

Jonas Jacobi and John R. Fallows

Pro JSF and Ajax
Building Rich Internet
Components

5807fm.qxd 1/20/06 4:11 PM Page i

Pro JSF and Ajax: Building Rich Internet Components

Copyright © 2006 by Jonas Jacobi and John R. Fallows

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-580-0

ISBN-10: 1-59059-580-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewers: Peter Lubbers, Kito D. Mann, Matthias Wessendorf
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan

Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser, Matt Wade
Project Managers: Beckie Stones, Elizabeth Seymour
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Molly Sharp, ContentWorks
Proofreader: Elizabeth Berry
Indexer: Carol Burbo
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

5807fm.qxd 1/20/06 4:11 PM Page ii

To the love of my life, Marianne,
and our princesses, Emma and Isabelle,

for keeping my spirit up.
—Jonas Jacobi

To my wife, Nan, for her love, support, and patience,
and our son, Jack, for his natural inspiration.

—John R. Fallows

5807fm.qxd 1/20/06 4:11 PM Page iii

5807fm.qxd 1/20/06 4:11 PM Page iv

Contents at a Glance

Foreword . xiii

About the Authors . xv

About the Technical Reviewers . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 ■ ■ ■ Developing Smarter with
JavaServerTM Faces

■CHAPTER 1 The Foundation of JSF: Components . 3

■CHAPTER 2 Defining the Date Field Component . 49

■CHAPTER 3 Defining the Deck Component . 105

PART 2 ■ ■ ■ Designing Rich Internet Components
■CHAPTER 4 Using Rich Internet Technologies . 173

■CHAPTER 5 Loading Resources with Weblets . 213

■CHAPTER 6 Ajax Enabling the Deck Component . 223

■CHAPTER 7 Ajax Enabling the Date Field Component . 267

■CHAPTER 8 Providing Mozilla XUL Renderers . 303

■CHAPTER 9 Providing Microsoft HTC Renderers . 361

■CHAPTER 10 Switching RenderKits Dynamically . 403

■INDEX . 413

v

5807fm.qxd 1/20/06 4:11 PM Page v

5807fm.qxd 1/20/06 4:11 PM Page vi

Contents

Foreword . xiii

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

PART 1 ■ ■ ■ Developing Smarter with
JavaServerTM Faces

■CHAPTER 1 The Foundation of JSF: Components . 3

Overview of Application Development Technologies 4

One-Tier . 4

Two-Tier: Client-Server . 5

Multitier: Web Applications . 5

Exploring Application Development Today . 5

Frameworks . 7

Tapestry, Struts, Tiles, TopLink, Hibernate, ADF UIX… 7

Introducing JSF . 8

Application Development with JSF . 9

JSF Architecture . 10

A Component-Based UI Framework . 13

UIComponent . 15

Converters, Validators, Events, and Listeners 22

Facets . 23

Renderers . 24

Renderer Types . 25

RenderKits . 26

Custom Action Tag Handlers . 27

Request-Processing Lifecycle . 27

Summary . 47

vii

5807fm.qxd 1/20/06 4:11 PM Page vii

■CHAPTER 2 Defining the Date Field Component . 49

Requirements for the Date Field Component . 49

The Input Date Component . 51

Designing the Input Date Component Using a Blueprint 52

Step 1: Creating a UI Prototype . 53

Step 2: Creating a Client-Specific Renderer . 55

Step 3: Creating a Renderer-Specific Subclass 77

Step 4: Registering UIComponent and Renderer 82

Step 5: Creating a JSP Tag Handler and TLD 86

Building an Application with the Input Date Component 103

Summary . 104

■CHAPTER 3 Defining the Deck Component . 105

Requirements for the Deck Component . 106

The Deck Component . 106

Designing the Deck Component Using a Blueprint 107

Step 1: Creating a UI Prototype . 108

Step 2: Creating Events and Listeners . 113

Step 3: Creating a Behavioral Superclass . 127

Step 4: Creating a Client-Specific Renderer 136

Step 5: Creating a Renderer-Specific Subclass 148

Step 6: Registering a UIComponent and Renderer 150

Step 7: Creating a JSP Tag Handler and TLD 155

Summary . 169

PART 2 ■ ■ ■ Designing Rich Internet Components

■CHAPTER 4 Using Rich Internet Technologies . 173

Introducing Ajax . 174

The XMLHttpRequest Object . 175

Traditional Web Application Development . 177

Ajax Web Application Development . 179

Building Ajax Applications . 181

Ajax Summary . 187

Introducing Mozilla XUL . 187

Building XUL Applications . 188

Creating Custom XUL Components Using XBL 192

XUL Summary . 199

■CONTENTSviii

5807fm.qxd 1/20/06 4:11 PM Page viii

Introducing Microsoft Dynamic HTML and HTC . 199

HTC Structure . 199

Building DHTML Applications . 202

HTC Summary . 205

Comparing XBL and HTC . 206

Defining a Component . 206

Adding Content . 206

Event Handling . 206

Attaching Components . 207

JSF—The Greatest Thing Since Sliced Bread! . 207

Cross-Platform Support . 208

Imagination As the Only Limit . 209

A JSF Application Supporting Ajax, XUL, and HTC 209

Summary . 211

■CHAPTER 5 Loading Resources with Weblets . 213

Introducing Resource Loading . 213

Using Existing Solutions . 214

Using Weblets . 215

Exploring the Weblet Architecture . 215

Using Weblets in Your Component Library . 216

Using Weblets in a JSF Application . 221

Summary . 222

■CHAPTER 6 Ajax Enabling the Deck Component . 223

Requirements for the Deck Component’s
Ajax Implementation . 223

The Ajax-Enabled Deck Component . 224

Designing the Ajax-Enabled Deck Component Using a
Blueprint . 226

Step 1: Creating a UI Prototype . 227

Step 4: Creating a Client-Specific Renderer 230

Step 6: Registering a UIComponent and Renderer 238

Step 8: Creating a RenderKit and ResponseWriter 238

Step 9: Extending the JSF Implementation 249

Step 10: Registering the RenderKit and JSF Extension 262

Step 11: Registering Resources with Weblets 263

Summary . 265

■CONTENTS ix

5807fm.qxd 1/20/06 4:11 PM Page ix

■CHAPTER 7 Ajax Enabling the Date Field Component 267

Requirements for the Date Component’s
Ajax Implementation . 267

The Ajax-Enabled Date Component . 268

Designing JSF Components Using a Blueprint 269

Step 1: Creating a UI Prototype . 270

Step 4: Creating Converters and Validators 276

Step 5: Creating a Client-Specific Renderer 279

Step 7: Registering a UIComponent and Renderer 297

Step 8: Creating a JSP Tag Handler and TLD 297

Step 12: Registering Your Ajax Resources with Weblets 301

Summary . 301

■CHAPTER 8 Providing Mozilla XUL Renderers . 303

Requirements for the Deck and Date Components’ XUL
Implementations . 304

What Mozilla XUL Brings to JSF . 304

What JSF Brings to XUL . 304

The XUL Implementation of the Deck and
Date Components . 304

Designing JSF XUL Components Using a Blueprint 306

Step 1: Creating a UI Prototype . 307

Step 3: Creating a Behavioral Superclass . 322

Step 5: Creating a Client-Specific Renderer 324

Step 6: Creating a Renderer-Specific Subclass 341

Step 7: Registering a UIComponent and Renderer 345

Step 8: Creating a JSP Tag Handler and TLD 347

Step 9: Creating a RenderKit and ResponseWriter 350

Step 11: Registering a RenderKit . 354

Step 12: Registering Resources with Weblets 355

Building Applications with JSF XUL Components 357

Summary . 359

■CHAPTER 9 Providing Microsoft HTC Renderers . 361

Requirements for the Deck and Date Components’ HTC
Implementations . 362

What HTC Brings to JSF . 362

What JSF Brings to HTC . 362

■CONTENTSx

5807fm.qxd 1/20/06 4:11 PM Page x

The HTC Implementation of the Deck and Date Components 362

Designing JSF HTC Components Using a Blueprint 363

Step 1: Creating a UI Prototype . 363

Step 5: Creating a Client-Specific Renderer 380

Step 7: Registering a UIComponent and Renderer 396

Step 11: Registering a RenderKit and JSF Extension 396

Step 12: Registering Resources with Weblets 398

Building Applications with JSF HTC Components 398

Summary . 401

■CHAPTER 10 Switching RenderKits Dynamically . 403

Requirements for Dynamically Switching
RenderKits . 404

The Dynamic RenderKit Implementation . 405

Syntax for Dynamic RenderKit ID . 405

The Dynamic RenderKit Managed Bean . 406

The DynamicRenderKitViewHandler Class . 409

Registering the Dynamic RenderKit Solution 411

Summary . 412

■INDEX . 413

■CONTENTS xi

5807fm.qxd 1/20/06 4:11 PM Page xi

5807fm.qxd 1/20/06 4:11 PM Page xii

Foreword

Does the world really and truly need another JavaServer Faces book?
I was fairly well convinced the answer could only be a resounding “no!” After all, there are

a good half-dozen books out in stores today, by a whole host of Web luminaries, and I’ve even
personally helped as a technical reviewer on half of those. So what more could really be said
on the subject?

But when I thought about this a bit more, it became clear that all of these books go only so
far. They’ll show you how to use what JSF gives you out of the box, throw you a bone for writing
your own components and renderers, and give you maybe even a bit more. But none that I’ve
seen get to the heart of why JSF is really and truly a cool and important technology; they make
JSF look like YAMVCF (Yet Another Model-View-Controller Framework) for HTML—more pow-
erful here and there, easier to use in many places, a bit harder to use in others, but really nothing
major. And certainly nothing that takes us beyond the dull basics of building ordinary-looking
Web applications.

This book goes a lot further. It covers the basics, of course, and shows you how to build
components, but then it keeps going: on to Ajax, on to HTC, on to XUL—and how you can
wrap up this alphabet soup underneath the heart of JSF, its component model, and how you
can leverage it to finally develop Web applications that don’t need radical rearchitecting every
time the winds of client technologies blow in a different direction. Along the way, you’ll learn
a wide array of open source toolkits that make Web magic practical even when you’re not a
JavaScript guru.

So, heck, I’m convinced. The world does need another JSF book.

Adam Winer
JSF Expert Group Member and Java Champion

xiii

5807fm.qxd 1/20/06 4:11 PM Page xiii

5807fm.qxd 1/20/06 4:11 PM Page xiv

About the Authors

■JONAS JACOBI is a J2EE and open source evangelist at Oracle.
A native of Sweden, Jonas has worked in the software industry for

more than 15 years. Prior to joining Oracle, Jonas worked at several major
Swedish software companies in management, consulting, development,
and project management roles.

For the past three years, Jonas has been responsible for the product
management of JavaServer Faces, Oracle ADF Faces, and Oracle ADF Faces

Rich Client in the Oracle JDeveloper team.
Jonas is a popular speaker at international conferences such as Oracle OpenWorld,

EclipseWorld, and JavaPolis, and he has written numerous articles for leading IT magazines
such as Java Developer’s Journal, JavaPro, and Oracle Magazine. Jonas has also contributed
to the online appendix of JavaServer Faces in Action, by Kito D. Mann (Manning, 2005), and
was a technical reviewer of Oracle JDeveloper 10g Handbook, by Avrom Roy-Faderman, Peter
Koletzke, and Paul Dorsey (McGraw-Hill Osborne, 2004).

Apart from spending his spare time working on open source projects such as Weblets,
Mabon, and D2, he likes golf, sailing, and fast cars (preferably driving them); he also enjoys
spending time with his wife, Marianne, and his daughters, Emma and Isabelle.

■JOHN R. FALLOWS is a JavaServer Faces technology architect at Oracle.
Originally from Northern Ireland, John graduated from Cambridge

University in the United Kingdom and has worked in the software industry
for more than ten years. Prior to joining Oracle, John worked as a research
scientist for British Telecommunications Plc.

For the past four years, John has played a leading role in the Oracle
ADF Faces team to influence the architecture of the JavaServer Faces

standard and to extend the standard to provide Ajax functionality in the ADF Faces project.
John is an active participant in the open source community, contributing to both the

Apache MyFaces project and the Apache Maven project. John is also leading three new open
source projects on Java.net—Weblets, Mabon, and D2—all of which evolved while researching
the foundational technologies for this book.

Apart from spending his spare time writing articles about new and exciting technologies,
John likes to play soccer with his friends and likes to spend time with his beautiful wife, Nan,
and their wonderful son, Jack.

xv

5807fm.qxd 1/20/06 4:11 PM Page xv

33faf4ff068d72f2adcfa053cf4f7274

5807fm.qxd 1/20/06 4:11 PM Page xvi

About the Technical Reviewers

■PETER LUBBERS is an information architect at Oracle. A native of the
Netherlands, Peter served as a Special Forces commando in the Royal
Dutch Green Berets. Prior to joining Oracle, Peter architected and devel-
oped the internationalized Microsoft Office User Specialist (MOUS) testing
framework. At Oracle, Peter develops automated help-authoring solutions.
Three of these solutions are currently patent pending. He is also the author
of the award-winning Oracle Application Server Portal Configuration Guide
(Oracle, 2005).

■KITO D. MANN is the editor-in-chief of JSF Central (http://www.jsfcentral.com)
and the author of JavaServer Faces in Action (Manning, 2005). He is also a
member of the JSF 1.2 and JSP 2.1 expert groups and principal consultant at
Virtua, specializing in enterprise application architecture, development, men-
toring, and JSF product strategy. Kito has consulted with several Fortune 500
clients, including Prudential Financial and J.P. Morgan Chase & Company,
and he was recently the chief architect of an educational application service
provider. He has a bachelor’s degree in computer science from Johns Hopkins University.

■MATTHIAS WESSENDORF is a PMC member of the Apache MyFaces project,
a well-known JavaServer Faces implementation. Matthias is currently
working as a Java Web developer in Germany, focusing on Web technolo-
gies such as JSF, Struts, Ajax, and XUL.

Matthias is the author of two developer handbooks, Struts: Websites
mit Struts 1.2 & 1.3 und Ajax effizient entwickeln and Web Services und
mobile Clients: SOAP, WSDL, UDDI, J2ME, MIDlet, WAP & JSF, and he has

written numerous articles about JavaServer Faces for leading IT magazines in Germany.
Matthias is a frequent speaker at international conferences such as ApacheCon and JAX

and also lectures in the Department of Computer Science at the University of Applied Sciences
in Dortmund, Germany. During his limited spare time, he enjoys listening to electronic dance
music and reading a good book.

xvii

5807fm.qxd 1/20/06 4:11 PM Page xvii

5807fm.qxd 1/20/06 4:11 PM Page xviii

Acknowledgments

After completing this book, we found ourselves wondering if we would do it again, and
sure, we would! However, anyone who believes a book project is a simple single-author or
small-team effort has never written a book. No first-time author, or authors, would be any-
thing without guidance and tremendous support from family, friends, and colleagues.

Peter Zadrozny, thank you, thank you, and thank you! You introduced us to Apress, con-
vinced Apress that this would be the book of the year, and then guided us through everything
that newbie authors, like ourselves, needed to know. Without you and your guidance, we would
never have taken the first steps toward becoming full-feathered authors.

We thank Apress and Tony Davis for giving us the opportunity to write this book and
trusting Peter Zadrozny’s instincts.

Peter Lubbers worked tirelessly to help us make this a better book. We owe you big time!
Kito D. Mann, although he has an extremely busy schedule, took time from his family to pro-
vide us with his technical knowledge. Matthias Wessendorf was there from the very first draft
to the final product, educating us about MyFaces and providing encouragement when it felt
like we would never reach the end. Adam Winer, our ADF Faces colleague and a Java Cham-
pion, answered our questions on JSF 1.2 and made sure we kept our edge.

Elizabeth Seymour patiently answered all our questions about book-related and non-book-
related issues. Kim Wimpsett helped us with grammar, spelling, and consistency throughout the
book, and for this we are forever grateful. Laura Cheu patiently let us do last-, last-, and last-
minute edits to text, code, and figures and patiently educated and guided us through the Apress
process of finalizing our book. Without you, we would probably still be working on Chapter 4.

We would also like to thank our colleagues at Oracle Server Technologies for supporting
us during this year and encouraging us to do our very best.

Jonas Jacobi and John R. Fallows

I have a list as long as any Oscar-winning actor or actress, but I only have so much space;
if I’ve missed someone, you have my heartfelt apologies. I would first like to thank my good
friend Peter Z’d for letting me in on the “how-to-make-your-family-happy-when-writing-a-
book” secret and for always being there whenever I had doubts about this project.

To a true friend—John R. Fallows. I don’t think my vocabulary has enough superlatives to
describe my coauthor and colleague. I will be forever in his debt for all the knowledge I pulled
out of him during long hours and for the patience and dedication he brought to this project;
without John this would not have been possible.

To the most important person in my life, my wonderful wife, Marianne, without whom I
wouldn’t have been able to complete this book! To my beautiful daughters, Emma and Isabelle,
for patiently waiting for me to come home and play.

Jonas Jacobi

xix

5807fm.qxd 1/20/06 4:11 PM Page xix

I would first like to thank my very good friend and coauthor, Jonas Jacobi, for proposing that
we work on this book together. Jonas has my deepest respect for his ability to consume highly
detailed architectural knowledge and simplify it for the reader in a practical and entertaining
way. There is no doubt that without Jonas this book would simply not have been possible.

To my amazing wife, Nan, whose endless patience and support made it possible for me
to work on this book while she was pregnant with our son, Jack, and for the first six months
of his life.

To my son, Jack, for those lovable deep laughs that made me smile no matter how tired
I was.

To my dad, for always encouraging me to reach for the stars.

John R. Fallows

■ACKNOWLEDGMENTSxx

5807fm.qxd 1/20/06 4:11 PM Page xx

Introduction

Since JavaServer Faces first arrived on the Internet technology stage as the new standard
for building Java-based Web applications, it has gained significant attention from the Java EE
Web development community. Many developers are excited that they can use the standard
JavaServer Faces HTML Basic RenderKit to create HTML-based Web applications, much as
they did in the past with other technologies, such as Apache Struts. However, this is only the
tip of the iceberg—the true power of JavaServer Faces lies in its extensible component model,
which allows you to go far beyond those humble HTML beginnings.

Based on the recent surge in demand for improved usability in Web applications, it is
understandable that the hottest topic at the moment is Rich Internet Applications (RIAs) and
how they offer distributed, server-based Web applications with a rich interface and the inter-
action capabilities of desktop applications. Although RIAs hold significant promise, they still
have issues with compatibility, portability, usability, and reusability. Many Web application
developers are struggling to keep up with new RIA frameworks, both open source and vendor
specific, as they appear on the market. What is needed is a standard way of defining an RIA
regardless of what RIA framework is being used.

The debate over the best way to develop and deploy RIAs will not end with this book, but
looking at the software industry today more and more developers are using the Web to deploy
their applications.

User interfaces for these Web applications are often built with technologies such as HTML,
CSS, JavaScript, and the DOM. These technologies were not developed with enterprise applica-
tions in mind, and with an increasing pressure from consumers to provide applications with
features not fully described or supported by these technologies, developers are looking for
alternative solutions or to extend the standards.

JSF does not just let you pick a single RIA technology such as Ajax, Mozilla XUL, Microsoft
HTC, Macromedia Flash, and so on; it lets you pick and combine any RIA technologies you
want and use them where they make the most sense. As with any technology, each RIA tech-
nology has its own advantages and disadvantages, but as a JSF component writer, you have
the opportunity to leverage the best functionality of each RIA technology to provide the appli-
cation developer with an extremely powerful RIA solution.

We have been very much involved in the development and the use of component-based
frameworks over the past five years, starting with Oracle’s own UI component framework,
ADF UIX, and lately with Oracle’s JSF component library, ADF Faces.

One day a very good friend asked us, “Why don’t you guys share some of your experience
and write a book about it?” What surprised us was that nobody had actually written a book
targeting developers who are interested in the same thing we are—how to develop reusable
standards-based JSF components for RIAs.

So, here we are, hoping that you will enjoy reading this book as much as we enjoyed
writing it.

xxi

5807fm.qxd 1/20/06 4:11 PM Page xxi

An Overview of This Book
Pro JSF and Ajax: Building Rich Internet Components is written to give you all the means to
provide your Web application developers with easy-to-use Rich Internet Components (RICs).
We decided early on that we would focus on establishing a clear blueprint that you as a devel-
oper could follow to be successful in your own JSF component development. We also decided
that we would not limit this book to “just” JSF components and that we would incorporate
everything you would need to know to be successful in developing, packaging, and deploying
your own RICs.

This book is not, and we would like to emphasize this, not an introductory level book
about JSF or about writing simple JSF components. Sure, this book introduces JSF and covers
the basics of writing JSF components, but if you have not acquainted yourself with JSF before
reading this book, we strongly encourage you to refer to a few excellent books that will introduce
you to JSF and give you the foundation needed to fully appreciate this book. We recommend JSF
in Action, by Kito D. Mann (Manning, 2005), which is an excellent and very complete book on
JSF, and Core JavaServer Faces, by David Geary and Cay Horstmann (Prentice, 2004). We are
also looking forward to seeing Java Server Faces: The Complete Reference, by Ed Burns and
Chris Schalk (McGraw-Hill Osborne, 2006), in stores.

Pro JSF and Ajax: Building Rich Internet Components contains ten chapters that focus
on writing JSF components. The book’s examples are fairly extensive, so we recommend you
download the example source code from the Apress Web site to give you a better overview of
the examples discussed (see the next section for more information). We assume that, as an
experienced Web developer and JSF developer, you can extrapolate the demonstrated topic
into your own environment; thus, we avoid cluttering the text and examples with information
that is of little use.

Chapter 1 gives a fast-paced and in-depth introduction to JSF, its component model, and
its lifecycle. You might have followed our recommendation to read up on JSF before buying
this book or you are already experienced working with JSF; either way, this chapter contains
crucial information about JSF and its lifecycle that is needed in order to successfully build
scalable and reusable JSF components.

Chapter 2 introduces the first JSF component: the date field component. We played with
the idea of having a component comprised of three input fields representing day, month, and
year, but this did not provide us with enough material to work with when moving forward
through the book. So instead, we focused this chapter on the essentials of building a com-
ponent, such as creating prototypes, managing resources, creating renderers, controlling
rendering of children, handling conversion, and figuring out what’s going on during post-
back. To be able to keep track of all the tasks associated with creating JSF components, this
chapter introduces the first steps in a JSF component design blueprint. The date field com-
ponent created in this chapter also introduces you to some new concepts and open source
projects when you improve its user interactivity in Chapter 7.

Chapter 3 introduces the second component: the deck component. The deck component
works like an accordion to show and hide information. This chapter discusses the JSF event
model and teaches you how to create new behavioral superclasses and new event types with
corresponding listener interfaces. By the time you finish Chapter 3, you will have enough
knowledge to start writing your own basic HTML components. During the course of this book,
you will be enhancing the deck and date field components, and you will be providing them
with extremely rich user interactivity that leverages RITs.

■INTRODUCTIONxxii

5807fm.qxd 1/20/06 4:11 PM Page xxii

Chapter 4 introduces you to three RITs (Ajax, Mozilla XUL, and Microsoft HTC) and gives
you a high-level overview of these technologies. You will use these technologies in Chapters 6,
7, 8, and 9 to build rich interactivity into the date field and deck components. Of course, some
simple applications in this chapter will highlight the core features of each technology.

As promised, to be able to successfully build and package JSF components, and especially
RICs, you need a solution that can easily package resources, such as JavaScript libraries, CSS,
and images, into the same component library as your JSF infrastructure (renderers, behavioral
superclasses, and so on) and then serve them out from the same JAR. Chapter 5 introduces a
new open source project—Weblets—that makes resource file management and versioning as
easy for Web development as it already is for desktop-based Java development.

Chapters 6, 7, 8, and 9 address the need for a smoother and richer user experience when
users interact with your components in a JSF Web application. These four chapters leverage
everything you have learned so far and guide you through the gotchas of building Ajax-enabled
JSF components with HTML, XUL, and HTC. These chapters also introduce you to one estab-
lished and two new open source projects: the Dojo toolkit, Mabon, and D2.

Finally, Chapter 10 pulls it all together. In this chapter, you will learn how to leverage all of
the aforementioned techniques to provide your Web application developers (and users) with
enterprise-class JSF components that support multiple clients.

Obtaining This Book’s Source Code
All the examples in this book are freely available from the Source Code section of the Apress
Web site. Point your browser to http://www.apress.com, click the Source Code link, and find the
Pro JSF and Ajax: Building Rich Internet Components book. You can download the source as a
zip file from this book’s home page. All source code is organized by chapter. The zip file con-
tains an application workspace, built with Oracle JDeveloper 10.1.3, and contains one project
per chapter. Each project includes a WAR file that is ready to deploy to any J2EE 1.3–compliant
application server. For more information about Oracle JDeveloper, please refer to the Oracle
Web site at http://otn.oracle.com/products/jdev/.

Obtaining Updates for This Book
There are no errors in this book. Just kidding! Despite our best efforts to avoid any errors, you
may find one or two scattered throughout the book. We apologize for those potential errors
that may be present in the text or source code. A current errata list is available from this book’s
home page on the Apress Web site (http://www.apress.com), along with information about
how to notify us of any errors you may encounter.

Contacting Us
Any feedback, questions, and comments regarding this book’s content and source examples
are extremely appreciated. You can direct your questions and comments to projsf@gmail.com.
We will try to reply to your questions and comments as soon as we can, but please remember,
we (like you!) may not be able to respond immediately.

Lastly, we would like to thank you for buying this book! We hope you will find this book to
be a valuable source of information and inspiration and that you enjoy reading it.

■INTRODUCTION xxiii

5807fm.qxd 1/20/06 4:11 PM Page xxiii

5807fm.qxd 1/20/06 4:11 PM Page xxiv

Developing Smarter with
JavaServerTM Faces

JavaServer Faces (JSF) is a user interface (UI) component framework for Java 2 Enter-

prise Edition (J2EE) Web applications that, once adopted, allows organizations to migrate

from old technologies, such as character-based platforms for virtual terminals (VTs), to

more up-to-date standard-based platforms and technologies, such as JSF and Java. Over

the past 15 years, the software industry has seen many technologies and platforms rise

and fall. Usually, the use of a particular technology declines for several reasons, including

fashion and competition. Another common reason for the fall of certain technologies is

that if they are designed and maintained by one company, then the consumers of these

technologies are forced to rely on support provided solely by the creators. Whenever a cre-

ator decides to deprecate a technology in favor of a more advanced solution, the consumer

is left with an outdated, unsupported platform. JSF allows organizations and consumers to

leverage the latest technology as it emerges, with minimal impact on existing JSF appli-

cations. JSF also brings extreme reuse of functionality and visual appearance to the

software industry. Part 1 of this book will teach you what JSF is all about, describe how to

leverage JSF by developing your own components, and open your eyes to a new horizon.

P A R T 1

■ ■ ■

5807ch01.qxd 1/3/06 4:47 PM Page 1

5807ch01.qxd 1/3/06 4:47 PM Page 2

The Foundation of JSF:
Components

JavaServer Faces (JSF) is a user interface (UI) framework for Java Web applications. It is

designed to significantly ease the burden of writing and maintaining applications that

run on a Java application server and render their UIs back to a target client.

—JavaServer Faces specification

For those of you who have not had a chance to get acquainted with JSF before reading this
book, this chapter will give you a fast-paced introduction to its core functionality. If you are
already familiar with JSF, you may still find some of the discussion of component and lifecycle
architecture to be of interest, because these topics are fundamental to your understanding of
the rest of this book. This chapter will cover application development, give an overview of JSF
and how it relates to other similar frameworks, and provide an in-depth examination of the
JSF architecture and its component model. By the end of this chapter, you should understand
the JSF architecture, its building blocks, and its request lifecycle.

Before jumping into the architecture of JSF, we’ll define the audience for JSF (and ulti-
mately for this book). The JSF specification defines the types of developers who make up the
core audience: page authors, application developers, component writers, tools providers, and
JSF implementers, as shown in Table 1-1.

Table 1-1. JSF Developer Types*

Type Description

Page author A page author is responsible for creating the UI and has knowledge
about markup and scripting languages, as well as the rendering
technology such as JavaServer Pages (JSP). According to the JSF
specification, this developer type is generally not familiar with
programming languages such as Java or Visual Basic.

