
“Today, most email is sent like a postcard. Anybody
on the path can read it, ranging from oppressive govern-
ments to teenagers able to break into networks with far
too many security holes. We all should want to put our
mail back into secure envelopes again. PGP and GPG
are two of the leading tools to make that happen.”
— Brad Templeton, Chairman of the Board,

Electronic Frontier Foundation

Governments around the world, major industrial manu-
facturers, medical facilities, and the best computer
security practitioners trust their secure communications
to PGP (Pretty Good Privacy). But, while PGP works
amazingly when all is in order, it isn’t always easy
to configure, and problems can be very tricky to
troubleshoot. And email security is hardly the sort of
thing you want to leave to trial and error.

PGP & GPG: Email for the Practical Paranoid is for
moderately skilled geeks who may be unfamiliar with
public-key cryptography but would like to protect their
communications on the cheap. Author Michael Lucas
offers an easy-to-read, informal tutorial for communicat-
ing securely with PGP, so you can dive in right away.

Inside PGP & GPG, you’ll learn:

• How to integrate OpenPGP with the most common
email clients (like Outlook and Thunderbird)

• How to use the tricky command-line versions of
these programs

• How to join and use the Web of Trust

• What to do at a keysigning party (besides drink)

PGP & GPG allows anyone to protect his or her
personal data with free tools. If you’re not using PGP
yet, this book will get you started without making you
feel like a deer in headlights. If you’re already using
PGP, it will show you how to use these tools more
easily and effectively to protect your communication.

About the author

Michael W. Lucas is a network and security engineer
with extensive experience working with high-availability
systems, as well as intra-office and nationwide networks.
He is the author of the critically acclaimed Absolute BSD,
Absolute OpenBSD, and Cisco Routers for the Desperate
(all No Starch Press).

HOW TO COMMUNICATE

SECURELY IN AN

INSECURE WORLD

HOW TO COMMUNICATE

SECURELY IN an

insecure world

www.nostarch.com

 “I lay flat.”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SH
EL

VE
 IN

:
CO

M
PU

TE
RS

/S
EC

UR
IT

Y

$24.95 ($32.95 CDN)

5 2 4 9 5

9 7 81 5 93 2 70 71 1

ISBN: 1-59327-071-2

6 89 1 45 7 07 12 0

LU
CA

S
P

G
P

 &
 G

P
G

P
G

P
 &

 G
P

G

PGP &
GPG

PGP &
GPG

E M A I L F O R T H E P R A C T I C A L P A R A N O I D

M i c h a e l W. L u c a s

“…THE WORLD'S FIRST USER-FRIENDLY BOOK ON EMAIL PRIVACY…

 UNLESS YOU'RE A CRYPTOGRAPHER , OR NEVER USE EMAIL , YOU SHOULD READ THIS BOOK .”

 — LEN SASSAMAN, CODECON FOUNDER

PGP & GPG
Email for the Practical

Paranoid

by Michael W. Lucas

San Francisco

PGP & GPG. Copyright © 2006 by Michael W. Lucas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 09 08 07 06

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respec-
tive owners. Rather than use a trademark symbol with every occurrence of a trademarked name,
we are using the names only in an editorial fashion and to the benefit of the trademark owner,
with no intention of infringement of the trademark.

Publisher: William Pollock
Managing Editor: Elizabeth Campbell
Associate Production Editor: Christina Samuell
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewers: Henry Hertz Hobbit, J. Wren Hunt, Thomas Jones, Srijith Krishnan Nair,

Len Sassaman, David Shaw, and Thomas Sjorgeren
Copyeditor: Nancy Sixsmith
Compositor: Riley Hoffman
Proofreader: Nancy Riddiough
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc.
directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Lucas, Michael, 1967-
 PGP & GPG : email for the practical paranoid / Michael W. Lucas.-- 1st ed.
 p. cm.
 Includes index.
 ISBN 1-59327-071-2
 1. Electronic mail systems--Security measures. 2. PGP (Computer file) I. Title:
PGP and GPG. II. Title: Pretty good privacy & GnuPG. III. Title: Pretty good pri-
vacy & GNU Privacy Guard. IV. Title: Email for the practical paranoid. V. Title.
 TK5102.85.L83 2006
 004.692--dc22
 2005028824

Liz:

-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.0 (FreeBSD)

hQIOA9o0ykGmcZmnEAf9Ed8ari4zo+6MZPLRMQ022AqbeNxuNsPKwvAeNGlDfDu7
iKYvFh3TtmBfeTK0RrvtU+nsaOlbOi4PrLLHLYSBZMPau0BIKKGPcG9162mqun4T
6R/qgwN7rzO6hqLqS+2knwA/U7KbjRJdwSMlyhU+wrmQI7RZFGutL7SOD2vQToUy
sT3fuZX+qnhTdz3zA9DktIyjoz7q9N/MlicJa1SVhn42LR+DL2A7ruJXnNN2hi7g
XbTFx9GaNMaDP1kbiXhm+rVByMHf4LTmteS4bavhGCbvY/dc4QKssinbgTvxzTlt
7CsdclLwvG8N+kOZXl/EHRXEC8B7R5l0p4x9mCI7zgf/Y3yPI85ZLCq79sN4/BCZ
+Ycuz8YX14iLQD/hV2lGLwdkNzc3vQIvuBkwv6yq1zeKTVdgF/Yak6JqBnfVmH9q
8glbNZh3cpbuWk1xI4F/WDNqo8x0n0hsfiHtToICa2UvskqJWxDFhwTbb0UDiPbJ
PJ2fgeOWFodASLVLolraaC6H2eR+k0lrbhYAIPsxMhGbYa13xZ0QVTOZ/KbVHBsP
h27GXlq6SMwV6I4P69zVcFGueWQ7/dTfI3P+GvGm5zduivlmA8cM3Scbb/zW3ZIO
4eSdyxL9NaE03iBR0Fv9K8sKDttYDoZTsy6GQreFZPlcjfACn72s1Q6/QJmg8x1J
SdJRAaPtzpBPCE85pK1a3qTgGuqAfDOHSYY2SgOEO7Er3w0XxGgWqtpZSDLEHDY+
9MMJ0UEAhaOjqrBLiyP0cKmbqZHxJz1JbE1AcHw6A8F05cwW
=zr4l
-----END PGP MESSAGE-----

BRIEF CONTENTS

Acknowledgments .. xv

Introduction ...1

Chapter 1: Cryptography Kindergarten ..13

Chapter 2: Understanding OpenPGP ...27

Chapter 3: Installing PGP ..39

Chapter 4: Installing GnuPG ...53

Chapter 5: The Web of Trust ...81

Chapter 6: PGP Key Management ...91

Chapter 7: Managing GnuPG Keys ..99

Chapter 8: OpenPGP and Email .. 115

Chapter 9: PGP and Email .. 125

Chapter 10: GnuPG and Email .. 137

Chapter 11: Other OpenPGP Considerations ..155

Appendix A: Introduction to PGP Command Line ... 167

Appendix B: GnuPG Command Line Summary ..177

Index ..183

CONTENTS IN DETAIL

ACKNOWLEDGMENTS xv

INTRODUCTION 1

The Story of PGP ...2
OpenPGP ...4
How Secure Is OpenPGP? ..5

Today’s PGP Corporation ..6
What Is GnuPG? ...7

PGP Versus GnuPG ..7
Ease of Use ..7
Support ..8
Transparency ..9
Algorithm Support ...9

OpenPGP and the Law ...10
What This Book Contains ..10
Stop Wasting My Precious Time. What Do I Need to Read? 11

1
CRYPTOGRAPHY KINDERGARTEN 13

What OpenPGP Can Do ..13
Terminology ..14

Plaintext and Ciphertext ...15
Codes ..15
Ciphers ..16
Hashes ...16
Cryptanalysis ..17

Goals of PGP’s Cryptography ...17
Confidentiality ..17
Integrity ...17
Nonrepudiation ..18
Authenticity ..18

Encryption Algorithms ..19
Symmetric Algorithms ..20
Asymmetric Algorithms ...21

Public-Key Encryption ...22
Digital Signatures ...22

x Contents in Detail

Combining Signatures and Asymmetric Cryptography ..23
Passphrases and Private Keys ..24

Choosing a Passphrase ..25

2
UNDERSTANDING OPENPGP 27

Security and OpenPGP ..28
Web of Trust ..29
Trust in OpenPGP ...30
Where to Install ..31
Your Keypair ...32

Key Length ..32
Key Expiration Date ...33
Name, Email, and Comment ...34

Revocation Certificates ...35
Storing Your Keypair ..35

Storing Your Revocation Certificate ..36
Photo IDs and OpenPGP Keys ...36
Key Distribution ...36

Keyservers ..37

3
INSTALLING PGP 39

Downloading PGP ...40
Installing PGP ..40

Key Type ..42
Key Size ...42
Expiration ...42
Ciphers ..42
Hashes ...43

PGP Key Backups ...45
Important Installation Locations ...46

Revocation Certificates and PGP ..46
Disabling Keyserver Updates ..47
Revoke the Key ..48
Re-import Your Private Key ..49
Key Properties ...50
Using the Revocation Certificate ..51

Keyservers and PGP ...51

4
INSTALLING GNUPG 53

Downloading GnuPG ...54
Checking Checksums ..54

Calculating Checksums Under Windows ..55
Calculating Checksums Under Unix ...55

GnuPG Home Directory ..56
gpg.conf ..57

Contents in Detail xi

Installing GnuPG on Windows ...57
Command-Line GnuPG Win32 Installation ...58

Graphical GnuPG Installation ..60
WinPT ..60
Creating Keypairs in WinPT ..63
Key Manager ...65
WinPT Revocation Certificate ..65
Sending Your Key to a Keyserver ..66

Installing GnuPG on Unix-like Systems ..67
Randomness and GnuPG ...67

Building from Source Code ...69
Installing GnuPG ...69
Configuration Options ...70
Setuid Root GnuPG ...71
Don’t Run GnuPG as Root ...72

Command-Line GnuPG Keypairs ..72
GnuPG Revocation Certificates ..76
Publicizing Your Key ...78

Text Exports ..78
Keyservers ..79
Web Forms ...80

5
THE WEB OF TRUST 81

Keyservers ..82
subkeys.pgp.net ..82
keyserver.pgp.com ..82
Searching for Keys ..83

Signing a Key ..83
Signing Keys of Friends and Family ...84
Signing Strangers’ Keys ..85
What to Do with Signed Keys ...87
When You Get New Signatures ..87

Keysigning Parties ..88
Key Trust ...89
Avoiding the Web of Trust ...90

6
PGP KEY MANAGEMENT 91

Adding Keyservers ...91
Adding Keys to Your Keyring ...93

Searching Keyservers ...93
Importing from a File ...94
Fingerprint Comparisons ..95

Returning the Signed Key ..97
Viewing Signatures ..97

Updating Signatures ..97
Adding Photos to Your Keys ..98

xii Contents in Detail

7
MANAGING GNUPG KEYS 99

Keyservers ..99
Keyserver Options ...100
Keyservers and WinPT ... 101

Adding Keys to Your Keyring ... 101
Command-Line Key Fetching ...102
Command-Line Key Viewing ...102
WinPT Key Viewing and Fetching ..104
Command-Line Key Imports ..104
WinPT File Imports ..104

Signing a Key ..105
Checking Fingerprints ..105
Signing Keys on the Command Line ...105
Signing Keys in WinPT ...106
Viewing Key Signatures ...107
Command-Line Exports .. 107
WinPT Exports ..108
Importing New Signatures ..108
Pushing Signatures to Keyservers ...108

Updating Keys ...109
Deleting Public Keys from Your Keyring ...109
GnuPG and Photos .. 110

Adding Photos to Your Key ... 110
Viewing Photos with GnuPG ..111
WinPT and Photographs .. 112

Building the Web of Trust with GnuPG .. 113
PGP ... 113
GnuPG .. 113
Command-Line Trust Configuration .. 113
WinPT Trust Configuration .. 114

8
OPENPGP AND EMAIL 115

Message Encoding .. 116
Inline Encoding ... 116
PGP/MIME ... 118

Email Client Integration ... 118
Proxies ... 119
Plug-Ins .. 119

Saving Email—Encrypted or Not? ... 119
Saving Unencrypted Email ... 120
Encrypt to Self .. 120

Email from Beyond Your Web of Trust ... 120
Expanding Your Web of Trust ... 121
Tracing the Web of Trust .. 121

Repeatable Anonymity ... 122
Unprotected Email Components ... 124

Contents in Detail xiii

9
PGP AND EMAIL 125

PGP and Your Email Client .. 126
Identifying OpenPGP Mail ... 126
Email Storage ... 127

PGP Policies ..127
Opportunistic Encryption .. 128
Require Encryption .. 128
Mailing List Submissions ... 129
Mailing List Admin Requests .. 129
Creating Custom Policies ..130
Sample Custom Policy: Exceptions to Default Policy 132
Sample Custom Policy: Overriding the Defaults134
Custom Policies Order and Disabling Policies ...134

10
GNUPG AND EMAIL 137

Microsoft Mail Clients and GnuPG ... 138
Outlook Express and GnuPG ... 138

Configuring Outlook Express for OpenPGP .. 139
Sending OpenPGP Mail ...140
Receiving and Verifying Signed and Encrypted Mail 141

Outlook and GnuPG .. 141
Installation .. 142
Configuring the Plug-In ... 142
Sending OpenPGP Mail ...145
Receiving OpenPGP Mail ...145

Decrypting PGP/MIME Messages with Microsoft Mail Clients145
Thunderbird and GnuPG ...147

Installing the Thunderbird GnuPG Plug-In ...147
Configuring Enigmail ...147
Sending OpenPGP Mail ... 149
Reading OpenPGP Mail ... 151
Upgrading Thunderbird and Enigmail .. 152

11
OTHER OPENPGP CONSIDERATIONS 155

What Can Go Wrong? ...156
Poor Usage ..156
Poor Signing ...156
Hardware Compromise .. 157
Software Compromise ... 158
People Compromise ... 159
Fake Keys ... 161

OpenPGP Interoperability ... 161
Teams and OpenPGP ... 162

xiv Contents in Detail

OpenPGP and Shared Systems ..163
Other Software Features ...164

Passphrase Caching ..164
Shredding ..165

A
INTRODUCTION TO PGP COMMAND LINE 167

PGP Command Line Configuration ...168
Testing and Licensing .. 169
Creating a Keypair .. 170

Setting the Key Type .. 170
Assigning a Passphrase .. 170
Setting an Expiration Date .. 170
Generating Revocation Certificates .. 171
Exporting Your Public Key .. 171

Viewing Keys ... 172
Managing PGP Command Line Keyrings ... 173

Searching for Keys .. 173
Importing Keys .. 174
Signing a Key ... 174
Updating Keys on a Keyserver .. 175

Encryption and Decryption .. 175
Signing and Verifying .. 176

B
GNUPG COMMAND LINE SUMMARY 177

GnuPG Configuration ... 178
Output Control .. 178
Keypair Creation, Revocation, and Exports ... 178

Revoking a Key .. 178
Exporting a Key ... 179
Sending a Key to a Keyserver .. 179

Managing Keyrings .. 179
Viewing Keys .. 179
Adding and Removing Keys ..180

Key Signatures ...180
Encryption and Decryption .. 181
Signing Files .. 181
Output Formats .. 181

INDEX 183

A C K N O W L E D G M E N T S

Writing a book requires a lot of assistance from a lot of people.
I am indebted to the following folks for their comments on var-
ious drafts and versions of PGP & GPG: Henry Hertz Hobbit,
J. Wren Hunt, Thomas Jones, Srijith Krishnan Nair, David
Shaw, and Thomas Sjorgeren. Stephan Somogyi at PGP Cor-
poration also provided valuable insight into PGP and general
encouragement. Len Sassaman also provided valuable insight
into OpenPGP and its history, and reminders of how much
the soft pillows of our expectations don’t always match the
airborne bricks of reality. What I’ve done well is due to these
folks, while what I’ve messed up is my fault. Credit also belongs
to the countless cryptographers, researchers, security admin-
istrators, and system maintainers of the world’s OpenPGP
infrastructure, not to mention Phil Zimmermann for creating
PGP in the first place. Without them, I wouldn’t have anything
to write about.

Today’s privacy debate is more intense than ever, and the
mere existence of this book won’t settle it. While David Brin
might be right and the Transparent Society might be right
around the corner, these days it seems that privacy is one-sided:
big companies and government offices keep it, while us aver-
age folks don’t. Hopefully, this book will give you the choice.

I N T R O D U C T I O N

Many people find encryption
disturbing and even scary.

After all, encryption tech-
niques have been vital military

and commercial secrets for millennia.
Movies and novels use encryption as their
plots demand, with total disregard for how
encryption works in reality. Those curious about encryption
quickly run headlong into formulas dense enough to repel
anyone without an advanced mathematical background.
All of this contributes to the air of mystery that surrounds
encryption.

Doing the actual math behind modern encryption is
admittedly quite difficult, but using the tools that do the work
for you isn’t difficult at all once you have a rudimentary under-
standing of when to use which sort of encryption. PGP & GPG:
Email for the Practical Paranoid will take you step by step through
the world of encryption and digital signatures and teach you

2 Introduction

how to use the tools that will allow you to protect your confi-
dential information while sharing it as you desire.

This book is not meant to be the definitive tome on the
subject. It will not teach you how to compute public encryption
keys by hand, nor will it survey all the encryption algorithms
and techniques available today. However, it will teach you
enough about the ideas behind encryption and digital sig-
natures that you’ll be able to make intelligent choices about
which of the available options you should use in any given cir-
cumstance. I’ll demonstrate how to integrate encryption and
digital signatures with popular email clients so that you can eas-
ily exchange secure email with others, how to install the Pretty
Good Privacy (PGP) and the Gnu Privacy Guard (GnuPG, or
GPG) encryption packages on Windows and Unix-like operat-
ing systems, and how to use them to secure your personal data.

N O T E PGP is the original implementation of the OpenPGP standard, whereas
GnuPG is a freely available reimplementation of that same standard. If
the preceding sentence means absolutely nothing to you, you’re starting
in the right place. If you know exactly what that sentence means, you
might want to skip to Chapter 1.

The story of the OpenPGP standard begins years ago
with PGP.

The Story of PGP
Encryption is an old science, and as computers became
more and more powerful the number of people working
with encryption grew and grew. Government officials grew
increasingly concerned about the widespread availability of
encryption techniques. Although encryption has perfectly
valid uses for everyday citizens, it’s also a powerful tool for
criminals. In 1991, Senate Bill 266 (a sweeping anticrime bill)
had a minor point that required government-accessible back
doors in all encryption tools. While this bill was still under
discussion, Phil Zimmermann combined some common
encryption methods to produce the software he dubbed Pretty
Good Privacy, or PGP. The ideas behind PGP had been known
and understood by computer scientists and mathematicians
for years, so the underlying concepts weren’t truly innova-
tive. Zimmermann’s real innovation was in making these tools
usable by anyone with a home computer. Even early versions
of PGP gave people with standard DOS-based home comput-
ers access to military-grade encryption. While Senate Bill 266

Introduction 3

was still threading its way through the legislative process, a
friend of Zimmermann’s distributed PGP as widely as possible
in an effort to make military-grade encryption widely available
before the law could take effect. The software was distributed
to a variety of BBS systems as well as on the Internet (largely
an academic and research network at the time, but still with
worldwide reach). Their activism contributed to the demise of
antiencryption legislation.

Zimmermann, a long-time antinuclear activist, believed
that PGP would be of most use to dissidents, rebels, and others
who faced serious risks as a consequence of their beliefs—in
other words, to many people outside as well as inside the
United States. Ever since World War II, the United States gov-
ernment has considered heavy-duty encryption a serious threat
to national security and would not allow it to be exported
from the United States. (For details, see the Wikipedia entry
on “Export of Cryptography” at www.wikipedia.org.) Export-
ing encryption software, including PGP, required a license
from the State Department, and certain countries could not
receive such software exports under any circumstances. These
rules were known as ITAR (for International Traffic in Arms
Regulations) and classified encryption tools as weapons of war.
Zimmermann decided to try to avoid the export restrictions by
exploiting the difference between written words and software.

Zimmermann originally wrote PGP in boring old everyday
text (or “source code”), just like that used in any book, and
used computer-based tools to convert the human-readable text
into machine-readable code. This is standard practice in the
computer industry. The text is not software, just as the blue-
prints for a car are not a car. Both the text and the blueprints
are necessary prerequisites for their respective final products,
however. Zimmermann took the text and had it published in
book form.

Books are not considered software, even when the book
contains the “source code” instructions for a machine to make
software. And books are not munitions;1 although many books
on cryptography did have export restrictions, Zimmermann
could get an export permit for his book of source code. Thus,
people all over the world were able to get the instructions to
build their own PGP software. They promptly built the software
from those instructions, and PGP quickly became a worldwide
de facto standard for data encryption.

1 Those of you who have dropped one of those big thick computer textbooks
on your foot might take issue with this statement.

4 Introduction

As you might guess, the US government considered this
tactic merely a way to get around munitions export restrictions.
Zimmermann and his supporters considered the book speech,
as in “free speech,” “First Amendment,” and “do you really
want to go there?” The government sued, and over the next
three years Zimmermann and the administration went a few
rounds in the courts.

This lawsuit turned Zimmermann into something of a hero
in the computer community. Many people downloaded PGP
just to see what all the fuss was about, and quite a few of them
wound up using it. Zimmermann’s legal defense fund spread
news of the PGP lawsuit even further. In congressional hearings
about encryption, Zimmermann read letters he had received
from people in oppressive regimes and war-torn areas whose
lives had been saved by PGP, contributing greatly to the public
awareness of how valuable his work had been. Also, PGP was
available on the Internet before the book was published—the
code was available from anywhere in the world. (Admittedly,
you needed Internet access to get a copy, which was slightly dif-
ficult in the early 1990s.) The book was simply a legal device
to make it possible for people outside the United States to use
PGP without breaking US law.

The story of the PGP lawsuit is fascinating and could fill
a book this size or larger. Where exactly is the line between
speech and computer code? Also, PGP was not distributed
by Zimmermann himself, but by third parties. If someone in
Libya downloaded PGP from an MIT server, was Zimmermann
responsible? Lawyers fought these questions back and forth,
but when it became obvious that the courts firmly believed
that the First Amendment trumped State Department regula-
tions, the State Department and subsequently the government
dropped the suit. This not only saved them some time, money,
effort, and humiliation at that moment but also prevented a
legal precedent deeming encryption generally exportable. If
a future administration desires, it can bring this issue back to
the courts in more favorable circumstances against some other
defendant.

OpenPGP
Even without the US government looming over it, PGP had
some basic technical problems that cryptographers across the
world quickly pointed out. The most glaring was that PGP

Introduction 5

made heavy use of the patent-protected RSA and IDEA encryp-
tion techniques; anyone who wanted to use PGP commercially
needed to pay a license fee to the patent holders. Many
computer scientists and security professionals found this unac-
ceptable because they wanted an encryption system that would
be freely usable by both the general public and businesses.

Zimmermann offered a solution in 1998, when his com-
pany, PGP Corporation, submitted an improved PGP design
called OpenPGP to the Internet Engineering Task Force
(IETF), the body responsible for Internet standards. OpenPGP
defined standards by which different programs could commu-
nicate freely but securely by using an enhanced version of the
PGP protocol and a variety of different encryption algorithms.
This led the way for people and companies to create their own
implementations of OpenPGP from scratch, tailoring them to
meet their own requirements.

How Secure Is OpenPGP?
The OpenPGP standard is considered a military-grade, state-of-
the-art security system. Although you see these words attached
to all sorts of security products, OpenPGP is trusted by gov-
ernments around the world, major industrial manufacturers,
medical facilities, and the best computer security practitioners
in the world.

That’s not to say that OpenPGP is the be-all and end-all of
computer security. Misuse of OpenPGP can reduce your secu-
rity by making you believe that you’re secure when you’re not,
much as if you leave for vacation and forget to lock the front
door of your house. Poor computer-management practices
might lock the front door but leave the key under the welcome
mat for anyone to find.

Also, given sufficient computing power, it is possible to
break the encryption used in any OpenPGP application. The
National Security Agency (www.nsa.gov) is rumored to have
computers specifically engineered from the ground up espe-
cially to break this sort of encryption. Of course, if someone
is willing to spend millions of dollars to get your information,
there are easier ways for them to get it, so I would say that
when properly configured and used, OpenPGP is sufficiently
strong enough to make people choose another method of vio-
lating your privacy rather than try to break the encryption.

6 Introduction

Today’s PGP Corporation
Today, PGP Corporation is a major player in the world of cryp-
tography and information security, providing PGP software for
many different platforms, from PCs to handhelds and even
Blackberry phones. PGP Corporation software secures every-
thing from email to instant messages to medical records.

PGP Corporation provides an implementation of Open-
PGP that runs on popular operating systems. It provides a PGP
system that integrates seamlessly with standard mail clients and
desktops.

Although PGP Corporation was owned by Network Asso-
ciates for a few years during the dot-com boom, it is now an
independent company with a variety of big-name industry
partners.

PGP is a commercial product, and PGP Corporation pro-
vides a whole range of related support services. We’re going to
cover the basic version: the PGP Desktop. (The corporate PGP
solutions could fill a book on their own.) Because PGP is a typi-
cal commercial product, you are expected to pay for it.

TERMINOLOGY USAGE
PGP, GPG, and OpenPGP? This could get confusing really
quickly, so let’s set some definitions right at the beginning:

• The word PGP is used only for the PGP Corporation product.
If you see the word PGP, it means only that product and
not GnuPG or any other implementation of OpenPGP. The
PGP folks will be unhappy with you if you call some other
product PGP.

• The words GnuPG and GPG apply specifically to the Gnu
Privacy Guard tool. The GnuPG folks will be unhappy with you
if you call their product PGP.

• The word OpenPGP applies to PGP, GnuPG, and any other
implementation of PGP. Yes, there are other implementations
of the OpenPGP standard out there. Many vendors incorporate
OpenPGP functionality into their products. None are as well-
known or as accepted as PGP or GnuPG, however. Nobody
will be unhappy with you for calling their product OpenPGP-
compliant.

Introduction 7

What Is GnuPG?
GnuPG is a freely available implementation of the OpenPGP
standard that was released to the public in 1999 by the German
developer Werner Koch. It is available for both Windows and
Unix-like computers (including Mac OS X).

Because GnuPG conforms to the OpenPGP standard,
it can be used to communicate with people using any other
OpenPGP-compliant software. “Freely available” means that
you can get for free. You also get access to all the source code
used to create the program, which is not directly useful to
many readers but is vital to those who can do something with
it. The formal name of the software is GnuPG, but many people
simply refer to it as GPG. No matter which you use, people
conversant with OpenPGP will understand what you’re talking
about.

W A R N I N G GnuPG is freely available, but that doesn’t mean you can do anything
you want with it. Any personal use is fine. Use within a company is
also fine. If you want to use GnuPG within a commercial product and
resell it, be absolutely certain to read the full General Public License
(GPL) and comply with its terms! There is no such thing as “propri-
etary code” based on the GPL. You have been warned.

PGP Versus GnuPG
Hmm. GnuPG is free, and PGP costs money. Why would you
not always use GnuPG? There are several reasons why a per-
son or organization might choose to purchase PGP rather
than use the free GnuPG, or vice versa, including ease of use,
support, transparency, and supported algorithms. All these
reasons make the choice of encryption software very situation-
dependent. Take a look at your options and pick the right tool
for you.

Ease of Use
To use GnuPG, you must not be afraid to get code under your
fingernails and tangle with the operating system’s command
line. Although various GnuPG add-ons provide a friendly user
interface, they’re not tightly integrated with the main product,
and when the main GnuPG software is updated, these add-ons
might or might not be updated. I wouldn’t dream of setting up
Grandpa with GnuPG unless I really liked talking to him five
days a week.

8 Introduction

PGP Corporation puts a lot of effort into making its prod-
ucts work transparently for the end user, in exactly the same
manner as any other desktop program. As a support person,
I find this extremely valuable. If I needed to set up the sales
force, marketers, and accountants at my company with a single
cryptographic solution, I would choose PGP in a heartbeat on
this factor alone.2

Support
PGP Corporation has an extensive support organization.
You can get phone support for the desktop products or
have a whole team of consultants implement your company-
wide PGP solution. When you buy PGP software, you get
30 days of free installation and setup support, which will
allow enough time for most people to become comfortable
with the tool. Support afterward exists at whatever level you
require, for a fee.

GnuPG’s support organization, on the other hand, is
typical of free software. Users are expected to read the software
instructions, check the GnuPG website, and search the mail-
ing list archives and the Internet before contacting the mailing
list for help. There is no phone number to call to speak to the
“owner” of GnuPG. If you are the sort of person who wants
to pick up a phone and yell at someone until they make your
problem go away, GnuPG just isn’t for you. Although you can
easily find expertise in GnuPG and OpenPGP, and hiring a
consultant to maintain GnuPG isn’t that big a deal, that’s very
different from having direct access to the vendor.

Chances are that reading this book will give you everything
you need to use either piece of software in your day-to-day
communications. Although you might find an edge case for
which one or the other program doesn’t work, or you might
discover a software bug, both programs have thousands and
thousands of users who have exercised every piece of function-
ality countless times. If you have a problem, one of these users
has almost certainly already had that same problem, asked for
help on a mailing list or message board, and received assis-
tance. I find that a web search answers questions on either tool
far more quickly than a phone call ever could.

2 The nontechnical staff at your company might be more tech-literate than
mine. If so, you’re more fortunate than you realize. Please tell me where to
send my resume.

Introduction 9

Transparency
Transparency refers to how much of the software is visible. For
most users, this is irrelevant—they just want the software to
work properly, without causing system crashes or scrambling
their recipe collection. You’re probably in this category. In the
security industry, however, transparency is a vital question.

People who are serious about security—serious as in “bil-
lions and billions of dollars and/or many human lives depend
on this information remaining private”—hire security experts
to evaluate their security software and point out problems.
The process of reviewing code and algorithms for problems is
called auditing.

Encryption is an old science, and one of its primordial
rules is that knowing how a good encryption scheme works
doesn’t help you break it. Encryption schemes that are avail-
able for review by the general public are the only ones that
professional cryptographers take seriously. The cryptography
behind OpenPGP has been continuously audited for 10 years
now by people who would be delighted to find problems with
it. Discovering a problem in OpenPGP would be a sure-fire way
to gain fame within the cryptography community, much as dis-
covering how to build a 100-mile-per-gallon, high-performance
gasoline engine would be in the auto industry. Both seem
impossible, but many people try.

However, both PGP and GnuPG are more than the algo-
rithms used by OpenPGP. There’s a whole bunch of source
code in and around those algorithms. A bad guy could find
a problem with that source code and use it to break the pro-
tection provided by the software. That source code requires
auditing by skilled individuals to ensure its safety. GnuPG’s
source code is open for audit by anyone in the world and is
checked by many different people of differing skill levels.
PGP’s source code is open for audit only to customers, but
many of those customers hire very skilled people specifically
to audit the code.

Algorithm Support
The original PGP used encryption methods that were encum-
bered by patents at the time PGP was created. Some of those
encryption methods are now in the public domain, but one
(IDEA) is protected by patents in Europe. OpenPGP has
moved beyond all of these algorithms, but you might find
references to them if you encounter old versions of PGP. You
don’t need to understand what IDEA is, but you do need to
recognize it if you encounter it and have to deal with it.

10 Introduction

GnuPG does not support IDEA because IDEA is less than
completely free. IDEA is licensed under very liberal terms—it’s
free for non-commercial use; if you’ve ever bought a prod-
uct that includes IDEA you have a lifetime, royalty-free IDEA
license; and if all else fails you can buy an IDEA license online
for $18.93. Those terms are modest, especially for modern
software, but it doesn’t meet GnuPG’s standards. (Hey, it’s
their software; they set the standards.) You can hack GnuPG
to support IDEA, but the GnuPG folks won’t do it for you.
PGP Corporation has paid the patent holder, and when you
buy PGP you get access to that cipher. OpenPGP no longer
requires IDEA, but some businesses might require it. If you
find a 10-year-old encrypted file you need to open, you’ll need
IDEA. Otherwise, it’s irrelevant.

OpenPGP and the Law
OpenPGP uses some of the strongest public-key encryption
algorithms available to cryptographers anywhere. And I do
mean strong. Law enforcement officials cannot break into a
file properly protected with GnuPG, and some governments
just don’t like their citizens having such strong protection.
Some countries allow their citizens to use strong encryption
algorithms, but only in a limited and breakable manner. Oth-
ers require that all encryption keys be given to a “key escrow”
agency, so that if you become a criminal mastermind the gov-
ernment can get your key from the escrow agency and decrypt
your incriminating messages. This is much like asking muggers
to register their Saturday Night Specials before committing
holdups—and roughly as effective.

To make matters more confusing, these laws change irreg-
ularly. If you are in doubt about the laws regarding encryption
use in your country, check with a local computing professional
or lawyer. Googling for “encryption law survey” will uncover
several websites on the topic, including a very good survey at
http://rechten.uvt.nl/koops/cryptolaw. (We discuss other
legal implications of OpenPGP in Chapter 11.)

What This Book Contains
Although this isn’t an exhaustive treatise on cryptography, we
do cover a broad spectrum of OpenPGP, PGP, and GnuPG
topics.

Chapter 1, “Cryptography Kindergarten,” covers the basic
ideas behind encryption. I discuss the basic encryption types

Introduction 11

used by OpenPGP, what separates an encryption system from
a code, and when you should use each sort of encryption with
GnuPG.

Chapter 2, “Understanding OpenPGP,” teaches you the
basic ideas underlying OpenPGP. I discuss the Web of Trust,
keys and subkeys, keyrings, and keyservers, as well as ideas you
must understand before installing either package. I also discuss
how to safely handle your key, how to get your key signed or
revoked, and how to make your key publicly available.

Chapter 3, “Installing PGP,” guides you through installing
the PGP desktop client.

Chapter 4, “Installing GnuPG,” walks you through install-
ing GnuPG on both Windows and Unix-like systems.

Chapter 5, “The Web of Trust,” discusses how OpenPGP
keys are connected to one another, identity verification, and
keysigning. This is perhaps the most important part of Open-
PGP usage, and is what makes the system unique. Real security
doesn’t come from software; it comes from people. Unfortu-
nately, people are also the weakest part of any security system.
Here I discuss both good and bad ways to handle keysigning.

Chapter 6, “PGP Key Management,” takes you through
managing the Web of Trust with PGP software.

Chapter 7, “Managing GnuPG Keys,” shows you how to
manage the Web of Trust with GnuPG.

Chapter 8, “OpenPGP and Email,” discusses how to inte-
grate OpenPGP into your email and some of the issues that
can arise with email usage and PGP. We cover topics such as
clearsigning versus PGP/MIME, retaining copies of encrypted
messages, and so on.

Chapter 9, “PGP and Email,” discusses how to use PGP soft-
ware with email.

Chapter 10, “GnuPG and Email,” covers integrating
GnuPG with various email clients.

Chapter 11, “Other OpenPGP Considerations,” shows
you how to deal with some of the things that can go wrong
with OpenPGP, how to use OpenPGP as part of a group of
people, and how to use some other significant features in
GnuPG and PGP.

Stop Wasting My Precious Time. What Do I Need
to Read?

This book covers a single encryption system that happens to
have two annoyingly different implementations. You need to
read only the parts that apply to you, but which parts are those?

12 Introduction

Carefully read the discussion of PGP and GnuPG earlier in this
introduction and make your choice.

If you want to use PGP, read the chapters about general
OpenPGP and those dedicated to PGP. That’s Chapters 1–3,
5–6, 8–9, and 11.

If you choose GnuPG, read the general OpenPGP chap-
ters and those dedicated to GnuPG: Chapters 1–2, 4–5, 7–8,
and 11. GnuPG chapters tend to be longer than PGP chapters
because GnuPG people must learn more.

Of course, if you want to master both sets of software, read
the whole book! It’s not that long, and some day you will be
glad you did.

1
C R Y P T O G R A P H Y
K I N D E R G A R T E N

You don’t need to understand
everything about modern

cryptography to use OpenPGP
successfully. You do need to know

some of the basics, however, and you must
understand the protections that OpenPGP
does and does not provide. This chapter
provides a very brief and stripped-down
introduction to the ideas behind modern
cryptography.

What OpenPGP Can Do
Everything in the rest of this chapter builds to a description
of the way OpenPGP works its magic. By combining hashes,
public-key encryption, and digital signatures, OpenPGP allows
you to achieve excellent levels of confidentiality, integrity,

14 Chapter 1

nonrepudiation, and authenticity. These terms have very spe-
cific meanings, which we’ll discuss in this chapter. As an end
user, you should understand how OpenPGP works so that you
understand its limitations.

OpenPGP can do only six things, which are all missing
from today’s email architecture, and are extremely valuable
in many circumstances. What you do with OpenPGP is deter-
mined by which of the six tasks you want to accomplish. Have a
look at Table 1-1.

Table 1-1: Key Usages

Desired Effect Action

I want anyone who reads this message to
know beyond a doubt that I sent it—I cannot
repudiate it.

Digitally sign the message with your
private key.

I want to verify the identity of the person who
sent a digitally signed message to see whether
the apparent sender is the real sender.

Verify the signature with the sender’s
public key.

I want to send a message that only my
intended recipient can read.

Encrypt the message with the recipient’s
public key.

I want to decrypt a message that I received. Decrypt the message with your private key.

I want my message to be readable only
by my intended recipient, and I want the
recipient to be able to verify that the message
came from me.

Encrypt the message with the recipient’s
public key and digitally sign the message
with your private key.

I want to decrypt and verify a message that
includes a digital signature.

Decrypt the message with your private key
and verify the signature with the sender’s
public key.

When in doubt, consult this table! Although cryptography
can be used in any number of ways, this table covers almost all
common usages of OpenPGP.

Let’s go on to see how OpenPGP accomplishes these tasks.

Terminology
Terms such as code, cipher, cryptosystem, encryption system,
encryption, encoding, and so on have been flung around inter-
changeably for so long that most people think that they’re all
the same thing. Most people are wrong. You don’t need to mas-
ter the language of cryptography, but before we begin, we need
to agree on the words we’re using.

Cryptography Kindergarten 15

Plaintext and Ciphertext
Cryptography protects a message, or a piece of information.
This message can be an email message, your company’s finan-
cial records, a picture of your dog, or anything at all. In its
original unencrypted form, this information is in plaintext,
which is text that a person can look at and read without the
use of any special software. (In the case of a spreadsheet or a
digital photo, you need the proper software to view the plain-
text, but it’s usually viewable.)

After plaintext has been encrypted, a person looking at
it sees the ciphertext. For example, if you look at an encrypted
spreadsheet with your spreadsheet program, you’ll see only
ciphertext “garbage.”

For example, here’s a perfectly legitimate plaintext mes-
sage that certain people would have been very happy to
intercept a few decades ago:

Attack Pearl Harbor December 7

After you run this message through OpenPGP to change it
to ciphertext, it changes just a little, as follows:

-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.0 (FreeBSD)

hQEOA2HvKhYFm1VREAP/QlSUVjc89OHbalb6+MNceJdJjaVb2FGZGFSowg1IkCYr
b+wjMY4z0HoPty1hzW1wqPsWSiMLxZl24HQWWOPan8K2+LesErqeig4HEbMP23u4
QdUv4iOq9T1hoNvVb0IypXluMIquze2r8r+X3hllwqAOn9ahz5VnVKj/OVnQi80E
...

