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Managing NFS and NIS

Preface

Twenty years ago, most computer centers had a few large computers shared by several
hundred users. The "computing environment" was usually a room containing dozens of
terminals. All users worked in the same place, with one set of disks, one user account
information file, and one view of all resources. Today, local area networks have made
terminal rooms much less common. Now, a "computing environment" almost always refers to
distributed computing, where users have personal desktop machines, and shared resources are
provided by special-purpose systems such as file, computer, and print servers. Each desktop
requires redundant configuration files, including user information, network host addresses,
and local and shared remote filesystem information.

A mechanism to provide consistent access to all files and configuration information ensures
that all users have access to the "right" machines, and that once they have logged in they will
see a set of files that is both familiar and complete. This consistency must be provided in a
way that is transparent to the users; that is, a user should not know that a filesystem is located
on a remote fileserver. The transparent view of resources must be consistent across all
machines and also consistent with the way things work in a non-networked environment. In a
networked computing environment, it's usually up to the system administrator to manage the
machines on the network (including centralized servers) as well as the network itself.
Managing the network means ensuring that the network is transparent to users rather than an
impediment to their work.

The Network File System (NFS) and the Network Information Service (NIS)" provide
mechanisms for solving "consistent and transparent" access problems. The NFS and NIS
protocols were developed by Sun Microsystems and are now licensed to hundreds of vendors
and universities, not to mention dozens of implementations from the published NFS and NFS
specifications. NIS centralizes commonly replicated configuration files, such as the password
file, on a single host. It eliminates duplicate copies of user and system information and allows
the system administrator to make changes from one place. NFS makes remote filesystems
appear to be local, as if they were on disks attached to the local host. With NFS, all machines
can share a single set of files, eliminating duplicate copies of files on different machines in the
network. Using NFS and NIS together greatly simplifies the management of various
combinations of machines, users, and filesystems.

I'NIS was formerly called the "Yellow Pages." While many commands and directory names retain the yp prefix, the formal name of the set of
services has been changed to avoid conflicting with registered trademarks.

NFS provides network and filesystem transparency because it hides the actual, physical
location of the filesystem. A user's files could be on a local disk, on a shared disk on a
fileserver, or even on a machine located across a wide-area network. As a user, you're most
content when you see the same files on all machines. Just having the files available, though,
doesn't mean that you can access them if your user information isn't correct. Missing or
inconsistent user and group information will break Unix file permission checking. This is
where NIS complements NFS, by adding consistency to the information used to build and
describe the shared filesystems. A user can sit down in front of any workstation in his or her
group that is running NIS and be reasonably assured that he or she can log in, find his or her
home directory, and access tools such as compilers, window systems, and publishing
packages. In addition to making life easier for the users, NFS and NIS simplify the tasks of



Managing NFS and NIS

system administrators, by centralizing the management of both configuration information and
disk resources.

NFS can be used to create very complex filesystems, taking components from many different
servers on the network. It is possible to overwhelm users by providing "everything
everywhere," so simplicity should rule network design. Just as a database programmer
constructs views of a database to present only the relevant fields to an application, the user
community should see a logical collection of files, user account information, and system
services from each viewpoint in the computing environment. Simplicity often satisfies the
largest number of users, and it makes the system administrator's job easier.

Who this book is for

This book is of interest to system administrators and network managers who are installing or
planning new NFS and NIS networks, or debugging and tuning existing networks and servers.
It is also aimed at the network user who is interested in the mechanics that hold the network
together.

We'll assume that you are familiar with the basics of Unix system administration and TCP/IP
networking. Terms that are commonly misused or particular to a discussion will be defined as
needed. Where appropriate, an explanation of a low-level phenomenon, such as Ethernet
congestion will be provided if it is important to a more general discussion such as NFS
performance on a congested network. Models for these phenomena will be drawn from
everyday examples rather than their more rigorous mathematical and statistical roots.

This book focuses on the way NFS and NIS work, and how to use them to solve common
problems in a distributed computing environment. Because Sun Microsystems developed and
continues to innovate NFS and NIS, this book uses Sun's Solaris operating system as the
frame of reference. Thus if you are administering NFS on non-Solaris systems, you should
use this book in conjunction with your vendor's documentation, since utilities and their
options will vary by implementation and release. This book explains what the configuration
files and utilities do, and how their options affect performance and system administration
issues. By walking through the steps comprising a complex operation or by detailing each step
in the debugging process, we hope to shed light on techniques for effective management of
distributed computing environments. There are very few absolute constraints or thresholds
that are universally applicable, so we refrain from stating them. This book should help you to
determine the fair utilization and performance constraints for your network.

Versions

This book is based on the Solaris 8 implementations of NFS and NIS. When used without a
version number, "Solaris" refers to the Solaris 2.x, Solaris 7, and Solaris 8 operating systems
and their derivatives (note that the next version of Solaris after Solaris 2.6 was Solaris 7; in
the middle of the development process, Sun renamed Solaris 2.7 to Solaris 7). NFS- and NIS-
related tools have changed significantly between Solaris 2.0 and Solaris 8, so while it is
usually the case that an earlier version of Solaris supports a function we discuss, it is not
infrequent that it will not. For example, early releases of Solaris 2.x did not even have true
NIS support. For another, Sun has made profound enhancements to NFS with nearly every
release of Solaris.
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The Linux examples presented throughout the book were run on the Linux 2.2.14-5 kernel.
Linux kernels currently implement NFS Version 2, although a patch is available that provides
Version 3 support.

Organization

This book is divided into two sections. The first twelve chapters contain explanations of the
implementation and operation of NFS and NIS. Chapter 13 through Chapter 18 cover
advanced administrative and debugging techniques, performance analysis, and tuning.
Building on the introductory material, the second section of the book delves into low-level
details such as the effects of network partitioning hardware and the various steps in a remote
procedure call. The material in this section is directly applicable to the ongoing maintenance
and debugging of a network.

Here's the chapter-by-chapter breakdown:

e Chapter 1 provides an introduction to the underlying network protocols and services
used by NFS and NIS.

e Chapter 2 provides a survey of the popular directory services.

e Chapter 3 discusses the architecture of NIS and its operation on both NIS servers and
NIS clients. The focus is on how to set up NIS and its implementation features that
affect network planning and initial configuration.

e Chapter 4 discusses operational aspects of NIS that are important to network
administrators. This chapter explores common NIS administration techniques,
including map management, setting up multiple NIS domains, and using NIS with
domain name services.

e Chapter 5 explains the issues around using both NIS and the Directory Name Service
(DNS) on the same network.

e Chapter 6 covers basic NFS operations, such as mounting and exporting filesystems.

e Chapter 7 explains the architecture of NFS and the underlying virtual filesystem. It
also discusses the implementation details that affect performance, such as file
attributes and data caching.

o Chapter 8 is all about diskless clients. It also presents debugging techniques for clients
that fail to boot successfully.

e Chapter 9 discusses the automounter, a powerful but sometimes confusing tool that
integrates NIS administrative techniques and NFS filesystem management.

e Chapter 10 covers PC/NFS, a client-side implementation of NFS for Microsoft
Windows machines.

e Chapter 11 focuses on file locking and how it relates to NFS.

e Chapter 12 explores network security. Issues such as restricting access to hosts and
filesystems form the basis for this chapter. We'll also go into how to make NFS more
secure, including a discussion of setting up NFS security that leverages encryption for
stronger protection.

e Chapter 13 describes the administrative and diagnostic tools that are applied to the
network and its systems as a whole. This chapter concentrates on the network and on
interactions between hosts on the network, instead of the per-machine issues presented
in earlier chapters. Tools and techniques are described for analyzing each layer in the
protocol stack, from the Ethernet to the NFS and NIS applications.

e Chapter 14 focuses on tools used to diagnose NFS problems.

e Chapter 15 describes how to debug common network problems.
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e Chapter 16 discusses how to tune your NFS and, to a lesser extent, NIS servers.

e Chapter 17 covers performance tuning and analysis of machines and the network.

e Chapter 18 explores NFS client tuning, including NFS mount parameter adjustments.

e Appendix A explains how IP packets are forwarded to other networks. It is additional
background information for discussions of performance and network configuration.

e Appendix B summarizes NFS problem diagnosis using the NFS statistics utility and
the error messages printed by clients experiencing NFS failures.

e Appendix C summarizes parameters for tuning NFS performance and other attributes.

Conventions used in this book
Font and format conventions for Unix commands, utilities, and system calls are:

e Excerpts from script or configuration files will be shown in a constant-width font:

192.9.200.1 bitatron

e Sample interactive sessions, showing command-line input and corresponding output,
will be shown in a constant-width font, with user-supplied input in bold:

° % 1s
foobar

e If the command can be typed by any user, the percent sign (%) will be shown as the
prompt. If the command must be executed by the superuser, then the pound sign (#)
will be shown as the prompt:

# /usr/sbin/ypinint -m

e If a particular command must be typed on a particular machine, the prompt will
include a hostname:

bitatron# mount wahoo:/export /mnt

o Inside of an excerpt from a script, configuration file, or other ASCII file, the pound
sign will be used to indicate the beginning of a comment (unless the configuration file
requires a different comment character, such as an asterisk (*)):

. #

° #Hal's machine
192.9.200.1 bitatron

e Unix commands and command lines are printed in italics when they appear in the
body of a paragraph. For example, the /s command lists files in a directory.

e Hostnames are printed in italics. For example, server wahoo contains home
directories.

o Filenames are printed in italics, for example, the /etc/passwd file.

e NIS map names and mount options are printed in italics. The passwd map is used with
the /etc/passwd file, and the timeo mount option changes NFS client behavior.

o System and library calls are printed in italics, with parentheses to indicate that they are
C routines. For example, the gethostent( ) library call locates a hostname in an NIS
map.

e Control characters will be shown with a CTRL prefix, for example, CTRL-Z.
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Differences between the first edition and second edition

The first edition was based on SunOS 4.1, whereas this edition is based on Solaris 8. The
second edition covers much more material, mostly due to the enhancements made to NFS,
including a new version of NFS (Version 3), a new transport protocol for NFS (TCP/IP), new
security options (IPsec and Kerberos V5), and also more tools to analyze your systems and
network.

The second edition also drops or sharply reduces the following material from the first edition
(all chapter numbers and titles are from the first edition):

e Chapter 4. Systems and networks are now bigger, faster, and more complicated. We
believe the target reader will be more interested in administering NIS and NFS, rather
than writing applications based on NIS.

o Chapter 9. At the time the second edition was written, most people were accessing
their electronic mail boxes using the POP or IMAP protocols. A chapter focused on
using NFS to access mail would appeal but to a small minority.

e Chapter 14. This chapter survives in the second edition, but it is much smaller. This is
because there are more competing PC/NFS products available than before, and also
because many people who want to share files between PCs and Unix servers run the
open source Samba package on their Unix servers. Still, there are some edge
conditions that justify PC/NFS, so we discuss those, as well as general PC/NFS issues.

e Appendix A. When this appendix was written, local area networks were much less
reliable than they are today. The shift to better and standard technology, even low
technology like Category 5 connector cables, has made a big difference. Thus, given
the focus on software administration, there's not much practical use for presenting
such material in this edition.

e Appendix D. The NFS Benchmark appendix in the first edition explained how to use
the nhfsstone benchmark, and was relevant in the period of NFS history when there
was no standard, industry-recognized benchmark. Since the first edition, the Standard
Performance Evaluation Corporation (SPEC) has addressed the void with its SFS
benchmark (sometimes referred to as LADDIS). The SFS benchmark provides a way
for prospective buyers of an NFS server to compare it to others. Unfortunately, it's not
practical for the target reader to build the complex test beds necessary to get good SFS
benchmark numbers. A better alternative is to take advantage of the fact that SPEC
lets anyone browse reported SFS results from its web site (http://www.spec.org/).

Comments and questions

We have tested and verified all the information in this book to the best of our abilities, but you
may find that features have changed or that we have let errors slip through the production of
the book. Please let us know of any errors that you find, as well as suggestions for future
editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris St.

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
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You can also send messages electronically. To be put on our mailing list or to request a
catalog, send email to:

info@oreilly.com
To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/nfs2/

For more information about this book and others, see the O'Reilly web site:
http://lwww.oreilly.com/
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Chapter 1. Networking Fundamentals

The Network Information Service (NIS) and Network File System (NFS) are services that
allow you to build distributed computing systems that are both consistent in their appearance
and transparent in the way files and data are shared.

NIS provides a distributed database system for common configuration files. NIS servers
manage copies of the database files, and NIS clients request information from the servers
instead of using their own, local copies of these files. For example, the /etc/hosts file is
managed by NIS. A few NIS servers manage copies of the information in the hosts file, and
all NIS clients ask these servers for host address information instead of looking in their own
/etc/hosts file. Once NIS is running, it is no longer necessary to manage every /etc/hosts file
on every machine in the network — simply updating the NIS servers ensures that all machines
will be able to retrieve the new configuraton file information.

NFS is a distributed filesystem. An NFS server has one or more filesystems that are mounted
by NFS clients; to the NFS clients, the remote disks look like local disks. NFS filesystems are
mounted using the standard Unix mount command, and all Unix utilities work just as well
with NFS-mounted files as they do with files on local disks. NFS makes system
administration easier because it eliminates the need to maintain multiple copies of files on
several machines: all NFS clients share a single copy of the file on the NFS server. NFS also
makes life easier for users: instead of logging on to many different systems and moving files
from one system to another, a user can stay on one system and access all the files that he or
she needs within one consistent file tree.

This book contains detailed descriptions of these services, including configuration
information, network design and planning considerations, and debugging, tuning, and analysis
tips. If you are going to be installing a new network, expanding or fixing an existing network,
or looking for mechanisms to manage data in a distributed environment, you should find this
book helpful.

Many people consider NFS to be the heart of a distributed computing environment, because it
manages the resource users are most concerned about: their files. However, a distributed
filesystem such as NFS will not function properly if hosts cannot agree on configuration
information such as usernames and host addresses. The primary function of NIS is managing
configuration information and making it consistent on all machines in the network. NIS
provides the framework in which to use NFS. Once the framework is in place, you add users
and their files into it, knowing that essential configuration information is available to every
host. Therefore, we will look at directory services and NIS first (in Chapter 2 through Chapter
4); we'll follow that with a discussion of NFS in Chapter 5 through Chapter 13.

1.1 Networking overview
Before discussing either NFS, or NIS, we'll provide a brief overview of network services.

NFS and NIS are high-level networking protocols, built on several lower-level protocols. In
order to understand the way the high-level protocols function, you need to know how the
underlying services work. The lower-level network protocols are quite complex, and several
books have been written about them without even touching on NFS and NIS services.
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Therefore, this chapter contains only a brief outline of the network services used by NFS and
NIS.

Network protocols are typically described in terms of a layered model, in which the protocols
are "stacked" on top of each other. Data coming into a machine is passed from the lowest-
level protocol up to the highest, and data sent to other hosts moves down the protocol stack.
The layered model is a useful description because it allows network services to be defined in
terms of their functions, rather than their specific implementations. New protocols can be
substituted at lower levels without affecting the higher-level protocols, as long as these new
protocols behave in the same manner as those that were replaced.

The standard model for networking protocols and distributed applications is the International
Organization for Standardization (ISO) seven-layer model shown in Table 1-1.

Table 1-1. The ISO seven-layer model

Layer Name Physical Layer
7 Application NFS and NIS

6 Presentation XDR

5 Session RPC

4 Transport TCP or UDP

3 Network 1P

2 Data Link Ethernet

1 Physical CAT-5

Purists will note that the TCP/IP protocols do not precisely fit the specifications for the
services in the ISO model. The functions performed by each layer, however, correspond very
closely to the functions of each part of the TCP/IP protocol suite, and provide a good
framework for visualizing how the various protocols fit together.

The lower levels have a well-defined job to do, and the higher levels rely on them to perform
it independently of the particular medium or implementation. While TCP/IP most frequently
is run over Ethernet, it can also be used with a synchronous serial line or fiber optic network.
Different implementations of the first two network layers are used, but the higher-level
protocols are unchanged. Consider an NFS server that uses all six lower protocol layers: it has
no knowledge of the physical cabling connecting it to its clients. The server just worries about
its NFS protocols and counts on the lower layers to do their job as well.

Throughout this book, the network stack or protocol stack refers to this layering of services.
Layer or level will refer to one specific part of the stack and its relationship to its upper and
lower neighbors. Understanding the basic structure of the network services on which NFS and
NIS are built is essential for designing and configuring large networks, as well as debugging
problems. A failure or overly tight constraint in a lower-level protocol affects the operation of
all protocols above it. If the physical network cannot handle the load placed on it by all of the
desktop workstations and servers, then NFS and NIS will not function properly. Even though
NFS or NIS will appear "broken," the real issue is with a lower level in the network stack.

The following sections briefly describe the function of each layer and the mapping of NFS
and NIS into them. Many books have been written about the ISO seven-layer model, TCP/IP,
and Ethernet, so their treatment here is intentionally light. If you find this discussion of
networking fundamentals too basic, feel free to skip over this chapter.
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1.2 Physical and data link layers

The physical and data link layers of the network protocol stack together define a machine's
network interface. From a software perspective, the network interface defines how the
Ethernet device driver gets packets from or to the network. The physical layer describes the
way data is actually transmitted on the network medium. The data link layer defines how
these streams of bits are put together into manageable chunks of data.

Ethernet is the best known implementation of the physical and data link layers. The Ethernet
specification describes how bits are encoded on the cable and also how stations on the
network detect the beginning and end of a transmission. We'll stick to Ethernet topics
throughout this discussion, since it is the most popular network medium in networks using
NFS and NIS.

Ethernet can be run over a variety of media, including thinnet, thicknet, unshielded twisted-
pair (UTP) cables, and fiber optics. All Ethernet media are functionally equivalent — they
differ only in terms of their convenience, cost of installation, and maintenance. Converters
from one media to another operate at the physical layer, making a clean electrical connection
between two different kinds of cable. Unless you have access to high-speed test equipment,
the physical and data link layers are not that interesting when they are functioning normally.
However, failures in them can have strange, intermittent effects on NFS and NIS operation.
Some examples of these spectacular failures are given in Chapter 15.

1.2.1 Frames and network interfaces

The data link layer defines the format of data on the network. A series of bits, with a definite
beginning and end, constitutes a network frame, commonly called a packet. A proper data link
layer packet has checksum and network-specific addressing information in it so that each host
on the network can recognize it as a valid (or invalid) frame and determine if the packet is
addressed to it. The largest packet that can be sent through the data link layer defines the
Maximum Transmission Unit, or MTU, of the network.

All hosts have at least one network interface, although any host connected to an Ethernet has
at least two: the Ethernet interface and the loopback interface. The Ethernet interface handles
the physical and logical connection to the outside world, while the loopback interface allows a
host to send packets to itself. If a packet's destination is the local host, the data link layer
chooses to "send" it via the loopback, rather than Ethernet, interface. The loopback device
simply turns the packet around and queues it at the bottom of the protocol stack as if it were
just received from the Ethernet.

You may find it helpful to think of the protocol layers as passing packets upstream and
downstream in envelopes, where the packet envelope contains some protocol-specific header
information but hides the remainder of the packet contents. As data messages are passed from
the top most protocol layer down to the physical layer, the messages are put into envelopes of
increasing size. Each layer takes the entire message and envelope from the layer above and
adds its own information, creating a new message that is slightly larger than the original.
When a packet is received, the data link layer strips off its envelope and passes the result up to
the network layer, which similarly removes its header information from the packet and passes
it up the stack again.

11
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1.2.2 Ethernet addresses

Associated with the data link layer is a method for addressing hosts on the network. Every
machine on an Ethernet has a unique, 48-bit address called its Ethernet or Media Access
Control (MAC) address. Vendors making network-ready equipment ensure that every
machine in the world has a unique MAC address. 24-bit prefixes for MAC addresses are
assigned to hardware vendors, and each vendor is responsible for the uniqueness of the lower
24 bits. MAC addresses are usually represented as colon-separated pairs of hex digits:

8:0:20:ae:6:11f

Note that MAC addresses identify a 4ost, and a host with multiple network interfaces may use
the same MAC address on each.

Part of the data link layer's protocol-specific header are the packet's source and destination
MAC addresses. Each protocol layer supports the notion of a broadcast, which is a packet or
set of packets that must be sent to all hosts on the network. The broadcast MAC address is:

ff:ff:ff:ff:ff£:£f

All network interfaces recognize this wildcard MAC address as a broadcast address, and pass
the packet up to a higher-level protocol handler.

1.3 Network layer

At the data link layer, things are fairly simple. Machines agree on the format of packets and a
standard 48-bit host addressing scheme. However, the packet format and encoding vary with
different physical layers: Ethernet has one set of characteristics, while an X.25-based satellite
network has another. Because there are many physical networks, there should ideally be a
standard interface scheme so that it isn't necessary to re-implement protocols on top of each
physical network and its peculiar interfaces. This is where the network layer fits in. The
higher-level protocols, such as TCP (at the transport layer), don't need to know any details
about the physical network that is in use. As mentioned before, TCP runs over Ethernet, fiber
optic network, or other media; the TCP protocols don't care about the physical connection
because it is represented by a well-defined network layer interface.

The network layer protocol of primary interest to NFS and NIS is the Internet Protocol, or IP.
As its name implies, IP is responsible for getting packets between hosts on one or more
networks. Its job is to make a best effort to get the data from point A to point B. IP makes no
guarantees about getting all of the data to the destination, or the order in which the data
arrives — these details are left for higher-level protocols to worry about.

On a local area network, IP has a fairly simple job, since it just moves packets from a higher-
level protocol down to the data link layer. In a set of connected networks, however, IP is
responsible for determining how to get data from its source to the correct destination network.
The process of directing datagrams to another network is called routing; it is one of the
primary functions of the IP protocol. Appendix A contains a detailed description of how IP
performs routing.

12
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1.3.1 Datagrams and packets

I[P deals with data in chunks called datagrams. The terms packet and datagram are often used
interchangeably, although a packet is a data link-layer object and a datagram is network layer
object. In many cases, particularly when using IP on Ethernet, a datagram and packet refer to
the same chunk of data. There's no guarantee that the physical link layer can handle a packet
of the network layer's size. As previously mentioned, the largest packet that can be handled by
the physical link layer is called the Maximum Transmission Unit, or MTU, of the network
media. If the medium's MTU is smaller than the network's packet size, then the network layer
has to break large datagrams down into packet-sized chunks that the data link and physical
layers can digest. This process is called fragmentation. The host receiving a fragmented
datagram reassembles the pieces in the correct order. For example, an X.25 network may have
an MTU as small as 128 bytes, so a 1518-byte IP datagram would have to be fragmented into
many smaller network packets to be sent over the X.25 link. For the scope of this book, we'll
use packet to describe both the IP and the data link-layer objects, since NFS is most
commonly run on Ethernet rather than over wide-area networks with smaller MTUs.
However, the distinction will be made when necessary, such as when discussing NFS traffic
over a wide area point-to-point link.

1.3.2 IP host addresses

The internet protocol identifies hosts with a number called an /P address or a host address. To
avoid confusion with MAC addresses (which are machine or station addresses), the term IP
address will be used to designate this kind of address. IP addresses come in two flavors: 32-bit
IP Version 4 (IPv4) or 128 bit IPv6 address. We will talk about IPv6 addresses later in this
chapter. For now, we will focus on IPv4 addresses. IPv4 addresses are written as four dot-
separated decimal numbers between 0-255 (a dotted quad):

192.9.200.1

IP addresses must be unique among all connected machines. Connected machines in this case
are any hosts that you can get to over a network or connected set of networks, including your
local area network, remote offices joined by the company's wide-area network, or even the
entire Internet community. For a standalone system or a small office that is not connected (via
an IP network) to the outside world, you can use the standard, private network addresses
assigned such purposes. See Section 1.3.3 later in this chapter. If your network is connected to
the Internet, you have to get a range of IP addresses assigned to your machines through a
central network administration authority, via your Internet Service Provider. If you are
planning on joining the Internet in the future, you will need to obtain an address from your
network service provider. This may be either an actual provider of Internet service, or your
own organization, if it has addresses to hand out. We won't go into this further in this book.

The IP address uniqueness requirement differs from that for MAC addresses. IP addresses are
unique only on connected networks, but machine MAC addresses are unique in the world,
independent of any connectivity. Part of the reason for the difference in the uniqueness
requirement is that IPv4 addresses are 32 bits, while MAC addresses are 48 bits, so mapping
every possible MAC address into an IPv4 address requires some overlap. There are a variety
of reasons why the IPv4 address is only 32 bits, while the MAC address is 48 bits, most of
which are historical.

13
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Since the network and data link layers use different addressing schemes, some system is
needed to convert or map the IP addresses to MAC addresses. Transport-layer services and
user processes use [P addresses to identify hosts, but packets that go out on the network need
MAC addresses. The Address Resolution Protocol (ARP) is used to convert the 32-bit [Pv4
address of a host into its 48-bit MAC address. When a host wants to map an IP address to a
MAC address, it broadcasts an ARP request on the network, asking for the host using the IP
address to respond. The host that sees its own IP address in the request returns its MAC
address to the sender. With a MAC address, the sending host can transmit a packet on the
Ethernet and know that the receiving host will recognize it.

A host can have more than one IP address. Usually this is because the host is connected to
multiple physical network segments (requiring one network interface, such as an Ethernet
controller, per segment), or because the host has multiple interfaces to the same physical
network segment.

1.3.3 IPv4 address classes

Each IPv4 address has a network number and a host number. The host number identifies a
particular machine on an organization's network. IP addresses are divided into classes that
determine which parts of the address make up the network and host numbers, as demonstrated

in Table 1-2.

Table 1-2. IPv4 address classes

Addre§s Class Network Host Address Number  of Number of Maximum Number
and First Octet Number Number Form Networks Hosts Per e osts per Class
Value Octets Octets Network P

Class A: 1-126 |1 3 N.HHH |126 256 -2 2,113,928,964

Class B: 128-1912 2 N.NNHH 16,384 256 -2 1,073,709,056

Class C: 192-223|3 1 N.N.N.H 2,097,152 254 532,676,608

Class D: 224-239|N/A N/A MMMM [N/A N/A N/A

Class E: 240-255 [N/A N/A R.RR.R N/A N/A N/A

Each N represents part of the network number and each H is part of the address's host number.
The 8-bit octet has 256 possible values, but 0 and 255 in the last host octet are reserved for
forming broadcast addresses.

Network numbers with first octet values of 240-254 are reserved for future use. The network
numbers 0, 127, 255, 10, 172.16-172.31, and 192.168.0-192.168.255 are also reserved:

e 0 is used as a place holder in forming a network number, and in some cases, for IP
broadcast addresses.

e 127 is for a host's loopback interface.

e 255 is used for IPv4 broadcast addresses.

e 10,172.16-172.31, and 192.168.0-192.168.255 are used for private networks that will
never be connected to the global Internet.

Note that there are only 126 class A network numbers, but well over two million class C
network numbers. When the Internet was founded, it was almost impossible to get a class A
network number, and few organizations (aside from entire networks or countries) had enough
hosts to justify a class A address. Most companies and universities requested class B or class
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C addresses. A medium-sized company, with several hundred machines, could request several
class C network numbers, putting up to 254 hosts on each network. Now that the Internet is
much bigger, the rules for class A, B, and C network number assignment have changed, as
explained in Section 1.3.4.

Class D addresses look similar to the other classes in that each address consists of 4 octets
with a value no higher than 255 per octet. Unlike classes A, B, and C, a class D address does
not have a network number and host number. Class D addresses are multicast addresses,
which are used to send messages to more than one recipient host, whereas IP addresses in
classes A, B, and C are unicast addresses destined for one recipient. Multicast on the Internet
offers plenty of potential for efficient broadcast of information, such as bulk file transfers,
audio and video, and stock pricing information, but has achieved limited deployment. There is
an ongoing experiment known as the "MBONE" (Multicast backBONE) on the Internet to
exploit this technology.

Class E addresses are reserved for future assignment.
1.3.4 Classless IP addressing

In the early 1990s, due to the advent of the World Wide Web, the Internet's growth exploded.
In theory, if you sum the maximum number of hosts per classes A, B, and C (refer back to
Table 1-2), the Internet can have a potential for over 3.7 billion hosts. In reality, the Internet
was running out of address capacity for two reasons.

The first had to do with the inefficiencies built into the class partitioning. About 3.2 billion of
the theoretical number of hosts were class A and class B, leaving about 500 million class C
addresses. Most organizations did not need class A or class B addresses, and of those that did,
a significant fraction of their assigned address space was not needed. Most users could get by
with a class C network number, but the typical small business or home user did not need 254
hosts. Thus, the number of class C addresses was bounded by the maximum number of class
C networks, about two million, which is far less than the number of users on the Internet.

The problem of only two million class C networks was mitigated by the introduction of
dynamically assigned IP addresses, and by the introduction of policies that tended to assign IP
network numbers only to Internet Service Providers (ISPs), or to organizations that effectively
acted as their own ISP, which would then use the free market to efficiently reallocate the IP
addresses dynamically or statically to their customers. Thus most Intenet users get assigned a
single IP address, and the ISP is assigned the corresponding network number.

The second reason was routing scalability. When the Internet was orders of magnitude smaller
then it is today, most address assignments were for class A or B and so routing between
networks was straightforward. The routers simply looked at the network number, and sent it
to a router responsible for that route. With the explosion of the Internet, and with most of that
growth in class C network numbers, each network's router might have to maintain tables of
hundreds of thousands of routes. As the Internet grew rapidly, keeping these tables up to date
was difficult.

This situation was not sustainable, and so the concept of "classless addressing" was

introduced. With the exception of grandfathered address assignments, each IP address,
regardless of whether it's class A, B, or C, would not have an implicit network number part
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and host number part. Instead the network part would be designated explicitly via a suffix of
the form: "/XX", where XX is the number of bits of the IP address that refer to the network.
Those organizations that needed more than the 254 hosts that a class C address would
provide, would instead be assigned consecutive class C addresses. For example, an ISP that
was assigned 192.1.2 and 192.1.3 could have a classless network number of 192.1.3.0/23.
Any router on a network other than 192.1.2 or 192.1.3 that wanted to send to either network
number would instead route to a single router associated with the classless network number
192.1.3.0/23 (i.e., any IP address that had its first 23 bits equal to 1100 0000 0000 0001 0000
001).

With this new scheme, larger organizations get more consecutive class C network numbers.
Within their local networks ("Intranets"), they can either use traditional class-based routing or
classless routing that further subdivides the local network address space that can be used. The
largest organizations may find that class-based routing doesn't scale, and so classless routing
is the best approach.

1.3.5 Virtual interfaces

In Section 1.3.2, we noted that a host could have multiple IP addresses assigned to it if it had
multiple physical network interfaces. It is possible for a physical network segment to support
more than one IP network number. For example, a segment might have 128.0.0.0/16 and
192.4.5.6/24. Some hosts on that segment might want to directly address hosts with either
network number. Some operating systems, such as Solaris, will let you define multiple virtual
or logical interfaces for a physical network interface. On most Unix systems, the ifconfig
command is used to set up interfaces. See your vendor's ifconfig manual page for more
details.

1.3.6 IP Version 6

Until now we have been discussing IPv4 addresses that are four octets long. The discussion in
Section 1.3.4 showed a clever way to extend the life of the 32 bit IPv4 address space.
However, it was recognized long ago, even before the introduction of the World Wide Web,
that the IPv4 address space was under pressure. I[P Version 6 (IPv6) has been defined to solve
the address space limitations by increasing the address length to 128 bit addresses. At the time
of this writing, while most installed systems either do not support it or do not use it, most
marketed systems support IPv6. Since it seems inevitable that you'll encounter some IPv6
networks in the next few years, we will explain some of the basics of [Pv6. Note that IPv6 is
sometimes referred to as IPng: IP Next Generation.

Instead of dotted quads, IPv6 addresses are usually expressed as:
XIXIXIXIXIXIX:IX

where each x is a 16 bit hexadecimal value. In environments where a network is transitioning
from IP Version 4 to Version 6, you might want to use a form like:

X:x:x:x:x:x:d.d.d.d

where d.d.d.d represents an IP Version 4 dotted quad.
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When there are one or more consecutive sequences of x's such that each x is all zeroes, the
sequence can be replaced with "::", but there can be only one such "::" abbreviation in an [Pv6
address. Thus:

1234:0000:5678:9ABC:DEF0:1234:5678:9ABC
3:0:0:0:0:0:3333:4444

can be abbreviated as:

1234::5678:9ABC:DEF0:1234:5678:9ABC
3::3333:4444

As you might expect, IPv6 dispenses with address classes for unicast addresses. You specify
classless network numbers (address prefixes), using the same classless addressing notation
that [P Version 4 uses.

1.3.6.1 IP Version 6 address pools

While the designation of the network number in IPv6 is classless, the 128-bit address is still
carved up into various pools. Portions of the address space are allocated for:

e Reserved or unassigned for future purposes
e Open Systems Interconnection (OSI) network protocols
e Novell IPX protocols
e Unicast addresses, including:
o global unicast addresses that can be used to send packets to hosts outside the
local site
o site local unicast addresses than can be used to send packets only to hosts
within a site
o link local unicast addresses that can used to send packets only to hosts within a
physical network segment

e Multicast addresses, which start with FF
e Addresses of nodes that support just IP Version 4. These are denoted as:

(:FFFF:d.d.d.d

e Addresses of nodes that support IPv6, but want to use existing I[P Version 4
infrastructure to encapsulate IPv6 packets within IPv4 packets for transport between
networks. The last 32 bits of these addresses correspond to IPv4 addresses. These
addresses are denoted as:

::d.d.d.d
While this scheme does not let you benefit from [Pv6's extended addressing, it does let

you take advantage of IPv6's other features (such as a richer set of protocol options)
while transitioning from IPv4.
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1.3.6.2 IP Version 6 loopback address

Instead of dedicating about 16 million addresses for loopback interfaces as IPv4 does, IPv6
uses just one address for that purpose:

H
1.3.6.3 IP Version 6 unspecified address

[Pv6 introduces the concept of an "unspecified" address, which is all zeroes:
::0

This address can be used by hosts that don't know their own address, but need to generate
queries to determine their address assignment. Such hosts would use "::0" as the source
address in an IPv6 packet.

1.4 Transport layer

The transport layer has two major jobs: it must subdivide user-sized data buffers into network
layer-sized datagrams, and it must enforce any desired transmission control such as reliable
delivery. Two transport protocols that sit on top of IP are the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP), which offer different delivery guarantees.

1.4.1 TCP and UDP

TCP is best known as the first half of TCP/IP; as discussed in this and the preceding sections,
the acronyms refer to two distinct services. TCP provides reliable, sequenced delivery of
packets. It is ideally suited for connection-oriented communication, such as a remote login or
a file transfer. Missing packets during a login session is both frustrating and dangerous —
what happens if rm *.o0 gets truncated to rm * ? TCP-based services are generally geared
toward long-lived network connections, and TCP is used in any case when ordered datagram
delivery is a requirement. There is overhead in TCP for keeping track of packet delivery order
and the parts of the data stream that must be resent. This is state information. It's not part of
the data stream, but rather describes the state of the connection and the data transfer.
Maintaining this information for each connection makes TCP an inherently stateful protocol.
Because there is state, TCP can adapt its data flow rate when the network is congested.

UDP is a no-frills transport protocol: it sends large datagrams to a remote host, but it makes
no assurances about their delivery or the order in which they are delivered. UDP is best for
connectionless communication on local area networks in which no context is needed to send
packets to a remote host and there is no concern about congestion. Broadcast-oriented
services use UDP, as do those in which repeated, out of sequence, or missed requests have no
harmful side effects.

Reliable and unreliable delivery is the primary distinction between TCP and UDP. TCP will
always try to replace a packet that gets lost on the network, but UDP does not. UDP packets
can arrive in any order. If there is a network bottleneck that drops packets, UDP packets may
not arrive at all. It's up to the application built on UDP to determine that a packet was lost,
and to resend it if necessary. The state maintained by TCP has a fixed cost associated with it,
making UDP a faster protocol on low-latency, high-bandwidth links. The price paid for speed
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(in UDP) is unreliability and added complexity to the higher level applications that must
handle lost packets.

1.4.2 Port numbers

A host may have many TCP and UDP connections at any time. Connections to a host are
distinguished by a port number, which serves as a sort of mailbox number for incoming
datagrams. There may be many processes using TCP and UDP on a single machine, and the
port numbers distinguish these processes for incoming packets. When a user program opens a
TCP or UDP socket, it gets connected to a port on the local host. The application may specify
the port, usually when trying to reach some service with a well-defined port number, or it may
allow the operating system to fill in the port number with the next available free port number.

When a packet is received and passed to the TCP or UDP handler, it gets directed to the
interested user process on the basis of the destination port number in the packet. The
quadruple of:

source IP address, source port, destination IP address, destination port

uniquely identifies every interhost connection in the network. While many processes may be
talking to the process that handles remote login requests (therefore their packets have the
same destination IP addresses and port numbers), they will have unique pairs of source IP
addresses and port numbers. The destination port number determines which of the many
processes using TCP or UDP gets the data.

On most Unix systems port numbers below 1024 are reserved for the processes executing
with superuser privileges, while ports 1024 and above may be used by any user. This enforces
some measure of security by preventing random user applications from accessing ports used
by servers. However, given that most nodes on the network don't run Unix, this measure of
security is very questionable.

1.5 The session and presentation layers

The session and presentation layers define the creation and lifetime of network connections
and the format of data sent over these connections. Sessions may be built on top of any
supported transport protocol — login sessions use TCP, while services that broadcast
information about the local host use UDP. The session protocol used by NFS and NIS is the
Remote Procedure Call (RPC).

1.5.1 The client-server model

RPC provides a mechanism for one host to make a procedure call that appears to be part of
the local process but is really executed on another machine on the network. Typically, the host
on which the procedure call is executed has resources that are not available on the calling
host. This distribution of computing services imposes a client/server relationship on the two
hosts: the host owning the resource is a server for that resource, and the calling host becomes
a client of the server when it needs access to the resource. The resource might be a centralized
configuration file (NIS) or a shared filesystem (NFS).
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Instead of executing the procedure on the local host, the RPC system bundles up the
arguments passed to the procedure into a network datagram. The exact bundling method is
determined by the presentation layer, described in the next section. The RPC client creates a
session by locating the appropriate server and sending the datagram to a process on the server
that can execute the RPC; see Figure 1-1. On the server, the arguments are unpacked, the
server executes the result, packages the result (if any), and sends it back to the client. Back on
the client side, the reply is converted into a return value for the procedure call, and the user
application is re-entered as if a local procedure call had completed. This is the end of the
"session," as defined in the ISO model.

Figure 1-1. Remote procedure call execution
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RPC services may be built on either TCP or UDP transports, although most are UDP-oriented
because they are centered around short-lived requests. Using UDP also forces the RPC call to
contain enough context information for its execution independent of any other RPC requests,
since UDP packets may arrive in any order, if at all.

When an RPC call is made, the client may specify a timeout period in which the call must
complete. If the server is overloaded or has crashed, or if the request is lost in transit to the
server, the remote call may not be executed before the timeout period expires. The action
taken upon an RPC timeout varies by application; some resend the RPC call, while others
may look for another server. Detailed mechanics of making an RPC call can be found in
Chapter 13.

1.5.2 External data representation

At first look, the data presentation layer seems like overkill. Data is data, and if the client and
server processes were written to the same specification, they should agree on the format of the
data — so why bother with a presentation protocol? While a presentation layer may not be
needed in a purely homogeneous network, it is required in a heterogeneous network to unify
differences in data representation. These differences are outlined in the following list:

Data byte ordering

Does the most significant byte of an integer go in the odd- or even-numbered byte?
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Compiler behavior

Do odd-sized quantities get padded out to even-byte boundaries? How are unions
handled?

Floating point numbers
What standard is used for encoding floating point numbers?
Arrays and strings
How do you transmit variable-sized objects, such as arrays and strings?

Again, a presentation protocol would not be necessary if datagrams consisted only of byte-
oriented data. However, applications that use RPC expect a system call-like interface,
including support for structures and data types more complex than byte streams. The
presentation layer provides services for encoding and decoding argument buffers that may
then be passed down to RPC for transmission to the client or server.

The External Data Representation (XDR) protocol was developed by Sun Microsystems and
is used by NIS and NFS at the presentation layer. XDR is built on the notion of an immutable
network byte ordering, called the canonical form. It isn't really important what the canonical
form is — your system may or may not use the same byte ordering and structure packing
conventions. The canonical form simply allows network hosts to exchange structured data (as
opposed to streams of bytes) independently of any peculiarities of a particular machine. All
data structures are converted into the network byte ordering and padded appropriately.

The rule of XDR is "sender makes local canonical; receiver makes canonical local." Any data
that goes over the network is in canonical form." A host sending data on the network converts
it to canonical form, and the host that receives the data converts it back into its local
representation. A different way to implement the presentation layer might be "receiver makes
local." In this case, the sender does nothing to the local data, and the receiver must deduce the
packing and encoding technique and convert it into the local equivalent. While this scheme
may send less data over the network — since it is not subject to additional padding — it
places the burden of incorporating a new hardware architecture on the receiving side, rather
than on the new machine. This doesn't seem like a major distinction, but consider having to
change all existing, fielded software to handle the new machine's structure-packing
conventions. It's usually worth the overhead of converting to and from canonical form to
ensure that all new machines will be able to "plug in" to the network without any software
changes.

I The canonical form matches the byte ordering of the Motorola and SPARC family of microprocessors, so these processors do not have to perform
any byte swapping to translate to or from canonical form. This byte ordering is called Big Endian. Big Endian ordering is used for many Internet
protocols.

The XDR and RPC layers complete the foundation necessary for a client/server distributed
computing relationship. NFS and NIS are client/server applications, which means they sit at
the top layer of the protocol stack and use the XDR and RPC services. To complete this
introduction to network services, we'll take a look at the two mechanisms used to start and
maintain servers for various network services.
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1.5.3 Internet and RPC server configuration

The XDR and RPC services are useful for applications that need to exchange data structures
over the network. Each new RPC request contains all required information in its XDR-
encoded arguments, just as a local procedure call gets its inputs from passed-in arguments.
RPC services are usually connectionless services because RPC requests do not require the
creation of a long-lived network connection between the client and server. The client
communicates with the server to send its request and receive a reply, but there is no
connection or environment for the communication.

There are many other network services, such as felnet and fip, that are commonly referred to
as the Internet or ARPA services. They are part of the original suite of utilities designed for
use on the Internet. Internet services are generally based on the TCP protocol and are
connection-oriented — the service client establishes a connection to a server, and data is then
exchanged in the form of a well-ordered byte stream. There is no need for RPC or XDR
services, since the data is byte-oriented, and the service defines its own protocols for handling
the data stream. The telnet service, for example, has its own protocol for querying the server
about end-of-line, terminal type, and flow control conventions.

Note that RPC services are not required to be connectionless. RPC can be run over TCP, in a
connection-oriented fashion. The TCP transport protocol may be used with RPC services
whenever a large amount of data needs to be transferred. NIS, for example, uses UDP (in
connectionless mode) for most of its operations, but switches to TCP whenever it needs to
transfer an entire database from one machine to another. NFS supports either TCP or UDP for
all its operations.

Most Internet services are managed by a super-daemon called inetd that accepts requests for
connections to servers and starts instances of those servers on an as-needed basis. Rather than
having many server processes, or daemons, running on each host, inetd starts them as requests
arrive. Clients contact the inetd daemon on well-known port numbers for each service. These
port numbers are published in the /etc/services file.

inetd sets up a one-to-one relationship between service clients and server-side daemons. Every
rlogin shell, for example, has a client side rlogin process (that calls inetd upon invocation)
and a server-side in.rlogind daemon that was started by inetd. In this regard, inetd and the
services it supports are multi-threaded: they can service multiple clients at the same time,
creating a new separate connection (and state information) for each client. A new server
instance, or thread, is initiated by each request for that service, but a single daemon handles
all incoming requests at once.

Only traffic specific to a single session moves over the connection between a client and its
server. When the client is done with the service, it asks the server to terminate its connection,
and the server daemon cleans up and exits. If the server prematurely ends the connection due
to a crash, for example, the client drops its end of the connection as well.

Some RPC services can't afford the overhead of using inetd. The standard inetdbased services,
like felnet, tend to be used for a long time, so the cost of talking to inetd and having it start a
new server process is spread out over the lifetime of the connection. Many RPC calls are short
in duration, lasting at most the time required to perform a disk operation.
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RPC servers are generally started during the boot process and run as long as the machine is
up. While the time required to start a new server process may be small compared to the time a
remote login or rsh session exists, this overhead is simply too large for efficient RPC
operation. As a result, RPC servers typically have one server process for the RPC service, and
it executes remote requests for all clients in the same process. Some RPC servers are single-
threaded: they execute requests one at a time. To achieve better performance, some RPC
servers are multi-threaded: they have multiple threads of execution within the same process,
sharing the same address space. There may be many clients of the RPC server, but their
requests intermingle in the RPC server queue and are processed in the order in which server
threads are dispatched to deal with the requests.

Instead of using pre-assigned ports and a super-server, RPC servers are designated by service
number. The file /etc/rpc contains a list of RPC servers and their program numbers. Each
program may contain many procedures. The NFS program, for example, contains more than a
dozen procedures, one for each filesystem operation such as "read block," "write block,"
"create file," "make symbolic link," and so on. RPC services still must use TCP/UDP port
numbers to fit the underlying protocols, so the mapping of RPC program numbers to port
numbers is handled by the portmapper daemon (portmap on some systems, rpcbind on
others).

When an RPC server initializes, it usually registers its service with the portmapper. The RPC
server tells the portmapper which ports it will listen on for incoming requests, rather than
having the portmapper listen for it, in inetd fashion. An RPC client contacts the portmapper
daemon on the server to determine the port number used by the RPC server, or it may ask the
portmapper to call the server indirectly on its behalf. In either case, the first RPC call from a
client to a server must be made with the portmapper running. If the portmapper dies, clients
will be unable to locate RPC daemons services on the server. A server without a running
portmapper effectively stops serving NIS, NFS, and other RPC-based applications.

We'll come back to RPC mechanics and debugging techniques in later chapters. For now, this
introduction to the configuration and use of RPC services suffices as a foundation for
explaining the NFS and NIS applications built on top of them.

1.5.3.1 Socket RPC and Transport Independent RPC

RPC was originally designed to work over sockets, a programing interface for network
communication introduced in the 1980s by the University of California in its 4.1c BSD
version of Unix. Solaris 2.0 introduced Transport Independent RPC (TI-RPC). The motivation
for TI-RPC was that it appeared that OSI networking would eventually supplant TCP/IP-
based networking, and so a transport independent interface would make it easier to transition
RPC applications was needed. While OSI networking did not take over, TI-RPC is still used
in Solaris. TI-RPC introduces an additional configuration file, /etc/netconfig, which defines
each transport that RPC services can listen for requests over. In addition to TCP and UDP, the
/etc/netconfig file lists connectionless and connection-oriented loopback transports for RPC
services that don't need to provide service outside the host. In Solaris 8, the /etc/netconfig file
will also let you specify services over TCP and UDP on IPv6 network interfaces.
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Chapter 2. Introduction to Directory Services

The previous chapter gave an overview of the ISO seven-layer model, describing in some
detail the lower layers. In this chapter, we will discuss a class of layer 7— application
protocols known as directory services. NIS is an example of such a directory service.

2.1 Purpose of directory services

The purpose of a directory service is to map names of one form to names of another form.
Often the names of the first form are alphanumeric strings, and the second form are numbers.
Or the names of the first form are simple, whereas the names of second form are complex. In
the days before computing, we used directories, but they were published on paper. The most
obvious one, and perhaps the inspiration for network directory services, is the telephone book.
A typical telephone book for a city in the United States consists of three directories:

o The white pages of residence listings
o The white pages of business listings
e The yellow pages of business listings

The residence white page listings contains a list of names, last name first, and for each entry,
the telephone number. In many cases, each entry contains the street address of the residence.
Thus you can think of the residence white pages in a telephone book, as a way to direct you
from a person's name to his telephone number and address. Hence, a telephone book's formal
name is a telephone directory.

The white pages of residence listings can be thought of as a "structured set of data." If this
data were stored on a computer, a lexicographer would call it a database ; a "structured set of
data" is the definition of database in the Concise Oxford Dictionary. Sometimes, when you
are in a hurry or don't have a telephone number, you dial a special telephone number (411 or
555-1212 in the United States) to ask an operator ("directory assistance") for the telephone
number of the person you want to call. This directory assistance can be thought of as directory
service. You, the caller, are a customer or client of the directory service, and the particular
operator, is a server of the directory service. In the world of computer networking, the human
server is replaced with a directory server of databases. Since there is a server, there has to be a
client. The client-side of a directory service is typically a programming library which allows
other applications to look up entries in the database.

2.1.1 The hosts database

We've so far described a lot of theory, but a concrete example of a database in directory
services should crystallize the concept.

The metaphor of a telephone directory was useful in explaining the concepts of directory
service, client, and server. It turns out that the concept of names of people and their telephone
numbers is also a metaphor for a similar database in computer networking. Recall from
Section 1.3.2 that hosts have unique numbers or addresses, just as every telephone number in
the world is unique. Just as we associate names of people with their telephone numbers, in
computer networking we often want to give individual hosts a name in addition to a host
address. The reasons are that it is easier to remember a name than a number, and just as
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people move geographically, requiring new telephone number assignments, hosts can move
physically (requiring a new address assignment for the host) or conversely, the function the
host was serving can move from one physical host to another (requiring a new name
assignment for the host).

The hostname and address entries are stored in a hosts database that the directory server can
use to respond to requests from clients. As was noted earlier, the client-side of the directory
service is typically a programming library. This is the case for the hosts database. There is a
subroutine, known as gethostbyname( ) that takes a string name of a host and returns the
address of the host. See your system's manual page for gethostbyname for the precise calling
conventions. Solaris comes with a utility called gefent for looking up database entries via the
command line. For example:

% getent hosts frostback
128.0.0.1 frostback

getent can be thought of as one of the most primitive directory service clients, but nearly
every application that deals with the network will be a client that needs to access the hosts
database via the directory service. A more advanced client of the hosts database is a web
browser such as Netscape Navigator or Internet Explorer. Browsers will link to
gethostbyname or a similar interface to find the host addresses corresponding to Universal
Resource Locators (URLs, those things that start with http://).

Going back to the telephone concept, sometimes we would like to know the name of the caller
corresponding to a telephone number. In the United States, when you call a toll free number,
the merchant receiving the call has the capability to display your phone number and can map
it to your name (considering that the merchant is paying for your long distance call, some
might reason that this is fair). In the computer networking world, it is sometimes useful to
know the hostname of the client accessing the server. For example, suppose the server side of
a web browser is a web server. Web servers often keep logs of the "hits" made to the server,
for the purposes of understanding how popular a web site is, what is popular, and what hosts
find it popular. The web server will always be able to find the host address of the client that
made the hit. To figure out the name of the host, there is a programming interface called
gethostbyaddr( ), which takes a host address, and returns the name of the host. The
information can be obtained from the hosts database, via the directory service. In other words,
both servers and client of different services, in this case, web services, can be clients of
directory services.

2.2 Brief survey of common directory services

There are numerous different directory services. Here we will discuss some of the commonly
used ones.

2.2.1 Directory Name Service (DNS)

The roots of DNS are in the early (pre-Web) days of the Internet. DNS was developed to
provide hostname and address resolution. Before DNS existed, the authorities for the Internet
maintained a global flat text file of the mappings from hostname to IP address in a file called
hosts.txt, which was then made available for all the nodes on the Internet to download via
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a program called gettable. This is analogous to the telephone company giving you an updated
telephone book periodically. Systems like Unix would convert the file into /etc/hosts.

This hosts.txt system worked fine for the Internet when it had only thousands of hosts. But
when it reached tens of thousands of hosts, it wasn't practical, especially over the slow links
available in the late 1980s. What was needed was a way to decentralize the process of looking
up hostnames and addresses. The Internet was separated into domains, and each domain was
left to identify its own authoritative server for hostnames and addresses within its domain.
The only thing that needed to be maintained in a global database was the list of domain
names, and the servers for that domain. Returning to the telephone directory analogy, when
you live in one area code of the United States, and want to get directory information for
another area code, you can prefix the area code to the number 555-1212 to get the appropriate
directory service operator.

By assigning authority for a domain's directory information to each domain, DNS can be
described as being hierarchical. Similarly, the United States telephone system assigns
authority for a given area code's directory information to one pool of directory service
operators that answer the 555-1212 number. DNS also lets domains within subdomains
further delegate authority, and subdomains in turn. For example, in DNS there is a top-level
domain called ".com" that assigns authority for administering sun.com and oreilly.com to
DNS servers that the owners of sun.com and oreilly.com each designate. Within sun.com,
there are several subdomains, such as eng.sun.com, and east.sun.com. Within eng.sun.com,
there might be a compiler.eng.sun.com, sunos.eng.sun.com, cde.eng.sun.com. Thus DNS is a
multilevel hierarchy, whereas the United States telephone directory service has but two levels
of hierarchy.

DNS has stood the test of time. In 1993, a memorandum (RFC 1401) was written by the chair
of the Internet Architecture Board that noted that the transition from hosts.txt to DNS was
largely complete. This is fortuitous, as the World Wide Web was about to explode from tens
of thousands of hosts to millions. DNS proved capable of handling that explosion.

2.2.2 Network Information Service (NIS)

NIS was developed by Sun Microsystems in the mid-1980s to solve a problem that until then
had no solution in the Unix world. Let's return to the telephone directory service concept. One
nice thing about calling your telephone company's directory service is that the operator (the
server) is more apt to have up-to-date information than you would. Your telephone book is
replaced once a year, whereas the server's information is updated more frequently, perhaps
instantly with each new telephone number assignment and de-assignment. When networking
was added to Unix systems, system administrators very quickly ran into difficulties keeping
files like /etc/hosts (holds hostname to host address mappings) and /etc/passwd (holds
username, user identifier, password). If a system administrator had 100 systems, then adding a
host to a network or a user to the organization meant the tedium of updating the /etc/hosts or
/etc/passwd files on all 100 systems. NIS, originally called the Yellow Pages or YP, was
invented to simplify management of these files by changing the underlying programming
interfaces, such as gethostbyname( ) and getpwnam( ), to use NIS client libraries.

While DNS was being developed around the time NIS was, DNS was mostly concerned with

the directory of hostnames and addresses, whereas NIS went beyond that. In addition, DNS
was designed so that a host in one domain could access information from other domains,
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whereas NIS shared the limitations of the early Internet's hosts.txt file: flat and not very
dynamic.

We will go into much more detail on how NIS operates in Chapter 3.
2.2.3 NIS+

In 1992, Sun Microsystems released NIS+ with Solaris 2.0. Despite its name, NIS+ was more
different than it was similar to NIS. NIS+ was developed to address several deficiencies in
NIS:

Hierarchical operation

While NIS was designed to be split into unique domains, there was no simple way for
a client in one domain to get directory information from another domain. NIS+
addressed this by supporting a multilevel hierarchy in a manner similar to DNS.

Security

There are really two issues here. First is that some kinds of directory information need
to be kept more secure than others, such as a directory containing credit card numbers.
The directory server needs to know who is accessing the data, and properly
authenticate the client. Second, the client needs to be certain that the server is the true
authority for the service. An attacker in the middle between the client and real server
could masquerade as the server and return bogus information. NIS+ deals with both
these issues by supporting mutual authentication: the client and server authenticate
each other, via a secure form of RPC known as RPC/dh, which is described in Chapter
12.

Updates

Updating a NIS database and propagating the changes is a cumbersome process. Only
the system administrator can make updates (with few exceptions), and the changes
must be pushed to each replica server by pushing the entire database, even if only one
record changes. NIS+ supports the ability to allow users to update directory entries
they have access rights to. For example, a user changes the name that appears in the
password database, which might be necessary upon a status change like a new job
title, or a new surname as a result of a marriage or divorce. NIS+ servers have the
capability to accept incremental updates, which allows the updates to be more
efficiently distributed.

2.2.4 X.500

Around the same time DNS and NIS were being designed and deployed, the International
Standards Organization (ISO) started meeting to define an ISO standard directory, called
X.500. X.500 shares DNS's and NIS+'s attributes for hierarchical operation, and NIS+'s
attributes for security and simple update. X.500 differs from DNS, NIS, and NIS+ in the
following ways:
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e X.500 is very explicit about what each level of the hierarchy of a domain name looks
like. If you see a domain name like:

chicago.manufacturing.widget.com

it could easily be a DNS, NIS, or NIS+ name, and it could very well be for a host or a
domain. Moreover, while it might seem like chicago.manufacturing. widget.com refers
to a subdomain of hosts located in the city of Chicago, assigned to Widget, Inc.'s
manufacturing division, it could just as easily refer to a hand held computer on space
station Alpha. This ambiguity is a concern to some folks. Hence, X.500 explicitly
identifies what each level of hierarchy means. For example, the X.500 distinguished
name corresponding to DNS style chicago.manufacturing.widget.com name would be:

{ Country = US, Orglanization = Widget, Inc., Organizational Unit =
Manufacturing, Location = Chicago }

e X.500 supports the notion of schema. A schema is a set of rules for what can be stored
in a database. Defining a directory schema is useful when performing search
operations on a directory. Say a database includes the hire dates of employees, and
you want to search for all employees hired between a particular range of dates.
Because the X.500 directory is "aware" that the field being searched is a date, it is
possible to let the directory server do all the work of finding the matches. With DNS,
NIS, and NIS+, you would be compelled to read every directory entry from the server,
and perform the operation on the client, because the server treats the information
opaquely. The X.500 way saves network bandwidth.

For many common databases, X.500 is overkill, but there are situations where having
an X.500 schema is handy. Say you want to find all the hosts that are in the 192.1.1
network. If you defined X.500's equivalent to the hosts database with a schema that
had substring matching rules, this would be easy and efficient.

2.2.5 Lightweight Directory Access Protocol (LDAP)

X.500 has a protocol called the Directory Access Protocol (DAP) to allow clients to access
X.500 servers. DAP was designed to operate over ISO's Open Systems Interconnect (OSI)
transport and network protocols. Once upon a time, people believed that TCP/IP would wither
away and be replaced by OSI. As it turned out, too many people had deployed TCP/IP-based
networks, and they saw no compelling reason to switch to OSI. Despite OSI mandates by
most governments in the developed world, the Internet transport and network protocols
persisted, and it was obvious by 1994, if not earlier, that the OSI transport and network was
dead. However, as discussed earlier, X.500 has some extremely attractive properties for a
directory, but it comes with the baggage of OSI transport and complex ASN.1 encoding. The
Lightweight Directory Access Protocol (LDAP) was invented to allow clients using TCP/IP
and simpler encoding schemes, to take advantage of the richness of X.500 directory service.