Application developer An application developer is, according to the JSF specification, in
charge of the server-side functionality of an application that may or
may not be related to the UI. The technical skills of an application
developer generally include Java, Enterprise JavaBeans (EJBs), or other
server technologies.

Continued

3

C H A P T E R 1

■ ■ ■

5807ch01.qxd 1/3/06 4:47 PM Page 3

Table 1-1. Continued

Type Description

Component writer A component writer is the main provider of reusable components. This
developer is responsible for creating component libraries that can be
consumed by others, such as the page author.

Tools provider A tools provider, as implied by the name, provides tools that can
support developers who are building applications with JSF.

JSF implementers A JSF implementer is a developer who provides the runtime (or
implementation of the JSF specification) for all the previously defined
developers. Examples of available implementations are the Sun
Reference Implementation (RI) (http://java.sun.com/j2ee/
javaserverfaces/) and Apache MyFaces (http://myfaces.apache.org).

* Source: The JavaServer Faces 1.1 specification

In our experience, page authors and application developers are usually the same person,
so they are knowledgeable in both UI design and programming languages, such as Java or
Visual Basic. We will focus most of our attention on component writers in this book.

Overview of Application Development
Technologies
During the relatively short history of computers and software, application development has
undergone several major evolutionary steps, all promising increased developer productivity
and flexibility. These technology improvements have progressed exponentially since the com-
puter was first introduced, and it looks like computer and software technologies will continue
to evolve at the same tremendous pace well into the future.

No exponential is forever . . . but we can delay “forever.”

—Gordon Moore (famous for Moore’s law),
Fairchild Camera and Instrument Corporation

During these evolutionary years, the deployment profile for an application, as well as the
computer and software technology used to develop such an application, has changed.

One-Tier
At the end of the 1970s and beginning of the 1980s, a fundamental shift occurred from large
and centralized computers to personal computers (PCs), which moved the power of control
from a few to many (anyone with a PC). Though most of the applications released during this
period were more powerful than anything so far developed, they were developed and designed

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS4

5807ch01.qxd 1/3/06 4:47 PM Page 4

for single-user tasks and lacked collaboration over common data; at this point, no central data-
bases or email systems existed. Applications deployed or installed this way are referred to as
one-tier applications.

From a maintenance point of view, this one-tier solution is an application that resides on
an individual’s machine and that controls interaction with business logic. These one-tier appli-
cations all integrate three application layers (presentation, business logic, and data), making it
hard to maintain and almost impossible to share and scale information.

Two-Tier: Client-Server
Two-tier, or client-server, solutions took center stage in the 1980s and pushed one-tier solu-
tions into the history archives. A two-tier architecture, which enables sharing data, changed
the way applications were developed and deployed. Two-tier applications directly interact with
the end user; business and presentation logic are stored on the client, and data resides on
a remote server. This architecture allows multiple users to access centralized data with appli-
cations such as desktop email clients (such as Microsoft Outlook or Mozilla Thunderbird).
Although the two-tier solution solves the issue of having multiple users accessing the same
data source, it also has its limitations, such as the lack of flexibility of the design to later modi-
fication or porting, which in turn increases maintenance costs.

Multitier: Web Applications
The next phase in application development arrived with the Internet and the Web browser
and introduced the three-tier, or multitier, architecture. In the one-tier solution, presenta-
tion, business logic, and data are all integrated in one monolithic application. The multitier
architecture breaks this type of application into three layers, allowing developers to focus on
specific domain areas—model (data access), view (presentation), and controller (logic). This
programming paradigm, representing the split between these layers, is known as the Model-
View-Controller (MVC) architecture and was first introduced in SmallTalk and spread to the
developer community in the 1980s.

Splitting the one-tier application into layers—in combination with a standard client (for
example, the Web browser) and a standard communication protocol (for example, Hypertext
Transfer Protocol [HTTP])—suddenly gave users ubiquitous access to centralized and familiar
applications such as email via a browser (for example, Google’s browser-based Gmail). Applica-
tions are no longer something that only come on a CD or are downloaded. A multitier solution
gives the application owner centralized maintenance and administration, which allows the
application owner to provide instantaneous upgrades for everyone using the application.

Exploring Application Development Today
In this new world of multitier applications, developers need to keep up-to-date with emerg-
ing technologies and standards provided through such organizations as the World Wide Web
Consortium (W3C) and the Java Community Process (JCP). The industry is evolving, which
is good, but this also adds pressure on the application developer to always be building

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 5

5807ch01.qxd 1/3/06 4:47 PM Page 5

competitive multitier applications. If you look at a typical multitier software solution—serving
a retail company, for example—it might include support for multiple agents such as Web
browsers, mobile devices, and character-based Video Terminals (VT, for example, VT100).
Figure 1-1 shows a simplistic schema over the architecture for such a multitier application.

Figure 1-1. Common J2EE architecture for a typical multitier software solution, serving a retail
company

In this scenario, the application developer is forced to provide not one application but
three. This architecture contains one application for the Web interface, one for the mobile
device, and finally one for the Telnet device (such as a VT terminal or handheld character-based
device). All three applications use their own technology stack, which for the administrator or
application developer will be a maintenance nightmare, and may cause issues with security
and scalability. For the application developer, it all boils down to one question: “How many
technologies do I have to learn in order to successfully build a complete solution for my
project?”

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS6

5807ch01.qxd 1/3/06 4:47 PM Page 6

Frameworks
Compared to ten years ago, customers today have much higher demands and more specific
requirements for new Web application projects. They require richer and more user-friendly
Web applications with built-in security, accessibility, internationalization, portability, and so
on. Multitier applications must successfully deliver all these features, despite the increased
complexity of additional failure scenarios and increased scalability and security requirements.

The growing complexity of building applications creates a need for simplicity. So far, in
the J2EE realm, there has not been a clear choice of technology for Web applications. The
traditional application programming interfaces (APIs), such as JSP and servlets, do not really
provide enough abstraction from the underlying grunt work of implementing a multitier
application. To fulfill these requirements and to provide some level of simplicity, the industry
has evolved in a direction whereby open source communities and software companies are
providing application developers with frameworks to protect them from the complexity
introduced by multitier applications.

Tapestry, Struts, Tiles, TopLink, Hibernate, ADF UIX…
Many frameworks have the same underlying ideas but solve a problem a little differently
and in different layers of a multitier application (the view layer, the controller layer, and the
model layer). Examples of frameworks are Struts (an open source controller framework);
TopLink and Hibernate (model frameworks); and Tiles, Tapestry, XUL, and ADF UIX (so-
called view frameworks).

The benefits of application frameworks are the modularity, reusability, and inversion of
control (IoC) they provide to developers. By encapsulating implementation details, frame-
works enhance modularity and improve software quality by centralizing the impact of design
and implementation details. Thanks to the stable environment provided by frameworks, they
also enhance reusability by allowing developers to create generic components that can be
reused in new applications. This reuse of framework components improves application devel-
oper productivity and the quality of application software. By leveraging IoC, the framework
manages which application-specific methods are called in response to user events.

■Note IoC means you have registered some part of your code with the framework, and the framework will
call this code when the client requests it. This is also referred to as the Hollywood principle. (“Don’t call us.
We’ll call you.”)

In the previous retail software scenario (refer to Figure 1-1), frameworks can help increase
developer productivity and ease of maintenance, but the frameworks are also incompatible
with each other, which makes integration hard to handle. In contrast, JSF is a standard frame-
work that aims to solve incompatibility.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 7

5807ch01.qxd 1/3/06 4:47 PM Page 7

Introducing JSF
In short, JSF is a UI component framework for J2EE applications. Before we start covering UI
components (and by UI components we mean building blocks for application developers, not
components of the framework itself), it is worthwhile to elaborate on why you need yet another
framework. JSF is, after all, attempting to solve the same problems as the aforementioned
Apache Tapestry or Oracle ADF UIX, frameworks that have been around for quite some time
and have proved to be successful.

The differentiator that JSF brings, which other similar frameworks do not have, is the
backing of a standard specification (JSR-127). Because JSF is part of the J2EE standard specifi-
cation, it is a top priority for every major J2EE tools vendor in the market (including Oracle,
IBM, Borland, and Sun) to support it, which in turn will guarantee a wide adoption and good
tools support.

Most Web applications are stuck in the 1990s where too much effort was put into basic
plumbing and not into high-level components. Basically, when there is limited abstraction
or no abstraction over the markup, the development of Web applications becomes cumber-
some and hard to maintain. You can invest a lot of time into the application to make it rich
and interactive using various technologies from applets, plug-ins (Flex), Dynamic HTML
(DHTML), and JavaScript. Used together, these technologies can make up an interactive and
powerful Web application, but how do you maintain such an application? How do you reuse
what you have built?

Component Model
JSF brings to the table a best-of-breed J2EE framework. JSF is here to simplify life for applica-
tion developers, making it possible for them to focus on the view without needing to know the
underlying markup or scripts. They will see an improvement in productivity with JSF using
UI components that hide most of the grunt work of integrating richer functionality into Web
applications. The goal is to provide an easy way to construct UIs from a set of reusable UI
components.

These reusable components come in various shapes with different functionality, from
layout components (such as the layout of an entire page) to simple buttons. Application devel-
opers can use these components to construct a page and nest UI components within each
other to get the desired effect; for example, nesting text fields and buttons within a row layout
component will render the nested UI components in a single row on the client. This structure
of nested components is often referred to as a parent-to-child relationship and visualized as a
UI component hierarchy. This UI component hierarchy represents a JSF page description at
runtime.

Navigation Model
JSF provides a declarative navigation model, which allows application developers to set
navigation rules to define the navigation from one view to another in a Web application. Navi-
gation rules in JSF are defined inside the JSF configuration file, faces-config.xml, and are
page-based. Code Sample 1-1 shows a navigation rule configured in faces-config.xml.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS8

5807ch01.qxd 1/3/06 4:47 PM Page 8

Code Sample 1-1. Navigation Rule Configured in faces-config.xml

<navigation-rule>
<from-view-id>/login.jspx</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/result.jspx</to-view-id>

</navigation-case>
</navigation-rule>

In Code Sample 1-1, a navigation rule is set so that from a view, login.jspx, on an out-
come of success, the user will be sent to a page called result.jspx. The outcome is the return
value from an action performed in the application such as a button being clicked. In JSF, an
action is attached to the UIComponent, which allows for fine-grained control on the page. These
actions can either have their own navigation rule or share the same navigation rule.

Application Lifecycle
Another benefit that application developers will discover when using JSF is that the frame-
work helps manage UI state across server requests. Instead of having to take care of user
selections and passing these selections from page to page, the framework will handle this for
you. The JSF framework also has built-in processes in the lifecycle to assist with validation,
conversion, and model updates. As a side bonus, JSF provides a simple model for delivering
client-generated events to server-side application code.

Application Development with JSF
One of the key differentiators with JSF is that its architecture is designed to be independent of
specific protocols and markup, and as such it allows developers to attach any rendering tech-
nology to the JSF application. In JSF it is the RenderKit that is responsible for the presentation
of the JSF application by rendering the markup to the client. You can define a RenderKit for
any type of markup (HTML, DHTML, Telnet/character mode, and eventually SVG, Flash, XUL,
and so on) and use it to display a JSF page.

This separation between the page description (UI component hierarchy) and the render-
ing of markup is a key differentiator that provides flexibility to the component developer while
protecting the application developer from changes isolated at the rendering layer. Instead of
having to learn and implement different rendering technologies to solve a common problem,
such as portability between different browsers (such as Netscape vs. Internet Explorer), appli-
cation developers can use custom JSF components to build applications targeted for different
browsers, personal digital assistants (PDAs), and so on, with a common programming
model—JSF and Java.

Applying this new knowledge about JSF to the previous sample in Figure 1-1, the retail
solution, the architecture could look similar to Figure 1-2.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 9

5807ch01.qxd 1/3/06 4:47 PM Page 9

Figure 1-2. J2EE architecture using JSF for a typical multitier software solution, serving a retail
company

In this architecture, only one application is serving three different agents using three dif-
ferent RenderKits—Hypertext Markup Language (HTML), Wireless Markup Language (WML),
and Telnet. In practice, the application would probably still be three different pages but with a
main difference; they will all be built on the same technology—JSF and Java. This will both
save development time and reduce maintenance. Furthermore, and perhaps most important,
JSF establishes standards, which are designed to be leveraged by tools (such as Oracle JDevel-
oper, Sun Studio Creator, and Eclipse plug-ins such as Exadel Studio) to provide developers
with the ease of use that has long been sought in the J2EE developer community.

JSF Architecture
From a satellite view, JSF implements what is known as the Model 2 pattern, which is based on
the MVC architecture. If you look at how the Model 2 pattern is applied in a JSF application,
you can see it consists of three elements—the view, the navigation model, and the application
logic, as shown in Figure 1-3.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS10

5807ch01.qxd 1/3/06 4:47 PM Page 10

Figure 1-3. MVC architecture with JSF (Model 2)

Model
With JSF, the concept of a managed bean has been introduced. The managed bean is the glue
to the application logic—backing code or backing bean. Managed beans are defined in the
faces-config.xml file and give the application developer full access to all the mapped backing
bean’s methods. This concept of IoC is successfully used in frameworks such as Spring, Hive-
Mind, and Oracle ADF model binding (JSR-227). The managed bean facility is responsible for
creating the backing beans or other beans such as Data Access Objects (DAO). In JSF, a back-
ing bean is a plain old Java object (POJO) with no dependency on implementation-specific
interfaces or classes. The aforementioned JSF controller—the FacesServlet—is not aware of
what action has been taken; it is aware only of the outcome of a particular action and will use
that outcome to decide where to navigate. In JSF it is the component that is aware of which
action, or method, to call on a particular user event. Code Sample 1-2 shows a managed bean
defined in the faces-config.xml file.

Code Sample 1-2. Managed Bean Defined in the faces-config.xml File

<managed-bean>
<managed-bean-name>sample</managed-bean-name>
<managed-bean-class>
com.apress.projsf.ch1.application.SampleBean

</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 11

5807ch01.qxd 1/3/06 4:47 PM Page 11

Code Sample 1-2 defines a backing bean, sample, that points to a class called com.apress.
projsf.ch1.applictaion.SampleBean. The <managed-bean-scope> indicates where an instance of
this bean will be stored after it has been created—request, session, or application scope. The
code sample also has an option to set the scope to none for a bean that should not be stored in
any scope but instead be instantiated on every access. Table 1-2 lists all the available scopes.

Table 1-2. Managed Bean Scopes

Managed Bean Scope Description

None Instance created for every method invocation

Request Instance created for every request

Session Instance created on initial request and stored in the session

Application Instance created on initial request and stored in the Web application

View
The JSF view layer describes the intended layout, behavior, and rendering of the application.
One of the cornerstones of a JSF application is the UIComponent. UIComponents are the founda-
tion of the JSF view layer and represent the behavior and structure of the application. A
developer would use these UIComponents to construct an application by nesting components
within each other. This nested structure will at runtime be represented as a component hierar-
chy, as shown in Figure 1-4, which in turn represents the view or UI, much like developing a
Swing-based application.

Figure 1-4. From page description to a JSF component hierarchy

The default page description defined by the JSF specification is JSP, but there is nothing in
the JSF specification preventing an implementer from providing an alternative page descrip-
tion, such as an Extensible Markup Language (XML)–based, WML-based, or plain HTML-based
page description. Using JSP as the page description has its good and bad sides. On the plus
side, it is a well-known and widespread solution; as such, learning how to build applications
with JSF and JSP presents a fairly shallow learning curve for most J2EE developers. In addition,

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS12

5807ch01.qxd 1/3/06 4:47 PM Page 12

as a bonus, the adoption of JSF as the view technology of choice for new Web applications is
good. The consequence is that JSF has a dependency on JSP, and as such, it needs to work
around the different lifecycles of an application that is partially JSP and partially JSF. Later in
this chapter (refer to the section “JSF and JSP”), we will cover these differences and the impact
they have on applications built with JSP syntax and JSF components.

Controller
JSF comes with a simple controller—the FacesServlet. The FacesServlet acts as a gatekeeper,
controlling navigation flow and dispatching requests to the appropriate JSF page.

A Component-Based UI Framework
We have set the stage for the book, so it is now time to focus on the pieces that are differentiat-
ing JSF from other technologies: UIComponents. JSF is a component-based UI framework where
components, such as HtmlDataTable and HtmlPanelGrid, can be viewed as prefabricated blocks
that allow application developers to productively build complex applications with reusable
components. It also allows application developers to focus on the application logic rather
than on building the dynamic/rich functionality themselves.

■Note JSF is all about components—and reusable components at that! JSF was first released in March
2004 with a subsequent point release, 1.1, in August 2004. The initial JSR (JSR-127) has been replaced by
JSR-252, which delivers the JSF 1.2 release.

A JSF component consists of five building blocks:

• UIComponent: The UIComponent is responsible for the behavior and for accessing the
data model.

• Renderer: The Renderer is in charge of the markup rendered to the client for a specific
component family.

• RenderKit: This is a library of Renderers with a common rendering technology (for
example, HTML).

• Renderer-specific component subclass: The renderer-specific component subclass is a
convenience class and represents renderer-specific facets and attributes.

• JSP tag: The default page description language is JSP, so JSF needs to follow the contract
of JSP and provide JSP tags representing each JSF component.

JSF addresses the idea of a clear separation between the application logic and the visual
presentation by strongly separating the UI from the underlying data model. The Renderer is in
charge of the markup rendered to the client, and the UIComponent is responsible for the behav-
ior and accessing data model. Figure 1-5 shows the separation of UI, behavior, and data model.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 13

5807ch01.qxd 1/3/06 4:47 PM Page 13

Figure 1-5. Separation of UI from behavior and data model

To illustrate the benefit of separating the UI and data models, let’s look at an example of
the common HTML form element <select>. This list element has a multiple attribute that
changes the behavior from allowing a single-select option to multiple-select options. This
model has no separation of rendering and behavior. For an application developer to change
the behavior of the element from single select to multiple select, it requires just a minor
adjustment—simply setting the attribute multiple. However, this will have a bigger impact
on the underlying application logic since the values passed from the client are now struc-
tured as a list of key-value pairs instead of just a single key-value pair.

The UISelectOne and UISelectMany UI components provide a good example of clear sepa-
ration between behavior and appearance. For example, the UISelectOne component has a
distinct behavior to select a single value from many available options, and the UISelectMany
component has the behavior of selecting many values from a list of available options. The
UISelectOne component has three renderer types—Listbox, Radio, and Menu. Changing the
appearance from Radio to Menu will not affect the underlying behavior.

However, if application developers want to change the behavior to a multiple-select com-
ponent, they have to replace the entire UISelectOne JSF component with a UISelectMany JSF
component, rather than just setting an attribute in the page markup, as they would do when
using the <select> element directly. This clear separation between changing the behavior of
a JSF component and changing its appearance gives application developers a better under-
standing of the impact of their changes when modifying the page definition. Figure 1-6
illustrates the UIComponent and three Renderers with different appearances.

Figure 1-6 illustrates a component—UISelectOne—from the JSF specification that has
three different renderers attached—Listbox, Menu, and Radio. In some cases it might be neces-
sary to create new UIComponents or Renderers.

Figure 1-6. UISelectOne and its renderers

Application Logic
Client

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS14

5807ch01.qxd 1/3/06 4:47 PM Page 14

A good rule to follow is before starting a component project, search the Web for already
created components. In most cases, you can probably get away with writing a new Renderer
for an already existing component, and a fair number of components already exist. If you can’t
find the component you are looking for, then it is time to build your own. To build a new com-
ponent, you should make sure it introduces a new behavior, functionality, or definition and
that the component has a distinct server-side behavior. If the component exists and you just
need a new appearance, then you need to create a new Renderer (for example, to enable Ajax
or an existing input component).

Let’s now look at the different pieces making up a JSF component.

UIComponent
The foundations of all JSF components are the abstract UIComponent and UIComponentBase
classes. The UIComponent class (javax.faces.component.UIComponent) defines the behavioral
agreement and state information for all components, and the UIComponentBase class (javax.
faces.component.UIComponentBase) is a convenience subclass that implements almost all
methods of the UIComponent class. A simplified description of a UIComponent is that it is a
regular JavaBean with properties, events, and listeners.

The JSF specification defines a set of standard UIComponent subclasses, or behavioral super-
classes (for example, UISelectOne and UISelectMany), which all extend the UIComponentBase
class. In most cases, component writers will extend these standard UIComponent subclasses.
However, they can subclass the UIComponentBase class as well. A JSF component consists of
a UIComponent and one or more Renderers. It is important to understand that the standard
UIComponent subclasses define only non-renderer-specific behaviors, such as UISelectOne.
Table 1-3 gives an overview of the available standard behavioral UIComponents and lists their
associated convenience subclasses, renderer types, and JSP tags.

Table 1-3. Components Provided by the JSF Implementation*

UI Component Renderer-Specific Class Renderer Type Syntax/JSP Tag

UIColumn null** <h:column>

UICommand HtmlCommandButton Button <h:commandButton>

HtmlCommandLink Link <h:commandLink>

UIData HtmlDataTable Table <h:dataTable>

UIForm HtmlForm Form <h:form>

UIGraphic HtmlGraphicImage Image <h:graphicImage>

UIInput HtmlInputHidden Hidden <h:inputHidden>

HtmlInputSecret Secret <h:inputSecret>

HtmlInputText Text <h:inputText>

HtmlInputTextArea Textarea <h:inputTextarea>

UIMessage HtmlMessage Message <h:message>

UIMessages HtmlMessages Messages <h:messages>

UIOutput HtmlOutputFormat Format <h:outputFormat>

HtmlOutputLabel Label <h:outputLabel>

Continued

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 15

5807ch01.qxd 1/3/06 4:47 PM Page 15

Table 1-3. Continued

UI Component Renderer-Specific Class Renderer Type Syntax/JSP Tag

HtmlOutputLink Link <h:outputLink>

HtmlOutputText Text <h:outputText>

UIPanel HtmlPanelGrid Grid <h:panelGrid>

HtmlPanelGroup Group <h:panelGroup>

UIParameter null* <h:parameter>

UISelectOneBoolean HtmlSelectBooleanCheckbox Checkbox <h:selectBooleanCheckbox>

UISelectItem null <h:selectItem>

UISelectItems null <h:selectItems>

UISelectMany HtmlSelectManyCheckbox Checkbox <h:selectManyCheckbox>

HtmlSelectManyListbox Listbox <h:selectManyListbox>

HtmlSelectManyMenu Menu <h:selectManyMenu>

UISelectOne HtmlSelectOneListbox Listbox <h:selectOneListbox>

HtmlSelectOneMenu Menu <h:selectOneMenu>

HtmlSelectOneRadio Radio <h:selectOneRadio>

UIViewRoot null <f.view>

* Source: The JavaServer Faces specification 1.1
** This component has no associated renderer.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS16

For each combination of UIComponent and Renderer, there is a renderer-specific subclass,
or convenience class. A standard JSF implementation, such as the Sun RI or the MyFaces run-
time, comes with a set of HTML renderers (provided through the standard HTML RenderKit)
and a set of HTML renderer-specific subclasses, such as HtmlSelectOneRadio.

Renderer-Specific Component Subclass
In most cases, this subclass creates an instance of the component at runtime. As defined by
its name, this subclass provides access to renderer-specific attributes on a JSF component
such as style, disabled, tooltip, and so on—providing property getters and setters for all of
these component attributes. In conjunction with the binding attribute on the JSF JSP tag, this
subclass allows application developers to use JavaBean property setters to change renderer-
specific attributes on the component at runtime.

Although this does work and is a useful tool for prototyping, we recommend that, where
possible, application developers avoid modifying the renderer-specific attributes directly from
the backing bean application logic and instead use the behavioral superclass of the compo-
nent. If application developers use the parent class instead of the convenience subclass, they
have no need to modify the backing bean code when the JSF component changes to use a dif-
ferent renderer-specific component in the page definition, such as from HtmlSelectOneRadio
to HtmlSelectOneListbox. The backing bean code needs to change only when the behavioral
superclass also changes, such as changing from HtmlSelectOneRadio to HtmlSelectManyList.

This subclass is optional, but it is good practice to provide this subclass with the JSF com-
ponent, since sometimes application developers may like to use it for convenience, and for
component writers it is hard to know whether application developers will try to use this.

5807ch01.qxd 1/3/06 4:47 PM Page 16

Since this convenience class extends the UIComponent and the behavioral subclass (for
example, UISelectOne) at runtime, the component instance will not only contain information
available in this convenience class but also contain information from the extended UIComponent
classes. If you look at the inheritance model that is used by JSF to create an instance of a com-
ponent, it will look something like Figure 1-7.

Figure 1-7. UIComponent inheritance

This model allows programmatic access to all properties and attributes defined by the dif-
ferent classes that build up the component. As mentioned earlier, the UIComponentBase class
contains behavioral agreements for all components, the UISelectOne subclass contains prop-
erties and methods specific to its behavior (for example, select one), and the renderer-specific
subclass (for example, HtmlSelectOneListbox) contains getters and setters for all renderer-
specific attributes as well as the rendererType for that particular component.

Using a Renderer-Specific Component Subclass
Code Sample 1-3 illustrates the benefit of using the behavioral superclass instead of the con-
venience class to manipulate the page at runtime. The first bit of code illustrates a page with
a simple selectOneRadio component with three options and a commandButton.

Code Sample 1-3. JSF selectOneRadio Bound to a Renderer-Specific Subclass

<h:form>
<h:selectOneRadio binding="#{sample.selectOneRadio}" >
<f:selectItem itemLabel="Jonas" itemValue="jonas.jacobi" />
<f:selectItem itemLabel="John" itemValue="john.fallows" />
<f:selectItem itemLabel="Duke" itemValue="java.dude" />

</h:selectOneRadio>
<h:commandButton value="Select Duke"

actionListener="#{sample.onAction}" />
</h:form>

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 17

5807ch01.qxd 1/3/06 4:47 PM Page 17

In the selectOneRadio JSP tag, or custom action, the binding attribute is set to a value-
binding expression—#{sample.selectOneRadio}. This expression points to a backend JavaBean
property—selectOneRadio—that in turn is wired to the component instance for the UIComponent
created by this JSP tag. Code Sample 1-4 shows the backend JavaBean, or the managed bean,
that contains the page logic that at runtime will set the default option on the selectOneRadio
component to java.dude at runtime, whenever the user clicks the command button.

Code Sample 1-4. Backing Bean Using the HtmlSelectOneRadio Subclass

package com.apress.projsf.ch1.application;

import javax.faces.event.ActionEvent;
import javax.faces.component.html.HtmlSelectOneRadio;

public class SampleBean
{
public void onAction(
ActionEvent event)

{
_selectOneRadio.setValue("java.dude");

}

public void setSelectOneRadio(
HtmlSelectOneRadio selectOneRadio)

{
_selectOneRadio = selectOneRadio;

}

public HtmlSelectOneRadio getSelectOneRadio()
{
return _selectOneRadio;

}

private HtmlSelectOneRadio _selectOneRadio;
}

In Code Sample 1-4, the managed bean is using the renderer-specific subclass
HtmlSelectOneRadio. If application developers want to change the UI and replace the
selectOneRadio component with a selectOneMenu component in the page, a class cast
exception is thrown at runtime. The application developer can avoid this by instead using
the parent class of the selectOneRadio component—UISelectOne. Code Sample 1-5 shows
how the page and the managed bean source look with the recommended approach.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS18

5807ch01.qxd 1/3/06 4:47 PM Page 18

Code Sample 1-5. JSF selectOneRadio Bound to a Behavioral Superclass

<body>
<h:form>

<h:selectOneRadio binding="#{sample.selectOne}" >
<f:selectItem itemLabel="Jonas" itemValue="jonas.jacobi" />
<f:selectItem itemLabel="John" itemValue="john.fallows" />
<f:selectItem itemLabel="Duke" itemValue="java.dude" />

</h:selectOneRadio>
<h:commandButton value="Select Duke"

actionListener="#{sample.onAction}" />
</h:form>

</body>

Code Sample 1-5 contains the same page description except for one minor adjustment to
the value-binding expression. To be more generic, the method name in the managed bean has
been changed to selectOne instead of selectOneRadio, so the expression in the page descrip-
tion has to change to reference the more generic backing bean property name, as shown in
Code Sample 1-6.