Good luck guessing what this means! Although a reader
can easily see that this is  an OpenPGP message encrypted
with  software and  the operating system it originated on,
that information won’t be of much use to most eavesdroppers.
The bad guys could use this information to get a hint about
how to attack your computer, but that requires an entirely dif-
ferent skill set than attacking OpenPGP.

Codes
A code is a general term for any method of concealing the con-
tents of a message. For example, some ancient military leaders
would write a message on a strip of paper carefully wrapped
around a stick, so that the message would be scrambled when
the paper was unwrapped. Only someone who knew how to
wind the paper and had a stick of the same size could read
the message. This is a perfectly legitimate code and it was

16 Chapter 1

especially useful in an age when the written word was a mystery
to most people. These days, however, it would be less-than-
adequate protection against the prying eyes of anyone who
has passed third grade.

Ciphers
One type of code is the cipher, which conceals the contents of
a message by transforming each character in some way. One
cipher that most kids play with at one time or another is a code
that matches the letters in the alphabet to numbers (“A=1,
B=2, C=3,” and so on), with the text message then written as a
series of numbers instead of letters.

This is, however, a poor cipher for serious use. Not only is
it widely known, but a cryptographer who somehow managed
to start a career without knowing this cipher could decrypt a
medium-sized ciphertext just by counting how frequently the
various numbers appear in the encrypted text and knowing
how frequently letters appear in average plaintext.

Hashes
A hash is a specialized mathematical computation performed
on a message, based on one of many algorithms. Related to a
cipher, a hash is a very useful tool for OpenPGP. If the origi-
nal message changes in any way, the hash of that message is
completely different. For example, the message “Attack Pearl
Harbor December 7” has the following hash (using the SHA1
algorithm):

e8e0ee9cdc6cd03c880b5870983bb02d48fceaea

Ugly looking thing, isn’t it? Suppose that someone inter-
cepted our message en route, edited it to read “Attack Pearl
Harbor December 6,” and sent it on its way. This one-character
change would produce a completely different hash, like this:

07937cc5fd92504006f5f192d95cf8d341a26d18

A very minor change in the message creates a totally differ-
ent hash! Although you might miss the change in the message,
even the most cursory hash comparison would make anyone
take notice.

You cannot recover plaintext from a hash. Also, construct-
ing a file that would create a given hash value is very difficult;
the fastest way to create just a file is to try all possible files.
Given a hash, there is no shortcut to producing a file that
matches that hash.

Cryptography Kindergarten 17

You’ll also see references to checksums, which are error-
checking algorithms similar to hashes but not as error-proof.
Checksums are simpler to produce (and easier to falsify!) than
hashes, but are useful for basic integrity checking.

Cryptanalysis
Attempting to decrypt a ciphertext without the key, by this or
any other method, is called cipher analysis, cryptanalysis, or an
attack. More complicated ciphers rearrange the letters in a
particular manner or radically transform the plaintext so that it
resists analysis by methods such as character counting.

Generally, ciphers combine the plaintext with a key to
generate the ciphertext. The type of key depends on the algo-
rithm, or the method used to combine the plaintext with the
key. Similarly, you can recover the plaintext by combining the
ciphertext with the key.

Goals of PGP’s Cryptography
OpenPGP’s cryptographic system has three fundamental fea-
tures: confidentiality, integrity, and nonrepudiation (discussed
in the following sections). These features combine to provide
authenticity.

Confidentiality
Confidentiality means that the message contents remain pri-
vate. The plaintext cannot be viewed by anyone who doesn’t
have the necessary keys, algorithms, and tools. In many cases,
you cannot prevent someone from viewing the ciphertext,
especially because every message that passes over the Internet
can be viewed by a large number of people, just as letters left
for the postman can be steamed open by a nosy neighbor.
The ciphertext is incomprehensible gibberish to anyone who
doesn’t have the key to read it, however. Confidentiality is the
first thing that comes to mind when most people think of a
“secret code.”

Integrity
Integrity refers to keeping a message unchanged. By using
OpenPGP, you can confirm that a message has not been tam-
pered with during transmission.

In many computer systems, such as those found in a typi-
cal office, the systems administrator has unlimited ability to
not only view documents but also to edit them. Although most
systems administrators are too ethical (and too interested in

18 Chapter 1

remaining employed) to transform their workplace into a
real-life The Young and the Restless by carefully editing email, it
is entirely possible for someone with even modest skills to do
exactly that. Fortunately, the integrity provided by OpenPGP
will notify the message recipient if a message has been tam-
pered with, putting a stop to such shenanigans before they
begin.

Nonrepudiation
Nonrepudiation means that a person cannot deny signing a par-
ticular message, which is especially important in the context of
email.

For example, suppose that one day your boss receives an
email that appears to be from you, containing your resignation
in addition to threats to publish those “special” photographs
you took of him and his pet goat if he doesn’t offer you a sever-
ance package bigger than last year’s corporate profits. You will
probably want to say that the message is a fake. In other words,
you want to repudiate the message.1 If the message is not signed
with an OpenPGP application, it will be very difficult to prove
that you actually sent it; if it’s signed with OpenPGP, however,
you cannot repudiate it.

Nonrepudiation alone makes it worthwhile to use
OpenPGP. If people know that email from you is habitually
OpenPGP-signed, they will know that an unsigned message is
probably faked, especially if its contents seem out of character.
(It is possible that someone could have stolen your private key,
but we’ll discuss how to prevent that in Chapter 2 and through-
out the book.)

This situation might seem extreme or contrived, but I
have had to track down “forged” emails more than once. On
only one occasion, the message was actually forged; more com-
monly, users send emails while highly emotional, intoxicated,
or otherwise mentally incapacitated.

W A R N I N G Do not digitally sign email while drunk or emotional. Sending email at
all in such a state is very inadvisable.

Authenticity
Think about all these effects occurring simultaneously. When
you receive an email that has been encrypted and signed with
OpenPGP, you know that the contents of the message have

1 Or not. If you actually have the goat pictures, it might be worth trying.

Cryptography Kindergarten 19

been concealed from any eavesdroppers. You know that the
content of the message has not been changed. You also know
that the message comes from a person who has the right to
send such a message in the sender’s name. This message is
unquestionably authentic. The bad guys haven’t gotten to you.

Encryption Algorithms
An encryption algorithm is a method for transforming ciphertext
into plaintext and back again. Algorithms range from the sim-
ple (A=1) to the horrendously complicated. Some algorithms
that are more resistant to cryptanalysis than others are called
“better” or “stronger” than algorithms that a cryptographer
can break more easily. Different algorithms have different
sorts of keys.

A very common characteristic of computer-based codes is
a bit, and the term often gets thrown around by people who
don’t know what they’re doing. “This website uses 128-bit
encryption, it must be secure!” “I’m using only 40-bit encryp-
tion, so I’m not really secure.” The number of bits is just the
number of ones and zeros in the key. A key with 40 ones and
zeros is a 40-bit key. To guess a key, you must try every possible
combination of ones and zeros. Because a 40-bit key has bil-
lions of possible values, guessing all possible keys would take
a very long time. A 128-bit key has approximately 300 trillion
trillion possible values, making guessing the key even more
difficult. As computers get faster, the length of time to guess
drops, but at this time it still exceeds a human lifetime.

Most cryptanalysis experts don’t even try to guess the
key. Instead, they attack the algorithm. If you have a 128-bit
key, but your algorithm doesn’t make good use of that key, it
might be possible to either decode the ciphertext without the
key or guess a large part of the key from the encrypted text.
If your key is 40 bits, but you can guess 30 of those bits because

MALLORY: THE ORIGINAL BAD GUY
When you read OpenPGP (or any cryptographic) documentation for
any length of time, you’ll see references to someone named Mallory.
Mallory is the example bad guy who wants to steal your information.
The name Mallory is now applied to anyone who tries to break your
encryption by any means. The name, which appears intermittently
throughout the OpenPGP documentation, refers to any bad guy—
not some specific person named Mallory. The Internet—indeed, the
world—is full of Mallorys.

20 Chapter 1

of some weakness in the algorithm, the task of guessing the
remaining 10 bits becomes much much easier. There are only
1024 possible combinations of 10 bits, and a computer can run
through those combinations in very little time. The reality is
that the security of a transaction is far more dependent on the
algorithm used than on the number of bits used. Some algo-
rithms are more secure with 80-bit keys than other algorithms
with 160-bit keys because some algorithms are simply stronger
than others.

You can think of algorithms and bits much like tires. A
semi has 18 tires in motion simultaneously, whereas your car
has only 4 tires. You car isn’t any less useful than a semi, how-
ever—it’s just used in different circumstances. Your car would
not be improved by adding 14 more wheels (unless you’re on
one of those TV shows in which they do weird things to inno-
cent vehicles, of course).

Algorithms have many different characteristics, most of
which are completely irrelevant to a OpenPGP user. You do
need to understand two basic types of algorithms, however:
symmetric and asymmetric algorithms.

Symmetric Algorithms
A symmetric algorithm uses a single key for both encryption and
decryption. The children’s substitution cipher we discussed
previously uses a very simple symmetric algorithm: Replace
each letter by the number in the key. After you have this key,
you can encrypt and decrypt messages to your heart’s content.
You can, of course, change the key easily: You and your corre-
spondent could agree that “A=9, B=&,” and then generate very
different-looking ciphertext from the same messages. Although
people could analyze your old messages and figure out your
old key, they would have to start all over again after you change
the key. When most people think of codes, they think of sym-
metric encryption.

 The challenge with using symmetric algorithms is that
you need a secure way to pass the key back and forth without
it being intercepted. But then if you had that secure path, you
probably wouldn’t need the cipher in the first place! Despite
appearances, if you’re using the Internet, you don’t have a
secure path. The Internet is always tapped, and there are peo-
ple who save every packet they receive on their network in case
they become interesting later. I know of one network manager
who has saved every packet that has crossed his Internet circuit
in the last five years!

Cryptography Kindergarten 21

Asymmetric Algorithms
Symmetric algorithms are usually much easier to attack than
asymmetric algorithms, which use different keys for encryption
and decryption. You’ve probably seen old movies in which peo-
ple cut a coin in a jigsaw pattern so two people who never met
before know that they are speaking with the correct person.
Asymmetric encryption keys work just like that: You must have
both halves of the key to have unfettered access to the mes-
sage. You encrypt the message with one unique key, and the
recipient decrypts it with a different unique key. Although this
process might seem miraculous to someone who has worked
with only the basic substitution cipher, it does work. It doesn’t
matter which key is used for which action; if you use key A to
encrypt a message, the recipient must use key B to decrypt it,
but if someone encrypts the message with key B, only key A
can decrypt it. (The math to show why this works is quite hairy,
and the actual calculations are nearly impossible to perform
by hand—they rely on the difficulty of working with extremely
large prime numbers.)

When using asymmetric algorithms, two different people
can carry around separate but matching keys and use them for
private communication. It is practically impossible to decrypt
a message given only one key, and having one key doesn’t
help an attacker figure out what the other key is. Asymmetric
encryption became popular only with the spread of powerful
computers that could handle the nightmarish math quickly
and routinely. OpenPGP is based on asymmetric encryption.

Having a single cryptographic key made up of keys A and
B opens up an interesting possibility: What happens if you
give key A away? That is, really give it away. Make key A public.
Publish it on your web page. Hand it out at parties. Publish
it on the back page of your book. Upload it to a public key

DON’T MAKE YOUR BRAIN MELT!
Many people have a hard time accepting the idea of asymmetric
encryption. They think that there can’t be such a thing, that the idea
is misstated, or (worst of all) that they do understand it. Googling
for “asymmetric encryption” provides any number of papers on the
topic. If you’re truly interested and can handle the math, you’re wel-
come to prove that it works. Bruce Schneier’s Applied Cryptography
is perhaps the most approachable work on the subject. Otherwise,
don’t let your ego interfere; just accept that numbers act really, really
strangely when they get really, really big.

22 Chapter 1

repository. Write it backward on your forehead so it appears
forward in the rear-view mirror of the guy you’re tailgating. Let
anyone, anyone at all, use that key.

Public-Key Encryption
No problem. The only possible use for that key is to encrypt
messages that can be unencrypted only with the matching key
that you kept or to decrypt messages encrypted by your key.
People can encrypt messages that only you can read and can
decrypt messages that only you could have sent. This is the
whole basis behind public-key encryption. The published key is
called the public key, whereas the key you keep is the private key.
Together, a public key (key A) and its corresponding private
key (key B) are called a keypair.

Every OpenPGP user has a personal keypair, with the pub-
lic key disseminated widely and the private key kept as a closely
guarded secret. OpenPGP provides methods to broadcast the
public key to the world because body tattoos are neither neces-
sary nor desirable in cryptography.

Although OpenPGP uses passphrases (as discussed later
in this chapter) to make private key theft more difficult than
simply stealing a file from your computer, there’s no reason to
make it easy for Mallory. Anyone who has the private key and
your passphrase can pretend to be you. Protect both of them!
Throughout this book, we discuss ways to keep your private key
private and make your public key more public.

Digital Signatures
When you digitally sign an unencrypted message, you allow
anyone to read the contents of the message. The digital signa-
ture tells the recipient only that the sender had access to the
matching private key for the public key he has for that person.
Digital signatures use both hashes and public-key cryptography.
They provide nonrepudiation and integrity, but not confiden-
tiality. If you want everyone in the world to know you wrote
something, a digital signature will do the trick.

You saw earlier that when someone alters a message, the
hash for that message changes dramatically, which provides a
simple check of the message’s integrity. If you provide the mes-
sage’s hash in an email itself, there’s a problem: Anyone who
can change the email can also change the hash to match the

Cryptography Kindergarten 23

new message. We need a technique to protect the hash from
tampering. Our solution is to use public-key cryptography to
digitally sign our message. Here are the basic steps the Open-
PGP software performs after you tell it to sign your message:

1. Generates a hash of your message.

2. Encrypts the hash with your private key (your digital
signature).

3. Attaches the encrypted hash to your message (this is your
signed message).

4. Sends your message with the attachment.

The recipient will get an email message containing the
message you sent in cleartext, plus a small attachment contain-
ing the encrypted hash. The recipient does not need to use
OpenPGP to read the message, so it’s less hassle to read the
message than it would be to read a fully encrypted message.

By the same token, if the recipient has OpenPGP tools
installed, the message’s hash can be decrypted with your public
key to get the hash of the message you sent. Because only you
hold your private key, only you could have created that hash.
The recipient can then independently generate the hash of the
message that was received. If the two hashes match, the recipi-
ent can be certain that what is read is what you sent.

If someone tampers with your original message, anyone
who tries to confirm the hash gets an error. Your public key
might not decrypt the hash, which would indicate that some
other person’s private key created the message. Or your public
key might decrypt the hash, but the hash would fail to match
the hash for the email message received, telling the recipient
that the email message was altered.

Combining Signatures and Asymmetric
Cryptography

We discussed hashes, which show whether a document has
been tampered with. We also covered public-key cryptography:
An asymmetric cipher allows people to encrypt messages for
a particular person, or a person can send messages that could
have come only from him. Digital signatures combine both of
these ideas, but OpenPGP takes them a step further. By com-
bining the sender’s private key and the recipient’s public key,

24 Chapter 1

an OpenPGP message can be read only by its intended audi-
ence and could have come only from a particular sender, as
shown in Figure 1-1.

Fred

Fred’s keypair

Fred’s
public key

Fred’s
private key

Encrypted message

Barney’s
public key

Fred’s
private key

Barney’s keypair

Barney’s
public key

Barney’s
private key

Barney

Figure 1-1: OpenPGP keys and an encrypted message

As you can see in Figure 1-1, both Fred and Barney have
keypairs that consist of a public and a private key. These people
have never communicated before; instead, their public keys
are available on the Internet. Each of them has kept the private
key secret.

When Fred wants to send a message to Barney, Fred signs
the message with his private key and encrypts it with Barney’s
public key. The encryption can only be undone by someone
who has Barney’s private key, and the signature can only be
verified by someone who has Fred’s public key.

By using both a private key and a public key from two dif-
ferent people, we ensure that anyone who wants to read the
message and verify its authenticity must have Fred’s public key
and Barney’s private key. Fred’s public key is easy to find, but
Barney’s private key is a closely-held secret. The only person
who has both of these keys is Barney.

N O T E Not even Fred has both of the necessary keys; he lacks Barney’s private
key. Once the message is encrypted, even the sender cannot decrypt it!

This simple aspect of OpenPGP has secured the lives of
dissidents and relief workers in totalitarian, oppressive govern-
ments and war-torn areas.

Passphrases and Private Keys
OpenPGP private keys (and those in many other programs,
such as Secure Shell) have two components: a file on your
disk and a passphrase. The file on disk contains your private
key, scrambled and shredded beyond recovery. A passphrase
is much like a password, except that it is much longer and
includes spaces. Whenever you work with your private key, the
OpenPGP program will request your passphrase. OpenPGP
combines the passphrase you enter with the private key file

Cryptography Kindergarten 25

saved on disk to reassemble a working private key. If you enter
the wrong passphrase, this private key is wrong and will not
work. Thus, a stolen laptop containing a private key file will be
useless to the person who finds it, unless you save your pass-
phrase in a plain text file somewhere, that is! The only safe place
for your passphrase is in your head.

Choosing a Passphrase
Computers are now so fast that they can crack short passwords
rapidly simply by trying each possible password in quick suc-
cession. This process is called brute forcing. Although you can
use a simple password for a passphrase, doing so consider-
ably reduces the security of your private key. Your passphrase
should be at least several words long, it should be something
you can easily remember, and it shouldn’t be obvious to oth-
ers. Work special characters such as #, !, ~, and so on into your
passphrase. Peculiar words used in your professional vocabu-
lary are also a good choice. Substitute numbers for letters. If
you work with computers, you can use computer shorthand,
such as substituting “|” for “or.” Confuse upper- and lowercase.
Do not use catch phrases, tag lines, or bits from popular books
or movies as your passphrase! Although “He’s dead, Jim” might
be very easy for you to remember, it’s both easy to guess and far
too short.

Many people recommend combining all the above into a
passphrase. You can start with a phrase such as “He’s dead, Jim”
and expand on it: “On the first Star Trek series, McCoy said
‘He’s dead, Jim’ in far, far too many episodes!” is a far better
start for a passphrase2 and is probably unique. Other experts
recommend starting with a few sentences from an obscure
book. If you know a foreign language, even slightly, substitute
some of the foreign words for English equivalents. That useless
degree in 17th century French literature is an excellent source
for passphrases that will be extremely difficult to either guess
or brute force.

After you have a base passphrase, fold, spindle, and muti-
late it with special characters and weird substitutions. Add in
your special characters, illiterate punctuation, and whatever
other changes you desire. Make it longer and more com-
plicated for better security. Your final passphrase should be
meaningless to anyone except you.

2 This might have been an acceptable place to start with passphrase creation,
but now that it’s published as such, it’s a really lousy one.

26 Chapter 1

Here’s the scariest bit about public-key cryptography:
Anyone who has your complete private key can pretend to be you. If
someone steals your laptop and understands OpenPGP, the
person can assume your electronic identity if he can get your
complete OpenPGP private key. Your OpenPGP private key
consists of numbers in a file on your computer’s hard drive
and your passphrase. You can only protect that file so well; by
choosing a solid passphrase, you make your key much harder
for anyone else to use.

After you begin using OpenPGP regularly to secure your
personal information, losing your private key is like losing your
wallet, credit cards, passport, and birth certificate simultane-
ously. And in some parts of the world, digital signatures are
legally binding. Your boss might get that threatening email,
and you couldn’t repudiate it. You might learn one day that
you’ve apparently agreed to open a warehouse-style, discount
mail-order bride distribution center in Kansas. The passphrase
is your key to peace of mind; choose it well.

If you use OpenPGP to protect personal documents, you
might choose to record your passphrase somewhere so that a
family member could get it in case of your untimely demise.
This is a personal choice; although a safe deposit box might
not be as secure as you want, it’s much better than relying on
the IRS to provide accurate copies of your financial records
to your spouse after your death. It is perfectly reasonable to
have shared OpenPGP keypairs used by family members to
protect family financial documents. Many teams use just such
an approach for a group key, as will be discussed in Chapter 11.

Now that you understand some of the basics of cryptogra-
phy as used in OpenPGP, let’s examine the way OpenPGP itself
hangs together.

2
U N D E R S T A N D I N G O P E N P G P

Now that you understand the
ideas behind basic encryption,

what makes OpenPGP so spe-
cial? Aside from the decade-old

lawsuit that freed up US encryption export
regulations, what happened to make the
computing world give OpenPGP so much attention? After
all, the cryptography underlying OpenPGP has been widely
deployed in a variety of applications and protocols, so that’s
not the secret.

OpenPGP’s secret is also what might be its most exciting
part: the whole concept of the Web of Trust. To use OpenPGP
well, you need to understand the Web of Trust.

This chapter introduces the ideas behind the Web of Trust
and some considerations when creating and using public and
private keys. We will discuss the details of managing the Web of
Trust in Chapter 5, and will specifically cover PGP in Chapter 6
and GnuPG in Chapter 7.

28 Chapter 2

Security and OpenPGP
Let’s consider the word security for a moment. This is one of
those poor innocent words that’s been kicked around until it
means just about anything the speaker wants it to. OpenPGP
provides some things that we normally think of as security, but
it’s really a very limited subset of the whole world of security.

OpenPGP won’t keep someone from stealing your com-
puter. It won’t stop someone from sending you three million
junk emails. It does provide confidentiality, integrity, and non-
repudiation, but its implementation of these are all tightly tied
to and derived from the idea of identity.

One can argue that the idea driving OpenPGP is identity
verification. Identifying people in person is pretty easy—
humans have done that with their five senses for tens of
thousands of years, and we’ve gotten pretty good at it. Iden-
tifying the sender of an email is more difficult. When you
receive an email message, the only information with which
to identify the sender is an easily-forged “From” address.

When you receive a message signed with someone else’s
private key, however, you can rest assured that it almost cer-
tainly came from the person with the matching private key.
The question then becomes, “How do you tie a real-world iden-
tity to the keypair?” This has long been the killer problem in
public-key cryptography.

Big companies take a big-scale approach to this problem.
Secure Sockets Layer (SSL) websites use digital certificates
issued by Certificate Authority (CA) companies that (in the-
ory) spend a lot of time verifying the identity of the person or
company requesting the certificate. This is a time-consuming
process that costs a good amount of money to do correctly.
After a website owner convinces the CA that he is who he
claims to be, the CA digitally signs the website’s public key,
which is the CA’s proclamation that it has verified the identity
of the certificate holder.

This approach, although basically decent, has weaknesses.
First, any business expects to be paid. I don’t want to pay some
company 100 dollars every year or two just to prove my email
identity—that’s more expensive than my driver’s license!
What’s more, even these big CAs can be tricked into signing
invalid certificate requests, so you’re not getting an ironclad
guarantee of validity.

In fact, the digital signature used by a CA doesn’t differ in
any technological or cryptographic sense from the digital sig-
natures you can create with your own private key.

The key difference between OpenPGP and a central CA is
that OpenPGP allows you to create digital signatures yourself.

Understanding OpenPGP 29

The Web of Trust abolishes the whole idea of a central CA and
places the responsibility for identity verification in the hands of
the users.

N O T E The general design of the X.509 certificates used on websites does differ
from the OpenPGP keypair. The two are not interchangeable because
they use different algorithms and include different information, but the
underlying technology is the same (much as a convertible and a pickup
resemble each other).

Web of Trust
The Web of Trust is the global network of people who have
identified each other and digitally signed each other’s Open-
PGP keys. The Web of Trust is composed entirely of links
between individuals. Over the years, as more and more people
have joined the Web of Trust, the network has become broader
and more interconnected. Everyone who is using OpenPGP to
communicate with a variety of people is connected via the Web
of Trust.

For example, suppose that at some point I receive a digi-
tally signed email from George. I have never met George, but I
can get a copy of George’s public key from a central repository.
This key has been digitally signed by people who have verified
his identity.

One of these signers is William, whom I do know. I trust
William to not have signed George’s key unless he either knows
George personally or has verified his identity in some other
way. When I verify William’s signature of George’s key, I know
that William really does “vouch” that George is George. I trust
William, and William trusts George, so I can trust that George
is George. And this chain can continue to grow. Perhaps I trust
William, who trusts Larry, who trusts Betty, who trusts Ivan, who
trusts George, and so on. That’s the web.

As George has his key signed by more and more people,
his key is more tightly integrated into the Web of Trust and
the average length of the path to his key becomes shorter and
shorter.

The Web of Trust is not perfect. I might trust William’s
ability to check identity when signing keys, but I don’t know
anything about George’s; maybe he signs the keys of anyone he
meets, or signs keys he randomly downloads from the Open-
PGP keyservers. If we were going to start over with OpenPGP
today, the Web of Trust would look completely different. Just
remember that ultimately, you decide who you trust. You can
always refuse to sign a key, or refuse to accept identity because
of a too-distant connection to someone you trust.

30 Chapter 2

Trust in OpenPGP
Like so many other words in the security field, trust has
been twisted to mean almost anything the speaker desires.
(The OpenPGP standard actually goes out of its way to avoid
defining the word trust!) One critical portion of the trust sys-
tem is the Web of Trust, which uses a narrow definition of trust
and tries to ensure only that a person is who he claims he is.

Simply being a part of the Web of Trust does not imply that
a person is trustworthy! I know people whom I know darn well
that I cannot trust with my wallet or my pet rats, but I would
happily sign their PGP keys and help them prove their identity
to others. You can receive an OpenPGP-signed email contain-
ing a fraudulent offer to sell the Brooklyn Bridge at pennies on
the dollar; if the sender’s key is attached to the Web of Trust,
you have at least a chance of identifying him.

The responsibility for building this trust is in your hands.
Collecting other OpenPGP users’ digital signatures on your
key, and signing their keys in return, is an important part of
using OpenPGP. You should be as tightly meshed into the Web
of Trust as humanly possible.

By the same token, it would be unfair to say that “the more
signatures you have on your key, the more your key will be
trusted.” Lots of signatures do not ensure that the key will be
universally trusted. On the other hand, the more hops between
you and another user in the Web of Trust, and the fewer paths
between the two of you, the less likely that person will be to trust
your identity. (See “Tracing the Web of Trust” on page 121.)

By signing someone else’s key, you are stating publicly that
you have identified this person, and you are satisfied that his
identity matches the identity provided with his public key. Like-
wise, to get your key signed by someone else, you must prove
your identity to him. Many people assume that a government-
issued ID such as a passport or driver’s license suffices as proof
of identity.

This might seem like a weak system, but it’s no weaker
than the one used by a central CA. The CA is staffed by human
beings just like you, after all. Although these staff members
have training to detect false IDs, they have limitations simply
because they work remotely. If a person is standing in front of
you with her driver’s license, you can look at her picture and
compare it with her face. The CA has no such option.

Also, most of us check identification rarely enough that
its very novelty means we probably pay enough attention to
do a decent job at it. Those folks who work for a CA check IDs
all day long, every day. I remember more than one Monday
morning at work when I was less careful and less productive

Understanding OpenPGP 31

than my employer would hope.1 Although anyone could get a
forged ID card if they knew who to talk to, they can fool a CA
almost as easily as they can fool you. Just look at the people
who work for the TSA; they check ID cards all day long and
quickly become bored with the routine.

Of course, you won’t be able to verify all state-issued ID
cards. If I meet someone who uses a Tasmanian passport, I’m
going to hesitate over signing his key unless he has some other
method of proving his identity. (Tasmania is a state within Aus-
tralia, and doesn’t issue its own passports. If you didn’t know
this, don’t blindly trust government-issued IDs!) You’re per-
fectly within your rights to only sign keys for people you know
well. Many experienced OpenPGP users follow this strategy;
don’t be offended if they won’t sign your key based solely on
your state ID. I won’t sign your key unless I know you.

One common way to enhance your links into the Web
of Trust is to attend a keysigning party. At a keysigning party,
OpenPGP users gather to verify each other’s identity and sign
each other’s keys. Keysigning parties are usually held at techni-
cal conferences and occasionally at other events where a large
number of tech-literate people have gathered.

If you have never heard of a keysigning party and don’t want
to go looking for one, ask your friends and inquire around your
place of work. In any community of technically oriented people,
at least one person has an OpenPGP keypair. Some social net-
working sites, such as www.biglumber.com, exist primarily to
match people up to exchange signatures on OpenPGP keys.

A single signature attaches you to the Web of Trust. After
you start using OpenPGP you’ll be surprised at how many
other people also use it.

Where to Install
An OpenPGP program provides an affidavit that you are who
you claim you are, like your driver’s license or a notary’s stamp.
And, just as you wouldn’t leave your driver’s license lying around
at the public library, you shouldn’t use OpenPGP on any com-
puter you do not completely control. Other users on the same
computer might be able to access your keyring, including your
ultrasecret private key. Even if you have the permissions set on
your keys so that only you can see them, don’t forget that people
with administrative access to the system can access those files
anyway. This means that you shouldn’t install OpenPGP on a
shared system, such as those in the university computer lab.

1 Note to the boss: Those days were all at previous jobs. This never happens
now. Really.

32 Chapter 2

Don’t install it on a communal office terminal. The coffee shop
terminal is Right Out. Although I read my email on a shared
server, when I use any OpenPGP program I compose the mail
on my laptop and upload it to my mail server.

Your personal computer should also be well-secured; if you
leave your computer in the office and have no locking screen
saver, people could access your keys.

Now let’s talk about Windows. Versions of Windows
descended from Windows 95 (including Windows 98 and
Windows Me) aren’t true multiuser operating systems; their
multiuser functionality is bolted on rather than integrated
throughout the system. You cannot successfully secure Open-
PGP keys on a multiuser Windows 9x system; anyone who uses
that system could access your keys without you ever knowing
about it. The password functionality in these versions of Win-
dows is easily bypassed by anyone who can touch the system,
without any special tools or software. As such, I recommend
against storing any personal information, including OpenPGP
keys, on Windows 9x systems.

Windows NT–based operating systems such as Windows
Vista, Windows XP, and Windows 2000 are much improved in
this regard; breaking into them requires special software tools
and time, just like a Unix-like system. On the other hand, they
do have that pesky Administrator account that can install any-
thing it likes. Just like a Unix-like “root” account, you must be
certain that nobody else can access your keyring.

We’ll touch on this topic, but an in-depth look is beyond
the scope of this book. If you’re interested in desktop com-
puter security, there are many books on the market that deal
specifically with that topic.

Your Keypair
No matter which version of OpenPGP you choose to use, you
have to create a keypair when you install the software. The
steps for doing so will differ, but both sets of software use the
same underlying ideas. Again, see Chapter 3 for specific PGP
instructions and Chapter 4 for GnuPG instructions.

N O T E Remember to generate your keys only on a machine that only you con-
trol. If you leave your GnuPG keypair lying around for anyone to use,
that anyone can pretend to be you!

Key Length
The key length is the number of bits (zeros and ones) in your
keypair. At the time of this writing, both PGP and GnuPG

Understanding OpenPGP 33

default to 2048-bit keys. A 2048-bit symmetric key suffices to
provide robust security for the next several years, unless your
attacker has quantum computers or one of those ultrasecret
custom-built, code-busting machines the NSA is rumored
to have.

Increasing the key size increases the amount of work
needed to process your key—not just the amount of work
needed to send encrypted emails but also the amount of work
others must do to read them. It also increases the amount of
work the bad guys have to do to break your key, however. Stick
with the defaults, unless you know that everyone you will ever
exchange encrypted messages with has sufficient computing
power to decrypt your messages without having to take a coffee
break while the machine churns.

Key Expiration Date
The expiration date of a keypair is a matter of discussion
among OpenPGP experts. Having a key expire regularly pro-
vides a certain level of additional convenience for your future
self; if you leave your nonexpiring keypair on a CD-ROM, and
someone finds that disk in 2038, they can still use that keypair
to pretend to be you. If your key expires regularly, you will
need to generate a new key every few years and distribute it
amongst your correspondents.

As a new OpenPGP user, however, you will probably find
things that you wish you had done differently with your key
before too long. If your key lasts forever, it will be more dif-
ficult to get rid of. I recommend that you have your first key
expire in a year. You can probably have subsequent keys expire
every two to five years, but you want to be able to bail out of
any teething problems quickly. (Although I’ve done my best
to guide you through any potential problems, some of you will
find uses for OpenPGP that I’d never expect!)

Perhaps the most common problem with a nonexpir-
ing key is that when an old key is used to contact someone
who no longer has the keypair, they can’t read the email. If
I had publicized a nonexpiring PGP key when I first gave
PGP a try back in 1995, that key would still be available
via Google and other websites. Chances are, today I would
have had to scrounge hard to dig up the software to read
a message encrypted with that key. And in 2015, I would
have serious difficulty opening that message, but the key
would still be cached for the world at large to view, and no
matter how hard I worked to publicize an updated expir-
ing key, people would keep tripping over the old one!

The moral of this story is: Expire your keys regularly!

34 Chapter 2

Name, Email, and Comment
Your name, your email address, and an optional comment field
combine to create your OpenPGP user ID, or UID. You must
be very careful to enter these in the most correct manner to
get the greatest possible use out of OpenPGP.

Your Name

Use your real name. Remember, one important part of using
GnuPG is getting people to sign your public key. Although it’s
easy to get your friends and family to sign your keys, proving
your identity to strangers so that they will sign your keys is a
little more difficult.

The best way to get your key signed is to provide some
sort of government-issued ID with your name on it. My pass-
port says “Michael Warren Lucas Jr.,” my books are authored
by “Michael W. Lucas,” my company email account lists me
as “Michael Lucas,” and my coworkers have still other names
for me. (Because I want this book to avoid an R rating, I won’t
mention those names here.) If I’m trying to prove my identity
to someone I’ve never met before, it’s best if my key matches
the name on my government-issued identification as closely as
possible.

Email Address

You also need an email address. Your key is tied to an email
address, for better or worse.

Comment

The comment is just a few words about who you are and what
you do. This can be important because many people have simi-
lar names. If I perform a Google search for “Michael Lucas”
I find a whole bunch of interesting characters: voiceover art-
ists, actors, firearm instructors, ministers, and so on. Although
I wish them all well, I don’t want anyone to try to negotiate
my book contract with them (because my publisher is such a
bastard, he’ll take them for all they’re worth). The comment
field allows me to differentiate myself, so that if anyone else
goes looking for the OpenPGP key for a random “Michael
Lucas” I won’t get unreadable mail intended for someone else.

User ID

This triple identifier of name, email address, and comment is
called a user ID, or UID. UIDs are expected to refer to a unique
entity. When someone goes looking for your private key, they

Understanding OpenPGP 35

won’t want to find it by a string of meaningless characters; they
want to use your name! If they can’t remember your full name,
they’ll want to use your email address.

Although it’s unlikely that someone wanting to reach me
would search for my public key by the fact that I’m an author,
it would help sort me out from all the other Michael Lucases in
the world who might use OpenPGP.

Revocation Certificates
A revocation certificate allows you to announce to the world that
your keypair is no longer valid. You need a revocation certifi-
cate if your private key is lost, compromised, or stolen. You
might also forget your passphrase, which would lock you out
of your own private key and render you unable to read any
encrypted messages you receive.

You might even lose the technology to read your keypair!
Occasionally, you will hear about some user who receives an
email encrypted with a PGP key dating from 1992, in a format
that no modern OpenPGP-compliant program can read. (This
is perhaps the most important reason why your key should
expire!) In any of these cases, you’ll want to be able to “shut
off ” your old key.

Generate a revocation certificate immediately upon gener-
ating a key.

Storing Your Keypair
After you start using OpenPGP, losing your private key (or the
whole keypair) will cause you no end of grief. I’ve had files dis-
appear due to user error, filesystem bugs destroy data I didn’t
realize was important until weeks later, and operating system
bugs render machines unbootable. Three of my machines have
caught on fire. Unlike the corporate world, in which you can
always blame goofs on the IT department, you are the only
person who can protect your OpenPGP keys. You cannot del-
egate this responsibility.

Back up your keypair and your revocation certificate on a
portable medium, such as a CD-ROM or floppy disk, and store
it in a safe place such as a safe deposit box. Perhaps carry it
with you, encrypted, on a USB key.

A safe is not a bad choice, but although a fireproof safe
won’t get hot enough to ignite paper it will get more than hot
enough to corrupt digital media. You can also print out your
revocation certificate and store it with the digital backup, so
that if your backup media fails with age you could still hand-
copy the revocation certificate and revoke your key if necessary.

36 Chapter 2

W A R N I N G Do not store your keypair and/or revocation certificate on a public
machine, semipublic machine, or shared machine! Yes, I’ve said this
before, but it bears repeating until it sinks in.

Storing Your Revocation Certificate
Just as anyone who gets your private key and passphrase can
pass himself off as you, anyone who gets your revocation certifi-
cate can make your private key unusable by the world at large.
This would be annoying for a novice, but if you use OpenPGP
heavily it would be catastrophic. Store your revocation certifi-
cate just as securely as you store your private key.

Photo IDs and OpenPGP Keys
One of the more recent additions to OpenPGP is the ability to
store a picture in a public key. This makes verifying key owners
much more reliable, as you can actually view a picture when
you’re deciding whether or not to sign a key. It also gives you
a better “feel” for the person.

Both PGP and GnuPG can extract and display photos
in keys.

If you want to insert your own photo into your key,
you’ll need to have a digital photo of yourself in either a head-
only or head-and-shoulders shot. For best results, it should be
120x144 pixels and in JPEG format—this will work in both PGP
and GnuPG. Key size is a critical issue in OpenPGP, so your
photo should take up as little space as possible: It doesn’t need
to be super-detailed so long as people can recognize you. After
all, how many driver’s licenses have decent photographs?

Inserting a photo into your public key isn’t hard, but it
does require slightly more advanced skills than you have right
now. We will discuss managing photo ID in Chapters 6 (for
PGP) and 7 (for GnuPG).

Key Distribution
Putting your public key on your web page might seem like
the obvious thing to do, but this only demonstrates that the
obvious choice isn’t always the best. Anyone can put up a
website claiming to be “The Official Website of Michael W.
Lucas!” Anyone could put a public key on that site. Worse,
anyone could put a note on that web page saying “To reach
the internationally-renowned author of PGP & GPG, as well
as many other fine tomes of computer wisdom, email him at

Understanding OpenPGP 37

michaellucastheauthor@hotmail.com and use this OpenPGP
key!” (Of course, that isn’t my website, my email address, or
my OpenPGP key. Anyone trusting that will find themselves
talking to someone else—and blaming me for the results.)

At times, you’ll see email signatures with the line “My
public key is available at http://www.mywebsite.com/,” which
seems like it would be better. It’s certainly so popular that
you’d think it would work. If someone tampered with the
email, however, they could also put in a new URL for the pub-
lic key website and fool the recipient. This works best when the
author sends a lot of email, so correspondents can verify the
URL with that displayed in other messages. This would work
well only with people who know me and would be disturbed if I
suddenly started using a different email provider.

Unquestionably, the best way to distribute your key is in
person. When a coworker sets up an OpenPGP keypair, I have
him email the public key to me, we verify it together, and then
I add it to my keyring.

This simply doesn’t scale, however—you can’t go track-
ing down public keys for everyone in the world! There’s also a
certain recursive problem in sending an email to get a key to
verify the authenticity of an email you just received.

