. The error is of course the missing
#include<stdio.h> directive.

2.5.4 A new syntax for casts

Traditionally, C offers the following cast construction:
(typename) expression

in which typename is the name of a valid type, and expression an expression. Following that,
C++ initially also supported the function call style cast notation:

typename (expression)

But, these casts are now all called old-style casts, and they are deprecated. Instead, four new-style
casts were introduced:

e The standard cast to convert one type to another is

static_cast<type>(expression)

There is a special cast to do away with the const type-modification:

const_cast<type> (expression)

A third cast is used to change the interpretation of information:
reinterpret_cast<type> (expression)

e And, finally, there is a cast form which is used in combination with polymorphism (see
chapter 15): The

dynamic_cast<type> (expression)
is performed run-time to convert, e.g., a pointer to an object of a certain class to a pointer

to an object in its so-called class hierarchy. At this point in the Annotations it is a bit
premature to discuss the dynamic_cast, but we will return to this topic in section 15.6.1.

3When GNU’s g++ compiler encounters an unknown function, it assumes that an ‘ordinary’ C function is meant.
It does complain however.

22

2.5.5 The ’static_cast’-operator

The static_cast<type>(expression) operator is used to convert one type to an acceptable
other type. E.g., double to int. An example of such a cast is, assuming intVar is of type int:

intVar = static_cast<int>(12.45);

Another nice example of code in which it is a good idea to use the static_cast<> ()-operator is
in situations where the arithmetic assignment operators are used in mixed-type situations. E.g.,
consider the following expression (assume doubleVar is a variable of type double:

intVar += doubleVar;
Here, the evaluated expression actually is:
intVar = static_cast<int>(static_cast<double>>(intVar) + doubleVar);

IntVar is first promoted to a double, and is then added as double to doubleVar. Next, the sum
is cast back to an int. These two conversions are a bit overdone. The same result is obtained by
explicitly casting the doubleVar to an int, thus obtaining an int-value for the right-hand side of
the expression:

intVar += static_cast<int>(doubleVar);

2.5.6 The ’const_cast’-operator

The const_cast<type>(expression) operator is used to do away with the const-ness of a
(pointer) type. Assume that a function string op(char *s) is available, which performs some
operation on its char *s parameter. Furthermore, assume that it’s known that the function does
not actually alter the string it receives as its argument. How can we use the function with a string
like char const hello[] = "Hello world"?

Passing hello to fun() produces the warning
passing ‘const char %’ as argument 1 of ‘fun(char %)’ discards const
which can be prevented using the call

fun(const_cast<char *>(hello));

2.5.7 The ’reinterpret_cast’-operator

The reinterpret_cast<type>(expression) operator is used to reinterpret byte patterns. For
example, the individual bytes making up a double value can easily be reached using a reinterpret_cast<>().
Assume doubleVar is a variable of type double, then the individual bytes can be reached using

reinterpret_cast<char %>(&doubleVar)

23

This particular example also suggests the danger of the cast: it looks as though a standard C-string
is produced, but there is not normally a trailing O-byte. It’s just a way to reach the individual
bytes of the memory holding a double value.

More in general: using the cast-operators is a dangerous habit, as it suppresses the normal type-
checking mechanism of the compiler. It is suggested to prevent casts if at all possible. If circum-
stances arise in which casts have to be used, document the reasons for their use well in your code,
to make double sure that the cast is not the underlying cause for a program to misbehave.

2.5.8 The void argument list

A function prototype with an empty argument list, such as

extern void func();

means in C that the argument list of the declared function is not prototyped: the compiler will
not be able to warn against improper argument usage. When declaring a function in C which has
no arguments, the keyword void is used, as in:

extern void func(void);

Because C++4 maintains strict type checking, an empty argument list is interpreted as the absence
of any parameter. The keyword void can then be left out. In C+4+ the above two declarations
are equivalent.

2.5.9 The #define __cplusplus

Each C++ compiler which conforms to the ANSI standard defines the symbol __cplusplus: it is
as if each source file were prefixed with the preprocessor directive #define __cplusplus.

We shall see examples of the usage of this symbol in the following sections.

2.5.10 The usage of standard C functions

Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used
in C++4 programs. Such functions however must be declared as C functions.

As an example, the following code fragment declares a function xmalloc () which is a C function:

extern "C" void *xmalloc(unsigned size);

24

This declaration is analogous to a declaration in C, except that the prototype is prefixed with
extern "C".

A slightly different way to declare C functions is the following:

extern "C"

{

(declarations)

It is also possible to place preprocessor directives at the location of the declarations. E.g., a C
header file myheader . h which declares C functions can be included in a C++ source file as follows:

extern "C"
{
include <myheader.h>

}

The above presented methods can be used without problem, but are not very current. A more
frequently used method to declare external C functions is presented below.

2.5.11 Header files for both C and C++

The combination of the predefined symbol __cplusplus and of the possibility to define extern
"C" functions offers the ability to create header files for both C and C++. Such a header file
might, e.g., declare a group of functions which are to be used in both C and C++ programs.

The setup of such a header file is as follows:

#ifdef cplusplus

extern "C"

{
#endif

(the declaration of C-functions occurs
here, e.g.:)
extern void *xmalloc(unsigned size);

#ifdef cplusplus

}
#endif

25

Using this setup, a normal C header file is enclosed by extern "C" { which occurs at the start of
the file and by }, which occurs at the end of the file. The #ifdef directives test for the type of the
compilation: C or C++. The ‘standard’ header files, such as stdio.h, are built in this manner
and therefore usable for both C and C++.

An extra addition which is often seen is the following. Usually it is desirable to avoid multiple
inclusions of the same header file. This can easily be achieved by including an #ifndef directive
in the header file. An example of a file myheader.h would then be:

#ifndef _MYHEADER_H_
#define _MYHEADER_H_

(the declarations of the header file follow here,
with #ifdef _cplusplus etc. directives)

#endif

When this file is scanned for the first time by the preprocessor, the symbol MYHEADER H_ is not
yet defined. The #ifndef condition succeeds and all declarations are scanned. In addition, the
symbol _MYHEADER H_ is defined.

When this file is scanned for a second time during the same compilation, the symbol MYHEADER H_
is defined. All information between the #ifndef and #endif directives is skipped.

The symbol name MYHEADER H_ serves in this context only for recognition purposes. E.g., the
name of the header file can be used for this purpose, in capitals, with an underscore character
instead of a dot.

Apart from all this, the custom has evolved to give C header files the extension .h, and to give
C++ header files no extension. For example, the standard iostreams cin, cout and cerr are
available after inclusing the preprocessor directive #include <iostream>, rather than #include
<iostream.h> in a source. In the Annotations this convention is used with the standard C++
header files, but not everywhere else (yet).

There is more to be said about header files. In section 4.7 the preferred organization of header
files when C+-+ classes are used is discussed.

2.5.12 The definition of local variables

In C local variables can only be defined at the top of a function or at the beginning of a nested
block. In C++ local variables can be created at any position in the code, even between statements.

Furthermore local variables can be defined in some statements, just prior to their usage. A typical
example is the for statement:

#include <stdio.h>

int main()

{

26

for (register int i = 0; i < 20; i++)
printf ("%d\n", i);
return (0);

In this code fragment the variable i is created inside the for statement. According to the ANSI-
standard, the variable does not exist prior to the for-statement and not beyond the for-statement.
With some compilers, the variable continues to exist after the execution of the for-statement, but
a warning like

warning: name lookup of ‘i’ changed for new ANSI ‘for’ scoping using obsolete binding
at ¢’

will be issued when the variable is used outside of the for-loop. The implication seems clear:
define a variable just before the for-statement if it’s to be used beyond that statement, otherwise
the variable can be defined at the for-statement itself.

Defining local variables when they’re needed requires a little getting used to. However, eventually
it tends to produce more readable code than defining variables at the beginning of compound
statements. We suggest the following rules of thumb for defining local variables:

e Local variables should be defined at the beginning of a function, following the first {,

e or they should be created at ‘intuitively right’ places, such as in the example above. This
does not only entail the for-statement, but also all situations where a variable is only needed,
say, half-way through the function.

2.5.13 Function Overloading

In C++ it is possible to define several functions with the same name, performing different actions.
The functions must only differ in their argument lists. An example is given below:

#include <stdio.h>

void show(int wval)

{

printf ("Integer: %d\n", val);
}
void show(double val)
{

printf ("Double: %1f\n", val);
}
void show(char *val)
{

printf ("String: %s\n", val);
}

27

int main()

{
show(12) ;
show(3.1415) ;
show("Hello World\n!");
return (0);

}

In the above fragment three functions show() are defined, which only differ in their argument lists:
int, double and char *. The functions have the same name. The definition of several functions
with the same name is called ‘function overloading’.

It is interesting that the way in which the C++4 compiler implements function overloading is quite
simple. Although the functions share the same name in the source text (in this example show()),
the compiler —and hence the linker— use quite different names. The conversion of a name in the
source file to an internally used name is called ‘name mangling’. E.g., the C4++ compiler might
convert the name void show (int) to the internal name VshowI, while an analogous function with
a charx argument might be called VshowCP. The actual names which are internally used depend
on the compiler and are not relevant for the programmer, except where these names show up in
e.g., a listing of the contents of a library.

A few remarks concerning function overloading are:

e The usage of more than one function with the same name but quite different actions should
be avoided. In the example above, the functions show() are still somewhat related (they
print information to the screen).

However, it is also quite possible to define two functions lLookup (), one of which would find a
name in a list while the other would determine the video mode. In this case the two functions
have nothing in common except for their name. It would therefore be more practical to use
names which suggest the action; say, findname () and getvidmode().

e C++ does not allow that several functions only differ in their return value. This has the
reason that it is always the programmer’s choice to inspect or ignore the return value of a
function. E.g., the fragment

printf("Hello World!\n");

holds no information concerning the return value of the function printf ()4. Two functions
printf () which would only differ in their return type could therefore not be distinguished
by the compiler.

e Function overloading can lead to surprises. E.g., imagine a statement like

show(0) ;

4The return value is, by the way, an integer which states the number of printed characters. This return value is
practically never inspected.

28

given the three functions show() above. The zero could be interpreted here as a NULL pointer
to a char, i.e., a (char *)0, or as an integer with the value zero. C++ will choose to call
the function expecting an integer argument, which might not be what one expects.

2.5.14 Default function arguments

In C++ it is possible to provide ‘default arguments’ when defining a function. These arguments
are supplied by the compiler when not specified by the programmer.

An example is shown below:

#include <stdio.h>

void showstring(char *str = "Hello World!\n")

{
printf (str);
}
int main()
{
showstring("Here’s an explicit argument.\n");
showstring() ; // in fact this says:
// showstring("Hello World!\n");
return (0);
}

The possibility to omit arguments in situations where default arguments are defined is just a nice
touch: the compiler will supply the missing argument when not specified. The code of the program
becomes by no means shorter or more efficient.

Functions may be defined with more than one default argument:

void two_ints(int a = 1, int b = 4)

{

}

int main()

{
two_ints(); // arguments: 1, 4
two_ints(20); // arguments: 20, 4
two_ints (20, 5); // arguments: 20, 5
return (0);

}

29

When the function two_ints() is called, the compiler supplies one or two arguments when nec-
essary. A statement as two_ints(,6) is however not allowed: when arguments are omitted they
must be on the right-hand side.

Default arguments must be known to the compiler when the code is generated where the arguments
may have to be supplied. Often this means that the default arguments are present in a header file:

// sample header file

extern void two_ints(int a = 1, int b = 4);

// code of function in, say, two.cc
void two_ints(int a, int b)

{

Note that supplying the default arguments in the function definition instead of in the header file
would not be the correct approach.

2.5.15 The keyword typedef

The keyword typedef is in C++ allowed, but no longer necessary when it is used as a prefix in
union, struct or enum definitions. This is illustrated in the following example:

struct somestruct

{
int
a;
double
d;
char
string[80];
};

When a struct, union or other compound type is defined, the tag of this type can be used as type
name (this is somestruct in the above example):

somestruct
what;

what.d = 3.1415;

30

2.5.16 Functions as part of a struct

In C++ it is allowed to define functions as part of a struct. This is the first concrete example of
the definition of an object: as was described previously (see section 2.4), an object is a structure
containing all involved code and data.

A definition of a struct point is given in the code fragment below. In this structure, two int
data fields and one function draw() are declared.

struct point // definition of a screen
{ // dot:
int
X, // coordinates
Y; // x/y
void
draw(void) ; // drawing function
};

A similar structure could be part of a painting program and could, e.g., represent a pixel in the
drawing. Concerning this struct it should be noted that:

e The function draw () which occurs in the struct definition is only a declaration. The actual
code of the function, or in other words the actions which the function should perform, are
located elsewhere: in the code section of the program, where all code is collected. We will
describe the actual definitions of functions inside structs later (see section 3.2).

e The size of the struct point is just two ints. Even though a function is declared in the
structure, its size is not affected by this. The compiler implements this behavior by allowing
the function draw() to be known only in the context of a point.

The point structure could be used as follows:

point // two points on
a, // screen
b;
a.x = 0; // define first dot
a.y = 10; // and draw it
a.draw();
// copy a to b

o’
1]
o

o o
Q<
=
©
=
~
A3

20; // redefine y-coord
// and draw it

The function which is part of the structure is selected in a similar manner in which data fields are
selected; i.e., using the field selector operator (.). When pointers to structs are used, -> can be
used.

31

The idea of this syntactical construction is that several types may contain functions with the same
name. E.g., a structure representing a circle might contain three int values: two values for the
coordinates of the center of the circle and one value for the radius. Analogously to the point
structure, a function draw() could be declared which would draw the circle.

32

Chapter 3

A first impression of C++4

In this chapter the usage of C++ is further explored. The possibility to declare functions in
structs is further illustrated using examples. The concept of a class is introduced.

3.1 More extensions of C in C++

Before we continue with the ‘real’ object-oriented approach to programming, we first introduce
some extensions to the C programming language, encountered in C4+-: not mere differences
between C and C++, but syntactical constructs and keywords that are not found in C.

3.1.1 The scope resolution operator ::

The syntax of C++ introduces a number of new operators, of which the scope resolution operator
: is described first. This operator can be used in situations where a global variable exists with
the same name as a local variable:

#include <stdio.h>

int
counter = 50; // global variable

int main()

{
for (register int counter = 1; // this refers to the
counter < 10; // local variable
counter++)
{
printf ("%d\n",
::counter // global variable
/ // divided by
counter) ; // local variable
}

33

return (0);

In this code fragment the scope operator is used to address a global variable instead of the local
variable with the same name. The usage of the scope operator is more extensive than just this,
but the other purposes will be described later.

3.1.2 cout, cin and cerr

In analogy to C, C++ defines standard input- and output streams which are opened when a
program is executed. The streams are:

e cout, analogous to stdout,
e cin, analogous to stdin,

e cerr, analogous to stderr.

Syntactically these streams are not used with functions: instead, data are read from the streams or
written to them using the operators <<, called the insertion operator and >>, called the extraction
operator. This is illustrated in the example below:

#include <iostream>

void main()

{
int
ival;
char
sval[30];
cout << "Enter a number:" << endl;
cin >> ival;
cout << "And now a string:" << endl;
cin >> sval;
cout << "The number is: " << ival << endl
<< "And the string is: " << sval << endl;
}

This program reads a number and a string from the cin stream (usually the keyboard) and prints
these data to cout. Concerning the streams and their usage we remark the following:
e The streams are declared in the header file iostream.

e The streams cout, cin and cerr are in fact ‘objects’ of a given class (more on classes later),
processing the input and output of a program. Note that the term ‘object’, as used here,
means the set of data and functions which defines the item in question.

34

e The stream cin reads data and copies the information to variables (e.g., ival in the above
example) using the extraction operator >>. We will describe later how operators in C++
can perform quite different actions than what they are defined to do by the language grammar,
such as is the case here. We've seen function overloading. In C++ operators can also have
multiple definitions, which is called operator overloading.

e The operators which manipulate cin, cout and cerr (i.e., >> and <<) also manipulate
variables of different types. In the above example cout << ival results in the printing of
an integer value, whereas cout << "Enter a number" results in the printing of a string.
The actions of the operators therefore depend on the type of supplied variables.

e Special symbolic constants are used for special situations. The termination of a line written
by cout is realized by inserting the endl symbol, rather than using the string "\n".

The streams cin, cout and cerr are in fact not part of the C++4 grammar, as defined in the
compiler which parses source files. The streams are part of the definitions in the header file
iostream. This is comparable to the fact that functions as printf() are not part of the C
grammar, but were originally written by people who considered such functions handy and collected
them in a run-time library.

Whether a program uses the old-style functions like printf () and scanf () or whether it employs
the new-style streams is a matter of taste. Both styles can even be mixed. A number of advantages
and disadvantages is given below:

e Compared to the standard C functions printf () and scanf (), the usage of the insertion and
extraction operators is more type-safe. The format strings which are used with printf ()
and scanf () can define wrong format specifiers for their arguments, for which the compiler
sometimes can’t warn. In contrast, argument checking with cin, cout and cerr is performed
by the compiler. Consequently it isn’t possible to err by providing an int argument in places
where, according to the format string, a string argument should appear.

e The functions printf () and scanf (), and other functions which use format strings, in fact
implement a mini-language which is interpreted at run-time. In contrast, the C++ compiler
knows exactly which in- or output action to perform given which argument.

e The usage of the left-shift and right-shift operators in the context of the streams does illustrate
the possibilities of C++. Again, it requires a little getting used to, coming from C, but after
that these overloaded operators feel rather comfortably.

The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 11 iostreams
will be covered in greater detail.

3.1.3 The keyword const

The keyword const very often occurs in C++ programs, even though it is also part of the C
grammar, where it’s much less used.

This keyword is a modifier which states that the value of a variable or of an argument may not be
modified. In the below example an attempt is made to change the value of a variable ival, which
is not legal:

35

int main()

{
int const // a constant int..
ival = 3; // initialized to 3
ival = 4; // assignment leads
// to an error message
return (0);
}

This example shows how ival may be initialized to a given value in its definition; attempts to
change the value later (in an assignment) are not permitted.

Variables which are declared const can, in contrast to C, be used as the specification of the size
of an array, as in the following example:

int const
size = 20;
char
buf [size]; // 20 chars big

A further usage of the keyword const is seen in the declaration of pointers, e.g., in pointer-
arguments. In the declaration

char const *buf;

buf is a pointer variable, which points to chars. Whatever is pointed to by buf may not be
changed: the chars are declared as const. The pointer buf itself however may be changed. A
statement as xbuf = ’a’; is therefore not allowed, while buf++ is.

In the declaration

char *const buf;

buf itself is a const pointer which may not be changed. Whatever chars are pointed to by buf
may be changed at will.

Finally, the declaration

char const *const buf;

36

is also possible; here, neither the pointer nor what it points to may be changed.

The rule of thumb for the placement of the keyword const is the following: whatever occurs just
prior to the keyword may not be changed. The definition or declaration in which const is used
should be read from the variable or function identifier back to the type indentifier:

“Buf is a const pointer to const characters”

This rule of thumb is especially handy in cases where confusion may occur. In examples of C++
code, one often encounters the reverse: const preceding what should not be altered. That this
may result in sloppy code is indicated by our second example above:

char const *buf;

What must remain constant here? According to the sloppy interpretation, the pointer cannot be
altered (since const precedes the pointer-x). In fact, the charvalues are the constant entities here,
as will be clear when it is tried to compile the following program:

int main()

{
char const *buf = "hello";
buf++; // accepted by the compiler
*buf = ’u’; // rejected by the compiler
return (0);

}

Compilation fails on the statement xbuf = ’u’;, not on the statement buf++.

3.1.4 References

Besides the normal declaration of variables, C++ allows ‘references’ to be declared as synonyms
for variables. A reference to a variable is like an alias; the variable name and the reference name
can both be used in statements which affect the variable:

int
int_value;
int
&ref = int_value;

In the above example a variable int_value is defined. Subsequently a reference ref is defined,
which due to its initialization addresses the same memory location which int_value occupies. In

37

the definition of ref, the reference operator & indicates that ref is not itself an integer but a
reference to one. The two statements

int_value++; // alternmative 1
ref++; // alternative 2

have the same effect, as expected. At some memory location an int value is increased by one —
whether that location is called int_value or ref does not matter.

References serve an important function in C++4 as a means to pass arguments which can be
modified (‘variable arguments’ in Pascal-terms). E.g., in standard C, a function which increases
the value of its argument by five but which returns nothing (void), needs a pointer argument:

void increase(int *valp) // expects a pointer
{ // to an int

*valp += 5;
}
int main()
{

int

X5

increase (&x) // the address of x is

return (0); // passed as argument
}

This construction can also be used in C++ but the same effect can be achieved using a reference:

void increase(int &valr) // expects a reference
{ // to an int

valr += 5;
}
int main()
{

int

X;

increase(x) ; // a reference to x is

return (0); // passed as argument
}

The way in which C++ compilers implement references is actually by using pointers: in other
words, references in C++ are just ordinary pointers, as far as the compiler is concerned. However,

38

the programmer does not need to know or to bother about levels of indirection.’

It can be argued whether code such as the above is clear: the statement increase (x) in the
main() function suggests that not x itself but a copy is passed. Yet the value of x changes because
of the way increase() is defined.

Our suggestions for the usage of references as arguments to functions are therefore the following:

e In those situations where a called function does not alter its arguments, a copy of the variable
can be passed:

void some_func(int val)

{
printf ("%d\n", val);
}
int main()
{
int
X3
some_func(x); // a copy is passed, so
return (0); // x won’t be changed
}

e When a function changes the value of its argument, the address or a reference can be passed,
whichever you prefer:

void by_pointer(int *valp)

{
*valp += 5;
}
void by_reference(int &valr)
{
valr += 5;
}
int main ()
{
int
X;
by_pointer (&x) ; // a pointer is passed
by_reference(x) ; // x is altered by reference
return (0); // x might be changed
}

LCompare this to the Pascal way: an argument which is declared as var is in fact also a pointer, but the
programmer needn’t know.

39

e References have an important role in those cases where the argument will not be changed by
the function, but where it is desirable to pass a reference to the variable instead of a copy of
the whole variable. Such a situation occurs when a large variable, e.g., a struct, is passed
as argument, or is returned from the function. In these cases the copying operations tend
to become significant factors when the entire structure must be copied, and it is preferred
to use references. If the argument isn’t changed by the function, or if the caller shouldn’t
change the returned information, the use of the const keyword is appropriate and should be
used.

Consider the following example:

struct Person // some large structure
{
char
name [80],
address [90];
double
salary;
};
Person
person[50] ; // database of persons

void printperson (Person const &p) // printperson expects a
{ // reference to a structure
printf ("Name: %s\n" // but won’t change it
"Address: %s\n",
p.name, p.address);

}
Person const &getperson(int index) // get a person by indexvalue
{
return (person[index]); // a reference is returned,
} // not a copy of person[index]

int main ()

{
Person
boss;
printperson (boss); // no pointer is passed,
// so variable won’t be
// altered by function
printperson(getperson(5)); // references, not copies
// are passed here
return (0);
}

e [t should furthermore be noted here that there is another reason for using references when
passing objects as function arguments: when passing a reference to an object, the activation
of a copy constructor is avoided. We have to postpone this argument to chapter 5

40

References also can lead to extremely ‘ugly’ code. A function can also return a reference to a
variable, as in the following example:

This

int &func()

{
static int
value;
return (value);
}

allows the following constructions:

func() = 20;
func() += func (;

It is probably superfluous to note that such constructions should not normally be used. Nonetheless,
there are situations where it is useful to return a reference. Even though this is discussed later,
we have seen an example of this phenomenon at our previous discussion of the iostreams. In a
statement like cout << "Hello" << endl;, the insertion operator returns a reference to cout.
So, in this statement first the "Hello" is inserted into cout, producing a reference to cout. Via
this reference the endl is then inserted in the cout object, again producing a reference to cout.

This

latter reference is not further used.

A number of differences between pointers and references is pointed out in the list below:

A reference cannot exist by itself, i.e., without something to refer to. A declaration of a
reference like

int &ref;

is not allowed; what would ref refer to?

References can, however, be declared as external. These references were initialized else-
where.

Reference may exist as parameters of functions: they are initialized when the function is
called.

References may be used in the return types of functions. In those cases the function deter-
mines to what the return value will refer.

Reference may be used as data members of classes. We will return to this usage later.

In contrast, pointers are variables by themselves. They point at something concrete or just
“at nothing”.

References are aliases for other variables and cannot be re-aliased to another variable. Once
a reference is defined, it refers to its particular variable.

41

e In contrast, pointers can be reassigned to point to different variables.

e When an address-of operator & is used with a reference, the expression yields the address
of the variable to which the reference applies. In contrast, ordinary pointers are variables
themselves, so the address of a pointer variable has nothing to do with the address of the
variable pointed to.

3.2 Functions as part of structs

The first chapter described that functions can be part of structs (see section 2.5.16). Such
functions are called member functions or methods. This section discusses the actual definition of
such functions.

The code fragment below illustrates a struct in which data fields for a name and address are
present. A function print () is included in the struct definition:

struct person

{
char
name [80],
address [80];
void
print (void);
};

The member function print () is defined using the structure name (person) and the scope reso-
lution operator (::):

void person::print()
{
printf ("Name: hs\n"
"Address: %s\n", name, address);

In the definition of this member function, the function name is preceded by the struct name
followed by ::. The code of the function shows how the fields of the struct can be addressed
without using the type name: in this example the function print () prints a variable name. Since
print () is a part of the struct person, the variable name implicitly refers to the same type.

The usage of this struct could be, e.g.:

person
p;

42

strcpy(p.name, "Karel");
strcpy(p.address, "Rietveldlaan 37");
p-printQ;

The advantage of member functions lies in the fact that the called function can automatically
address the data fields of the structure for which it was invoked. As such, in the statement
p.-print () the structure p is the ‘substrate’: the variables name and address which are used in
the code of print () refer to the same struct p.

3.3 Several new data types

In C the following basic data types are available: void, char, short, int, long, float and
double. C++4 extends these five basic types with several extra types: the types bool, wchar_t
and long double. The type long double is merely a double-long double datatype. Apart from
these basic types a standard type string is available. The datatypes bool, wchar_t and string
are covered in the following sections.

3.3.1 The ‘bool’ data type

In C the following basic data types are available: void, char, int, float and double. C++
extends these five basic types with several extra types. In this section the type bool is introduced.

The type bool represents boolean (logical) values, for which the (now reserved) values true and
false may be used. Apart from these reserved values, integral values may also be assigned to
variables of type bool, which are implicitly converted to true and false according to the following
conversion rules (assume intValue is an int-variable, and boolValue is a bool-variable):

// from int to bool:
boolValue = intValue ? true : false;

// from bool to int:

intValue = boolValue 7 1 : 0;

Furthermore, when bool values are inserted into, e.g., cout, then 1 is written for true values, and
0 is written for false values. Consider the following example:

cout << "A true value: " << true << endl
<< "A false value: " << false << endl;

The bool data type is found in other programming languages as well. Pascal has its type Boolean,
and Java has a boolean type. Different from these languages, C++’s type bool acts like a kind of
int type: it’s primarily a documentation-improving type, having just two values true and false.

43

Actually, these values can be interpreted as enum values for 1 and 0. Doing so would neglect the
philosophy behind the bool data type, but nevertheless: assigning true to an int variable neither
produces warnings nor errors.

Using the bool-type is generally more intuitively clear than using int. Consider the following
prototypes:

bool exists(char const *fileName); // (1)
int exists(char const *fileName); // (2)

For the first prototype (1), most people will expect the function to return true if the given
filename is the name of an existing file. However, using the second prototype some ambiguity
arises: intuitively the returnvalue 1 is appealing, as it leads to constructions like

if (exists("myfile"))
cout << "myfile exists";

On the other hand, many functions (like access(), stat(), etc.) return O to indicate a successful
operation, reserving other values to indicate various types of errors.

As a rule of thumb we suggest the following: If a function should inform its caller about the success
or failure of its task, let the function return a bool value. If the function should return success or
various types of errors, let the function return enum values, documenting the situation when the
function returns. Only when the function returns a meaningful integral value (like the sum of two
int values), let the function return an int value.

3.3.2 The ‘wchar_t’ data type

The wchar_t type is an extension of the char basic type, to accomodate wide character values,
such as the Unicode character set. Sizeof (wchar_t) is 2, allowing for 65,536 different character
values.

Note that a programming language like Java has a data type char that is comparable to C++’s
wchar_t type, while Java’s byte data type is comparable to C++’s char type. Very convenient....

3.3.3 The ‘string’ data type

C++ offers a large number of facilities to implement solutions for common problems. Most of these
facilities are part of the Standard Template Library or they are implemented as generic algorithms
(see chapter 10).

Among the facilities C4++4 programmers have developed over and over again (as reflected in the
Annotations) are those for manipulating chunks of text, commonly called strings. The C program-
ming language offers rudimentary string support: the ascii-z terminated series of characters is the
foundation on which a large amount of code has been built.

44

Standard C+4+ now offers a string type of its own. In order to use string-type objects, the
header file string must be included in sources.

Actually, string objects are class type variables, and the class is introduced for the first time in
chapter 4. However, in order to use a string, it is not necessary to know what a class is. In this
section the operators that are available for strings and some other operations are discussed. The
operations that can be performed on strings take the form

stringVariable.operation(argumentList)
For example, if stringl and string?2 are variables of type string, then
stringl.compare(string2)

can be used to compare both strings. A function like compare (), which is part of the string-class
is called a memberfunction. The string class offers a large number of these memberfunctions,
as well as extensions of some well-known operators, like the assignment (=) and the comparison
operator (==). These operators and functions are discussed in the following sections.

Operations on strings

Some of the operations that can be performed on strings return indices within the strings. When-
ever such an operation fails to find an appropriate index, the value string: :npos is returned.
This value is a (symbolic) value of type string: :size type, which is (for all practical purposes)
an int.

Note that in all operations where string objects can be used as arguments, char const * values
and variables can be used as well.

Some string-memberfunctions use iterators. Iterators will be covered in section 10.1. The mem-
berfunctions that use iterators are listed in the next section (3.3.3), they are not further illustrated
below.

The following operations can be performed on strings:

e String objects can be initialized. For the initialization a plain ascii-z string, another string
object, or an implicit initialization can be used. In the example, note that the implicit
initialization does not have an argument, and does not use the function argumentlist notation.

#include <string>

int main()

{
string
stringOne("Hello World"), // using plain ascii-Z
stringTwo (stringOne), // using another string object
stringThree; // implicit initialization to ""
// do not use: stringThree();
return (0);
}

45

e String objects can be assigned to each other. For this the assignment operator (i.e., the =
operator) can be used, which accepts both a string object and a C-style characterstring as
its right-hand argument:

#include <string>

int main()

{
string
stringOne ("Hello World"),
stringTwo;
stringTwo = stringOne; // assign stringOne to stringTwo
stringTwo = "Hello world"; // assign a C-string to StringTwo
return (0);
}

e In the previous example a standard C-string (an ascii-Z string) was implicitly converted to a
string-object. The reverse conversion (converting a string object to a standard C-string)
is not performed automatically. In order to obtain the C-string that is stored within the
string object itself, the memberfunction c_str(), which returns a char const *, can be
used:

#include <iostream>
#include <string>

int main()

{
string
stringOne ("Hello World");
char const
*Cstring = stringOne.c_str();
cout << Cstring << endl;
return (0);
}

e The individual elements of a string object can be reached for reading or writing. For this
operation the subscript-operator ([1) is available, but not the pointer dereferencing operator
(*). The subscript operator does not perform range-checking. If range-checking is required,
the at () memberfunction can be used instead of the subscript-operator:

#include <string>
int main()
{

string

stringOne("Hello World");

stringOne[6] = ’w’; // now "Hello world"
if (stringOne[0] == ’H’)

46

stringOne[0] = ’h’; // now "hello world"

// THIS WON’T COMPILE:
// *stringOne = *H’;

// Now using the at() memberfunction:

stringOne.at(6) =
stringOne.at (0); // now "Hello Horld"
if (stringOne.at(0) == ’H’)
stringOne.at(0) = ’W’; // now "Wello Horld"

return (0);

}

When an illegal index is passed to the at () memberfunction, the program aborts.