Code Sample 1-6. New Backing Bean Using the UISelectOne Class

package com.apress.projsf.ch1.application;

import javax.faces.event.ActionEvent;
import javax.faces.component.UISelectOne;

public class SampleBean
{

public void onAction(
ActionEvent event)

{
_selectOne.setValue("java.dude");

}

public void setSelectOne(
UISelectOne selectOne)

{
_selectOne = selectOne;

}

public UISelectOne getSelectOne()
{
return _selectOne;

}

private UISelectOne _selectOne;
}

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 19

5807ch01.qxd 1/3/06 4:47 PM Page 19

The new managed bean is now leveraging the inheritance of the components to make it
more agnostic to changes in the UI. Instead of the convenience class HtmlSelectOneRadio, the
behavioral superclass UISelectOne is used. Application developers can now change to another
component within the same component family without fear of breaking the application logic.

Accessing Renderer-Specific Attributes
In the previous example, we programmatically set the value property on the UISelectOne com-
ponent, which is a property defined by the behavioral superclass. But how does an application
developer get access to the renderer-specific attributes if a renderer-specific subclass is not
provided or (as in Code Sample 1-6) is not used? All attributes and properties are accessed via
a centralized Map that can be accessible from any of the UIComponent classes and subclasses
through a property called attributes, as shown in Code Sample 1-7.

Code Sample 1-7. Using the Component Attributes Map to Update a Render-Specific Attribute

// Renderer-specific attribute example
Map attrs = selectOne.getAttributes();
attrs.put("style", "font-face:bold");

Code Sample 1-7 shows how a developer can access attributes without using a renderer-
specific subclass. Component writers can also introduce an interface for renderer-specific
attribute methods, implemented by each renderer-specific subclass.

Saving and Restoring State
One crucial part of building Web applications is state saving. Take the traditional HTML-based
shopping cart as an example. Here the application developer has to store the user product
selections and persist this information until the user finishes shopping. In most cases, a shop-
ping cart application is built up with multiple pages so the state of each page has to be saved
until the buyer has finished shopping. The state is stored in hidden form fields, stored in the
session, or passed on as a request to the next page. Those who have dealt with this know this is
not a trivial task to accomplish.

State management is one of the primary benefits of using JSF to build applications.
JSF provides automatic UI state handling through a class called StateManager, which saves
and restores state for a particular view (hierarchy of UIComponents) between requests on the
server. Each UIComponent saves and restores its own internal state when requested by the
StateManager; the StateManager itself saves and restores the state associated with the struc-
ture of the UIComponent hierarchy. If a UIComponent is marked as being transient, then it is
omitted from the structure by the StateManager, causing it to be removed from the UIComponent
tree at the end of the request.

Two alternatives exist for storing the state of a view—on the client side and server side.
By default state is saved on the server. The server-side implementation is supported by the
JSP and Servlet specifications, but JSF conceals all the details of how this works. A class called
ResponseStateManager, which is created and managed by a RenderKit, manages the client-
side state saving. Client-side state saving depends not only on the JSF implementation but
also heavily on the markup language rendered to the client and on how state can be man-
aged by that client. With HTML as markup, the state is typically stored in a hidden form field.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS20

5807ch01.qxd 1/3/06 4:47 PM Page 20

■Note Although JSF 1.1 kept the name of the view state in a hidden form field as a private implementa-
tion detail, JSF 1.2 now standardizes the name as javax.faces.ViewState so that alternative postback
mechanisms, such as Ajax, can more easily be integrated with the JSF lifecycle.

One of the drawbacks of saving state in the user session on the server is memory con-
sumption. If scalability is an issue for application developers, the client-side implementation
will prevent memory consumption from shooting through the roof and will have an advan-
tage in clustered environments. But, since state will now have to be sent back and forth
between the client and the server, response time might increase. You can configure the state-
saving method, as shown in Code Sample 1-8, in the application deployment descriptor
file—WEB-INF/web.xml—by setting the parameter STATE_SAVING_METHOD to client or server.

Code Sample 1-8. Setting the Method of Saving State to the Server Side in the Deployment
Descriptor

<context param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>server</param-value>

</context param>

Component Family and Component Type
The component family is a string that represents the behavior of the component (for example,
an input component or command component). The component family is declared in the JSF
configuration file—faces-config.xml—and used to select a Renderer for a particular compo-
nent. Code Sample 1-9 shows how you associate a Renderer with a particular component
family.

Code Sample 1-9. Associating a Renderer to a Particular Component Family

<render-kit>
<renderer>
<component-family>
javax.faces.Input

</component-family>
<renderer-type>
com.apress.projsf.Date

</renderer-type>
<renderer-class>
com.apress.projsf.ch2.render.html.basic.HtmlInputDateRenderer

</renderer-class>

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 21

5807ch01.qxd 1/3/06 4:47 PM Page 21

■Note The prefix javax.faces is reserved for use by component families defined in the JSF specifica-
tion. All samples in this book use the com.apress.projsf prefix for custom component families.

The component type is a string that is used as an identifier for the UIComponent subclass.
You can find information about the relationship between the component type and UIComponent
subclass in the JSF configuration file, as shown in Code Sample 1-10.

Code Sample 1-10. Mapping of Component Type and UIComponent Subclass

<component>
<component-type>
com.apress.projsf.ProInputDate

</component-type>
<component-class>
com.apress.projsf.ch2.component.pro.ProInputDate

</component-class>

In Code Sample 1-10, a UIComponent subclass—com.apress.projsf.component.pro.
ProInputDate—has been assigned com.projsf.ProInputDate as the component type. By
convention, the component type is also declared in the UIComponent subclass as a constant—
COMPONENT_TYPE. This simplifies life for developers so they don’t need to remember the
component type for every component.

■Note The prefix javax.faces is reserved for use by component types defined in the JSF specification.
All samples in this book use the com.apress.projsf prefix for custom component types.

Converters,Validators, Events, and Listeners
Apart from providing UIComponents, a JSF implementation also provides helper classes for
these UIComponents. These helper classes are divided into converters, validators, and an event
and listener model. The converters provide a bidirectional type conversion between the sub-
mitted value of a component and the corresponding strongly typed object in the model tier.
The validators perform validation on the strongly typed object; for example, they can ensure
that a date is not in the past. Code Sample 1-11 shows an inputText component with attached
date converter.

Code Sample 1-11. inputText Component with Attached Date Converter

<h:inputText value="#{sample.date}" >
<f:convertDateTime pattern="yyyy-MMM-dd" />

</h:inputText>

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS22

5807ch01.qxd 1/3/06 4:47 PM Page 22

JSF also provides a way to attach listeners to components and broadcast events to those
listeners, much the same way it works in AWT and Swing. For example, a commandButton is
a source of ActionEvents. When a commandButton is clicked, a postback occurs, and a new
ActionEvent is stored in an event queue. Any event listeners registered with the commandButton
are notified of this event. Code Sample 1-12 shows a commandButton with an attached Listener.

■Note The JSF specification for registering listeners and broadcasting events is based on the design
patterns of the JavaBean specification, version 1.0.1.

Code Sample 1-12. commandButton with Attached Listener

<h:commandButton value="Login"
action="success"
actionListener="#{sample.onLogin}" />

In Code Sample 1-12, a commandButton component has two properties—action and
actionListener. Both attributes take method-binding expressions, and the differences are that
the action attribute requires a method that returns a String object and the actionListener
attribute requires a method that accepts an ActionEvent that has a void return type. The
action attribute’s string value is used for navigation purposes.

When the queued ActionEvent is processed, these method-binding expressions will be
used to execute the backing bean methods referenced by action and actionListener.

Facets
A JSF view is comprised of a component hierarchy, providing access to each parent compo-
nent’s children by index. Sometimes it is also necessary to provide an alternative way of
adding subordinate components that are not part of this ordered list.

One example is the dataTable component, where the children represent the columns to
be rendered in the table. In some cases it might be useful to identify a component that repre-
sents the header and/or footer of the entire table, separate from the usual child collection
that represents the individual columns. These header and footer child components are called
facets, referenced only by name, with no specific order. The name of a facet represents the role
that the nested component will play in the parent component. It is important to note that
a parent component can contain only one child component per named facet, but the same
parent component can contain many indexed child components.

Code Sample 1-13 shows how to add a header facet to both the dataTable component and
the column component.

Code Sample 1-13. Facets Within a dataTable Component

<h:dataTable value="#{sample.tableList}" var="rows" >
<f:facet name="header" >
<h:outputText value="Contact Information" />

</f:facet>

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 23

5807ch01.qxd 1/3/06 4:47 PM Page 23

<h:column>
<f:facet name="header" >
<h:outputText value="Firstname" />

</f:facet>
<h:outputText value="#{rows.firstname}" />

</h:column>
…

</h:dataTable>

Renderers
The JSF specification outlines two models for how a JSF component can handle values from
incoming requests (decode) and outgoing response (encode). These two models—direct
implementation and delegated implementation—have two distinct approaches; the direct
implementation relies on the UIComponent instance to handle decode and encode, and the
delegate implementation delegates these responsibilities to a Renderer. As you have seen in
Figure 1-5, the delegate approach allows application developers to work with the UIComponent
independently from what will be rendered on the client. In this book, we will discuss only the
delegate implementation approach, since our goal is to provide multiple Renderers for each
behavioral component. This approach is also what makes JSF such a powerful UI framework.

■Note The direct implementation approach provides slightly better performance since there is no need to
delegate to a Renderer, but it also severely limits extensibility and portability across clients.

Renderers are responsible for the presentation of a JSF component and must generate the
appropriate client-side markup, such as HTML and JavaScript, or XUL. Renderers are also in
charge of converting information coming from the client to something understandable for
the component (for example, a string value from an HTML form POST converted to a strongly
typed Date object).

Although a Renderer introduces client-side attributes such as style, disabled, tooltip,
and so on, these attributes are actually exposed in the renderer-specific component subclass
(for example, HtmlSelectOneRadio).

One major difference between UIComponents and Renderers is the way they are defined at
runtime. Renderers are defined as singletons, so there is only one Renderer for all instances of
a UIComponent for each particular renderer type.

■Caution Since individual Renderer instances will be instantiated as requested during the rendering
process and used throughout the life of a Web application, it is important to understand that each instance
may be invoked from more than one request-processing thread simultaneously. This requires that
Renderers are programmed in a thread-safe manner.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS24

5807ch01.qxd 1/3/06 4:47 PM Page 24

Renderer Types
The renderer type is an identifier that is defined by the component, and in combination with
the component family, it uniquely identifies which Renderer class to use with the component.
Combining the renderer type and the component family is extremely powerful since it allows
the reuse of the renderer type for multiple behavioral components.

Code Sample 1-14 illustrates how a component family is associated with a specific
Renderer and renderer type.

Code Sample 1-14. Renderer Type As Defined in the JSF Configuration File

<render-kit>
<renderer>
<component-family>
javax.faces.Input

</component-family>
<renderer-type>
com.apress.projsf.Date

</renderer-type>
<renderer-class>
com.apress.projsf.ch2.renderer.html.HtmlInputDateRenderer

</renderer-class>

Table 1-4 contains a subset of the standard component families with their associated
components and component and renderer types.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 25

Table 1-4. A Subset of All Standard Component Families and Their Components, Component Types, and
Renderer Types

Component Family* Component Component Type Renderer Type**

Command UICommand Command

HtmlCommandButton HtmlCommandButton Button

HtmlCommandLink HtmlCommandLink Link

Data UIData Data

HtmlDataTable HtmlDataTable Table

Form UIForm Form

HtmlForm Form Form

Graphic UIGraphic Graphic

HtmlGraphicImage HtmlGraphicImage Image

Input UIInput Input

HtmlInputHidden HtmlInputHidden Hidden

HtmlInputSecret HtmlInputSecret Secret

HtmlInputText HtmlInputText Text

HtmlInputTextArea HtmlInputTextArea Textarea

Continued

5807ch01.qxd 1/3/06 4:47 PM Page 25

Table 1-4. Continued

Component Family* Component Component Type Renderer Type**

Output UIOutput Output

HtmlOutputFormat HtmlOutputFormat Format

HtmlOutputLabel HtmlOutputLabel Label

HtmlOutputLink HtmlOutputLink Link

HtmlOutputText HtmlOutputText Text

Panel UIPanel Panel

HtmlPanelGrid HtmlPanelGrid Grid

HtmlPanelGroup HtmlPanelGroup Group

* The fully qualified name of the component family is javax.faces.<name in table>.
** The fully qualified name for renderer type is javax.faces.<name in table>.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS26

Table 1-4 shows that the renderer type Text is used in several places—for both the
HtmlInputText component and the HtmlOutputText component. The combination of the
component family Output and the renderer type Link uses the Renderer class that would
generate a regular HTML link element—some text—to the client.

RenderKits
The functionality of a RenderKit is to support UIComponents that use the delegate imple-
mentation approach with the delegation of Renderers to the UIComponent. RenderKits group
instances of Renderers with similar markup types, and the default RenderKit provided by all
JSF implementations is the HTML Basic RenderKit containing Renderers that output HTML
4.0.1. Other possible RenderKits can have Renderers supporting view technologies such
as SVG, WML, Ajax, XUL, and so on. In this book, you’ll look at additional RenderKits for
Microsoft’s DHTML/HTML Components (HTC) and Mozilla’s XUL/XML Binding Language
(XBL) technologies.

The RenderKit is not responsible for creating the Renderer because it will store only a single
instance of each renderer type. Each RenderKit is associated to a view (component hierarchy)
at runtime as a UIViewRoot property. If no RenderKit has been set, the default RenderKit will be
used. When it comes to RenderKits, many times you have no need to create a new RenderKit.
Adding a custom Renderer to an already existing RenderKit is just a configuration operation.
If a RenderKit identifier is omitted, the custom Renderer is automatically added to the default
HTML Basic RenderKit. If you would like to add a RenderKit with custom Renderers, you can do
the same thing—update the JSF configuration file. Code Sample 1-15 shows how you can add a
new Renderer to the JSF configuration file.

Code Sample 1-15. New Renderer Added to the Default HTML Basic RenderKit

<render-kit>
<!-- no render-kit-id, so add this Renderer to the HTML_BASIC RenderKit -->
<renderer>

5807ch01.qxd 1/3/06 4:47 PM Page 26

<component-family>
javax.faces.Input

</component-family>
<renderer-type>
com.apress..projsf.Date

</renderer-type>
<renderer-class>
com.apress.projsf.ch2.renderer.html.HtmlInputDateRenderer

</renderer-class>
...

</render-kit>

By not adding a RenderKit identifier to the RenderKit configuration, the Renderer sample
in Code Sample 1-15—com.apress.projsf.ch2.renderer.html.HtmlInputDateRenderer—is
automatically added to the standard default HTML Basic RenderKit.

Custom Action Tag Handlers
Since the default page description language is JSP, most JSF components will have a JSP custom
action. When the JSP container encounters a custom action, it asks for the JSF tag handler asso-
ciated with this action. The main purpose of the JSF tag handler is to create an instance of the
component, using the renderer-specific subclass, and associate the component with a Renderer
at the first page request.

Request-Processing Lifecycle
As a component writer, it is essential you have a clear understanding about the lifecycle of JSF. A
page constructed with JSF components will go through a well-defined request-processing lifecy-
cle. This lifecycle consists of six phases—Restore View, Apply Request Values, Process Validations,
Update Model Values, Invoke Application, and Render Response, as shown in Figure 1-8.

Figure 1-8. Formal lifecycle of JSF

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 27

5807ch01.qxd 1/3/06 4:47 PM Page 27

Here’s the process broken down:

1. Restore View: This phase is responsible for restoring the component hierarchy from
the previous request and attaching it to the FacesContext. If no saved state is available,
then the Restore View phase is responsible for creating a new UIViewRoot, which is the
root node in the component hierarchy, and storing it on the FacesContext.

2. Apply Request Values: In this phase, each component has the opportunity to update its
current state with information included in the current request.

3. Process Validations: This phase is in charge of processing any validators or converters
attached to components in the component hierarchy.

4. Update Model Values: During this phase, all suitable model data objects will have their
values updated to match the local value of the matching component, and the compo-
nent local values will be cleared.

5. Invoke Application: At this phase, any remaining events broadcast to the application
need to be performed (for example, actions performed by an HtmlCommandButton).

6. Render Response: This phase is responsible for rendering the response to the client and
storing the new state for processing of any subsequent requests.

To put these phases into a real-life context, we’ll use a simple example where the user will
access an application built with JSF and JSP. This application contains a simple login page with
some input fields for a username and password and a button to log in. On successful login, the
user is redirected to a second page that will display the user’s username.

Building an Application Using JSF
This application contains three essential pieces—the application description (JSP), a JSF
configuration file, and a managed bean. This application has two JSP pages—login.jspx and
result.jspx. Code Sample 1-16 shows the login page.

Code Sample 1-16. The Login Page

<?xml version="1.0" encoding="utf-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"

xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
doctype-system="http://www.w3.org/TR/html4/loose.dtd"
doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>

<jsp:directive.page contentType="text/html;charset=utf-8"/>
<f:view>
<html>
<body>
<h:form>
<h:outputText value="Application Login" />
<h:inputText value="#{credentials.username}" />

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS28

5807ch01.qxd 1/3/06 4:47 PM Page 28

<h:inputText value="#{credentials.password}" />
<h:commandButton value="Login"

action="success"
actionListener="#{credentials.onLogin}" />

</h:form>
</body>

</html>
</f:view>

</jsp:root>

The structure of the page is simple and describes a page containing two input fields for a
username and password and a login button. Figure 1-9 shows what the page looks like when
rendered.

Figure 1-9. The login page

The second page in the application, shown in Code Sample 1-17, is simple and merely
illustrates navigation and completion of the lifecycle. The page contains an <h:outputText>
component that will render the entered value from the username <h:inputText> component
on the initial page on successful login.

Code Sample 1-17. Navigation Rules and Managed Beans for the Application

<?xml version="1.0" encoding="utf-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"

xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
doctype-system="http://www.w3.org/TR/html4/loose.dtd"
doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>

<jsp:directive.page contentType="text/html;charset=utf-8"/>
<f:view>
<html>

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 29

5807ch01.qxd 1/3/06 4:47 PM Page 29

<body>
<h:form>

<h:outputText value="#{credentials.username}" />
</h:form>

</body>
</html>

</f:view>
</jsp:root>

To be able to navigate from one page to another, you have to define a navigation case in
the JSF configuration file—faces-config.xml. You also need to create a mapping to the back-
end code using a managed bean. Code Sample 1-18 shows how to do this.

Code Sample 1-18. Navigation Rules and Managed Beans for the Application

<navigation-rule>
<from-view-id>/login.jspx</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/result.jspx</to-view-id>

</navigation-case>
</navigation-rule>
<managed-bean>
<managed-bean-name>credentials</managed-bean-name>
<managed-bean-class>
com.apress.projsf.ch1.application.CredentialsBean

</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

As you can see, Code Sample 1-18 defines that from the login.jspx page, on an outcome
of success, the user of the application will be sent to the result.jspx page. It also defines a
managed bean that points to a class—CredentialsBean—containing some simple application
logic. Code Sample 1-19 shows the application logic.

Code Sample 1-19. The Application Logic

package com.apress.projsf.ch1.application;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.ActionEvent;

public class CredentialsBean
{
public void onLogin(
ActionEvent event)

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS30

5807ch01.qxd 1/3/06 4:47 PM Page 30

{
If (!"duke".equalsIgnoreCase(_username))

throw new AbortProcessingException("Unrecognized username!");
// clear out the password, for good measure!
_password = null;

}

public void setUsername(
String username)

{
_username = username;

}

public String getUsername()
{
return _username;

}

public void setPassword(
String password)

{
_password = password;

}

public String getPassword()
{
return _password;

}

private String _username;
private String _password;

}

Web Application Start-Up
Upon receiving a JSF request, the JSF implementation must launch, or acquire, references to
several processes/services that must be available to a JSF Web application running in a servlet
or portlet environment. To get access to these references, the JSF implementation will call sev-
eral factories that are responsible for creating instances needed to launch the JSF application.

When a JSF Web application starts, four factories are instantiated; each of these factories
is responsible for different areas within a JSF Web application:

ApplicationFactory: The ApplicationFactory class is responsible for the creation of
the Application instance, which can be seen as a service that allows, for example, the
Lifecycle instance to create and restore JSF views (component hierarchies) on incoming
requests and to store the state of the JSF view.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 31

5807ch01.qxd 1/3/06 4:47 PM Page 31

LifecycleFactory: The LifecycleFactory is in charge of returning a Lifecycle instance for
a lifecycle identifier. The default Lifecycle instance is in charge of invoking processing
logic to implement the required functionality for each phase of the JSF request-processing
lifecycle.

RenderKitFactory: The RenderKitFactory is responsible for returning a RenderKit for the
JSF Web application. A RenderKit is a library of Renderers with a common rendering tech-
nology.

FacesContextFactory: The FacesContextFactory provides the JSF implementation with a
way to create an instance of FacesContext that is used to represent contextual informa-
tion associated with the incoming request and eventually with the response.

Figure 1-10 shows the players involved at application start-up.

Figure 1-10. Application creation

Each JSF Web application has one ApplicationFactory. This factory class is responsible
for creating and replacing the Application instance that is required by all applications utiliz-
ing JSF. The Application instance will then serve other processes with services supported by
this instance. Likewise, the JSF configuration file—faces-config.xml—is read once during the
creation of the Web application and stored in the Application instance.

The RenderKitFactory is responsible for returning a RenderKit instance based on the
RenderKit identifier for this JSF Web application. For each JSF implementation, there has
to be one default RenderKit—the HTML RenderKit that is identified by a string constant—
RenderKitFactory.HTML_BASIC_RENDER_KIT. The LifecycleFactory is in charge of creating (if
needed) and returning a Lifecycle. This Lifecycle instance is in charge of invoking process-
ing logic to implement the required functionality for each phase (refer to Figure 1-8) of the

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS32

5807ch01.qxd 1/3/06 4:47 PM Page 32

request-processing lifecycle. The last factory class—FacesContextFactory—is providing the
JSF implementation with a way to create an instance of FacesContext that is used to repre-
sent contextual information associated with the incoming request and eventually creating
the response.

Initial Request
When the user accesses the application for the first time, an initial request is sent to the
FacesServlet, which dispatches the request to the JSF Lifecycle instance (refer to Figure 1-10).

Restore View Phase

The first phase of the JSF lifecycle is the Restore View phase (see Figure 1-11) whose responsi-
bility it is to check whether this page has been requested earlier or if this is a new request.

Figure 1-11. Restore View phase during initial request

In Figure 1-11, you are looking at the process for an incoming request and how the first
phase—Restore View—in the JSF lifecycle is responsible for restoring a view from the server
and client state. During the first request for this view, the ViewHandler.restoreView() method
will return null, since there is no stored state.

■Note The JSF lifecycle phase identifiers are part of the JSF public API in the PhaseId class.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 33

5807ch01.qxd 1/3/06 4:47 PM Page 33

If the return value is null, the Restore View phase will call renderResponse() on the
FacesContext for this request. The renderResponse() method will indicate that when this
phase is done, the render() method is called to execute phase 6—Render Response—without
proceeding with phases 2 through 5. Subsequently, the Restore View phase will call the
ViewHandler.createView() method to create the component hierarchy root—UIViewRoot—
and attach it to the FacesContext. The UIViewRoot component performs no rendering but
plays an important role in event delivery during a postback request.

Render Response Phase

When the renderResponse() method is called during the Restore View phase, the lifecycle
skips directly to the render() method, which is responsible for performing the Render
Response phase, as shown in Figure 1-12.

Figure 1-12. Render Response phase during initial request

During this phase, the ViewHandler.renderView() method is called to execute the JSP doc-
ument. The renderView() method will pass the value of the viewId property acquired from the
UIViewRoot node as a context-relative path to the dispatch() method of the ExternalContext
associated with this request. The dispatch() method will forward the value of viewId property
(for example, /login.jspx as a context-relative path) to the Web container.

Since the JSF-specific mapping is not part of the forwarded request, the request is
ignored by the FacesServlet and passed to the JSP container, which in turn will locate the
JSP based on the context-relative path and execute the JSP page matching the viewId (for
example, /login.jspx). Figure 1-13 shows the processing of the JSF JSP document.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS34

5807ch01.qxd 1/3/06 4:47 PM Page 34

Figure 1-13. Setting the ResponseWriter on the FacesContext

Before processing and executing the JSF JSP document, the JSP runtime first determines
the content type and character encoding to use. For JSF to work in harmony with the JSP life-
cycle, the <f:view> tag needs to be present. The <f:view> tag is a JSP body tag that buffers all
the rendered output from the nested JSF components. Simply put, the <f:view> tag serves as a
container for all other JSF components. The <f:view> tag is responsible for creating and stor-
ing an instance of the ResponseWriter on the FacesContext.

The createResponseWriter() method creates a new instance of the ResponseWriter for the
specified content type and character encoding. The ResponseWriter is responsible for writing
the generated markup to the requesting client, in this case the <f:view> body content buffer.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 35

THE JSF VIEW IDENTIFIER: VIEW ID

Depending on which mapping is used—prefix or suffix—the UIViewRoot view identifier is derived slightly
differently from the request uniform resource identifier (URI). If prefix mapping is used, such as /faces/*
(which is the most common) for the FacesServlet, the viewId property is set from the path information
coming after the mapping; for example, /context-rootfaces/login.jspx will set a view identifier equal
to /login.jspx. If suffix mapping is used, such as *.jsf, the viewId property is set from the servlet path
information of the request URI, after replacing the suffix with the value of the context initialization parameter
named by the symbolic constant ViewHandler.DEFAULT_SUFFIX_NAME. For example, /context-root/
login.jsf will set a view identifier equal to /login.jsp by default but can leverage the context initializa-
tion parameter to use .jspx as the default suffix instead.

5807ch01.qxd 1/3/06 4:47 PM Page 35

CONTENT TYPE AND CHARACTER ENCODING

When a server sends a document to an HTTP browser client, it also passes information in the Content-Type
HTTP header about the Multipurpose Internet Mail Extensions (MIME) type, such as text/html, and the
character set, such as UTF-8 or ISO-8859-1. The client uses this information to correctly process the
incoming bytes from the server.

A list of acceptable content types and character encodings is sent in the Accept HTTP header from the
client to the server. This can be used to dynamically select an appropriate content type for the response, or
the application developer can specify a static content type for the document.

In JSF, the <f:view> tag passes null to the RenderKitFactory as the list of acceptable content
types, even though the JSP container is aware of the complete list accepted by the requesting browser. So,
the default RenderKit—the standard HTML Basic RenderKit—must assume the content type has already
been set to text/html since it is rendering only HTML. The RenderKit uses information about the content
type and character encoding to create a ResponseWriter that can produce correctly formatted markup to
the client.

For each JSF JSP tag within <f:view> during the initial render, a JSF component is created
and attached to the component hierarchy. As you remember, the UIViewRoot was created in
the first phase and attached to the FacesContext, so you can safely assume that the compo-
nents will be attached to the component hierarchy. Figure 1-14 shows execution of the
<h:form> start tag.

Figure 1-14. Writing <form> start element to the <f:view> body content buffer

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS36

5807ch01.qxd 1/3/06 4:47 PM Page 36

In the login JSP document, the next JSF JSP tag to be executed is the <h:form> tag. The JSF
JSP tag calls the Application.createComponent() method that takes a string representing the
component type, for example javax.faces.HtmlForm (see the section “Component Family and
Component Type”). The component type is mapped to a class defined in the faces-config.xml
file, and an instance of the HtmlForm component is created and attached to the UIViewRoot.
Next, a Renderer for the newly created component needs to be found. A Renderer is located
by component family and renderer type, which together define a unique identifier for the
Renderer (see the section “Renderer Types”).

■Note Let’s use the HtmlInputText component to illustrate the relationship between the component
family and renderer type. The HtmlInputText component has the component family javax.faces.Input
and the renderer type javax.faces.Text. Together, they uniquely identify the appropriate Renderer class
within the HTML Basic RenderKit—javax.faces.renderer.html.HtmlInputText.

The renderer type is already known by the <h:form> tag, and the component family can be
located in the component’s superclass, UIForm. The tag then calls a method called encodeBegin()
on the component, which in turn calls the encodeBegin() method on the HtmlForm renderer.
The encodeBegin() method on the Renderer calls methods on the ResponseWriter to write the
markup for the HTML form element—<form method="" action="">. All markup output from
the ResponseWriter ends up in the <f:view> body content buffer. Figure 1-15 shows the closing
process of the <h:form> tag.