Fortunately, OpenPGP has a key distribution method that
covers the whole world.

Keyservers
OpenPGP has special Internet servers designed specifically
for handling and sharing OpenPGP keys. These keyservers
are much like other Internet servers that are customized to
handle web pages, email, or any other protocol. OpenPGP
includes hooks to automatically communicate with OpenPGP-
compatible keyservers.

There are many, many keyservers throughout the world.
Most of them replicate their key databases back and forth,
ensuring that everyone’s keys will be available upon demand.

Traditional OpenPGP keyservers allowed anyone to upload
a key for any email address. This was great when the Internet
was a more trusting place, but today it isn’t as useful. The
PGP Corporation provides a “verified PGP key” service, in
which you can upload a key and send an approval email to the
address in the key. Only the key owner can approve that key
for listing in the keyserver, which provides a certain level of
authorization—Mallory must control the email account of a
person he wants to spoof a key for, and if he can do that then
OpenPGP won’t do anything to stop him anyhow.

38 Chapter 2

W A R N I N G Before sending your public key to the world, be certain that you have
made the proper preparations to use OpenPGP. Back up your public
and private keys. Create a revocation certificate. Store the whole mess
in a safe place. Failing to do these things might result in your posting
an “orphaned” key to the world, which means that you will receive
encrypted (and presumably important) email that you cannot read. If
in doubt, don’t put your key on a keyserver for a little while. You can
always upload it later.

Keyservers are not the be-all and end-all of public key
distribution. It doesn’t hurt to put your public key on your
website; if nothing else, it provides one more level of confirma-
tion of a key’s accuracy for those people sufficiently paranoid
to check.

Many users with accounts on shared Unix-like systems put
their public key in their finger text or plan for other system
users to see. These methods are perfectly fine as add-ons but
don’t integrate well with the OpenPGP infrastructure. Your
average OpenPGP user won’t want to track down the web page
of a correspondent—she wants her email client to simply go to
a keyserver and grab the key!

Some people choose to not use keyservers for their
own reasons. Perhaps they don’t want to receive OpenPGP-
encrypted mail from random people or they have fundamental
architectural disagreements with the security of the keyserver
system. These people publicize their keys with their own pre-
ferred methods, and you’ll have to jump through the hoops
they’ve devised to communicate with them.

People can and do have legitimate concerns about the
reliability and integrity of the keyserver system; they’re an
example of something that was implemented before the
Internet became so popular and that we now have to live
with. If OpenPGP were implemented from scratch today,
we would probably use something different, but the same
can be said for the Web, for email, and for all the other
protocols that make the Internet what it is today. However,
keyservers are a far better system than the Internet’s default,
which is to provide no means of verifying authenticity.

Now that you know what the software you chose will be
doing, let’s see how to install both PGP and GnuPG.

3
I N S T A L L I N G P G P

PGP Corporation produces
several different types of PGP

software, from PGP Desktop to
PGP Command Line, and several

different enterprise-level products. We’ll
focus on the desktop PGP software useful
for most people. To an end user, all the ver-
sions behave similarly; they all implement
the OpenPGP standard, after all! The various desktop prod-
ucts do have slightly different features, however, and you
should take those features into consideration when purchas-
ing the software. For example, as of this writing PGP has
two “desktop” versions: Home and Professional. The Home
version provides basic email features, whereas Professional
gives you the ability to encrypt your entire hard drive as well.
Choose the version whose features best suit your needs.

40 Chapter 3

Downloading PGP
To begin, download PGP from the company website, www.pgp
.com. (I won’t provide an exact URL, mainly because web
designers seem to make a habit of redesigning their websites
within a week of one of my books going to press!) PGP pro-
vides a free 30-day trial of its “home desktop” software, as well
as the option to purchase immediately. The 30-day trial isn’t a
bad way to get a taste without laying down cash for the privi-
lege. If you like it, you can buy a license code on the website.

Within a day or two of your order, you’ll receive an email
that includes a link to where you can download the software, a
list of instructions, and license numbers. Keep this email! Not
only will you need this information to install PGP, you will also
need it if you require support. Each PGP download and license
key is specific to the person who ordered it: It has the user’s
name, email address, and so on hard-coded into it. This means
that if I order PGP for my wife, I must put her name, her email
address, and her other information on the order form. If I put
my information in the download form, the software will be
licensed for my use instead of hers and will not work.

The download includes a typical Windows installation EXE
file. Double-click it to get started.

Installing PGP
The installer begins with a typical license screen. Read
this carefully and agree if you want to continue the install.
You’ll then see a pop-up that contains the release notes, and
describes all the features and integration supported by this ver-
sion of PGP. After a typical sliding blue bar shows you the files
being installed, you’ll be asked to reboot. After the reboot, log
into the user account in which you intend to use PGP, and a
pop-up window will ask if you want to use PGP. Say Yes.

The Licensing Assistant confirms that you have a valid PGP
license. Enter your name, organization, and email address
exactly as you entered them in the order form. (If you for-
got, they’re included in the email with your license code.)
Figure 3-1 shows a sample of the PGP Licensing Assistant.

The next window asks for your license code. As of this
writing, the license code is a 28-character alphanumeric string
included in your order form. You can also request a 30-day
evaluation, purchase a full license, or use the program without
a license in a crippled mode. (Using PGP without a license
allows you to access files that you have previously encrypted,
but not much else.) Enter your license key and continue.

Installing PGP 41

Figure 3-1: The PGP Licensing Assistant

After PGP validates your license key, you’ll be asked if you’re
a new user or if you want to import previous PGP keys. Select
New User, and PGP will begin the key generation process. The
first screen of the PGP Setup Assistant requests your full name
and your primary email address, as shown in Figure 3-2.

Figure 3-2: The Name and Email Assignment screen

The More button and the Advanced button are impor-
tant. If you have more than one email account that you want
to secure with PGP, select More to create more space to list
email addresses.

If you’re planning to communicate only with people who
use official PGP, Inc. software, you’re all set. However, if you

42 Chapter 3

want to use OpenPGP with anyone who uses software from any
OpenPGP vendor, click the Advanced button. You’ll see the
Advanced Key Settings dialog box, as shown in Figure 3-3.

Figure 3-3: The Advanced Key Settings dialog box

Key Type
OpenPGP supports many different types of keys, including keys
that are valid for signing messages but not encrypting them,
keys compatible with older versions of OpenPGP, and so on.
The modern standard for average email use is RSA.

Key Size
This is the key length in bits, as discussed in “ Your Keypair” on
page 32. The default is 2048 and should be sufficient for most
people. Longer keypairs are useful only if your data should
remain confidential decades or centuries from now.

Expiration
Choose whether to have your key expire at a certain time (as
discussed in Chapter 2) or to never expire. I recommend that
you set an expiration date no more than one year in the future,
at least on your first keypair.

Ciphers
Remember from Chapter 1 that a cipher is a method
of encrypting text. PGP presents a list of ciphers it will

Installing PGP 43

understand, including Advanced Encryption Standard (AES),
Cast, TripleDES, IDEA, and Twofish. The differences between
these ciphers are generally only of interest to cryptographers;
today, almost everyone uses AES. The “preferred” cipher is the
one your software will use by default when composing mes-
sages. Almost everyone composes messages in AES today, and
everyone with modern software can read it; it is best to leave it
as your preferred cipher.

One thing that sets PGP apart from other OpenPGP imple-
mentations is that it can use the IDEA cipher, but today’s PGP
doesn’t understand IDEA by default. If you want to read IDEA-
protected messages, you must check its box on the list here.

Hashes
Different OpenPGP implementations support different hash
algorithms. (We discussed hashes in Chapter 1.) Each of the
algorithms listed here is just a different way to generate hashes.
Checking the boxes for additional hash algorithms doesn’t
mean that you’ll use them when composing messages, but
it does mean that PGP will understand messages sent using
these algorithms. Some of these hashes are older, weaker, and
effectively broken, so you must choose what to support. For
maximum security, select everything but MD5 and SHA-1.
For maximum compatibility, including compatibility with
messages sent by older software using these older, weaker
algorithms, select all the hashes. Click OK to continue with
the install and bring up the Passphrase Assignment screen,
shown in Figure 3-4.

Figure 3-4: The Passphrase Assignment screen

44 Chapter 3

The Passphrase Assignment screen is where you’ll enter
your all-important passphrase. As discussed in Chapter 1, a
good passphrase is a fundamental part of using PGP. To help
you choose a good passphrase, a green bar will scroll across the
middle of the screen in the Passphrase Quality bar as you type
your passphrase. If your passphrase is good enough for aver-
age use, the green will fill the entire space provided. Choose a
good passphrase and secure it as discussed in Chapter 1.

PGP then generates your key. You’ll see pretty flashing
lights on the screen to assure you that the computer is actu-
ally doing something as it computes a whole bunch of random
numbers, strings them together, and calls them your key. When
complete, you’ll be asked to click Next.

The next screen offers to publish your public key using the
PGP Global Directory Assistant, as shown in Figure 3-5. We’re
not quite ready to do that yet, so click Skip. (Although the offi-
cial PGP corporate keyservers allow users to remove their own
OpenPGP keys, it’s best to have a revocation certificate before
publishing the certificate anywhere!)

Figure 3-5: The PGP Global Directory Assistant

PGP then offers to find your email and AOL Instant Mes-
senger accounts, so that communications between you and
other PGP users will be automatically encrypted. Let it do so;
it will save you the trouble of configuring these accounts later.
(Adding PGP to your AIM or email accounts will not interfere
with your ability to send unencrypted mail.) Just click Next to
let PGP find your accounts and continue on its way.

The installer then displays the standard policies that deter-
mine when PGP will encrypt messages. We’ll devote most of

Installing PGP 45

Chapter 9 to PGP policies, so for now just click Next to finish
the installation.

Congratulations! PGP is now installed on your computer.
Next we’ll back up your key for safety, and generate a revoca-
tion certificate so you can publish your PGP key.

PGP Key Backups
You manage all your PGP settings and perform most PGP
tasks through the PGP Desktop, accessible under the Win-
dows StartPrograms menu. We’ll begin by backing up your
private key.

1. Open the PGP Desktop. You should see a desktop similar
to Figure 3-6.

Figure 3-6: The PGP Desktop

2. You’ll see two keys when you first start your desktop: the
one generated during the install (for Greg Donner, in this
example), and the PGP Global Directory Verification Key.
(The latter, which is used by the PGP Corporation to verify
keys, is included with all PGP installs.) Right-click your key
and select Export.

3. A fairly standard Save pop-up window displays, as shown
in Figure 3-7, with one exception: the Include Private
Key(s) box in the lower-left corner. You must check this box
before saving in order to save your private key. If you don’t, you
will be backing up only your public key, which is the same
information that will be available on dozens of keyservers
worldwide before long.

46 Chapter 3

Figure 3-7: Saving an exported key

4. Save your private key and save the file. By default, saving
creates a file using your name and a .asc extension under
your My Documents folder. Back up this file somewhere,
as discussed in Chapter 1, so if your machine is lost or
destroyed you can access PGP-encrypted messages you
will receive on your new computer.

Important Installation Locations
PGP stores its application data in your Application Data direc-
tory under a folder called PGP Corporation. Although the
install process set the permissions on this folder so that only
you can access it, be certain that you don’t change it in the
course of day-to-day work. When you back up your system, be
sure to include this folder!

Similarly, PGP installs Registry keys under HKEY_LOCAL_
MACHINE/SOFTWARE/PGP Corporation. These Registry
keys are not user-configurable, but do be sure to include them
in your system backups.

Revocation Certificates and PGP
Remember from Chapter 2 that a revocation certificate allows
you to tell the world that your public key is no longer valid.
This is important if your computer is destroyed or your pass-
phrase is stolen. If you are using PGP only to secure files on
your disk, and not to ever transmit encrypted data to others,
strictly speaking you do not require a revocation certificate.
Still, it is a good idea to generate a revocation certificate any-
way, even though it’s tedious and annoying. However, if you
will ever use PGP to send mail to other people, you must have a
revocation certificate.

Installing PGP 47

PGP does allow you to revoke a key without the revoca-
tion certificate. This sounds like it eliminates the need for a
revocation certificate, but it works only for keys stored on the
PGP Global Directory. If you make your key available on any
keyserver other than the PGP Global Directory, or if there is a
possibility that someone else might make your key available on
some other keyserver,1 you must have a revocation certificate.

PGP allows you to have “designated revokers” who can
send a revocation certificate on your behalf, but this is use-
ful only in a corporate environment. I could choose to have a
family member as a designated revoker, but if my computer is
destroyed, it’s entirely possible that theirs will be as well.

Generating a revocation certificate is a little bit tedious in
PGP Desktop, but not unduly difficult. To generate a revoca-
tion certificate, you must disable automatic keyserver updates,
confirm that your keypair is backed up, generate the revoca-
tion certificate, save the certificate, reinstall your keypair from
the backup, and set the private key properties.

Disabling Keyserver Updates
As discussed in Chapter 2, a keyserver is a public repository of
public keys. Before you generate a revocation certificate, be
sure that your PGP install is not automatically sending updates
to the keyserver; you don’t want your revocation certificate
sent to the keyserver immediately upon generation!

Begin with the PGP Options menu, as shown in Figure 3-8.
(In PGP version 9, this is under the Tools menu.) Under the
Keys tab, look for the Synchronization section and a checkbox
called Automatically Synchronize Keys With Keyservers. Con-
firm that it is not checked.

Figure 3-8: The PGP Options Keys tab with synchronization off

1 Yes, it is rude to publicize someone else’s public key. The world is full of rude
people, and I rarely go wrong by assuming that someone will do something
rude to my property.

48 Chapter 3

Remember where this is because you’ll want to turn it back
on after we create the revocation certificate.

Revoke the Key
Now it’s time to actually generate the revocation certificate.
Before proceeding, be absolutely certain that you have backed
up your key, including the private key, as discussed in “PGP
Key Backups” on page 45. Generating the revocation certifi-
cate will make the keypair you have installed unusable, and
you will need to restore the usable keypair from backup! If
you’re in any doubt whatsoever, back up your key again, with
the private key.

To generate your revocation certificate:

1. Right-click your key in the PGP Desktop and select Revoke.
You’ll see a pop-up window that asks you to confirm that
you want to revoke this key, as shown in Figure 3-9. Click
Yes. A dialog box displays, asking for your passphrase (see
Figure 3-10).

Figure 3-9: The PGP revocation warning

Figure 3-10: The PGP Passphrase dialog box

2. After you enter your passphrase, note that the entry for
your key is in italics and no longer has a green dot by it.
This key is revoked, at least in your PGP setup.

3. Now re-export the revoked key, just as described in “PGP
Key Backups” on page 45. Be sure to export the private key
as well. Give this backup a different name from your previ-
ous backup, however; do not overwrite your nonrevoked

Installing PGP 49

key with your revoked key! This exported revoked key is
your Revocation Certificate. Save it for later, and back it
up in a safe place just like your other backup.

Now that you have a revocation certificate, delete the key.
Go back to the PGP Desktop, right-click your key, and choose
Delete. You will get two warnings, as shown in Figures 3-11 and
3-12. The first states that by deleting the private key, others
will be able to encrypt messages to you that you won’t be able
to read. Because you have a backup of your private key, this
isn’t an issue. When you choose OK, PGP then warns you that
deleting the private key is permanent and unrecoverable. If
you don’t have a backup, this is very true. You now have a PGP
Desktop with only one key: the PGP Global Directory Verifica-
tion Key.

Figure 3-11: First private key deletion warning

Figure 3-12: Second private key deletion warning

Re-import Your Private Key
To use your private key, you must re-import it.

1. Go to the File menu and select Import.

2. Select the backup that includes your private key. A pop-up
appears, as shown in Figure 3-13, which asks you to select
the key you want to import to your keyring. There’s only
one choice in this backup: your own. Select it and click
Import.

You will see a pop-up window, warning you that you are
importing private keys and that you need to assign the trust
manually, as shown in Figure 3-14. Click OK.

50 Chapter 3

Figure 3-13: Choose a key to import.

Figure 3-14: The private key import trust warning

Your key is now back on the list of keys—congratulations!
Note that the little circle to the far right is grayed out, however;
this key isn’t valid at the moment. You need to manually tell
PGP to trust this key.

Key Properties
To tell PGP to trust your re-imported key, begin by right-
clicking the key listing and selecting Properties to bring up
the key properties dialog box, in which you will make changes
to your personal keys (see Figure 3-15). The options here allow
you to change anything you want. You can make mistakes that
will impair your ability to use PGP, however, so be very careful
with what you do. Unless you know exactly what a field means
and its implications for OpenPGP interoperability, it’s strongly
recommended to leave extra fields alone!

The function of many of the options here should be obvi-
ous: To add an email address or change your passphrase, click
the appropriate box. You can change or remove an expiration
date with the Expires tab, and so on. When restoring a private
key from backup, we need the Trust field.

Trust indicates how much you trust the key, as discussed in
Chapter 2. Because this is your private key, generated by you,
you (hopefully!) trust it completely. Click the drop-down menu
and change it to Implicit. This takes place immediately, with-
out the need to click OK somewhere.

Installing PGP 51

Figure 3-15: PGP key properties

Using the Revocation Certificate
If you forget your passphrase or if you believe that Mallory has
compromised your key in some manner, import your revoca-
tion certificate and update the keyserver. This will publish the
revocation certificate, and everyone who updates their copy of
your key will get a notification that you have revoked your key.

Keyservers and PGP
Remember from Chapter 2 that a keyserver is a machine that
provides a directory of OpenPGP keys. The PGP Corpora-
tion provides a keyserver for PGP users. This service works a
little differently from other PGP keyservers in that it is email-
verified.

When you install PGP, the software automatically submits
your public key to the PGP Global Directory. As a verification
step, the Global Directory sends an email to the address speci-
fied in the key; if you gave PGP the right email address, you’ll
receive that email. Clicking the link enclosed in the email will
add your key to the Global Directory.

Unlike many other keyservers, the Global Directory does
not share its keys with other keyservers, nor does it mirror data
in other keyservers; it is considered a new, “clean” keyserver
that lacks the decade-plus of cruft that has accumulated in
other public keyservers. If you want to put your key in other
keyservers, you will need to submit it to them separately.

52 Chapter 3

To submit your key to the older keyserver hierarchy, find a
website that takes key submissions. One that has been running
for many years is http://pgpkeys.mit.edu, and a similar service
is available at many sites in http://subkeys.pgp.net. If that
site is down, a Google search for submit PGP key will bring up
any number of keyservers that provide this service.

After you locate your keyserver, right-click your key in PGP
Desktop. You’ll see an option to Copy Public Key. Select this
option to copy the public key into the system clipboard, then
paste it into the web submission form. You’re done—not too
hard, was it?

Congratulations! You finished setting up PGP. Although
PGP involves a lot of nitpicky details, compare the size of this
chapter to the size of the next and be grateful that you’re get-
ting off easier than the GnuPG people.

OTHER PGP KEY DETAILS
I said you don’t need to worry about the details of other fields in the
PGP key properties screen, but some of you out there will wonder
anyway. If not knowing things bugs you, here are the basics on what
some of these other fields mean. Tampering with any of them is a
good way to make your OpenPGP key unusable. You have been
warned.

ID is your OpenPGP keyid.

Type is the cipher used in this key. The modern standard for
average users is RSA.

Size is the number of bits in the key.

Keyserver allows you to assign a preferred keyserver for
this key.

Expires lets you set or change an expiration date for this key.

Group lets you state whether this key is used by a group of
people. (We’ll discuss keys for groups in Chapter 11.)

Cipher lets you choose the algorithm this PGP key prefers to use.

Hash lets you choose the hash method this PGP key prefers
to use.

Compression lets you choose the compression method this PGP
key prefers.

Note that there is a Change Passphrase button in the Key Prop-
erties screen, which you can use without damaging your key.

4
I N S T A L L I N G G N U P G

GnuPG is freely available via
the Internet, and you can get a

variety of ready-to-use versions
for any number of operating sys-

tems, source code, customized versions,
and add-ons in a whole variety of places.
Although GnuPG itself is extremely reli-
able, some of these add-ons and versions
might not offer the quality you hope for.
Getting the right software, installing it
properly, and configuring it suitably will
prevent a lot of problems later.

We’ll begin by discussing the easiest-to-use versions of
GnuPG—precompiled binaries—and proceed to the more
obscure and unusual variants of the software.

54 Chapter 4

N O T E You might find that the information you need appears early in this
chapter. If that’s the case, feel free to read only what you need and skip
the rest. This is especially applicable if you’re a Windows user who is
not interested in building GnuPG from source code.

The official home of GnuPG on the Internet is
www.GnuPG.org. Consider this the master authoritative
source of GnuPG programs, code, and information. If you
read anything that conflicts with information at this website,
chances are that the website is correct and the outside docu-
ment is wrong. (Because GnuPG is undergoing constant
development and this book is static, the website even over-
rides the book you’re reading now!)

Downloading GnuPG
To download a copy of GnuPG, start at the main website and
follow the Download link. This link takes you to a page con-
taining links for various Unix-like operating systems as well
as Windows. (You can choose to download from a mirror site
instead of the main site, which will reduce the load on the
main server and will almost certainly result in a faster down-
load.) Choose your version and download it, but don’t unzip or
install it yet!

GnuPG is a well-known security package, used by countless
people all around the world. As such, if Mallory were to replace
the official version of GnuPG with his own slightly modified
version, he would have a back door into everyone’s suppos-
edly secure data. Therefore, the GnuPG software distribution
is a target for all sorts of bad people, from bored teenagers to
criminals.

You must be certain that the software you download is
the same software that the GnuPG developers made available.
(This is equally true of the PGP software, but PGP is provided
by a corporation with a staff paid to take care of download
integrity. Volunteers provide GnuPG.) That’s where checksums
come into play.

Checking Checksums
A checksum (related to a hash, as discussed in Chapter 1) is
a “fingerprint” of a file. If the file changes in any way, the
checksum also changes. Mathematicians have developed many
different methods of generating checksums, but the GnuPG
developers prefer the SHA1 method.

Installing GnuPG 55

If you look at the download site closely, you’ll see three
offerings for any given version of GnuPG.

GnuPG 1.4.0a compiled for Microsoft Windows.
Signature and SHA-1 checksum for previous file.
28be01b7f8eaa29db73d11bf8b9504e823c07c2b
gnupg-w32cli-1.4.0a.zip

The first entry is  the GnuPG program itself. The second
entry is  a file containing a digital signature of the first down-
load. A download is a message like any other, and checking its
digital signature is the preferred way to confirm its integrity.
This gives us a chicken-and-egg problem, however: How can
you verify the signature on the software that verifies signa-
tures? Fortunately, you have an alternative. The developers
have made a  checksum available for the  downloaded file
gnupg-w32cli-1.4.0a.zip. (Remember, a checksum is similar to
a hash.) Although a checksum alone isn’t as reliable as a com-
plete digital signature, it’s better than nothing.

Calculating Checksums Under Windows
Microsoft operating systems do not include a checksum cal-
culator, but there are many freely available. GnuPG makes a
Windows checksum calculator freely available at www.gnupg
.org, but it’s not as full-featured as I would prefer. I like
DigestIT 2004, a freeware program that integrates nicely
into the Windows desktop. You can find DigestIT easily via
a Google search or by following the link on www.pgp-gpg
.com. When you right-click a file, a “digestIT 2004” menu item
offers you the choice of calculating or comparing both MD5
and SHA1 checksums. Checksums are so valuable a tool for
verifying the integrity of downloaded software that I highly
recommend installing and conscientiously using this tool.

Calculating Checksums Under Unix
Many Unix-like operating systems (including any BSD and
most versions of Linux) include a SHA1 checksum calculator.
If one is not included, you can download it from your system
vendor’s website. Compute the checksum of a file simply by
running the sha1 or sha1sum command, as follows. (If your sys-
tem has neither sh1 or sha1sum, it probably has openssl. Use
openssl sha1 instead.)

56 Chapter 4

sha1 gnupg-w32cli-1.4.0a.zip
SHA1 (gnupg-w32cli-1.4.0a.zip) = 28be01b7f8eaa29db73d11bf8b9504e823c07c2b
#

Compare  the checksum generated by your checksum
program to the checksum provided by the GnuPG developers.1
If they match, you can be fairly certain that Mallory has not
tampered with the software you downloaded.

N O T E For the best possible security without using digital signatures, compare
the checksum of the file with a checksum taken from a different down-
load site.

Regardless of how you calculate your checksums, if they
do not match, your download was corrupted, your checksum
program is defective, the GnuPG developers didn’t update
their checksum when they updated the software, or the soft-
ware might have been tampered with on the original website.
The most likely case is that your download went amok in some
way. Try downloading again, perhaps from a different site. If
you still cannot get a download with a matching checksum,
ask for help on the gnupg-users mailing list (available at
www.gnupg.org).

No matter which version of GnuPG you install, you’ll have
a GnuPG home directory with several important files. Although
that directory won’t exist until you install your desired version
of GnuPG, we’ll look at this common information before pro-
ceeding to platform-specific details.

GnuPG Home Directory
GnuPG stores all its information in a home directory. On Unix-
like systems, this directory defaults to $HOME/.gnupg. On
Microsoft operating systems, it defaults to C:\ Documents and
Settings\username \ Application Data\Gnu\GnuPG. We’ll refer to
this directory as the GnuPG home directory. Unless you have
a really good reason to not use the default directory location
(and enjoy typing additional command-line options every time
you run a program), stick with the default.

GnuPG will create several files in this directory.

secring.gpg Your secret keyring

pubring.gpg Your public keyring

1 Of course, in this example we’re checking the Windows version on a Unix-
like system, which isn’t entirely useful. But you get the idea.

Installing GnuPG 57

trustdb.gpg Your trust database

gpg.conf Your GnuPG configuration

The only one of these files that you need to be at all con-
cerned with right now is gpg.conf (the rest of the files are
discussed in Chapter 7). The gpg.conf file is where you store
any local options for using GnuPG. (We’ll discuss various
options that you might set throughout the book.)

gpg.conf
If gpg.conf doesn’t exist in your GnuPG home directory, go
ahead and create it. (On a Windows system, be sure to use
a text editor such as Notepad, not a word processor such as
Microsoft Word.)

The gpg.conf file contains a number of variables, and each
 variable name is followed by its  value. For example, here
the variable keyserver is assigned the value hkp://subkeys.pgp.net.

#preferred keyserver
keyserver hkp://subkeys.pgp.net

Lines in gpg.conf that begin with  a hash mark (#) are
comments.

Some variables have no value; their mere presence enables
them. For example, adding the statement no-secmem-warning
on its own line to gpg.conf silences those annoying “using
insecure memory” messages that you see on some Unix-like
systems.

N O T E If you’re using a Microsoft operating system, make sure that Win-
dows doesn’t automatically add an extension to the filenames when
you edit, such as gpg.conf.txt. This will confuse GnuPG, which will
in turn confuse you.

Installing GnuPG on Windows
GnuPG runs on both Windows NT–based systems (including
2000, 2003, XP, and their descendants) as well as Windows
95–based systems (such as Windows Me and the various permu-
tations of Windows 98).

If you are the only user of your system, installation is very
simple, but there are very serious security concerns when using
GnuPG on a multiuser Windows 95–based system. Remember,
Windows 95 isn’t really a multiuser operating system; the mul-
tiuser functions are an afterthought and really only amount

58 Chapter 4

to letting each user choose individual wallpaper and icons.
Anyone with physical access to that system can get at your con-
fidential data, and there’s nothing you can do about it.

N O T E No matter which version of GnuPG you install, you probably also want
to add the gpg program to your PATH environment variable, so that
you can run gpg from a command prompt. To do so, right-click My
Computer and select Properties. Go to the Advanced tab and select the
Environment Variables button. In the System Variables box, you’ll see
a PATH variable. Edit it to include the path to your completed GnuPG
installation.

Command-Line GnuPG Win32 Installation
At heart, GnuPG is a command-line program, which means
that installing it won’t be as pointy-clicky as, say, installing
Microsoft Office. Most Windows users prefer a GUI client with
nice buttons and boxes, however, and GnuPG has several. We’ll
discuss the freely available Windows Privacy Tray, or WinPT, in
the next section. But first, here’s how to install the command-
line version of GnuPG on your machine.

N O T E If you prefer a pointy-clicky GnuPG, skip to the next section and install
WinPT instead of the command-line version.

1. Go to www.gnupg.org and follow the Download link. You’ll
see a link for GnuPG for Windows. Download the software
to a temporary location on your hard drive and double-
click the EXE file to begin the installation.

2. GnuPG will start by asking you which language you want
the installer to use, as shown in Figure 4-1. As of this writ-
ing, the GnuPG installer supports English and German,
but more will be added as volunteers do the work. It will
then show a very typical Welcome screen, display the GPL
license for your perusal, and finally allow you to choose the
components you need. A complete GnuPG version 1.4.2
install takes only 4.2 MB, so you may as well simply install
the whole thing. (This is smaller than many video files
people mail around today!)

Installing GnuPG 59

Figure 4-1: Installer Language selection

3. You’ll get a chance to choose the language GnuPG will
use—not the installer language, as you were shown
before, but the actual installed language. As shown in
Figure 4-2, you can choose among many different tongues,
from Belarusian to Turkish, including assorted variants
of Chinese, Portuguese, Spanish, and other dialects of
common languages.

Figure 4-2: GnuPG Language Selection

4. Allow the installer to use the default folder, as shown in
Figure 4-3—many add-on tools expect to find GnuPG
there and will be easily confused by changes—and let it
create the Start Menu item. When you click Next again,
GnuPG will be installed on your machine and ready to go!
After GnuPG is installed, you must create an OpenPGP
keypair, as discussed at the end of this chapter. The key
creation process is the same for both Windows and Unix-
like versions of GnuPG.

60 Chapter 4

Figure 4-3: The GnuPG installation folder

Graphical GnuPG Installation
Several people have written GnuPG for Windows front ends,
including such programs as GPGShell and GPGEE. My favorite
is Windows Privacy Tray, or WinPT, a graphical interface for
GnuPG that is integrated into the desktop just like any other
Windows program.

WinPT
WinPT (www.winpt.org) conceals much of the complexity of
GnuPG behind a friendly interface. If you’re just interested
in getting GnuPG working in a hurry, WinPT is for you. If you
find that you don’t like WinPT, check out some of the alterna-
tive front ends. They all have similar functions, and when you
can work one, you can work them all.

N O T E WinPT is integrated with a particular release of GnuPG, and
changes to GnuPG might make WinPT stop working; therefore, WinPT
includes the appropriate version in its install file. This means that you
shouldn’t install the command-line version of GnuPG before installing
WinPT.

To install WinPT:

1. First, create a WinPT folder in My Documents and set the
permissions on the WinPT folder so that only you have
the right to access it. As of this writing, the WinPT installer

Installing GnuPG 61

does not allow you to create this folder during the install.
(This might well be fixed by the time you read this; WinPT
is improving rapidly.)

2. After you create the folder, run the installer by clicking the
EXE file. The installer will display a warning about user
rights, as shown in Figure 4-4. This warning only means
that if you’re not an administrative user of this machine,
you won’t have the permissions needed to install WinPT in
the standard directory. You know you should be installing
GnuPG only on a system that you control, but you might
decide to do otherwise. GnuPG allows you to verify signa-
tures even if you don’t have your own private key, after all,
and signature verification is an important tool in many
environments.

Figure 4-4: WinPT user rights message

3. You’ll be presented with the typical Welcome to the GnuPT
Setup Wizard – Close All Your Other Applications screen
and click-through licenses. The license in this case is the
GNU GPL, just like the GnuPG license itself.

4. When asked to choose the installation folder, use the
default C: \ Program Files\GnuPT folder if at all possible.
Other people will be more able to help you use WinPT if
you hold close to the standards.

5. Setup will ask you to choose a folder for your keyrings : the
files containing your private key and any public keys you
accumulate while using GnuPG. Use the WinPT folder you
created under My Documents.

6. The Select Components screen (see Figure 4-5) allows
you to choose which components of WinPT you want to
install. WinPT includes three main programs: GnuPG
itself (mandatory), Windows Privacy Tray, and GPGRelay.

62 Chapter 4

GPGRelay works around problems with email client plug-
ins, and is needed only for very specific situations. You
almost certainly don’t need it, and I recommend not
installing it. Unselect the GPGRelay box and continue.

Figure 4-5: WinPT components selection

7. Several more screens offer the options to add desktop
shortcuts, Start Menu options, and all the usual Windows
bells and whistles. The Select Additional Tasks screen
determines exactly how WinPT will integrate GnuPG with
your system and allows you to choose which file types will
be associated with WinPT and GnuPG. Take the defaults,
letting WinPT handle .asc, .pgp, .gpg, and .sig files. Also
keep the default to have WinPT start with Windows.

8. After you finish, the installer configures WinPT on your
system as you specified. If you’ve never used GnuPG on
this system, it will then complain that it cannot open your
public and secret keyrings, as shown in Figure 4-6. This
is normal—you haven’t created them yet! Fortunately, it
offers you more options if you just click Yes.

Figure 4-6: WinPT failing to find its keys

Installing GnuPG 63

9. WinPT offers two options, as shown in Figure 4-7: Generate
a new GnuPG keypair or copy a GnuPG key from another
location. The latter option is useful if you are upgrading
your WinPT install or migrating from another computer,
but we’re starting from scratch, so we want to generate a
new keypair.

Figure 4-7: WinPT key options

Creating Keypairs in WinPT
WinPT displays the Key Generation Wizard, beginning with a
screen that asks for your real name and email address. Strictly
speaking, you can have an OpenPGP key that contains only a
name and an email address, but after reading Chapter 2 you
should know all sorts of things that your key should include.
Note the Expert box in the lower-right corner, as shown in
Figure 4-8. Because you’re reading this book, WinPT will con-
sider you an expert. Select it.

Figure 4-8: The basic WinPT key generator

The expert form is much more useful and detailed, allow-
ing you to create keys with all the features we’ve discussed.
Figure 4-9 shows the expert form.

We discussed the details of OpenPGP keys in Chapter 2,
but here are a few reminders. Leave the Key Type and Subkey
Size fields at their defaults, unless you have some reason for

64 Chapter 4

wanting a key with limited abilities or a very hard-to-break key.
Use your real legal name as it appears on your identification
if you want people to sign your key. The comment is free-form
text to separate you from all the other people with your name.
The email address should be an address that you control. Give
the key an expiration date one year from the current date, and
enter your chosen passphrase twice.

Figure 4-9: The expert WinPT key
generator

WinPT will fill the Progress Dialog with plus signs (+) as it
generates the key. Figure 4-10 shows a partially-completed key
generation as it runs. If it seems to be running slowly, wiggle
your mouse or browse the Web for awhile to feed your system
some nice fresh entropy. WinPT will tell you when it has com-
pleted your keys.

Figure 4-10: Key generation is proceeding.

Installing GnuPG 65

Key Manager
After you complete your WinPT install, you’ll see a magnify-
ing glass icon in the system tray (the lower-right corner of the
screen). This is the WinPT process. Double-click this icon to
bring up the WinPT Key Manager: a simple GUI that lists each
key in your keyring with menus to handle the most common
GnuPG operations. The Key Manager should list the key you
created during the install, along with lots of space to list other
keys you’ll accumulate, as shown in Figure 4-11.

Figure 4-11: The WinPT Key Manager

 Be sure to back up your key, including the private key.
To do so, select your key in the Key Manager and choose
KeyExport Secret Key. You’ll get a warning, stating that
you shouldn’t make this key public, and then WinPT will
let you choose a place to store the backup file. Copy the
secret key to a secure location, as discussed in Chapter 2.

WinPT Revocation Certificate
Next, create a revocation certificate with WinPT.

1. Open the Key Manager, right-click the key, and select
Revoke. The pop-up window (shown in Figure 4-12) gives
you everything you need to create a revocation certificate.

2. Although a revocation certificate can list a standard reason
why the key is being revoked, in this case we don’t know
why—we only know that we want to have a revocation cer-
tificate on hand in case it becomes necessary. Select No
Reason Specified in the first field.

66 Chapter 4

Figure 4-12: WinPT revocation
certificate creation

3. The description text is optional, but I find it useful to state
that this revocation certificate was created with the key.

4. To access your private key, you must, of course, use your
passphrase.

5. List a file in which the revocation certificate will be stored.
Although WinPT uses a default filename of the keyid, you
need to specify a directory to put the file in. Don’t forget
to put the revocation certificate in a safe place, perhaps
with your backup of your secret key.

6. Leave the Make Output PGP Compatible box checked, so
PGP users will recognize your revocation certificate.

Sending Your Key to a Keyserver
After you have a revocation certificate, you can publish your
key to a keyserver. To do so, right-click your key, select Send
To Keyserver, and choose one of the listed keyservers.

You can set a default keyserver in the Key Manager by
selecting the Keyserver tab. The list of keyservers displayed
here is stored in the file C: \ Program Files\GnuPT \WPT \
keyserver.conf; if you have a different preferred keyserver,
add it to this file and restart the Key Manager.

N O T E If you’re only using WinPT, and not the command-line GnuPG tools,
you can skip the rest of this chapter and proceed directly to Chapter 5.
The rest of us will take a look at GnuPG on a Unix-like system and
then see how to create a key on the command line.

Installing GnuPG 67

Installing GnuPG on Unix-like Systems
If you don’t want to build your own GnuPG binary from
source, check the freeware and shareware download sites for
your operating system. Volunteers maintain GnuPG for com-
mercial operating systems such as AIX, Solaris, HP/UX, and
so on. These packages are usually built with the operating
system’s native packaging tools, and you should read the docu-
mentation carefully.

Open-source, Unix-like operating systems such as Linux
and BSD either include GnuPG out of the box or simplify
GnuPG installation. You should confirm that the version
of GnuPG included in your OS is recent, however, because
some open-source operating systems are notoriously slow to
update their included packages. Use gpg --version to print the
installed program’s version.

The two most common ways to install GnuPG are with
RPMs under Linux systems such as Fedora Core and Red Hat,
and the ports/packages system used by BSDs. To install GnuPG
from an RPM, download the RPM and run the following:

rpm --install gnupg-rpm-name.rpm

The BSDs place GnuPG’s installation kit in either /usr/
ports/security/gnupg (FreeBSD, OpenBSD) or /usr/pkgsrc/
security/gnupg (NetBSD). Go to that directory and run the
following to automatically build and install GnuPG configured
appropriately for that OS:

make all install clean

Those of you with more than a passing familiarity with
RPM and/or BSD ports know of more features in your system’s
packaging tools (and there are also Debian’s apt-get and
Solaris’ pkgadd). Feel free to use whatever tool is packaged
with your OS to install GnuPG as packaged for that OS.

Randomness and GnuPG
GnuPG uses random numbers to produce keypairs and
to encrypt messages. Although randomness is very easy to
come by in the real world—just drop an egg and look at the
splash—one of a computer’s defining characteristics is its lack
of randomness.

Computers are supposed to produce identical results every
time they repeat an action. Although there are ways to gener-
ate truly random numbers on a computer, some operating

68 Chapter 4

systems don’t use them and instead provide pseudo-random
number generators. (Worse, some claim that their pseudo-
random number generators are actually random!) Mallory has
used these known pseudo-random numbers to break crypto-
graphic keys. Using GnuPG successfully requires a reasonably
excellent randomness source.