Two strings can be compared for (in)equality or ordering, using the ==, !'=, <, <=, > and
>= operators or the compare () memberfunction can be used. The compare () memberfunc-
tion comes in different flavors, the plain one (having another string object as argument)
offers a bit more information than the operators do. The returnvalue of the compare()
memberfunction may be used for lexicographical ordering: a negative value is returned if
the string stored in the string object using the compare () memberfunction (in the example:
stringOne) is located earlier in the alphabet (based on the standard ascii-characterset) than
the string stored in the string object passed as argument to the compare () memberfunction.

#include <iostream>
#include <string>

int main()

{
string
stringOne ("Hello World"),
stringTwo;
if (stringOne != stringTwo)

stringTwo = stringOne;

if (stringOne == stringTwo)
stringTwo = "Something else";

if (stringOne.compare(stringTwo) > 0)

cout << "stringOne after stringTwo in the alphabet\n";
else if (stringOne.compare(stringTwo) < 0)

cout << "stringOne before stringTwo in the alphabet\n";
else

cout << "Both strings are the same";

// Alternatively:
if (stringOne > stringTwo)

cout << "stringOne after stringTwo in the alphabet\n";
else if (stringOne < stringTwo)

47

cout << "stringOne before stringTwo in the alphabet\n";

else

cout << "Both strings are the same";

return (0);

}

There is no memberfunction to perform a case insensitive comparison of strings.

Overloaded forms of the compare () memberfunction have one or two extra arguments.

— If the compare () memberfunction is used with two arguments, then the second argument
is an index position in the current string-object. It indicates the index position in the
current string object where the comparison should start.

— If the compare () memberfunction is used with three arguments, then the third argument
indicates the number of characters that should be compared.

See the following example for further details about the compare () function.

#include <iostream>
#include <string>

int main()

{

string

//

if

//
//

if

//
//
//

if

stringOne ("Hello World");
comparing from a certain offset in stringOne

(!'stringOne.compare("ello World", 1))
cout << "comparing ’Hello world’ from index 1"
" to ’ello World’: ok\n";

comparing from a certain offset in stringOne over a certain
number of characters in "World and more"

(!'stringOne.compare("World and more", 6, 5))
cout << "comparing ’Hello World’ from index 6 over 5 positions"
" to ’World and more’: ok\n";

The same, but this fails, as all of the chars in stringOne
starting at index 6 are compared, not just 3 chars.
number of characters in "World and more"

(!'stringOne.compare("World and more", 6, 3))
cout << "comparing ’Hello World’ from index 6 over 3 positions"
" to ’World and more’: ok\n";

else

cout << "Unequal (sub)strings\n";

return (0);

48

e A string can be appended to another string. For this the += operator can be used, as well as
the append () memberfunction. Like the compare () function, the append () memberfunction
may have two extra arguments. The first argument is the string to be appended, the second
argument specifies the index position of the first character that will be appended. The third
argument specifies the number of characters that will be appended. If the first argument is
of type char const *, only a second argument may be specified. In that case, the second
argument specifies the number of characters of the first argument that are appended to the
string object. Furthermore, the + operator can be used to append two strings within an
expression:

#include <iostream>
#include <string>

int main()
{
string
stringOne("Hello"),
stringTwo ("World") ;

stringOne += " " + stringTwo;

stringOne = "hello";
stringOne.append (" world");

// append only 5 characters:
stringOne.append(" ok. >This is not used<", 5);

cout << stringOne << endl;

string
stringThree("Hello");

// append " World":
stringThree.append(stringOne, 5, 6);

cout << stringThree << endl;

return (0);

}

The + operator can be used in cases where at least one term of the + operator is a string
object (the other term can be a string, char const * or char).

When neither operand of the + operator is a string, at least one operand must be converted
to a string object first. An easy way to do this is to use an anonymous string object:

string("hello") + " world";

e So, the append () memberfunction is used to append characters at the end of a string. It is
also possible to insert characters somewhere within a string. For this the memberfunction
insert () is available.

The insert () memberfunction to insert (parts of) a string has at least two, and at most
four arguments:

49

— The first argument is the offset in the current string object where another string should
be inserted.

— The second argument is the string to be inserted.

— The third argument specifies the index position of the first character in the provided
string-argument that will be inserted.

— The fourth argument specifies the number of characters that will be inserted.

If the first argument is of type char const *, the fourth argument is not available. In that
case, the third argument indicates the number of characters of the provided char const *
value that will be inserted.

#include <iostream>
#include <string>

int main()

{
string
stringOne ("Hell ok.");
stringOne.insert(4, "o "); // Insert "o " at position 4
string
world("The World of C++");
// insert "World" into stringOne
stringQOne.insert(6, world, 4, 5);
cout << "Guess what 7 It is: " << stringOne << endl;
return (0);
}

Several other variants of insert () are available. See section 3.3.3 for details.

At times, the contents of string objects must be replaced by other information. To replace
parts of the contents of a string object by another string the memberfunction replace ()
can be used.

The memberfunction has at least three and possibly five arguments, having the following
meanings (see section 3.3.3 for overloaded versions of replace(), using different types of
arguments):

The first argument indicates the position of the first character that must be replaced

The second argument gives the number of characters that must be replaced.

The third argument defines the replacement text (a string or char const x).

— The fourth argument specifies the index position of the first character in the provided
string-argument that will be inserted.

The fifth argument can be used to specify the number of characters that will be inserted.

If the third argument is of type char const *, the fifth argument is not available. In that
case, the fourth argument indicates the number of characters of the provided char const *
value that will be inserted.

50

The following example shows a very simple filechanger: it reads lines from cin, and replaces
occurrences of a ‘searchstring’ by a ‘replacestring’. Simple tests for the correct number of
arguments and the contents of the provided strings (they should be unequal) are implemented
using the assert () macro.

#include <iostream>
#include <string>

#include <cassert>

int main(int argc, char **argv)

{
assert(argc == 3 &
"Usage: <searchstring> <replacestring> to process stdin");
string
line,
search(argv[1]),
replace(argv[2]);
assert(search != replace);
while (getline(cin, line))
{
while (true)
{
string::size_type
idx;
idx = line.find(search);
if (idx == string::npos)
break;
line.replace(idx, search.size(), replace);
}
cout << line << endl;
}
return (0);
}

e A particular form of replacement is swapping: the memberfunction swap () swaps the contents
of two string-objects. For example:

#include <iostream>
#include <string>

int main()
{
string
stringOne("Hello"),
stringTwo ("World");

51

cout << "Before: stringOne: " << stringOne << ", stringTwo: "
<< stringTwo << endl;

stringOne.swap(stringTwo) ;

cout << "After: stringOne: " << stringOne << ", stringTwo: "
<< stringTwo << endl;
return (0);

}

e Another form of replacement is to remove characters from the string. For this the member-
function erase () is available. The standard form has two optional arguments:

— If no arguments are specified, the stored string is erased completely: it becomes the
empty string (string() or string("")).

— The first argument may be used to specify the offset of the first character that must be
erased.

— The second argument may be used to specify the number of characters that are to be
erased.

See section 3.3.3 for overloaded versions of erase(). An example of the use of erase() is
given below:

#include <string>

int main()

{

string
stringOne ("Hello Cruel World");

stringOne.erase(5, 6);
cout << stringOne << endl;
stringOne.erase();
cout << "’" << stringOne << "’\n";
return (0);

}

e To find substrings in a string the memberfunction £ind () can be used. This function looks
for the string that is provided as its first argument in the string object calling find() and
returns the index of the first character of the substring if found. If the string is not found
string: :npos is returned. The memberfunction rfind() looks for the substring from the
end of the string object back to its beginning. An example using find () was given earlier.

e To extract a substring from a string object, the memberfunction substr() is available.
The returned string object contains a copy of the substring in the string-object calling
substr() The memberfunction has two optional arguments:

— Without arguments, a copy of the string itself is returned.

— The first argument may be used to specify the offset of the first character to be returned.

52

— The second argument may be used to specify the number of characters that are to be
returned.

For example:
#include <string>

int main()

{
string
stringOne ("Hello World");
cout << stringOne.substr(0, 5) << endl
<< stringOne.substr(6) << endl
<< stringOne.substr() << endl;
return (0);
}

e Whereas find () is used to find a substring, the functions find first_of (), find firstmot_of(),
find last_of () and find lastnot_of() can be used to find sets of characters (Unfortu-
nately, regular expressions are not supported here). The following program reads a line of
text from the standard input stream, and displays the substrings starting at the first vowel,
starting at the last vowel, and not starting at the first digit:

#include <string>
int main()
{
string
line;

getline(cin, line);

string::size_type

pos;
cout << "Line: " << line << endl
<< "Starting at the first vowel:\n"
<L non
<< (
(pos = line.find_first_of ("aeiouAEIQU")) != string::npos 7
line.substr(pos)
"**x*x not found **x*"
) << ll)\nll
<< "Starting at the last vowel:\n"
<< non
<< (

(pos = line.find_last_of ("aeiouAEIOU")) != string::npos ?
line.substr(pos)

"xx*x not found *x*x*"

53

) <L " \nll
<< "Not starting at the first digit:\n"
<< non

<< (
(pos = line.find_first_not_of("1234567890"))
!= string::npos 7
line.substr(pos)

"xx*x not found **x"
) << ll)\nll .
return (0);

}
e The number of characters that are stored in a string are obtained by the size () member-
function, which, like the standard C function strlen() does not include the terminating

ascii-Z character. For example:

#include <iostream>
#include <string>

int main()

{
string
stringOne("Hello World");
cout << "The length of the stringOne string is "
<< stringOne.size() << " characters\n";
return (0);
}

e If the size of a string is not enough (or if it is too large), the memberfunction resize () can
be used to make it longer or shorter. Note that operators like + automatically resize the
string when needed.

e The size () memberfunction can be used to determine whether a string holds no characters
as well. Alternatively, the empty () memberfunction can be used:

#include <iostream>
#include <string>

int main()
{
string
stringlne;

cout << "The length of the stringOne string is "
<< stringOne.size() << " characters\n"
"It is " << (stringOne.empty() 7 "" : " not ")
<< "empty\n";

stringOne = "";

54

cout << "After assigning a \"\"-string to a string-object\n"
"it is " << (stringOne.empty() 7 "also" : " not")
<< " empty\n";

return (0);

}

e The istream &getline(istream instream, string target, char delimiter) member-
function may be used to read a line of text (up to the first delimiter or the end of the stream)
from instream.

The delimiter has a default value ’\n’. It is removed from instream, but it is not stored
in target. The function getline() was used in several earlier examples (e.g., with the
replace() memberfunction).

Overview of operations on strings

In this section the available operations on strings are summarized. There are four subparts here: the
string-initializers, the string-iterators, the string-operators and the string-memberfunctions.

The memberfunctions are ordered alphabetically by the name of the operation. Below, object is
a string-object, and argument is either a string or a char const *, unless overloaded versions
tailored to string and char const x parameters are explicitly mentioned. 0Object is used in
cases where a string object is initialized or given a new value. Argument remains unchanged.
Sometimes multiple arguments are required, in which case argument1, argument2 etc. are used.

With memberfunctions the types of the parameters are given in a function-prototypical way. With
several memberfunctions iterators are used. At this point in the Annotations it’s a bit premature
to discuss iterators, but for referential purposes they have to be mentioned nevertheless. So, a
forward reference is used here: see section 10.1 for a more detailed discussion of iterators.

Finally, note that all string-memberfunctions returning indices in object return the predefined
constant string: :pos if no suitable index could be found.

The string-initializers:

The string-iterators:

The string-operators:

The string memberfunctions:

e char &object.at(string::size type pos): The character (reference) at the indicated po-
sition is returned (it may be reassigned). The memberfunction performs range-checking,
aborting the program if an invalid index is passed.

e string &object.append(InputIterator begin, InputIterator end): Using this mem-
berfunction the range of characters implied by the begin and end InputIterators are
appended to object.

e string &object.append(string argument, string::size type pos = 0; string::size_type
n = string::npos):

— If only argument is given, it is appended to object.

55

— If pos is specified as well, argument is appended from index position pos until the end
of argument.

— If all three arguments are provided, n characters of argument, starting at index position
pos are appended to object.

If argument is of type char const *, parameter pos is not available. So, with char const
x arguments, either all characters or an initial subset of the characters of the provided char
const x argument are appended to object.

— string &object.append(string::size type n, char c): Using this memberfunc-
tion, n characters c can be appended to object.

string &object.assign(string argument, string::size type pos = 0; string::size_type
n = string: :npos):

— If only argument is given, it is assigned to object.

— If pos is specified as well, object is assigned from index position pos until the end of
argument.

— If all three arguments are provided, n characters of argument, starting at index position
pos are assigned to object.

If argument is of type char const %, no parameter pos is available. So, with char const
x arguments, either all characters or an initial subset of the characters of the provided char
const * argument are assigned to object.

— string &object.assign(string::size type n, char c): Using this memberfunc-
tion, n characters c can be assigned to object.

string::size type argument.capacity(): returns the number of characters that can cur-
rently be stored inside argument.

int argumentl.compare(string argument2, string::size_type pos, string::size_type
n): This memberfunction may be used to compare (according to the ascii-character set) the
strings stored in argumentl and argument2. The parameter n may be used to specify the
number of characters in argument?2 that are used in the comparison, the parameter pos may

be used to specify the initial character in argument? that is used in the comparison.

char const xargument.c_str: the memberfunction returns the contents of argument as an
ascii-Z C-string.

char const xargument.data(): returns the raw text stored in argument.
bool argument.empty(): returns true if argument contains no data.

string &object.erase(string::size_type pos; string::size_type n). This member-
function can be used to erase (a sub)string of object. The basic form erases object com-
pletely. The working of other forms of erase() depend on the specification of extra argu-
ments:

— If pos is specified, the contents of object are erased from index position pos until the
end of object.

— If pos and n are provided, n characters of object, starting at index position pos are
erased.

iterator object.erase(iterator p): The contents of object are erased until (iterator)
position p. The iterator p is returned.

56

iterator object.erase(iterator f, iterator 1): The range of characters of object,
implied by the iterators f and 1 are erased. The iterator f is returned.

string::string::size_type argumentl.find(string argument2, string::size_type pos):
This memberfunction returns the index in argumenti where argument?2 is found. If pos is
omitted, the search starts at the beginning of argument1. If pos is provided, it refers to the
index in argument1 where the search for argument?2 should start.

string::size type argumentl.find(char const *argument2, string::size_type pos,
string::size_type n): This memberfunction returns the index in argument1 where argument2
is found. The parameter n indicates the number of characters of argument2 that should be
used in the search: it defines a partial string starting at the beginning of argument2. If
omitted, all characters in argument2 are used. The parameter pos refers to the index in
argumentl where the search for argument2 should start. If the parameter pos is omitted as
well, argument1 is scanned completely.

string::size type argument.find(char c, string::size type pos): This memberfunc-
tion returns the index in argument where c is found. If the argument pos is omitted, the
search starts at the beginning of argument. If provided, it refers to the index in argument
where the search for argument should start.

string::size type argumentl.find first_ of (string argument2, string::size_type pos):
This memberfunction returns the index in argumentl where any character in argument? is
found. If the argument pos is omitted, the search starts at the beginning of argumenti1. If
provided, it refers to the index in argument1 where the search for argument?2 should start.

string::size type argumentl.find first_of (char const* argument2, string::size_type
pos, string::size type n): This memberfunction returns the index in argument1 where

a character of argument?2 is found, no matter which character. The parameter n indicates

the number of characters of argument1 that should be used in the search: it defines a partial
string starting at the beginning of argumentl. If omitted, all characters in argumentl are
used. The parameter pos refers to the index in argument1 where the search for argument?2
should start. If the parameter pos is omitted as well, argument1 is scanned completely.

string::size_type argument.find first_of(char c, string::size_type pos): This mem-
berfunction returns the index in argument1 where character c is found. If the argument pos

is omitted, the search starts at the beginning of argument1. If provided, it refers to the index

in argument1 where the search for argument should start.

string::size_type argumentl.find firstnot_of (string argument2, string::size_type
pos): This memberfunction returns the index in argument1 where a character not appearing

in argument?2 is found. If the argument pos is omitted, the search starts at the beginning of
argumentl. If provided, it refers to the index in argument1 where the search for argument2
should start.

string::size_type argumentl.find first not_of(char constx argument2, string::size_type
pos, string::size type n): This memberfunction returns the index in argument1 where

any character not appearing in argument?2 is found. The parameter n indicates the number

of characters of argument1 that should be used in the search: it defines a partial string

starting at the beginning of argumenti. If omitted, all characters in argumentl are used.

The parameter pos refers to the index in argument1 where the search for argument2 should

start. If the parameter pos is omitted as well, argument1 is scanned completely.

string::size_type argument.find first not_of(char c, string::size_type pos): This
memberfunction returns the index in argument where another character than c is found. If
the argument pos is omitted, the search starts at the beginning of argument. If provided, it
refers to the index in argument where the search for ¢ should start.

57

string::size_type argumentl.find last_of (string argument2, string::size_type pos):
This memberfunction returns the last index in argumentl where a character in argument2

is found. If the argument pos is omitted, the search starts at the beginning of argument1. If
provided, it refers to the index in argumentl where the search for argument?2 should start.

string::size_type argumentl.find last_of(char constx argument2, string::size_type
pos, string::size type n): This memberfunction returns the last index in argumentl
where a character of argument?2 is found. The parameter n indicates the number of charac-
ters of argument1 that should be used in the search: it defines a partial string starting at the
beginning of argumentl. If omitted, all characters in argument1 are used. The parameter
pos refers to the index in argumentl where the search for argument2 should start. If the
parameter pos is omitted as well, argument1 is scanned completely.

string::size_type argument.find last_of(char c, string::size_type pos): This mem-
berfunction returns the last index in argument where character c is found. If the argument
pos is omitted, the search starts at the beginning of argument. If provided, it refers to the
index in argument where the search for ¢ should start.

string::size_type argumentl.find last not_of(string argument2, string::size_type
pos): This memberfunction returns the last index in argumentl where any character not
appearing in argument?2 is found. If the argument pos is omitted, the search starts at the
beginning of argumentl. If provided, it refers to the index in argumentl where the search
for argument?2 should start.

string::size_type argumentl.find last not_of(char const*x argument2, string::size_type
pos, string::size type n): This memberfunction returns the last index in argumentl

where any character not appearing in argument?2 is found. The parameter n indicates the
number of characters of argument1 that should be used in the search: it defines a partial

string starting at the beginning of argument1. If omitted, all characters in argumentl are

used. The parameter pos refers to the index in argument1 where the search for argument2

should start. If the parameter pos is omitted as well, all of argument1 is scanned.

string::size_type argument.find lastmnot_of(char c, string::size_type pos): This
memberfunction returns the last index in argument where another character than c is found.
If the argument pos is omitted, the search starts at the beginning of argument. If provided,
it refers to the index in argument where the search for ¢ should start.

istream &getline(istream instream, string object, char delimiter). This mem-
berfunction can be used to read a line of text (up to the first delimiter or the end of the
stream) from instream. The delimiter has a default value >\n’. It is removed from instream,
but it is not stored in object.

string &object.insert(string::size type t_pos, string argument, string::size_type
pos; string::size type n). This memberfunction can be used to insert (a sub)string of
argument into object, at object’s index position t_pos. The basic form inserts argument
completely at index t_pos. The way other forms of insert () work depend on the specifica-
tion of extra arguments:

— If pos is specified, argument is inserted from index position pos until the end of
argument.
— If pos and n are provided, n characters of argument, starting at index position pos are

inserted into object.

If argument is of type char const %, no parameter pos is available. So, with char const
x arguments, either all characters or an initial subset of the characters of the provided char
const * argument are inserted into object.

58

— string &object.insert(string::size type t_pos, string::size type n, char c):
Using this memberfunction, n characters ¢ can be inserted to object.

iterator object.insert(iterator p, char c): The character c is inserted at the (iter-
ator) position p in object. The iterator p is returned.

iterator object.insert(iterator p, string::size_type n, char c): N characters c
are inserted at the (iterator) position p in object. The iterator p is returned.

iterator object.insert(iterator p, InputIterator first, InputIterator last): The
range of characters implied by the InputIterators first and last are inserted at the (it-
erator) position p in object. The iterator p is returned.

string::size type argument.length(): returns the number of characters stored in argument.

string::size type argument.max size(): returns the maximum number of characters
that can be stored in argument.

string& object.replace(string::size type posl, string::size_type nl, const string
argument, string::size_type pos2, string::size_type n2): The substring of n1 char-
acters of object, starting at position pos1 is replaced by argument. If nl is set to 0, the
memberfunction inserts argument into object.

The basic form uses argument completely. The way other forms of replace () work depends

on the specification of extra arguments:

— If pos2 is specified, argument is inserted from index position pos2 until the end of
argument.

— If pos2 and n2 are provided, n2 characters of argument, starting at index position pos2
are inserted into object.

If argument is of type char const x, no parameter pos2 is available. So, with char const
x arguments, either all characters or an initial subset of the characters of the provided char
const * argument are replaced in object.

string &object.replace(string::size_type pos, string::size_type nl, string::size_type
n2, char c): This memberfunction can be used to replace nl characters of object, starting

at index position pos, by n2 c-characters. The argument n2 may be omitted, in which case

the string to be replaced is replaced by just one character c.

string& object.replace (iterator il, iterator i2, string argument): Here, the string
implied by the iterators i1 and i2 are replaced by the string str. If argument is a char
const *, an extra argument n may be used, specifying the number of characters of argument
that are used in the replacement.

iterator object.replace(iterator f, iterator 1, string argument): The range of
characters of object, implied by the iterators f and 1 are replaced by argument. If
argument is a char const #*, an extra argument n may be used, specifying the number of
characters of argument that are used in the replacement. The string object is returned.

iterator object.replace(iterator f, iterator 1, string::size_type n, char c): The
range of characters of object, implied by the iterators f and 1 are replaced by n c-
characters. The iterator f is returned.

string object.replace (iterator il, iterator i2, InputIterator j1, InputlIterator
j2): here the range of characters implied by the iterators i1 and i2 is replaced by the range
of characters implied by the InputIterators j1 and j2.

59

void object.resize(string::size_type n, char c): The string stored in object is re-
sized to n characters. The second argument is optional. If provided and the string is enlarged,
the extra characters are initialized to c.

string::size_type argumentl.rfind(string argument2, string::size_type pos): This
memberfunction returns the index in argumentl where argument?2 is found. Searching pro-
ceeds from the end of argument1 back to the beginning. If the argument2 pos is omitted, the
search starts at the beginning of argument1. If provided, it refers to the index in argument1
where the search for argument?2 should start.

string::size_type argumentl.rfind(char const kxargument2, string::size_type pos,
string::size_type n): This memberfunction returns the index in argument1 where argument?2
is found. Searching proceeds from the end of argument1 back to the beginning. The param-
eter n indicates the number of characters of argument2 that should be used in the search: it
defines a partial string starting at the beginning of argument2. If omitted, all characters in
argument?2 are used. The parameter pos refers to the index in argument1 where the search
for argument2 should start. If the parameter pos is omitted as well, all of argument1 is
scanned.

string::size type argumentl.rfind(char c, string::size_type pos): This member-
function returns the index in argument1 where c is found. Searching proceeds from the end
of argument1 back to the beginning. If the argument2 pos is omitted, the search starts at the
beginning of argumentl. If provided, it refers to the index in argument1 where the search
for argument?2 should start.

string::size_type argument.size(): returnsthe number of characters stored in argument.

string argument.substr(string::size_type pos, string::size_type n): This mem-
berfunction returns a substring of argument. The parameter n may be used to specify the
number of characters of argument that are returned. The parameter pos may be used to spec-
ify the index of the first character of argument that is returned. Either n or both arguments
may be omitted.

string::size type objectl.swap(string object2): swaps the contents of the objectl
and object2. In this case, object2 cannot be a char const *.

object = argument. Assignment of argument to object. May also be used for initializing
string objects.

object = c. Assignment of char c to object. May not be used for initializing string
objects.

object += argument. Appends argument to object. Argument may also be a char value.

argumentl + argument2. Within expressions, strings may be added. The right-hand term
may be a string object, a char const x value or a char value. Note that the left-hand
operand must be a string object. So, in the following example the first expression will
compile correctly, but the second expression won’t compile:

void fun()
{
char const
*asciiz = "hello";
string

60

first = "first",

second;
second = first + asciiz; // compiles ok
second = asciiz + first; // won’t compile

e object[string::size type pos]. The subscript-operator may be used to assign individual
characters of object or to retrieve these characters. There is no range-checking. If range
checking is required, use the at () memberfunction, summarized earlier.

e argumentl == argument2. The equality operator may be used to compare a string object to
another string or char const * value. The operator !=is available as well. The returnvalue
is a bool, which is true if the two strings are equal (i.e., contain the same characters). !=
returns false in that case.

e argumentl < argument2. The less-than operator may be used to compare the ordering
within the Ascii-character set of argumentl and argument2. The operators <=, > and >=
are available as well.

e ostream stream; stream << argument. The insertion-operator may be used with string
objects.

e istream stream; stream >> object. The extraction-operator may be used with string
objects. It operates analogously to the extraction of characters into a character array, but
object is automatically resized to the required number of characters.

See section 10.1 for details about #terators.

e Forward iterators:

— begin()
— end()

e Reverse iterators:

— rbegin()
— rend ()

e string object: Initializes object to an empty string.
e string object(string::size_type n, char c): Initializes object with n characters c.
e string object(string argument): Initializes object with argument.

e string object(string argument, string::size_type idx, string::size_type n = pos):
Initializes object with argument, using n characters of argument, starting at index idx.

e string object(InputIterator begin, InputIterator end): Initializes object with the
range of characters implied by the provided InputIterators.

61

3.4 Data hiding: public, private and class

As mentioned previously (see section 2.3), C++ contains special syntactical possibilities to im-
plement data hiding. Data hiding is the ability of one program part to hide its data from other
parts; thus avoiding improper addressing or name collisions of data.

C++ has two special keywords which are concerned with data hiding: private and public. These
keywords can be inserted in the definition of a struct. The keyword public defines all subsequent
fields of a structure as accessible by all code; the keyword private defines all subsequent fields
as only accessible by the code which is part of the struct (i.e., only accessible for the member
functions)?. In a struct all fields are public, unless explicitly stated otherwise.

With this knowledge we can expand the struct person:

struct person
{
public:
void
setname (char const *n),
setaddress (char const *a),
print (void);
char const
*getname (void),
*xgetaddress (void);
private:
char
name [80],
address [80];
};

The data fields name and address are only accessible for the member functions which are defined
in the struct: these are the functions setname (), setaddress () etc.. This property of the data
type is given by the fact that the fields name and address are preceded by the keyword private.
As an illustration consider the following code fragment:

person
X;

x.setname ("Frank"); // ok, setname() is public

strcpy (x.name, "Knarf"); // error, name is private

The concept of data hiding is realized here in the following manner. The actual data of a struct
person are named only in the structure definition. The data are accessed by the outside world by
special functions, which are also part of the definition. These member functions control all traffic
between the data fields and other parts of the program and are therefore also called ‘interface’
functions. The data hiding which is thus realized is illustrated further in figure 3.1.

?Besides public and private, C+4 defines the keyword protected. This keyword is not often used and it is
left for the reader to explore.

62

Interface functions to set the fields:

sefmamel setaddress ()

Frivate data:

name | |

address | |

print() getaddress() getmarnel)
Interface functions to inspect the flelds

Figure 3.1: Private data and public interface functions of the class Person.

63

Also note that the functions setname () and setaddress() are declared as having a char const
x argument. This means that the functions will not alter the strings which are supplied as their
arguments. In the same vein, the functions getname() and getaddress() return a char const
x: the caller may not modify the strings which are pointed to by the return values.

Two examples of member functions of the struct person are shown below:

void person::setname(char const *n)

{
strncpy(name, n, 79);
name [79] = °\0’;
}
char const *person::getname()
{
return (name);
}

In general, the power of the member functions and of the concept of data hiding lies in the fact
that the interface functions can perform special tasks, e.g., checks for the validity of data. In the
above example setname () copies only up to 79 characters from its argument to the data member
name, thereby avoiding array boundary overflow.

Another example of the concept of data hiding is the following. As an alternative to member
functions which keep their data in memory (as do the above code examples), a runtime library
could be developed with interface functions which store their data on file. The conversion of a
program which stores person structures in memory to one that stores the data on disk would
mean the relinking of the program with a different library.

Though data hiding can be realized with structs, more often (almost always) classes are used
instead. A class is in principle equivalent to a struct except that unless specified otherwise, all
members (data or functions) are private. As far as private and public are concerned, a class is
therefore the opposite of a struct. The definition of a class person would therefore look exactly
as shown above, except for the fact that instead of the keyword struct, class would be used. Our
typographic suggestion for class names is a capital as first character, followed by the remainder of
the name in lower case (e.g., Person).

3.5 Structs in C vs. structs in C++

At the end of this chapter we would like to illustrate the analogy between C and C++ as far as
structs are concerned. In C it is common to define several functions to process a struct, which
then require a pointer to the struct as one of their arguments. A fragment of an imaginary C
header file is given below:

// definition of a struct PERSON_
typedef struct

{

64

char
name [80] ,
address[80] ;
} PERSON_;

// some functions to manipulate PERSON_ structs

// initialize fields with a name and address
extern void initialize(PERSON_ *p, char const *nm,
char const *adr);

// print information
extern void print (PERSON_ const *p);

// etc..

In C++, the declarations of the involved functions are placed inside the definition of the struct
or class. The argument which denotes which struct is involved is no longer needed.

class Person
{
public:
void initialize(char const *nm, char const *adr);
void print(void);
// etc..
private:
char
name [80],
address[80] ;
};

The struct argument is implicit in C++4. A function call in C like

PERSON_

X5

initialize(&x, "some name", "some address");

becomes in C++:

Person

X3

x.initialize("some name", "some address");

65

3.6 Namespaces

Imagine a math teacher who wants to develop an interactive math program. For this program
functions like cos(), sin(), tan() etc. are to be used accepting arguments in degrees rather
than arguments in radials. Unfortunately, the functionname cos() is already in use, and that
function accepts radials as its arguments, rather than degrees.

Problems like these are normally solved by looking for another name, e.g., the functionname
cosDegrees () is defined. C++ offers an alternative solution by allowing namespaces to be defined:
areas or regions in the code in which identifiers are defined which cannot conflict with existing
names defined elsewhere.

3.6.1 Defining namespaces

Namespaces are defined according to the following syntax:

namespace identifier

{
// declared or defined entities
// (declarative region)

The identifier used in the definition of a namespace is a standard C+- identifier.

Within the declarative region, introduced in the above code example, functions, variables, structs,
classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined
within a block. So it is not possible to define a namespace within, e.g., a function. However, it is
possible to define a namespace using multiple namespace declarations. Namespaces are said to be
open. This means that a namespace CppAnnotations could be defined in a file filel.cc and also
in a file file2.cc. The entities defined in the CppAnnotations namespace of files filel.cc and
file2.cc are then united in one CppAnnotations namespace region. For example:

// in filel.cc
namespace CppAnnotations

{
double cos(double argInDegrees)
{
}

}

// in file2.cc
namespace CppAnnotations
{

double sin(double argInDegrees)

{

}

66

Both sin() and cos() are now defined in the same CppAnnotations namespace.

Namespace entities can also be defined outside of their namespaces. This topic is discussed in
section 3.6.4.

Declaring entities in namespaces

Instead of defiing entities in a namespace, entities may also be declared in a namespace. This allows
us to put all the declarations of a namespace in a header file which can thereupon be included in
sources in which the entities of a namespace are used. Such a header file could contain, e.g.,

namespace CppAnnotations

{
double cos(double degrees);
double sin(double degrees);

A closed namespace

Namespaces can be defined without a name. Such a namespace is anonymous and it restricts the
usability of the defined entities to the source file in which the anonymous namespace is defined.