Figure 1-15. Output token and closing the </form> element

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 37

5807ch01.qxd 1/3/06 4:47 PM Page 37

The process continues, and all nested components within the HtmlForm component
are rendered and added to the <f:view> body content buffer. Then, the closing tag for the
<h:form> tag is executed. The <h:form> tag calls the encodeEnd() method on the Renderer,
HtmlFormRenderer, which in turn calls the writeState() method on the ViewHandler. The
writeState() method passes a token to the ResponseWriter, which is added to the <f:view>
body content buffer. The encodeEnd() method then calls methods on the ResponseWriter to
write the closing tag for the HTML form element—</form>. Figure 1-16 shows the closing of
the <f:view> tag.

■Note The ViewHandler represents the view technology, and in this case the view technology is JSP.
Nothing in the JSF specification prevents anyone from implementing an alternate ViewHandler for another
view technology, such as XML.

Figure 1-16. Replacing token with serialized state and closing </f:view>

By the time you get to the </f:view> closing tag, the entire component hierarchy is avail-
able. It is not until you have the complete tree that you can store the state of the component
hierarchy representing this page of the application. The </f:view> end tag calls the writeState()
method on the StateManager. Depending on the init parameter—STATE_SAVING_METHOD—for
state saving (see the section “Saving and Restoring State”), the StateManager stores the state in
the session on the server or delegates to the ResponseStateManager to save state on the client
replacing the token with the serialized state. After the state has been saved, the buffer is flushed
out to the client, and execution of any remaining non-JSF JSP tags will take place. The login
page is now rendered in the browser.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS38

5807ch01.qxd 1/3/06 4:47 PM Page 38

■Note In JSF 1.2, the <f:view> tag is no longer responsible for buffering the output. Instead, buffering is
achieved by using a ServletResponse wrapper. In addition, the component hierarchy is no longer created
inline during rendering. Instead, during the Render Response phase of JSF 1.2, the component hierarchy is
created first and rendered next. Therefore, during rendering, the full component hierarchy is available, so the
state is written directly into the buffered response, rather than needing to use a placeholder token to be
replaced by the real state in </f:view>.

Postback Request
So far, the only thing the user has seen is the initial rendering of the first requested page.
After receiving the page, the user enters a username and password and clicks the login but-
ton. A postback is performed, and you will now look at how JSF handles postback. Some
parts are similar to what we have already been covering in the initial request, but there are
obviously differences and additions, especially in the JSF request lifecycle. At postback,
all six phases of the JSF request lifecycle get called (unless somewhere in the process the
FacesContext.renderResponse() method is called causing the lifecycle to jump directly to
the Render Response phase). This is different from the initial request where only the first
and last phases are called.

Restore View Phase

The first part of a postback is the same as for the initial request; the Restore View phase exe-
cutes and calls the restoreView() method on the ViewHandler to restore any state available
from the previous request. Figure 1-17 shows restoring the saved state of the component
hierarchy.

Figure 1-17. Restoring the saved state of the component hierarchy

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 39

5807ch01.qxd 1/3/06 4:47 PM Page 39

Here is where the similarities end; instead of returning null, the restoreView() method
will return the current state of the component hierarchy associated with a particular viewId
and FacesContext from the StateManager, and if the init parameter—STATE_SAVING_METHOD—
is set to client-side state-saving, call the ResponseStateManager to retrieve the state from the
current request. The restored component hierarchy is then passed to the FacesContext by the
Restore View phase.

Apply Request Values Phase

In the Apply Request Values phase, each input component establishes the submitted value
from the request parameters, and each command component queues an event to be delivered
in the Invoke Application phase. Figure 1-18 shows how the Apply Request Values phase
passes new values to the components.

Figure 1-18. Applying new values passed on the request to the components

The submitted value is at this point stored only as “submitted” on the component, and no
value has been pushed into the underlying model yet. By the time the Apply Request phase is
completed, the Renderers no longer need to observe the request parameters, since all values
have been updated on each component.

Process Validation Phase

In the Process Validations phase, conversion and validation are performed by calling the
processValidators() method on the UIViewRoot. Figure 1-19 shows conversion and validation.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS40

5807ch01.qxd 1/3/06 4:47 PM Page 40

Figure 1-19. Performing conversion and validation

This process will continue calling the processValidators() method recursively on each
component in the component hierarchy. During validation of each HtmlInputText compo-
nent, type conversion will occur first on the component’s submitted value (for example, a
string to a strongly typed object). The new object is set as a local value on the component, and
the submitted value is cleared. The new strongly typed object is then validated. If there are no
errors, then the next step is to queue a ValueChangeEvent that will be delivered at the end of
the Apply Request Values phase.

If a conversion or validation error occurs, a corresponding JSF message is attached to the
FacesContext using the component clientId, and then the renderResponse() method is called
to indicate that the lifecycle should skip directly to the Render Response phase after the
Process Validations phase is complete.

Update Model Phase

At this point in the lifecycle, all submitted values have been successfully converted and vali-
dated, so it is safe to push them into the underlying data model. During the Update Model
phase, the JSF lifecycle walks over the component hierarchy, calling the processUpdates()
method on each component. Figure 1-20 shows the Update Model phase updating the under-
lying model.

To determine where to store the new value, the processUpdates() method will use the
value binding, which is defined in the value attribute on the component (for example,
#{credentials.username}). The value binding points to a property on a managed bean (for
example, username). Using the value binding, the locally stored value on the component is
pushed into the data model, and the locally stored value on the component is cleared.

Any JSF messages and errors on the model—for example, validations implemented by the
model—are attached to the FacesContext with the component’s client ID. The renderResponse()
method is then called to indicate that the lifecycle should skip directly to the Render Response
phase after the Update Model phase is complete.

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS 41

5807ch01.qxd 1/3/06 4:47 PM Page 41

Figure 1-20. Updating underlying model

Invoke Application Phase

In the Invoke Application phase, you have no need to walk the component hierarchy, since
this phase will handle only the queued events from previous phases and, depending on the
outcome, will either continue to the last phase—Render Response—or redirect to another
page. Figure 1-21 shows the broadcasting of events queued for this phase and the processing
of action method bindings.

Figure 1-21. Performing application logic

CHAPTER 1 ■ THE FOUNDATION OF JSF: COMPONENTS42

5807ch01.qxd 1/3/06 4:47 PM Page 42

As mentioned in the earlier section “Converters, Validators, Events, and Listeners,”
you have two methods that will be processed when an ActionEvent occurs. The first thing
that happens is a call to the processApplication() method on the UIViewRoot that takes
each queued event and broadcasts to the target component for the event (for example,
commandButton.broadcast(FacesEvent)). The UICommand component knows about the action
and actionListener attributes, as well as the default ActionListener attached to the
Application object.

First all previously registered ActionListeners are called, then the actionListener method
binding is executed (for example, #{credentials.onLogin}), and finally the component calls
the processAction() method on the default ActionListener to process the action method
binding and handle navigation. It is important that the action method binding is called at the
end of this process, since it defines possible navigation, and you don’t want to navigate before
you have processed all events.

Postback with Navigation

When the default ActionListener is processing an ActionEvent, it invokes the action method
binding and gets the outcome, which is a String object. If the outcome returns null, then the
default ActionListener will continue with the next queued event. After all events have been
broadcast, the Invoke Application phase is complete and lifecycle processing continues to
the last phase—Render Response. If the outcome is not null, then the default ActionListener
passes FacesContext, fromAction (which is the method-binding expression text—for example,
credentials.doLogin), and outcome to the NavigationHandler. Figure 1-22 shows navigation on
postback.

Figure 1-22. Navigation on postback

_scroll(0);

if (parsedDate != null)
_select(parsedDate.getDate());

}

The _scroll() Function

The _scroll() function, as shown in Code Sample 9-7, allows the users to navigate plus or
minus one month using arrow controls in the calendar. It is also here you use Mabon to deter-
mine the availability of dates defined by the managed bean attached to the HtcAjaxInputDate
component. Figure 9-4 shows the sequence of function calls in the _scroll() function.

Figure 9-4. HTC <pro:inputDate> _scroll() function

Code Sample 9-7. The _scroll Function in the HTC File

function _scroll(offset)
{
// scroll months, updating year as necessary
internalState._currentMonth = internalState._currentMonth + offset;
internalState._currentYear += Math.floor(internalState._currentMonth / 12);
internalState._currentMonth = (internalState._currentMonth + 12) % 12;

// use Mabon to retrieve availability
if (element.targetURL)
{
var startDate = _calculateDate(1);
var endDate = _calculateDate(31);

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS372

5807ch09.qxd 1/19/06 6:02 PM Page 372

var millisPerDay = 1000 * 60 * 60 * 24;
var startDay = Math.floor(startDate.getTime() / millisPerDay);
var endDay = Math.floor(endDate.getTime() / millisPerDay);

// use Mabon to determine availability
mabon.send(
{
url: element.targetURL,
args: [startDay, endDay],
callback: function(result) { _display(result); }

});
}
else
{
var available = [];
for (var i=0; i < 32; i++)
{
available.push(true);

}
_display(available);

}
}

The _clickCell() Function

The _clickCell() function, as shown in Code Sample 9-8, is called when the user clicks a
cell representing a date in the calendar. Figure 9-5 shows the sequence of function calls in
the _clickCell() function.

Figure 9-5. HTC <pro:inputDate> _clickCell function

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 373

5807ch09.qxd 1/19/06 6:02 PM Page 373

You can obtain the target node invoking the event by calling event.srcElement (see Code
Sample 9-8). When you have the target node, you can check to see whether the user clicked a
cell that is outside the range of the displayed month and, if so, navigate to the month for that
selected date: _scrollNext() or _scrollPrev(). If the selection is within the boundaries of the
month, you need to see whether this date is available; if it is, add the selected date to the input
element.

Code Sample 9-8. The _clickCell() Function

function _clickCell()
{
var event = popup.document.parentWindow.event
var cellNode = event.srcElement;
var rowNode = cellNode.parentNode;

var row = rowNode.sectionRowIndex;
var col = cellNode.cellIndex;
var day = Number(cellNode.innerText);

if (row == -1)
{
return;

}
else if (row == 0 && day > 7)
{
_scrollPrev();

}
else if (row > 3 && day < 15)
{
_scrollNext();

}
else
{
if (_isAvailable(day))
{
var selectedDate = _calculateDate(day);
input.value = _formatDate(selectedDate, element.pattern);

// flush the changes for next postback
_flushChanges();

popup.hide();
}

}
}

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS374

5807ch09.qxd 1/19/06 6:02 PM Page 374

The HTML Deck Implementation Prototype
Figure 9-6 shows a page that includes the <pro:showOneDeck> prototype implemented in HTC.

Figure 9-6. The <pro:showOneDeck> component implemented in HTML and HTC

Code Sample 9-9 shows the markup needed to create a page using the HTC
<pro:showOneDeck> prototype shown in Figure 9-6.

Code Sample 9-9. Markup to Create a Page Using the <pro:showOneDeck> HTC Prototype

<html xmlns:pro="http://projsf.apress.com/tags" >
<head>
<title>ProJSF : ProShowOneDeck</title>
<link rel="stylesheet" href="/.../resources/stylesheet.css"/> </head>

<body>
<form id="form" method="post" >
...
<?import namespace="pro"

implementation="/.../projsf-ch9/showItem.htc" ?>
<pro:showOneDeck id="form:showOneDeck" style="display:block;">
<pro:showItem itemId="first"

active="true"
style="display:block;">

<pro:headerFacet>
<img src="/.../resources/java_small.jpg"

alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />

Java
</pro:headerFacet>

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 375

5807ch09.qxd 1/19/06 6:02 PM Page 375

<table>
<tbody>
<tr>
<td>

Pro JSF: Building Rich Internet Components

</td>
</tr>

...
</form>

</body>
</html>

First you need to define the namespace prefix pro in the <html> element, which allows
you to import and bind the element behavior (showItem.htc) to a specific tag name in the pro
namespace. The tag name is defined inside the HTC component; once the HTC component
is imported, you can use the element behavior in the page with the prefix pro (for example,
<pro:showItem>).

The HTC Deck Element Behavior
The structure of the <pro:showOneDeck> component is slightly different from the <pro:inputDate>
component, since it is of a composite nature. If you look at what is needed to create the deck
component in a JSP page, you need three JSP tag handlers: <pro:showOneDeck>, <pro:showItem>,
and <f:facet name="header">. <pro:showOneDeck> is a container for <pro:showItem> and defines
which <pro:showItem> should be expanded by default. <pro:showItem> is also a container and
defines what should be displayed when interacted with. <f:facet name="header"> defines the
clickable header of <pro:showItem>.

The problem you are facing is that HTC does not recognize JSF facets, and therefore you
will have to come up with a way to define facets using HTC syntax. Also, HTC components are
treated as encapsulated documents; for example, an HTC file is basically an HTML file parsed
by Internet Explorer.

The first obvious approach is to define one HTC element behavior for each JSF tag (that
is, showOneDeck.htc, showItem.htc, and headerFacet.htc), but from an HTC view only one will
include actual behavior—showItem. The <pro:showItem> component is the one expanding and
collapsing, not the <pro:showOneDeck> or the <pro:headerFacet>; thus, you should create only
one HTC element behavior: showItem.htc.

Code Sample 9-10 shows the <body> section of the HTC file, showItem.htc, since that will
give you an understanding of how this component is constructed.

Code Sample 9-10. The <body> of the <pro:showItem> Component

<html>
...
<body style="display:block" class="showItem" >
<div id="header" ></div>
<div id="content" style="display:none;" ></div>

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS376

5807ch09.qxd 1/19/06 6:02 PM Page 376

</body>
</html>

This is a simple component in its structure. It contains only two <div> elements: one for
the header of the <pro:showItem> and one for the actual content of the <pro:showItem>. You
leverage CSS to make sure that elements outside the <pro:showItem> will wrap properly by
setting the style attribute on the <body> element to display:block; in other words, other
<pro:showItem> components will be stacked either above or below. You also set the content
<div> element’s style to display:none by default. This value causes the <div> element to take
no space at all in the browser.

■Note For more information about visual formatting using block boxes, please visit the W3C Web site at
http://www.w3.org/TR/REC-CSS2/visuren.html#initial-containing-block.

In the <head> section of the HTC file, as shown in Code Sample 9-11, you define the ele-
ment behavior prototype using the HTC-specific <public:component> element.

Code Sample 9-11. The <head> Element in the <pro:showItem> HTC Component

<head>
<public:component tagName="showItem" >
<public:property name="itemId" />
<public:property name="styleClass" />
<public:property name="headerStyleClass" />
<public:property name="contentStyleClass" />
<public:property name="active" />

<public:attach event="oncontentready" handler="_constructor" />
</public:component>

The enclosing <public:component> element has the tagName attribute set to showItem. The
tagName attribute specifies the name of the custom tag.

Also, five public properties (itemId, styleClass, headerStyleClass, contentStyleClass,
and active) are defined on the element behavior. The previous code sample uses the
<public:attach> element to bind an event handler, _constructor, to the HTC-specific event
oncontentready. The _constructor() function will initialize the internal state of the element
behavior.

The _constructor() Function

The _constructor() function, as shown in Code Sample 9-12, is the core piece of the HTC
element behavior. The oncontentready event will fire when the content of the <pro:showItem>
element, to which the behavior is attached, has been parsed completely. This will invoke the
_constructor() function, which will set the internal state of the <pro:showItem> tag based on
the content written to the browser.

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 377

5807ch09.qxd 1/19/06 6:02 PM Page 377

Code Sample 9-12. The _constructor() Function

<script type="text/javascript" >
function _constructor()
{
header.className = (element.headerStyleClass || 'showItemHeader');
header.onclick = _expand;

for (var i=0; i < childNodes.length; i++)
{
var childNode = childNodes[i];
if (childNode.scopeName == 'pro' &&

childNode.nodeName == 'headerFacet')
{
// set header on showItem
header.innerHTML = childNode.innerHTML;

}
else
{
// set content inside showItem
switch (childNode.nodeType)
{
case 1: // Element
content.insertAdjacentHTML("beforeEnd", childNode.outerHTML);
break;

case 3: // Text
content.insertAdjacentHTML("beforeEnd", childNode.nodeValue);
break;

}
}

}

// show the contents if active
if (element.active == 'true')
{
content.className = (element.contentStyleClass || 'showItemContent');
content.style.display = 'block';

}

defaults.viewLink = document;
}

The source of the _constructor() function is simple. You first set the onclick event han-
dler on the HTC component’s header to use the _expand function so that this function will be
invoked whenever the header is clicked. You then loop over all children of the <pro:showItem>
tag listed in the parent document. If a child node is a <pro:headerFacet>, you then add its
innerHTML to the header element in the HTC component body; otherwise, you add it to the

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS378

5807ch09.qxd 1/19/06 6:02 PM Page 378

content element. If the child node is being added to the content element, you have to check
to see whether it is another element or just plain text.

If the active attribute on the <pro:showItem> tag is set to true, the content of the
<pro:showItem> element behavior will be displayed. Before the _constructor() is done execut-
ing and the content of the HTC element behavior is displayed in the browser, you have to
create a viewLink between the root element of the document fragment in the HTC file to the
master element, <pro:showItem>, in the primary document. You can define a viewLink using a
script shown previously or by inserting the appropriate declaration in the component section
of the HTC file (see Code Sample 9-4).

■Note The insertAdjacentHTML method is specific to Internet Explorer and appends the given HTML to
the HTML content of the DOM element. The first argument on the insertAdjacentHTML method takes one
of four string values: beforeBegin, afterBegin, beforeEnd, and afterEnd. The beforeEnd string tells
the method to insert the HTML markup immediately before the end of the DOM element, after all the other
content in the DOM element.

The _expand() Function

As shown in Figure 9-7, when the element behavior is bound to the pro namespace and
attached to the <pro:showItem ...> tag, an _expand() function, as shown in Code Sample 9-13,
is added as the event handler and will be invoked when the header is clicked.

Figure 9-7. HTC <pro:showItem> _expand function

Code Sample 9-13. The _expand() Function

function _expand()
{
var showOneNode = element.parentNode;
var showOneClientId = showOneNode.id;

var currentNode = element;
while (currentNode != null)

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 379

5807ch09.qxd 1/19/06 6:02 PM Page 379

{
var method = currentNode.method;

if (method != null &&
(method.toLowerCase() == 'get' ||
method.toLowerCase() == 'post'))

{

//The following function call to d2 is needed to perform
//an Ajax postback when implemented in the JSF HTC
//ProShowOneDeck component.
var formNode = currentNode;
var content = new Object();
content[showOneClientId] = element.itemId;
d2.submit(formNode, content);
break;

}

currentNode = currentNode.parentNode;
}

}
</script>

In the prototype you are constructing only the UI, but for Code Sample 9-13 the d2.submit()
function has been added, passing the activated form id and the id of the selected node to the
d2.submit() function. The d2.submit() function calls the dojo.io.bind() method, passing
information about what form to submit, content (that is, the ID of the selected component),
the accepted request header ('X-D2-Content-Type': <contentType>), and the MIME type
(text/plain) for this request.

This information will determine which node to expand and which ResponseWriter to
use for this request in your JSF implementation of the JSF HTC deck component.

The D2 library also defines a callback function, d2._loadtext, that is used to get the
response data from the server. The d2._loadtext function will replace the target document
with the document returned on the response. This will cause the HTC <pro:showItem> compo-
nent to invoke the _constructor() again and cause the <pro:showItem> to be updated with
new content sent from the server.

To be able to asynchronously communicate with the server when a deck is activated,
you also have to download a set of JavaScript libraries (dojo.js and d2.js) to the page. These
libraries need to be part of your component and should be downloaded automatically to the
client on initial request.

Step 5: Creating a Client-Specific Renderer
Your HTC solution contains three new Renderer classes: HtmlDocumentRenderer,
HtcAjaxInputDateRenderer, and HtcAjaxShowOneDeckRenderer. Let’s start by looking at the
HtmlDocumentRenderer class.

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS380

5807ch09.qxd 1/19/06 6:02 PM Page 380

The HtmlDocumentRenderer Class
The HtmlDocumentRenderer class (see Figure 9-8) is basically a port of the XulDocumentRenderer
you created in Chapter 8. By porting the XulDocumentRenderer code to an HTML version, you
can now provide application developers with one complete solution, allowing the component
writer to switch the RenderKit without any changes to the actual application page description.

Figure 9-8. Class diagram showing the HtmlDocumentRenderer class

Another freebie is the “at-most-once” semantics for script resources you get when extend-
ing the HtmlRenderer.

The only requirement that the HTML document Renderer has is to support running
applications on different clients, without forcing application developers to provide different
solutions for each client. The HtmlDocumentRenderer, a top-level component that controls the
root element rendered to the client, provides enormous possibilities and provides total con-
trol over the markup for the component writer.

You can use HtmlDocumentRenderer as the root component by any Renderer (for example,
HtmlInputDateRenderer, HtmlAjaxInputDateRenderer, and HtcAjaxInputDateRenderer) that is
targeting HTML as the default markup. Code Sample 9-14 shows the encodeBegin() method
of the HtmlDocumentRenderer.

Code Sample 9-14. The HtmlDocumentRenderer encodeBegin() Method

package com.apress.projsf.ch9.render.html.basic;

import java.io.IOException;
import java.util.Map;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;

import com.apress.projsf.ch2.render.html.HtmlRenderer;

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 381

5807ch09.qxd 1/19/06 6:02 PM Page 381

public class HtmlDocumentRenderer extends HtmlRenderer
{
/**
* The title attribute.
/
public static String TITLE_ATTR = "title";

/*
* The styleClass attribute.
/
public static String STYLE_CLASS_ATTR = "styleClass";

/*
* The stylesheetURI attribute.
*/
public static String STYLESHEET_URI_ATTR = "stylesheetURI";

public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException

{
ResponseWriter out = context.getResponseWriter();
Map attrs = component.getAttributes();
String styleClass = getStyleClass(attrs);

out.startElement("html", component);
out.startElement("head", null);
encodeHead(context, out, attrs);
out.endElement("head");
out.startElement("body", null);
if (styleClass != null)
out.writeAttribute("class", styleClass, STYLE_CLASS_ATTR);

}

The encodeBegin() method takes two arguments: FacesContext context and UIComponent
component. From the component, you can obtain a Map containing all the available attributes.
In this case, the application developer can set three attributes in his JSP document or backing
bean (the title, the styleClass and the stylesheetURI), and the attribute map is passed as
an argument to the encodeHead() method.

The startElement() method takes the following arguments: name and component. The name
argument is the name of the element generated (for example, html), and the component argu-
ment is the UIComponent that this element represents. In Code Sample 9-14, this is represented
with the component UIDocument.

The encodeEnd() method, as shown in Code Sample 9-15, is basically just closing the HTML
<body> and <html> tags.

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS382

5807ch09.qxd 1/19/06 6:02 PM Page 382

Code Sample 9-15. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException

{
ResponseWriter out = context.getResponseWriter();
out.endElement("body");
out.endElement("html");

}

The encodeHead() method, as shown in Code Sample 9-16, is responsible for writing out
the <head> element. The <head> element contains information about the document, and in
this case it is the title and style sheet.

Code Sample 9-16. The encodeHead() Method

protected void encodeHead(
FacesContext context,
ResponseWriter out,
Map attrs) throws IOException

{
String title = getTitle(attrs);
String stylesheetURI = getStylesheetURI(context, attrs);

if (title != null)
{
out.startElement("title", null);
out.writeText(title, TITLE_ATTR);
out.endElement("title");

}
if (stylesheetURI != null)
{
out.startElement("link", null);
out.writeAttribute("rel", "stylesheet", null);
out.writeAttribute("href", stylesheetURI, STYLESHEET_URI_ATTR);
out.endElement("link");

}
}

The getTitle() and getStylesheetURI() methods, as shown in Code Sample 9-17, return
the values of the title and stylesheetURI attributes.

Code Sample 9-17. The Getters for the UIDocument Attributes

protected String getTitle(
Map attrs)

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 383

5807ch09.qxd 1/19/06 6:02 PM Page 383

{
return (String)attrs.get(TITLE_ATTR);

}

protected String getStyleClass(
Map attrs)

{
return (String)attrs.get(STYLE_CLASS_ATTR);

}

protected String getStylesheetURI(
FacesContext context,
Map attrs)

{
String stylesheetURI = (String)attrs.get(STYLESHEET_URI_ATTR);

if (stylesheetURI != null)
{
Application application = context.getApplication();
ViewHandler handler = application.getViewHandler();
stylesheetURI = handler.getResourceURL(context, stylesheetURI);

}

return stylesheetURI;
}

}

The HtcAjaxInputDateRenderer Class
You already know that XUL can make a JSF component writer’s life easier, but how about HTC?
Microsoft’s HTC components provide a similar level of abstraction as Mozilla’s XUL/XBL. So,
without further ado, let’s look at the JSF HTC implementation (see Figure 9-9).

Figure 9-9. Class diagram showing the HtcAjaxInputDateRenderer class

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS384

5807ch09.qxd 1/19/06 6:02 PM Page 384

Even in the HtcAjaxInputDateRenderer, you will recognize most of the code from previ-
ous chapters, except that the actual output to the client is a mix of regular HTML and HTC.
As with XUL, HTC allows you to reuse the UI prototype. By adding the element behavior—the
inputDate.htc prototype file—to your resources, the only element you need to write out for
this JSF HTC component is <pro:inputDate ...> and its attributes.

By extending the HtmlInputDateRenderer, you get access to the writeScriptInline()
method, as shown in Code Sample 9-18. The writeScriptInline() method provides the same
“at-most-once” semantics for inline scripts as the writeScriptResource() method does for
external resources. An application developer might add two or more ProInputDate compo-
nents to the page, but the semantics behind the writeScriptInline() method, provided by
the Renderer implementation, will make sure this inline script is written only once.

The writeScriptInline() method writes out a script that will add a namespace (http://
projsf.apress.com/tags) and will set the namespace prefix to pro. When the namespace is
added, you can import the element behavior (inputDate.htc) and attach it to the namespace
prefix.

Code Sample 9-18. The HtcAjaxInputDateRenderer

package com.apress.projsf.ch9.render.htc.ajax;

import java.io.IOException;

import java.text.DateFormat;
import java.text.SimpleDateFormat;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;
import javax.faces.convert.Converter;
import javax.faces.convert.DateTimeConverter;
import javax.faces.el.MethodBinding;
import javax.faces.validator.Validator;

import com.apress.projsf.ch5.render.html.basic.HtmlInputDateRenderer;
import com.apress.projsf.ch7.validate.DateValidator;

public class HtcAjaxInputDateRenderer extends HtmlInputDateRenderer
{
protected void encodeResources(FacesContext context,

UIComponent component) throws IOException
{
super.encodeResources(context, component);

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 385

5807ch09.qxd 1/19/06 6:02 PM Page 385

ViewHandler handler = context.getApplication().getViewHandler();
String behaviorURL = handler.getResourceURL(context,

"weblet://com.apress.projsf.ch9/inputDate.htc");
writeScriptInline(context,

"document.namespaces
.add('pro','http://projsf.apress.com/tags');\n" +

"document.namespaces
.item('pro').doImport('" + behaviorURL + "');

");
}

By design, the <pro:inputDate> component can have a Converter added by a JSP tag. At
initial render, during the creation of the component hierarchy, a custom JSP converter tag
has not yet been executed, so the Converter is not yet attached to the component inside the
encodeBegin() method. Instead, the Renderer is using the encodeEnd() method, as shown in
Code Sample 9-19, to write out the markup and to obtain the Converter.

Code Sample 9-19. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException

{
String pattern = _determineDatePattern(context, component);
String targetURL = _determineTargetURL(context, component);

UIInput input = (UIInput)component;
String valueString = (String)input.getSubmittedValue();

if (valueString == null)
{
Object value = input.getValue();
if (value != null)
{
Converter converter = getConverter(context, input);
valueString = converter.getAsString(context, component, value);

}
}

String clientId = input.getClientId(context);

ResponseWriter out = context.getResponseWriter();
out.startElement("pro:inputDate", component);
out.writeAttribute("id", clientId, null);
if (valueString != null)
out.writeAttribute("value", valueString, null);

if (pattern != null)

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS386

5807ch09.qxd 1/19/06 6:02 PM Page 386

out.writeAttribute("pattern", pattern, null);
if (targetURL != null)
out.writeAttribute("targetURL", targetURL, null);

out.endElement("pro:inputDate");
}

In encodeEnd(), you call two methods—_determineDatePattern() and
_determineTargetURL(). These methods obtain the date format pattern, and the target URL
for the managed bean is bound to the Validator. Finally, you write out the <pro:inputDate>
component with its attribute to the client.