Although Windows, Linux, and BSDs provide good ran-
domness, many commercial Unix-like operating systems do
not, including even commercial systems such as AIX, HP/UX,
and older Solaris. Some of these systems have randomness-
generating add-ons, or experienced sysadmins have some trick
that can be used to provide randomness, but these methods
might or might not be standards-compliant and might not
work with GnuPG.

Entropy Gathering Daemon

The Entropy Gathering Daemon, or EGD, was written to pro-
vide randomness for GnuPG. EGD is a Perl script that runs
various system programs that produce unpredictable output
(such as top, vmstat, and so on) and scrambles it all together
into an acceptable randomness source. You must have Perl
5.004 or greater installed to use EGD.

EGD is not as good a randomness source as the ones avail-
able in other operating systems, but it’s sufficient for a GnuPG
user to feel reasonably secure. Windows, Linux, and BSD do
not require EGD. You can download EGD from the GnuPG
website or a mirror. After you download it, verify the checksum
of the downloaded package and extract it. To install EGD, fol-
low these steps:

1. Change to the directory where you extracted the files and
run the following:

perl Makefile.pl
make test
make install
#

You will find egd.pl in either /usr/bin or /usr/local/
bin, depending on your Perl configuration.

2. If you’ve never run GnuPG on this particular computer
before, create a .gnupg directory in your home account.

3. EGD defaults to providing randomness in the file .gnupg/
entropy, but it cannot create that directory itself. To create
the directory, start EGD a few moments before running

Installing GnuPG 69

GnuPG (or, better still, before even installing GnuPG—the
build process creates a decent chunk of entropy).

egd.pl ~/.gnupg/entropy
#

4. You must inform GnuPG when you use EGD instead of the
system’s (nonexistent) randomness-providing device. To
do so, add the following line to your gpg.conf file:

load-extension rndegd

Or, add the command-line argument --load-extension=
rndegd whenever you run GnuPG. (Personally, I don’t care
to remember or type any more command-line options than
I strictly must!)

Building from Source Code
Your access to source code is the whole purpose of GnuPG’s
license. If you’re a computer user who just wants your pro-
grams to work and you don’t care about how to actually
build the software from source code, you probably want to
skip to the next section now. Those of you who use make like
other people use Solitaire can continue.

GnuPG began as a Unix-only program, and its source code
shows it. In fact, the Windows version of GnuPG distributed by
the GnuPG project is actually cross-compiled on a Unix-like
system.

N O T E Although you can build GnuPG on a Windows system, you need a
fairly high level of skill to do so. We’ll assume that you’re building in
the GnuPG native Unix-like environment.

Installing GnuPG
GnuPG is usually built with the Gnu C compiler (GCC),
gmake, and autoconf, which are all freely available in any
number of places on the Internet. If you don’t have them
installed on your system, you’ll need to get them before you
can build GnuPG. See the documentation for these programs
separately to install them correctly. After you have these pro-
grams, follow these steps:

1. Download the GnuPG source code from the website or a
mirror. Verify the checksum to confirm that you have good
source code.

70 Chapter 4

2. The GnuPG source is distributed as a bzipped tarball, so
uncompress and extract it:

bunzip gnupg-1.4.0.tar.bz2 | tar -xf -

The resulting directory contains several text files of
information and the files necessary to build the software.
Some interesting files include README, which contains a
brief introduction to GnuPG, and INSTALL, which gives
detailed instructions on how to build GnuPG from source
code and get it running on your system.

3. The configure script checks your system to see if you have
everything ready to actually compile GnuPG. For a stock
GnuPG setup, just run the following:

./configure

Configuration Options
Most of the user-configurable changes provided by GnuPG can
be set by command-line options at the configure step. For a list
of possible configure options, you can use the --help option.
For your convenience, however, here are a couple of popular
options:

• If you need to use EGD to provide randomness on your
particular operating system, you can tell GnuPG about
it with the --enable-static-rnd=egd option. This option
eliminates any need for configuration file settings or
command-line options to tell GnuPG you’re using EGD.

• The --prefix option allows you to choose where to place the
completed programs and documents.

For example, to build your own version of GnuPG that
requires the EGD and installs the binaries under your account,
run the following:

./configure --enable-static-rnd=egd --prefix=/home/mwlucas

If your system has everything you need to build GnuPG,
the configure process will spew several screens of information
and return you to a command prompt without complaining.
However, if your system cannot build GnuPG for some reason,
the configure script will issue warnings and terminate early.
Those errors must be fixed before you can continue!

Installing GnuPG 71

After you configure GnuPG, build and install it:

make
make install
#

If you have a problem building GnuPG, you’re probably
not the first one who has had your exact problem. First, read
the failure and see if you understand it. If you don’t, check
Google and the gnupg-users mailing list archive (available
from www.gnupg.org) for other appearances of the same error
message. If neither of these provides an answer, ask the ques-
tion on the gnupg-users mailing list.

Setuid Root GnuPG
Whenever you start GnuPG on a Unix-like system, you might
see a message like this:

gpg: WARNING: using insecure memory!
gpg: please see http://www.gnupg.org/faq.html for more information

Operating systems have a feature called virtual memory,
in which the less-frequently used contents of the system
memory are written to disk to make memory space for pro-
grams that are more active. GnuPG is complaining that it’s
using more memory than the operating system could write to
disk, possibly allowing another system user who has superb2
systems knowledge to access your private key. This is definitely
a problem.

To make this problem go away, allow the program gpg to
run as root by turning on the setuid bit. Setuid programs can-
not have memory they use written to disk. These programs
have a bad reputation in the security world because they have
been used to break into more than one server. For this reason,
GnuPG doesn’t install itself as a setuid root program. Each
systems administrator should decide whether he wants to add
another setuid program to the system.

2 Those people who know how to do this will probably tell me it’s easy. I’m
sure it is after you do it once. Just like running a marathon or bowling a
perfect game.

72 Chapter 4

In the case of GnuPG, using setuid root makes a lot of
sense. To change your installed GnuPG program to be setuid
root, run the following:

chown root /usr/local/bin/gpg*
chgrp wheel /usr/local/bin/gpg*
chmod 4755 /usr/local/bin/gpg*

If you don’t have privilege to do this on your system, talk to
your systems administrator. (And stop using GnuPG on a sys-
tem you don’t control!)

If you don’t want to install gpg as a setuid root program,
you can at least silence the warning by adding the option no-
secmem-warning to your gpg.conf file. It doesn’t eliminate the
“memory writing to disk problem,” but at least GnuPG will stop
rubbing your nose in it.

Don’t Run GnuPG as Root
Now that you have your GnuPG program installed exactly as
you like, let’s use this beastie. Although you must be root to
install GnuPG on your system, you should not be root when
running GnuPG. The root account is reserved for system
administration and problem resolution and should not be
used for day-to-day work.

N O T E Those of you whose systems display a hash mark (#) for a root-level
command prompt should not be confused by the presence of a hash
mark as a prompt in the examples in this book. GnuPG is designed
to be used by a unique regular user in everyday work, not by the root
account. (And stop relying on the prompt to tell you whether you are
root or not; Mallory can muck with your prompt with only minimal
difficulty!)

Command-Line GnuPG Keypairs
As with any other OpenPGP implementation, you must cre-
ate a keypair before you can use most of GnuPG’s functions.
Remember, generate your keys only on a machine that you
control. If you leave your keypair lying around for anyone
to use, that anyone can pretend to be you! (By the way, the
keypairs used in these examples are not my real OpenPGP
key. You can find my real keyid and fingerprint on a variety of
keyservers.)

Installing GnuPG 73

You might be using command-line GnuPG on either Unix-
like or Windows systems. Both have command prompts that
look very different, but the GnuPG functions are identical. I
will use a Unix-style hash mark as a command prompt, if for no
other reason than because it’s shorter than the Windows-style
C:>Program Files\ prompt. Open whichever sort of command
prompt you have and follow along.

Create your OpenPGP keypair by entering the following:

gpg --gen-key
gpg (GnuPG) 1.4.0; Copyright (C) 2004 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

gpg: please see http://www.gnupg.org/faq.html for more information
gpg: keyring /̀home/mwlucas/.gnupg/secring.gpg' created
gpg: keyring /̀home/mwlucas/.gnupg/pubring.gpg' created

The  --gen-key option tells GnuPG to create a new
keypair. Every time you start GnuPG, it reminds you of its
 warranty (none) and its licensing terms (GPL). The first
time you run GnuPG, the program creates a directory to store
your  private keys, your  public keys, and other GnuPG
information. We’ll look at these files in more detail through-
out the next few chapters.

Please select what kind of key you want:
 (1) DSA and Elgamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
Your selection? 5

While the default key generation method has been used
for several years, it is beginning to show its age. Choose  an
RSA key instead.

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048
Requested keysize is 2048 bits

GnuPG uses a default key size of 2048 bits, which will
provide robust security for the next several years unless your
attacker has quantum computers or one of those ultra-secret,
custom-built code-busting machines the NSA is rumored
to have.

74 Chapter 4

As I mentioned earlier, increasing the key size increases
the amount of work needed to process your key. Remember
that unless you know that the person you’re sending the mes-
sage to has sufficient computing power to decrypt the message,
stick with the defaults here.

Once you choose a keysize, GnuPG will ask for the expira-
tion date of this key.

Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 1y
Key expires in 1 year
Is this correct? (y/N) y

We discussed expiration times in Chapter 2. Having your
first key last for a year is a sensible choice; a non-expiring key
might seem simpler, but only stores up future problems.

Now assign a name and email address to your key:

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Michael Warren Lucas Jr
Email address: mwlucas@blackhelicopters.org
Comment: Author, consultant, sysadmin

When you enter information here, give  your legal, real
name as it appears on government documents (for reasons we
discussed in Chapter 2), as well as  your email address and
 a comment to differentiate you from all the other people
in the world who have your name. GnuPG responds with the
following:

You selected this USER-ID:
 "Michael Warren Lucas Jr (Author, consultant, sysadmin) <mwlucas@
blackhelicopters.org>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o

You’d feel rather daft if you generated a key and got it
signed by a whole slew of people, only to discover that you’d
made a typo. This is your chance to double-check your work

Installing GnuPG 75

and make sure that everything is spelled correctly and that
you have used the desired values. You can change any entry by
choosing the appropriate option or just enter o to continue.

After you confirm your identity information, GnuPG will
let you select a passphrase:

You need a Passphrase to protect your secret key.

Enter passphrase:

Remember from Chapter 1 that a passphrase is like a pass-
word, but can be much longer. This passphrase protects your
secret key so that only you can use it. Make your passphrase
something that you can remember without too much trouble
but will be difficult for other people to guess. GnuPG prompts
for your passphrase twice and complains if your entries dif-
fer, just as if you were changing your password in most other
programs.

And now this:

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
..+++++.+++++++++++++++++++++++++++++++++++..++++++++++++++h++++++u.++++
...

Your operating system provides randomness on demand,
either via its built-in randomness facilities or through an add-
on such as EGD. This randomness comes from actions that the
computer cannot control, such as when the mouse is moved or
when network packets arrive.

At times, your computer can run short of random num-
bers and might need your help creating some more. If the
key-generation process takes more than a few seconds, wiggle
your mouse, open up a web page, or type a document while
leaving your command prompt running in the background.
(Wiggling a mouse is generally agreed to be an excellent
randomness source if your operating system supports it.
Windows does; Linux and BSD might, depending on the
version you’re using; and most commercial Unix-like operat-
ing systems don’t.) Shortly, GnuPG will spit out confirmation
of your new keypair:

gpg: /home/mwlucas/.gnupg/trustdb.gpg: trustdb created
gpg: key D4ED7B9F marked as ultimately trusted
public and secret key created and signed.

76 Chapter 4

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
pub 1024D/D4ED7B9F 2007-02-10
 Key fingerprint = 9F53 C982 D561 3506 95B5 5C82 7EC4 29B8 D4ED 7B9F
uid Michael Warren Lucas Jr (Author, consultant, sysadmin) <mwlucas@
blackhelicopters.org>
sub 2048g/A3D15F1E 2007-02-10
#

Here you learn about your key. First, the key is known by
a keyid, or “shorthand name” of  D4ED7B9F. Although this
keyid is not unique among the worldwide pool of OpenPGP
users, it helps to easily differentiate among keys on your private
keyring. You  completely trust this key—it’s been generated
on the local machine, and if you can’t trust yourself then you
have problems that GnuPG can’t help you with. You also see
that  both the public and secret keys have been created and
signed.

The  key fingerprint is a human-readable method of
identifying a public key. This is not absolutely guaranteed to
be unique—like hashes, it’s just barely possible that someone
else, someone in the world, had the extreme fortune to have a
matching key fingerprint, much as it is just barely possible that
you could be killed by a meteorite. When combined with your
name and email address, though, the fingerprint is certainly
unique.

GnuPG Revocation Certificates
Generating a revocation certificate requires that you have
access to your private key, know your passphrase, and have a
compatible version of an OpenPGP-compliant system. The
easiest way to guarantee this is to generate your revocation cer-
tificate as soon as you have created your keypair! To do so, run
the following on a command line:

gpg -a --output mwlucas@blackhelicopters.org.asc.revoke --gen-revoke
mwlucas@blackhelicopters.org

Here, we tell GnuPG to put its output in a file called
 mwlucas@blackhelicopters.org.asc.revoke. (I store revo-
cation certificates in a file named after the email account
they’re associated with, but if you have a better system feel
free to use it.)

Installing GnuPG 77

We tell GnuPG to  generate a revocation certificate for
the UID containing  mwlucas@blackhelicopters.org. GnuPG
will first print out the key information and then give you a
chance to confirm that you want to create a revocation certifi-
cate for this key.

sec 1024D/D4ED7B9F 2007-02-10 Michael Warren Lucas Jr (Author, consultant,
sysadmin) <mwlucas@blackhelicopters.org>
Create a revocation certificate for this key? (y/N) y
Please select the reason for the revocation:
 0 = No reason specified
 1 = Key has been compromised
 2 = Key is superseded
 3 = Key is no longer used
 Q = Cancel
(Probably you want to select 1 here)
Your decision? 0

Because you’ve just generated this key and have no idea
why you might eventually want to revoke it, enter  a 0 here.
The reason for revoking the key is not as important as the fact
that it has been revoked, and the revocation certificate will be
respected without a reason.

Enter an optional description; end it with an empty line:
> Revocation certificate generated when key created
> 
Reason for revocation: No reason specified
Revocation certificate generated when key created
Is this okay? (y/N) y

GnuPG will ask for  a reason for revoking the key (it
doesn’t need to be long). End your description with  a single
empty line, and say  yes when prompted.

You need a passphrase to unlock the secret key for
user: "Michael Warren Lucas Jr (Author, consultant, sysadmin) <mwlucas@
blackhelicopters.org>"
1024-bit DSA key, ID D4ED7B9F, created 2007-02-10

Enter passphrase:

After you enter your passphrase to unlock your private
key, GnuPG will create the revocation certificate in the file you
specified and spit out a brief message about how to handle and
secure your key and revocation certificate.

78 Chapter 4

Publicizing Your Key
If you use PGP, the software automatically publicizes your key
in the PGP Global Directory (aka “The PGP Corporation’s
Keyserver”). As a GnuPG user, you can choose any key publiciz-
ing method from “don’t publicize” to “broadcast to the world.”
The standard ways include posting on a web page or other
Internet medium (finger, ftp, and so on), or exporting to a
keyserver. We’ll look at both.

Text Exports
While your public key is stored in the file pubring.gpg in your
GnuPG home directory, don’t just put this file out on your web
page! It also contains all the other public keys you’ve added to
your keyring. OpenPGP defines a standard method for present-
ing public keys in text, so that web browsers can display them
easily. GnuPG provides tools to extract your public key from
your keyring in a format that is most useful to others.

Unlike extracting a real key from a physical keyring,
extracting your public key from your keyring simply copies
the key into another file.

gpg --output pubkey.mwlucas@blackhelicopters.org.gpg --export mwlucas

Here, we use GnuPG to create a file,  pubkey.mwlucas@
blackhelicopters.org.gpg, which contains our public key. We tell
GnuPG which key to export by using  part of the UID. If my
public keyring contained more than one key with the string
“mwlucas” in it, I’d need to use a more complete description
of the key.

If you look at the the public key’s file we just created, you’ll
see nothing but computer-readable binary data (also known
as “garbage”). Binary data is great for machines, but lousy for
email, web pages, or other human-friendly systems. To make
your public key more friendly to the eye, you can convert it to
ASCII characters with the --armor3 option:

gpg --output pubkey.mwlucas@blackhelicopters.org.gpg.asc --armor 
--export mwlucas

3 Different operating systems handle binary data differently, and email systems
can damage binary data. Armoring binary data protects it by encoding it in old-
fashioned ASCII. The fact that the armored data is human-readable is only a
(beneficial) side effect.

Installing GnuPG 79

The only difference between this command and the previ-
ous one is the addition of the  --armor option. But the file we
get is human-readable, and looks something like this:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.0 (FreeBSD)

mQGiBEIL3skRBADyThL7faGX/JL7xZYL6TPYJzvxn5qHUTAO9Hw4o99OLTLMI7J3
14g6i7XTS37C90ntI8hAFZV7yaXXj5dA5pduIkuEVAmxat4OydPqqE31XNScIAnq
...

After a few dozen lines of these characters, you’ll see a line
like this one:

-----END PGP PUBLIC KEY BLOCK-----

There’s your public key, in human-readable form. Of
course, human-readable is obviously a very loose term;
although you can read this, it doesn’t mean you’d want to.
Still, it’s a lot easier on the eyes than the binary data. You
can post this file on your website, or just copy and paste the
text into your page. People hunting for your public key on
your web page would prefer that you make your public key a
downloadable file, however; it’s much easier to import.

Keyservers
Before submitting your public key to a keyserver, you need to
pick a keyserver. The list of keyservers changes frequently, so I
won’t provide a “top ten” list here; instead, I recommend that
you use subkeys.pgp.net or just Google for a list of OpenPGP
keyservers.

If you like to type, you can specify the keyserver on the
GnuPG command line with the --keyserver option:

gpg --keyserver subkeys.pgp.net --send-keys mwlucas@blackhelicopters
.org
gpg: success sending to 'subkeys.pgp.net' (status=200)
#

Here we  transmit the public key tied to our  email
address to  the keyserver  subkeys.pgp.net. The keyserver
 replies that it has received the key. Our public key will be
globally visible to anyone who searches for it in the global key-
server pool very shortly, as soon as the keyservers have time to
replicate their information among themselves.

The downside of the command-line option is that you must
include it every time you communicate with a keyserver. This
gets old quick.

80 Chapter 4

To set a default keyserver in the gpg.conf file in the
GnuPG home directory, set the keyserver option.

keyserver x-hkp://subkeys.pgp.net

If you must use a different keyserver while you have this
set, setting a keyserver on the command line will override the
setting in gpg.conf.

Web Forms
Some users report difficulty in contacting a keyserver from
their network. I’ve never experienced this problem myself,
but it’s been reported in enough places that I’m perfectly will-
ing to believe that some network designs don’t play well with
keyservers. If you have problems contacting a keyserver, try a
web-based OpenPGP key submission method. If you browse to
http://subkeys.pgp.net, you will probably find a web-based sub-
mission form somewhere on the site. If you don’t, refresh the
page again. Copy your ASCII public key and paste it into the
submission form. This process should work even with minimal
Internet access.

5
T H E W E B O F T R U S T

Now that you have your own
personal keypair and have pub-

licized your public key, you’re
ready to read any encrypted mes-

sages intended for you, and other people
can verify that messages you send are actu-
ally from you. That’s only half the process
of confidential communication, however;
you also need to be able to send people
messages that only they can read and you
need to be able to verify that messages
from other people are actually from them. These tasks
require other people’s public keys. Public keys allow you to
build your own personal Web of Trust and verify the identity
of any OpenPGP user.

To begin, you must be comfortable getting other people’s
public keys from online sources such as keyservers.

82 Chapter 5

Keyservers
Keyservers store OpenPGP public keys for general public
access. If you followed the instructions during the OpenPGP
install process, your public key should now be available on the
keyservers subkeys.pgp.net and keyserver.pgp.com, and people
should have no trouble finding it.

subkeys.pgp.net
The keyserver subkeys.pgp.net is an old-style PGP keyserver,
from a time when only the technically elite used PGP (or the
Internet, for that matter). It’s actually several keyservers run by
volunteers from all over the world, and each time you contact
this machine, you’re actually reaching a different server. After
you upload a public key to any of these keyservers, it should be
replicated and available on all of them within hours.

In the case of these servers, and unlike the keyserver
hosted by PGP Corporation, anyone can upload any key to this
keyserver. Old keys are never removed, and no verification of
key ownership takes place when keys are uploaded. This means
that if you’re looking for an older key, you can find it on this
server. It also means that people can upload test, bogus, or oth-
erwise invalid keys to this keyserver, and these keys will remain
there forever. (It should be obvious, but just in case: Do not
submit test keys to keyservers! It is rude and annoying, and like
discarded plastic bottles, test keys litter the landscape forever.)

 If you’re using GnuPG, I recommend subkeys.pgp.net
as a default (unless you’re lucky enough to have a more local
keyserver mirror, such as those available at some universities).
PGP can add subkeys.pgp.net to its keyserver list to check it
automatically.

keyserver.pgp.com
The PGP Corporation provides keyserver.pgp.com as a public
service, but it works differently from subkeys.pgp.net. When-
ever anyone uploads a key to keyserver.pgp.com, the server
sends an email to the address embedded in the key to confirm
that the key legitimately belongs to that account. When the
email recipient visits the link in the email, the key is made
available on the keyserver.

Additionally, unlike subkeys.pgp.net, keys posted to
keyserver.pgp.com that are unused for a period of time (six
months as of this writing) are purged from the records. This
has the effect of providing an up-to-date keyserver, but it isn’t
entirely compatible with the expectations of the older Open-
PGP world.

The Web of Trust 83

The weak point of this model is that the PGP software
assumes that the keys accepted by keyserver.pgp.com are valid.
There is a certain safety in this assumption: To register a key,
you must have access to the email address, but anyone can
open an email address at a free provider and claim any legal
name they like, however,1 so this doesn’t guarantee identity.

N O T E PGP automatically checks for keys on keyserver.pgp.com, but GnuPG
users must check for these keys manually (or set keyserver.pgp.com as
their default keyserver).

Searching for Keys
If your mail client doesn’t automatically fetch the public key of
OpenPGP-encrypted messages, you’ll need to search the key-
servers. Both GnuPG and OpenPGP can search keyservers for
keys that match particular conditions.

Also, most keyservers have web interfaces. For example, to
search for keys on keyserver.pgp.com, just call up the server in
a web browser, enter the email address of the person whose key
you want, and the web interface will let you download the key if
it’s on that keyserver.

The web interface for subkeys.pgp.net is more erratic.
Because these servers are run by different volunteers, the
website looks different between visits. You may find an intro-
ductory page in front of the keyserver query form, but the link
to go to the keyserver page should be pretty obvious. If you
don’t like the particular keyserver page where you wind up,
exit your browser and start over; you’ll hit another server.

After you download the key and add it to your keyring, you
can exchange private messages with that person. You can also
attach yourself to the Web of Trust by signing keys and having
your keys signed.

Signing a Key
By signing another person’s key, you are affirming that you
have verified that person’s identity. This is called trust in the
OpenPGP world. Remember, trust in the PGP sense means
only that you trust the person’s identity, not their trustworthi-
ness as a person. Perhaps you went to school with the local
car thief and know exactly who he is. You could sign his key

1 “Of course the President has a Gmail account for personal stuff! The
whitehouse.gov address looks so stuffy, don’t you know. Now, about your
credit card numbers . . . ”

84 Chapter 5

without a qualm because you can trust that he is who he says he
is. You cannot trust him with your wallet or your pets, but you
can trust his identity, and that’s all that OpenPGP cares about.

To sign someone’s key, the key owner must provide the
prospective signer with the following:

• Her public key fingerprint, keyid, and user ID (UID)
delivered via anything but the Internet

• Her public key (on a keyserver, web page, floppy disk, or
similar source)

• Her email address

• Her full name

• Proof of her identity

Each key has a unique fingerprint and a keyid that is
unique when combined with the UID. Both GnuPG and PGP
will show you the fingerprint and keyid if you ask (you’ll see
how exactly in the following chapters). For instance, my exam-
ple key has a fingerprint of 9F53 C982 D561 3506 95B5 5C82 7EC4
29B8 D4ED 7B9F and a keyid of D4ED7B9F. (The astute among you
might notice that the keyid is simply the last eight characters of
the fingerprint.) Every keypair has a similar-looking keyid and
fingerprint.

The keyid and fingerprint must be delivered by any
means other than the Internet. This seems to be an unneces-
sary hassle, but think about it. If a bad guy has hacked into
your friend’s email account, how can you trust that the fin-
gerprint you receive from his email account is accurate? The
same applies to fingerprints made available on his web page.
You must receive the key through some offline mechanism.

After you have the fingerprint and UID, you can find the
public key easily enough on keyservers.

The requirements for proof of identity will vary from per-
son to person, depending on your relationship to that person.
Let’s look at a couple of examples.

Signing Keys of Friends and Family
Perhaps the easiest way to grow your keyring is through
coworkers, friends, and relatives who use OpenPGP. I even use
OpenPGP within my family—if I’m sending my wife private
information, I encrypt it before sending. When I send security-
related information to coworkers, I protect it with OpenPGP,
so those coworkers need an OpenPGP-compliant program to
read it.

The Web of Trust 85

Let’s assume that a hypothetical new employee (we’ll call
him Matt) has just generated his keypair and needs me to sign
it. I also want him to sign my keypair; not only will this expand
his Web of Trust but to sign my key he must also add my key
to his keyring. This means that he will be able to verify email
that I send him. Matt produces a piece of paper with his keyid
and fingerprint, and informs me that his public key is on a key-
server. He also has two pieces of government-issued ID.

Now, I know Matt. I hired him. I’ve already done a certain
amount of identity verification on him by doing a background
check, filing paperwork with the state, and so on. If he’s
attempting to deceive me about his identity, he’s doing it with
far more depth than I (or most people) can possibly penetrate.

First, I examine the photo ID to confirm that his name
matches the name on the key. Although you probably
wouldn’t require government-issued ID to trust the identity
of a coworker or friend, it is still smart to pay close attention
to the form of the name used on the keypair. If Matt’s driver’s
license shows his name as Matthew Peter Smith, but he cre-
ated a key as Matt Smith, he might have trouble using the key
later, depending on other people’s signing standards. I insist
that all keys used for work have names that match the correct
legal identity—as the boss, that’s my right. With a friend, I’ll
just point out the discrepancy and let him decide. In this case,
as Matt’s generated key doesn’t match his legal identity; hence
doesn’t meet my signing requirements, and I won’t sign it.
(He’ll probably wander off, muttering under his breath some-
thing about working for a hardcase nut job, but that’s OK. The
sooner he understands that I am a hardcase nut job, the bet-
ter off he’ll be.) If his UID matches his legal name and email
address, and his keyid and fingerprint match those he gave me
separately, I’ll accept that this identity goes with this key.

After I have confirmed his identity, I’ll download his key,
sign it, and return it.

Signing Strangers’ Keys
If you truly don’t know someone at all—that is, if they are a
true stranger—do not sign their key. But if I meet a client or
prospective client who happens to use OpenPGP, I’ll offer to
verify and sign his key for him. When I meet the manager of
an IT department at his office, I’m pretty sure that he is who
he claims to be. Even if neither of us has a computer at hand,
I can gather the information I need to sign his key and sign
the key at my convenience.

86 Chapter 5

First, I check his ID. This person should have two forms of
ID with his full legal name on them. I prefer a driver’s license
and passport, but when someone doesn’t have a passport I’ll
settle for student ID cards, organization memberships, and
the like. I also check to see whether the ID is obviously forged.
(Although I can’t detect even a fair-to-middling forgery, I have
seen a couple of drivers’ licenses so badly forged that even I
rejected them.) After I’m convinced that the ID is legitimate,
I get the person’s keyid, fingerprint, keyserver, and email
address.

After I return to my computer, I’ll download the person’s
key from the keyserver and compare these:

• The name in the UID to the person’s legal name

• The email address in the UID to the person’s stated email
address

• The fingerprint of the key to the person’s professed key

If they all match, then—and only then—will I sign the key.

N O T E If you’re willing to verify the identity and sign strangers’ keys, you
might check out OpenPGP social networking sites such as www
.biglumber.com. These sites coordinate meetings between OpenPGP
users in cities around the world. You can enter your key into the Big
Lumber site, along with your name and city, and search for other
OpenPGP users within the same city or nearby. It’s fairly easy to
contact these people and meet at a local coffee shop for five minutes
to verify identity and exchange fingerprints.

INFORMAL KEYSIGNING
Keysigning doesn’t have to be so formal. For example, if I receive an
email from a friend who wants me to sign his new GnuPG key, I’ll
pick up the phone and have a conversation much like this: “Dude, I
just got your key in an email. Can you verify that C3D15ECA is your
keyid? Great, and what’s your fingerprint? And what’s the name on
your driver’s license? No, don’t just tell me your name; go grab your
driver’s license and read what it says on the top. Uh huh. Listen, the
name on your key doesn’t match the name on your driver’s license.
Make a key with your proper name and give me a ring. Oh, and
you still owe me 50 bucks. What do you mean, you don’t remember
that?”*

* Here’s yet another case where nonrepudiation is important.

The Web of Trust 87

What to Do with Signed Keys
So you’ve signed a key; now what? Just as you learned as a
child, after you’re done with the key, put it back where you
found it. If you downloaded the key from a public keyserver,
you can update the record on that keyserver. If you got the key
elsewhere, return the signed key to the key owner.

N O T E You can send someone else’s public key to an old-style keyserver.
Although you might think this would be a favor, it’s actually
extremely rude. The public key owner might have reasons for not
using a keyserver and might prefer to distribute his public key via
some other method—or he might not want to publicize the key at
all beyond a small group of people. Never publicize someone else’s
key for them!

When You Get New Signatures
So, you’ve verified your identity to someone, and that person
sent you a new public key file. How do you get that new signa-
ture onto your public key? This is simplicity itself. Just import
the public key file into your own public keyring. Your software
will figure out that it’s your own key, sort out the new signa-
tures, and add them to your ring. We will discuss importing
keys with PGP in Chapter 6 and GnuPG in Chapter 7.

BAD WAYS TO VERIFY IDENTITY
In short: If you have never met someone in person, you cannot sign
the key!

Anyone can open an email account at a free provider and put
someone else’s name on it. You might correspond with someone for
years and become familiar with their writing style and thoughts. You
might even become fast friends with these people you’ve never met,
and you might trust that the person at this distant email account is
who they claim they are. Still, you cannot be certain that the person
claiming to be BradPitt@free-email.com is actually named Brad Pitt;
you have not seen any identification whatsoever, no matter how long
you’ve known the person online.

This is tedious, but attention to detail is what makes OpenPGP
work. By signing the key, you are putting your own reputation on the
line. You are swearing that you have verified this person’s identity to
the best of your ability. If you sign any loser’s key without validating
their identity, others can decide to not trust your identity or your sig-
natures. (We’ll consider this sort of trust a little later.)

88 Chapter 5

Keysigning Parties
The fastest way to accumulate signatures on your public key
is to attend a keysigning party, which is a gathering of people
for the specific purpose of verifying each other’s identities and
signing OpenPGP public keys. You don’t have to know these
people to have them sign your key, but you never know who
knows who and what friends and acquaintances you might
have in common. You might be asked to provide your keyid,
fingerprint, and UID to the host ahead of time, or to bring
several copies of it with you. (I recommend printing your UID
and fingerprint multiple times on a sheet of paper and cutting
the paper into multiple cards or strips so that you can distrib-
ute this information yourself, no matter what problems the
host has.) Bring your photo ID, but do not bring a computer.
Bring at least one copy of your UID and fingerprint with you,
so that you can compare the copies other people have to your
original.

Keysigning parties flow in a variety of ways, but the general
method is that each person identifies himself to every other
person in the room. If you’ve provided your key information
to the host ahead of time, he will frequently give each person
in the room a list of keys to be verified and signed. Otherwise,
you’ll need to give each person a written copy of your key
information.

After everyone has the information on all the keys to
be signed, people will take turns reading their own copy of
their key fingerprint and UID to the attendees. (You might be
asked to write your key information on an overhead projector
instead, or otherwise broadcast your fingerprint.) This con-
firms that the party host didn’t mix up key fingerprints when
preparing the key lists and ensures that even if Mallory is host-
ing the keysigning party he can do very little damage.

When other people present their key information and
ID, check them carefully just as if you were signing any other
stranger’s key. After you are satisfied with the owner’s identity,
mark a check next to that key on your list. If something about
the owner or the key doesn’t feel right to you, cross that key
off the list. This is a situation in which you should listen to your
gut—if you have any doubt whatsoever about the key’s validity,
cross it off your list!

After the party, but within the next day or two, get out
your list of keys. Download those keys from the keyservers and
compare them with the checked ones on your list. If you are

The Web of Trust 89

satisfied that those keys you downloaded have the same finger-
print as the fingerprints you checked at the keysigning party,
and if the UID on the downloaded key matches the informa-
tion you got at the keysigning party, sign the key and return it
to the owner or the keyserver.

Key Trust
The word trust has many different meanings in OpenPGP,
but when we speak of the trust we have in a key signer, we’re
concerned with how well the person verifies the identity of
other OpenPGP users. Each public key you add to your keyring
and sign needs to have one of three levels of trust assigned to
it. The method for assigning trust varies with the OpenPGP
program you’re using, and is discussed in either Chapter 6 or
Chapter 7.

None
Although I have verified the identity of the key owner,
I do not trust this person’s ability to verify the identity
of other people’s keys. You might use this trust level for
family members or people who are obviously far too
trusting.

Marginal
I have verified the identity of this key owner, and this
person seems to be reasonably competent at verifying the
identity of others. You might use this trust level for people
you don’t know, but who you meet at a keysigning party. If
they’ve bothered to show up for a keysigning party, at least
they know how things should work!

Trusted
I trust this person completely when it comes to verifying
the identity of people and signing their OpenPGP keys.

You’ll also see a fourth level of trust: implicit. This is
reserved for keys that you also have the private key for. If you
can use a key, chances are that you trust that key signer com-
pletely—they’re you, after all!

You’ll see how to assign trust to keys as we import and sign
them in both PGP and GnuPG.

90 Chapter 5

Avoiding the Web of Trust
Using of the Web of Trust is not necessary for using OpenPGP.
In fact, some users will not want to sign keys or participate
in the Web of Trust at all. The Web of Trust shows everyone in
the world a list of people you have met, after all. If someone
investigates you, signatures on your OpenPGP key will provide
a ready-made list of associates who should also be investigated.
The “network profiling” investigatory technique involves iden-
tifying a hub of activity and drawing lines between this hub
and other groups to identify other hubs. The CIA uses this for
tracking terrorist cells, the DEA uses it to analyze drug traffick-
ing, and the casino industry uses it to identify complex fraud
schemes. The Web of Trust can assist network profilers.

For example, my wife and I have pet rats. We communicate
with other pet rat owners to discuss health, breeding, training,
and exchange photos of our four-footed families. We might use
OpenPGP to retain message confidentiality. One day, though,
the government might announce a “War on Rats.” As a public
rat-friendly figure, I would come under suspicion as a pos-
sible hub of ratty activity. The government can then use my
OpenPGP keyring as a starting place to build its list of other
suspects and watch for traffic between us rat-pushing fiends.
If you don’t want to be on the list of suspects, having me sign
your key is not your wisest move. Likewise, I don’t want to be
investigated when your hobby is declared illegal, immoral, or
fattening.

A safer method of key management is for you to person-
ally verify the keys of people you must communicate with. You
can make local (or non-exportable) signatures on those keys so
that the signatures remain only on your local keyring and are
not distributed to keyservers. This gives you all the advantages
of OpenPGP, at the cost of personally verifying each key. Per-
sonal verification is still the best way to verify identity, anyway.

For the rest of this book, we’ll assume that you will partici-
pate in the Web of Trust. Remember that you have a choice,
however. Everyone’s threat model differs, and only you know
the risks you run.

6
P G P K E Y M A N A G E M E N T

Managing OpenPGP keys
with PGP is as simple as can

be. After you configure your
client, tasks such as finding and

signing keys should take only seconds.

Adding Keyservers
PGP defaults to using the keyserver provided by the PGP Cor-
poration, which is perfectly adequate if all your correspondents
are also using PGP, but people use a variety of keyservers out
on the public Internet. To that end, PGP allows you to add
keyservers to its search list, so that you can find new keys more
automatically in the future.

N O T E Some keyservers are better than others, so don’t add keyservers willy-
nilly. PGP includes some built-in recommendations that are generally
safe, and subkeys.pgp.net is reasonably reliable.

92 Chapter 6

To add a keyserver:

1. Select ToolsEdit Keyservers to bring up the PGP
Keyservers List, as shown in Figure 6-1.

Figure 6-1: The PGP Keyservers List

2. At first, you’ll see one keyserver listed. To add another,
select Add. You’ll see a screen much like Figure 6-2.

Figure 6-2: The New Server dialog box

3. PGP supports several different types of keyservers, from
the LDAP used by its own Global Directory keyserver to
secure LDAP used in enterprise environments, to plain
old-fashioned HTTP (or Web). To use an old-fashioned
OpenPGP keyserver, select a Type of PGP Keyserver
HTTP and enter the URL in the Address space.

4. Click OK, and the new keyserver should appear in your list.

The entry for your new keyserver isn’t exactly like the
entry for keyserver.pgp.com—specifically, the space that says
Trusted reads No instead of Yes. This is because PGP includes
a copy of the public key used by the Global Directory, and all

PGP Key Management 93

keys distributed by the PGP Global Directory have been signed
by this key, providing a certain level of validation; the PGP
software trusts those keys. However, average public keyservers
perform no validation upon submitted keys, so those keys are
not inherently trustworthy. (You can choose to find individual
keys trustworthy, but their presence on a keyserver does not
imply this.)

Although many people have uploaded their keys to the
PGP Global Directory, you won’t necessarily find every one
of your correspondents there. If you find that you frequently
receive messages signed or encrypted by people who do not
use the PGP Global Directory, adding additional keyservers to
your search will make finding public keys simpler.

At a minimum, I suggest adding subkeys.pgp.net to
your keyservers list so that when PGP Desktop searches for
someone’s public key it will have a better chance of finding it.
You might have to add other keyservers to the list as you learn
more about which correspondents use which keyservers. For
example, if you’re at a university with its own keyserver, you will
probably wind up adding that keyserver to your keyserver list.

Adding Keys to Your Keyring
After you have found someone whose identification seems
correct, it’s time to find, verify, and sign their key. We’ll walk
through this process using PGP and add this person’s key to
our keyring by using the email address to find the key and the
fingerprint to verify that we have the correct key.

Searching Keyservers
On the left side of the PGP Desktop, under the PGP Keys head-
ing, you should see an option to Search for Keys. Click it to
bring up the Search for Keys screen, as shown in Figure 6-3,
which allows you to build very selective queries that allow you
to identify a particular key very quickly. You can search any
keyserver in your system for keys that match a particular name,
email address, key type, or just about any other characteristic.