Another difference between LDAP and DAP is that LDAP is under the control of the Internet
Engineering Task Force (IETF), the same organization that produced the standards behind the
Internet. Whether intended or not, the effect is to get IETF to buy into X.500, whereas
previously IETF had no control over OSI transport and network, and so it was much harder
(and eventually impossible) to get IETF to accept OSI transport and network.
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LDAP specifies lots of different security flavors, including ones based on public key
certificates and Kerberos V5.

At the time this book was written, LDAP was only starting to be integrated with operating
systems. Windows 2000 is the first such offering from Microsoft. Solaris 8 includes a fully
integrated LDAP client, but no server.

2.2.6 NT Domain

NT Domain is the directory service used in Windows NT. It was introduced by Microsoft in
1987 and was called Lan Manager at the time. NT Domain is intended to administer users,
groups, printers, and hosts in a Windows environment. NT Domain now supports multilevel
hierarchies, but requires a bilateral trust relationship between each domain. So if there are N
domains in an organization, N * (N - 1) relationships need to be set up. NT Domain supports
slightly better security than NIS. Perhaps the biggest issue with NT Domain is that it is an
undocumented proprietary protocol, making it difficult for Windows and non-Windows
systems to share NT Domain directory information.

Microsoft is moving away from NT Domain in favor of Active Directory, which is a
derivation of the LDAP protocol and X.500.

While NT Domain is not supported on Solaris and most other Unix systems, if you have a
mixed environment, you'll probably run into it.

2.3 Name service switch

With multiple directory services available, having the ability to access different ones is handy.
Solaris has an /etc/nsswitch.conf file that for each database, which lets you decide what
directory you want to get the database contents from. You can even specify multiple
directories. For example, nsswitch.conf might have this entry:

hosts: files nis dns

This entry says that when gethostbyname( ) and gethostbyaddr( ) are called to look up
hostnames and addresses, the interfaces will first try to find the information in the local
/etc/hosts file, then check with NIS, then check with DNS. Be aware that some directory
services can't be combined in nsswitch.conf. For example, you cannot have both NIS and
NIS+ listed in nsswitch.conf, even for different databases.

2.4 Which directory service to use

Clearly, LDAP is the future for directory services on all operating systems, including Solaris.
However, at the time this book was written, LDAP was only starting to be integrated with
operating systems. Windows 2000 is the first such offering from Microsoft. Solaris 8 includes
a fully integrated LDAP client, but no server. Moreover, LDAP is more complex to
administer than other directory services.

NIS is perhaps the easiest to administer, but it is also the most limited. It is, however, the
universal directory for Unix systems.
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DNS is the standard for hostnames and addresses, and you'll find it handy for accessing hosts
outside your domain.

NIS+ has gained some acceptance among other non-Solaris Unix operating systems, including
HP's HP-UX, IBM, AIX, and Linux. NIS+ is much more secure than NIS.

This rest of this book ignores NIS+ and LDAP, and focuses on NIS and to some degree DNS,
since those are what you are most likely to encounter. If you are concerned about security,
you'll need to seriously consider deploying NIS+ until LDAP catches up. If security is not a
concern, then NIS is fine.

30



Managing NFS and NIS

Chapter 3. Network Information Service Operation

A major problem in running a distributed computing environment is maintaining separate
copies of common configuration files such as the password, group, and hosts files. Ideally, the
network should be consistent in its configuration, so that users don't have to worry about
where they have accounts or if they'll be able to find a new machine on the network.
Preserving consistency, however, means that every change to one of these common files must
be propagated to every host on the network. In a small network, this might not be a major
chore, but in a computing environment with hundreds or thousands of systems, simple
administrative tasks can turn into all-day projects. Furthermore, without an automated tool for
making changes, the probability of making mistakes grows with the size of the network and
the number of places where changes must be made.

The Network Information System (NIS) addresses these problems. It is a distributed database
system that replaces copies of commonly replicated configuration files with a centralized
management facility. Instead of having to manage each host's files (like /etc/hosts,
Jetc/passwd, /etc/group, /etc/ethers, and so on), you maintain one database for each file on one
central server. Machines that are using NIS retrieve information as needed from these
databases. If you add a new system to the network, you can modify one file on a central server
and propagate this change to the rest of the network, rather than changing the hosts file for
each individual host on the network. For a network of two or three systems, the difference
may not be crucial; but for a large network with hundreds of systems, NIS is life-saving.

Because NIS enforces consistent views of files on the network, it is suited for files that have
no host-specific information in them. The /etc/vfstab file of filesystems and mount points, for
example, is a terrible candidate for management by NIS because it's different on just about
every machine. Files that are generally the same on all hosts in a network, such as /etc/passwd
and /etc/hosts, fit the NIS model of a distributed database nicely.

In addition to managing configuration files, NIS can be used for any general data file that is
accessed on one or more key fields. In a later chapter, we will discuss how to use NIS to
manage your own site-specific databases.

This discussion of networking services starts with NIS because it provides the consistency
that is a prerequisite for the successful administration of a distributed filesystem. Imagine a
network in which you share files from a common server, but you have a different home
directory and user ID value on every host. The advantages of the shared filesystem are lost in
such a loosely run network: you can't always read or write your files due to permission
problems, and you don't get a consistent view of your files between machines because you
don't always end up in the same home directory. We'll start with a brief description of the
different roles systems play under NIS, and then look at how to install NIS on each type of
machine.

3.1 Masters, slaves, and clients

NIS is built on the client-server model. An NIS server is a host that contains NIS data files,
called maps. Clients are hosts that request information from these maps. Servers are further
divided into master and slave servers: the master server is the true single owner of the map
data. Slave NIS servers handle client requests, but they do not modify the NIS maps. The
master server is responsible for all map maintenance and distribution to its slave servers. Once
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an NIS map is built on the master to include a change, the new map file is distributed to all
slave servers. NIS clients "see" these changes when they perform queries on the map file — it
doesn't matter whether the clients are talking to a master or a slave server, because once the
map data is distributed, all NIS servers have the same information.

Before going any further, let's take a quick and simple look at how this works. Figure 3-1
shows the relationship between masters, slaves, and clients.

Figure 3-1. NIS masters, slaves, and clients

Map Transfers  —
NIS Requests

NIS
Master Server

“the truth™

NIS Slave NIS Slave
SErvEr Server

Consider the hosts NIS map, which replaces the /etc/hosts files on individual systems. If
you're familiar with Unix adminstration, you know that this file tells the system how to
convert hostnames into IP (internet) addresses. When a client needs to look up the internet
address of some system, it would normally read the hosts file. If NIS is running, however, the
client bypasses its hosts file, and instead asks an NIS server (either a master or a slave server
— it doesn't make any difference) for the information it needs.

Now the other side of the coin: you've added a system, and need to modify the Aosts NIS map.
You only modify the hosts file on the "master server" — remember, the master server knows
the "truth" about the network."” Once you've made your changes, you can rebuild the NIS
database (i.e., the NIS maps) on the master server. The master server then distributes new
versions of the NIS maps to the slave servers, which now provide the updated information to
the NIS clients.

! Remember: when you want to make a global change to the network, you must modify the file on the master server. Global changes made to slave
servers or clients will, at best, be ignored.

With the distinction between NIS servers and clients firmly established, we can see that each
system fits into the NIS scheme in one of three ways:

Client only

This is typical of desktop workstations, where the system administrator tries to
minimize the amount of host-specific tailoring required to bring a system onto
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the network. As an NIS client, the host gets all of its common configuration
information from an extant server.

Server only

While the host services client requests for map information, it does not use NIS for its
own operation. Server-only configuration may be useful when a server must provide
global host and password information for the NIS clients, but security concerns
prohibit the server from using these same files. However, bypassing the central
configuration scheme opens some of the same loopholes that NIS was intended to
close. Although it is possible to configure a system to be an NIS server only, we don't
recommend it and don't cover it in this book.

Client and server

In most cases, an NIS server also functions as an NIS client so that its management is
streamlined with that of other client-only hosts.

It is possible to limit the scope of NIS to a few files that are changed infrequently, such as the
/etc/protocols file, but doing so defeats the purpose of using NIS and greatly increases the
cost of network management. Once NIS is running, it will be used by all system library
functions that refer to maps (files) under NIS control. As mentioned in Section 2.3 it is
possible to configure a client to get map or file information for a particular database from
either NIS, files, or both.

Now that we have this client-server model for the major administrative files, we need a way to
discuss where and when a particular set of files applies to a given host. It is much too simple-
minded for a single set of files to apply to every host on a network; a reasonable system must
support different clusters of systems with different administrative requirements. For example,
a group of administrative systems and a group of research systems might share the same
network. In most cases, these two clusters of systems don't need to share the same
administrative information. In some cases, sharing the same administrative files might be
harmful.

To allow an administrator to set different policies for different systems, NIS provides the
concept of a domain. Most precisely, a domain is a set of NIS maps. A client can refer to a
map (for example, the hosts map) from any of several different domains. Most of the time,
however, any given host will only look up data from one set of NIS maps. Therefore, it's
common (although not precisely correct) to use the term "domain" to mean "the group of
systems that share a set of NIS maps." All systems that need to share common configuration
information are put into an NIS domain. Although each system can potentially look up
information in any NIS domain, each system is assigned to a "default domain," meaning that
the system, by default, looks up information from a particular set of NIS maps. In our
example, the research systems would, by default, look at the maps in the research domain,
rather than the maps from the accounting domain; and so on.

It is up to the administrator (or administrators) to decide how many different domains are

needed. In Chapter 4, we will give some rules-of-thumb for deciding how many domains are
needed. Lest you think this is terribly complex, we'll tell you now: many networks, possibly
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even most small networks, can get by with a single domain. We will also take a closer look at
the precise definition of an NIS domain.

3.2 Basics of NIS management

Now that we have laid a conceptual foundation, let's look at how to set the machinery in
motion. Basic NIS management involves setting up NIS servers and enabling NIS on client
hosts. Server management includes three tasks:

o Installing a new NIS environment, building both master and slave servers.

o Starting the ypserv daemon, which enables the system to act as an NIS server.

e Adding new slave servers when growth of your network or NIS performance requires
more server bandwidth.

Enabling NIS on a client requires two tasks:

e Modifying the client's administrative files so that the client can take advantage of NIS.
o Starting the ypbind daemon, which allows the client to make NIS requests.

In this section, we'll review the procedures required to initialize NIS, set up slave servers, and
configure NIS clients.

3.2.1 Choosing NIS servers

First, a few words on how to plan your network. One of the most important decisions you will
make is which systems will be your NIS servers. Because a client gets almost all of its
configuration information from NIS, servers must be highly available in measures of both
uptime and request handling bandwidth. If an NIS server stops responding or replies too
slowly, the client tries to find another, less-loaded server. While this is an argument for at
least one slave server for each master server, it supports an equally strong case for building
NIS on reliable hosts. An interruption in NIS service affects all NIS clients if no other servers
are available. Even if another server is available, clients will suffer periodic slowdowns as
they recognize the current server is down and hunt for a new one.

Use your judgement in defining "highly available." You know what machines have
troublesome hardware or are likely to be commandeered for a trade show, and would
therefore make poor NIS servers. Request handling bandwidth is much harder to measure,
because it is a product of network loading, CPU utilization, and disk activity. In later chapters,
we'll come back to choosing the number of NIS servers and identifying signs that you have
too few servers.

A second imperative for NIS servers is synchronization. Clients may get their NIS
information from any server, so all servers must have copies of every map file to ensure
proper NIS operation. Furthermore, the data in each map on the slave servers must agree with
that on the master server, so that NIS clients cannot get out-of-date or stale data. NIS contains
several mechanisms for making changes to map files and distributing these changes to all NIS
servers on a regular basis.
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3.2.2 Installing the NIS master server

We'll assume that you've already done your planning and decided that you need a single NIS
domain, which will be called bedrock.” Before going any further, make sure you've set the
NIS domain name on the master server using domainname. We'll install a server for an NIS
domain named bedrock:

I The multiple-domain case is really no different than this; you just have to remember which systems belong to which domain.

newmaster# domainname bedrock

A line like this will usually appear in the /etc/rc2.d/S69inet file for every host (server and
client) in the domain. Setting the domain name if you aren't using NIS is harmless. Reminder:
you are setting the NIS domain name here, not the DNS domain. See Section 3.3.8.1 later in
this chapter.

Note that on Solaris, the domain name setting will not survive a server reboot unless it is
stored in the /etc/defaultdomain file. So, you need to do:

newmaster# domainname > /etc/defaultdomain

After establishing the domain's name, you should go over all the system's administrative files
with a fine-toothed comb: make sure they contain only the entries you want, no more, and no
less. It is important for your network to start with correct map information. Which
administrative files NIS cares about varies, but generally includes the information shown in
Table 3-1.

Table 3-1. Files managed by NIS

File Contains

/etc/auto_* Automounter maps

/etc/bootparams Information about diskless nodes
/etc/ethers Ethernet numbers (MAC addresses)
/etc/group User groups

/etc/hosts Hostnames and IP addresses

/etc/inet/ipnodes Hostnames, IPv4, and IPv6 addresses

/etc/mail/aliases Aliases and mailing lists for the mail system
/etc/netgroup Netgroup definitions (used by NIS)
/etc/netid Netname database for RPC/dh (RPC/dh is discussed in Section 12.5.4)
/etc/netmasks Network "masks"

/etc/networks Network addresses

/etc/passwd Usernames and user IDs

/etc/protocols Network protocol names and numbers
/etc/publickey Public key database for RPC/dh

/etc/tpe Remote procedure call program numbers
/etc/services Network port numbers and service names
/etc/shadow User passwords

With the exception of netgroup, these are all standard Solaris administrative files. Once NIS
is running, it will replace or supplement all of these files, depending on how
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letc/nsswitch.conf is configured. /etc/netgroup is an administrative file that is only consulted
via the NIS database. Before creating it, see Section 3.3.2 later in this chapter.

Make sure that your /etc/passwd file on the master server does not include the entry:
+::0:0::

This entry is used by NIS client hosts to indicate that they want to include NIS map
information in their password files. On the NIS master server, all entries in the /etc/passwd
file get put into the passwd NIS map. If you leave this NIS "marker" in the master server's
/etc/passwd file, your NIS password file map will contain an entry for a user named +. If you
do leave the entry in the password file, be sure to put an asterisk (*) in the password field so
that this "user" will not have a valid password:

+:%:0:0::

Note that this will not work under all operating systems; in particular you must not use an
asterisk in SunOS 4.0 or later. If you cannot fill the password field of the NIS "marker" entry,
make sure you remove this entry if you decide not to run NIS at some future point. Also, in
Solaris, the plus sign entry has been deprecated in favor of the use of the Name Service
Switch, via the nsswitch.conf file.

If you are using NIS to manage any local files (company phone lists, etc.), you must also
make sure that your local source files are up-to-date. Once you have established the domain's
name and "purified" the master server's source files, you're ready to initialize a master server.
To do so, you will use the ypinit utility. You will first need to ensure that ypinit gets its
naming information from files:

newmaster# cp /etc/nsswitch.files /etc/nsswitch.conf

At this point, you are quite close to creating the NIS maps via the ypinit utility. However,
there is one security issue you need to be aware of. The ypinit utility will generate maps from
the set of files listed in Table 3-1. One of these files is /etc/shadow, which contains a one-way
hash of the password for every account name listed in /etc/passwd. If you look at /etc/shadow,
you should see something like:

root:e0OUgsdfpdlaiA:6445::::::
daemon:NP:6445::::::
bin:NP:6445::::::
sys:NP:6445::::::
adm:NP:6445::::::
1lp:NP:6445::::::
uucp:NP:6445::::::
nuucp:NP:6445::::::
listen:*LK*:::::::
nobody:NP:6445::::::
noaccess:NP:6445::::::
nobody4:NP:6445::::::
stern:aSuxcvmyerjDM: 6445::::::
mre:96wgktpdmrkjsE:6445::::::

The fields are separated by colons (:). The first field is the name of the account or login. The
second field is the one-way hash. Note that the "system" accounts, except for root, have a
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password hash of NP or *LK*. These are not valid hashes, so the accounts are effectively
locked. The nonprivileged accounts, such as stern and mre, have a valid password hash. It is
safe to put the locked accounts in the NIS passwd map, because the password hash is of no
use to an attacker. It is safe to put the nonprivileged accounts in the map because they don't
have privileges. However, it is not safe for the root account to be put into NIS. The reason is
that if an attacker obtains the hash for root, he can perform an off-line brute force attack to
determine the root password of the master NIS server. With that password, the attacker could
render havoc on your network.

Thus, you must take steps to ensure that the passwd map does not have a root entry. The
ypinit utility will invoke the make utility on /~var/yp/Makefile. Then Makefile will by default
get the passwd map contents from /etc/passwd and /etc/shadow, but by setting the PWDIR
Makefile variable to something else, you can ensure that ypinit will create the passwd map
without root in it. So do the following:

newmaster# mkdir /etc/nispw

newmaster# chmod 0700 /etc/nispw

newmaster# grep -v '“root:' /etc/passwd > /etc/nispw/passwd

newmaster# grep -v '“root:' /etc/shadow > /etc/nispw/shadow

newmaster# vi /etc/passwd /etc/shadow # delete the nonprivileged entries,

# e.g., stern and mre
newmaster# cp /var/yp/Makefile /var/yp/Makefile.save
newmaster# vi /var/yp/Makefile # change the PWDIR variable to /etc/nispw

Before you create the new master server, you must decide how many slave servers you will
have. For availability, it is a good idea to have at minimum one slave. Once NIS is installed, if
it ever becomes unavailable, your network will become unusable. The first time your master
server becomes unavailable, your users and you will appreciate being able to use the network.
If you need additional server horsepower, then set up more than one NIS slave server. Once
you know what the names of the slaves are, make sure that the master's /etc/hosts file has
entries for each slave.

To create a new master server, become the superuser on the host and invoke ypinit with the -m
flag:

Edit /etc/hosts to add entries for each slave
newmaster# /usr/sbin/ypinit -m

ypinit builds the domain subdirectory of /var/yp for the current default domain. Note that the
ypinit utility lives in /usr/sbin, so you should use its full pathname if you don't have this
directory in your search path. In this example, ypinit creates /var/yp/bedrock.

After building the domain subdirectory, ypinit builds a complete set of administrative maps
for your system and places them in this directory. The first map created by ypinit -m is the
ypservers map. ypinit will ask you for a list of hosts that will be running NIS. The hosts
named in the ypservers map do not have to be running NIS at that time, but they should
become NIS servers before the first modifications are made to NIS maps.

You must have one and only one master server per NIS domain. There is nothing in ypinit that

checks for the existence of another master server, so it's possible to create two masters
accidentally in the same domain. Having more than one master may lead to NIS map
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corruption; at best it confuses procedures that contact the NIS master, such as map transfers
and NIS password file updates.

Now enable NIS in nsswitch.conf so that processes on your NIS master host can use NIS for
all of its name service accesses:

newmaster# cp /etc/nsswitch.nis /etc/nsswitch.conf

If you are running Solaris 8 and if you think you will ever use the sec=dh option with NFS,
then it would be an excellent idea to change the entry for publickey in nsswitch.confto:

publickey: nis

The reason for this step is that the Solaris 8 utilities that manipulate the publickey map get
confused if there are multiple database sources in the publickey entry of nsswitch.conf. You
should do this on NIS slaves and NIS clients as well.

Once ypinit finishes and nsswitch.conf is set up to use NIS, you should start the NIS service
manually via the ypstart script or by rebooting the server host. In Solaris, the relevant part of
the boot script /etc/rc2.d//S7 Irpc normally looks like this:

# Start NIS (YP) services. The ypstart script handles both client
# and server startup, whichever is appropriate.

if [ -x /usr/lib/netsvc/yp/ypstart ]; then
/usr/lib/netsvc/yp/ypstart rpcstart
fi

Assuming you opt to start the NIS service manually, you would do:

newmaster# /usr/lib/netsvc/yp/ypstart

As the comment in S71rpc says, the ypstart script handles the case when the host is an NIS
server or NIS client or both. Both S7/rpc and ypstart came with the system when it was
installed, and normally won't need modifications. The logic in ypstart may require
modifications if a server is a client of one domain but serves another; this situation sometimes
occurs when a host is on multiple networks. Issues surrounding multiple domains are left for
the next chapter.

Test that your NIS server is working:

newmaster# ypcat passwd
noaccess:NP:60002:60002:No Access User:/:
nobody4 :NP:65534:65534:S3un0S 4.x Nobody:/:
nobody:NP:60001:60001:Nobody:/:
listen:*LK*:37:4:Network Admin:/usr/net/nls:
daemon:NP:1:1::/:

nuucp:NP:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
uucp:NP:5:5:uucp Admin:/usr/lib/uucp:
Ssys:NP:3:3::/:

bin:NP:2:2::/usr/bin:
adm:NP:4:4:Admin:/var/adm:

1p:NP:71:8:Line Printer Admin:/usr/spool/lp:
stern:aSuxcvmyerjDM: 6445::::::
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mre:96wgktpdmrkijsE:6445::::::

You are now ready to add new slave servers or to set up NIS clients. Note that NIS must be
running on a master server before you can proceed.

3.2.3 Installing NIS slave servers

As with a master server, you must establish the domain name and the /etc/hosts file with the
[P addresses of all the slaves and the master:

newslave# domainname bedrock
newslave# domainname > /etc/defaultdomain
Edit /etc/hosts to add master and slaves

When you initialize a new slave server, it transfers the data from the master server's map files
and builds its own copies of the maps. No ASCII source files are used to build the NIS maps
on a slave server — only the information already in the master server's maps. If the slave has
information in ASCII configuration files that belongs in the NIS maps, make sure the master
NIS server has a copy of this data before beginning the NIS installation. For example, having
password file entries only on an NIS slave server will not add them to the NIS passwd map.
The map source files on the master server must contain a// map information, since it is the
only host that constructs map files from their sources.

The slave will need to act as an NIS client in order get initial copies of the maps from the
server. Thus you must first set up the slave as a client:

newslave# /usr/sbin/ypinit -c

You will be prompted for a list of NIS servers. You should start with the name of the local
host (in this example, newslave), followed by the name of the master (in this example,
newmaster), followed by the remaining slave servers, in order of physical proximity.

Now check to see if your slave was already acting as an NIS client already. If so, use ypstop
to terminate it:

newslave# ps -ef | grep ypbind
newslave# /usr/lib/netsvc/yp/ypstop

Now start ypbind:

newslave# /usr/lib/netsvec/yp/ypstart

Slave servers are also initialized using ypinit. Instead of specifying the -m option, use -s and
the name of the NIS master server:

newslave# /usr/sbin/ypinit -s newmaster

Now you need to start the ypserv daemon:

newslave# /usr/lib/netsvec/yp/ypstop
newslave# /usr/lib/netsvc/yp/ypstart
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Finally, set up nsswitch.conf'to use NIS:
newslave# cp /etc/nsswitch.nis /etc/nsswitch.conf

3.2.3.1 Adding slave servers later

In general, it is a good idea to initialize your NIS slave servers as soon as possible after
building the master server, so that there are no inconsistencies between the ypservers map and
the hosts that are really running NIS. Once the initial installation is complete, though, you can
add slave servers at any time. If you add an NIS slave server that was not listed in the
ypservers map, you must add its hostname to this map so that it receives NIS map updates.

To edit ypservers, dump out its old contents with ypcat, add the new slave server name, and
rebuild the map using makedbm. This procedure must be done on the NIS master server:

master# ypcat -k ypservers > /tmp/ypservers
Edit /tmp/ypservers to add new server name
master# ed /var/yp
master# cat /tmp/ypservers | makedbm - /var/yp/ domainname'/ypservers

Once you've changed the master ypservers map on the new slave, you must follow the steps
described in Section 3.2.3 in this chapter.

3.2.4 Enabling NIS on client hosts

Once you have one or more NIS servers running ypserv, you can set up NIS clients that query
them. Make sure you do not enable NIS on any clients until you have at least one NIS server
up and running. If no servers are available, the host that attempts to run as an NIS client will
hang.

To enable NIS on a client host, first set up the nsswitch.conf file:
newclient# cp /etc/nsswitch.nis /etc/nsswitch.conf

Set up the domain name:

newclient# domainname bedrock
newclient# domainname > /etc/defaultdomain

Run ypinit:
newclient# /usr/sbin/ypinit -c

You will be prompted for a list of NIS servers. Enter the servers in order of proximity to the
client.

Kill (if necessary) ypbind, and restart it:

newclient# ps -ef | grep ypbind
newclient# /usr/lib/netsvc/yp/ypstop
newclient# /usr/lib/netsvec/yp/ypstart

40



Managing NFS and NIS

Once NIS is running, references to the basic administrative files are handled in two
fundamentally different ways, depending on how nsswitch.conf'is configured:

o The NIS database replaces some files. Local copies of replaced files (ethers, hosts,
netmasks, netgroups,” networks, protocols, rpc, and services) are ignored as soon as
the ypbind daemon is started (to enable NIS).

131 The netgroups file is a special case. Netgroups are only meaningful when NIS is running, in which case the netgroups map
(rather than the file) is consulted. The netgroups file is therefore only used to build the netgroups map; it is never "consulted"
in its own right.

e Some files are augmented, or appended to, by NIS. Files that are appended, or
augmented, by NIS are consulted before the NIS maps are queried. The default
/etc/nsswitch.conf file for NIS has these appended files: aliases, auto *, group,
passwd, services, and shadow. These files are read first, and if an appropriate entry
isn't found in the local file, the corresponding NIS map is consulted. For example,
when a user logs in, an NIS client will first look up the user's login name in the local
passwd file; if it does not find anything that matches, it will refer to the NIS passwd
map.

Although the replaced files aren't consulted once NIS is running, they shouldn't be deleted. In
particular, the /etc/hosts file is used by an NIS client during the boot process, before it starts
NIS, but is ignored as soon as NIS is running. The NIS client needs a "runt" hosts file during
the boot process so that it can configure itself and get NIS running. Administrators usually
truncate hosts to the absolute minimum: entries for the host itself and the "loopback" address.
Diskless nodes need additional entries for the node's boot server and the server for the
diskless node's /usr filesystem. Trimming the hosts file to these minimal entries is a good idea
because, for historical reasons, many systems have extremely long host tables. Other files,
like rpc, services, and protocols, could probably be eliminated, but it's safest to leave the files
distributed with your system untouched; these will certainly have enough information to get
your system booted safely, particularly if NIS stops running for some reason. However, you
should make any local additions to these files on the master server alone. You don't need to
bother keeping the slaves and clients up to date.

We'll take a much closer look at the files managed by NIS and the mechanisms used to
manage appended files in Section 3.3. Meanwhile, we'll assume that you have modified these
files correctly and proceed with NIS setup.

3.3 Files managed under NIS

Now that we've walked through the setup procedure, we will discuss how the NIS maps relate
to the files that they replace. In particular, we'll discuss how to modify the files that are
appended by NIS so they can take advantage of NIS features. We will also pay special
attention to the netgroups NIS map, a confusing but nevertheless important part of the overall
picture.

Table 3-2 lists the most common files managed by NIS. Not all vendors use NIS for all of
these files, so it is best to check your documentation for a list of NIS-supported files.
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Table 3-2. Summary of NIS maps

Map Name Nickname Access By Contains Default Integration
auto.* Map key /etc/auto_* Append

bootparams Hostname /etc/bootparams | Append
ethers.byname ethers Hostname /etc/ethers Replace
ethers.byaddr MAC address |/etc/ethers Replace
group.byname group Group name /etc/group Append
group.bygid Group ID /etc/group Append
hosts.byname hosts Hostname /etc/hosts Replace
hosts.byaddr IP address /etc/hosts Replace
ipnodes.byname ipnodes Hostname /etc/inet/ipnodes | None; only integrated if [Pv6 enabled
ipnodes.byaddr IP address /etc/inet/ipnodes  |None; only integrated if [Pv6 enabled
mail.aliases aliases Alias name /etc/aliases Append
mail.byaddr Expanded alias |/etc/aliases Append
netgroup.byhost Hostname /etc/netgroup Replace
netgroup.byuser Username /etc/netgroup Replace
netid.byname Username UID & GID info |Replace
netmasks.byaddr IP address /etc/netmasks Replace
networks.byname Network name |/etc/networks Replace
networks.byaddr IP address /etc/networks Replace
passwd.byname passwd Username jz:gg EZZ‘ZSV Append
passwd.byuid User ID ;::ZEEZZVJSV Append
publickey.byname Principal name |/etc/publickey Replace
protocols.bynumber |protocols Port number /etc/protocols Replace
protocols.byname Protocol name |/etc/protocols Replace
rpc.bynumber RPC number  |/etc/rpc Replace
services.byname services  |Service name /etc/services Replace

ypservers Hostname NIS server names Replace

It's now time to face up to some distortions we've been making for the sake of simplicity.
We've assumed that there's a one-to-one correspondence between files and maps. In fact, there
are usually several maps for each file. A map really corresponds to a particular way of
accessing a file: for example, the passwd.byname map looks up data in the password database
by username. There's also a passwd.byuid that looks up users according to their user ID
number. There could be (but there aren't) additional maps that looked up users on the basis of
their group ID number, home directory, or even their choice of login shell. To make things a
bit easier, the most commonly used maps have "nicknames," which correspond directly to the
name of the original file: for example, the nickname for passwd.byname is simply passwd.
Using nicknames as if they were map names rarely causes problems — but it's important to
realize that there is a distinction. It's also important to realize that nicknames are recognized
by only two NIS utilities: ypmatch and ypcat.

Another distortion: this is the first time we've seen the netid.byname map. On the master NIS
server, this map is not based on any single source file, but instead is derived from information
in the group, password, and hosts files, via /var/yp/Makefile. 1t contains one entry for each
user in the password file. The data associated with the username is a list of every group to
which the user belongs. The netid is used to determine group memberships quickly when
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a user logs in. Instead of reading the entire group map, searching for the user's name, the login
process performs a single map lookup on the netid map. You usually don't have to worry
about this map — it will be built for you as needed — but you should be aware that it exists.
If NIS is not running, and if an NIS client has an /etc/netid file, then the information will be
read from /etc/netid.

3.3.1 Working with the maps

Earlier, we introduced the concept of replaced files and appended files. Now, we'll discuss
how to work with these files. First, let's review: these are important concepts, so repetition is
helpful. If a map replaces the local file, the file is ignored once NIS is running. Aside from
making sure that misplaced optimism doesn't lead you to delete the files that were distributed
with your system, there's nothing interesting that you can do with these replaced files. We
won't have anything further to say about them.

Conversely, local files that are appended to by NIS maps are always consulted first, even if
NIS is running. The password file is a good example of a file augmented by NIS. You may
want to give some users access to one or two machines, and not include them in the NIS
password map. The solution to this problem is to put these users into the local passwd file, but
not into the master passwd file on the master server. The local password file is always read
before getpwuid( ) goes to an NIS server. Password-file reading routines find locally defined
users as well as those in the NIS map, and the search order of "local, then NIS" allows local
password file entries to override values in the NIS map. Similarly, the local aliases file can be
used to override entries in the NIS mail aliases map, setting up machine-specific expansion of
one or more aliases.

There is yet another group of files that can be augmented with data from NIS. These files are
not managed by NIS directly, but you can add special entries referring to the NIS database (in
particular, the netgroups map). Such files include hosts.equiv and .rhosts. We won't discuss
these files in this chapter; we will treat them as the need arises. For example, we will discuss
hosts.equiv in Chapter 12.

Now we're going to discuss the special netgroups map. This new database is the basis for the
most useful extensions to the standard administrative files; it is what prevents NIS from
becoming a rigid, inflexible system. After our discussion of netgroups, we will pay special
attention to the appended files.

3.3.2 Netgroups

In addition to the standard password, group, and host file databases, NIS introduces a new
database for creating sets of users and hosts called the netgroups map. The user and hostname
fields are used to define groups (of hosts or users) for administrative purposes. For example,
to define a subset of the users in the passwd map that should be given access to a specific

machine, you can create a netgroup for those users.

A netgroup is a set of triples of the form:

(hostname, username, domain name)
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A single netgroup contains one or more of these triples. Host and usernames have their usual
meanings, but a domain name in this instance refers to the NIS domain in which the netgroup
is valid. If an entry in the triple is left blank, that field becomes a wildcard. If the entry is
specified as a dash (-), the field can take no value.

Netgroups are typically used to augment other maps and files; for example, adding a selected
group of users to the password file. The definitions and behavior of netgroups are confusing
because their syntax doesn't exactly match the way the netgroup information is used. Even
though the netgroup syntax allows you to specify user and hostnames in the same triple, user
and hostnames are rarely used together. For example, when a netgroup is used to add users to
an NIS-managed password file, only the usernames are taken from the netgroup. The
hostnames are ignored, because hostnames have no place in the password file. Similarly,
when using a netgroup to grant filesystem access permissions to a set of NFS clients, only the
hostname fields in the netgroup are used. Usernames are ignored in this case, which means a
hostname will be included in the list even if - is used as the username in its triple.

Some examples are helpful:

source (-,stern,nesales), (-,julie,nesales), (-,peter,nesales)
trusted-hosts (bitatron,,), (corvette,,)

trusted-users (bitatron,stern,), (corvette,johnc,)
dangerous-users (,jimc,), (,dave,)

In the first example, source is a group of three users; in this respect, the netgroup is similar to
an entry in /etc/group. The source netgroup in this case grants no specific permissions,
although it could be included in the password file for the source archive machine, granting
selected users access to that host. The second example shows a definition for a set of hosts,
and would be of no use in a password file. In the third example, stern and johnc are members
of the trusted-users group when it is parsed for usernames. Hosts bitatron and corvette are
members of trusted-users when it is parsed for hostnames. Note that there is no interpretation
of the netgroup that associates user stern with host bitatron. In the fourth example, dave and
Jjimc are members of dangerous-users, but no hosts are included in this group. The domain
name field is used when multiple NIS domains exist on the same network and it is necessary
to create a group that is valid in only one or the other domain.

These groups are very different from those in /etc/group. The group file (or equivalent NIS
map) explicitly grants permissions to users while the netgroup mechanism simply creates
shorthand notations or nicknames. A netgroup can be used in many places where a user or
hostname would appear, such as the password file or in the list of hosts that can access an
NFS filesystem.

You can also build netgroups from other netgroups. For example, you could create the
netgroup hosts-n-users from the following entry:

hosts-n-users trusted-hosts, trusted-users
This netgroup contains all the members of both trusted-hosts and trusted-users.

By using netgroups carefully, you can create special-purpose groups that can be managed
separately. For example, you could create a group of "administrators" that can easily be added
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to the password list of every machine, or a group of "visitors" who are only added to the
password files of certain machines.

A final note about netgroups: they are accessible only through NIS. The library routines that
have been modified to use NIS maps have also been educated about the uses of the netgroup
map, and use the netgroup, password, and host maps together. If NIS is not running,
netgroups are not defined. This implies that any netgroup file on an NIS client is ignored,
because the NIS netgroup map replaces the local file. A local netgroup file does nothing at all.
The uses of netgroups will be revisited as a security mechanism.

3.3.3 Hostname formats in netgroups

The previous section used nonfully qualified hostnames, which are hostnames without a
domain name suffix. This is the norm when using the 4osts map in NIS to store hostnames. If
you have hostnames that are available only in DNS, then you can and must use fully qualified
hostnames in the netgroup map if you want those hosts to be members of a particular
netgroup. See Chapter 5 for more details on running NIS and DNS on the same network.

3.3.4 Integrating NIS maps with local files

For files that are augmented by NIS maps, you typically strip the local file to the minimum
number of entries needed for bootstrap or single-user operation. You then add in entries that
are valid only on the local host — for example, a user with an account on only one machine
— and then integrate NIS services by adding special entries that refer to the NIS map files.

The /etc/nsswitch.conf file is used to control how NIS maps and local files are integrated.
Normally if the two are integrated, the file is interpreted first, followed by the NIS map. For
example, look at the passwd entry in the default nsswitch.conf for NIS clients:

passwd: files nis

The keyword files tells the system to read /etc/passwd first, and if the desired entry is not
found, search passwd.byname or passwd.byuid, depending on whether the system is searching
by account name or user identifier number. The reason why the passwd file is examined
before the NIS map is that some accounts, such as root, are not placed in NIS, for security
reasons (see Section 3.2.2 in this chapter). If NIS were searched before the local passwd file,
and if root were in NIS, then there would effectively be one global password for root. This is
not desirable, because once an attacker figured out the root password for one system, he'd
know the root password for all systems. Or, even if root were not in NIS, if clients were
configured to read NIS before files for passwd information, the attacker that successfully
compromised a NIS server, would be able to insert a root entry in the passwd map and gain
access to every client.

= The default files and NIS integration will have your clients getting

o>l hostname and address information from NIS. Since you will likely have

~ % DNS running, you will find it better to get host informaton from DNS.
See Chapter 5.

At this point, we've run through most of what you need to know to get NIS running. With this
background out of the way, we'll look at how NIS works. Along the way, we will give more
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precise definitions of terms that, until now, we have been using fairly loosely. Understanding
how NIS works is essential to successful debugging. It is also crucial to planning your NIS
network.

NIS is built on the RPC protocol, and uses the UDP transport to move requests from the client
host to the server. NIS services are integrated into the standard Unix library calls so that they
remain transparent to processes that reference NIS-managed files. If you have a process that
reads /etc/passwd, most of the queries about that file will be handled by NIS RPC calls to an
NIS server. The library calling interface used by the application does not change at all, but the
implementations of library routines such as getpwuid( ) that read the /etc/passwd file are
modified to refer to NIS or to NIS and local files. The application using getpwuid( ) is
oblivious to the change in its implementation.

Therefore, when you enable NIS, you don't have to change any existing software. A vendor
that supports NIS has already modified all of the relevant library calls to have them make NIS
RPC calls in addition to looking at local files where relevant. Any process that used to do
lookups in the host table still works; it just does something different in the depths of the
library calls.

3.3.5 Map files

Configuration files managed by NIS are converted into keyword and value pair tables called
maps. We've been using the term "map" all along, as if a map were equivalent to the ASCII
files that it replaces or augments. For example, we have said that the passwd NIS map is
appended to the NIS client's /etc/passwd file. Now it's time to understand what a map file
really is.

NIS maps are constructed from DBM database files. DBM is the database system that is built
into BSD Unix implementations; if it is not normally shipped as part of your Unix system,
your vendor will supply it as part of the NIS implementation. Under DBM, a database consists
of a set of keys and associated values organized in a table with fast lookup capabilities. Every
key and value pair may be located using at most two filesystem accesses, making DBM an
efficient storage mechanism for NIS maps. A common way to use the password file, for
example, is to locate an entry by user ID number, or UID. Using the flat /etc/passwd file, a
linear search is required, while the same value can be retrieved from a DBM file with a single
lookup. This performance improvement in data location offsets the overhead of performing a
remote procedure call over the network.

Each DBM database, and therefore each NIS map, comprises two files: a hash-table accessed
bitmap of indices and a data file. The index file has the .dir extension and the data file uses
.pag. A database called addresses would be stored in:

addresses.dir
index file

addresses.pag
data file

A complete map contains both files.
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Consecutive records are not packed in the data file; they are arranged in hashed order and may
have empty blocks between them. As a result, the DBM data file may appear to be up to four
times as large as the data that it contains. The Unix operating system allows a file to have
holes in it that are created when the file's write pointer is advanced beyond the end of the file
using /seek( ). Filesystem data blocks are allocated only for those parts of the file containing
data. The empty blocks are not allocated, and the file is only as large as the total number of
used filesystem blocks and fragments.

The holes in DBM files make them difficult to manipulate using standard Unix utilities. If you
try to copy an NIS map using cp, or move it across a filesystem boundary with mv, the new
file will have the holes expanded into zero-filled disk blocks. When cp reads the file, it doesn't
expect to find holes, so it reads sequentially from the first byte until the end-of-file is found.
Blocks that are not allocated are read back as zeros, and written to the new file as all zeros as
well. This has the unfortunate side effect of making the copied DBM files consume much
more disk space than the hole-filled files. Furthermore, NIS maps will not be usable on a
machine of another architecture: if you build your maps on a SPARC machine, you can't copy
them to an Intel-based machine. Map files are not ASCII files. For the administrator, the
practical consequence is that you must always use NIS tools (like ypxfr and yppush, discussed
in Section 4.2.1) to move maps from one machine to another.

3.3.6 Map naming

ASCII files are converted into DBM files by selecting the key field and separating it from the
value field by spaces or a tab. The makedbm utility builds the .dir and .pag files from ASCII
input files. A limitation of the DBM system is that it supports only one key per value, so files
that are accessed by more than one field value require an NIS map for each key field. With a
flat ASCII file, you can read the records sequentially and perform comparisons on any field in
the record. However, DBM files are indexed databases, so only one field — the key — is used
for comparisons. If you need to search the database in two different ways, using two fields,
then you must use two NIS maps or must implement one of the searches as a linear walk
through all of the records in the NIS map.

The password file is a good example of an ASCII file that is searched on multiple fields. The
getpwnam( ) library call opens the password file and looks for the entry for a specific
username. Equal in popularity is the getpwuid( ) library routine, which searches the database
looking for the given user ID value. While getpwnam( ) is used by login and chown,
getpwuid( ) 1s used by processes that need to match numeric user ID values to names, such as
Is -1. To accommodate both access methods, the standard set of NIS maps includes two maps
derived from the password file: one that uses the username as a key and one that uses the user
ID field as a key.

The map names used by NIS indicate the source of the data and the key field. The convention
for map naming is:

filename.bykeyname
The two NIS maps generated from the password file, for example, are passwd.byname (used

by getpwnam( )) and passwd.byuid (used by getpwuid( )). These two maps are stored on disk
as four files:
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passwd.byname.dir
passwd.byname.pag
passwd.byuid.dir
passwd.byuid.pag

The order of the records in the maps will be different because they have different key fields
driving the hash algorithm, but they contain exactly the same sets of entries.

3.3.7 Map structure

Two extra entries are added to each NIS map by makedbm. The master server name for the
map is embedded in one entry and the map's order, or modification timestamp, is put in the
other. These additional entries allow the map to describe itself fully, without requiring NIS to
keep map management data. Again, NIS is ignorant of the content of the maps and merely
provides an access mechanism. The maps themselves must contain timestamp and ownership
information to coordinate updates with the master NIS server.

Some maps are given nicknames based on the original file from which they are derived. Map
nicknames exist only within the ypwhich and ypmatch utilities (see Section 13.4) that retrieve
information from NIS maps. Nicknames are neither part of the NIS service nor embedded in
the maps themselves. They do provide convenient shorthands for referring to popular maps
such as the password or hosts files. For example, the map nickname passwd refers to the
passwd.byname map, and the hosts nickname refers to the hosts.byname map. To locate the
password file entry for user stern in the passwd.byname map, use ypmatch with the map
nickname:

% ypmatch stern passwd
stern:passwd:1461:10:Hal Stern:/home/thud/stern:/bin/csh

In this example, ypmatch expands the nickname passwd to the map name passwd.byname,
locates the key stern in that map, and prints the data value associated with the key.

The library routines that use NIS don't retain any information from the maps. Once a routine
looks up a hostname, for example, it passes the data back to the caller and "forgets" about the
transaction. On Solaris, if the name service cache daemon (nscd) is running, then the results
of queries from the passwd, group, and hosts maps are cached in the nscd daemon.
Subsequent queries for the same entry will be satisfied out of the cache. The cache will keep
the result of an NIS query until the entry reaches its time to live (ttl) threshold. Each cached
NIS map has different time to live values. You can invoke nscd with the -g option to see what
the time to live values are.

3.3.8 NIS domains

"Domain" is another term that we have used loosely; now we'll define domains more
precisely. Groups of hosts that use the same set of maps form an NIS domain. All of the
machines in an NIS domain will share the same password, hosts, and group file information.
Technically, the maps themselves are grouped together to form a domain, and hosts join one
or more of these NIS domains. For all practical purposes, though, an NIS domain includes
both a set of maps and the machines using information in those map files.
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NIS domains define spheres of system management. A domain is a name applied to a group of
NIS maps. The hosts that need to look up information in the maps bind themselves to the
domain, which involves finding an NIS server that has the maps comprising the domain. It's
easy to refer to the hosts that share a set of maps and the set of maps themselves
interchangeably as a domain. The important point is that NIS domains are not just defined as a
group of hosts; NIS domains are defined around a set of maps and the hosts that use these
map files. Think of setting up NIS domains as building a set of database definitions. You need
to define both the contents of the database and the users or hosts that can access the data in it.
When defining NIS domains, you must decide if the data in the NIS maps applies to all hosts
in the domain. If not, you may need to define multiple domains. This is equivalent to deciding
that you really need two or more groups of databases to meet the requirements of different
groups of users and hosts.

As we've seen, the default domain name for a host is set using the domainname command:

nisclient# domainname nesales

This usually appears in the boot scripts as:

/usr/bin/domainname ‘cat /etc/defaultdomain’

Only the superuser can set or change the default domain. Without an argument, domainname
prints the currently set domain name. Library calls that use NIS always request maps from the
default domain, so setting the domain name must be the first step in NIS startup. It is possible
for an application to request map information from more than one domain, but assume for
now that all requests refer to maps in the current default domain.

Despite the long introduction, a domain is implemented as nothing more than a subdirectory
of the top-level NIS directory, /var/yp. Nothing special is required to create a new domain —
you simply assign it a name and then put maps into it using the server initialization
procedures described later. The map files for a domain are placed in its subdirectory:

/var/yp/domainname/mapname

You can create multiple domains by repeating the initialization using different NIS domain
names. Each new domain initialization creates a new subdirectory in the NIS map directory
/var/yp. An NIS server provides service for every domain represented by a subdirectory in
/var/yp. If multiple subdirectories exist, the NIS server answers binding requests for all of
them. You do not have to tell NIS which domains to serve explicitly — it figures this out by
looking at the structure of its map directory.

It's possible to treat NIS as another administrative tool. However, it's more flexible than a
simple configuration file management system. NIS resembles a database management system
with multiple tables. As long as the NIS server can locate map information with well-known
file naming and key lookup conventions, the contents of the map files are immaterial to the
server. A relational database system such as Oracle provides the framework of schemas and
views, but it doesn't care what the schemas look like or what data is in the tables. Similarly,
the NIS system provides a framework for locating information in map files, but the
information in the files and the existence or lack of map files themselves is not of
consequence to the NIS server. There is no minimal set of map files necessary to define a
domain. While this places the responsibility for map synchronization on the system manager,
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it also affords the flexibility of adding locally defined maps to the system that are managed
and accessed in a well-known manner.

3.3.8.1 Internet domains versus NIS domains

The term "domain" is used in different ways by different services. In the Internet community,
a domain refers to a group of hosts that are managed by an Internet Domain Name Service.
These domains are defined strictly in terms of a group of hosts under common management,
and are tied to organizations and their hierarchies. These domains include entire corporations
or divisions, and may encompass several logical TCP/IP networks. The Internet domain
east.sun.com, for example, spans six organizations spread over at least 15 states.

Domains in the NIS world differ from Internet name service domains in several ways. NIS
domains exist only in the scheme of local network management and are usually driven by
physical limits or political "machine ownership" issues. There may be several NIS domains
on one network, all managed by the same system administrator. Again, it is the set of maps
and the hosts that use the maps that define an NIS domain, rather than a particular network
partitioning. In general, you may find many NIS domains in an Internet name service domain;
the name service's hostname database is built from the hostname maps in the individual NIS
domains. Integration of NIS and name services is covered in Section 5.1. From here on,
"domain" refers to an NIS domain unless explicitly noted.

3.3.9 The ypserv daemon

NIS service is provided by a single daemon, ypserv, that handles all client requests. It's simple
to tell whether a system is an NIS server: just look to see whether ypserv is running. In this
section we'll look at the RPC procedures implemented as part of the NIS protocol and the
facilities used to transfer maps from master to slave servers.

Three sets of procedure calls make up the NIS protocol: client lookups, map maintenance
calls, and NIS internal calls. Lookup requests are key-driven, and return one record from the
DBM file per call. There are four kinds of lookups: match (single key), get-first, get-next, and
get-all records. The get-first and get-next requests are used to scan the NIS map linearly,
although keys are returned in a random order. "First" refers to the first key encountered in the
data file based on hash table ordering, not the first key from the ASCII source file placed into
the map.

Map maintenance calls are used when negotiating a map transfer between master and slave
servers, although they may be made by user applications as well. The get-master function
returns the master server for a map and the get-order request returns the timestamp from the
last generation of the map file. Both values are available as records in the NIS maps. Finally,
the NIS internal calls are used to effect a map transfer and answer requests for service to a
domain. An NIS server replies only positively to a service request; if it cannot serve the
named domain it will not send a reply.

The server daemon does not have any intrinsic knowledge of what domains it serves or which
maps are available in those domains. It answers a request for service if the domain has a
subdirectory in the NIS server directory. That is, a request for service to domain polygon will
be answered if the /var/yp/polygon directory exists. This directory may be empty, or may not
contain a full complement of maps, but the server still answers a service request if the map
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directory exists. There is no NIS RPC procedure to inquire about the existence of a map on a
server; a "no such map" error is returned on a failed lookup request for the missing map. This
underscores the need for every NIS server to have a full set of map files — the NIS
mechanism itself can't tell when a map is missing until an NIS client asks for information
from it.

If the log file /var/yp/ypserv.log exists when ypserv is started, error and warning messages
will be written to this file. If an NIS server receives a service request for a domain it cannot
serve, it logs messages such as:

ypserv: Domain financials not supported (broadcast)

indicating that it ignored a broadcast request for an unknown domain. If each server handles
only its default domain, binding attempts overheard from other domains generate large
numbers of these log messages. Running multiple NIS domains on a single IP network is best
done if every server can handle every domain, or if you turn off logging. If not, you will be
overwhelmed with these informational error messages that do nothing but grow the log file.

ypserv keeps the file open while it is running, so a large log file must be cleaned up by
truncating it:

# cat /dev/null > /var/yp/ypserv.log

Removing the file with rm clears the directory entry, but does not free the disk space because
the ypserv process still has the file open. If you have multiple domains with distinct servers on
a single network, you probably shouldn't enable NIS logging.

3.3.10 The ypbind daemon

The ypbind daemon is central to NIS client operation. Whenever any system is running
ypbind, it is an NIS client — no matter what else it is doing. Therefore, it will be worth our
effort to spend some time thinking about ypbind.

When ypbind first starts, it finds a server for the host's default domain. The process of locating
a server is called binding the domain. If processes request service from other domains, ypbind
attempts to locate servers for them as needed. ypbind reads a file like
/var/yp/binding/bedrock/ypservers to get the name of an NIS server to bind to. If the NIS
server chosen for a domain crashes or begins to respond slowly due to a high load, ypbind
selects the next NIS server in the ypservers file to re-bind. The NIS timeout period varies by
implementation, but is usually between two and three minutes. Each client can be bound to
several domains at once; ypbind manages these bindings and locates servers on demand for
each newly referenced NIS domain.

A client in the NIS server-client relationship is not just a host, but a process on that host that
needs NIS map information. Every client process must be bound to a server, and they do so by
asking ypbind to locate a server on their behalf. ypbind keeps track of the server to which it is
currently directing requests, so new client binding requests can be answered without having to
contact an NIS server. ypbind continues to use its current server until it is explicitly told, as
the result of an NIS RPC timeout, that the current server is not providing prompt service.
After an RPC timeout, ypbind will try the next server in the ypservers file in an attempt to
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locate a faster NIS server. Because all client processes go through ypbind, we usually don't
make a distinction between the client processes and the host on which they are running — the
host itself is called the NIS client.

Once ypbind has created a binding between a client and a server, it never talks to the server
again. When a client process requests a binding, ypbind simply hands back the name of the
server to which the queries should be directed. Once a process has bound to a server, it can
use that binding until an error occurs (such as a server crash or failure to respond). A process
does not bind its domain before each NIS RPC call.

Domain bindings are shown by ypwhich:

% domainname
nesales

% ypwhich
wahoo

Here, ypwhich reports the currently bound server for the named domain. If the default or the
named domain is not bound, ypwhich reports an error:

gonzo% ypwhich -d financials
Domain financials not bound on gonzo

An NIS client can be put back in standalone operation by modifying /etc/nsswitch.conf:

client# cp /etc/nsswitch.files /etc/nsswitch.conf

3.3.11 NIS server as an NIS client

Previously, we recommended that NIS servers also be NIS clients. This has a number of
important effects on the network's behavior. When NIS servers are booted, they may bind to
each other instead of to themselves. A server that is booting executes a sequence of
commands that keep it fairly busy; so the local ypbind process may timeout trying to bind to
the local NIS server, and bind successfully with another host. Thus multiple NIS servers
usually end up cross-binding — they bind to each other instead of themselves.

If servers are also NIS clients, then having only one master and one slave server creates a
window in which the entire network pauses if either server goes down. If the servers have
bound to each other, and one crashes, the other server rebinds to itself after a short timeout. In
the interim, however, the "live" server is probably not doing useful work because it's waiting
for an NIS server to respond. Increasing the number of slave servers decreases the probability
that a single server crash hangs other NIS servers and consequently hangs their bound clients.
In addition, running more than two NIS servers prevents all NIS clients from rebinding to the
same server when an NIS server becomes unavailable.

3.4 Trace of a key match
Now we've seen how all of the pieces of NIS work by themselves. In reality, of course, the

clients and servers must work together with a well-defined sequence of events. To fit all of the
client- and server-side functionality into a time-sequenced picture, here is a walk-through the
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getpwuid( ) library call. The interaction of library routines and NIS daemons is shown in
Figure 3-2.

1.

A user runs Is -/, and the /s process needs to find the username corresponding to the
UID of each file's owner. In this case, /s -/ calls getpwuid(11461) to find the password
file entry — and therefore username — for UID 11461.

The local password file looks like this:

root:passwd:0:1:0perator:/:/bin/csh
daemon:*:1:1::/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:
uucp:*:4:8::/var/spool/uucppublic:

The local file is checked first, but there is no UID 11461 in it. However,
/etc/nsswitch.conf has this entry:

passwd: files nis

which effectively appends the entire NIS password map. getpwuid( ) decides it needs
to go to NIS for the password file entry.

getpwuid( ) grabs the default domain name, and binds the current process to a server
for this domain. The bind can be done explicitly by calling an NIS library routine, or it
may be done implicitly when the first NIS lookup request is issued. In either case,
ypbind provides a server binding for the named domain. If the default domain is used,
ypbind returns the current binding after pinging the bound server. However, the calling
process may have specified another domain, forcing ypbind to locate a server for it.
The client may have bindings to several domains at any time, all of which are
managed by the single ypbind process.

The client process calls the NIS lookup RPC with key=11461 and map=passwd.byuid.
The request is bundled up and sent to the ypserv process on the bound server.

The server does a DBM key lookup and returns a password file entry, if one is found.
The record is passed back to the getpwuid( ) routine, where it is returned to the calling
application.
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Figure 3-2. Trace of the getpwuid( ) library call

USer process
getpwuid (11461} ;

gelpwuid () library call
loak for uid=11461
in local Jete/passwid

not found, use NIS

ypmateh () library call

get MIS domain
qet NIS server binding

for domain

XDR encode yphind process
APC client code

XA decods

RPC Server code

\ return RPC server info

Ypserv process
call NIS server APC Server code
XA encogs look up key=11461 in
RPC client passwd byuid

return passwid entry or error

o
XOR decods \

return passwd file entry

The server can return a number of errors on a lookup request. Obviously, the specified key
might not exist in the DBM file, or the map file itself might not be present on the server. At a
lower level, the RPC might generate an error if it times out before the server responds with an
error or data; this would indicate that the server did not receive the request or could not
process it quickly enough. Whenever an RPC call returns a timeout error, the low-level NIS
RPC routine instructs ypbind to dissolve the process's binding for the domain.

NIS RPC calls continue trying the remote server after a timeout error. This happens
transparently to the user-level application calling the NIS RPC routine; for example, /s has no
idea that one of its calls to gefpwuid( ) resulted in an RPC timeout. The /s command just
patiently waits for the getpwuid( ) call to return, and the RPC code called by getpwuid( )
negotiates with ypbind to get the domain rebound and to retry the request.

Before retrying the NIS RPC that timed out, the client process (again, within some low-level
library code) must get the domain rebound. Remember that ypbind keeps track of its current
domain binding, and returns the currently bound server for a domain whenever a process asks
to be bound. This theory of operation is a little too simplistic, since it would result in a client
being immediately rebound to a server that just caused an RPC timeout. Instead, ypbind does
a health check by pinging the NIS server before returning its name for the current domain
binding. This ensures that the server has not crashed or is not the cause of the RPC failure. An
RPC timeout could have been caused when the NIS packet was lost on the network or if the
server was too heavily loaded to promptly handle the request. NIS RPC calls use the UDP
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protocol, so the network transport layer makes no guarantees about delivering NIS requests to
the server — it's possible that some requests never reach the NIS server on their first
transmission. Any condition that causes an RPC to time out is hopefully temporary, and
ypbind should find the server responsive again on the next ping. ypbind will try to reach the
currently bound server for several minutes before it decides that the server has died.

When the server health check fails, ypbind broadcasts a new request for NIS service for the
domain. When a binding is dissolved because a host is overloaded or crashes, the rebinding
generally locates a different NIS server, effecting a simple load balancing scheme. If no
replies are received for the rebinding request, messages of the form:

NIS server not responding for domain "nesales"; still trying

appear on the console as ypbind continues looking for a server. At this point, the NIS client is
only partially functional; any process that needs information from an NIS map will wait on
the return of a valid domain binding.

Most processes need to check permissions using UIDs, find a hostname associated with an IP
address, or make some other reference to NIS-managed data if they are doing anything other
than purely CPU-bound work. A machine using NIS will not run for long once it loses its
binding to an NIS server. It remains partially dead until a server appears on the network and
answers ypbind 's broadcast requests for service. The need for reliable NIS service cannot be
stressed enough. In the next chapter, we'll look at ways of using and configuring the service
efficiently.
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Chapter 4. System Management Using NIS

We've seen how NIS operates on master servers, slave servers, and clients, and how clients
get map information from the servers. Just knowing how NIS works, however, does not lead
to its efficient use. NIS servers must be configured so that map information remains consistent
on all servers, and the number of servers and the load on each server should be evaluated so
that there is not a user-noticeable penalty for referring to the NIS maps.

Ideally, NIS streamlines system administration tasks by allowing you to update configuration
files on many machines by making changes on a single host. When designing a network to use
NIS, you must ensure that its performance cost, measured by all users doing "normal"
activities, does not exceed its advantages. This chapter explains how to design an NIS
network, update and distribute NIS map data, manage multiple NIS domains, and integrate
NIS hostname services with the Domain Name Service.