The _determineDatePattern() method, as shown in Code Sample 9-20, is identical to the
one you used in both the XUL Ajax and HTML Ajax solutions, and you could have created a
base class, or utility class, for any custom Renderer that might need this method. But for edu-
cational purposes we decided that it is easier to understand when it is explained this way.

For the HTC implementation to work, you need to know what date pattern has been set
on the DateTimeConverter by the application developer. This date pattern will be used in two
places. First, it parses the date entered by the user in the <input> element. This parsed date
will then be used to set the selected date in the calendar. Second, it makes sure the date
selected in the calendar follows the correct date format when added to the <input> element.

Code Sample 9-20. The _determineDatePattern() Method

private String _determineDatePattern(
FacesContext context,
UIComponent component)

{
UIInput input = (UIInput)component;
Converter converter = getConverter(context, input);

if (converter instanceof DateTimeConverter)
{
DateTimeConverter dateTime = (DateTimeConverter)converter;
return dateTime.getPattern();

}
else
{
SimpleDateFormat dateFormat = (SimpleDateFormat)

DateFormat.getDateInstance(DateFormat.SHORT);
return dateFormat.toPattern();

}
}

You may have seen the _determineTargetURL() method, as shown in Code Sample 9-21, in
previous chapters. It provides you with the needed binding reference to the managed bean. You
first get all the validators attached to this input component. You then check to see whether one
or many of these validators are an instance of the DateValidator. (The DateValidator was cre-
ated in Chapter 7.)

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 387

5807ch09.qxd 1/19/06 6:02 PM Page 387

Code Sample 9-21. The _determineTargetURL() Method

private String _determineTargetURL(
FacesContext context,
UIComponent component)

{
UIInput input = (UIInput)component;
Validator[] validators = input.getValidators();

for (int i=0; i < validators.length; i++)
{
if (validators[i] instanceof DateValidator)
{
DateValidator validateDate = (DateValidator)validators[i];
MethodBinding binding = validateDate.getAvailability();
if (binding != null)
{
String expression = binding.getExpressionString();
// #{backingBean.methodName} -> backingBean.methodName
String bindingRef = expression.substring(2, expression.length(): 1);

Application application = context.getApplication();
ViewHandler handler = application.getViewHandler();
return handler.getResourceURL(context, "mabon:/" + bindingRef);

}
}

}

return null;
}

}

If it is an instance of the DateValidator, you check to see whether you have a MethodBinding.
If a MethodBinding exists, you get the expression (for example, #{managedBean.methodName}) and
strip off the #{}. This leaves you with managedBean.methodName, which you concatenate with
mabon:/. The MabonViewHandler will recognize the string and return a resource URL that will
be written to the client (for example, /context-root/mabon-servlet-mapping/managedBean.
methodName).

The HtcAjaxShowOneDeckRenderer Class
You are getting close! Since the UIShowOne component is a container component, it needs to
render its children, and as such you have to implement encodeBegin(), encodeChildren(), and
encodeEnd() in the new renderer (see Figure 9-10).

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS388

5807ch09.qxd 1/19/06 6:02 PM Page 388

Figure 9-10. Class diagram showing the HtcAjaxShowOneDeckRenderer class

We’ll first cover the encodeBegin() method for the HtcAjaxShowOneDeckRenderer, as shown
in Code Sample 9-22. The encodeBegin() method takes two arguments: FacesContext and
UIComponent. The Render Response phase will call encodeBegin() on the UIShowOne component,
which in turn will delegate to the encodeBegin() method on the HtcAjaxShowOneDeckRenderer,
passing the FacesContext and the UIShowOne component instance.

Code Sample 9-22. The HtcAjaxShowOneDeckRenderer encodeBegin() Method

package com.apress.projsf.ch9.render.htc.ajax;

import java.io.IOException;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;

import com.apress.projsf.ch2.render.html.HtmlRenderer;
import com.apress.projsf.ch3.component.UIShowItem;
import com.apress.projsf.ch3.component.UIShowOne;
import com.apress.projsf.ch3.event.ShowEvent;

public class HtcAjaxShowOneDeckRenderer extends HtmlRenderer
{

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 389

5807ch09.qxd 1/19/06 6:02 PM Page 389

/**
* The styleClass attribute.
*/
public static String STYLE_CLASS_ATTR = "styleClass";

/**
* The itemStyleClass attribute.
*/
public static String ITEM_STYLE_CLASS_ATTR = "itemStyleClass";

/**
* The itemHeaderStyleClass attribute.
*/
public static String ITEM_HEADER_STYLE_CLASS_ATTR = "itemHeaderStyleClass";

/**
* The itemContentStyleClass attribute.
*/
public static String ITEM_CONTENT_STYLE_CLASS_ATTR = "itemContentStyleClass";

public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException

{
super.encodeBegin(context, component);

UIShowOne showOne = (UIShowOne)component;
String clientId = showOne.getClientId(context);

ViewHandler handler = context.getApplication().getViewHandler();
String showItemURL = handler.getResourceURL(context,

"weblet://com.apress.projsf.ch9/showItem.htc");

ResponseWriter out = context.getResponseWriter();
writeScriptInline(context, "document.namespaces.add('pro',

'http://projsf.apress.com/tags');");
out.write("<?import namespace=\"pro\"

implementation=\"" + showItemURL + "\" ?>");

out.startElement("pro:showOneDeck", component);
out.writeAttribute("id", clientId, null);
out.writeAttribute("style", "display:block;", null);

}

Before you write anything to the client, you need to obtain the component’s unique iden-
tifier: clientId. You do this by calling the getClientId() method on the UIShowOne instance

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS390

5807ch09.qxd 1/19/06 6:02 PM Page 390

passed as an argument to the Renderer. You include this unique identifier in the generated
markup to ensure that you will be able to decode the request and apply any values or events
to the right component on postback. For more information about the clientId, see Chapter 2.

You then use weblets to obtain the resource URL of the <pro:showItem> HTC component
that will be used to set the implementation attribute on the <?import> processing instruction.
This is an alternative solution to the doImport() method used in the HtcAjaxInputDateRenderer
(see Code Sample 9-18) to import an element behavior.

You get the ResponseWriter and write out the first element (<pro:showOneDeck>) represent-
ing the component.

The <pro:showOneDeck> component relies on the Dojo toolkit and D2 project to be able to
asynchronously communicate with the server. To ensure that these resources are loaded to the
client and written only once, you will use the semantics behind the writeScriptResource()
method, as shown in Code Sample 9-23.

Code Sample 9-23. The HtcAjaxShowOneDeckRenderer encodeResources() Method

protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException

{
super.encodeResources(context, component);

writeScriptResource(context, "weblet://org.dojotoolkit.browserio/dojo.js");
writeScriptResource(context, "weblet://net.java.dev.d2/d2.js");

}

In the encodeChildren() method, as shown in Code Sample 9-24, you check to see whether
this UIShowOne component has any children at all. If the application developer has not added
any children, you do not need to render this instance of the UIShowOne component to the client.
You then collect information about which default UIShowItem id to display and which style
classes to use for the child items.

Code Sample 9-24. The encodeChildren() Method

public void encodeChildren(
FacesContext context,
UIComponent component) throws IOException

{
if (component.getChildCount() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String showItemId = showOne.getShowItemId();

Map attrs = showOne.getAttributes();
String styleClass = getItemStyleClass(attrs);
String headerStyleClass = getItemHeaderStyleClass(attrs);
String contentStyleClass = getItemContentStyleClass(attrs);

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 391

5807ch09.qxd 1/19/06 6:02 PM Page 391

After that, you collect all children of the UIShowOne component, iterate over the list of chil-
dren, and check whether each child is an instance of UIShowItem, as shown in Code Sample 9-25.
If not, the child will not be rendered. If the child is a UIShowItem component instance, you gather
the clientId and all attributes available on the UIShowItem component. The showItemId is then
compared with the id of the current UIShowItem component, and based on the result, the active
variable will be used as a true or false flag. This flag will later be used to set the active attrib-
ute on the <pro:showItem> tag to indicate whether this UIShowItem component should render
its children.

Code Sample 9-25. The encodeChildren() Method

List children = component.getChildren();
for (Iterator iter = children.iterator(); iter.hasNext();)
{
UIComponent child = (UIComponent) iter.next();
if (child instanceof UIShowItem)
{
UIShowItem showItem = (UIShowItem)child;
Map attrs = showItem.getAttributes();

String id = showItem.getId();
boolean active = (id.equals(showItemId));

ResponseWriter out = context.getResponseWriter();
out.startElement("pro:showItem", showItem);
out.writeAttribute("itemId", id, null);
if (styleClass != null)
out.writeAttribute("styleClass", styleClass, ITEM_STYLE_CLASS_ATTR);

if (headerStyleClass != null)
out.writeAttribute("headerStyleClass", headerStyleClass,

ITEM_HEADER_STYLE_CLASS_ATTR);
if (contentStyleClass != null)
out.writeAttribute("contentStyleClass", contentStyleClass,

ITEM_CONTENT_STYLE_CLASS_ATTR);
if (active)
out.writeAttribute("active", Boolean.toString(active), null);

out.writeAttribute("style", "display:block;", null);

In Code Sample 9-26, you then get the header facet from the UIShowItem component by
calling the getHeader() method. This convenience method returns the named facet, header,
if it exists; otherwise, it returns null. If the getHeader() method returns a facet, you call the
_encodeAll() method to process any children of this facet. After the facet control, you use the
active flag to determine whether this is the “active” UIShowItem component. If it is, you call
the _encodeAll() method to start the encode process of any children to the UIShowItem
component.

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS392

5807ch09.qxd 1/19/06 6:02 PM Page 392

Code Sample 9-26. The encodeChildren() Method

// the header facet
UIComponent header = showItem.getHeader();
if (header != null)
{
out.startElement("pro:headerFacet", null);
_encodeAll(context, header);
out.endElement("pro:headerFacet");

}

// the expanded item contents
if (active)
{
_encodeAll(context, showItem);

}

out.endElement("pro:showItem");
}

}
}

}

If you take a close look at the actual output required by the deck component, any children
added will be at the end of the generated markup. This way, the UIShowOne component’s ren-
derer can quickly close the generated markup, as shown in Code Sample 9-27.

Code Sample 9-27. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException

{
ResponseWriter out = context.getResponseWriter();
out.endElement("pro:showOneDeck");

}

For the UIShowOne component, the Renderer is responsible for rendering its children, and
thus this flag needs to be set to true, as shown in Code Sample 9-28.

Code Sample 9-28. The getRendersChildren() Method

public boolean getRendersChildren()
{
return true;

}

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 393

5807ch09.qxd 1/19/06 6:02 PM Page 393

The requirement has not changed since we first introduced the deck component. It has to
be flexible enough to handle any type of child component that the application developer adds
to the UIShowItem component. The UIShowItem component itself is not responsible for render-
ing its children, but an application developer may add a child container component in charge
of rendering its children (for example, an HtmlPanelGroup component).

To be able to achieve this, you first render the beginning of the current state of this
UIComponent to the ResponseWriter attached to the specified FacesContext. You then check
whether the component is responsible for rendering its children. If it is, you call encodeChildren()
on the component to start rendering its children. If the component is not responsible for
rendering its children, you call getChildren() on the component. The getChildren() method
returns a List of all children of the UIComponent. If this component has no children, an empty
List is returned, and you close the generated markup by calling the encodeEnd() method on
the component. If it has children, you recursively call the _encodeAll(), as shown in Code
Sample 9-29, until all children have been rendered, and then you close the generated markup
by calling the encodeEnd() method on the component.

Code Sample 9-29. The _encodeAll() Method

private void _encodeAll(
FacesContext context,
UIComponent component) throws IOException

{
component.encodeBegin(context);
if (component.getRendersChildren())
{
component.encodeChildren(context);

}
else
{
List kids = component.getChildren();
Iterator it = kids.iterator();
while (it.hasNext())
{
UIComponent kid = (UIComponent)it.next();
_encodeAll(context, kid);

}
}
component.encodeEnd(context);

}

Remember, during the Apply Request Values phase, a method, processDecodes(), will
be called on the UIViewRoot at the top of the component hierarchy. This processDecodes()
method on the UIViewRoot will recursively call processDecodes() of each UIComponent in the
component hierarchy. If a Renderer is present for any of these components, the UIComponent
will delegate the responsibility of decoding to the Renderer. Code Sample 9-30 is identical to
the encode() method in the first HtmlShowOneDeckRenderer introduced in Chapter 3. For more
information about processDecodes(), please refer to Chapter 2.

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS394

5807ch09.qxd 1/19/06 6:02 PM Page 394

Code Sample 9-30. The decode() Method

public void decode(
FacesContext context,
UIComponent component)

{
ExternalContext external = context.getExternalContext();
Map requestParams = external.getRequestParameterMap();
String clientId = component.getClientId(context);
String newShowItemId = (String)requestParams.get(clientId);
if (newShowItemId != null && newShowItemId.length() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String oldShowItemId = showOne.getShowItemId();
if (!newShowItemId.equals(oldShowItemId))
{
showOne.setShowItemId(newShowItemId);
ShowEvent event = new ShowEvent(showOne, oldShowItemId, newShowItemId);
event.queue();

}
}

}

Code Sample 9-31 shows all the getters for the different style classes supported by the
HtcAjaxShowOneDeckRenderer.

Code Sample 9-31. Getters for the HtcAjaxShowOneDeckRenderer Attributes

protected String getStyleClass(
Map attrs)

{
return (String)attrs.get(STYLE_CLASS_ATTR);

}

protected String getItemStyleClass(
Map attrs)

{
return (String)attrs.get(ITEM_STYLE_CLASS_ATTR);

}

protected String getItemHeaderStyleClass(
Map attrs)

{
return (String)attrs.get(ITEM_HEADER_STYLE_CLASS_ATTR);

}

protected String getItemContentStyleClass(
Map attrs)

{

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 395

5807ch09.qxd 1/19/06 6:02 PM Page 395

return (String)attrs.get(ITEM_CONTENT_STYLE_CLASS_ATTR);
}

}

Step 7: Registering a UIComponent and Renderer
For the HTC-Ajax implementation to work, you need to register the custom Renderers, as
shown in Code Sample 9-32.

Code Sample 9-32. The HTC Registration in the faces-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE faces-config

PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration" >
<render-kit>
<renderer>
<component-family>com.apress.projsf.Document</component-family>
<renderer-type>com.apress.projsf.Document</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.html.basic.HtmlDocumentRenderer

</renderer-class>
</renderer>

</render-kit>

<render-kit>
...
<renderer>

<component-family>javax.faces.Input</component-family>
<renderer-type>com.apress.projsf.Date</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.htc.ajax.HtcAjaxInputDateRenderer

</renderer-class>
</renderer>
<renderer>
<component-family>com.apress.projsf.ShowOne</component-family>
<renderer-type>com.apress.projsf.Deck</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.htc.ajax.HtcAjaxShowOneDeckRenderer

</renderer-class>
</renderer>

</render-kit>
</faces-config>

Step 11: Registering a RenderKit and JSF Extension
Although you did not need to create a new RenderKit for the HTC solution, you still need to
register a RenderKit with a unique RenderKit ID, as shown in Code Sample 9-33. You need this

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS396

5807ch09.qxd 1/19/06 6:02 PM Page 396

to ensure that you don’t mix the HTC components with regular HTML components that work
across multiple browsers.

Code Sample 9-33. The HTC Registration in the faces-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE faces-config

PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration" >

<render-kit>
<!-- no renderkit-id, so these renderers are added to

the default renderkit -->
<renderer>
<component-family>com.apress.projsf.Document</component-family>
<renderer-type>com.apress.projsf.Document</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.html.basic.HtmlDocumentRenderer

</renderer-class>
</renderer>

</render-kit>

<render-kit>
<render-kit-id>com.apress.projsf.htc.ajax[HTML_BASIC]</render-kit-id>
<render-kit-class>
com.apress.projsf.ch6.render.html.ajax.HtmlAjaxRenderKit

</render-kit-class>
<renderer>
<component-family>javax.faces.Input</component-family>
<renderer-type>com.apress.projsf.Date</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.htc.ajax.HtcAjaxInputDateRenderer

</renderer-class>
</renderer>
<renderer>
<component-family>com.apress.projsf.ShowOne</component-family>
<renderer-type>com.apress.projsf.Deck</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.htc.ajax.HtcAjaxShowOneDeckRenderer

</renderer-class>
</renderer>

</render-kit>
</faces-config>

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 397

5807ch09.qxd 1/19/06 6:02 PM Page 397

As you can see, the HtmlDocumentRenderer is defaulted to use the basic HTML
RenderKit since it is a basic HTML Renderer, whereas the HtcAjaxInputDateRenderer and
HtcAjaxShowOneDeckRenderer are added to the HtmlAjaxRenderKit. Notice that you are reusing
the HtmlAjaxRenderKit created in Chapter 6 but assigning it a new RenderKit ID (that is,
com.apress.projsf.htc.ajax[HTML_BASIC]) to ensure that you are not mixing HTC-specific
renderers with plain HTML renderers.

Step 12: Registering Resources with Weblets
You need to register the HTC resources (inputDate.css, inputDate.htc, showOneDeck.css, and
showOneDeck.htc) as weblets, as shown in Code Sample 9-34, which will enable you to package
these resources as part of the custom JSF component library.

Code Sample 9-34. The Weblets Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >

<weblet>
<weblet-name>com.apress.projsf.ch9</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagedWeblet</weblet-class>
<init-param>
<param-name>package</param-name>
<param-value>com.apress.projsf.ch9.render.htc.ajax.resources</param-value>

</init-param>
<mime-mapping>
<extension>htc</extension>
<mime-type>text/x-component</mime-type>

</mime-mapping>
</weblet>

<weblet-mapping>
<weblet-name>com.apress.projsf.ch9</weblet-name>
<url-pattern>/projsf-ch9/*</url-pattern>

</weblet-mapping>

</weblets-config>

Building Applications with JSF HTC Components
Figure 9-11 shows the end result of the JSF HTC ProInputDate implementation. As you can
see, the page looks the same as the one you created in previous chapters, except that this
page uses an HTC Renderer. This HTC Ajax implementation provides the same functionality
as both the HTML Ajax and XUL Ajax implementations, where dates that are not selectable
are marked red and dates outside the scope of the current month are gray. When the user
enters a date and clicks a submit button, a full postback will occur, and the attached valida-
tor, if any, will be invoked.

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS398

5807ch09.qxd 1/19/06 6:02 PM Page 398

Figure 9-11. The <pro:inputDate> component implemented in HTC

Code Sample 9-35 shows the actual code behind this JSF page.

Code Sample 9-35. JSF Page Source for HTC Implementation

<?xml version="1.0" encoding="UTF-8" ?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2"

xmlns:pro="http://projsf.apress.com/tags"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html" >

<jsp:directive.page contentType="application/x-javaserver-faces"/>
<f:view>
<pro:document title="Pro JSF : ProInputDate" >
<h:form>
<pro:inputDate id="dateField"

title="Date Field Component"
value="#{inputDateBean.date}" >

<f:convertDateTime pattern="d MMMMM yyyy" />
<pro:validateDate availability="#{inputDateBean.getAvailability}" />

</pro:inputDate>

<h:message for="dateField" />

<h:commandButton value="Submit" />

<h:outputText value="#{inputDateBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />

</h:outputText>
</h:form>

</pro:document>
</f:view>

</jsp:root>

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 399

5807ch09.qxd 1/19/06 6:02 PM Page 399

No changes to the application logic are required whatsoever! This is the same page you
used for the XUL solution.

Figure 9-12 shows the end result of the JSF HTC <pro:showOneDeck> implementation. It
looks the same as the previous implementations of the <pro:showOneDeck> component, except
that this page uses an HTC Renderer.

Figure 9-12. <pro:showOneDeck> implemented in HTC

Code Sample 9-36 shows the actual code behind this JSF page.

Code Sample 9-36. JSF Page Source for HTC Implementation

<?xml version="1.0" encoding="UTF-8" ?>
<jsp:root ...>
<jsp:directive.page contentType="application/x-javaserver-faces"/>
<f:view>

...
<pro:showOneDeck showItemId="first"

showListener="#{backingBean.doShow}">
<pro:showItem id="first" >
<f:facet name="header">
<h:panelGroup>
<h:graphicImage url="/resources/java_small.jpg" alt="The Duke"

style="margin-right: 8px; vertical-align:bottom;" />
<h:outputText value="Java"/>

</h:panelGroup>
</f:facet>
<h:panelGrid columns="1">
<h:outputLink value="http://apress.com/book/bookDisplay.html?bID=10044">
<h:outputText value="Pro JSF: Building Rich Internet Components"/>

...
</f:view>

</jsp:root>

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS400

5807ch09.qxd 1/19/06 6:02 PM Page 400

You are probably now telling yourself, “This is way cool! I have the same page source in
three other solutions!” You are right, and that’s the beauty of JSF! As we have said on multiple
occasions, without impacting the application developer, you can create Rich Internet Compo-
nents that support client-specific markup for optimized performance and responsiveness.

Summary
You have now completed four different solutions for the ProInputDate and ProShowOneDeck
components. You used traditional HTML Renderers, HTML Ajax Renderers, XUL Ajax Renderers,
and HTC Ajax Renderers. Who said JSF is not a rich client development platform?

With the experience you have gained so far, it is important to keep in mind that an appli-
cation developer might be using your component in combination with other technologies
that you did not even consider. You need to keep the abstraction for the application developer,
and although tempting, you should not design your component with a dependency on the
client-side rendered markup, since you do not have control over other components’ generated
markup.

One of things you want you to take from this chapter is that you should stay open to new
and controversial suggestions; do not get locked into one technology stack because it is what
you know or is what others tell you is the latest and greatest. Always ask yourself, “How can
this solve my problems?”

After reading this chapter, you should have a clear understanding of what HTC is and how
you can leverage it in your component design.

CHAPTER 9 ■ PROVIDING MICROSOFT HTC RENDERERS 401

5807ch09.qxd 1/19/06 6:02 PM Page 401

5807ch09.qxd 1/19/06 6:02 PM Page 402

Switching RenderKits
Dynamically

Get used to working in components and only components, and you’re future-proofed.

Stick to JSF plus HTML hybrids, and someone is going to hate you in five years’ time

—Duncan Mills, Java Evangelist, Oracle

Welcome to the last chapter of Pro JSF and Ajax: Building Rich Internet Components. This
book has covered how JSF lets component writers mix and match technologies to streamline
packaging and increase richness and user interactivity for their components. We have proven
that JSF’s component model can provide an abstraction layer on top of the underlying client-
specific markup, which increases an application developer’s productivity. We have also shown
you that component writers can manually switch RenderKits without impacting the applica-
tion developer or the actual application logic.

Now that you have a set of rich Internet components that support multiple client technolo-
gies at your disposal, only one question is left: how can you automatically select a RenderKit to
deliver the proper markup to any user agent?

The main technology covered in this chapter is Oracle ADF Faces, which is a rich set of
standard JSF components introduced in the fall of 2004. The Oracle ADF Faces component
library provides various user interface components with built-in functionality, such as data
tables, hierarchical tables, and color and date pickers. ADF Faces also includes many of the
framework features most needed by JSF developers today.

After reading this chapter, you should be able to dynamically switch RenderKits and know
how to set them up to detect different user agents, such as Mozilla GRE and Microsoft Internet
Explorer.

■Note At the time of writing this chapter, Oracle has completed the first step of donating the ADF Faces
source code to the Apache Software Foundation. By the time this book hits the shelves, the Apache MyFaces
community should be actively evolving the Oracle ADF Faces source code donation. For more information
about the Apache MyFaces open source project, please visit http://myfaces.apache.org.

403

C H A P T E R 1 0

■ ■ ■

5807ch10.qxd 1/19/06 6:16 PM Page 403

Requirements for Dynamically Switching
RenderKits
The requirement is clear—the application developer wants to be able to dynamically change
RenderKits, at runtime, based on the user agent. For example, if it is the Firefox browser
requesting the page, the solution should serve XUL markup to the client.

A RenderKit’s function is to help out with the delegation of Renderer to the UIComponent. A
RenderKit groups instances of renderers of similar markup types, and in this book, you created
RenderKits for HTML Ajax, Microsoft’s DHTML/HTC, and Mozilla’s XUL/XBL technologies.
Each RenderKit is associated with a view (component hierarchy) as a UIViewRoot property at
runtime. If an application developer wants to add a RenderKit with custom Renderers to the
application, a RenderKit ID must be added to the application’s JSF configuration file, as shown
in Code Sample 10-1.

Code Sample 10-1. Setting the Default RenderKit ID

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE faces-config PUBLIC
"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration">

<application>
<default-render-kit-id>com.apress.projsf.xul.ajax</default-render-kit-id>

</application>
...
</faces-config>

This code sample shows the faces-config.xml file with the <default-render-kit-id> set
to your custom XUL RenderKit. The faces-config.xml file is read once when the Web applica-
tion is created and stored in the Application instance. The ViewHandler is responsible for
returning the renderKitId for the current and subsequent requests from the client. It is impor-
tant to understand that there can be only one default RenderKit per Web application, which is
identified by a string (for example, com.apress.projsf.xul.ajax).

To solve the requirement of enabling access to the application with any browser and to
provide a different RenderKit implementation for each browser, you have three tasks to com-
plete in this chapter. First, you need to define the default RenderKit ID in the faces-config.xml
file in such a way that you can dynamically set it at runtime. Second, you need to detect
the user agent requesting the application. Third, you need to set the RenderKit ID using a
ViewHandler. The custom ViewHandler is required if you want to have multiple RenderKit
instances for the same application.

■Note JSF 1.1 applications require a custom javax.faces.application.ViewHandler instance to
dynamically select a RenderKit. However, JSF 1.2 adds support for directly specifying the RenderKit ID
on the <f:view> tag of individual pages in a Web application.

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY404

5807ch10.qxd 1/19/06 6:16 PM Page 404

The Dynamic RenderKit Implementation
Figure 10-1 shows the dynamic RenderKit solution.

Figure 10-1. Structure of dynamic RenderKit implementation

The dynamic RenderKit solution contains three classes:

• ViewHandlerWrapper is a wrapper class that provides a loose coupling between the
solution and the JSF implementation.

• ApplicationBean is a managed bean that contains logic to detect what agent has been
used to request the application and contains information about what renderKitId
to use.

• DynamicRenderKitViewHandler overrides the default ViewHandler’s calculateRenderKitId()
method in order to get the correct ID from the ApplicationBean.

Syntax for Dynamic RenderKit ID
A feature in JSF that is often underutilized is the managed bean facility. This facility is not only
useful for providing application logic, but you can also use it to initialize settings before launch-
ing the actual application. In this case, you will use the JSF EL syntax in the faces-config.xml
file to set a pointer to the managed bean (for example, the ApplicationBean), which will be
invoked and will return the correct renderKitId to the ViewHandler (see Code Sample 10-2).

Code Sample 10-2. Setting the Default RenderKit ID

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE faces-config PUBLIC
"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration">

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY 405

5807ch10.qxd 1/19/06 6:16 PM Page 405

<application>
<default-render-kit-id>#{[managedBean].[property]}</default-render-kit-id>

</application>
...

</faces-config>

With an explicit syntax shown in Code Sample 10-2, you can use the ViewHandler to first
check the pattern of the string and then use the string to create a ValueBinding for the man-
aged bean defined by the expression. In this case, the completed configuration would look
something like Code Sample 10-3.

Code Sample 10-3. Setting the Default RenderKit ID Using a Managed Bean

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE faces-config PUBLIC
"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration">

<application>
<default-render-kit-id>#{projsf.renderKitId}</default-render-kit-id>

</application>
...
</faces-config>

In this case, the renderKitId is a JavaBean property of the ApplicationBean that returns
the correct RenderKit identifier for the requesting user agent.

The Dynamic RenderKit Managed Bean
Let’s look at the actual ApplicationBean class. Figure 10-2 shows the ApplicationBean in a class
diagram, and in Code Sample 10-4, you can observe the User-Agent request header for choos-
ing an appropriate RenderKit.