The entities that are defined in the anonymous namespace are accessible the same way as static
functions and variables in C. The static keyword can still be used in C++, but its use is more
dominant in class definitions (see chapter 4). In situations where static variables or functions are
necessary, the use of the anonymous namespace is preferred.

3.6.2 Referring to entities

Given a namespace and entities that are defined or declared in it, the scope resolution operator
can be used to refer to the entities that are defined in the namespace. For example, to use the
function cos() defined in the CppAnnotations namespace the following code could be used:

// assume the CppAnnotations namespace is declared in the next header
// file:
#include <CppAnnotations>

int main()

{
cout << "The cosine of 60 degrees is: " <<
CppAnnotations: :cos(60) << endl;
return (0);
}

67

This is a rather cumbersome way to refer to the cos () function in the CppAnnotations namespace,
especially so if the function is frequently used.

Therefore, an abbreviated form (just cos() can be used by declaring that cos() will refer to
CppAnnotations: :cos(). For this, the using-declaration can be used. Following

using CppAnnotations::cos; // note: no function prototype, just the
// name of the entity is required.

the function cos () will refer to the cos () function in the CppAnnotations namespace. This implies
that the standard cos () function, accepting radials, cannot be used automatically anymore. The
plain scope resolution operator can be used to reach the generic cos () function:

int main()

{
using CppAnnotations::cos;
cout << cos(60) // this uses CppAnnotations::cos()
<< ::cos(1.5) // this uses the standard cos() function
<< endl;
return (0);
}

Note that a using-declaration can be used inside a block. The using declaration prevents the
definition of entities having the same name as the one used in the using declaration: it is not
possible to use a using declaration for a variable value in the CppAnnotations namespace, and
to define (or declare) an identically named object in the block in which the using declaration was
placed:

int main()

‘ using CppAnnotations::value;
ééﬁt << value << endl; // this uses CppAnnotations::value
int
value; // error: value already defined.
return (0);
}

68

The using directive

A generalized alternative to the using-declaration is the using-directive:

using namespace CppAnnotations;

Following this directive, all entities defined in the CppAnnotations namespace are uses as if they
where declared by using declarations.

While the using-directive is a quick way to import all the names of the CppAnnotations namespace
(assuming the entities are declared or defined separately from the directive), it is at the same time
a somewhat dirty way to do so, as it is less clear which entity will be used in a particular block of
code.

If, e.g., cos () is defined in the CppAnnotations namespace, the function CppAnnotations: :cos()
will be used when cos () is called in the code. However, if cos () is not defined in the CppAnnotations
namespace, the standard cos() function will be used. The using directive does not document as
clearly which entity will be used as the using declaration does. For this reason, the using directive
is somewhat deprecated.

3.6.3 The standard namespace

Apart from the anonymous namespace, many entities of the runtime available software (e.g., cout,
cin, cerr and the templates defined in the Standard Template Library, see chapter 10) are now
defined in the std namespace.

Regarding the discussion in the previous section, one should use a using declaration for these
entities. For example, in order to use the cout stream, the code should start with something like

#include <iostream>

using std::cout;
Often, however, the identifiers that are defined in the std namespace can all be accepted without
much thought. Because of that, one often encounters a using directive, rather than a using decla-
ration with the std namespace. So, instead of the mentioned using declaration a construction
like

#include <iostream>

using namespace std;
is often encountered. Whether this should be encouraged is subject of some dispute. Long using
declarations are of course inconvenient too. So as a rule of thumb one might decide to stick to

using declarations, up to the point where the list becomes impractically long, at which point a
using directive could be considered.

69

3.6.4 Nesting namespaces and namespace aliasing

Namespaces can be nested. The following code shows the definition of a nested namespace:

namespace CppAnnotations

{
namespace Virtual
{
void
*pointer;
b
}

Now the variable pointer defined in the Virtual namespace, nested under the CppAnnotations
namespace. In order to refer to this variable, the following options are available:

e The fully qualified name can be used. A fully qualified name of an entity is a list of all the
namespaces that are visited until the definition of the entity is reached, glued together by
the scope resolution operator:

int main()

{
CppAnnotations::Virtual::pointer = O;
return (0);

e A using declaration for CppAnnotations::Virtual can be used. Now Virtual can be used
without any prefix, but pointer must be used with the Virtual:: prefix:

using CppAnnotations::Virtual;
int main()
{

Virtual::pointer = O;
return (0);

e A using declaration for CppAnnotations: :Virtual: :pointer can be used. Now pointer
can be used without any prefix:

using CppAnnotations::Virtual: :pointer;

int main()

70

pointer = 0;
return (0);

e A using directive or directives can be used:

using namespace CppAnnotations::Virtual;

int main()

{
pointer = 0;
return (0);

Alternatively, two separate using directives could have been used:

using namespace CppAnnotations;
using namespace Virtual;

int main()

{
pointer = 0;
return (0);

e A combination of using declarations and using directives can be used. E.g., a using directive
can be used for the CppAnnotations namespace, and a using declaration can be used for
the Virtual: :pointer variable:

using namespace CppAnnotations;
using Virtual::pointer;

int main()

{
pointer = O;
return (0);

At every using directive all entities of that namespace can be used without any further prefix. If a
namespace is nested, then that namespace can also be used without any further prefix. However,
the entities defined in the nested namespace still need the nested namespace’s name. Only by using
a using declaration or directive the qualified name of the nested namespace can be omitted.

71

When fully qualified names are somehow preferred, while the long form (like CppAnnotations: :Virtual
is at the same time considered too long, a namespace alias can be used:

namespace CV = CppAnnotations::Virtual;

This defines CV as an alias for the full name. So, to refer to the pointer variable the construction

CV::pointer = 0;

Of course, a namespace alias itself can also be used in a using declaration or directive.

Defining entities outside of their namespaces

It is not strictly necessary to define members of namespaces within a namespace region. By
prefixing the member by its namespace or namespaces a member can be defined outside of a
namespace region. This may be done at the global level, or at intermediate levels in the case of
nested namespaces. So while it is not possible to define a member of namespace A within the
region of namespace C, it is possible to define a member of namespace A: :B within the region of
namespace A.

Note, however, that when a member of a namespace is defined outside of a namespace region, it
must still be declared within the region.

Assume the type int INT8[8] is defined in the CppAnnotations: :Virtual namespace.

Now suppose we want to define (at the global level) a member function funny of namespace
CppAnnotations: :Virtual, returning a pointer to CppAnnotations: :Virtual: : INT8. The defini-

::pointer)

tion of such a function could be as follows (first everything is defined inside the CppAnnotations: :Virtual

namespace):

namespace CppAnnotations

{
namespace Virtual
{
void
*pointer;

typedef int INT8[8];

INT8 *funny()
{
INT8
*ip = new INT8[1];

for (int idx

= 0; idx < sizeof (INT8) / sizeof(int); ++idx)
(*ip) [idx] =

(1 + idx) * (1 + idx);

72

return (ip);

The function funny () defines an array of one INT8 vector, and returns its address after initializing
the vector by the squares of the first eight natural numbers.

Now the function funny () can be defined outside of the CppAnnotations: :Virtual as follows:

namespace CppAnnotations

{
namespace Virtual
{
void
*pointer;
typedef int INT8[8];
INT8 *funny();
}
}

CppAnnotations: :Virtual: :INT8 *CppAnnotations::Virtual: :funny()

{
INT8
*ip = new INT8[1];

for (int idx = 0; idx < sizeof (INT8) / sizeof(int); ++idx)
{

cout << idx << endl;

(*ip) [idx] = idx * idx;
}

return (ip);

At the final code fragment note the following:

e funny () is declared inside of the CppAnnotations: :Virtual namespace.

e The definition outside of the namespace region requires us to use the fully qualified name of
the function and of its returntype.

e Inside the block of the function funny we are within the CppAnnotations: :Virtual names-

pace, so inside the function fully qualified names (e.g., for INT8 are not required any more.

Finally, note that the function could also have been defined in the CppAnnotations region. It that
case the Virtual namespace would have been required for the function name and its returntype,
while the internals of the function would remain the same:

73

namespace CppAnnotations

{
namespace Virtual
{
void
*pointer;
typedef int INT8[8];
INT8 *funny() ;
}
Virtual::INT8 *Virtual::funny()
{
INT8
*ip = new INT8[1];
for (int idx = 0; idx < sizeof (INT8) / sizeof(int); ++idx)
{
cout << idx << endl;
(¥ip) [idx] = idx * idx;
}
return (ip);
}
}

74

Chapter 4

Classes

In this chapter classes are the topic of discussion. Two special member functions, the constructor
and the destructor, are introduced.

In steps we will construct a class Person, which could be used in a database application to store
a name, an address and a phone number of a person.

Let’s start off by introducing the declaration of a class Person right away. The class declaration is
normally contained in the header file of the class, e.g., person.h. The class declaration is generally
not called a declaration, though. Rather, the common name for class declarations is class interface,
to be distinguished from the definitions of the function members, called the class implementation.
Thus, the interface of the class Person is given next:

class Person
{
public: // interface functions
void setname(char const *n);
void setaddress(char const *a);
void setphone(char const *p);

char const *getname(void) ;
char const *getaddress(void);
char const *getphone(void);

private: // data fields
char *name; // name of person
char *address; // address field
char *phone; // telephone number

The data fields in this class are name, address and phone. The fields are char *s which point
to allocated memory. The data are private, which means that they can only be accessed by the
functions of the class Person.

The data are manipulated by interface functions which take care of all communication with code

75

outside of the class. Either to set the data fields to a given value (e.g., setname()) or to inspect
the data (e.g., getname()).

Note once again how similar the class is to the struct. The fundamental difference being that by
default classes have private members, whereas structs have public members. Since the convention
calls for the public members of a class to appear first, the keyword private is needed to switch
back from public members to the (default) private situation.

4.1 Constructors and destructors

A class in C++4 may contain two special categories of member functions which are involved in
the internal workings of the class. These member function categories are, on the one hand, the
constructors and, on the other hand, the destructor.

The basic forms and functions of these two categories are discussed next.

4.1.1 The constructor

The constructor member function has by definition the same name as the corresponding class.
The constructor has no return value specification, not even void. E.g., for the class Person the
constructor is Person: :Person(). The C++ run-time system makes sure that the constructor of
a class, if defined, is called when an object of the class is created. It is of course possible to define
a class which has no constructor at all; in that case the run-time system either calls no function or
it calls a dummy constructor (i.e., a constructor which performs no actions) when a corresponding
object is created. The actual generated code of course depends on the compiler®.

Objects may be defined at a local (function) level, or at a global level (in which its status is
comparable to a global variable.

When an object is a local (non-static) variable of a function, the constructor is called every time
the function is called at the point where the variable is defined (a subtlety here is that a variable
may be defined implicitly as, e.g., a temporary variable in an expression).

When an object is a static variable, the constructor is called when the function in which the static
variable is defined is called for the first time.

When an object is a global variable the constructor is called when the program starts. Note that
in even this case the constructor is called even before the function main() is started. This feature
is illustrated in the following listing:

#include <iostream>

// a class Test with a constructor function
class Test
{
public: // ’public’ function:
Test(); // the constructor

LA compiler-supplied constructor in a class which contains composed objects (see section 4.5) will ‘automati-
cally’ call the member initializers, and therefore does perform some actions. We postpone the discussion of such
constructors to 4.5.1.

76

};

Test::Test() // here is the
{ // definition
cout << "constructor of class Test called\n";
}
// and here is the test program:
Test
g; // global object

void func()

{
Test // local object
1; // in function func()
cout << "here’s function func()" << endl;
}
int main()
{
Test // local object
X; // in function main()
cout << "main() function" << endl;
func();
return (0);
}

The listing shows how a class Test is defined which consists of only one function: the constructor.
The constructor performs only one action; a message is printed. The program contains three
objects of the class Test: one global object, one local object in main() and one local object in
func().

Concerning the definition of a constructor we have the following remarks:

e The constructor has the same name as its class.

e The constructor may not be defined with a return value. This is true for the declaration of
the constructor in the class definition, as in:

class Test
{
public:
/* no return value here */ Test();

};

and also holds true for the definition of the constructor function, as in:

7

/* no return value here */ Test::Test()

{

// statements ...

}

e The constructor function in the example above has no arguments. Therefore it is also called
the default constructor. That the function has no arguments is, however, no requirement
per se. We shall later see that it is possible to define constructors with arguments. Once
a constructor function is defined explicitly, the default constructor doesn’t exist anymore,
unless the default constructor is definied explicitly itself.

The constructor of the three objects of the class Test in the above listing are called in the following
order:

e The constructor is first called for the global object g.

e Next the function main() is started. The object x is created as a local variable of this
function and hence the constructor is called again. After this we expect to see the text
main() function.

e Finally the function func() is activated from main(). In this function the local object 1 is
created and hence the constructor is called. After this, the message here’s function func()
appears.

As expected, the program yields therefore the following output (the text in parentheses is added
for illustration purposes):

constructor of class Test called (global object g)
constructor of class Test called (object x in main())
main() function

constructor of class Test called (object 1 in func())

here’s function func()

4.1.2 The destructor

The second special member function is the destructor. This function is the opposite of the con-
structor in the sense that it is invoked when an object ceases to exist. For objects which are local
non-static variables, the destructor is called when the block in which the object is defined is left:
the destructors of objects that are defined in nested blocks of functions are therefore usually called
before the function itself terminates. The destructors of objects that are defined somewhere in the
outer block of a function are called just before the function returns (terminates). For static or
global variables the destructor is called before the program terminates.

However, when a program is interrupted using an exit () call, the destructors are called only for
global objects which exist at that time. Destructors of objects defined locally within functions are
not called when a program is forcefully terminated using exit ().

When defining a destructor for a given class the following rules apply:

78

e The destructor function has the same name as the class but prefixed by a tilde.

e The destructor has neither arguments nor a return value.

The destructor for the class Test from the previous section could be declared as follows:

class Test

{
public:
Test(); // constructor
“Test(); // destructor
// any other members
};

The position of the constructor(s) and destructor in the class definition is dictated by convention:
First the constructors are declared, then the destructor, and only then any other members follow.

4.1.3 A first application

One of the applications of constructors and destructors is the management of memory allocation.
This is illustrated using the class Person.

As illustrated at the beginning of this chapter, the class Person contains three private pointers, all
char #s. These data members are manipulated by the interface functions. The internal workings
of the class are as follows: when a name, address or phone number of a Person is defined, memory
is allocated to store these data. An obvious setup is described below:

e The constructor of the class makes sure that the data members are initially O-pointers.
e The destructor releases all allocated memory.

e The defining of a name, address or phone number (by means of the set...() functions)
consists of two steps. First, previously allocated memory is released. Next, the string which
is supplied as an argument to the set. .. () function is duplicated in memory.

e Inspecting a data member by means of one of the get...() functions simply returns the
corresponding pointer: either a O-pointer, indicating that the data is not defined, or a pointer
to allocated memory holding the data.

The set. .. () functions are illustrated below. Strings are duplicated in this example by an imag-
inary function xstrdup(), which would duplicate a string or terminate the program when the
memory pool is exhausted?.

2As a word to the initiated reader it is noted here that many other ways to handle the memory allocation are
possible here: As discussed in section 5, new could be used, together with set_new_handler(), or exceptions could
be used to catch any failing memory allocation. However, since we haven’t covered that subject yet, and since these
annotations start from C, we used the tried and true method of a ‘protected allocation function’ xstrdup() here
for didactical reasons.

79

// interface functions set...()
void Person::setname(char const *n)

{
free(name) ;
name = xstrdup(n);
}
void Person::setaddress(char const *a)
{
free(address) ;
address = xstrdup(a);
}
void Person::setphone(char const *p)
{
free(phone) ;
phone = xstrdup(p);
}

Note that the statements free(...) in the above listing are executed unconditionally. This never
leads to incorrect actions: when a name, address or phone number is defined, the corresponding
pointers point to previously allocated memory which should be freed. When the data are not (yet)
defined, then the corresponding pointer is a O-pointer; and free(0) performs no action?.

Furthermore it should be noted that this code example uses the standard C function free () which
should be familiar to most C programmers. The delete statement, which has more ‘C++ flavor’,
will be discussed later.

The interface functions get...() are defined now. Note the occurence of the keyword const
following the parameter lists of the functions: the member functions are const member functions,
indicating that they will not modify their object when they’re called. The matter of const member
functions is postponed to section 4.2, where it will be discussed in greater detail.

// interface functions get...()
char const *Person::getname() const

{
return (name);
}
char const *Person::getaddress() const
{
return (address);
}

char const *Person::getphone() const
{

return (phone);

3 Actually, free(0) should perform no action. However, later on we’ll introduce the operators new and delete.
With the delete operator delete 0 is formally ignored.

80

The destructor, constructor and the class definition are given below.

// class definition
class Person
{
public:
Person(); // constructor
“Person(); // destructor

// functions to set fields
void setname(char const *n);
void setaddress(char const *a);
void setphone(char const *p);

// functions to inspect fields
char const *getname() const;
char const *getaddress() const;
char const *getphone() const;

private:
char *name; // name of person
char *address; // address field
char #*phone; // telephone number

};

// constructor
Person: :Person()

{
name = 0;
address = 0;
phone = 0;

}

// destructor
Person: : “Person()

{
free(name) ;
free(address) ;
free(phone) ;

}

To demonstrate the usage of the class Person, a code example follows next. An object is initialized
and passed to a function printperson(), which prints the contained data. Note also the usage
of the reference operator & in the argument list of the function printperson(). This way only a
reference to a Person object is passed, rather than a whole object. The fact that printperson()
does not modify its argument is evident from the fact that the argument is declared const. Also

81

note that the example doesn’t show where the destructor is called; this action occurs implicitly
when the below function main() terminates and hence when its local variable p ceases to exist.

It should also be noted that the function printperson() could be defined as a public member
function of the class Person.

#include <iostream>

void printperson(Person const &p)

{
cout << "Name : " << p.getname() << endl
<< "Address : " << p.getaddress() << endl
<< "Phone : " << p.getphone() << endl;
}
int main()
{
Person
ps
p.setname("Linus Torvalds");
p-setaddress("E-mail: Torvalds@cs.helsinki.fi");
p-setphone(" - not sure - ");
printperson(p);
return (0);
}

When printperson() receives a fully defined Person object (i.e., containing a name, address and
phone number), the data are correctly printed. However, when a Person object is only partially
filled, e.g. with only a name, printperson() passes 0-pointers to cout. This unesthetic feature
can be remedied with a little more code:

void printperson(Person const &p)

{
if (p.getname())
cout << "Name : " << p.getname() << "\n";
if (p.getaddress())
cout << "Address : " << p.getaddress() << "\n";
if (p.getphone())
cout << "Phone : " << p.getphone() << "\n";
}

Alternatively, the constructor Person: :Person() might initialize the members to ‘printable de-
faults’, like " *x undefined *x ".

82

4.1.4 Constructors with arguments

In the above declaration of the class Person the constructor has no arguments. C—H+ allows
constructors to be defined with argument lists. The arguments are supplied when an object is
created.

For the class Person a constructor may be handy which expects three strings: the name, address
and phone number. Such a constructor is shown below:

Person: :Person(char const *n, char const *a, char const *p)
{

name = xstrdup(n);

address = xstrdup(a);

phone = xstrdup(p);

The constructor must be included in the class declaration, as illustrated here:

class Person

{
public:
Person: :Person(char const *n,
char const *a, char const *p);

};

Since C++ allows function overloading, such a declaration of a constructor can co-exist with a
constructor without arguments. The class Person would thus have two constructors.

The usage of a constructor with arguments is illustrated in the following code fragment. The object
a is initialized at its definition:

int main()

{
Person
a("Karel", "Rietveldlaan 37", "542 6044"),
b;
return (0);
}

In this example, the Person objects a and b are created when main () is started. For the object a
the constructor with arguments is selected by the compiler. For the object b the default constructor
(without arguments) is used.

83

The order of construction

The possibility to pass arguments to constructors offers us the chance to monitor at which exact
moment in a program’s execution an object is created or destroyed. This is shown in the next
listing, using a class Test:

class Test

{
public:
// constructors:
Test () ; // argument-free
Test(char const *name) ; // with a name argument
// destructor:
“Test();
private:
// data:
char *n; // name field
};
Test::Test()
{
n = xstrdup("without name");
printf ("Test object without name created\n");
}
Test::Test(char const *name)
{
n = xstrdup(name) ;
cout << "Test object " << name << " created" << endl;
}
Test:: " Test()
{
cout << "Test object " << n << " destroyed" << endl;
free(n);
}

By defining objects of the class Test with specific names, the construction and destruction of these
objects can be monitored:

Test
globaltest("global");

void func()

{
Test
functest ("func");

84

}

int main()

{

Test

maintest("main");

func();

return (0);

This test program thus leads to the following (and expected) output:

Test
Test
Test
Test
Test
Test

object
object
object
object
object
object

4.2 Const

global created
main created
func created
func destroyed
main destroyed
global destroyed

member functions and const objects

The keyword const is often seen in the declarations of member functions following the argument
list. This keyword is used to indicate that a member function does not alter the data fields of its
object, but only inspects them. Using the example of the class Person, the get...() functions
should be declared const:

class Person

{

};

public:

// functions to inspect fields
char const *getname(void) const;
char const *getaddress(void) const;
char const *getphone(void) const;

private:

As is illustrated in this fragment, the keyword const occurs following the argument list of functions.
Note that in this situation the rule of thumb given in section 3.1.3 applies once again: whichever
appears before the keyword const, may not be altered and doesn’t alter (its own) data.

85

The same specification must be repeated in the definition of member functions themselves:

char const *Person::getname() const
{
return (name);

}

A member function which is declared and defined as const may not alter any data fields of its
class. In other words, a statement like

name = 0;

in the above const function getname () would result in a compilation error.

The const member functions exist because C++ allows const objects to be created, or references
to const objects to be passed on to functions. For such objects only member functions which do
not modify it, i.e., the const member functions, may be called. The only exception to this rule
are the constructors and destructor: these are called ‘automatically’. The possibility of calling
constructors or destructors is comparable to the definition of a variable int const max = 10.
In situations like these, no assignment but rather an initialization takes place at creation-time.
Analogously, the constructor can initialize its object when the variable is created, but subsequent
assignments cannot take place.

The following example shows how a const object of the class Person can be defined. When the
object is created the data fields are initialized by the constructor:

Person const
me ("Karel", "karel@icce.rug.nl", "542 6044");

Following this definition it would be illegal to try to redefine the name, address or phone number
for the object me: a statement as

me.setname ("Lerak") ;

would not be accepted by the compiler. Once more, look at the position of the const keyword in
the variable definition: const, following Person and preceding me associates to the left: the Person
object in general must remain unaltered. Hence, if multiple objects were defined here, both would
be constant Person objects, as in:

Person const // all constant Person objects

86

kk("Karel", "karel@icce.rug.nl", "542 6044"),
fbb("Frank", "frank@icce.rug.nl", "403 2223");

Member functions which do not modify their object should be defined as const member functions.
This subsequently allows the use of these functions with const objects or with const references.

4.3 The operators new and delete

The C++ language defines two operators which are specific for the allocation and deallocation of
memory. These operators are new and delete.

The most basic example of the use of these operators is given below. An int pointer variable is
used to point to memory which is allocated by the operator new. This memory is later released by
the operator delete.

int
*ip;
ip = new int;

// any other statements
delete ip;

Note that new and delete are operators and therefore do not require parentheses, which are
required for functions like malloc () and free(). The operator delete returns void, the operator
new returns a pointer to the kind of memory that’s asked for by its argument (e.g., a pointer to an
int in the above example).

4.3.1 Allocating and deallocating arrays

When the operator new is used to allocate an array, the size of the variable is placed between
square brackets following the type:

int
*intarr;

intarr = new int [20]; // allocates 20 ints

The syntactical rule for the operator new is that this operator must be followed by a type, optionally
followed by a number in square brackets. The type and number specification lead to an expression
which is used by the compiler to deduce its size; in C an expression like sizeof (int [20]) might
be used.

An array is deallocated by using the operator delete:

87

delete [] intarr;

In this statement the array operators [] indicate that an array is being deallocated. The rule of
thumb here is: whenever new is followed by [1, delete should be followed by it too.

What happens if delete rather than delete [] is used? Consider the following situation: a class
X is defined having a destructor telling us that it’s called. In a main() function an array of two
X objects is allocated by new, to be deleted by delete []. Next, the same actions are repeated,
albeit that the delete operator is called without []:

#include <iostream>

class X
{
public:
“X0O;
};
X::"XO
{
cout << "X destructor called" << endl;
}
int main()
{
X
*a;
a = new X[2];
cout << "Destruction with []’s" << endl;
delete [] a;
a = new X[2];
cout << "Destruction without []’s" << endl;
delete a;
return (0);
}

Here’s the generated output:

Destruction with []’s

88

X destructor called
X destructor called
Destruction without [] ’s
X destructor called

So, as we can see, the destructor of the individual X objects are called if the delete [] syntax is
followed, and not if the [] is omitted.

If no destructor is defined, it is not called. Consider the following fragment:

#include <iostream>

class X
{
public:
X0 ;
};
X::"X0O
{
cout << "X destructor called" << endl;
}
int main()
{
X
**a;
a = new Xx [2];
al0] = new X [2];
al1] = new X [2];
delete [] a;
return (0);
}

This program produces no messages at all. Why is this? The variable a is defined as a pointer to
a pointer. For this situation, however, there is no defined destructor as we do not have something
as a ’class pointer to X objects’. Consequently, the [] is ignored.

Now, because of the [] being ignored, not all elements of the array a points to are considered when
a is deleted. The two pointer elements of a are deleted, though, because delete a (note that the
[] is not written here) frees the memory pointed to by a. That’s all there is to it.

What if we don’t want this, but require the X objects pointed to by the elements of a to be deleted
as well? In this case we have two options:

89

e Explicitly walk all the elements of the a array, deleting them in turn. This will call the
destructor for a pointer to X objects, which will destroy all elements if the [] operator is
used, as in:

#include <iostream>

class X
{
public:
X0 ;
};
X::"X0O
{
cout << "X destructor called" << endl;
}
int main()
{
X
**a;
a = new Xx [2];
a[0] = new X [2];
al1] = new X [2];
for (int index = 0; index < 2; index++)
delete [] alindex];
delete a;
return (0);
}

e Define a class containing a pointer to X objects, and allocate a pointer to this super-class,
rather than a pointer to a pointer to X objects. The topic of containing classes in classes,
composition, is discussed in section 4.5.

4.3.2 New and delete and object pointers

The operators new and delete are also used when an object of a given class is allocated. As we
have seen in the previous section, the advantage of the operators new and delete over functions
like malloc () and free() lies in the fact that new and delete call the corresponding constructors
or destructor. This is illustrated in the next example:

Person
*Pp; // ptr to Person object

90

pp = new Person; // now constructed

delete pp; // now destroyed

The allocation of a new Person object pointed to by pp is a two-step process. First, the memory
for the object itself is allocated. Second, the constructor is called which initializes the object.
In the above example the constructor is the argument-free version; it is however also possible to
choose an explicit constructor:

pp = new Person("Frank", "Oostumerweg 17", "050 403 2223");

delete pp;

Note that, analogously to the construction of an object, the destruction is also a two-step process:
first, the destructor of the class is called to deallocate the memory used by the object. Then the
memory which is used by the object itself is freed.

Dynamically allocated arrays of objects can also be manipulated with new and delete. In this
case the size of the array is given between the [] when the array is created:

Person
*personarray;

personarray = new Person [10];

The compiler will generate code to call the default constructor for each object which is created.
As we have seen, the array operator [] must be used with the delete operator to destroy such an
array in the proper way:

delete [] personarray;

The presence of the [] ensures that the destructor is called for each object in the array. Note
again that delete personarray would only release the memory of the array itself.

4.3.3 The function set_new_handler()

The C++4 run-time system makes sure that when memory allocation fails, an error function is
activated. By default this function returns the value 0 to the caller of new, so that the pointer
which is assigned by new is set to zero. The error function can be redefined, but it must comply
with a few prerequisites, which are, unfortunately, compiler-dependent. E.g., for the Microsoft
C/C++ compiler version 7, the prerequisites are:

91

e The function is supplied one argument, a size_t value which indicates how many bytes
should have been allocated?.

e The function must return an int, which is the value passed by new to the assigned pointer.

The Gnu C/C++ compiler gcc, which is present on many Unix platforms, requires that the error
handler:

e has no arguments, and

e returns no value (a void return type).
Then again, Microsoft’s Visual C++ interprets the returnvalue of the the function as follows:

e The run-time system retries allocation each time the function returns a nonzero value and
fails new if the function returns 0.

In short: there’s no standard here, so make sure that you lookup the particular characteristics of
the setmnew_ handler function for your compiler. Whatever you do, in any case make sure you
use this function: it saves you a lot of checks (and problems with a failing allocation that you just
happened to forget to protect with a check...).

The redefined error function might, e.g., print a message and terminate the program. The user-
written error function becomes part of the allocation system through the function set new_handler (),
defined in the header file new.h. With some compilers, the installing function is called _set new_handler ()
(note the leading underscore).

The implementation of an error function is illustrated below. This implementation applies to the
Gnu C/C++ requirements®:

#include <new.h>
#include <iostream>

void out_of_memory()

{
cout << "Memory exhausted. Program terminates." << endl;
exit(1);
}
int main()
{
int
*ip;
long

total_allocated = 0;

// install error function

4The type size_t is usually identical to unsigned.
5The actual try-out of the program is not encouraged, as it will slow down the computer enormously due to the
resulting occupation of Uniz’s swap area

92

set_new_handler (out_of_memory) ;

// eat up all memory

puts("0k, allocating..");

while (1)

{
ip = new int [10000];
total_allocated += 10000 * sizeof (int);
printf ("Now got a total of %1d bytes\n",

total_allocated);
3

return (0);

The advantage of an allocation error function lies in the fact that once installed, new can be used
without wondering whether the allocation succeeded or not: upon failure the error function is
automatically invoked and the program exits. It is good practice to install a new handler in each
C++ program, even when the actual code of the program does not allocate memory. Memory
allocation can also fail in not directly visible code, e.g., when streams are used or when strings are
duplicated by low-level functions.

Note that it may not be assumed that the standard C functions which allocate memory, such as
strdup(), malloc(), realloc() etc. will trigger the new handler when memory allocation fails.
This means that once a new handler is installed, such functions should not automatically be used
in an unprotected way in a C++4 program. As an example of the use of new for duplicating
a string, a rewrite of the function strdup() using the operator new is given in section 5. It is
strongly suggested to revert to this approach, rather than to using functions like xstrdup (), when
the allocation of memory is required.

4.4 The keyword inline

Let us take another look at the implementation of the function Person: : getname():

char const *Person::getname() const
{

return (name);

}

This function is used to retrieve the name field of an object of the class Person. In a code fragment,
like:

Person
frank("Frank", "Oostumerweg 17", "403 2223");

93

puts(frank.getname());

the following actions take place:

e The function Person: : getname () is called.
e This function returns the value of the pointer name of the object frank.
e This value, which is a pointer to a string, is passed to puts ().

e The function puts() finally is called and prints a string.

Especially the first part of these actions leads to some time loss, since an extra function call is
necessary to retrieve the value of the name field. Sometimes a faster process may be desirable, in
which the name field becomes immediately available; thus avoiding the call to getname (). This
can be realized by using inline functions, which can be defined in two ways.

4.4.1 Inline functions within class declarations

Using the first method to implement inline functions, the code of a function is defined in a
class declaration itself. For the class Person this would lead to the following implementation of
getname ():

class Person

{
public:
char const *getname(void) const
{
return (name);
}
}

Note that the code of the function getname() now literally occurs in the interface of the class
Person. The keyword const occurs after the function declaration, and before the code block.

Thus, inline functions appearing in the class interface show their full (and standard) definition
within the class interface itself.