The Search box allows you to choose which keyserv-
ers or local keyrings to search. (Most people only have one
local keyring called All Keys, but if you’ve been playing with
your software you might have more.) You can build complex
searches by requiring a search to meet all, any, or none of the
conditions you define below. The plus and minus signs to the
right allow you to add additional conditions, including name,
email address, key creation date, and so on.

94 Chapter 6

Figure 6-3: The PGP Search for Keys screen

For example, suppose that you, a PGP user, want to sign
my key. You have checked my identification and the name
on my key and are convinced that I am who I claim to be.
I also gave you my legal name (Michael Warren Lucas, Jr.),
key fingerprint (67FF 2497 8C3C C0A4 B012 DB67 C073 AC55
E68C 49BC), and email address (mwlucas@blackhelicopters
.org). You’ll open up your PGP Desktop, open the search
screen, select the Email search option, and enter my email
address in the text box.

The search screen brings up a list of all keys that contain
that email address. Not surprisingly, there’s only one key
attached to my email address.

To add a found key to your local keyring, right-click the
key and choose Add To, which brings up a list of keyrings your
PGP software knows about. Most people have only one keyring,
called All Keys. Choose that one, and the key will be added to
your local keyring and be visible in PGP Desktop.

Importing from a File
Suppose that the key you want to sign isn’t on a keyserver, but
is instead distributed via some other method such as a web
page. In such cases, the key is usually distributed as a file you
can download.

To import a text-based key:

1. Download the key to your desktop, making sure to save it
with a .asc extension so that PGP will recognize it as a key.

2. Right-click the saved file and select Open With. One
option is to import the file with PGP Tray, a program that
offers to import the key into your public keyring, so that it
will be available in PGP Desktop. Choose that option.

PGP Key Management 95

Fingerprint Comparisons
The next step is to confirm that the key you found is the same
one that I showed you. To do so:

1. Right-click the imported key and select Properties to open
the Key Properties screen, as shown in Figure 6-4. At the
bottom of the Key Properties screen, you’ll see the fin-
gerprint. (PGP provides fingerprints both in the standard
hexadecimal format and a biometric format made up of
words. Although the biometric format looks less intimidat-
ing, I have seen it only in software from PGP Corporation.
Everybody else I know of uses hexadecimal.)

Figure 6-4: The Key Properties screen

2. Compare the entire fingerprint with that listed on the
screen. (Although it might be tempting to just make sure
the first four characters match, if someone was seriously
attempting to impersonate me, he might well keep gener-
ating random OpenPGP keys until he got one in which a
section of the fingerprint overlapped the real fingerprint,
hoping that people would be too lazy to check the entire
fingerprint.)

3. If the fingerprint matches, leave Key Properties and right-
click the key on the search screen again.

96 Chapter 6

4. Choose the first option, Add To, to add the key to the All
Keys list.

5. Return to the main PGP Desktop screen by selecting All
Keys, and you should see my private key added to the list.

6. Right-click the key and select Sign from the drop-
down menu.

7. PGP displays a dialog box similar to Figure 6-5 with a
strongly worded warning at the top to remind you that if
you sign the key, you are providing your personal certifi-
cation that the key you’re signing actually belongs to the
person who claims to own it.

Figure 6-5: The PGP Sign Key dialog box

8. A checkbox at the bottom right of the screen says Allow
Signature To Be Exported. If you’re certain that you veri-
fied the key, check this box. The next time you update
your keyring, your signature will be added to those on the
keyserver. You’ll be attaching this key owner a little more
deeply into the Web of Trust. Although not strictly neces-
sary, signing other people’s keys is considered the price for
getting your key signed.

9. A dialog box will request your passphrase; when you type
it, you’ve signed the key.

10. Now return to the Key Properties screen for your newly
imported key. You should see that the Validity tab now
has a green dot and the word Valid beside it. While you’re
here, you need to decide what level of trust you have in
this particular key signer (as discussed in Chapter 5). You
can set the trust by simply clicking the value and choosing
either None, Marginal, or Trusted.

PGP Key Management 97

Returning the Signed Key
Now that you have signed the key, return it (with your added
signature) to where you got it from. If the key was distributed
from a keyserver, just right-click the key in PGP Desktop and
select Synchronize to transmit it back to the keyserver. If you
got the key from a file, website, or some other method, how-
ever, you really should return it to the key owner directly. The
key owner has a good reason for not publicizing a key via a key-
server. Never submit someone else’s key to a keyserver!

To return the key to its owner, right-click the key entry
and choose Export, then choose a file in which to save the
exported key. Return the export file to the owner in whatever
method seems best; email is OK for exported keys.

Viewing Signatures
When you add a public key to your keyring, one question to
ask is “Who else has signed this key?”

To view other key signers, use the PGP Desktop. Just click
the little plus sign (+) by the key to expand the key description,
and you’ll see a list of all the signers of that key, as shown in
Figure 6-6.

Figure 6-6: Signatures on a key

Here we can see that the key for Michael Warren Lucas, Jr.
has been signed by himself, by Greg Donner, and by the PGP
Global Directory.

Updating Signatures
Over time, keys are revoked, are replaced, and accumulate new
signatures. These changes are made available on the keyserv-
ers. Use the Synchronize Keys functions in PGP to update your
keyring.

The Keys tab of the PGP Options panel (accessible under
the Tools menu) includes a checkbox for automatic synchro-
nization. If this checkbox is selected, PGP will regularly update
its local keys with the latest ones from the PGP Global Direc-
tory (or any other keyserver you might have added to your
system).

98 Chapter 6

Adding Photos to Your Keys
Now that you’re a little more conversant with the features of
PGP and can wander at will through the many options PGP
Desktop offers, let’s add a photograph to your key. Get a digital
photograph of yourself, and make sure it’s in a format suitable
for an OpenPGP key, as discussed in Chapter 2. Once you have
a photograph ready, follow these steps:

1. Open up the Key Properties screen for your public key,
as shown in Figure 6-4.

2. Right-click on the large key logo on the left-hand side and
select Add Photo. This brings up the Add Photo dialog
box, as shown in Figure 6-7.

Figure 6-7: The Add Photo dialog box

3. Drag and drop your photo into this dialog box. PGP
Desktop will ask for your passphrase. Once you enter
your passphrase, your key will be updated with your
photograph!

To view another key’s photograph, check the Key
Properties for that key.

Now that you’ve got a good grip on your key and the Web
of Trust, let’s go on to look at email and OpenPGP.

7
M A N A G I N G G N U P G K E Y S

Managing keys in GnuPG
can be a little more difficult

than with PGP, simply because
the variety of tools don’t always

integrate seamlessly. We’ll focus on the
command-line management of keys, with
some pointers to the WinPT graphic
interface.

Keyservers
GnuPG allows you to choose a default keyserver, which you can
override on the command line. Like so many other GnuPG fea-
tures, you set your default keyserver in the gpg.conf file:

keyserver hkp://subkeys.pgp.net

100 Chapter 7

The hkp stands for Horowitz Keyserver Protocol, which is used
to exchange keys over a network. Many OpenPGP clients use
HKP, but you don’t need to know anything about its internals.
HKP runs over TCP port 11371, so if you’re behind a firewall
and cannot access that port, you’ll have difficulty communicat-
ing with the keyserver.

List the hostname of the keyserver after the hkp://, much
like the URL for a website.

After you have added this entry into gpg.conf, GPG will
assume that this is your keyserver. You can override this choice
at any time with the command-line option:

--keyserver

NOTE From here on, the examples assume that you have set a keyserver option
in your gpg.conf file or your WinPT installation. If you don’t want to
do that but are following the examples, add the command-line option
--keyserver subkeys.pgp.net to every command involving a keyserver
throughout the rest of this book.

Keyserver Options
You can tweak GnuPG’s interactions with keyservers extensively.
Most of those tweaks are useful only for debugging GnuPG
problems, but a couple will come in handy for daily use. (Read
the gpg(1) man page for the complete list of options.)

One option I find useful is automatic key retrieval. When
you receive a signed or encrypted message, GnuPG checks its
local keyring for a key that matches the sender of that message.
If it can’t find a matching key for a message that it’s trying
to decrypt or authenticate, GnuPG normally stops dead and
waits for you to load the proper public key into your keyring. If
you’re lazy and don’t want to search for a key by hand, you can
set the keyserver option auto-key-retrieve. Although this proce-
dure won’t help if you’re signing someone’s key, it will make it
simpler to handle exchanging documents (such as email).

Another helpful option can make GnuPG produce more
detailed output about the actions it takes and any problems it
encounters. If you’re trying to understand how GnuPG works,
either out of curiosity or in an attempt to debug a problem,
you can use the verbose option to make GnuPG more chatty as
it goes about its work.

keyserver-options auto-key-retrieve, verbose

Managing GnuPG Keys 101

Keyservers and WinPT
To see the list of keyservers in WinPT, open up Key Man-
ager and select the Keyserver option from the top of the
window. (Figure 4-11 shows the Key Manager with the
Keyserver option.) The Keyserver Access screen will display
with a list of supported keyservers, as shown in Figure 7-1.

Figure 7-1: The Keyserver Access screen

You can select a default keyserver from the list by highlight-
ing a server name and clicking Default. The default keyserver
will then be marked with an X in the Default column. In Fig-
ure 7-1, the default keyserver is subkeys.pgp.net.

WinPT does not control its keyservers with gpg.conf.
Instead, WinPT keeps its own list in C:\ Program Files\GnuPT \
WPT \ keyserver.conf. This is just a plain text file listing keyserv-
ers that show up in the WinPT GUI, with one keyserver per
line. You must restart WinPT for changes in the keyserver list
to take effect.

Adding Keys to Your Keyring
Suppose that one day you receive a digitally signed message
from my email address (mwlucas@blackhelicopters.org).
Although you don’t need my public key to read this message,

102 Chapter 7

you need to get a copy of it to verify that I actually sent this
message. If you’re using GnuPG’s automatic key retrieval,
you’re all set; if not, you’ll need my public key’s keyid to fetch
the key.

If your email client doesn’t display my keyid, you need
to search your keyserver’s web interface for it. Most keyserv-
ers, including all those that serve subkeys.pgp.net, have a web
interface. If you search for keys using my email address as a
search term, you’ll get an answer much like this:

pub 1024D/E68C49BC 2007-02-21 Michael Warren Lucas Jr (Author, consultant,
sysadmin) <mwlucas@blackhelicopters.org>
 Fingerprint=67FF 2497 8C3C C0A4 B012 DB67 C073 AC55 E68C 49BC 

The keyserver spits back  my keyid,  the date the key
was created,  the owner’s user ID (UID), and  the key
fingerprint. To import the key, we need the keyid, which is
E68049BC in this case.

Command-Line Key Fetching
To fetch a key using gpg from the command line, use the
--recv-keys option and the keyid to download the key from
your preferred keyserver, like so:

gpg --recv-keys E68C49BC
gpg: requesting key E68C49BC from hkp server subkeys.pgp.net
gpg: key E68C49BC: public key "Michael Warren Lucas Jr (Author,
consultant, sysadmin) <mwlucas@blackhelicopters.org>" imported
gpg: Total number processed: 1
gpg: imported: 1
#

Here, we  asked our preferred  keyserver for the
public key with the keyid  E68C49BC. It responded with
a public key, and it prints out  the UID so that we know we
got the right key. Finally, GnuPG lists  the number of keys
it has imported.

Command-Line Key Viewing
To view all the keys currently on your public keyring, use the
gpg --list-keys option, like so:

gpg --list-keys
/home/mwlucas/.gnupg/pubring.gpg

pub 1024D/E68C49BC 2007-02-21

Managing GnuPG Keys 103

uid Michael Warren Lucas Jr (Author, consul-
tant, sysadmin) <mwlucas@blackhelicopters.org>
sub 2048g/A67199A7 2007-02-21

GnuPG begins by printing out  the name of the file in
which the public key ring is kept, which should always be the
pubring.gpg file in your GnuPG home directory. (Remember,
we discussed the GnuPG home directory in Chapter 4.)

Next, you’ll see a label for the type of key displayed; in
this case, it’s  a public key. We have  the key length and
the keyid of this key, and  the creation date. The key’s
 UID is given on its own line, with any  subkeys of the
main OpenPGP key listed afterward. (Subkeys are keypairs
that are subordinate to the main OpenPGP key, and many
people highly skilled with OpenPGP have them on their keys.
You generally don’t have to worry about these subkeys, but
don’t be concerned when they appear.)

To view the keys on your private keyring, use the --list-
secret-keys option.

gpg --list-secret-keys
/home/mwlucas/.gnupg/secring.gpg

sec 1024D/E68C49BC 2007-02-21
uid Michael Warren Lucas Jr (Author, consul-
tant, sysadmin) <mwlucas@blackhelicopters.org>
ssb 2048g/A67199A7 2007-02-21

The result looks much like the public keys list, with a
couple of exceptions: The private key is labeled  sec for
secret, and the subkey is labeled  ssb for secret subkey.

As your keyrings grow, the commands --list-keys and
--list-secret-keys will create multiple screens of output. In
these examples, our keyring only has a single key on it: mine.
If each key entry takes up only three lines, when you have
nine keys on your keyring it will more than fill an average
command-line window. You also don’t want to have to sort
through dozens or hundreds of entries to find the single key
you want. To view only the entry for a single key, enter a unique
key identifier after the --list option. For example, to view only
my public key information, you could run the following:

gpg --list-keys mwlucas@blackhelicopters.org

When you have hundreds of keys on your keyring, using
this command to list only specific keys can make key viewing
much more reasonable.

104 Chapter 7

WinPT Key Viewing and Fetching
To view or fetch your keys using WinPT:

1. Open the WinPT Key Manager by double-clicking the
WinPT icon in the lower-right corner of the screen. The
Key Manager lists all keys (both public and private) on
your keyrings. (Refer to Figure 4-11 for a diagram of the
Key Manager.)

2. Click the Keyserver tab of the Key Manager. The Keyserver
Access screen displays (refer to Figure 7-1).

3. Highlight the keyserver you want to use, enter the keyid
or email address in the space at the bottom of the page,
and click Receive. WinPT should contact your chosen key-
server, download the chosen key, and add it to your public
keyring.

Command-Line Key Imports
If a public key is distributed via a method other than a key-
server (such as a website), you can bring it into GnuPG by
using the --import option and the filename. For example,
here’s how I would import my friend Greg’s public key:

#gpg --import gedonner.asc

gpg: key E2F41133: public key "Greg Donner <gedonner@blackhelicopters.org>"
imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

GnuPG  imports the new public key from  the file
gedonner.asc, then prints  the keyid it has found in the pub-
lic key file as well as  the UID.

WinPT File Imports
To import a key with WinPT:

1. Save the key file with a .asc extension.

2. Right-click the key file and select Open With; you should
see Windows Privacy Tray (WinPT) as an option.

3. Select Windows Privacy Tray (WinPT). WinPT should
import the key(s) in the file and report on its results.

Managing GnuPG Keys 105

Signing a Key
Now that you know how to grab other people’s keys from a
keyserver, let’s hook those keys into our Web of Trust. First, of
course, you need to check the other person’s ID, confirm the
identity, and also note the email address and key fingerprint.
After you have confirmed this information, you need to sign
the public key, which involves checking the fingerprint of the
downloaded public key, digitally signing the key, and then
returning the key to the owner.

Checking Fingerprints
Let’s assume that you imported a key that looks like the other
person’s key. In this example, I’m considering signing my
friend Greg’s key. Although I’ve known Greg for years, I still
checked his ID and made him give me his key fingerprint. He
says his fingerprint is B147 5969 B88D 3582 C05E BB83 91B5
AA6A E2F4 1133. To show the fingerprint for only his key, I use
the --fingerprint option and give his email address as follows.

#gpg --fingerprint gedonner@blackhelicopters.org
pub 2048R/E2F41133 2007-06-25
 Key fingerprint = B147 5969 B88D 3582 C05E BB83 91B5 AA6A E2F4 1133
uid Greg Donner <gedonner@blackhelicopters.org>
sub 2048R/8373FD79 2007-06-25

The output closely resembles the --list-keys output, with
the addition of the line that  prints the fingerprint. With
this information confirmed, right-click the key in WinPT’s
Key Manager and select Key Properties to show the finger-
print. After you confirm the fingerprint, you can sign the key.

Signing Keys on the Command Line
To sign keys at the command line, use the --sign option and
the keyid.

gpg --sign-key E2F41133
pub 2048R/E2F41133 created: 2007-06-25 expires: never usage: CS
 trust: unknown validity: unknown
sub 2048R/8373FD79 created: 2007-06-25 expires: never usage: E
[unknown] (1). Greg Donner <gedonner@blackhelicopters.org>
pub 2048R/E2F41133 created: 2007-06-25 expires: never usage: CS
 trust: unknown validity: unknown
 Primary key fingerprint: B147 5969 B88D 3582 C05E BB83 91B5 AA6A E2F4 1133

106 Chapter 7

 Greg Donner <gedonner@blackhelicopters.org>

Are you sure that you want to sign this key with your
key "Michael Warren Lucas Jr (Author, consultant, sysadmin) <mwlucas@
blackhelicopters.org>" (E68C49BC)

Really sign? (y/N) y

As you can see, GPG shows details about the key with the
given keyid, including  the keyid,  the fingerprint, and
 the UID of the public key. It then asks whether you really
want to sign the key with your private key. If the keyid, finger-
print, and UID match the owner’s identification,  enter y
to sign the key. You’ll be prompted for your passphrase, after
which GnuPG will sign the key.

Signing Keys in WinPT
To sign keys with WinPT:

1. Right-click the key you want to sign, which should bring up
a Key Signing dialog box that lists the fingerprint and the
selected key’s UID.

NOTE By default, WinPT signs keys in a nonexportable manner, mean-
ing that the signature is good only for your personal Web of Trust,
but other people cannot rely on your validation. Although this might
be good safeguard for uneducated OpenPGP users, you now have a
pretty good idea of how to verify an identity. I recommend uncheck-
ing the Sign Local Only box if you are participating in the Web
of Trust and you have properly validated the key owner’s identity.
(If you haven’t, you shouldn’t be signing the key!)

2. Choose to enter an expiration date for the signature if you
want, although that’s not generally necessary.

3. If you have multiple private keys, WinPT allows you to
choose which one to use for signing purposes.

4. Finally, you’re asked for the passphrase for your key. Enter
it and you should see a dialog box asking you how care-
fully you have verified the identity of the key owner. These
range from I Have Not Checked At All to I Have Checked
Very Carefully. Presumably, you checked very carefully;
check the appropriate box.

Managing GnuPG Keys 107

Viewing Key Signatures
After you sign a key, you should confirm that the signature is
really there.

Command Line

To do this from the command line, view the signatures with the
--list-sigs option and the keyid of the public key in question.

gpg --list-sigs e2f41133
pub 2048R/E2F41133 2007-06-25
uid Greg Donner <gedonner@blackhelicopters.org>
sig N E2F41133 2007-06-25 Greg Donner <gedonner@blackhelicopters.org>
sig E68C49BC 2007-07-19 Michael Warren Lucas Jr (Author, consultant,
sysadmin) <mwlucas@blackhelicopters.org>
sub 2048R/8373FD79 2007-06-25
sig E2F41133 2007-06-25 Greg Donner <gedonner@blackhelicopters.org>

Here, we’re asking for the complete list of signatures on
the key with the keyid  E2F41133. This key has only two sig-
natures: one is  the original owner’s signature, and the other
is  mine.

Now, when I receive OpenPGP-encrypted or -signed mail
from Greg, I know it is authentic. Presumably, Greg has also
verified and signed my key, and we have our own personal
Web of Trust. However, to tie each other into the public Web
of Trust we must publicize the signatures on our keys. (Just
remember to put the signed key back where you got it!)

WinPT

To view signatures in WinPT, right-click the key you want to
check and select View Signatures from the drop-down menu.

To export someone else’s public key that you signed, do
the same as if you were exporting your own public key to a file.

Command-Line Exports
To export a public key from the command line, you’ll need the
keyid and a file to put it in.

gpg --output gedonner.asc --armor --export E2F41133

Here, we tell GnuPG to  put the results of its work in
the file  gedonner.asc, protect the contents with  ASCII
armor, and  export (or copy) the public key with  the

108 Chapter 7

keyid E2F41133 from your public keyring. This is almost identi-
cal to exporting your own public key.

This exported file includes Greg’s public key, my signa-
ture of his key, and any other signatures that were on the key
before I signed it. Another user can import this exported
key file, either by adding the key to his keyring or by merg-
ing any new signatures onto the existing copy of that key as
appropriate.

You should return the signed public key to the key owner
in an encrypted, signed email and allow him to integrate
your signature into his public key and then distribute it as he
sees fit.

WinPT Exports
To export a key from WinPT, right-click the key in Key Man-
ager and select Copy Key To Clipboard. You can then create
a new text file and copy the key into it. Give the file a name
indicative of its contents and a .asc extension, so other people’s
systems will recognize it as a proper OpenPGP public key.

Importing New Signatures
When someone sends you a file with a signature added to
your public key, you add that signature onto your public key
by importing the public key into your own public keyring.
GnuPG will sort out the new signatures and integrate them
with your public key.

Pushing Signatures to Keyservers
If you retrieved a person’s public key from a keyserver, you can
update the key directly on the keyserver (although only if the
key has already been publicized on a keyserver!).

Command Line

To do so from the command line, use the --send-keys option
to update the keyserver’s record of a particular key, just as if
you were first publicizing your key. Here, I refresh Greg’s key
(keyid E2F41133) on the keyserver:

gpg --send-keys E2F41133

WinPT

To update a keyserver in WinPT, right-click the key in Key Man-
ager and select Send To Keyserver. Then choose your default
keyserver.

Managing GnuPG Keys 109

Updating Keys
Whenever you add signatures to your personal public key, you
should announce those additional signatures using the same
keyserver you uploaded your key to in the first place. Every
month or so, check your keyring to confirm that the keys you
downloaded previously are still valid and to update your copies
with any additional signatures that your keys have collected.
You can do so with the --refresh-keys option.

gpg --refresh-keys
gpg: refreshing 31 keys from hkp://subkeys.pgp.net
gpg: requesting key D4ED7B9F from hkp server subkeys.pgp.net
gpg: requesting key ...
...

GnuPG announces  the number of keys on your public
keyring and  the keyserver it is trying to check them against,
and then lists each key by  keyid as it tries to fetch each from
the keyserver. If a key is not on the keyserver, you’ll see a brief
notice like this:

1718CCCE595F038CA0D83C12EC398AB271 not found on keyserver

In this example, I installed this particular key from an
exported file, and the key is not available on a keyserver. To
check this key for new signatures, I need to return to where I
got the key from in the first place and get a new public key file.

NOTE If a key has changed, GnuPG will display those changes and update
the copy of that key on your public keyring.

At the end of the update process, GnuPG prints the num-
ber of keys it’s checked, the number of unchanged keys, and
the number of new signatures it has found.

Deleting Public Keys from Your Keyring
If you have refused to sign a public key for whatever reason,
you probably don’t want it on your public keyring. The same
goes for the public key of someone with whom you no longer
correspond.

Command Line

To delete a public key from your keyring, use the --delete-key
option and the keyid.

110 Chapter 7

gpg --delete-keys E2F41133

pub 2048R/E2F41133 2007-06-25 Greg Donner <gedonner@blackhelicopters.org>

Delete this key from the keyring? (y/N) y

GnuPG gives you every chance to double-check the key
that you want to delete by presenting the keyid and its UID
before requesting confirmation. If this really is the key you
want to delete, enter y, and the key will disappear from your
public keyring.

WinPT

To delete a key from WinPT, right-click the key in Key Man-
ager and select Delete.

GnuPG and Photos
GnuPG can add photos to OpenPGP keys and view the keys on
other people’s keys. Photo IDs can be a nice addition to your
OpenPGP key, as discussed in Chapter 2. Now that you know
a little more about GnuPG and key management, you can add
photos to your own key and view photos on other users’ keys.

Adding Photos to Your Key
GnuPG includes a very sophisticated and powerful keypair edi-
tor. This editor gives you the power to tweak your key in any
way you can imagine. Most of these tweaks will render an aver-
age user’s key useless, so I won’t cover the editor in any depth.
You must use this editor to add a photo, however. Enter the edi-
tor with the --edit-key option and your keyid or email address.

gpg --edit-key mwlucas@blackhelicopters.org

Secret key is available.

pub 1024D/E68C49BC created: 2007-02-21 expires: never usage: CS
 trust: ultimate validity: ultimate
sub 2048g/A67199A7 created: 2007-02-21 expires: never usage: E
[ultimate] (1). Michael Warren Lucas Jr (Author, consultant, sysadmin) <mwlucas
@blackhelicopters.org>

Command>

GnuPG will tell you that you have  the secret key for the
key you’re choosing to edit—which you certainly should, as
it’s your key! It will also list  the keyid and  the UID of this

Managing GnuPG Keys 111

key. Make sure that this is your key before continuing. Finally,
GnuPG will provide  a command prompt for the editor. Use
the addphoto command.

Command>addphoto

Pick an image to use for your photo ID. The image must be a
JPEG file. Remember that the image is stored within your public
key. If you use a very large picture, your key will become very
large as well! Keeping the image close to 240x288 is a good size
to use.

Enter JPEG filename for photo ID: c:/temp/photo.jpg

When GnuPG asks for the filename for the photo, give
the full name including the path. (You don’t need the full
path if you’re running the command from the directory where
the file can be found, but I usually specify the full path just to
be certain.) GnuPG will launch an image viewer to show the
picture. Look at the picture and make sure that it’s really the
photo of you that you wish to advertise to the world. If this
picture is correct, exit the image viewer. GnuPG will prompt
you again:

Is this photo correct (y/N/q)? y

GnuPG will then request your passphrase, to prove
that you are actually allowed to make this change. Enter
your passphrase.

Command> save

This will return you to a command prompt. If you made a
mistake, you can enter quit instead of save to abort the change.

Viewing Photos with GnuPG
You must use a graphical operating system to view photos
with GnuPG. This includes Microsoft Windows or Unix-like
operating systems running X Windows. To view a photograph
attached to a key, use the --list-options show-photo command-
line option before --list-keys.

gpg --list-options show-photos --list-keys
mwlucas@blackhelicopters.org

This will display the information for my key and launch an
image viewer to display the picture in your chosen key. Be care-
ful that you don’t just list all the keys on your keyring; chances

112 Chapter 7

are that many of those keys have a picture, and you’ll spawn a
separate image viewer for each key with a picture. If you have a
large keyring, this opens dozens if not hundreds of images!

WinPT and Photos
To add a photo to your keypair using WinPT, open the WinPT
Key Manager (as shown in Figure 4-11 on page 65). Right-click
on your key, and choose Add . . .

From the Add submenu, select Photo. WinPT will open the
Add Photo ID dialog box as shown in Figure 7-2.

Figure 7-2: The Add Photo ID dialog box

Give the full path to your photo and enter your passphrase.
WinPT will add the photo to your key.

To view a photo with WinPT, double-click on the photo
in Key Manager. The Key Properties dialog box will appear, as
shown in Figure 7-3.

Figure 7-3: The Key Properties dialog box
with a photograph

Managing GnuPG Keys 113

WinPT is perhaps the easiest way to handle photos with
GnuPG.

Building the Web of Trust with GnuPG
Now that you know how to manage your keyring, let’s build
our Web of Trust with GnuPG.

PGP
You saw in Chapter 6 that PGP’s trust model is very straightfor-
ward: If a public key is signed by someone whose key you have
signed, that key is trusted, which makes it very easy to build a
Web of Trust with PGP.

GnuPG
GnuPG is a little more paranoid (or, if you prefer, “proper”).
You can assign degrees of trust to every public key on your key-
ring (as I discussed at the tail end of Chapter 5). For GnuPG
to trust a previously unknown key, that key must be signed by
one fully trusted person or three marginally trusted people.
Remember, this is not trust as in “Here, hold my winning lot-
tery ticket.” We’re specifically talking about the person’s ability
to validate the identity of others and their consistency in doing
so correctly. You can assign your trust of a particular key with
either the command line or WinPT.

GnuPG stores trust information in the file $GPGHOME/
trustdb.gpg. Trust information is independent from the public
keys themselves because we all trust different people to differ-
ent degrees.

NOTE Update the trust database regularly to keep this from becoming an over-
whelming job. It’s much easier to add trust values for the half-dozen
new OpenPGP users you talked to in the last week than to add them
for the hundreds of people you corresponded with in the last year!

Command-Line Trust Configuration
Use the --update-trustdb option to assign a trust level to every
key on your public keyring. This command will iterate over
every key in your public keyring and give you an opportunity
to assign a trust value to each one.

gpg --update-trustdb
...
Please decide how far you trust this user to correctly verify other users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

114 Chapter 7

 1 = I don't know or won't say
 2 = I do NOT trust
 3 = I trust marginally
 4 = I trust fully
 s = skip this key
 q = quit

Your decision? 1

GnuPG will display the basic information for each key,
including its UID and fingerprint, and then ask you to choose
how much you trust this person’s ability to identify other
OpenPGP users. Pick the appropriate value for each person
in your keyring, and GnuPG will build your personal Web of
Trust based on your preferences.

If you’re in any doubt whatsoever about a key, use “I don’t
know or won’t say,” which allows you to use those keys without
making any commitments to trusting the user.

WinPT Trust Configuration
To configure trust in WinPT:

1. Right-click the key in Key Manager and select Key
Properties.

2. At the bottom of the dialog box, you’ll see a space labeled
Ownertrust. Select the Change button to assign a level of
trust to this owner.

Now that you have trust, let’s see how OpenPGP works
with email.

8
O P E N P G P A N D E M A I L

Learning how OpenPGP works
and how to use it to manage

your keyring has just been a
warm-up to the real meat of this

book: using OpenPGP with email.
Both PGP and GnuPG extend mail programs to include

OpenPGP functions. As you’ll soon see, OpenPGP operations
in all mail programs are very similar after you learn where your
particular client puts the “encrypt” and “sign” buttons. After
you can use one OpenPGP program with a particular email
client, you can extend that knowledge to cover other email
clients.

Back in Chapter 1, we had a table that listed all the actions
you could perform with OpenPGP. That was before you knew
words such as nonrepudiation, however, and so it might not have
meant as much to you as it does now. Take a look at it again
here (Table 8-1) with your newfound cryptographic wisdom,
and see how public keys, private keys, and digital signatures all

116 Chapter 8

tie together to create a chosen level of privacy. After you begin
working with OpenPGP on a daily basis, it won’t take long to
learn when to use the six features in Table 8-1.

Table 8-1: Key Usages

Desired Effect Action

I want anyone who reads this message to
know beyond a doubt that I sent it—I cannot
repudiate it.

Digitally sign the message with your
private key.

I want to verify the identity of the person who
sent a digitally signed message to see whether
the apparent sender is the real sender.

Verify the signature with the sender’s
public key.

I want to send a message that only my
intended recipient can read.

Encrypt the message with the recipient’s
public key.

I want to decrypt a message that I received. Decrypt the message with your private key.

I want my message to be readable only
by my intended recipient, and I want the
recipient to be able to verify that the message
came from me.

Encrypt the message with the recipient’s
public key and digitally sign the message
with your private key.

I want to decrypt and verify a message that
includes a digital signature.

Decrypt the message with your private key
and verify the signature with the sender’s
public key.

Message Encoding

When used with email, OpenPGP uses two different methods
to encode messages. PGP/MIME is the more modern choice,
being attachment-based, but not all mail clients support it. The
older inline encoding, also known as clearsigning, works well for
basic email messages. The choice of encoding varies with dif-
ferent email clients and OpenPGP programs, and I’ll discuss
the options in the following sections.

Inline Encoding
Inline encoding occurs directly within the body of the email
message. When you sign a message with inline encoding, the
message body is edited to include an OpenPGP signature at
the very end of the message. When encrypting and signing a
message, the encrypted message replaces the original message
body completely.

OpenPGP and Email 117

If you open an inline-encrypted message without using
an OpenPGP program, it will start off looking much like the
following:

-----BEGIN PGP MESSAGE-----
Version: PGP Desktop 9.0.2 (Build 2433)

qANQR1DBwU4D2jTKQaZxmacQCACbxrL+clBol8wB1R16tr5vXFFLurHsug9Qk6Cq
...

Not much to look at if you can’t decode it.

Inline Encryption Trade-Offs

Inline encryption is about as simple as you can get, but as
time has passed, its limitations have become more and more
apparent. Inline encryption can have trouble with non-English
character sets, attachments, and binary documents.

Non-English character sets (such as the symbols used
for Chinese or Russian text) can cause problems for inline
encryption. Email was designed by English speakers for English
speakers, and mail programs already jump through hoops to
manage non-English character sets.1 Combining these charac-
ters with OpenPGP can cause unpredictable effects, depending
on your combination of email client and OpenPGP software.

Similarly, attachments can be problematic with inline
encryption. Your email client might encrypt your message body
but leave the attachment unencrypted. To use inline encryp-
tion in such a case, you would need to encrypt your attachment
separately and attach the signature and the encrypted attach-
ment to the message. Also, when using inline encryption, you
cannot encode binary data, such as PDFs, Microsoft Word
documents, digital photos, and so on.

Finally, as if all this weren’t enough, mail servers can cor-
rupt clearsigned messages.

On the other hand, in spite of these challenges with inline
encryption, OpenPGP-signed messages that use inline encod-
ing can be read by any mail client.

When you use inline encryption, you must be aware of how
your mail client interacts with your OpenPGP software in these
circumstances. We discuss these interactions in the next two

1 I like to think that if the original creators of email realized that it would be
used by people all over the world instead of just a handful of highly skilled
engineers, they would have anticipated these problems and designed around
them. Then again, if the creators had realized what their innocent tool would
become, they might have just given up the whole thing as a bad idea and
bought extra stamps.

118 Chapter 8

chapters. In a nutshell, PGP Corporation puts a lot of work
into making inline encryption work properly and easily for
everyone, whereas GnuPG varies with different clients.

PGP/MIME was designed to address all these issues and
handle these cases without trouble.

PGP/MIME
If you’re a computer geek, you’ve probably seen the expres-
sion MIME type before. MIME, or Multipurpose Internet Mail
Extension, is a whole set of standards for encoding email.
PGP/MIME is the encoding method designed for OpenPGP
email. PGP/MIME gets around the problems with inline
encryption by treating absolutely everything as an attachment:
The encrypted message is sent as an attachment, the signed
message and signatures are sent as attachments, and anything
you attach is encrypted and attached.

Mail servers and mail clients treat attachments and email
messages differently: Mail servers never modify attachments,
and mail clients treat attachments as separate objects. Because
attachments are left alone, PGP/MIME makes it much simpler
to encrypt messages that use different character sets or binary
files.

Generally speaking, all email clients, as well as Open-
PGP implementations, can read both inline and PGP/MIME
encoding unless otherwise noted in the program. PGP will
handle each type of encoding, whereas GnuPG has limitations
depending on the mail client you’re using. Some mail clients
work better with GnuPG than others.

Email Client Integration
You can integrate OpenPGP with your email client using either
proxies or plug-ins.

OTHER ENCODINGS
Many people and companies have created their own email secu-
rity systems in the last two decades. Most of these systems have
received limited acceptance, whereas others were popular for a
time and then disappeared. You might see references to these other
encoding systems, such as S/MIME. Some mail clients include sup-
port for S/MIME, but that’s not OpenPGP.

If you’re exploring your email program and find a checkbox
that says something about S/MIME, you’re in the wrong spot.

OpenPGP and Email 119

Proxies
A proxy is a small program that runs on your computer and
sits between your email client and your mail server. The proxy
sends and receives email sent to your mail server, and the mail
client sends and receives mail only through the proxy.

Proxies work with any mail client, but they are not as
tightly integrated with the client as most people want; you
configure signing, encryption, and decryption in the proxy
program rather than in the mail client. Too, when using a
proxy, you won’t get an “encrypt and sign” button or menu
option in your email client; instead, you’ll have to open the
proxy program and say “Encrypt all messages now” or “Encrypt
messages to this email address.” (PGP uses a proxy to handle
messages, as I’ll discuss in Chapter 9.)

Plug-Ins
The other option is plug-ins, which are used by GnuPG.
A plug-in integrates with your email client, providing “sign”
and “encrypt” buttons directly within the client.

Each mail client plug-in is unique, which means that a
plug-in designed for Microsoft Outlook will not work in Mozilla
Thunderbird.

Because plug-ins are written separately, each behaves
slightly differently and has a different interface. Usually, the
plug-in is written to look like it’s part of the mail client pro-
gram; integration is the whole point, after all! (I’ll discuss
GnuPG plug-ins for the three most popular Windows email
clients in Chapter 10.)

Saving Email—Encrypted or Not?
Like many people, I save all my old email2 because I find it very
useful for reference. In fact, I’ve worked at companies in which
saving every piece of email from your manager was the only
way you could keep your job longer than a month.

OpenPGP presents some interesting problems when
archiving mail, however. For example, when you send someone
encrypted email, the reader must use the recipient’s private
key to read it. However, because you don’t have the recipient’s

2 I have a complete archive of my email since 1985, minus only pieces that I
have deliberately chosen to delete. I suspect that the mere existence of this
archive will be submitted as evidence at my eventual sanity hearing. That or
my publisher will publish it all. I mean, the guy published a book containing
nothing but messages written to spammers! I can’t imagine who let him out of
his cage, let alone gave him a job.

120 Chapter 8

private key, you can’t read the mail that you sent, even though
you created it!

Saving Unencrypted Email
Some email client plug-ins allow you to save mail as unen-
crypted. The problem with choosing this option is that it will
protect your email during transit and while on the recipient’s
computer, but not on your hard drive. Anyone who can access
your computer will be able to read those encrypted messages.

Although this option might be fine in a corporate environ-
ment, if you’re in a totalitarian country being threatened by
some ugly man with a rusty machete and serious anger issues,
those messages just might mean life and death (for your cor-
respondents, if not for you). (I wish this were a joke; in fact,
OpenPGP has saved lives in exactly this situation.)

One popular option is to save all your email unencrypted,
but on an encrypted disk partition. We discuss this briefly in
Chapter 11.

Encrypt to Self
Another popular option is to also “encrypt to self ” (in other
words, to encrypt the saved email with your public key so that
you can open it using your private key and passphrase). Using
this option will stop people from getting the document even if
your computer is stolen, and it is often a good middle ground
for many people. (You can get the same effect in an email cli-
ent that saves sent mail as encrypted by Cc-ing yourself when
you send the original message.)

N O T E If you’re using a proxy program to provide OpenPGP services, the mail
client will see only unencrypted emails. This means that your mail is
always saved unencrypted.

We’ll discuss which options each piece of software provides
(if any) in the next two chapters.

Email from Beyond Your Web of Trust
People across the world use OpenPGP, and you don’t know all
of them. Chances are that your keyring will start off populated
with keys for friends and coworkers, and slowly grow as you
communicate with more OpenPGP users. If you receive an
encrypted email from a country on the far side of the world,
however, it’s quite possible that you will have nobody in com-
mon and hence you won’t really be able to truly verify their
identity. What do you do?

OpenPGP and Email 121

One possibility is to use only the corporate PGP keyserver
and only correspond with people who use that keyserver. PGP
Corporation’s keyserver signs public keys after it verifies the
email address they’re attached to.