4.1 NIS network design

At this point, you should be able to set up NIS on master and slave servers and have a good
understanding of how map changes are propagated from master to slave servers. Before
creating a new NIS network, you should think about the number of domains and servers you
will need. NIS network design entails deciding the number of domains, the number of servers
for each domain, and the domain names. Once the framework has been established,
installation and ongoing maintenance of the NIS servers is fairly straightforward.

4.1.1 Dividing a network into domains

The number of NIS domains that you need depends upon the division of your computing
resources. Use a separate NIS domain for each group of systems that has its own system
administrator. The job of maintaining a system also includes maintaining its configuration
information, wherever it may exist.

Large groups of users sharing network resources may warrant a separate NIS domain if the
users may be cleanly separated into two or more groups. The degree to which users in the
groups share information should determine whether you should split them into different NIS
domains. These large groups of users usually correspond very closely to the organizational
groups within your company, and the level of information sharing within the group and
between groups is fairly well defined.

A good example is that of a large university, where the physics and chemistry departments
have their own networked computing environments. Information sharing within each
department will be common, but interdepartment sharing is minimal. The physics department
isn't that interested in the machine names used by the chemistry department. The two
departments will almost definitely be in two distinct NIS domains if they do not have the
same system administrator (each probably gets one of its graduate students to assume this
job). Assume, though, that they share an administrator — why create two NIS domains? The
real motivation is to clearly mark the lines along which information is commonly shared.
Setting up different NIS domains also keeps users in one department from using machines in
another department.
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Conversely, the need to create splinter groups of a few users for access to some machines
should not warrant an independent NIS domain. Netgroups are better suited to handle this
problem, because they create subsets of a domain, rather than an entirely new domain. A good
example of a splinter group is the system administration staff — they may be given logins on
central servers, while the bulk of the user community is not. Putting the system administrators
in another domain generally creates more problems than the new domain was intended to
solve.

4.1.2 Domain names

Choosing domain names is not nearly as difficult as gauging the number of domains needed.
Just about any naming convention can be used provided that domain names are unique. You
can choose to apply the name of the group as the NIS domain name; for example, you could
use history, politics, and comp-sci to name the departments in a university.

If you are setting up multiple NIS domains that are based on hierarchical divisions, you may
want to use a multilevel naming scheme with dot-separated name components:

cslab.comp-sci
staff.comp-sci
profs.history
grad.history

The first two domain names would apply to the "lab" machines and the departmental staff
machines in the computer science department, while the two .history domain names separate
the professors and graduate students in that department.

Multilevel domain names are useful if you will be using an Internet Domain Name Service.
You can assign NIS domain names based on the name service domain names, so that every
domain name is unique and also identifies how the additional name service is related to NIS.
Integration of Internet name services and NIS is covered at the end of this chapter.

4.1.3 Number of NIS servers per domain

The number of servers per NIS domain is determined by the size of the domain and the
aggregate service requirements for it, the level of failure protection required, and any physical
network constraints that might affect client binding patterns. As a general rule, there should
be at least two servers per domain: one master and one slave. The dual-server model offers
basic protection if one server crashes, since clients of that server will rebind to the second
server. With a solitary server, the operation of the network hinges on the health of the NIS
server, creating both a performance bottleneck and a single point of failure in the network.

Increasing the number of NIS servers per domain reduces the impact of any one server
crashing. With more servers, each one is likely to have fewer clients binding to it, assuming
that the clients are equally likely to bind to any server. When a server crashes, fewer clients
will be affected. Spreading the load out over several hosts may also reduce the number of
domain rebindings that occur during unusually long server response times. If the load is
divided evenly, this should level out variations in the NIS server response time due to server
crashes and reboots.
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There is no golden rule for allocating a certain number of servers for every n NIS clients. The
total NIS service load depends on the type of work done on each machine and the relative
speeds of client and server. A faster machine generates more NIS requests in a given time
window than a slower one, if both machines are doing work that makes equal use of NIS.
Some interactive usage patterns generate more NIS traffic than work that is CPU-intensive. A
user who is continually listing files, compiling source code, and reading mail will make more
use of password file entries and mail aliases than one who runs a text editor most of the time.

The bottom line is that very few types of work generate endless streams of NIS requests; most
work makes casual references to the NIS maps separated by at most several seconds (compare
this to disk accesses, which are usually separated by milliseconds). Generally, 30-40 NIS
clients per server is an upper limit if the clients and servers are roughly the same speed. Faster
clients need a lower client/server ratio, while a server that is faster than its clients might
support 50 or more NIS clients. The best way to gauge server usage is to watch for ypbind
requests for domain bindings, indicating that clients are timing out waiting for NIS service.
Methods for observing binding requests are discussed in Section 13.4.2.

Finally, the number of servers required may depend on the physical structure of the network.
If you have decided to use four NIS servers, for example, and have two network segments
with equal numbers of clients, joined by a bridge or router, make sure you divide the NIS
servers equally on both sides of the network-partitioning hardware. If you put only one NIS
server on one side of a bridge or router, then clients on that side will almost always bind to
this server. The delay experienced by NIS requests in traversing the bridge approaches any
server-related delay, so that the NIS server on the same side of the bridge will answer a
client's request before a server on the opposite side of the bridge, even if the closer server is
more heavily loaded than the one across the bridge. With this configuration, you have undone
the benefits of multiple NIS servers, since clients on the one-server side of the bridge bind to
the same server in most cases. Locating lopsided NIS server bindings is discussed in
Section 13.4.2.

4.2 Managing map files

Keeping map files updated on all servers is essential to the proper operation of NIS. There are
two mechanisms for updating map files: using make and the NIS Makefile, which pushes
maps from the master server to the slave servers, and the ypxfr utility, which pulls maps from
the master server. This section starts with a look at how map file updates are made and how
they get distributed to slave servers.

Having a single point of administration makes it easier to propagate configuration changes
through the network, but it also means that you may have more than one person changing the
same file. If there are several system administrators maintaining the NIS maps, they need to
coordinate their efforts, or you will find that one person removes NIS map entries added by
another. Using a source code control system, such as SCCS or RCS, in conjunction with NIS
often solves this problem. In the second part of this section, we'll see how to use alternate map
source files and source code control systems with NIS.

4.2.1 Map distribution

Master and slave servers are distinguished by their ability to effect permanent changes to NIS
maps. Changes may be made to an NIS map on a slave server, but the next map transfer from
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the master will overlay this change. Modify maps only on the master server, and push them
from the master server to its slave servers. On the NIS master server, edit the source file for
the map using your favorite text editor. Source files for NIS maps are listed in Table 3-1.
Then go to the NIS map directory and build the new map using make, as shown here:

# vi /etc/hosts
# cd /var/yp
# make
...New hosts map is built and distributed...

Without any arguments, make builds all maps that are out-of-date with respect to their ASCII
source files. When more than one map is built from the same ASCII file, for example the
passwd.byname and passwd.byuid maps built from /etc/passwd, they are all built when make
is invoked.

When a map is rebuilt, the yppush utility is used to check the order number of the same map
on each NIS server. If the maps are out-of-date, yppush transfers the map to the slave servers,
using the server names in the ypservers map. Scripts to rebuild maps and push them to slave
servers are part of the NIS Makefile, which is covered in Section 4.2.3.

Map transfers done on demand after source file modifications may not always complete
successfully. The NIS slave server may be down, or the transfer may timeout due to severe
congestion or server host loading. To ensure that maps do not remain out-of-date for a long
time (until the next NIS map update), NIS uses the ypxfr utility to transfer a map to a slave
server. The slave transfers the map after checking the timestamp on its copy; if the master's
copy has been modified more recently, the slave server will replace its copy of the map with
the one it transfers from the server. It is possible to force a map transfer to a slave server,
ignoring the slave's timestamp, which is useful if a map gets corrupted and must be replaced.
Under Solaris, an additional master server daemon called ypxfrd is used to speed up map
transfer operations, but the map distribution utilities resort to the old method if they cannot
reach ypxfrd on the master server.

The map transfer — both in yppush and in ypxfr — is performed by requesting that the slave
server walk through all keys in the modified map and build a map containing these keys. This
seems quite counterintuitive, since you would hope that a map transfer amounts to nothing
more than the master server sending the map to the slave server. However, NIS was designed
to be used in a heterogeneous environment, so the master server's DBM file format may not
correspond to that used by the slave server. DBM files are tightly tied to the byte ordering and
file block allocation rules of the server system, and a DBM file must be created on the system
that indexes it. Slave servers, therefore, have to enumerate the entries in an NIS map and
rebuild the map from them, using their own local conventions for DBM file construction.
Indeed, it is theoretically possible to have NIS server implementation that does not use DBM.
When the slave server has rebuilt the map, it replaces its existing copy of the map with the
new one. Schedules for transferring maps to slave servers and scripts to be run out of cron are
provided in the next section.

4.2.2 Regular map transfers
Relying on demand-driven updates is overly optimistic, since a server may be down when the

master is updated. NIS includes the ypxfr tool to perform periodic transfers of maps to slave
servers, keeping them synchronized with the master server even if they miss an occasional
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yppush. The ypxfr utility will transfer a map only if the slave's copy is out-of-date with respect
to the master's map.

Unlike yppush, ypxfr runs on the slave. ypxfi contacts the master server for a map, enumerates
the entries in the map, and rebuilds a private copy of the map. If the map is built successfully,
ypxfr replaces the slave server's copy of the map with the newly created one. Note that doing a
yppush from the NIS master essentially involves asking each slave server to perform a ypxfr
operation if the slave's copy of the map is out-of-date. The difference between yppush and
ypxfr (besides the servers on which they are run) is that ypxfr retrieves a map even if the slave
server does not have a copy of it, while yppush requires that the slave server have the map in
order to check its modification time.

ypxfr map updates should be scheduled out of cron based on how often the maps change. The
passwd and aliases maps change most frequently, and could be transferred once an hour.
Other maps, like the services and rpc maps, tend to be static and can be updated once a day.
The standard mechanism for invoking ypxfr out of cron is to create two or more scripts based
on transfer frequency, and to call ypxfr from the scripts. The maps included in the
ypxfr_Iperhour script are those that are likely to be modified several times during the day,
while those in ypxfr 2perday, and ypxfr 1perday may change once every few days:

ypxfr Iperhour script:

/usr/lib/netsve/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr

ypxfr Z2perday script:

/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsve/yp/ypxfr
/usr/lib/netsve/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr

ypxfr Iperday script:

/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsve/yp/ypxfr
/usr/lib/netsve/yp/ypxfr
/usr/lib/netsve/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsvc/yp/ypxfr
/usr/lib/netsve/yp/ypxfr

crontab entry:

o O O

passwd.byuid
passwd.byname

hosts.byname
hosts.byaddr
ethers.byaddr
ethers.byname
netgroup
netgroup.byuser
netgroup.byhost
mail.aliases

group.byname
group.bygid
protocols.byname
protocols.bynumber
networks.byname
networks.byaddr
services.byname
ypservers

* * * * /usr/lib/netsvc/yp/ypxfr lperhour
0,12 * * * /usr/lib/netsvc/yp/ypxfr 2perday
0 * % * /Jusr/lib/netsvc/yp/ypxfr lperday

ypxfr logs its activity on the slave servers if the log file ~var/yp/ypxfr.log exists when ypxfr

starts.
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4.2.3 Map file dependencies

Dependencies of NIS maps on ASCII source files are maintained by the NIS Makefile, located
in the NIS directory /var/yp on the master server. The Makefile dependencies are built around
timestamp files named after their respective source files. For example, the timestamp file for
the NIS maps built from the password file is passwd.time, and the timestamp for the hosts
maps is kept in hosts.time.

The timestamp files are empty because only their modification dates are of interest. The make
utility is used to build maps according to the rules in the Makefile, and make compares file
modification times to determine which targets need to be rebuilt. For example, make
compares the timestamp on the passwd.time file and that of the ASCII /etc/passwd file, and
rebuilds the NIS passwd map if the ASCII source file was modified since the last time the NIS
passwd map was built.

After editing a map source file, building the map (and any other maps that may depend on it)
is done with make:

# cd /var/yp
# make passwd Rebuilds only password map.
# make Rebuilds all maps that are out-of-date.

If the source file has been modified more recently than the timestamp file, make notes that the
dependency in the Makefile is not met and executes the commands to regenerate the NIS map.
In most cases, map regeneration requires that the ASCII file be stripped of comments, fed to
makedbm for conversion to DBM format, and then pushed to all slave servers using yppush.

Be careful when building a few selected maps; if other maps depend on the modified map,
then you may distribute incomplete map information. For example, Solaris uses the netid map
to combine password and group information. The netid map is used by login shells to
determine user credentials: for every user, it lists all of the groups that user is a member of.
The netid map depends on both the /etc/passwd and /etc/group files, so when either one is
changed, the netid map should be rebuilt.

But let's say you make a change to the /etc/groups file, and decide to just rebuild and
distribute the group map:

nismaster# ed /var/yp
nismaster# make group

The commands in this example do not update the netid map, because the netid map doesn't
depend on the group map at all. The netid map depends on the /etc/group file — as does the
group map — but in the previous example, you would have instructed make to build only the
group map. If you build the group map without updating the netid map, users will become
very confused about their group memberships: their login shells will read netid and get old
group information, even though the NIS map source files appear correct.

The best solution to this problem is to build all maps that are out-of-date by using make with
no arguments:

nismaster# ed /var/yp
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nismaster# make

Once the map is built, the NIS Makefile distributes it, using yppush, to the slave servers
named in the ypservers map. yppush walks through the list of NIS servers and performs an
RPC call to each slave server to check the timestamp on the map to be transferred. If the map
is out-of-date, yppush uses another RPC call to the slave server to initiate a transfer of the
map.

A map that is corrupted or was not successfully transferred to all slave servers can be
explicitly rebuilt and repushed by removing its timestamp file on the master server:

master# ed /var/yp
master# rm hosts.time
master# make hosts

This procedure should be used if a map was built when the NIS master server's time was set
incorrectly, creating a map that becomes out-of-date when the time is reset. If you need to
perform a complete reconstruction of all NIS maps, for any reason, remove all of the
timestamp files and run make:

master# ed /var/yp
master# rm *.time
master# make

This extreme step is best reserved for testing the map distribution mechanism, or recovering
from corruption of the NIS map directory.

4.2.4 Password file updates

One exception to the yppush push-on-demand strategy is the passwd map. Users need to be
able to change their passwords without system manager intervention. The hosts file, for
example, is changed by the superuser and then pushed to other servers when it is rebuilt. In
contrast, when you change your password, you (as a nonprivileged user) modify the local
password file. To change a password in an NIS map, the change must be made on the master
server and distributed to all slave servers in order to be seen back on the client host where you
made the change.

yppasswd is a user utility that is similar to the passwd program, but it changes the user's
password in the original source file on the NIS master server. yppasswd usually forces the
password map to be rebuilt, although at sites choosing not to rebuild the map on demand, the
new password will not be distributed until the next map transfer. yppasswd is used like
passwd, but it reports the server name on which the modifications are made. Here is an
example:

[wahool% yppasswd

Changing NIS password for stern on mahimahi.
O0ld password:

New password:

Retype new password:

NIS entry changed on mahimahi
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Some versions of passwd (such as Solaris 2.6 and higher) check to see if the password file is
managed by NIS, and invoke yppasswd if this is the case. Check your vendor's documentation
for procedures particular to your system.

NIS provides read-only access to its maps. There is nothing in the NIS protocol that allows a
client to rewrite the data for a key. To accept changes to maps, a server distinct from the NIS
server is required that modifies the source file for the map and then rebuilds the NIS map
from the modified ASCII file. To handle incoming yppasswd change requests, the master
server must run the yppasswdd daemon (note the second "d" in the daemon's name). This RPC
daemon gets started in the /usr/lib/netsvc/yp/ypstart boot script on the master NIS server only:

if [ "Smaster" = "Shostname" -a X$YP SERVER = "XTRUE" ]; then
if [ -x $YPDIR/rpc.yppasswdd ]; then
PWDIR="grep ""PWDIR" /var/yp/Makefile 2> /dev/null® \
&& PWDIR='expr "S$PWDIR" : " .*=] Ix<[~ x>0
if [ "$SPWDIR" ]; then
if [ "SPWDIR" = "/etc"™ ]; then
unset PWDIR
else
PWDIR="-D $PWDIR"
fi

fi
SYPDIR/rpc.yppasswdd $PWDIR -m \
&& echo ° rpc.yppasswdd\c’
fi

fi

The host making a password map change locates the master server by asking for the master of
the NIS passwd map, and the yppasswdd daemon acts as a gateway between the user's host
and a passwd-like utility on the master server. The location of the master server's password
file and options to build a new map after each update are given as command-line arguments to
yppasswdd, as shown in the previous example.

The -D argument specifies the name of the master server's source for the password map; it
may be the default /etc/passwd or it may point to an alternative password file."" The -m option
specifies that make is to be performed in the NIS directory on the master server. You can
optionally specify arguments after -m that are passed to make. With a default set up, the
fragment in ypstart would cause yppasswdd to invoke make as:

I Recall from Section 3.2.2 that we changed PWDR to /etc/nispw.

# ( cd /var/yp; make )

after each change to the master's password source file. Since it is likely only the password file
will have changed, only the password maps get rebuilt and pushed. You can ensure that only
the password maps get pushed changing the yppaswdd line in ypstart to:

SYPDIR/rpc.yppasswdd $PWDIR -m passwd \
&& echo ° rpc.yppasswdd\c®
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4.2.5 Source code control for map files

With multiple system administrators and a single point of administration, it is possible for
conflicting or unexplained changes to NIS maps to wreak havoc with the network. The best
way to control modifications to maps and to track the change history of map source files is to
put them under a source code control system such as SCCS.

Source code files usually contain the SCCS headers in a comment or in a global string that
gets compiled into an executable. Putting SCCS keywords into comments in the /etc/hosts and
/etc/aliases files allows you to track the last version and date of edit:

header to be added to file:

# /etc/hosts header
# SM% SIS

# SWS

keywords filled in after getting file from SCCS:

o

H

o
o

T

o

/etc/hosts header
hosts 1.32 12/29/90 16:37:52
@ (#) hosts 1.32

+ o e

Once the headers have been added to the map source files, put them under SCCS
administration:

nismaster# ed /etec

nismaster# mkdir SCCS

nismaster# /usr/ccs/bin/sccs admin -ialiases aliases
nismaster# /usr/ccs/bin/sccs admin -ihosts hosts
nismaster# /usr/ccs/bin/sccs get aliases hosts

The copies of the files that are checked out of SCCS control are read-only. Someone making a
casual change to a map is forced to go and check it out of SCCS properly before doing so.
Using SCCS, each change to a file is documented before the file gets put back under SCCS
control. If you always return a file to SCCS before it is converted into an NIS map, the SCCS
control file forms an audit trail for configuration changes:

nismaster# ed /etc
nismaster# scecs prs hosts

D 1.31 00/05/22 08:52:35 root 31 30 00001/00001/00117
MRs:

COMMENTS :

added new host for info-center group

D 1.30 00/06/04 07:19:04 root 30 29 00001/00001/00117
MRs:

COMMENTS:

changed bosox-fddi to jetstar-fddi

D 1.29 90/11/08 11:03:47 root 29 28 00011/00011/00107
MRs:

COMMENTS:

commented out the porting lab systems.
If any change to the hosts or aliases file breaks, SCCS can be used to find the exact lines that

were changed and the time the change was made (for confirmation that the modification
caused the network problems).
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The two disadvantages to using SCCS for NIS maps are that all changes must be made as root
and that it won't work for the password file. The superuser must perform all file checkouts
and modifications, unless the underlying file permissions are changed to make the files
writable by nonprivileged users. If all changes are made by root, then the SCCS logs do not
contain information about the user making the change. The password file falls outside of
SCCS control because its contents will be modified by users changing their passwords,
without being able to check the file out of SCCS first. Also, some files, such as /etc/group,
have no comment lines, so you cannot use SCCS keywords in them.

4.2.6 Using alternate map source files

You may decide to use nonstandard source files for various NIS maps on the master server,
especially if the master server is not going to be an NIS client. Alternatively, you may need to
modify the standard NIS Makefile to build your own NIS maps. Approaches to both of these
problems are discussed in this section.

Some system administrators prefer to build the NIS password map from a file other than
/etc/passwd, giving them finer control over access to the server. Separating the host's and the
NIS password files is also advantageous if there are password file entries on the server (such
as those for dial-in UUCP) that shouldn't be made available on all NIS clients. To avoid
distributing UUCP password file entries to all NIS clients, the NIS password file should be
kept separately from /etc/passwd on the master server. The master can include private UUCP
password file entries and can embed the entire NIS map file via nsswitch.conf.

If you de-couple the NIS password map from the master server's password file, then the NIS
Makefile should be modified to reflect the new dependency. Refer back to the procedure
described in Section 3.2.2.

4.3 Advanced NIS server administration

Once NIS is installed and running, you may find that you need to remove or re arrange your
NIS servers to accommodate an increased load on one server. For example, if you attach
several printers to an NIS server and use it as a print server, it may no longer make a good
NIS server if most of its bandwidth is used for driving the printers. If this server is your
master NIS server, you may want to assign NIS master duties to another host. We'll look at
these advanced administration problems in this section.

4.3.1 Removing an NIS slave server

If you decommission an NIS slave server, or decide to stop running NIS on it because the
machine is loaded by other functions, you need to remove it from the ypserver map and turn
off NIS. If a host is listed in the ypservers map but is not running ypserv, then attempts to
push maps to this host will fail. This will not cause any data corruption or NIS service
failures. It will, however, significantly increase the time required to push the NIS maps
because yppush times out waiting for the former server to respond before trying the next
server.

There is no explicit "remove" procedure in the NIS maintenance tools, so you have to do this
manually. Start by rebuilding the ypservers map on the NIS master server:
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master# ed /var/yp
master# ypcat -k ypservers | grep -v servername\
| makedbm - /var/yp/ domainname’/ypservers

The ypcat command line prints the entries in the current ypservers map, then removes the
entry for the desired server using grep -v. This shortened list of servers is given to makedbm,
which rebuilds the ypservers map. If the decommissioned server is not being shut down
permanently, make sure you remove the NIS maps in /var/yp on the former server so that the
machine doesn't start ypserv on its next boot and provide out-of-date map information to the
network. Many strange problems result if an NIS server is left running with old maps: the
server will respond to requests, but may provide incorrect information to the client. After
removing the maps and rebuilding ypservers, reboot the former NIS server and check to make
sure that ypserv is not running. You may also want to force a map distribution at this point to
test the new ypservers map. The yppush commands used in the map distribution should not
include the former NIS server.

4.3.2 Changing NIS master servers

The procedure described in the previous section works only for slave servers. There are some
additional dependencies on the master server that must be removed before an NIS master can
be removed. To switch NIS master service to another host, you must rebuild all NIS maps to
reflect the name of the new master host, update the ypservers map if the old master is being
taken out of service, and distribute the new maps (with the new master server record) to all
slave servers.

Here are the steps used to change master NIS servers:

1. Build the new master host as a slave server, initializing its domain directory and filling
it with copies of the current maps. Each map must be rebuilt on the new master, which
requires the NIS Makefile and map source files from the old master. Copy the source
files and the NIS Makefile to the new master, and then rebuild all of the maps — but
do not attempt to push them to other slave servers:

newmaster# ed /var/yp
newmaster# rm *.time
newmaster# make NOPUSH=1

Removing all of the timestamp files forces every map to be rebuilt; passing
NOPUSH=1 to make prevents the maps from being pushed to other servers. At this
point, you have NIS maps that contain master host records pointing to the new NIS
master host.

2. Install copies of the new master server's maps on the old master server. Transferring
the new maps to existing NIS servers is made more difficult because of the process
used by yppush: when a map is pushed to a slave server via the transfer-map NIS RPC
call, the slave server consults its own copy of the map to determine the master server
from which it should load a new copy. This is an NIS security feature: it prevents
someone from creating an NIS master server and forcing maps onto the valid slave
servers using yppush. The slave servers will look to their current NIS master server for
map data, rather than accepting it from the renegade NIS master server.
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In the process of changing master servers, the slave servers' maps will point to the old
master server. To work around yppush, first move the new maps to the old master
server using ypxfr:

oldmaster# /usr/lib/netsvc/yp/ypxfr -h newmaster -f passwd.byuid

oldmaster# /usr/lib/netsvc/yp/ypxfr -h newmaster -f passwd.byname

oldmaster# /usr/lib/netsvc/yp/ypxfr -h newmaster -f hosts.byname
..include all NIS maps...

The -h newmaster option tells the old master server to grab the map from the new
master server, and the -f flag forces a transfer even if the local version is not out of
order with the new map. Every NIS map must be transferred to the old master server.
When this step is complete, the old master server's maps all point to the new master
server.

3. On the old master server, distribute copies of the new maps to all NIS slave servers
using yppush:

oldmaster# /usr/lib/netsvc/yp/yppush passwd.byuid
oldmaster# /usr/lib/netsvc/yp/yppush passwd.byname
oldmaster# /usr/lib/netsvc/yp/yppush hosts.byname
..include all NIS maps...

yppush forces the slave servers to look at their old maps, find the master server (still
the old master), and copy the current map from the master server. Because the map
itself contains the pointer record to the master server, transferring the entire map
automatically updates the slave servers' maps to point to the new master server.

4. If the old master server is being removed from NIS service, rebuild the ypservers map.

Many of these steps can be automated using shell scripts or simple rule additions to the NIS
Makefile, requiring less effort than it might seem. For example, you can merge steps 2 and 3
in a single shell script that transfers maps from the new master to the old master, and then
pushes each map to all of the slave servers. Run this script on the old master server:

#! /bin/sh

MAPS="passwd.byuid passwd.byname hosts.byname ..."
NEWMASTER=newmaster

for map in S$MAPS

do
echo moving Smap
/usr/lib/netsve/yp/ypxfr -h SNEWMASTER -f S$Smap
/usr/lib/netsvc/yp/yppush Smap

done

The alternative to this method is to rebuild the entire NIS system from scratch, starting with
the master server. In the process of building the system, NIS service on the network will be
interrupted as slave servers are torn down and rebuilt with new maps.

4.4 Managing multiple domains

A single NIS server may be a slave of more than one master server, if it is providing service

to multiple domains. In addition, a server may be a master for one domain and a slave of
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another. Multimaster relationships are set up when NIS is installed on each of the master
servers. In the course of building the ypservers map, the slave servers handling multiple
domains are named in the ypservers map for each domain.

When multiple domains are used with independent NIS servers (each serving only one
domain), it is sometimes necessary to keep one or more of the maps in these domains in
perfect synchronization. Domains with different password and group files, for example, might
still want to share global alias and host maps to simplify administration. Adding a new user to
either domain would make the user's mail aliases appear in the global alias file, to be shared
by both domains. Figure 4-1 shows three NIS domains that share some maps and keep private
copies of others.

Figure 4-1. Map sharing in multiple domains
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The hosts and aliases maps are shared between the NIS domains so that any changes to them
are reflected on all NIS clients in all domains. The passwd and group files are managed on a
per-domain basis so that new users or groups in one domain do not automatically appear in
the other domains. This gives the system administrators fine control over user access to
machines and files in each NIS domain.

A much simpler case is the argument for having a single /etc/rpc file and an /etc/services file
across all domains in an organization. As locally developed or third-party software that relies
on these additional services is distributed to new networks, the required configuration changes
will be in place. This scenario is most common when multiple NIS domains are run on a
single network with less than one system administrator per domain.

Sharing maps across domains involves setting up a master/slave relationship between the two
NIS master servers. The map transfer can be done periodically out of cron on the "slave"
master server, or the true master server for the map can push the modified source file to the
secondary master after each modification. The latter method offers the advantages of keeping
the map source files synchronized and keeping the NIS maps current as soon as changes are
made, but it requires that the superuser have remote execution permissions on the secondary
NIS master server.
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To force a source file to be pushed to another domain, modify the NIS Makefile to copy the
source file to the secondary master server, and rebuild the map there:

hosts.time:

rebuild hosts.byname and hosts.byaddr
@touch hosts.time;
@echo "updated hosts";

@if [ ! $(NOPUSH) ]; then $(YPPUSH) -d $(DOM) hosts.byname; fi
@if [ ! $(NOPUSH) ]; then $(YPPUSH) -d $(DOM) hosts.byaddr; fi
@if [ ! $(NOPUSH) ]; then echo "pushed hosts"; fi

@echo "copying hosts file to NIS server ono"
@rcp /etc/hosts ono:/etc/hosts

@echo "updating NIS maps on ono"

@rsh ono " ( cd /var/yp; make hosts )"

The commands in the Makefile are preceded by at signs (@) to suppress command echo when
make 1s executing them. rcp moves the file over to the secondary master server, and the script
invoked by rsh rebuilds the maps on server ono.

Superuser privileges are not always extended from one NIS server to another, and this scheme
works only if the 7sh and rcp commands can be executed. In order to get the maps copied to
the secondary master server, you need to be able to access that server as root. You might
justifiably be concerned about the security implications, since the rcp and rsh commands
work without password prompts. One alternative is to leave the source files out-of-date and
simply move the map file to the secondary master and have it distributed to slave servers in
the second domain. Another alternative is to use Kerberos V5 versions of rcp and rsh or to
use the secure shell (ssk). Kerberos V5 and ssh are available as free software or in commercial
form. Your vendor might even provide one or both. For Solaris 2.6 and upward, you can get
the Sun Enterprise Authentication Mechanism (SEAM) product from Sun, which has
Kerberos V5, including rcp and rsh using Kerberos V5 security (see Section 12.5.5.2). If you
use SEAM, you'll want to prefix rcp and rsh in the Makefile with /usr/krb5/bin/.

The following script can be run out of cron on the secondary master server to pick up the host
maps from NIS server mahimahi, the master server for domain nesales:

#! /bin/sh

/usr/lib/netsve/yp/ypxfr -h mahimahi -s nesales hosts.byname
/usr/lib/netsvc/yp/ypxfr -h mahimahi -s nesales hosts.byaddr
/usr/lib/netsvc/yp/yppush -d “domainname’ hosts.byname
/usr/lib/netsvc/yp/yppush -d “domainname’ hosts.byaddr

The ypxfr commands get the maps from the primary master server, and then the yppush
commands distribute them in the local, secondary NIS domain. The -4 option to ypxfr
specifies the hostname from which to initiate the transfer, and overrides the map's master
record. The -s option indicates the domain from which the map is to be taken. Note that in this
approach, the hosts map points to mahimahi as the master in both domains. If the rcp-based
transfer is used, then the hosts map in each domain points to the master server in that domain.
The master server record in the map always indicates the host containing a source file from
which the map can be rebuilt.

69



Managing NFS and NIS

Chapter 5. Living with Multiple Directory Servers

5.1 Domain name servers

The hostname management provided by NIS can be integrated with an Internet Domain Name
Service (DNS), or the DNS facilities can be used to replace the NIS host map in its entirety.
We'll avoid a full-length discussion of setting up a name server. That process depends on the
type of name server supported by your vendor, and it is best described by your vendor's
documentation. Instead, this section concentrates on differences between the scope of the two
hostname services, and support for DNS with and without NIS. Note that the implementation
of Domain name services provided by your vendor may not be called DNS. If the Berkeley
Internet Name Domain name service or one of its derivatives is used, the service is often
called BIND.

5.1.1 DNS versus NIS

DNS provides a hierarchical hostname management system that spans the entire Internet.
Each level in the hierarchy designates authoritative name servers that contain maps of
hostnames and IP addresses, similar to the NIS hosts map but on a larger scale. The DNS
server for a large name service domain would have host information merged from dozens of
NIS domains. First among the advantages of DNS is its ability to decentralize responsibility
for the maintenance of hostname-to-IP address mappings and the resulting domain name
qualification that is used to differentiate identically named hosts.

Decentralized name management means that each organization running a name service
domain — whether it is a subdivision of a corporation or an entire company — can maintain
its own host information without having to notify some central authority of changes in its
local configuration. Host information is published through the authoritative name server for
that domain, and hosts in other name service domains retrieve information from the name
server when needed. Every domain knows how to reach the next highest level in the name
space hierarchy, and it can generally find most of its peer name servers within the same
organization. If a name server does not know how to reach the name server for another
domain, it can ask the next higher level domain name server for assistance.

For example, Princeton University is part of the educational, or .edu, domain. The domain
name for the entire university is princeton.edu, and it is further divided by department:

cs.princeton.edu
politics.princeton.edu
history.princeton.edu

and so on. Each of the name servers for the departmental name service domains knows how to
reach most of the others; therefore each department can run its own systems without having to
notify a campus-wide network manager of any changes to host information. There is also a
name server for the entire princeton.edu domain that points to lower-level name servers for
incoming queries and locates other domains in .edu, .com, or .gov for outbound requests.

In a world in which every machine name must be unique, all of the good names are taken very
quickly. DNS allows each domain to have a distinct name space, so that two domains may
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have hosts with the same name: the name service domain suffix distinguishes them on a
higher level in the hierarchy. This is a job that cannot be performed by NIS, since the
concatenation of /etc/hosts files from several different domains would result in hostname
clashes. If the NIS domains are left independent, there is no global naming authority, because
NIS lacks a mechanism for cross-domain hostname queries.

5.1.2 DNS integration with NIS

Hostnames are managed in a hierarchy. Each host manages its own name, so the hosts are the
"leaf nodes" in this management tree. Hosts are grouped together into NIS or DNS domains,
creating a two-level tree. DNS domains may be further grouped together by company,
department, or physical location, adding more levels to the management hierarchy. NIS fits
into the DNS management scheme at the lowest level in this hierarchy.

Within a single DNS domain, there may be many physical networks with several system
administrators. NIS provides a system for the independent management of these small
networks; NIS host map information can be combined to form the DNS host file. The
approaches for doing this are described in Section 5.2 later in this chapter.

5.1.3 NIS and DNS domain names

If an Internet DNS is used in conjunction with NIS, it is helpful to tie the NIS domain names
to the DNS domain name. Deriving NIS domain names from the DNS domain name links the
two management schemes: the DNS-derived portion of the NIS domain name indicates where
the NIS domain looks for its hostname information. Joining NIS and DNS domain names also
makes sense if you have a single DNS domain that spans several physical locations. Each
office will have its own networks, and its own NIS domains, so using the DNS domain name
in the NIS domain name indicates how these locations fit into the "big picture."

For example, the Polygon Company uses the DNS domain name polygon.com. It has four NIS
domains in its main office, which uses the polygon.com DNS domain name. The NIS domain
names use the DNS domain name as a suffix:

bos-engin.polygon.com
philly-engin.polygon.com
finance.polygon.com
sales.polygon.com

If NIS is set up as the primary directory service, then Solaris versions of sendmail assume that
an NIS domain name was derived from a DNS domain name, and they will strip the first
component to derive the mail domain name. That is, if your NIS domain name is bos-
engin.polygon.com, then sendmail uses polygon.com as your mail domain name by default.
There may be many NIS domains in this DNS domain; sendmail strips off the leading
component to form the DNS domain name.

However, if there are multiple NIS domains within the DNS domain — several sales offices

in different cities, for example — then the NIS domain names should reflect the subdivision
of the DNS domain, as shown in Table 5-1.
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Table 5-1. Subdividing a DNS domain into NIS domains

NIS Domain DNS Domain
boston.sales.polygon.com .sales.polygon.com
philly.sales.polygon.com .sales.polygon.com
rahway.sales.polygon.com .sales.polygon.com
waltham.engin.polygon.com .engin.polygon.com
alameda.engin.polygon.com .engin.polygon.com

Because the NIS domain name contains four dot-separated components, sendmail drops the
first component and uses the remainder as a DNS domain name. This allows all of the sales
offices to be treated as a single administrative unit for mail and hostname management, even
though they require distinct NIS domains.

It is important to note that each single administrative unit, whether it is implemented with one
NIS domain or multiple NIS domains must share the same map entries. Thus, all the hosts
listed in the hosts map of waltham.engin.polygon.com must be listed in the hosts map of
alameda.engin.polygon.com. The converse must be true as well. Getting all hosts to agree on
usernames, uid/gid values, and host addresses is a prerequisite for adding other distributed
services such as the Network File System.

5.1.4 Domain aliases

Some systems impose a fairly small limit on the length of a domain name. If you've chosen a
long NIS domain name, say nesales.East.Sun.COM, then implementations of NIS that restrict
the length of a domain name will not be able to bind to a server.

You could build a second NIS domain with a shorter name and duplicate the maps from the
first domain, but this leaves you with twice the administrative work. An easier solution to this
problem is to create a domain name alias for the longer name by making a symbolic link in
the NIS server directory /var/yp on each server host:

master# ed /var/yp
master# ln -s nesales.East.Sun.COM nesales

NIS servers in the fully qualified domain respond to requests for service for the truncated
domain name because they believe they have a set of maps for the specified domain. It is of
no consequence that the "directory" is really a link to another domain's directory. This trick
can also be used to force two distinct NIS domains to share exactly the same set of maps.

In a simple network, your domain names are likely to be short and easily managed. However,
if you integrate DNS with NIS, and choose NIS domain names based on name service
domains, you may end wup with long, multicomponent names such as
grad.history.princeton.edu. Using symbolic links to create aliases for long names may be
necessary to make all of your NIS clients find NIS servers.

5.2 Implementation

There are four ways to integrate NIS with DNS, each of which is described in more detail in
the following subsections.
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5.2.1 Run NIS without DNS on client and server

This is the default for many systems, including Solaris. In this approach, the name services
switch file, nsswitch.conf, is set up so that nis and files are the only directory services listed in
the hosts entry of the nsswitch.conf file. The NIS server is configured (by default) to not use
DNS to resolve hostnames not found in the hosts map.

5.2.2 Run NIS on client, enable DNS on NIS server

Use the NIS maps first, then go to DNS for hostnames that aren't managed by NIS. This is
done using a special flag in the NIS hosts map.

NIS is forced to query DNS for hostnames not found in the hosts map if the map is built with
the "Inter-Domain" key. The NIS-then-DNS algorithm is embedded in the implementation of
ypserv. This means that individual NIS clients don't need to know about the DNS; only the
NIS servers will be calling DNS for non-local hostnames.

In the NIS Makefile, add the -b flag to the makedbm script for the hosts.byname and
hosts.byaddr maps, which will cause the YP_INTERDOMAIN key to be added to the /hosts
maps. In Solaris, this is done by changing the following lines in /var/yp/Makefile from:

#B=-b
B=

to:

B=-b
#B=

If a hostname is not found in the NIS map, the YP INTERDOMAIN keyinstructs NIS to look
up the name with the domain name server. Instead of immediately returning an error
indicating that the hostname key was not found, ypserv asks the DNS server to look up the
hostname. If DNS cannot find the name, then ypserv returns an error to the client. However, if
the DNS server locates the hostname, it returns the IP address information to ypserv, and
ypsery returns it to the client. Integration of NIS and DNS is completely invisible to the client
in terms of calling interfaces: all of the work is done by ypserv on the NIS server.

NIS servers locate DNS servers through the resolver interface, which relies on information in

the /etc/resolv.conf configuration file. The resolver configuration file should point to at least
two DNS servers to provide redundancy in case one DNS server becomes unavailable:

nameserver 130.1.52.28
nameserver 130.1.1.15

The nameserver keyword is used to identify the IP address of a DNS server. The servers are
listed by IP address, since hostnames are dependent on the very mechanism being configured
by this file. Set up a resolv.conf file on every NIS server.

5.2.3 Run DNS on NIS clients and servers

In this approach, NIS clients and servers ignore NIS for hostnames and use only DNS.
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Given that DNS is a full-service hostname management system, some network managers
choose to eliminate the NIS hosts map file and use pure DNS service for hostnames and IP
addresses. On some systems, a new version of gethostent( ) is required that skips the NIS
query and directly calls the DNS resolver routines for hostname lookups. Check with your
vendor for instructions on how to do this. In Solaris, the name services switch can be used to
set the hosts lookups to just DNS. If you disable NIS hostname management and use DNS
alone, you'll need to set up a resolv.conf file on every host in the network, so that they can
find DNS servers.

The main argument for using DNS only is that it consolidates hostname management under
one distributed service, instead of having it split across two services. The drawbacks to this
approach are that each host is then dependent upon both an NIS and a DNS server for normal
operation (if NIS is running), and a reliable DNS server or sufficient resolver information is
required to make each small network self-supporting. Widespread use of DNS to replace NIS
host maps suffers from the same server availability problems that NIS does — the entire
network is dependent upon reliable and well-behaved servers.

5.2.4 Run NIS on client, enable DNS on NIS client

In this approach, the name services switch file, nsswitch.conf, is set up so that both nis and
dns appear in the hosts entry of the nsswitch.conf file. The host maps should not have the
"Inter-Domain" key enabled since all that will do is result in hostname resolutions via DNS
occurring twice: once in the NIS client and once in the NIS server.

5.3 Fully qualified and unqualified hosthames

DNS and NIS have different semantics when it comes to dealing with qualified and
unqualified hostnames. A fully qualified hostname is one that includes the DNS domain name
as the suffix, whereas the unqualified hostname does not have a domain suffix. So for
example, gonzo.sales.polygon.com is a fully qualified DNS name, but gonzo is an unqualified
name. With both DNS and NIS, there is associated with the name service configuration a
default domain name. If an unqualified hostname is passed to gethostbyname( ) to be
resolved, then both DNS and NIS will associate the query with the default domain name.
When doing an address to name query, such as via gethostbyaddr( ), DNS and NIS behave
differently. DNS will always return the fully qualified hostname, whereas NIS may return the
unqualified hostname. You can do one of two things to address this issue:

e Set up the hosts map to contain only fully qualified names. The problem is that
attempts to look up an unqualified hostname would then fail with NIS, whereas such
attempts would succeed with DNS.

e Include both the fully qualified and unqualified names in the hosts map. A caveat is
that it is not defined as to which hostname, qualified or unqualified, is returned first in
the list of hostnames returned by gethostbyaddr( ). In other words, NIS has no concept
of a canonical form for hostnames, unlike DNS. You can mitigate this by ensuring that
for a given IP address there is just one entry in the hosts file used to build the hosts
maps and ensuring that the fully qualified hostname is listed first in the hosts entry for
a given IP address. If you take this route, it is a good idea to use fully qualified
hostnames in netgroups.
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The fully qualified versus unqualified hostname issue can produce practical problems on the
server side of services like NFS and rlogin, which have lists of hostnames to control access. If
the server has both NIS and DNS enabled, then it is possible that sometimes clients will have
hostnames that appear as unqualified, and sometimes as fully qualified. Unless the hostnames
that appear in files such as /etc/dfs/dfstab or /etc/hosts.equiv correspond with what the
directory service uses, access will be mistakenly denied. For example, while we have not
covered NFS operation yet, this is as good as place as any to explain a common NFS access
problem when DNS is being used to resolve hostnames to IP addresses. Suppose you have the
following entry in /etc/dfs/dfstab:

share -o rw=gonzo /export

If DNS is being used, NFS client gonzo will be denied access. This is because if DNS is being
used to resolve hostnames to IP addresses, it is also being used to resolve IP addresses to
hostnames, and DNS always generates fully qualified hostnames. Thus if gonzo is in the
sales.polygon.com domain, then the following gives gonzo access:

share -o rw=gonzo.sales.polygon.com /export

The qualified versus unqualified hostname issue is one that has the potential for causing you
major grief, and at the end of the day, you may decide that it is far simpler to use DNS across
the board. If you do opt to use both NIS and DNS, for consistent results, the following is
recommended:

e Place in the hosts map only unqualified hostnames and only hosts that belong to the
same DNS domain that the NIS domain is based upon.

o Place nis before dns in the hosts entry of nsswitch.conf. This way, if a host is in NIS,
then you will consistently use its unqualified form. If you had DNS before NIS, then
there would be no point in having NIS, except as a fallback in case DNS became
unavailable. In that case, you would find that when DNS failed, access control lists set
up to use the qualified hostname form would not suddenly result in access failures.

o Configure nsswitch.confto return an error if NIS is down:

hosts: files nis [UNAVAIL=return] dns

This seems nonintuitive, since it means that if NIS is down, you won't be able to
resolve hostnames and addresses. Let's suppose that you had the following in
nsswitch.conf:

hosts: files nis dns

Now suppose gonzo is in NIS, and gonzo.sales.polygon.com is in DNS. Assume
/etc/hosts.equiv contains an entry for gonzo. If you use rlogin to log in from gonzo to
another machine, while NIS is up, then you will be able to log in without a password
prompt. This is because when NIS is up, the IP address of gonzo is resolved by
gethostbyaddr( ) to gonzo. When NIS is down, you will get a password prompt,
because the IP address is resolved in DNS to gonzo.sales.polygon.com. A workaround
would be to place both gonzo and gonzo.sales.polygon.com in the /etc/hosts.equiv file,
but this is prone to error.
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Of course, if you do configure nsswitch.conf to return an error if NIS is down, then
when NIS is down, you will not be able to access hostnames that are in a different
DNS domain. For example:

% telnet quote.triangle.com

Not to belabor the point, but if NIS availability is a concern for you, and you are
running DNS, then you will want to give serious consideration to not using the hosts
map in nsswitch.conf:

hosts: dns

5.4 Centralized versus distributed management

This section applies to those organizations that have multiple system administration groups,
each responsible for different departments within the organizations. If your organization has
centralized remote control of all soft administration, then these issues will be of less interest
to you."

' Soft administraton includes everything that does not require onsite personnel. An example of something that is not soft administration would be
replacing a disk drive.

NIS lends itself to allowing you to give system administration groups for a given department
within your organization responsibility for maintaining the department's NIS maps without
the need for centralized control. However, the nature of hostnames, host addresses, and
domain name management is that some central controls or rules are necessary in order to
prevent mistakes in one department from affecting other departments and beyond.

There are at least three basic approaches to consider for managing hosts and domains.
Complete centralization

In this model, if someone wants an I[P address, he or she contacts a single central
committee to get one; the chances of errors are as low as possible, but the latency in
getting requests honored is the longest. Adding new subdomains is also centralized. In
this model, as there are specific system management groups managing the non-hosts
NIS maps for a given department, it is not practical to manage hosts via NIS; you
would use DNS exclusively.

Federation

In this model, the central committee has delegated responsibility for portions of the IP
address space to individual groups responsible for a DNS subdomain. In this model,
either a DNS or a hybrid NIS/DNS model for managing hosts works (such as via the
technical rules listed in Section 5.3 earlier in this chapter). If the individual groups are
using DNS to the exclusion of the NIS hosts map, then there is little work for the
central committee other than to maintain the mapping of subdomains to subdomain
name servers. The central committee, of course, is responsible for adding or deleting
subdomains. If the individual groups use NIS for local hostname information, then the
central committee would maintain the entire DNS infrastructure by periodically
gathering host map information from each group. This could be done automatically.
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Complete decentralization

Each system administration group has the autonomy to modify its NIS host maps as
well as the authority to modify the common DNS database. Such a system will not
scale as the number of subdomains and system administration groups rises. With too
many authorized players, it will be hard to track down problems caused by mistakes,
not to mention avoiding duplicate efforts.

5.5 Migrating from NIS to DNS for host naming

By now you should have a good handle on the differences between NIS and DNS as they
impact host naming. If you are considering migrating from NIS to DNS, you need to decide
what you want to do about unqualified versus qualified hostnames. By going from NIS to
DNS, you are exposing your users to a hierarchical (qualified) naming scheme versus the flat
(unqualified) one they knew under NIS. While you don't want to continue a flat naming
scheme for accessing hosts outside the user's subdomain, you may want to temporarily or
permanently support a flat naming scheme for hosts within each user's subdomain, using
techniques described earlier. Such an approach also gives you more time to find all references
to unqualified hostnames in configuration files and in software packages and correct them to
be qualified.

5.6 What next?

The Network Information Service provides an easy-to-manage general purpose distributed
database system. When used in conjunction with a source code control system and local tools,
it solves many problems with configuration file management by providing audit trails and a
single point of administration. The single biggest advantage of NIS is that it adds consistency
to a network. Getting all hosts to agree on usernames, uid and gid values, and hostnames and
host addresses is a prerequisite for adding other distributed services such as NFS.
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Chapter 6. System Administration Using the Network
File System

The Network File System (NFS) is a distributed filesystem that provides transparent access to
remote disks. Just as NIS allows you to centralize administration of user and host information,
NFS allows you to centralize administration of disks. Instead of duplicating common
directories such as /usr/local on every system, NFS provides a single copy of the directory
that is shared by all systems on the network. To a host running NFS, remote filesystems are
indistinguishable from local ones. For the user, NFS means that he or she doesn't have to log
into other systems to access files. There is no need to use rcp or tapes to move files onto the
local system. Once NFS has been set up properly, users should be able to do all their work on
their local system; remote files (data and executables) will appear to be local to their own
system. NFS and NIS are frequently used together: NIS makes sure that configuration
information is propagated to all hosts, and NFS ensures that the files a user needs are
accessible from these hosts.

NFS is also built on the RPC protocol and imposes a client-server relationship on the hosts
that use it. An NFS server is a host that owns one or more filesystems and makes them
available on the network; NFS clients mount filesystems from one or more servers. This
follows the normal client-server model where the server owns a resource that is used by the
client. In the case of NFS, the resource is a physical disk drive that is shared by all clients of
the server.

There are two aspects to system administration using NFS: choosing a filesystem naming and
mounting scheme, and then configuring the servers and clients to adhere to this scheme. The
goal of any naming scheme should be to use network transparency wisely. Being able to
mount filesystems from any server is useful only if the files are presented in a manner that is
consistent with the users' expectations.

If NFS has been set up correctly, it should be transparent to the user. For example, if locally
developed applications were found in /usr/local/bin before NFS was installed, they should
continue to be found there when NFS is running, whether /usr/local/bin is on a local
filesystem or a remote one. To the user, the actual disk holding /usr/local/bin isn't important
as long as the executables are accessible and built for the right machine architecture. If users
must change their environments to locate files accessed through NFS, they will probably
dislike the new network architecture because it changes the way things work.

An environment with many NFS servers and hundreds of clients can quickly become
overwhelming in terms of management complexity. Successful system administration of a
large NFS network requires adding some intelligence to the standard procedures. The cost of
consistency on the network should not be a large administrative overhead. One tool that
greatly eases the task of running an NFS network is the automounter, which applies NIS
management to NFS configuration. This chapter starts with a quick look at how to get NFS up
and running on clients and servers, and then explores NFS naming schemes and common
filesystem planning problems. We'll cover the automounter in detail in Chapter 9.
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6.1 Setting up NFS

Setting up NFS on clients and servers involves starting the daemons that handle the NFS RPC
protocol, starting additional daemons for auxiliary services such as file locking, and then
simply exporting filesystems from the NFS servers and mounting them on the clients.

On an NFS client, you need to have the lockd and statd daemons running in order to use NFS.
These daemons are generally started in a boot script (Solaris uses /etc/init.d/nfs.client):

if [ -x /usr/lib/nfs/statd -a -x /usr/lib/nfs/lockd ]
then
/usr/lib/nfs/statd > /dev/console 2>&l
/usr/lib/nfs/lockd > /dev/console 2>&1
fi

On some non-Solaris systems, there may also be biod daemons that get started. The biod
daemons perform block I/O operations for NFS clients, performing some simple read-ahead
and write-behind performance optimizations. You run multiple instances of biod so that each
client process can have multiple NFS requests outstanding at any time. Check your vendor's
documentation for the proper invocation of the biod daemons. Solaris does not have biod
daemons because the read-ahead and write-behind function is handled by a tunable number of
asynchronous I/O threads that reside in the system kernel.

The lockd and statd daemons handle file locking and lock recovery on the client. These
locking daemons also run on an NFS server, and the client-side daemons coordinate file
locking on the NFS server through their server-side counterparts. We'll come back to file
locking later when we discuss how NFS handles state information.

On an NFS server, NFS services are started with the nfsd and mountd daemons, as well as the
file locking daemons used on the client. You should see the NFS server daemons started in a
boot script (Solaris uses /etc/init.d/nfs.server):

if grep -s nfs /etc/dfs/sharetab >/dev/null ; then
/usr/lib/nfs/mountd
/usr/lib/nfs/nfsd -a 16

fi

On most NFS servers, there is a file that contains the list of filesystems the server will allow
clients to mount via NFS. Many servers store this list in /etc/exports file. Solaris stores the list
in /etc/dfs/dfstab. In the previous script file excerpt, the NFS server daemons are not started
unless the host shares (exports) NFS filesystems in the /etc/dfs/dfstab file. (The reference to
/etc/dfs/sharetab in the script excerpt is not a misprint; see Section 6.2.) If there are
filesystems to be made available for NFS service, the machine initializes the export list and
starts the NFS daemons. As with the client-side, check your vendor's documentation or the
boot scripts themselves for details on how the various server daemons are started.

The nfsd daemon accepts NFS RPC requests and executes them on the server. Some servers
run multiple copies of the daemon so that they can handle several RPC requests at once. In
Solaris, a single copy of the daemon is run, but multiple threads run in the kernel to provide
parallel NFS service. Varying the number of daemons or threads on a server is a performance
tuning issue that we will discuss in Chapter 17. By default, nfsd listens over both the TCP and

79



Managing NFS and NIS

UDP transport protocols. There are several options to modify this behavior and also to tune
the TCP connection management. These options will be discussed in Chapter 17 as well.

The mountd daemon handles client mount requests. The mount protocol is not part of NFS.
The mount protocol is used by an NFS server to tell a client what filesystems are available
(exported) for mounting. The NFS client uses the mount protocol to get a filehandle for the
exported filehandle.

6.2 Exporting filesystems

Usually, a host decides to become an NFS server if it has filesystems to export to the network.
A server does not explicitly advertise these filesystems; instead, it keeps a list of currently
exported filesystems and associated access restrictions in a file and compares incoming NFS
mount requests to entries in this table. It is up to the server to decide if a filesystem can be
mounted by a client. You may change the rules at any time by rebuilding its exported
filesystem table.

This section uses filenames and command names that are specific to Solaris. On non-Solaris
systems, you will find the rough equivalents shown in Table 6-1.

Table 6-1. Correspondence of Solaris and non-Solaris export components

Description Solaris Non-Solaris
Initial list of filesystems to export /etc/dfs/dfstab /etc/exports
Command to export initial list shareall exportfs
List of currently exported filesystems /etc/dfs/sharetab /etc/xtab
Command to export one filesystem share exportfs
List of local filesystems on server /etc/vfstab /etc/fstab

The exported filesystem table is initialized from the /etc/dfs/dfstab file. The superuser may
export other filesystems once the server is up and running, so the /etc/dfs/dfstab file and the
actual list of currently exported filesystems, /etc/dfs/sharetab, are maintained separately.
When a fileserver boots, it checks for the existence of /etc/dfs/dfstaband runs shareall(1M) on
it to make filesystems available for client use. If, after shareall runs, /etc/dfs/sharetab has
entries, the nfsd and mountddaemons are run.

After the system is up, the superuser can export additional filesystems via the share
command.

- A common usage error is invoking the share command manually on a
a3 | system that booted without entries in /etc/dfs/dfstab. If the nfsd and
" 4+ mountd daemons are not running, then invoking the share command

manually does not enable NFS service. Before running the share
command manually, you should verify that nfsd and mountd are running.
If they are not, then start them. On Solaris, you would use the
Jetc/init.d/nfs.server script, invoked as /etc/init.d/nfs.server start.
However, if there is no entry in /etc/dfs/dfstab, you must add one before
the /etc/init.d/nfs.server script will have an effect.
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6.2.1 Rules for exporting filesystems
There are four rules for making a server's filesystem available to NFS:

1. Any filesystem, or proper subset of a filesystem, can be exported from a server. A
proper subset of a filesystem is a file or directory tree that starts below the mount point
of the filesystem. For example, if /usr is a filesystem, and the /usr/local directory is
part of that filesystem, then /usr/local is a proper subset of /usr.

2. You cannot export any subdirectory of an exported filesystem unless the subdirectory
is on a different physical device.

3. You cannot export any parent directory of an exported filesystem unless the parent is
on a different physical device.

4. You can export only local filesystems.

The first rule allows you to export selected portions of a large filesystem. You can export and
mount a single file, a feature that is used by diskless clients. The second and third rules seem
both redundant and confusing, but are in place to enforce the selective views imposed by
exporting a subdirectory of a filesystem.

The second rule allows you to export /usr/local/bin when /usr/local is already exported from
the same server only if /usr/local/bin is on a different disk. For example, if your server
mounts these filesystems using /etc/vfstab entries like:

/dev/dsk/c0t0d0s5 /dev/rdsk/c0t0d0s5 /usr/local ufs 2 no rw
/dev/dsk/c0t3d0s0 /dev/rdsk/c0t3d0s0 /usr/local/bin ufs 2 lno rw

then exporting both of them is allowed, since the exported directories reside on different
filesystems. If, however, bin was a subdirectory of /usr/local, then it could not be exported in
conjunction with its parent.

The third rule is the converse of the second. If you have a subdirectory exported, you cannot
also export its parent unless they are on different filesystems. In the previous example, if
/usr/local/bin 1s already exported, then /usr/local can be exported only if it is on a different
filesystem. This rule prevents entire filesystems from being exported on the fly when the
system administrator has carefully chosen to export a selected set of subdirectories.

Together, the second and third rules say that you can export a local filesystem only one way.
Once you export a subdirectory of it, you can't go and export the whole thing; and once you've
made the whole thing public, you can't go and restrict the export list to a subdirectory or two.

One way to check the validity of subdirectory exports is to use the df command to determine
on which local filesystem the current directory resides. If you find that the parent directory
and its subdirectory appear in the output of df, then they are on separate filesystems, and it is
safe to export them both.

Exporting subdirectories is similar to creating views on a relational database. You choose the
portions of the database that a user needs to see, hiding information that is extraneous or
sensitive. In NFS, exporting a subdirectory of a filesystem is useful if the entire filesystem
contains subdirectories with names that might confuse users, or if the filesystem contains
several parallel directory trees of which only one is useful to the user.
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6.2.2 Exporting options

The /etc/dfs/dfstab file contains a list of filesystems that a server exports and any restrictions
or export options for each. The /etc/dfs/dfstab file is really just a list of individual
sharecommands, and so the entries in the file follow the command-line syntax of the share
command:

share [ -d description ] [ -F nfs ] [ -o suboptions ] pathname

Before we discuss the options, pathnameis the filesystem or subdirectory of the filesystem
being exported.

The -d option allows you to insert a comment describing what the exported filesystem
contains. This option is of little use since there are no utilities to let an NFS client see this
information.