The effect of this is the following. When getname () is called in a program statement, the compiler
generates the code of the function when the function is used in the source-text, rather than a call
to the function, appearing only once in the compiled program.

This construction, where the function code itself is inserted rather than a call to the function, is
called an inline function. Note that the use of inline function results in duplication of the code of
the function for each invokation of the inline function. This is probably ok if the function is a small
one, and needs to be executed fast. It’s not so desirable if the code of the function is extensive.

94

4.4.2 Inline functions outside of class declarations

The second way to implement inline functions leaves a class interface intact, but mentions the
keyword inline in the function definition. The interface and implementation in this case are as
follows:

class Person

{

public:

char const *getname(void) const;

};
inline char const *Person::getname() const
{

return (name);
}

Again, the compiler will insert the code of the function getname () instead of generating a call.

However, the inline function must still appear in the same file as the class interface, and cannot
be compiled to be stored in, e.g., a library. The reason for this is that the compiler rather than
the linker must be able to insert the code of the function in a source text offered for compilation.
Code stored in a library is inaccessible to the compiler. Consequently, inline functions are always
defined together with the class interface.

4.4.3 When to use inline functions

When should inline functions be used, and when not? There is a number of simple rules of thumb
which may be followed:

e In general inline functions should not be used. Voila, that’s simple, isn’t it?

e Defining inline functions can be considered once a fully developed and tested program runs
too slowly and shows ‘bottlenecks’ in certain functions. A profiler, which runs a program
and determines where most of the time is spent, is necessary for such optimization.

e inline functions can be used when member functions consist of one very simple statement
(such as the return statement in the function Person: :getname()).

e By defining a function as inline, its implementation is inserted in the code wherever the
function is used. As a consequence, when the implementation of the inline function changes,
all sources using the inline function must be recompiled. In practice that means that all
functions must be recompiled that include (either directly or indirectly) the header file of the
class in which the inline function is defined.

e [t is only useful to implement an inline function when the time which is spent during a
function call is long compared to the code in the function. An example where an inline
function has no effect at all is the following:

95

void Person::printname() const
{

cout << name << endl;

}

This function, which is, for the sake of the argument, presumed to be a member of the class
Person, contains only one statement.

However, the statement takes a relatively long time to execute. In general, functions which
perform input and output take lots of time. The effect of the conversion of this function
printname () to inline would therefore lead to a very insignificant gain in execution time.

All inline functions have one disadvantage: the actual code is inserted by the compiler and must
therefore be known compile-time. Therefore, as mentioned earlier, an inline function can never
be located in a run-time library. Practically this means that an inline function is placed near the
interface of a class, usually in the same header file. The result is a header file which not only shows
the declaration of a class, but also part of its implementation, thus blurring the distinction
between interface and implementation.

Finally, note that using the keyword inline is not really an order for the compiler. Rather, it is
a suggestion the compiler may either choose to follow or to ignore.

4.5 Objects in objects: composition

An often recurring situation is one where objects are used as data fields in class definitions. This
is referred to as composition.

For example, the class Person could hold information about the name, address and phone number,
but additionally a class Date could be used to keep the information about the birth date:

class Person
{
public:
// constructor and destructor
Person();
Person(char const *nm, char const *adr,
char const *ph);

“Person() ;

// interface functions

void setname(char const *n);

void setaddress(char const *a);

void setphone(char const *p);

void setbirthday(int yr, int mnth, int d);

char const *getname() const;

char const *getaddress() const;
char const *getphone() const;

96

int getbirthyear() const;
int getbirthmonth() const;
int getbirthday() const;

private:
// data fields
char *name, *address, *phone;
Date birthday;

We shall not further elaborate on the class Date: this class could, e.g., consist of three int data
fields to store a year, month and day. These data fields would be set and inspected using interface
functions setyear(), getyear () etc..

The interface functions of the class Person would then use Date’s interface functions to manipulate
the birth date. As an example the function getbirthyear () of the class Person is given below:

int Person::getbirthyear() const
{

return (birthday.getyear());
}

Composition is not extraordinary or C++ specific: in C it is quite common to include structs or
unions in other compound types. Note that the composed objects can be reached through their
member functions: the normal field selector operators are used for this.

However, the initialization of the composed objects deserves some extra attention: the topics of
the coming sections.

4.5.1 Composition and const objects: const member initializers

Composition of objects has an important consequence for the constructor functions of the ‘com-
posed’ (embedded) object. Unless explicitly instructed otherwise, the compiler generates code to
call the default constructors of all composed classes in the constructor of the composing class.

Often it is desirable to initialize a composed object from the constructor of the composing class.
This is illustrated below for the composed class Date in a Person. In this fragment it assumed
that a constructor for a Person should be defined expecting six arguments: the name, address and
phone number plus the year, month and day of the birth date. It is furthermore assumed that the
composed class Date has a constructor with three int arguments for the year, month and day:

Person: :Person(char const *nm, char const *adr,
char const *ph,
int d, int m, int y)

birthday(d, m, y)

97

name = xstrdup(nm);
address = xstrdup(adr);
phone = xstrdup(ph);

Note that following the argument list of the constructor Person: :Person(), the constructor of
the data field Date is specifically called, supplied with three arguments. This constructor is ex-
plicitly called for the composed object birthday. This occurs even before the code block of
Person: :Person() is executed. This means that when a Person object is constructed and when
six arguments are supplied to the constructor, the birthday field of the object is initialized even
before Person’s own data fields are set to their values.

In this situation, the constructor of the composed data member is also referred to as member
initializer.

When several composed data members of a class exist, all member initializers can be called using
a ‘constructor list’: this list consists of the constructors of all composed objects, separated by
commas.

When member initializers are not used, the compiler automatically supplies a call to the default
constructor (i.e., the constructor without arguments). In this case a default constructor must have
been defined in the composed class.

Member initializers should be used as much as possible: not using member initializers can result
in inefficient code, and can be downright necessary. As an example showing the inefficiency of
not using a member initializer, consider the following code fragment where the birthday field is
not initialized by the Date constructor, but instead the setday(), setmonth() and setyear()
functions are called:

Person: :Person(char const *nm, char const *adr,
char const *ph,
int d, int m, int y)

name = xstrdup(nm);
address = xstrdup(adr);
phone = xstrdup(ph);
birthday.setday(d);

birthday.setmonth(m) ;
birthday.setyear(y);

This code is inefficient because:

e first the default constructor of birthday is called (this action is implicit),

e and subsequently the desired date is set explicitly by member functions of the class Date.

98

This method is not only inefficient, but even more: it may not work when the composed object is
declared as a const object. A data field like birthday is a good candidate for being const, since
a person’s birthday usually doesn’t change.

This means that when the definition of a Person is changed so that the data member birthday
is declared as a const object, the implementation of the constructor Person: :Person() with six
arguments must use member initializers. Calling the birthday.set... () would be illegal, since
these are no const functions.

Concluding, the rule of thumb is the following: when composition of objects is used, the member
initializer method is preferred to explicit initialization of the composed object. This not only
results in more efficient code, but it also allows the composed object to be declared as a const
object.

4.5.2 Composition and reference objects: reference member initializers

Apart from using member initializers to initialize composed objects (be they const objects or
not), there is another situation where member initializers must be used. Consider the following
situation.

A program uses an object of the class Configfile, defined in main() to access the information in
a configuration file. The configuration file contains parameters of the program which may be set by
changing the values in the configuration file, rather than by supplying command line arguments.

Assume that another object that is used in the function main() is an object of the class Process,
doing ‘all the work’. What possibilities do we have to tell the object of the class Process that an
object of the class Configfile exists?

e The objects could have been declared as global objects. This s a possibility, but not a very
good one, since all the advantages of local objects are lost.

e The Configfile object may be passed to the Process object at construction time. Passing
an object in a blunt way (i.e., by value) might not be a very good idea, since the object must
be copied into the Configfile parameter, and then a data member of the Process class can
be used to make the Configfile object accessible throughout the Process class. This might
involve yet another object-copying task, as in the following situation:

Process: :Process(Configfile conf) // a copy from the caller

{

conf_member = conf; // copying to conf_member

e The copy-instructions can be avoided by using pointers to the Configfile objects, as in:

Process: :Process(Configfile *conf) // a pointer to an external object

{
conf_ptr = conf; // the conf_ptr is a Configfile *

99

This construction as such is ok, but forces us to use the -> field selector operator, rather
than the . operator, which is (disputably) awkward: conceptually one tends to think of the
Configfile object as an object, and not as a pointer to an object. In C this would probably
have been the preferred method, but in C++ we can do better.

e Rather than using value or pointer parameters, the Configfile parameter could be defined
as a reference parameter to the Process constructor. Next, we can define a Config reference
data member in the class Process. Using the reference variable effectively uses a pointer,
disguised as a variable.

However, the following construction will not result in the correct initialization of the Configfile
&conf _ref reference data member:

Process: :Process(Configfile &conf)

{

conf_ref = conf; // wrong: no assignment

}

The statement conf_ref = conf fails, because the compiler won’t see this as an initialization, but
considers this an assignment of one Configfile object (i.e., conf), to another (conf_ref). It does
so, because that’s the normal interpretation: an assignment to a reference variable is actually an
assignment to the variable the reference variable refers to. But to what variable does conf_ref
refer? To no variable, since we haven’t initialized conf _ref. After all, the whole purpose of the
statement conf_ref = conf was to initialize conf ref....

So, how do we proceed when conf_ref must be initialized? In this situation we once again use the
member-initializer syntax. The following example shows the correct way to initialize conf _ref:

Process: :Process(Configfile &conf)

conf_ref (conf) // initializing reference member

Note that this syntax can be used in all cases where reference data members are used. If int_ref
would be an int reference data member, a construction like

Process: :Process(int &ir)

int_ref (ir)

would have been called for.

100

4.6 Friend functions and friend classes

As we have seen in the previous sections, private data or function members are normally only
accessible by the code which is part of the corresponding class. However, situations may arise in
which it is desirable to allow the explicit access to private members of one class to one or more
other classless functions or member functions of classes.

E.g., consider the following code example (all functions are inline for purposes of brevity):

class A // class A: just stores an
{ // int value via the constructor
public: // and can retrieve it via
A(int v) // getval

{ value = v; }
int getval()
{ return (value); }

private:
int value;
};
void decrement (A &a) // function decrement: tries
{ // to alter A’s private data
a.value—-;
}
class B // class B: tries to touch
{ // A’s private parts
public:
void touch(A &a)
{ a.value++; }
};

This code will not compile, since the classless function decrement () and the function touch() of
the class B attempt to access a private datamember of A.

We can explicitly allow decrement () to access A’s data, and we can explicitly allow the class B to
access these data. To accomplish this, the offending classless function decrement () and the class
B are declared to be friends of A:

class A
{
public:
friend class B; // B’s my buddy, I trust him
friend void decrement (A // decrement() is also a good pal
&what) ;
};

101

Concerning friendship between classes, we remark the following:

e Friendship is not mutual by default. This means that once B is declared as a friend of A, this
does not give A the right to access B’s private members.

e Friendship, when applied to program design, is an escape mechanism which circumvents the
principle of data hiding. Using friend classes should therefore be minimized to those cases
where it is absolutely essential.

e If friends are used, realize that the implementation of classes or functions that are friends to
other classes become implementation dependent on these classes. In the above example: once
the internal organization of the data of the class A changes, all its friends must be recompiled
(and possibly modified) as well.

e As a rule of thumb: don’t use friend functions or classes.

Having thus issued some warnings against the use of friends, we’ll leave our discussion of friends
for the time being. However, in section 13 we’ll continue the discussion, having covered, by that
time, the topic of operator overloading.

4.7 Header file organization with classes

In section 2.5.11 the requirements for header files when a C++4 program also uses C functions
were discussed.

When classes are used, there are more requirements for the organization of header files. In this
section these requirements are covered.

First, the source files. With the exception of the occasional classless function, source files should
contain the code of memberfunctions of classes. With source files there are basically two ap-
proaches:

e All required header files for a memberfunction are included in each individual source file.

e All required header files for all memberfunctions are included in the class-headerfile, and each
sourcefile of that class includes only the header file of its class.

The first alternative has the advantage of economy for the compiler: it only needs to read the
header files that are necessary for a particular source file. It has the disadvantage that the program
developer must include multiple header files again and again in sourcefiles: it both takes time to
type in the include-directives and to think about the header files which are needed in a particular
source file.

The second alternative has the advantage of economy for the program developer: the header file
of the class accumulates header files, so it tends to become more and more generally useful. It has
the disadvantage that the compiler will often have to read header files which aren’t actually used
by the function defined in the source file.

With computers running faster and faster we think the second alternative is to be preferred over
the first alternative. So, we suggest that source files of a particular class MyClass are organized
according to the following example:

102

#include <myclass.h>

int MyClass: :aMemberFunction()

{

}

There is only one include-directive. Note that the directive refers to a header file in a direc-
tory mentioned in the INCLUDE-file environment variable. Local header files (using #include
"myclass.h") could be used too, but that tends to complicate the organization of the class header
file itself somewhat. If name-collisions with existing header files might occur it pays off to have a
subdirectory of one of the directories mentioned in the INCLUDE environment variable (comparable
to, e.g., the sys subdirectory). If class MyClass is developed as part of some larger project, create
a subdirectory (or subdirectory link) of one of the INCLUDE directories, to contain all header files
of all classes that are developed as part of the project. The include-directives will then be similar
to #include <myproject/myclass.h>, and name collisions with other header files are avoided.

The organization of the header-file itself requires some attention. Consider the following example,
in which two classes File and String are used. The File class has a member gets(String
&destination), which reads a line from a file, and stores the line in the String object passed to the
gets () member function as reference, while the class String has a member function getLine (File
&file), which reads one line from the File object which is passed to the getLine() member
function as a reference. The (partial) header file for the class String is then:

#ifndef _String_h_
#define _String h_

#include <project/file.h> // to know about a File

class String

{
public:
void getLine(File &file);
I
#endif

However, a similar setup is required for the class File:

#ifndef _File_h_
#define _File_h_

#include <project/string.h> // to know about a String
class File

{
public:

103

Now

void gets(String &string);

};
#endif

we have created a problem. The compiler, trying to compile File::gets() proceeds as

follows:

The

The header file project/string.h is opened to be read

_String-h_is defined

The header file project/file.h is opened to be read

_File h_is defined

The header file project/string.h is opened to be read

String h has been defined, so project/string.h is skipped

The definition of the class File is parsed.

In the class definition contains a reference to a String object

As the class String hasn’t been parsed yet, a String is an undefined type, and the compiler

quits with an error.

solution for this problem is to use a forward class reference before the class definition, and to

include the corresponding class header file after the class definition. So we get:

#ifndef _String_h_
#define _String h_

class File; // forward reference
class String
{
public:
void getLine(File &file);
};

#include <project/file.h> // to know about a File

#endif

However, a similar setup is required for the class File:

#ifndef _File_h_

104

#define _File_h_
class String; // forward reference

class File
{
public:
void gets(String &string);

};
#include <project/string.h> // to know about a String

#endif

This works well in all situations where either references or pointers to another class are involved.
But it doesn’t work with composition. Assume the class File has a composed data member of the
class String. In that case, the class definition of the class File must include the header file of the
class String before the class definition itself, because otherwise the compiler can’t tell how big a
File object will be, as it doesn’t know the size of a String object once the definition of the File
class is completed.

In cases where classes contain composed objects (or are derived from other classes, see chapter
14) the header files of the classes of the composed objects must have been read before the class
definition itself. In such a case the class File might be defined as follows:

#ifndef _File_h_
#define _File_h_

#include <project/string.h> // to know about a String

class File

{
public:
void gets(String &string);
private:
String // composition !
line;
};
#endif

Note that the class String can’t have a File object as a composed member: such a situation
would result again in an undefined class while compiling the sources of these classes.

All other required header files are either related to classes that are used only within the source
files themselves (without being part of the current class definition), or they are related to classless
functions (like memcpy ()). All headers that are not required by the compiler to parse the current
class definition can be mentioned below the class definition.

105

To summarize, a class header file should be organized as follows:
e Everything is contained within the block defined by the standard ifndef and endif direc-
tives.

e Header files of classes of objects that are either composed or inherited (see chapter 14) are
mentioned first.

e The classes of objects appearing only as references or as pointers in the class definition are
specified as forward references.

e Next comes the class definition itself.

e Following the class definition the header files of all classes given as forward references are
included.

e Finally, all other header files that are required in the source files of the class are included.

An example of such an header file is:

#ifndef _File_h_
#define _File_h_

#include <fstream> // for composed ’instream’
class String; // forward reference
class File // class definition
{

public:

void gets(String &string);

private:
ifstream
instream;
};
// for the class String
#include <project/string.h>

// for remaining software
#include <memory.h>

#include <sys/stat.h>

#endif

4.8 Nesting Classes

Classes can be defined inside other classes. Classes that are defined inside other classes are called
nested classes.

106

A class can be nested in every part of the surrounding class: in the public, protectedor private
section. Such a nested class can be considered a member of the surrounding class. The normal
access and visibility rules in classes apply to nested classes. If a class is nested in the public
section of a class, it is visible outside the surrounding class. If it is nested in the protected section
it is visible in subclasses, derived from the surrounding class (see chapter 14), if it is nested in the
private section, it is only visible for the members of the surrounding class.

The surrounding class has no privileges with respect to the nested class. So, the nested class still
has full control over the accessibility of its members by the surrounding class.

For example, consider the following class definition:

class Surround

{
public:
class FirstWithin
{
public:
FirstWithin();
int getVar() comnst
{
return (variable);
}
private:
int
variable;
};
private:
class SecondWithin
{
public:
SecondWithin();
int getVar() const
{
return (variable);
}
private:
int
variable;
};
// other private members of Surround
};

In this definition access to the members is defined as follows:

e The class FirstWithin is visible both outside and inside Surround. The class FirstWithin
has therefore global scope.

e The constructor FirstWithin() and the memberfunction getVar () of the class FirstWithin
are also globally visible.

107

e The int variable datamember is only visible for the members of the class FirstWithin.
Neither the members of Surround nor the members of SecondWithin can access the variable
of the class FirstWithin directly.

e The class SecondWithin is visible only inside Surround. The public members of the class
SecondWithin can also be used by the members of the class FirstWithin, as nested classes
can be considered members of their surrounding class.

e The constructor SecondWithin() and the memberfunction getVar () of the class SecondWithin
can also only be reached by the members of Surround (and by the members of its nested
classes).

e The int variable datamember of the class SecondWithin is only visible for the members of
the class SecondWithin. Neither the members of Surround nor the members of FirstWithin
can access the variable of the class SecondWithin directly.

If the surrounding class should have access rights to the private members of its nested classes or
if nested classes should have access rights to the private members of the surrounding class, the
classes can be defined as friend classes (see section 4.8.3).

The nested classes can be considered members of the surrounding class, but the members of nested
classes are mot members of the surrounding class. So, a member of the class Surround may
not access FirstWithin: :getVar() directly. This is understandable considering the fact that a
Surround object is not also a FirstWithin or SecondWithin object. The nested classes are only
available as typenames. They do not imply containment as objects by the surrounding class. If a
member of the surrounding class should use a (non-static) member of a nested class then a pointer
to a nested class object or a nested class datamember must be defined in the surrounding class,
which can thereupon be used by the members of the surrounding class to access members of the
nested class.

For example, in the following class definition there is a surrounding class Outer and a nested class
Inner. The class Outer contains a memberfunction caller () which uses the inner object that is
composed in Outer to call the infunction() memberfunction of Inner:

class Outer

{
public:
void caller()
{
inner.infunction();
}
private:
class Inner
{
public:
void infunction();
};
Inner
inner;
};

108

Also note that the function Inner: :infunction() can be called as part of the inline definition of
Outer: :caller (), even though the definition of the class Inner is yet to be seen by the compiler.

Inline functions can be defined as if they were functions that were defined outside of the class
definition: if the function Outer: :caller () would have been defined outside of the class Outer,
the full class definition (including the definition of the class Inner would have been available to the
compiler. In that situation the function is perfectly compilable. Inline functions can be compiled
accordingly and there is, e.g., no need to define a special private section in Outer in which the
class Inner is defined before defining the inline function caller ().

4.8.1 Defining nested class members

Memberfunctions of nested classes may be defined as inline functions. However, they can also
be defined outside of their surrounding class. Consider the constructor of the class FirstWithin
in the example of the previous section. The constructor FirstWithin() is defined in the class
FirstWithin, which is, in turn, defined within the class Surround. Consequently, the class scopes
of the two classes must be used to define the constructor. E.g.,

Surround: :FirstWithin: :FirstWithin()
{
variable = 0;

}

Static (data) members can be defined accordingly. If the class FirstWithin would have a static
unsigned datamember epoch, it could be initialized as follows:

Surround: :FirstWithin: :epoch = 1970;

Furthermore, both class scopes are needed to refer to public static members in code outside of the
surrounding class:

void showEpoch()
{
cout << Surround::FirstWithin::epoch = 1970;

}

Of course, inside the members of the class Surround only the FirstWithin:: scope needs to be
mentioned, and inside the members of the class FirstWithin there is no need to refer explicitly
to the scope.

What about the members of the class SecondWithin? The classes FirstWithin and SecondWithin
are both nested within Surround, and can be considered members of the surrounding class. Since
members of a class may directy refer to each other, members of the class SecondWithin can refer
to (public) members of the class FirstWithin. Consequently, members of the class SecondWithin
could refer to the epoch member of FirstWithin as

109

FirstWithin: :epoch

4.8.2 Declaring nested classes

Nested classes may be declared before they are actually defined in a surrounding class. Such
forward declarations are required if a class contains multiple nested classes, and the nested classes
contain pointers to objects of the other nested classes.

For example, the following class Outer contains two nested classes Innerl and Inner2. The class
Innerl contains a pointer to Inner2 objects, and Inner2 contains a pointer to Innerl objects.
Such cross references require forward declarations:

class Outer

{

private:
class Inner2; // forward declaration

class Inneri

{

private:
Inner2
*pi2; // points to Inner2 objects
I
class Inner2

{

private:
Innerl
*pil; // points to Innerl objects

4.8.3 Access to private members in nested classes

In order to allow nested classes to access the private members of the surrounding class or to access
the private members of other nested classes or to allow the surrounding class to access the private
members of nested classes, the friend keyword must be used. Consider the following situation, in
which a class Surround has two nested classes FirstWithin and SecondWithin, while each class
has a static data member int variable:

class Surround

{
public:
class FirstWithin

110

public:
int getValue(Q);
private:
static int
variable;
};
int getValue();
private:
class SecondWithin
{
public:
int getValue();
private:
static int
variable;
};
static int
variable;

};

If the class Surround should be able to access the private members of FirstWithin and SecondWithin,
these latter two classes must declare Surround to be their friend. The function Surround: : getValue ()
can thereupon access the private members of the nested classes. For example (note the friend
declarations in the two nested classes):

class Surround

{
public:
class FirstWithin
{
friend class Surround;
public:
int getValue();
private:
static int
variable;
};
int getValue(Q)
{
FirstWithin::variable = SecondWithin::variable;
return (variable);
}
private:
class SecondWithin
{
friend class Surround;
public:
int getValue(Q);
private:

111

static int
variable;
};
static int
variable;

};

Now, in order to allow the nested classes to access the private members of the surrounding class, the
class Surround must declare the nested classes as friends. The friend keyword may only be used
when the class that is to become a friend is already known as a class by the compiler, so either a
forward declaration of the nested classes is required, which is followed by the friend declaration, or
the friend declaration follows the definition of the nested classes. The forward declaration followed
by the friend declaration looks like this:

class Surround

{
class FirstWithin;
class SecondWithin;
friend class FirstWithin;
friend class SecondWithin;

public:
class FirstWithin

(etc)

Alternatively, the friend declaration may follow the definition of the classes. Note that a class can
be declared a friend following its definition, while the inline code in the definition already uses the
fact that it will be declared a friend of the outer class. Also note that the inline code of the nested
class uses members of the surrounding class which have not yet been seen by the compiler. Finally
note that the variable variable that is defined in the class Surround is accessed in the nested
classes as Surround: :variable

class Surround
{
public:
class FirstWithin
{
friend class Surround;
public:
int getValue()
{
Surround: :variable = 4;
return (variable);
}
private:
static int
variable;

112

};

friend class FirstWithin;

int getValue()

{
FirstWithin::variable = SecondWithin::variable;
return (variable);
}
private:
class SecondWithin
{
friend class Surround;
public:
int getValue()
{
Surround: :variable = 40;
return (variable);
}
private:
static int
variable;
}s

friend class SecondWithin;

static int
variable;

};

Finally, we want to allow the nested classes to access each other’s private members. Again this
requires some friend declarations. In order to allow FirstWithin to access SecondWithin’s pri-
vate members nothing but a friend declaration in SecondWithin is required. However, to allow
SecondWithin to access the private members of FirstWithin the friend class SecondWithin
declaration cannot be plainly given in the class FirstWithin, as the definition of SecondWithin
has not yet been given. A forward declaration of SecondWithin is required, and this forward dec-
laration must be given in the class Surround, rather than in the class FirstWithin. Clearly, the
forward declaration class SecondWithin in the class FirstWithin itself makes no sense, as this
would refer to an external (global) class FirstWithin. But the attempt to provide the forward dec-
laration of the nested class SecondWithin inside FirstWithinas class Surround::SecondWithin
also fails miserably, with the compiler issuing a message like

‘Surround’ does not have a nested type named ‘SecondWithin’

The right procedure to follow here is to declare the class SecondWithin in the class Surround, before
the class FirstWithin is defined. Using this procedure, the friend declaration of SecondWithin is
accepted inside the definition of FirstWithin. The following class definition allows full access of
the private members of all classes by all other classes:

class Surround
{

class SecondWithin;

113

public:
class FirstWithin

{
friend class Surround;
friend class SecondWithin;
public:
int getValue()
{
Surround: :variable = SecondWithin::variable;
return (variable);
}
private:
static int
variable;
};

friend class FirstWithin;

int getValue()

{
FirstWithin::variable = SecondWithin::variable;
return (variable);
}
private:
class SecondWithin
{
friend class Surround;
friend class FirstWithin;
public:
int getValue()
{
Surround: :variable = FirstWithin::variable;
return (variable);
}
private:
static int
variable;
};

friend class SecondWithin;

static int
variable;

4.8.4 Nesting enumerations

Enumerations may also be nested in classes. For example, a class DataStructure may be traversed
in a forward or backward direction. Such a class can define an enumerator Traversal having the
values forward and backward. Furthermore, a memberfunction setTraversal() can be defined
requiring either of the two enumeration values. The class can be defined as follows:

114

class DataStructure
{
public:
enum Traversal
{
forward,
backward
};

setTraversal (Traversal mode) ;
private:
Traversal
mode;
};

Within the class DataStructure the values of the Traversal enumeration can be used directly.
For example:

void DataStructure::setTraversal(Traversal modeArg)

{
mode = modeArg;
switch (mode)
{
forward:
break;
backward:
break;
}
}

Ouside of the class DataStructure the name of the enumeration type is not used to refer to the
values of the enumeration. Here the classname is enough. Only if a variable of the enumeration

type is required the name of the enumeration type is needed, as illustrated by the following piece
of code:

void fun()
{

DataStructure: :Traversal // enum typename required
localMode = DataStructure::forward; // enum typename not required

DataStructure

ds;
// enum typename not required

115

ds.setTraversal (DataStructure: :backward) ;

Again, if DataStructure would define a nested class Nested in which the enumeration Traversal
would have been defined, the two class scopes would have been required. In that case the former
example would have to be coded as follows:

void fun()

{
DataStructure: :Nested: :Traversal
localMode = DataStructure: :Nested: :forward;
DataStructure
ds;
ds.setTraversal (DataStructure: :Nested: :backward) ;
}

116

Chapter 5

Classes and memory allocation

In contrast to the set of functions which handle memory allocation in C (i.e., malloc() etc.), the
operators new and delete are specifically meant to be used with the features that C++ offers.
Important differences between malloc() and new are:

e The function malloc() doesn’t ‘know’ what the allocated memory will be used for. E.g.,
when memory for ints is allocated, the programmer must supply the correct expression using
a multiplication by sizeof (int). In contrast, new requires the use of a type; the sizeof
expression is implicitly handled by the compiler.

e The only way to initialize memory which is allocated by malloc () is to use calloc (), which
allocates memory and resets it to a given value. In contrast, new can call the constructor of
an allocated object where initial actions are defined. This constructor may be supplied with
arguments.

e All C-allocation functions must be inspected for NULL-returns. In contrast, the new-operator
provides a facility called a new_handler (cf. section 4.3.3) which can be used instead of the
explicit checks for NULL-returns.

The relationship between free () and delete is analogous: delete makes sure that when an object
is deallocated, a corresponding destructor is called.

The automatic calling of constructors and destructors when objects are created and destroyed, has a
number of consequences which we shall discuss in this chapter. Many problems encountered during
C program development are caused by incorrect memory allocation or memory leaks: memory is
not allocated, not freed, not initialized, boundaries are overwritten, etc.. C++ does not ‘magically’
solve these problems, but it does provide a number of handy tools.

Unfortunately, the very frequently used str. .. () functions, like strdup() are allmalloc() based,
and should therefore preferably not be used anymore in C++4 programs. Instead, a new set of
corresponding functions, based on the operator new, are preferred.

For the function strdup () a comparable function char #strdupnew(char const *str) could be
developed as follows:

char *strdupnew(char const *str)

117

return (strcpy(new char [strlen(str) + 1], str));

Similar functions could be developed for comparable malloc()-based str...() and other func-
tions.

In this chapter we discuss the following topics:

e the assignment operator (and operator overloading in general),
e the this pointer,

e the copy constructor.

5.1 Classes with pointer data members

In this section we shall again use the class Person as example:

class Person
{
public:
// constructors and destructor
Person();
Person(char const *n, char const *a,
char const *p);

“Person();

// interface functions

void setname(char const *n);
void setaddress(char const *a);
void setphone(char const *p);

char const *getname(void) const;
char const *getaddress(void) const;
char const *getphone(void) const;

private:
// data fields
char *name;
char *address;
char *phone;

In this class the destructor is necessary to prevent that memory, once allocated for the fields name,
address and phone, becomes unreachable when an object ceases to exist. In the following example
a Person object is created, after which the data fields are printed. After this the main() function

118

stops, which leads to the deallocation of memory. The destructor of the class is also shown for
illustration purposes.

Note that in this example an object of the class Person is also created and destroyed using a
pointer variable; using the operators new and delete.

Person::“Person()

{
delete name;
delete address;
delete phone;

}

int main()
{
Person
kk("Karel", "Rietveldlaan",
"050 542 6044"),
*bill = new Person("Bill Clinton",
"White House",
"09-1-202-142-3045") ;

printf("%s, %s, %s\n"
"%s, hs, %ks\n",
kk.getname (), kk.getaddress(), kk.getphone(),
bill->getname(), bill->getaddress(), bill->getphone());

delete bill;

return (0);

The memory occupied by the object kk is released automatically when main() terminates: the
C++ compiler makes sure that the destructor is called. Note, however, that the object pointed
to by bill is handled differently. The variable bill is a pointer; and a pointer variable is, even
in C++, in itself no Person. Therefore, before main() terminates, the memory occupied by the
object pointed to by bill must be ezxplicitly released; hence the statement delete bill. The
operator delete will make sure that the destructor is called, thereby releasing the three strings of
the object.

5.2 The assignment operator

Variables which are structs or classes can be directly assigned in C++ in the same way that
structs can be assigned in C. The default action of such an assignment is a straight bytewise copy
from one compound variable to another.

Let us now consider the consequences of this default action in a program statement such as the
following;:

119

void printperson(Person const &p)

{
Person
tmp;
tmp = p;
printf ("Name: hs\n"
"Address: %s\n"
"Phone: hs\n",
tmp.getname (), tmp.getaddress(), tmp.getphone());
}

We shall follow the execution of this function step by step.

e The function printperson() expects a reference to a Person as its parameter p. So far,
nothing extraordinary is happening.

e The function defines a local object tmp. This means that the default constructor of Person
is called, which -if defined properly- resets the pointer fields name, address and phone of the
tmp object to zero.

e Next, the object referenced by p is copied to tmp. By default this means that sizeof (Person)
bytes from p are copied to tmp.