However, OpenPGP is called “open” because anyone can
implement it, and you can’t control who will send you email
any more than you can control who sends you postcards. I cor-
respond with people all over the world who use OpenPGP, and
quite a few have public keys that aren’t even vaguely hooked
into my Web of Trust. How can I trust them? Here are my three
choices:

• Expand my Web of Trust

• Trace the Web of Trust to that person

• Use the key but limit my trust of the sender

Expanding Your Web of Trust
The most correct answer is to expand your Web of Trust.
Exchange signatures with more people, even people with
whom you’re not likely to exchange encrypted mail. More
people than you suspect travel between companies, countries,
continents, and cultures. Sign their keys and have them sign
yours, which will embed you more deeply in the Web of Trust,
making it easier for you to reach others and for others to reach
you. This takes time, however, and if you receive a mysterious
email you don’t want to wait weeks or months to read it.

Tracing the Web of Trust
Search Google for “PGP pathfinder” and you’ll find any num-
ber of websites in which you can trace the path through the
Web of Trust between any two OpenPGP keys available on
public keyservers. These sites use the keyid for the two keys
involved (remember, the keyid is just the last eight characters
of the fingerprint). The more paths that exist through dif-
ferent people, the more likely I am to trust that key. Having
had my key signed at a couple of different keysigning parties,
I would expect to have several paths to anyone in the Web of
Trust.

For example, suppose that after publishing this book I get
an email from someone who claims to be Phil Zimmermann,
the original creator of PGP. The keyid of the message sender
is B2D7795E. I can grab Phil Zimmermann’s public key from a
keyserver, or from his web page, but it’s possible that someone
uploaded a bogus key for him just to fool people like me.

122 Chapter 8

I visit the Web of Trust pathfinder at www.cs.uu.nl/people/
henkp/henkp/pgp/pathfinder (Google’s first result) and
enter the keyid of the message I received and my keyid. This
server tells me that there are eight disjunct paths between this
key and mine. In other words, my key is linked to the other key
by eight different paths that have no people whatsoever in com-
mon. For that key to be fake, the faker would have had to fool
a whole lot of people. Although I have never met Phil Zimmer-
mann, I would believe that this key is legitimate. (If the only
path had been through one of my incorrigible practical joker
friends, or if there had only been one path, I would have been
far more suspicious and infinitely less trusting.)

Most of these Web of Trust tracing programs are based
on wotsap, a freely available Python program designed to trace
relationships between keys. Wotsap is available at many Inter-
net sites; if you’re seriously interested in analyzing the Web of
Trust, I suggest you start there.

Repeatable Anonymity
No matter what you do, one day you will receive an OpenPGP-
encrypted message from someone you don’t know, whose
key you cannot verify, and who is not in the Web of Trust.
What do you do?

Well, you have three choices. One, you can delete the mes-
sage unread. Two, you can leave the message sitting around
until you can verify the owner’s identity. Three, you can install
the sender’s public key and read the mail, which is actually per-
fectly safe.

“Safe? How can it be safe, when you can’t verify the
identity of the sender?” Because installing any public key
is harmless: An unknown key on your public keyring won’t
cause your machine to be insecure, can’t leak your passphrase
to the world, and won’t allow Mallory to steal your bank
records. (Yes, Mallory could find a “magic public key” that
would expose a software bug in your OpenPGP implementa-
tion and use it to crack your machine wide open, but both
PGP and GnuPG handle keys very cautiously and are audited
for just such problems.)

Untrusted, unknown keys that aren’t attached to your
Web of Trust can actually be extremely useful for anonymous
or pseudonymous communications. For example, when I
began this book I asked for technical reviewers on various
OpenPGP-related mailing lists. A person who regularly made
valuable contributions to a GnuPG list under a fairly obvious

OpenPGP and Email 123

pseudonym offered to read the book. I have no idea who this
person is in the real world. I have no idea of his credentials,
other than his intelligent contributions to the list. I don’t even
know if he is really a he, she, it, or perhaps even a hyperintel-
ligent mouse who is attempting to engage me in his latest
overcomplicated plan to take over the world. I have this
person’s OpenPGP public key, however. When I receive an
email signed or encrypted with that key, I know that the sender
has the matching private key and passphrase. The author is
pseudonymous, and yet I know that he’s the same person every
time. An impostor who wanted to assume this person’s identity
would have to get the passphrase and private key from the real
person, and then be able to write email in the same style and
with the same knowledge as the original person.

This feature is very useful for anyone who has to deal
with anonymous sources on a regular basis or who wants to
remain anonymous for the present but reserve the option of
proving their identity later. For example, imagine a corporate
whistleblower who wants to anonymously leak information.
A string of OpenPGP-signed messages is a perfect way to do
this. The whistleblower can distribute incriminating docu-
ments, all signed with OpenPGP. After the corporate giant is
destroyed and the CEO carted off to jail for being really, really
naughty, the whistleblower can prove that he was the document
source by producing the private key and passphrase—or not.

The real question here is “How far do you trust?” Adding a
key to your keyring doesn’t mean you have to sign it or believe
what the email’s author writes; it only means you can read the
sender’s message and make up your own mind. If you decide
that the person is full of baloney, you can remove the key
from your keyring and have your email client delete further
messages unread. If you decide to correspond with the person
further, at least you know that subsequent messages are from
the same person.

If you can use keys disconnected from the Web of Trust,
does this make the Web of Trust less useful? Not at all; the Web
of Trust is wonderful for verifying the identities of correspon-
dents, especially when you use path tracing. The Web of Trust
is a great way to verify that you are who you claim to be.

By the same token, the Web of Trust is not a straitjacket;
using OpenPGP without the Web of Trust provides different
possibilities. Without the Web of Trust, trying to prove some-
one’s identity is like searching at midnight in a coal cellar for a
black cat that isn’t there. The Web of Trust gives you a net and
a flashlight, or at least tells you that the cat might be a tiger.

124 Chapter 8

Unprotected Email Components
OpenPGP goes through any number of hoops to protect the
contents of the message, but you should remember what it
doesn’t protect. In particular, OpenPGP does not encrypt the
subject lines in email. A subject such as “Ransom pickup at
8PM, City Park” doesn’t leave many questions for anyone who
intercepts your email. Email messages sent with PGP should
have innocuous subjects (or perhaps no subject at all).

Also, your mail client might default to storing unencrypted
versions of the OpenPGP emails that you send. Be sure that
you know how your OpenPGP system stores messages. My pre-
ferred OpenPGP mail client (mutt) stores the sent messages
in encrypted format, which means that I cannot read messages
that I have sent unless I Cc myself. Some people find this irri-
tating, and configure their mail clients to store sent messages
in unencrypted format.

This really is a matter of what best suits your needs. If you
are unconcerned about someone who gets access to your com-
puter being able to read your sent mails, fine. If you are in a
life-threatening situation, however, it is best to keep your sent
messages encrypted, as I’ll discuss in the next two chapters.

You now know enough to actually use OpenPGP and the
Web of Trust in day-to-day work. Let’s see how to configure
email clients under both GnuPG and PGP.

9
P G P A N D E M A I L

PGP makes email use as easy
as possible by managing

much of OpenPGP’s complex-
ity for you, so it is an excellent

choice as an email plug-in for people who
want encrypted email to “just work.” The
PGP Corporation is committed to making
OpenPGP simple to use.

One way that PGP makes managing email easy is through
policy-based encryption and signing rules. You define rules
that dictate how PGP treats messages, and the software will
automatically encrypt and sign emails as you require. PGP
transparently intercepts all the email you send and receive,
processes it according to your policies, and reinjects the
messages into the email system for processing. This process
works with any email client and eliminates any chance of
your saying “Oops! I forgot to encrypt that last message!”

126 Chapter 9

PGP and Your Email Client
Configuring your email client to work with PGP is simple. After
you install PGP Desktop, the program lurks in the background,
waiting for you to send an email. When it detects an email in
progress, PGP Desktop will intercept the request and display
a dialog box asking if you want to secure this email account.
Answer Yes and go to the next screen. You’ll be asked to choose
between generating a new PGP key, using your existing PGP
Desktop key, or importing a PGP keypair. Choose PGP Desk-
top Key and select your private key from the list. That’s it! You
have configured this email account to work with PGP.

If you have problems with PGP intercepting your email,
your mail client is probably using a secure connection to your
mail server. These secure connections, also called SSL connec-
tions, prevent PGP from proxying your email. Check your email
account settings; most email clients have a dialog window in
which you enter your email servers and a checkbox labeled
something similar to This Server Requires A Secure Connec-
tion. Confirm that box is not checked. If your mail server offers
Secure Sockets Layer (SSL) connections, PGP Desktop will
automatically detect that capability and use it, but you cannot
let your mail client handle that itself.

Identifying OpenPGP Mail
Because all OpenPGP activity is handled entirely by the proxy,
your email client is not involved in the PGP process. Received
messages appear entirely in cleartext, but the PGP proxy adds a
line like this to the top of the message:

* PGP Signed: 9/22/07 at 11:45:28

At the end of the message, PGP adds two additional lines,
listing the user ID (UID) of the author and the keyid.

Be sure to run PGP Desktop any time you send email. If your PGP
proxy is shut off, it cannot intercept your mail for you. Any mail you
send will be unencrypted and you cannot read any encrypted mail
you receive! What’s more, you might not even notice that your out-
going mail isn’t encrypted. Watch for the little padlock icon of PGP
Desktop in the lower-right corner of your desktop.

PGP and Email 127

For example, a message from me would include the
following:

* Michael Warren Lucas Jr (Author, consultant, sysadmin)
* 0xE68C49BC

These lines are the only notice within the email message
that PGP was involved, so be sure to watch for them!

Email Storage
Another side effect of an email proxy is that all email is stored
unencrypted on your local computer. If you have confidential
data in your email and computer theft is a concern, be sure to
protect the email on your hard drive. PGP Desktop has features
to encrypt and decrypt files and folders that you might wish to
use to encrypt your entire mail archive. You’d have to unen-
crypt the mail archive to send and receive mail, of course, but
in some circumstances that’s safer than having your email pub-
lic. (PGP Desktop’s Virtual Disk software allows you to encrypt
and decrypt partitions or create encrypted virtual partitions,
which are encrypted files that can be used to store data much
like a virtual floppy disk.)

PGP Policies
PGP Desktop doesn’t add any buttons to your email client, so
when using it you can’t decide within the client whether to
encrypt or sign particular messages. Those decisions are all
made in the proxy, which is configured via PGP Desktop. This
ensures that your use of PGP is consistent; you cannot forget
to encrypt a confidential message after you tell PGP Desktop
that messages of that type are confidential. To manage the
proxy you must know how to create and manage PGP policies.
To manage your PGP policies, open the PGP Desktop and
select the Messaging tab. You should see two policy options:
New Messaging Policy and Edit Policy. The main window of
PGP Desktop also shows your current policy list, as shown in
Figure 9-1.

PGP Desktop includes several default policies. These
defaults will suffice for most people, but you must understand
them to use PGP successfully. The four policies included in
PGP 9.0 are Opportunistic Encryption, Require Encryption,
Mailing List Submissions, and Mailing List Admin Requests
(discussed in the following sections).

128 Chapter 9

Figure 9-1: PGP Messaging showing active security policies

Opportunistic Encryption
Opportunistic Encryption simply means “Use a key for a particular
recipient if you can find it.” If you receive email from a particu-
lar correspondent and your keyring has a public key for this
person, PGP will use that key to encrypt the message before
sending. However, if your keyring has no key for this person,
PGP will consult its keyservers for an appropriate key and use
it if found. (By default, PGP uses the PGP Global Directory
keyserver, which works perfectly for corresponding with any
PGP user and with OpenPGP users who have submitted their
keys to this keyserver. See Chapter 6 for instructions on add-
ing additional keyservers, if desired.) If no public key is found
for this correspondent, PGP sends the message unsigned and
unencrypted.

Require Encryption
Require Encryption tells PGP that a message to a particular recip-
ient must be encrypted. If PGP cannot encrypt the message,
the message is rejected; when you click Send, you’ll see a warn-
ing somewhat like this:

An error occurred while sending mail. The mail server responded:
No encryption key found for recipient: mwlucas@blackhelicopters
.org. Please check the message and try again.

This tells you that PGP intercepted this message but
could not find a public key for the recipient, so it rejected the
message.

PGP and Email 129

To activate the Require Encryption policy, put the string
[PGP] (including the square brackets) somewhere in the
subject of your email. PGP will see this string and engage the
policy.

Mailing List Submissions
The Mailing List Submissions policy is designed to catch emails
to mailing lists because messages sent to a public forum should
never be encrypted (after all, whose key would you use?). You
can still sign these messages, however, so that everyone knows
that they really are from you.

The Mailing List Submissions policy is controlled by the
email address you are sending mail to. As of this writing, any
email address containing -users@, -bugs@, -docs@, -help@,
-news@, -digest@, -list@, -devel@, and -announce@ is handled
by this policy. (To see the current list for your version of PGP,
select MessagingEdit PolicyMailing List Submissions.)

For example, I subscribe to the NetBSD-users mailing list,
with an email address of netbsd-users@netbsd.org. Any mail I
send to this address will be signed but not encrypted.

N O T E This policy doesn’t cover all possible email mailing lists, of course, but
we’ll learn how to add a custom policy later.

Mailing List Admin Requests
Finally, the Mailing List Admin Requests policy is used when
managing subscriptions to mailing lists (many mailing lists
are managed via email messages).

How often have you seen an instruction such as “Send
mail to subscribe@vendor.com to get on our mailing list”?
The programs that read these emails cannot understand
OpenPGP, and might interpret your signed or encrypted
email unpredictably.

This PGP policy handles requests to any email address
that contains -subscribe@, -unsubscribe@, -report@, -request@,
and -bounces@. (To see the current list for your version of
PGP, select MessagingEdit PolicyMailing List Admin
Requests.)

These four policies are processed in order, with the first
matching policy having precedence. To see the current policy
order, select PGP Messaging from the left side of the PGP
Desktop to display the list of security policies.

N O T E To change the order in which the policies are processed, choose Edit
Policies on the right of the policy list.

130 Chapter 9

Creating Custom Policies
Not surprisingly, almost everyone’s email activity is more
complicated than four simple rules can express. You’ll have
correspondents to whom you will want to send only signed
(not encrypted) messages, even if they have a public key on a
keyserver; you might have other correspondents with an email
address that matches another policy but to whom you want to
send only unencrypted and unsigned mail because they’re con-
fused by encryption or signatures. For these special cases, you
will need to create custom policies. To create a custom policy
in PGP Desktop, select MessagingNew Messaging Policy to
display a blank Message Policy template like the one shown in
Figure 9-2.

Figure 9-2: A blank Message Policy template

Enter a description of your policy in the Description field.
You must then define the conditions under which the policy
will take effect, the actions that will be taken when the condi-
tions are met, and what to do if the desired actions fail.

Conditions

The first section describes the conditions under which the
policy will be applied. You can define several conditions and
declare that if all, any, or none of the conditions are met the
policy will apply. PGP lets you build conditions based on the
email’s recipient, recipient domain, message subject, message
header, message body, message priority, or message sensitiv-
ity, all available through drop-down boxes. For example, you
could say that if the message is sent to a particular address with

PGP and Email 131

a particular subject, it must be encrypted, but that otherwise
messages should pass in cleartext. Let’s look at each of these
options and see when and how they might be used.

• The Recipient is the email address of the person with
whom you are corresponding. For example, you might
create a policy to dictate that any message to me,
mwlucas@blackhelicopters.org, must be encrypted and
signed. (Of course, the Opportunistic Encryption default
policy should make this happen for you, anyway.)

• Similarly, the Recipient Domain is the domain name of
the email address of the person with whom you are
corresponding. For example, the Recipient Domain for
my email address (mwlucas@blackhelicopters.org) is
blackhelicopters.org. As another example, you might want
to send all email to a service such as Gmail unencrypted;
Gmail does not offer PGP tools.

• The Message Subject option allows you to choose message
subjects that will trigger encryption. For example, you
could write a rule that says, “Any message with a subject of
Secret Project must be encrypted and signed,” much like
the default policy in which any message with a subject of
[PGP] must be encrypted and signed. When you compose
a message with a subject of Secret Project, PGP will automati-
cally intercept, sign, encrypt, and transmit that message
for you.

• Some mail clients allow you to insert customized message
headers into your email messages. You can write a policy
that acts depending upon the content of those headers.
If you don’t know what message headers are, don’t worry
about it; you don’t need to understand email headers to
use PGP.

• Message Priority and Message Sensitivity are set within the mail
client when you compose a message. Most clients will offer
these options, though frequently they’re difficult to locate.
However, this sort of filtering is better managed by either
recipient or subject rules. For example, you could write a
policy that says “If the sensitivity is confidential or greater,
encrypt and sign.”

After you have set your conditions, you can determine
whether the policy requires all conditions to be met, any of the
conditions to be met, or none of the conditions to be met. The
plus sign next to the condition description lets you add addi-
tional terms.

132 Chapter 9

Actions

The next section in the Message Policy dialog box, Perform The
Following Actions On The Message, tells PGP Desktop what
to do when the conditions you set are met. Your choices are
either Sign, Encrypt, or Send In Cleartext.

If this policy sends email in cleartext, you’re done.
If you choose to encrypt or sign messages that fit this pol-

icy, you can also choose which sort of encoding you wish to use
for this message. (We discussed inline and PGP/MIME encod-
ing in Chapter 8.)

If you choose to encrypt matching messages, you can
choose which key to use to encrypt the message. The default
option is an Unverified Key, meaning a key that you have not
personally signed. A Verified Key is one that you have signed.
You can also explicitly encrypt the message with an explicit list
of public keys.

Exceptions

If your policy encrypts matching messages, you must decide
what to do if PGP Desktop does not already have a key for that
recipient. You can have PGP Desktop search for the key, send
the message in cleartext, or block the message.

By default, PGP Desktop will search all configured keyserv-
ers for a public key for this recipient. If it finds a matching key,
it will automatically download it and encrypt the message with
that key. If it does not find a matching key, you can have PGP
either send the message in cleartext anyway or block the mes-
sage entirely. This option is generally the most useful.

With the Send In Clear option you can make PGP Desktop
not search for a matching key on a keyserver, but just send the
message unencrypted anyway, even though you explicitly stated
earlier that this message must be encrypted. For example, sup-
pose that your policy says that all email with a subject of Secret
Project must be encrypted. If you do not have a key for the
recipient on your keyring and you select this action, the mes-
sage will be sent unencrypted anyway.

You can also have PGP block the message entirely if it
doesn’t have a key already on its keyring. This makes sense in
high-security situations in which you must retain control over
the spread of information and the contents of your keyring.

Sample Custom Policy: Exceptions to Default Policy
In most cases, PGP Desktop’s default policies are sufficient.
The cases in which I find custom policies most useful are when

PGP and Email 133

I need to make a particular exception to a policy or I want to
change a default policy.

For example, I work with a software vendor who has
a support mailing address of software-users@vendor.com,
which happens to match an address used in the Mailing List
Submissions policy, which tells PGP Desktop to sign the mes-
sage. When I sign an email to this address, however, one of its
support people inevitably asks me about the “stuff ” at the end
of the message. It might be clearly labeled BEGIN PGP SIG-
NATURE, but this $8/hour support guy, whose previous job
involved industrial lawn equipment (plus, if he had seniority,
perhaps a bandana), has never heard of PGP. I don’t have the
energy to educate the staff, so it’s easier to simply not sign mes-
sages to that address. To do so, I must create a custom policy to
override the default policy.

Similarly, I have a friend who published an OpenPGP key
several years ago but who no longer uses any sort of PGP soft-
ware. I must tell PGP to never encrypt mail to him, no matter
what, because he won’t be able to read it.1 I can handle both
situations with a custom policy, as shown in Figure 9-3.

Figure 9-3: Custom PGP Message Policy

This custom policy ensures that any mail to the vendor will
be sent unencrypted and unsigned, making life easier for both
the support people and myself. My friend’s email address is
also on this list.

N O T E Because I selected Send In Clear, all the options about key processing
have vanished.

1 If he had been sufficiently wise to put an expiration date on his key, this
would not be a problem.

134 Chapter 9

I could expand this policy as I discover more people who
should never receive OpenPGP mail from me.

Sample Custom Policy: Overriding the Defaults
Most people I correspond with use the message format PGP/
MIME, and are annoyed when they have to read mail in inline
format (the PGP Desktop default). To solve this problem, I
can override the Opportunistic Encryption policy with my own
and tell PGP to use PGP/MIME instead of inline format for
all email that I can encrypt. To do so, I go into PGP Desktop’s
PGP Messaging section, choose Edit Policies, and then copy
the existing Opportunistic Encryption policy to get a good
starting point, as shown in Figure 9-4.

Figure 9-4: Setting the default message format to PGP/MIME

As you can see in Figure 9-4, I used the asterisk wildcard as
the recipient domain; I did so to ensure that any mail sent any-
where matches this rule.

We encrypt by default, but note that the Prefer Encoding
field says PGP/MIME, which becomes our new default. I could
create similar rules to match the Require Encryption policy,
but chances are that anyone relying on that policy is already
using PGP Desktop and doesn’t care what format the message
arrives in.

Custom Policies Order and Disabling Policies
New policies are automatically placed at the top of the policy
list under the assumption that you created these policies

PGP and Email 135

because you want them to take effect before any of the default
policies!

This isn’t always the case, however. For example, our sec-
ond custom policy (the PGP/MIME override) matches any
email sent anywhere, but we don’t want messages to mailing
lists to be either encrypted or signed. Therefore, this policy
should go second to last, right above the Opportunistic Encryp-
tion policy. To put it there, go to the PGP Messaging portion
of PGP Desktop and select Edit Policy, as shown in Figure 9-5.

Figure 9-5: Editing PGP policies

Policies are processed in the order in which they appear
in the Security Policies list, and the first policy that matches
is used. In this example, the first custom policy, Cleartext
Exceptions, is first, which means that any email address that
matches this list should be sent unsigned and unencrypted,
no matter what.

To entirely disable a policy, including any default policy
you don’t want, deselect the green checkbox next to that
policy.

Notice that I moved the PGP/MIME override policy to be
located next to last. As messages are handled according to the
first matching policy, a policy that matches all possible mes-
sages would prevent any policies that appear beneath it from
having any effect at all!

Policies give almost unlimited flexibility for managing
email messages and ensure that your messages are processed
consistently.

10
G N U P G A N D E M A I L

Using GnuPG with email
clients can be challenging

because GnuPG is a command-
line program, and today’s most

popular mail clients aren’t. Still, if you
spend a little time searching the Web, you
can find GnuPG plug-ins for just about
every popular mail client in mainstream
use (although they will offer varying levels
of functionality and usefulness).

This chapter will focus on integrating GnuPG with the
three most popular Windows email clients: Microsoft Outlook
Express, Microsoft Outlook, and Mozilla Thunderbird.

138 Chapter 10

Microsoft Mail Clients and GnuPG
Because neither Outlook Express nor Outlook allow third-
party software to access the raw MIME headers used by email,
these programs don’t work well with PGP/MIME mail. If,
however, you correspond only with people who use inline
encoding, Microsoft mail clients and GnuPG will work fine.
You will have problems when people send you messages in
PGP/MIME, however.

N O T E Although the GnuPG team has a variety of clever ideas to make PGP/
MIME work anyway, as of this writing none of them is available for
public consumption.

Of course, you cannot control who sends you email, and
many people use PGP/MIME. If you want to use free software
and get sick of saying “I’m sorry, could you please resend your
mail encrypted inline,” I strongly encourage you to investigate
the Thunderbird mail client. It is just as easy to use as either
version of Outlook, it’s free, it has more features, and it can
import mail and accounts from Outlook Express. Nevertheless,
we’ll soldier on and push the Microsoft mail clients to their
limits to see how well we can make them work.

N O T E Before sending or reading OpenPGP email with either Outlook Express
or Outlook, be sure to add your correspondent’s public key to your
WinPT keyring, as discussed in Chapter 7. The GnuPG plug-ins will
generate scary-looking errors otherwise.

Outlook Express and GnuPG
Outlook Express comes by default with Microsoft Windows,
which makes it one of the most common low-end clients in the
world. It meets most users’ needs and is fairly simple to use.

GnuPG’s Outlook Express plug-in comes bundled with
WinPT. If the WinPT installer detects that you have Outlook
Express on your computer, it should offer to install the plug-in
for you. (Then again, if you followed the WinPT installation
instructions in Chapter 4, you should already have the Outlook
Express plug-in installed! If you didn’t follow those instruc-
tions but want to use GnuPG with Outlook Express, reinstall
WinPT.)

GnuPG and Email 139

Configuring Outlook Express for OpenPGP
Because Outlook Express does not handle PGP/MIME, it won’t
read encrypted message content in anything but plain text.
This means that you cannot encrypt fancy HTML messages.
Before composing your secure messages in Outlook Express,
configure the program as shown in Figure 10-1.

Figure 10-1: The Outlook Express Options Send tab

1. Go to the Tools menu and select Options.

2. On the Send tab, under Mail Sending Format, make sure
that Plain Text is selected to ensure that Outlook Express
will compose messages that will be compatible with inline
encoding.

3. Make sure that Send Messages Immediately is not selected.
If you try to sign or encrypt a message but fail (by mak-
ing a typo on your passphrase, for example), when using
immediate message sending, Outlook Express will send the
message anyway—unsigned and unencrypted! Your mes-
sage will cross the Net completely unprotected.

N O T E Deselecting Send Messages Immediately means that you’ll have to click
the Send/Receive button to transmit your email instead of having
Outlook Express just transmit when you’re done writing the message.
It also means that if your first attempt at encryption fails, you will
have an opportunity to try again.

140 Chapter 10

Sending OpenPGP Mail
The GnuPG plug-in has no visible effect on Outlook Express
until you click the Create Mail button. At this point, you should
notice two additional options in your New Message screen,
shown at the top right in Figure 10-2: Sign and Encrypt. (If you
used Microsoft’s proprietary digital signature system, you will
probably recognize these buttons; the GnuPG plug-in authors
simply recycled them.)

Figure 10-2: Composing Outlook Express mail with GnuPG

To sign your message, compose your message and click
Sign. This makes a red ribbon appear to the right of the To:
line. To encrypt and sign the message choose Encrypt, which
will make a small blue lock symbol appear to the right of the
Cc: line.

N O T E Note that this email message has no subject—we don’t want anyone
who intercepts the message to be able to glean any information about
the message contents from the subject.

When you click Send, GnuPG displays a dialog box asking
you to enter your passphrase. Enter it, and your message is on
its way!

Warnings and Caveats

You might see additional dialog boxes when trying to send your
message using Outlook Express with GnuPG. For example,
the plug-in might ask you to verify which public key you want
to use for your recipient. If you have multiple private keys for
your email address on your keyring, it will ask you to choose
which key you wish to sign this message with.

GnuPG and Email 141

Receiving and Verifying Signed and Encrypted Mail
When Outlook Express receives a inline-encoded OpenPGP
message, the GnuPG plug-in intercepts the message and either
automatically verifies the signature or requests your passphrase
to decrypt the message. In either case, the results will be dis-
played in a pop-up window. The original message remains in its
original form in Outlook Express.

When you receive a message that is in PGP/MIME format,
reading it is quite difficult because, as you recall, Outlook
Express does not give GnuPG access to the raw MIME headers
necessary to decrypt messages within OE. (You can try to crack
it open yourself, however, from the command line, as I discuss
under “Decrypting PGP/MIME Messages with Microsoft Mail
Clients” on page 145.)

Outlook and GnuPG
The German government sponsored the creation of a high-
quality, freely available GnuPG plug-in for the Outlook
program. This plug-in, called GPGol, is now maintained by
g10code, a German firm that provides support for GnuPG
and related software. (You can find links to the plug-in on
g10code’s website at www.g10code.com.) To use it, grab the
most recent version of the Outlook plug-in, download it, and
extract the files; then follow the installation instructions in the
following section.

N O T E The following instructions are for the version of GPGol available at
press time. The limitations might be eliminated in the future, so be sure
to check the documentation for the plug-in you download for updates!

VERY IMPORTANT
Remember that Outlook Express will send the message even if it
is not successfully signed or encrypted! If you get a GnuPG error,
check your outbox. Your message will be there, unsigned and unen-
crypted. Copy the message body into a new message, delete the
unencrypted message, and try again. (Outlook Express stores sent
messages in encrypted format.)

142 Chapter 10

Installation
GPGol lacks a fancy installer, but installation is quite simple.
The Zip file contains only two .dll files and a text file of instruc-
tions. Read the included instructions just to be sure that the
process is unchanged, but for the past several releases the
install process has been as follows:

1. Copy the .dll files to your Windows system directory (either
C:\winnt\ system32 or C:\windows\ system32, depending on
which version of Windows you’re running).

2. Open a command prompt and type this:

C:> regsvr32 gpgol.dll

This will register the GnuPG/Outlook library with the
operating system.

Configuring the Plug-In
Unlike the Outlook Express plug-in, the GnuPG plug-in does
not require you to configure Outlook in any special way. If
you make a typo when entering your passphrase, the Outlook
GnuPG plug-in will let you try again rather than sending the
message unencrypted, as with Outlook Express.

With the plug-in installed, restart Outlook, then go to the
Tools menu and choose Options. You’ll see a new tab called
GnuPG, which allows you to configure your GnuPG settings.
Before setting up GnuPG with Outlook, however, set Outlook
to compose plaintext emails instead of fancy HTML text. Go to
the Mail Format tab, as shown in Figure 10-3.

The first drop-down box under Mail Format allows you to
set Outlook’s default message format. Set this to Plain Text,
as shown here. Not only will this make Outlook work well with
GnuPG but it will also make your email more compatible with
email from readers not using Microsoft software.

Now go to the GnuPG tab, as shown in Figure 10-4. The
function of most of the settings should be obvious to you now
(sign new messages by default, encrypt by default, and so on),
but we’ll discuss them briefly.

GnuPG and Email 143

Figure 10-3: The Microsoft Outlook Mail Format tab
configured for GnuPG

Figure 10-4: The Outlook GnuPG tab

144 Chapter 10

Checkboxes

If you choose Encrypt New Messages By Default, any time you
send an email Outlook will display a dialog box asking you to
select the recipient’s key. If you do not have the recipient’s key
in WinPT, you can cancel the encryption at sending time. Out-
look will not automatically download keys upon request.

If you sign new messages by default, GnuPG will sign every
email message you send, which will confuse people who have
no idea what OpenPGP is.

The Save Decrypted Message Automatically option tells
the plug-in to save the message in readable, plaintext form (as
discussed in “Saving Email—Encrypted or Not?” on page 119)
If you need to protect your documents even if your computer
is stolen, definitely leave the messages encrypted.

The Also Encrypt Message With The Default Key option
will make GnuPG encrypt every message you send with your
public key as well as the recipient’s (or recipients’). This means
that you can use your passphrase to open mail that you have
sent to someone else. This process might or might not fit in
with your security requirements. For example, if you work in a
dangerous area, being able to decrypt the messages you have
sent might put your friends or coworkers at risk. However, if
you’re just an employee concerned about securing your docu-
ments in case your laptop is stolen on the subway, this might be
a good idea. The thief won’t be able to read these emails with-
out your passphrase, after all. (We’ll discuss this topic in more
detail in Chapter 11.)

Passphrase

The plug-in can remember your passphrase after you type it, so
if you have to work with several OpenPGP messages, you don’t
have to type your passphrase repeatedly. By default, the plug-
in remembers your passphrase until you exit Outlook. (This is
the setting for 0 seconds.) I suggest setting this to something
like 120 seconds—long enough to give you some benefit, but
not so long that if you go to the bathroom someone else can sit
at your desk and send mail in your name without entering the
passphrase.

Advanced

The Advanced tab lets you choose the path to the GnuPG and
WinPT executables, as well as your keyring. You can use this
to switch between multiple versions of GnuPG—say, if you’re
testing a new version but don’t want to uninstall your old ver-
sion yet.

GnuPG and Email 145

Sending OpenPGP Mail
To send OpenPGP-encrypted mail from within Outlook:

1. Create a new mail message, just as you would without
GnuPG.

2. Before you send the message, look under the Tools menu.
You’ll see three options: Encrypt Message While Sending,
Sign Message While Sending, and Add Default Key To
Message. The last option makes it easy to hand your public
key to a new correspondent, whereas the first two sign or
encrypt the message.

3. When you click Send, the plug-in will ask you for your pass-
phrase. After you successfully enter it, Outlook will send
your mail to the recipient.

If you include a plaintext attachment with your message,
the plug-in will encrypt it separately, and the recipient will see
it as a separate attachment.

N O T E Remember, those attachments cannot be binary data such as images or
documents; inline encoding works only with plain text!

Receiving OpenPGP Mail
The Outlook GnuPG plug-in makes receiving inline-encoded
OpenPGP mail from within Outlook very simple. When you
click a message, GnuPG will display a message box request-
ing your passphrase. Enter it, and Outlook will display the
message.

Encrypted documents will appear just like any other
message; your only warning that they are encrypted is the pass-
phrase dialog box. (Signed emails will have a header at the top
that indicates whether the signature is valid or not.)

Decrypting PGP/MIME Messages with Microsoft
Mail Clients

I’ve said all along that the GnuPG plug-ins for Microsoft mail
clients don’t speak PGP/MIME. You can work around this
problem in a limited number of cases, however, by break-
ing out the GnuPG command line. (For details on GnuPG
command-line operations, see Appendix B.)

All PGP/MIME messages arrive as attachments with the
name msg.asc. If the encrypted message doesn’t include attach-
ments (that is, if the encrypted attachment doesn’t include

146 Chapter 10

further subattachments), you might be able to decrypt it by
hand. To do so:

1. Save msg.asc to your hard drive, open a command prompt,
and go to the directory in which you have saved the file.

2. Use the --decrypt flag to gpg to decrypt a file. For example,
this is what it would look like if my friend Greg decrypted a
message I sent him (in response to an earlier email that he
sent me):

c:> gpg --decrypt msg.asc

You need a passphrase to unlock the secret key for
user: "Greg E Donner <gedonner@blackhelicopters.org>"
1792-bit ELG-E key, ID 80154DE0, created 2007-08-14 (main key ID 46CD08E9)

gpg: encrypted with 1792-bit ELG-E key, ID 80154DE0, created 2007-08-14
 "Greg E Donner (key #3) <gedonner@blackhelicopters.org>"
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline
Content-Transfer-Encoding: quoted-printable

Great, I'll get them to the paper right away!

gpg: Signature made 08/16/07 21:55:16 using DSA key ID E68C49BC
gpg: Good signature from "Michael Warren Lucas Jr (Author, consultant,
sysadmin)
 <mwlucas@blackhelicopters.org>"

GnuPG immediately requests  a passphrase to display
 the unencrypted message. Finally, the program tells you
that the message’s  signature is valid.

Opening the message on the command line works easily
only if there are no attachments in the original message. If
the sender attached a document, you won’t be able to crack it
open this way.

N O T E For a good summary of the GnuPG command line, see Appendix B.

This is a lot of trouble to possibly read a PGP/MIME mes-
sage, isn’t it? This sort of thing is why using a different mail
client (such as Thunderbird) is highly recommended, at least
until the GnuPG folks figure out how to do PGP/MIME with-
out all the pieces they currently need.1

1 They’ll get there, I’m sure of it. With my luck, it’ll be about two weeks after
this book hits the shelves.

GnuPG and Email 147

Thunderbird and GnuPG
Thunderbird is the email component of the Mozilla applica-
tion suite, a direct descendant of the Netscape web browser.
The Mozilla Foundation produces several high-quality pieces of
software, including the Firefox web browser, the Thunderbird
mail client, the popular bug-tracking software Bugzilla, and
so on. These tools are all free to end users. You can download
Thunderbird at www.getthunderbird.org.

Thunderbird has rapidly been recognized as a high-quality
mail suite and is a first choice among many people who need
a powerful mail client. Because Thunderbird’s source code
is available for public use, the GnuPG developers have had
no difficulties integrating all the features they desire into the
plug-in.

Installing the Thunderbird GnuPG Plug-In
The Thunderbird GnuPG plug-in, Enigmail, is an extension
that is installed into Thunderbird. (Thunderbird, like most
Mozilla software, has an “extensions” framework to allow third-
party developers to enhance the functionality of the main
product.) Like Thunderbird itself, Enigmail is free.

To install the plug-in:

1. Download the plug-in from http://enigmail.mozdev.org
and save it on your system. (If you’re using the Mozilla web
browser, Mozilla might think that Enigmail is a Mozilla
plug-in, try to install it in the browser, and then complain
that the installation fails because Enigmail is not compat-
ible with Mozilla. Be sure to right-click and select Save As
when downloading Enigmail.)

2. Start Thunderbird, open the Tools menu, and select
Extensions. The Extensions panel will open.

3. Select Install, browse to where you saved Enigmail, and
then double-click it. You will be asked to confirm that you
want to install Enigmail. Say Yes.

4. After the install, restart Thunderbird, and you should see a
new OpenPGP menu at the top of the main Thunderbird
window.

Configuring Enigmail
To begin configuring Enigmail, choose EnigmailPreferences
to bring up the configuration menu as shown in Figure 10-5.

148 Chapter 10

Figure 10-5: Enigmail Preferences

1. Your first step is to tell Enigmail where to find GnuPG by
browsing to its program file, gpg.exe. (Remember, WinPT
installs GnuPG under C: \ Program Files\Windows Privacy
Tools\GnuPG \gpg.exe.)

2. Like the other PGP plug-ins, Enigmail will cache your pass-
phrase for a few minutes for you. The five-minute default is
not unreasonable for most people, but I would err on the
side of caution and reduce it to two or three minutes if you
have a public or work computer. An hour might be reason-
able for your home PC.

3. Enigmail provides a blank space to list your preferred
keyservers in a comma-separated list, and it offers to
fetch the necessary public keys when you receive a signed
or encrypted message, using your preferred keyservers.
Change the list of keyservers as needed to match your
preferences.

4. Under Enigmail’s Sending tab, as shown in Figure 10-6, are
several options that control its basic functions. Perhaps the
most important is the Encrypt To Self option, which saves a
copy of your sent mail encrypted with your own key so you
can access it later. (We discuss the advantages and disad-
vantages of doing this in Chapter 8.)

Now enable Enigmail for the accounts you want to use it
with. To do so:

1. Return to the Tools menu and select Account Settings.

2. In the pop-up window, select OpenPGP Security.

GnuPG and Email 149

Figure 10-6: Enigmail sending options

3. Click the checkbox that says Enable OpenPGP Support
(Enigmail) For This Identity to enable OpenPGP.

N O T E By default, Enigmail will use the key with the user ID (UID) that
matches the email address of the current account. For example, Greg’s
account is gedonner@blackhelicopters.org, so Enigmail looks for a
keypair with that email address. To use a different key, specify the
keyid here.

4. From the Account Settings menu, select the Composition
& Addressing section. Under Composition, turn off
Compose Messages In HTML Format. (HTML messages
can cause Enigmail problems.)

Enigmail is now ready to use.

Sending OpenPGP Mail
To send mail using OpenPGP, click the Write button in Thun-
derbird’s main window to open a new message. You should see
an extra button at the top of the new message window that says
OpenPGP. Select it, and Thunderbird will open a small dialog
box that has three options, as shown in Figure 10-7.

Select Sign Message to sign this message. Select Encrypt
Message to encrypt the message. While Enigmail defaults to
using inline encoding, Enigmail will let you use either inline or
PGP/MIME encoding, so you can work around any restrictions
that your recipients might have. Those friends of yours who are
stuck using Outlook with GnuPG won’t have to jump through

150 Chapter 10

hoops to converse with you, while you’ll also be able to com-
municate with people using PGP/MIME, email attachments,
and so on.