The -F option allows you to specify the type of fileserver to use. Since the share command
supports just one fileserver—NFS—this option is currently redundant. Early releases of
Solaris supported a distributed file-sharing system known as RFS, hence the historical reason
for this option. It is conceivable that another file sharing system would be added to Solaris in
the future. For clarity, you should specify -F nfs to ensure that the NFS service is used.

The -o option allows you to specify a list of suboptions. (Multiple suboptions would be
separated by commas.) For example:

# share -F nfs /export/home
# share -F nfs -o rw=corvette /usr/local

Several options modify the way a filesystem is exported to the network:

w
Permits NFS clients to read from or write to the filesystem. This option is the default;
i.e., if none of rw, ro, ro=client list, or rw=client list are specified, then read/write
access to the world is granted.

ro

Prevents NFS clients from writing to the filesystem. Read-only restrictions are
enforced when a client performs an operation on an NFS filesystem: if the client has
mounted the filesystem with read and write permissions, but the server specified ro
when exporting it, any attempt by the client to write to the filesystem will fail, with
"Read-only filesystem" or "Permission denied" messages.

rw=client _list

Limits the set of hosts that may write to the filesystem to the NFS clients identified in
client list.

A client list has the form of a colon-separated list of components, such that a
component is one of the following:
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hostname
The hostname of the NFS client.
netgroup

The NIS directory services support the concept of a set of hostnames named
collectively as a netgroup. See Chapter 7 for a description on how to set up netgroups
under NIS.

DNS domain

An Internet Domain Name Service domain is indicated by a preceding dot. For
example:

# share -o rw=.widget.com /export2

grants access to any host in the widget.com domain. In order for this to work, the NFS
server must be using DNS as its primary directory service ahead of NIS (see
Chapter 4).

netmask

A netmask is indicated by a preceding at-sign (@) and possibly by a suffix with a
slash and length to indicate the number of bits in the netmask. Examples will help
here:

# share -o rw=@129.100.0.0 /export
# share -o rw=@193.150.145.63/27 /export2

The notation of four decimal values separated by periods is known as a dotted quad.

In the first example, any client with an Internet Protocol (IP) address such that its first
two octets are 129 and 100 (in decimal), will get read/write access to /export.

In the second example, a client with an address such that the first 27 bits match the
first 27 bits of 793.150.145.63 will get read/write access. The notation
193.150.145.63/27 is an example of classless addressing, which was previously
discussed in Section 1.3.3.

So in the second example, a client with an address of 793.750.145.33would get access,
but another client with the address 793.150.145.128would not. Chapter 6 clarifies this.

Table 6-2. Netmask matching

Client Address dotted Client Address Netmask dotted Netmask >
. . Access?

quad hexadecimal quad hexadecimal

193.150.145.33 0xc1969121 193.150.145.63/27 0xc1969120 Yes

193.150.145.128 0xc1969180 193.150.145.63/27 0xc1969120 No
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-component

Each component in the client list can be prefixed with a minus sign (-) to offer
negative matching. This indicates that the component should not get access, even if it
is included in another component in the client list. For example:

# share -o rw=-wrench.widget.com:.widget.com /dir

would exclude the host wrench in the domain widget.com, but would give access to all
other hosts in the domain widget.com. Note that order matters. If you did this:

# share -o rw=.widget.com:-wrench.widget.com /dir

host wrench would not be denied access. In other words, the NFS server will stop
processing the client list once it gets a positive or negative match.

ro=client_list

Limits the set of hosts that may read (but not write to) the filesystem to the NFS
clients identified in client list. The form of client list is the same as that described for
the rw=client_list option.

anon=uid

Maps anonymous, or unknown, users to the user identifier uid. Anonymous users are
those that do not present valid credentials in their NFS requests. Note that an
anonymous user is not one that does not appear in the server's password file or NIS
passwd map. If no credentials are included with the NFS request, it is treated as an
anonymous request. NFS clients can submit requests from unknown users if the proper
user validation is not completed; we'll look at both of these problems in later chapters.
Section 12.4 discusses the anon option in more detail.

root=client_list
Grants superuser access to the NFS clients identified in client list. The form of
client list is the same as that described for the rw=client list option. To enforce basic
network security, by default, superuser privileges are not extended over the network.
The root option allows you to selectively grant root access to a filesystem. This
security feature will be covered in Section 12.4.2.

sec=mode[:mode ...]
Requires that NFS clients use the security mode(s) specified. Security modes can be:

Sys

This is the default form of security, which assumes a trusted relationship between NFS
clients and servers.
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dh

This is a stronger form of security based on a cryptographic algorithm known as
Diffie-Hellman Key Exchange.

krb5
krbbi
krb5p

This is a trio of stronger forms of security based on a key management system called
Kerberos Version 5.

none

This is the weakest form of security. All users are treated as unknown and are mapped
to the anonymous user.

The sec= option can be combined with rw, ro, rw=, ro=, and root= in interesting
ways. We will look at that and other security modes in more detail in Section 12.4.4.

aclok
ACL stands for Access Control List. The aclok option can sometimes prevent
interoperability problems involving NFS Version 2 clients that do not understand

Access Control Lists. We will explore ACLs and the aclokoption in Section 12.4.8.

nosub
nosuid

Under some situations, the nosub and nosuid options prevent security exposures. We
will go into more detail in Chapter 12.

public

This option is useful for environments that have to cope with firewalls. We will
discuss it in more detail also in Chapter 12.

Your system may support additional options, so check your vendor's relevant manual pages.
6.3 Mounting filesystems

This section uses filenames and command names specific to Solaris. Note that you are better
off using the automounter (see Chapter 9) to mount filesystems, rather than using the mount
utility described in this section. However, understanding the automounter, and why it is better
than mount, requires understanding mount. Thus, we will discuss the concept of NFS

filesystem mounting in the context of mount.

Solaris has different component names from non-Solaris systems. Table 6-3 shows the rough
equivalents to non-Solaris systems.
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Table 6-3. Correspondence of Solaris and non-Solaris mount components

Description Solaris Non-Solaris
List of filesystems /etc/vfstab /etc/fstab
List of mounted filesystems /etc/mnttab /etc/mtab
RPC program number to network address mapper

rpcbind portmap
(portmapper)
MOUNT daemon mountd rpc.mountd

NFS clients can mount any filesystem, or part of a filesystem, that has been exported from an
NFS server. The filesystem can be listed in the client's /etc/vfstab file, or it can be mounted
explicitly using the mount(1M) command. (Also, in Solaris, see the mount nfs(1M) manpage,
which explains NFS-specific details of filesystem mounting.)

NFS filesystems appear to be "normal" filesystems on the client, which means that they can
be mounted on any directory on the client. It's possible to mount an NFS filesystem over all or
part of another filesystem, since the directories used as mount points appear the same no
matter where they actually reside. When you mount a filesystem on top of another one, you
obscure whatever is "under" the mount point. NFS clients see the most recent view of the
filesystem. These potentially confusing issues will be the foundation for the discussion of
NFS naming schemes later in this chapter.

6.3.1 Using /etc/vfstab

Adding entries to /etc/vfstab is one way to mount NFS filesystems. Once the entry has been
added to the vfstab file, the client mounts it on every reboot. There are several features that
distinguish NFS filesystems in the vfstab file:

e The "device name" field is replaced with a server:filesystem specification, where the
filesystem name is a pathname (not a device name) on the server.

e The "raw device name" field that is checked with fsck, is replaced with a -.

o The filesystem type is nfs, not ufs as for local filesystems.

e The fsck pass is set to -.

o The options field can contain a variety of NFS-specific mount options, covered in the
Section 6.3.2.

Some typical vfstab entries for NFS filesystems are:

ono:/export/ono - |/hosts/ono nfs |- |yes |rw,bg,hard
onaga:/export/onaga - |/hosts/onaga nfs |- |yes |rw,bg,hard
wahoo:/var/mail - |/var/mail nfs |- |yes |rw,bg,hard

The yes in theabove entries says to mount the filesystems whenever the system boots up. This
field can be yes or no, and has the same effect for NFS and non-NFS filesystems.

Of course, each vendor is free to vary the server and filesystem name syntax, and your manual
set should provide the best sample vfstab entries.
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6.3.2 Using mount

While entries in the vfstab file are useful for creating a long-lived NFS environment,
sometimes you need to mount a filesystem right away or mount it temporarily while you copy
files from it. The mount command allows you to perform an NFS filesystem mount that
remains active until you explicitly unmount the filesystem using umount, or until the client is
rebooted.

As an example of using mount, consider building and testing a new /usr/local directory. On an
NFS client, you already have the "old" /usr/local, either on a local or NFS-mounted
filesystem. Let's say you have built a new version of /usr/local on the NFS server wahoo and
want to test it on this NFS client. Mount the new filesystem on top of the existing /usr/local:

# mount wahoo:/usr/local /usr/local

Anything in the old /usr/local is hidden by the new mount point, so you can debug your new
/usr/local as if it were mounted at boot time.

From the command line, mount uses a server name and filesystem name syntax similar to that
of the vfstab file. The mount command assumes that the type is nfs if a hostname appears in
the device specification. The server filesystem name must be an absolute pathname (usually
starting with a leading /), but it need not exactly match the name of a filesystem exported
from the server. Barring the use of the nosub option on the server (see Section 6.2.2 earlier in
this chapter), the only restriction on server filesystem names is that they must contain a valid,
exported server filesystem name as a prefix. This means that you can mount a subdirectory of
an exported filesystem, as long as you specify the entire pathname to the subdirectory in
either the vfstab file or on the mount command line. Note that the »w and hard suboptions are
redundant since they are the defaults (in Solaris at least). This book often specifies them in
examples to make it clear what semantics will be.

For example, to mount a particular home directory from /export/home of server ono, you do
not have to mount the entire filesystem. Picking up only the subdirectory that's needed may
make the local filesystem hierarchy simpler and less cluttered. To mount a subdirectory of a
server's exported filesystem, just specify the pathname to that directory in the vfstab file:

ono:/export/home/stern - /users/stern nfs - yes rw,bg,hard

Even though server ono exports all of /export/home, you can choose to handle some smaller
portion of the entire filesystem.

6.3.3 Mount options

NFS mount options are as varied as the vendors themselves. There are a few well-known and
widely supported options, and others that are added to support additional NFS features or to
integrate secure remote procedure call systems. As with everything else that is vendor-
specific, your system's manual set provides a complete list of supported mount options. Check
the manual pages for mount(1M), mount nfs(IM), and vfstab(4).
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- For the most part, the default set of mount options will serve you fine.
«2 | However, pay particular attention to the nosuid suboption, which is
" 4 described in Chapter 12. The nosuid suboption is not the default in

Solaris, but perhaps it ought to be.

The Solaris mount command syntax for mounting NFS filesystems is:

mount [ -F nfs ] [-mrO] [ -o suboptions ] server:pathname
mount [ -F nfs ] [-mrO] [ -o suboptions ] mount point
mount [ -F nfs ] [-mrO] [ -o suboptions ] server:pathname mount point
mount [ -F nfs ] [-mrO] [ -o suboptions ]
serverl:pathnamel, server2:pathname2, . ..serverN:pathnameN mount point
mount [ -F nfs ] [-mrO] [ -o suboptions ]
serverl,server2, ...serverN:pathname mount point

The first two forms are used when mounting a filesystem listed in the vfstab file. Note that
server is the hostname of the NFS server. The last two forms are used when mounting
replicas. See Section 6.6 later in this chapter.

The -F nfs option is used to specify that the filesystem being mounted is of type NFS. The
option is not necessary because the filesystem type can be discerned from the presence of
host.pathname on the command line.

The -r option says to mount the filesystem as read-only. The preferred way to specify read-
only is the ro suboption to the -o option.

The -m option says to not record the entry in the /etc/mnttab file.
The -O option says to permit the filesystem to be mounted over an existing mount point.
Normally if mount point already has a filesystem mounted on it, the mount command will fail

with a filesystem busy error.

In addition, you can use -o to specify suboptions. Suboptions can also be specified (without -
0) in the mount options field in /etc/vfstab. The common NFS mount suboptions are:

rw/ro
rw mounts a filesystem as read-write; this is the default. If ro is specified, the
filesystem is mounted as read-only. Use the ro option if the server enforces write
protection for various filesystems.

bg/fg

The bg option tells mount to retry a failed mount attempt in the background, allowing
the foreground mount process to continue. By default, NFS mounts are not performed
in the background, so fg is the default. We'll discuss the bg option further in the next
section. Note that the bg option does not apply to the automounter (see Chapter 9).
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grpid
Since Solaris is a derivative of Unix System V, it will by default obey System V
semantics. One area in which System V differs from 4.x BSD systems is in the group
identifier of newly created files. System V will set the group identifier to the effective
group identifier of the calling process. If the grpid option is set, BSD semantics are
used, and so the group identifier is always inherited from the file's directory. You can
control this behavior on a per-directory basis by not specifying grpid, and instead
setting the set group id bit on the directory with the chmod command:
% chmod g+s /export/home/dir
If the set group id bit is set, then even if grpid is absent, the group identifier of a
created file is inherited from the group identifier of the file's directory. So for
example:
% chmod g+s /export/home/dir
% 1ls -1d /export/home/dir
drwxr-sr-x 6 mre writers 3584 May 24 09:17
/export/home/dir/
% touch /export/home/dir/test
% 1s -1 /export/home/dir/test
—rw-r--r-- 1 mre writers 0 May 27 06:07
/export/home/dir/test

quota/noquota
Enables/prevents the quota command to check for quotas on the filesystem.

port=n
Specify the port number of the NFS server. The default is to use the port number as
returned by the rpchind. This option is typically used to support pseudo NFS servers
that run on the same machine as the NFS client. The Solaris removable media (CD-
ROMs and floppy disks) manager (vold ) is an example of such a server.

public
This option is useful for environments that have to cope with firewalls. We will
discuss it in more detail in Chapter 12.

suid/nosuid
Under some situations, the nosuid option prevents security exposures. The default is
suid. We will go into more detail in Chapter 12.

sec=mode

This option lets you set the security mode used on the filesystem. Valid security modes
are as specified in Section 6.2.2 earlier in this chapter. If you're using NFS Version 3,
normally you need not be concerned with security modes in vfstab or the mount
command, because Version 3 has a way to negotiate the security mode. We will go
into more detail in Chapter 12.
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hard/soft

By default, NFS filesystems are hard mounted, and operations on them are retried
until they are acknowledged by the server. If the soft option is specified, an NFS RPC
call returns a timeout error if it fails the number of times specified by the retrans
option.

vers=version

The NFS protocol supports two versions: 2 and 3. By default, the mount command
will attempt to use Version 3 if the server also supports Version 3; otherwise, the
mount will use Version 2. Once the protocol version is negotiated, the version is
bound to the filesystem until it is unmounted and remounted. If you are mounting
multiple filesystems from the same server, you can use different versions of NFS. The
binding of the NFS protocol versions is per mount point and not per NFS client/server
pair. Note the NFS protocol version is independent of the transport protocol used. See
the discussion of the proto option later in this section.

proto=protocol

The NFS protocol supports arbitrary transport protocols, both connection-oriented and
connectionless. TCP is the commonly used connection-oriented protocol for NFS, and
UDP is the commonly used connectionless protocol. The protocol specified in the
proto option is the netid field (the first field) in the /etc/netconfig file. While the
/etc/netconfig file supports several different netids, practically speaking, the only ones
NFS supports today are fcp and udp. By default, the mount command will select TCP
over UDP if the server supports TCP. Otherwise UDP will be used.

- It is a popular misconception that NFS Version 3 and NFS over TCP are
3 | synonymous. As noted previously, the NFS protocol version is
" 4 independent of the transport protocol used. You can have NFS Version 2

clients and servers that support TCP and UDP (or just TCP, or just
UDP). Similarly, you can have NFS Version 3 clients that support TCP
and UDP (or just TCP, or just UDP). This misconception arose because
Solaris 2.5 introduced both NFS Version 3 and NFS over TCP at the
same time, and so NFS mounts that previously used NFS Version 2 over
UDP now use NFS Version 3 over TCP.

retrans/timeo

The retrans option specifies the number of times to repeat an RPC request before
returning a timeout error on a soft-mounted filesystem. The retrans option is ignored
if the filesystem is using TCP. This is because it is assumed that the system's TCP
protocol driver will do a better of job than the user of the mount command of judging
the necessary TCP level retransmissions. Thus when using TCP, the RPC is sent just
once before returning an error on a soft mounted filesystem. The timeo parameter
varies the RPC timeout period and is given in tenths of a second. For example, in
/etc/vfstab, you could have:

onaga:/export/home/mre - /users/mre nfs - vyes
rw, proto=udp, retrans=6, timeo=11
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retry=n

This option specifies the number of times to retry the mount attempt. The default is
10000. (The default is only 1 when using the automounter. See Chapter 9.) See
Section 6.3.4 later in this chapter.

rsize=n/wsize=n

This option controls the maximum transfer size of read (rsize) and write (wsize)
operations. For NFS Version 2, the maximum transfer size is 8192 bytes, which is the
default. For NFS Version 3, the client and server negotiate the maximum. Solaris
systems will by default negotiate a maximum transfer size of 32768 bytes.

intr/nointr

noac

Normally, an NFS operation will continue until an RPC error occurs (and if mounted
hard, most RPC errors will not prevent the operation from continuing) or until it has
completed successfully. If a server is down and a client is waiting for an RPC call to
complete, the process making the RPC call hangs until the server responds (unless
mounted soff). With the intr option, the user can use Unix signals (see the manpage for
kill(1)) to interrupt NFS RPC calls and force the RPC layer to return an error. The intr
option is the default. The nointr option will cause the NFS client to ignore Unix
signals.

This option suppresses attribute caching and forces writes to be synchronously written
to the NFS server. The purpose behind this option to is let each client that mounts with
noac be guaranteed that when it reads a file from the server it will always have the
most recent copy of the data at the time of the read. We will discuss attribute caching
and asynchronous/synchronous NFS input/output in more detail in Chapter 7.

actimeo=n

The options that have the prefix ac(collectively referred to as the ac* options)affect
the length of time that attributes are cached on NFS clients before the client will get
new attributes from the server. The quantity 7 is specified in seconds. The two options
prefixed with acdiraffect the cache times of directory attributes. The two options
prefixed with acreg affect the cache times of regular file attributes. The actimeo
option simply sets the minimum and maximum cache times of regular files and
directory files to be the same. We will discuss attribute caching in more detail in
Chapter 7.
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- It is a popular misconception that if the minimum attribute timeout is set
) to 30 seconds, that the NFS client will issue a request to get new
"4 attributes for each open file every 30 seconds. Marketing managers for

products that compete with NFS use this misconception to claim that
NEFS is therefore a network bandwidth hog because of all the attribute
requests that are sent around. The reality is that the attribute timeouts are
checked only whenever a process on the NFS client tries to access the
file. If the attribute timeout is 30 seconds and the client has not accessed
the file in five hours, then during that five-hour period, there will be no
NFS requests to get new attributes. Indeed, there will be no NFS requests
at all. For files that are being continuously accessed, with an attribute
timeout of 30 seconds, you can expect to get new attribute requests to
occur no more often than every 30 seconds. Given that in NFS Version
2, and to an even higher degree in NFS Version 3, attributes are piggy-
backed onto the NFS responses, attribute requests would tend to be seen
far less often than every 30 seconds. For the most part, attribute requests
will be seen most often when the NFS client opens a file. This is to
guarantee cache consistency. See Section 7.4.1 for more details.

acdirmax=n

This option is like actimeo, but it affects the maximum attribute timeout on
directories; it defaults to 60 seconds. It can't be higher than 10 hours (36000 seconds).

acdirmin=n

This option is like actimeo, but it affects the minimum attribute timeout on directories;
it defaults to 30 seconds. It can't be higher than one hour (3600 seconds).

acregmax=n

This option is like actimeo, but it affects the maximum attribute timeout on regular
files; it defaults to 60 seconds. It can't be higher than 10 hours (36000 seconds).

acregmin=n

This option is like actimeo, but it affects the minimum attribute timeout on regular
files; it defaults to three seconds. It can't be higher than one hour (3600 seconds).

The nointr, intr, retrans, rsize, wsize, timeo, hard, soft, and ac* options will be discussed in
more detail in the Chapter 18, since they are directly responsible for altering clients'
performance in periods of peak server loading.

6.3.4 Backgrounding mounts

The mount protocol used by clients is subject to the same RPC timeouts as individual NFS
RPC calls. When a client cannot mount an NFS filesystem during the allotted RPC execution
time, it retries the RPC operation up to the count specified by the retry mount option. If the bg
mount option is used, mount starts another process that continues trying to mount the
filesystem in the background, allowing the mount command to consider that request complete
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and to attempt the next mount operation. If bg is not specified, mount blocks waiting for the
remote fileserver to recover, or until the mount retry count has been reached. The default
value of 10,000 may cause a single mount to hang for several hours before mount gives up on
the fileserver.

You cannot put a mount in the background of any system-critical filesystem such as the root (
/') or /usr filesystem on a diskless client. If you need the filesystem to run the system, you
must allow the mount to complete in the foreground. Similarly, if you require some
applications from an NFS-mounted partition during the boot process — let's say you start up a
license server via a script in /etc/rc2.d — you should hard-mount the filesystem with these
executables so that you are not left with a half-functioning machine. Any filesystem that is not
critical to the system's operation can be mounted with the bg option. Use of background
mounts allows your network to recover more gracefully from widespread problems such as
power failures.

When two servers are clients of each other, the bg option must be used in at least one of the
server's /etc/vfstab files. When both servers boot at the same time, for example as the result of
a power failure, one usually tries to mount the other's filesystems before they have been
exported and before NFS is started. If both servers use foreground mounts only, then a
deadlock is possible when they wait on each other to recover as NFS servers. Using bg allows
the first mount attempt to fail and be put into the background. When both servers finally
complete booting, the backgrounded mounts complete successfully. So what if you have
critical mounts on each client, such that backgrounding one is not appropriate? To cope, you
will need to use the automounter (see Chapter 9) instead of vfstab to mount NFS filesystems.

The default value of the retry option was chosen to be large enough to guarantee that a client
makes a sufficiently good effort to mount a filesystem from a crashed or hung server.
However, if some event causes the client and the server to reboot at the same time, and the
client cannot complete the mount before the retry count is exhausted, the client will not mount
the filesystem even when the remote server comes back online. If you have a power failure
early in the weekend, and all the clients come up but a server is down, you may have to
manually remount filesystems on clients that have reached their limit of mount retries.

6.3.5 Hard and soft mounts

The hard and soft mount options determine how a client behaves when the server is
excessively loaded for a long period or when it crashes. By default, all NFS filesystems are
mounted hard, which means that an RPC call that times out will be retried indefinitely until a
response is received from the server. This makes the NFS server look as much like a local
disk as possible — the request that needs to go to disk completes at some point in the future.
An NFS server that crashes looks like a disk that is very, very slow.

A side effect of hard-mounting NFS filesystems is that processes block (or "hang") in a high-
priority disk wait state until their NFS RPC calls complete. If an NFS server goes down, the
clients using its filesystems hang if they reference these filesystems before the server
recovers. Using intr in conjunction with the hard mount option allows users to interrupt
system calls that are blocked waiting on a crashed server. The system call is interrupted when
the process making the call receives a signal, usually sent by the user typing CTRL-C
(interrupt) or using the kill command. CTRL-\ (quit) is another way to generate a signal, as is
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logging out of the NFS client host. When using kill, only SIGINT, SIGQUIT, and SIGHUP
will interrupt NFS operations.

When an NFS filesystem is soft-mounted, repeated RPC call failures eventually cause the
NFS operation to fail as well. Instead of emulating a painfully slow disk, a server exporting a
soft-mounted filesystem looks like a failing disk when it crashes: system calls referencing the
soft-mounted NFS filesystem return errors. Sometimes the errors can be ignored or are
preferable to blocking at high priority; for example, if you were doing an /s -/ when the NFS
server crashed, you wouldn't really care if the /s command returned an error as long as your
system didn't hang.

The other side to this "failing disk" analogy is that you never want to write data to an
unreliable device, nor do you want to try to load executables from it. You should not use the
soft option on any filesystem that is writable, nor on any filesystem from which you load
executables. Furthermore, because many applications do not check return value of the read(2)
system call when reading regular files (because those programs were written in the days
before networking was ubiquitous, and disks were reliable enough that reads from disks
virtually never failed), you should not use the soff option on any filesystem that is supplying
input to applications that are in turn using the data for a mission-critical purpose. NFS only
guarantees the consistency of data after a server crash if the NFS filesystem was hard-
mounted by the client. Unless you really know what you are doing, neveruse the sof option.

We'll come back to hard- and soft-mount issues in when we discuss modifying client behavior
in the face of slow NFS servers in Chapter 18.

6.3.6 Resolving mount problems

There are several things that can go wrong when attempting to mount an NFS filesystem. The
most obvious failure of mount is when it cannot find the server, remote filesystem, or local
mount point. You get the usual assortment of errors such as "No such host" and "No such file
or directory." However, you may also get more cryptic messages like:

client# mount orion:/export/orion /hosts/orion
mount: orion:/export/orion on /hosts/orion: No such device.

If either the local or remote filesystem was specified incorrectly, you would expect a message
about a nonexistent file or directory. The device hint in this error indicates that NFS is not
configured into the client's kernel. The device in question is more of a pseudo-device — it's
the interface to the NFS vnode operations. If the NFS client code is not in the kernel, this
interface does not exist and any attempts to use it return invalid device messages. We won't
discuss how to build a kernel; check your documentation for the proper procedures and
options that need to be included to support NFS.

Another cryptic message is "Permission denied." Often this is because the filesystem has been
exported with the options rw=client list or ro=client_list and your client is not in client list.

But sometimes it means that the filesystem on the server is not exported at all.

Probably the most common message on NFS clients is "NFS server not responding." An NFS
client will attempt to complete an RPC call up to the number of times specified by the retrans
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option. Once the retransmission limit has been reached, the "not responding" message appears
on the system's console (or in the console window):

NFS server bitatron not responding, still trying

followed by a message indicating that the server has responded to the client's RPC requests:

NFS server bitatron OK

These "not responding" messages may mean that the server is heavily loaded and cannot
respond to NFS requests before the client has had numerous RPC timeouts, or they may
indicate that the server has crashed. The NFS client cannot tell the difference between the
two, because it has no knowledge of why its NFS RPC calls are not being handled. If NFS
clients begin printing "not responding" messages, a server have may have crashed, or you
may be experiencing a burst of activity causing poor server performance.

A less common but more confusing error message is "stale filehandle." Because NFS allows
multiple clients to share the same directory, it opens up a window in which one client can
delete files or directories that are being referenced by another NFS client of the same server.
When the second client goes to reference the deleted directory, the NFS server can no longer
find it on disk, and marks the handle, or pointer, to this directory "invalid." The exact causes
of stale filehandles and suggestions for avoiding them are described in Section 18.8.

If there is a problem with the server's NFS configuration, your attempt to mount filesystems
from it will result in RPC errors when mount cannot reach the portmapper (rpchind) on the
server. If you get RPC timeouts, then the remote host may have lost its portmapper service or
the mountd daemon may have exited prematurely. Use ps to locate these processes:

server% ps -e | grep -w mountd

274 2 0:00 mountd
server% ps -e | grep -w rpcbind
106 2 0:00 rpcbind

You should see both the mountd and the rpcbind processes running on the NFS server.

If mount promptly reports "Program not registered," this means that the mountd daemon never
started up and registered itself. In this case, make sure that mountd is getting started at boot
time on the NFS server, by checking the /etc/dfs/dfstabfile. See Section 6.1 earlier in this
chapter.

Another mountd-related problem is two mountd daemons competing for the same RPC service
number. On some systems (not Solaris), there might be a situation when one mount daemon
can be started in the boot script and one configured into /etc/inet/inetd.conf, the second
instance of the server daemon will not be able to register its RPC service number with the
portmapper. Since the inetd-spawned process is usually the second to appear, it repeatedly
exits and restarts until inetd realizes that the server cannot be started and disables the service.
The NFS RPC daemons should be started from the boot scripts and not from iretd, due to the
overhead of spawning processes from the inetd server (see Section 1.5.3).

There is also a detection mechanism for attempts to make "transitive," or multihop, NFS
mounts. You can only use NFS to mount another system's local filesystem as one of your NFS
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filesystems. You can't mount another system's NFS-mounted filesystems. That is, if
/export/home/bob is local on serverb, then all machines on the network must mount
/export/home/bob from serverb. If a client attempts to mount a remotely mounted directory on
the server, the mount fails with a multihop error message. Let's say NFS client marble has
done:

# mount serverb:/export/home/bob /export/home/bob

and marble is also an NFS server that exports /export/home. If a third system tries to mount
marble:/export/home/bob, then the mount fails with the error:

mount: marble:/export/home/bob on /users/bob: Too many levels of remote in
path

"Too many levels" means more than one — the filesystem on the server is itself NFS-
mounted. You cannot nest NFS mounts by mounting through an intermediate fileserver. There
are two practical sides to this restriction:

e Allowing multihop mounts would defeat the host-based permission checking used by
NFS. If a server limits access to a filesystem to a few clients, then one of these client
should not be allowed to NFS-mount the filesystem and make it available to other,
non-trusted systems. Preventing multihop mounts makes the server owning the
filesystem the single authority governing its use — no other machine can circumvent
the access policies set by the NFS server owning a filesystem.

e Any machine used as an intermediate server in a multihop mount becomes a very
inefficient "gateway" between the NFS client and the server owning the filesystem.

We've seen how to export NFS filesystems on a network and how NFS clients mount them.
With this basic explanation of NFS usage, we'll look at how NFS mounts are combined with
symbolic links to create more complex — and sometimes confusing — client filesystem
structures.

6.4 Symbolic links

Symbolic links are both useful and confusing when used with NFS-mounted filesystems.
They can be used to "shape" a filesystem arbitrarily, giving the system administrator freedom
to organize filesystems and pathnames in convenient ways. When used badly, symbolic links
have unexpected and unwanted side effects, including poor performance and "missing" files
or directories. In this section, we'll discuss the many effects that symbolic links can have on
NFS.

Symbolic links differ from hard links in several ways, but the salient distinction is that hard
links duplicate directory entries, while symbolic links are new directory entries of a special
type. Using a hard link to a file is no different from using the original file, but referencing a
symbolic link requires reading the link to find out where it points and then referencing that
file or directory. It is possible to create a loop of symbolic links, but the kernel routines that
read the links and build up pathnames eventually return an error when too many links have
been traversed in a single pathname.
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6.4.1 Resolving symbolic links in NFS

When an NFS client does a stat( ) of a directory entry and finds it is a symbolic link, it issues
an RPC call to read the link (on the server) and determine where the link points. This is the
equivalent of doing a local readlink( ) system call to examine the contents of a symbolic link.
The server returns a pathname that is interpreted on the client, not on the server.

The pathname may point to a directory that the client has mounted, or it may not make sense
on the client. If you uncover a link that was made on the server that points to a filesystem not
exported from the server, you will have either trouble or confusion if you resolve the link. If
the link accidentally points to a valid file or directory on the client, the results are often
unpredictable and sometimes unwanted. If the link points to something nonexistent on the
client, an attempt to use it produces an error.

An example here helps explain how links can point in unwanted directions. Let's say that you
install a new publishing package, marker, in the fools filesystem on an NFS server. Once it's
loaded, you realize that you need to free some space on the /fools filesystem, so you move the
font directory used by marker to the /usr filesystem, and make a symbolic link to redirect the
fonts subdirectory to its new location:

# mkdir /usr/marker

# cd /tools/marker

# tar cf - fonts | ( cd /usr/marker; tar xbBfp 20 - )
# rm -rf fonts

# 1ln -s /usr/marker/fonts fonts

The tar command copies the entire directory tree from the current directory to /usr/marker
(see the manpage for tar(1) for a more detailed explanation).

On the server, the redirection imposed by the symbolic link is invisible to users. However, an
NFS client that mounts /tools/marker and tries to use it will be in for a surprise when the
client tries to find the fonts subdirectory. The client looks at /tools/marker/fonts, realizes that
it's a symbolic link, and asks the NFS server to read the link. The NFS server returns the link's
target — /usr/marker/fonts — and the client tries to open this directory instead. On the client,
however, this directory does not exist. It was created for convenience on the server, but breaks
the NFS clients that use it. To fix this problem, you must create the same symbolic link on all
of the clients, and ensure that the clients can locate the target of the link.

Think of symbolic links as you would files on an NFS server. The server does not interpret
the contents of files, nor does it do anything with the contents of a link except pass it back to
the user process that issued the readlink RPC. Symbolic links are treated as if they existed on
the local host, and they are interpreted relative to the client's filesystem hierarchy.

6.4.2 Absolute and relative pathnames
Symbolic links can point to an absolute pathname (one beginning with /) or a pathname
relative to the link's path. Relative symbolic link targets are resolved relative to the place at

which the link appears in the client's filesystem, not the server's, so it is possible for a relative
link to point at a nonexistent file or directory on the client. Consider this server for /usr/local:
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% ed /usr/local/bin

% 1ls -1

total 1

lrwxrwxrwx 1 root bin 16 Jun 8 1990 a2ps ->
../bin.mips/a2ps

lrwxrwxrwx 1 root bin 12 Jun 8 1990 mp ->

../bin.mips/mp

If you mount just /usr/local/bin from this server, you will not be able to use any of the
executables in it unless you have them in the directory /usr/local/bin.mips.

Using symbolic links to reduce the number of directories in a pathname is beneficial only if
users are not tempted to cd from one link to another:

# 1ln -s /minnow/fred /u/fred
# 1n -s /alewife/lucy /u/lucy

The unsuspecting user tries to use the path-compressed names, but finds that relative
pathnames aren't relative to the link directory:

% ed /u/fred
% ed ../lucy
../lucy: No such file or directory

A user may be bewildered by this behavior. According to the /u directory, fred and lucy are
subdirectories of a common parent. In reality, they aren't. The symbolic links hide the real
locations of the fred and lucy directories, which do not have a common parent. Using
symbolic links to shorten pathnames in this fashion is not always the most efficient solution to
the problem; NFS mounts can often be used to produce the same filesystem naming
conventions.

6.4.3 Mount points, exports, and links

Symbolic links have strange effects on mounting and exporting filesystems. A good general
rule to remember is that filesystem operations apply to the target of a link, not to the link
itself. The symbolic link is just a pointer to the real operand.

If you mount a filesystem on a symbolic link, the actual mount occurs on the directory pointed
to by the link. The following sequence of operations produces the same net result:

# mkdir -p /users/hal
# 1ln -s /users/hal /usr/hal
# mount bitatron:/export/home/hal /usr/hal

as this sequence does:
# mkdir -p /users/hal

# mount bitatron:/export/home/hal /users/hal
# 1ln -s /users/hal /usr/hal

The filesystem is mounted on the directory /users/hal and the symbolic link /usr/hal has the
mount point as its target. You should make sure that the directory pointed to by the link is on
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a filesystem that is mounted read/write and that performing the mount will not obscure any
required filesystem underneath the symbolic link target.

Exporting a symbolic link from a server follows similar rules. The filesystem or subtree of a
filesystem that is really exported is the one pointed to by the symbolic link. If the parent of the
link's target has already been exported, or a subtree of it is exported, the attempt to export the
link fails.

More interesting than exporting a symbolic link is mounting one from the server. Mounting a
link from a server is not the same thing as mounting a filesystem containing a symbolic link.
The latter means that there is a symbolic link somewhere in the filesystem mounted using
NFS. The former case implies that the server pathname used to locate the remote filesystem is
a link and directs the mount somewhere else. The client mounts the directory pointed to by the
link. As shown in Figure 6-1, if /usr/man is a symbolic link to /usr/share/man, then this mount
command:

# mount bitatron:/usr/share/man /mnt
does the same thing as this mount command:
# mount bitatron:/usr/man /mnt

Figure 6-1. Mounting a server's symbolic link
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A potential problem arises if the symbolic link and the directory it points to are on different
filesystems: it's possible that the server has exported the link's filesystem but not the
filesystem containing the link's target. In this example, /usr/man and /usr/share/man could be
in two distinct filesystems, which would require two entries in the server's dfstab file.

6.5 Replication

Solaris 2.6 introduced the concept of replication to NFS clients. This feature is known as
client-side failover. Client-side failover is useful whenever you have read-only data that you
need to be highly available. An example will illustrate this.

Suppose your user community needs to access a collection of historical data on the last 200
national budgets of the United States. This is a lot of data, and so is a good candidate to store
on a central NFS server. However, because your users' jobs depend on it, you do not want to
have a single point of failure, and so you keep the data on several NFS servers. (Keeping the
data on several NFS servers also gives one the opportunity to load balance). Suppose you
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have three NFS servers, named hamilton, wolcott, and dexter, each exporting a copy of data.
Then each server might have an entry like this in its dfstab file:

share -o ro /export/budget stats

Now, without client-side failover, each NFS client might have one of the following vfstab
entries:

hamilton:/export/budget stats - /stats/budget nfs - yes
ro
wolcott:/export/budget stats - /stats/budget nfs - yes
ro
dexter:/export/budget stats - /stats/budget nfs - yes
ro

Suppose an NFS client is mounting /stats/budgetfrom NFS server hamilton, and hamilton
stops responding. The user on that client will want to mount a different server. In order to do
this, he'll have to do all of the following:

1. Terminate any applications that are currently accessing files under the /budget stats
mount point.

2. Unmount /stats/budget.

3. Edit the vfstab file to point at a different server.

4. Mount /stats/budget.

The user might have a problem with the first step, especially if the application has buffered
some unsaved critical information. And the other three steps are tedious.

With client side failover, each NFS client can have a single entry in the vfstab file such as:

hamilton,wolcott,dexter:/export/budget stat - /budget stats nfs -
yes ro

This vfstab entry defines a replicated NFS filesystem. When this vfstab entry is mounted, the
NFS client will:

1. Contact each server to verify that each is responding and exporting
/export/budget stats.

2. Generate a list of the NFS servers that are responding and exporting
/export/budget stats and associate that list with the mount point.

3. Pick one of the servers to get NFS service from. In other words, the NFS traffic for the
mount point is bound to one server at a time.

As long as the server selected to provide NFS service is responding, the NFS mount operates
as a normal non-client-side failover mount. Assuming the NFS client selected server
hamilton, if hamiltonstops responding, the NFS client will automatically select the next
server, in this case wolcott, without requiring that one manually unmount hamilton, and
mount wolcott. And if wolcott later stops responding, the NFS client would then select dexter.
As you might expect, if later on dexter stops responding, the NFS client will bind the NFS
traffic back to hamilton. Thus, client-side failover uses a round-robin scheme.

You can tell which server a replicated mount is using via the nfsstat command:
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)

% nfsstat -m

/budget stats from hamilton,wolcott,dexter:/export/budget stats
Flags:
vers=3,proto=tcp, sec=sys,hard, intr, 1lock, link,symlink,acl, rsize=32768,wsize
=32768,
retrans=5
Failover:noresponse=1, failover=1l, remap=1l, currserver=wolcott

The currservervalue tells us that NFS traffic for the /budget stats mount point is bound to
server wolcott. Apparently hamilton stopped responding at one point, because we see non-
zero values for the counters noresponse, failover and remap. The counter noresponse counts
the number of times a remote procedure call to the currently bound NFS server timed out. The
counter failovercounts the number of times the NFS client has "failed over" or switched to
another NFS server due to a timed out remote procedure call. The counter remap counts the
number of files that were "mapped" to another NFS server after a failover. For example, if an
application on the NFS client had /budget stats/1994/deficit open, and then the client failed
over to another server, the next time the application went to read data from
/budget stats/1944/deficit, the open file reference would be re-mapped to the corresponding
1944/deficit file on the newly bound NFS server.

Solaris will also notify you when a failover happens. Expect a message like:
NOTICE: NFS: failing over from hamilton to wolcott
on both the NFS client's system console and in its /var/adm/messages file.

By the way, it is not required that each server have the same pathname mounted. The mount
command will let you mount replica servers with different directories. For example:

# mount -o ro serverX:/q,serverY:/m /mnt

As long as the contents of serverX:/q and serverY:/m are the same, the top level directory
name does not have to be. The next section discusses rules for content of replicas.

6.5.1 Properties of replicas

Replicas on each server in the replicated filesystem have to be the same in content. For
example, if on an NFS client we have done:

# mount -o ro serverX,serverY:/export /mnt

then /export on both servers needs to be an exact copy. One way to generate such a copy
would be:

# rlogin serverY

serverY # cd /export

serverY # rm -rf ../export

serverY # mount serverX:/export /mnt
serverY # cd /mnt

serverY # find . -print | cpio -dmp /export
serverY # umount /mnt

serverY # exit

#
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The third command invoked here, rm -rf../export is somewhat curious. What we want to do is
remove the contents of /export in a manner that is as fast and secure as possible. We could do
rm -rf /exportbut that has the side of effect of removing /export as well as its contents. Since
/export is exported, any NFS client that is currently mounting serverY:/export will experience
stale filehandles (see Section 18.8). Recreating /export immediately with the mkdir command
does not suffice because of the way NFS servers generate filehandles for clients. The
filehandle contains among other things the inode number (a file's or directory's unique
identification number) and this is almost guaranteed to be different. So we want to remove
just what is under /export. A commonly used method for doing that is:

# cd /export ; find . -print | xargs rm -rf

but the problem there is that if someone has placed a filename like foo /etc/passwd (i.e., a file
with an embedded space character) in /export, then the xargs rm -rf command will remove a
file called foo and a file called /etc/passwd, which on Solaris may prevent one from logging
into the system. Doing rm -rf ../export will prevent /export from being removed because rm
will not remove the current working directory. Note that this behavior may vary with other
systems, so test it on something unimportant to be sure.

At any rate, the aforementioned sequence of commands will create a replica that has the
following properties:

e Each regular file, directory, named pipe, symbolic link, socket, and device node in the
original has a corresponding object with the same name in the copy.

e The file type of each regular file, directory, named pipe, symbolic link, socket, and
device node in the original is the same in the corresponding object with same name in
the copy.

e The contents of each regular file, directory, symbolic link and device node in the
original are the equal to the contents of each corresponding object with same name in
the copy.

e The user identifier, group identifier, and file permissions of each regular file,
directory, name pipe, symbolic link, socket, and device node in the original are to
equal the user identifier, group identifier, and file permissions of each corresponding
object with the same name in the copy. Strictly speaking this last property is not
mandatory for client-side failover to work, but if after a failover, the user on the NFS
client no longer has access to the file his application was reading, then the user's
application will stop working.

6.5.2 Rules for mounting replicas

In order to use client-side failover, the filesystem must be mounted with the sub-options ro
(read-only) and hard.

The reason why it has to be mounted read-only is that if NFS clients could write to the replica
filesystem, then the replicas would be no longer synchronized, producing the following

undesirable effects:

e If another NFS client failed over from one server to the server with the modified file, it
would encounter an unexpected inconsistency.
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o Likewise, if the NFS client or application that modified the file failed over to another
server, it would find that its changes were no longer present.

The filesystem has to be mounted iard because it is not clear what it would mean to mount a
replicated filesystem soft. When a filesystem is mounted sof, it is supposed to return an error
from a timed-out remote procedure call. When a replicated filesystem is mounted, after a
remote procedure call times out, the NFS filesystem is supposed to try the next server in the
list associated with the mount point. These two semantics are at odds, so replicated
filesystems must be mounted Aard.

The NFS servers in the replica list must support a common NFS version. When specifying a
replicated filesystem that has some servers that support NFS Version 3, and some that support
just NFS Version 2, the mount command will fail with the error "replicas must have the same
version." Usually, though, the NFS servers that support Version 3 will also support Version 2.
Thus, if you are happy with using NFS Version 2 for your replicated filesystem, then you can
force the mount to succeed by specifying the vers=2 suboption. For example:

# mount -o vers=2 serverA,serverB,serverC:/export /mnt

Note that it is not a requirement that all the NFS servers in the replicated filesystem support
the same transport protocol (TCP or UDP).

6.5.3 Managing replicas

In Solaris, the onus for creating, distributing, and maintaining replica filesystems is on the
system administrator; there are no tools to manage replication. The techniques used in the
example given in the Section 6.5.1, can be used, although the example script given in that
subsection for generating a replica may cause stale filehandle problems when using it to
update a replica; we will address this in Section 18.8. You will want to automate the replica
distribution procedure. In the example, you would alter the aforementioned example to:

o Prevent stale filehandles.
e Use the sh command instead of the r/ogin command.

Other methods of distribution to consider are ones that use tools like the
rdistandfilesynccommands.

6.5.4 Replicas and the automounter

Replication is best combined with use of the automounter. The integration of the two is
described in Section 9.5.1.

6.6 Naming schemes

Simple, efficient naming schemes make the difference between a filesystem that is well
organized and a pleasure to use, and a filesystem that you are constantly fighting against. In
this section, we'll look at ways of using mount points and symbolic links to create simple,
consistent naming schemes on all NFS clients. NFS provides the mechanism for making
distributed filesystems transparent to the user, but it has no inherent guidelines for creating
easy to use and easier to manage filesystem hierarchies. There are few global rules, and each
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network will adopt conventions based on the number of servers, the kinds of files handled by
those servers, and any peculiar naming requirements of locally developed or third-party
software.

Note that this section assumes that you will not be using the automounter (see Chapter 9). It is
strongly advised that you do use the automounter, because every issue mentioned and solved
here is much more easily solved with the automounter.

As a system administrator, you should first decide how the various NFS fileservers fit
together on a client before assigning filesystem names and filling them with software or users.
Here are some ideas and suggestions for choosing NFS naming schemes:

Avoid having NFS mounts on directories directly under the root (/) directory of each
NFS client. The reason is that if an NFS server crashes, then any attempts to access the
mounted directory will hang the application even if it is not interested in the NFS
mount point. This can happen if an application invokes the library equivalent of the
pwd command: getcwd( ). "

"I The getcewd( ) routine builds its pathname of the current working directory by searching upward via the ".." directory, and
then reading each directory to find the directory with the same file ID number as the current working directory. To get the file
ID requires invoking the stat( ) system call on the directory. If the directory is served by an NFS server, and the server is
unavailable, then stat( ), hence getcwd( ), and the application will hang indefinitely.

Pick a common directory on each client under which you will mount each user's home
directory. For example, if you pick /users, then each user's home directory is accessed
via the /users/username naming scheme."”

12l The example uses /users and not /home. This is because the automounter in Solaris reserves /aome. While you can modify
each Solaris client to remove the reservation, that is tedious. A common error is for people to use vfstab or the mount
command to mount onto /home, and if the automounter has reserved /home, things will fail in odd ways.

This makes it easier to deal with servers that have several filesystems of home
directories. The disadvantage to this approach is that it requires a larger /etc/vfstab file,
with one entry for each user's home directory. If you use the NFS automounter, this
naming scheme is more easily managed than the hostname-oriented one (and the
automounter has a /home/username scheme preconfigured). Directories that follow
any regular naming scheme are easily managed by the automounter, as discussed in
Chapter 9.

Do not allow the physical location of the files on the server to dictate the pathnames to
be used on the client. For example, if the software tools directory is on
wahoo./export/home/toolbox, then instead of mounting wahoo:/export/home/toolbox
ontoeachclient's /export/home/toolbox directory, use something more user friendly,
like /software/toolbox:

mount wahoo:/export/home/toolbox /software/toolbox

Normally you don't want people running applications on hosts that are also NFS
servers. However, if you allow this, and if you want users on the NFS server to be able
to access the toolbox as /software/toolbox, then you can either create a symbolic link
from /software/toolbox to /export/home/toolbox, or use the loopback filesystem in
Solaris to accomplish the same thing without the overhead of a symbolic link:
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mount -F lofs /export/home/toolbox /software/toolbox

o Keep growth in mind. Having a single third-party software filesystem may be the most
effective (or only) solution immediately, but over the next year you may need to add a
second or third filesystem to make room for more tools. To provide adequate
performance, you may want to put each filesystem on a different server, distributing
the load. If you choose a naming scheme that cannot be extended, you will end up
renaming things later on and having to support the "old style" names.

In the third-party tools directory example, you could separate tools into subdirectories
grouped by function: /software/tools/epubs for page composition and publishing software, and
/software/tools/cae for engineering tools. If either directory grows enough to warrant its own
filesystem, you can move the subdirectory to a new server and preserve the existing naming
scheme by simply mounting both subdirectories on clients:

Before: single tools depository
# mount toolbox:/export/home/tools /software/tools

After: multiple filesystems
# mount toolbox:/export/home/epubs /software/tools/epubs
# mount backpack:/export/home/case /software/tools/cae

6.6.1 Solving the /usr/local puzzle

Let's assume you have a network with many different kinds of workstations: SPARC
workstations, PowerPC-based workstations, Unix PCs, and so on. Of course, each kind of
workstation has its own set of executables. The executables may be built from the same
source files, but you need a different binary for each machine architecture. How do you
arrange the filesystem so that each system has a /usr/local/bin directory (and, by extension,
other executable directories) that contains only the executables that are appropriate for its
architecture? How do you "hide" the executables that aren't appropriate, so there's no chance
that a user will mistakenly try to execute them? This is the /usr/local puzzle: creating an
"architecture neutral" executable directory.

Implementing an architecture-neutral /usr/local/bin is probably one of the first challenges
posed to the system administrator of a heterogeneous network. Everybody wants the standard
set of tools, such as emacs, PostScript filters, mail-pretty printers, and the requisite telephone
list utility. Ideally, there should be one bin directory for each architecture, and when a user
looks in /usr/local/bin on any machine, he or she should find the proper executables. Hiding
the machine architecture is a good job for symbolic links.

One solution is to name the individual binary directories with the machine type as a suffix and
then mount the proper one on /usr/local/bin:

On server toolbox:
# cd /export/home/local
# 1s
bin.mips bin.sun3 bin.sun4 bin.vax

On client:
# mount toolbox:/export/home/local/bin.  arch’ /usr/local/bin
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The mount command determines the architecture of the local host and grabs the correct binary
directory from the server.

This scheme is sufficient if you only have binaries in your local depository, but most sites add
manual pages, source code, and other ASCII files that are shared across client architectures.
There is no need to maintain multiple copies of these files. To accommodate a mixture of
shared ASCII and binary files, use two mounts of the same filesystem: the first mount sets up
the framework of directories, and puts the shared file directories in their proper place. The
second mount deposits the proper binary directory on top of /usr/local/bin:

On server toolbox:
# cd /export/home/local
# 1s bin
bin.mips bin.sun3 bin.sun4 bin.vax mansharesrc

On client:
# mount toolbox:/export/home/local /usr/local
# mount toolbox:/export/home/local/bin.  arch’ /usr/local/bin

At first glance, the previous example appears to violate the NFS rules prohibiting the export
of a directory and any of its subdirectories. However, there is only one exported filesystem on
server foolbox, namely, /export/home. The clients mount different parts of this exported
filesystem on top of one another. NFS allows a client to mount any part of an exported
filesystem, on any directory.

To save disk space with the two-mount approach, populate /export/home/bin on the server
with the proper executables, and make the bin.arch directory a symbolic link to bin. This
allows clients of the same architecture as the server to get by with only one mount.

If you keep all executables — scripts and compiled applications — in the bin directories, you
still have a problem with duplication. At some sites, scripts may account for more than half of
the tools in /usr/local/bin, and having to copy them into each architecture-specific bin
directory makes this solution less pleasing.

A more robust solution to the problem is to divide shell scripts and executables into two
directories: scripts go in /usr/local/share while compiled executables live in the familiar
/usr/local/bin. This makes share a peer of the /usr/local/man and src directories, both of
which contain architecture-neutral ASCII files. To adapt to the fully architecture-neutral
/usr/local/bin, users need to put both /usr/local/bin and /usr/local/share in their search paths,
although this is a small price to pay for the guarantee that all tools are accessible from all
systems.

There is one problem with mounting one filesystem on top of another: if the server for these
filesystems goes down, you will not be able to unmount them until the server recovers. When
you unmount a filesystem, it gets information about all of the directories above it. If the
filesystem is not mounted on top of another NFS filesystem, this isn't a problem: all of the
directory information is on the NFS client. However, the hierarchy of mounts used in the
/usr/local/bin example presents a problem. One of the directories that an unmount operation
would need to check is located on the server that crashed. An attempt to unmount the
/usr/local/bin directory will hang because it tries to get information about the /usr/local mount
point — and the server for that mount point is the one that crashed. Similarly, if you try to
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unmount the /usr/local filesystem, this attempt will fail because the /usr/local/bin directory is
in use: it has a filesystem mounted on it.
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Chapter 7. Network File System Design
and Operation

It's possible to configure and use the Network File System without too much knowledge of
how it is implemented or why various design decisions were made. But if you need to debug
problems, or analyze patterns of NFS usage to suggest performance optimizations, you will
need to know more about the inside workings of the NFS protocol and the daemons that
implement it. With an understanding of how and why NFS does the things it does, you can
more readily determine why it is broken or slow — probably the two most common
complaints in any large NFS network.

Like NIS, NFS is implemented as a set of RPC procedures that use eXternal Data
Representation (XDR) encoding to pass arguments between client and server. A filesystem
mounted using NFS provides two levels of transparency:

e The filesystem appears to be resident on a disk attached to the local system, and all of
the filesystem entries — files and directories — are viewed the same way, whether
local or remote. NFS hides the location of the file on the network.

e NFS-mounted filesystems contain no information about the file server from which
they are mounted. The NFS file server may be of a different architecture or running an
entirely different operating system with a radically different filesystem structure. For
example, a Sun machine running Solaris can mount an NFS filesystem from a
Windows NT system or an IBM MVS mainframe, using NFS server implementations
for each of these systems. NFS hides differences in the underlying remote filesystem
structure and makes the remote filesystem appear to be of the exact same structure as
that of the client.

NFS achieves the first level of transparency by defining a generic set of filesystem operations
that are performed on a Virtual File System (VFS). The second level comes from the
definition of virtual nodes, which are related to the more familiar Unix filesystem inode
structures but hide the actual structure of the physical filesystem beneath them. The set of all
procedures that can be performed on files is the vnode interface definition. The vnode and
VFS specifications together define the NFS protocol.

7.1 Virtual filesystems and virtual nodes

The Virtual File System allows a client system to access many different types of filesystems
as if they were all attached locally. VFS hides the differences in implementations under a
consistent interface. On a Unix NFS client, the VFS interface makes all NFS filesystems look
like Unix filesystems, even if they are exported from IBM MVS or Windows NT servers. The
VES interface is really nothing more than a switchboard for filesystem- and file-oriented
operations, as shown in Figure 7-1.
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Figure 7-1. Virtual File System interfaces
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Actions that operate on entire filesystems, such as getting the amount of free space left in the
filesystem, are called VFS operations; calls that operate on files or directories are vrode
operations. On the server side, implementing a VFS entails taking the generic VFS and vnode
operations and converting them into the appropriate actions on the real, underlying filesystem.
This conversion happens invisibly to the NFS client process. It made a straightforward system
call, which the client-side VFS turned into a vnode operation, and the server then converted
into an equivalent operation on its filesystem.

For example, the chown( ) system call has an analogous operator in the vnode interface that
sets the attributes of a file, as does the stat( ) system call that retrieves these attributes. There
is not a strict one-to-one relationship of Unix system calls to vnode operations. The write( )
system call uses several filesystem calls to get a file's attributes, and append or modify blocks
in the file. Some vnode operations are not defined on certain types of filesystems. The FAT
filesystem, for example, doesn't have an equivalent of symbolic links, so an NFS file server
running on an Windows NT machine rejects any attempts to use the vnode operation to create
a symbolic link.

So far we have defined an interface to some filesystem objects, but not the mechanism used to
"name" objects in the system. In a local Unix system call, these object names are file
descriptors, which uniquely identify a file within the scope of a process. The counterparts of
file descriptors in NFS are filehandles, which are opaque "pointers" to files on the remote
system. An opaque handle is of no value to the client because it can only be interpreted in the
context of the remote filesystem. When you want to make a system call on a file, you first get
a file descriptor for it. To make an NFS call (in the kernel) you must get a filehandle for the
vnode. It is up to the virtual filesystem layer to translate user-level file descriptors into kernel-
level filehandles. Filehandles and their creation will be covered in more depth in the next
section.

7.2 NFS protocol and implementation

NFS is an RPC-based protocol, with a client-server relationship between the machine having
the filesystem to be distributed and the machine wanting access to that filesystem. NFS kernel
server threads run on the server and accept RPC calls from clients. These server threads are
initiated by an nfsd daemon. NFS servers also run the mountd daemon to handle filesystem

109



Managing NFS and NIS

mount requests and some pathname translation. On an NFS client, asynchronous I/O threads
(async threads) are usually run to improve NFS performance, but they are not required.

On the client, each process using NFS files is a client of the server. The client's system calls
that access NFS-mounted files make RPC calls to the NFS servers from which these files
were mounted. The virtual filesystem really just extends the operation of basic system calls
like read( ) and write( ), similar to the way that NIS extends the operation of library calls like
getpwuid( ). In NIS, the getpwuid( ) routine knows how to use the NIS RPC protocol to locate
user information that isn't in the local /etc/passwd file. Within the virtual filesystem, the basic
file- and filesystem-oriented system calls were modified to "know" how to operate on non-
local filesystems.

Let's look at this with an example. On an NFS client, a user process executes a chmod( )
system call on an NFS-mounted file. The virtual filesystem passes this system call to NFS,
which then executes a remote procedure call to set the permissions on the file, as specified in
the process's system call. When the RPC completes, the system call returns to the user
process. This example is fairly simple, because it doesn't involve any block 1/O to get file data
to or from the NFS server. When blocks of files are moved around, the async threads get
involved to improve NFS performance. This section covers the protocols used by NFS and
features of its implementation that were driven by performance or transparency goals.

7.2.1 NFS RPC procedures

Each version of the NFS RPC protocol contains several procedures, each of which operates on
either a file or a filesystem object. The basic procedures performed on an NFS server can be
grouped into directory operations, file operations, link operations, and filesystem operations.
Directory operations include mkdir and rmdir, which create and destroy directories like their
Unix system call equivalents. readdir reads a directory, using an opaque directory pointer to
perform sequential reads of the same directory. Other directory-oriented procedures are
rename and remove, which operate on entries in a directory the same way the mv and rm
commands do. create makes a new directory entry for a file.

The lookup operation is the heart of the pathname-to-filehandle translation mechanism.
lookup finds a named directory entry and returns a filehandle pointing to it. The open( )
system call uses lookup( ) extensively: it breaks a pathname down into its components and
locates each component in its parent directory. For example, open( ) would handle the
pathname /home/thud/stern by performing three operations:

e Look up home in the root directory (/).
e Look up thud in /home.
e Look up stern in /home/thud.