Now a potentially dangerous situation has arisen. Note that the actual values in p are
pointers, pointing to allocated memory. Following the assignment this memory is addressed
by two objects: p and tmp.

e The potentially dangerous situation develops into an acutely dangerous situation when the
function printperson() terminates: the object tmp is destroyed. The destructor of the class
Person releases the memory pointed to by the fields name, address and phone: unfortunately,
this memory is also in use by p....

The incorrect assignment is illustrated in figure 5.1.

Having executed printperson(), the object which was referenced by p now contain pointers to
deallocated memory.

This action is undoubtedly not a desired effect of a function like the above. The deallocated
memory will likely become occupied during subsequent allocations: the pointer members of p have
effectively become wild pointers, as they don’t point to allocated memory anymore.

In general it can be concluded that every class containing pointer data members is a potential
candidate for trouble. It is of course possible to prevent such troubles, as will be discussed in the
next section.

5.2.1 Overloading the assignment operator

Obviously, the right way to assign one Person object to another, is not to copy the contents of the
object bytewise. A better way is to make an equivalent object; one with its own allocated memory,
but which contains the same strings.

120

Before the assignment (&)
_ atrings in memory
Ohject p

| name |

- —— | _address |
|_phone |

after the assignment (k)

_ stings in memary
Chiject p | | Ohject tmp

| |
L]

After destruction of tmp

. Strings now dealln::-cated'
Chject p | E ject t

Object tmp

fl‘mﬂ

I

\

Figure 5.1: Private data and public interface functions of the class Person, using bytewise assign-
ment

121

Before the assignment (&)

Ohject p /] name | Ohbject tmp
/| address |

.~"|_phone | N

After the assignment

Object p/
| |

] |

after destruction of tmp (c)
Ohject p/] |1 | jectfinp
//] |
| 11|
\

Figure 5.2: Private data and public interface functions of the class Person, using the ‘correct’
assignment.

| Ohject tmp

o

122

The ‘right’ way to duplicate a Person object is illustrated in figure 5.2.

There is a number of solutions for the above wish. One solution consists of the definition of a
special function to handle assignments of objects of the class Person. The purpose of this function
would be to create a copy of an object, but one with its own name, address and phone strings.
Such a member function might be:

void Person::assign(Person const &other)
{
// delete our own previously used memory
delete name;
delete address;
delete phone;

// now copy the other Person’s data
name = strdupnew(other.name);

address = strdupnew(other.address) ;
phone = strdupnew(other.phone);

Using this tool we could rewrite the offending function printperson():

void printperson(Person const &p)

{
Person
tmp;
// make tmp a copy of p, but with its own allocated
// strings
tmp.assign(p);
printf ("Name: %s\n"
"Address: Y%s\n"
"Phone: %s\n",
tmp.getname (), tmp.getaddress(), tmp.getphone());
// now it doesn’t matter that tmp gets destroyed..
}

In itself this solution is valid, although it is a purely symptomatic solution. This solution requires
that the programmer uses a specific member function instead of the operator =. The problem,
however, remains if this rule is not strictly adhered to. Experience learns that errare humanum
est: a solution which doesn’t enforce exceptions is therefore preferable.

The problem of the assignment operator is solved by means of operator overloading: the syntactic
possibility C++ offers to redefine the actions of an operator in a given context. Operator over-
loading was mentioned earlier, when the operators << and >> were redefined for the usage with
streams as cin, cout and cerr (see section 3.1.2).

123

Overloading the assignment operator is probably the most common form of operator overloading.
However, a word of warning is appropriate: the fact that C4++ allows operator overloading does
not mean that this feature should be used at all times. A few rules are:

e Operator overloading should be used in situations where an operator has a defined action,
but when this action is not desired as it has negative side effects. A typical example is the
above assignment operator in the context of the class Person.

e Operator overloading can be used in situations where the usage of the operator is common
and when no ambiguity in the meaning of the operator is introduced by redefining it. An
example may be the redefinition of the operator + for a class which represents a complex
number. The meaning of a + between two complex numbers is quite clear and unambiguous.

e In all other cases it is preferable to define a member function, instead of redefining an
operator.

Using these rules, operator overloading is minimized which helps keep source files readable. An op-
erator simply does what it is designed to do. Therefore, in our vision, the operators insertion (<<)
and extraction (>>) operators in the context of streams are unfortunate: the stream operations
do not have anything in common with the bitwise shift operations.

The function ’operator=()’

To achieve operator overloading in the context of a class, the class is simply expanded with a
public function stating the particular operator. A corresponding function, the implementation of
the overloaded operator, is thereupon defined.

For example, to overload the addition operator +, a function operator+() must be defined. The
function name consists of two parts: the keyword operator, followed by the operator itself.

In our case we define a new function operator=() to redefine the actions of the assignment oper-
ator. A possible extension to the class Person could therefore be:

// new declaration of the class
class Person

{
public:
;sid operator=(Person const &other);
privé%é:
};

// definition of the function operator=()
void Person: :operator=(Person const &other)
{

// deallocate old data

delete name;

delete address;

124

delete phone;

// make duplicates of other’s data
name = strdupnew(other.name);
address = strdupnew(other.address);
phone = strdupnew(other.phone);

The function operator=() presented here is the first version of the overloaded assignment operator.
We shall present better and less bug-prone versions shortly.

The actions of this member function are similar to those of the previously proposed function
assign(), but now its name makes sure that this function is also activated when the assignment
operator = is used. There are actually two ways to call this function, as illustrated below:

Person
pers("Frank", "Oostumerweg 17", "403 2223"),

copy,;

// first possibility
copy = pers;

// second possibility
copy .operator=(pers) ;

It is obvious that the second possibility, in which operator=() is explicitly stated, is not used
often. However, the code fragment does illustrate the two ways of calling the same function.

5.3 The this pointer

As we have seen, a member function of a given class is always called in the context of some object
of the class. There is always an implicit ‘substrate’ for the function to act on. C+4+ defines a
keyword, this, to address this substrate!

The this keyword is a pointer variable, which always contains the address of the object in question.
The this pointer is implicitly declared in each member function (whether public or private).
Therefore, it is as if in each member function of the class Person would contain the following
declaration:

extern Person *this;

A member function like setname (), which sets a name field of a Person to a given string, could
therefore be implemented in two ways: with or without the this pointer:

INote that ‘this’ is not available in the not yet discussed static member functions.

125

// alternative 1: implicit usage of this
void Person::setname(char const *n)
{

delete name;

name = strdupnew(n) ;

}

// alternative 2: explicit usage of this
void Person::setname(char const *n)
{

delete this—->name;

this->name = strdupnew(n) ;

Explicit usage of the this pointer is not used very frequently. However, there exist a number of
situations where the this pointer is really needed.

5.3.1 Preventing self-destruction with this

As we have seen, the operator = can be redefined for the class Person in such a way that two
objects of the class can be assigned, leading to two copies of the same object.

As long as the two variables are different ones, the previously presented version of the function
operator=() will behave properly: the memory of the assigned object is released, after which it
is allocated again to hold new strings. However, when an object is assigned to itself (which is
called auto-assignment), a problem occurs: the allocated strings of the receiving object are first
released, but this also leads to the release of the strings of the right-hand side variable, which we
call self-destruction. An example of this situation is illustrated below:

void fubar(Person const &p)

{
P = p; // auto-assignment!

}

In this example it is perfectly clear that something unnecessary, possibly even wrong, is happening.
But auto-assignment can also occur in more hidden forms:

Person
one,
two,

*Pp;
pp = &one;
*pp = two;

126

one = *pp;

The problem of the auto-assignment can be solved using the this pointer. In the overloaded
assignment operator function we simply test whether the address of the right-hand side object is
the same as the address of the current object: if so, no action needs to be taken. The definition of
the function operator=() then becomes

void Person: :operator=(Person const &other)

{
// only take action if address of current object
// (this) is NOT equal to address of other
// object(&other) :
if (this != &other)
{
delete name;
delete address;
delete phone;
name = strdupnew(other.name) ;
address = strdupnew(other.address);
phone = strdupnew(other.phone) ;
}
}

This is the second version of the overloaded assignment function. One, yet better version remains
to be discussed.

As a subtlety, note the usage of the address operator ’&’ in the statement

if (this !'= &other)

The variable this is a pointer to the ‘current’ object, while other is a reference; which is an ‘alias’
to an actual Person object. The address of the other object is therefore &other, while the address
of the current object is this.

5.3.2 Associativity of operators and this

According to C++'s syntax, the associativity of the assignment operator is to the right-hand side.
Le., in statements like:

127

the expression b = c is evaluated first, and the result is assigned to a.

The implementation of the overloaded assignment operator so far does not permit such construc-
tions, as an assignment using the member function returns nothing (void). We can therefore
conclude that the previous implementation does circumvent an allocation problem, but is syntac-
tically not quite right.

The syntactical problem can be illustrated as follows. When we rewrite the expressiona = b = ¢
to the form which explicitly mentions the overloaded assignment member functions, we get:

a.operator=(b.operator=(c));

This variant is syntactically wrong, since the sub-expression b.operator=(c) yields void; and the
class Person contains no member functions with the prototype operator=(void).

This problem can also be remedied using the this pointer. The overloaded assignment function
expects as its argument a reference to a Person object. It can also return a reference to such an
object. This reference can then be used as an argument for a nested assignment.

It is customary to let the overloaded assignment return a reference to the current object (i.e.,
xthis), as a const reference: the receiver is not supposed to alter the xthis object.

The (final) version of the overloaded assignment operator for the class Person thus becomes:

// declaration in the class
class Person

{
public:

Person const &operator=(Person const &other)
};

// definition of the function

Person const &Person: :operator=(Person const &other)

{
// only take action when no auto-assignment occurs
if (this != &other)

{
// deallocate own data
delete address;
delete name;
delete phone;
// duplicate other’s data
address = strdupnew(other.address) ;
name = strdupnew(other.name);
phone = strdupnew(other.phone);
}

128

// return current object, compiler will make sure
// that a const reference is returned
return (*this);

5.4 The copy constructor: Initialization vs. Assignment

In the following sections we shall take a closer look at another usage of the operator =. For this,
we shall use a class String. This class is meant to handle allocated strings, and its interface is as
follows:

class String
{
public:
// constructors, destructor
String () ;
String(char const *s);
~String();

// overloaded assignment
String const &operator=(String const &other);

// interface functions
void set(char const *data);
char const *get(void);

private:
// one data field: ptr to allocated string
char *str;

Concerning this interface we remark the following:

e The class contains a pointer char *str, possibly pointing to allocated memory. Conse-
quently, the class needs a constructor and a destructor.

A typical action of the constructor would be to set the str pointer to 0. A typical action of
the destructor would be to release the allocated memory.

e For the same reason the class has an overloaded assignment operator. The code of this
function would look like:

String const &String::operator=(String const &other)

{
if (this != &other)
{

129

delete str;
str = strdupnew(other.str);

}

return (*this);

e The class has, besides a default constructor, a constructor which expects one string argument.
Typically this argument would be used to set the string to a given value, as in:

String
a("Hello World!\n");

e The only interface functions are to set the string part of the object and to retrieve it.

Now let’s consider the following code fragment. The statement references are discussed following
the example:

String
a("Hello World\n"), // see (1)
b, // see (2)
c = a; // see (3)

int main()

{
b = c; // see (4)
return (0);

e Statement 1: this statement shows an initialization. The object a is initialized with a string
“Hello World”. This construction of the object a therefore uses the constructor which expects
one string argument.

It should be noted here that this form is identical to

String
a = "Hello World\n";

Even though this piece of code uses the operator =, this is no assignment: rather, it is an
initialization, and hence, it’s done at construction time by a constructor of the class String.

e Statement 2: here a second String object is created. Again a constructor is called. As no
special arguments are present, the default constructor is used.

e Statement 3: again a new object c is created. A constructor is therefore called once more.
The new object is also initialized. This time with a copy of the data of object a.

This form of initializations has not yet been discussed. As we can rewrite this statement in
the form

130

String
c(a);

it suggests that a constructor is called, with as argument a (reference to a) String ob-
ject. Such constructors are quite common in C++ and are called copy constructors. More
properties of these constructors are discussed below.

e Statement 4: here one object is assigned to another. No object is created in this statement.
Hence, this is just an assignment, using the overloaded assignment operator.

The simple rule emanating from these examples is that whenever an object is created, a constructor
is needed. All constructors have the following characteristics:

e Constructors have no return values.

e Constructors are defined in functions having the same names as the class to which they
belong.

e The argument list of constructors can be deduced from the code. The argument is either
present between parentheses or following a =.

Therefore, we conclude that, given the above statement (3), the class String must be rewritten to
define a copy constructor:

// class definition
class String

{
public:

String(String const &other);
};

// constructor definition
String: :String(String const &other)
{

str = strdupnew(other.str);

}

The actions of copy constructors are comparable to those of the overloaded assignment operators:
an object is duplicated, so that it contains its own allocated data. The copy constructor function,
however, is simpler in the following respect:

e A copy constructor doesn’t need to deallocate previously allocated memory: since the object
in question has just been created, it cannot already have its own allocated data.

e A copy constructor never needs to check whether auto-duplication occurs. No variable can
be initialized with itself.

131

Besides the above mentioned quite obvious usage of the copy constructor, the copy constructor
has other important tasks. All of these tasks are related to the fact that the copy constructor is
always called when an object is created and initialized with another object of its class. The copy
constructor is called even when this new object is a hidden or temporary variable.

e When a function takes an object as argument, instead of, e.g., a pointer or a reference, C++
calls the copy constructor to pass a copy of an object as the argument. This argument, which
usually is passed via the stack, is therefore a new object. It is created and initialized with
the data of the passed argument.

This is illustrated in the following code fragment:

void func(String s) // no pointer, no reference
{ // but the String itself
puts(s.get());
}
int main()
{
String
hi("hello world");
func(hi) ;
return (0);
}

In this code fragment hi itself is not passed as an argument, but instead a temporary(stack)
variable is created using the copy constructor. This temporary variable is known within
func() as s. Note that if func () would have been defined using a reference argument, extra
stack usage and a call to the copy constructor would have been avoided.

e The copy constructor is also implicitly called when a function returns an object.

This situation occurs when, e.g., a function returns keyboard input in a String format:

String getline()

{
char
buf [100]; // buffer for kbd input
gets (buf) ; // read buffer
String
ret = buf; // convert to String
return(ret); // and return it
}

A hidden String object is here initialized with the return value ret (using the copy con-
structor) and is returned by the function. The local variable ret itself ceases to exist when
getline() terminates.

132

To demonstrate that copy constructors are not called in all situations, consider the following. We
could rewrite the above function getline() to the following form:

String getline()

{
char
buf [100]; // buffer for kbd input
gets (buf) ; // read buffer
return (buf); // and return it
}

This code fragment is quite valid, even though the return value char * doesn’t match the prototype
String. In this situation, C++4 will try to convert the char * to a String. It can do so given
a constructor expecting a char * argument. This means that the copy constructor is not used in
this version of getline (). Instead, the constructor expecting a char * argument is used.

Contrary to the situation we encountered with the default constructor, the default copy constructor
remains available once a constructor (any constructor) is defined explicitly. The copy constructor
can be redefined, but it will not disappear once another constructor is defined.

5.4.1 Similarities between the copy constructor and operator=()

The similarities between on one hand the copy constructor and on the other hand the overloaded
assignment operator are reinvestigated in this section. We present here two primitive functions
which often occur in our code, and which we think are quite useful. Note the following features of
copy constructors, overloaded assignment operators, and destructors:

e The duplication of (private) data occurs (1) in the copy constructor and (2) in the overloaded
assignment function.

e The deallocation of used memory occurs (1) in the overloaded assignment function and (2)
in the destructor.

The two above actions (duplication and deallocation) can be coded in two private functions, say
copy () and destroy (), which are used in the overloaded assignment operator, the copy construc-
tor, and the destructor. When we apply this method to the class Person, we can rewrite the code
as follows.

First, the class definition is expanded with two private functions copy() and destroy(). The
purpose of these functions is to copy the data of another object or to deallocate the memory of
the current object unconditionally. Hence these functions implement ‘primitive’ functionality:

// class definition, only relevant functions are shown here
class Person

{
public:

133

// constructors, destructor
Person(Person const &other);
“Person();

// overloaded assignment
Person const &operator=(Person const &other);
private:
// data fields
char
*name,
*xaddress,
*phone;

// the two primitives
void copy(Person const &other);
void destroy(void);

};

Next, we present the implementations of the functions copy () and destroy():

// copy(): unconditionally copy other object’s data
void Person::copy(Person const &other)

{
name = strdupnew(other.name);
address = strdupnew(other.address) ;
phone = strdupnew(other.phone);

}

// destroy(): unconditionally deallocate data
void Person: :destroy ()

{
delete name;
delete address;
delete phone;

}

Finally the three public functions in which other object’s memory is copied or in which memory
is deallocated are rewritten:

// copy constructor
Person: :Person (Person const &other)

{
// unconditionally copy other’s data
copy (other) ;

}

// destructor

134

Person: : “Person()

{
// unconditionally deallocate
destroy();

}

// overloaded assignment
Person const &Person: :operator=(Person const &other)
{
// only take action if no auto-assignment
if (this != &other)
{
destroy() ;
copy (other) ;
}
// return (reference to) current object for
// chain-assignments
return (*this);

What we like about this approach is that the destructor, copy constructor and overloaded as-
signment functions are completely standard: they are independent of a particular class, and their
implementations can therefore be used in every class. Any class dependencies are reduced to the
implementations of the private member functions copy() and destroy().

5.5 Conclusion

Two important extensions to classes have been discussed in this chapter: the overloaded assignment
operator and the copy constructor. As we have seen, classes with pointer data which address
allocated memory are potential sources of semantic errors. The two introduced extensions represent
the standard ways to prevent unintentional loss of allocated data.

The conclusion is therefore: as soon as a class is defined in which pointer data-members are used,
a destructor, an overloaded assignment function and a copy constructor should be implemented.

135

Chapter 6

More About Operator Overloading

Now that we’ve covered the overloaded assignment operator in depth, and now that we’ve seen
some examples of other overloaded operators as well (i.e., the insertion and extraction operators),
let’s take a look at some other interesting examples of operator overloading.

6.1 Overloading operator[]()

As our next example of operator overloading, we present a class which is meant to operate on
an array of ints. Indexing the array elements occurs with the standard array operator [], but
additionally the class checks for boundary overflow. Furthermore, the array operator is interesting
in that it both produces a value and accepts a value, when used, respectively, as a right-hand value
and a left-hand value in expressions.

An example of the use of the class is given here:

int main()

{
IntArray
x(20); // 20 ints
for (int i = 0; i < 20; i++)
x[i] =i * 2; // assign the elements
// produces boundary
// overflow
for (int i = 0; i <= 20; i++)
cout << "At index " << i << ": value is " << x[i] << endl;
return (0);
}

This example shows how an array is created to contain 20 ints. The elements of the array can be
assigned or retrieved. The above example should produce a run-time error, generated by the class

136

IntArray: the last for loop causing a boundary overflow, since x[20] is addressed while legal
indices range from 0 to 19, inclusive.

We give the following class interface:

class IntArray

{
public:
IntArray(int size = 1); // default size: 1 int
IntArray(IntArray const &other);
“IntArray(Q);
IntArray const &operator=(IntArray const &other);
// overloaded index operators:
int &operator[] (int index); // first
int operator[] (int index) const; // second
private:
void boundary(int index) const;
void destroy(); // standard functions
// used to copy/destroy
void copy(IntArray const &other);
int
*data,
size;
};

#include <iostream>

Concerning this class interface we remark:

e The class has a constructor with a default int argument, specifying the array size. This
function serves also as the default constructor, since the compiler will substitute 1 for the
argument when none is given.

e The class internally uses a pointer to reach allocated memory. Hence, the necessary tools are
provided: a copy constructor, an overloaded assignment function and a destructor.

e Note that there are two overloaded index operators. Why are there two of them ?

The first overloaded index operator allows us to reach and obtain the elements of the
IntArray object.

This overloaded operator has as its prototype a function that returns a reference to an int.
This allows us to use expressions like x[10] on the left-hand side and on the right-hand side
of an assignment.

We can therefore use the same function to retrieve and to assign values. Furthermore note
that the returnvalue of the overloaded array operator is not an int const &, but rather an
int &. In this situation we don’t want the const, as we must be able to change the element
we want to access, if the operator is used as a left-hand value in an assignment.

However, this whole scheme fails if there’s nothing to assign. Consider the situation where
we have an IntArray const stable(5);. Such an object is a const object, which cannot
be modified. The compiler detects this and will refuse to compile this object definition if

137

only the first overloaded index operator is available. Hence the second overloaded index
operator. Here the return-value is an int, rather than an int &, and the member-function
itself is a const member function. This second form of the overloaded index operator cannot
be used with non-const objects, but it’s perfect for const objects. It can only be used
for value-retrieval, not for value-assignment, but that is precisely what we want with const
objects.

e We used the standard implementations of the copy constructor, the overloaded assignment
operator and the destructor, discussed before (in section 5.4.1), albeit that we’ve left out
the implementation of the function destroy (), as this function would consist of merely one
statement (delete data).

e Asthe elements of data are ints, no delete [] is needed. It does no harm, either. Therefore,
since we use the [] when the object is created, we also use the []1 when the data are eventually
destroyed.

The member functions of the class are presented next.

#include "intarray.h"

IntArray: :IntArray(int sz)

{
if (sz < 1)
{
cerr << "IntArray: size of array must be >= 1, not " << sz
<< "IM << endl;
exit(1);
}
// remember size, create array
size = sz;
data = new int [sz];
}

// copy constructor
IntArray::IntArray(IntArray const &other)
{

copy (other) ;
}

// destructor
IntArray::~IntArray()
{

delete [] data;
}

// overloaded assignment
IntArray const &IntArray::operator=(IntArray const &other)
{
// take action only when no auto-assignment
if (this != &other)
{
delete [] data;
copy (other) ;

138

}
return (*this);

}

// copy() primitive
void IntArray::copy(IntArray const &other)
{

// set size

size = other.size;

// create array
data = new int [size];

// copy other’s values
for (register int i = 0; 1 < size; i++)
data[i] = other.datali];
}

// here is the first overloaded array operator
int &IntArray::operator[] (int index)
{

boundary (index) ;

return (datalindex]); // emit the reference

}

// and the second overloaded array operator
int IntArray::operator[](int index) const
{

boundary (index) ;

return (datalindex]); // emit the value

}

// the function checking the boundaries for the index:
void IntArray::boundary(int index) const

{
// check for array boundary over/underflow
if (index < O || index >= size)
{
cerr << "IntArray: boundary overflow or underflow, index = "
<< index << ", should range from 0 to " << size - 1 << endl;
exit (1);
X
}

6.2 Overloading operator new(size_t)

If the operator new is overloaded, it must have a void * return type, and at least an argument
of type size_t. The size_t type is defined in stddef.h, which must therefore be included when
the operator new is overloaded.

It is also possible to define multiple versions of the operator new, as long as each version has its

139

own unique set of arguments. The global new operator can still be used, through the : :-operator.
If a class X overloads the operator new, then the system-provided operator new is activated by

X *xx = ::new X();

Furthermore, the new [] construction will always use the default operator new.

An example of the overloaded operator new for the class X is the following;:

#include <stddef.h>

void *X::operator new(size_t sizeofX)

{
void
*p = new char[sizeofX];

return (memset(p, 0, sizeof(X)));

Now, let’s see what happens when the operator new is defined for the class X. Assume that class
is defined as follows':

class X
{
public:
void *operator new(size_t sizeofX);
int
X,
Yy,
Z;
};

Now, consider the following program fragment:

#include "X.h" // class X interface etc.

int main()

{
X
*x = new X();

cout << x—>x << ", " K< x>y << ", "<< x->z << endl;

LFor the sake of simplicity we have violated the principle of encapsulation here. The principle of encapsulation,
however, is immaterial to the discussion of the workings of the operator new.

140

return (0);

This small program produces the following output:
0, 0, 0
Our little program performed the following actions:

e First, operator new was called, which allocated and initialized a block of memory, the size of
an X object.

e Next, a pointer to this block of memory was passed to the (default) X() constructor. Since
no constructor was defined, the constructor itself didn’t do anything at all.

Due to the initialization of the block of memory by the new operator the allocated X object was
already initialized to zeros when the constructor was called.

Non-static object member functions are passed a (hidden) pointer to the object on which they
should operate. This hidden pointer becomes the this pointer inside the memberfunction. This
procedure is also followed by the constructor. In the following fragments of pseudo C++ the
pointer is made visible. In the first part an X object is declared directly, in the second part of the
example the (overloaded) operator new is used:

X::X(&x); // x’s address is passed to the constructor
// the compiler made ’x’ available

void // ask new to allocate the memory for an X
*ptr = X::operator new();
X::X(ptr); // and let the constructor operate on the
// memory returned by ’operator new’

Notice that in the pseudo C++ fragment the member functions were treated as static functions of
the class X. Actually, the operator new() operator is a static functions of its class: it cannot reach
data members of its object, since it’s normally the task of the operator new() to create room
for that object first. It can do that by allocating enough memory, and by initializing the area as
required. Next, the memory is passed over to the constructor (as the this pointer) for further
processing. The fact that an overloaded operator new is in fact a static function, not requiring an
object of its class can be illustrated in the following (frowned upon in normal situations!) program
fragment, which can be compiled without problems (assume class X has been defined and is
available as before):

int main()

{
X

141

X::operator new(sizeof x);

return (0);

The call to X: :operator new() returns a void * to an initialized block of memory, the size of an
X object.

The operator new can have multiple parameters. The first parameter again is the size_t parameter,
other parameters must be passed during the call to the operator new. For example:

class X
{
public:
void *operator new(size_t pl, unsigned p2);
void *operator new(size_t pl, char const *fmt, ...);
};
int main()
{
X
*objectl = new(12) X(Q),
*object2 = new("%d %d", 12, 13) XQO,
*xobject3 = new("%d", 12) XQO;
return (0);
}

The object (objectl) is a pointer to an X object for which the memory has been allocated by the call
to the first overloaded operator new, followed by the call of the constructor X() for that block of
memory. The object (object2) is a pointer to an X object for which the memory has been allocated
by the call to the second overloaded operator new, followed again by a call of the constructor X()
for its block of memory. Notice that object3 also uses the second overloaded operator new():
that overloaded operator accepts a variable number of arguments, the first of which is a char
const .

6.3 Overloading operator delete(void)

The delete operator may be overloaded too. The operator delete must have avoid * argument,
and an optional second argument of type size_t, which is the size in bytes of objects of the class
for which the operator delete is overloaded. The returntype of the overloaded operator delete
is void.

Therefore, in a class the operator delete may be overloaded using the following prototype:

void operator delete(void x);

142

or

void operator delete(void *, size_t);

The ‘home-made’ delete operator is called after executing the class’ destructor. So, the statement

delete ptr;

with ptr being a pointer to an object of the class X for which the operator delete was overloaded,
boils down to the following statements:

X::"X(ptr); // call the destructor function itself

// and do things with the memory pointed
// to by ptr itself.
X::operator delete(ptr, sizeof (*ptr));

The overloaded operator delete may do whatever it wants to do with the memory pointed to by
ptr. It could, e.g., simply delete it. If that would be the preferred thing to do, then the default
delete operator can be activated using the :: scope resolution operator. For example:

void X::operator delete(void *ptr)

{
// ... whatever else is considered necessary
// use the default operator delete
::delete ptr;

}

6.4 Cin, cout, cerr and their operators

This section describes how a class can be adapted in such a way that it can be used with the C++
streams cout and cerr and the insertion operator <<. Adaptating a class in such a way that the
istream’s extraction operator >> can be used occurs in a similar way and is not further illustrated
here.

The implementation of an overloaded operator << in the context of cout or cerr involves the
base class of cout or cerr, which is ostream. This class is declared in the header file iostream
and defines only overloaded operator functions for ‘basic’ types, such as, int, charx*, etc.. The
purpose of this section is to show how an operator function can be defined which processes a new
class, say Person (see chapter 5.1) , so that constructions as the following one become possible:

143

Person
kr("Kernighan and Ritchie", "unknown", "unknown");

cout << "Name, address and phone number of Person kr:\n"
<< kr
<< ’\n’;

The statement cout << kr involves the operator << and its two operands: an ostream & and
a Person & The proposed action is defined in a class-less operator function operator<<()
expecting two arguments:

// declaration in, say, person.h
ostream &operator<<(ostream &, Person const &);

// definition in some source file
ostream &operator<<(ostream &stream, Person const &pers)

{
return
(
stream << "Name: " << pers.getname()
<< "Address: " << pers.getaddress()
<< "Phone: " << pers.getphone()
)3
}

Concerning this function we remark the following:

e The function must return a (reference to) ostream object, to enable ‘chaining’ of the operator.

e The two operands of the operator << are stated as the two arguments of the overloading
function.

e The class ostream provides the member function opfx (), which flushes any other ostream
streams tied with the current stream. opfx () returns 0 when an error has been encountered
(Cf. chapter 11).

An improved form of the above function would therefore be:

ostream &operator<<(ostream &stream, Person const &pers)
{
if (! stream.opfx())
return (stream);

144

6.5 Conversion operators

A class may be constructed around a basic type. E.g., it is often fruitful to define a class String
around the char *. Such a class may define all kinds of operations, like assignments. Take a look
at the following class interface:

class String
{
public:
String() ;
String(char const *arg);
~String();
String(String const &other);
String const &operator=(String const &rvalue) ;
String const &operator=(char const *rvalue);
private:
char
*string;

};

Objects from this class can be initialized from a char const *, and also from a String itself.
There is an overloaded assignment operator, allowing the assignment from a String object and
from a char const *Z.

Usually, in classes that are less directly linked to their data than this String class, there will be an
accessor member function, like char const *String::getstr() const. However, in the current
context that looks a bit awkward, but it also doesn’t seem to be the right way to go when an
array of strings is defined, e.g., in a class StringArray, in which the operator[] is implemented
to allow the access of individual strings. Take a look at the following class interface:

class StringArray
{
public:
StringArray(unsigned size);
StringArray(StringArray const &other);
StringArray const &operator=(StringArray const &rvalue);
~StringhArray();

String &operator[] (unsigned index) ;
private:
String
*store;
unsigned
n;

};

2Note that the assingment from a char const # also includes the null-pointer. An assignment like stringObject
= 0 is perfectly in order.

145

The StringArray class has one interesting memberfunction: the overloaded array operator operator[].
It returns a String reference.

Using this operator assignments between the String elements can be realized:

StringArray
sa(10);

... // assume the array is filled here

sal[4] = sa[3]; // String to String assignment

It is also possible to assign a char const * to an element of sa:
sa[3] = "hello world";
When this is evaluated, the following steps are followed:

e First, sa[3] is evaluated. This results in a String reference.

e Next, the String class is inspected for an overloaded assignment, expecting a char const
* to its right-hand side. This operator is found, and the string object sa[3] can receive its
new value.

Now we try to do it the other way around: how to access the char const * that’s stored in sa[3]7
We try the following code:

char const
*cp;

cp = sal3];

Well, this won’t work: we would need an overloaded assignment operator for the ’class char const
x’. However, there isn’t such a class, and therefore we can’t build that overloaded assignment
operator (see also section 6.9). Furthermore, casting won’t work: the compiler doesn’t know how
to cast a String to a char const *. How to proceed?

The naive solution is to resort to the accessor member function getstr():
cp = sal[3].getstr();

That solution would work, but it looks so clumsy.... A far better approach would be to use a
conversion operator.

A conversion operator is a kind of overloaded operator, but this time the overloading is used to
cast the object to another type. Using a conversion operator a String object may be interpreted

146

as a char const *, which can then be assigned to another char const *. Conversion operators
can be implemented for all types for which a conversion is needed.