Figure 10-2. Class diagram showing the ApplicationBean class

Code Sample 10-4. The getRenderKitId() Method with User-Agent Request Header

package com.apress.projsf.ch10.application;

import java.util.Map;

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY406

5807ch10.qxd 1/19/06 6:16 PM Page 406

import javax.faces.render.RenderKitFactory;
import javax.faces.context.FacesContext;
import javax.faces.context.ExternalContext;

/**
* The ApplicationBean returns a dynamic RenderKit identifier, based on
* the value of the User-Agent request header.
*/
public class ApplicationBean
{
public String getRenderKitId()
{
FacesContext context = FacesContext.getCurrentInstance();
ExternalContext external = context.getExternalContext();
Map requestHeaders = getRequestHeaderMap();
String userAgent = (String) requestHeaders.get("User-Agent");

// Mozilla Firefox 1.0.7
// Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.7.12)
// Gecko/20050915 Firefox/1.0.7
if (userAgent.indexOf("Gecko/") != -1)
{
return "com.apress.projsf.xul.ajax";

}
// MS Internet Explorer 6.0
// Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
else if (userAgent.startsWith("Mozilla") &&

userAgent.indexOf("MSIE") != -1)
{
return "com.apress.projsf.htc.ajax";

}
// Safari
// Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-us)
// AppleWebKit/XX (KHTML, like Gecko) Safari/YY
else if ((userAgent.indexOf("AppleWebKit") != -1) ||

(userAgent.indexOf("Safari") != -1))
{
return "com.apress.projsf.html.ajax";

}
else
{
// default to standard HTML Basic for PDAs, etc.
return RenderKitFactory.HTML_BASIC_RENDER_KIT;

}
}

}

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY 407

5807ch10.qxd 1/19/06 6:16 PM Page 407

In Code Sample 10-4, you are testing the User-Agent request header directly against known
user agent identifiers to decide which RenderKit is appropriate to use in the response. Notice
that some of the syntax for user agents can overlap, such as Mozilla appearing in the user agent
header for Firefox, Internet Explorer, and Safari. Given the complexity of accurately parsing the
wide range of possible User-Agent headers, it is best to reuse a common implementation rather
than repeating the agent detection code each time it is needed.

Oracle ADF Faces provides a User-Agent abstraction to handle this case, and in Code
Sample 10-5 we have simplified the ApplicationBean by leveraging some of the Oracle ADF
Faces public APIs to obtain the user agent.

Code Sample 10-5. The getRenderKitId() Method

package com.apress.projsf.ch10.application;

import javax.faces.render.RenderKitFactory;

import oracle.adf.view.faces.context.AdfFacesContext;
import oracle.adf.view.faces.context.Agent;

/**
* The ApplicationBean returns a dynamic RenderKit identifier, based on
* the ADF Faces Agent name.
*/
public class ApplicationBean
{
public String getRenderKitId()
{
AdfFacesContext afc = AdfFacesContext.getCurrentInstance();
Agent agent = afc.getAgent();

if (Agent.AGENT_GECKO.equals(agent.getAgentName()))
{
return "com.apress.projsf.xul.ajax";

}
else if (Agent.AGENT_IE.equals(agent.getAgentName()) &&

Agent.TYPE_DESKTOP.equals(agent.getType()))
{
return "com.apress.projsf.htc.ajax";

}
else if (Agent.AGENT_WEBKIT.equals(agent.getAgentName()))
{
return "com.apress.projsf.html.ajax";

}
else
{
// default to standard HTML Basic for PDAs, etc.

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY408

5807ch10.qxd 1/19/06 6:16 PM Page 408

return RenderKitFactory.HTML_BASIC_RENDER_KIT;
}

}
}

From the AdfFacesContext, you can obtain the user agent by calling the getAgent() method.
ADF Faces also comes with a set of predefined keys for each available Web client (for example,
Microsoft Internet Explorer, Mozilla GRE, and so on). By comparing the agent name to these
keys, you can determine which renderKitId to return.

The DynamicRenderKitViewHandler Class
Let’s now look at the DynamicRenderKitViewHandler class. Figure 10-3 shows the
DynamicRenderKitViewHandler in a class diagram, and in Code Sample 10-6, you can see
how it uses the default RenderKit identifier as a base to locate agent-specific RenderKits
for the incoming request.

Figure 10-3. Class diagram showing the DynamicRenderKitViewHandler implementation

Code Sample 10-6. The DynamicRenderKitViewHandler Class

package com.apress.projsf.ch10.application;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY 409

5807ch10.qxd 1/19/06 6:16 PM Page 409

/**
* The DynamicRenderKitViewHandler provides EL support
* for the <default-render-kit-id> element in faces-config.xml.
*/
public class DynamicRenderKitViewHandler extends ViewHandlerWrapper
{
public DynamicRenderKitViewHandler(
ViewHandler handler)

{
super(handler);

}

public String calculateRenderKitId(
FacesContext context)

{
String renderKitId = super.calculateRenderKitId(context);

Matcher matcher = _DYNAMIC_RENDER_KIT_ID.matcher(renderKitId);
if (matcher.matches())
{
String expression = matcher.group(1);
Application application = context.getApplication();
ValueBinding binding = application.createValueBinding(expression);
if (binding.getType(context) == String.class)
renderKitId = (String)binding.getValue(context);

}

// return either the calculated or dynamic RenderKit ID
return renderKitId;

}

// Matches RenderKit identifier of the form "#{...}"
static private final Pattern _DYNAMIC_RENDER_KIT_ID =

Pattern.compile("(\\Q#{\\E[^\\}]+\\Q}\\E)");
}

The DynamicRenderKitViewHandler overrides only one method, calculateRenderKitId(),
which is used to calculate the RenderKit identifier to use for this request. You first calculate
the RenderKit identifier by calling super. Then you detect whether the identifier is an expres-
sion that can be used to evaluate the dynamic RenderKit identifier. If it matches the EL-like
syntax, you use the expression to create a ValueBinding that returns the value representing
the renderKitId for this request. In practice, this will pick the right RenderKit for the
browser accessing the application by following the dynamic RenderKit selection logic in
your ApplicationBean.

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY410

5807ch10.qxd 1/19/06 6:16 PM Page 410

Registering the Dynamic RenderKit Solution
You need to register the DynamicRenderKitViewHandler and the managed bean
ApplicationBean with the component library in order for the dynamic switching to
work (see Code Sample 10-7).

Code Sample 10-7. Registering the Dynamic RenderKit Implementation

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE faces-config

PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration" >
<factory>
...

</factory>

<application>
<view-handler>
com.apress.projsf.ch10.application.DynamicRenderKitViewHandler

</view-handler>
</application>

<managed-bean>
<managed-bean-name>projsf</managed-bean-name>
<managed-bean-class>

com.apress.projsf.ch10.application.ApplicationBean
</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>

</managed-bean>
...

<faces-config>

First you set the <view-handler> to point to the custom ViewHandler—
DynamicRenderKitViewHandler. Then you define the ApplicationBean in the same way
most application developers would define their own managed beans. Notice that you
set the managed bean on the application scope so that there will be only one instance
for all Web applications.

You have now reached the end of this chapter—and the end of the book. You should
now be able to dynamically switch RenderKits at runtime. This solution to switch RenderKits
is not specific to the components created in this book; any component library can use the
same technique with multiple RenderKits. Figure 10-4 shows how the deck component cre-
ated in this book would look in three different devices.

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY 411

5807ch10.qxd 1/19/06 6:16 PM Page 411

Figure 10-4. ProShowOneDeck running in multiple clients using client-specific markup

Summary
In this chapter, we showed you how easy it is to provide dynamic RenderKit switching with JSF.
By using a component-driven design, application developers can build applications for any
type of user agent without being impacted by the underlying client markup.

In the previous chapters, we demonstrated how you can write Renderers that support
regular HTML, Ajax, XUL, and HTC. Some component writers are already looking at even
more client technologies to provide application developers with a common programming
model regardless of the user agent. A good example of this is the Oracle ADF Faces compo-
nent library. It has built-in support for HTML, RIAs, character-based solutions, instant
messenger clients such as Gaim and Yahoo, PDAs, and so on. The MyFaces open source
project also provides an alternative RenderKit to HTML—the WML RenderKit.

Now that you know how to create reusable rich Internet components with JSF and how to
use multiple RenderKits, we hope you will apply the techniques you have learned in this book
to create your own custom components and build RIAs with JSF.

CHAPTER 10 ■ SWITCHING RENDERKITS DYNAMICALLY412

5807ch10.qxd 1/19/06 6:16 PM Page 412

■A
“A Modular Way of Defining Behavior for XML

and HTML” (Netscape), Web site
address for, 193

abort() method, XMLHttpRequest object, 176
action parameter, function of with <form> tag,

177
addShowListener() method, for associating a

listener to the deck component, 132
ADF UIX, as JSF component, 7
Ajax (Asynchronous JavaScript and XML)

fetching data with, 273–274
formerly known as XMLHTTP, 173–174
overview of, 174–187
providing file upload functionality in, 233
question of cross-platform support in, 209
resources, 233–235
sequence diagram over your postback

implementation, 232
Web development technique, 224

Ajax and JSF architectures, architectural
solutions for applying changes,
230–232

Ajax applications
book filter implementation, 184–187
building, 181–187
vs. traditional Web applications, 181

Ajax architecture, selecting, 231–232
Ajax book filter, implementation of, 184–187
Ajax implementation, requirements for deck

component’s, 223–224
Ajax postback, overview of, 180–181
Ajax Renderer, creating, 279–297
Ajax resources

introducing the Dojo toolkit, 234
object-orented JavaScript, 291–292
registering with Weblets, 301

Ajax resources and Weblets, registering, 263–264
Ajax Web application development, 179–181
Ajax-enabled deck component, designing using

a blueprint, 226–227
Apache MyFaces, Web site address for, 128
Apache MyFaces open source project, Web site

address for information about, 403
application developer, 3
application development, exploring today, 5–7
application development technologies,

overview of, 4–5
application lifecycle, when using JSF, 9
application managed bean scope, 12

ApplicationBean class
class diagram showing, 406
function of, 405

Application.createComponent() method,
function of, 37

ApplicationFactory class, function of, 31–32
Apply Request Values phase

applying new values passed on the request
to the components, 115

event handling in, 125–127
function of, 71–72
how it passes new values to the components,

40
the processDecodes() and decode()

methods, 72
in request-processing lifecycle, 27–28

ApplyRequestValuesPhase class, in Mabon, 281
arrays, function of in JSON, 280
Asynchronous JavaScript and XML. See Ajax

(Asynchronous JavaScript and XML)
ATTACH element, in HTC, 201
attached behavior, released with Internet

Explorer 5.0, 203
attribute values, looking up, 62–63

■B
backing bean, as plain old Java object (POJO) in

JSF, 11–12
“Behavioral Extensions to CSS”, Web site

address for, 200
behavioral superclass, creating, 127–136, 322–324
behavioral superclasses, available in JSF

specification, 50–51
binding element, defining using a style sheet,

321–322
<bindings> element, containing one <binding>

element, 192–193
bindings.xml file

with a <vbox> element as a parent container
and <hbox> element to hold the
toolbar, 311

code sample for XBL date component
prototype, 309

code sample of the <implementation>
element in, 312

code sample of the clickCell method in,
316–317

code sample of the popup method in, 314
code sample of the scroll method in, 315
structure of as shown in the Oracle

JDeveloper 10.1.3 structure window, 321

Index

413

5807index.qxd 1/22/06 4:50 PM Page 413

block boxes, Web site address for information
about visual formatting using, 377

blueprint
needed to successfully implement a custom

JSF component, 53
steps in for creating a new JSF component,

269–270
<body> HTC element, function of, 366
<body> XBL element, function of, 312
<box> component, Mozilla XUL, 189
broadcast events, function of, 117
broadcast() method signature, code sample, 117
<button> component, Mozilla XUL, 189

■C
calendar pop-up, code sample for input and

button markup needed for, 271–272
Change Detection in Hierarchically Structured

Information research project, function
of, 234

<checkbox> component, Mozilla XUL, 189
child components, controlling rendering of, 70
<children> XBL element, function of, 312
chrome system, Mozilla XUL’s, 188
chrome URL vs. HTTP URL, 188
class diagram

creating the
FixedContentTypeResponseWriter
during Ajax postback, 248

of the DecoratingRenderKitFactory class, 241
for DynamicRenderKitViewHandler class, 409
of the HtmlAjaxRenderKit, 243
of Mabon, 281
over the HtmlInputDateRenderer created in

Chapter 2, 56
over the ProInputDate tag handler and its

support class, 87
show the HtcAjaxShowOneDeckRenderer

class, 389
showing all classes created in “Providing

Microsoft HTC Renderers” chapter, 363
showing all classes created in “Providing

Mozilla XUL Renderers” chapter, 305
showing all classes needed for the event and

listener implementation, 114
showing classes created for the Ajax-enabled

date component, 268
showing classes created for the Ajax-enabled

deck component, 225
showing date field component classes

created in Chapter 2, 52
showing deck component classes created in

Chapter 3, 106
showing the ApplicationBean class, 406
showing the DateValidator, 277
showing the HtcAjaxInputDateRenderer

class, 384
showing the HtmlAjaxInputDateRenderer,

279

showing the HtmlDocumentRenderer class,
381

showing the HtmlShowOneDeckRenderer
extending the HtmlRenderer, 137

showing the ProDocument class, 341
showing the ProDocumentTag class, 347
showing the ProShowOneDeck class, 148
showing the UIDocument class, 324
showing the UIShowOne implementation,

127
showing the XMLResponseWriter class, 353
showing the XulAjaxInputDateRenderer

class, 329
showing the XulAjaxRenderKit class, 351
showing the XulDocumentRenderer class,

325
showing the XUL Renderers, 325
showing three tag handlers for the deck

component, 156
of the UIShowItem implementation, 135
for the ValidateDateTag class, 298
for the XulAjaxShowOneDeckRenderer class,

334
classless programming. See prototype-based

programming
_clickCell() function, function of, 373–374
clientId

calling the createUniqueId() method to
create, 64

obtaining for the
HtcAjaxShowOneDeckRenderer class,
390–391

using the _findFormClientId method to
locate, 145

client-side attributes, provided by a Renderer,
55

client-specific renderer
creating for Ajax-enabled deck components,

230–238
creating the HtmlInputDate, 55–77
creating to provide some additional markup

to support the pop-up calendar,
279–297

creating XulAjaxInput, D
creating XulAjaxShowOneDeckRenderer

classes, 324–341
providing Microsoft HTC, 380–396

code sample
the _clickCell() function, 374
the _constructor() function, 369–370, 378
the _determineDatePattern() method, 290
the _determineTargetURL() method,

290–291
the _expand() function, 379–380
the _popup() function in the HTC file,

371–372
the _scroll() function in the HTC file, 372–373
the <body> element of the <pro:inputDate>

HTC component, 366

■INDEX414

5807index.qxd 1/22/06 4:50 PM Page 414

the <body> of the <pro:showItem>
component of the HTC file, 376–377

of the <constructor> element in the
bindings.xml file, 313

the <head> element in the <pro:inputDate>
HTC component, 368

the <head> element in the <pro:showItem>
HTC component, 377

the <implementation> element in the
bindings.xml file, 312

for accessor and mutator for the showItemId
behavioral attributes, 131

actual code behind the ValidateDateTag
class, 298–299

for adapting a JSF 1.1 MethodBinding into a
ShowListener instance, 121–123

adding a header facet within a dataTable
component, 23–24

adding event handlers—projsf-bindings.xml
into and XBL component, 197–198

adding properties and methods—pro-
bindings.xml, 196

for adding the decode() method to the
XulAjaxInputDateRenderer, 331

the Ajax version of the showOneDeck.js
library, 237

alternative RenderKit registration, 240
the application logic for the JSF application,

30–31
assigning a call to a function with HTC, 202
associating a function with an event in HTC,

202
associating a renderer to a particular

component family, 21
for attaching the onColor() function to the

mouseover event, 201
backing bean using the HtmlSelectOneRadio

subclass, 18
behavioral and renderer-specific attributes

for ProInputDateTag class, 94–96
the bindings.xml file, 311
the broadcast() method signature, 117
building the Login page for a JSF application,

28–29
for building the ProDocument class, 342–344
calling the encodeAll() method until all

children have been rendered, 394
changes to UIComponentTagSupport

setStringProperty() method in for JSF
1.2, 89

for checking whether each child is an
instance of UIShowItem, 337–338

of the clickCell method in the bindings.xml
file, 316–317

collecting data for rendering, 77
combining all rendered output into a single

encodeEnd() method, 144
commandButton with attached listener, 23

constucting the pop-up calendar with a
<vbox> element as a parent container,
310–311

for controlling rendering of child
components, 70

for coupling an event raised on the client
with an underlying function, 201

the createHttpRequest() function that
creates the XMLHttpRequest object,
185–186

for the createShowListener method, 164
creating an instance of the XMLHttpRequest

object, 175
creating an instance of the XMLHttpRequest

object using ActiveXObject, 175
creating properties and accessors for client-

side attributes, 79–80
creating the ShowListener interface, 120
data-bound table component, 276
deck component as it would be used in a JSF

JSP document, 112–113
deck HTML implementation, 228–229
the decode() method, 395
the decode() method in the

HtmlInputDateRenderer class, 72–73
decoding the request, 147
of the DeferredContentTypeResponse,

255–257
of the DeferredContentTypeResponse class,

257–258
for the DeferredPrintWriter class, 261–262
the DeferredServletOutputStream class,

259–260
defining a navigation case in JSF

configuration file, 30
defining element behavior, 203–204
defining the component type and

component class, 83–84
for defining your ProInputDate renderer-

specific attributes, 102
to determine date pattern and launch

calendar pop-up, 287–289
the _determineDatePattern() method, 387
for the doShow() ShowListener method, 124
for doStartTag() method, 162–163
the DynamicRenderKitViewHandler class,

409–410
the encodeChildren() method for getting the

header facet from the UIShowItem
component, 392–393

the encodeChildren() method to iterate over
the list of children, 392

the encodeChildren() method to see if
UIShowOne has any children, 391

the encodeEnd() method for closing the
HTML <body> and <html> tags, 383

the encodeEnd() method for closing the
UIShowOne component’s renderer, 393

■INDEX 415

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 415

code sample (continued)
the encodeEnd() method to write out the

markup and obtain the Converter,
386–387

the encodeHead() method, 383
the encodeResources() method for Ajax

enabling the date field component,
289–290

the encodeResources() method for the deck
component, 139

the encodeResources() method in the
HtmlShowOneDeckRenderer code, 214

encodeResources() method to write a
reference to the CSS style sheet, 68

excerpt from the d2.js library, 235
excerpt from the inputDate.css file, 292
excerpt of backing bean following the

contract of your Validator, 299
of the ExtendedRenderKit class, 244–245
of the ExtendedRenderKitFactory class,

241–243
extending the HtmlShowOneDeckRenderer

class, 235–236
extending the UIComponentBase class,

129–130
the FacesContextFactoryImpl class, 252–253
the _findFormClientId method, 145
the FixedContentTypeResponseWriter,

248–249
the getConverter() method, 69–70
the getRenderKitId() method for getting the

dynamic RenderKit ID, 408–409
the getRenderKitId() method with User-

Agent request header, 406–407
getters for the

HTCAjaxShowOneDeckRenderer
attributes, 395–396

the getters for the UIDocument attributes,
328–329, 383–384

getters for the
XulAjaxShowOneDeckRenderer
attributes, 340–341

for getting attribute values from the
UIComponent, 63

getting the IDs of the UIForm and
UIShowOne components, 141

getValueAsString() method, 68–69
a globally assigned event handler in HTC,

202
for handling child components added to

UIShowOne component, 339
HTC file structure, 200
HTC file with viewlink set, 205
the HTC registration in the faces-config.xml

file, 396, 397
the HtcAjaxInputDateRenderer class,

385–386
HTML markup needed for the

<pro:inputDate> HTC implementation,
364–365

an HTML page leveraging Ajax to update a
<select> element, 183

HTML prototype for the input date
component, 53–54

the HTML version of the showOneDeck.js
library, 237

HtmlAjaxRenderKit class, 246–247
HtmlInputDate.prototype._clickCell

method, 296–297
HtmlInputDate.prototype._scroll method,

295
the HtmlInputDate.prototype.showPopup

method, 293–294
HtmlRenderer superclass providing

convenience methods for other HTML
Renderers, 56–57

for implementation of the ShowListener
interface, 124–125

for implementing at-most-one semantics for
each script resource, 60

for implementing at-most-one semantics for
each style resource, 59

implementing the ShowSource interface, 132
import statements for the renderer package,

60–61
input and button markup needed for

calendar pop-up, 271–272
inputText component with attached date

converter, 22
introducing the UIShowOne behavioral

superclass, 129–130
JSF document using the <pro:inputDate>

tag, 103
JSF page matching the XUL and HTC

samples, 210–211
JSF page source, 272–273
JSF page source for HTC implementation,

399, 400
JSF page source for the Ajax-enabling deck

component, 229
JSF page source for XUL implementation,

357–358, 358–359
JSF selectOneRadio bound to a behavioral

superclass, 19
JSF selectOneRadio bound to a renderer-

specific subclass, 17–18
for the JSP tag handler, 347–349
the Login page modified with some JSP tags,

45–46
login page with <f:verbatim> tag wrapped

around non-JSF content, 46–47
the Mabon protocol, 282
Mabon servlet configuration, 285
the mabon.js library, 286
managed bean defined in the faces-

config.xml file, 11
managing state saving, 133
mapping of component type and

UIComponent subclass, 22

■INDEX416

5807index.qxd 1/22/06 4:50 PM Page 416

the markup needed to create the XUL date
implementation prototype page,
307–308

the markup needed to create the XUL deck
implementation prototype page,
317–318

markup to create a page using the
<pro:showOneDeck> HTC prototype,
375–376

method handling boolean attributes and
properties, 90

method handling MethodBinding attributes
and properties, 91

method handling string attributes and
properties, 88–89

method handling ValueBinding attributes
and properties, 90–91

of method to close the generated markup for
the UIShowOne components Renderer,
339

navigation rule configured in faces-
config.xml, 9

navigation rules and managed beans for the
JSF application, 29–30

new backing bean using the UISelectOne
class, 19

new renderer added to the default HTML
basic RenderKit, 26–27

overriding weblets mapping, 222
page source with the showListener tag, 123
parameterized HTML for the input date

component, 54
for parameterized HTML for the

showOneDeck renderer, 110–111
passing arguments to the Mabon send()

function, 286
the populateBookList() function, 184–185
the popup method in the bindings.xml file,

314
processing decodes, 133–134
processing facet and children of the

UIShowItem component, 142–143
of the pro.css file for defining the binding

element, 322
ProInputDate attributes, 86
ProInputDate component with attached date

Validator, 277
ProInputDateTag class, 93–94
the ProShowOneDeck client-specific

subclass, 148–150
the ProShowOneDeckTag class, 156–159
for referring to a remote server using the

http:// URL, 191
register the Ajax-enabled Renderer and

RenderKit, 238
to register the Ajax-enabled Renderer and

RenderKit, 262–263
registering ProShowOneDeck renderer-

specific class, 154–155

registering the dynamic RenderKit
implementation, 411

registering the HtmlAjaxInputDateRenderer,
297

for registering the JSF XUL implementation
of the ProDocument class, 345–346

registering UIShowOne and UIShowItem,
150–152

registration of the ProInputDateRenderer in
a faces-config.xml file, 82–83

of a regular HTML document structure, 323
the release() method, 98
the Renderer getConvertedValue() method,

75
renderer type as defined in the JSF

configuration file, 25
rendering the start of each UIShowItem child

component, 142
restoring state in the ProInputDate

component, 81–82
a sample CSS file that has the -moz-binding

property set—projsf.css, 194
a sample HTML file with XUL components—

prototype-ch4.xul, 194
sample page with the date field component,

55
saving state in the ProInputDate component,

81
script reference using http://, 191
of the scroll method in the bindings.xml file,

315
for the setAvailability() and getAvailability()

methods, 278
setProperties() method, 97
setting rendersChildren property flag to true,

144
for setting the CONTENT_TYPE variable to

the accepted XUL contentType, 352
for setting the default RenderKit ID, 404
setting the default RenderKit ID, 405–406
setting the default RenderKit ID using the

managed bean, 406
setting the method of saving state to the

server side in the deployment
descriptor, 21

the ShowEvent subclass, 118–119
showing how the name of a custom action

element is defined, 99
showing the createValueBinding() and

createMethodBinding() methods,
92–93

showing the deck HTML prototype
implementation, 109–110

showing the encodeBegin() method for the
HtmlShowOneDeckRenderer, 137–138

showing XBL file (bindings.xml) and the first
binding (inputDate), 309

the showItem binding and the expand
method, 319–320

■INDEX 417

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 417

code sample (continued)
the showItemActive binding, 320–321
the showItemHeader binding, 321
for the ShowItemTag class, 160–161
for the ShowListenerTag class, 161–162
the showOneDeck binding component, 319
the ShowSource interface, 128–129
a simple HTC file, 201
of a simple HTML file with attached

behavior, 203
a simple use case of an event and predefined

event handler, 190–191
a simple XUL file with embedded HTML

elements, 190
a simple XUL page using an XBL binding

with attached event handler, 198
source for your Ajax titles<em

dash>ajax.json, 187
the source of the showOneDeck.js file, 140
string returned after Mabon has evaluated

the Mabon protocol, 282
tag attributes to support the behavioral

UIInput attributes, 100–101
Tag Library Descriptor (TLD), 165–168, 300
the _determineTargetURL() method, 388
for TLD defining just one custom action,

98–99
the transferListItems() function that

populates the <select> element, 186
turning an HTC file into a custom tag,

203–204
UIComponent attributes, 99–100
UIComponent clientId lookup, 64
UIComponent-inherited attributes, 84
the UIComponentTagSupport class, 88
the UIDocument class, 324
UIInput-inherited attributes, 85–86
UIShowItem component, 135–136
for the unique keys used to identify

resources, 60
using <deferred-method> syntax, 102
using <deferred-value> syntax, 102
using a managed bean for creating and

mapping to backend code, 30
using getRendersChildren() method for the

UIShowOne component, 393
using relative weblet:/ protocol syntax, 356
using the _determineDatePattern() method,

333
using the _determineTargetURL() method,

333–334
using the component attributes map to

update a renderer-specific attribute, 20
using the decode() method, 340
using the encodeChildren() method, 337
using the encodeChildren() method for

writing out the start element and any
attributes, 338

using the encodeEnd() method to get hold of
the Converter, 330–331

using the getConvertedValue() method, 332
using the getConverter() method, 332
using the getRendersChildren() method for

the UIShowOne component, 339
using the input date component with the

Ajax Renderer, 272–273
using the input date component with the

XUL Renderer, 357–358
using the mabon:/ syntax, 286
using the release() method to release stored

state, 164
using the weblet protocol to serve up

resources, 220
using weblets to serve resources from the

JAR file, 356
of a valid XUL document structure, 323
the validate() method, 277–278
Weblet configuration for the D2 library, 264
Weblet configuration for the Dojo toolkit,

263–264
Weblet configuration for the

HtmlAjaxInputDateRenderer
resources, 301

weblet container configuration in the
web.xml file, 221–222

for the weblet protocol syntax, 219
weblets configuration file defining a custom

MIME type, 217
of the weblets configuration file for HTC

resources, 398
the weblets configuration file for packaging

XUL resources, 355–356
weblets configuration file using 1.0

versioning for production, 218
weblets configuration file using SNAPSHOT

versioning for development, 219
weblets configuration file, weblets-

config.xml, 216
writing output to the JSP buffered body tag,

67
for writing style resources to the client, 58
an XBL file containing one binding—projsf-

bindings.xml, 193
the XML data island for the <pro:inputDate>

calendar, 367–368
the XmlResponseWriter, 353–354
a XUL file with XBL components—

prototype-ch4.xul, 197
XUL registration in faces-config.xml,

354–355
the XulAjaxInputDateRenderer extending

XulRenderer, 329–330
for the XulAjaxShowOneDeckRenderer class

encodeBegin() method, 335–336
for the XulDocumentRenderer

encodeBegin() method, 326–327
for the XulDocumentRenderer encodeEnd()

method, 328
com.apress.projsf prefix, use of in samples in

book, 22

■INDEX418

5807index.qxd 1/22/06 4:50 PM Page 418

commandButton component, properties of, 23
component, defining in XBL vs. HTC, 206
COMPONENT element, in HTC, 201
component encapsulation, in HTC, 204–205
component families, a subset of all standard

and their components, component
types, and rendered types, 25–26

component family, associating a renderer to a
particular one, 21

component library, weblets built-in support for
versioning of, 217–219

component model, JSF (JavaServer Faces), 8
component type, mapping of it and

UIComponent subclass, 22
component type and component class, code

sample defining, 85–86
component writer, 4
component-based UI framework, JSF as, 13–15
componentForElement parameter, function of,