Figure 10-7: Thunderbird/
Enigmail mail-sending options

Per-Recipient Rules

Although Thunderbird provides all this flexibility, your brain
probably isn’t up to coping with it. (Mine sure isn’t!) How can
you possibly remember how each person you correspond with
can most easily read OpenPGP mail? Enigmail lets you create
rules for each of your correspondents. When you define a rule
for a correspondent, each time you send them a message Enig-
mail will process it according to that rule.

To define a rule:

1. Choose the Enigmail menu from the main Thunderbird
screen, then select Edit Per-Recipient Rules. A window
appears, listing all your rules for recipients. Figure 10-8
shows the Per-Recipient Rules Editor with a single rule.

Figure 10-8: The Per-Recipient Rules Editor

GnuPG and Email 151

2. Select Add to create a new rule, such as the one I created
in Figure 10-9.

Figure 10-9: Per-recipient rule creation

Here, I created a rule for any email sent to my email
address: mwlucas@blackhelicopters.org. I chose a particular
OpenPGP key to use when corresponding with this address
and chose to sign and encrypt by default every message sent to
this address. The PGP/MIME option saves me the trouble of
remembering whether this recipient can read PGP/MIME or
must receive inline-encoded mail; in this case, it’s set to Never.
The next time a message is sent to mwlucas@blackhelicopters
.org, Enigmail will automatically encrypt and/or sign it as the
rule dictates and encode it properly for this recipient.

The Per-Recipient Rules allow you to create rules that
match entire domains, particular usernames, or just about
anything you like.

Reading OpenPGP Mail
Enigmail does an excellent job of handling OpenPGP mail in
both inline or PGP/MIME format. When you attempt to open
an OpenPGP message, Enigmail will display a dialog box and
request your passphrase. It couldn’t be easier.

Enigmail also provides an excellent view of the message’s
OpenPGP status, as shown in Figure 10-10.

152 Chapter 10

Figure 10-10: Reading an OpenPGP message

In the Enigmail area, we see the status of the OpenPGP
signature. Enigmail has verified the signature of this email, as
indicated by green coloration, and the signature is described
as Good. If you select the blue pen to the right of the message
information, Enigmail will print out detailed OpenPGP infor-
mation about this message, including the UID of the sender’s
key, the date the message was signed, and the fingerprint of the
signing key. If the signature is bad, the pen icon on the right
side of the header will appear as a broken pen.

Upgrading Thunderbird and Enigmail
The Thunderbird and Enigmail developers release new ver-
sions of their software fairly regularly, and upgrading Enigmail
without updating Thunderbird is very simple. In fact, the
Thunderbird Extensions Manager will actually check to see
whether new versions of Enigmail are available and offer to
upgrade for you.

If you upgrade Thunderbird, however, things get a little
trickier. Before upgrading Thunderbird, you should be sure to
uninstall Enigmail. However, uninstalling is, unfortunately, not
enough to completely eradicate Enigmail’s leftovers.

Both Enigmail and Thunderbird store configurations and
settings in a profile directory. When you upgrade Thunder-
bird, the new version will use the same profile directory, so you
can retain your saved passwords and other settings between
upgrades. However, an Enigmail configuration for an old
Thunderbird install will only confuse the new Thunderbird
and generally cause any of a wide variety of confusing and
obscure errors.

GnuPG and Email 153

To avoid this problem, find your Thunderbird profile
directory, which is in the user’s application data directory
(usually C: \ Documents and Settings\username \ Application Data\
Thunderbird). You’ll find a Profiles directory here. In that
directory, you’ll find a directory with a name made of eight
random characters and a .default extension. This is where
Enigmail stores its information.

After uninstalling Enigmail, but before upgrading Thun-
derbird, delete the following from your profile directory:

• XUL.mfl

• Everything in the chrome directory

Now upgrade Thunderbird and reinstall Enigmail. You
should be ready to go again!

You now know how to use GnuPG with the most popular
mail clients. To round things off, let’s look at some of the other
things you should be aware of when using OpenPGP.

11
O T H E R O P E N P G P

C O N S I D E R A T I O N S

You should now have a decent
understanding of how to

use OpenPGP with PGP and
GnuPG, and should be able to

quickly comprehend any other OpenPGP
products. To round things off, let’s con-
sider some other points to remember
when working with OpenPGP, PGP, and GnuPG. Because
no security protocol is perfect, we’ll discuss what can go
wrong with OpenPGP. We’ll discuss some concerns about
the interoperability of PGP and GnuPG (as well as other
OpenPGP programs) and how groups of people can share
a single key, with minimal risk. Finally, we’ll discuss a few
ways to make OpenPGP use on a shared system slightly less
intolerable, and end with a discussion of some of the extra
features found in WinPT and PGP.

156 Chapter 11

What Can Go Wrong?
Although OpenPGP provides a reliable method of proving
message authenticity, note that the acronym PGP stands for
Pretty Good Privacy. It doesn’t stand for Perfectly Grand Privacy,
let alone Penultimate Guaranteed Privacy. Pretty Good means
exactly that—it’s better than what existed before, but it isn’t
unbreakable. Mallory (any bad guy; see Chapter 1) has many
methods to break OpenPGP’s protections. Most of the meth-
ods Mallory can use to violate someone’s privacy play off a
victim’s ignorance. Remember the finer points of OpenPGP
usage (as discussed following), and you’ll frustrate Mallory so
much that he’ll give up and go bother someone else.

Poor Usage
By far, the most common way that OpenPGP is weakened is
when it’s not correctly used. Incorrect OpenPGP usage creates
the appearance of security, but actually creates an insecure situ-
ation. The appearance of security is worse than no security; if
my front door looks locked but isn’t, I’d like to know.

Poor usage can be anything that doesn’t comply with the
rules of OpenPGP. If you leave your private key on your web-
site, even in a hidden directory, it will be found. “Beam me up,
Scotty!” is not a passphrase; it’s an invitation to identity theft.
And emailing your passphrase and private key to yourself “so
you won’t lose it” is just daft. I’ve seen people make all these
mistakes (to their eventual dismay).

The usual reason that people give for not using OpenPGP
properly is that it’s complicated. That’s true; it is complicated.
Privacy and security as a whole are not easy, but if you’re read-
ing this book you’ve obviously decided that they’re worth some
effort to preserve.

Some people even go so far as to keep their OpenPGP keys
on a computer that isn’t connected to the network. Anything
that they sign or encrypt is placed on removable media, moved
to that computer, processed with OpenPGP, and returned to
the networked computer. This is probably too extreme for
most people, but it is very viable if your security requirements
demand that level of protection and it adds a nice layer of
physical security that is very hard to break.

Poor Signing
Let’s consider poor signing. “This guy says he’s Michael W.
Lucas; I’ll trust him.” BZZZZT! I’m sorry, please play again.

Other OpenPGP Considerations 157

When you sign someone’s key, you are not only validating
that person’s identity for your own use but you are also publicly
affirming that you have verified the person’s identity. A person
who tricks someone else into signing a key generated for a
fraudulent identity can successfully hook into the Web of Trust
and gain the confidence of others.

Remember, you can use someone else’s public key without
signing it. If I were to send you email, you could import my
public key and use it to read mail encrypted with the match-
ing private key. You would have no guarantee that I was who I
claimed to be, but you would have a guarantee that any further
correspondence signed with the same key came from a person
who had access to the same private key.

Hardware Compromise
If someone has physical access to your computer, he can get
your passphrase. Hardware-based keystroke loggers that plug
into your keyboard cable and record everything you type are
available online for less than $100.

Some hardware-based keystroke loggers are small enough
to fit inside a laptop. Mallory could sneakily attach the log-
ger to your system while you’re at lunch, wait a few days, and
then unplug the device from your machine and see everything
you typed. If you typed your passphrase during that time, he
has it. Wading through everything you typed could be a lot
of work, but if Mallory is sufficiently motivated, he’ll do it.

N O T E Both police and private investigators routinely use keystroke loggers. If
you are actually at risk of such an investigation, be sure to check your
hardware for keystroke loggers before using OpenPGP. Even using an
alternate keyboard layout is no defense against a hardware keystroke
logger;1 after Mallory figures out that nothing you typed makes any
sense, he’ll have the analysis software unscramble the letters.

You can work around this problem by using a “software” or
“virtual” keyboard. These programs display a keyboard on the
monitor, which you use by selecting characters with the mouse.
This is for the very careful, to be sure, but if you’re at risk of
keyboard logging you will be glad you have it. But remember:
Even though a virtual keyboard is clumsy to use, don’t make

1 On the other hand, a Dvorak keyboard layout is an excellent defense against
people borrowing your computer during lunch. I highly recommend it for this
purpose, if for no other reason.

158 Chapter 11

your passphrase shorter just for convenience; the whole reason
you’re using it is to protect that vital passphrase!

Although we concentrated on passphrase theft, the file
containing your private key is just as important as the pass-
phrase itself. If someone has physical access to your machine,
the person can always break open the case and steal or copy
your hard drive to get your private key file. For this reason,
many people keep all their public and private keys on a USB
flash drive: It’s more difficult for someone to steal your crypto-
graphic keys if they’re kept with your car keys or in your watch.

Software Compromise
If your operating system is insecure, Mallory can violate your
privacy from almost anywhere in the world. Worms, viruses,
and spyware can all gather your keystrokes just like a hardware
keystroke logger, with the added advantage of not requir-
ing physical access to your machine. Some spyware actively
searches out passwords and passphrases, whereas other viruses
give administrative control of your machine to someone else.

This problem is fairly simple to defend against.

• First, keep your machine fully patched. If you’re a
Windows user, sprinkle Microsoft Update generously over
your system on a regular basis.

• Macintosh, Linux, and BSD users should apply security
patches as soon as they are available.

• Install antivirus software, update it regularly, and use it
continuously.

• Keep your OpenPGP software up to date.

No vendor has a perfect security record, and security
patches don’t solve everything, but most electronic crimes are
crimes of opportunity; criminals choose the easiest targets.
Applying the proper patches will make you a more difficult
target, however, and make Mallory more likely to attack some-
one else. (Like the Club you put on the steering wheel of your
car, it’s not perfect but it sure makes it hard to turn the wheel
unless you can remove it.)

Also, if you have a broadband connection, either turn your
PC off when not in use or get a hardware firewall. Years ago
when broadband first came out, many tech-savvy people said,
“Leave your computer on all the time; it’ll be fine.” Today,
criminals make fortunes every month turning thousands of
infected, always-on PCs into potent weapons. If someone

Other OpenPGP Considerations 159

can use your computer as part of a swarm to bring down an
e-commerce site, they can certainly pull your passphrases and
passwords out of it as well. (And, as one of these “tech-savvy”
people who used to recommend leaving your computer on, I
officially request permission to eat my words. With a nice side
helping of crow.)

If you are seriously concerned about the security of your
system, I encourage you to get a book on the topic. Too much
security is better than not enough.

People Compromise
The best way for Mallory to penetrate OpenPGP’s protections
is to get your passphrase and private key file. Stealing the
file containing your private key requires compromising your
machine, which proper system security will make difficult.
Mallory needs to get you to give him the passphrase in some
manner, though, and that’s where you make his work difficult.
If you are using OpenPGP correctly, that passphrase resides
only in your head. Mallory’s problem lies in extracting the
passphrase from your head. If he isn’t subtle, Mallory can just
arrange for goons with iron pipes to beat it out of you. This
risk is so common in certain situations that the encryption
community calls it “rubber hose cryptanalysis.”2

Quite a few people take the mere presence of an Open-
PGP signature as proof of authenticity. This leads to a whole
variety of attacks similar to the “phishing” emails used to try to
trick people out of their bank account numbers. These attacks
don’t go after OpenPGP itself, but they leverage OpenPGP to
create an illusion of security. To give this appearance, all Mal-
lory has to do is find a real OpenPGP signature in a mailing
list archive or on Usenet and attach that signature to an email.
Many people won’t bother to verify that signature, assuming
that nobody would have the sheer bravado to fake a signature.
Similarly, once Mallory has compromised someone else’s email
account, he might upload an OpenPGP key for that person to
several public keyservers. He could then pose as that person
with impunity. Mallory might also upload several keys for a dif-
ferent person to a keyserver, in the hope that his victim would
choose one of those keys as legitimate or might even hunt for
a key that can read a message without understanding the impli-
cations of his actions. Security experts are discussing ways to
make these attacks more difficult to execute, but no changes

2
 For the record, anyone with a weapon and the proper attitude can have my

passphrase upon request.

160 Chapter 11

to the OpenPGP infrastructure can protect a genuinely gull-
ible person.

There’s also legal action, which is more interesting. Cryp-
tography laws vary greatly from country, but here’s the status
under current US law.

W A R N I N G The following is not legal advice, and I am not a lawyer (thankfully).
If you are in legal trouble, get a lawyer! This entire topic makes me
less than comfortable because it could be construed as giving advice to
criminals on how to escape justice. Many people think that they under-
stand how the law works regarding cryptography, though, and they’re
usually wrong. The law overlaps common sense less frequently than
one might wish.

Under US case law, a court can subpoena anything that
is written down, including passphrases. Mallory only has to
persuade a judge that he should issue a court order for your
written passphrase. If you have memorized your key (as you
should), precedent has not yet been established, but it’s fairly
certain that you can at least be found in contempt of court for
refusing to disclose your passphrase.

One idea that has been batted about repeatedly is that of
applying Fifth Amendment protections to passphrases. If you
have encrypted documents wherein you have recorded that
you have committed a crime, shouldn’t the right to not incrim-
inate yourself apply? The law considers a passphrase more like
a key for a safe deposit box; the key is not protected, although
documents in the deposit box might be. Therefore, the Fifth
Amendment does not apply to passphrases as such.

An interesting twist on this idea is to have your passphrase
include a criminal confession, the more horrendous and
detailed the better. Although the court can require you to turn
over a passphrase, the Fifth Amendment might apply if your
passphrase is this: “On March 8, 2005, I slaughtered 16 nuns,
burned an American flag, and psychologically abused a poodle
in Moosebane, Idaho.” The problem here is that you must have
actually committed the crime—the Fifth Amendment certainly
does not apply to things you haven’t done! This has not been
tested in court but, sadly, I expect it will be before long.

The law is similar in many other countries. For example,
the British Association of Chief Police Officers is attempting to
get legislation that would make withholding decryption keys a
crime.

The bottom line is this: Ask before you get yourself into
trouble! I would hate to see a reader get thrown into a Third
World prison for violating local cryptography laws. In countries

Other OpenPGP Considerations 161

where owning this book is illegal and the law is enforced by
truncheon-bearing goons, you will even want to ask the ques-
tion quietly. OpenPGP is great for protecting yourself from
privacy violations by other civilians and for notifying you when
the government is violating your privacy. Once the gears of jus-
tice begin grinding, however, its protections drop.

Fake Keys
Because anyone can create an OpenPGP public key with any-
one’s name on it, annoying twits occasionally upload keys in
other people’s names. For example, if I search subkeys.pgp.net
for “George W. Bush” I find no fewer than seven keys with that
name. Several are for the email address president@whitehouse
.gov. If George W. used OpenPGP, we’d all have a hard time
sorting out which key was his.

The PGP Corporation’s keyserver avoids this problem by
requiring a response from the email address owner before
making the key public. I suspect that more and more keyserver
networks will adopt this approach, but that’s for the future.

The moral of this story is this: If you find several keys for
one person, check their signatures. A key that is tightly inte-
grated into the Web of Trust is much more likely to be valid
than one that has few or no signatures. In this example, none
of the George W. Bush keys has any signatures. Presumably, the
President of the United States would be able to find at least
one person who could confirm his identity and sign his key.
People who are actually named George W. Bush, but with dif-
ferent email addresses, have keys signed by other people.

Also, check alternative public key sources such as the
person’s home page. Should the President ever start using
OpenPGP, it’s a pretty safe bet that his public key will be avail-
able somewhere on www.whitehouse.gov! (I’m sure that the US
President has some sort of email encryption available, but it’s
either not OpenPGP or not hooked into the Web of Trust.)

Ultimately, the only way to verify any OpenPGP key is
through the Web of Trust, but only you can decide who to trust
and how far to trust them.

OpenPGP Interoperability
The OpenPGP standard insists that all OpenPGP programs
be able to use the SHA-1 hash and 3DES encryption, but
allows implementers to offer additional methods if they desire.
OpenPGP vendors have a wide choice of specific implemen-
tation methods and don’t always choose the same hash and

162 Chapter 11

encryption algorithms. Too, different versions of OpenPGP
programs might prefer to use different algorithms. Generally
speaking, the best way to ensure that your software can com-
municate with any other OpenPGP software is to install all the
algorithms and hash methods available. Some of these hashes
are insecure, and could be forged—particularly MD5, and to a
lesser extent SHA-1. People who use these are not as secure as
they believe, but you can choose to communicate with them if
you wish.

This still leaves the problem of pre-OpenPGP versions of
PGP that don’t use 3DES. These older versions almost always
have security problems, and older versions of the OpenPGP
specification have security problems of their own. People using
PGP version 2 should upgrade. Feel free to assume that mes-
sages sent with PGP version 2 are insecure—because they are.

N O T E If you truly want your communications to be secure, help other people
upgrade their software rather than communicating with them via their
old vulnerable tools. People who use this older software are fooling
themselves if they believe it is secure. Remember, the appearance of secu-
rity is worse than no security!

Teams and OpenPGP
Many companies have a team of people who sign files. For
example, many pieces of software you find on the Internet
have an OpenPGP signature. Several people on the develop-
ment team know the passphrase. This is reasonable if not ideal,
provided that the key’s UID clearly labels it as a team key; the
trick here is in knowing when to change the key.

A common misconception is that when someone leaves
the team, you can secure the key by changing the passphrase.
There’s a problem here, though: What if the person who
departed has a copy of the private key with the old passphrase?
OpenPGP keys don’t come with labels that shout “Now with
new, improved passphrase!” The departed person can use the
old passphrase with his copy of the private key to sign as many
documents as he desires, and nobody will know the difference.

When you use a team key and have a personnel change,
the only safe action is to immediately revoke the old key,
make the revoked key available, and generate a new keypair.
When you put the revoked key out on the keyserver, everyone
who updates a key will get the revocation notice.

N O T E Although OpenPGP software decrypts email messages encrypted with a
revoked key, it does not encrypt messages with a revoked key.

Other OpenPGP Considerations 163

OpenPGP and Shared Systems
Throughout this book I’ve pounded home the idea that your
OpenPGP computer should be a single-user system, but you
might choose to make an exception. For example, corporate
computers frequently have an administrative team that handles
OS updates, antivirus protection, and so on, and these people
have administrative access to all the computers in the company.
If you must use OpenPGP in such an environment, here are
some ways to mitigate the risk:

• If you’re using Windows 95, Windows 98, or Windows Me
and cannot upgrade to a more modern operating system,
give up. Anyone who can turn your machine on can get
your private key. These operating systems are simply not
secure, period, end.

• For Windows NT–based and Unix-like operating systems,
set the permissions on your keyring files so that nobody
but you can read them. Windows permissions are quite
useful in this case—the system administrator can change
the permissions on your keyring only by taking ownership
of the directory, a fairly obvious hint that your keyring has
been compromised. Many Unix-like operating systems
support Mandatory Access Controls (MAC), which have
similar effects.

• You can protect your keyring even more by keeping it on
a USB flash drive or other small portable storage device.
Most keyrings will fit 20 times over on a floppy disk (if
your computer even has a floppy drive). Various firms have
recently started making OpenPGP “smartcards,” where the
entire key stays on the card. These add a whole new layer
of security to OpenPGP, even on a shared system.

• If you must copy your keys to the local hard drive, install a
program to thoroughly delete them when you’re finished.
A Google search for “secure delete” will turn up dozens of
freely available secure deletion programs. PGP includes
one, as we discuss on the next page.

• When using GnuPG on a Windows system shared by sev-
eral people, consider creating a folder named C:\GnuPG
and copying the GnuPG program files to it; then add that
directory to the system’s PATH variable. Every user will
then have access to that same version of GnuPG, which
will at least eliminate the problems that arise from people
using different versions of the program.

164 Chapter 11

• If you don’t entirely trust your machine at work, consider
creating two OpenPGP keys: one for work and one for
home. Sign your work key with your personal key. Never
bring your personal key to work; instead, have people
sign your personal key and sign others’ keys with your
personal key.

N O T E Your work key is ultimately disposable—you will probably have several
jobs during your lifetime but only one reputation. And keep a revoca-
tion certificate at home in case your company elects to show you the door
without notice. (I do not place my work keys on a keyserver; I distribute
them privately and only to correspondents who absolutely require it.)

Although these actions won’t protect you from a malicious
systems administrator, they can reduce the damage and make
living with such a setup a little more tolerable. As a long-time
systems administrator, I can assure you that most sysadmins
would never mess with a user’s OpenPGP keys. That’s not
because we’re inherently trustworthy, but rather because any
sysadmin who gets his kicks by violating others’ privacy quickly
annoys the wrong person and gets fired. After this happens a
couple of times, their reputation is in a shambles and they’re
unemployable in the computer field. You’re under much
greater risk from other users of the computer.

Despite any precautions, physical access trumps all. If
someone can open your computer and walk off with your hard
drive, it’s all over. Hopefully, you chose a good strong pass-
phrase to protect your private key against this risk!

Other Software Features
Both WinPT and PGP offer special features that will be of use
to people interested in privacy. Although these features are not
part of OpenPGP, they rate a mention.

Passphrase Caching
Both sets of software will cache your passphrase for a user-
configurable length of time, which will save you a bit of typing.
However, when you use this option, if you step away from the
machine, anyone who sits down can use your OpenPGP soft-
ware because your passphrase is still cached. I suggest setting
this time to only a few minutes, or manually flushing your pass-
phrase before you leave your desk.

Other OpenPGP Considerations 165

Shredding
“Shredding” is another add-on feature in both WinPT and
PGP. When you delete a document from a computer via the
operating system, it isn’t destroyed. Much as if you put a print-
out in the trash, the document is merely hidden from view and
set on a path that will lead to its eventual destruction.

Any number of programs can recover these deleted files.
To permanently and irrevocably destroy a file, use the shred-
der function that ships with PGP and WinPT. These programs
overwrite the file on disk several times, eliminating any hope
of recovering it. (If you’re using an operating system that has
filesystem journaling, shredding is certainly less effective, but it
will raise the bar for recovery.)

If you want real security, shred any earlier versions of the
file because previous drafts might be just as incriminating as
the shredded version. If it’s that important to destroy a docu-
ment, be sure to check for any backups.

PGP Desktop also offers the ability to encrypt your instant
messages, which goes a long way toward making IM useful in
a business environment. It can also encrypt your whole disk
drive, giving excellent protection against data loss in case of
laptop theft (although doing so will add a significant amount
of overhead).

Experiment with your chosen software; you’ll find it has
abilities far beyond what we covered in this book and uses far
beyond what you thought you needed.

Enjoy and protect your privacy!

Winston Churchill told a story about a man who received a telegram
informing him that his mother-in-law had passed and asking what
sort of funeral arrangements he desired. The man replied “Embalm.
Cremate. Bury at sea. Take no chances!” This is a good model for
electronic document destruction.

A
I N T R O D U C T I O N T O P G P

C O M M A N D L I N E

In addition to PGP Desktop,
PGP Corporation produces a

command-line PGP program,
PGP Command Line, which

allows you to automate PGP operations.
PGP Command Line is a licensed product
that has many features required by enterprise customers.
It is available for Windows and a variety of Unix-like oper-
ating systems (including Mac OS X). It comes with a very
good and complete manual (over 300 pages) and can eas-
ily be installed by any systems administrator who has read
this book.

This appendix will introduce you to the basic PGP Com-
mand Line functions. We’ll cover the basics very quickly so
that you can handle simple PGP Command Line operations
in short order. (Read the manual for more detail on the PGP
Command Line’s various commands and reference this book
for detail on specific suggestions.) We are specifically not

168 Appendix A

covering functionality such as Additional Decryption Keys,
which are well documented in the manual but require in-depth
explanation.

PGP Command Line runs the same way on Windows and
Unix-like operating systems; the only difference is the appear-
ance of the command prompt. We’ll use a hash mark (#) as a
prompt in the examples here, as some Unix shells do. Users
with normal privileges can use PGP Command Line just fine.

N O T E Unlike most command-line programs, PGP Command Line does not
interact with the user after execution begins. It is designed for auto-
mated environments in which there is no user to talk to and it does not
prompt you for further information. This is quite useful behavior for
scripts, of course.

PGP Command Line Configuration
All PGP Command Line configuration, key storage, and other
information is kept in an application data directory. If you’re
using Windows, you’ll set the location of this directory during
the install; if you’re on a Unix-like system, that directory will
be $HOME/.pgp. To change PGP Command Line’s behavior,
you edit the configuration file PGPprefs.xml. The defaults are
suitable for almost all applications, but you’ll find a full expla-
nation of the variables in the PGP Command Line manual.

The configuration file must use valid XML for PGP Com-
mand Line to work. Fortunately, this isn’t difficult; each entry
looks something like this:

 <key>CLpassphraseCacheTimeout</key>
 <integer>120</integer>

In this example, the variable  CLpassphraseCacheTimeout,
which controls the length of time that your passphrase is
cached, has been set to  120. To change this timeout value,
edit the 120 without altering the surrounding tags.

The files pubring.pkr and secring.skr are two additional
important files in this directory. Your public keyring is stored
in pubring.pkr, whereas your private keys are stored in secring
.skr. Guard secring.skr very carefully, for reasons I hope have
been sufficiently driven home by the time you’ve read this far!

Introduction to PGP Command Line 169

N O T E When editing a configuration file like this one, it’s very easy to acciden-
tally delete an angle bracket without noticing and break the software
as a result. Therefore, keep a backup of your known-good configura-
tion file! It’s much easier to fall back to a good version and try again
than to stare at a broken configuration for hours trying to find what
you missed before. If you’re on a Unix-like operating system, I strongly
recommend using the RCS revision control system for managing con-
figuration files. It’s been used for decades so most of the bugs are gone,
and it’s free.

Testing and Licensing
After you finish installing PGP Command Line, make sure
that it works by trying the --version and --help options. The
--version option displays the version of PGP Command Line
you have, whereas --help displays all the options and flags that
PGP Command Line uses. If these options work, your installa-
tion is correct.

After you know that the base install is correct, you should
license the software; if your install is not licensed, PGP Com-
mand Line (PGPCL) functions only in a very limited manner.
You must have Internet access to license PGP Command Line
because the program contacts the PGP license server and con-
firms that your license code matches your name, email address,
and organization. You must enter your name, organization,
email address, and license code exactly as they appear in the
license or the license operation will fail. For example:

pgp --license-authorize --license-name "Michael Lucas" --license-
organization "Author (Press)" --license-number "long-string-of-codes"
--license-email "mwlucas@blackhelicopters.org"

Here we tell PGPCL to  authorize the license that PGP
Corporation has on file for  the license owner and  the
organization the license owner belongs to, using  the license
code provided by PGP Corporation and  the email address
of the license owner. This process will make PGPCL contact
the PGP Corporation’s licensing server and verify your infor-
mation. If you entered all the information correctly and the
license is valid, PGP Command Line will add licensing informa-
tion to PGPprefs.xml, and you’ll be ready to go!

170 Appendix A

Creating a Keypair
PGP Command Line creates many different sorts of keypairs
in addition to the standard OpenPGP signing and encryption
keys. The format for creating an OpenPGP keypair is as fol-
lows, where  UID is a standard PGP user ID, consisting of a
name followed by an email address in angle brackets:

pgp --gen-key "UID" --key-type rsa --encryption-bits 2048
--passphrase "passphrase" --other-options

To use an optional comment, as discussed in Chapter 2,
add it between the name and the email address in parentheses.
(PGP will emit a warning about this being nonstandard, but
many people have UIDs in exactly that format, and they work
just fine.) For example, my UID is this:

Michael Warren Lucas Jr (Author, consultant, sysadmin) <mwlucas@
blackhelicopters.org>

This UID differentiates me from every other OpenPGP-
using Michael Lucas in the world.

PGP Command Line supports several different  types
of keypairs. (If you’re into cryptography or have specific busi-
ness needs for signing-only keys or the like, see the manual for
details because we’ll cover only OpenPGP keypairs.)

Setting the Key Type
Modern OpenPGP keys are of type RSA. You set the type of key
with the --key-type flag.

You can choose  the number of bits in the keypair (as
discussed in Chapter 1), which ranges from 1024 to 4096. I
suggest using 2048, which as of this writing should protect your
data for the next several years.

Assigning a Passphrase
You must give your  passphrase on the command line when
you create your key. If you don’t want to assign a passphrase
when you create this key, you can change it later with the
--change-passphrase option.

Setting an Expiration Date
By default, new keys have no expiration date. To set an expira-
tion date, use the optional --expiration-date flag, with the date
in YYYY-MM-DD format, such as 2008-12-31.

Introduction to PGP Command Line 171

For example, to create a keypair for myself, I would run
the following:

pgp --gen-key "Michael Warren Lucas Jr (Consultant, author, sysadmin)
<mwlucas@blackhelicopters.org>" --key-type rsa --encryption-bits 2048 --
passphrase "This is a really bad passphrase" --expiration-date 2008-12-31

PGP will quickly generate a key and end by listing the
keyid.

Generating Revocation Certificates
As with any other OpenPGP key, it’s important to create a
revocation certificate immediately upon certificate creation.
To create a revocation certificate, use the --gen-revocation com-
mand like so:

pgp --gen-revocation "UID" --passphrase "passphrase"
--force

The first argument tells PGP Command Line which key to
revoke. You need only enough of  the UID to uniquely iden-
tify a key on your keyring. For example, my keyring has only
one key on it with the email address mwlucas@blackhelicopters
.org. That email address uniquely identifies my key on my key-
ring. If I had several keys with that email address, I would need
to use a larger part of the UID to identify the key I wanted to
revoke, or perhaps the complete UID if I had several very simi-
lar keys.

Next, give your  passphrase on the command line.
Finally, use  the --force flag to tell PGP, “ Yes, I know this

isn’t normal, but you won’t ask me if I’m sure, so I’m telling
you yes, I’m sure; I really do want you to do it.”

For example, to create a revocation certificate for my key, I
would type this:

pgp --gen-revocation mwlucas@blackhelicopters.org --passphrase
"This is a really bad passphrase" --force

PGP Command Line will create a revocation certificate
and place it in the current directory in a file named after my
complete UID. (Save and protect this certificate, as discussed
in Chapter 2.)

Exporting Your Public Key
Next you’ll need to distribute your public key to your corre-
spondents, either by using keyservers or text files.

172 Appendix A

Distributing to Keyservers

Send your public key to a keyserver with the --keyserver-send
option, and use the --keyserver option to choose the keyserver:

pgp --keyserver-send UID --keyserver protocol://keyserver

The UID is either the whole UID of the key we want
to publicize or a large enough piece of it so that PGP can
identify it.

The keyserver must include the protocol used to access
the keyserver and the keyserver’s name. Common protocols
include LDAP (used by PGP Corporation’s keyserver) and
HTTP (used by keyservers such as subkeys.pgp.net). Include
the protocol before the machine name, much like a URL. For
example, to send my newly generated PGP key to the PGP
Corporation’s keyserver, keyserver.pgp.com, I would run this:

pgp --keyserver-send mwlucas@blackhelicopters.org --keyserver
ldap://keyserver.pgp.com

By default, PGP Command Line will contact the PGP
Corporation’s public keyserver. You only need the --keyserver
flag if you want to contact a different keyserver.

Exporting to Text Files

Use the --export command to pull your public key from your
keyring into a text file:

pgp --export UID

This command will create a text file with the same name as
your UID. If you’ve already created a revocation certificate and
haven’t renamed it, PGP Command Line will complain that it
can’t create the file. If that’s the case, rename your revocation
certificate and export the key again.

Viewing Keys
To see all the keys on your keyring, use the --list-keys option.
Or to view a particular key on your keyring, list the UID or a
portion thereof after --list-keys; PGP Command Line will only
list keys that have the given string in the UID.

Introduction to PGP Command Line 173

For example, here’s how you’d search for all keys on the
keyring that include the string mwlucas.

pgp --list-keys mwlucas
 Alg Type Size/Type Flags Key ID User ID
----- ---- --------- ------- ---------- -------
*RSA4 pair 2048/2048 [VI---] 0x7E02501C Michael Warren Lucas Jr
(Consultant, author, sysadmin) <mwlucas@blackhelicopters.org>
1 key found
#

PGP Command Line found one matching key (big sur-
prise, I know). (This becomes much more useful after we add
keys to the keyring, as shown later in this appendix.)

The default view is very brief, but you can view any level of
detail about this key with the options shown in Table A-1 (just
give the option and a UID or unique portion thereof).

Table A-1: PGP Command Line Key Viewing Options

Option Function
--pgp-fingerprint Displays the fingerprint of the specified key

--list-key-details Shows all information included in the key

--list-sigs Shows all signatures on the key

--list-sig-details Shows detailed information about all signatures

--list-userids Shows all UIDs included in this key

For example, to view all the signatures on my key, I would
run the following:

pgp --list-sigs mwlucas@blackhelicopters.org

Managing PGP Command Line Keyrings
Keyservers are most commonly used to search for keys, add
keys to your keyring, sign keys, and update keys.

Searching for Keys
To use PGP Command Line to find someone’s key on a key-
server, you need the UID (or a portion thereof) and the name
of the keyserver you want to search.

174 Appendix A

The best way to search for a key is to use the user’s email
address. Here, we search subkeys.pgp.net for any key with the
string Michael Lucas.1

pgp --keyserver-search "Michael Lucas" --keyserver http://subkeys.pgp.net
http://subkeys.pgp.net:keyserver search (2504:successful search)
 Alg Type Size/Type Flags Key ID User ID
----- ---- --------- ------- ---------- -------
 DSS pub 2048/1024 [-----] 0xE68C49BC Michael Warren Lucas Jr (Author, consul-
tant, sysadmin) <mwlucas@blackhelicopters.org>
 DSS pub 2048/1024 [-----] 0xAB6CA178 Michael Lucas <mike.lucas@teamlucas.com>
 DSS pub 2048/1024 [-----] 0x4922B639 Michael P. Lucas <mlucas@jharris.com>
 DSS pub 2048/1024 [-----] 0x4768326E B. Michael Lucas <n1tba@snet.net>
 DSS pub 2048/1024 [-----] 0xAD08B0C7 David Michael Lucas <trajan97@yahoo.com>
 DSS pub 2048/1024 [-----] 0xFB31770D David Michael Lucas <Buckeye_D@yahoo.com>
6 keys found

The keyserver reports that it has six keys that match the
string Michael Lucas and presents the results, but I’m only inter-
ested in one of them. Fortunately, the list includes  the UID
of all the keys so I can see which key I want and then use a
unique portion of the UID to import it.

Importing Keys
Use the --keyserver-recv option to download a public key from
a keyserver and add it to your public keyring:

pgp --keyserver-recv mwlucas@blackhelicopters.org --keyserver
http://subkeys.pgp.net

PGP will download the key and add it to your keyring, mak-
ing it permanently available locally.

Signing a Key
After you have examined a key’s fingerprint and UID and
inspected the key owner’s identification (as discussed in
Chapter 5), you might choose to sign the key.

PGP Command Line allows you to specify several types of
signature; we’ll discuss the old-fashioned exportable signature

1 I’m using the pgp.net keyserver instead of the official PGP Corporation
keyserver to illustrate a point; my keys are available on both subkeys.pgp.net
and keyserver.pgp.com, but the results from the PGP Corporation keyserver
are boringly correct thanks to their email verification process.

Introduction to PGP Command Line 175

used to build the Web of Trust. The format of a signature is as
follows:

pgp --sign-key UID-of-key-to-be-signed --signer your-UID
--sig-type exportable --passphrase passphrase

You must tell PGP Command Line  which key you want
to sign by using a unique portion of the UID. (You can sign
only with  your own key.) Finally, you enter  your pass-
phrase, and PGP Command Line will sign the other person’s
key and store it in your keyring.

Updating Keys on a Keyserver
After you sign a key, you can either export the signed public
key to a file and return it to the owner, or send the public key
with the updated signature back to the keyserver from whence
it came. (See Chapter 5 for a full discussion.)

To send the updated key to a keyserver, use the --key-
server-update option.

pgp --keyserver-update UID

Now that you know how to manage keys, let’s get to the
real meat of PGP Command Line: encryption and decryption.

Encryption and Decryption
To encrypt a file with PGP Command Line, use the --encrypt
and --recipient flags.

pgp --encrypt filename --recipient UID

For example, to encrypt the file BankAccounts.xls when
sending it to me (please do!), enter the following:

pgp --encrypt BankAccounts.xls --recipient
mwlucas@blackhelicopters.org

This would create an OpenPGP-encrypted file called
BankAccounts.xls.pgp.

N O T E Encrypted files are binary files by default. To encrypt files in ASCII
instead, use the --armor flag.

176 Appendix A

To decrypt a file, use the --decrypt and --passphrase
options:

pgp --decrypt filename --passphrase passphrase

For example, to decrypt that same file I would type the
following:

pgp --decrypt BankAccounts.xls.pgp --passphrase "This is a
really bad passphrase"

Decrypting BankAccounts.xls.pgp creates an unencrypted
file called BankAccounts.xls, which I can then open with my
office suite.

Signing and Verifying
To sign and verify files, use --sign and --verify. Signed files end
in .pgp (.asc if they are in ASCII).

B
G N U P G C O M M A N D L I N E

S U M M A R Y

Throughout this book we’ve
covered various GnuPG com-

mands and options. This
appendix collects all the GnuPG

functions we’ve discussed in one quick ref-
erence. (It’s important to understand the
implications of each of these functions, so
don’t just skip the rest of the book and rely
on this appendix.)

N O T E GnuPG is a powerful software package with many options we haven’t
discussed. Many of these options will be of interest only in particular
situations, or should be used only by people with a deeper understand-
ing of OpenPGP.

178 Appendix B

GnuPG Configuration
GnuPG stores its configuration information, including key-
rings, in a directory. If you’re running Windows, you set the
location of this directory during the install. On Unix-like sys-
tems, that directory defaults to $HOME/.gnupg.

This directory contains three files of concern to most
users: gpg.conf, pubring.gpg, and secring.gpg. Your public
keyring is in pubring.gpg, and your private keyring is secring
.gpg. The gpg.conf file contains all of the GnuPG configura-
tion options.

Output Control
When working with GnuPG keys it’s important to decide how
the output should be handled. The -a (or --armor) flag tells
GnuPG to give output in human-readable format, instead
of the default binary format. Similarly, the --output flag tells
GnuPG to send its output to a file, rather than dumping it
directly to the screen.

Keypair Creation, Revocation, and Exports
To create a new GnuPG keypair, use the interactive --gen-key
option. GnuPG will walk you through the key-creation pro-
cess. (We discussed key creation and management in detail in
Chapter 4.)

Revoking a Key
To generate a revocation certificate for your keypair, use the
--gen-revoke option, specifying the user ID (UID) of the key
you want to revoke. (Using ASCII armor and specifying an out-
put file is optional but probably desirable.)

gpg -a --output mwlucas@blackhelicopters.org.asc.revoke
--gen-revoke mwlucas@blackhelicopters.org

Here we output a file named  mwlucas@blackhelicopters
.org.asc.revoke in  ASCII format. This file is a  revoca-
tion certificate for the key with a UID that contains the string
 mwlucas@blackhelicopters.org. GnuPG will ask you why this key
is being revoked and allow you to give a description.