In the current example, the class String would need a conversion operator for a char const .
The general form of a conversion operator in the class interface is:

operator <type>(Q);
With our String class, it would therefore be:
operator char const *();

The implementation of the conversion operator is straightforward:

String: :operator char const *()

{

return (string);

}

Notes:

e There is no mentioning of a return type. The conversion operator has the type of the returned
value just after the operator keyword.

e In certain situations the compiler needs a hand to disambiguate our intentions. In a statement
like

printf("%s", sal3]);

the compiler is confused: are we going to pass a String & or a char const * to the printf ()
function? To help the compiler out, we supply an explicit cast here:

printf ("%s", static_cast<char const *>(sal3]));

For completion, the final String class interface, containing the conversion operator, looks like this:

class String

{
public:
String();
String(char const *arg);
“String();
String(String const &other);
String const &operator=(String const &rvalue);
String const &operator=(char const *rvalue);
operator char comnst *();
private:
char
*string;
};

147

6.6 The ‘explicit’ keyword

Assume we have a class that’s doing all kinds of interesting stuff. Its public members could be,
e.g.:

class Convertor

{
public:

Convertor();
Convertor(char const *str);
Convertor(Convertor const &other);
~“Convertor() ;
operator char const*x();
void anyOtherMemberFunction();

};

Objects of the class Convertor may be constructed using a default constructor and using a char
const *. Functions might return Convertor objects and functions might expect Convertor objects
as arguments. E.g.,

Convertor returnConvertorObject()

{

Convertor

convertor;

return (convertor);
}
void expectConvertorObject(Convertor const &object)
{
}

In cases like these, implicit conversions to Convertor objects will be performed if there are con-
structors having one parameter (or multiple parameters, using default argument values), if an
argument of the type of the single parameter is passed to or returned from the function. E.g., the
following function expects a char const * and returns an Convertor object due to the implicit
conversion from char const * to Convertor using the Convertor (char const *) constructor as
middleman:

Convertor returnConvertorObject(char const *str)
{
return (str);

}

This conversion generally occurs wherever possible, and acts like some sort of ‘reversed’ conversion
operator: in applicable situations the constructor expecting one argument will be used if the

148

argument is specified, and the class object is required.

If such implicit use of a constructor is not appropriate, it can be prevented by using the explicit
modifier with the constructor. Constructors using the explicit modifier can only be used for
the explicit definition of objects, and cannot be used as implicit type convertors anymore. For
example, to prevent the implicit conversion from char const * to Convertor the class interface
of the class Convertor must contain the constructor

explicit Convertor(char const *str);

6.7 Overloading the increment and decrement operators

Overloading the increment (and decrement) operator creates a small problem: there are two version
of each operator, as they may be used as postfir operator (e.g., x++) or as prefir operator (e.g.,
++X).

Suppose we define a class bvector whose members can be used to visit the elements of an array.
The bvector object will return a pointer to an element of the array, and the increment operators
will change the pointer to the next element. A partially defined bvector class is:

class bvector

{
public:

bvector(int *vector, unsigned size)
vector (vector),
current (vector),
finish(vector + size)

{>

int *begin()

{
return(current = vector);

}

operator int *() const

{
return (current);

}

// increment and decrement operators: see the text

private:

int
*vector,
*current,
*finish;

};

In order to privide this class with an overloaded increment operator, the following overloaded
operator++() can be designed:

149

int #*bvector: :operator++()
{
return (++current);

}

As current is incremented before it is returned, the above overloaded operator++() clearly be-
haves like the prefix operator. However, it is not possible to use the same function to implement the
postfix operator, as overloaded functions must differ in their parameterlists. To solve this problem,
the convention is adopted to provide the postfiz operator with an anonymous int parameter. So,
the postfix increment operator can be designed as follows:

int #*bvector: :operator++(int)
{
return (current++);

}

In situations where the function operator++() is called explicitly, a dummy int argument may be
passed to the function to indicate that the postfix version is required. If no argument is provided,
the prefix version of the operator is used. E.g.,

bvector
*bvp = new bvector(intArray, 10);

bvp->operator++(1); // postfix operator++()
bvp->operator++() // prefix operator++()

6.8 Function Objects

Function Objects are created by overloading the function call operator operator(). By defining
the function call operator an object may be used as a function, hence the term function objects.

Function objects play an important role in the generic algorithms and they can be used profitably
as alternatives to using pointers to functions. The fact that they are important in the context of
the generic algorithms constitutes some sort of a didactical dilemma: at this point it would have
been nice if the generic algorithms would have been covered, but for the discussion of the generic
algorithms knowledge of function objects is an advantage. This bootstrap problem is solved in a
well known way: by ignoring the dependency.

Function objects are class type objects for which the operator() has been defined. Usually
they are used in combination with the generic algorithms, but they are also used in situations
where otherwise pointers to functions would have been used. Another reason for using function
objects is to support inline functions, something that is not possible via the pointers to functions
construction.

150

Assume we have a class Person and an array of Person objects. The array is not sorted. A
well known procedure for finding a particular Person object in the array is to use the function
1search(), which performs a lineair search in an array. A program fragment in which this function
is used is, e.g.,

Person
*pArray;
unsigned
n;

n = fillPerson(&pArray);

Person
target(...);
cout <<
"The target person is " <<
(
lsearch(&target, pArray, &n, sizeof (Person), compareFunction) 7
"found"
"not found"
) <<
endl;

The function fillPerson() is called to fill the array, the target person is defined, and then
1search() is used to locate the target person. The comparison function must be available, as its
address is passed over to the function. It could be something like:

int compareFunction(Person const *pl, Person const *p2)

{
return (*xpl != *p2); // lsearch() wants O for equal objects

3

This, of course, assumes that the operator!=() has been overloaded in the class Person, as it is
quite unlikely that a bytewise comparison will be appropriate here. But overloading operator!=()
is no big deal, so let’s assume that operator is available as well. In this situation an inline compare
function cannot be used: as the address of the compare () function must be known to the 1search()
function. So, on the average n / 2 times at least the following actions take place:

e The two arguments of the comparefunction are pushed on the stack,

e The final parameter of 1search () is evaluated, producing the address of compareFunction(),

e The comparefunction is called,

e The address of the right-hand argument of the Person: : operator!=()) argument is pushed
on the stack,

151

e The operator!=() function is evaluated,

e The argument of Person: :operator!=()) argument is popped off the stack,

e The two arguments of the comparefunction are popped off the stack.
When using function objects a different picture emerges. Assume we have constructed a function
PersonSearch (), having the following prototype (realize that this is not the real thing. Normally a

generic algorithm will be used instead of a home-made function. But for now our PersonSearch()
function is used for the sake of argument):

Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target);

The next program fragment shows the use of this function:

Person
*pArray;
unsigned
n;

n = fillPerson(&pArray);

cout <<
"The target person is " <<
(
PersonSearch(pArray, n, Person(...)) 7

"found"
"not found"

) <<

endl;

Here we see that the target person is passed over to the function using an anonymous Person object.
A named object could have been used as well, though. What happens inside PersonSearch() is
shown next:

Person const *PersonSearch(Person *base, size_t nmemb,
Person const &target)

{
for (int idx = 0; idx < nmemb; ++idx)
if (!target(base[idx])) // using the same returnvalues
return (base + idx); // as lsearch(): 0 means ’found’
return (0);
}

152

The expression target (base [idx]) shows our target object being used as a function object. Its
implementation can be something like:

int Person::operator() (Person const &other) const
{
return (*¥this != other);

}

Note the somewhat peculiar syntax: operator () (...). The first set of parentheses define the
particular operator that is overloaded: the function call operator. The second set of parentheses
define the parameters that are required for this function. The operator () appears in the class
header file as:

bool operator() (Person const &other) const;

Now, Person::operator() is a simple function. It contains but one statement, and we could
consider making it inline. Assuming we do so, here is what happens when the operator() is
called:

e The address of the right-hand argument of the Person: : operator!=()) argument is pushed
on the stack,

e The operator!=() function is evaluated,

e The argument of Person: :operator!=()) argument is popped off the stack,

Note that due to the fact that operator () is an inline function, it is not actually called. Instead
operator!=() is called immediately. Also note that the required stack operations are fairly modest.

The operator () could have been avoided altogether in the above example. However, in the coming
sections several predefined function objects are introduced calling specific operators of underlying
datatypes. Usually these function object will receive one or two arguments (for, respectively, unary
and binary operators).

Function objects play important roles in combination with generic algorithms. For example, there
exists a generic algorithm sort that takes two iterators defining the range of objects that should
be sorted, and a function object calling the appropriate comparison operator for two objects. Let’s
take a quick look at this situation. Assume strings are stored in a vector, and we want to sort the
vector in descending order. In that case, sorting the vector stringVec is as simple as:

sort(stringVec.begin(), stringVec.end(), greater<string>());

The last argument is in fact a constructor of the greater (template) class applied on strings. This
object is called (as function object) by the sort () generic algorithm. The function object itself is
not visible at this point: don’t confuse the parentheses in greater<string>() with the calling

153

of the function object. When the function object is actually called, it receives two arguments: two
strings to compare for ‘greaterness’. Internally, the operator> () of the underlying datatype (i.e.,
string) is called to compare the two objects. Since the greater::operator() is defined inline,
it is not actually present in the code. Rather, the string: :operator>() is called by sort ().

Now that we know that a constructor is passed as argument to (many) generic algorithms, we can
design our own function objects. Assume we want to sort our vector case-insensitively. How do we
proceed? First we note that the default string::operator<() (for an incremental sort) is not
appropriate, as it does case sensitive comparisons. So, we provide our own case_less class, in which
the two strings are compared case-insensitively. Using the standard C function strcasecmp(), the
following program performs the trick. It sorts in increasing order its command-line arguments:

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>
#include <string.h>

class case_less

{
public:
bool operator() (string const &left, string const &right) const
{
return (strcasecmp(left.c_str(), right.c_str()) < 0);
3
};
int main(int argc, char **argv)
{
sort(argv, argv + argc, case_less());
for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";
cout << endl;
return (0);
}

The default constructor of the class case_less is used with the final argument of sort (). The
only memberfunction that must be defined with the class case_less is the function object operator
operator (). Since we know it’s called with string arguments, we provide it with two string
arguments, which are used in the strcasecmp() function. Furthermore, the operator () function
is made inline, so that it does not produce overhead in the sort () function. The sort () function
calls the function object with various combinations of strings, i.e., it thinks it does so. However,
in fact it calls strcasecmp(), due to the inline-nature of case_less: :operator().

The comparison function object is often a predefined function object, since these are available for
most of the common operations.

A function object may be defined inline. This is not possible for functions that are called indirectly
(i.e., via pointers to functions). So, even if the function object needs to do very little work it has to
be defined as an ordinary function if it is going to be called via pointers. The overhead of performing
the indirect call may not outweight the advantage of the flexibility of calling functions indirectly.

154

In these cases function objects that are defined as inline functions can result in an increase of
efficiency of the program. Finally, function object may access the data of the objects for which
they are called directly, as they have access to the private data of their object. In situations where
a function must be able to serve many different datatypes (like the gsort () function) it is always
somewhat cumbersome to reach the data of the involved objects via a pointer to a function of
global scope.

In the following sections the available predefined function objects are presented, together with some
examples showing their use. At the end of this section about function objects function adaptors
are presented.

6.8.1 Categories of Function objects

Function objects may be defined when necessary. However, it is also (and often) possible to
use predefined function objects. In order to use the predefined function objects the header file
functional must be included:

#include <functional>

The predefined function objects are used predominantly with the generic algorithms. Predefined
function objects exists for arithmetic, relational, and logical functions. They are discussed in the
coming sections.

Arithmetic Function Objects

The arithmetic function objects support the standard arithmetic operations: addition, subtraction,
multiplication, division, modulus and negation. By using the predefined function objects, the
corresponding operator of the associated data type is invoked. For example, for addition the
function object plus<Type> is available. If we set type to unsigned then the + operator for
unsigneds is used, if we set type to string, then the + operator for strings is used. For example:

#include <iostream>
#include <string>
#include <functional>

int main(int argc, char **argv)

{
plus<unsigned>
uAdd; // function object to add unsigneds
cout << "3 + 5 = " << uAdd(3, 5) << endl;
plus<string>
sAdd; // function object to add strings
cout << "argv[0] + argv[1] = " << sAdd(argv[0], argv[1]) << endl;
}

155

Why is this useful? Note that the function object can be used for all kinds of data types, not only
on the predefined datatypes, but on any (class) type in which the particular operator has been
overloaded. Assume that we want to perform an operation on a common variable on the one hand
and on each element of an array in turn. E.g., we want to compute the sum of the elements of an
array, or we want to concatenate all the strings in a text-array. In situations like these the function
objects come in handy. As noted before, the function objects are most heavily used in the context
of the generic algorithms, so let’s take a quick look at one of them.

One of the generic algorithms is called accumulate. It visits all elements implied by an iterator-
range, and performs a requested binary operation on a common element and each of the elements in
the range, returning the accumulated result after visiting all elements. For example, the following
program accumulates all its command line arguments, and prints the final string:

#include <iostream>
#include <string>
#include <functional>
#include <numeric>

int main(int argc, char **argv)

{
string
result =
accumulate(argv, argv + argc, string(""), plus<string>());
cout << "All concatenated arguments: " << result << endl;
}

The first two arguments define the (iterator) range of elements to visit, the third argument is
string(""). This anonymous string object provides an initial value. It could as well have been
initialized to

string("All concatenated elements: ")
in which case the cout statement could have been a simple
cout << result << endl

Then, the operator to apply is plus<string>(). Here it is important to note the function call
notation: it is not plus<string>, but rather plus<string>(). The final concatenated string is
returned.

Now we define our own class data type Time, in which the operator+() has been overloaded. Again,
we can apply the predefined function object plus, now tailored to our newly defined datatype, to
add times:

#include <iostream>
#include <strstream>
#include <string>
#include <vector>
#include <functional>

156

#include <numeric>

class Time

{
public:

Time (unsigned hours, unsigned minutes, unsigned seconds)

{
days = 0;
this->hours = hours;
this->minutes = minutes;
this->seconds = seconds;

}

Time(Time const &other)

{
this->days = other.days;
this->hours = other.hours;
this->minutes = other.minutes;
this->seconds = other.seconds;

}

Time const operator+(Time const &rValue) const

{
Time

added (*this) ;

added.seconds += rValue.seconds;
added.minutes += rValue.minutes + added.seconds
added.hours += rValue.hours + added.minutes
added.days += rValue.days + added.hours
added.seconds %= 60;
added.minutes %= 60;
added.hours %= 24;
return (added);

}

operator char const *() const

{
static ostrstream

timeString;
timeString.seekp(ios: :beg);
timeString << days << " days, " << hours << ":" <<
minutes << ":" << seconds << ends;

return (timeString.str());

}

private:

unsigned
days,
hours,
minutes,
seconds;

};

int main(int argc, char **argv)

{

vector<Time>

157

/ 60;
/ 60;
/ 24;

tvector;

tvector.push_back(Time(1, 10, 20));
tvector.push_back(Time (10, 30, 40));
tvector.push_back(Time(20, 50, 0));
tvector.push_back(Time (30, 20, 30));

cout <<
accumulate
(
tvector.begin(), tvector.end(),
Time(0, 0, 0), plus<Time>()
) << endl;

Note that all memberfunctions of Time in the above source are inline functions. This approach was
followed in order to keep the example relatively small, and to show explicitly that the operator+()
function may be an inline function. On the other hand, in real life the operator+() function of
Time should probably not be made inline, due to its size. Considering the previous discussion
of the plus function object, the example is pretty straightforward. The class Time defines two
constructors, the second one being the copy-constructor, it defines a conversion operator (operator
char const *()) to produce a textual representation of the stored time (deploying an ostrstream
object, see chapter 11), and it defines its own operator+(), adding two time objects.

The organization of the operator+() deserves some attention. In expressions like x + y neither x
nor y are modified. The result of the addition is returned as a temporary value, which is then used
in the rest of the expression. Consequently, in the operator+() function the this object and the
rValue object must not be modified. Hence the const modifier for the function, forcing this to
be constant, and the const modifier for rValue, forcing rValue to be constant. The sum of both
times is stored in a separate Time object, a copy of which is then returned by the function.

In the main() function four Time objects are stored in a vector<Time> object. Then, the
accumulate () generic algorithm is called to compute the accumulated time. It returns a Time
object, which cannot be inserted in the cout ostream object. Fortunately, the conversion oper-
ator is available, and this conversion operator is called implicitly to produce the required char
const x string from the Time object returned by the accumulate () generic algorithm.

While the first example did show the use of a named function object, the last two examples showed
unnamed or anonymous objects which were passed to the (accumulate) function.

The following arithmetic objects are available as predefined objects:

e plus, as shown this object calls the operator+()
e minus, calling operator-() as a binary operator,

e multiplies, calling operatorx*() as a binary operator,

158

e divides, calling operator/ (),
e modulus, calling operator(),

e negate, calling operator-() as a unary operator.

An example using the unary operator-() is the following, in which the transform() generic
algorithm is used to toggle the signs of all elements in an array. The transform() generic algorithm
expects two iterators, defining the range of objects to be transformed, an iterator defining the begin
of the destination range (which may be the same iterator as the first argument) and a function
object defining a unary operation for the indicated data type.

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>

int main(int argc, char **argv)

{
int
iArr[] = { 1; _2: 3: _4’ 55 -6 };
transform(iArr, iArr + 6, iArr, negate<int>());
for (int idx = 0; idx < 6; ++idx)
cout << iArr[idx] << ", ";
cout << endl;
}

Relational Function Objects

The relational operators may be called from the relational function objects. All standard relational
operators are supported: ==, !=, >, >=, < and <=. The following objects are available:

e equal_to<Type>, calling operator==0),

e not_equal_to<Type>, calling operator!=(),

e greater<Type>, calling operator>(),

e greater_equal<Type>, calling operator>=(),

e less<Type>, calling operator< (),

e less_equal<Type>, calling operator<=().

Like the arithmetic function objects, these function objects can be used as named and unnamed
objects. An example using the relational function objects using the generic algorithm sort () is:

159

#include <iostream>
#include <string>
#include <functional>
#include <algorithm>

int main(int argc, char **argv)

{
sort(argv, argv + argc, greater_equal<string>());
for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";
cout << endl;
sort(argv, argv + argc, less<string>());
for (int idx = 0; idx < argc; ++idx)
cout << argv[idx] << " ";
cout << endl;
return (0);
}

The sort () generic algorithm expects an iterator range and a comparator object for the underlying
data type. The example shows the alphabetic sorting of strings and the reversed sorting of strings.
By passing greater_equal<string>() the strings are sorted in decreasing order (the first word
will be the ’greatest’), by passing less<string> () the strings are sorted in increasing order (the
first word will be the ’smallest’).

Note that the type of the elements of argv is char x, and that the relational function object expects
a string. The relational object greater_equal<string> () will therefore use the >= operator
of strings, but will be called with char * variables. The conversion from char * arguments to
string const & parameters is done implicitly by the string(char const %) constructor.

Logical Function Objects

The logical operators are called by the logical function objects. The standard logical operators are
supported: &%, || and !. The following objects are available:

e logical_and<Type>, calling operator&&()

e logical or<Type>, calling operator||(),

e logical not<Type>, calling operator! () (unary operator).

An example using the operator! () is the following trivial example, in which the transform()
generic algorithm is used to transform the logical values stored in an array:

#include <iostream>
#include <string>
#include <functiomnal>
#include <algorithm>

160

int main(int argc, char **argv)

{

bool

bArr[] = {true, true, true, false, false, false};
unsigned const

bArrSize = sizeof (bArr) / sizeof (bool);

for (int idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";
cout << endl;
transform(bArr, bArr + bArrSize, bArr, logical_not<bool>());
for (int idx = 0; idx < bArrSize; ++idx)
cout << bArr[idx] << " ";

cout << endl;

return (0);

6.8.2 Function Adaptors

Function adaptors modify the working of existing function objects. There are two kinds of function

adaptors:

e Binders are function adaptors converting binary function objects to unary function ob-

jects. They do so by binding one object to a fixed function object. For example, with
the minus<int> function object, which is a binary function object, the first argument may
be fixed to 100, meaning that the resulting value will always be 100 minus the value of the
second argument. Either the first or the second argument may be bound to a specific value.
To bind the first argument to a specific value, the function object bind1st () is used. To
bind the second argument of a binary function to a specific value bind2nd () is used. As an
example, assume we want to count all elements of a vector of Person objects that exceed
(according to some criterion) some reference Person object. For this situation we pass the
following binder and relational function object to the count_if () generic algorithm:

bind2nd(greater<Person>(), referencePerson)

The count_if () generic algorithm visits all the elements in an iterator-range, returning the
number of times the predicate specified in its final argument returns true. Each of the
elements of the iterator range is given to the predicate, which is therefore a unary function.
By using the binder the binary function object greater() is adapted to a unary function
object, comparing each of the elements in the range to the reference person. Here is, to be
complete, the call of the count_if () function:

count_if (pVector.begin(), pVector.end(),
bind2nd (greater<Person>(), referencePerson))

161

e The negators are function adaptors converting the truth value of a predicate function. Since
there are unary and binary predicate functions, there are two negator function adaptors:
not1() is the negator to be used with unary function adaptors, not2() is the negator to be
used with binary function objects.

If we want to count the number of persons in a vector<Person> vector not exceeding a certain
reference person, we may, among other approaches, use either of the following alternatives:

e Use a binary predicate that directly offers the required comparison:

count_if (pVector.begin(), pVector.end(),
bind2nd(less_equal<Person>(), referencePerson))

e Use not2 in combination with the greater () predicate:

count_if (pVector.begin(), pVector.end(),
bind2nd (not2(greater<Person>()), referencePerson))

e Use notl in combination with the bind2nd () predicate:

count_if (pVector.begin(), pVector.end(),
notl(bind2nd ((greater<Person>()), referencePerson)))

The following small example illustrates the use of the negator function adaptors, completing
the section on function objects:

#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>

int main(int argc, char **argv)

{
int
iArr(] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
cout << count_if (iArr, iArr + 10, bind2nd(less_equal<int>(), 6)) <<
endl;
cout << count_if (iArr, iArr + 10, bind2nd(not2(greater<int>()), 6)) <<
endl;
cout << count_if (iArr, iArr + 10, notl(bind2nd(greater<int>(), 6))) <<
endl;
return (0);
}

162

6.9 Overloadable Operators

The following operators can be overloaded:

- * A - & |
- ! , = < > <= >=
++ - << >> == I= && [
+= -= *= = Y= ~= = =
<<= >>= 0 O -> —>x% new delete

However, some of these operators may only be overloaded as member functions within a class. This
holds true for the >=’, the > [1’, the > ()’ and the ’-> operators. Consequently, it isn’t possible
to redefine, e.g., the assignment operator globally in such a way that it accepts a char const *
as an lvalue and a String & as an rvalue. Fortunately, that isn’t necessary, as we have seen in
section 6.5.

163

Chapter 7

Abstract Containers

C++ offers several predefined datatypes, all part of the Standard Template Library, which can
be used to implement solutions to frequently occurring problems. The datatypes discussed in
this chapter are all containers: you can put stuff inside them, and you can retrieve the stored
information from them.

The interesting part is that the kind of data that can be stored inside these containers has been
left unspecified by the time the containers were constructed. That’s why they are spoken of as
abstract containers.

The abstract containers rely heavily on templates, which are covered near the end of the C++
Annotations, in chapter 16. However, in order to use the abstract containers, only a minimal
grasp of the template concept is needed. In C++ a template is in fact a recipe for constructing a
function or a complete class. The recipe tries to abstract the functionality of the class or function
as much as possible from the data on which the class or function operate. As the types of the data
on which the templates operate were not known by the time the template was constructed, the
datatypes are either inferred from the context in which a template function is used, or they are
mentioned explicitly by the time a template class is used (the term that’s used here is instantiated).
In situations where the types are explicitly mentioned, the angular bracket notation is used to
indicate which data types are required. For example, below (in section 7.1) we’ll encounter the
pair container, which requires the explicit mentioning of two data types. E.g., to define a pair
variable containing both an int and a string, the notation

pair<int, string>
myPair;

is used. Here, myPair is defined as a pair variable, containing both an int and a string.

The angular bracket notation is used intensively in the following discussion of the abstract con-
tainer. Actually, understanding this part of templates is the only real requirement for being able
to use the abstract containers. Now that we’ve introduced this notation, we can postpone the
more thorough discussion of templates to chapter 16, and get on with their use in the form of the
abstract container classes.

Most of the abstract containers are sequential containers: they represent a series of data which
can be stored and retrieved in some sequential way. Examples are the vector, implementing an

164

extendable array, the 1ist, implementing a datastructure in which insertions and deletions can be
easily realized, a queue, in which the first element that is entered will be the first element that will
be retrieved, and the stack, which is a first in, last out datastructure.

Apart from the sequential containers, several special containers are available. The pair is a basic
container in which a pair of values (of types that are left open for further specification) can be
stored, like two strings, two ints, a string and a double, etc.. Pairs are often used to return data
elements that naturally come in pairs. For example, the map is an abstract container in which keys
and corresponding values are stored. Elements of these maps are returned as pairs.

A variant of the pair is the complex container, which implements operations that are defined on
complex numbers.

All abstract containers described in this chapter and the string datatype discussed in section
3.3.3 are part of the standard template library. There exists also an abstract container for the
implementation of a hashtable, but that container is not (yet) accepted by the IS0/ANSI standard.
The final section of this chapter will cover the hashtable to some extent.

All containers support the = operator to assign two containers of the same type to each other. All
containers also support the ==, !'=, <, <=, > and >= operators.

Note that if a user-defined type (usually a class-type) is to be stored in a container, the user-
defined type must support

e A default-value (e.g., a default constructor)
e The equality operator (==)

e The less-than operator (<)

Closely linked to the standard template library are the generic algorithms. These algorithms may
be used to perform even more tasks than is possible with the containers themselves, like counting,
filling, merging, filtering etc.. An overview of the generic algorithms and their applications is given
in chapter 10. Generic algorithms usually rely on the availability of iterators, which represent begin
and endpoints for processing data stored inside the containers. The abstract containers normally
have constructors and members using iterators themselves, and they have members returning
iterators (comparable to the string: :begin() and string::end() members). In the remainder
of this chapter the use of iterators is not really covered. Refer to chapter 10 for the discussion of
iterators.

The url http://www.sgi.com/Technology/STL is worth visiting by those readers who want more
information about the abstract containers and the standard template library than can be provided
in the C++ annotations.

Containers often collect data during their lifetime. When a container goes out of scope, its de-
structor tries to destroy its data elements. This only succeeds if the data elements themselves
are stored inside the container. If the data elements of containers are pointers, the data to which
these pointers point will not be destroyed, and a memory leak will result. A consequence of this
scheme is that the data stored in a container should be considered the ‘property’ of the container:
the container should be able to destroy its data elements when the destructor of the container is
called. Consequently, the container should not only contain no pointer data, but it should also
not contain const data elements, as these data elements cannot be destroyed by the container’s
destructor.

165

7.1 The ‘pair’ container

The pair container is a rather basic container. It can be used to store two elements, called first
and second, and that’s about it. To define a variable as a pair container, the header file

#include <utility>

must be included.

The data types of a pair are defined when the pair variable is defined, using the standard template
(see chapter Templates) notation:

pair<string, string>
piper ("PA28", "PH-ANI"),
cessna("C172", "PH-ANG");

here, the variables piper and cessna are defined as pair variables containing two strings. Both
strings can be retrieved using the first and second fields of the pair type:

cout << piper.first << endl << // shows ’PA28’
cessna.second << endl; // shows ’PH-ANG’

The first and second members can also be used to reassign values:

cessna.first = "C152";
cessna.second = "PH-ANW";

If a pair variable must be completely reassigned, it is also possible to use an anonymous pair
variable as the right-hand side operand of the assignment. An anonymous variable defines a
temporary variable (which receives no name) solely for the purpose of (re)assigning another variable
of the same type. Its general form is

type(initializer list)

Note, however, that with a pair variable the type specification is not completed when the con-
tainername pair has been mentioned. It also requires the specification of the data types which are
stored inside the pair. For this the (template) angular bracket notation is used again. E.g., the
reassignment of the cessna pair variable could also have been accomplished as follows:

166

cessna = pair<string, string>("C152", "PH-ANW");

In cases like this, the type specification can become quite elaborate, which has caused a revival
of interest in the possibilities offered by the typedef keyword. If a lot of pair<typel, type2>
clauses are used in a source, the amount of typing may be reduced and legibility might be improved
by first defining a name for the clause, and then using the defined name later on. E.g.,

typedef pair<string, string> pairStrStr

cessna = pairStrStr("C152", "PH-ANW")
Apart from this (and the basic set of operations (assignment and comparisons) the pair has no

further special features. It is, however, a basic ingredient of the upcoming abstract containers map,
multimap and hash map.

7.2 Sequential Containers

7.2.1 The ‘vector’ container

The vector class implements an (expandable) array. To use the vector, the header file vector
must be included:

#include <vector>

Vectors can be used like arrays, and can be defined with a fixed number of elements. E.g., to
define a vector of 30 ints we do

vector<int>
iVector(30);

Note the specification of the data type that is to be used: the datatype is given between angular
brackets after the vector container name. So, a vector of 30 strings is defined as

vector<string>
strVector(30);

One of the nice characteristics of defining such a vector is that it’s initialized to the data type’s
default value. If there is a default constructor, it is called to construct the elements of the vector.
For the basic data types the initial value is zero. So, for the int vector we know its values are 0.

167

Another way to initialize the vector is to use explicit initialization values:

vector<int>
iVector (1, 2, 3);

This does not work, however, if a vector of one element must be initialized to a non-default value.

As with string variables,

e vector objects may be initialized with other vectors, or parts of existing vectors may be
used to initialize a vector:

vector<int>
a(10);

vector<int>
b(&al3], &al6]);

Note here that the last element mentioned is not used for the initialization. This is a simple
example of the use of iterators, in which the range of values that is used starts at the first value,
and includes all elements up to, but not including the last value mentioned. The standard notation
for this is [begin, end).

e vectors may be assigned to each other,

e the subscript operator may be used to retrieve individual elements,

e the == and != operators may be used to test the equality of two vectors.

e the < operator may be used to test whether each element in the left-hand operand vector is
less than each corresponding element in the right-hand operand vector. The <=, > and >=
operators are also available.

e the size() and empty () memberfunctions are available,

e the swap() memberfunction is available, swapping two vectors. E.g.,

int main()

{
vector<int>
v1(10),
v2(10);
vl.swap(v2);
}

e clements may be inserted at a certain position pos. Below source represents a value of the
type that is stored in the vector, while pos is an #terator pointing to a position in the vector
where source must be inserted:

168

— insert (pos, source) inserts source at pos,
— insert(pos, begin, end) inserts the elements in the iterator range [begin, end).

— insert(pos, n, source) inserts n elements having value source at position pos.
e elements may be erased:

— erase() and clear() both erase all elements, clear () is not available with strings.
— erase(pos) erases all elements starting at position pos,
— erase(begin, end) erases elements indicated by the iterator range [begin, end).

e resize(n) and resize(n, source) may be used to resize the vector to a size of n. If

the vector is expanded, the extra elements are initialized by the default value of the used
datatype, or by the explicitly provided value source.

Also available are:
e void pop-back() may be used to remove the last element from the vector. The element is
not returned by this memberfunction.
e front (), returning the initial element of the vector,
e back(), returning the final element of the vector,
e push back(source) stores source at the end of the vector: a new element is added at the

end.

Note that a vector may be defined without size: vector<int> ivect;. This defines an empty
vector, without any element at all. Therefore, a statement like ivect[0] = 18; would (in
this case) be an error, as there isn’t any element as yet. In this case the preferred idiom is
ivect.push.back(18);

7.2.2 The ‘list’ container

The 1ist class implements a list datastructure. To use the list, the header file 1ist must be
included:

#include <list>

A list is depicted in figure 7.1.