67
“Componentizing Web Applications”, Web site

address for proposal sent to W3C, 200
components

attaching in XBL vs. in HTC, 207
as the foundation of JSF, 3–48
overview of those provided by the JSF

implementation, 15–16
_constructor() function

as core piece of the HTC element behavior,
377–379

local variables and, 369–370
constructor method, supported by XBL, 196
<constructor> XBL element

code sample in the bindings.xml file, 313
function of, 312

content type
dealing with, 250–251
providing a custom via the JSP page

directive, 250–251
content type and character encoding, 36
controller, FacesServlet that comes with JSF, 13
conversion errors, ConverterException thrown

by getConvertedValue() method, 75
converters, function of, 22
converters and validators, creating, 276–279
converters, validators, events, and listeners,

helper classes provided by JSF
implementations, 22–23

createHttpRequest() function, that creates the
XMLHttpRequest object, 185–186

createMethodBinding() method
code sample for, 92
function of, 93

createResponseWriter() method, function of, 35
createShowListener method, code sample for,

164
createUniqueId() method, calling to create a

clientId, 64
createValueBinding() method, code sample for,

92

cross-platform support, importance of in
developing RIAs, 208–209

CSS (Cascading Style Sheets), attaching an XBL
component or behavior to a XUL
application with, 193–195

CSS (Cascading Style Sheets) file
a sample that has the -moz-binding property

set, 194
using to define the binding element, 321–322

custom action element, code showing how the
name is defined, 99

custom action tag handlers, function of, 27

■D
D2 (D-squared) framework, function of in the

Ajax-enabled deck component, 224
D2 library, registering, 264
D2 open source project

introducing, 234–235
using to process a response and modify the

DOM in the target document, 247–248
d2_loadtext callback function, defined by D2

library, 235
d2.js library

code showing excerpt from, 235
functions in, 235

d2.submit() function, dojo.io.bind() method
called by, 235

data fetch request, sequence diagram of
Mabon/Ajax, 284

data islands. See XML data islands
data-bound table component, code sample for,

276
dataTable component, adding a header facet to,

23–24
date component

requirements for HTC implementations, 362
XUL implementation of, 304–359

date field component
Ajax enabling, 267–302
defining, 49–104
requirements for, 49–51
sample page with, 55

DateValidator class
function of, 269, 277–279
function of in HTC Renderers, 387–388

deck component
Ajax enabling, 223–265
creating a UI prototype, 108–113
creating a UI prototype for an Ajax-enabled,

227–230
defining, 105–169
designing an Ajax-enabled using a blueprint,

226–227
designing using a blueprint, 107–169
diagram showing classes created in

Chapter 3, 106
event handling overview, 114–115
implemented in HTML, 227

■INDEX 419

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 419

deck component (continued)
implemented in HTML showing the Java

item expanded, 108
as it would be used in a JSF JSP document,

112–113
list of classes, 107
requirements for, 106
requirements for Ajax implementation,

223–224
requirements for HTC implementations, 362
ShowItemTag class that represents leaf nodes

of, 107
use of the alert() function attached to each

item, 111
XUL implementation of, 304–359

decode() method
adding to the XulAjaxInputDateRenderer,

331
code sample for

HtcAjaxShowOneDeckRenderer class,
395

code sample of, 340
decodes, processing of, 133–134
DecoratingRenderKitFactory class, class

diagram of, 241
DEFAULT element, in HTC, 201
default page description, defined by the JSF

specification, 12–13
DeferredContentType implementation,

diagram over, 255
DeferredContentTypeResponse

code sample showing, 255–257
creating, 252

DeferredContentTypeResponse class
code sample showing, 257–258
decoration of the JSP HttpServletResponse

with, 255–258
function of, 225

<deferred-method> syntax, function of, 102
DeferredPrintWriter class

code sample for, 261–262
function of, 225, 261–262

DeferredServletOutputStream class
code sample for, 259–260
function of, 225, 258–260
initial processing of the request to set the

content type on HttpServletResponse,
259

<deferred-value> syntax, function of, 102
Delta DOM (D2) framework, function of in the

Ajax-enabled deck component, 224
Delta DOM Rendering (D2R), as architectural

solution for applying changes in Ajax,
231

descendant selectors, function of, 292–293
_determineDatePattern() method

code sample for, 290
code showing use of for XUL

implementation, 333

for obtaining the date format pattern for the
managed bean bound to the Validator,
387

_determinePattern() method, calling in
encodeEnd() method, 331

_determineTargetURL() method
calling in encodeEnd() method, 331
code sample for, 290–291
code showing use of for XUL solution,

333–334
for obtaining the target URL for the managed

bean bound to the Validator, 387
DHTML (dynamic HTML). See also Microsoft

Dynamic HTML and HTC
for building rich Internet applications, 199

DHTML applications, building, 202–205
DHTML behaviors, 361
DHTML behaviors and HTC, Web site address

for information about, 364–365
DHTML (dynamic HTML) toolkit, Dojo toolkit

as, 234
direct and delegated implementation, for

handling decode and encode, 24
dispatch() method, function of in Restore View

phase in JSF lifecycle, 34
Dojo toolkit

code sample of Weblet configuration for,
263–264

providing file upload functionality in Ajax
with, 233

registering, 263–264
Web site address for, 224

dojo.io.bind() method, function of, 235
DOM Inspector, a page’s DOM tree with and

XBL component, 195
DOM mutation, loss of changes made since last

form POST in, 231
doShow() method, for ShowListener interface,

124
doStartTag() method, code sample for, 162–163
dynamic HTML (DHTML). See Microsoft

Dynamic HTML and HTC
dynamic RenderKit ID, syntax for, 405–406
dynamic RenderKit implementation, structure

of, 405
dynamic RenderKit managed bean, function of,

406–409
dynamic RenderKit solution, registering,

411–412
DynamicRenderKitViewHandler class

class diagram for, 409
function of, 405

■E
element behavior, released with Internet

Explorer 5.5, 203
_encodeAll() method

calling to render the header facet, 145–146

■INDEX420

5807index.qxd 1/22/06 4:50 PM Page 420

for handling any kind of child component
added to the UIShowOne component,
339

encodeAll() method, recursively calling until all
children have been rendered, 394

encodeBegin() method
arguments taken by, 138
arguments taken by for the

XulDocumentRenderer, 326–327
function of, 37, 45
function of in client-specific renderer, 61
for the HtcAjaxShowOneDeckRenderer class,

389–391
of the HtmlDocumentRenderer class,

381–382
for the HtmlShowOneDeckRenderer,

137–138
obtaining a Map containing all available

attributes from UIComponent, 382
for the XulAjaxShowOneDeckRenderer class,

335–336
encodeChildren() method

calling the _encodeAll() method to render
the header facet, 145–146

for checking whether the UIShowOne
component has any children, 337

code for checking whether each child is an
instance of UIShowItem, 337–338

code for writing out the start element and
any attributes, 338

function of in client-specific renderer, 61
for the HtcAjaxShowOneDeckRenderer class,

391–393
rendering the start of each UIShowItem child

component, 142
of UIShowOne component, 141–144

encodeEnd() method
arguments, 62
for closing the generated markup for the

UIShowOne components Renderer,
338–339

for closing the HTML <body> and <html>
tags, 382–383

code sample using to get hold of the
Converter, 330–331

combining all rendered output into a single,
144

function of, 38
function of in client-specific renderer, 61
of the HtmlInputDateRenderer class, 77
methods called to retrieve the date format

pattern and the target URL, 331
encodeHead() method, responsible for writing

out the <head> element, 383
encodeResources() method

automatic calling of during encodeBegin(),
57

code sample, 68
code sample for, 139, 289–290

code showing use of in
XulAjaxShowOneDeckRenderer class,
336

for the HtcAjaxShowOneDeckRenderer class,
391

for the HtmlShowOneDeckRenderer class, 214
overriding to write a reference to the CSS

style sheet, 67
enctype parameter, function of with <form> tag,

177
endDocument() method, provided by the JSF

ResponseWriter class, 65
endElement() method

provided by the JSF ResponseWriter class,
65–66

using ResponseWriter’s to improve
performance, 139

eval() function, function of, 280
event and listener implementations, class

diagram showing all classes needed for,
114

event delivery, in practice, 123–125
EVENT element, in HTC, 201
event handlers, predefined provided by the GRE

DOM implementation, 192
event handling

comparing in XBL and HTC, 206–207
and HTC, 201–202
overview, 114–115
and XBL bindings, 197–198

event listener adapter, function of, 120–123
event listener interface, function of, 120
event subclass, creating, 117–119
EventListener registration, following the standard

JavaBeans design pattern for, 129
events, using to be notified about changes to

the UI or underlying model, 116
events and listeners, creating for deck

components, 113–127
_expand() function, function of, 379–380
ExtendedRenderKit class

code sample of, 244–245
function of, 225

ExtendedRenderKitFactory class
code sample of, 241–243
function of, 226, 241–246

■F
faces-config.xml file

code sample for the HTC registration in, 396,
397

managed bean defined in, 11
XUL registration in for XUL Ajax

implementation, 354–355
FacesContext context argument, for

encodeEnd() method, 62
FacesContextFactory

extending, 251–252
function of, 32–33

■INDEX 421

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 421

FacesContextFactory implementation, diagram
over the FacesContext implementation,
251

FacesContextFactoryImpl class
function of, 226
support for additional processing of the

servlet response object, 252–253
FacesContextFactoryWrapper class, function of,

226
FacesEvent base class, structure and method

summary of, 116
FacesLifecycleServlet class, in Mabon, 281
FacesListener interface, as base interface for all

default and custom listener interfaces
in JSF, 119–120

FacesServlet
controller for JSF, 13
function of in JSF lifecycle, 33–34

facets
within a dataTable component, 23–24
processing facet and children of the

UIShowItem component, 142–143
factories. See ApplicationFactory class;

FacesContextFactory; LifecycleFactory;
RenderKitFactory

field item, that can be added to the binding, 195
<field> XBL element, function of, 312
file upload, providing functionality for in Ajax,

233
_findFormClientId method, code sample, 145
Firefox, DOM mutation support in, 230
FixedContentTypeResponseWriter class

class diagram for creating during Ajax
postback, 248

diagram illustrating the structure and
dependencies of, 248

function of, 225
responsibility of, 247

<form> elements, illegality of nested in an
HTML document, 367

<form> tag, parameters in a traditional Web
application, 177

formClientId argument, to showOneDeck(), 139
frameworks, as JSF components, 7
<f:verbatim> tag

using to render non-JSF content, 47
wrapping around non-JSF content, 46–47

<f:view> tag
function of, 35–36
illustration showing the closing of, 38

■G
GET method

length restriction for, 177
using when submitting a form, 177–178

getAgent() method, calling from the
AdfFacesContext to obtain the user
agent, 408–409

getAllResponseHeaders() method,
XMLHttpRequest object, 176

getAttributes() method, for getting attribute
values from the UIComponent, 63

getAvailability() method, code sample for with
setAvailability() method, 278

getCharacterEncoding() method, provided by
the JSF ResponseWriter class, 65

getClientId() method
for getting a component’s unique identifier,

336
for obtaining clientId from the

UIComponent that implements
NamingContainer, 64

for obtaining the clientId for the
HtcAjaxShowOneDeckRenderer class,
390–391

getComponent() method, of the FacesEvent
base class, 116

getContentTpe() method, provided by the JSF
ResponseWriter class, 65

getConvertedValue() method
for converting the submitted value to a

strongly typed object, 332
exception thrown if there are conversion

errors, 75
function of, 74–75

getConverter() method
adding to the HtmlInputDateRenderer class

to control value conversion, 69–70
function of, 332

getCreated() method, for evaluating if parent
UIComponentTag has a matching
UIComponent, 163

getFacet() method
adding getter and setter methods for the

header facet with, 136
calling to get the header facet from the

UIShowItem component, 338
getHeader() method

for getting the header facet from the
UIShowItem component, 392–393

getting the header facet from the
UIShowItem component with, 143

getOutputStream() method, in the
DeferredContentTypeResponse class,
258

getPhaseId() method, of the FacesEvent base
class, 116

getRenderKitId() method, code sample with
Use-Agent request header, 406–407

getRendersChildren() method
code sample using, 393
function of in client-specific renderer, 61
using for rendering children for the

UIShowOne component, 339
getResponseHeader(“headerLabel”) method,

XMLHttpRequest object, 176

■INDEX422

5807index.qxd 1/22/06 4:50 PM Page 422

_getScriptResourceAlreadyWritten() method,
for implementing at-most-one
semantics for each script resource, 60

_getStyleResourceAlreadyWritten() method, for
implementing at-most-one semantics
for each style resource, 59

getStylesheetURI() method, for returning the
value of the stylesheetURI attribute,
383–384

getTitle() method, for returning the value of the
title attribute, 383–384

getValueAsString() method, for returning the
string representation of the value to be
encoded, 68–69

getWriter() method, in the
DeferredContentTypeResponse class,
258

■H
handleCommit() method, function of, 259–260
handleNavigation() method, use of in Invoke

Application phase, 44–45
<handler> element, as child of the <handlers>

element, 197–198
<handlers> element, function of, 197–198
<head> element, defining the element behavior

prototype using <public:component>
element, 368

header facet
adding to both a dataTable component and a

column component, 23–24
getting from the UIShowItem component,

338
using rather than a headerText attribute, 135

<h:form> tag
execution of, 36–37
output token and closing process of, 37–38

Hibernate, as JSF component, 7
Hollywood principle, meaning of, 7
<h:panelGrid> tag, use of in Invoke Application

phase, 46–47
HTC. See also Microsoft HTC

adding content in vs. XBL, 206
assigning a call to a function with, 202
associating a function with an event in, 202
attaching components in vs. XBL, 207
comparing XBL and, 206–207
defining a component in vs. XBL, 206
and event handling, 201–202
event handling in vs. XBL, 207
a globally assigned event handler in, 202
page in Internet Explorer using HTC as a

rendering technology, 210
scripting languages supported by, 201
summary, 205
what it brings to JSF, 362
vs. XAML, 199

HTC <pro:inputDate> _clickCell() function,
sequence of function calls in, 373

HTC <pro:inputDate> _popup() function,
responsible for launching the calendar
when user clicks the button, 371–372

HTC <pro:inputDate> _scroll() function,
sequence of function calls in, 372

HTC <pro:showItem> _expand() function,
diagram of, 379

HTC components, using oncontentready vs.
ondocumentready to initialize, 368

HTC date element behavior, 365–374
HTC deck element behavior, 376–380
HTC file structure

and elements, 200–201
typical, 366

HTC implementation
of the deck and date components, 362–401
JSF page source for, 399

HTC implementations, deck and date
components’ requirements for, 362

HTC public elements, used by HTC to define
components, 201

HTC Renderers, providing, 361–401
HTC resources, registering with weblets, 398
HTC structure, 199–202
HtcAjaxDateRenderer class, function of,

384–388
HtcAjaxInputDateRenderer class

class diagram for, 384
function of, 363

HtcAjaxShowOneDeckRenderer class
class diagram showing, 389
the encodeBegin() method for, 389–391
encodeResources() method, 391
function of, 363, 388–396

HTC-specific elements, table of, 366
HTC-specific events, table of, 369
HTML date implementation prototype,

implemented in HTC, 364–365
HTML deck implementation prototype,

implemented in HTC, 375–376
HTML file, sample with XUL components, 194
HTML pages, using Ajax to filter a list of books

based on category in, 182
HtmlAjaxInputDateRenderer

class diagram showing, 279
registering, 297

HtmlAjaxInputDateRenderer class
ending the HtmlInputDateRenderer to add a

pop-up calendar, 287–289
function of, 269

HtmlAjaxInputDateRenderer resources, code
for Weblet configuration for, 301

HtmlAjaxRenderKit class
class diagram of, 243
code sample of, 246–247
function of, 225, 246–247

HtmlAjaxShowOneDeckRenderer class
class diagram showing it extending the

HtmlShowOneDeckRenderer, 235
function of, 225

■INDEX 423

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 423

HtmlDocumentRenderer class
encodeBegin() method of, 381–382
function of, 363
a port of the XulDocumentRenderer, 381–382

HtmlInputDate.prototype._clickCell method
diagram of, 296
function of, 295–297

HtmlInputDate.prototype._scroll method,
allowing the user to navigate plus or
minus one month in the calendar,
294–295

HtmlInputDate.prototype.showPopup method,
function of, 293–294

HtmlInputDateRenderer, using weblets in, 220
HtmlInputDateRenderer class

in charge of markup rendered to the client,
52

code sample showing the encodeEnd()
method of, 77

import statements for, 60–61
registering as a renderer for JSF, 82–83

HtmlInputText component, illustrating the
relationship between the component
family and renderer type, 37

HtmlRenderer class
convenience methods provided by, 56–60
creating for encoding resources, 52
diagram showing

HtmlShowOneDeckRenderer
extending, 137

HtmlShowOneDeckRenderer class
in charge of the markup rendered to the

client, 107
class diagram showing

HtmlAjaxShowOneDeckRenderer class
extending, 235

code sample extending, 235–236
encodeBegin() method for, 137–138
extending the HtmlRenderer, 136–148
registering in faces-config.xml, 153
using weblets in, 220–221

HTTP GET method. See GET method
HTTP POST method. See POST method
HttpServletResponse, overriding, 253–262

■I
IllegalArgumentException, thrown if value

passed doesn’t conform to EL
expression syntax, 90–91

<image> component, Mozilla XUL, 189
immediate attribute, setting on UICommand

components, 97
<implementation> XBL element

code sample of in the bindings.xml file, 312
function of, 312

@import rule, function of, 272
input date component

building an application with, 103
code using with the Ajax Renderer, 272–273

designing using a blueprint, 52–53
HTML prototype for, 53–54
intent of, 51–52
using with the XUL Renderer, 357–358

InputDate component, controlling the
decoding process of, 73

inputDate.css file, code excerpt from, 292
inputDate.css resource, 292–293
insertAdjacentHTML method, specific to

Internet Explorer, 379
instance-based programming. See prototype-

based programming
Internet Technologies. See Rich Internet

Technologies (RITs)
Invoke Application phase

event handling in the application, 126
performing application logic in, 42–43
in request-processing lifecycle, 27–28

InvokeApplicationPhase class, in Mabon, 281
IoC, meaning of, 7
isActive flag, setting, 142
isAppropriateListener() method, of the

FacesEvent base class, 116
isValueReference() method, for checking if a

values is a JSF EL expression, 89
itemId argument, to showOneDeck(), 139

■J
J2EE 1.4 API specification, for more information

about the TagSupport and Tag classes,
162

J2EE architecture, common for a typical
multitier software solution serving a
retail company, 6, 10

Java Community Process (JCP), keeping up-to-
date with emerging technologies and
standards through, 5–7

Java Web applications, JavaServer Faces as user
interface framework for, 3

JavaScript and the DOM, Web site address for
information about, 141

JavaScript debugger, Mozilla’s Venkman, 179
JavaServer Faces (JSF). See JSF (JavaServer

Faces)
JavaServer Faces 1.1 specification, list of

developer types from, 3–4
javax.faces, reserved for use by component

families and component types, 22
JSF (JavaServer Faces)

application development with, 9–10
backing bean as plain old Java object (POJO)

in, 11–12
component model, 8
declarative navigation model, 8–9
developer types, 3–4
developing smarter, 1–48
FacesServlet controller for, 13
formal lifecycle of, 27
the foundation of, 3–48

■INDEX424

5807index.qxd 1/22/06 4:50 PM Page 424

the greatest thing since sliced bread, 207–211
introducing, 8–47
page built with components using XUL as

the rendering technology, 209
vs. Swing framework, 114–115
using to build an application, 28–31
what HTC brings to, 362
what it brings to HTC, 362
what Mozilla XUL brings to, 304

JSF 1.1 #{} expressions and JSF 2.0 ${}
expressions, 99

JSF 1.1 specification, for more information
about the UIComponentTag, 163

JSF 1.2
binding attribute added to all standard

converter, validator, and listener tags
by, 163

changes in to UIComponentTagSupport
setStringProperty() method in, 89

changes in specification, 282
UIComponent.encodeAll(FacesContext)

method added to, 146
JSF 1.2 tag handlers, use of JSP ValueExpression

and MethodExpression types as
parameters, 93

JSF Ajax
different approaches, 274–275
selecting an approach, 275–276

JSF and JSP, 45–47
JSF applications

including Ajax support in, 238–249
using weblets in, 221–222

JSF (JavaServer Faces) architecture, Model 2
pattern in, 10–11

JSF Central, Web site address for, 128
JSF community, resources available in, 128
JSF component

blueprint for creating a new date field
component, 53

blueprint for creating a new deck
component, 107–108

building blocks, 13
designing using a blueprint, 269–270
steps for creating a new Ajax-enabled deck

component, 226–227
steps in blueprint for creating new, 306–307

JSF component libraries, custom servlet or filter
solutions provided by, 214

JSF configuration file
adding a new renderer to, 26–27
code sample for renderer type as defined in,

25
navigation rules in JSF defined inside of, 8–9

JSF developer types, table of, 3–4
JSF EL syntax, using in the faces-config.xml file

to set pointers to the managed bean,
405–406

JSF Expression Language (EL) expression, using,
88–89

JSF HTC components
building applications with, 398–401
designing using a blueprint, 363–398

JSF implementations
extending, 249–262
helper classes provided by for

UIComponents, 22–23
overview of components provided by, 15–16

JSF implementers, 4
JSF JSP document, deck component as it would

be used in, 112–113
JSF Lifecycle, event handling in, 125–127
JSF NamingContainer marker interface. See

NamingContainer marker interface
JSF pages, enabling JSP support for, 86
JSF page source, for HTC implementation,

399–400
JSF specification

behavioral superclasses available in, 50–51
default page description defined by, 12–13

JSF tag handler, main purpose of, 27
JSF view identifier, viewID, 35
JSF view layer, function of, 12–13
JSF Web application

factory classes instantiated upon startup,
31–33

initial request, 33–39
players involved at application start-up, 32

JSF XUL components
building applications with, 357–359
using a blueprint for designing, 306–307

JSON (JavaScript Object Notation)
defined, 268
and Mabon, 280
syntax for showing the simple data source, 187
valid data types in, 280

JSP 2.0 ${} expressions and JSF 1.1 #{}
expressions, 99

JSP 2.1, <deferred-value> and <deferred-
method>, 102

JSP document
default processing of, 250
diagram showing processing of, 254

JSP page directive, providing a custom content
type via, 250–251

JSP tag, as JSF component building block, 13
JSP tag handler

code sample for, 347–349
JSP tag handler and TLD

creating for defining the date field
component, 86–102

creating for the date field component,
297–300

creating for the deck component, 155–169
creating for the ProDocument class, 347–350

<jsp:text> tag, for adding a label to each input
field, 46

JSR-276: Design-Time Metadata for JavaServer
Faces Components, currently under
development, 153

■INDEX 425

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 425

■L
Lifecycle approach, function of in Ajax enabling

of the date field component, 275
Lifecycle phase

effect of calling renderResponse() method
during any, 71

effect of calling responseComplete() method
during any, 71

LifecycleFactory, function of, 32–33
LifecycleFactoryImpl class, for adding the

MabonLifecycle, 282
LifecyclePhase class, in Mabon, 281
listArray argument, for the transferListItems()

function, 186–187
Listbox renderer type, for UISelectOne

component, 14
listener management interface, ShowSource

interface, 128–129
Listeners, supported by JSF, 119–120
listeners and events, creating for deck

components, 113–127
Login page

code sample for building for a JSF
application, 28–29

example of, 29
login.jspx page, building, 28–29

■M
Mabon (Managed Bean Object Notation)

classes in, 281–282
data fetch request, 283–285
defined, 268
initial request, 282–283
and JSON, 280
sequence diagram of at application start-up,

283
sequence diagram of initial request, 283
sequence diagram over Mabon lifecycle

during postback, 284
structure of, 281–282
Web site address for, 268
what it is, 279

Mabon APIs and how to register Mabon with an
application, 285–291

Mabon JavaScript APIs, 285–286
Mabon lifecycle, sequence diagram over during

postback, 284
Mabon protocol

code sample of, 282
code showing string returned after Mabon

has evaluated it, 282
used to reference the backing bean and a

JavaScript convenience function, 279
using, 286–287

Mabon send() function, passing arguments to,
286

Mabon servlet configuration, adding to the Web
application configuration file, 285

Mabon/Ajax data fetch request, sequence
diagram of, 284

mabon.js library, code sample, 286
MabonLifecycle class, phases in and function

of, 281
MabonViewHandler class, function of, 282
managed bean, defined in the faces-config.xml

file, 11
managed bean scopes, table of, 12
markup elements, leveraging some

convenience methods to generate
proper, 65–67

Menu renderer type, for UISelectOne
component, 14

<menu> component, Mozilla XUL, 189
<menubar> component, Mozilla XUL, 189
<menuitem> component, Mozilla XUL, 189
<menupopup> component, Mozilla XUL, 189
METHOD element, in HTC, 201
method parameter, function of with <form> tag,

177
<method> XBL element, function of, 312
MethodBinding class

use of by UICommand components, 92
vs. ValueBinding class, 91

methods, that can be added to the binding, 195
Microsoft Dynamic HTML and HTC. See also

DHTML; HTC
introduction to, 199–205

Microsoft HTC. See HTC
Microsoft HTC Renderers. See HTC Renderers
Microsoft Internet Explorer, all of the Ajax

pieces available in, 361
Microsoft Windows Explorer, expandable deck

used in, 105
MIME type, weblets configuration file defining

a custom, 217
Model 2 pattern, elements in, 10–11
Model-View-Controller (MVC) architecture,

defined, 5
Moore, Gordon (Fairchild Camera and

Instrument Corporation), quotation by,
4

Mozilla Amazon Browser, as example of SPIF
application, 303

Mozilla Firefox browser, Mozilla XUL as
development platform for, 187–199

Mozilla Thunderbird email client, Mozilla XUL
as development platform for, 187–199

Mozilla XUL (XML User Interface Language).
See also XUL applications; XUL
components

chrome system, 188
creation of, 174
deck implementation prototype, 317–318
introduction to, 187–199
what is needed to support, 323
what JSF brings to, 304

Mozilla XUL renderers, providing, 303–359

■INDEX426

5807index.qxd 1/22/06 4:50 PM Page 426

Mozilla’s Venkman JavaScript debugger, Web
site address for, 179

multiple attribute, of <select> element, 14
MVC architecture, with JSF Model 2, 10–11

■N
namespaced HTML elements, how to embed

into base XUL controls, 190
NamingContainer, example of unique IDs

within, 64
NamingContainer marker interface, function of,

65
navigation model, JSF (JavaServer Faces), 8–9
newInstance() method, for creating a new

instance of a class, 164
nodeTypes, Web site address for information

about, 181

■O
objects, function of in JSON, 280
onblur event handler, function of, 192
oncommand event handler, function of, 192
onCommit() method

calling on the DeferredContentTypeResponse,
259–260

function of, 258
oncontentready HTC-specific event, function

of, 369
oncontentsave HTC-specific event, function of,

369
ondetach HTC-specific event, function of, 369
ondocumentready HTC-specific event, function

of, 369
one-tier applications, history of, 4–5
onfocus event handler, function of, 192
onget event handler, for getting the value

attribute on your <pro:welcome> tag,
196

onload event handler, function of, 192
onreadystatechange property, XMLHttpRequest

object, 176
onset event handler, for setting the value

attribute on your <pro:welcome> tag,
196

open(“method”, “URL”) method,
XMLHttpRequest object, 176

OpenLaszlo’s Amazon Store, as example of SPIF
application, 303

Oracle ADF Faces
getting information about the Apache

MyFaces open source project, 403
User-Agent abstraction provided by, 408

■P
PackagedWeblet, function of, 216–217
page author, 3
<parameter> XBL element, function of, 312
Partial-Page Rendering (PPR), as first successful

implementation of Ajax in JSF, 230–231

phaseId property, setting, 116–117
PhaseId values, table of valid, 117
PhaseListener approach, function of in Ajax

enabling of the date field component,
275

POJO (plain old Java object), backing bean as,
11–12

populateBookList() function, in Ajax book filter
implementation, 184–185

_popup() function, function of, 371–372
POST method

length restriction for, 177
using when submitting a form, 177–178

postback. See also Ajax postback; regular
postback

Ajax, 180–181
decode on, 70–73
form required for file upload functionality,

181
with navigation in Invoke Application phase,

43–45
process validation and conversion during,

73–75
regular in traditional Web application

development, 177–178
render response on, 44

postback request, how JSF handles, 39–45
postback with navigation, in Invoke Application

phase, 43–45
preventBackButtonFix workaround, for Dojo

toolkit to be configured to work with
XUL, 308

pro-bindings.xml, code sample for adding
properties and methods, 196

process validation and conversion, during
postback, 73–75

Process Validations phase
conversion and validation, 40–41
entered after the Apply Request Values

phase, 73
in request-processing lifecycle, 27–28
use of the processValidators() and validate()

methods in, 74
processApplication() method

function of in Invoke Application phase,
126–127

use of in Invoke Application phase, 42–43
processDecodes() method

called on the UIViewRoot during the Apply
Request Values phase, 71–72

function of in Invoke Application phase, 126
for processing decodes on the UIViewRoot,