File operations are very closely associated with Unix system calls: read and write move data
to and from the NFS client, and getattr and setattr get or modify the file's attributes. In a local
filesystem, such as UFS, these attributes are stored in the file's inode, but file attributes are
mapped to whatever system is used by the NFS server. Link operations include /ink, which
creates a hard link on the server, and syml/ink and readlink which create and read the values of
symbolic links, respectively. Finally, statfs is a filesystem operation that returns information
about the mounted filesystem that might be needed by df, for example.

110



Managing NFS and NIS

Other filesystem operations include mounting and unmounting a filesystem, but these are
handled through the NFS mountd server rather than the server threads. Mount operations are
separated from the NFS protocol because mount points revolve around pathnames, and
pathname syntax is peculiar to each operating system. Unix and VMS, for example, do not
use the same syntax to specify the path to a file. The mount protocol is responsible for turning
the server's file pathname into information that NFS can use to locate the file in future
operations.

From the preceding descriptions, it is fairly clear how the basic Unix system calls map into
NFS RPC calls. It is important to note that the NFS RPC protocol and the vnode interface are
two different things. The vnode interface defines a set of operating system services that are
used to access all filesystems, NFS or local. Vnodes simply generalize the interface to file
objects. There are many routines in the vnode interface that correspond directly to procedures
in the NFS protocol, but the vnode interface also contains implementations of operating
system services such as mapping file blocks and buffer cache management.

The NFS RPC protocol is a specific realization of one of these vnode interfaces. It is used to
perform specific vnode operations on remote files. Using the vnode interface, new filesystem
types may be plugged into the operating system by adding kernel routines that perform the
necessary vnode operations on objects in that filesystem.

7.2.2 Statelessness and crash recovery

The NFS protocol is stateless, meaning that there is no need to maintain information about the
protocol on the server. The client keeps track of all information required to send requests to
the server, but the server has no information about previous NFS requests, or how various
NFS requests relate to each other. Remember the differences between the TCP and UDP
protocols: UDP is a stateless protocol that can lose packets or deliver them out of order; TCP
is a stateful protocol that guarantees that packets arrive and are delivered in order. The hosts
using TCP must remember connection state information to recognize when part of a
transmission was lost.

The choice of a stateless protocol has two implications for the design and implementation of
NFS:

e NFS RPC requests must completely describe the operation to be performed. When
writing a file block, for example, the write operation must contain a filehandle, the
offset into the file, and the length of the write operation. This is distinctly different
from the Unix wrifte( ) system call, which writes a buffer to wherever the current file
descriptor's write pointer directs it. The state contained in the file descriptor does not
exist on the NFS server.

e Most NFS requests are idempotent, which means that an NFS client may send the
same request one or more times without any harmful side effects. The net result of
these duplicate requests is the same. For example, reading a specific block from a file
is idempotent: the same data is returned from each operation.

Obviously, some operations are not idempotent: removing a file can't be repeated

without side effects, because a second attempt to remove the file will fail if the first
one succeeded. Most NFS servers make all requests idempotent by recording recently

111



Managing NFS and NIS

performed operations. A duplicate request that matches one of the recently performed
requests is thrown away by the NFS server.!"

' Not all implementations of NFS have this duplicate request cache. Current releases of Solaris, Compaq's Tru64 Unix, and
other current operating systems implement the cache to improve the performance and "correctness" of NFS. A few, older
implementations of NFS do not reject nonidempotent, duplicate requests. This produces some strange and often incorrect
results when requests are retransmitted. An NFS client that sends the same remove operation to such a server may find that the
designated file was removed, but the RPC call returns the "No such file or directory" error.

The primary motivation for choosing a stateless protocol was to minimize the burden of crash
recovery. Unlike a database system, which must verify transaction logs and look for
incomplete operations, NFS has no explicit crash recovery mechanism. Because no state is
maintained, the server may reboot and begin accepting client NFS requests again as if nothing
had happened. Similarly, when clients reboot, the server does not need to know anything
about them. Each NFS request contains enough information to be completed without any
reference to state on the client or server.

7.2.3 Request retransmission

NFS RPC requests are sent from a client to the server one at a time. A single client process
will not issue another RPC call until the call in progress completes and has been
acknowledged by the NFS server. In this respect NFS RPC calls are like system calls — a
process cannot continue with the next system call until the current one completes. A single
client host may have several RPC calls in progress at any time, coming from several
processes, but each process ensures that its file operations are well ordered by waiting for
their acknowledgements. Using the NFS async threads makes this a little more complicated,
but for now it's helpful to think of each process sending a stream of NFS requests, one at a
time.

When a client makes an RPC request, it sets a timeout period during which the server must
service and acknowledge it. If the server doesn't get the request because it was lost along the
way, or because the server is too overloaded to complete the request within the timeout
period, the client retransmits the request. Requests are idempotent (if the server has a
duplicate request cache), so no harm is done if the server executes the same request twice —
when the NFS client gets a second confirmation from the RPC request, the client discards it.

NFS clients continue to retransmit requests until the request completes, either with an
acknowledgement from the server or an error from the RPC layer. If an NFS server crashes,
clients continue to repeat the call to the RPC layer (if the NFS filesystem is hard-mounted,
otherwise the RPC timeout error is returned to the application) until the server reboots and can
service them again. When the server is up again, NFS clients continue as if nothing happened.
NFS clients cannot tell the difference between a server that has crashed and one that is very
slow. This raises some important issues for tuning NFS servers and networks, which will be
visited in Section 18.1.

The duplicate request cache on NFS servers usually contains a few hundred entries — the last
few seconds (at most) of NFS requests on a busy server. This cache is limited in size to
establish a "window" in which non-idempotent NFS requests are considered duplicates caused
by retransmission rather than distinct requests. For example, if you execute:

$ rm foo
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on an NFS client, the client may need to send two or more remove requests to the NFS server
before it receives an acknowledgment. It's up to the NFS server to weed out the duplicate
remove requests, even if they are a second or so apart. However, if you execute rm foo on
Monday, and then on Tuesday you execute the same command in the same directory (where
the file has already been removed), you would be very surprised if 7m did not return an error.
Executing this "duplicate request" a day later should produce this familiar error:

% rm foo
rm: foo: No such file or directory

To distinguish between duplicates generated due to an RPC timeout and retry and duplicates
due to you repeating a command (whether it be a day later or a second later), NFS servers
record a 32-bit RPC transaction identifier (xid ) with each entry in the duplicate request cache.
The xid is part of every RPC request's header, and it is expected that the NFS client will
generate unique xids.

7.2.4 Preserving Unix filesystem semantics

The VFS makes all filesystems appear homogeneous to user processes. There is a single Unix
system call interface that operates on files, and the VFS and underlying vnode interface
translate semantics of these system calls into actions appropriate for each type of underlying
filesystem. It's important to stress the difference between syntax and semantics of system
calls. Consistent syntax means that the system calls take the same arguments independent of
the underlying filesystem. Semantics refers to what the system calls actually do: preserving
semantics across different filesystem types means that a system call will have the same net
effect on the files in each filesystem type. Unix filesystem semantics collectively refers to the
way in which Unix files behave when various sequences of system calls are made. For
example, opening a file and then unlinking it doesn't cause the file's data blocks to be released
until the close( ) system call is made. A new filesystem that wants to maintain Unix filesystem
semantics must support this behavior.

The VFS definition makes it possible to ensure that semantics are preserved for all
filesystems, so they all behave in the same manner when Unix system calls are made on their
files. It is easy to use VFS to implement a filesystem with non-Unix semantics. It's also
possible to integrate a filesystem into the VFS interface without supporting all of the Unix
semantics; for example, you can put FAT (a filesystem used in MS-DOS, Windows, and NT
operating systems) filesystems under VFS, but you can't create Unix-like symbolic links on
them because the native FAT filesystem doesn't support symbolic links.

In this section, we'll look at how NFS deals with Unix filesystem semantics, including some
of the operations that aren't exactly the same under NFS. NFS has slightly different semantics
than the local Unix filesystem, but it tries to preserve the Unix semantics. An application that
works with a local filesystem works equally well with an NFS-mounted filesystem and will
not be able to distinguish between the two.

Consistency at the vnode interface level makes NFS a powerful tool for creating filesystem
hierarchies using many different NFS servers. The mount command requires that a filesystem
be mounted on a directory; but directories are vnodes themselves. An NFS filesystem can be
mounted on any vnode, which means that NFS filesystems can be mounted on top of other
NFS filesystems or local filesystems. This is completely consistent with the way in which

113



Managing NFS and NIS

local disks are mounted on local filesystems. /net may be on the root filesystem, and /net/host
is mounted on top of it. A workstation configured using NFS can create a view of the
filesystems on the network that best meets its requirements by mounting these filesystems
with a directory naming scheme of its choice.

Maintaining other Unix filesystem semantics is not quite as easy. Locking operations, for
example, introduce state into a system that was meant to be stateless. This problem is
addressed by a separate lock manager daemon. Another bit of Unix lore that had be preserved
was the retention of an open file's data blocks, even when the file's directory entry was
removed. Many Unix utilities including shells and mailers, use this "delayed unlink" feature
to create temporary files that have no name in the filesystem, and are therefore invisible to
probing users.

A complete solution to the problem would require that the server keep open file reference
counts for each file and not free the file's data blocks until the reference count decreased to
zero. However, this is precisely the kind of state information that makes crash recovery
difficult, so NFS was implemented with a client-side solution that handles the common
applications of this feature. When a remove operation is performed on an open file, the client
issues a rename NFS RPC instead. The file is renamed to .nfsXXXX, where XXXX is a suffix
to make the filename unique. When the file is eventually closed, the client issues the remove
operation on the previously unlinked file. Note that there is no need for an "open" or "close"
NFS RPC procedure, since "opened" and "closed" are states that are maintained on the client.
It is still possible to confuse two clients that attempt to unlink a shared, open NFS-mounted
file, since one client will not know that the other has the file open, but it emulates the
behavior of a local filesystem sufficiently to eliminate the need to change utilities that rely on
it.

7.2.5 Pathnames and filehandles

All NFS operations use filehandles to designate the files or directories on which they will be
performed. Filehandles are created on the server and contain information that uniquely
identifies the file or directory on the server. The client's NFS mount and lookup requests
retrieve these filehandles for existing files. A side effect of making all vnodes homogeneous is
that file pathname lookup must be done one component at a time. Each directory in the
pathname might be a mount point for another filesystem, so each name look-up request cannot
include multiple components. For example, let's look at Client A that NFS-mounts the
/usr/local filesystem and also NFS-mounts a filesystem on /usr/local/bin:

clientA# mount serverl:/usr/local /usr/local
clientA# mount server2:/usr/local/bin.mips /usr/local/bin

When the NFS client reaches the bin component in the pathname, it realizes that there is an
NFS filesystem mounted on this directory, and it sends its lookup requests to server?2 instead
of serverl. If the NFS client passed the whole pathname to serverl, it might get the wrong
answer on its lookup: serverl has its own /usr/local/bin directory that may or may not be the
same directory that Client A has mounted. While this may seem to be a very expensive series
of operations, the kernel keeps a directory name lookup cache (DNLC) that prevents every
look-up request from going to an NFS server.
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The lookup operation takes a filename and a filehandle for a directory, and returns a
filehandle pointing to the named file on the server. How then does the pathname traversal get
started, if every lookup requires a filehandle from a previous pathname resolution? The mount
operation seeds the lookup process by providing a filehandle for the root of the mounted
filesystem. Within NFS, the only procedure that accepts full pathnames is the mount RPC,
which turns the pathname into a filehandle for the mounted filesystem.

Let's look at how NFS turns the pathname /usr/local/bin/emacs into an NFS filehandle,
assuming that it's on a filesystem mounted on /usr/local from server wahoo:

o The NFS client asks the mountd daemon on wahoo for a filehandle for the filesystem
the client has mounted on /usr/local, using the server's pathname that was supplied in
the /etc/vfstab file or mount command. That is, if the client has mounted /usr/local
with the /etc/vfstab entry:

wahoo:/tools/local - /usr/local nfs - yes ro,hard

then the client will ask wahoo for a filehandle for the /tools/local directory.”

1°I' Asking the mountd daemon isn't the only way to get the filehandle for a filesystem. Recall that Chapter 6 briefly mentioned
the public option to the mount command. We will discuss this in more detail in Chapter 12.

o Using the mount point filehandle, the client performs a lookup operation on the next
component in the pathname: bin. It sends a lookup to wahoo, supplying the filehandle
for the /usr/local directory and the name "bin." Server wahoo returns another
filehandle for this directory.

e The client goes to work on the next component in the path, emacs. Again, it sends a
lookup using the filehandle for the directory containing emacs and the name it is
looking for. The filehandle returned by the server is used by the client as a "pointer"
(on the server) to /usr/local/bin/emacs (in the filesystem seen by client) for all future
operations on that file.

Filehandles are opaque to the client. In most NFS implementations on Unix machines, they
are an encoding of the file's inode number, disk device number, and inode generation number.
Other implementations, particularly non-Unix NFS servers that do not have inodes, encode
their own native filesystem information in the filehandle. In any system, the filehandle is in a
form that can be disassembled only on the NFS server. The structures contained in the
filehandle are kept hidden from the client, the same way the structures in an object-oriented
system are hidden in the object's implementation routines. In the case of NFS filehandles, the
data described by the structure doesn't even exist on the client — it's all on the server, where
the filehandle can be converted into a pointer to local file.

Filehandles become invalid, or stale, when the inodes to which they point (on the server) are
freed or re-used. NFS clients have no way of knowing what other operations may be affecting
objects pointed to by their filehandles, so there is no way to warn a client in advance that a
filehandle is invalid. If an RPC call is made with a filehandle that is stale, the NFS server
returns a stale filehandle error to the caller. Say that a user on one client removes an NFS-
mounted directory and its contents using rm -rf test, while another client has a process using
test as its current working directory. The next time the other process tries to read its working
directory, it gets a stale filehandle error back from the NFS server:
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Client A Client B
cd /mnt/test cd /mnt

rm -rf test
stat(.)-->Stale file handle

If one client removes a file and then creates a new file that re-uses the freed inode, other
filehandles (on other clients) that point to the re-used inode must be marked stale. Inode
generation numbers were added to the basic Unix filesystem to add a time history to an inode.
In addition to the inode number, the filehandle must match the current generation number of
the inode, or it is marked stale. When the inode is re-used for a new file, its generation
number is incremented. Stale filehandles become a problem when one user's work tramples on
an area in use by another, or when a filesystem on a server is rebuilt from a backup tape.
When restoring from a dump tape onto a fresh filesystem, all of the inode generation numbers
in the filesystem are set to random numbers. This causes every filehandle in use for that
filesystem to become stale — every inode pointed to by a pre-restore filehandle now probably
points to a completely different file on the disk.

Therefore, a quick way to cripple an NFS network is to restore a fileserver from a dump tape
without rebooting the NFS clients. When you rebuild the server's filesystems, all of the inode
generation numbers are reset; when you load the tape, files end up with different inode
numbers and different inode generation numbers than they had on the original filesystem. All
NFS client filehandles are now invalid because of the new generation numbers and the
(random) renumbering of each file's inode. Any attempt to use an open filehandle results in
stale filehandle errors. If you are going to restore an NFS-exported filesystem from tape,
unmount it from its clients or reboot the clients.

7.2.6 NFS Version 3

There are four versions of the NFS protocol: Versions 2, 3, and 4. Version 1 did exist, but it
was only a prototype, and neither an implementation nor specification was ever released.
Version 4 has been specified, but at the time this book was written, there were no commercial
implementatons. Version 3 has three major differences from Version 2:

Large file support

Version 2 supported files up to four gigabytes in length, though most implementations
are limited to up to two-gigabyte files. Version 3 supports files up to and including 2%
- 1 bytes in length. Large file support was the primary driver for a protocol revision.

Writes to unstable storage

Version 2 of the NFS protocol specified that NFS servers could not reply successfully
to a write request until the data had been committed to stable storage, usually magnetic
disk, but non-volatile RAM was permissible as well. This limited the write throughput
of NFS clients, and so Version 3 of the protocol permits the client to indicate that the
write need not be committed to stable storage. This allows NFS servers to respond
quickly to write requests. Of course, clients are still interested in committing their data
to stable storage, and so Version 3 has a new procedure called commit, which tells the
NFS server to write the uncommitted data to stable storage before returning success.
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The theory behind this, supported by experimental measurement, is that faster
throughput is gained by the NFS server committing data to stable storage in parallel
with the client doing something else (such as generating more NFS requests), before
the client issues the commit. Typically, the NFS Version 3 client will issue a commit
when it is about to close a file, or when buffer space is tight.

Large transfer sizes

NFS Version 2 had a limit of 8192 bytes per NFS read and write request. NFS Version
3 lets the client and server negotiate a mutually acceptable limit.

Recall from Section 1.3.1 that packets larger than the medium's MTU must be
fragmented. Fragmentation of output packets is easy, but the other direction,
reassembly of input fragments, is harder if the fragments arrive out of order, or if a
fragment is dropped or delayed. With larger NFS transfer sizes, the risk of a
reassembly problem is higher, and if there is a problem, the entire datagram must be
retransmitted, including all the fragments. NFS Version 2 was designed to be gentler
to the network during the days when operating systems, routers, and network hardware
were less capable. Nowadays, these components are much more effective, and so NFS
Version 3 removes the artificial limits to transfer size.

7.2.7 NFS over TCP

Both NFS Version 2 and Version 3 operate over UDP and TCP. Since TCP is stateful, and
NFS is stateless, it would seem to be a contradiction, if not an impossibility for NFS to
operate over TCP. However, the layer between NFS and TCP is RPC, and RPC is
implemented to hide state issues of TCP from NFS.

The first time an NFS client contacts a server over TCP, the RPC layer takes care of
establishing a connection. If a server crashes, the client won't know that immediately, but the
next time it sends a request over the connection, the connection will break due to a connection
reset from the server, or a connection timeout. In either case, the RPC layer simply re-
establishes a connection.

Some NFS/TCP implementations, such as that in Solaris, maintain a single connection
between the NFS client and server, such that all traffic—for all users and mount points—is
multiplexed between the client and server. Other implementations, such as those in the BSD
releases, have one connection per mountpoint. Aside from a user-level NFS client like a web
browser, or a Java application linked to NFS classes, you are not likely to encounter an NFS
client that creates a connection per user.

If the client crashes, the server will periodically close connections that haven't been used in a
while. On a Solaris NFS server, this connection idle timer defaults to six minutes.

7.3 NFS components
NFS is similar to other RPC services in its use of a server-side daemon (nfsd ) to process

incoming requests. It differs from the typical client-server model in that processes on NFS
clients make some RPC calls themselves, and other RPC calls are made by the clients' async
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threads. All of the NFS client and server code is contained in the kernel, instead of in the
server daemon executable—a decision also driven by performance requirements.

7.3.1 nfsd and NFS server threads

With all of the NFS code in the kernel, why bother with user processes for the server? Why
not make NFS a purely kernel-to-kernel service, without any user processes? On systems that
have an nfsd daemon, nfsd does the following:

o Initializes a transport endpoint to be used by the kernel to process NFS requests from.
This involves allocating a transport endpoint on which to listen for requests, and then
registering the endpoint with the portmapper (rpcbind ). It is much more convenient to
do this from a user-level program than in the kernel.

e Invokes a system call to start in-kernel processing of NFS requests on the transport
endpoint.

What the aforementioned system call does varies among implementations. Two common
variations are:

e The nfsd daemon makes one system call that never returns, and that system call
executes the appropriate NFS code in the system's kernel. The process container in
which this system call executes is necessary for scheduling, multithreading, and
providing a user context for the kernel. Multithreading in this case means running
multiple (forked) copies of the same daemon, so that multiple NFS requests may be
handled in parallel on the client and server hosts. For these systems, the most pressing
need for NFS daemons to exist as processes centers around the need for multithreading
NFS RPC requests. Making NFS a purely kernel resident service would require the
kernel to support multiple threads of execution.

e On systems with kernel thread support, such as Solaris 2.2 and higher, the NFS server
daemon (nfsd ) takes care of some initialization before making a system call that
causes the kernel to create kernel threads for processing NFS requests in parallel. The
system call does return to nfsd in this case. Since the kernel creates the multiple
threads for parallel processing, there is no need for nfsd to fork copies of itself; only
one copy of nfsd is running.

The alternative to multiple daemons or kernel thread support is that an NFS server is forced to
handle one NFS request at a time. Running multiple daemons or kernel threads allows the
server to have multiple, independent threads of execution, so the server can handle several
NFS requests at once. Daemons or threads service requests in a pseudo-round robin fashion—
whenever a daemon or thread is done with a request it goes to the end of the queue waiting for
a new request. Using this scheduling algorithm, a server is always able to accept a new NFS
request as long as at least one daemon or thread is waiting in queue. Running multiple
daemons or threads lets a server start multiple disk operations at the same time and handle
quick turnaround requests such as getattr and lookup while disk-bound requests are in
progress.

Still, why do systems that have kernel server thread support need a running nfsd daemon
process? With an NFS server that supported just UDP, it would be possible for it to simply
exit once the endpoint was sent to the kernel. With the introduction of NFS/TCP
implementations, transport endpoints get created and closed down continuously. Thus nfsd is
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needed to listen for, accept, and tell the kernel about new connections. Similarly, when the
connections are broken, nfsd takes care of telling the kernel that the endpoint is about to be
closed, and then closes it.

7.3.2 Client I/0O system

On the client side, each process accessing an NFS-mounted filesystem makes its own RPC
calls to NFS servers. A single process will be a client of many NFS servers if it is accessing
several filesystems on the client. For operations that do not involve block /O, such as getting
the attributes of a file or performing a name lookup, having each process make its own RPC
calls provides adequate performance. However, when file blocks are moved between client
and server, NFS needs to use the Unix file buffer cache mechanism to provide throughput
similar to that achieved with a local disk. On many implementations, the client-side async
threadsare the parts of NFS that interact with the buffer cache.

Before looking at async threadsin detail, some explanation of buffer cache and file cache
management is required. The traditional Unix buffer cache is a portion of the system's
memory that is reserved for file blocks that have been recently referenced. When a process is
reading from a file, the operating system performs read-ahead on the file and fills the buffer
cache with blocks that the process will need in future operations. The result of this "pre-fetch"
activity is that not all read( ) system calls require a disk operation: some can be satisfied with
data in the buffer cache. Similarly, data that is written to disk is written into the cache first;
when the cache fills up, file blocks are flushed out to disk. Again, the buffer cache allows the
operating system to bunch up disk requests, instead of making every system call wait for a
disk transfer.

SunOS 4.x, System V Release 4, and Solaris replace the buffer cache with a page mapping
system. Instead of transferring files into and out of the buffer cache, the virtual memory
management system directly maps files into a process's address space, and treats file accesses
as page faults. Any page that is not being used by the system can be taken to cache file pages.
The net effect is the same as that of a buffer cache, but the size of the cache is not fixed. The
file page cache could be a large percentage of the system's memory if only one or two
processes are doing file I/O operations. For this discussion, we'll refer to the in-memory
copies of file blocks as the "buffer cache," whether it is implemented as a cache of file pages
or as a traditional Unix buffer cache.

The client-side async threads improve NFS performance by filling and draining the buffer
cache on behalf of NFS clients. When a process reads from an NFS-mounted file, it performs
the read RPC itself. To pre-fetch data for the buffer cache, the kernel has the async threads
send more read RPC requests to the server, as if the reading process had requested this data.
NFS functions properly without any async threadson a client — but no read-ahead is done
without them, limiting the throughput of the NFS filesystem. When the async threads are
running, the client's kernel can initiate several RPC calls at the same time. If restricted to a
single RPC call per process, NFS client performance suffers — sometimes dramatically.

When a client writes to a file, the data is put into the buffer cache. After a complete buffer is
filled, the operating system writes out the data in the cache to the filesystem. If the data needs
to be written to an NFS server, the kernel makes an RPC call to perform the write operation.
If there are async threads available, they make the write RPC requests for the client, draining
the buffer cache when the cache management system dictates. If no async threads can make
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the RPC call, the process calling write( ) performs the RPC call itself. Again, without any
async threads, the kernel can still write to NFS files, but it must do so by forcing each client
process to make its own RPC calls. The async threads allow the client to execute multiple
RPC requests at the same time, performing write-behind on behalf of the processes using NFS
files.

NFS read and write requests are performed in NFS buffer sizes. The buffer size used for disk
I/O requests is independent of the network's MTU and the server or client filesystem block
size. It is chosen based on the most efficient size handled by the network transport protocol,
and is usually 8 kilobytes for NFS Version 2, and 32 kilobytes for NFS Version 3. The NFS
client implements this buffering scheme, so that all disk operations are done in larger (and
usually more efficient) chunks. When reading from a file, an NFS Version 2 read RPC
requests an entire 8 kilobyte NFS buffer. The client process may only request a small portion
of the buffer, but the buffer cache saves the entire buffer to satisfy future references.

For write requests, the buffer cache batches them until a full NFS buffer has been written.
Once a full buffer is ready to be sent to the server, an async thread picks up the buffer and
performs the write RPC request. The size of a buffer in the cache and the size of an NFS
buffer may not be the same; if the machine has 2 kilobyte buffers then four buffers are needed
to make up a complete 8 kilobyte NFS Version 2 buffer. The async thread attempts to
combine buffers from consecutive parts of a file in a single RPC call. It groups smaller buffers
together to form a single NFS buffer, if it can. If a process is performing sequential write
operations on a file, then the async threads will be able to group buffers together and perform
write operations with NFS buffer-sized requests. If the process is writing random data, it is
likely that NFS writes will occur in buffer cache-sized pieces.

On systems that use page mapping (SunOS 4.x, System V Release 4, and Solaris), there is no
buffer cache, so the notion of "filling a buffer" isn't quite as clear. Instead, the async threads
are given file pages whenever a write operation crosses a page boundary. The async threads
group consecutive pages together to form a single NFS buffer. This process is called dirty
page clustering.

If no async threads are running, or if all of them are busy handling other RPC requests, then
the client process performing the write( ) system call executes the RPC itself (as if there were
no async threads at all). A process that is writing large numbers of file blocks enjoys the
benefits of having multiple write RPC requests performed in parallel: one by each of the
async threads and one that it does itself.

As shown in Figure 7-2, some of the advantages of asynchronous Unix wrife( ) operations are

retained by this approach. Smaller write requests that do not force an RPC call return to the
client right away.
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Figure 7-2. NFS buffer writing

User Process

writa (fd, buf, 2048 ;

write (fd, buf, 2048) - NFS
8k buffer

write (hd, buf, 2048) -

write (fd, buf, 2048) .

k

immediate return

Y

immeadiate return

L |

immeadiate return

L |

!

write() passes buffer 1o bind
or makes its own BPC call

Doing the read-ahead and write-behind in NFS buffer-sized chunks imposes a logical block
size on the NFS server, but again, the logical block size has nothing to do with the actual
filesystem implementation on either the NFS client or server. We'll look at the buffering done
by NFS clients when we discuss data caching and NFS write errors. The next section
discusses the interaction of the async threads and Unix system calls in more detail.

= The async threads exist in Solaris. Other NFS implementations use
o multiple block I/O daemons (biod daemons) to achieve the same result as
" 4 async threads.

7.3.3 NFS kernel code

The functions performed by the parallel async threads and kernel server threads provide only
part of the boost required to make NFS performance acceptable. The nfsd is a user-level
process, but contains no code to process NFS requests. The nfsd issues a system call that gives
the kernel a transport endpoint. All the code that sends NFS requests from the client and
processes NFS requests on the server is in the kernel.

It is possible to put the NFS client and server code entirely in user processes. Unfortunately,
making system calls is relatively expensive in terms of operating system overhead, and
moving data to and from user space is also a drain on the system. Implementing NFS code
outside the kernel, at the user level, would require every NFS RPC to go through a very
convoluted sequence of kernel and user process transitions, moving data into and out of the
kernel whenever it was received or sent by a machine.

The kernel implementation of the NFS RPC client and server code eliminates most copying
except for the final move of data from the client's kernel back to the user process requesting it,
and it eliminates extra transitions out of and into the kernel. To see how the NFS daemons,
buffer (or page) cache, and system calls fit together, we'll trace a read( ) system call through
the client and server kernels:

e A user process calls read( ) on an NFS mounted file. The process has no way of
determining where the file is, since its only pointer to the file is a Unix file descriptor.
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e The VFS maps the file descriptor to a vnode and calls the read operation for the vnode
type. Since the VFS type is NFS, the system call invokes the NFS client read routine.
In the process of mapping the type to NFS, the file descriptor is also mapped into a
filehandle for use by NFS. Locally, the client has a virtual node (vnode) that locates
this file in its filesystem. The vnode contains a pointer to more specific filesystem
information: for a local file, it points to an inode, and for an NFS file, it points to a
structure containing an NFS filehandle.

e The client read routine checks the local buffer (or page) cache for the data. If it is
present, the data is returned right away. It's possible that the data requested in this
operation was loaded into the cache by a previous NFS read operation. To make the
example interesting, we'll assume that the requested data is not in the client's cache.

o The client process performs an NFS read RPC. If the client and server are using NFS
Version 3, the read request asks for a complete 32 kilobyte NFS buffer (otherwise it
will ask for an 8 kilobyte buffer). The client process goes to sleep waiting for the RPC
request to complete. Note that the client process itself makes the RPC, not the async
thread: the client can't continue execution until the data is returned, so there is nothing
gained by having another process perform its RPC. However, the operating system
will schedule async threads to perform read-ahead for this process, getting the next
buffer from the remote file.

o The server receives the RPC packet and schedules a kernel server thread to handle it.
The server thread picks up the packet, determines the RPC call to be made, and
initiates the disk operation. All of these are kernel functions, so the server thread never
leaves the kernel. The server thread that was scheduled goes to sleep waiting for the
disk read to complete, and when it does, the kernel schedules it again to send the data
and RPC acknowledgment back to the client.

e The reading process on the client wakes up, and takes its data out of the buffer
returned by the NFS read RPC request. The data is left in the buffer cache so that
future read operations do not have to go over the network. The process's read( )
system call returns, and the process continues execution. At the same time, the read-
ahead RPC requests sent by the async threads are pre-fetching additional buffers of the
file. If the process is reading the file sequentially, it will be able to perform many
read( ) system calls before it looks for data that is not in the buffer cache.

Obviously, changing the numbers of async threads and server threads, and the NFS buffer
sizes impacts the behavior of the read-ahead (and write-behind) algorithms. Effects of varying
the number of daemons and the NFS buffer sizes will be explored as part of the performance
discussion in Chapter 17.

7.4 Caching

Caching involves keeping frequently used data "close" to where it is needed, or preloading
data in anticipation of future operations. Data read from disks may be cached until a
subsequent write makes it invalid, and data written to disk is usually cached so that many
consecutive changes to the same file may be written out in a single operation. In NFS, data
caching means not having to send an RPC request over the network to a server: the data is
cached on the NFS client and can be read out of local memory instead of from a remote disk.
Depending upon the filesystem structure and usage, some cache schemes may be prohibited
for certain operations to guarantee data integrity or consistency with multiple processes
reading or writing the same file. Cache policies in NFS ensure that performance is acceptable
while also preventing the introduction of state into the client-server relationship.
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7.4.1 File attribute caching

Not all filesystem operations touch the data in files; many of them either get or set the
attributes of the file such as its length, owner, modification time, and inode number. Because
these attribute-only operations are frequent and do not affect the data in a file, they are prime
candidates for using cached data. Think of Is -/ as a classic example of an attribute-only
operation: it gets information about directories and files, but doesn't look at the contents of the
files.

NFS caches file attributes on the client side so that every getattr operation does not have to go
all the way to the NFS server. When a file's attributes are read, they remain valid on the client
for some minimum period of time, typically three seconds. If the file's attributes remain static
for some maximum period, normally 60 seconds, they are flushed from the cache. When an
application on the NFS client modifies an NFS attribute, the attribute is immediately written
back to the server. The only exceptions are implicit changes to the file's size as a result of
writing to the file. As we will see in the next section, data written by the application is not
immediately written to the server, so neither is the file's size attribute.

The same mechanism is used for directory attributes, although they are given a longer
minimum lifespan. The usual defaults for directory attributes are a minimum cache time of 30
seconds and a maximum of 60 seconds. The longer minimum cache period reflects the typical
behavior of periods of intense filesystem activity — files themselves are modified almost
continuously but directory updates (adding or removing files) happen much less frequently.

The attribute cache can get updated by NFS operations that include attributes in the results.
Nearly all of NFS Version 3's RPC procedures include attributes in the results.

Attribute caching allows a client to make a steady stream of access to a file without having to
constantly get attributes from the server. Furthermore, frequently accessed files and
directories, such as the current working directory, have their attributes cached on the client so
that some NFS operations can be performed without having to make an RPC call.

In the previous section, we saw how the async thread fills and drains the NFS client's buffer
or page cache. This presents a cache consistency problem: if an async thread performs read-
ahead on a file, and the client accesses that information at some later time, how does the client
know that the cached copy of the data is valid? What guarantees are there that another client
hasn't changed the file, making the copy of the file's data in the buffer cache invalid?

An NFS client needs to maintain cache consistency with the copy of the file on the NFS
server. It uses file attributes to perform the consistency check. The file's modification time is
used as a cache validity check; if the cached data is newer than the modification time then it
remains valid. As soon as the file's modification time is newer than the time at which the
async thread read data, the cached data must be flushed. In page-mapped systems, the
modification time becomes a "valid bit" for cached pages. If a client reads a file that never
gets modified, it can cache the file's pages for as long as needed.

This feature explains the "accelerated make" phenomenon seen on NFS clients when
compiling code. The second and successive times that a software module (located on an NFS
fileserver) is compiled, the make process is faster than the first build. The reason is that the
first make reads in header files and causes them to be cached. Subsequent builds of the same
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modules or other files using the same headers pick up the cached pages instead of having to
read them from the NFS server. As long as the header files are not modified, the client's
cached pages remain valid. The first compilation requires many more RPC requests to be sent
to the server; the second and successive compilations only send RPC requests to read those
files that have changed.

The cache consistency checks themselves are by the file attribute cache. When a cache
validity check is done, the kernel compares the modification time of the file to the timestamp
on its cached pages; normally this would require reading the file's attributes from the NFS
server. Since file attributes are kept in the file's inode (which is itself cached on the NFS
server), reading file attributes is much less "expensive" than going to disk to read part of the
file. However, if the file attributes are not changing frequently, there is no reason to re-read
them from the server on every cache validity check. The data cache algorithms use the file
attribute cache to speed modification time comparisons.

Keeping previously read data blocks cached on the client does not introduce state into the
NFS system, since nothing is being modified on the client caching the data. Long-lived cache
data introduces consistency problems if one or more other clients have the file open for
writing, which is one of the motivations for limiting the attribute cache validity period. If the
attribute cache data never expired, clients that opened files for reading only would never have
reason to check the server for possible modifications by other clients. Stateless NFS operation
requires each client to be oblivious to all others and to rely on its attribute cache only for
ensuring consistency. Of course, if clients are using different attribute cache aging schemes,
then machines with longer cache attribute lifetimes will have stale data. Attribute caching and
its effects on NFS performance is revisited in Section 18.6.

7.4.2 Client data caching

In the previous section, we looked at the async thread's management of an NFS client's buffer
cache. The async threads perform read-ahead and write-behind for the NFS client processes.
We also saw how NFS moves data in NFS buffers, rather than in page- or buffer cache-sized
chunks. The use of NFS buffers allows NFS operations to utilize some of the sequential disk
I/O optimizations of Unix disk device drivers.

Reading in buffers that are multiples of the local filesystem block size allows NFS to reduce
the cost of getting file blocks from a server. The overhead of performing an RPC call to read
just a few bytes from a file is significant compared to the cost of reading that data from the
server's disk, so it is to the client's and server's advantage to spread the RPC cost over as many
data bytes as possible. If an application sequentially reads data from a file in 128-byte buffers,
the first read operation brings over a full (8 kilobytes for NFS Version 2, usually more for
NFS Version 3) buffer from the filesystem. If the file is less than the buffer size, the entire file
is read from the NFS server. The next read( ) picks up data that is in the buffer (or page)
cache, and following reads walk through the entire buffer. When the application reads data
that is not cached, another full NFS buffer is read from the server. If there are async threads
performing read-ahead on the client, the next buffer may already be present on the NFS client
by the time the process needs data from it. Performing reads in NFS buffer-sized operations
improves NFS performance significantly by decoupling the client application's system call
buffer size and the VFS implementation's buffer size.
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Going the other way, small write operations to the same file are buffered until they fill a
complete page or buffer. When a full buffer is written, the operating system gives it to an
async thread, and async threads try to cluster write buffers together so they can be sent in NFS
buffer-sized requests. The eventual write RPC call is performed synchronous to the async
thread; that is, the async thread does not continue execution (and start another write or read
operation) until the RPC call completes. What happens on the server depends on what version
of NFS is being used.

e For NFS Version 2, the write RPC operation does not return to the client's async
thread until the file block has been committed to stable, nonvolatile storage. All write
operations are performed synchronously on the server to ensure that no state
information is left in volatile storage, where it would be lost if the server crashed.

e For NFS Version 3, the write RPC operation typically is done with the stable flag set
to off. The server will return as soon as the write is stored in volatile or nonvolatile
storage. Recall from Section 7.2.6 that the client can later force the server to
synchronously write the data to stable storage via the commit operation.

There are elements of a write-back cache in the async threads. Queueing small write
operations until they can be done in buffer-sized RPC calls leaves the client with data that is
not present on a disk, and a client failure before the data is written to the server would leave
the server with an old copy of the file. This behavior is similar to that of the Unix buffer cache
or the page cache in memory-mapped systems. If a client is writing to a local file, blocks of
the file are cached in memory and are not flushed to disk until the operating system schedules
them. If the machine crashes between the time the data is updated in a file cache page and the
time that page is flushed to disk, the file on disk is not changed by the write. This is also
expected of systems with local disks — applications running at the time of the crash may not
leave disk files in well-known states.

Having file blocks cached on the server during writes poses a problem if the server crashes.
The client cannot determine which RPC write operations completed before the crash,
violating the stateless nature of NFS. Writes cannot be cached on the server side, as this
would allow the client to think that the data was properly written when the server is still
exposed to losing the cached request during a reboot.

Ensuring that writes are completed before they are acknowledged introduces a major
bottleneck for NFS write operations, especially for NFS Version 2. A single Version 2 file
write operation may require up to three disk writes on the server to update the file's inode, an
indirect block pointer, and the data block being written. Each of these server write operations
must complete before the NFS write RPC returns to the client. Some vendors eliminate most
of this bottleneck by committing the data to nonvolatile, nondisk storage at memory speeds,
and then moving data from the NFS write buffer memory to disk in large (64 kilobyte)
buffers. Even when using NFS Version 3, the introduction of nonvolatile, nondisk storage can
improve performance, though much less dramatically than with NFS Version 2.

Using the buffer cache and allowing async threads to cluster multiple buffers introduces some
problems when several machines are reading from and writing to the same file. To prevent
file inconsistency with multiple readers and writers of the same file, NFS institutes a flush-on-
close policy:

o All partially filled NFS buffers are written to the NFS server when a file is closed.
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e For NFS Version 3 clients, any writes that were done with the stable flag set to off are
forced onto the server's stable storage via the commit operation.

This ensures that a process on another NFS client sees all changes to a file that it is opening
for reading:

Client A Client B
open( )
write( )
NFS Version 3 only: commit
close( )
open( )
read( )

The read( ) system call on Client B will see all of the data in a file just written by Client A,
because Client A flushed out all of its buffers for that file when the close( ) system call was
made. Note that file consistency is less certain if Client B opens the file before Client A has
closed it. If overlapping read and write operations will be performed on a single file, file
locking must be used to prevent cache consistency problems. When a file has been locked, the
use of the buffer cache is disabled for that file, making it more of a write-through than a write-
back cache. Instead of bundling small NFS requests together, each NFS write request for a
locked file is sent to the NFS server immediately.

7.4.3 Server-side caching

The client-side caching mechanisms — file attribute and buffer caching — reduce the number
of requests that need to be sent to an NFS server. On the server, additional cache policies
reduce the time required to service these requests. NFS servers have three caches:

e The inode cache, containing file attributes. Inode entries read from disk are kept in-
core for as long as possible. Being able to read and write these attributes in memory,
instead of having to go to disk, make the get- and set-attribute NFS requests much
faster.

e The directory name lookup cache, or DNLC, containing recently read directory
entries. Caching directory entries means that the server does not have to open and re-
read directories on every pathname resolution. Directory searching is a fairly
expensive operation, since it involves going to disk and searching linearly for a
particular name in the directory. The DNLC cache works at the VFS layer, not at the
local filesystem layer, so it caches directory entries for all types of filesystems. If you
have a CD-ROM drive on your NFS server, and mount it on NFS clients, the DNLC
becomes even more important because reading directory entries from the CD-ROM is
much slower than reading them from a local hard disk. Server configuration effects
that affect both the inode and DNLC cache systems are discussed in Section 16.5.5.

e The server's buffer cache, used for data read from files. As mentioned before, file
blocks that are written to NFS servers cannot be cached, and must be written to disk
before the client's RPC write call can complete. However, the server's buffer or page
cache acts as an efficient read cache for NFS clients. The effects of this caching are
more pronounced in page-mapped systems, since nearly all of the server's memory can
be used as a read cache for file blocks.
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For NFS Version 3 servers, the buffer cache is used also for data written to files
whenever the write RPC has the stable flag set to off. Thus, NFS Version 3 servers
that do not use nondisk, nonvolatile memory to store writes can perform almost as fast
as NFS Version 2 servers that do.

Cache mechanisms on NFS clients and servers provide acceptable NFS performance while
preserving many — but not all — of the semantics of a local filesystem. If you need finer
consistency control when multiple clients are accessing the same files, you need to use file
locking.

7.5 File locking

File locking allows one process to gain exclusive access to a file or part of a file, and forces
other processes requiring access to the file to wait for the lock to be released. Locking is a
stateful operation and does not mesh well with the stateless design of NFS. One of NFS's
design goals is to maintain Unix filesystem semantics on all files, which includes supporting
record locks on files.

Unix locks come in two flavors: BSD-style file locks and System V-style record locks. The
BSD locking mechanism implemented in the flock( ) system call exists for whole file locking
only, and on Solaris is implemented in terms of the more general System V-style locks. The
System V-style locks are implemented through the fent/( ) system call and the lockf( ) library
routine, which uses fentl( ). System V locking operations are separated from the NFS protocol
and handled by an RPC lock daemon and a status monitoring daemon that recreate and verify
state information when either a client or server reboot.

7.5.1 Lock and status daemons

The RPC lock daemon, /ockd, runs on both the client and server. When a lock request is made
for an NFS-mounted file, lockd forwards the request to the server's lockd. The lock daemon
asks the status monitor daemon, statd, to note that the client has requested a lock and to begin
monitoring the client.

The file locking daemon and status monitor daemon keep two directories with lock
"reminders" in them: /var/statmom/sm and /var/statmon/sm.bak. (On some systems, these
directories are /etc/sm and /etc/sm.bak.) The first directory is used by the status monitor on an
NFS server to track the names of hosts that have locked one or more of its files. The files in
/var/statmon/sm are empty and are used primarily as pointers for lock renegotiation after a
server or client crash. When statd is asked to monitor a system, it creates a file with that
system's name in /etc/statmon/sm.

If the system making the lock request must be notified of a server reboot, then an entry is
made in /var/statmon/sm.bak as well. When the status monitor daemon starts up, it calls the
status daemon on all of the systems whose names appear in /var/statmon/sm.bak to notify
them that the NFS server has rebooted. Each client's status daemon tells its lock daemon that
locks may have been lost due to a server crash. The client-side lock daemons resubmit all
outstanding lock requests, recreating the file lock state (on the server) that existed before the
server crashed.

127



Managing NFS and NIS

7.5.2 Client lock recovery

If the server's statd cannot reach a client's status daemon to inform it of the crash recovery, it
begins printing annoying messages on the server's console:

statd: cannot talk to statd at client, RPC: Timed out (5)

These messages indicate that the local statd process could not find the portmapper on the
client to make an RPC call to its status daemon. If the client has also rebooted and is not quite
back on the air, the server's status monitor should eventually find the client and update the file
lock state. However, if the client was taken down, had its named changed, or was removed
from the network altogether, these messages continue until szatd is told to stop looking for the
missing client.

To silence statd, kill the status daemon process, remove the appropriate file in
/var/statmon/sm.bak, and restart statd. For example, if server onaga cannot find the statd
daemon on client noreaster, remove that client's entry in /var/statmon/sm.bak :

onaga# ps -eaf | fgrep statd

root 133 1 0 Jan 16 ? 0:00 /usr/lib/nfs/statd
root 8364 6300 0 06:10:27 pts/13 0:00 fgrep statd

onaga# kill -9 133

onaga# cd /var/statmon/sm.bak

onaga# 1ls

noreaster

onaga# rm noreaster

onaga# cd /

onaga# /usr/lib/nfs/statd

Error messages from statd should be expected whenever an NFS client is removed from the
network, or when clients and servers boot at the same time.

7.5.3 Recreating state information

Because permanent state (state that survives crashes) is maintained on the server host owning
the locked file, the server is given the job of asking clients to re-establish their locks when
state is lost. Only a server crash removes state from the system, and it is missing state that is
impossible to regenerate without some external help.

When a client reboots, it by definition has given up all of its locks, but there is no state /ost.
Some state information may remain on the server and be out-of-date, but this "excess" state is
flushed by the server's status monitor. After a client reboot, the server's status daemon notices
the inconsistency between the locks held by the server and those the client thinks it holds. It
informs the server /ockd that locks from the rebooted client need reclaiming. The server's
lockd sets a grace period — 45 seconds by default — during which the locks must be
reclaimed or be lost. When a client reboots, it will not reclaim any locks, because there is no
record of the locks in its local lockd. The server releases all of them, removing the old state
from the client-server system.

Think of this server-side responsibility as dealing with your checkbook and your local bank

branch. You keep one set of records, tracking what your balance is, and the bank maintains its
own information about your account. The bank's information is the "truth," no matter how
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good or bad your recording keeping is. If you vanish from the earth or stop contacting the
bank, then the bank tries to contact you for some finite grace period. After that, the bank
releases its records and your money. On the other hand, if the bank were to lose its computer
records in a disaster, it could ask you to submit checks and deposit slips to recreate the
records of your account.

7.6 NFS futures
7.6.1 NFS Version 4

In 1998, Sun Microsystems and the Internet Society completed an agreement giving the
Internet Society control over future versions of NFS, starting with NFS Version 4. The
Internet Society is the umbrella body for the Internet Engineering Task Force (IETF). IETF
now has a working group chartered to define NFS Version 4. The goals of the working group
include:

Better access and performance on the Internet

NFS can be used on the Internet, but it isn't designed to work through firewalls
(although, in Chapter 12 we'll discuss a way to use NFS through a firewall). Even if a
firewall isn't in the way, certain aspects of NFS, such as pathname parsing, can be
expensive on high-latency links. For example, if you want to look at /a/b/c/d/e on a
server, your NFS Version 2 or 3 client will need to make five lookup requests before it
can start reading the file. This is hardly noticeable on an ethernet, but very annoying
on a modem link.

Mandatory security

Most NFS implementations have a default form of authentication that relies on a trust
between the client and server. With more people on the Internet, trust is insufficient.
While there are security flavors for NFS that require strong authentication based on
cryptography, these flavors aren't universally implemented. To claim conformance to
NFS Version 4, implementations will have to offer a common set of security flavors.

Better heterogeneity

NFS has been implemented on a wide array of platforms, including Unix, PCs,
Macintoshes, Java, MVS, and web browsers, but many aspects of it are very Unix-
centric, which prevents it from being the file-sharing system of choice for non-Unix
systems.

For example, the set of attributes that NFS Versions 2 and 3 use is derived completely
from Unix without thought about useful attributes that Windows 98, for example,
might need. The other side of the problem is that some existing NFS attributes are
hard to implement by some non-Unix systems.
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Internationalization and localization

This refers to pathname strings and not the contents of files. Technically, filenames in
NFS Versions 2 and 3 can only be 7-bit ASCII, which is very limiting. Even if one
uses the eighth bit, that still doesn't help the Asian users.

There are no plans to add explicit internationalization and localization hooks to file
content. The NFS protocol's model has always been to treat the content of files as an
opaque stream of bytes that the application must interpret, and Version 4 will not vary
from that.

There has been talk of adding an optional attribute that describes the MIME type of
contents of the file.

Extensibility

After NFS Version 2 was released, it took nine years for the first NFS Version 3
implementations to appear on the market. It will take at least seven years from the
time NFS Version 3 was first available for Version 4 implementations to be marketed.
The gap between Version 2 and Version 3 was especially painful because of the write
performance issue. Had NFS Version 2 included a method for adding procedures, the
pain could have been reduced.

At the time this book was written, the NFS Version 4 working group published the initial NFS
Version 4 specification in the form of RFC 3010, which you can peruse from IETF's web site
at http://www.ietf.org/. Several of the participants in the working group have prototype
implementations that interoperate with each other. Early versions of the Linux
implementation are available from http://www.citi.umich.edu/projects/nfsv4/. Some of the
characteristics of NFS Version 4 that are not in Version 3 include:

No sideband protocols

The separate protocols for mounting and locking have been incorporated into the NFS
protocol.

Statefulness

NFS Version 4 has an OPEN operation that tells the server the client has opened the
file, and a corresponding CLOSE operation. Recall earlier in this chapter, in Section
7.2.2 that the point was made that crash recovery in NFS Versions 2 and 3 is simple
because the server retains very little state. By adding such state, recovery is more
complicated. When a server crashes, clients have a grace period to reestablish the
OPEN state. When a client crashes, because the OPEN state is leased (i.e., has a time
limit that expires if not renewed), a dead client will eventually have its leases timed
out, allowing the server to delete any state. Another point in Section 7.2.2 is that the
operations in NFS Versions 2 and 3 are nonidempotent where possible, and the
idempotent operations results are cached in a duplicate request cache. For the most
part, this is still the case with NFS Version 4. The only exceptions are the OPEN,
CLOSE, and locking operations. Operations like RENAME continue to rely on the
duplicate request cache, a solution with theoretical holes, but in practice has proven to
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be quite sufficient. Thus NFS Version 4 retains much of the character of NFS Versions
2 and 3.

Aggressive caching

Because there is an OPEN operation, the client can be much more lazy about writing
data to the server. Indeed, for temporary files, the server may never see any data
written before the client closes and removes the file.

7.6.2 Security

Aside from lack of multivendor support, the other problem with NFS security flavors is that
they become obsolete rather quickly. To mitigate this, IETF specified the RPCSEC GSS
security flavor that NFS and other RPC-based protocols could use to normalize access to
different security mechanisms. RPCSEC GSS accomplishes this using another IETF
specification called the Generic Security Services Application Programming Interface (GSS-
API). GSS-API is an abstract layer for generating messages that are encrypted or signed in a
form that can be sent to a peer on the network for decryption or verification. GSS-API has
been specified to work over Kerberos V5, the Simple Public Key Mechanism, and the Low
Infrastructure Public Key system (LIPKEY). We will discuss NFS security, RPCSEC_GSS,
and Kerberos V5 in more detail in Chapter 12.

The Secure Socket Layer (SSL) and IPSec were considered as candidates to provide NFS
security. SSL wasn't feasible because it was confined to connection-oriented protocols like
TCP, and NFS and RPC work over TCP and UDP. IPSec wasn't feasible because, as noted in
the section Section 7.2.7, NFS clients typically don't have a TCP connection per user;
whereas, it is hard, if not impossible, for an IPSec implementation to authenticate multiple
users over a single TCP/IP connection.
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Chapter 8. Diskless Clients

This chapter is devoted to diskless clients running Solaris. Diskless Solaris clients need not be
served by Solaris machines, since many vendors have adopted Sun's diskless boot protocols.
The current Solaris diskless client support relies entirely on NFS for root and swap filesystem
service and uses NIS maps for host configuration information. Diskless clients are probably
the most troublesome part of NFS. It is a nontrivial matter to get a machine with no local
resources to come up as a fully functioning member of the network, and the interactions
between NIS servers, boot servers, and diskless clients create many ways for the boot
procedure to fail.

There are many motivations for using diskless clients:

e They are quieter than machines with disks.

e They are easier to administer, since there is no local copy of the operating system that
requires updates.

e When using fast network media, like 100Mb ethernet, diskless clients can perform
faster if the server is storing the client's data in a disk array. The reason is that client
workstations typically have one or two disk spindles, whereas if the client data can be
striped across many, usually faster spindles, on the server, the server can provide
better response.

In Solaris 8, support for the unbundled tools (AdminSuite) necessary to configure a server for
diskless client support was dropped. As the Solaris 8 release notes stated:

Solstice AdminSuite 2.3 software is no longer supported with the Solaris 8 operating
environment. Any attempt to run Solstice AdminSuite 2.3 to configure Solstice AutoClients
or diskless clients will result in a failure for which no patch is available or planned. While it
may be possible to manually edit configuration files to enable diskless clients, such an
operation is not recommended or supported.

Setting up a diskless client from scratch without tools is very impractical. Fortunately, Solaris
8, 1/01 Update has been released, which replaces the unbundled AdminSuite with bundled
tools for administering diskless support on the Solaris 8, 1/01 Update servers. Unfortunately,
Solaris 8, 1/01 Update was not available in time to write about its new diskless tools in this
book. Thus, the discussion in the remainder of this chapter focuses on diskless support in
Solaris through and including Solaris 7.

8.1 NFS support for diskless clients

Prior to SunOS 4.0, diskless clients were supported through a separate distributed filesystem
protocol called Network Disk, or ND. A single raw disk partition was divided into several
logical partitions, each of which had a root or swap filesystem on it. Once an ND partition
was created, changing a client's partition size entailed rebuilding the diskless client's partition
from backup or distribution tapes. ND also used a smaller buffer size than NFS, employing
1024-byte buffers for filesystem read and write operations.

In SunOS 4.0 and Solaris, diskless clients are supported entirely through NFS. Two features
in the operating system and NFS protocols allowed ND to be replaced: swapping to a file and
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mounting an NFS filesystem as the root directory. The page-oriented virtual memory
management system in SunOS 4.0 and Solaris treats the swap device like an array of pages, so
that files can be used as swap space. Instead of copying memory pages to blocks of a raw
partition, the VM system copies them to blocks allocated for the swap file. Swap space added
in the filesystem is addressed through a vnode, so it can either be a local Unix filesystem
(UFS) file or an NFS-mounted file. Diskless clients now swap directly to a file on their boot
servers, accessed via NFS.

The second change supporting diskless clients is the VFS MOUNTROOT( ) VFS operation.
On the client, it makes the named filesystem the root device of the machine. Once the root
filesystem exists, other filesystems can be mounted on any of its vnodes, so an NFS-mounted
root partition is a necessary bootstrap for any filesystem mount operations on a diskless client.
With the root filesystem NFS-mounted, there was no longer a need for a separate protocol to
map root and swap filesystem logical disk blocks into server filesystem blocks, so the ND
protocol was removed from SunOS.

8.2 Setting up a diskless client

To set up a diskless client, you must have the appropriate operating system software loaded
on its boot server. If the client and server are of the same architecture, then they can share the
/usr filesystem, including the same /usr/platform/<platform> directory. However, if the client
has a different processor or platform architecture, the server must contain the relevant /usr
filesystem and/or /usr/platform/<platform> directory for the client. The /usr filesystem
contains the operating system itself, and will be different for each diskless client processor
architecture. The /usr/platform directory contains subdirectories that in turn contain
executable files that depend on both the machine's hardware implementation (platform) and
CPU architecture. Often several different hardware implementations share the same set of
platform specific executables. Thus, you will find that /usr/platform contains lots of symbolic
links to directories that contain the common machine architecture.

Platform architecture and processor architecture are not the same thing; processor architecture
guarantees that binaries are compatible, while platform architecture compatibility means that
page sizes, kernel data structures, and supported devices are the same. You can determine the
platform architecture of a running machine using uname -i:

[

% uname -i
SUNW, Ultra-5 10

You can also determine the machine architecture the platform directory in /usr/platform is
likely symbolically linked to:

[

$ uname -m
sundu

If clients and their server have the same processor architecture but different platform
architectures, then they can share /usr but /usr/platform needs to include subdirectories for
both the client and server platform architectures. Platform specific binaries for each client are
normally placed in /export on the server.

133



Managing NFS and NIS

In Solaris, an unbundled product called AdminSuite is used to set up servers for diskless NFS
clients. This product is currently available as part of the Solaris Easy Access Server (SEAS)
2.0 product and works on Solaris up to Solaris 7.

For each new diskless client, the AdminSuite software can be used to perform the following
steps:

e Give the client a name and an IP address, and add them both to the NIS Aosts map or
/etc/hosts file if desired.

e Set up the boot parameters for the client, including its name and the paths to its root
and swap filesystems on the server. The boot server keeps these values in its
/etc/bootparams file or in the NIS bootparams map. A typical bootparams file entry
looks like this:

buonanotte root=sunne:/export/root/buonanotte \
swap=sunne:/export/swap/buonanotte

The first line indicates the name of the diskless client and the location of its root
filesystem, and the second line gives the location of the client's swap filesystem. Note
that:

The swap "filesystem" is really just a single file exported from the server.
Solaris diskless clients do not actually use bootparams to locate the swap area;
this is done by the diskless administration utlities setting up the appropriate
entry in the client's vfstab file.

e The client system's MAC address and hostname must be added to the NIS ethers map
(or the /etc/ethers file) so that it can determine its IP address using the Reverse ARP
(RARP) protocol. To find the client's MAC address, power it on without the network
cable attached, and look for its MAC address in the power-on diagnostic messages.

e Add an entry for the client to the server's /tfipboot directory, so the server knows how
to locate a boot block for the client. Diskless client servers use this information to
locate the appropriate boot code and to determine if they should answer queries about
booting the client.

e Create root and swap filesystems for the client on the boot server. These filesystems
must be listed in the server's /etc/dfs/dfstab file so they can be NFS-mounted. After the
AdminSuite software updates /etc/dfs/dfstab, it will run shareall to have the changes
take effect. Most systems restrict access to a diskless client root filesystem to that
client. In addition, the filesystem export must allow root to operate on the NFS-
mounted filesystem for normal system operation. A typical /etc/dfs/dfstab entry for a
diskless client's root filesystem is:

share -F nfs -o rw=vineyard, root=vineyard
/export/root/vineyard
share -F nfs -o rw=vineyard, root=vineyard /export/swap/vineyard

The rw option prevents other diskless clients from accessing this filesystem, while the
root option ensures that the superuser on the client will be given normal root

privileges on this filesystem.

Most of these steps could be performed by hand, and if moving a client's diskless
configuration from one server to another, you may find yourself doing just that. However,
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creating a root filesystem for a client from scratch is not feasible, and it is easiest and safest to
use software like AdminSuite to add new diskless clients to the network.