In figure 7.1 it is shown that a list consists of separate data-items, connected to each other by
pointers. The list can be traversed in two ways: starting at the Front the list may be traversed
from left to right, until the O-pointer is reached at the end of the rightmost data-item. The list
can also be traversed from right to left: starting at the Back, the list is traversed from right to
left, until eventually the O-pointer emanating from the leftmost data-item is reached.

Both lists and vectors are often possible datastructures in situations where an unknown number
of data elements must be stored. However, there are some rules of thumb to follow when a choice
between the two datastructures must be made.

169

0 (NULL) 0 (NULL)

Back

Froot

Figure 7.1: A list data-structure

e When the majority of accesses is random, then the vector is the preferred datastructure.
E.g., in a program that counts the frequencies of characters in a textfile, a vector<int>
frequencies(256) is the datastructure doing the trick, as the values of the received charac-
ters can be used as indices into the frequencies vector.

e The previous example illustrates a second rule of thumb, also favoring the vector: if the
number of elements is known in advance (and does not notably change during the lifetime of
the program), the vector is also preferred over the list.

e In cases where insertions and deletions prevail, the list is generally preferred. Actually, in my
experience, lists aren’t that useful at all, and often an implementation will be faster when a
vector, maybe containing holes, is used. Nonetheless, the 1ist container exists, and it may
become popular now that the list-mmanagement is part of the implementation of the abstract
container.

Other considerations related to the choice between lists and vectors should also be given some
thought. Although it is true that the vector is able to grow dynamically, the dynamical growth
does involve a lot of copying of data elements. Clearly, copying a million large datastructures
takes a considerable amount of time, even on fast computers. On the other hand, inserting a large
number of elements in a list doesn’t require us to copy the remainder of the list structure: inserting
a new element in a list merely requires us to juggle some pointers. In figure 7.2 this is shown: a
new element is inserted between the second and third element, creating a new list of four elements.

Removing an element from a list also is a simple matter. Starting again from the situation shown
in figure 7.1, figure 7.3 shows what happens if element two is removed from our list. Again: only
pointers need to be juggled. In this case it’s even simpler than adding an element: only two
pointers need to be rerouted.

Summarizing the comparison between lists and vectors, it’s probably best to conclude that there is
no clear-cut answer to the question what datastructure to prefer. There are rules of thumb, which
may be adhered to. But if worse comes to worst, a profiler may be required to find out what’s
working best. But, no matter what thoughts remain, the 1list container is available, so let’s see

170

o

0 (NULL) O (NULL)

L Al Back

Front

New Data-Item

Figure 7.2: Adding a new element to a list

) |
0 (NULL) 0 (NULL}

Back

Froot

Figure 7.3: Removing an element from a list

171

what we can do with it. As with the vector-class, the following constructors and memberfunctions
are available:
Constructors:

e an empty list is created using, e.g.,

list<string>
strlList;

e A list may be initialized with a certain number of elements. By default, if the initializa-
tion value is not explicitly mentioned, the defaultvalue or default constructor for the actual
datatype is used. For example:

list<string>
hello(5, string("Hello")), // initialize to 5 Hello’s
zilch(10); // initialize to 10 empty strings

e A list may be initialized using a two iterators, e.g., to initialize a list with elements 5 until
10 (including the last one) of a vector<string> the following construction may be used:

extern vector<string>
svector;
list<string>
slist(&svector[5], &svector[11]);

Note that a list may be defined without size:
list<int> ivect;
This defines an empty list, without any element at all. So, a statement like
xivect.begin() = 18;

would in this case be an error, as there isn’t any element as yet. In this case, the preferred idiom
is:

ivect.push_back(18);
Other memberfunctions, some of which were also available in vector, are:

e back(), returning the last element of the list.
e clear(),

e front (), returning the first element of the list.

172

empty (),
elements may be erased:

— erase() and clear () both erase all elements,
— erase(pos) erases all elements starting at the position pointed to by iterator pos,

— erase(begin, end) erases elements indicated by the iterator range [begin, end).
elements may be inserted at a certain position pointed to by the iterator pos:

— insert(pos, source) inserts source at the position pointed to by pos,

— insert(pos, begin, end) inserts the elements in the iterator range [begin, end) at
the position pointed to by pos.

— insert(pos, n, argument) inserts n elements having value argument at the position
pointed to by pos. The data type of argument must be equal to the data type of the
the elements of the list.

resize(n) and resize(n, argument) may be used to resize the list to a size of n. If the
list is expanded, the extra elements are initialized by the default value of the used datatype,
or by the explicitly provided value argument.

size(),

swap (argument), swaps two lists.

Also available are:

void push_front(source) to enter a new element at the head of the list.
void push back(source) to enter a new element at the end of the list.

void pop_front() may be used to remove the first element from the list. This element is
not returned by this memberfunction.

void pop-back() may be used to remove the last element from the list. This element is not
returned by this memberfunction.

remove (source): This memberfunction removes all occurrences of source from the list: the
two strings Hello are removed from the list object in the following example:

#include <iostream>
#include <string>
#include <list>

int main()
{
list<string>
object;

object.push_back(string("Hello"));
object.push_back(string("World"));
object.push_back(string("Hello"));
object.push_back(string("World"));

object.remove(string("Hello"));

173

while (object.size())

{
cout << object.front() << endl;
object.pop_front();

}

return (0);

e sort() will sort the list. Once the list has been sorted, the following memberfunction
(unique (D) may be used to remove all multiply occurring elements from the list, leaving
only one element of each. The following example shows the use of both memberfunctions.

e unique() makes sure that each element will occur only once. Here’s an example, leaving
each single word only once in the list:

#include <iostream>
#include <string>
#include <list>

int main()
{
list<string>
target;

target.push_back(string("A"));
target.push_back(string("rose"));
target.push_back(string("is"));
target.push_back(string("a"));
target.push_back(string("rose"));
target.push_back(string("is"));
target.push_back(string("a"));
target.push_back(string("rose"));

cout << "Initially we have: " << endl;
list<string>::iterator

from;
for (from = target.begin(); from != target.end(); ++from)

cout << *xfrom << " ";

cout << endl;

target.sort();

cout << "After sort() we have: " << endl;

for (from = target.begin(); from != target.end(); ++from)
cout << *xfrom << " ";

cout << endl;

target.unique() ;

cout << "After unique() we have: " << endl;

for (from = target.begin(); from != target.end(); ++from)
cout << *xfrom << " ";

cout << endl;

174

return (0);

e merge(argument) combines the current list and the argument list. The merging will add
elements of source to target. When both lists are ordered, the resulting list will be ordered
as well. If both list are not completely ordered, the resulting list will be ordered as much
as possible, given the initial ordering of the elements in each list. In the following example
this is illustrated: the object list is not completely ordered, but the resulting list (alfa
bravo golf oscar mike november quebec zulu) is ordered ’as much as possible’: mike
has to follow oscar, since this ordering is imposed by object, but given that imperfection
the resulting list is ordered alphabetically.

#include <iostream>
#include <string>

#include <list>

int main()

{

list<string>

object,

argument ;
object.push_back(string("alfa"));
object.push_back(string("bravo"));
object.push_back(string("golf"));
object.push_back(string("quebec"));
argument .push_back(string("oscar"));
argument .push_back(string("mike")) ;
argument .push_back(string("november")) ;
argument .push_back(string("zulu"));
object.merge (argument) ;
list<string>::iterator

from;
for (from = object.begin(); from != object.end(); ++from)

cout << *from << " ";
cout << endl;
return (0);

}

Note that the members merge () and sort () both assume the availability of the < and == operators.

e target.splice(iterator position, list source): This memberfunction transfers the
contents of source to the current list. Following splice(), source is empty. For example:

175

#include <iostream>
#include <string>
#include <list>

int main()

{
list<string>
object;
object.push_front(string("Hello"));
object.push_back(string("World"));
list<string>
argument (object) ;
object.splice(++object.begin(), argument);
cout << "Object contains " << object.size() << " elements, " <<
"Argument contains " << argument.size() << " elements," << endl;
while (object.size())
{
cout << object.front() << endl;
object.pop_front();
}
return (0);
}

Alternatively, source may be followed by a iterator of source, indicating the first element of
source that should be spliced, or by two iterators begin and end defining the iterator-range
[begin, end) on source that should be spliced into target.

Available operators with the 1ist containertype are:

The assignment of a list to another: =,

e The test for equality of two lists: ==,

The test for inequality of two lists: !=,

e <: This operator returns true if each element stored in the left-hand operand list is less
than each corresponding element in the right-hand operand list, based on the <-operator of
the element-type of the lists. Also available are the <=, > and >= operators.

7.2.3 The ‘queue’ container
The queue class implements a queue datastructure. To use the queue, the header file queue must

be included:

#include <queue>

176

Back Front

Figure 7.4: A queue data-structure

A queue is depicted in figure 7.4.

In figure 7.4 it is shown that a queue has one point (the back) where items can be added to the
queue, and one point (the front) where items can be removed (read) from the queue.

Bearing this model of the queue in mind, let’s see what we can do with it.

A queue can be initialized by an existing other queue, or it can be created empty:

queue<int>
queuel;

queue<int>
queue2 (queuel) ;

Apart from these constructors, and the basic operators for comparison and assignment (see the
introductory paragraph of this chapter), the following memberfunctions are available:

e empty(),
e size(),

e front(): returns the first element that would be removed by pop(), Alternatively, the last
element of the queue may be reassigned, as illustrated in the following example, in which
Hello World, rather than Hello is displayed:

#include <iostream>
#include <string>
#include <queue>

int main()
{

queue<string>
q;

q.push("Hello");
q.front() = "Hello World";

177

cout << q.front() << endl;

return (0);

}

e back(): returns the last element that was added to the queue. Like front(), back() can
be used to reassign the last item that was added to the queue.

e push(source): adds item source to the back of the queue.

e void pop(): removes (but does not return) the element at the front of the queue.

Note that the queue does not support iterators or a subscript operator. The only elements that
can be accessed are its front and back element, and a queue can only be emptied by repeatedly
removing its front element.

7.2.4 The ‘priority_queue’ container

The priority_queue class implements a priority queue datastructure. To use the priority queue,
the header file queue must be included:

#include <queue>

A priority queue is identical to a queue, but allows the entry of data elements according to priority
rules. An example of a situation where the priority queue is encountered in real-life is found at
the check-in terminals at airports. At a terminal the passengers normally stand in line to wait for
their turn to check in, but late passengers are usually allowed to jump the queue: they receive a
higher priority than the other passengers.

The priority queue uses the <-operator of the used data type to decide about the priority of the
data elements. The smaller the value, the lower the priority. So, the priority queue could also be
used for sorting values while they arrive.

A simple example of a priority queue application is the following program: it reads words from
cin and writes a sorted list of words to cout:

#include <iostream>
#include <string>
#include <queue>

int main()

{

priority_queue<string>
q;

string
word;

while (cin >> word)

178

q.push(word) ;

while (q.size())

{
cout << g.top() << endl;
q.popQ);

}

return (0);

Unfortunately, the words are listed in reversed order: because of the underlying <-operator the
words appearing later in the ascii-sequence appear first in the priority queue. A solution for that
problem is to define a wrapper class around the string datatype, in which the <-operator has been
defined according to our wish, i.e., making sure that the words appearing early in the ascii-sequence
appear first in the queue. Here is the modified program:

#include <iostream>
#include <string>
#include <queue>

class Text

{
public:
Text(string const &str): s(str)
{3
operator string const &() const
{
return (s);
}
bool operator<(Text const &right) const
{
return (s > right.s);
}
private:
string
S3
};
ostream &operator<<(ostream &ostr, Text const &text)
{
return (ostr << text);
}
int main()
{
priority_queue<Text>
q;
string
word;

while (cin >> word)

179

q.push(word) ;

while (q.size())
{
word = q.top();
cout << word << endl;

q.popQ);

return (0);

In the above program the wrapper class defines the operator< just the other way around than
the string class itself, resulting in the preferred ordering. Other possibilities would be to store the
contents of the priority queue in, e.g., a vector, from which the elements can be read in reversed
order. However, the example shows how the priority queue can be fed objects of a special class, in
which the operator< has been tailored to a particular use.

A priority queue can be initialized by an existing other priority queue, or it can be created empty:

priority_queue<int>
priority_queuel;

priority_queue<int>
priority_queue2(priority_queuel);

Apart from these constructors, and the basic operators for comparison and assignment (see the
introductory paragraph of this chapter), the following memberfunctions are available:

e empty(),

e size(),

e top(): returns the first element that would be removed by pop(). This element is not
removed from the priority queue, and could be given a new value, as in:

priority_queue<string>
pqg;

pq.top() = "Hello world";
e push(argument): adds item argument to its appropriate position, respecting its priority.

Note that the priority queue does not support iterators or a subscript operator. The only element
that can be accessed is its top element, and it can only be emptied by repeatedly removing this
element.

180

7.2.5 The ‘deque’ container

The deque class implements a double ended queue (deque) datastructure. To use the deque class,
the header file deque must be included:

#include <deque>

A deque is comparable to a queue, but it allows reading and writing at both ends of the queue.
Actually, the deque data type supports a lot more functionality than the queue, as will be clear
from the following overview of memberfunctions that are available for the deque:

First,

several constructors are available for the deque:

deque () initializes an empty deque.
deque (argument) initializes a deque with another deque argument.

deque(n, argument) initializes a deque with n values provided by the argument variable.
E.g., to initialize a deque with 10 strings containing Hello World we do:

deque<string>
hello(10, "Hello World");

deque (size_type n) initializes a deque with n default values of the datatype stored in the
deque.

deque(iterator first, iterator last) initializes the deque with the iterator range im-
plied by [first, last). The iterators first and last may also be pointers to the data-type
stored in the deque.

To access the individual elements of the deque, the following members are available:

begin(): this returns the iterator pointing to the front-element

end (): the iterator beyond the back-element.

rbegin(): the iterator pointing to the last (back) element

rend(): and the corresponding one pointing just before the first (front) element.
The subscript operator may be used to access random elements from the deque.

front(): returns the element at the front of the deque. This member may be used for
reassigning the front element as well.

back(): and the element at the back of the deque. Again, reassignment is possible.
size (), returning the number of elements in the deque.

empty (), returns true if the deque contains no elements.

181

The following operations and operator affect all elements of a deque:

e The assignment operator (=) may be used to assign one deque object to another.

e swap(argument) is used to swap the contents of the current deque with deque argument.
Elements may be added and removed from both ends of a deque:

e push back(source) adds source at the back of the deque,
e push front (source) adds source at the front of the deque.
e pop_back() removes (but does not return) the element at the back of the deque.

e pop_front () removes (but does not return) the element at the front of the deque.
Elements may also inserted somewhere within the deque:

e insert(position, argument): argument is inserted at the position indicated by the position
iterator, which is itself returned by the function. Argument may be omitted, in which case
the default value of the data-type used with the deque is inserted.

e insert(pos, n, argument): At the position indicated by the pos iterator n new elements
are inserted, all having value argument. There is no returnvalue.

e insert(pos, first, last): At the position indicated by the pos iterator the elements
implied by the iterator range [first, last) are inserted. There is no returnvalue.

e resize(new size, argument): the size of the deque is altered to new_size. If new_size
exceeds size (), then the new elements are initialized to argument. If argument is omitted,
the default value of the data type of the deque is used. If new_size is less than size (), then
the size of the deque is merely reduced.

Apart from using resize (), elements may be removed from the deque as follows:

e erase(pos) erases all elements of the deque from the position indicated by the iterator pos
to the end of the deque.

e crase(first, last) erases all elements implied by the iterator range [first, last).

e clear() erases all elements from the deque.

7.2.6 The ‘map’ container

The map class implements a (sorted) associative array. To use the map, the header file map must
be included:

#include <map>

182

A map is filled with Key/Value pairs, which may be of any container-acceptable type.

The key is used for looking up the information belonging to the key. The associated information is
the Value. For example, a phonebook uses the names of people as the key, and uses the telephone
number and maybe other information (e.g., the zip-code, the address, the profession) as the value.

Basically, the operations on a map are the storage of Key/Value combinations, and looking for a
value, given a key. Each key can be stored only once in a map. If the same key is entered twice,
the last entered key/value pair is stored, and the pair that was entered before is lost.

A single value that must be entered into a map must be constructed first. For this, every map
defines a value_type which may be used to create values of that type. For example, a value for a
map<string, int> can be constructed as follows:

map<string, int>::value_type(string("Hello"), 1)

The value_type is associated with the map<string, int> map. Its leftmost argument defines
the key, its rightmost argument defines its value.

Instead of using the line map<string, string>::value_type(...) over and over again, a
typedef comes in handy:

typedef map<string, int>::value_type MapStrIntValue

Using this typedef, values for the map<string, int> may be constructed as

MapStrIntValue(string("Hello"), 1);

Apart from the basic operations (assignment, comparison, etc,), the map supports several more
operations:

e The constructor defining an empty map. The types of the Key and Value must be specified
when the map is defined. E.g., to define a map in which the key is a string and the value an
int, use:

map<string, int>
object;

To define a map in which the key is a string and the value is a pair of strings, use:

map<string, pair<string, string> >
object;

183

Note the white space between the two closing angular brackets >: this is obligatory, as the
immediate concatenation of the two angular brackets will be interpreted by the compiler as
a rightshift operator (>>), which is not what you want here.

object(iterator first, iterator last): This constructor defines a map that is initial-
ized by the values implied by the iterator range [first, last). The range could be defined
by pointers in an array of Key/Value pairs. For example (see section 7.1 for a discussion of
the pair container):

pair<string, int>
pall = A
pair<string,int>("one", 1),
pair<string,int>("two", 2),
pair<string,int>("three", 3),

};

map<string, int>
object (&pal0], &pal3l);

Note that &pa[3], as with the iterators, points to the first element that must not be included
in the map. The particular array element does not have to exist.

Also note that key/value pairs are only entered if the corresponding key has not yet been
entered. If the last element of pa would have been "one", 3, only two elements would have
entered the map: "one", 1 and "two", 2. The value "one", 3 would have been ignored
silently.

Finally, it is worth noting that the map receives its own copies of the data to which the
iterators point. The following example illustrates this:

#include <iostream>
#include <string>
#include <utility>
#include <map>

class MyClass

{
public:
MyClass ()
{
cout << "MyClass constructor called\n";
}
MyClass(const MyClass &other)
{
cout << "MyClass copy constructor called\n";
}
“MyClass ()
{
cout << "MyClass destructor called\n";
}
};

int main()

184

pair<string, MyClass>
pairs[] =
{
pair<string, MyClass>("one", MyClass()),
};

cout << "pairs constructed\n";

map<string, MyClass>
mapsm(&pairs[0], &pairs([1]);

cout << "mapsm constructed\n";

return (0);

}

First, the constructors of a MyClass object is called to initialize the first element of the
array pairs. This object is copied into the first element of the array pairs by calling the
copy constructor. Next, the original element is not needed anymore, and gets destroyed.
At that point the array pairs is constructed. Next, the map constructs a temporary pair
object, from which the map element is constructed. Having constructed the map element,
the temporary pair objects is destroyed. Eventually, when the program terminates, the pair
element stored in the map is destroyed too.

When run, the program produces the following output:

MyClass constructor called
MyClass copy constructor called
MyClass destructor called

pairs constructed

MyClass copy constructor called
MyClass copy constructor called
MyClass destructor called
mapsm constructed

MyClass destructor called

e object(argument): This constructor initializes object with an existing map argument hav-
ing the same key/value combinations.

The standard iterators are also available:

e begin()
e end()
e rbegin()

e rend()

Other member functions of the map are:

185

empty (),
size(),
swap(),

The subscript operator ([1), which may be used to access and redefine values. Here, the
argument of the subscript operator is the keyvalue. If the provided key is not available in the
map, a new data element is added to the map, using the default value or default constructor
to initialize the value part of the newly added key/value combination. This default value is
then returned.

When initializing a new or reassigning another element of the map, the right-hand side
of the assignment operator must have the type of the value part of the map. E.g., to add
another element "two" to the map that was defined in the previous example, use the following
construction:

mapsm["two"] = MyClass();

insert(argument) is used to insert a new value argument in the map. The returnvalue is
a pair<iterator,bool>. The bool field indicates whether source was inserted (true is
returned) or not (in which case the key field of source was already available). In both cases
the iterator field points to the data-element in the map: a new element if true is returned,
the existing element if false is returned. The following little program illustrates this:

#include <string>
#include <map>
#include <iostream>

int main()
{
pair<string, int>
pall = {
pair<string,int>("one", 1),
pair<string,int>("two", 2),
pair<string,int>("three", 3),

};

map<string, int>
xmap (&pal0], &pal3]);

// {four, 4} and true (1) is returned here
pair<map<string, int>::iterator, bool>

ret = xmap.insert(map<string, int>::value_type("four", 4));

cout << ret.first->first << " " << ret.first->second << " " <K<
ret.second << " " << xmap["four"] << endl;

// {four, 4} and false (0) is returned here
ret = xmap.insert(map<string, int>::value_type("four", 0));

cout << ret.first->first << " " << ret.first->second << " " <K
ret.second << " " << xmap["four"] << endl;

186

return (0);

}

Note the somewhat peculiar constructions like

cout << ret.first->first << " " << ret.first->second << ...

Here ret is the pair variable returned by the insert member function. Its first field is an
iterator into the t(map<string, int>), so it can be considered a pointer to a map<string,
int> value type. These value types themselves are pairs too, having first and second
fields. Consequently, ret.first->first is the key field of the map value (a string), and
ret.first->second is the value field (an int).

insert(position, argument). This is another way to insert a value, this time using a
specific position within the map. Position is an map<keytype, valuetype>::iterator.
Although a specific position is given, the new element is inserted at its appropriate sorted
location within the map, so mapVariable.begin() could be used for the position.

insert(first, last): this memberfunction may be used to insert a range of elements
implied by the iterator range [first, last) into the map. Again, elements are only inserted
if their keys are not yet in the map, and the map remains sorted by key values. Instead of
iterators pointers to elements of the same value type as stored in the map may be used.

erase(position): erases the element at the indicated position, which is an iterator of the
particular map.

erase(key): erases the element having key as its key value.

erase(first, last): erases the range of elements implied by the iterator range [first,
last).

clear(): erases all elements from the map.

find(key): an iterator is returned pointing to the element whose key is key. If the element
isn’t available, the iterator end () is returned. The following example illustrates the use of
the £ind () memberfunction:

#include <iostream>
#include <string>
#include <utility>
#include <map>

int main()
{
map<string, int>
mapsi;
mapsi["one"] = 1;
map<string, int>::iterator

it = mapsi.find("one");

187

Cout << ll\llone\ll n <<
(it == mapsi.end() 7 "not " : "") <<
"found\n";

it = mapsi.find("three");

cout << "\"three\" " <<
(it == mapsi.end() 7 "not " : "") <<
"found\n";

return (0);

The following members have special meanings with the multimap, but they are defined with the
plain map too:

e count (key): returns 1 if the provided key is available in the map, otherwise 0 is returned.

e lower_bound(key): returns an iterator pointing to the first element having a key equal to
or exceeding the key value that is passed to the memberfunction. If no such value exists,
target.end() is returned.

e upper_bound (key_type key): same as the previous function.

e equal _range (key_type key): a pair<iterator,iterator> is returned. In the case of a
map, the range consists of the data element having as its key the key value that is passed to
the function. If no such data element could be found, the pair (end(), end()) is returned.

7.2.7 The ‘multimap’ container

Like the map, the multimap class implements also a (sorted) associative array. To use the multimap,
the header file multimap must be included:

#include <multimap>

The main difference between the map and the multimap is that the multimap supports multiple
entries of the same key, whereas the map contains only unique keys. Note that multiple entries of
the same key and the same value are also accepted.

The functions that are available with the multimap and the map are practically the same, with
the exception of the subscript operator ([1), which is not supported with the multimap. This is
understandable: if multiple entries of the same key are allowed, which of the possible values should
be returned for myMap [myKey]?

Below the available constructors and memberfunctions are mentioned. They are presented without
further comment if their function is identical to that of the map container.

A single value that is to be entered into a multimap must be constructed. For this, a multimap
defines a value_type, corresponding to a particular multimap type, which may be used to create
values of that type. For example, with a multimap<string, string> it can be used as follows:

188

multimap<string, string>::value_type(string("Hello"), 1)

Here are the constructors that are available for the multimap:

e The constructor defining an empty multimap. E.g.,

multimap<string, int>
object;

e object(first, last): This constructor defines a multimap that is initialized by the values
implied by the iterator range [first, last).

e object(argument): This constructor initializes object with an existing multimap.

The standard iterator producing member functions are available:

begin()

end ()

rbegin()

rend ()
Other available memberfunctions are:

e empty()
e size()
e swap()

e insert(argument) is used to insert a new value argument in the multimap. The returnvalue
is an dterator (and not a pair<iterator,bool> as with the map container), pointing to the
newly added element.

e insert(position, argument).
e insert(first, last).

e erase(position).

e crase(key).

e crase(first, last).

e clear().

e find(key): an iterator is returned pointing to the (first) element whose key is key. If the
element isn’t available, target.end () is returned.

e count (key): returns the number of times the provided key is available in the multimap.

189

e lower_bound(key): returns an iterator pointing to the first of a series of data element having
the same keys of which the value is equal to or exceeds the key value that is passed to the
memberfunction. If no such value exists, the behavior of the function is undefined.

e upper_bound(key): returns an iterator pointing to the last of a series of data element having
the same keys of which the value is equal to or exceeds the key value that is passed to the
memberfunction. If no such value exists, the behavior of the function is undefined.

e equal range(key): a pair<iterator,iterator> is returned, defining the range of data
elements all having key value key. If no such data element could be found, the pair (end(),
end()) is returned.

The subscript operator is not available.

7.2.8 The ‘set’ container

The set class implements a set of (sorted) values. To use the set, the header file set must be
included:

#include <set>

A set is filled with values, which may be of any container-acceptable type. Each value can be
stored only once in a set.

A single value that is to be entered in a set must be constructed. For this, a set defines a
value_type, corresponding to a particular type of set, which may be used to create values of
that type. For example, with a set<string> it can be used as follows:

set<string>::value_type(string("Hello"))

Instead of using the line set<string>::value_type(...) over and over again, a typedef may
come in handy here:

typedef set<string>::value_type SetSValue

Using this typedef, values for the set<string, string> may be constructed as follows:

SetSValue(string("Hello"))

Apart from the basic operations (assignment, comparison, etc,), the set supports several more
operations. They are:

190

The constructor defining an empty set. When the set is defined, the type of the value must
be specified. E.g., to define a set in which ints can be stored, use:

set<int>
object;

object(iterator first, iterator last): This constructor defines a set that is initialized
by the values implied by the iterator range [first, last). The range may also be defined
by pointers in an array of values of the same type as the values that must be stored in the
set. For example:

int
iall = {1, 2, 3, 4, 5};

set<int>
object(&ial[0], &ial[5]);

Note that &pa[5] points to the first element that must not be included in the set. Also note
that all values values in the set will be different: it is not possible to store the same value
more than once.

object (argument): This constructor initializes object with an existing set argument, con-
structing a copy of the set argument.

The standard iterators are all available:

begin()
end ()
rbegin()

rend ()

Other member functions are:

empty (),
size(),
swap (argument), swapping the contents of the current set and the set argument.

insert(argument) is used to insert a new value argument in the set. Argument is a value
of the appropriate value type of the set. The returnvalue is a pair<iterator, bool>. The
bool field indicates whether source was inserted (true is returned) or not (in which case
the key field of source was already available). In both cases the iterator field points to the
data-element in the set: a new element if true is returned, the existing element if false is
returned. An example using the insert () memberfunction is given below:

191

#include <set>
#include <utility>

int main()

{
set<int>
object;
pair<set<int>::iterator, bool>
result = object.insert(set<int>::value_type(4));
cout << "Element " << *result.first << " was " <<
(result.second ? "" : "not ") << "inserted\n";
result = object.insert(set<int>::value_type(4));
cout << "Element " << *result.first << " was " <<
(result.second ? "" : "not ") << "inserted\n";
return (0);
}

e insert(position, argument). This is another way to insert a value argument, this time
using a specific position within the set, indicated by set<type>::iterator position. Al-
though a specific position is given, the new element is inserted at its appropriate sorted
location within the set. An insertion could therefore be realized using a statement like

object.insert(object.begin(), set<int>::value_type(1));

e insert(first, last): this memberfunction may be used to insert a range of elements
implied by the iterator range [first, last) into the set. Again, elements are only inserted
if their keys are not yet in the set, and the set remains sorted. Instead of iterators pointers
to elements of the same value type as stored in the set may be used.

e erase(position): erases the element at the indicated set<type>::iterator position.
e ecrase(argument): erases the element having argument as its value.

e crase(first, last): erases the range of elements implied by the iterator range [first,
last).

e clear(): erases all elements from the set.
e find(argument): an iterator is returned pointing to the element whose value is argument.

If the element isn’t available, object.end() is returned.

The following members have special meanings with the multiset, but they are defined with the
plain set too:

e count(argument): returns 1 if the provided value is available in the set, otherwise 0 is
returned.

192

e lower_bound(argument): returns an iterator pointing to the (first) data element having a
value which is equal to or exceeds the value that is passed to the memberfunction. If no such
value exists, the behavior of the function is undefined.

e upper_bound(argument): same as the previous function.

e equal range(argument): apair<set<type>::iterator, set<type>::iterator>isre-
turned. In the case of a set, the range consists of a pair of iterators of which the first iterator
points to the element of the set containing the value argument, while the second iterator
points beyond that elementand (or to end () if the first iterator points to the last element in
the set). If the set does not contain a data element having value argument the pair (end(),
end()) is returned.

7.2.9 The ‘multiset’ container

Like the set, the multiset class also implements a (sorted) set of values. To use the multiset,
the header file multiset must be included:

#include <multiset>

The main difference between the set and the multiset is that the multiset supports multiple
entries of the same value, whereas the set contains only unique values.

The member functions that are available for the set are also available for the multiset. They are
presented below without further comment if their functions and parameters are comparable to
those used by the set container’s members.

A single value that is to be entered into a multiset must be constructed. For this, a multiset defines
a value_type, corresponding to a particular multiset type, which may be used to create values of
that type. For example, with a multiset<string> it can be used as follows:

multiset<string>::value_type(string("Hello"))

Here are the constructors that are available for the multiset:

e The constructor defining an empty multiset. E.g.,

multiset<string>
object;

e object(first, last): This constructor defines a multiset that is initialized by the values
implied by the iterator range [first, last).

e object(argument): This constructor initializes object with an existing multiset argument,
creating a copy of that multiset.

193

The standard iterators:

begin()
end ()
rbegin()

rend ()

Other member functions are:

empty (),
size(),
swap (argument), argument is an existing multiset.

insert (argument) is used to insert a new value multiset<type>::value_type (argument)
into the multiset. The returnvalue is an iterator (and not a pair<iterator, bool> as with
the set container), pointing to the newly added element.

insert(position, argument). Position is an iterator of the multiset, and argument is a
value for the multiset.

insert(first, last),inserting values defined by the iterator range rangett (first, last).
erase(position),

erase (argument),

erase(first, last),

clear().

find(argument): an iterator is returned pointing to the (first) element whose value is
argument. If the element isn’t available, object.end () is returned.

count (argument): returns the number of times the provided value argument is available in
the multiset.

lower_bound(argument): returns an iterator pointing to the first of a series of data ele-
ment having values which are equal to or exceed the value argument that is passed to the
memberfunction. If no such value exists, the behavior of the function is undefined.

upper_bound (value): returns an iterator pointing to the last of a series of data element
having values which are equal to or exceed the value argument that is passed to the mem-
berfunction. If no such value exists, the behavior of the function is undefined.

equal _range (argument): a pair<iterator, iterator> is returned, defining the range of
data elements all having the value argument. If no such elements could be found, the pair
(end(), end()) is returned.