GnuPG Command Line Summary 179

Exporting a Key
To export the key to a text file, use the --export option.
(Because this file is plain text, you should use --armor.)

gpg --output pubkey.mwlucas@blackhelicopters.org.gpg.asc
--armor --export mwlucas@blackhelicopters.org

Here we create a file called  pubkey.mwlucas@black-
helicopters.org.gpg.asc in  human-readable format, which
contains  an export of the key with a UID containing the
string  mwlucas@blackhelicopters.org.

Sending a Key to a Keyserver
To send a public key to a keyserver, use the --send-keys option.
The --keyserver option lets you choose to which keyserver you
want to submit the key. If you don’t choose a keyserver, GnuPG
will use the default keyserver specified in gpg.conf.

gpg --send-keys mwlucas@blackhelicopters.org --keyserver
subkeys.pgp.net

Here, we  submit a key with the UID containing 
mwlucas@blackhelicopters.org to  the keyserver  subkeys
.pgp.net.

Managing Keyrings
Creating your key will give you your keyring. You’ll also need to
add keys to and remove keys from this keyring.

Viewing Keys
GnuPG will let you view your keys and various key
characteristics:

• To view all the public keys on your keyring, use the option
--list-keys. This will print all the keys on your keyring, so
you can include a UID or portion thereof to list only par-
ticular keys.

• To see the secret keys on your keyring, use the option
--list-secret-keys.

180 Appendix B

• To view the fingerprint of a key, use --fingerprint and the
UID of the key or a subset thereof.

Adding and Removing Keys
GnuPG lets you perform all keyserver operations at the com-
mand line.

• To receive a key from a keyserver, use the --recv-keys
option and the keyid of the key you want to download:

gpg --recv-keys E68C49BC

• To import a public key from a file, use the --import option
and the name of the file. No other options are required.
To remove a key from your keyring, use the --delete-keys
option and give the UID or keyid of the key you want to
delete.

Key Signatures
Validating, adding, and updating signatures are important
parts of GnuPG.

• To view the signatures on a key, use --list-sigs and the
keyid or UID.

• To sign a key, use --sign-key and give the keyid or UID:

gpg --sign-key mwlucas@blackhelicopters.org

• To export your newly signed public key to a text file, use
the --export flag. You probably also want to use --output to
place it in a file, and --armor to make it human-readable.

gpg --output gedonner.asc --armor --export
mwlucas@blackhelicopters.org

• To upload your signature of this public key to a keyserver,
use the --send-keys command and give the keyid or UID of
the key you’ve signed.

• To update the signatures on all the keys in your keyring
from a keyserver, use the option --refresh-keys.

• After you sign several keys, use the --update-trustdb option
to build your personal Web of Trust.

GnuPG Command Line Summary 181

Encryption and Decryption
Use the --encrypt option to encrypt files, giving the name of
the file you want to encrypt as an argument. GnuPG will inter-
actively ask you for the UID of each public key you want to use
in the encryption process and then encrypt the files so that
they can only be read with the corresponding private key(s).

To decrypt a file, use the --decrypt option. GnuPG will
prompt you for your passphrase and print the decrypted mes-
sage to the terminal.

Signing Files
To sign a file, use the --sign option and give the name of
the file you wish to sign. To verify a digital signature, use the
--verify option. GnuPG will tell you whether the signature is
valid or not.

Output Formats
By default, GnuPG produces encrypted files and keys in binary
format and uses filenames based on the original filenames. You
can modify this with the --armor and --output options.

• The --armor option tells GnuPG to “armor” its output in
human-readable ASCII.

• The --output option lets you choose the name of the file
where GnuPG will store its output.

• By default, GnuPG creates a new file with the same name
as the original, but with .gpg appended. If you specify
--armor, GnuPG creates a new file with the same name but
with .asc appended.

Here we encrypt a file in human-readable ASCII and put it
in a filename of our own choosing:

gpg --armor --output encryptedfile.asc --encrypt
SecretPasswordList.txt

The --armor and --output options must be used before
either --sign or --encrypt.

INDEX

Page numbers in italics refer to
figures.

Symbols and Numbers
(hash mark), for gbg.conf file

comments, 57
$GPGHOME/trustdb.gpg

file, 113
3DES encryption, 43, 161
30-day trial of PGP, 40

A
actions, in PGP custom

policy, 132
Add Photo dialog box (PGP),

98, 98
Add Photo ID dialog box

(WinPT), 112, 112
adding keys to keyring, 85,

93–96, 101–104
adding keyservers, 91–92
addphoto command, 111
administrative access, to private

key, 31
Administrator account

(Windows NT–based
operating systems), 32

Advanced Encryption Standard
(AES), 43

Advanced Key Settings dialog
box, 42–43, 42

AES (Advanced Encryption
Standard), 43

AIX, and random number
generation, 68

algorithms, 17, 19–22
asymmetric, 21–22

combining with digital
signature, 23–24

interoperability and, 162
PGP vs. GnuPG support, 9–10
symmetric, 20

All Keys keyring, 93
anonymity, repeatable, 122–123
antivirus software, 158
AOL Instant Messenger

accounts, PGP
search for, 44

Applied Cryptography
(Schneier), 21

armoring binary data, 78n
.asc file extension, 46, 94, 104,

176, 181
ASCII characters, converting

public key to, 78–79
asymmetric encryption

algorithms, 21–22
combining with digital

signature, 23–24
attachments

encryption in Outlook, 145
inline encryption and, 117
in PGP/MIME, 118

auditing, 9
authenticity, 18–19

signatures and, 159
autoconf, 69
automatic encryption of email

and AOL Instant Mes-
senger accounts, 44

automatic key retrieval in
GnuPG, 100

184 Index

automatic synchronization of
keys, 97

Automatically Synchronize Keys
With Keyservers setting,
47, 47

B
back doors in encryption

tools, government-
accessible, 2

backup
of keypair, 35

for PGP, 45–46
restoring, 48
in WinPT, 65

PGP Corporation folder, 46
of revocation certificate,

35–36
biglumber.com, 31, 86
binary data

inline encoding
limitations, 117

for public key, 78
biometric format, for imported

key, 95, 95
bit, defined, 19
book form, for PGP

distribution, 3
British Association of Chief

Police Officers, 160
broadband connection, hard-

ware firewall for, 158
brute forcing, 25
BSD. See Unix
Bugzilla, 147
bunzip command, 70
bzipped tarball, for GnuPG

source, 70

C
CA (Certificate Authority), 28
caching passphrases, 164

in Enigmail, 148
Cast, 43
Certificate Authority (CA), 28
checksums, 17. See also hashes

for GnuPG, 54–56
interoperability and, 161–162
protecting from

tampering, 22–23
Cipher property of private

key, 52

ciphers, 16
for PGP, 42–43

ciphertext, 15
“clean” keyserver, 51
clearsigning, 116
codes, 15–16
command line. See gpg command;

GnuPG, command line;
PGP, command line;
pgp command

comments
in gpg.conf file, 57
for key, 34

Compression property of private
key, 52

computer code, vs. free
speech, 4

computers, randomness and,
67–68

confidentiality, 17
configure script

--enable-static-rnd=egd
option, 70

--prefix option, 68
for GnuPG, 70

copying public key, 78, 80
creation date, of key on

keyring, 93, 103
cryptanalysis, 17
cryptography

PGP goals, 17–19
US laws, 160–161

custom policies in PGP, 130–132
order in list, 134–135
samples

exceptions to default
policy, 132–133

overriding default
policy, 134

setting conditions, 130–131

D
decryption, 14

with PGP Command Line,
175–176

PGP/MIME messages with
MS clients, 145–146

default keyserver, 101, 101
setting, 66, 80, 99

default message format,
in Outlook, 142

default PGP Desktop policy,
exceptions, 132–133

Index 185

deleting
private key after revocation

certificate creation, 49
public keys from keyring,

109–110
shredding after, 164–165

“designated revokers,” 47
DigestIT 2004 (checksum

program), 55
digital signature, 14, 22–23

combining with asymmetric
cryptography, 23–24

for GnuPG program, 55
legal issues, 26

directory. See folder
disabling updates to

keyservers, 47
distributing public key, 36–38
domain name, PGP custom

policy based on, 131
downloading

GnuPG, 54
PGP, 40

drive partition, encryption, 120
DSA, for encryption, 73
Dvorak keyboard, 157n

E
ease of use, PGP vs. GnuPG, 7–8
EGD (Entropy Gathering

Daemon), 68–69, 70
email

archive, 119n
encryption, 119–120, 127

and GnuPG, 137–153
decrypting PGP/MIME

messages with Micro-
soft mail clients,
145–146

identifying sender, 28
OpenPGP and, 115–124
for passphrase and private

key, 156
PGP search for, 44
for server confirmation of

key, 82
verifying sender, 101–102

email addresses
for downloading PGP, 40
for GnuPG key, 74
for key, 34
in public key, Global Direc-

tory use of, 51

search for key by, 94
securing multiple with

PGP, 41
email clients

and attachments, 118
Microsoft mail clients, 138
Microsoft Outlook, 141–145
Outlook Express, 138–141
PGP and, 126–127
storage of sent messages, 124
Thunderbird, 147–153

email servers, and
attachments, 118

encrypted email in Outlook
Express, receiving and
verifying, 141

encryption, 14
automatic, of email and AOL

Instant Messenger
accounts, 44

history, 2–3
as Microsoft Outlook

default, 144
as national security threat, 3
with PGP Command Line,

175–176
preventing for email to mail-

ing lists, 129
public-key, 22

encryption algorithms, 19–22
asymmetric, 21–22

combining with digital
signature, 23–24

symmetric, 20
Enigmail

configuring, 147–149
installing, 147
passphrase caching, 148
per-recipient rules, 150–151
upgrading, 152–153

Enigmail Recipient Settings
dialog box, 151, 151

Entropy Gathering Daemon
(EGD), 68–69, 70

error messages, help for, 71
expert form for key generation

in WinPT, 63–64, 64
expiration date, key, 33

GnuPG, 74
PGP, 42
PGP Command Line,

170–171
WinPT, 64

186 Index

Expires property of private
key, 52

Export Key to File dialog box,
45, 46

exported revoked key, as Revoca-
tion Certificate, 49

exporting public key, 107–108
in GnuPG, 179
in PGP, 171–172
in WinPT, 108

exporting text, to publicize
GnuPG key, 78–79

extensions, Thunderbird, 147
extracting public key from

keyring, 78

F
fake keys, 161
fake signatures, 159
family members, signing key of,

84–85
file extensions and GnuPG, 57
File menu (PGP), Import, 49
filename, for public keyring, 103
files, signing and verifying, 174
fingerprint for key, 84

checking, 105
comparison, 95–96
in GnuPG, 76

Firefox, 147
firewall, hardware, 158
First Amendment, 4
floppy disks, 163
folder

default, for GnuPG, 59
for GnuPG configuration

information, 178
for PGP application data stor-

age location, 46
for WinPT, 60–61

“forged” emails, 18
free speech, vs. computer

code, 4
friends, signing key of, 84–85

G
g10code, 141
GCC (Gnu C compiler), 69
General Public License (GPL), 7
gmake, 69
Gnu C compiler (GCC), 69

Gnu Privacy Guard (GnuPG). See
GnuPG (Gnu Privacy
Guard)

Gnu Privacy Guard Setup
dialog box

Choose Install Location,
59, 60

Install Options, language,
58, 59

.gnupg/entropy file, 68–69
GnuPG (Gnu Privacy Guard)

building Web of Trust,
113–114

command line, 177–181
adding and removing

keys, 180
configuring, 178
encryption and

decryption, 181
install on Windows, 58–59
key signatures, 180
keypair creation, revo-

cation and export,
178–179

keypairs, 72–76
output formats, 181
signing files, 181
viewing keys, 179–180

and email, 137–153
decrypting PGP/MIME

messages with Micro-
soft mail clients,
145–146

Microsoft mail clients, 138
Microsoft Outlook,

141–145
Outlook Express, 138–141
Thunderbird, 147–153

introduction, 7
key management, 99–111

adding keys to keyring,
101–104

deleting public keys from
keyring, 109–110

keyservers, 99–101
signing keys, 105–108
updating keys, 109

keyserver search, 83
output control, 178
path, 144
and photo ID, 110–113

adding to key, 110–111

Index 187

viewing photo on key,
111–112

WinPT for adding,
112–113

and root account, 72
trust level assignment, 113

GnuPG (Gnu Privacy Guard)
install, 2, 6, 53–80

building from source code,
69–72

configuration, 70–71
installing, 69–70
setuid root GnuPG, 71–72

checking checksums, 54–56
command-line keypairs,

72–76
downloading, 54
file size, 58
home directory, 56–57
vs. PGP, 7–10
publicizing key, 78–80

keyservers, 79–80
text exports, 78–79
web forms, 80

revocation certificates, 76–77
and Thunderbird

configuring Enigmail,
147–149

installing plug-in, 147
reading OpenPGP mail,

151–152, 152
sending OpenPGP mail,

149–151
upgrading, 152–153

on Unix-like systems, 67–69
on Windows, 57–59

command-line install,
58–59

graphical install, 60–66
GnuPG/Outlook library, regis-

tering with operating
system, 142

gnupg-users mailing list, 56
Google

for OpenPGP keyservers, 79
search for keyservers, 52
for tracing Web of Trust,

121–122
government-issued ID, for key

signing, 31, 34
GPG, 6. See also GnuPG (Gnu

Privacy Guard)

gpg command
--armor option, 78–79,

180, 181
--decrypt option, 146
--delete-key option, 109
--edit-key option, 110
--encrypt option, 181
--export option, 179
--fingerprint option, 105, 180
--gen-key option, 178
--gen-revoke option, 178
--import option, 104
--keyserver option, 79
--list-keys option, 102,

103, 179
--list-options

show-photos, 111
--list-secret-keys option,

103, 179
--list-sigs option, 107, 180
--output option, 107, 181
--recv-keys option, 102
--refresh-keys option,

109, 180
--send-keys option, 108,

179, 180
--sign-key option, 105, 180
--sign option, 181
--update-trustdb option,

113–114, 180
--verify option, 181

gpg.conf file, 57, 178
load-extension rndegd, 69
no-secmem-warning, 72
setting default keyserver, 80,

99–100
$GPGHOME/trustdb.gpg

file, 113
GPGol, 141

configuring plug-in, 142–144
installing, 142

GPGRelay, 62
GPL (General Public License), 7
graphical install of GnuPG,

60–66
Group property, of private

key, 52

H
hardware compromise to

security, 157–158

188 Index

hash mark (#), for gbg.conf file
comments, 57

Hash property, of private key, 52
hashes, 16, 43–45

interoperability and, 162
protecting from tampering,

22–23
headers in email, PGP custom

policy based on, 131
hexadecimal format, for

imported key, 95, 95
HKEY_LOCAL_MACHINE/

SOFTWARE/PGP
Corporation, 46

HKP (Horowitz Keyserver
Protocol), 100

home directory, for GnuPG,
56–57

Home desktop version of PGP, 39
Horowitz Keyserver Protocol

(HKP), 100
HP/UX, and random number

generation, 68

I
ID property, of private key, 52
IDEA encryption, 5, 9–10, 43

licensing, 10
identity verification

bad methods, 87
by OpenPGP, 28
photo ID for, 85
and signing key, 83

IETF (Internet Engineering
Task Force), 5

image view, for photo ID, 111
implicit trust level, 89
Import, File menu (PGP), 49
importing

key from file, 94
key with WinPT, 104
keys from keyserver, 174
public key to keyring, 87
signatures, 108

informal key signing, 86
inline encoding, 116–118

in Enigmail, 149
INSTALL file, in GnuPG tarball,

70
Installer Language dialog

box, 58, 59

installing
Entropy Gathering Daemon,

68–69
GnuPG (Gnu Privacy Guard).

See GnuPG (Gnu Pri-
vacy Guard) install

GPGol, 142
OpenPGP, 31–32
PGP, 39–52

download, 40
key backups, 45–46
key generation process, 41
key settings, 42–43, 42
Licensing Assistant, 40, 41
Passphrase Assignment

screen, 43–44, 43
PGP Global Directory

Assistant, 44, 44
PGP Setup Assistant,

41, 41
reimporting private key,

49–50, 50
revocation certificates,

46–51
Thunderbird GnuPG

plug-in, 147
WinPT, 60–63

integrity, 17–18, 22
International Traffic in Arms

Regulations (ITAR), 3
Internet, 3. See also web resources

for PGP Command Line
licensing, 169

Internet Engineering Task Force
(IETF), 5

invalid keys, 82
ITAR (International Traffic in

Arms Regulations), 3

J
JPEG format, for photo ID, 36

K
key backups, for PGP, 45–46
“key escrow” agency, 10
key expiration date. See expira-

tion date
key fingerprint, 84

checking, 105
comparison, 95–96
in GnuPG, 76

Index 189

key generation process,
for PGP, 41

Key Generation Wizard
(WinPT), 63, 63

Key Manager in WinPT, 65, 65,
101, 104

key owner, returning signed key,
97, 108

Key Properties dialog box, 112
Key Properties screen, 95, 95, 98
Key Signing dialog box, 106
key size, for PGP, 42
key type, for PGP, 42
keyboard, Dvorak, 157n
keyid, 121

in GnuPG, 76
keypairs, 22, 24, 32–35

backup of, 35
creating in WinPT, 63–64
expiration date. See expira-

tion date, key
key length, 32–33
name, email and comment,

34–35
revocation certificates, 35
storing, 35–36

keyrings
adding keys to, 85, 93–96,

101–104
deleting public keys from,

109–110
extracting public keys

from, 78
importing public keys to, 87
protecting on shared

system, 163
WinPT failure to find, 62
WinPT folder setup, 61

keys. See also private key;
public key

automatic synchronization, 97
command to view, 172–173
fake, 161
in GnuPG, 99–111

adding keys to keyring,
101–104

automatic retrieval, 100
deleting public keys from

keyring, 109–110
keyservers, 99–101
signing keys, 105–108
updating keys, 109

searching for, 173–174
settings for PGP, 42, 42–43
untrusted, unknown, 122
USB flash drive for, 158
work key vs. personal key, 163

Keyserver Access screen, 101, 101
Keyserver property, of private

key, 52
keyserver.conf file, 101
keyserver.pgp.com, 82–83
keyservers, 37–38, 79–80

adding, 91–92
disabling updates, 47
getting public keys from,

82–83
for GnuPG, 79–80, 99–101
keyserver.pgp.com, 82–83
list in WinPT, 66
and PGP, 51–52
pushing signatures to, 108
and revocation certificate, 47
searching, 93–94
sending key, 52

command for, 172
from GnuPG, 179
from WinPT, 66

setting default, 80
updating keys on, 175
and WinPT, 101

keysigning. See signing keys
keysigning party, 31, 88–89
keysize, for encryption, 73–74
keystroke loggers, 157
Koch, Werner, 7

L
language, for GnuPG, 58, 59, 59
lawsuit against Phil

Zimmermann, 4
legal issues, and OpenPGP, 10
legal name, for keysigning, 85
length of keypair, 32–33
license

code for PGP, 40
for IDEA, 10
for PGP Command Line, 169

Licensing Assistant for PGP,
40, 41

Linux. See Unix
load-extension rndegd

command, 69
locking screen saver, 31

190 Index

M
mail clients. See email clients
mailing list

gnupg-users, 56
support from, 8

Mailing List Admin Requests
policy, 129

Mailing List Submissions
policy, 129

Mallory, 19, 159
GnuPG as target, 54
and pseudo-random number

generators, 68
Marginal trust level, 89
MD5, 162
memory, warning about

insecure, 71
message, as plaintext or

ciphertext, 15
message boards, support from, 8
Message Policy template, 130, 130

customizing, 130–133, 133
setting default format to

PGP/MIME, 134, 134
Message Priority, PGP custom

policy based on, 131
Message Sensitivity, PGP custom

policy based on, 131
Message Subject, PGP custom

policy based on, 131
Microsoft mail clients. See also

Outlook (Microsoft);
Outlook Express
(Microsoft)

and GnuPG, 138
Microsoft Update, 158
military-grade encryption, 3
MIME (Multipurpose Internet

Mail Extension), 118
mirror site, 54
mixed case, in passphrase, 25
mouse actions, and random

number generation, 75
Mozilla Firefox, 147
Mozilla Thunderbird. See

Thunderbird
msg.asc file, 145

decrypting, 146
Multipurpose Internet Mail

Extension (MIME), 118

multiuser security, 163–164
Unix-like operating

systems, 163
Windows operating systems,

32, 57–58, 163
My Computer, Properties, 58

N
name

for GnuPG key, 74
for OpenPGP, 34

National Security Agency, 5
national security, encryption as

threat, 3
Network Associates, 6
“network profiling” investigatory

technique, 90
New Message screen (Outlook

Express), 140, 140
New Server dialog box, 92, 92
non-English character sets, in-

line encoding and, 117
None trust level, 89
nonrepudiation, 18, 22
numbers, in passphrase, 25

O
OpenPGP Per-Recipient Rules

Editor, 150–151, 150
OpenPGP Preferences dialog

box (Enigmail)
Basic tab, 148, 148
Sending tab, 149

OpenPGP standard, 2, 4–5, 6,
115–124

conformance with
OpenPGP, 7

email client integration,
118–119

email from beyond Web of
Trust, 120–122

identifying mail, 126–127
installing program, 31–32
interoperability, 161–162
key usages, 116
keyserver search, 83
and the law, 10
message encoding, 116–118
photo ID, 36
potential problems, 156–161

Index 191

repeatable anonymity,
122–123

saving email, 119–120
as secure standard, 5
and security, 28–29
and shared systems, 163
and teams, 162
trust in, 30
unprotected email

components, 124
what it can do, 13–14

openssl command, 55
operating system

registering GnuPG/Outlook
library with, 142

security, 158–159
Opportunistic Encryption

policy, 128
overriding, 134

options, command line. See
gpg command; pgp
command

Outlook (Microsoft)
default message

format in, 142
and GnuPG, 141–145
Options dialog box

Advanced tab, 144
GnuPG tab, 142, 143
Mail Format tab, 142, 143

receiving OpenPGP mail, 145
sending OpenPGP-encrypted

mail, 145
Outlook Express (Microsoft)

and GnuPG, 138–141
configuring for

OpenPGP, 139
receiving and verifying

signed and encrypted
mail, 141

warnings and caveats, 140
immediately sending

messages, 139
New Message screen, 140, 140
Options dialog box, Send

tab, 139

P
padlock icon, 126
passing key, secure

transmission, 20

Passphrase Assignment screen,
for PGP, 43–44, 43

Passphrase Quality bar, 44
passphrases

for adding photos to keys, 98
caching, 164

in Enigmail, 148
Fifth Amendment

protection and, 160
for GnuPG keys, 75
in Microsoft Outlook, 144
in pgp command, 170
and private keys, 24–26
for signing keys, 96
theft of, 159
when signing keys in

WinPT, 106
passport, 86
passwords, cracking, 25
PATH environment variable, gpg

program added to, 58
path, for GnuPG and WinPT

executables, 144
Perl, for Entropy Gathering

Daemon, 68–69
PGP (Pretty Good Privacy), 2, 6

application data storage
location, 46

book form, 3
command line, 167–176

configuring, 168–169
creating keypair, 170–172
encryption and

decryption, 175–176
exporting public key,

171–172
generating revocation

certificate, 171
importing keys, 174
searching for keys,

173–174
signing and verifying, 176
signing keys, 174–175
testing and licensing, 169
updating keys on

keyserver, 175
viewing keys, 172–173

cryptography goals, 17–19
and email, 125–135

clients, 126–127
vs. GnuPG, 7–10
history, 2–5

192 Index

PGP, continued
installing

key backups, 45–46
key generation process, 41
key settings, 42–43, 42
Licensing Assistant, 40, 41
Passphrase Assignment

screen, 43, 43–44
PGP Global Directory

Assistant, 44, 44
PGP Setup Assistant, 41
reimporting private key,

49–50, 50
revocation certificates,

46–51
key management, 91–97

adding keys to keyring,
93–96

adding keyservers, 91–92
returning signed key, 97
viewing signatures, 97

and keyservers, 51–52
policies, 127–135

custom, 130–132
Mailing List Admin

Requests, 129
Mailing List

Submissions, 129
Opportunistic

Encryption, 128
order of custom, 134–135
Require Encryption,

128–129
sample custom, exceptions

to default, 132–133
sample custom, overriding

default, 134
potential problems, 156–161

hardware compromise,
157–158

improper use, 156
poor signing, 156–157
security issues of older

versions, 162
shredding feature, 165
and Web of Trust, 113–114

pgp command
--change-passphrase

option, 170
--decrypt option, 176
--encrypt option, 175
--expiration-date option, 170

--export option, 172
--gen-key option, 170
--gen-revocation option, 171
--help option, 169
--key-type option, 170
--keyserver-recv option, 174
--keyserver-send option, 172
--keyserver-update option, 175
--list-key-details option, 173
--list-keys option, 172–173
--list-sig-details option, 173
--list-sigs option, 173
--list-userids option, 173
--pgp-fingerprint option, 173
--sign option, 176
--sign-key option, 175
--verify option, 176
--version option, 169

PGP Corporation, 6–7
keyserver, 51–52
software versions, 39
“verified PGP key” service, 37

PGP Desktop, 45, 45, 126
Copy Public Key, 52
Messaging tab, 127–130, 128
PGP Messaging section,

134, 135
Synchronize, 97
to view other key signers, 97
Virtual Desk software, 127

PGP Global Directory
public key submission to,

51, 78
revoking key without revoca-

tion certificate, 47
PGP Global Directory Assistant,

44, 44
PGP Keyservers List dialog box,

92, 92
PGP Options window,

Keys tab, 47
PGP Passphrase dialog box, 48
PGP Setup Assistant, 41
PGP Sign Key dialog box, 96, 96
PGP Signed note, 126–127
PGP Tray, for importing key

file, 94
PGP Revocation warning, 48, 48
PGP/MIME messages, 116, 118

in Enigmail, 149
with Microsoft mail clients

complications, 138
decrypting, 145–146

Index 193

PGPprefs.xml configuration
file, 168

adding licensing informa-
tion to, 169

photo ID
adding to key, 98
GnuPG and, 110–113

adding to key, 110–111
viewing photo on key,

111–112
WinPT for adding,

112–113
and OpenPGP keys, 36
to verify identity, 85

plaintext, 15
plug-ins for GnuPG, 119
policy-based encryption and

signing rules, 125
ports/packages system, for in-

stalling GnuPG, 67
posting public key to website, 79
Pretty Good Privacy (PGP). See

PGP (Pretty Good
Privacy)

private information,
OpenPGP for, 84

private key, 22. See also keys
backup, 45
deleting after revocation cer-

tificate creation, 49
file storage, 168
losing, 26
to open saved encrypted

email, 120
and passphrases, 24–26
Properties, 50, 51, 52
re-importing, 49–50, 50
theft of, 159
USB flash drive for, 158

private keyring, viewing
keys on, 103

Professional desktop version of
PGP, 39

Progress Dialog, for WinPT key
generation, 64, 64

properties
of imported key, 95
of private key, 50, 51, 52

proxies, for email client
integration, 119

pseudo-random number
generators, 68

public key. See also keys
adding photo to, 98

in GnuPG, 110–111
with WinPT, 112–113

distribution, 36–38
encryption, 22
exporting, 107–108

in GnuPG, 179
in PGP, 171–172

file storage, 168
getting from keyserver, 82–83
importing to keyring, 87
posting to website, 79
publishing, 44
USB flash drive for, 158

publicizing key
for another person, 87
for GnuPG, 78–80

keyservers, 79–80
text exports, 78–79
web forms, 80

publishing. See submitting key to
keyservers

pubring.gpg file, 56, 78, 178
pubring.pkr file, 168

R
randomness

and GnuPG, 67–69
in key creation, 75

RCS revision control system, 169
reading OpenPGP mail

in Thunderbird,
151–152, 152

README file, in GnuPG
tarball, 70

receiving signed and encrypted
mail in Outlook
Express, 141

recipient, PGP custom policy
based on, 131

registering GnuPG/Outlook
library with operating
system, 142

Registry keys for PGP, 46
regsvr32 command, 142
reimporting private key for PGP,

49–50, 50
repeatable anonymity, 122–123
replication of key databases, 37
repudiating message, 18
Require Encryption policy,

128–129

194 Index

returning signed key, 97, 108
revocation certificates, 35

backup of, 35–36
for GnuPG, 76–77
for PGP, 46–51

generation process,
47, 171

using, 51
reason for, 77
storing, 36
in WinPT, 65–66, 66

Rivest, Shamir, & Adleman
encryption. See RSA

root account, limiting use of, 72
RPMs, for installing GnuPG, 67
RSA (Rivest, Shamir, & Adle-

man) encryption, 5,
42, 73, 170

rubber hose cryptanalysis, 159

S
safe, for storing keypair, 35
saving email, unencrypted, 120
Schneier, Bruce, Applied

Cryptography, 21
screen saver, locking, 31
search

for keys, 83
on keyserver, 93–94,

173–174
for keyservers, 52
by PGP, for email, 44

Search for Keys screen, 93, 94
secring.gpg file, 56, 178
secring.skr file, 168
Secure Sockets Layer (SSL), 28

connections, 126
security

checksum comparisons from
different download
sites, 56

illusion of, 159
for keypair, 72
multiuser. See multiuser

security
and OpenPGP, 28–29

Select Components screen
(WinPT), 61–62, 62

Send In Clear option, in PGP
custom policy, 132

sending key. See submitting key
to keyservers

sending messages in Outlook
Express, 139

sending OpenPGP mail
in Outlook, 145
in Thunderbird, 149–151

setuid root GnuPG, 71–72
Setup warning in WinPT, 61
SHA1 checksum method,

54–55, 161, 162
sha1 command, 55
sha1sum command, 55
shared systems, and OpenPGP

standard, 163
shredding, 164–165
signature. See digital signature
signatures on key

importing, 108
number on key, 30
and proof of authenticity, 159
pushing to keyserver, 108
updating, 97
viewing, 97, 107

signed key, returning, 97
signing and verifying files, 176
signing keys, 83–87, 174–175

action after gaining new
signatures, 87

of friends and family, 84–85
in GnuPG, 105–108
informal process, 86
of strangers, 85–86
in WinPT, 106

Size property, of private key, 52
smartcards, 163
S/MIME, 118
social networking sites, 86
Solaris, and random number

generation, 68
source code, GnuPG build from,

69–72
configuration, 70–71
installing, 69–70
setuid root GnuPG, 71–72

special characters, in
passphrase, 25

spyware, 158
SSL (Secure Sockets Layer), 28

connections, 126
strangers, signing keys of, 85–86
subject lines of email

nonencryption, 124
PGP custom policy

based on, 131

Index 195

subkeys, 103
subkeys.pgp.net, 82

web interface, 83
submitting key to keyservers, 52

command for, 172
from GnuPG, 179
from WinPT, 66

support, PGP vs. GnuPG, 8
symmetric encryption

algorithms, 20
Synchronize, in PGP Desktop, 97
system tray, magnifying glass

icon, 66

T
teams, and OpenPGP, 162
telephone, for keysigning, 86
test keys, 82
text editor, for gpg.conf file

creation, 57
text files, exporting public key

to, 78–79, 172
Thunderbird, 138

and GnuPG, 147–153
configuring Enigmail,

147–149
installing plug-in, 147
reading OpenPGP mail,

151–152, 152
sending OpenPGP mail,

149–151
upgrading, 152–153

Tools menu
Outlook, 142
Outlook Express, 139
PGP, 47, 92, 97
Thunderbird, 147–149

tracing Web of Trust, 121–122
transmission of key, secure, 20
transparency, PGP vs. GnuPG, 9
TripleDES encryption, 43, 161
trust, 83

configuring in WinPT, 114
for key

levels, 89, 96
manually setting, 50

level for new keyserver, 92–93
in OpenPGP standard, 30

trustdb.gpg file, 57
Trusted trust level, 89
Twofish, 43
Type property, of private key, 52

U
UID. See user ID
unencrypted email, saving, 120
uninstalling Enigmail, before

Thunderbird
upgrade, 153

United States, cryptography laws,
160–161

Unix, GnuPG (Gnu Privacy
Guard) install, 67–69

checksum calculation, 55–56
unused keys, purging from

keyserver, 82
Unverified Key, 132
updates to keyservers, 175

disabling, 47
upgrading Thunderbird and

Enigmail, 152–153
US Congress, Senate Bill 266

(1991), 2–3
US State Department, 3
USB flash drive, for keys, 158
user ID (UID), 84

for OpenPGP, 34–35
when creating keypair, 170

user rights, for WinPT setup, 61
/usr/pkgsrc/security/gnupg

directory, 67
/usr/ports/security/gnupg

directory, 67

V
variables, in gbg.conf file, 57
verbose option for GnuPG, 100
Verified Key, 132
“verified PGP key” service, 37
verifying

email sender, 101–102
signed and encrypted mail, in

Outlook Express, 141
viewing keys

in GnuPG, 102–103
in PGP, 172–173
in WinPT, 104

viewing photo on key, 98,
111–112

viewing signatures, 97, 107
virtual keyboard, 157
virtual memory, 71
virtual partitions, 127
viruses, 158

196 Index

W
WARNING: using insecure memory

message, 71
web forms, to publicize GnuPG

key, 80
Web of Trust, 29, 81–89, 106

avoiding, 90
building with GnuPG,

113–114
email from beyond, 120–122
expanding, 121
and fake keys, 161
getting public keys from

keyservers, 82–83
key trust level, 89
keys disconnected from, 123
keysigning party, 88–89
signing keys, 83–87

action after gaining new
signatures, 87

of friends and family,
84–85

of strangers, 85–86
tracing, 121–122
trust defined, 30

web resources
encryption law survey, 10
for GnuPG, 54
keyservers, 52
for PGP, 40
Wikipedia, 3

website, posting public key to,
36, 79

Wikipedia, “Export of
Cryptography” entry, 3

Windows
GnuPG install, 57–58

checksum calculation, 55
command-line install,

58–60
graphical install (WinPT),

60–66

multiuser security,
Windows 95–based
vs. Windows NT–based
operating systems, 32,
57–58, 163

Windows Privacy Tray (WinPT),
60–63, 62

for adding photo ID,
112–113, 112

choosing path to, 144
creating keypairs, 63–64
deleting keys, 110
exporting keys, 108
failure to find keyrings, 62
importing keys, 104
Key Manager, 65, 65, 101, 104
and keyservers, 101
Outlook Express plug-ins for

GnuPG, 138
Progress Dialog for key

generation, 64, 64
revocation certificates,

65–66, 66
Select Components

screen, 61, 62
sending key to keyserver, 66
Setup warning, 61, 61
shredding feature, 165
signing keys, 106
trust configuration, 114
viewing keys, 104

WinPT. See Windows Privacy
Tray (WinPT)

worms, 158
wotsap, 122

X
X.509 certificate, 29

Z
Zimmermann, Phil, 2–3, 4

More No-Nonsense Books from NO STARCH PRESS

CISCO ROUTERS FOR THE DESPERATE™

Router Management, The Easy Way
by MICHAEL W. LUCAS

A brief, meaty introduction to Cisco routers that will make
competent system administrators comfortable with the Cisco
environment, teach them how to troubleshoot problems,
and take them through the basic tasks of router mainte-
nance and integration into an existing network. Designed
to be read once and then left on top of the router until
something breaks, this is a book for those who don’t need
to know a huge amount about routers but must still provide
reliable network services.
NOVEMBER 2004, 144 PP., $19.95 ($27.95 CDN)
ISBN 1-59327-049-6

THE TCP/IP GUIDE
A Comprehensive, Illustrated Internet Protocols Reference
by CHARLES M. KOZIEROK

Finally, an encyclopedic, comprehensible, well-illustrated,
and completely current guide to the TCP/IP protocol
suite for both newcomers and seasoned professionals. This
complete reference details the core protocols that make
TCP/IP internetworks function, as well as the most impor-
tant TCP/IP applications. It includes full coverage of PPP,
ARP, IP, IPv6, IP NAT, IPSec, Mobile IP, ICMP, and much
more. It offers a detailed view of the TCP/IP protocol suite,
and describes networking fundamentals and the important
OSI Reference Model.
OCTOBER 2005, 1616 PP., $79.95 ($107.95 CDN)
ISBN 1-59327-047-X

THE BOOK OF™ POSTFIX
State-of-the-Art Message Transport
by RALF HILDEBRANDT & PATRICK KOETTER

Developed with security and speed in mind, Postfix has
become a popular alternative to Sendmail. The Book of Postfix
is a complete guide to Postfix whether used by the home
user, as a mailrelay or virus scanning gateway, or as a com-
pany mailserver. Practical examples show how to deal with
daily challenges like protecting mail users from spam and
viruses, managing multiple domains, and offering roaming
access.
MARCH 2005, 496 PP., $44.95 ($62.95 CDN)
ISBN 1-59327-001-1

SILENCE ON THE WIRE
A Field Guide to Passive Reconnaissance and Indirect Attacks
by MICHAL ZALEWSKI

“A whirlwind of deep technical information that gets to the very
underpinning of computer security…. Read it and get ready to be
humbled.”—UNIX REVIEW

Author Michal Zalewski has long been known and respected
in the hacking and security communities for his intelligence,
curiosity, and creativity, and this book is truly unlike any-
thing else out there. In Silence on the Wire, Zalewski shares his
expertise and experience, explaining how computers and
networks work, how information is processed and delivered,
and what security threats lurk in the shadows. No humdrum
technical white paper or how-to manual for protecting one’s
network, this book is a fascinating narrative that explores
a variety of unique, uncommon and often quite elegant
security challenges that defy classification and eschew the
traditional attacker-victim model.
APRIL 2005, 312 PP., $39.95 ($53.95 CDN)
ISBN 1-59327-046-1

ENDING SPAM
Bayesian Content Filtering and the Art of Statistical Language
Classification
by JONATHAN A. ZDZIARSKI

Ending Spam describes, in depth, how statistical filtering is
being used by next-generation spam filters to identify and
filter unwanted email. Readers gain a complete understand-
ing of the mathematical approaches used in today’s spam
filters, decoding, tokenization, the use of various algorithms
(including Bayesian analysis and Markovian discrimination),
and the benefits of using open source solutions to end spam.
JULY 2005, 312 PP., $39.95 ($53.95 CDN)
ISBN 1-59327-052-6

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

FAX:
415.863.9950
24 HOURS A DAY,
7 DAYS A WEEK

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

MAIL:
NO STARCH PRESS

555 DE HARO ST, SUITE 250
SAN FRANCISCO, CA 94107
USA

C O L O P H O N

PGP & GPG was laid out using Adobe InDesign. The font
families used are New Baskerville for body text, Futura for
headings and tables, and Dogma for titles. The accent color
is Pantone 349C.

The book was printed and bound at Malloy Incorporated
in Ann Arbor, Michigan. The paper is Glatfelter Thor 60#
Antique, which is made from 50 percent recycled materials,
including 30 percent postconsumer content. The book uses a
RepKover binding, which allows it to lay flat when open.

U P D A T E S

Visit www.nostarch.com/pgp.htm for updates, errata, and
other information.