The AdminSuite software comes in two forms:

e A QGUI that is launched from the solstice command:

# solstice &

You then double click on the Host Manager icon. Host Manager comes up as simple
screen with an Edit menu item that lets you add new diskless clients, modify existing
ones, and delete existing ones. When you add a new diskless client, you have to tell it
that you want it to be diskless. One reason for this is that Host Manager is intended to
be what its name implies: a general means for managing hosts, whether they be
diskless, servers, standalone or other types. The other reason is that "other types"
includes another kind of NFS client: cache-only clients (referred to as AutoClient
hosts in Sun's product documentation). There is another type of "diskless" client,
which Host Manager doesn't support: a disk-full client that is installed over the
network. A client with disks can have the operating system installed onto those disks,
via a network install (netinstall ). Such netinstall clients are configured on the server in
a manner very similar to how diskless clients are, except that unique root and swap
filesystems are not created, and when the client boots over the network, it is presented
with a set of screens for installation. We will discuss netinstall later in this chapter, in
Section 8.8.

e A set of command line tools. The command admhostadd, which will typically live in
/opt/SUNWadm/bin, is used to add a diskless client.

It is beyond the scope of this book to describe the details of Host Manager, or its command-
line equivalents, including how to install them. You should refer to the AdminSuite

documentation, and the online manpages, typically kept under /opt/ SUNWadm/man.

Regardless of what form of the AdminSuite software is used, the default server filesystem
naming conventions for diskless client files are shown in Table 8-1.

Table 8-1. Diskless client filesystem locations

Filesystem Contents

/export/root Root filesystems

/export/swap Swap filesystems
/export/exec /usr executables, libraries, etc.

The /export/exec directory contains a set of directories specific to a release of the operating
system, and processor architecture. For example, a Solaris 7 SPARC client would look for a
directory called /export/exec/Solaris 2.7 sparc.all/usr. If all clients have the same processor
architecture as the server, then /export/exec/<os-release-name>_ <processor _name>.all will
contain symbolic links to the server's /usr filesystem.

To configure a server with many disks and many clients, create several directories for root

and swap filesystems and distribute them over several disks. For example, on a server with
two disks, split the /export/root and /export/swap filesystems, as shown in Table 8-2.
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Table 8-2. Diskless client filesystems on two disks

Disk Root Filesystems Swap Filesystems
0 /export/rootl /export/swapl
1 /export/root2 /export/swap2

Some implementations (not the AdminSuitesoftware) of the client installation tools do not
allow you to specify a root or swap filesystem directory other than /export/root or
/export/swap. Perform the installation using the tools' defaults, and after the client has been
installed, move its root and swap filesystems. After moving the client's filesystems, be sure to
update the bootparams file and NIS map with the new filesystem locations.

As an alternative to performing an installation and then juggling directories, use symbolic
links to point the /export subdirectories to the desired disk for this client. To force an
installation on /export/root2 and /export/swap2, for example, create the following symbolic
links on the diskless client server:

server# cd /export
server# ln -s root2 root
server# ln -s swap2 swap

Verify that the bootparams entries for the client reflect the actual location of its root and swap
filesystems, and also check the client's /etc/vfstab file to be sure it mounts its filesystems from
/export/root2 and /export/swap2. If the client's /etc/vfstab file contains the generic /export/root
or /export/swap pathnames, the client won't be able to boot if these symbolic links point to the
wrong subdirectories.

8.3 Diskless client boot process

Debugging any sort of diskless client problems requires some knowledge of the boot process.
When a diskless client is powered on, it knows almost nothing about its configuration. It
doesn't know its hostname, since that's established in the boot scripts that it hasn't run yet. It
has no concept of IP addresses, because it has no hosts file or hosts NIS map to read. The only
piece of information it knows for certain is its 48-bit Ethernet address, which is in the
hardware on the CPU (or Ethernet interface) board. To be able to boot, a diskless client must
convert the 48-bit Ethernet address into more useful information such as a boot server name, a
hostname, an IP address, and the location of its root and swap filesystems.

8.3.1 Reverse ARP requests

The heart of the boot process is mapping 48-bit Ethernet addresses to IP addresses. The
Address Resolution Protocol (ARP) is used to locate a 48-bit Ethernet address for a known IP
address. Its inverse, Reverse ARP (or RARP), is used by diskless clients to find their IP
addresses given their Ethernet addresses. Servers run the rarpd daemon to accept and process
RARP requests, which are broadcast on the network by diskless clients attempting to boot.

IP addresses are calculated in two steps. The 48-bit Ethernet address received in the RARP is
used as a key in the /etc/ethers file or ethers NIS map. rarpd locates the hostname associated
with the Ethernet address from the ethers database and uses that name as a key into the Aosts
map to find the appropriate [P address.

136



Managing NFS and NIS

For the rarpd daemon to operate correctly, it must be able to get packets from the raw
network interface. RARP packets are not passed up through the TCP or UDP layers of the
protocol stack, so rarpd listens directly on each network interface (e.g., hme0) device node
for RARP requests. Make sure that all boot servers are running rarpd before examining other
possible points of failure. The best way to check is with ps, which should show the rarpd
process:

% ps -eaf | grep rarpd
root 274 1 0 Apr 16 2 0:00 /usr/sbin/in.rarpd -a

Some implementations of rarpd are multithreaded, and some will fork child processes. Solaris
rarpd implementations will create a process or thread for each network interface the server
has, plus one extra process or thread. The purpose of the extra thread or child process is to act
as a delayed responder. Sometimes, rarpd gets a request but decides to delay its response by
passing the request to the delayed responder, which waits a few seconds before sending the
response. A per-interface rarpd thread/process chooses to send a delayed response if it
decides it is not the best candidate to answer the request. To understand how this decision is
made, we need to look at the process of converting Ethernet addresses into IP addresses in
more detail.

The client broadcasts a RARP request containing its 48-bit Ethernet address and waits for a
reply. Using the ethers and hosts maps, any RARP server receiving the request attempts to
match it to an IP address for the client. Before sending the reply to the client, the server
verifies that it is the best candidate to boot the client by checking the /tfipboot directory (more
on this soon). If the server has the client's boot parameters but might not be able to boot the
client, it delays sending a reply (by giving the request to the delayed responder daemon) so
that the correct server replies first. Because RARP requests are broadcast, they are received
and processed in somewhat random order by all boot servers on the network. The reply delay
compensates for the time skew in reply generation. The server that thinks it can boot the
diskless client immediately sends its reply to the client; other machines may also send their
replies a short time later.

You may ask "Why should a host other than the client's boot server answer its RARP
request?" After all, if the boot server is down, the diskless client won't be able to boot even if
it does have a hostname and IP address. The primary reason is that the "real" boot server may
be very loaded, and it may not respond to the RARP request before the diskless client times
out. Allowing other hosts to answer the broadcast prevents the client from getting locked into
a cycle of sending a RARP request, timing out, and sending the request again. A related
reason for having multiple RARP replies is that the RARP packet may be missed by the
client's boot server. This is functionally equivalent to the server not replying to the RARP
request promptly: if some host does not provide the correct answer, the client continues to
broadcast RARP packets until its boot server is less heavily loaded. Finally, RARP is used for
other network services as well as for booting diskless clients, so RARP servers must be able
to reply to RARP requests whether they are diskless client boot servers or not.

After receiving any one of the RARP replies, the client knows its IP address, as well as the IP
address of a boot server (found by looking in the packet returned by the server). In some

implementations, a diskless client announces its IP addresses with a message of the form:

Using IP address 192.9.200.1 = C009C801
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A valid IP address is only the first step in booting; the client needs to be able to load the boot
code if it wants to eventually get a Unix kernel running.

8.3.2 Getting a boot block

A local and remote IP address are all that are needed to download the boot block using a
simple file transfer program called #fip (for trivial fip). This minimal file transfer utility does
no user or password checking and is small enough to fit in the boot PROM. Downloading a
boot block to the client is done from the server's /#ftpboot directory.

The server has no specific knowledge of the architecture of the client issuing a RARP or #fip
request. It also needs a mechanism for determining if it can boot the client, using only its IP
address — the first piece of information the client can discern. The server's /tfipboot directory
contains boot blocks for each architecture of client support, and a set of symbolic links that
point to these boot blocks:

[wahoo]% 1ls -1 /tftpboot

total 282

lrwxrwxrwx 1 root root 26 Feb 17 12:43 828DOE09 ->
inetboot.sun4u.Solaris 2.7

lrwxrwxrwx 1 root root 26 Feb 17 12:43 828DOE09.SUN4U ->
inetboot.sun4u.Solaris 2.7

lrwxrwxrwx 1 root root 26 Apr 27 18:14 828DOEOA ->
inetboot.sun4u.Solaris 2.7

lrwxrwxrwx 1 root root 26 Apr 27 18:14 828DOEOA.SUN4U ->
inetboot.sun4u.Solaris 2.7

-rw-r—-r-- 1 root root 129632 Feb 17 12:21 inetboot.sun4u.Solaris 2.7
lrwxrwxrwx 1 root root 1 Feb 17 12:17 tftpboot -> .

The link names are the IP addresses of the clients in hexadecimal. The first client link —
828DOE09 — corresponds to IP address 130.141.14.9:

828DOE09
Insert dots to put in IP address format:

82.8D.0E.09
Convert back to decimal:

130.141.14.9

Two links exist for each client — one with the IP address in hexadecimal, and one with the IP
address and the machine architecture. The second link is used by some versions of tfipboot
that specify their architecture when asking for a boot block. It doesn't hurt to have both, as
long as they point to the correct boot block for the client.

The previous section stated that a server delays its response to a RARP request if it doesn't
think it's the best candidate to boot the requesting client. The server makes this determination
by matching the client IP address to a link in /#fipboot. If the link exists, the server is the best
candidate to boot the client; if the link is missing, the server delays its response to allow
another server to reply first.

The client gets its boot block via #fip, sending its request to the server that answered its RARP

request. When the inetd daemon on the server receives the #fip request, it starts an in.tfipd
daemon that locates the right boot file by following the symbolic link representing the client's
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IP address. The tftpd daemon downloads the boot file to the client. In some implementations,
when the client gets a valid boot file, it reports the address of its boot server:

Booting from tftp server at 130.141.14.2 = 828D0OE02

It's possible that the first host to reply to the client's RARP request can't boot it — it may have
had valid ethers and hosts map entries for the machine but not a boot file. If the first server
chosen by the diskless client does not answer the #fip request, the client broadcasts this same
request. If no server responds, the machine complains that it cannot find a #fip server.

The tfipd daemon should be run in secure mode using the -s option. This is usually the default
configuration in its /etc/inetd.conf entry:

tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot

The argument after the -s is the directory that #fp uses as its root — it does a chdir( ) into this
directory and then a chroot( ) to make it the root of the filesystem visible to the #fip process.
This measure prevents #fip from being used to take any file other than a boot block in tfipboot.

The last directory entry in /tfipboot is a symbolic link to itself, using the current directory
entry (.) instead of its full pathname. This symbolic link is used for compatibility with older
systems that passed a full pathname to #fip, such as /tfipboot/C009C801.SUN4U. Following
the symbolic link effectively removes the /#fipboot component and allows a secure #fip to find
the request file in its root directory. Do not remove this symbolic link, or older diskless clients
will not be able to download their boot files.

8.3.3 Booting a kernel

Once the boot file is loaded, the diskless client jumps out of its PROM monitor and into the
boot code. To do anything useful, boot needs a root and swap filesystem, preferably with a
bootable kernel on the root device. To get this information, boot broadcasts a request for boot
parameters. The bootparamd RPC server listens for these requests and returns a gift pack
filled with the location of the root filesystem, the client's hostname, and the name of the boot
server. The filesystem information is kept in /etc/bootparams or in the NIS bootparams map.

The diskless client mounts its root filesystem from the named boot server and boots the kernel
image found there. After configuring root and swap devices, the client begins single user
startup and sets its hostname, IP addresses, and NIS domain name from information in its /etc
files. It is imperative that the names and addresses returned by bootparamd match those in the
client's configuration files, which must also match the contents of the NIS maps.

As part of the single user boot, the client mounts its /usr filesystem from the server listed in its
/etc/vfstab file. At this point, the client has root and swap filesystems, and looks (to the Unix
kernel) no different than a system booting from a local disk. The diskless client executes its
boot script files, and eventually enters multi-user mode and displays a login prompt. Any
breakdowns that occur after the /usr filesystem is mounted are caused by problems in the boot
scripts, not in the diskless client boot process itself.
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8.3.4 Managing boot parameters

Every diskless client boot server has an /etc/bootparams file and/or uses a bootparams NIS
map. On Solaris, the /etc/nsswitch.conf file's bootparams entry controls whether the
information is read from /etc/bootparams, NIS, or both, and in what order.

Here are some suggestions for managing diskless client boot parameters:

o Keep the boot parameters in the bootparams map if you are using NIS. Obviously, if
your NIS master server is also a diskless client server, it will contain a complete
/etc/bootparams file.

e If you have diskless clients in more than one NIS domain, make sure you have a
separate NIS bootparams map for each domain.

¢ On networks with diskless clients from different vendors, make sure that the format of
the boot parameter information used by each vendor is the same. If one system's
bootparamd daemon returns a boot parameter packet that cannot be understood by
another system, you will not be able to use the NIS bootparams map. We'll look at the
problems caused by differing boot parameter packet formats in Section 15.3.

Eliminating copies of the boot parameter information on the other servers reduces the chances
that you'll have out-of-date information on boot servers after you've made a configuration
change.

8.4 Managing client swap space

Once a client is running, it may need more swap space. Generally, allocating swap space
equal to the physical memory on the client is a good start. Power users, or those who open
many windows, run many processes in the background, or execute large compute-intensive
jobs, may need to have their initial swap allocation increased.

You can increase the swap space on a diskless client, without shutting down the client,
provided you have sufficient space on the server to hold both the client's old swap file, the
server's new swap file, and a temporary swap file equal in size to the old swap file. Here is the
procedure:

1. Create a temporary swap file on the boot server, using mkfile :

wahoo# cd /export/swap

wahoo# mkfile 64M honeymoon. tmp wahoo# 1ls -1 honeymoon.tmp
—rw-——-——-— T 1 root root 67108864 Jan 9 00:38 honeymoon.tmp
wahoo# share -o root=honeymoon /export/swap/honeymoon.tmp

Make sure you do not use the -n option to mkfile, since this causes the swap file to be
incompletely allocated. If the client tries to find a swap block that should have been
pre-allocated by mkfile, but doesn't exist, the client usually panics and reboots.

2. On the client, mount the temporary swap file:

honeymoon# mkdir /tmp/swap.tmp
honeymoon# mount wahoo:/export/swap/honeymoon.tmp /tmp/swap.tmp
honeymoon# swap -a /tmp/swap.tmp
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What is interesting about this is that a regular file, and not a directory, is exported, and
yet it is mounted on top of a directory mount point. Even more interesting is what
happens when you do an /s -/ on it:

honeymoon# l1ls -1 /tmp/swap.tmp
—rw-——-—-—-— T 1 root root 67108864 Jan 9 00:38

The /tmp/swap.tmp directory point has become a regular file after the mount.
On the client, add the new swap file to the swap system:

honeymoon# swap -a /tmp/swap.tmp

Now remove the old swap file from the swap system:

honeymoon# swap -d /dev/swap

Unmount the old swap file:

honeymoon# umount /dev/swap

point the diskless client is swapping to wahoo:/export/swap/honeymoon.tmp. It is now

safe to construct a bigger wahoo:/export/swap/honeymoon.

6.

Remove the old swap file from the server and create a bigger one to replace it:

wahoo# ed /export/swap

wahoo# unshare /export/swap/honeymoon

wahoo# rm /export/swap/honeymoon

wahoo# mkfile 256M honeymoon

wahoo# share -o root=honeymoon /export/swap/honeymoon

On the client, remount the expanded swap file, add it to the swap system, remove the
temporary swap file from the swap system, unmount the temporary swap file, and
remove its mount point:

honeymoon# mount

wahoo: /export/swap/honeymoon /dev/swap
honeymoon# swap -a /dev/swap
honeymoon# swap -d /tmp/swap.tmp
honeymoon# umount /tmp/swap.tmp
honeymoon# rmdir /tmp/swap.tmp

Remove the temporary swap file from the server:

wahoo# unshare/export/swap/honeymoon
wahoo# rm /export/swap/honeymoon

Of course, that is a lot of steps. If you don't mind rebooting the client, it is far simpler to do:

Shutdown client honeymoon
wahoo# cd /export/swap
wahoo# rm honeymoon
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wahoo# mkfile 256M honeymoon
wahoo# shareall
Boot client honeymoon

Note that the last bit in the world permission field of a swap file is 7, indicating that "sticky-
bit" access is set even though the file has no execute permissions. The mkfile utility sets these
permissions by default. Enabling the sticky bit on a non-executable file has two effects:

e The virtual memory system does not perform read-ahead of this file's data blocks.
o The filesystem code does not write out inode information or indirect blocks each time
the file is modified.

Unlike regular files, no read-ahead should be done for swap files. The virtual memory
management system brings in exactly those pages it needs to satisfy page fault conditions, and
performing read-ahead for swap files only consumes disk bandwidth on the server.

Eliminating the write operations needed to maintain inode and indirect block information does
not present a problem because the diskless client cannot extend its swap filesystem. Only the
file modification time field in the inode will change, so this approach trades off an incorrect
modification time (on the swap file) for fewer write operations.

8.5 Changing a client's name

If you have not changed the default diskless client configuration, it's easiest to shut down the
client, remove its root and swap filesystems, and then create a new client, with the new name,
using the AdminSuite software. However, if you have made a large number of local changes
— modifying configuration files, setting up a name service, and creating mount points — then
it may be easier to change the client's name using the existing root and swap filesystems.

Before making any changes, shut down the client system so that you can work on its root
filesystem and change NIS maps that affect it. On the NIS master server, you need to make
several changes:

1. Update /etc/bootparams to reflect the new client's name and root and swap filesystem
pathnames.

2. Add the new hostname to the hosts map in place of the old client name. If any mail
aliases include the old hostname, or if the host is embedded in a list of local
hostnames, update these files as well.

3. Modify the ethers NIS map if all hosts are listed in it.

4. Rebuild the bootparams, ethers, and hosts maps.

On the client's boot server, complete the renaming process:

1. Rename the root and swap filesystems for the client:

cd /export/root
mv oldname newname
cd /export/swap
mv oldname newname

EHgEE e
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2. Update the server's list of exported NFS filesystems with the new root and swap
pathnames. Also change the rw= and root options in /etc/dfs/dfstab. After modifying
the file, share the newly named filesystems, or shareall filesystems, so that the client
will be able to find them when it reboots.

3. In the client's root filesystem, modify its hosts file and boot scripts to reflect the new
hostname:

cd /export/root/newname/etc
vi hosts

vi hostname.*[0-9]*

vi nodename

vi /etc/net/*/hosts

R

In Solaris, the hostname is set in a configuration file with the network interface as an
extension; for example: hostname.hme(. 1t is essential that the host's name and IP
address in its own hosts file agree with its entries in the NIS map, or the machine
either boots with the wrong IP address or doesn't boot at all.

Aside from shutting the client down, the remainder of this operation could be automated using
a script that takes the old and new client names as arguments. The number of changes that
were made to NIS maps should indicate a clear benefit of using NIS: without the centralized
administration, you would have had to change the /etc/ethers and /etc/bootparams files on
every server, and update /etc/hosts on every machine on the network.

8.6 Troubleshooting

When diskless clients refuse to boot, they do so rather emphatically. Shuffling machines and
hostnames to accommodate changes in personnel increases the likelihood that a diskless
machine will refuse to boot. Start debugging by verifying that hostnames, IP addresses, and
Ethernet addresses are all properly registered on boot and NIS servers. The point at which the
boot fails usually indicates where to look next for the problem: machines that cannot even
locate a boot block may be getting the wrong boot information, while machines that boot but
cannot enter single-user mode may be missing their /usr filesystems.

8.6.1 Missing and inconsistent client information

There are a few pieces of missing host information that are easily tracked down. If a client
tries to boot but gets no RARP response, check that the NIS ethers map or the /etc/ethers files
on the boot servers contain an entry for the client with the proper MAC address. A client
reports RARP failures by complaining that it cannot get its [P address.

Diskless clients that boot part-way but hang after mounting their root filesystems may have
/etc/hosts files that do not agree with the NIS ethers or hosts maps. It's also possible that the
client booted using one name and IP address combination, but chose to use a different name
while going through the single-user boot process. Check the boot scripts to be sure that the
client is using the proper hostname, and also check that its local /etc/hosts file agrees with the
NIS maps.

Other less obvious failures may be due to confusion with the bootparams map and the
bootparamd daemon. Since the diskless client broadcasts a request for boot parameters, any
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host running bootparamd can answer it, and that server may have an incorrect
/etc/bootparams file, or it may have bound to an NIS server with an out-of-date map.

Sometimes when you correct information, things still do not work. The culprit could be
caching. Solaris has a name service cached daemon, /usr/sbin/nscd, which, if running, acts as
a frontend for some databases maintained in /efc or NIS. The nscd daemon could return stale
information and also stale negative information, such as a failed lookup of an IP address in the
hosts file or map. You can re-invoke nscd with the -i option to invalidate the cache. See the
manpage for more details.

8.6.2 Checking boot parameters

The bootparamd daemon returns a fairly large bundle of values to a diskless client. In
addition to the pathnames used for root and swap filesystems, the diskless client gets the name
of its boot server and a default route. Depending on how the /etc/nsswitch.conf is set up, the
boot server takes values from a local /etc/bootparams, so ensure that local file copies match
NIS maps if they are used. Changing the map on the NIS master server will not help a diskless
client if its boot server uses only a local copy of the boot parameters file.

8.6.3 Debugging rarpd and bootparamd

You can debug boot parameter problems by enabling debugging on the boot server. Both
rarpd and bootparamd accept a debug option.

By enabling debugging in rarpd on the server, you can see what requests for what Ethernet
address the client is making, and if rarpd can map it to an IP address. You can turn on rarpd
debugging by killing it on the server and starting it again with the -d option:

# ps -eaf | grep rarpd

root 274 1 0 Apr 16 2 0:00 /usr/sbin/in.rarpd -a
root 5890 5825 0 01:02:18 pts/0 0:00 grep rarpd
# kill 274

# /usr/sbin/in.rarpd -d -a
/usr/sbin/in.rarpd: [1] device hme(O ethernetaddress 8:0:20:a0:16:63

/usr/sbin/in.rarpd:[1] device hme0 address 130.141.14.8
/usr/sbin/in.rarpd:[1] device hme0O subnet mask 255.255.255.0
/usr/sbin/in.rarpd: [5] starting rarp service on device hme0 address
8:0:20:a20:16:63

/usr/sbin/in.rarpd: [5] RARP REQUEST for 8:0:20:a0:65:8f
/usr/sbin/in.rarpd: [5] trying physical netnum 130.141.14.0 mask ffffff00
/usr/sbin/in.rarpd: [5] good lookup, maps to 130.141.14.9
/usr/sbin/in.rarpd: [5] immediate reply sent

Keep in mind that when starting a daemon with the -d option, it usually stays in the
foreground, so you won't get a shell prompt unless you explicitly place it in the background
by appending an ampersand (&) to command invocation.

The two things to look out for when debugging rarpd are:

e Does rarpd register a RARP_REQUEST? If it doesn't, this could indicate a physical
network problem, or the server is not on the same physical network as the client.
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e Can rarpd map the client's Ethernet address back to an IP address? If not, this could
indicate a bad ethers map, a bad /etc/ethers file, or an /etc/nsswitch.conf file that is not

pointing at the right place.

By enabling debug mode in bootparamd on the server, you can see the hostname, addresses,
and pathnames given to the diskless client. You can turn on bootparamd debugging by killing
it on the server and starting it again with the -d option:

# ps -eaf | grep bootparamd
root 276 1 0 Apr 16 ? 0:00 /usr/sbin/rpc.bootparamd
root 5878 5825 0 00:33:27 pts/0 0:00 grep bootparamd

# kill 276

# rpc.bootparamd -d

in debug mode.

msg 1l: group = 260 mib id = 0 length = 128

msg 2: group = 261 mib id = 0 length = 132

msg 3: group = 1025 mib id = 0 length = 36

msg 4: group = 1026 mib id = 0 length = 64

msg 5: group = 260 mib id = 20 length = 144

msg 6: group = 260 mib id = 100 length = 88

msg 7: group = 1026 mib id = 1 length = 0

msg 8: group = 1026 mib id = 2 length = 0

msg 9: group = 260 mib id = 21 length = 2464

msg 10: group = 260 mib id = 22 length = 360

mibget getmsg( ) 11 returned EOD (level 0, name 0)

interface addr =
interface mask =

22 records for

Whoami returning name = honeymoon,
file is "honeymoon" 130.141.14.8 "/export/root/honeymoon"

getfile 1:

130.141.14.8.
255.255.255.0
ipRouteEntryTable

router address 130.141.14.253

The messages that start with msg are the results of asking the IP layer for Simple Network
Management Protocol (SNMP) Management Information Base (MIB) information. The
bootparamd daemon makes this inquiry to find the IP address of the best router for the
diskless client. The messages that say group = 260 are the ones of interest for this purpose. Of
those messages, the ones with a mib_id of 0 or 20 are of interest. Normally both kinds of
messages will appear. If not, that may indicate a problem with the server's network
configuration. But if there are no problems, we can expect the debug output to show a router
address for the client.

The getfile 1 message is simply reporting that it knows where the client's root filesystem is.
Note the IP address is the same as the server's interface, which means that the NFS server for
the client is the same as the bootparamd server.

If the server shows strange boot parameters passed to the client, check that the server's
/etc/bootparams file is correct, and that the boot server's NIS server has up-to-date maps.

If the boot parameters received by the client are incorrect, check that the server answering the
request for them has current information. Because requests are broadcast to bootparamd, the
server that can reply in the shortest time supplies the information. If the client refuses to boot
at all, complaining of:

null domain name
invalid domain name
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invalid boot parameters

or similar problems, verify that the host answering its broadcasts is using the same boot
protocol and configuration files. See Section 15.3 for an example of invalid boot parameters.

Also ensure that the boot server exports the client's root and swap filesystems with the proper
root mapping and access restrictions. In /etc/dfs/dfstab, both the root and swap filesystems
should have the options:

rw=client, root=client

to limit access to the diskless client and to allow the superuser to write to the filesystems. If
the swap filesystem is not exported so that root can write to it, the diskless client will not be
able to start the init process to begin the single-user boot.

8.6.4 Missing /usr

After setting the host and domain names and configuring network interfaces in the boot
process, a machine mounts its /usr filesystem. If there are problems with /usr, the boot
process either hangs or fails at the first reference to the /usr filesystem. The two most
common problems are not being able to locate the NFS server for /usr and attempting to
mount the wrong /usr.

NIS cannot be started until after /usr is mounted, since client-side daemons like ypbind live in
/usr. Generally, /usr is mounted from the boot server, so a diskless client needs its own name
and its server's hostname in its /etc/hosts. If /usr is not mounted from the root/swap filesystem
server, the /usr server's hostname must appear in the local hosts file as well. You may need as
many as four different entries in the "runt" /etc/hosts file on a diskless client: its hostname, a
localhost entry, the boot server's name, and the name of the /usr server.

Heterogeneous client/server environments create another set of problems. Clients of different
architectures need their own /usr filesystems with executables built for the client's CPU, not
the server's. The most obvious problem is when the client mounts the wrong /usr. If the
executables on it were built for a different CPU, then the first attempt to invoke one of them
produces a fairly descriptive error. However, if the /usr/platform directory is for the correct
CPU architecture but doesn't contain the right kernel architecture (for example, Sun's sun4u
and sun4m variants), then the client boots, but certain Unix utilities will not work. Processes
that read the kernel or user address spaces, such as crash, are the most likely to break.

If you suspect that you're mounting the wrong /usr, first check the client's /etc/vfstab file to
see where it gets /usr :

wahoo: /export/root/honeymoon -/ nfs - - rw
wahoo: /export/swap/honeymoon - /dev/swap nfs - - -
wahoo:/export/exec/Solaris 2.7 sparc.all/usr - /usr nfs - - ro

In this example, we would check /export/exec/Solaris 2.7 sparc.all/usr on the server wahoo.
The directories in /export/exec have names with this format:
Solaris <release> <architecture>. 1If the client and the server are of the same CPU
architecture and are running the same release of the operating system, the usr subdirectory in
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/export/exec/Solaris_<release> <architecture> 1is a symbolic link to the server's /usr
directory.

If the client and server do not have the same release and CPU architectures, the directories in
/export/exec contain complete operating system releases.

Three things can go wrong with this link-and-directory scheme:

o The links /export/exec/*/usr point to the wrong place. This is possible if you changed
the architecture of the server but restored /export from a backup tape. Make sure that
Solaris 2.7 sparc.all/usr links point to /usr only if the server is a SPARC running
Solaris 7. You'll get "exec format" errors if you mount a /usr of the wrong architecture
on the client.

e The /export/exec/* directories referenced by the clients don't exist. This is possible if
you added a client of a new, different CPU architecture but did not install the
appropriate operating system software for it. If you try to mount a directory that
doesn't exist, you should see "cannot mount root" errors on the client.

e The client may have the wrong mount point listed in its /etc/vfstab file. If you did not
specify the architecture of the client correctly when using the AdminSuite software,
the client's vfstab file is likely to contain the wrong mount information.

If you are unsure of how a mount and link combination will work, experiment on another
diskless  client  having  the same architecture. For  example, @ mount
/export/exec/Solaris_2.7 sparc.all/usr on /mnt, and then try a sample command to be sure
you've mounted the right one:

client# mount wahoo:/export/exec/Solaris 2.7 _sparc.all/usr /mnt
client# ed /var
client# /mnt/bin/ls

411ib dict krb5 oasys sbin ucblib
S5bin dist kvm old share vmsys
X dt 1lib openwin snadm xpg4
adm games lost+found platform spool

aset include mail preserve src

bin Java man proc tmp

ccs Javal.l net pub ucb

demo kernel news sadm ucbinclude

If commands are executed properly, then you should be able to mount /usr safely on the
diskless client in question.

8.7 Configuration options

Adding disks to local clients opens two configuration options. You can use the local disk for
swap space, or you can build an entire bootable system on it and put the root and swap
filesystems on the local disk. This latter configuration is called a dataless client, and makes
sense if the client does not need most of the local disk for a very large swap space. If the
client has a large swap partition and uses it frequently, adding a local disk may improve
performance by reducing the client's traffic to its boot server. In other instances, the local disk
provides private storage for sensitive files.
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Dataless clients contain no user or data files on their local disks. Everything on the local disk
can be reconstructed from operating system release tapes or from system installation scripts.
The local disks are used for the root and swap filesystems, while /usr and all other filesystems
are NFS-mounted. The dataless architecture provides some performance advantages from
both the client and server perspective, particularly when the client has a large swap space.

A significant portion — usually more than 50% and sometimes 90% — of a diskless client's
network traffic is caused by reading and writing the root and swap filesystems. Clients with
local disks place less of a load on the network and on the boot server by sending their swap
traffic to this disk.

8.7.1 Dataless clients

You may choose to use the dataless client configuration if you have to support a few
machines of a new client architecture and would have to carve the disk space out of the
server's /export partition. Adding a local disk keeps the server configuration simple and puts
all files specific to the new client architecture on the local disks.

The best network architecture for dataless clients is one in which desktop machines run
application sets with large, randomly accessed virtual address spaces. If the machine has a
reasonably high level of paging activity, depending on the speed of the network and capacity
of the NFS servers, using a local disk improves performance. Dataless clients may appear to
be more expensive per seat than diskless clients, since the diskless machines get root and
swap space at "bulk" prices from the server. On the other hand, in a pure diskless client
environment, you must purchase additional disk space to hold the clients' root and swap
filesystems. If you allocate some portion of the server's cost as the cost of replacing local
disks, the dataless and diskless architectures have much less of a price differential. Be careful
when analyzing client/server cost projections. You'll get the fairest numbers when you
compare the total cost of the desktop workstation, any local disk, and the desktop's share of
the cost of servers providing root, swap, and user filesystems.

When you do add local disks, it's important to choose your disk size carefully. If larger local
disks are attached to dataless clients, they become inviting homes for user files that may not
be backed up regularly. If you plan to configure dataless clients, use the smallest disk possible
to contain the root and swap filesystems, with enough room on the local disk's root partition
to contain a very large /var directory. Applications that use enough virtual memory to justify a
local disk probably create huge temporary files on /var/tmp as well.

Management of dataless nodes is slightly more complex than that of diskless nodes. Even
though the local disks contain no user files or tools, they may still have host-specific
configuration information in the /efc directory, such as software password files. Use care
when modifying the private parts of a dataless node so that the entire node can be recreated
from a boot tape or archive tape if the local disk must be replaced. You will probably want to
create a script that creates spool directories, copies printer configuration files, and creates
NFS mount points on the client; you can use this script on dataless or new diskless clients as
well. If possible, mount the dataless client spool directories from an NFS server so that the
dataless client's disk contains no host-specific information. Ideally, you should not have to do
backups of a dataless client.

148



Managing NFS and NIS

After Solaris 2.5.1, the AdminSuite product stopped supporting the dataless configuration
option. This is a bit of an inconvenience to you, but it is surmountable. Consider that a
dataless client is like a disk-full client except that /usr is mounted from an NFS server instead
of from a local disk. The steps for doing this are:

1. Install the operating system on a disk-full client. If possible (depending on how many
disks you have and how big they are), install all the software without specify a /usr
partition. If you have to, specify a separate /var partition if that is what it takes to
prevent a /usr partition from being created. It's OK to have the /usr partition created,
but once you mount /usr from the NFS server, the question then is what do you do
with the redundant local disk space? You can always mount it as another partition, say
/spare, and have it around for future additional needs such as more swap, or more /var
space.

2. Edit /etc/vfstab on the client to mount /usr from an NFS server that has been set up for
diskless client support. If there was an entry for /usr in /etc/vfstab, comment it out. For
example you might comment out /usr 's vfstab:

# /dev/dsk/c0t0d0s6 /dev/rdsk/c0t0d0s6 /usr ufs 1 no
and add:

wahoo:/export/exec/Solaris 2.7 sparc.all/usr - /usr nfs - -
ro

3. Edit /etc/hosts and add the IP address of the NFS server. Both dataless and diskless
clients require this, because while the system is booting, without /usr available, the
software needed to access NIS or DNS won't be around, so /etc/hosts is needed to
resolve the name of the NFS server to an IP address:

130.141.14.2 wahoo

4. Test this by rebooting the client. If you run into any problems, you can always shut the
system down, and boot the system as single user.

There is a drawback to this scheme. Applying some patches and packages will be less
straightforward, because patches and packages can contain both /usr and root files, but the
dataless client's /usr partition won't be writable by the utilities used to add patches and
packages. The workaround for this is very dependent on the patch and packaging scheme used
by the operating system. In case of Solaris, the patchadd utility has a -R pathname option,
which is normally used to apply patches to a diskless client's root partitions. In that case,
patchadd is run on the NFS server. In the case of a dataless client, you would invoke
patchadd as:

client # patchadd -R / -M . 107460-03

For a package that contains both root and /usr files, you could invoke the Solaris pkgadd
command to install the package in a temporary place, and then copy the non-usr files to the
dataless client's root:

client # mkdir /tmp/scratch
client # pkgadd -d . -R /tmp/scratch SUNWxxxx
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client # ed /tmp/scratch
client # rm -rf usr
client # find . -print | cpio -dump /

8.7.2 Swapping on a local disk

In this configuration option, the client's root and /usr filesystems are NFS-mounted, but swap
is from a local disk. The AdminSuite software doesn't provide an option for diskless client
accessing local swap, but again it is surmountable. The steps are:

1. If not already done, add the diskless client to the boot server via the AdminSuite
software. Go ahead and define a swap partition on the server so that you don't run the
risk of confusing the AdminSuite software.

2. Boot the client from the boot server.

Identify and create the swap partition from the local disk. In Solaris, the easiest way to

this is via the format command. When you invoke the format command, it will display

the list of disks attached to the client. You then select one of the local disks and then
use the "partition" command from inside format to find an existing partition and resize
it, or create a partition with the desired size.

4. Edit /etc/vfstab on the client to mount swap from the partition you identified in the
previous step. For example you might change the two NFS-related swap vfstab entries

(98]

from:

wahoo: /export/swap/honeymoon - /dev/swap nfs - - -
/dev/swap - - swap - - -
to:

/dev/dsk/c0t0d0s7 - - swap - no -

5. Reboot the client via diskless boot.
In general, the swap partition should cover most, if not all, of the local disk.

Of course, if you followed the example in Section 8.4, then you know you ought to be able to
switch from NFS swap to local swap without a client reboot. This is only possible if the local
swap partition is at least as big as the NFS-mounted swap file. Instead of rebooting the client
in step 5, you would do:

honeymoon# swap -a /dev/dsk/c0t0d0s7
honeymoon# swap -d /dev/swap

8.8 Brief introduction to JumpStart administration

Diskless NFS was conceived in the mid-1980s during a time when disks for desktops were
bulky, small in capacity, and expensive. Much has changed since then. Because so much disk
space comes with desktop systems today, you may want to utilize it, despite most of the
advantages of diskless operation. One advantage of diskless—ease of administration—is still
quite critical. If you decide that aside from ease of administration, you'd prefer to have your
clients be disk-full or even dataless, you can still leverage the inherent diskless support in
your desktops to centralize many administration tasks, including:
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o Upgrading and patching the desktop operating systems
e Modifying configuration files

Consider that you can install the operating system on your desktop's local disk by booting
from the network interface instead of a disk, i.e., a netinstall. On a SPARC system, at the boot
prompt you would do:

ok boot net - install

Solaris NFS servers have a feature known as JumpStart installation that lets you customize
the configuration of your desktops. The difference between JumpStart-driven configuration
and diskless driver configuration is that with the former, the onus is on the user to shut down
and boot the desktop over the network to let JumpStart configuration take effect. With
diskless configuration, the system administrator can make changes on the server and have the
changes take immediate effect. However, as discussed earlier in this chapter, often such
changes on the NFS server have to be coordinated with the desktop user. Thus, you can argue
that in terms of ease of administration, there's no qualitative difference between JumpStart
and diskless operation.

It is beyond the scope of this book to describe the JumpStart feature in detail. The Solaris
documentation and the book Automating Solaris Installations, by Paul Anthony Kasper and
Alan L. McClellan (Prentice Hall PTR/Sun Microsystems Press, 1995), are extensive
treatments of the subject. Once you've grasped the theory of JumpStart installation, of
particular interest will be the section "Bypassing the Installation Software" in Chapter 10 of
Kasper's and McClellan's book. This section describes how you can use "begin" and "finish"
scripts to modify the state of a system, without being forced to reinstall the operating system.
Thus configuration tasks can be done quickly and efficiently, with no unnecessary user
interaction.

8.9 Client/server ratios

The number of clients that can be supported from a single server depends on many variables:
the type of work done on each client, the type of disks and network interfaces on the server,
the number of clients on the network, and the configuration of the clients. Diskless clients
used in a software engineering shop do not have the same server requirements as diskless
machines used to run the documentation group. Similarly, when dozens of diskless clients are
put onto the same physical network, the network itself becomes a bottleneck before the server
does. Instead of adopting a somewhat arbitrary client-server ratio, use the following steps to
calculate a rough client-server distribution:

1. Set up a diskless or dataless client on a network with its own server. Put home
directories, applications, tools, and other NFS-mounted filesystems on another server,
so that the server under test does nothing but handle root and swap filesystem requests
from the client. Use only one client for this test so that the server does not become a
bottleneck: you want to measure the load imposed by a single client in an
unconstrained environment.

2. Run a normal workload on the client, using scripts or a live user to produce a typical
traffic pattern. On the server, measure the average traffic generated (over the course of
several hours) and also try to measure the peak request rates produced by the client.
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Use the nfsstat utility on the server to determine the number of NFS requests per
second that the server handles. nfsstat is described in more detail in Chapter 14.

3. Repeat the first two steps for each "type" of client or user: diskless client, dataless
client, development engineer, testing/quality assurance lab, documentation writer, and
so on. Blend these figures together based on the percentage of each client type to
determine the average NFS load imposed by all of the clients.

4. Tune and benchmark the server using the methodologies described in Chapter 17. The
benchmarks should produce an expected upper bound on the number of NFS
operations that the server can provide.

5. Divide the server's capacity by the weighted average of the client request rates to
determine a coarse client-server ratio. Conversely, you can multiply the weighted
number of NFS operations performed by each client by the number of clients to set a
goal for the server tuning process.

The ratio produced in this manner should be used as a coarse estimate only. The client-server
ratio will be overstated because each diskless client server may handle other responsibilities,
such as serving other NFS filesystems or driving printers. It may also be understated, because
it is rare to find an environment in which the average load produced by N hosts is N times the
load produced by a single host. Desktop users simply aren't that synchronized. We'll take
closer looks at server and client tuning, NFS benchmarking, and performance optimization in
later chapters.
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Chapter 9. The Automounter

The automounter is a tool that automatically mounts NFS filesystems when they are
referenced and unmounts them when they are no longer needed. It applies NIS management to
NFS configuration files so that you can edit a single NIS map and have it affect client mount
information throughout the network. Using the automounter, you don't have to keep
/etc/vfstab files up-to-date by hand.” Mount information, including the server's name,
filesystem pathname on the server, local mount point and mount options, is contained in
automounter maps, which are usually maintained in NIS maps.

"I The automounter is included in Solaris, Compaq's Tru64 Unix, SGI's IRIX, IBM's AIX, and other commercial Unix operating systems. A public
domain version called amd is available on http://www.cs.columbia.edu/~ezk/am-utils/ and amd runs on almost any Unix system. Because it is kernel-
and server-independent, the amd automounter is easily migrated to other NFS client platforms.

Why would you want to bother with another administrative tool? What's wrong with putting
all of the remote filesystem information in each hosts' /etc/vfstab file? There are many
motivations for using the automounter:

o Jetc/vfstab files on every host become much less complex as the automounter handles
the common entries in this file.

e The automounter maps may be maintained using NIS, streamlining the administration
of mount tables for all hosts in the network the same way NIS streamlines user
account information.

e Your exposure to hanging a process when an NFS server crashes is greatly reduced.
The automounter unmounts all filesystems that are not in use, removing dependencies
on fileservers that are not currently referenced by the client.

e The automounter extends the basic NFS mount protocol to find the "nearest server" for
replicated, read-only filesystems. The NFS server that is closest to the client — going
through the fewest number of bridges and routers — will handle the mount request.
Distributing client load in this manner reduces the load on the more heavily used
network hardware.

In a large and dynamic NFS environment, it is difficult to keep the vfstab file on each
machine up-to-date. Doing so requires creating mount points and usually hand-editing
configuration files; automatic distribution of vfstab files is made difficult by the large number
of host-specific entries in each. As you add new software packages or filesystems on the
network, you usually have to edit every vfstab file. Using the automounter, you change one
NIS map and allow the automounter to provide the new mount point information on all NIS
clients.

Adding NFS servers is usually accompanied by a juggling of directories. It is likely that every
client will be required to mount filesystems from the new server. As new NFS servers add
filesystems to the network, the clients develop new dependencies on these servers, and their
vfstab files grow in complexity.

Users cannot simply mount filesystems at their whim without root privileges. The
automounter handles this problem by performing the mount as the filesystems are referenced,
which is usually the point at which users decide they need to perform the mount themselves.
Some users request that their machines mount only those filesystems of interest to them to
eliminate the possibility that their machines will hang if a server containing "uninteresting"
files hangs. The automounter eliminates dependencies on these unrelated NFS servers by
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imposing a working-set notion on the set of mounted filesystems. When a filesystem is first
referenced, the automounter mounts it at the appropriate place in the local filesystem. After
several minutes (ten by default), the automounter attempts to unmount all filesystems that it
previously mounted. If the filesystem is quiescent, and therefore probably uninteresting to the
client, then the automounter's umount( ) system call succeeds, and the client is relieved of the
server dependency. If the filesystem is busy, the automounter ignores the error returned by
umount( ).

Using the automounter also adds another level of transparency to the network. Once a client's
/etc/vfstab file is created, the client has a static idea of where each remote filesystem is
located. It becomes difficult for the system administrator to move tools, users, or any other
directory without going to each host and changing the /etc/vfstab files to reflect the change.
The automounter makes the location of NFS filesystems even more transparent to NFS clients
by removing hardcoded server names and pathnames from the clients' /etc/vfstab files.

Placing NFS filesystems in automounter maps greatly simplifies the administrative overhead
of adding or reconfiguring NFS servers. Because the maps may be maintained using NIS, a
single file is propagated to all NFS clients. Editing the individual /etc/vfstab files is not
required. The automounter is also conducive to simpler mounting schemes. For example,
mounting 50 directories of tools and utilities under /fools produces an unwieldy vfstab file. In
addition, the fools mount point becomes a bottleneck, since any directory stat(' ) or getwd( )
call that touches it also touches all NFS servers with filesystems mounted in /fools. More
frequently, tools and utilities are mounted haphazardly, creating administrative problems.
Simply remembering where things are is difficult, as users become confused by irregular
naming schemes.

Managing /fools with the automounter offers several advantages. All of the individual mount
points are replaced by a single map that creates the appropriate mount points as needed. The
automounter mount point contains only the handful of entries corresponding to the working
set of tools that the user employs at any one time. It's also much simpler to add a new tool:
instead of having to create the mount point and edit /etc/vfstab on every host in the network,
you simply update the NIS-managed automounter map.

Finally, the automounter looks for a filesystem on one of several servers. Manual pages, read-
only libraries, and other replicated filesystems will be mounted from the first server in a set to
respond to the mount request. In addition to providing a simple load-balancing scheme similar
to that of NIS, the automounter removes single-host dependencies that would make a diskless
or dataless workstation unusable in the event of a server crash.

9.1 Automounter maps

The behavior of the automounter is governed by its maps. An indirect map is useful when you
are mounting several filesystems with common pathname prefixes (as seen on the clients, not
necessarily on the servers). A good example is the /fools directory described previously,
although home directories also fit the indirect map model well. A direct map is used for
irregularly named filesystems, where each mount point does not have a common prefix with
other mount points. Some good examples of mounts requiring direct maps are /usr/local and
/usr/man.
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Direct and indirect maps vary in how the automounter emulates the underlying mount point.
For a direct map, the automounter looks like a symbolic link at each mount point in the map.
With an indirect map, the automounter emulates a directory of symbolic links, where the
directory is the common pathname prefix shared by all of the automounter-managed mount
points. This is confusing and is best explained by the examples that follow.

The master map is a meta-map (a map describing other maps). It contains a list of indirect
maps and direct mount points and tells the automounter where to look for all of its map
information. We'll look at a typical master map after seeing how the indirect and direct maps
are used to mount NFS filesystems.

9.1.1 Indirect maps

Indirect maps are the simplest and most useful automounter convention. They correspond
directly to regularly named filesystems, such as home directories, desktop tools, and system
utility software. While tools directories may not be consistently named across fileservers, for
example, you can use NFS mounts to make them appear consistent on a client machine. The
automounter replaces all of the /etc/vfstab entries that would be required to effect this naming
scheme on the clients.

Each indirect map has a directory associated with it that is specified on the command line or
in the master map (see Section 9.2.1 later in this chapter). The map itself contains a key,
which is the name of the mount point in the directory, optional NFS mount options, and the
server:pathname pair identifying the source of the filesystem. Automounter maps are usually
named auto contents, where contents describes the map. The map name does not have to
correspond to its mount point — it can be anything that indicates the map's function. Maps are
placed in /etc or maintained via NIS.

The best way to understand how an indirect map works is to look at an example. We'll look at
an automounter map and equivalent vfstab file for a directory structure like this:

/tools/deskset
/tools/sting
/tools/news
/tools/bugview

Here is an indirect automounter map for the /fools directory, called auto_tools:

deskset -ro mahimahi:/tools2/deskset
sting mahimahi:/tools2/sting
news thud:/tools3/news
bugview jetstar:/usr/bugview

The first field is called the map key and is the final component of the mount point. The map
name suffix and the mount point do not have to share the same name, but adopting this
convention makes it easy to associate map names and mount points. This four-entry map is
functionally equivalent to the /etc/vfstab excerpt:

mahimahi:/tools2/desket - /tools/deskset nfs - - ro
mahimahi:/tools2/string - /tools/sting nfs - -
thud:/tools3/news - /tools/news nfs - -
jetstar:/usr/bugview - /tools/bugview nfs - -
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Notice that the server-side mount points have no common pathname prefixes, but that the
client's vfstab and automounter map establish a regularly named view of filesystems.

There are basically two kinds of automounters: older ones that use symbolic links and newer
ones that don't. Using the auto _tools map, older implementations of the automounter emulate
tools in a directory of symbolic links. When any process on the client makes a reference to
something in /fools, the automounter completes the appropriate NFS mount and makes a
symbolic link in /tools pointing to the actual mount point for the filesystem. Suppose you go
to execute /fools/news/bin/rn. Using the automounter effectively breaks this pathname up into
three components:

e The prefix /fools picks an automounter map. (We will see in the section Section 9.2.1
just how /fools refers to the auto tools map.) In this case, the map for the /fools
directory is the auto tools map.

e The next pathname component is the key within this map. news selects the server
filesystem thud./tools3/news ; the automounter mounts this filesystem and makes a
link to it in /fools on the client.

e The remainder of the path, bin/rn, is passed to the NFS server thud since it is relative
to the directory from which the news toolset is mounted.

Keep in mind that this list applies to older automounters that use symbolic link map entries to
NFS mount points. There are problems with using symbolic links, and newer automounters
solve them. The newer automounters don't use symbolic links and effectively put the NFS
mounts "in place." The next section will explain in more detail.

Note that the automounter map doesn't contain any information about the /tools directory
itself, only about the subdirectories in it that are used for mount points. This makes it
extremely easy to relocate a set of mount points — you simply change the master map that
associates the directory /fools with the map auto tools. We'll come back to the master map
later on.

9.1.2 Inside the automounter

At this point, it's useful to take a look under the hood of the automounter. This background
makes the operation of indirect maps a little clearer and will make direct maps much easier to
understand.

As mentioned before, automounter implementations come in two designs. The first one is a
purely user-level approach that relies heavily on symbolic links. The second is a hybrid user-
level and kernel-level approach called the autofs automounter, which eschews symbolic links.

9.1.2.1 User-level automounters

The original automounters were strictly user-level daemons that required no support in the
kernel. SunOS 4.x automounters were all user-level, as were the automounters in Solaris 2.0
through Solaris 2.3. As many automounters were derived from SunOS 4.x or Solaris code,
you'll find that several non-Solaris implementations are still user-level.

Before walking through the sequence of automounter operations in detail, some knowledge of
mount information is necessary. The mount( ) system call takes the filesystem type (ufs, nfs,
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hsfs, etc.) and mount point from the /etc/vfstab table, and a packet of parameters that are type-
specific. For NFS mounts, the argument vector passed to mount( ) includes the server's
hostname and a socket address (IP host address and port number pair) to be used for sending
requests to that server. For normal NFS mounts, the remote server's hostname and IP address
are used, and the IP port number is the well-known NFS port number 2049. The kernel uses
this information to put together an RPC client handle for calling the remote NFS server.

User-level automounters capitalize on this architecture by creating a set of mount arguments
that points to itself, a process on the local host, with a different port number than 2049. In
effect, a system running the automounter has mounted a daemon on each mount point, instead
of a remote filesystem. NFS requests for these mount points are intercepted by the
automounter, since it appears to be a regular, remote NFS server to the kernel. No kernel
modifications are necessary to run the automounter, and the automounter's functions are
transparent to user processes.

We'll take a look at how the user-level automounter works using the indirect auto_tools map
discussed earlier. The NFS client host is named wahoo. From boot time, the complete
sequence of events is:

1. The user-level automounter advertises the /fools mount point in /etc/mnttab, making it
look like any other NFS-mounted filesystem except for the more verbose information
about the server's IP address and port:

/etc/mnttab excerpt

thud:/export/home/thud /tmp mnt/home/thud nfs rw,dev=218980f
929944999

wahoo: (pidl6l) /tools nfs ro,ignore, map=/etc/auto_
tools, indirect,dev=2180009 920935886

The first mnttab entry is for a normal NFS mount point listed in the vfstab file. The
second is for an indirect map and was added when the automounter was started.
Instead of a server:directory pair, the automounter entry contains its process ID and
the local host's name. The device numbers for NFS-mounted filesystems are simply
unique values assigned by the kernel on each mount operation. This entry is added to
mnttab when the automounter starts up and reads its maps.

2. A user goes to execute /tools/news/bin/rn. The kernel performs a lookup of the
executable's pathname and finds that the tools component is a mount point. An NFS
lookup request for the next component, news, is sent to the listed process — the
automounter — via a loopback RPC mechanism.

3. The user-level automounter emulates a directory of symbolic links under the indirect
map mount point. The lookup request on the news component is received by the
automounter daemon, and it returns information identical to that received when
performing a lookup on a symbolic link on a remote NFS server. The automounter
looks up the appropriate filesystem in /etc/auto _tools and mounts it in its staging area,
/tmp_mnt. This operation uses the mount(' ) system call, which places a new entry in
the mnttab file.

4. Now that the automounted filesystem has been referenced, the user-level automounter
adds a symbolic link to its emulated directory. The new link in /fools points to the
newly mounted filesystem. The equivalent command-line operations are:

157



Managing NFS and NIS

# mount thud:/tools3/news /tmp mnt/tools/news
# ln -s /tmp_mnt/tools/news /tools/news

5. The client-side process receives the reply from its lookup request and goes to read the
link. This time, the automounter returns the contents of the symbolic link, which
points to the automounter staging area. Note that the automounter fabricates a
response to the client's readlink request; it looks like there's a symbolic link on the
disk but it's really an artifact of the automounter. The client process follows the link's
target pathname to the appropriate subdirectory of /tmp mnt.

6. The client process can now trace every pathname in /tools/news to a subdirectory of
/tmp_mnt/tools/news, through the new entry in /etc/mnttab and the symbolic link
emulation provided by the automounter. A client process pathname lookup finds /fools
in the mount table and sends its query to the automounter. The automounter's link
points to /tmp _mnt/news, which is also listed in the mount table. To the client, the
automounter looks exactly like a directory and a symbolic link.

If this seems to be a convoluted mechanism for mounting a single filesystem, it is. However,
this approach is taken to minimize the number of NFS mounts performed and to thereby
improve performance by keeping /etc/mnttab as small as possible. When you mount several
subdirectories of the same remote filesystem, only one NFS mount is required. The various
subdirectories of this common mount point are referenced by symbolic links, not by
individual mounts. In the sample indirect map earlier, mahimahi:/tools2 contains several
utilities. /fools2 will be mounted on the NFS client when the first utility in it is referenced, and
references to other subdirectories of /fools2 simply contain links back to the existing mount in
/tmp_mnt.

The staging area /tmp _mnt is a key to the indirect map mechanism. If the staging area concept
is eliminated, then the indirect map mount point becomes another directory filled with direct
mounts. The primary advantage of indirect maps is that they allow the mount points in a
directory to be managed independently — the mounts occur when a process references the
mount point, and not the parent directory itself. We'll look at some problems with direct
mounts shortly.

As a result of linking /fools to the actual NFS mount point, a user would encounter the
following:

o

cd /tools/bin
% /usr/bin/pwd
/tmp_mnt/tools/bin

In other words, instead of pwd displaying /tools/bin, it gets /tmp mnt/tools/bin. This behavior
breaks lots of software. For example, a program might record the current working directory,
and cache it in a file. A subsequent invocation of the program might read the cache, and
attempt to access /tmp_mnt/tools/bin, and find that it isn't there. This is because a user-level
automounter responds to attempts to access /fools, not /tmp_mnt/tools. For the remainder of
this chapter, we will refer to this issue as the "pwd problem."

There are other side-effects of the user-level automounter that may catch the user off-guard.
The automounter creates and controls the indirect map mount point. It emulates the entire
directory, so that no user, even the superuser, can create entries in it. This has an important
implication for creating indirect maps: they cannot be mounted over an existing directory,
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because the automounter hides the underlying files. If a directory must contain a mixture of
automounter mount points and "normal" directory entries, a direct map must be used.

This is an important but subtle point: when you poke at a user-level automounter mount point
with /s, it appears that there is a directory filled with symbolic links. In reality, this directory
and the links in it do not exist on any disk. If this hurts to think about, it's really no different
than the way NFS itself works: there may be no filesystem called /fools/news on your local
disk, but NFS makes it look like it's there. The user-level automounter speaks to the NFS
protocol, allowing it to fabricate replies to NFS RPC calls that are indistinguishable from the
real thing.

Because the user-level automounter controls the contents of a readdir NFS RPC reply, Is
behaves strangely. The user-level automounter displays only currently mounted links in the
directory it emulates. If no reference is made to a subdirectory of the indirect map directory, it
appears empty:

o

cd /tools

1s

1ls /tools/news

bin 1lib spool

% cd /tools

% 1s -1

total 1

lrwxrwxrwx 1 root 19 Aug 31 12:59 news -> /tmp mnt/tools/news

o

o

Why not display potential mounts as well? Doing so could result in a great deal of unintended
mounting activity — a mount storm — when Is -/ is executed in this directory. A newer
automounter described in the next section allows you to browse potential mounts, as well as
fix the pwd problem described earlier. Another approach is to use hierarchical mounts, as
described later in this chapter.

9.1.2.2 The autofs automounter

The pwd problem described in the previous section was solved in Solaris 2.4 with the
introduction of a hybrid user-level and kernel-level automounter, which retained a user-level
automounter daemon, but introduced a new filesystem known as autofs. The autofs filesystem
is a pseudo-filesystem that allows you to mount automounter points like /fools/news as
directory objects directly underneath /zools, instead of as symbolic links. The automounter
daemon is no longer an NFS server, but instead responds to requests from the in-kernel autofs
filesystem to mount NFS filesystems on the mount points that autofs creates.

Let's take a look at how adding autofs changes how the automounter works using the example
of the indirect auto_tools map. The NFS client host is still named wahoo. From boot time, the
complete sequence of events is:

1. The autofs automounter advertises the /fools mount point in /etc/mnttab, making it
look like any other NFS-mounted filesystem except for the more verbose information
about the server's IP address and port:

/etc/mnttab excerpt

thud:/export/home/thud /home/thud nfs nosuid,dev=218980f 929944999
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auto tools /tools autofs
ignore, indirect, nosuid, dev=2b40002 922482272

The first mnttab entry is for a normal NFS mount point listed in the vfstab file. Note
that the mount point is /home/thud and not /tmp mnt/home/thud. The second is for an
indirect map and was added when the automounter was started. Instead of a process ID
and the local host's name, the entry simply has the map name and a filesystem type of
autofs. The device numbers for aufofs-mounted filesystems are assigned by the kernel
on each mount operation. This entry is added to mnttab when the automounter starts
up and reads its maps.