A small example showing the use of various memberfunctions of a multiset is given below:

194

#include <string>
#include <set>
#include <iostream>

int main()
{
string
sall =
{
"alfa",
"echo" R
"hotel",
"mike" R
"romeo"

};

multiset<string>
xset (&sal0], &sal5]);

xset.insert(multiset<string> ::value_type("echo"));
xset.insert(multiset<string> ::value_type("echo"));

xset.insert(multiset<string> ::value_type("echo"));

multiset<string>::iterator
it = xset.find("echo");

for (; it != xset.end(); ++it)
cout << *it << " ";

cout << endl;

pair

<
multiset<string>::iterator,
multiset<string>::iterator

itpair = xset.equal_range("echo");

for (; itpair.first != itpair.second; ++itpair.first)
cout << *itpair.first << " ";

cout << endl <<
xset.count ("echo") << " occurrences of ’echo’" << endl;

return (0);

7.2.10 The ‘stack’ container

The stack class implements a stack datastructure. To use the stack, the header file stack must
be included:

195

3442% 3442*% F3442% 3442F% F3442%
M Iy] o

HENUN T

M

bl

(L] (2] (3] (4 (5]

Figure 7.5: The contents of a stack while evaluating 3 4 + 2 %

#include <stack>

A stack is also called a first-in last-out datastructure, as the first item to enter the stack is the last
item that will be removed from it. A stack is an extremely useful datastructure in situations where
data must be temporarily be available. For example, programs maintain a stack to store local
variables of functions: these variables live only as long as the functions live, contrary to global (or
static local) variables, which live for as long as the program itself lives. Another example is found
in calculators using the Reverse Polish Notation (RPN), in which the operands of expressions are
entered in the stack, and the operators pop their operands and push the results of their work.

As an example of the use of a stack, consider figure 7.5, in which the contents of the stack is shown
while the expression (3 + 4) % 2 is evaluated. In the RPN this expression becomes 3 4 + 2 x,
and figure 7.5 shows the stack contents after each token (i.e., the operands and the operators) is
read from the input. Notice that indeed each operand is pushed on the stack, while each operator
changes the contents of the stack.

The expression is evaluated in five steps. The caret between the tokens in the expressions shown
on the first line of figure 7.5 shows what token has just been read. The next line shows the actual
stack-contents, and the final line shows the steps for referential purposes. Note that at step 2, two
numbers have been pushed on the stack. The first number (3) is now at the bottom of the stack.
Next, in step 3, the + operator is read. The operator pops two operands (so that the stack is empty
at that moment), calculates their sum, and pushes the resulting value (7) on the stack. Then, in
step 4, the number 2 is read, which is dutifully pushed on the stack again. Finally, in step 5 the
final operator * is read, which pops the values 2 and 7 from the stack, computes their product,
and pushes the result back on the stack. This result (14) could then be popped to be displayed on
some medium.

From figure 7.5 we see that a stack has one point (the top) where items can be added to and
removed from the stack. Furthermore, values can be pushed and popped from a stack.

Bearing this model of the stack in mind, let’s see what we can formally do with it, using the stack
container.

196

A stack can be initialized by an existing other stack, or it can be created empty:

stack<int>
stackl;

stack<int>
stack2(stackl);

Apart from these constructors, and the basic operators for comparison and assignment (see the
introductory paragraph of this chapter), the following memberfunctions are available:

e empty(),
e size(),

e top(): returns the first element that would be removed by pop(). Using top() the value at
the top of the stack may be inspected or reassigned.

e push(argument): pushes item argument on the stack.

e void pop(): removes (but does not return) the element at the top of the stack.

Note that the stack does not support iterators or a subscript operator. The only elements that
can be accessed is its top element, and it can only be emptied by repeatedly popping the element
at the top.

7.2.11 The ‘hash_map’ and other hashing-based containers

The (multi) map and (multi) set containertypes store sorted keys. This is in general not the
fastest way to store keys with respect to storage and retrieval. The main benefit of sorted keys
is that a listing of sorted keys appeals more to humans than an unsorted list. However, a by far
faster method of storing keys is to use hashing.

Hashing uses a function (called the hash-function) to compute a (unsigned) number from the key,
which number is thereupon used as an index in the table in which the keys are stored. Retrieval
of a key is as simple as computing the hashvalue of the provided key, and looking at the table in
the computed indexlocation: if the key is present, it is stored in the table, and its value can be
returned. If it’s not present, the key is not stored.

Boundary conditions arise when a computed index position is already occupied by another element.
For these situations the abstract containers have solutions available, but that topic is beyond the
subject of this chapter.

The eges compiler supports the hash_(multi)map and hash_(multi)set containers. Below the
hash map container is illustrated. The other containers using hashing (hash multimap, hash_set
and hash multiset) operate correspondingly.

Concentrating on the hash map, its constructor needs a key-type, a value-type, an object creating
a hashvalue for the key, and an object comparing two keys for equality.

The hash map class implements an associative array in which the key is stored according to some
hashing scheme. To use the hash map, the header file hash map must be included:

197

#include <hash_map>

Hash functions are available for char const * keys, and for all the scalar numerical types char,
short, int etc.. If another datatype must be used, a hash function and an equality test must be
implemented, possibly using function objects (see section 6.8). For both situations examples are
given below.

The class implementing the hash-function could be called hash. Its function-call operator returns
the hashvalue of the key which is passed as its argument.

A generic algorithm (see section 10) exists for the test of equality (i.e., equal_to()), which can
be used if the key’s data type supports the equality operator. Alternatively, a function object
could also be constructed here, supporting the equality test of two keys. Again, both situations
are illustrated below.

In the first example a hash map is defined for a string, int combination using existing template
functions.

The test for equality is implemented using an instantiation of the equal_to generic algorithm.
The hash function uses a template specialization for the hash template class. The how and why of
template specializations are covered in chapter 16.

The hash<string> explicit specialization in fact uses the predefined hash<char const *> tem-
plate, but the roundabout way is chosen here to illustrate how a template explicit specialization
can be constructed. Here it is:

template <>
class hash<string>

{
public:
size_t operator() (string const &str) const
{
hash<char const *>
h;
return (h(str.c_str()));
}
};

The following program defines a map containing the names of the months of the year and the
number of days these months (usually) have. Then, using the subscript operator the days in several
months are displayed. The equality operator used the generic algorithm equal_to<string>, which
is the default fourth argument of the hash map constructor:

#include <iostream>
#include <string>
#include <hash_map>

198

template <> class hash<string>; // insert the above mentioned template
// here

int main()
{
hash_map<string, int, hash<string> >
months;

months ["january"] = 31;
months ["february"] = 28;
months["march"] = 31;
months ["april"] = 30;
months ["may"] = 31;
months ["june"] = 30;
months ["july"] = 31;
months ["august"] = 31;
months ["september"] = 30;
months["october"] = 31;
months ["november"] 30;
months ["december"] 31;

cout << "september -> " << months["september"] << endl <<
"april -> " << months["april"] << endl <<
"june -> " << months["june"] << endl <<
"november -> " << months["november"] << endl;

return (0);

Note that the definition hash map<string, int, hash<string> > months; may be written
simpler if the key is a char const #*: hash map<char const *, int> months;

The next example shows an alternative implementation, using function objects. The class Equal
defines the equality test of two keys in its function call operator operator (), and a Equal object is
now explicitly mentioned when the hash map is constructed. Similarly, the hashString class defines
the hash function of the key. A hashString object is also passed explicitly to the constructor of
the hash_map:

#include <iostream>
#include <string>

#include <hash_map>

class Equal

{
public:
size_t operator() (string const &sl, string const &s2) const
{
return (sl == s2);
}
};

class hashString

199

public:

size_t operator() (string const &str) const

{

hash<char const *>

h;

return (h(str.c_str()));

};

int main()
{
hash_map
<
string,
int,
hashString,
Equal

months;

months ["january"] = 3

months ["february"] = 28;

months["march"] = 31;
months ["april"] = 30;
months ["may"] = 31;
months ["june"] = 30;
months ["july"] = 31;
months ["august"] = 31

1;

)

months ["september"] = 30;

months["october"] = 3
months ["november"]
months ["december"] =

cout << "february ->
"april ->
"june ->
"november ->
"december ->

return (0);

1;

30;
31;

" << months["february"] << endl <<

<< months["april"] << endl <<

<< months["june"] << endl <<

<< months["november"] << endl <<
<< months["december"] << endl;

Like the map, a single value that will be entered into a hash_map must be constructed. For this, a
hash map defines a value_type, corresponding to a particular hash map-type, which may be used
to create values of that type. For example, with a hash map<string, int> it can be used as

follows:

hash_map<string, int>::value_type(string("Hello"), 1)

200

All the memberfunctions and constructors that are available for the map datatype can also be used
for the hash.map. The constructor object(n) defines a hash map consisting of an initial number
of n slots to put key/value combinations in. This number is automatically extended when needed.

The hash multimap, hash_set and hash multiset containers are used analogously. For these
containers the equal and hash classes must also be defined. The hash multimap also requires the
hash map header file, the hash _set and hash multiset containers can be used after including the
hash_set header file. Be careful not to use the subscript operator with the hash multimap and
hash_multiset, as this operator is not defined for the multi_... containers.

7.3 The ‘complex’ container

The complex container is a specialized container in that it defines operations that can be performed
on complex numbers, given possible numerical real and imaginary data types.

In order to use the complex container, the headerfile
#include <complex>

must be included.

The complex container can be used to define complex numbers, consisting of two parts, representing
the real and complex parts of a complex number.

While initializing (or assigning) a complex variable, the imaginary part may be left out of the
initialization or assignment, in which case this part is 0 (zero). By default, both parts are zero.

When complex numbers are defined, the typedefinition requires the specification of the datatype
of the real and imaginary parts. E.g.,

complex<double>
complex<int>
complex<float>

Note that the real and imaginary parts of complex numbers have the same datatypes.
Below it is silently assumed that the used complex type is complex<double>. Given this assump-
tion, complex numbers may be initialized as follows:

e target: A default initialization: real and imaginary parts are 0.

e target(1): The real part is 1, imaginary part is 0

e target(0, 3.5): The real part is 0, imaginary part is 3.5

e target(source): target is initialized with the values of source.

Anonymous complex values may also be used. In the following example two anonymous complex
values are pushed on a stack of complex numbers, to be popped again thereafter:

201

#include <iostream>
#include <complex>
#include <stack>

int main()

{
stack<complex<double> >
cstack;
cstack.push(complex<double>(3.14, 2.71));
cstack.push(complex<double>(-3.14, -2.71));
while (cstack.size())
{
cout << cstack.top().real() << ", " <<
cstack.top() .imag() << "i" << endl;
cstack.pop(Q);
}
return (0);
}

Note that a blank is required between the two consecutive >-barckets used in the definition of
cstack. If the blank is omitted, the resulting >> is read as the right-shift operator, which of
course makes no sense here.

The following memberfunctions and operators are defined for complex numbers:

e The standard assignment and comparison operators that are available for containers are also

available for complex numbers.

e real(): this memberfunction returns the real part of a complex number.

e imag(): this memberfunction returns the imaginary part of a complex number.

e The following operations are defined for complex containers: +, -, %, /, +=, -=, %=, /=
Furthermore, several mathematical functions are available for complex numbers. They are abs (),
arg(), conj(), cos(), cosh(), exp(), log(), norm(), polar(), pow(), sin(), sinh()) and sqrt (). These

functions are normal functions, not memberfunctions. They accept complex numbers as their
arguments. For example,

abs (complex<double>(3, -5));
pow(target, complex<int>(2, 3));

Complex numbers may be extracted from istream objects and inserted into ostream objects. The
insertion results in an ordered pair (x, y), in which x represents the real part and y the imaginary
part of the complex number. The same form may also be used when extracting a complex number
from an istream object. However, simpler forms are also allowed. E.g., 1.2345: only the real
part, the imaginary part will be set to 0; (1.2345): the same value.

202

Finally, ordinary numbers may be used in expressions involving complex numbers. E.g.,

// assume target is complex<double>:
target *= 3;

Note, however, that the reverse does not hold true: a complex number cannot be assigned to a
non-complex type variable. In these situations the real(), imag() or other functions must be
used. E.g.:

// assume x is double:
X = target; // error: x is not complex<double>
X = target.real(); // ok.

203

Chapter 8

Static data and functions

In the previous chapters we have shown examples of classes where each object of a class had its
own set of public or private data. Each public or private function could access the object’s
own version of the data.

In some situations it may be desirable that one or more common data fields exist, which are
accessible to all objects of the class. An example of such a situation is the name of the startup
directory in a program which recursively scans the directory tree of a disk. A second example is a
flag variable, which states whether some specific initialization has occurred: only the first object
of the class would then perform the initialization and would then set the flag to ‘done’.

Such situations are analogous to C code, where several functions need to access the same variable.
A common solution in C is to define all these functions in one source file and to declare the
variable as a static: the variable name is then not known beyond the scope of the source file.
This approach is quite valid, but doesn’t stroke with our philosophy of one function per source file.
Another C-solution is to give the variable in question an unusual name, e.g., -6uldv8, and then to
hope that other program parts won’t use this name by accident. Neither the first, nor the second
C-like solution is elegant.

C++’s solution is to define static data and functions, common to all objects of a class, and
inaccessible outside of the class. These functions and data will be discussed in this chapter.

8.1 Static data

A data member of a class can be declared static; be it in the public or private part of the class
definition. Such a data member is created and initialized only once, in contrast to non-static data
members, which are created again and again, for each separate object of the class. A static data
member is created once: when the program starts executing. Nonetheless, it is still part of the
class.

static data members which are declared public are like ‘normal’ global variables: they can be
reached by all code of the program using their name, together with their class name and the scope
resolution operator. This is illustrated in the following code fragment:

class Test

204

public:
static int
public_int;
private:
static int
private_int;

}

int main()

{
Test::public_int = 145; // ok
Test::private_int = 12; // wrong, don’t touch

// the private parts

return (0);

}

This code fragment is not suitable for consumption by a C++4 compiler: it only illustrates the
interface, and not the implementation of static data members. We will discuss the implementation
of such members shortly.

8.1.1 Private static data

To illustrate the use of a static data member which is a private variable in a class, consider the
following code fragment:

class Directory

{
public:
// constructors, destructors, etc. (not shown)
private:
// data members
static char
path[];
}s;

The data member path[] is a private static variable. During the execution of the program,
only one Directory::path[] exists, even though more than one object of the class Directory
may exist. This data member could be inspected or altered by the constructor, destructor or by
any other member function of the class Directory.

Since constructors are called for each new object of a class, static data members are never
initialized by constructors. At most they are modified. The reason for this is that the static data
members exist before the constructor of the class is called for the very first time. The static data
members can be initialized during their definition, outside of all member functions, in the same
way as global variables are initialized. The definition and initialization of a static data member

205

usually occurs in one of the source files of the class functions, preferably in a source file dedicated
to the definition of static data members, called data.cc.

The data member path[] from the above class Directory could thus be defined and initialized in
the source file of the constructor (or in a separate file data.cc):

// the static data member: definition and initialization
char
Directory::path [200] = "/usr/local";

// the default constructor
Directory: :Directory()

{

}

It should be noted that the definition of the static data member can occur in any source file; as
long as it is defined only once. So, there is no need to define it in, e.g., a source file in which also
a memberfunction of the class is implemented.

In the class interface the static member is actually only declared. At its implementation (defi-
nition) its type and class name are explicitly stated. Note also that the size specification can be
left out of the interface, as is shown in the above array path[]. However, its size is needed at its
implementation.

A second example of a useful private static data member is given below. A class Graphics
defines the communication of a program with a graphics-capable device (e.g., a VGA screen). The
initial preparing of the device, which in this case would be to switch from text mode to graphics
mode, is an action of the constructor and depends on a static flag variable nobjects. The
variable nobjects simply counts the number of Graphics objects which are present at one time.
Similarly, the destructor of the class may switch back from graphics mode to text mode when the
last Graphics object ceases to exist.

The class interface for this Graphics class might be:

class Graphics
{
public:
// constructor, destructor
Graphics();
“Graphics();

// other interface is not shown here,
// e.g. to draw lines or whatever

private:
// counter of # of objects

static int nobjects;

// hypothetical functions to switch to graphics

206

// mode or back to text mode
void setgraphicsmode();
void settextmode();

The purpose of the variable nobjects is to count the number of objects which exist at one given
time. When the first object is created, the graphics device is initialized. At the destruction of the
last Graphics object, the switch from graphics mode to text mode is made:

// the static data member
int Graphics::nobjects = 0;

// the constructor
Graphics: :Graphics()

{
if (! nobjects)
setgraphicsmode () ;
nobjects++;
}

// the destructor
Graphics: :“Graphics()

{
nobjects——;
if (! nobjects)
settextmode();
}

It is obvious that when the class Graphics would define more than one constructor, each construc-
tor would need to increase the variable nobjects and possibly would have to initialize the graphics
mode.

8.1.2 Public static data

Data members can be declared in the public section of a class definition, although this is not com-
mon practice (such a setup would violate the principle of data hiding). E.g., when the static data
member path[] from chapter 8.1 would be declared in the public section of the class definition,
all program code could access this variable:

int main()

{
getcwd(Directory: :path, 199);
return(0) ;

207

Note that the variable path would still have to be defined. As before, the class interface would
only declare the array path[]. This means that some source file would still need to contain the
implementation:

char
Directory: :path[200];

8.2 Static member functions

Besides static data, C++ allows the definition of static functions. Similar to the concept of
static data, in which these variables are shared by all objects of the class, static functions apply
to all objects of the class.

The static functions can therefore address only the static data of a class; non-static data
are unavailable to these functions. If non-static data could be addressed, to which object would
they belong? Similarly, static functions cannot call non-static functions of the class. All this is
caused by the fact that static functions have no this pointer.

Functions which are static and which are declared in the public section of a class interface can be
called without specifying an object of the class. This is illustrated in the following code fragment:

class Directory

{
public:
// constructors, destructors etc. not shown here

// here’s the static public function
static void setpath(char const *newpath);

private:
// the static string
static char path [];
};

// implementation of the static variable
char Directory::path [199] = "/usr/local";

// the static function
void Directory::setpath(char const *newpath)
{
strncpy(path, newpath, 199);
}

// example of the usage
int main()

{
// Alternative (1): calling setpath() without
// an object of the class Directory

208

Directory: :setpath("/etc");

// Alternative (2): with an object
Directory
dir;

dir.setpath("/etc");

return (0);

In the example above the function setpath() is a public static function. C++ also allows
private static functions: these functions can only be called from other member functions of the
class of which they are themselves members, but not from other functions.

Note that such a private static function could only (a) access static variables, or (b) call other
static functions: non-static code or data members would still be inaccessible to the static function.

209

Chapter 9

Classes having pointers to
members

Pointers in classes have been discussed in detail in chapter 5.1. As we have seen, when pointer
data-members occur in classes, such classes deserve some special treatment.

By now it is well known how to treat pointer data members: constructors are used to initialize
pointers, destructors are needed to free the memory pointed to by the pointer data members.

Furthermore, in classes having pointer data members copy constructors and overloaded assignment
operators are normally needed as well.

However, in some situations we do not need a pointer to an object, but rather a pointer to members
of an object. The realization of pointers to members of an object is the subject of this part of the
C++ annotations.

9.1 Pointers to members: an example

Knowing how pointers to variables and objects are to be used does not intuitively lead to the
concept of pointer to members. Even if the returntype and parametertypes of a memberfunction
are taken into account, surprises are encountered. For example, consider the following class:

class String

{
public:
char const *get() const;
private:
char const *(*sp) () const;
}

210

Within this class, it is not possible to define a char const *(xsp) () const pointing to the get ()
member function of the String class.

One of the reasons why this doesn’t work is that the variable sp has a global scope, while the
memberfunction get () is defined within the String class. The fact that the variable sp is part of
the String class is of no relevance. According to sp’s definition, it points to a function outside of
the class.

Consequently, in order to define a pointer to a member (either data or function, but usually a
function) of a class, the scope of the pointer must be within the class’ scope. Doing so, a pointer
to a member of the class String can be defined as

char const
*(String: :*sp) () const;

So, due to the String: : prefix, sp is defined to be active only in the context of the class String. In
this context, it is defined as a pointer to a const function, not expecting arguments, and returning
a pointer to const chars.

9.2 Initializing pointers to members

Pointers to members can be initialized to point to intended members. Such a pointer can be defined
either inside or outside a member function.

Initializing or assigning an address to such a pointer does nothing but indicating which member
the pointer will point to. However, member functions (except for the static member functions) can
only be used when associated with an object of the member function’s class. The same holds true
for pointers to data members.

While it is allowed to initialize such a pointer outside of the class, it is not possible to access such
a function without an associated object.

In the following example these characteristics are illustrated. First, a pointer is initialized to point
to the function String: :get (). In this case no String object is required.

Next, a String object is defined, and the string that is stored within the object is retrieved through
the pointer, and not directly by the function String: :get (). Note that the pointer is a variable
existing outside of the class’ context. This presents no problem, as the actual object to be used
is identified by the statement in which object and pointervariable are combined. Consider the
following piece of code:

void fun()
{
char const
*(String: :*sp) () const;

sp = String::get; // assign the address

// of String’s get()
// function

211

String // define a String object
s("Hello world");

cout << (s.*sp)() // show the string

<< endl;
String

*ps; // pointer to a String object
ps = &s; // initialize ps to point at s

cout << (ps->*sp)() // show the string again
<< endl;

Note in this example the statement (s.x*sp) (). The .* construction indicates that sp is a pointer
to a member function. Since the pointer variable sp points to the String: :get () function, this
function is now called, producing the string “Hello world”.

Furthermore, note the parentheses around (s.x*sp). These parentheses are required. If they were
omitted, then the default interpretation (now parenthesized for further emphasis) would be s.x
(sp()). This latter construction means

e Call function sp(), which should return a pointer to a member. E.g., sp() has the prototype
char const * (String::x) () spQ;

So, sp() is a function returning a pointer to a memberfunction of the class String, while
such a memberfunction must return a pointer to const chars.

e Apply this pointer with regard to object s.
Not an impossible or unlikely construction, but wrong as far as the current definition of sp is
concerned.

When a pointer to a member function is associated with an object, the pointer to member selector
operator .x is used. When a pointer to an object is used (instead of the object itself) the “pointer
to member through a pointer to a class object” operator —># operator is required. The use of this
operator is also illustrated in the above example.

9.3 Pointers to static members

Static members of a class exist without an object of their class. In other words, they can exist
outside of any object of their class.

When these static members are public, they can be accessed in a ‘stand-alone’ fashion.

Assume that the String class also has a public static member function int n_strings(), returning
the number of string objects created so far. Then, without using any String object the function
String: :n strings() may be called:

212

void fun()
{
cout << String::n_strings() << endl;

}

Since pointers to members are always associated with an object, the use of a pointer to a member-
function would normally produce an error. However, static members are actually global variables
or functions, bound to their class.

Public static members can be treated as globally accessible functions and data. Private static
members, on the other hand, can be accessed only from within the context of their class: they can
only be accessed from inside the member functions of their class.

Since static members have no particular link with objects of their class, but look a lot like global
functions, a pointer variable that is not part of the class of the member function must be used.

Consequently, a variable int (xpfi) () can be used to point to the static memberfunction int
String::n strings(),even though int (xpfi) () has nothingin common with the class String.
This is illustrated in the next example:

void fun()

{
int
(xpfi) O;
pfi = String::n_strings;
// address of the static memberfunction
cout << pfi() << endl;
// print the value produced by
// String::n_strings()
}

9.4 Using pointers to members for real

Let’s assume that a database is created in which information about persons is stored. Name, street
names, city names, house numbers, birthdays, etc. are collected in objects of the class Person,
which are, in turn, stored in a class Person_dbase. Partial interfaces of these classes could be
designed as follows:

class Date;
class Person()

{
public:

213

P

Person_dbase

Figure 9.1: Person_dbase objects: Persons reached via Person *xpp

char const *get_name() const;
Date const &birthdate() const;

private:
};
class Person_dbase
{
public:
enum Listtype
{
list_by_name,
list_by_birthday,
I
void list(Listtype type);
private:
Person
*pp; // pointer to the info
unsigned
n; // number of persons stored.
};

The organization of Person and Person_dbase is pictured in figure 9.1: Within a Person_dbase
object the Person objects are stored. They can be reached via the pointer variable Person xpp.

We would like to develop the function Person_dbase::list() in such a way that it lists the
contents of the database sorted according to a selected field of a Person object.

So, when 1ist () is called to list the database sorted by names, the database of Person objects is
first sorted by names, and is then listed.

Alternatively, when list () is called to list the database sorted by birthdates, the database of
Person objects is first sorted by birthdates, and is then listed.

214

In this situation, the function gsort () is most likely called to do the actual sorting of the Person
objects!. This function requires a pointer to a compare function, comparing two elements of the
array to be sorted. The prototype of this compare function is

int (%) (void const *, void const x*)
However, when used with Person objects, the prototype of the compare () function should be
int (%) (Person const *, Person const *)

Somewhere a typecast will be required: either when calling gsort (), or within the compare ()
functions themselves. We will use the typecast when calling gsort (), using the following typedef to
reduce the verbosity of the typecasts (a pointer to an integer function requiring two void pointers):

typedef int (xpif2vp) (void comnst *, void const %)

Next, the function 1ist () could be developed according to the following setup:

void Person_dbase::list(Listtype type)

{
switch (type)
{
case list_by_name:
gsort(pp, n, sizeof(Person), (pif2vp)cmpname);
break;
case list_by_birthday:
gsort(pp, n, sizeof(Person), (pif2vp)cmpdate);
break;
}
// list the sorted Person-database
}

There are several reasons why this setup is not particularly desirable:

e Although the example only shows two list-alternatives (sort by name and sort by birthday),
a real-life implementation will have many more ways to list the information. This will soon
result in a very long function 1ist () which will be hard to maintain and will look inaccessible
due to its length.

e Every time a new way to list the data in the database, the function 1ist () will have to be
expanded, by offering an extra case label for every new way to list the data.

e Much of the code in the function 1ist () will be repeated within the function, showing only
some small differences.

In the current implementation pp points to an array of Person objects. In this implementation, the function
gsort() will have to copy the actual Person objects again and again, which may be rather inefficient when the
Person objects become large. Under an alternative implementation, in which the Person objects are reached through
pointers, the efficiency of the gsort() function will be improved. In that case, the datamember pp will have to be
declared as Person *pp.

215

Much of the complexity of 1ist () function could be reduced by defining pointers to the compare-
functions, storing these pointers in an array. Since this array will be common to all Person_dbase
objects, it should be defined as a static array, containing the pointers to the compare-functions.

Before actually constructing this array, note that this approach requires the definition of as many
compare functions as there are elements in the Listtype enum. So, to list the information sorted
by name a function cmpname () is used, comparing the names stored in two Person objects, while
a function cmpcity(), is used to compare cities. Somehow this seems to be redundant as well:
we would like to use one function to compare strings, whatever their meanings. Comparable
considerations hold true for other fields of information.

The compare functions, however, receive pointers to Person objects. Therefore, the data-members
of the Person objects to which these pointers point can be accessed using the access-memberfunctions
of the Person class. So, the compare functions can access these data-members as well, using the
pointers to the Person objects.

Now note that the access memberfunctions that are used within a particular compare function can
be hard-coded, by plainly mentioning the accessors to be used, and they can be selected indirectly,
by using pointers to the accessors to be used.

This latter solution allows us to merge compare functions that use the same implementations, but
use different accessors: By setting a pointer to the appropriate accessor function just before the
compare function is called, one single compare function can be used to compare many different
kinds of data stored inside Person objects.

The compare functions themselves are used within the context of the Person_dbase class, where
they are passed to the gsort () function. The gsort () function, however, is a global function. Con-
sequently, the compare functions can’t be ordinary member functions of the class Person_dbase,
but they must be static members of that class, so they can be passed to the gsort () function.

Summarizing what we’ve got so far, we see that the problem has been broken down as follows:
e The switch construction in the 1ist () function should be replaced by a call to a function
using a pointer to a function.

e The actual function to be used is determined by the value of the selector, which is given to
list () when it’s called.

e The compare () functions may be further abstracted by combining those comparing the same
types.

e When compare () functions are combined, the access memberfunction of the Person objects
to be used will also be found via an array containing pointers to the access member functions
of Person objects.

e The compare() functions are part of the Person_dbase class, but it must also be possible
to give their addresses as arguments to gsort (). Hence, these functions must be defined as
static functions of the class Person_dbase.

From this analysis the essential characteristics of the proposed implementation emerge.

For every type of listing, as produced by the function 1ist (), the following is required:

e The access member function of the Person class to be used.

216

e The compare() function to be used. The compare () functions will be static functions of the
class Person_dbase, so that they can be passed over to gsort ()

This information does not depend on a particular Person_dbase object, but is common to all of
these objects. Hence it will be stored compile-time in a static Person_dbase kind of array.

How will the compare () functions know which element of this array to use? The requested index
is passed to the 1ist () member function as a Listtype value. The 1list () function can then save
this information in a static Person_dbase::Listtype variable for the compare() functions to
use.

We’ve analyzed enough. Let’s build it this way.

9.4.1 Pointers to members: an implementation

e First, the necessary class interfaces are defined. The existence of a class Date is assumed,
containing overloaded operators like < and > to compare dates. To start with, we present
the interface of the class Person, omitting all the standard stuff like overloaded assignment
operator, (copy) constructors, etc.:

#include <stdlib.h> // for gsort()
class Date;

class Person()
{
public:

unsigned length() const;
unsigned weight() const;
char const *name() const;
char const *city() const;
Date const &birthdate() const;

private:
// all necessary data members

};

e Next, the class Person_dbase. Within this class a struct CmpPerson is defined, containing
two fields:

— A pointer to a union of compare functions.

As the compare functions are static functions of the class Person_dbase, pointers to
these functions are indiscernible from pointers to functions at the global (: :) level. The
compare functions return ints (for gsort ()), and expect two pointers to Person const
objects. The field persons expects the two pointers to Person const objects. The field
voids is the alternate interpretation, to be used with gsort (), instead of the typecast
(pif2vp).

— A field pf (pointer to access function) of the nested union Person_accessor.

The types of as many different access functions of the Person class as are used in the
class are declared in this union.

217

Access functions returning ints, char const #*s and Date &s will be needed. Conse-
quently, the Person_accessor union contains these (three) types.

From this CmpPerson struct a static array cmpPerson[] is constructed. It is a static
Person_dbase array, making it possible for the compare functions to inspect its elements?.

Also note the static Listtype selector. This variable will be used later in the compare
functions to find the actual Person access function to be used. Here, then, is the interface
of the class Person_dbase:

class Person_dbase

{
public:

enum Listtype

{
list_by_length,
list_by_weight,
list_by_name,
list_by_city,
list_by_birthday,

I

// ... constructors etc.

void list(Listtype type);
// list the information

private:
struct CmpPerson
{
union Compare_function
{
int (*persons)// comparing two Persons
(Person const *pl, Person const *p2);
int (*voids)// for gsort()
(void const *pl, void const *p2);
}
cmp;
union Person_accessor
{
char const
*x(Person: :*xcp) () const;
int
(Person::*i) () const;
Date const
& (Person: :*d) () const;
}
pf; // to Person’s access functions
3

static CmpPerson

2The number of elements of the cmpPerson[] array is not specified in the interface: that number is determined
compile-time by the compiler, when the static variable cmpPerson[] is initialized.

218

cmpPerson/[];
static Listtype
selector;

static int cmpstr(Person const *pl,
Person const *p2);

static int cmpint(Person const *pl,
Person const *p2);

static int cmpdate(Person const *pl,
Person const *p2);

Person

*pp; // pointer to the info
unsigned

n; // number of persons stored.

};

Next, we define each of the members of the Person_dbase class (as far as necessary).
e The 1list () function now only has to do three things:

— The Listtype parameter is copied to selector,

— The function gsort () is called. Note the use of the cmpPerson array to determine which
compare function to use.

— The information of the Personobjects is displayed. This part is left for the reader to
implement.

void Person_dbase::list(Listtype type)

{
selector = type;
gsort(pp, n, sizeof (Person), cmpPerson[typel.cmp.voids);
// list the sorted Person-database (to be implemented)

}

e The array cmpPe