133–134
recursively calling for each UIComponent in

the component hierarchy, 394
use of during the Apply Request Values

phase, 146–148
processListener() method, of the FacesEvent

base class, 116

■INDEX 427

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 427

processUpdates() method
calling on each UIComponent in the

component hierarchy, 75–76
function of in Update Model phase, 41–42

processValidators() method
calling on the UIViewRoot, 40–41
conversion and validation performed by

calling on the UIViewRoot, 73
ProDocument class

class diagram for, 341
code sample for building, 342–344

ProDocument component, ProDocumentTag
class representing, 305

ProDocument renderer-specific subclass, for
the UIDocument class, 305

ProDocumentTag class
class diagram showing, 347
for creating the component that will create a

ProDocument instance, 347–350
representing the ProDocument component,

305
Tag Library Descriptor (TLD) for, 349–350

ProDocumentTag handler, code for registering
and setting rules for, 349–350

ProInputDate attributes, code sample, 86
ProInputDate class, as renderer-specific

subclass, 52
ProInputDate component

with attached date Validator, 277
implemented in DHTML/Ajax, 270
providing support for the

valueChangeListener attribute, 91
requirements for Ajax implementation of,

267
requirements for HTC implementation, 362
requirements for XUL implementation, 304
restoring and saving state in, 81–82

ProInputDate renderer-specific attributes, code
for defining, 102

ProInputDate renderer-specific subclass, class
diagram over, 78

<pro:inputDate> component
code using the HTC <body> element, 366
HTML markup needed for the HTC

implementation of, 364–365
implemented in HTC, 398–401
implemented in HTML and HTC, 364
JSF page rendered using the XUL RenderKit

and, 357
<pro:inputDate> tag, code showing JSF

document using, 103
ProInputDateTag class

code sample, 93–94
function of, 93–98
tag handler for the date field component, 52

projsf-bindings.xml, code showing an XBL file
containing one binding, 193

projsf.css, a sample CSS file that has the -moz-
binding property set, 194

PROPERTY element, in HTC, 201

property item, that can be added to the binding,
195

<property> XBL element, function of, 312
<pro:showDeckOne> component, JSF page

rendered using the XUL RenderKit and,
358

<pro:showItem> component, as part of the
<pro:showOneDeck> component, 319

<pro:showItemActive> component, function of,
320–321

<pro:showItemHeader> component, function
of, 321

ProShowOneDeck class
class diagram showing, 148
client-specific subclass, 128
renderer-specific subclass, 107

ProShowOneDeck client-specific subclass, code
sample for, 148–150

ProShowOneDeck component
examining how to Ajax enable, 224–264
ProShowOneDeckTag class that represents,

107
requirements for HTC implementation, 362
requirements for XUL implementation, 304
running in multiple clients using client-

specific markup, 412
ProShowOneDeck renderer-specific class,

registering, 154–155
<pro:showOneDeck> component

implemented in HTC, 400
implemented in XUL, 317
prototype implemented in HTML and HTC,

375
ProShowOneDeckTag class

code sample for, 156–159
that represents ProShowOneDeck

component, 107
prototype-based programming, defined, 292
prototype-ch4.xul

code sample of a XUL file with XBL
components, 197

a sample HTML file with XUL components,
194

prototype-oriented programming. See
prototype-based programming

<public:attach> element, coupling an event
raised on the client with an underlying
function with, 200–201

<public:component>, used to define element
and attached behavior types, 200

<public:event> HTC-specific element, for listing
events that define the HTC component,
200

<public:method> HTC-specific element, for
listing methods that define the HTC
component, 200

<public:property> HTC-specific element, for
listing properties that define the HTC
component, 200

■INDEX428

5807index.qxd 1/22/06 4:50 PM Page 428

■Q–R
queue() method, of the FacesEvent base class,

116

Radio renderer type, for UISelectOne
component, 14

<radio> component, Mozilla XUL, 189
<radiogroup> component, Mozilla XUL, 189
readyState property, XMLHttpRequest object,

176
registering

HtmlInputDateRenderer class as a renderer
for JSF, 82–83

the HtmlShowOneDeckRenderer class in
faces-config.xml, 153

ProShowOneDeck renderer-specific class,
154–155

render-specific subclass in the faces-
config.xml file, 83–86

a UIComponent and Renderer, 82–86
UIShowOne and UIShowItem, 150–155

regular postback
obvious undesired side effects of, 178–179
sequence diagram over, 178
in traditional Web application development,

177–178
relative variables

issues with, 275–276
possible solutions to, 276

release() method
for releasing the internal state used by a tag,

164
for resetting all the internal storage, 98

render() method, function of in Restore View
phase in JSF lifecycle, 34

Render Response phase
during initial request in the JSF lifecycle, 34
during postback, 76–77
processing of the response object during,

253
in request-processing lifecycle, 27–28

Renderer
adding functionality to for detecting the Ajax

request, 274
client-side attributes provided by, 55
registering UIComponent and, 82–86

Renderer and RenderKit, code sample to
register the Ajax-enabled, 262–263

renderer types, function of, 25–26
RENDERER_TYPE, passing to the

setRendererType() method, 78–79
Renderers

function of, 24
as JSF component building blocks, 13
vs. UIComponents, 24

renderer-specific attributes
accessing, 20
providing convenience getters and setters for

each, 79–80

renderer-specific component subclass
creating, 77–82
creating a new, 78–79
creating for the document component,

341–344
function of, 16–17
as JSF component building block, 13
using, 17–20

renderer-specific subclass, creating for the deck
component, 148–150

RenderKit, registering to wrap, 239–240
RenderKit and JSF extension

registering, 262–263
registering for the HTC solution, 396–398

RenderKit and Renderer, code sample to
register the Ajax-enabled, 262–263

RenderKit and ResponseWriter
creating to provide Ajax functionality,

238–249
creating to provide support for XML

documents, 350–354
RenderKit ID

code for setting the default, 405–406
using the managed bean to set the default,

406
RenderKit identifier, using default as a base to

locate agent-specific RenderKits for
incoming requests, 409–410

RenderKitFactory class
extending and wrapping the standard HTML

RenderKit, 240
function of, 32

RenderKitFactoryWrapper class, function of, 226
RenderKits

function of, 404
functionality of, 26–27
as JSF component building block, 13
registering, 354–355
registering the dynamic RenderKit solution,

411–412
requirements for dynamically switching, 404
responsibility of in JSF, 9–10
structure of dynamic implementation of, 405
switching dynamically, 403–412

renderResponse() method
calling to skip directly to the Render

Response phase, 41–42
effect of calling during any Lifecycle phase,

71
function of in Restore View phase in JSF

lifecycle, 34
RenderResponsePhase class, in Mabon, 281
rendersChildren property

calling on a component, 45
controlling rendering of child components

with, 70
function of in client-specific renderer, 62
rendering of non-JSF content with it set to

true, 46
setting flag to true, 144

■INDEX 429

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 429

render-specific subclass, registering in the
faces-config.xml file, 83–86

renderView() method, function of in Restore
View phase in JSF lifecycle, 34

request managed bean scope, 12
request-processing lifecycle

of JSF, 27–47
navigation and completion of, 29–30
phases of, 27

resource loading, introduction to, 213–215
resources, code for the unique keys used to

identify, 60
responseComplete() method, effect of calling

during any Lifecycle phase, 71
ResponseStateManager class, management of

client-side state saving by, 132–133
responseText property, XMLHttpRequest

object, 176–177
responseText type, function of, 280
ResponseWriter

creating the right one to provide Ajax
functionality, 239

sequence diagram of creating the right one
for the response, 351

ResponseWriter (JSF major), determining when
the contentType should be set by, 254

ResponseWriter class
creating and storing an instance of on the

FacesContext, 35
table of useful methods, 65–66
using to leverage some convenience method

to generate proper markup, 65–67
using to write output to the client, 65–67

ResponseWriterWrapper class, function of, 225
responseXML property, XMLHttpRequest

object, 176–177
responseXML type, function of, 280
Restore View phase

during initial request in the JSF lifecycle,
33–34

in request-processing lifecycle, 27–28
restoring the saved state of the component

hierarchy, 39–40
restoreView() method, using in the Restore View

phase, 39–40
result.jspx page, 28–29
Rich Internet Applications (RIAs), 173–174

importance of cross-platform support in
developing, 208–209

Rich Internet Technologies (RITs), using,
173–211

RITs. See Rich Internet Technologies (RITs)
Russel, Alex, Dojo toolkit written in JavaScript

by, 224

■S
<script> elements, encapsulation of scripts in,

201
scripting languages, supported by HTC, 201

_scroll() function, allowing user navigation plus
or minus one month in the calendar,
372–373

security, setting up for weblets, 219
<select> element, function of multiple attribute

of, 14
selectId argument, for the transferListItems()

function, 186–187
send(content) method, XMLHttpRequest

object, 176
sequence diagram

over regular postback, 178
over the book filter XMLHttpRequest, 184
over XMLHttpRequest postback, 180–181

Servlet specification, Web site address, 250
session managed bean scope, 12
setAvailability() method

code sample for with getAvailability()
method, 278

for setting the method binding, 299
setBooleanProperty() method

code sample method handling boolean
attributes and properties, 90

implementing for UIComponents, 88
setMethodBindingProperty() method,

implementing for UIComponents, 88
setPhaseId method, of the FacesEvent base

class, 116
setProperties() method, code sample, 97
setRendererType() method, passing the

RENDERER_TYPE to, 78–79
setRequestHeader(“label”, “value”) method,

XMLHttpRequest object, 176
setStringProperty() method, implementing for

UIComponents, 88–89
setSubmittedValue() method, calling only from

the decode() method of components
Renderer, 73

setValueBindingProperty() method
code sample method handling ValueBinding

attributes and properties, 90–91
implementing for UIComponents, 88

shopping cart application, saving and restoring
state, 20–21

ShowAdapter class
for adapting a JSF 1.1 MethodBinding into a

ShowListener instance, 121–123
supports adding a MethodBinding as a

ShowListener, 107
ShowEvent class

custom event class, 107
needed for the new UIComponents for the

deck component, 113
showItemId behavioral attributes, code for

accessor and mutator for, 131
ShowItemTag class

code sample for, 160–161
that represents leaf nodes of the deck

component, 107

■INDEX430

5807index.qxd 1/22/06 4:50 PM Page 430

ShowListener class
a Listener interface, 107
needed for the new UIComponents for the

deck component, 113
ShowListener interface

code sample for, 120
implementation of, 124–125

showListener tag, page source with, 123
ShowListenerTag class

code sample for, 161–162
representing a custom action for registering

a ShowListener instance, 107
showOneClientId argument, to

showOneDeck(), 139
showOneDeck(), arguments taken by, 139
showOneDeck Ajax implementation, 237–238
showOneDeck binding component, code

sample of, 319
showOneDeck renderer, code for parameterized

HTML for, 110–111
showOneDeck.js file, the source of, 140
showOneDeck.js library

the Ajax version of, 237
the HTML version of, 237

ShowSource class
isolates the event listener management

methods, 128–129
for isolating the event listener management

methods, 107
ShowSource interface, code for implementing,

132
single-page interface (SPIF) applications. See

SPIF applications
SmallTalk, introduction of Model-View-

Controller (MVC) architecture in, 5
SPIF applications

examples of, 303
RIAs that behave like desktop applications,

303
<splitter> component, Mozilla XUL, 189
startDocument() method, provided by the JSF

ResponseWriter class, 65
startElement() method

arguments taken by, 328, 382
provided by the JSF ResponseWriter class, 65
using ResponseWriter’s to improve

performance, 139
state, saving and restoring, 20–21, 80–82
state management, as benefit of using JSF to

build applications, 20–21, 80–82
state saving

drawbacks of on the server, 21
managing, 132–133
and restoring, 80–82

StateManager class
automatic state handling through, 80–82
function of, 20–21
management of server-side state saving by,

132–133

status property, XMLHttpRequest object, 176
statusText property, XMLHttpRequest object,

176
Struts, as JSF component, 7
style sheet, using to define the binding element,

321–322
Swing framework vs. JSF, 114–115

■T
Tag Library Descriptor (TLD)

code for registering and setting rules for the
ProDocumentTag handler, 349–350

code sample for, 165–168, 300
for grouping custom actions to make up a

JSF tag library, 98–99
Tapestry, Struts,Tiles, TopLink, Hibernate, ADF

UIX, as JSF components, 7
target parameter, function of with <form> tag,

177
three-tier or multitier (Web) applications,

development of, 5
Tiles, as JSF components, 7
tools provider, 4
TopLink, as JSF component, 7
transferListItems() function, that returns the

data requested and populates the
<select> element, 186

two-tier or client-server applications, history
and limitations of, 5

■U
UI prototype

creating, 53–55, 108–113, 270–276
creating using HTML, DHTML behaviors,

and HTC file types, 363–380
UIColumn component

available in JSF specification, 50
provided by the JSF implementation, 15

UICommand component
available in JSF specification, 50
provided by the JSF implementation, 15
setting immediate attribute on, 97
use of method-binding expressions to

reference, 92
UIComponent

as JSF component building block, 13
separation of from behavior and data model,

14
UIComponent and Renderer, registering,

150–155, 238
UIComponent and renderer

registering, 297
registering the JSF XUL implementation,

345–346
UIComponent attributes, code sample, 99–100
UIComponent component argument, for

encodeEnd() method, 62
UIComponent inheritance, example of, 17

■INDEX 431

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 431

UIComponentBase class
code sample for, 129–130
subclass that implements almost all

methods of UIComponent class, 15
UIComponent.encodeAll(FacesContext)

method, added to the JSF 1.2 release,
146, 340

UIComponent-inherited attributes, code
sample, 84

UIComponents
as cornerstones of a JSF application, 12–13
identifying, 63–64
registering, 82–86
vs. Renderers, 24
that differentiate JSF from other

technologies, 13–15
utility methods for handling attributes for, 88

UIComponentTagSupport class, code sample
for, 88

UIComponentTagSupport setStringProperty()
method, changes in for JSF 1.2, 89

UIComponentTagSupport tag handler class
creating, 87–98
for providing functionality that is common

among all components, 52
UIData component

available in JSF specification, 50
as example of a MethodBinding expression

using relative variables, 275–276
provided by the JSF implementation, 15

UIDocument attributes, code sample of the
getters for, 328–329

UIDocument class
function of, 305
introducing, 323–324

UIForm component
available in JSF specification, 50
getting the ID of, 141
provided by the JSF implementation, 15

UIGraphic component
available in JSF specification, 50
provided by the JSF implementation, 15

UIInput component
available in JSF specification, 50
provided by the JSF implementation, 15
setting immediate attribute on, 97
using, 51

UIInput-inherited attributes, code sample,
85–86

UIMessage component
available in JSF specification, 50
provided by the JSF implementation, 15

UIMessages component
available in JSF specification, 50
provided by the JSF implementation, 15

UIOutput component
available in JSF specification, 50
provided by the JSF implementation, 15–16

UIPanel component
available in JSF specification, 50
provided by the JSF implementation, 16

UIParameter component
available in JSF specification, 50
provided by the JSF implementation, 16

UISelectBoolean component, available in JSF
specification, 50

UISelectItem component
available in JSF specification, 51
provided by the JSF implementation, 16

UISelectItems component
available in JSF specification, 51
provided by the JSF implementation, 16

UISelectMany component
available in JSF specification, 51
behavior of, 14
provided by the JSF implementation, 16

UISelectOne component
available in JSF specification, 51
behavior of, 14
and its renderers, 14
provided by the JSF implementation, 16
renderer types, 14

UISelectOneBoolean component, provided by
the JSF implementation, 16

UIShowItem behavioral superclass
acts as a clickable parent container that

shows or hides its children, 113
for adding labeled items to the deck

component, 134–136
class diagram of the implementation, 135
representing each child component to the

UIShowOne component, 107
UIShowItem component

code for processing facet and children of,
142–143

processing facet and children of, 142–143
UIShowOne behavioral superclass

acts as a top-level container controlling
which child component to display, 107

class diagram showing implementation of,
127

function of, 129–134
handling of associated listeners, 131–132
for keeping track of which node the user has

selected, 113
UIShowOne component

encoding the children of, 141–144
getting the ID of, 141
JavaScript implementation of, 139–141

UIViewRoot component
method for processing decodes on, 133–134
provided by the JSF implementation, 16
responsible for calling processDecodes() on

each UIComponent, 71–72
UIViewRoot view identifier, 35
Update Model phase, updating the underlying

model in, 41–42

■INDEX432

5807index.qxd 1/22/06 4:50 PM Page 432

Update Model Values phase
entering after the Process Validations phase,

75–76
the processUpdates() and updateModel()

methods in, 76
in request-processing lifecycle, 27–28

UxlAjaxShowOneDeckRenderer class, function
of, 305

■V
validate() method, code sample for, 277–278
ValidateDateTag class

actual code behind, 298–299
class diagram for, 298
function of, 269

Validator
creating to perform validation on a strongly

typed Date object, 276–279
use of for Ajax enabling the date field

component, 273
validators, function of, 22
validators and converters, creating, 276–279
ValueBinding class

function of, 77
vs. MethodBinding class, 91
and renderer-specific attributes, 79–80

valueChangeListener attribute, providing
support for, 91

values
converting, 69–70
in JSON, 280

Venkman JavaScript debugger, Mozilla’s, 179
video terminals (VTs), 6
view layer. See JSF view layer
viewHandler, function of, 38
ViewHandler.renderView() method, function of

in Restore View phase in JSF lifecycle,
34

ViewHandlerWrapper class, function of, 405
viewlink property, manually setting on the

defaults declaration, 204–205
visual calendar, requirement for Ajax

implementation of ProInputDate
component, 267

VTs (video terminals), 6

■W
W3C HTTP specification, Web site address for,

177
Web application. See JSF Web application
Web applications, traditional development of,

177–179
Web application startup, upon receiving a JSF

request, 31–33
Web Hypertext Applications Technology

(WHAT), working to create a standard
tag library for extensions to HTML,
207–208

Web site address
for “A Modular Way of Defining Behavior for

XML and HTML” (Netscape), 193
for Apache MyFaces, 128
for “Behavioral Extensions to CSS”, 200
for “Componentizing Web Applications”

proposal sent to W3C, 200
for Dojo toolkit written in JavaScript by Alex

Russel, 224
for HttpServletResponse object Servlet

specification, 250
for information about DHTML behaviors

and HTC, 364
for information about HTML elements and

their supported attributes, 54
for information about JavaScript and the

DOM, 141
for information about JSON, 280
for information about Mabon open source

project, 279
for information about nodeTypes, 181
for information about visual formatting

using block boxes, 377
for JSF Central, 128
for Mabon information, 268
for Mozilla Amazon Browser, 303
for Mozilla’s Venkman JavaScript debugger,

179
for OpenLaszlo’s Amazon Store, 303
for subset of available XUL components, 189
for W3C HTTP specification, 177
for weblets open source project, 213
for the Weblets project, 263
for WHAT, 208
for wikipedia, 292
for XHTML 1.0 specification, 65
for XULPlanet, 312

Web technologies, emergence of new, 173–174
weblet architecture, exploring, 215–222
Weblet configuration

for the D2 library, 264
for the Dojo toolkit, 264

weblet filter, using to optimize weblets, 221–222
weblet protocol

syntax for, 219
using to serve up resources, 220

WebletContainer, function of, 216
weblets

configuration file using 1.0 versioning for
production, 218

configuration file using SNAPSHOT
versioning for development, 219

exploring the architecture of, 215–222
loading resources with, 213–222
registering HTC resources with, 398
registering XUL resources with, 355–356
registering your Ajax resources with, 301
setting up security for, 219
specifying MIME types, 217

■INDEX 433

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 433

weblets (continued)
specifying versioning of the component

library, 217–219
using as a mediator that intercepts requests

from the client, 215
using in the HtmlInputDateRenderer, 220
using in the HtmlShowOneDeckRenderer,

220–221
using in your component library, 216–221
using the weblet protocol, 219
Web site address for information about, 213,

355
weblets mapping

overriding, 222
Weblets project, Web site address for

information about, 263
WebletsPhaseListener, function of, 216
WebletsViewHandler, function of, 215
web.xml file, weblet container configuration in,

221–222
welcome HTC component, example of a page

using, 204
welcome XBL component, example of a page

using, 196
WHAT. See Web Hypertext Applications

Technology (WHAT)
wikipedia, Web site address, 292
<window> component, Mozilla XUL, 189
World Wide Web Consortium (W3C), keeping

up-to-date with emerging technologies
and standards through, 5–7

writeAttribute() method, provided by the JSF
ResponseWriter class, 65, 66

writeComment() method, provided by the JSF
ResponseWriter class, 66

writeScriptInline() method, function of, 386
writeScriptResource() method

function of, 386
for guaranteeing script resourse is written

only once during rendering, 139
for writing script resource to the client, 58–59

writeState() method, called by the </f:view> end
tag, 38

writeStyleResource() method
guarantees a style resource is written only

once during rendering, 68
for writing style resources to the client, 58

writeText() method, provided by the JSF
ResponseWriter class, 66

writeURIAttribute() method, provided by the
JSF ResponseWriter class, 66

■X
XAML vs. HTC, 199
XBL (Extensible Binding Language)

adding content in vs. HTC, 206
attaching components in vs. HTC, 207
comparing HTC and, 206–207
deck component prototype, 318–321
defined, 192

defining a component in vs. HTC, 206
elements used in the <pro:inputDate>

component, 312
event handling in vs. HTC, 207
function of, 174
sequence diagram of the inputDate binding

popup method, 314
types of items that can be added to the

binding, 195
using to add new properties and methods,

195–197
using to create custom XUL components,

192–198
XBL bindings

creating, 192–193
event handling and, 197–198
extending, 195–197
a simple XUL page using with attached event

handler, 198
using, 193–195

XBL component, a page’s DOM tree with, 195
XBL Date component prototype, function of,

308–318
XHTML 1.0 specification, Website address for,

65
XML data islands, in Internet Explorer, 367–368
XMLHTTP. See Ajax (Asynchronous JavaScript

and XML)
XMLHttpRequest object

in Ajax, 174–187
creating, 185–186
creating an instance of, 175
introduced by Microsoft, 361
methods provided by, 175–176
properties common to all implementations,

176–177
sequence diagram of using the HTTP GET

method, 274
XMLHttpRequest object methods, parameters

required by, 176
XMLHttpRequest postback, sequence diagram

over, 180–181
XMLResponseWriter, code sample for, 353–354
XMLResponseWriter class

function of, 305
for writing the required XML markup to the

requesting client, 353–354
XUL. See Mozilla XUL (XML User Interface

Language)
XUL applications. See also Mozilla XUL (XML

User Interface Language)
building, 188–192
deploying and running on a remote server,

190
XUL button. See also Mozilla XUL (XML User

Interface Language)
adding one that triggers the oncommand

event handler, 196–197
XUL components. See also Mozilla XUL (XML

User Interface Language)

■INDEX434

5807index.qxd 1/22/06 4:50 PM Page 434

base set of available through the Mozilla
GRE, 188–189

creating custom using XBL, 192–198
XUL date implementation prototype. See also

Mozilla XUL (XML User Interface
Language)

the <pro:inputDate> component
implemented in XUL, 307

XUL elements. See also Mozilla XUL (XML User
Interface Language)

used in the “Providing Mozilla XUL
Renderers” chapter, 309–310

XUL event handling. See also Mozilla XUL (XML
User Interface Language)

events, state, and data, 190–192
XUL file. See also Mozilla XUL (XML User

Interface Language)
a simple rendered in the Firefox browser, 191
a simple with embedded HTML elements,

190
XUL for Web development. See also Mozilla XUL

(XML User Interface Language)
events, state, and data, 190–192

XUL implementations. See also Mozilla XUL
(XML User Interface Language)

requirements for the Deck and Date
components’, 304

XUL Renderers, class diagram showing, 325
XUL resources, registering with Weblets,

355–356
XulAjaxInputDateRenderer class

class diagram showing, 329
code sample extending the XulRenderer,

329–330
function of, 305

XulAjaxRenderKit class
class diagram showing, 351
function of, 305, 351–352
setting the CONTENT_TYPE variable to the

accepted XUL contentType, 352
XulAjaxShowOneDeckRenderer class

arguments taken by the encodeBegin()
method, 336

class diagram for, 334
encodeResources() method, 336
function of, 334–341
getters from the different style classes

supported by, 340–341
<xul:button> element, function of, 310
<xul:column> element, function of, 310
<xul:columns> element

function of, 310
XulDocumentRenderer class

arguments taken by the startElement()
method, 328

class diagram showing, 325
encodeBegin() method, 326–327
function of, 305, 325–329

<xul:grid> element, function of, 310
<xul:hbox> element, function of, 309
<xul:label> element, function of, 309
<xul:popup> element, function of, 310
<xul:popupset> element, function of, 310
XulRenderer class, function of, 305
<xul:row> element, function of, 310
<xul:rows> element, function of, 310
<xul:textnode> element, function of, 309
<xul:vbox> element, function of, 309

■INDEX 435

Find it faster at http://superindex.apress.com
/

5807index.qxd 1/22/06 4:50 PM Page 435

5807index.qxd 1/22/06 4:50 PM Page 436

5807index.qxd 1/22/06 4:50 PM Page 437

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

5807index.qxd 1/22/06 4:50 PM Page 438

You Need the Companion eBook
Your purchase of this book entitles you to its

companion eBook for only $10.

We believe this Apress title will prove so indispensable that you’ll want to carry

it with you everywhere, which is why we are offering the companion eBook

for $10 to customers who purchase this book now. Convenient and fully searchable,

the eBook version of any content-rich, page-heavy Apress book makes a valuable

addition to your programming library. You can easily find, copy, and apply code—and

then perform examples by quickly toggling between instructions and the application.

Even simultaneously tackling a donut, diet soda, and complex code becomes

simplified with hands-free eBooks!

Once you purchase this book, getting the $10 companion eBook is simple:

1 Visit www.apress.com/promo/tendollars/.

2 Complete a basic registration form to receive a randomly

generated question about this title.

3 Answer the question correctly in 60 seconds and you will

receive a promotional code to redeem for the $10 eBook.

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher. The purchaser may print
the work in full or in part for their own non-commercial use. The purchaser may place the eBook title on any of their
personal computers for their own personal reading and reference.

Offer valid through 8/20/06.

2560 Ninth Street • Suite 219 • Berkeley, CA 94710

5807index.qxd 1/22/06 4:50 PM Page 439

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

5807index.qxd 1/22/06 4:50 PM Page 440

	Pro JSF and Ajax: Building Rich Internet Components
	Table of Content
	PART 1 Developing Smarter with JavaServerTM Faces
	Chapter 1 The Foundation of JSF: Components
	Chapter 2 Defining the Date Field Component
	Chapter 3 Defining the Deck Component

	PART 2 Designing Rich Internet Components
	Chapter 4 Using Rich Internet Technologies
	Chapter 5 Loading Resources with Weblets
	Chapter 6 Ajax Enabling the Deck Component
	Chapter 7 Ajax Enabling the Date Field Component
	Chapter 8 Providing Mozilla XUL Renderers
	Chapter 9 Providing Microsoft HTC Renderers
	Chapter 10 Switching RenderKits Dynamically

	Index