2. A user goes to execute /tools/news/bin/rn. The kernel performs a lookup of the
executable's pathname, and finds that the fools component is a mount point. The
kernel invokes the lookup entry point of the autofs filesystem request for tools. The
kernel then proceeds to the next component in the pathname, news, and again invokes
the lookup entry point of autofs. The autofs filesystem sends a request to the
automounter daemon (automountd ) — via a loopback RPC mechanism — to mount
news.

3. The automounter daemon receives the request from autofs. The request includes the
name of the map (auto_tools), the entry in the map autofs is interested in (news), and
the mount point the client wants to mount news onto (/tools/news). The automounter
daemon examines the fools indirect map looking for the entry:

news thud:/tools3/news

The automounter daemon checks if /fools/news exists, and if not, creates the news
directory under /tools. Because /tools is an autofs filesystem, the result of the mkdir( )
system call from the daemon is a call to the mkdir entry point in the autofs filesystem.

The automounter daemon then determines that the news map entry is to be satisfied by
NFS, and so does the equivalent of:

# mount -F nfs thud:/tools3 /tools/news

The results of the mount are returned — again, via a loopback RPC mechanism — to
autofs.

4. The autofs filesystem receives the reply from the automounter daemon, and now the
kernel can proceed with the next components in the pathname, bin and rn. Because the
automounter daemon mounted an NFS filesystem onto /fools/news, the automounter is
not involved in the processing of bin and rn.

As with the user-level automounter, the original autofs automounter didn't display potential
mounts of indirect maps like auto fools. The next section describes an enhanced autofs
automounter that supports the ability to browse the potential mounts under a mount point such
as /tools.
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9.1.2.3 The enhanced autofs automounter: Browsing indirect maps

In Solaris 2.6, the autofs automounter was modified so that displaying directories of the
mount points of indirect maps shows every entry; in other words, it allows a user to browse
the map:

% ed /tools
$ 1ls -1

total 4

dr-xr-xr-x
dr-xr-xr-x
dr-xr—-xr-x
dr-xr-xr-x

root root 19 Aug 31 12:59 bugview
root root 19 Aug 31 12:59 deskset
root root 19 Aug 31 12:59 news
root root 19 Aug 31 12:59 sting

I

When the readdir entry point in the autofs filesystem is called on /tools for the first time,
there are no autofs directories underneath it, and so, autofs makes an RPC call to the
automounter daemon to read the auto _tools map to return the list of map entries. The map
entries are used to construct a directory listing for the /s command. Note that the attributes of
the directories are faked. This is because we want to avoid mount storms, as described in
Section 9.1.2.1.

Now see what happens we start to populate /fools with real entries:

% 1ls /tools/news

bin lib spool

% cd /tools

s 1ls -1

total 1

dr-xr-xr-x 1 root root 19 Aug 31 12:59 bugview
dr-xr-xr-x 1 root root 19 Aug 31 12:59 deskset
drwxrwxr-x 5 root other 512 Jun 10 17:03 news
dr-xr-xr-x 1 root root 19 Aug 31 12:59 sting

Invoking the /s command on /tools/news causes /tools/news to be NFS-mounted from
thud:/tools3/news. When the readdir entry point in the autofs filesystem is called on /fools for
the second time, there is now an NFS directory, news, underneath it. Thus, autofs combines
the list of map entries with the list of NFS-mounted directories.

By default, indirect maps can be browsed, but browsing can be turned off with the -nobrowse
option to an indirect map.

9.1.3 Direct maps

Direct maps define point-specific, nonuniform mount points. The best example of the need for
a direct map entry is /usr/man. The /usr directory contains numerous other entries, so it cannot
be an indirect mount point. Building an indirect map for /usr/man that uses /usr as a mount
point will "cover up" /usr/bin and /usr/etc. A direct map allows the automounter to complete
mounts on a single directory entry.

The key in a direct map is a full pathname, instead of the last component found in the indirect

map. Direct maps also follow the /etc/auto contents naming scheme. Here is a sample
/etc/auto_direct:
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/usr/man wahoo:/usr/share/man
/usr/local/bin mahimahi:/usr/local/bin.sun4

The automounter registers the entire direct mount point pathname in the mnttab file, instead of
the parent directory of all of the mount points:

auto_direct /usr/local/bin autofs ignore,direct,intr,ro,dev=2cc000a
933723158

The mnttab entry's map type is listed as direct. Operation of the automounter on a direct
mount point is similar to the handling of an indirect mount. The autofs automounter is passed
the entire direct mount point pathname in the RPC from aufofs, since the mount point is the
key in the map. See Table 9-1 for automounter map entry formats.

A major difference in behavior is that the real direct mount points are always visible to /s and
other tools that read directory structures. The automounter treats direct mounts as individual
directory entries, not as a complete directory, so the automounter gets queried whenever the
directory containing the mount point is read. Client performance is affected in a marked
fashion if direct mount points are used in several well-traveled directories. When a user reads
a directory containing a number of direct mounts, the automounter initiates a flurry of
mounting activity in response to the directory read requests. Section 9.5.3 describes a trick
that lets you use indirect maps instead of direct maps. By using this trick, you can avoid
mount storms caused by multiple direct mount points.

Table 9-1. Automounter map entry formats

Key Mount options Server:directory pair
indirect map: deskset mahimahi:/tools2/deskset
direct map: /usr/man -ro thud:/usr/man

9.2 Invocation and the master map

Now that we've seen how the automounter manages NFS mount information in various maps,
we'll look at how it chooses which maps to use and how it gets started. The key file that tells
the automounter about map files and mount points is the master map, which is the default map
read by the automounter if no other command-line options are specified. This covers the
format and use of the master map, some command-line options, and some timeout tuning
techniques.

9.2.1 The master map

The master map is the map of maps. When the automounter is started, it reads the master map
from where the /etc/nsswitch.conf configuration file says to read it, as determined by the
nsswitch.conf entry named automount:. Thedefault nsswitch.conf — whether files, or NIS is
used — has files listed first. The master map file, /etc/auto_master, lists all direct and indirect
maps and their associated directories. It consists of triplets of directory name, map name, and
mount options to be used with that map. Suppose your /etc/auto_master file contains:

# Directory Map NFS Mount Options
/tools /etc/auto_tools -ro
/= /etc/auto_direct
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The first entry is for the indirect map /etc/auto tools; entries in this map are mounted read-
only (due to the -ro option) under the /fools directory. The second line of the master file is for
a direct map; because there is no directory for the automounter to manage, the place holder /-
is used. Note that the master map format is different from other automounter maps in the
following ways:

e With the master maps, the mount options are in the third column, whereas regular
automounter maps place the options in the second column.

e The first column in a master map is always an absolute pathname that starts with a
leading slash (/) and can have one or more additional slashes, whereas with indirect
maps the first column is a map key that must not contain a slash.

The earlier example is somewhat limiting in that changes to the auto_tools or auto_direct map
must be made by editing each /etc/auto tools or /etc/auto direct file on each NFS client.
Instead, if we drop the /etc/ prefix, we can allow the maps to be maintained in NIS or files:

# Directory Map NFS Mount Options
/tools auto_tools -ro
/= auto_direct

In this example, we observe three things:

e Two map names — auto_direct and auto tools — are used in place of the files pulled
from /etc in the previous example.

e The system decides to use NIS or files for auto direct and auto tools based on
whether files or nis (or both) are specified in nsswitch.conf.

o Even though the corresponding map names in NIS are auto direct and auto_tools, the
auto_master file uses a canonical name form, which uses underscores and not periods
to separate the prefix auto from the unique suffix (direct or tools). The reason is that in
some directory systems, such as NIS+, a period is a reserved character.

There is no requirement that the master map be maintained as a local file. Indeed you might
find it easier if you configure your network's clients' nfsswitch.conf file to read all the maps,
including the master map from NIS by setting automount: line in nsswitch.conf as:

automount: nis

This way you can exercise control over each client's namespace without having to reconfigure
every client each time you want to add or delete a map from the master map. We will cover
how the automounter maps are integrated into NIS later, in Section 9.3.

The default master map is not going to appear as in the examples presented so far. The default
Solaris /etc/auto_master file looks something like this:

+auto master

/net -hosts -nosuid, nobrowse
/home auto home -nobrowse
/xfn -xfn

We will discuss the first entry, +auto_master in Section 9.3.1. The second entry, /net, will be
covered in Section 9.5.2.1. The third entry, /home, will be covered in Section 9.4.1.
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The last entry, /xfn, is for the X/Open Federated Naming Standard (XFN), which is a now-
deprecated standard for federating directory systems. Recall from Section 2.2 that there are
lots of directory services. XFN represented an attempt to allow them all to seamlessly co-exist
in a global namespace. The idea was to allow users in one DNS domain to browse or access
information (such as files, printers, or calendars) from another domain, even if the naming
system that organized the information did not easily support cross-domain operations (as is
the case with NIS). Because it appears that the world will be unifying under LDAP, and
because nsswitch.conf meets most of the requirements for directory service switching, XFN
has been deprecated. While the /xfn entry persists to allow you to browse any NIS or files data
represented in XFN, expect XFN and /xfin to disappear from future Solaris releases.

9.2.2 Command-line options

The autofs automounter is started during the boot sequence from the /etc/init.d/autofs script.
The automounter consists of two programs:

automount
Used to initialize the automounter's mount points after it reads the master map.
automountd

A daemon that handles requests from the in-kernel autofs filesystem to mount and
unmount filesystems.

Each program has several command-line options.
9.2.2.1 Automount command-line options
-t time
This is the time, in seconds, to wait before attempting to unmount a quiescent

filesystem. The default is 600 seconds, but this value may need to be adjusted to
accommodate various client usage patterns as described in Section 9.2.4.

If set, this option prints out any new autofs mounts or unmounts. The automount
command will perform a mount for each new direct and indirect map, and will
perform an unmount for each map no longer listed in the master map or any of its
submaps.

9.2.2.2 Automountd command-line options
-T

Turns on NFS call tracing, so the user sees the expansion of NFS calls handled by the
automounter. If this option is used for debugging, then the standard output and
standard error of the automounter daemon should be redirected to a file from its
invocation in /etc/init/autofs:
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/usr/lib/autofs/automountd -T > /tmp/auto nfscalls
2&1
Excerpt from /tmp/auto nfscalls

t8 LOOKUP REQUEST: Tue Sep 28 10:39:36 1999

t8 name=news [] map=auto.tools opts=intr,nosuid path=/tools
direct=0

t8 LOOKUP REPLY : status=0

tl MOUNT REQUEST: Tue Sep 28 10:39:36 1999

tl name=news [] map=auto.tools opts=intr,nosuid path=/tools
direct=0

tl MOUNT REPLY : status=0, AUTOFS DONE

In this example, the automounter daemon was asked by autofs to look up the directory
news. It returned a status structure indicating that the daemon is requesting an NFS
mount. The autofs filesystem then asked the daemon to perform the NFS mount, and
the automounter returned a successful status. The prefixes ¢8 and ¢/ indicate the thread
in the automounter daemon that did the operation.

-V

Turns on a verbose mode that logs status messages to the console.
-n

Turns off browsing of indirect maps.
-D var=value

Assigns the value to the variable var within the automounter's environment. Section
9.4.2 contains more information on variable substitutions within automounter maps.

9.2.3 The null map

The automounter also has a map "white-out" feature, via the -nu// special map. It is used after
a directory to effectively delete any map entry affecting that directory from the automounter's
set of maps. It must precede the map entry being deleted. For example:

/tools -null

This feature is used to override auto master or direct map entries that may have been
inherited from an NIS map. If you need to make per-machine changes to the automounter
maps, or if you need local control over a mount point managed by the automounter, white-out
the conflicting map entry with the -null map.

9.2.4 Tuning timeout values

When a filesystem has remained quiescent for some time, it is a candidate for unmounting. If
the filesystem is busy, the attempts to unmount it will fail until the last open files and
directories are closed. If an unmount attempt fails, the automounter tries it again later.
However, it is difficult for the automounter to know if the filesystem is in fact in use. The
simplest way to find out is to attempt to unmount it. So every ten minutes (or the period
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specified with the -7 flag to automount) the automounter attempts to unmount every mounted
filesystem.

There are two situations in which increasing the default unmount timeout period improves
performance of the automounter:

e When client processes keep files open for more than ten minutes
e When one or more processes requiring automounted filesystems run regularly, with
periods greater than the default timeout

When the automounter attempts to unmount a filesystem, it either succeeds, or the one or
more open files from one or more processes cause the umount( ) call to return EBUSY. If
there are several filesystems used by processes that behave in this fashion, then the
automounter wastes numerous umount( ) system calls. The cost isn't just the overhead of
checking to see if a filesystem is in use. There are several caches that hold references on the
filesystem that must be flushed. All this activity consumes CPU time, which can impact the
performance of a system that is already under high load. Increasing the default unmount
timeout period (using the -¢ option) to match the average filehandle lifetime reduces the
overhead of using the automounter:

automount -t 3600

The timeout period is specified in seconds. The reduced number of mount operations comes at
a cost of a longer binding to the NFS server. If the filesystem is mounted when the NFS server
crashes, you will have lost the "working set" advantage of using the automounter — your
system hangs until the server recovers.

As mentioned earlier, regularly scheduled processes may require longer automounter timeout
periods. Regularly scheduled processes include those run by cron and repetitive operations
performed by interactive users, such as make runs done several times an hour during bug-
fixing cycles. Each regularly scheduled process begins by causing a filesystem mount; a
corresponding unmount is done sometime before its next invocation if the default timeout
period is shorter than the time between invocations.

If the time between process instances is long, the overhead of these repetitive mount
operations is negligible. However, a job that is run every ten minutes initiates a sequence of
mount and unmount operations, adding to the overhead incurred by running the automounter.
For interactive processes that run to completion in a minute or less, the time to complete the
mount increases the response time of the system, and it is sure to elicit complaints. In both
cases, system performance is improved by reducing the overhead of the automounter through
a longer default unmount timeout period.

You may not want to use the automounter for filesystems that are mounted or accessed nearly
constantly through the day. The mail spool, for example, might be better placed in each
client's /etc/vfstab file because it will be in near-constant use on the client. Most other
filesystems benefit from the streamlined NFS administration provided by the automounter.
Using the automounter is simplified even further by managing the maps themselves with NIS.
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9.3 Integration with NIS

If maps are maintained on each client machine, then the administrative benefits of using the
automounter are lost; the burden of maintenance is shifted away from the vfstab file and onto
the new map files. To solve the administrative problem, all three types of maps may be
distributed using NIS.

To add an automounter map to the NIS database, insert a set of clauses for it in the NIS
master server's Makefile in /var/yp:

In definition of target all:
all: passwd hosts ..... auto.tools
auto.tools: auto.tools.time

auto.tools.time: $(DIR)/auto_ tools

-@if [ -f $(DIR)/auto_tools ]; then \
sed -e "/"4/d" -e s/#.*$$// $(DIR)/auto_tools | \
$ (MAKEDBM) - /var/yp/$(DOM) /auto.tools;\

touch auto.tools.time; \
echo "updated auto.tools"; \

if [ ! $(NOPUSH) ]; then \
$ (YPPUSH) auto.tools; \
echo "pushed auto.tools"; \
fi \
else \
echo "couldn't find $(DIR)/auto tools"; \
fi

The new map name must be added to the list of targets built by default when make is issued
with no arguments. A dependency linking the map name aufo.tools to the timestamp file
auto.tools.time is added, and the large section defines how to rebuild the map and the
timestamp file from the map source file. The makefile actions strip out all lines beginning
with a comment (#) marker, and strip comments from the ends of lines. The makedbm
program builds an NIS map from the input file. The input file should not have blank lines in
it.

The key in an automounter map becomes the NIS map key, and the mount options and server
and directory names are the data values. Dumping a map with ypcat requires the -k option to
match up map keys and server information:

Q

% ypcat auto.tools

-ro,intr thud:/epubs/deskset
jetstar:/usr/Bugview

-ro,intr mahimahi:/tools2/desksetl.0
% ypcat -k auto.tools

sundesk -ro, intr thud:/epubs/deskset

bugview jetstar:/usr/Bugview

deskset -ro,intr mahimahi:/tools2/desksetl.0

NIS-managed maps are specified by map name rather than by absolute pathname:
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Master map
/tools auto_tools -ro
/source auto_source -rw

9.3.1 Mixing NIS and files in the same map

As with the password NIS map, it is sometimes necessary to have variations in the
configuration on a per-machine basis. Using the notation +mapname, it is possible to include
an NIS map in a local automounter map. For example, as mentioned earlier in this chapter,
/etc/auto_master file can have an entry in it like:

+auto master

This is useful if you want more control over the order with which map information from the
/etc/auto_master file versus the name service gets processed. The appearance of this entry
causes map information from the NIS auto.master map to read in as if it were where the
+auto_master entry was. For example, let's say nsswtch.conf has an automount: entry that
specifies files to be processed before nis. The auto.master map in NIS might contain:

/docs auto_temporary -ro

The /etc/auto _master file might contain:

/tools auto_tools -ro
+auto master

/docs auto docs

/src auto_source

/= auto_direct

The effect is that the accesses to /docs/XXX are satisfied from the auto temporary map and
not from the auto docs map.

The use of entries with leading plus signs is not limited to auto_master entries. Any of the
maps that auto _master refers to can contain +mapname entries if they are local files.
Suppose, for example, that client machines on your network share a common set of source
trees, but some clients are allowed to access operating system source code as well. On those
machines without source code rights, the /etc/auto source map contains a single reference to
the NIS map:

+auto_source

However, on clients that have more privileges, the operating system source code mount points
can be included with the NIS map:

sunos5.7 -ro srcserv:/source/sunosb5.7
sunos5.8 -ro srcserv:/source/sunosb5.8
nfs -r0 bigguy:/source/nfs internals

+auto_ source
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9.3.2 Updating NIS-managed automount maps

The automounter reads indirect NIS maps for each mount request it must handle. A change in
one of these maps is reflected as soon as the map is built and pushed to the NIS servers. New
tools get installed in /fools by inserting a new map entry in auto_tools rather than editing the
/etc/vfstab files on each client machine. The automounter sees map updates the next time it
has to perform a mount.

The only way to change the mount parameters for a currently mounted filesystem is to
unmount the filesystem manually. Some automounters will also require that you send the
automounter daemon a SIGHUP (kill -1). When the automounter receives this signal, it parses
the mnttab file and notices that some of its mounted filesystems were unmounted by someone
else. It invalidates the links for those mount points; the next reference through the same entry
remounts the filesystem with the new parameters.

Direct maps are subject to an update restriction. While the maps may be updated with the
automounter running, changes are not made visible through the automounter until it is
restarted. Under Solaris, re-running the automount command suffices. The automounter
creates a mount table entry for each direct mount point, so they cannot be added or removed
without the automounter's intervention. If a direct mount point is removed from a direct map
maintained by NIS, attempts to reference the mount point return "file not found" errors: the
mount point is still listed in the mnttab file but the automounter's direct map no longer has a
corresponding entry for it.

Using NIS to manage the automounter maps makes administration of a large number of NFS
clients much simpler: all of the work that formerly went into /etc/vfstab file maintenance is
eliminated. In a large environment with hundreds of users, the task of map management can
become quite complex as well. If new users are added to the system, or filesystems are
shuffled to meet performance goals, then the automounter maps must be modified to reflect
the new configurations. The benefits of using the automounter are significantly increased
when the maps are simplified using key and variable substitutions.

9.4 Key and variable substitutions

There are two forms of substitutions that are performed in automounter maps: variable
substitution and key substitution. Variables are useful for hiding architecture or operating
system dependencies when maintaining a uniform naming scheme, while key substitutions
impress a degree of regularity on the automounter maps.

9.4.1 Key substitutions

The ampersand (&) expands to the matched key value in a map; it is used in the
server:directory path pair to copy key values into directory path component names. Let's say
you have a map that lists all the exported directories on your network that exist for the
purpose storing users' home directories. Let's call this map auto _home_exports. Initially, this
map looks like:

thud -rw thud: /export/home/thud
wahoo -rw wahoo:/export/home/wahoo
mahimahi -rw mahimahi:/export/home/mahimahi
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We can rewrite it using key substitution:

thud -rw &:/export/home/ &
wahoo -rw &:/export/home/&
mahimahi -rw &:/export/home/&

With the right-hand side rewritten, the map's regular form can be further condensed using the
asterisk (*) wildcard:

* -rw &:/export/home/&

The asterisk is a default case. Nothing after it will ever be matched, so it should be the last (or
only) entry in the map. It matches all keys, providing a value for the & substitutions that fill in
the right-hand side of the map information.

For example, assume that the clients are using the auto home_exports map for the
/home_exports mount point. Every reference through /home exports matches the wildcard
map entry. When a lookup of /home_exports/thud/jan is performed, the automounter gets an
RPC request to look up thud in the /home_exports directory. Referring to the indirect map, the
automounter finds the wildcard, which matches the key thud. The automounter makes thud
the default key, and expands the server:directory component as:

thud:/export/home/thud

This entry is equivalent to a thud-specific entry:

thud -rw thud:/export/home/thud

Special case mappings may be added ahead of the wildcard map entry:

mahimahi?2 -rw mahimahi:/export/home/mahimahi?
* -rw &:/export/home/ &

Of course, wildcards can get you into trouble as well. Assume that you are using the
following simple indirect map for auto_home exports:

* -rw &:/export/home/&

and a user tries to access /home exports/foo. The automounter then tries to mount
foo:/export/home/foo, but it's probable that no host named foo exists. In this case, the user will
get a somewhat puzzling "No such host" error message when the automounter cannot find the
server's name in the NIS Aosts map.

The concise wildcard-based naming scheme is useful for machines exporting a single home
directory, but when multiple home directories are exported from several disks on a server, the
one-to-one mapping of home directory names to server names breaks down. If naming
conventions permit, you can create hostname aliases in the NIS /osts map that match the
additional home directory names, allowing the wildcard map to be used.

To see how this works, let's simplify the following auto home exports map for the three
servers mahimahi, thud, and wahoo:

170



Managing NFS and NIS

mahimahi -rw mahimahi:/export/home/mahimahi
mahimahi?2 -rw mahimahi:/export/home/mahimahi?2
thud -rw thud:/export/home/thud

thud2 -rw thud:/export/home/thud?2

thud3 -rw thud:/export/home/thud3

wahoo -rw wahoo:/export/home/wahoo

Applying wildcard key matching substitution to the regularly named directories shortens the
auto_home_exports map so that only the secondary and tertiary home directories are listed:

mahimahi?2 -rw mahimahi:/export/home/mahimahi?2
thud2 -rw thud:/export/home/thud?2

thud3 -rw thud:/export/home/thud3

* -rw &:/export/home/ &

Adding hostname aliases for mahimahi and thud to the hosts map condenses the
auto_home_servers map even further:

NIS hosts map

192.9.201.5 mahimahi mahimahi?2
192.9.201.6 thud thud2 thud3
192.9.201.7 wahoo

auto home servers map

* -rw &:/export/home/&

When a reference to /home_exports/thud2/jan is seen by the automounter, the wildcard map
turns it into the server:directory pair:

thud2:/export/home/thud?2
Because thud? is a hosts database alias for thud, the mount request is sent to the right server.

This trick simply perpetuates the existing naming scheme but it does not help subsume all
home directories under a single mount point. Users tend to like the C shell's tilde expansion
mechanism, which locates a user's home directory from the NIS or local password files. Using
a tilde reference such as ~jan causes the correct mount to be completed as long as the
/etc/passwd file or passwd NIS map contains an entry like:

jan:K8pLWWc.J4XIY:999:99:Jan Smith:/home servers/thud2/jan:/bin/csh:

But there is no obvious, consistent absolute path to every user's home directory, because the
paths contain a hostname-specific component.

To make a completely uniform naming scheme, you need to build a fairly verbose map that
hides the hostname dependencies in the home directory paths. Given the set of home
directories:

/export/home/thud/stern
/export/home/thud2/jan
/export/home/mahimahi/johnc
/export/home/wahoo/kenney
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an indirect auto_home map that mounts all users' home directories under /home looks like
this:

stern -rw thud:/export/home/thud/stern

jan -rw thud: /export/home/thud2/jan

johnc -rw mahimahi:/export/home/mahimahi/johnc
kenney -rw wahoo:/export/home/wahoo/kenney

Users can find any user through the /home switchboard, without having to know their home
directory server. This scheme is useful where hard coded, absolute pathnames are required.
You can juggle user's home directories to distribute free disk space without having to search
for all occurrences of absolute pathnames; changing the automounter map effects the change.

To make this switchboard available, the following would appear in the auto_master map:

/home auto home -nobrowse

The nobrowse option is there because there is one entry in auto home for every home
directory, and unless your organization is quite small, you'll find that users that do the
following:

% ls /home
generate lots of unnecessary network traffic.
9.4.2 Variable substitutions

If you are managing automounter maps through NIS, you may end up using the same map on
machines running different releases of the operation system or having different CPU
architectures. Directories with utilities or source code frequently need to be distinguished
based on operating system release and machine architecture. Presenting these directories with
a uniform naming scheme eliminates ugly pathnames, user confusion, and potentially
dangerous actions, for example, a user building an object tree in the wrong subdirectory for
that operating system release.

The automounter allows variables to be substituted into the right-hand components of map
entries. The following example shows how to mount /usr/local/bin from a set of architecture-
specific directories:

Automounter daemon invocation
/usr/lib/autofs/automountd -D MACHTYPE='/usr/bin/uname -m'
auto direct map

/usr/local/bin -ro mahimahi:/local/bin.SMACHTYPE

Variable substitutions apply equally well to indirect maps. The following example shows how
source code for a project is mapped out based on operating system release:

/usr/lib/autofs/automountd -D OPSYS="Sun0S5.6"

notes -rw srcserv:/source/notes.SOPSYS
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news -rw srcserv:/source/news.S$SOPSYS
chem -rw srcserv:/source/chem.SOPSYS

Variable and key substitution combine to collapse the map in the previous example to another
one-liner:

* -rw srcserv:/source/&.SOPSYS

A source code automounter map is useful when there are one or more levels of dependencies
in the source tree, or when the source trees themselves live on several different servers. The
automounter ensures that the developers mount only those servers containing source code that
they are currently using.

9.4.2.1 Builtin variables

Some automounters have builtin variables. The builtin variables for Solaris are shown in
Table 9-2.

Table 9-2. Solaris automounter variables

Variable Meaning

ARCH output of uname -m
CPU output of uname -p
HOST output of uname -n
OSNAME output of uname -s
OSREL output of uname -r
OSVERS output of uname -v
NATISA output of isainfo -n

If you can use builtin variables, then you should use them instead of specifying the value of
variables with the -D option to automountd. The reason is that editing the script that starts the
automountd process is going to be very tedious as your site grows. So in the previous section,
we had the example:

Automounter daemon invocation

/usr/lib/autofs/automountd -D MACHTYPE='/usr/bin/uname -m'

Don't do that! Leave the automountd parameters alone, and instead have the map use the
SARCH builtin, instead of the custom SMACHTYPE variable:

auto direct map
/usr/local/bin -ro mahimahi:/local/bin.SARCH

9.5 Advanced map tricks

The automounter has several features that complement the "normal" NFS mount options. It
can mount replicated filesystems from one of several potential servers, and it can perform
hierarchical mounts of all of a server's directories when any one of them is referenced. This
section starts with a discussion of these advanced automounter features, then explains how to
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get better performance out of the automounter by converting direct map entries into indirect
maps and by using the automounter's subdirectory mount feature.

9.5.1 Replicated servers

Multiple location support in the automounter implements a simple network load-balancing
scheme for replicated filesystems. At first glance, this seems to be a bit of overkill; after all,
you don't need or want replication for read-write filesystems. However, serving large, read-
only filesystems such as the manpages may add to an NFS server's request load. Having
multiple servers share this load improves performance by reducing the total load placed on the
most heavily used servers. Ideally, you want clients that are "close" to each server to mount
its filesystems, reducing the amount of traffic that must go through bridges or routers.

For example, if you have four NFS servers that each export the manpages, the best client
mounting scheme is probably not to have one-quarter of the clients mount /usr/man from each
server. Instead, clients should mount the manpages from the server that is closest to them.
Replicated filesystems are included in automounter maps simply by listing all possible servers
in the map:

/usr/man -ro wahoo:/usr/man mahimahi:/usr/man \
thud:/usr/man onaga:/usr/man

The backslash at the end of the first line continues this indirect map entry onto the next line. If
more than one server:directory pair is listed in an automounter map, the automounter pings all
servers by sending a request to the null procedure of all NFS servers. From the set that
responds, the automounter picks one that is "closest" by comparing the address of the servers
with that of the clients. Ties are broken by using the server that responded to the ping first.
The selected server is used by the automounter to serve the mount point.

There is also an element of load balancing at work here: if one of the /usr/man servers is so
heavily loaded with other NFS traffic that it cannot reply to the ping before another server on
the same net, then the client will choose the other server to handle its mount request. Solaris
2.6 introduced the feature of client-side failover, which was discussed in Section 6.5. While it
doesn't explicitly implement load balancing, if, after the mount, one server becomes
overloaded enough, a client will find the server to be unresponsive and will dynamically
switch to another server. Keep in mind the following:

o If the 7o mount option is not present, or if the soft option is present, client-side failover
is not enabled, and in that situation, once a client performs a mount from a server, it
continues to use that server until it unmounts the filesystem.

o If the list of servers providing the filesystem changes, once the filesystem is mounted,
with or without failover, the client cannot choose a different server before unmounting
its first choice.

You can use the first-answer feature of replicated map entries to solve the multihomed host
problem presented in Section 16.5.7. Let's say that you have an NFS server on four networks,
with hostnames boris, boris-bb2, boris-bb3, and boris-bb4 on those networks. Mounting all
filesystems from boris makes the multihomed host perform loopback packet routing, but
using the "right" hostname requires knowing which name is on your network. Building an
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automounter map with replicated entries solves this problem by letting the automounter find
the fastest route to boris:

natasha -rw,hard boris:/export/home/boris \
boris-bb2:/export/home/boris \
boris-bb3:/export/home/boris \
boris-bb4:/export/home/boris

This would be an entry in the auto_home map. Since the server pathnames are the same, you
can use a shorter form of the replicated map entry, putting all of the server names in a comma-
separated list:

natasha -rw,hard boris,boris-bb2,boris-bb3,boris-bb4d:/home/boris

The network interface on boris that is closest to the client will respond first, and each NFS
client of boris will mount /home/natasha from the best network interface. Note that the
replicated mount points don't refer to multiple filesystems, but rather multiple names for the
same filesystem. The automounter just provides a neat way of managing all of them in a
single place. Because /export/home/natasha is mounted read-write, client-side failover is not
enabled. This is somewhat unfortunate since this is the one situation where client-side failover
of a writable filesystem is safe: the filesystem is the same, because the physical host is the
same. But the client has no way of knowing that.

When the automounter pings the remote servers, it's performing the equivalent of:

rpcinfo -u hostname nfs

for each listed server. If you see a larger number of null procedure calls than usual in the
output of nfsstat on the NFS server, it might indicate that your automounter mounts of
replicated filesystems are being performed repeatedly. The nu/l/ calls do not require any disk
accesses to service, but they can consume network bandwidth on the server; if the number of
null calls becomes excessive it may be due to client machines continually mounting and
unmounting replicated filesystems. Changing the value of the -¢ option to automount (as
discussed previously in Section 9.2.4) reduces the frequency of mounting and unmounting.

You can also examine the /etc/rmtab file on the server to see how frequently its clients are
mounting and unmounting automounted filesystems. When a filesystem is mounted, an entry
is added to the /etc/rmtab tile. When it gets unmounted, the entry isn't deleted from the file —
it is commented out by making the first character in the line a pound sign (#):

#epeche:/usr/share/man
#haos:/usr/share/man
#epeche:/usr/share/man
depeche: /usr/share/man
chaos:/usr/share/man

In this example, client depeche has mounted /usr/share/man three times, and client chaos has
mounted that filesystem twice. This gives you client information to go along with the nul//
NFS RPC counts provided by nfsstat — you can tell which clients have been repeatedly
mounting and unmounting a filesystem. Watch the size of the /etc/rmtab file over time; if it
grows regularly and contains multiple entries for the same clients and filesystems, then you
may want to change the automounter timeout value on those clients.
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9.5.2 Hierarchical mounts

In addition to handling multiple servers for the same filesystem, the automounter can mount
multiple trees from the same server in a hierarchy of mount points. Hierarchical mounts are
simply a special form of indirect maps.

9.5.2.1 The -hosts map

The most widely used hierarchical mount is the builtin -kosts map, which mounts all exported
filesystems from a named host.

The -hosts map references only the hosts database; the map semantics are built into the
automounter. It is usually mounted on /net indicating that it contains filesystems from the
entire network. The following line would appear in the master map:

/net -hosts -nobrowse

Except when using the enhanced autofs automounter, a user can then force mounts of all
filesystems from a server by referencing the server's name as a subdirectory of /net:

% showmount -e wahoo
/exportl (everyone)
/export2 honeymoon
/export3 honeymoon

% cd /net/wahoo

% 1ls -1
total 3
drwxrwxr-x 22 root staff 512 Aug 12 16:02 exportl
dYwXrwxr—-x 8 root staff 512 Feb 18 1999 export2
drwxXrwxr-x 9 root staff 512 Sep 8 16:19 export3

When the automounter has to mount a filesystem on /net, it sends a request to the server
asking for all exported filesystems. The automounter sorts the filesystems by pathname
length, ensuring that subdirectories of exported filesystems appear later in the list than their
parents.” The original automounter would then mount each item in the sorted list.

12l If a directory pathname has a length of x characters, then any of its subdirectory's pathnames have length > x. Sorting by pathname length puts a
parent directory ahead of all paths to its subdirectories.

The enhanced autofs automounter will lazily mount each exported filesystem as soon as a
process does something significant such as changing its current working directory to an
exported filesystem:

% cd /net/wahoo

% 1ls -1

total 3

dr-xr-xr-x 1 root root 1 Sep 28 14:54 exportl
dr-xr-xr-x 1 root root 1 Sep 28 14:54 export?2
dr-xr-xr-x 1 root root 1 Sep 28 14:54 export3
% cd exportl

% cd

% 1ls -1

total 3

drwxrwxr-x 22 root root 512 Aug 12 16:02 exportl
dr-xr-xr-x 1 root root 1 Sep 28 14:54 export?2
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dr-xr-xr-x 1 root root 1 Sep 28 14:54 export3

The act of doing the cd exportiIcauses the automounter to perform an NFS mount over the
/net/wahoo/exportl autofs vnode. Thus, users cannot casually force the client to mount each
filesystem unless they do something like:

% 1ls /net/wahoo/*

This command invocation tells /s to read each directory of each exported filesystem of wahoo.
The autofs filesystem considers an invocation of its readdir entry point to be a significant
operation worthy of triggering an NFS mount.

There are a number of caveats for using the -4osts map with automounters that don't support
lazy mounting of hierarchies:

e By including the entire /osts database, the hosts map references servers that are both
local and on remote networks; a casual reference to a remote server causes an NFS
mount to occur through a router or gateway.

e If the server itself is slow, or has a large number of filesystems (diskless client
servers), then the -Aosts map has a definite performance impact.

e Unmounts of the filesystems are done from the bottom up, in the reverse order of the
mounts. If a higher-level mount point is busy, then an unmount of the entire hierarchy
fails. When the automounter fails to unmount a higher-level mount point, it must
remount the filesystems it just unmounted. It walks back down the hierarchy from the
busy mount point, mounting each filesystem. The remote server's filesystems are
mounted on an all-or-nothing basis.

e Earlier in this section, we said that the "most widely used hierarchical mount is the
builtin -Aosts map." If you are not careful, it can be the most widely used map, period.
The reason why this is not good is that -kosts is location-dependent. Once your users
get used to accessing resources like /net/wahoo/tools, instead of accessing /tools, it
becomes difficult to move the resource to a different physical location. It is best to
discourage use of /net. One way to do so is to respond rapidly to requests to modify
existing maps, or add new maps, and also, bury the physical location several
directories deep on the server that holds the resource. Users will prefer pathnames like
/tools/debugger over /net/wahoo/export/software/tools/debugger.

These caveats don't apply to the enhanced aufofs automounter. However, by default it does
support browsing. Thus a new caveat is that if a network has lots of hosts, then users that do:

% 1ls /net

will trigger lots of network traffic as the automounter gets the list of hosts from NIS. Thus,
you should use the -nobrowse option on the -hosts map.
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- Users sometimes complain that they cannot see a new filesystem
o ) exported from a server. This is because a /net mount from the server was
~ 4+ in effect before the filesystem was exported, and the automounter has to

timeout the mount before unmounting and remounting. Rather than
waiting for that to happen, a simple workaround is to tell your users to
access the server under /net with a name that differs by capitalizing one
letter of the hostname. This works because hostnames are case-
insensitive, yet Unix pathnames are case-sensitive. So, for example, if
/net/wahoo was in effect before wahoo./export4 was exported, then
simply accessing /net/Wahoo will allow you to access export4 as well as
the pre-existing exportl, export2, and export3.

9.5.2.2 Hierarchical mounts in non -hosts maps

Let's return to our /fools example. Recall that /fools has:

/tools/deskset
/tools/sting
/tools/news
/tools/bugview

and is an indirect automounter map for the /fools directory, called auto _tools:

deskset -ro,intr mahimahi:/tools2/deskset
sting mahimahi:/tools2/sting
news thud:/tools3/news
bugview jetstar:/usr/bugview

/tools/deskset contains several subdirectories, one of which is wonderworks-vi.0. You
recently get a Version 2.0 of Wonderworks, and you find that it requires more disk space than
what mahimahi:/tools2/deskset has available. You have several choices here:

Create a new map entry into auto tools called deskset? for the new version of
wonderworks. The problem with this is that your users expect to look in /tools/deskset,
and not /fools/deskset2 for the desktop productivity tools.

Move the deskset directory from mahimahi to a server with a large partition. The
problem is that this will impact existing users that have mahimahi:/tools2/deskset
mounted.

Create a hierarchical mount for the deskset map entry such that
/tools/deskset/wonderworks-v2.0 is mounted from somewhere else. This solution has
none of the disadvantages of the previous choices.

To do the last choice requires the following steps:

1.

Create a mount point for wonderworks-v2.0 on server mahimahi:

On mahimahi:
# mkdir /tools/deskset/wonderworks-v2.0

2. Create a directory on another server (e.g., wahoo./export/tools/deskset/wonderworks-

v2.0) with sufficient disk space, and copy the wonderworks-v2.0 package to it.
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If necessary, export the directory via a new entry in /etc/dfs/dfstab and the shareall
command.
3. Change the deskset entry in the auto tools map to:

deskset / -ro,intr mahimahi:/tools2/deskset \
/wonderworks-v2.0 -ro,intr mahimahi:/tools2/deskset

Now when the user accesses /fools/deskset, he or she will be able reference both
/tools/wonderworks-v1.0 and /tools/wonderworks-vi.0.

As the example suggests, the syntax of a hierarchical mount's map entry is:

key-name subdirectoryl [ -mount-options ] server-filesystem-1 [
subdirectory?2 [ -mount-options ] server-filesystem-2 ]

where a server-filesystem is one of:

e server_name:pathname
e server_name-i:pathname-i,server name-ii:pathname-ii |,...]
e server_name-i,server_name-ii [,...]:pathname

9.5.3 Conversion of direct maps

Direct mounts are useful for handling nonuniform naming schemes, but they may cause a
number of performance problems if several direct mount points are included in a directory
that is frequently searched. You can usually get better performance out of the automounter by
converting direct maps into indirect maps. Instead of putting direct map mount points in the
client filesystem, create symbolic links that point to a staging area managed by an indirect
map.

Again, an example helps to explain the conversion process. Consider replacing a direct map
for /usr/local with an indirect map auto_stage. To convert the direct map into an indirect map,
we first create a symbolic link /usr/local that points to a staging area that we'll let the
automounter manage:

Original direct map
/usr/local mahimahi:/local/$SARCH
# 1n -s /stage/local /usr/local

New entry in auto master map
/stage auto_stage -ro

New indirect map auto stage containing
local -ro mahimahi:/local/$ARCH

Note that /usr/local didn't exist before we made the link, since it was managed by the
automounter. Also, we don't have to create the /stage staging directory, since it is an indirect

map mount point.

The symbolic link points to a subdirectory of the mount point managed by the indirect map
auto_stage. With the direct map, any reference to /usr/local is directed to the /stage mount
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point, which causes the automounter to mount the appropriate architecture-specific directory.
This makes /usr/local look like a link to the mount.

Let's say a user now accesses /usr/local/bin/emacs. The client kernel follows /usr/local down
to the symbolic link, which points to the /stage/local automounter mount point. The
automounter picks up the reference to /stage as a reference to the auto stage map, and it uses
the next component — local — as a key in the map. This causes mahimahi:/local/$SARCH to
be automounted. If you have several direct mount points, they can all be converted into links
sharing a single auto stage map.

9.5.4 Multiple indirection

So far the only map we've seen that refers to other maps is the auto_master map. Let's collect
all of the indirect maps we've added to auto _master in this chapter:

# Directory Map Mount Options
/home auto home -nobrowse
/net -hosts -nobrowse
/tools auto_tools -ro

/source auto_source -rw

/stage auto_stage -ro

One problem with this approach is that the top-level root ( /) directory is beginning to get
cluttered. Of course, one could simply add another component to the mount directory. If we
want to put everything under /auto, then we could change indirect map entries of the master
map to:

# Directory Map Mount Options
/auto/home auto_home -nobrowse
/auto/net -hosts -nobrowse
/auto/tools auto tools -ro
/auto/source auto_source -rw
/auto/stage auto_stage -ro

If you are using the autofs automounter, then there is a more elegant approach: simply treat
each indirect map as a map entry in new indirect map called auto_auto. To do this, the master
map would look like:

# Directory Map Mount Options
/auto auto auto
/- auto direct

The auto_auto map is an indirect map. Like all other indirect maps, its first field has to be a
directory relative to /auto, its second field has to be a set of mount options, and its third field
has to be the name of the thing we are mounting. Here is what aufo_auto looks like:

# Directory Options Map being mounted
home -fstype=autofs, nobrowse auto home

net -fstype=autofs, nobrowse -hosts

tools -fstype=autofs, ro auto tools

source -fstype=autofs, rw auto_source

stage -fstype=autofs, ro auto_stage
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The second and third fields in auto _auto are basically swapped from what they would be in
auto_master. The difference is the presence of the fstype option. This option is needed to
unambiguously tell the aufofs automounter that this is not map entry referring to an NFS-
mounted filesystem.

There is no limit on multiple indirection. This fact allows you to create sensible hierarchies
that can be extended ad infinitum. Let's return to the auto source example, which contains:

sunos5.6 -ro srcserv:/source/sunosb5.6
sunos5.7 -ro srcserv:/source/sunosb5.7
nfs -ro bigguy:/source/nfs internals

You've decided to add Linux, BSD, FreeBSD, and System V sources to this map, and you
have multiple versions of each. Rather than having a map of contain entries called sunos3.6,
sunos3.7, linux1.0, linux2.0, bsd4.3, bsd4.4, sysVr3, sysVr4, etc., you decide that you want a
hierarchy that branches first on the name of the operating system and then on the release. So
you change auto_source to:

bsd -fstype=autofs auto bsd

linux -fstype=autofs auto linux

nfs -ro bigguy:/source/nfs internals
sunos -fstype=atofs auto_sunos

Sysv -fstype=atofs auto sysv

The auto _bsd map might contain:

4.1c -ro ancient:/export/source/bsd4.1lc
4.2 -ro ancient:/export/source/bsd4.?2
4.3 -ro ancient:/export/source/bsd4.3
4.4 -ro srcsrv:/source/bsd4.4

This should be enough to get the idea; for brevity, we won't expand on what the other maps
might look like.

Note that the auto source map example contains both entries with fstype=autofs, and an nfs
entry referring to bigguy./source/nfs_internals.

By the way, you probably will want to leave the -hosts and auto home maps at /net and
/home. The reason is that lots of software assumes these mount points exist. So you would
want auto_master to look like:

# Directory Map Mount Options
/auto auto auto

/home auto home -nobrowse
/net -hosts -nobrowse

/- auto direct

9.5.5 Executable indirect maps
The autofs automounter contains another feature known as executable maps. If permissions on

an indirect map file are marked as executable, then the autofs automounter assumes it is an
executable program or shell script, and executes it, passing the key as the first and only
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argument to the program or script. The program or script must then display an indirect map
entry, which can be hierarchal. For example, suppose /etc/auto_master has:

# Directory Map Mount Options
/auto auto_auto

/home auto home -nobrowse
/net -hosts -nobrowse
/net2 /etc/auto_exec

/- auto direct

Examine /etc/auto_exec:

% 1s -1 /etc/auto_exec

“IWXT-XI-X 1 root sys 76 Oct 26 09:58 /etc/auto_ exec
% cat /etc/auto_exec

#!/bin/sh

/usr/sbin/showmount -e $1 | \

awk 'NR > 1 {print $1 "rg1vems1 " \N\"}' | sort

This script takes the key value as if it is a hostname, and asks the NFS server, via the
showmount command, which filesystems are exported. The output of showmount is then
formatted by the awk command to produce a hierarchical map entry. You can test the script
manually by doing:

Q

% /etc/auto_exec foo
/exportl foo:/exportl \
/export?2 foo:/export2 \

Thus, the script implements functionality similar to /net, with one difference. Note that the -
nobrowse mount option isn't included in the /net? entry of auto master. This is because
executable maps can't be browsed. There doesn't seem to be any reason why the enhanced
autofs automounter couldn't have been implemented to support it, perhaps by having a
browse= option that referred to yet another program or script to do the browsing.

If, for some reason, the executable program or script cannot resolve the key to a map entry,
then it should display zero bytes of output to standard output. Any output displayed to
standard error will be logged by the automounter onto the system console.

- Make sure that if you have an automounter map file with the executable
. permission bit set that you actually want it to be executed.

= I

9.6 Side effects

The automounter has several side effects that cause confusion in both processes and users that
encounter its emulated directories. This section uncovers some utilities that are disturbed by
the automounter.

9.6.1 Long search paths

If you have many directories listed in your search path, logging into a system using the

automounter for some of these directories increases your login time significantly. Instead of
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listing the directories in your search path, create "wrappers" for the utilities of interest and put
them in /usr/local/bin. The wrappers can set environment variables and execute the
appropriate utility, causing the automounter to mount the necessary filesystem when you use
it instead of when you log in.

For example, you can include Frame 6.0 in your search path in your .cshrc file:

set path = ( /tools/deskset/frame6.0/bin S$path )

If /tools is managed by the automounter, your shell causes /fools/deskset to be mounted when
it builds the command hash table after setting your search path. Instead of listing all
directories in /tools, create a wrapper in /usr/local/bin for the maker utility in
/tools/deskset/frame6.0/bin so that you don't have to list any subdirectory of /fools in your
search path:

Wrapper for maker

#!/bin/sh
PATH=/tools/deskset/frame6.0/bin: SPATH
exec /tools/deskset/frame6.0/bin/maker

This wrapper sets the search path as well, so that any executables invoked by maker will be
able to find related utilities in its executable directory. By putting this wrapper in
/usr/local/bin, you avoid having to automount /tools/frame6.0 when you log in. For just a few
directories, the automounter overhead isn't that large, but with ten or more software packages
loaded, logging in becomes a slow process. Furthermore, not mounting all of these
filesystems when you log in shields you from server crashes: your workstation will only hang
if one of the servers you're using crashes.

9.6.2 Avoiding automounted filesystems

Utilities run out of cron, such as nightly find jobs, are easily overworked by the automounter.
The solution is to modify cron jobs to avoid remote filesystems:

e Confine cron jobs to run find on local filesystems.
o Use an option to find like -xdev or -mount to force find to not cross mount points.

This uses the above constraints to implement a script to search for core files:

mount | grep -v remote | awk ' { print $1 } ' | xargs -i find {} -name
'core*' -
mount | /usr/bin/mailx -s"core file report" joeleng

The mount invocation shows what is currently mounted, grep filters out anything that isn't
local, awk prints the first argument (the mount points), xargs passes each mount point to a
separate invocation of find, and find searches for files starting with the name core within the
mount point's filesystem.
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Chapter 10. PC/NFS Clients

PC/NFS refers to an implementation of the NFS protocol for IBM-compatible personal
computers running the Windows or NT operating systems. Originally, NFS implementations
for the IBM-compatible PC were confined to the client-side of NFS. Today, most vendors of
PC/NFS offer both a client and server, though they are often packaged and sold separately.
This chapter is confined to PC/NFS clients, and where it uses the term "PC/NFS" the term
"PC/NFS client" is meant.

Using PC/NFS, PC machines can mount NFS filesystems as logical disks and use them as
large virtual disks. Note that a client-only implementation does not limit the direction or types
of file transfer operations that are possible within PC/NFS. It simply means that the PC is
always the active entity in the Windows-NFS server relationship; the user must mount an NFS
filesystem on the PC and then copy files between it and the local disk. In this chapter, we'll
look at why you would want to use PC/NFS, alternatives to PC/NFS, setting up PC/NFS, and
PC/NFS usage issues.

10.1 PC/INFS today

The first NFS client for Microsoft DOS or Windows operating systems was developed by Sun
Microsystems in the mid-1980s and was called "PC/NFS." The PC/NFS brand name has
become a generic term to refer to any product that provides an NFS client feature on
Microsoft operating systems. Today, Sun Microsystems has abandoned the PC/NFS business,
leaving a fairly competitive field of several vendors of commercial PC/NFS products. There
are also some freeware or shareware clients if you look hard enough, but there does not
appear to be much development activity around them.

It is beyond the scope of this book to provide a detailed survey of PC/NFS implementations,
since they each have unique features, and new releases for each arrive all the time. You can
use Internet search engines, Usenet archives from sources like google.com, and as a last
resort, queries to Usenet's comp.protocols.nfs newsgroup to get feedback on what products
people prefer. You can also look at http://www.connectathon.org/ to see which companies test
products at the annual Connectathon interoperability testing event. While the Connnectathon
web site won't tell you which companies test NFS and which of those have PC/NFS clients,
the list of companies is not too long, so you could go to the web site of each and see which
have PC/NFS implementations.

When selecting a PC/NFS implementation, your minimum set of required features should
include all of the following:

e NFS Versions 2 and 3
e NFS over UDP and TCP
e Some integration with Unix authorization

The last feature amounts to allowing users of PC/NFS clients to use the same password to
access the NFS server as they would if they were logging into the system the NFS server
resides on. Some PC/NFS clients accomplish this by acting as an NIS client to access the
password database from NIS. Most will also integrate by the use of the PCNFSD protocol.
This was a protocol invented by Sun Microsystems to facilitate access to Unix password
database authorization, as well as printers connected to Unix systems. Note that while support
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for this protocol is common among PC/NFS implementations, finding a PCNFSD server is
not always easy. Ironically, even as of Solaris 8, Solaris doesn't include one. You should
expect that the vendor of your selected PC/NFS client can provide a PCNFSD server for the
Unix server platform you have deployed. If you have trouble, you might poke around the
PC/NFS vendors websites. For example, Hummingbird's ftp://ftp.hcl.com/ FTP server has
source and binaries for its HCLNFSD protocol. Note that the HCLNFSD protocol is similar in
functionality to the PCNFSD protocol, but has been enhanced to work better with the
Hummingbird PC/NFS product. HCLNFSD is not compatible with the PCNFSD protocol.
While several non-Hummingbird PC/NFS implementations support HCLNFSD in addition to
Hummingbird, if you have a PC/NFS client that supports only the PCNFSD protocol,
Hummingbird's HCLNFSD implementation will be of no use. If you are in this predicament,
try using a search engine to find PCNFSD source code or binaries. For example, typing this
query into http://www.google.com/:

source code for pcnfsd

turned up this URL:
http://www.sunfreeware.com/programlist.html

which had both source and binaries (Solaris 2.6, SPARC) for PCNFSD. Obviously, URLs
come and go, so don't be surprised if you find PCNFSD somewhere else.

Advanced and interesting features of some PC/NFS implementations include:

e Kerberos V5 security for NFS mounts. This allows clients to access NFS servers that
share filesystems via Kerberos V5 security only.

e RPC/DH security for NFS mounts. This allows clients to access NFS servers that
share filesystems via RPC/DH security only.

o Integration with NIS+.

You should expect that future PC/NFS implementations will add features like NFS Version 4
and integration with LDAP (so that the Unix authentication database in LDAP can be
accessed).

10.2 Limitations of PC/NFS

The NFS protocol is the lingua franca of file-sharing protocols in that it is implemented on the
widest variety of operating system environments, both client and server. These environments
include Unix (nearly all of them), Windows, NT, MacOS, MVS, 0S/400, OS/2, VMS, many
real-time operating systems, and systems designed for network-attached storage, such as the
ONTAP system for Network Appliance's hardware. One reason why NFS has been so
successful is that it is very simple. This simplicity has a price; NFS does not take the approach
of supporting every arcane, operating-specific file semantic for all the environments it
supports. Using NFS on non-Unix platforms, especially as a client, can limit you. This is very
noticeable with PC/NFS. For example, the Windows and NT worlds have notions of enforced
locking, which NFS, even via the NFS Lock Manager, does not provide. While PC/NFS
implementations do their best to emulate this semantic and others, you will find that some
applications work in unexpected ways over NFS.
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These limitations apply to NFS Versions 2 and 3. NFS Version 4 goes a long way toward
supporting Windows and NT file semantics. At the time of this writing, there were no known
generally available NFS Version 4 implementations.

10.2.1 NFS versus SMB (CIFS)

SMB stands for Server Message Block and is the file access protocol that is native to
Windows and NT. In 1996, Microsoft, the owner of the SMB protocol, renamed SMB to
CIFS: the Common Internet File System. However, at the time of this writing, CIFS was not
as common as NFS when it came to came to the variety of client implementations. CIFS is,
however, growing in the number of server implementations. When you consider the plethora
of low-end, network-attached storage boxes aimed at consumers and small office
environments, that often support CIFS but not NFS, it is arguable that CIFS has surpassed
NFS in the number of unique server implementations. The installed base of Windows and NT
desktop computers as compared to non-Windows, non-NT desktops is a big reason for this
trend.

Unix is becoming a popular platform for CIFS servers. This is likely due to the popularity of
the open source package called Samba, which is a CIFS server for Unix platforms. Samba is
developed and maintained by a world-wide community of programmers dedicated to
producing a server as compatible with Microsoft's clients as possible. This is no mean task; at
the time of this writing, the shared opinion of many in the CIFS server industry was that
published CIFS specifications were inadequate to build a compatible server. The Samba
developers, and no doubt other non-Microsoft implementors, have often resorted to using
packet sniffers between existing Windows and NT clients and servers to deduce the protocol
formats and semantics.

The emergence of Samba has led to a massive shift from deploying PC/NFS to deploying
Samba instead. This is for at least three reasons:

e Samba is free of charge under Free Software Foundation's GNU Public License.

o [t is easier for system administrators to install and maintain Samba on a few server
hosts than to install and maintain PC/NFS on many client hosts.

o [t is perceived that SMB has better security than NFS. This is false. Nor is it quite true
to say that NFS has better security. You can have Kerberos V5 (see Section 12.5.5.1)
security for your collection of PC/SMB clients if all your SMB servers run Windows
2000."" You can have Kerberos V5 security for certain PC/NFS clients if all your
servers support NFS secured with Kerberos V5.”

'l At the time this book was written, only SMB servers on Windows 2000 supported Kerberos V5 security, partly because the
Windows 2000 Kerberos V5 is incompatible with Kerberos V5 specification in RFC 1510. See the article, "Microsoft
"embraces and extends" Kerberos V5," by Theodore Ts'o (USENIX ;login, November, 1997).

12/ See Section 12.5.4.10 for the set of known NFS servers and PC/NFS clients that support Kerberos V5.
However, when comparing a situation where you cannot run Windows on all your

SMB servers with a situation where you cannot run NFS servers that support Kerberos
V5 or NFS/dh, (see Section 12.5.4), then the SMB environment is more secure.
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10.2.2 Why PC/NFS?

With the ubiquity of CIFS servers on Unix platforms, it begs the question, why run NFS on a
Windows or NT client? This question was asked of the comp.protocols.smb and
comp.protocols.nfs Usenet newsgroups in the summer of 2000. The responses can be
summarized as follows:

Speed

Some respondents claimed that NFS was faster. An article by Jeff Ballard for Network
Computing magazine's web site ("Increasing File Access Through SMB," March 6,
2000, http://www.nwc.com/) compared three Unix-based SMB servers. An interesting
quotation from the article is:

If it's speed you want, NFS is probably a better solution [than SMB] for you.

Some direct research was done to investigate such claims. A 256 MB file was created
in the /tmp directory of a Solaris 8 file server. The server was an Ultra 10, with a 440
Mhz Ultra Sparc II processor and 512 MB of primary memory. A Windows 98 client
(a Sony Vaio Z505HS, with a 500 Mhz Pentium III processor and 128 MB of primary
memory) was used to copy (via Windows Explorer) the file between the file server
and client. Using Samba as the SMB server, and native SMB client in the client,
copying the file from the server to the client's My Documents folder took about one
minute. However copying the file from the My Documents folder to the SMB server
took about ten minutes. When using a free evaluation copy of an NFS client on the
client, and the native NFS server on the Solaris 8 system, the respective file transfer
times were about 45 seconds each. The quoted times are qualified with "about,"
because Windows Explorer did not display file transfer times, leaving the tester timing
the results with the second hand of a timepiece.

The informal results were obtained without any tuning of the Solaris NFS server or the
Samba server. It is quite possible that tuning the Samba server would have improved
performance. Also, single stream file transfer speed is only one part of performance.
About the only conclusion you should make is that you need to consider performance
when making the decision to use NFS or SMB on Windows or NT clients.

Administrative complexity

Administering an SMB server is much different than administering an NFS server.
Even if you are primarily a Unix shop with some Windows or NT clients, running an
SMB server is still going to require at least as much expertise as running an NFS
server.

One respondent said if you have few (ten or less) potential SMB clients, then you
should strongly consider the trade-off of purchasing and installing commercial
PC/NFS products on Windows and NT systems, versus devoting administration
resources to SMB.

It required most of a day to install and configure the precompiled Samba binaries on
the Solaris 8 server, plus lots of fiddling on the Windows 98 client, before the
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Network Neighborhood folder would recognize the Solaris 8 server. One unexpected
result was that the passwords for SMB users apparently have to be managed separately
from the corresponding Unix passwords, due to absence of an NTLM server on the
network. This is because the Windows 98 client in the testbed was apparently sending
encrypted passwords. Since the password database in NIS or files encrypts the
passwords with a different scheme than Windows 98, Samba provides the option to
maintain a separate database.

Software compatibility

One respondent claimed that there are Windows- or NT-based applications that work
only over NFS. Rational's Clearcase, a software configuration management (source
code control) system, was found to be an example.

There is one more consideration: reliability. The SMB protocol is based on TCP/IP and is
very stateful, like the NFS lock manager. State recovery is very simplistic, when the TCP
connection between an SMB client and server is lost, the SMB server removes all state that
belongs to the SMB client. There is no mechanism to allow a client to reestablish state. In
contrast to the NFS environment, the filing protocol has no state to recover. The NFS
environment's locking protocol is stateful, but there is a state recovery mechanism: clients are
given a grace period to re-establish state. The consequence of the SMB approach is that a
client has a higher opportunity to lose its locks and other valuable state after a server restart
than with the NFS environment. Andy Watson and Paul Benn, in a white paper from Network
Appliance ("Multiprotocol Data Access: NFS, CIFS, and HTTP," TR3014, Revision 3, May
1999, http://www.netapp.com/), wrote:

If a CIFS client attempts file access on an established connection while the server is
unavailable (down or not yet finished rebooting), this is effectively the equivalent of a failed
disk from the perspective of the application software. In many cases, the application will
report an error and allow the user to retry, but some applications will simply hang or exit.

At the time this book was written, this statement was true for both Windows ME and
Windows 2000. However, there are rumors that future versions of Windows will address this
recovery issue.

10.3 Configuring PC/NFS

The steps for installing and using a PC/NFS client will vary from vendor to vendor. You can
expect that they will offer simple GUI-based installation that is compatible with Windows and
NT norms, such as Installshield installation technology. The installer will walk you through
most, if not all, of the necessary configuration. At install time or connect time, you should be
asked to state how you will be authenticated, via NIS or PCNFSD, and you might be asked if
you want to cache your username and password.

10.3.1 Server-side PC/NFS configuration

There should not be any additional configuration for a PC/NFS client other than that needed
for a Unix-based NFS client, unless the client requires the use of the PCNFSD protocol (either
because you do not run NIS, or because you want to give your PCs access to Unix-connected
printers). You may find that the PC/NFS client does not use reserved source ports (IP address
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port values less than 1024), and if so, you may have to disable "port monitoring" on the server
as we'll discuss in Section 12.4.6.

If you need to run a PCNFSD daemon on the server, you will want to add it to the rc scripts
that get started when the Unix server boots up. For Solaris, you would add a script to
/Jetc/init.d-

#!/bin/sh

PCNFSD NAME=hclnfsd # in /opt/pcnfs/bin
PATH=/opt/pcnfsd/bin:$PATH

export PATH

case "S$1" in
start )

# The named directory is used as a temporary area for print spool files.

SPCNFSD -A /var/run
stop )
pkill $PCNFSD
esac
exit O

and then link this script to a hard or soft link in /etc/rc3.d to start it before the NFS server.

10.4 Common PC/NFS usage issues

We'll conclude this chapter with a look at a few practical issues that come up in PC/NFS
installations.

10.4.1 Mounting filesystems

Some PC/NFS clients will require an explicit step to connect to an NFS server. This step will
be performed by a GUI application, where the user identifies the NFS server host and the
server's filesystem to mount. The mount occurs on a drive letter rather than an arbitrary mount
point.

Other PC/NFS clients will be tightly integrated with the Windows Network Neighborhood.
You would then click on the Network Neighborhood icon on the desktop screen, and see a list
of hosts advertising filesystems available to NFS or SMB clients.

In either case, to complete the connection to the server, you may be prompted with a
password, unless you decide to connect as nobody. As nobody, you'll have access only to files
with world read, write, or execute permissions.

If using AUTH_SYS, the client takes your password and sends it to the PCNFSD daemon
server, or checks with the NIS or NIS+ server's passwd map to see if you are authorized to
assume that AUTH_SYS identity. Thus, it is the client, and not the NFS server, that is
performing the authentication.”” However, if the connection uses NFS/dh (see Section 12.5.4)
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or Kerberized NFS (see Section 12.5.5.3), then the server performs the authentication without
sending a password to the server, encrypted or not.

13/ The same is true when using a Unix NFS client with AUTH_SYS.
10.4.2 Checking file permissions

Windows/NT and Unix have different file permissions conventions. By default, users on PCs
are given the permissions of the anonymous user nobody, which generally means that PC
users can access files with the appropriate world permissions. As we'll discuss in Section
12.4.2, being mapped to nobody is very restrictive and may prevent users from accessing their
home directories on Unix file servers.

With NFS Version 2, there is no mechanism for Windows or NT to perform Unix file
permission checking. File permissions exist only on the Unix server side, not on the PC/NFS
side. This problem is solved by calling on the PCNFSD server. The first time the PC/NFS
user accesses the server, the PC/NFS client mounts the filesystem and contacts the PCNFSD
server to get user identifiers, group identifiers, and supplementary group identifiers for the
authenticated user. The PC/NFS client can then compare the identifiers with the attributes
(user and group ownership and permissions) of files accessed to see if the user should have
access or not.

If the NFS mount uses NFS Version 3, which has an ACCESS procedure, contacting the
PCNFSD server for the user's identifiers for the purpose of permission is not necessary. Of
course, if AUTH_SYS is being used, the user's identifiers are still necessary.

10.4.3 Unix to Windows/NT text file conversion

Windows/NT and Unix differ in their end-of-line and end-of-file conventions on text files.
PC/NFS includes the dos2unix and unix2dos utilities to convert between the two formats (the
text editor you use on Windows might have the capability to convert between the two text
formats as well). When converting to Windows format, Unix end-of-line characters (\n) are
converted to newlines and carriage returns, and an end-of-file character (CTRL-Z) is added.
Going the other way, extra carriage returns and the end-of-file marker are stripped out of the
file.

If you look at a Unix text file on a PC without doing the end-of-line conversion, you'll find
that consecutive lines of text fall into a stepped arrangement instead of starting on the left
margin:

C> type h:\test.txt
This is a line
of text without carriage returns

In this example, you need to convert file fest to Windows format before reading it on the
PC/NFS client. The conversion entails the addition of carriage returns (CTRL-M characters)
to the end of each line and adding an end-of-file marker (CTRL-Z) to the end of the file.

You can put Windows files of any sort — executable, binary, or text — on a Unix fileserver

and access them using normal Windows mechanisms. PC/NFS doesn't care about the content
of the files. The file format conversion problem exists only for text files that were created on
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one system that must be read on another. If you put a Windows binary on a Unix NFS server,
it will not require any format conversion to be read and executed by the PC/NFS client.

Text file conversion utilities are available on Unix as well. Solaris has unix2dos and dos2unix.
Linux has mcopy.

10.5 Printer services

PC/NFS lets you access a printer attached to a Unix host by redirecting printer output to a file
on the PC/NFS print host. It's up to the server to spool the file to the printer, using the
standard Unix /pr or [p mechanism. There's no requirement that the Unix printer be directly
attached to the print host; if the server has to print remotely, it does so transparently to the
PC/NFS client.

The PC/NFS print and authentication functions are performed by the same machine: both
services are handled by the PCNFSD daemon that runs on the authentication server. You may
choose to run PCNFSD daemons on several NFS servers to separate the authentication and
printing services. PC/NFS clients will send requests to PCNFSD daemons used for printing if
the PC printer definitions explicitly name the print host.

Note that some PC/NFS implementations support printing via the LPR protocol, thus

obviating the need to run the PCNFSD daemon if it is not needed for authentication and
permissions checking purposes.
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Chapter 11. File Locking

In Section 7.5, we introduced the concept of file locking and the two primary components: the
RPC lock daemon and the status monitor. This chapter will delve more deeply into file
locking and will examine the administrative aspects.

11.1 What is file locking?

File locking is the act of ensuring that when you access a file, usually via a software
application, no one can change the file until you are done examining it. If you want to modify
the file, then file locking ensures that no one else can examine or modify the file until you are
done modifying it.

The earliest versions of Unix had no way to lock files except to create lock files. The idea is
that two or more processes would more or less simultaneously try to create a lock file in
exclusive mode, via the O _EXCL flag of the open( ) system call. The operating system would
return success to the process that won the race, and a "file exists" error to losing processes.
One problem with this scheme is that it relies on the winning process to remove the lock file
before it exits. If the process is running buggy software, this might not happen. Some
applications mitigate this problem by recording the process ID of the winner into the contents
of the lock file. A process that finds that it gets a "file exists" error can then read the lock file
to see if the owning process is still running.

Still, lock files can be clumsy. In the 1980s, Unix versions were released with file locking
support built into the operating system. The System V branch of Unix offered file locking via
the fentl( ) system call, whereas the BSD branch provided the flock( ) system call. In both
cases, when the process that creates the lock dies, the lock will be automatically released.

11.1.1 Exclusive and shared locks

Both fentl and flock give the choice of either an exclusive lock, where only one process could
hold the lock, or a shared lock, where multiple holders could simultaneously exist, to the
exclusion of holders of the exclusive lock. The exclusive lock is sometimes called a "single
writer" lock, because its exclusive nature lends itself to allowing safe writes to a file. The
shared lock is sometimes called a "multiple readers" lock because its shared nature lends itself
to allowing multiple safe reads of a file.

11.1.2 Record locks

The fcntl system call also has the feature of byte range record locking. This means that the
application can partition a file into as many arbitrarily sized segments or records that it wants,
and by specifying a file offset and length, lock them. Thus, it is possible to have both an
exclusive lock and a shared lock on a file, provided the file offsets and lengths of each record
lock do not overlap.

11.1.3 Mandatory versus advisory locking

Both fentl and flock offer advisory locking. Advisory locking is locking that requires the
cooperation of participating processes. Suppose process A acquires an exclusive lock on the

192



Managing NFS and NIS

file, with the intent to write it. Suppose process B opens the file with the intent to write it. If
process B fails to acquire a lock, there is nothing to prevent it from issuing a write system call
and corrupting the process that A is writing. For this reason, advisory locking is sometimes
called unenforced locking.

System V (and therefore Solaris) offers mandatory or enforced locking as an option. This
option is enabled if mandatory lock permissions are set on a file. Mandatory lock permissions
are an overload of the set group ID execution bit (02000 in octal). If the set group ID
execution bit is set, and if the group execution bit is not set, then all reads and writes to the
file will use enforced locking. So, for example:

% chmod 2644 example
% 1ls -1 example
-rw-r-lr-- 1 mre staff 9 Dec 28 10:52 example

This makes file example readable and writable by the file's owner, and readable by everyone
else. The appearance of the | in the first field of the output of the Is command tells you that
mandatory locking is enabled. Of course, you can use any combination of read or write
permissions for the file's owner, group, and world.

If the mandatory lock permissions are set on a file, then every write(' ) or read( ) system call
results in an implicit sequence of:

fentl(...); /* lock the file at the range we are reading or writing */
read(...); /* or */ write(...);
fentl(...); /* unlock the file at the range locked above */

What if the process has already acquired a lock by an explicit fcn#/ call? If the range locked is
equal to or encompasses the range the read or write is done on, then no implicit pair of fcnt/
calls are done. If the range explicitly locked partly overlaps the range read or write will do,
then implicit fentl calls are done on the unlocked portion of the range.

Mandatory locking seems very useful, but it is open to denial of service attacks. Suppose
mandatory lock permissions are set on a file. An attacker named Mallet decides to issue an
fentl call to get an exclusive lock on the entire file. Bob now tries to read the file and finds
that his application hangs. A proponent of mandatory locking might point out that the mistake
was in allowing the file to be accessible by Mallet (if Mallet can't open the file, he can't lock
it). The counter argument is that if you are going to rely on permissions to avoid a denial of
service (and restricted permissions are a good thing to have for critical applications), then the
set of users who can access the file is limited to those with a vested interest in avoiding denial
of service. In that case, mandatory locking is no more useful than advisory locking.

11.1.4 Windows/NT locking scheme

The discussion so far has been about Unix locking paradigms. The Windows world has a
different paradigm. There are two major differences between Unix and Windows locking:

e The first difference is that the Windows world supports a share reservation
programming interface. Share reservations apply to the entire file and are specified at
the time a file is created or opened. A share reservation consists of a pair of modes.
The first is the access mode, which is how the application will access the file: read,

193



Managing NFS and NIS

write, or read/write. The second is the access that the application will deny to other
applications: none, read, write, or read/write. When the application attempts to open a
file, the operating system checks to see if there are any other open requests on the file.
If so, it first compares the application's access mode with the deny mode of the other
openers. If there is a match, then the open is denied. If not, then the operating system
compares the application's deny mode with the access mode of the other openers.
Again, if there is a match, the open is denied.

e The second difference is that there is no advisory locking. Whole file locking, byte
range locking, and share reservation locking are all mandatory or enforced."

"I As it turns out, very few Windows programs rely on byte range mandatory locking.

- Share reservations in the Windows world do not interact at all with
s Windows byte range or whole file locking.
0
(158

11.2 NFS and file locking

The NFS (Versions 2 and 3) protocol does not support file locking, but the NFS environment
supports an ancillary protocol called NLM, which originally stood for "Network Lock
Manager." When an NFS filesystem on an NFS client gets a request to lock a file, instead of
an NFS remote procedure call, it generates an NLM remote procedure call.

11.2.1 The NLM protocol

The NLM protocol consists of remote procedure calls that pattern fentl arguments and results.
Because blocking locks are supported (a process blocks waiting for a lock that conflicts with
another holder), the NLM protocol has the notion of callbacks, from the file server to the
NLM client to notify that a lock is available. In this way, the NLM client sometimes acts as an
RPC server in order to receive delayed results from lock calls.

11.2.2 NLM recovery

The NFS protocol is stateless, but because file locking is inherently stateful, NLM is stateful.
This results in a more complex scheme to recover from failures. There are three types of
recovery scenarios to consider:

e Server crash
¢ Client crash
e Network partition

11.2.2.1 Server crash

When the NLM server crashes, NLM clients that are holding locks must reestablish them on
the server when it restarts. The NLM protocol deals with this by having the status monitor on
the server send a notification message to the status monitor of each NLM client that was
holding locks. The initial period after a server restart is called the grace period. During the
grace period, only requests to reestablish locks are granted. Thus, clients that reestablish locks
during the grace period are guaranteed to not lose their locks.
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11.2.2.2 Client crash

When an NLM client crashes, it is desirable that any locks it was holding at the time be
removed from all the NLM servers it had locks on. The NLM protocol deals with this by
having the status monitor on the client send a message to each server's status monitor once the
client reboots. The client reboot indication tells the server that the client no longer needs its
locks.

Of course, if the client crashes and never comes back to life, the client's locks will persist
indefinitely. This is not good for two reasons:

o Resources are indefinitely leaked.
o Eventually another client will want to get a conflicting lock on at least one of the files
the crashed client had locked. Thus the other client is postponed indefinitely.

This is one of the administrative issues you will need to deal with, which we will cover later
in this chapter.

11.2.2.3 Network partition

Suppose an NLM client is holding a lock, but the network route between it and the NLM
server goes down: a network partition. At this point, from the perspective of the server, the
situation is indistinguishable from a client that crashes but never comes back. Again, this is a
situation you will need to handle.

11.2.3 Mandatory locking and NFS

NLM supports only advisory whole file and byte range locking, and until NFS Version 4 is
deployed, this means that the NFS environment cannot support mandatory whole file and byte
range locking. The reason goes back to how mandatory locking interacts with advisory fentl
calls.

Let's suppose a process with ID 1867 issues an fcntl exclusive lock call on the entire range of
a local file that has mandatory lock permissions set. This fcntl call is an advisory lock. Now
the process attempts to write the file. The operating system can tell that process 1867 holds an
advisory lock, and so, it allows the write to proceed, rather than attempting to acquire the
advisory lock on behalf of the process 1867 for the duration of the write. Now suppose
process 1867 does the same sequence on another file with mandatory lock permissions, but
this file is on an NFS filesystem. Process 1867 issues an fcnt/ exclusive lock call on the entire
range of a file that has mandatory lock permissions set. Now process 1867 attempts to write
the file. While the NLM protocol has fields in its lock requests to uniquely identify the
process on the client that locked the file, the NFS protocol has no fields to identify the
processes that are doing writes or reads. The file is advisory locked, and it has the mandatory
lock permissions set, yet the NFS server has no way of knowing if the process that sent the
write request is the same one that obtained the lock. Thus, the NFS server cannot lock the file
on behalf of the NFS client. For this reason, some NFS servers, including Solaris servers,
refuse any read or write to a file with the mandatory lock permissions set.
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11.2.4 NFS and Windows lock semantics
The NLM protocol supports byte range locking and share reservations.

While Windows byte range locking is mandatory, on Unix servers it will be advisory. To the
dismay of Windows software developers, this means that non-PC/NFS clients might step on
PC/NFS clients, because the non-PC/NFS client does not try to acquire a lock. It also means
that servers that support both NFS/NLM and SMB might not correctly handle cases where an
NFS client is doing a read or write to a file that an SMB client has established a mandatory
lock on.

PC/NFS clients will emulate share reservation semantics by issuing the share reservation
remote procedure calls to the NLM server. However, most non-PC/NFS clients, or even local
processes on Unix NLM servers will not honor the deny semantics of the share reservation of
the PC/NFS client. Another problem with the emulation is that Windows semantics expect the
share reservation and exclusive file creation to be atomic. The share reservation and file
creation go out as separate operations, hence no atomicity, allowing a window of
vulnerability, where a client can succeed in its exclusive create, but not get the share
reservation.

11.3 Troubleshooting locking problems

Lock problems will be evident when an NFS client tries to lock a file, and it fails because
someone has it locked. For applications that share access to files, the expectation is that locks
will be short-lived. Thus, the pattern your users will notice when something is awry is that
yesterday an application started up quite quickly, but today it hangs. Usually it is because an
NFS/NLM client holds a lock on a file that your application needs to lock, and the holding
client has crashed.

11.3.1 Diagnosing NFS lock hangs

On Solaris, you can use tools like pstack and truss to verify that processes are hanging in a
lock request:

clientl% ps -eaf | grep SuperApp

mre 23796 10031 0 11:13:22 pts/6 0:00 SuperApp
clientl% pstack 23796
23796: SuperApp

££313134 fcntl (1, 7, ffbef9dc)

f£30ded48 fcntl (1, 7, ffbef9dc, 0, 0, 0) + 1c8

f£30e254 lockf (1, 1, 0, 2, ££332584, ff2a0140) + 98
0001086c main (1, ffbefac4d4, ffbefacc, 20800, 0, 0) + 1c
00010824 start (0, 0, 0, 0, 0, 0) + dc

clientl% truss -p 23796
fcntl(l, F_SETLKW, OxFFBEF9DC) (sleeping...)

This verifies that the application is stuck in a lock request. We can use pfiles to see what is
going on with the files of process 23796:

clientl% pfiles 23796
pfiles 23796
23796: SuperApp
Current rlimit: 256 file descriptors
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0: S IFCHR mode:0620 dev:136,0 ino:37990 uid:466 gid:7 rdev:24,37
O_RDWR

1: S IFREG mode:0644 dev:208,1823 ino:5516985 uid:466 gid:300 size:0
O WRONLY | O LARGEFILE
advisory write lock set by process 3242

2: S _IFCHR mode:0620 dev:136,0 ino:37990 uid:466 gid:7 rdev:24,37
O_RDWR

That we are told that there is an advisory lock set on file descriptor 1 that is set by another
process, process ID 3242, is useful, but unfortunately it doesn't tell us if 3242 is a local
process or a process on another NFS client or NFS server. We also aren't told if the file
mapped to file descriptor 1 is a local file, or an NFS file. We are, however, told that the major
and minor device numbers of the filesystem are 208 and 1823 respectively. If you run the
mount command without any arguments, this dumps the list of mounted file systems. You
should see a display similar to:

/ on /dev/dsk/c0t0d0s0
read/write/setuid/intr/largefiles/onerror=panic/dev=2200000

on Thu Dec 21 11:13:33 2000

/usr on /dev/dsk/c0t0d0s6 read/write/setuid/intr/largefiles/onerror=panic/
dev=2200006 on Thu Dec 21 11:13:34 2000

/proc on /proc read/write/setuid/dev=31c0000 on Thu Dec 21 11:13:29 2000
/dev/fd on fd read/write/setuid/dev=32c0000 on Thu Dec 21 11:13:34 2000
/etc/mnttab on mnttab read/write/setuid/dev=3380000 on Thu Dec 21 11:13:35
2000

/var on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles/onerror=panic/
dev=2200007 on Thu Dec 21 11:13:40 2000

/home/mre on spike:/export/home/mre
remote/read/write/setuid/intr/dev=340071f on

Thu Dec 28 08:51:30 2000

The numbers after dev= are in hexadecimal. Device numbers are constructed by taking the
major number, shifting it left several bits, and then adding the minor number. Convert the
minor number 1823 to hexadecimal, and look for it in the mount table:

clientl% printf "$x\n" 1823

71f

clientl% mount | grep 'dev=.*71f'

/home/mre on spike:/export/home/mre
remote/read/write/setuid/intr/dev=340071f on
Thu Dec 28 08:51:30 2000

We now know four things:
e This is an NFS file we are blocking on.
e The NFS server name is spike.
o The filesystem on the server is /export/home/mre.

e The inode number of the file is 5516985.

One obvious cause you should first eliminate is whether the NFS server spike has crashed or
not. If it hasn't crashed, then the next step is to examine the server.
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11.3.2 Examining lock state on NFS/NLM servers

Solaris and other System V-derived systems have a useful tool called crash for analyzing
system state. Crash actually reads the Unix kernel's memory and formats its data structures in
a more human readable form. Continuing with the example from Section 11.3.1, assuming
/export/home/mre is a directory on a UFS filesystem, which can be verified by doing:

spike# df -F ufs | grep /export
/export (/dev/dsk/c0t0d0s7 ): 503804 blocks 436848 files

then you can use crash to get more lock state.

The crash command is like a shell, but with internal commands for examining kernel state.
The internal command we will be using is Ick :

spike# crash

dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout

> 1lck

Active and Sleep Locks:

INO TYP START END PROC PID FLAGS STATE PREV NEXT
LOCK

30000c3eel8 w 0 0 13 136 0021 3 48bf0f8 ae9008
6878d00

30000dd8710 w 0 MAXEND 17 212 0001 3 8fla4s8 8£02d8
8f0el8

30001ccelcO0 w 193 MAXEND -1 3242 2021 3 6878850 ¢43a08
2338a38

Summary From List:
TOTAL ACTIVE SLEEP
3 3 0

An important field is PROC. PROC is the "slot" number of the process. If it is -1, that
indicates that the lock is being held by a nonlocal (i.e., an NFS client) process, and the PID
field thus indicates the process ID, relative to the NFS client. In the sample display, we see
one such entry:

30001ccelcO0 w 193 MAXEND -1 3242 2021 3 6878850 c43a08
2338a38

Note that the process id, 3242, is equal to that which the pfiles command displayed earlier in
this example. We can confirm that this lock is for the file in question via crash's uinode
command:

> uinode 30001lccelcO
UFS INODE MAX TABLE SIZE = 34020

ADDR MAJ/MIN INUMB RCNT LINK UID GID SIZE MODE FLAGS
30001ccelcO 136, 7 5516985 2 1 466 300 403 f---644 mt rf
>

The inode numbers match what pfiles earlier displayed on the NFS client. However, inode
numbers are unique per local filesystem. We can make doubly sure this is the file by
comparing the major and minor device numbers from the uinode command, 136 and 7, with
that of the filesystem that is mounted on /export :
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spike# 1ls -1L /dev/dsk/c0t0dO0s7
brw------- 1 root Sys 136, 7 May 6 2000 /dev/dsk/c0t0d0s7

11.3.3 Clearing lock state

Continuing with our example from Section 11.3.2, at this point we know that the file is locked
by another NFS client. Unfortunately, we don't know which client it is, as crash won't give us
that information. We do however have a potential list of clients in the server's /var/statmon/sm
directory:

spike# ed /var/statmon/sm
spike# 1s
clientl ipv4.10.1.0.25 ipv4.10.1.0.26 gonzo Jjava

The entries prefixed with ipv4 are just symbolic links to other entries. The non-symbolic link
entries identify the hosts we want to check for.

The most likely cause of the lock not getting released is that the holding NFS client has
crashed. You can take the list of hosts from the /var/statmon/sm directory and check if any are
dead, or not responding due to a network partition. Once you determine which are dead, you
can use Solaris's clear locks command to clear lock state. Let's suppose you determine that
gonzo is dead. Then you would do:

spike# clear_locks gonzo

If clearing the lock state of dead clients doesn't fix the problem, then perhaps a now-live client
crashed, but for some reason after it rebooted, its status monitor did not send a notification to
the NLM server's status monitor. You can log onto the live clients and check if they are
currently mounting the filesystem from the server (in our example, spike./export). If they are
not, then you should consider using clear locks to clear any residual lock state those clients
might have had.

Ultimately, you may be forced to reboot your server. Short of that there are other things you
could do. Since you know the inode number and filesystem of file in question, you can
determine the file's name:

spike# cd /export
find . -inum 5516985 -print
./home/mre/database

You could rename file database to something else, and copy it back to a file named database.

Then kill and restart the SuperApp application on clientl. Of course, such an approach
requires intimate knowledge or experience with the application to know if this will be safe.
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Chapter 12. Network Security

The simplicity and transparency provided by NFS and NIS must be weighed against security
concerns. Providing access to all files to all users may not be in the best interests of security,
particularly if the files contain sensitive or proprietary data. Not all hosts may be considered
equally secure or "open," so access may be restricted to certain users. Transparency must be
limited when dealing with secured hosts: if you have taken precautions to prevent
unauthorized access to a machine, you don't want someone to be able to sit down and use an
open window or logged-in terminal to access the secured machine. To enforce access
restrictions, you always want password verification for users, which means eliminating some
of the network transparency provided by NIS.

This chapter describes mechanisms for tightening access restrictions to machines and
filesystems. It is not intended to be a complete list of security loopholes and their fixes. The
facilities and administrative techniques covered are meant to complement the network
transparency provided by NFS and NIS while still enforcing local security measures. For a
more detailed treatment of security issues, refer to Practical Unix Security, by Garfinkel and
Spafford (O'Reilly & Associates, 1996).

12.1 User-oriented network security

One area of concern is user access to hosts on the network. Figure 12-1 shows several classes
of permissions to consider, reflecting the ways in which a user might access a host from
another host on the network.

Figure 12-1. Client-server remote logins

Server m Server

Dapends on
client use

Client |_’ Client

. = frusted
= not trusted, no rshrlogin without password

Remote logins are not the only concern; remote execution of commands using rs/ should be
considered in the same context. This section covers only login restrictions; we'll look at
protecting data in NFS filesystems later in this chapter. Local login restrictions are defined by
the local host's password file, NIS password maps, and the use of netgroups. Across the
network, access is determined by the notion of trusted hosts and trusted users.

12.1.1 Trusted hosts and trusted users

Defining a trusted host requires two machines: one that will be trusted and one that is
extending the trust to it. The local host /4 trusts remote host 74 if users can log into /4 from rh
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without supplying their passwords. Similarly, a user is trusted if he or she can log into a host
from some remote machine without supplying a password. Trust is defined only for the local
host; users and machines may be trusted on some systems but not on others.

The relationships between hosts often define the realm of trusted users and trusted hosts. Two
NIS or NFS clients, for example, may trust all users and all other client hosts. On the NFS
server, only other servers may be trusted hosts and only the system administration staff may
be trusted users.

- The following trusted user and trusted host descriptions apply in an

— environment in which you do not have to be wary of users or outsiders
who will attempt to compromise security. These are basic security
measures that fit in with the other network management strategies
discussed in this book. If you need to secure your systems against all
attacks, then you must consider the effects of having security
compromised on any machine in your network. Again, these extensive
security mechanisms are discussed in Practical Unix Security.

Some of the common patterns of trusting hosts and users are:
Server-Server

Generally, servers trust each other. A few users can be trusted in server-to-server
relationships if each server has a password file that contains a subset of the NIS
password map, or a password file with no NIS references. To emphasize the previous
warning, extending trust between servers means that if one server is compromised,
then they all are.

Server-Client

Most clients should trust the servers and users on the servers. A system administrator
may need to run performance monitoring daemons on the client from the server and
require transparent access to the client. Similarly, the server may be used to distribute
files to the clients on a regular basis.

Client-Server

This is probably the most restrictive relationship. Only users with a need to use a
service are generally given transparent access to the servers. Remote access to the
server for access to a server's printer can be controlled via the -u option to the /padmin
command, instead of by trusting client machines on the server.

Client-Client

Client-client relationships depend upon how you have centralized your disk resources.
If all files live on one or more fileservers, then client-to-client relationships are
generally relaxed. However, if you are using the clients as isolated systems, with some
per-client storage containing private data, then client-client relationships look more
like those between clients and servers. The scope of the client-client relationships
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depends upon the sensitivity of the data on the clients: if you don't want other users to
see the private data, then you must treat the client machine like a server.

The /etc/hosts.equiv and .rhosts files (in each user's home directory) define the set of trusted
hosts, users, and user-host pairs for each system. Again, trust and transparent access are
granted by the machine being accessed remotely, so these configuration files vary from host
to host. The .rhosts file is maintained by each user and specifies a list of hosts or user-host
pairs that are also parsed for determining if a host or user is trusted.

12.1.2 Enabling transparent access

Both rlogin and rsh use the ruserok( ) library routine to bypass the normal login and password
security mechanism. The ruserok( ) routine is invoked on the server side of a connection to
see if the remote user gets transparent (i.e., no password prompt) access. To understand the
semantics, let's look at its function prototype:

int ruserok (const char *rhost, int suser, const char *ruser,
const char *luser);

The rhost parameter is the name of the remote host from where the remote user is. The ruser
parameter is the login name of the remote user. The /user parameter is the name of local login
name that the remote user wants transparent access to. Often /user and ruser are the same, but
not always. The suser parameter is set to 1 if the UID of luser is 0, i.e., superuser. Otherwise,
suser 1s set to 0.

ruserok( ) checks first if luser exists; i.e., does getpwnam( ) return success for /user ? It then
determines if the remote user and hostname given are trusted on the local host; it is usually
called by the remote daemon for these utilities during its startup. If the user or host are not
trusted, then the user must supply a password to log in or get "Permission denied" errors when
attempting to use rsh. If the remote host trusts the user and host, execution (or login) proceeds
without any other verification of the user's identity.

The hosts.equiv file contains either hostnames or host-user pairs:

hostname [username]

If a username follows the hostname, only that combination of user and hostnames is trusted.
Netgroup names, in the form +@group, may be substituted for either hostnames or
usernames. As with the password file, using a plus sign (+) for an entry includes the
appropriate NIS map: in the first column, the hosts map is included, and in the second
column, the password map is included. Entries that grant permission contain the hostname, a
host and username, or a netgroup inclusion.

The following is /etc/hosts.equiv on host mahimahi:

wahoo

bitatron +

corvette johnc

+@source-hosts

+@sysadm-hosts +@sysadm-users
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The first example trusts all users on host wahoo. Users on wahoo can rlogin to mahimahi
without a password, but only if the ruser and luser strings are equal.The second example is
similar to the first, except that any remote user from bitatron can claim to be any local user
and get access as the local user; i.e., luser and ruser do not have to be equal. This is certainly
useful to the users who have access to bitatron, but it is very relaxed (or lax) security on
mahimahi. The third example is the most restrictive. Only user johnc is trusted on host
corvette, and of course luser and ruser (both "johnc") must be the same. Other users on host
corvette are not trusted and must supply a password when logging in to mahimahi.

The last two entries use netgroups to define lists of hosts and users. The +@source-hosts
entry trusts all hosts whose names appear in the source-hosts netgroup. If usernames are given
as part of the netgroup triples, they are ignored. This means that hostname wildcards grant
overly generous permissions. If the source-hosts netgroup contained (,stern,), then using this
netgroup in the first column of hosts.equiv effectively opens up the machine to all hosts on the
network. If you need to restrict logins to specific users from specific machines, you must use
either explicit names or netgroups in both the first and second column of Zosts.equiv.

The last example does exactly this. Instead of trusting one host-username combination, it
trusts all combinations of hostnames in sysadm-hosts and the usernames in sysadm-users.
Note that the usernames in the sysadm-hosts netgroup and the hostnames in the sysadm-users
netgroup are completely ignored.

Permission may be revoked by preceding the host or user specification with a minus sign (-):

-wahoo
+ -@dangerous-users

The first entry denies permission to all users on host wahoo. The second example negates all
users in the netgroup dangerous-users regardless of what machine they originate from (the
plus sign (+) makes the remote machine irrelevant in this entry).

If you want to deny permission to everything in both the hosts and password NIS maps, leave
hosts.equiv empty.

The .rhosts file uses the same syntax as the hosts.equiv file, but it is parsed after hosts.equiv.
The sole exception to this rule is when granting remote permission to root. When the
superuser attempts to access a remote host, the hosts.equiv file is ignored and only the /.rhosts
file is read. For all other users, the ruserok( ) routine first reads hosts.equiv. If it finds a
positive match, then transparent access is granted. If it finds a negative match, and there is no
.rhosts file for luser, then transparent access is denied. Otherwise, the luser 's .rhosts file is
parsed until a match, either positive or negative, is found. If an entry in either file denies
permission to a remote user, the file parsing stops at that point, even if an entry further down
in the file grants permission to that user and host combination.

Usernames that are not the same on all systems are handled through the user's .rhosts file. If
you are user julie on your desktop machine vacation, but have username juliec on host starter,
you can still get to that remote host transparently by adding a line to your .rhosts file on
starter. Assuming a standard home directory scheme, your .rhosts file would be
/home/juliec/.rhosts and should contain the name of the machine you are logging in from and
your username on the originating machine:
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vacation julie

From vacation, you can execute commands on starter using:

% rsh starter -1 juliec "1ls -1"

or:

% rlogin starter -1 juliec

On starter, the ruserok( ) routine looks for a .rhosts file for user juliec, your username on that
system. If no entry in hosts.equiv grants you permission (probably the case because you have
a different username on that system), then your .rhosts file entry maps your local username
into its remote equivalent. You can also use netgroups in .rhosts files, with the same warnings
that apply to using them in /etc/hosts.equiv.

As a network manager, watch for overly permissive .rhosts files. Users may accidentally grant
password-free access to any user on the network, or map a foreign username to their own
Unix username. If you have many password files with private, non-NIS managed entries,
watch the use of .rhosts files. Merging password files to eliminate non-uniform usernames
may be easier than maintaining a constant lookout for unrestricted access granted through a
.rhosts file.

12.1.3 Using netgroups

Netgroups have been used in several examples already to show how triples of host, user, and
domain names are used in granting access across the network. The best use of netgroups is for
the definition of splinter groups of a large NIS domain, where creating a separate NIS domain
would not justify the administrative effort required to keep the two domains synchronized.

Because of the variety of ways in which netgroups are applied, their use and administration
are sometimes counterintuitive. Perhaps the most common mistake is defining a netgroup with
host or usernames not present in the NIS maps or local host and password files. Consider a
netgroup that includes a hostname in another NIS domain:

remote-hosts (poi,-,-), (muban,-,-)

When a user attempts to rlogin from host poi, the local server-side daemon attempts to find
the hostname corresponding to the IP address of the originating host. If poi cannot be found in
the NIS hosts.byaddr map, then an IP address, instead of a hostname, is passed to ruserok( ).
The verification process fails to match the hostname, even though it appears in the netgroup.
Any time information is shared between NIS domains, the appropriate entries must appear in
both NIS maps for the netgroup construction to function as expected.

Even though netgroups are specified as host and user pairs, no utility uses both names
together. There is no difference between the following two netgroups:

group-a (los, mikel,) (bitatron, stern, )
group-b (los, -,) (bitatron, -,) (-, mikel, ) (-, stern, )
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Things that need hostnames — the first column of /osts.equiv or NFS export lists — produce
the set of hosts {/os, bitatron} from both netgroups. Similarly, anything that takes a username,
such as the password file or the second column of hosts.equiv, always finds the set {mikel,
stern}. You can even mix-and-match these two groups in hosts.equiv. All four of the
combinations of the two netgroups, when used in both columns of hosts.equiv, produce the
same net effect: users stern and mikel are trusted on hosts bitatron and los.

The triple-based format of the netgroups map clouds the real function of the netgroups.
Because all utilities parse either host or usernames, you will find it helpful to define netgroups
that contain only host or usernames. It's easier to remember what each group is supposed to
do, and the time required to administer a few extra netgroups will be more than made up by
time not wasted chasing down strange permission problems that arise from the way the
netgroups map is used.

An example here helps to show how the netgroup map can produce unexpected results. We'll
build a netgroup containing a list of users and hosts that we trust on a server named gate.
Users in the netgroup will be able to log in to gate, and hosts in the netgroup will be able to
mount filesystems from it. The netgroup definition looks like this:

gate-group (,stern,), (,johnc,), (bitatron, -,), (corvette, -—,)

In the /etc/dfs/dfstab file on gate, we'll add a host access restriction:

share -o rw=gate-group /export/home/gate

No at-sign (@) is needed to include the netgroup name in the /etc/dfs/dfstab file. The netgroup
map is searched first for the names in the rw= list, followed by the Aosts map.

In /etc/hosts.equiv on gate, we'll include the gate-group netgroup:

+ +@gate-group

To test our access controls, we go to a machine not in the netgroup — NFS client vacation —
and attempt to mount /export/home/gate. We expect that the mount will fail with a
"Permission denied" error:

vacation# mount gate:/home/gate/home/gate /mnt
vacation#

The mount completes without any errors. Why doesn't this netgroup work as expected?

The answer is in the wildcards left in the host fields in the netgroup entries for users stern and
johnc. Because a wildcard was used in the host field of the netgroup, a// hosts in the NIS map
became part of gate-group and were added to the access list for /export/home/gate. When
creating this netgroup, our intention was probably to allow users stern and johnc to log in to
gate from any host on the network, but instead we gave away access rights.

A better way to manage this problem is to define two netgroups, one for the users and one for

the hosts, so that wildcards in one definition do not have strange effects on the other. The
modified /etc/netgroup file looks like this:
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gate-users: (,stern,), (,johnc,)
gate-hosts: (bitatron,,), (corvette,,)

In the /etc/dfs/dfstab file on gate, we use the gate-hosts netgroup:

share -o rw=gate-hosts /export/home/gate

and in /etc/hosts.equiv, we use the netgroup gate-users. When host information is used, the
gate-hosts group explicitly defines those hosts in the group; when usernames are needed, the
gate-users map lists just those users. Even though there are wildcards in each group, those
wildcards are in fields that are not referenced when the maps are used in these function-
specific ways.

12.2 How secure are NIS and NFS?

NFS and NIS have bad reputations for security. NFS earned its reputation because of its
default RPC security flavor AUTH_SYS (see Section 12.4.1 later in this chapter) is very
weak. There are better security flavors available for NFS on Solaris and other systems.
However, the better security flavors are not available for all, or even most NFS
implementations, resulting in a practical dilemma for you. The stronger the NFS security you
insist on, the more homogenous your computing environment will become. Assuming that
secure file access across the network is a requirement, another option to consider is to not run
NFS and switch to another file access system. Today there are but two practical choices:

SMB (also known as CIFS)

This limits your desktop environment to Windows. However, as discussed in Section
10.2.1, if you want strong security, you'll have to have systems capable of it, which
means running Windows clients and servers throughout.

DCE/DFS

At the time this book was written, DCE/DFS was available as an add-on product
developed by IBM's Pittsburgh Laboratory (also known as Transarc) unit for Solaris,
IBM's AIX, and Windows. Other vendors offer DCE/DFS for their own operating
systems (for example, HP offers DCE/DFS). So DCE/DFS offers the file access
solution that is both heterogeneous and very secure.

NIS has earned its reputation because it has no authentication at all. The risk of this is that a
successful attacker could provide a bogus NIS map to your users by having a host he controls
masquerade as an NIS server. So the attacker could use a bogus host map to redirect the user
to a host he controls (of course DNS has the same issue)."” Even more insidious, the attacker
could gain root access when logging into a system, simply by providing a bogus passwd map.
Another risk is that the encrypted password field from the passwd map in NIS is available to
everyone, thus permitting attackers to perform faster password guessing than if they manually
tried passwords via login attempts.

I An enhancement to DNS, DNSSEC has been standardized but it is not widely deployed.

These issues are corrected by NIS+. If you are uncomfortable with NIS security then you
ought to consider NIS+. In addition to Solaris, NIS+ is supported by AIX and HP/UX, and a
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client implementation is available for Linux. By default NIS+ uses the RPC/dh security
discussed in Section 12.5.4. As discussed in Section 12.5.4.10, RPC/dh security is not state of
the art. Solaris offers an enhanced Diffie-Hellman security for NIS+, but so far, other systems
have not added it to their NIS+ implementations.

Ultimately, the future of directory services is LDAP, but at the time this book was written, the
common security story for LDAP on Solaris, AIX, HP/UX, and Linux was not as strong as
that of NIS+. You can get very secure LDAP out of Windows 2000, but then your clients and
servers will be limited to running Windows 2000.

12.3 Password and NIS security

Several volumes could be written about password aging, password guessing programs, and
the usual poor choices made for passwords. Again, this book won't describe a complete
password security strategy, but here are some common-sense guidelines for password
security:

e Watch out for easily guessed passwords. Some obvious bad password choices are:
your first name, your last name, your spouse or a sibling's name, the name of your
favorite sport, and the kind of car you drive. Unfortunately, enforcing any sort of
password approval requires modifying or replacing the standard NIS password
management tools.

e Define and repeatedly stress local password requirements to the user community. This
is a good first-line defense against someone guessing passwords, or using a password
cracking program (a program that tries to guess user passwords using a long list of
words). For example, you could state that all passwords had to contain at least six
letters, one capital and one non-alphabetic character.

e Remind users that almost any word in the dictionary can be found by a thorough
password cracker.

e Use any available password guessing programs that you find, such as Alec Muffet's
crack. Having the same weapons as a potential intruder at least levels the playing
field.

In this section, we'll look at ways to manage the root password using NIS and to enforce some
simple workstation security.

12.3.1 Managing the root password with NIS

NIS can be used to solve a common dilemma at sites with advanced, semi-trusted users. Many
companies allow users of desktop machines to have the root password on their local hosts to
install software, make small modifications, and power down/boot the system without the
presence of a system administrator. With a different, user-specific root password on every
system, the job of the system administrator quickly becomes a nightmare. Similarly, using the
same root password on all systems defeats the purpose of having one.

Root privileges on servers should be guarded much more carefully, since too many hands
touching host configurations inevitably creates untraceable problems. It is important to stress
to semi-trusted users that their lack of root privileges on servers does not reflect a lack of
expertise or trust, but merely a desire to exert full control over those machines for which you
have full and total responsibility. Any change to a server that impacts the entire network
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becomes your immediate problem, so you should have jurisdiction over those hosts. One way
to discourage would-be part-time superusers is to require anyone with a server root password
to carry the 24-hour emergency beeper at least part of each month.

Some approach is required that allows users to gain superuser access to their own hosts, but
not to servers. At the same time, the system administrator must be able to become root on any
system at any time to perform day-to-day maintenance. To solve the second problem, a
common superuser password can be managed by NIS. Add an entry to the NIS password
maps that has a UID of 0, but login name that is something other than root. For example, you
might use a login name of netroot. Make sure the /etc/nsswitch.conf file on each host lists nis
on the passwd: entry:

passwd: files nis
Users are granted access to their own host via the root entry in the /etc/passwd file.

Instead of creating an additional root user, some sites use a modified version of su that
consults a "personal" password file. The additional password file has one entry for each user
that is allowed to become root, and each user has a unique root password.” With either
system, users are able to manage their own systems but will not know the root passwords on
any other hosts. The NIS-managed netroot password ensures that the system administration
staff can still gain superuser access to every host.

2] An su-like utility is contained in Unix System Administration Handbook, by Evi Nemeth, Scott Seebass, and Garth Snyder (Prentice-Hall, 1990).
12.3.2 Making NIS more secure

Aside from the caveats about trivial passwords, there are a few precautions that can be taken
to make NIS more secure:

e If you are trying to keep your NIS maps private to hide hostnames or usernames
within your network, do not make any host that is on two or more networks an NIS
server. Users on the external networks can forcibly bind to your NIS domain and
dump the NIS maps from a server that is also performing routing duties. While the
same trick may be performed if the NIS server is inside the router, it can be defeated
by disabling IP packet forwarding on the router. Appendix A covers this material in
more detail.

e On the master NIS server, separate the server's password file and the NIS password
file so that all users in the NIS password file do not automatically gain access to the
NIS master server. A set of changes for building a distinct password file was presented
in Section 4.2.6.

o Periodically check for null passwords using the following awk script:

#! /bin/sh
# ( cat /etc/shadow; ypcat passwd ) | awk
-F':' '"{if ($2 == "") print $1 ;}'

e The subshell concatenates the local password file and the NIS passwd map; the awk
script prints any username that does not have an entry in the password field of the
password map.
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e Consider configuring the system so that it cannot be booted single-user without
supplying the root password. On Solaris 8, this is the default behavior, and can be
overridden by adding this entry to /etc/default/sulogin:

PASSREQ=NO

When the system is booted in single-user mode, the single-user shell will not be
started until the user supplies the root password.

o Configure the system so that superuser can only log into the console, i.e., superuser
cannot rlogin into the system. On Solaris 8, you do this by setting the CONSOLE
variable in /etc/default/login:

CONSOLE=/dev/console

e On Sun systems, the boot PROM itself can be used to enforce security. To enforce
PROM security, change the security-mode parameter in the PROM to full:

# eeprom security-mode=full

No PROM commands can be entered without supplying the PROM password; when
you change from security-mode=none to security-mode=full you will be prompted for
the new PROM password. This is not the same as the root password, and serves as a
redundant security check for systems that can be halted and booted by any user with
access to the break or reset switches.

- There is no mechanism for removing the PROM security without

@ supplying the PROM password. If you forget the PROM password after
installing it, there is no software method for recovery, and you'll have to
rely on Sun's customer service organization to recover!

12.3.2.1 The secure nets file

If the file /var/yp/securenets is present, then ypserv and ypxfrd will respond only to requests
from hosts listed in the file. Hosts can be listed individually by IP address or by a combination
of network mask and network. Consult your system's manual pages for details.

The point of this feature is to keep your NIS domain secure from access outside the domain.
The more information an attacker knows about your domain, the more effective he or she can
be at engineering an attack. The securenets file makes it harder to gather information.

Because ypserv and ypxfrd only read the securenets tile at startup time, in order for changes to
take effect, you must restart NIS services via:

# /usr/lib/netsvc/yp/ypstop

# /usr/lib/netsvec/yp/ypstart
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12.3.3 Unknown password entries

If a user's UID changes while he or she is logged in, many utilities break in esoteric ways.
Simple editing mistakes, such as deleting a digit in the UID field of the password file and then
distributing the "broken" map file, are the most common source of this problem. Another
error that causes a UID mismatch is the replacement of an NIS password file entry with a
local password file entry where the two UIDs are not identical. The next time the password
file is searched by UID, the user's password file entry will not be found if it no longer
contains the correct UID. Similarly, a search by username may turn up a UID that is different
than the real or effective user ID of the process performing the search.

The whoami command replies with "no login associated with uid" if the effective UID of its
process cannot be found in the password file. Other utilities that check the validity of UIDs
are rcp, rlogin, and rsh, all of which generate "can not find password entry for user id"
messages if the user's UID cannot be found in the password map. These messages appear on
the terminal or window in which the command was typed.

12.4 NFS security

Filesystem security has two aspects: controlling access to and operations on files, and limiting
exposure of the contents of the files. Controlling access to remote files involves mapping
Unix file operation semantics into the NFS system, so that certain operations are disallowed if
the remote user fails to provide the proper credentials. To avoid giving superuser permissions
across the network, additional constraints are put in place for access to files by root. Even
more stringent NFS security requires proving that the Unix-style credentials contained in each
NFS request are valid; that is, the server must know that the NFS client's request was made by
a valid user and not an imposter on the network.

Limiting disclosure of data in a file is more difficult, as it usually involves encrypting the
contents of the file. The client application may choose to enforce its own data encryption and
store the file on the server in encrypted form. In this case, the client's NFS requests going over
the network contain blocks of encrypted data. However, if the file is stored and used in clear
text form, NFS requests to read or write the file will contain clear text as well. Sending parts
of files over a network is subject to some data exposure concerns. In general, if security
would be compromised by any part of a file being disclosed, then either the file should not be
placed on an NFS-mounted filesystem, or you should use a security mechanism for RPC that
encrypts NFS remote procedure calls and responses over the network. We will cover one such
mechanism later in this section.

You can prevent damage to files by restricting write permissions and enforcing user
authentication. With NFS you have the choice of deploying some simple security mechanisms
and more complex, but stronger RPC security mechanisms. The latter will ensure that user
authentication is made secure as well, and will be described later in this section. This section
presents ways of restricting access based on the user credentials presented in NFS requests,
and then looks at validating the credentials themselves using stronger RPC security.

12.4.1 RPC security

Under the default RPC security mechanism, AUTH_SYS, every NFS request, including
mount requests, contains a set of user credentials with a UID and a list of group IDs (GIDs) to
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which the UID belongs. NFS credentials are the same as those used for accessing local files,
that is, if you belong to five groups, your NFS credentials contain your UID and five GIDs.
On the NFS server, these credentials are used to perform the permission checks that are part
of Unix file accesses — verifying write permission to remove a file, or execute permission to
search directories. There are three areas in which NFS credentials may not match the user's
local credential structure: the user is the superuser, the user is in too many groups, or no
credentials were supplied (an "anonymous" request). Mapping of root and anonymous users is
covered in the next section.

Problems with too many groups depend upon the implementation of NFS used by the client
and the server, and may be an issue only if they are different (including different revisions of
the same operating system). Every NFS implementation has a limit on the number of groups
that can be passed in a credentials structure for an NFS RPC. This number usually agrees with
the maximum number of groups to which a user may belong, but it may be smaller. On
Solaris 8 the default and maximum number of groups is 16 and 32, respectively. However,
under the AUTH _SYS RPC security mechanism, the maximum is 16. If the client's group
limit is larger than the server's, and a user is in more groups than the server allows, then the
server's attempt to parse and verify the credential structure will fail, yielding error messages
like:

RPC: Authentication error

Authentication errors may occur when trying to mount a filesystem, in which case the
superuser is in too many groups. Errors may also occur when a particular user tries to access
files on the NFS server; these errors result from any NFS RPC operation. Pay particular
attention to the group file in a heterogeneous environment, where the NIS-managed group
map may be appended to a local file with several entries for common users like root and bin.
The only solution is to restrict the number of groups to the smallest value allowed by all
systems that are running NFS.

12.4.2 Superuser mapping

The superuser is not given normal file access permissions to NFS-mounted files. The
motivation behind this restriction is that root access should be granted on a per-machine basis.
A user who is capable of becoming root on one machine should not necessarily have
permission to modify files on a file server. Similarly, a setuid program that assumes root
privileges may not function properly or as expected if it is allowed to operate on remote files.

To enforce restrictions on superuser access, the root's UID is mapped to the anonymous user
nobody in the NFS RPC credential structure. The superuser frequently has fewer permissions
than a nonprivileged user for NFS-mounted filesystems, since nobody 's group usually
includes no other users. In the password file, nobody has a UID of 60001, and the group
nobody also has a GID of 60001. When an executable, that is owned by root with the setuid
bit set on the permissions, runs, its effective user ID is root, which gets mapped to nobody.
The executable still has permissions on the local system, but it cannot get to remote files
unless they have been explicitly exported with root access enabled.

Most implementations of NFS allow the root UID mapping to be defeated. Some do this by
letting you change the UID used for nobody in the server's kernel. Others do this by letting
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you specify the UID for the anonymous user at the time you export the filesystem. For
example, in this line in /etc/dfs/dfstab:

share -o ro,anon=0 /export/home/stuff

Changing the UID for nobody from 60001 to O allows the superuser to access all files
exported from the server, which may be less restrictive than desired.

Most NFS servers let you grant root permission on an exported filesystem on a per-host basis
using the root= export option. The server exporting a filesystem grants root access to a host or

list of hosts by including them in the /etc/dfs/dfstab file:

share -o rw,root=bitatron:corvette /export/home/work

The superuser on hosts bitatron and corvette is given normal root filesystem privileges on the
server's /export/home/work directory. The name of a netgroup may be substituted for a
hostname; all of the hosts in the netgroup are granted root access.

Root permissions on a remote filesystem should be extended only when absolutely necessary.
While privileged users may find it annoying to have to log into the server owning a filesystem
in order to modify something owned by root, this restriction also eliminates many common
mistakes. If a system administrator wants to purge /usr/local on one host (to rebuild it, for
example), executing rm -rf * will have disastrous consequences if there is an NFS-mounted
filesystem with root permission under /usr/local. If /usr/local/bin is NFS-mounted, then it is
possible to wipe out the server's copy of this directory from a client when root permissions are
extended over the network.

One clear-cut case where root permissions should be extended on an NFS filesystem is for the
root and swap partitions of a diskless client, where they are mandatory. One other possible
scenario in which root permissions are useful is for cross-server mounted filesystems.
Assuming that only the system administration staff is given superuser privileges on the file
servers, extending these permissions across NFS mounts may make software distribution and
maintenance a little easier. Again, the pitfalls await, but hopefully the community with
networked root permissions is small and experienced enough to use these sharp instruments
safely.

On the client side, you may want to protect the NFS client from foreign setuid executables of
unknown origin. NFS-mounted setuid executables should not be trusted unless you control
superuser access to the server from which they are mounted. If security on the NFS server is
compromised, it's possible for the attacker to create setuid executables which will be found —
and executed — by users who NFS mount the filesystem. The setuid process will have root
permission on the host on which it is running, which means it can damage files on the local
host. Execution of NFS-mounted setuid executables can be disabled with the nosuid mount
option. This option may be specified as a suboption to the -o command-line flag, the
automounter map entry, or in the /etc/vfstab entry:

automounter auto local entry:

bin -ro,nosuid toolbox:/usr/local/bin
vistab entry:
toolbox:/usr/local/bin - /usr/local/bin nfs - no ro,nosuid
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A bonus is that on many systems, such as Solaris, the nosuid option also disables access to
block and character device nodes (if not, check your system's documentation for a nodev
option). NFS is a file access protocol and it doesn't allow remote device access. However it
allows device nodes to be stored on file servers, and they are interpreted by the NFS client's
operating system. So here is another problem with mounting without nosuid. Suppose under
your NFS client's /dev directory you have a device node with permissions restricted to root or
a select group of users. The device node might be protecting a sensitive resource, like an
unmounted disk partition containing, say, personal information of every employee. Let's say
the major device number is 100, and the minor is 0. If you mount an NFS filesystem without
nosuid, and if that filesystem has a device node with wide open permissions, a major number
of 100, and a minor number of 0, then there is nothing stopping unauthorized users from using
the remote device node to access your sensitive local device.

The only clear-cut case where NFS filesystems should be mounted without the nosuid option
is when the filesystem is a root partition of a diskless client. Here you have no choice, since
diskless operation requires setuid execution and device access.

We've discussed problems with setuid and device nodes from the NFS client's perspective.
There is also a server perspective. Solaris and other NFS server implementations have a
nosuid option that applies to the exported filesystem:

share -o rw,nosuid /export/home/stuff

This option is highly recommended. Otherwise, malicious or careless users on your NFS
clients could create setuid executables and device nodes that would allow a careless or
cooperating user logged into the server to commit a security breach, such as gaining superuser
access. Once again, the only clear-cut case where NFS filesystems should be exported without
the nosuid (and nodev if your system supports it, and decouples nosuid from nodev semantics)
option is when the filesystem is a root partition of a diskless client, because there is no choice
if diskless operation is desired. You should ensure that any users logged into the diskless NFS
server can't access the root partitions, lest the superuser on the diskless client is careless. Let's
say the root partitions are all under /export/root. Then you should change the permissions of
directory /export/root so that no one but superuser can access:

# chown root /export/root
# chmod 700 /export/root

12.4.3 Unknown user mapping

NFS handles requests that do not have valid credentials in them by mapping them to the
anonymous user. There are several cases in which an NFS request has no valid credential
structure in it:

e The NFS client and server are using a more secure form of RPC like RPC/DH, but the
user on the client has not provided the proper authentication information. RPC/DH
will be discussed later in this chapter.

o The client is a PC running PC/NFS, but the PC user has not supplied a valid username
and password. The PC/NFS mechanisms used to establish user credentials are
described in Section 10.3.

e The client is not a Unix machine and cannot produce Unix-style credentials.
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e The request was fabricated (not sent by a real NFS client), and is simply missing the
credentials structure.

Note that this is somewhat different behavior from Solaris 8 NFS servers. In Solaris 8 the
default is that invalid credentials are rejected. The philosophy is that allowing an NFS user
with an invalid credential is no different then allowing a user to log in as user nobody if he has
forgotten his password. However, there is a way to override the default behavior:

share -o sec=sys:none,rw /export/home/engin

This says to export the filesystem, permitting AUTH SYS credentials. However if a user's
NFS request comes in with invalid credentials or non-AUTH_SYS security, treat and accept
the user as anonymous. You can also map all users to anonymous, whether they have valid
credentials or not:

share -o sec=none,rw /export/home/engin

By default, the anonymous user is nobody, so unknown users (making the credential-less
requests) and superuser can access only files with world permissions set. The anon export
option allows a server to change the mapping of anonymous requests. By setting the
anonymous user ID in /etc/dfs/dfstab, the unknown user in an anonymous request is mapped
to a well-known local user:

share -o rw,anon=100 /export/home/engin

In this example, any request that arrives without user credentials will be executed with UID
100. If /export/home/engin is owned by UID 100, this ensures that unknown users can access
the directory once it is mounted. The user ID mapping does not affect the real or effective
user ID of the process accessing the NFS-mounted file. The anonymous user mapping just
changes the user credentials used by the NFS server for determining file access permissions.

The anonymous user mapping is valid only for the filesystem that is exported with the anon
option. It is possible to set up different mappings for each filesystem exported by specifying a
different anonymous user ID value in each line of the /etc/dfs/dfstab file:

share -o rw,anon=100 /export/home/engin
share -o rw,anon=200 /export/home/admin
share -o rw,anon=300 /export/home/marketing

Anonymous users should almost never be mapped to root, as this would grant superuser
access to filesystems to any user without a valid password file entry on the server. An
exc